

Building	Smart	Homes	with	Raspberry	Pi	Zero

Table	of	Contents

Building	Smart	Homes	with	Raspberry	Pi	Zero
Credits
About	the	Author
About	the	Reviewer
www.PacktPub.com
Preface

What	this	book	covers
What	you	need	for	this	book
Who	this	book	is	for
Conventions
Reader	feedback
Customer	support

Downloading	the	example	code
Errata
Piracy
Questions

1.	Configuring	Your	Raspberry	Pi	Zero	Board
Introducing	the	Raspberry	Pi	Zero	board
Required	components	for	the	Zero	board
Assembling	the	different	components
Installing	Raspbian
Configuring	the	board	for	remote	access
Installing	Node.js
Summary

2.	Measure	Data	Using	Your	Raspberry	Pi	Zero	Board
Hardware	and	software	requirements

Hardware	configuration
Software	configuration

Reading	data	from	the	sensor
Storing	sensor	data
Accessing	the	data	remotely
Plotting	the	stored	data
Summary

3.	Building	a	Smart	Home	Thermostat
Hardware	and	software	requirements

Hardware	configuration
Testing	individual	components
Building	the	thermostat
Controlling	the	thermostat	remotely
Summary

4.	Controlling	Appliances	fromthe	Raspberry	Pi	Zero

Hardware	and	software	requirements
Controlling	LEDs
Controlling	the	speed	of	a	DC	motor
Controlling	home	appliances
Summary

5.	Making	a	Smart	Plug	with	the	Raspberry	Pi	Zero
Hardware	and	software	requirements

Hardware	configuration
Configuring	the	smart	plug
Creating	an	interface	for	the	smart	plug
Logging	your	energy	consumption	over	time
Summary

6.	Sending	Notifications	using	Raspberry	Pi	Zero
Hardware	and	software	requirements
Making	a	motion	sensor	that	sends	text	messages
Sending	temperature	alerts	through	email
Receiving	measurement	SATA	through	push	notifications
Summary

7.	Use	the	Raspberry	Pi	Zero	to	Build	a	Security	System
Hardware	and	software	requirements
Building	a	motion	sensor	with	the	Pi	Zero
Making	a	simple	alarm	module
Building	a	wireless	security	camera
Creating	a	security	system
Summary

8.	Monitor	Your	Home	from	the	Cloud
Hardware	and	software	requirements
Monitoring	data	from	a	cloud	dashboard
Creating	a	cloud	dashboard	for	your	devices
Accessing	your	security	camera	from	anywhere
Summary

9.	Control	Appliances	from	Anywhere
Hardware	and	software	requirements
Control	a	LED	from	anywhere	in	the	world
Creating	several	lamps	from	the	cloud
Make	a	motion-activated	lamp	using	IFTTT
Build	an	automated	cloud	thermostat
Summary

10.	Building	a	Home	Automation	System	with	Raspberry	Pi	Zero	Boards
Hardware	and	software	requirements
Building	all	the	modules
Configuring	the	modules
Integrating	the	modules	into	a	single	interface
Automating	your	home

Accessing	your	home	automation	system	from	anywhere
Summary

Index

Building	Smart	Homes	with	Raspberry	Pi	Zero

Building	Smart	Homes	with	Raspberry	Pi	Zero
Copyright	©	2016	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or
transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers
and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused	directly	or
indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,
Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	October	2016

Production	reference:	1241016

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78646-695-2

www.packtpub.com

http://www.packtpub.com

Credits
Author

Marco	Schwartz

Reviewer

Vasilis	Tzivaras

Commissioning	Editor

Kartikey	Pandey

Acquisition	Editor

Prachi	Bisht

Content	Development	Editor

Trusha	Shriyan

Technical	Editors

Nirant	Carvalho

Naveenkumar	Jain

Copy	Editors

Safis	Editing

Sneha	Singh

Project	Coordinator

Kinjal	Bari

Proofreader

Safis	Editing

Indexer

Pratik	Shirodkar

Graphics

Kirk	D'Penha

Production	Coordinator

Shantanu	N	Zagade

Cover	Work

Shantanu	N.	Zagade

About	the	Author
Marco	Schwartz	is	an	electrical	engineer,	entrepreneur,	and	blogger.	He	has	a	master's
degree	in	electrical	engineering	and	computer	science	from	Supélec,	France,	and	a	master's
degree	in	micro	engineering	from	the	Ecole	Polytechnique	Fédérale	de	Lausanne	(EPFL),
Switzerland.

He	has	more	than	five	years	of	experience	working	in	the	domain	of	electrical	engineering.
Marco's	interests	gravitate	around	electronics,	home	automation,	the	Arduino	and	Raspberry
Pi	platforms,	open	source	hardware	projects,	and	3D	printing.

He	has	several	websites	about	Arduino,	including	the	Open	Home	Automation	website,	which
is	dedicated	to	building	home	automation	systems	using	open	source	hardware.

Marco	has	written	another	book	on	home	automation	and	Arduino,	called	Home	Automation
With	Arduino:	Automate	Your	Home	Using	Open-source	Hardware.	He	has	also	written	a	book
on	how	to	build	Internet	of	Things	projects	with	Arduino,	called	Internet	of	Things	with	the
Arduino	Yun,	by	Packt	Publishing.

About	the	Reviewer
Vasilis	Tzivaras	is	a	software	developer	and	hardware	engineer	who	lives	in	Ioannina,
Greece.	He	is	currently	an	undergraduate	student	of	the	department	of	computer	science	and
engineering	at	Ioannina.	Along	with	his	studies,	he	is	working	on	many	projects	relevant	to
robotics,	such	as	drones,	home	automation,	and	smart	home	systems	using	Arduino	and	the
Raspberry	Pi.	He	is	also	enthusiastic	about	clean	energy	solutions	and	cultural	innovation
ideas.

He	has	worked	for	the	University	Hospital	of	Ioannina	as	an	assistant	for	various	computer
issues	and	has	been	a	part	of	the	support	team	of	his	CSE	department	for	over	a	year.	He	has
participated	in	IEEE	UOI	Student	Branch	and	other	big	organizations,	such	as	FOSSCOMM,
with	personal	presentations	for	website	designing,	programming,	Linux	systems,	and	drones.

He	is	the	chair	of	IEEE	University	of	Ioannina	Student	Branch	and	has	proposed	many
projects	and	solutions	to	automate	homes	and	many	other	life	problems	by	reducing	the	time
of	everyday	routines.	In	addition	to	this,	he	has	come	up	with	ideas	to	entertain	kids	with
funny	and	magical	projects	using	Arduino-like	hardware	and	open	source	software.	Many	of
the	projects	can	be	found	on	his	GitHub	account	under	the	name	of	BillyTziv.

Apart	from	Building	Smart	Homes	with	Raspberry	Pi	Zero	and	Internet	of	Things	with	Arduino
Cookbook,	he	has	also	published	a	book	named	Building	a	Quadcopter	with	Arduino.	He	has
also	worked	on	another	book	Programming	in	C,	which	is	not	yet	published.	In	addition	to
this,	he	has	written	for	blogs,	forums,	guides,	and	small	chapters,	explaining	and	sharing	his
knowledge	of	computers,	networks,	and	programming.

www.PacktPub.com
Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub
files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print
book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at
<customercare@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a
range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and
eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt
books	and	video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal
development	and	advance	your	career.

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

http://www.PacktPub.com
mailto:customercare@packtpub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Preface
The	Raspberry	Pi	is	an	amazing	development	platform	that	was	introduced	back	in	2012,
along	with	the	release	of	the	first	board.	However,	due	to	its	price,	it	was	not	convenient	for
people	to	use	it	for	smart	home	applications,	where	you	need	to	deploy	several	modules	at
different	places	of	your	home.	Usually,	people	building	smart	homes	with	this	board	used	it	as
a	central	hub.

However,	in	2016	the	Raspberry	Pi	foundation	released	the	Zero	board,	which	is	a	smaller
and	much	cheaper	version	of	the	Raspberry	Pi	board,	and	this	changed	everything	for	the
home	automation	field.	Now,	you	can	actually	use	several	of	these	boards	in	a	home
automation	system	and	enjoy	all	the	power	and	flexibility	of	the	Raspberry	Pi	for	all	your
projects.

This	is	exactly	what	I	will	teach	you	to	do	in	this	book.	You	will	learn	how	to	use	the
Raspberry	Pi	Zero	board	in	several	home	automation	projects,	in	order	for	you	to	build	a
smart	home	that	is	really	tailored	to	your	needs.

What	this	book	covers
Chapter	1,	Configuring	Your	Raspberry	Pi	Zero	Board,	teaches	you	how	to	get	started	with
your	Raspberry	Pi	Zero	board	and	also	install	everything	that	you	need	to	carry	out	all	the
projects	that	you	will	find	in	this	book.

Chapter	2,	Measure	Data	Using	Your	Raspberry	Pi	Zero	Board,	teaches	you	how	to	measure
data	from	a	sensor	using	the	Raspberry	Pi	Zero	board.	You	will	also	learn	how	to	measure
data	from	the	sensor,	store	this	data	on	the	Pi,	and	plot	it	graphically.

Chapter	3,	Building	a	Smart	Home	Thermostat,	gets	you	right	into	the	core	topic	of	this	book,
that	is,	building	your	first	home	automation	system.	In	this	chapter,	we	will	build	a	simple
thermostat	that	will	allow	you	to	regulate	the	temperature	in	your	home.

Chapter	4,	Control	Appliances	from	the	Raspberry	Pi	Zero,	shows	you	how	to	use	the
Raspberry	Pi	Zero	board	to	easily	control	home	appliances.	As	an	example,	we'll	see	how	to
control	a	DC	motor	and	switch	on/off	appliances,	such	as	lamps.

Chapter	5,	Making	a	Smart	Plug	with	the	Raspberry	Pi	Zero,	teaches	you	how	to	build	your
own	version	of	a	smart	wireless	plug	that	you	can	buy	in	a	shop.	We'll	see	how	to	build	the
same	using	the	Raspberry	Pi	Zero	board	and	how	to	customize	it	for	your	own	needs.

Chapter	6,	Sending	Notifications	using	Raspberry	Pi	Zero,	shows	you	how	to	send	automated
notifications	from	your	Pi,	for	example	to	indicate	that	the	temperature	in	your	home	is
getting	low.	As	examples,	we'll	see	how	to	send	text,	email,	and	push	notifications.

Chapter	7,	Use	the	Raspberry	Pi	Zero	to	Build	a	Security	System,	shows	you	how	to	start
integrating	everything	we	saw	so	far	in	the	book	and	build	a	security	system	using	what	we
have	learned	so	far.	You'll,	for	example,	learn	how	to	transform	your	Raspberry	Pi	Zero
board	into	a	wireless	security	camera.

Chapter	8,	Monitor	Your	Home	from	the	Cloud,	guides	you	through	an	amazing	field:	the
Internet	of	Things.	You	will	learn	how	to	use	the	Internet	of	Things	for	your	smart	home	and
monitor	it	from	anywhere	in	the	world.

Chapter	9,	Control	Appliances	from	Anywhere,	guides	you	into	the	field	of	the	Internet	of
Things,	this	time	by	teaching	you	how	to	control	home	appliances	from	outside	of	your	Wi-Fi
network.

Chapter	10,	Building	a	Home	Automation	System	with	Raspberry	Pi	Zero	Boards,	uses
everything	you	learned	in	the	book	to	build	a	complete	home	automation	system	for	your
entire	home.

What	you	need	for	this	book
For	this	book,	the	main	component	you	will	need	is,	of	course,	a	Raspberry	Pi	Zero	board.	In
the	first	chapter	of	the	book,	I	will	show	you	how	to	completely	configure	the	board,	so	you
can	use	it	for	the	projects	of	this	book.	We	will	use	some	basic	components	at	the	start,	such	as
sensors,	and	then	move	on	to	using	more	complex	components.	For	every	project,	I	will	of
course	guide	you	step-by-step	into	building	the	hardware	part	so	that	you	are	not	left	behind.

On	the	software	side,	it	is	good	if	you	actually	have	some	existing	programming	skills,
especially	in	JavaScript	and	in	the	Node.js	framework.	However,	I	will	explain	all	the	parts	of
each	software	piece	of	this	book;	so	even	if	you	don't	have	good	programming	skills	in
JavaScript	you	will	be	able	to	follow	along.

Who	this	book	is	for
This	book	is	for	all	the	people	who	want	to	automate	their	homes	and	make	it	smarter,	while
at	the	same	time	having	complete	control	on	what	they	are	doing.	If	that's	your	case,	you	will
learn	everything	there	is	to	learn	in	this	book,	on	how	to	use	the	amazing	Raspberry	Pi	Zero
board	to	automate	your	home.

This	book	is	also	for	makers	who	have	played	in	the	past	with	other	development	boards,
such	as	Arduino.	If	that's	your	case,	you	will	learn	how	to	use	the	power	of	the	Raspberry	Pi
platform	to	build	smart	homes.	You	will	also	learn	to	create	projects	that	can't	easily	be	done
with	other	platforms,	such	as	creating	a	wireless	security	camera	with	the	Pi	Zero.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of
information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,
dummy	URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"You	can	now	simply
navigate	to	the	IP	address	of	the	computer	or	Pi	on	which	the	application	is	running,	followed
by	port	3000."

A	block	of	code	is	set	as	follows:

var	request	=	require('request');

var	sensorLib	=	require('node-dht-sensor');

Any	command-line	input	or	output	is	written	as	follows:

sudo	npm	install	express	request

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for
example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	"You	can	now	just	click	on
Stream	to	access	the	live	stream	from	the	camera."

Note

Warnings	or	important	notes	appear	in	a	box	like	this.

Tip

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—
what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles
that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book's	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to
get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	for	this	book	from	your	account	at
http://www.packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit
http://www.packtpub.com/support	and	register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT 	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

You	can	also	download	the	code	files	by	clicking	on	the	Code	Files	button	on	the	book's
webpage	at	the	Packt	Publishing	website.	This	page	can	be	accessed	by	entering	the	book's
name	in	the	Search	box.	Please	note	that	you	need	to	be	logged	in	to	your	Packt	account.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the
latest	version	of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at
https://github.com/PacktPublishing/Building-Smart-Homes-with-Raspberry-Pi-Zero	We	also
have	other	code	bundles	from	our	rich	catalog	of	books	and	videos	available	at
https://github.com/PacktPublishing/.	Check	them	out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Building-Smart-Homes-with-Raspberry-Pi-Zero
https://github.com/PacktPublishing/

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.
If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we
would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from
frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find	any	errata,
please	report	them	by	visiting	http://www.packtpub.com/submit-errata,	selecting	your	book,
clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of	your	errata.	Once
your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be	uploaded	to
our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the	search
field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across
any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with	the
location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

lease	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Configuring	Your	Raspberry	Pi	Zero
Board
In	the	first	chapter	of	this	book,	we	are	going	to	go	through	all	the	steps	that	are	required	to
configure	your	Raspberry	Pi	Zero	board	so	you	can	use	it	for	all	the	projects	we	will	see	in
this	book.

First	we	will	look	at	the	list	of	components	that	are	required	to	use	the	board.	Then,	we	will
install	the	Raspbian	distribution,	which	will	be	the	operating	system	we	will	use	throughout
this	book,	on	the	board.	Finally,	we'll	see	how	to	configure	the	board	for	remote,	and	how	to
install	the	Node.js	framework	that	we	will	use	in	nearly	all	the	projects	of	the	book.	Let's	start!

Introducing	the	Raspberry	Pi	Zero	board
The	Raspberry	Pi	Zero	is	a	board	that	was	introduced	in	2015,	and	the	goal	was	to	make	a
low-cost	($5),	small-format	board	with	most	of	the	functionalities	of	the	original	Raspberry
Pi	board.

The	following	is	an	image	of	the	Zero	board:

In	the	center	of	the	board,	you	will	find	the	same	System-on-a-Chip	(SoC)	as	the	original
Raspberry	Pi	board,	with	a	1-GHz	single-core	processor,	512	MB	of	RAM,	and	a	graphical
processing	unit.

The	board	has	several	inputs	and	outputs,	like	the	40-pin	GPIO	connector	that	we	will	use
through	this	whole	book	to	connect	the	board	to	sensors	and	other	components.

There	are	also	two	USB	ports	(one	for	power,	one	for	communication),	one	mini-HDMI	port,
and	one	SD	card	slot	to	put	the	operating	system	and	other	files	in.

The	power	consumption	of	the	board	was	also	reduced	compared	to	the	first	board,	going
from	1.5W	to	0.8W.

Required	components	for	the	Zero	board
Even	if	the	Raspberry	Pi	Zero	board	has	a	very	small	form	factor,	it	actually	can't	be	used
alone,	at	least	for	the	configuration	step.	Therefore,	we	are	going	to	need	a	lot	of	additional
components	for	all	the	projects	of	this	book,	and	this	is	what	I	wanted	to	go	through	in	this
section.

The	first	thing	you	will	need	for	your	Pi	Zero	board	is	a	micro-USB	to	USB	converter,	so
you	can	plug	regular	USB	devices	into	your	board.	This	is	an	image	of	the	cable	I	used	for
my	Pi	board:

Then,	you	will	need	some	way	to	connect	your	Raspberry	Pi	Zero	board	to	a	computer
screen.	To	do	so,	you	will	need	a	mini-HDMI	to	HDMI	adapter:

In	order	to	connect	more	than	one	device	to	the	board,	you	will	also	need	a	regular	USB	hub:

Later	in	this	chapter,	we	are	going	to	look	at	how	to	use	the	Raspberry	Pi	board	remotely
from	your	computer,	so	you	don't	need	to	always	have	it	connected	to	an	external	screen.
However,	to	begin	with,	you	will	need	a	keyboard	and	mouse	to	use	it:

Tip

I	recommend	using	a	keyboard	with	a	small	track	pad	as	well.

The	Raspberry	Pi	Zero	board	doesn't	come	with	onboard	storage.	Therefore,	you	will	need	to
use	a	micro	SD	card	to	store	the	operating	system.	I	recommend	using	at	least	an	8-GB	SD
card:

At	some	point,	we	are	going	to	connect	the	Raspberry	Pi	Zero	board	to	the	Internet.	We'll	also
need	to	connect	it	to	your	local	network,	so	you	can	access	it	remotely.	To	do	so,	I
recommend	using	a	simple	Wi-Fi	USB	dongle:

Of	course,	you	will	need	other	components	to	use	the	Raspberry	Pi	Zero	board	that	I	haven't
included	here	as	usually,	they	are	already	on	everyone's	desk.	For	example,	you	will	need	a
screen	with	an	HDMI	input	to	use	the	board.	You	will	also	need	a	micro-USB	power	supply,
for	example,	the	one	you	are	using	to	charge	your	phone.	The	Raspberry	Pi	foundation	says	it
should	work	with	a	power	supply	that	can	deliver	at	least	1A,	but	a	2A	power	supply	is
recommended.

Assembling	the	different	components
Let's	now	look	at	how	to	assemble	the	required	components	so	we	can	get	started	with	your
Raspberry	Pi:

1.	 First,	insert	the	micro-USB	to	USB	adapter	cable	into	one	of	the	USB	ports	of	the	Pi	(not
the	PWR	one),	and	also	plug	the	mini-HDMI	cable	to	the	Pi.

2.	 Then,	connect	all	your	required	USB	devices	(for	example,	the	Wi-Fi	dongle)	to	the	USB
hub,	and	connect	the	USB	to	the	Pi.	Also,	connect	the	Pi	to	an	external	screen	using	an
HDMI	cable.

3.	 This	is	how	it	should	look	when	you	are	done,	not	showing	the	connections	to	the	screen
or	the	hub:

4.	 At	this	point,	don't	connect	it	to	the	power	yet—we	first	need	to	install	Raspbian	(the
operating	system)	on	the	SD	card.

Installing	Raspbian
There	are	many	operating	systems	that	are	available	for	the	Raspberry	Pi	board,	most	of
which	are	based	on	Linux.	However,	the	one	that	is	usually	recommended	is	Raspbian,	which
is	an	operating	system	based	on	Debian	that	was	specifically	made	for	Raspberry	Pi.

In	order	to	install	the	Raspbian	operating	system	on	your	Pi,	the	first	step	is	to	download	the
latest	Raspbian	image	from	the	official	Raspberry	Pi	website:

https://www.raspberrypi.org/downloads/raspbian/

Next,	insert	the	micro	SD	card	into	your	computer	using	an	adapter	(an	adapter	is	usually
given	with	the	SD	card).	To	actually	configure	the	SD	card,	it's	best	to	refer	to	the	official
installation	guides.	If	you	use	Windows,	please	refer	to	the	following	URL:

https://www.raspberrypi.org/documentation/installation/installing-images/windows.md

If	you	are	using	OS	X,	please	refer	to	the	following:

https://www.raspberrypi.org/documentation/installation/installing-images/mac.md

Finally,	if	you	are	using	Linux,	you	can	refer	to	the	following:

https://www.raspberrypi.org/documentation/installation/installing-images/linux.md

Now,	once	you	have	Raspbian	installed	on	your	SD	card,	insert	it	into	Raspberry	Pi	and
connect	the	Raspberry	Pi	board	to	the	power	source	via	the	micro-USB	port.

Then,	after	a	while,	you	should	see	the	desktop	of	your	freshly	installed	Raspbian	operating
system:

https://www.raspberrypi.org/downloads/raspbian/
https://www.raspberrypi.org/documentation/installation/installing-images/windows.md
https://www.raspberrypi.org/documentation/installation/installing-images/mac.md
https://www.raspberrypi.org/documentation/installation/installing-images/linux.md

If	you	can	see	this	screen,	congratulations;	you	now	have	a	fully	functional	Raspberry	Pi	Zero
board.	Throughout	the	rest	of	this	chapter,	we	are	going	to	see	how	to	configure	the	board	so
it	can	be	accessed	remotely,	and	how	to	install	the	Node.js	framework	on	it.

Configuring	the	board	for	remote	access
At	the	end	of	this	chapter,	you	want	to	be	able	to	access	the	board	from	your	own	computer,
without	having	it	connected	to	an	external	screen.

The	first	step	is	to	connect	the	Raspberry	Pi	board	to	your	local	Wi-Fi	network.	If	you
connected	a	Wi-Fi	dongle	to	the	Pi,	you	should	see	the	Wi-Fi	icon	at	the	top	of	your	Pi
desktop.	Click	on	it,	and	select	your	Wi-Fi	network:

You	will	then	be	asked	to	enter	the	password	for	your	network,	and	a	few	seconds	later,	you
should	be	connected	to	your	local	Wi-Fi	network	and	to	the	Internet.

Next,	we	need	to	enter	the	Raspberry	Pi	configuration	panel	so	we	can	set	some	essential
settings.	You	can	find	the	Raspberry	Pi	Configuration	tool	inside	the	main	Menu:

Inside	the	configuration	tool,	first	press	on	Expand	Filesystem:

This	will	make	sure	that	the	Pi	now	has	access	to	all	the	space	available	on	the	SD	card.	Also,
click	on	the	Interfaces	tab	and	check	that	SSL	is	checked:

Inside	the	same	configuration	tool,	you	can	also	give	a	network	name	to	your	Pi.	I	simply
called	mine	pizero.

We	are	now	going	to	perform	some	tests	from	your	computer	to	make	sure	that	Raspberry	Pi
is	correctly	configured	for	remote	access	and	that	it	has	access	to	the	Internet.

To	do	so,	open	a	terminal	window	on	your	computer	(or	use	PuTTY	if	you	are	using
Windows),	and	type	the	following:

ssh	pi@pizero.local

This	should	initiate	a	connection	to	your	Pi	board	and	ask	for	your	password.	Once	you	type
in	your	password,	you	should	now	be	connected	to	the	Pi	board.	If	that	doesn't	work	at	this
point,	try	replacing	the	name	of	your	Raspberry	Pi	with	the	IP	address	of	the	board	(you	can
get	this	by	typing	ifconfig	inside	a	Terminal	on	the	Pi	itself).

Then,	from	your	computer,	type	the	following:

sudo	apt-get	update

Then	type	the	following	command:

sudo	apt-get	upgrade

This	will	upgrade	your	Pi	board	by	downloading	all	the	latest	packages	from	the	official
Raspberry	Pi	repository,	so	it's	a	great	way	to	make	sure	that	your	board	is	connected	to	the
Internet.

Installing	Node.js
To	finish	this	chapter,	we	are	going	to	install	Node.js,	which	is	a	powerful	framework	that	we
will	use	to	run	most	of	the	applications	that	we	are	going	to	see	inside	this	book.	Luckily	for
us,	installing	Node.js	on	Raspberry	Pi	is	really	simple.

First,	log	into	your	Raspberry	Pi	via	SSH.	We	are	going	to	quickly	check	that	Node.js	was	not
installed	with	the	Linux	image.	To	do	so,	type	the	following:

node	-v

If	this	returns	the	version	of	Node.js,	you	can	stop	there.	If	it	returns	an	error,	you	will	have	to
install	it	manually.	To	do	so,	first	type	the	following:

curl	-sL	https://deb.nodesource.com/setup_4.x	|	sudo	-E	bash	-

After	that,	type	the	following	command,	which	will	install	Node.js:

sudo	apt-get	install	-y	nodejs

Finally,	install	some	additional	tools	with	the	following:

sudo	apt-get	install	-y	build-essential

You	can	now	test	that	Node.js	is	correctly	installed	by	typing	the	following:

node	-v

Congratulations,	you	now	have	a	fully	configured	Raspberry	Pi	Zero!	In	the	next	chapter,	we
are	going	to	build	your	first	application	using	the	Zero	board	and	learn	how	to	measure	data
from	sensors.

Summary
In	this	first	chapter	of	this	book,	we	saw	how	to	configure	our	Raspberry	Pi	Zero	board	so	we
can	use	it	in	later	chapters	of	this	book.	We	saw	what	components	were	needed	for	the	Pi,	and
how	to	install	Raspbian	so	we	can	run	software	on	our	board.	Finally,	we	installed	Node.js,
which	we	will	use	in	the	whole	book	to	run	home	automation	projects	on	our	Pi.

In	the	following	chapter,	we	are	going	to	dive	into	the	core	topic	of	the	book	by	learning	how
to	measure	data	from	a	sensor.

Chapter	2.	Measure	Data	Using	Your	Raspberry
Pi	Zero	Board
In	the	first	chapter	of	this	book,	we	worked	on	setting	up	your	Raspberry	Pi	board	so	you	can
use	it	in	your	projects	and	realize	all	the	projects	you'll	find	in	this	book.

In	this	chapter,	we	are	going	to	make	our	first	project	using	the	Zero	board:	measuring	data
using	your	board.	We	are	going	to	learn	how	to	connect	a	very	simple	temperature	and
humidity	digital	sensor	to	your	Pi,	and	how	to	write	software	to	read	data	from	it.

From	there,	we'll	look	at	some	very	basic	applications	using	this	sensor	that	can	be	really
useful	inside	a	smart	home:	how	to	log	data	on	the	Pi	itself,	how	to	access	the	measurements
remotely,	and	finally,	how	to	display	past	data	on	a	nice	plot.

Hardware	and	software	requirements
We	have	already	discussed	most	of	the	requirements	for	this	project	in	the	first	chapter	of	this
book.	Here,	you	will	simply	need	an	additional	component:	a	DHT11	sensor
(https://www.adafruit.com/products/386).	The	following	image	shows	the	sensor:

You	can	of	course	use	other	similar	sensors,	for	example	the	DHT22,	which	is	more	precise.
To	use	a	DHT22,	you	will	only	need	to	change	one	thing	inside	the	code	we'll	see	later.

You	will	also	need	a	4.7k	Ohm	resistor	to	make	the	sensor	work,	as	well	as	jumper	wires	and
a	breadboard.

https://www.adafruit.com/products/386

Hardware	configuration
Let's	now	look	at	how	to	configure	the	hardware	for	this	project;	basically,	how	to	connect	the
sensor	to	the	Pi	Zero	board.

The	following	figure	is	a	schematic	to	help	you	out:

As	it's	the	first	project	we	are	actually	building	using	the	Raspberry	Pi	Zero,	there	is
something	important	I	wanted	to	point	out	here.	To	connect	the	board	to	components	like	this
sensor	here,	we	have	two	options.	You	can	either	use	jumper	wires	directly	(as	shown	on	the
schematic),	or	use	a	cobbler	kit	to	connect	all	the	pins	of	the	Pi	to	the	breadboard,	as	shown	in
the	following	image:

This	is	up	to	you,	and	to	be	clear,	I'll	always	show	only	the	individual	wires	on	the	schematics,
but	use	a	cobbler	kit	to	actually	build	the	projects.

Here,	you	simply	need	to	place	the	DHT11	on	the	breadboard,	and	then	connect	the	resistor
between	the	VCC	and	the	data	pins.	Then,	connect	the	VCC	to	the	3.3V	pin	of	the	Raspberry	Pi,
GND	to	GND,	and	finally,	connect	the	data	pin	of	the	sensor	to	pin	4	of	the	Raspberry	Pi
board.

Software	configuration
Now	we	are	going	to	install	additional	software	on	your	Pi	to	make	sure	we	can	read	data
from	the	sensor.

Following	the	instructions	from	Chapter	1,	Configuring	Your	Raspberry	Pi	Zero	Board	log
into	your	Pi	via	SSH,	or	just	use	it	with	an	external	screen	with	mouse	and	keyboard.

1.	 Inside	a	terminal,	type	the	following:

wget	http://www.airspayce.com/mikem/bcm2835/bcm2835-1.50.tar.gz

2.	 Wait	for	the	download	to	complete	and	then	type	the	following:

tar	zxvf	bcm2835-1.50.tar.gz	

3.	 Next,	type	the	following:

cd	bcm2835-1.50

4.	 Now,	configure	the	software	you	just	downloaded	with	the	following:

./configure

5.	 Build	this	software	with	the	following:

make	

6.	 Now,	verify	that	everything	is	okay	with	the	following:

sudo	make	check	

7.	 If	there	are	no	errors,	you	can	then	install	the	software	on	your	Pi	with	the	following:

sudo	make	install

After	that	last	step,	you	can	now	move	on	to	the	projects	of	this	chapter!

Reading	data	from	the	sensor
As	the	first	project	of	this	chapter,	we	are	simply	going	to	see	how	to	read	data	from	the
sensor.	As	for	all	the	projects	in	this	book,	we'll	use	Node.js,	which	is	a	great	framework	for
building	projects	on	your	Raspberry	Pi	Zero.

I	will	now	go	through	the	main	parts	of	this	first	piece	of	code.	It	starts	by	including	the	DHT
sensor	module	for	Node.js:

var	sensorLib	=	require('node-dht-sensor');

Then,	we	create	an	object	to	read	data	from	the	sensor	and	initialize	it	when	we	start	the
software:

var	sensor	=	{

				initialize:	function	()	{

								return	sensorLib.initialize(11,	4);

				},

				read:	function	()	{

								var	readout	=	sensorLib.read();

								console.log('Temperature:	'	+	readout.temperature.toFixed(2)	+	'C,	'	+

												'humidity:	'	+	readout.humidity.toFixed(2)	+	'%');

								setTimeout(function	()	{

												sensor.read();

								},	2000);

				}

};

if	(sensor.initialize())	{

				sensor.read();

}	else	{

				console.warn('Failed	to	initialize	sensor');

}

You	can	now	either	copy	the	code	inside	a	file	called	sensor_test.js,	or	just	get	the	complete
code	from	the	GitHub	repository	for	this	project:

https://github.com/openhomeautomation/smart-homes-pi-zero

Next,	use	Terminal	to	navigate	to	the	folder	where	the	files	are	and	type	the	following:

npm	install	node-dht-sensor

This	will	install	the	module	to	read	data	from	the	sensor;	it	can	take	a	while,	so	be	patient.	In
case	it	doesn't	work,	try	using	sudo	in	front	of	the	command.	Next,	actually	start	the	software
with	the	following:

sudo	node	sensor_test.js

This	should	print	the	readings	of	the	sensor	at	regular	intervals	inside	the	terminal:

https://github.com/openhomeautomation/smart-homes-pi-zero

Congratulations,	you	can	now	read	data	from	a	digital	sensor	using	your	Pi	Zero	board!	This
is	the	first	step	to	building	sensors	for	your	smart	home.

Storing	sensor	data
Displaying	the	current	measurements	from	the	sensor	is	nice,	but	what	is	even	better	is	to
actually	store	that	data	inside	a	database.	In	this	section,	we	are	going	to	see	how	easy	it	is	to
do	this	with	Node.js.

As	a	database,	we'll	simply	use	NeDB	here,	which	is	a	really	simple	database	for	Node.js	that
is	completely	stored	in	memory,	but	you	can	also	save	the	entire	database	in	a	file.

The	code	is	actually	very	similar	to	what	we	saw	in	the	previous	section.	However,	here,	we'll
first	import	the	database	module,	and	then	insert	data	inside	the	database	when	a	measurement
is	done:

var	Datastore	=	require('nedb')

		,	db	=	new	Datastore({	filename:	'path/to/datafile',	autoload:	true	});

sdfsd

var	readout	=	sensorLib.read();

//	Log

var	data	=	{

				humidity:	readout.humidity.toFixed(2),

				temperature:	readout.temperature.toFixed(2),

				date:	new	Date()

};

db.insert(data,	function	(err,	newDoc)	{

				console.log(newDoc);

});

//	Repeat

setTimeout(function	()	{

				sensor.read();

},	2000);

You	can	of	course	find	all	the	code	inside	the	GitHub	repository	of	the	book.	Again,	navigate
to	the	folder	where	the	files	are	located	and	type	the	following:

npm	install	nedb	--save

This	will	install	the	NeDB	module	for	Node.js.

Then,	start	the	recording	with	the	following:

sudo	node	sensor_record.js

You	should	see	the	measurements	being	recorded	at	regular	intervals:

Now,	we	didn't	learn	how	to	actually	retrieve	those	measurements,	but	that's	something	we
will	see	later	in	this	chapter.	In	the	meantime,	if	you	want	more	information	about	how	to
retrieve	documents,	you	can	look	at	the	official	page	on	GitHub:

https://github.com/louischatriot/nedb

https://github.com/louischatriot/nedb

Accessing	the	data	remotely
In	the	previous	projects	of	this	chapter,	we	learned	how	to	measure	and	store	data	on	your	Pi.
However,	in	a	smart	home,	the	best	is	to	be	able	to	access	data	remotely,	for	example,	from
your	smartphone	or	computer.	We	will	see	many	similar	examples	in	later	chapters	of	this
book,	but	in	this	chapter,	I	just	wanted	to	give	you	a	glimpse	of	what	is	possible.

The	module	we	are	going	to	use	here	is	Express,	a	server	framework	that	is	really	easy	to	use
with	Node.js.	Express	works	by	defining	routes,	which	is	what	will	be	served	to	the	client	if	a
request	is	made	on	a	specific	URL.

First,	we'll	import	Express	and	define	a	main	route	that	will	send	back	the	temperature	and
humidity	measurements:

var	express	=	require('express');

var	app	=	express();

app.get('/',	function	(req,	res)	{

		var	readout	=	sensor.read();

		answer	=	'Temperature:	'	+	readout.temperature.toFixed(2);

		answer	+=	'	Humidity:	'	+	readout.humidity.toFixed(2);

		res.send(answer);

});

Finally,	we	also	need	to	start	the	application,	and	once	that's	done	we	print	a	message	in	the
console:

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	app	listening	on	port	3000!');

});

It's	now	time	to	test	our	little	web	server!	Once	you	have	grabbed	the	file	from	the	book's
GitHub	repository,	navigate	to	the	folder	where	the	files	are	and	type	the	following:

npm	install	express

Then,	launch	the	app	with	the	following:

sudo	node	sensor_express.js

You	should	get	the	confirmation	inside	the	console.	Now,	using	your	computer	or	a
smartphone,	navigate	to	the	URL	of	your	Pi,	not	forgetting	to	add	port	3000:
http://192.168.0.105:3000/.

If	you	don't	know	the	IP	address	of	your	Pi,	you	can	simply	type	ifconfig	while	logged	in.

The	page	should	display	the	last	measurement	made	by	the	Pi:

Of	course,	this	can	definitely	be	improved	with	a	much	nicer	interface	to	display	the
measurements.	However,	in	this	section	the	goal	was	really	to	show	you	how	to	display	those
measurements	from	a	device	other	than	the	Pi.

Plotting	the	stored	data
In	the	final	project	of	this	chapter,	we	are	going	to	learn	how	to	plot	the	data	that	was
measured	by	the	Raspberry	Pi	Zero	board.	We	are	actually	going	to	combine	what	we	did	in
the	other	projects	of	this	chapter	and	add	the	plotting	part	on	top	of	that.

As	the	code	is	quite	similar	to	what	we	have	already	seen,	I	will	only	highlight	the	main
changes	here.	First,	we	need	to	define	a	route	for	the	data:

app.get('/data',	function	(req,	res)	{

		db.find({},	function	(err,	docs)	{

				res.json(docs);	

		});

});

This	will	make	sure	that,	when	it	is	queried	on	this	route,	the	server	will	return	all	the
measurements	stored	so	far	inside	the	database.

Then,	to	display	the	plot	of	all	the	measurements,	we	are	going	to	use	a	JavaScript	called
HighCharts.	You	can	find	more	information	about	HighCharts	here:

http://www.highcharts.com/

We'll	include	it	inside	an	HTML	file	that	we	will	place	inside	a	folder	called	public,	so	our
app	can	access	it.	This	file	will	basically	import	all	the	JavaScript	libraries	that	we	need,
another	script,	which	we'll	see	in	a	moment,	and	a	container	for	the	plot:

<!DOCTYPE	html>

<html>

<head>

		<script	src="https://code.jquery.com/jquery-2.2.4.min.js"></script>

		<script	src="https://code.highcharts.com/highcharts.js"></script>

		<script	src="https://code.highcharts.com/modules/exporting.js"></script>

		<script	src="js/script.js"></script>

</head>

<body>

<div	id="container"	style="min-width:	310px;	height:	400px;	margin:	0	auto">

</div>

</body>

</html>

Now,	we	also	need	to	make	the	link	between	the	HTML	page	and	our	application.	This	will	be

http://www.highcharts.com/

done	in	a	script	file	called	script.js.	This	is	the	content	of	this	file:

var	dates	=	[];

var	temperature	=	[];

var	humidity	=	[];

console.log(measurements);

for	(i	=	0;	i	<	measurements.length;	i++)	{

				dates.push(measurements[i].date);

				temperature.push(parseFloat(measurements[i].temperature));

				humidity.push(parseFloat(measurements[i].humidity));

}

$('#container').highcharts({

								title:	{

												text:	'Temperature	&	Humidity	Data',

												x:	-20	//center

								},

								xAxis:	{

												categories:	dates

								},

								yAxis:	{

												title:	{

																text:	'Temperature	(°C)'

												},

												plotLines:	[{

																value:	0,

																width:	1,

																color:	'#808080'

												}]

								},

								tooltip:	{

												valueSuffix:	'°C'

								},

								legend:	{

												layout:	'vertical',

												align:	'right',

												verticalAlign:	'middle',

												borderWidth:	0

								},

								series:	[{

												name:	'Temperature',

												data:	temperature

								},

								{

												name:	'Humidity',

												data:	humidity

								}]

				});

Basically,	this	file	will	query	the	most	recent	data	from	the	application,	format	it	for
HighCharts,	and	then	actually	plot	the	data.

You	can	now	grab	all	the	files	from	the	book's	GitHub	repository	and	start	the	application
with	the	following:

sudo	node	sensor_plot.js

The	first	thing	you	can	do	is	test	the	data	route	by	going	to	the	IP	address	of	your	Pi,	followed
by	port	3000	and	the	data	route:

As	you	can	see,	all	the	measurements	made	so	far	are	extracted	from	the	database	and
returned	by	the	server.

You	can	again	go	to	the	main	route,	and	you	should	see	the	same	data	on	a	nice	plot:

If	you	wait	a	bit	more,	you'll	see	a	nice	graph	with	all	the	data	recorded	so	far	by	the
application	running	on	your	Raspberry	Pi	board:

Of	course,	you	can	adjust	some	settings,	for	example,	the	delay	between	two	measurements,
inside	the	code	for	your	own	projects.

Summary
In	this	chapter,	we	saw	how	to	perform	a	basic	task	with	the	Raspberry	Pi	Zero	board:
measuring	data.	We	saw	how	to	measure	data	from	a	digital	sensor,	and	then	store	this	data,
access	it	remotely,	and	finally	even	plot	the	data	on	a	graph.

You	can	of	course	already	use	what	you	learned	in	this	project	and	adapt	it	to	your	own
projects.	You	can,	for	example,	have	the	project	measure	from	more	sensors	at	the	same	time,
for	example,	from	a	barometric	pressure	sensor	or	from	a	light-level	sensor.

In	the	next	chapter,	we	are	going	to	apply	what	we	have	learned	in	this	chapter	to	build	another
project	with	the	Pi	Zero:	building	your	own	home	thermostat.

Chapter	3.	Building	a	Smart	Home	Thermostat
In	the	previous	chapter,	we	learned	how	to	read	data	from	a	sensor	and	log	this	data	on	the
Raspberry	Pi	Zero	board.	In	this	chapter,	we	are	going	to	use	that	knowledge	to	build	a	very
useful	home-automation	component:	a	smart	thermostat.

We	are	going	to	see	how	to	use	the	Raspberry	Pi	Zero	and	a	few	other	components	to	regulate
the	temperature	in	a	room	of	your	home	using	an	electrical	heater.	We'll	see	how	to	connect
all	the	different	components,	and	also	how	to	create	a	nice	interface	that	you	will	be	able	to
use	to	control	your	thermostat.	Let's	start!

Hardware	and	software	requirements
As	always,	we	are	going	to	start	with	a	list	of	required	hardware	and	software	components	for
the	project.

Except	for	the	Raspberry	Pi	Zero,	the	most	important	component	for	this	project	will	be	the
PowerSwitch	Tail	Kit.	This	component	allows	your	Pi	to	control	electrical	appliances	such	as
lamps,	heaters,	and	other	appliances	that	use	mains	electricity	to	function.

Then,	we	will	use	the	same	DHT11	sensor	we	used	in	the	previous	chapter	to	measure	the
temperature	in	the	room.

Finally,	you	will	need	the	usual	breadboard	and	jumper	wires.

This	is	the	list	of	components	you	will	need	for	this	project,	not	including	the	Raspberry	Pi
Zero:

PowerSwitch	Tail	Kit	(https://www.adafruit.com/products/268)
DHT11	sensor	+	4.7k	Ohm	resistor	(https://www.adafruit.com/products/386)
Breadboard	(https://www.adafruit.com/products/64)
Jumper	wires	(https://www.adafruit.com/products/1957)

Of	course,	for	the	project	to	make	sense,	you	will	need	to	have	an	electrical	heater	that	you
can	control.	As	I	don't	want	you	to	cut	any	wires	from	an	existing	heater	for	this	project,	I
recommend	trying	it	first,	using	a	portable	electrical	heater	that	you	can	find	in	any	shop,	like
this	one:

https://www.adafruit.com/products/268
https://www.adafruit.com/products/386
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957

The	PowerSwitch	Tail	component	supports	up	to	1800W	of	power,	so	you	can	choose	your

heater	accordingly,	up	to	this	limit.

On	the	software	side,	you	don't	need	anything	else	compared	to	the	previous	chapter.

Hardware	configuration
Let's	now	see	how	to	configure	the	hardware	for	this	project;	basically,	how	to	connect	the
PowerSwitch	Tail	and	the	sensor	to	the	Raspberry	Pi	Zero	board.

The	following	is	a	schematic	to	help	you	out:

When	done,	the	sensor	will	be	connected	to	GPIO	pin	4,	and	the	heater	(via	the	PowerSwitch
Tail)	to	pin	29.

Here,	you	simply	need	to	place	the	DHT11	on	the	breadboard,	and	then	connect	the	resistor
between	the	VCC	and	the	data	pins.	Then,	connect	the	VCC	to	the	3.3V	pin	of	the	Raspberry	Pi,
GND	to	GND,	and	finally,	connect	the	data	pin	of	the	sensor	to	pin	4	of	the	Raspberry	Pi
board.

For	the	PowerSwitch	Tail,	simply	connect	the	Vin+	pin	of	the	component	to	pin	29	of	the
Raspberry	Pi,	and	then	the	remaining	two	pins	of	the	PowerSwitch	Tail	to	the	ground.

Here	again,	I	chose	to	represent	the	individual	wires	on	the	schematic	for	the	purpose	of
clarity,	but	I	used	a	cobbler	cable	on	the	project	itself.	Here	is	the	final	result:

Finally,	plug	the	heater	into	the	PowerSwitch	Tail	and	connect	the	PowerSwitch	Tail	to	the
mains	electricity.

Testing	individual	components
As	the	first	project	of	this	chapter,	we	are	simply	going	to	check	that	each	individual
component	(the	sensor	and	the	PowerSwitch	tail)	are	working	correctly.

I	will	now	go	through	the	main	parts	of	this	first	piece	of	code.	It	starts	by	including	the	DHT
sensor	module	for	Node.js:

var	sensorLib	=	require('node-dht-sensor');

Then,	we	create	an	object	to	read	data	from	the	sensor,	and	also	initialize	it	when	we	start	the
software:

var	sensor	=	{

				initialize:	function	()	{

								return	sensorLib.initialize(11,	4);

				},

				read:	function	()	{

								var	readout	=	sensorLib.read();

								console.log('Temperature:	'	+	readout.temperature.toFixed(2)	+	'C,	'	+

												'humidity:	'	+	readout.humidity.toFixed(2)	+	'%');

								setTimeout(function	()	{

												sensor.read();

								},	2000);

				}

};

if	(sensor.initialize())	{

				sensor.read();

}	else	{

				console.warn('Failed	to	initialize	sensor');

}

You	can	now	either	copy	the	code	inside	a	file	called	sensor_test.js,	or	just	get	the	complete
code	from	the	GitHub	repository	of	the	project:

https://github.com/openhomeautomation/smart-homes-pi-zero

Next,	use	the	terminal	to	navigate	to	the	folder	where	the	files	are,	and	type	the	following:

npm	install	node-dht-sensor

This	will	install	the	module	to	read	data	from	the	sensor;	it	can	take	a	while,	so	be	patient.	In
case	it	doesn't	work,	try	using	sudo	in	front	of	the	command.	Next,	actually	start	the	software
with	the	following	command:

sudo	node	sensor_test.js

This	should	print	the	readings	of	the	sensor	at	regular	intervals	inside	the	terminal:

https://github.com/openhomeautomation/smart-homes-pi-zero

We	are	now	going	to	see	how	to	test	if	the	PowerSwitch	Tail	is	working	and	wired	correctly,
and	how	to	control	it	remotely.	For	that,	we	are	going	to	use	the	aREST	module	for	the
Raspberry	Pi,	which	will	give	us	an	easy	way	to	control	the	outputs	of	the	board.

Here	is	the	complete	code	for	this	part:

//	Start

var	express	=	require('express');

var	app	=	express();

var	piREST	=	require('pi-arest')(app);

piREST.set_id('34f5eQ');

piREST.set_name('my_rpi_zero');

var	server	=	app.listen(80,	function()	{

				console.log('Listening	on	port	%d',	server.address().port);

});

The	code	is	pretty	simple,	and	we	are	going	to	try	it	right	now.	First,	you	need	to	install	the
required	modules	by	typing	the	following	in	a	terminal	(where	the	files	of	the	project	are
located):

sudo	npm	install	express	pi-arest

Then,	simply	start	the	application	with	the	following	command:

sudo	node	heaer_test.js

You	should	now	see	the	confirmation	in	your	console.

Now,	let's	go	ahead	and	try	to	control	the	heater,	for	example,	to	turn	it	on.	You	need	to	make
sure	that	it	is	actually	turned	on	if	there	is	any	mechanical	switch	on	the	heater	itself.

Then,	go	to	your	favorite	web	browser,	and	type	the	following:

http://raspberrypi.local/digital/29/1

You	should	see	that	the	heater	turns	on	instantly,	and	you	should	also	have	a	confirmation
inside	your	web	browser.	Then,	type	the	following	command	to	turn	it	off	again:

http://raspberrypi.local/digital/29/0

http://raspberrypi.local/digital/29/1
http://raspberrypi.local/digital/29/0

If	that	works,	you	can	now	control	your	heater	from	your	Raspberry	Pi	Zero!	You	can	now
move	to	the	next	section,	in	which	we	are	going	to	code	the	thermostat.

Building	the	thermostat
We	are	now	going	to	see	how	to	build	the	code	for	the	thermostat,	which	will	run	on	your
Raspberry	Pi	Zero	board.	As	the	code	is	quite	long,	I	will	only	highlight	the	most	important
parts	here,	but	you	can	of	course	find	the	complete	code	inside	this	book's	GitHub	repository.

Start	by	importing	the	required	modules:

var	sensorLib	=	require('node-dht-sensor');

var	express	=	require('express');

Then,	we	create	an	Express	app,	which	will	allow	us	to	easily	structure	our	application:

var	app	=	express();

Next,	we	define	some	variables	that	are	important	for	our	thermostat:

var	targetTemperature	=	25;

var	threshold	=	1;

var	heaterPin	=	29;

The	threshold	is	here	so	the	thermostat	doesn't	constantly	switch	between	the	on	and	off	states
when	it	is	near	the	target	temperature.	A	lower	threshold	means	that	you	will	have	a
temperature	closer	to	what	you	want,	but	also	that	the	heater	will	switch	more	frequently.

After	that,	we	are	going	to	define	the	routes	that	will	structure	our	application.	The	first	one	is
a	route	to	get	the	thermostat's	current	target	temperature:

app.get('/get',	function	(req,	res)	{

		answer	=	{

				targetTemperature:	targetTemperature

		};

		res.json(answer);

});

We	will	also	define	another	route	to	set	this	target	temperature,	which	will	be	called	by	the
interface	we	will	code	in	a	moment:

app.get('/set',	function	(req,	res)	{

		//	Set

		targetTemperature	=	req.query.targetTemperature;

		//	Answer

		answer	=	{

				targetTemperature:	targetTemperature

		};

		res.json(answer);

});

Finally,	we	also	need	a	route	to	get	the	current	value	of	the	temperature	by	performing	a
measurement	on	the	sensor:

app.get('/temperature',	function	(req,	res)	{

		answer	=	{

				temperature:	sensor.read().temperature.toFixed(2)

		};

		res.json(answer);

});

Now,	we	also	need	to	integrate	all	the	code	that	we	will	use	to	control	the	heater	from	the
Raspberry	Pi.	We	saw	this	before,	when	we	tested	the	PowerSwitch	Tail:

var	piREST	=	require('pi-arest')(app);

piREST.set_id('34f5eQ');

piREST.set_name('my_rpi_zero');

sd

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	thermostat	started!');

});

We	still	need	to	write	the	code	for	the	core	of	the	thermostat	function.	Indeed,	we	want	the	Pi
Zero	to	regulate	the	temperature	in	your	home,	whether	you	are	currently	using	the	interface
or	not.	This	is	done	with	the	following	piece	of	code:

setInterval(function	()	{

		//	Check	temperature

		temperature	=	parseFloat(sensor.read().temperature);

		console.log('Current	temperature:'	+	temperature);

		console.log('Target	temperature:	'	+	parseFloat(targetTemperature));

		//	Too	high?

		if	(temperature	>	parseFloat(targetTemperature)	+	1)	{

				console.log('Deactivating	heater');

				piREST.digitalWrite(heaterPin,	0);

		}

		//	Too	low?

		if	(temperature	<	parseFloat(targetTemperature)	-	1)	{

				console.log('Activating	heater');

				piREST.digitalWrite(heaterPin,	1);

		}

},	10	*	1000);

Basically,	we	check	every	10	seconds	and	compare	the	current	temperature	to	the	target
temperature	defined	inside	the	thermostat.	If	it's	too	low,	for	example,	we	activate	the	heater.

Finally,	we	also	define	the	function	to	read	data	from	the	temperature	sensor:

var	sensor	=	{

				initialize:	function	()	{

								return	sensorLib.initialize(11,	4);

				},

				read:	function	()	{

								//	Read

								var	readout	=	sensorLib.read();

								return	readout;

				}

};

if	(sensor.initialize())	{

				sensor.read();

}	else	{

				console.warn('Failed	to	initialize	sensor');

}

It's	now	time	to	test	the	thermostat!	Make	sure	to	grab	all	the	code	from	this	book's	GitHub
repository,	navigate	to	the	folder	for	this	chapter,	and	type	the	following:

npm	install	node-dht-sensor

Then	type	the	following	command:

sudo	npm	install	express	pi-arest

You	can	then	start	the	project	with	the	following	command:

sudo	node	thermostat_server.js

You	should	immediately	see	a	message	similar	to	the	following	on	the	console:

You	can	now	test	all	the	routes	we	defined	earlier:

For	example,	get	the	temperature	with	the	following:
http://raspberrypi.local:3000/temperature

http://raspberrypi.local:3000/temperature

You	can	also	get	the	current	value	of	the	thermostat	with	the	following:
http://raspberrypi.local:3000/get
Finally,	you	can	set	the	target	of	the	thermostat	using	the	following:
http://raspberrypi.local:3000/set?targetTemperature=20For	example,	set	it	to	a	high
value:	http://raspberrypi.local:3000/set?targetTemperature=30

You	should	quickly	see	the	thermostat	reacting	to	this	new	target	by	activating	the	heater:

This	is	great,	but	every	modern	thermostat	has	some	kind	of	interface	where	you	can	set	the
temperature	of	the	thermostat.	This	is	exactly	what	we	are	going	to	do	in	the	final	part	of	this
chapter.

http://raspberrypi.local:3000/get
http://raspberrypi.local:3000/set?targetTemperature=20
http://raspberrypi.local:3000/set?targetTemperature=30

Controlling	the	thermostat	remotely
We	are	now	going	to	take	the	exact	same	project	we	defined	earlier,	but	add	a	graphical
interface	on	top	of	it.	Inside	the	JavaScript	file	we	saw	previously,	you	just	need	to	add	one
line,	as	follows:

app.use(express.static('public'));

Now	we	are	going	to	code	two	files:	one	HTML	file	with	the	interface,	and	another	file
containing	scripts	that	will	make	the	link	between	the	interface	and	the	server.	Let's	start	with
the	HTML	file:

<head>

		<script	src="https://code.jquery.com/jquery-2.2.4.min.js"></script>

		<link	rel="stylesheet"	

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css">

		<script	

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js">

</script>

		<script	src="js/script.js"></script>

		<link	rel="stylesheet"	href="css/style.css">

		<meta	name="viewport"	content="width=device-width,	initial-scale=1">

</head>

As	you	can	see,	inside	the	<head>	tag	of	this	file,	we	basically	import	components	such	as
jQuery	and	Bootstrap,	and	also	a	file	called	script.js.	It	is	in	this	file	that	we	will	place	all
the	JavaScript	functions	later	on.

Then,	we	define	a	first	row	for	the	current	value	of	the	temperature	in	the	room:

<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4	text-center'>

						Current	temperature	value:

							C</div>

				<div	class='col-md-4'></div>

		</div>

We	then	do	the	same	with	the	target	temperature:

<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4	text-center'>

						Current	thermostat	value:

							C</div>

				<div	class='col-md-4'></div>

		</div>

After	that,	we	create	a	text	input	that	will	be	used	to	input	a	new	target	temperature:

<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4'>

						<input	type="text"	class="form-control"	id="thermostatValue"></div>

				<div	class='col-md-4'></div>

		</div>

Finally,	we	create	a	button	so	the	user	can	validate	this	new	temperature:

<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4'>

						<button	id='set-thermostat'	class='btn	btn-block	btn-primary'>

								Set	Thermostat</button></div>

				<div	class='col-md-4'></div>

		</div>

Now,	let's	have	a	look	at	the	file	called	script.js,	which	will	make	the	link	between	the
interface	and	the	server.	First,	we	refresh	the	target	temperature	and	the	current	temperature
inside	the	interface:

$.get('/get',	function(data)	{

				$('#thermostat').html(data.targetTemperature);

		});

		$.get('/temperature',	function(data)	{

				$('#temperature').html(data.temperature);

		});

Next,	we	set	the	new	value	of	the	target	temperature	whenever	we	click	on	the	button:

$("#set-thermostat").click(function()	{

				//	Get	value

				var	newThermostatValue	=	$('#thermostatValue').val();

				//	Set	new	value

				$.get('/set?targetTemperature='	+	newThermostatValue,	function(data)	{

						$('#thermostat').html(data.targetTemperature);

				});

		});

It's	now	finally	time	to	test	the	project!	Simply	start	it	with	the	following	code:

sudo	node	thermostat_interface.js

Now,	go	to	your	web	browser,	and	type	the	following:

http://raspberrypi.local/interface.html

You	should	immediately	see	the	following	interface:

You	can	now	try	this	interface,	for	example,	by	typing	the	value	of	a	new	target	for	the
thermostat:

http://raspberrypi.local/interface.html

If	you	want	to	see	if	it	is	functioning	correctly,	simply	type	a	value	that	is	high	compared	to
the	current	value	of	the	temperature:

You	should	immediately	see	that	the	heater	is	turning	on	and	that	the	temperature	starts	to	rise
after	a	while:

Congratulations,	you	just	built	your	own	thermostat	based	on	the	Raspberry	Pi	Zero!

Summary
In	this	chapter,	we	saw	how	to	build	a	simple	thermostat	using	the	Raspberry	Pi	Zero	board.
We	were	able	to	make	a	thermostat	that	can	generate	its	own	interface	and	we	are	able	to	set
the	target	temperature	of	the	thermostat	via	this	interface.

You	can	of	course	already	use	what	you	learned	in	this	project,	and	adapt	it	to	a	heater	you
have	in	your	home.	I	recommend	you	first	try	it	on	a	portable	heater,	and	then	to	install	it	on
an	actual	heater	on	your	wall,	if	you	are	feeling	confident	with	your	project.

In	the	following	chapter,	we	will	look	in	more	detail	at	how	to	control	appliances	from	your
Raspberry	Pi,	such	as	LEDs,	lamps,	and	other	appliances	you	could	have	in	your	home.

Chapter	4.	Controlling	Appliances	fromthe
Raspberry	Pi	Zero
In	previous	chapters,	we	mainly	focused	on	using	sensors	with	our	Raspberry	Pi,	to	log	data,
display	it	graphically,	and	also	to	build	a	nice	thermostat	based	on	the	Raspberry	Pi	Zero.

In	this	chapter,	we	are	going	to	focus	solely	on	controlling	devices	using	the	Raspberry	Pi
Zero.	Indeed,	in	any	smart	home,	you	are	going	to	want	to	control	devices	in	order	to
automate	your	home.

To	cover	most	of	the	devices	you	could	have	in	your	home,	we	are	going	to	see	three
examples	in	this	chapter.	First	we	will	learn	how	to	control	and	dim	a	simple	LED,	which
means	you'll	learn	how	to	control	any	LED-based	lighting	in	your	home.	Then,	we'll	see	how
to	control	a	DC	motor	using	the	Raspberry	Pi	Zero,	which	can,	for	example,	be	applied	to
control	window	blinds.	Finally,	we'll	see	how	to	control	a	lamp	and	basically,	any	on/off
appliances	in	your	home.	Let's	start!

Hardware	and	software	requirements
As	always,	we	are	going	to	start	with	a	list	of	required	hardware	and	software	components	for
the	project.

Except	for	the	Raspberry	Pi	Zero,	you	will	need	some	additional	components	for	each	of	the
sections	in	this	chapter.

For	the	LED	controller	section,	you	will	need	a	simple	LED	and	a	330-Ohm	resistor.

To	control	a	DC	motor,	you	will	need	a	L293D	motor	driver	IC	and,	of	course,	a	motor	to
control.	For	this	purpose,	I	used	a	simple	5V	DC	motor.

For	the	lamp	controller	section,	the	most	important	component	will	be	the	PowerSwitch	Tail
Kit.	This	component	allows	your	Pi	to	control	electrical	appliances	such	as	lamps,	heaters,
and	other	appliances	that	use	mains	electricity	to	function.

Finally,	you	will	need	the	usual	breadboard	and	jumper	wires.

This	is	the	list	of	components	that	you	will	need	for	this	whole	chapter,	not	including	the
Raspberry	Pi	Zero:

LED	(https://www.sparkfun.com/products/9590)
330-Ohm	resistor	(https://www.sparkfun.com/products/11507)
L293D	motor	driver	(https://www.sparkfun.com/products/315)
5V	DC	motor	(https://www.sparkfun.com/products/11696)
Battery	pack	(https://www.sparkfun.com/products/9835)
PowerSwitch	Tail	Kit	(https://www.adafruit.com/products/268)
Breadboard	(https://www.adafruit.com/products/64)
Jumper	wires	(https://www.adafruit.com/products/1957)

On	the	software	side,	you	will	need	to	install	the	pi-gpio	package,	which	we	will	later	use	to
dim	the	LED	and	to	control	the	speed	of	the	DC	motor.	To	do	so,	open	a	terminal	on	your	Pi,
and	type	the	following:

wget	abyz.co.uk/rpi/pigpio/pigpio.zip

Then,	unzip	the	archive	with	the	following:

unzip	pigpio.zip

After	that,	navigate	to	the	unzipped	folder	with	the	following:

cd	PIGPIO

Then,	build	the	code	using	the	following:

https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/11507
https://www.sparkfun.com/products/315
https://www.sparkfun.com/products/11696
https://www.sparkfun.com/products/9835
https://www.adafruit.com/products/268
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957

make

Finally,	install	the	package	on	your	computer	with	the	following:

sudo	make	install

Controlling	LEDs
In	this	first	project	of	the	chapter,	we	are	going	to	see	how	to	control	LEDs	using	your
Raspberry	Pi	Zero.	As	an	example,	here	we'll	see	how	to	control	and	dim	a	single	LED	that
we	will	place	on	a	breadboard.	However,	the	same	code	can	be	applied	to	any	kind	of	LED
lighting	in	your	home,	or	to	LED	strips.

Let's	first	see	how	to	assemble	this	project.	Place	the	LED	on	the	breadboard	in	series	with	the
330	Ohm	resistor—the	longest	pin	of	the	LED	in	contact	with	the	resistor.	Then,	connect	the
other	side	of	the	resistor	to	the	GPIO18	pin	on	the	Raspberry	Pi	and	the	other	end	of	the	LED
to	a	GND	pin	of	the	Raspberry	Pi.

You	can,	of	course,	use	a	cobbler	cable	kit	to	easily	connect	the	Pi	to	the	LED.	Here,	and	for
the	rest	of	this	chapter,	I	just	used	two	simple	jumper	wires	so	you	can	really	see	the
connections	in	the	images.

This	is	the	final	result:

Now	that	the	project	is	assembled,	we	are	going	to	test	it.	To	do	so,	we'll	run	a	simple	code

that	will	basically	continuously	change	the	intensity	of	the	LED,	from	0	to	the	maximum
brightness.

This	is	the	complete	code	to	test	our	project:

//	Modules

var	Gpio	=	require('pigpio').Gpio;

//	Create	led	instance

var	led	=	new	Gpio(18,	{mode:	Gpio.OUTPUT});

var	dutyCycle	=	0;

//	Go	from	0	to	maximum	brightness

setInterval(function	()	{

		led.pwmWrite(dutyCycle);

		dutyCycle	+=	5;

		if	(dutyCycle	>	255)	{

				dutyCycle	=	0;

		}

},	20);

We	can	already	test	this	code.	Make	sure	to	grab	the	code	from	this	book's	GitHub	repository,
navigate	into	the	folder	of	this	project	with	a	terminal	on	the	Pi,	and	type	the	following:

sudo	npm	install	pigpio

This	will	install	the	required	Node.js	module	to	control	the	LED.	Then,	type	the	following:

sudo	node	led_test.js

You	should	immediately	see	the	LED	gradually	going	from	completely	off	to	full	brightness,
meaning	we	can	indeed	dim	an	LED	using	our	Raspberry	Pi	Zero	board!

This	is	great,	but	we	can	do	better.	We	are	now	going	to	see	how	to	dim	the	LED	using	a
graphical	interface,	in	which	you'll	be	able	to	control	the	intensity	of	the	LED	using	a	slider.

As	for	the	thermostat	project,	we	are	going	to	use	Node.js	again	here,	along	with	an	HTML
interface	and	some	JavaScript	to	link	the	interface	to	the	Node.js	server.

Let's	first	have	a	look	at	the	Node.js	code.	We'll	again	use	the	Express	module	to	structure	our
app,	along	with	the	pigpio	module	we	used	earlier	to	dim	the	LED:

//	Modules

var	Gpio	=	require('pigpio').Gpio;

var	express	=	require('express');

//	Express	app

var	app	=	express();

//	Use	public	directory

app.use(express.static('public'));

Then,	we	define	an	object	that	will	allow	us	to	control	the	state	of	the	LED:

var	led	=	new	Gpio(18,	{mode:	Gpio.OUTPUT});

We	can	then	define	the	routes	of	our	app.	The	first	one	is	to	serve	the	interface	when	we
access	it	via	a	web	browser:

app.get('/',	function	(req,	res)	{

		res.sendfile(__dirname	+	'/public/interface.html');

});

Then,	we	also	create	a	route	to	set	the	intensity	of	the	LED:

app.get('/set',	function	(req,	res)	{

		//	Set	LED

		dutyCycle	=	req.query.dutyCycle;

		led.pwmWrite(dutyCycle);

		//	Answer

		answer	=	{

				dutyCycle:	dutyCycle

		};

		res.json(answer);

});

Finally,	we	start	the	Node.js	server	with	the	following:

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	LED	control	started!');

});

Let's	now	have	a	look	at	the	HTML	interface.	It	starts	by	including	modules	such	as	jQuery
and	Bootstrap:

<head>

		<script	src="https://code.jquery.com/jquery-2.2.4.min.js"></script>

		<link	rel="stylesheet"	

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css">

		<script	

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js">

</script>

		<script	src="js/interface.js"></script>

		<link	rel="stylesheet"	href="css/style.css">

		<meta	name="viewport"	content="width=device-width,	initial-scale=1">

</head>

Then,	in	the	body	of	the	interface,	we	simply	define	a	slider	element,	which	we	will	use	to
control	the	LED:

<body>

<div	id="container">

		<h3>LED	Control</h3>

		<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4	text-center'>

					<input	id="duty-cycle"	type="range"	value="0"	min="0"	max="255"	step="1">

				</div>

				<div	class='col-md-4'></div>

		</div>

</div>

</body>

Finally,	in	the	file	called	script.js,	we	link	the	slider	element	to	the	Node.js	server	so	it
automatically	sets	the	intensity	of	the	LED	whenever	we	use	the	slider:

$("#duty-cycle").mouseup(function()	{

				//	Get	value

				var	dutyCycle	=	$('#duty-cycle').val();

				//	Set	new	value

				$.get('/set?dutyCycle='	+	dutyCycle);

		});

It's	now	finally	time	to	test	our	application!	First,	grab	all	the	code	from	this	book's	GitHub
repository	and	navigate	to	the	folder	of	the	project	like	before.	Then,	install	Express	with	the
following	command:

sudo	npm	install	express

When	this	is	done,	start	the	server	with	the	following	command:

sudo	node	led_control.js

You	can	now	test	the	project	by	entering	the	following	command	in	your	browser	(replacing
the	IP	address	with	the	one	for	your	Pi):

http://192.168.0.103:3000/set?dutyCycle=20

You	should	immediately	see	the	LED	dimmed	and	also	get	the	confirmation	in	your
browser:

Then,	access	the	interface	directly	by	typing	the	following	URL:

http://192.168.0.103:3000

You	should	immediately	see	a	very	basic	interface	with	a	slider:

You	can	now	try	it:	as	soon	as	you	release	the	mouse	from	the	slider,	you	should	see	that	the
LED	is	instantly	dimmed	to	the	value	you	set	with	the	slider!	You	can	now	connect	this	project
to	any	LED-based	lighting	in	your	home	(that	uses	DC	current),	and	start	controlling	it	from	a
nice	interface	using	your	Raspberry	Pi	Zero!

Controlling	the	speed	of	a	DC	motor
In	any	smart	home,	chances	are	you	will	find	a	DC	motor	somewhere	that	you	will	need	to
automate.	It	could,	for	example,	be	on	electric	window	blinds,	or	on	an	automated	garage
door.	In	this	section,	we	are	going	to	see	how	to	control	the	speed	of	a	simple	DC	motor	and
you	will	then	be	able	to	apply	this	to	any	motors	you	already	have	in	your	home.

Let's	first	see	how	to	connect	the	DC	motor	to	your	Raspberry	Pi	Zero	board.	We	actually
won't	connect	the	motor	directly	to	the	Raspberry	Pi,	as	this	would	require	a	lot	of	external
components,	such	as	transistors,	diodes,	and	so	on.	Instead,	we'll	use	the	L293D	chip,	which	is
a	dedicated	IC	to	control	DC	motors.

First,	place	the	L293D	on	the	board.	The	following	diagram	shows	the	pinout	of	the	L293D:

You	basically	need	to	connect	the	components	to	the	L293D	as	follows:

GPIO14	of	the	Raspberry	Pi	to	pin	1A
GPIO15	of	the	Raspberry	Pi	to	pin	2A
GPIO18	of	the	Raspberry	Pi	to	pin	1,2EN
DC	motor	to	pin	1Y	and	2Y
5V	of	the	Raspberry	Pi	to	VCC1
GND	of	the	Raspberry	Pi	to	GND
Battery	pack	to	VCC2	and	GND

The	following	image	shows	the	final	result:

We	are	now	going	to	see	how	to	perform	a	simple	test	of	the	DC	motor	to	see	if	it	is	working
correctly.	We	are	simply	going	to	make	the	motor	accelerate	from	null	speed	to	its	maximum
speed.	The	following	is	the	code	to	do	exactly	that:

//	Modules

var	Gpio	=	require('pigpio').Gpio;

//	Create	motor	instance

var	motorSpeed	=	new	Gpio(18,	{mode:	Gpio.OUTPUT});

var	motorDirectionOne	=	new	Gpio(14,	{mode:	Gpio.OUTPUT});

var	motorDirectionTwo	=	new	Gpio(15,	{mode:	Gpio.OUTPUT})

//	Init	motor	direction

motorDirectionOne.digitalWrite(0);

motorDirectionTwo.digitalWrite(1);

var	dutyCycle	=	0;

//	Go	from	0	to	maximum	speed

setInterval(function	()	{

		motorSpeed.pwmWrite(dutyCycle);

		dutyCycle	+=	5;

		if	(dutyCycle	>	255)	{

				dutyCycle	=	0;

		}

},	20);

You	can	now	save	this	code	in	a	JavaScript	file,	and	use	a	Terminal	to	navigate	to	the	folder
where	this	file	is	located.	Then,	type	the	following:

sudo	npm	install	pigpio

This	will	install	the	required	module	to	use	this	test	file.	Then,	launch	the	test	with	the
following:

sudo	node	motor_test.js

You	should	immediately	see	the	motor	going	from	zero	to	its	maximum	speed,	and	then	start
again.

Just	like	the	LED	previously,	we	want	to	be	able	to	control	the	speed	of	the	motor	using	a
graphical	interface.	As	the	code	for	this	part	is	really	similar	to	the	code	for	the	previous
section,	I	will	only	highlight	the	main	differences	here.

First,	we	create	instances	of	the	GPIO	module	to	control	each	output	pin	we	need:

var	motorSpeed	=	new	Gpio(18,	{mode:	Gpio.OUTPUT});

var	motorDirectionOne	=	new	Gpio(14,	{mode:	Gpio.OUTPUT});

var	motorDirectionTwo	=	new	Gpio(15,	{mode:	Gpio.OUTPUT});

We	also	define	a	route	to	set	the	speed	of	the	motor:

app.get('/set',	function	(req,	res)	{

		//	Set	motor	speed

		speed	=	req.query.speed;

		motorSpeed.pwmWrite(speed);

		//	Set	motor	direction

		motorDirectionOne.digitalWrite(0);

		motorDirectionTwo.digitalWrite(1);

		//	Answer

		answer	=	{

				speed:	speed

		};

		res.json(answer);

});

For	now,	we'll	set	the	direction	inside	the	code	for	convenience,	but	you	can	of	course	change
it	now.

As	for	the	LED	control,	we'll	use	an	interface	that	will	just	display	a	single	slider	to	control
the	speed	of	the	motor.

It's	now	time	to	test	the	project!	Grab	all	the	code	from	this	book's	GitHub	repository	and
inside	the	folder	where	you	extracted	the	code,	type	the	following:

sudo	npm	install	express

This	will	install	the	Express	module	that	is	required	for	the	project.	Then,	you	can	start	the
server	using	the	following:

sudo	node	motor_control.js

You	can	now	navigate	to	the	main	interface	of	the	project	(of	course	replacing	the	IP	with	the
one	for	your	Pi):

http://192.168.0.103:3000

You	should	see	an	interface	displaying	a	simple	slider	to	control	the	speed	of	the	motor:

You	can	now	try	it:	moving	the	slider	and	releasing	the	mouse	should	immediately	change	the
speed	of	the	motor	to	the	desired	speed.	You	can,	of	course,	now	also	add	a	switch	to	the
interface	to	also	change	the	direction	of	the	motor	using	this	simple	graphical	interface.	This
will	allow	us	to	control	a	motor	for	which	you	might	want	to	reverse	the	direction	of	rotation,
for	example,	to	open	or	close	a	garage	door.

Controlling	home	appliances
In	the	final	section	of	this	chapter,	we	are	going	to	see	how	to	control	appliances	in	your
home	that	can	only	be	set	to	on	or	off,	for	example,	lamps,	but	also	heaters,	coffee	machines,
and	other	appliances.	In	this	section,	you	are	going	to	learn	how	to	control	a	simple	desk	lamp
using	your	Raspberry	Pi	Zero.

Let's	first	see	how	to	assemble	the	project.	Simply	connect	the	Vin+	pin	of	the	PowerSwitch
Tail	Kit	to	the	GPIO18	pin	on	the	Raspberry	Pi	Zero,	and	the	two	remaining	pins	of	the
PowerSwitch	Tail	to	GND.

The	following	image	shows	the	final	result:

Of	course,	after	this	you	need	to	connect	a	lamp	to	the	project.	For	that,	I	used	a	simple	30W
desk	lamp.	You	simply	need	to	connect	the	appliance	you	want	to	control	to	the	female	plug	of
the	PowerSwitch	Tail,	and	then	connect	it	to	the	mains	electricity	via	the	male	power	plug.

We	are	now	going	to	see	how	to	control	the	lamp	using	a	simple	interface,	which	will	run	on

our	Raspberry	Pi.	For	that,	we'll	again	use	Node.js,	along	with	an	interface	written	in	HTML.

Let's	first	have	a	look	at	the	Node.js	file.	We	include	the	Express	module,	and	also	define	to
which	pin	the	PowerSwitch	Tail	is	connected:

//	Modules

var	express	=	require('express');

//	Express	app

var	app	=	express();

//	Pin

var	lampPin	=	12;

//	Use	public	directory

app.use(express.static('public'));

Then,	we	define	a	main	route	for	the	interface:

app.get('/',	function	(req,	res)	{

		res.sendfile(__dirname	+	'/public/interface.html');

});

We	also	define	a	route	that	we	will	use	to	turn	the	lamp	on.	Here,	we	are	again	going	to	use
the	aREST	framework,	which	will	allow	us	to	easily	control	the	Raspberry	Pi.	The	following
is	the	complete	code	for	this	route:

app.get('/on',	function	(req,	res)	{

		piREST.digitalWrite(lampPin,	1);

		//	Answer

		answer	=	{

				status:	1

		};

		res.json(answer);

});

We	also	do	the	same	for	the	off	route:

app.get('/off',	function	(req,	res)	{

		piREST.digitalWrite(lampPin,	0);

		//	Answer

		answer	=	{

				status:	0

		};

		res.json(answer);

});

Finally,	we	initialize	the	aREST	instance	and	start	the	server:

//	aREST

var	piREST	=	require('pi-arest')(app);

piREST.set_id('34f5eQ');

piREST.set_name('my_rpi_zero');

//	Start	server

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	lamp	control	started!');

});

Let's	now	have	a	look	at	the	HTML	interface.	It	simply	consists	of	two	buttons,	one	to	turn	the
light	on,	and	one	to	turn	it	off	again:

<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-2'>

						<button	id='on'	class='btn	btn-block	btn-primary'>On</button>

				</div>

				<div	class='col-md-2'>

						<button	id='off'	class='btn	btn-block	btn-warning'>Off</button>

				</div>

				<div	class='col-md-4'></div>

		</div>

Inside	the	script	file,	we	also	link	each	of	the	buttons	to	the	corresponding	action	on	the
server:

$("#on").click(function()	{

				//	Set	lamp	ON

				$.get('/on');

		});

		$("#off").click(function()	{

				//	Set	lamp	OFF

				$.get('/off');

		});

It's	now	finally	time	to	test	the	project!	Make	sure	that	a	lamp	is	connected	to	the	PowerSwitch
Tail	and	that	it	is	turned	on.	Also,	make	sure	the	project	is	connected	to	the	mains	electricity.

Then,	grab	all	the	code	from	this	book's	GitHub	repository	and	place	it	in	a	folder.	Then,
navigate	to	the	lamp_control	folder,	and	type	the	following	inside	a	Terminal:

sudo	npm	install	express	pi-arest

This	will	install	all	the	required	components	for	the	project.	After	that,	type	the	following:

sudo	node	lamp_control.js

This	will	start	the	server	on	the	Pi.	After	that,	navigate	to	the	following	URL	by	replacing	the
IP	address	with	the	one	for	your	Pi:

http://192.168.0.103:3000

You	should	see	the	interface	that	we	just	created,	with	two	push	buttons:

You	can	now	try	the	interface.	When	you	press	on	the	button,	it	should	immediately	set	the
correct	state	to	the	lamp	or	any	appliance	that	you	connected	to	the	PowerSwitch	Tail.

Note

In	case	it	doesn't	work,	first	make	sure	that	you	set	the	correct	pin	inside	the	code,	which
corresponds	to	the	pin	where	you	connected	the	PowerSwitch	Tail	on	the	Raspberry	Pi.	Also
check	that	the	lamp	is	actually	turned	on	in	cases	where	there	is	a	physical	switch	on	the	lamp.

Summary
In	this	chapter,	we	saw	how	to	control	devices	from	the	Raspberry	Pi	Zero	board,	which	is
critical	in	any	smart	home	that	you	want	to	automate.	First	we	looked	at	how	to	control	and
dim	an	LED,	which	you	can	use	to	control	LED-based	lighting	and	LED	strips	in	your	home.
We	also	looked	at	how	to	control	the	speed	of	a	DC	motor,	which	you	can	apply	to	control	the
motor	of	a	garage	door,	for	example.	Finally,	we	saw	how	to	control	any	appliances	in	your
home,	such	as	lamps,	using	a	graphical	interface	running	on	your	Pi.

You	can,	of	course,	already	use	what	you	learned	in	this	chapter	and	adapt	it	to	your	own
projects,	for	example,	by	applying	everything	you	learned	in	this	project	to	control	several
devices	from	the	same	interface	running	on	your	Pi.

In	the	following	chapter,	we	are	going	to	apply	what	we	learned	in	this	chapter	by	building	a
smart	energy	meter	based	on	the	Raspberry	Pi	Zero.

Chapter	5.	Making	a	Smart	Plug	with	the
Raspberry	Pi	Zero
You	have	probably	seen	those	smart	plugs	in	your	local	shop:	they	allow	you	to	not	only
control	appliances	remotely,	but	also	to	measure	the	energy	consumption	of	the	device
connected	to	the	plug.	These	smart	plugs	are	now	available	nearly	everywhere,	from	well-
known	brands	such	as	Belkin.

The	following	image	shows	one	I	bought	as	an	experiment	a	while	ago	to	see	what
components	were	inside:

In	this	chapter,	we	are	going	to	learn	how	to	use	the	Raspberry	Pi	Zero	to	make	a	project	that
has	the	same	functionalities	as	a	smart	plug.	You	will	be	able	to	control	an	electrical	device
such	as	a	lamp	via	Wi-Fi,	and	also	measure	its	electrical	consumption	in	real	time.

Because	we	are	building	this	device	ourselves,	we	will	of	course	be	able	to	customize	it	for

our	needs.	For	example,	we'll	learn	how	to	log	the	data	measured	by	the	plug	in	a	database	so
it	can	be	used	later.	Let's	start!

Hardware	and	software	requirements
As	always,	we	are	going	to	start	with	a	list	of	required	hardware	and	software	components	for
the	project.

Except	for	the	Raspberry	Pi	Zero,	you	will	need	some	additional	components	for	each	of	the
sections	in	this	chapter.

The	most	important	component	will	be	a	current	sensor,	which	we	will	use	to	know	how	much
current	is	flowing	through	the	device.	For	that,	we	will	use	the	ECS-1030	non-invasive	current
sensor.	The	following	is	an	image	of	this	sensor:

The	advantage	of	this	sensor	is	that	you	don't	need	to	cut	anything	to	measure	the	current
flowing	in	the	device.	To	use	this	sensor,	and	convert	the	current	it	measures	to	a	voltage	we
can	measure,	you'll	also	need	a	10-Ohm	resistor.

However,	we	can't	directly	connect	this	device	to	our	Raspberry	Pi.	First,	the	device	has	a	jack
connector	at	the	end,	so	we	need	a	jack-to-breadboard	adapter	to	connect	it	first	to	a
breadboard	and	then	to	Pi.

Also,	we	can't	connect	it	to	Pi	because	the	Raspberry	Pi	can	only	read	digital	signals.	Or,	the
current	sensor	is	returning	an	analog	signal,	which	is	proportional	to	the	measured	current.

To	solve	this	second	problem,	we'll	use	a	MCP3008	chip,	which	is	an	analog-digital	converter

that	can	be	easily	interfaced	with	the	Pi.

To	control	a	device	from	the	Pi,	the	most	important	component	will	be	the	PowerSwitch	Tail
Kit.	This	component	allows	your	Pi	to	control	electrical	appliances	such	as	lamps,	heaters,
and	other	appliances	that	use	mains	electricity	to	function.

Finally,	you	will	need	the	usual	breadboard	and	jumper	wires.

The	following	is	the	list	of	components	you	will	need	for	this	whole	chapter,	not	including	the
Raspberry	Pi	Zero:

Non-invasive	current	sensor	(https://www.sparkfun.com/products/11005)
10-Ohm	resistor	load
MCP3008	ADC	(https://www.adafruit.com/product/856)
Jack	to	breadboard	adapter	(https://www.sparkfun.com/products/11570)
PowerSwitch	Tail	Kit	(https://www.adafruit.com/products/268)
Breadboard	(https://www.adafruit.com/products/64)
Jumper	wires	(https://www.adafruit.com/products/1957)

To	actually	have	a	device	to	control,	I	used	a	standard	15W	desk	lamp.

https://www.sparkfun.com/products/11005
https://www.adafruit.com/product/856
https://www.sparkfun.com/products/11570
https://www.adafruit.com/products/268
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957

Hardware	configuration
We	are	now	going	to	assemble	the	hardware	for	this	project.	The	first	thing	we	have	to	do	is
to	connect	the	current	sensor	to	the	PowerSwitch	Tail	so	we	can	measure	the	current	flowing
into	the	device	connected	to	the	smart	plug.	For	that,	you'll	need	to	expose	a	bare	cable
coming	from	the	PowerSwitch	Tail.	Then,	open	the	current	sensor	and	close	it	firmly	around
this	cable.

The	following	image	shows	how	the	connection	should	look:

Now,	we	are	going	to	connect	the	MCP3008	to	the	Raspberry	Pi.	To	help	you	out,	the
following	figure	shows	the	connector	of	the	Raspberry	Pi	Zero	with	the	numbers	of	the	GPIO

pins:

Also,	you	will	need	to	know	the	pins	of	the	MCP3008	chip:

Let's	now	connect	the	MCP3008	to	the	Raspberry	Pi,	using	the	following	connections:

VDD	and	VREF	to	the	3.3V	pin	of	the	Raspberry	Pi
DGND	and	AGND	to	the	GND	pin	of	the	Raspberry	Pi
CLK	to	GPIO	11	of	the	Raspberry	Pi
DOUT	to	GPIO	9	of	the	Raspberry	Pi
DIN	to	GPIO	10	of	the	Raspberry	Pi

CS	to	GPIO	8	of	the	Raspberry	Pi

After	that,	plug	the	current	sensor	into	the	Jack	adapter	and	place	the	adapter	on	the
breadboard.	Then,	connect	the	10-Ohm	resistor	in	series	with	the	SLEEVE	and	TIP	pins	on	the
adapter.

Now,	connect	one	side	of	this	resistor	to	the	GND	on	the	breadboard	(for	example,	to	the
Raspberry	Pi	GND)	and	the	other	side	to	channel	5	of	the	MCP3008	chip.

Finally,	connect	the	PowerSwitch	Tail	to	the	Pi:	connect	the	Vin+	pin	to	GPIO	18	and	the	two
other	pins	to	the	GND.

The	following	image	shows	the	final	result:

Also,	connect	the	device	you	want	to	control,	for	example,	a	lamp,	to	the	female	plug	of	the
PowerSwitch.	You	can	now	again	plug	your	Pi	into	the	power	source	and	the	PowerSwitch
Tail	to	the	mains	electricity.

Configuring	the	smart	plug
We	are	now	going	to	configure	the	Raspberry	Pi	so	it	behaves	like	a	smart	plug.	As	usual,
we'll	use	Node.js	to	code	the	software	that	will	control	our	Raspberry	Pi	Zero	board.

We	start	by	importing	all	the	required	modules	for	the	project:

var	mcpadc	=	require('mcp-spi-adc');

var	express	=	require('express');

var	app	=	express();

var	piREST	=	require('pi-arest')(app);

Note	that	we	are	using	the	mcp-spi-adc	module	here,	which	will	allow	us	to	easily	read	data
from	the	MCP3008	chip.

Next,	we	define	the	channel	to	which	the	current	sensor	is	connected:

var	channel	=	5;

We	also	set	the	value	of	the	load	resistance	we	are	using	for	the	sensor:

var	resistance	=	10;

This	will	allow	us	to	calculate	the	actual	current	flowing	through	the	sensor	later	on.

So	far,	you	might	have	noticed	that	we	don't	measure	the	voltage	in	this	project.	Indeed,	even
if	we	could	add	another	circuit	to	measure	the	voltage,	we	can	simply	set	it	in	the	code:

var	voltage	=	230;	//	Europe

Note	that	you	will	need	to	change	that	to	the	voltage	used	in	your	country,	for	example,	110V
in	the	US.

As	for	the	other	projects	in	this	book,	we	are	using	the	aREST	framework	to	control	our	Pi
remotely.	We	need	to	initialize	the	module	by	giving	a	name	and	ID	to	our	project:

piREST.set_id('34f5eQ');

piREST.set_name('energy_meter');

piREST.set_mode('bcm');

After	that,	we	start	the	server	on	port	80:

var	server	=	app.listen(80,	function()	{

				console.log('Listening	on	port	%d',	server.address().port);

});

We	still	need	to	actually	measure	data	from	the	sensor.	This	is	the	code	that	will	measure	data
from	the	sensor	every	500	ms:

var	sensor	=	mcpadc.open(channel,	{speedHz:	20000},	function	(err)	{

		if	(err)	throw	err;

		//	Measurement	interval

		setInterval(function	()	{

				//	Read

				sensor.read(function	(err,	reading)	{

						if	(err)	throw	err;

						//	Calculate	current

						var	measuredVoltage	=	reading.value	*	3.3;

						var	measuredCurrent	=	(measuredVoltage/resistance)	*	2000	/1.41;

						//	Calculate	power

						var	power	=	voltage	*	measuredCurrent;

						//	Assign	to	aREST

						piREST.variable('power',	power.toFixed(2));

						piREST.variable('current',	measuredCurrent.toFixed(2));

						//	Log	output

						console.log("Measured	current:	"	+	measuredCurrent.toFixed(2)	+	'A');

						console.log("Measured	power:	"	+	power.toFixed(2)	+	'W');

				});

		},	500);

});

Let's	see	what	this	code	does.	We	first	measure	the	voltage	at	the	analog-digital	converter,
which	is	proportional	to	the	current	flowing	through	the	device	of	our	smart	plug.	We	need	to
multiply	this	reading	by	3.3	to	get	a	voltage	from	the	value	returned	by	the	analog-digital
converter.

Then,	to	get	the	current,	we	first	need	to	divide	the	voltage	by	the	value	of	the	resistance.
Then,	we	need	to	multiply	it	by	2000,	which	is	the	ratio	between	the	current	induced	in	the
sensor	and	the	current	actually	flowing	through	the	device.	Finally,	we	need	to	divide	the
result	by	1.41,	to	get	the	effective	value	of	the	current.

To	get	the	power,	we	just	multiply	the	measured	current	by	the	voltage.

Finally,	we	also	expose	those	two	measured	values	to	the	aREST	API	so	we	can	access	them
later.

It's	finally	time	to	test	the	project!	Get	all	the	files	from	this	book's	GitHub	and	put	them	inside
a	folder	in	your	Pi.	Make	sure	to	modify	the	file	called	meter.js	to	change	the	value	of	the
resistance,	in	case	you	are	using	a	different	value.

Then,	install	the	required	modules	from	a	terminal	with	the	following	command:

sudo	npm	install	express	pi-arest	mcp-spi-adcsdfsd

Once	that's	done,	start	the	project	with	the	following	command:

sudo	node	meter.js

You	should	immediately	see	the	measurements	in	the	console,	showing	a	null	current	and
power,	as	the	device	is	currently	off:

Let's	now	switch	the	device	on	to	see	if	the	current	and	power	measurements	are	working
correctly.	For	that,	first	get	the	IP	address	of	your	Pi	using	the	ifconfig	command.	Let's
assume	for	the	rest	of	this	chapter	that	it	is	192.168.0.105.

Go	to	your	favorite	web	browser	and	type	the	following:

http://192.168.0.105/digital/18/1

This	should	immediately	switch	the	device	connected	to	the	project	on,	for	example,	the	desk
lamp	I	connected	to	the	PowerSwitch	Tail.	You	should	see	the	current	and	power
measurements	in	the	console:

As	you	can	see,	the	sensor	is	quite	precise,	as	I	obtained	a	15.03W	reading	for	my	15W	desk

lamp.	Note	that	the	current	sensor	can	measure	up	to	30A,	so	make	sure	you	are	using	a
device	that	is	working	with	a	current	smaller	than	this	limit.

Creating	an	interface	for	the	smart	plug
Commercial	smart	plugs	usually	come	with	a	nice	interface,	which	you	can	use	from	your
phone	or	computer	to	control	the	plug	via	Wi-Fi.	In	this	section,	we	are	going	to	do	exactly
the	same:	build	a	simple	interface	that	we	will	use	to	control	the	device	connected	to	the	smart
plug,	and	also	visualize	the	current	and	power	consumption	of	the	device.

As	the	code	for	this	part	is	quite	similar	to	the	code	of	the	previous	section,	I	will	only
highlight	the	differences	here.

Inside	the	Node.js	JavaScript	file,	we	declare	the	public	folder	in	which	we	will	store	the
interface:

app.use(express.static('public'));

Then,	we	need	to	declare	to	which	pin	we	connected	the	output	of	the	smart	plug:

var	outputPin	=	18;

Using	Express,	we	can	now	define	some	routes.	We	define	the	main	route	of	the	application	to
redirect	to	the	interface	file:

app.get('/',	function	(req,	res)	{

		res.sendfile(__dirname	+	'/public/interface.html');

});

Then,	as	we	saw	in	the	previous	chapter,	we	declare	two	routes	to	control	the	output	of	the
project:	one	to	switch	the	device	on,	and	one	to	switch	it	off:

app.get('/on',	function	(req,	res)	{

		piREST.digitalWrite(outputPin,	1);

		//	Answer

		answer	=	{

				status:	1

		};

		res.json(answer);

});

app.get('/off',	function	(req,	res)	{

		piREST.digitalWrite(outputPin,	0);

		//	Answer

		answer	=	{

				status:	0

		};

		res.json(answer);

});

Let's	now	see	the	files	for	the	interface.	There	will	be	one	HTML	file,	which	contains	the
elements	of	the	interface,	and	one	JavaScript	file	to	make	the	link	between	the	elements	and
the	Node.js	software.

Let's	start	with	the	HTML	file.	We	need	to	define	the	two	buttons	that	we	will	use	to	control	the
device:

<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-2'>

						<button	id='on'	class='btn	btn-block	btn-primary'>On</button>

				</div>

				<div	class='col-md-2'>

						<button	id='off'	class='btn	btn-block	btn-warning'>Off</button>

				</div>

				<div	class='col-md-4'></div>

		</div>

Then,	we	also	define	two	indicators,	called	current	and	power,	which	will	contain	the	values
measured	by	the	project:

		<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4'>

						Current	consumption:		A

				</div>

				<div	class='col-md-4'></div>

		</div>

		<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4'>

						Power	consumption:		W

				</div>

				<div	class='col-md-4'></div>

		</div>

Let's	now	see	the	content	of	the	JavaScript	file.	First	we	make	the	link	between	the	buttons	and
the	Node.js	server	by	calling	the	correct	action	when	a	button	is	pressed:

$("#on").click(function()	{

				//	Set	lamp	ON

				$.get('/on');

		});

		$("#off").click(function()	{

				//	Set	lamp	OFF

				$.get('/off');

		});

Then,	we	define	this	loop	to	automatically	grab	the	measurements	from	the	Pi	and	update	the
indicators	in	the	interface	every	second:

setInterval(function	()	{

				//	Current

				$.get('/current',	function(data)	{

						$("#current").text(data.current);

				});

				//	Power

				$.get('/power',	function(data)	{

						$("#power").text(data.power);

				});

		},	1000);

It's	now	time	to	test	the	interface!	If	you	followed	the	instructions	from	the	previous	section,
you	just	need	to	go	once	more	to	the	folder	where	you	put	the	project	files	and	type	the
following:

sudo	node	meter_interface.js

Now,	using	your	favorite	browser,	go	to	the	IP	address	of	the	Pi,	for	example:

http://192.168.0.105/

You	should	see	the	interface	showing	the	current	measurements	taken	by	the	board,	which
should	be	at	zero,	as	you	just	started	the	software:

You	can	now	click	on	the	On	button.	You	should	immediately	see	the	device	connected	to	the
project	turning	on	and	you	should	also	see	the	current	readings	made	by	the	smart	plug:

Congratulations,	you	now	have	a	nice	interface	that	you	can	use	to	control	your	smart	plug
remotely!	Of	course,	you	could	also	use	this	interface	from	a	phone	or	tablet	that	is	connected
to	the	same	Wi-Fi	network	as	your	Pi.

Logging	your	energy	consumption	over	time
For	now,	we	built	a	smart	plug	that	has	more	or	less	the	same	features	as	a	commercial	smart
plug:	it	can	control	a	device,	measure	the	power	consumption	of	this	device,	and	also	comes
with	a	nice	graphical	interface.	In	this	section,	we	are	going	to	go	further,	and	see	how	we	can
easily	add	functions	to	our	project	with	some	lines	of	code.

As	an	example,	we	are	going	to	see	how	to	log	the	measurements	made	by	the	board	into	a
database	on	the	Pi	so	that	those	measurements	can	be	recalled	later.	As	the	code	for	this
section	is	really	similar	to	the	previous	section,	I	will	only	highlight	the	main	changes	here.

Start	by	importing	the	required	module	for	the	database:

var	Datastore	=	require('nedb')

		db	=	new	Datastore();

After	that,	we	define	a	route	to	get	all	the	data	currently	present	inside	the	database:

app.get('/data',	function	(req,	res)	{

		db.find({},	function	(err,	docs)	{

				res.json(docs);

		});

});

Inside	the	measurement	loop,	we	create	a	new	set	of	data	at	every	iteration	and	store	it	in	the
database:

var	data	=	{

										current:	measuredCurrent.toFixed(2),

										power:	power.toFixed(2),

										date:	new	Date()

						};

						db.insert(data,	function	(err,	newDoc)	{

										console.log(newDoc);

						});

Let's	now	try	this	new	piece	of	software.	Again,	navigate	to	the	folder	where	you	put	the	files
for	this	chapter	and	type	the	following	command:

sudo	npm	install	nedb

This	will	install	the	required	module	for	the	database.	Then,	launch	the	software	with	the
following	command:

sudo	node	meter_log.js

You	should	see	the	results	from	the	measurements	inside	the	console	just	as	before,	but	this
time	with	the	confirmation	that	the	document	was	stored	in	the	database:

Note	that	I	used	quite	a	high	refresh	rate	inside	the	code	for	demonstration	purposes.	Of
course,	I	invite	you	to	modify	that	in	order	to	avoid	filling	your	database	with	measurements.

You	can	also	try	to	read	the	data	that	was	logged	inside	the	database	by	going	to	the	following
URL:

http://192.168.0.105/data

You	should	immediately	see	the	results	inside	the	browser:

You	can	now	use	this	data	for	your	own	applications.	For	example,	it	can	easily	be	used	to
calculate	the	average	daily	or	monthly	energy	consumption	of	the	device.

Summary
In	this	chapter,	we	learned	how	to	reproduce	a	smart	plug	using	the	Raspberry	Pi	Zero.	We
built	a	device	that	can	control	electrical	devices	and	also	measure	their	energy	consumption.
We	built	a	nice	interface	to	control	this	device,	and	also	made	it	log	data	on	the	Pi	itself.

You	can,	of	course,	now	improve	this	project	in	many	ways.	You	could,	for	example,	plot	the
data	measured	by	the	project	and	have	a	real-time	graph	of	the	energy	consumption	of	the
device.	For	the	more	adventurous,	you	could	also	think	about	integrating	all	the	components
into	a	nice	3D-printed	case,	making	it	almost	like	a	commercial	smart	plug.

In	the	following	chapter,	we	are	going	to	dive	into	an	amazing	field:	the	Internet	of	Things.
We'll	see	how	to	use	your	Pi	to	send	you	all	kinds	of	notifications	about	what	is	going	on	in
your	home.

Chapter	6.	Sending	Notifications	using
Raspberry	Pi	Zero
In	this	chapter,	we	are	going	to	start	diving	into	a	very	interesting	field	that	will	change	the
way	we	interact	with	our	environment:	the	Internet	of	Things	(IoT).	The	IoT	basically
proposes	to	connect	every	device	around	us	to	the	Internet,	so	we	can	interact	with	them	from
anywhere	in	the	world.

Within	this	context,	a	very	important	application	is	to	receive	notifications	from	your	devices
when	they	detect	something	in	your	home,	for	example	a	motion	in	your	home	or	the	current
temperature.	This	is	exactly	what	we	are	going	to	do	in	this	chapter,	we	are	going	to	learn
how	to	make	your	Raspberry	Pi	Zero	board	send	you	notifications	via	text	message,	email,
and	push	notifications.	Let's	start!

Hardware	and	software	requirements
As	always,	we	are	going	to	start	with	the	list	of	required	hardware	and	software	components
for	the	project.

Except	Raspberry	Pi	Zero,	you	will	need	some	additional	components	for	each	of	the	sections
in	this	chapter.

For	the	first	project	of	this	chapter,	we	are	going	to	use	a	simple	PIR	motion	sensor	to	detect
motion	from	your	Pi.

Then,	for	the	last	two	projects	of	the	chapter,	we'll	use	the	DHT11	sensor	that	we	have	already
used	in	previous	chapters.

Finally,	you	will	need	the	usual	breadboard	and	jumper	wires.

This	is	the	list	of	components	that	you	will	need	for	this	whole	chapter,	not	including	the
Raspberry	Pi	Zero:

PIR	motion	sensor	(https://www.sparkfun.com/products/13285)
DHT11	sensor	+	4.7k	Ohm	resistor	(https://www.adafruit.com/products/386)
Breadboard	(https://www.adafruit.com/products/64)
Jumper	wires	(https://www.adafruit.com/products/1957)

On	the	software	side,	you	will	need	to	create	an	account	on	IFTTT,	which	we	will	use	in	all
the	projects	of	this	chapter.	For	that,	simply	go	to:

https://ifttt.com/

You	should	be	redirected	to	the	main	page	of	IFTTT	where	you'll	be	able	to	create	an	account:

https://www.sparkfun.com/products/13285
https://www.adafruit.com/products/386
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957
https://ifttt.com/

Making	a	motion	sensor	that	sends	text
messages
For	the	first	project	of	this	chapter,	we	are	going	to	attach	a	motion	sensor	to	the	Raspberry	Pi
board	and	make	the	Raspberry	Pi	Zero	send	us	a	text	message	whenever	motion	is	detected.
For	that,	we	are	going	to	use	IFTTT	to	make	the	link	between	our	Raspberry	Pi	and	our
phone.	Indeed,	whenever	IFTTT	will	receive	a	trigger	from	the	Raspberry	Pi,	it	will
automatically	send	us	a	text	message.

Lets	first	connect	the	PIR	motion	sensor	to	the	Raspberry	Pi.	For	that,	simply	connect	the	VCC
pin	of	the	sensor	to	a	3.3V	pin	of	the	Raspberry	Pi,	GND	to	GND,	and	the	OUT	pin	of	the
sensor	to	GPIO18	of	the	Raspberry	Pi.

This	is	the	final	result:

Let's	now	add	our	first	channel	to	IFTTT,	which	will	allow	us	later	to	interact	with	the
Raspberry	Pi	and	with	web	services.	You	can	easily	add	new	channels	by	clicking	on	the
corresponding	tab	on	the	IFTTT	website.	First,	add	the	Maker	channel	to	your	account:

This	will	basically	give	you	a	key	that	you	will	need	when	writing	the	code	for	this	project:

After	that,	add	the	SMS	channel	to	your	IFTTT	account.	Now,	you	can	actually	create	your
first	recipe.	Select	the	Maker	channel	as	the	trigger	channel:

Then,	select	Receive	a	web	request:

As	the	name	of	this	request,	enter	motion_detected:

As	the	action	channel,	which	is	the	channel	that	will	be	executed	when	a	trigger	is	received,
choose	the	SMS	channel:

For	the	action,	choose	Send	me	an	SMS:

You	can	now	enter	the	message	you	want	to	see	in	the	text	messages:

Finally,	confirm	the	creation	of	the	recipe:

Now	that	our	recipe	is	created	and	active,	we	can	move	on	to	actually	configuring	Raspberry
Pi	so	it	sends	alerts	whenever	a	motion	is	detected.	As	usual,	we'll	use	Node.js	to	code	this
program.

It	starts	by	including	the	required	modules:

//	Required	modules

var	request	=	require('request');

var	gpio	=	require('rpi-gpio');

Then,	we	define	our	IFTTT	data,	which	is	composed	of	the	Maker	key	and	of	the	name	of	the
event	we	want	to	trigger:

//	IFTTT	data

var	key	=	"your-key";

var	eventName	=	'motion_detected';

Then,	we	define	the	pin	on	which	our	sensor	is	connected	to:

//	Motion	sensor	GPIO

var	motionSensorPin	=	18;

We	also	need	to	define	a	counter	that	will	basically	make	sure	that	we	don't	constantly	send
alerts	to	our	phone,	for	example	if	the	sensor	stays	on	for	several	seconds.	For	that,	we	define
an	interval	period	of	one	minute	minimum	between	two	alerts:

//	Counter	between	two	alerts

var	interval	=	60	*	1000;	//	1	minute

var	counter	=	new	Date();

After	that,	we	configure	the	rpi-gpio	module	(that	we'll	use	to	read	data	from	the	sensor)	to
the	BCM	configuration	scheme,	meaning	we	are	using	the	number	of	the	GPIO	of	the
Raspberry	Pi	rather	than	the	physical	pins:

//	Setup	gpio	library

gpio.setMode(gpio.MODE_BCM);

Now,	every	second,	we	check	the	status	of	the	sensor	(if	we	didn't	trigger	an	alert	already	in
the	last	minute):

//	Check	status	every	second

setInterval(function()	{

		//	Check	counter	so	we	don't	trigger	alarms	all	the	time

		var	currentTime	=	(new	Date()).getTime();

		var	counterTime	=	counter.getTime();

		if	((currentTime	-	counterTime)	>	interval)	{

				//	Check	sensor

				gpio.setup(motionSensorPin,	gpio.DIR_IN,	checkSensor);

		}

},	1000);

If	some	motion	is	detected,	we	reset	the	counter	and	also	send	the	alert	to	IFTTT:

//	Check	motion	sensor

function	checkSensor()	{

		gpio.read(motionSensorPin,	function(err,	value)	{

						//	If	motion	is	detected,	send	event	to	IFTTT

						if	(value	==	true)	{

								//	Restart	Counter

								counter	=	new	Date();

								//	Send	event

								alertIFTTT();

						}

		});

}

This	is	the	function	that	takes	care	of	sending	the	data	to	IFTTT:

//	Make	request

function	alertIFTTT()	{

		//	Send	alert	to	IFTTT

		console.log("Sending	alert	to	IFTTT");

		var	url	=	'https://maker.ifttt.com/trigger/'	+	eventName	+	'/with/key/'	+	key;

		request(url,	function	(error,	response,	body)	{

				if	(!error	&&	response.statusCode	==	200)	{

						console.log("Alert	sent	to	IFTTT");

				}

		});

}

It	basically	uses	the	request	module	to	send	the	correct	command	to	IFTTT,	passing	the	name
of	the	event	and	the	key.

We	can	finally	test	this	first	project!	Grab	the	code	from	the	GitHub	repository	of	the	book
and	make	sure	to	modify	the	code	with	your	own	IFTTT	key.	Then,	navigate	to	the	folder
where	the	file	is	with	a	terminal	and	type	the	following	command:

sudo	npm	install	rpi-gpio	request

Once	that's	done,	start	the	code	with:

sudo	node	sms_alerts.js

Now,	you	need	to	wait	at	least	for	the	interval	time	(one	minute	by	default)	before	the	code	is
active.	This	will	make	sure	that	no	motion	will	be	detected	when	you	just	start	the	project	for
example.

After	a	minute,	pass	your	hand	in	front	of	the	sensor:	Your	Raspberry	Pi	should	immediately
send	a	command	to	IFTTT	and	after	some	seconds	you	should	be	able	to	receive	a	message
on	your	mobile	phone:

Congratulations,	you	can	now	use	your	Raspberry	Pi	Zero	to	send	important	notifications,	on
your	mobile	phone!

Note

Note	that	for	an	actual	use	of	this	project	in	your	home,	you	might	want	to	limit	the	number	of
messages	you	are	sending	as	IFTTT	has	a	limit	on	the	number	of	messages	you	can	send
(check	the	IFTTT	website	for	the	current	limit).	For	example,	you	could	use	this	for	only	very
important	alerts,	like	in	case	of	an	intruder	coming	in	your	home	in	your	absence.

Sending	temperature	alerts	through	email
In	the	second	project	of	the	chapter,	we	are	going	to	learn	how	to	send	automated	email	alerts
based	on	data	measured	by	the	Raspberry	Pi.

Let's	first	assemble	the	project.	Place	the	DHT11	sensor	on	the	breadboard	and	then	place	the
4.7k	Ohm	resistor	between	pin	1	and	2	of	the	sensor.	Then,	connect	pin	1	of	the	sensor	to	the
3.3V	pin	of	the	Raspberry	Pi,	pin	2	to	GPIO18,	and	pin	4	to	GND.	This	is	the	final	result:

Let	us	now	see	how	to	configure	the	project.	Go	over	to	IFTTT	and	create	add	the	Email
Channel	to	your	account:

After	that,	create	a	new	recipe	by	choosing	the	Maker	channel	as	the	trigger:

For	the	event,	enter	temperature_alert	and	then	choose	Email	as	the	action	channel:

You	will	then	be	able	to	customize	the	text	and	subject	of	the	email	sent	to	Pi.	As	we	want	to
send	the	emails	whenever	the	temperature	in	your	home	gets	too	low,	you	can	use	a	similar
message:

You	can	now	finalize	the	creation	of	the	recipe	and	close	IFTTT.	Let's	now	see	how	to
configure	the	Raspberry	Pi	Zero.	As	the	code	for	this	project	is	quite	similar	to	the	one	we
saw	in	the	previous	section,	I	will	only	highlight	the	main	differences	here.

It	starts	by	including	the	required	components:

var	request	=	require('request');

var	sensorLib	=	require('node-dht-sensor');

Then,	give	the	correct	name	to	the	event	we'll	use	in	the	project:

var	eventName	=	'temperature_low';

We	also	define	the	pin	on	which	the	sensor	is	connected:

var	sensorPin	=	18;

As	we	want	to	send	alerts	based	on	the	measured	temperature,	we	need	to	define	a	threshold.
As	it	was	quite	warm	when	I	made	this	project,	I	have	assigned	a	high	threshold	at	30	degrees
Celsius,	but	you	can,	of	course,	modify	it:

var	threshold	=	30;

Then,	we	initialize	the	sensor	and	check	the	current	temperature	every	2	seconds:

var	sensor	=	{

				initialize:	function	()	{

								return	sensorLib.initialize(11,	sensorPin);

				},

				read:	function	()	{

								//	Read

								var	readout	=	sensorLib.read();

								temperature	=	readout.temperature.toFixed(2);

								console.log('Current	temperature:	'	+	temperature);

								//	Check	counter	so	we	don't	trigger	IFTTT	all	the	time

								var	currentTime	=	(new	Date()).getTime();

								var	counterTime	=	counter.getTime();

								if	((currentTime	-	counterTime)	>	interval)	{

										if	(temperature	<	threshold)	{

												//	Restart	Counter

												counter	=	new	Date();

												//	Send	event

												alertIFTTT();

										}

								}

								//	Repeat

								setTimeout(function	()	{

												sensor.read();

								},	2000);

				}

};

It's	now	time	to	test	the	project!	Grab	the	GitHub	repository	of	the	book	and	make	sure	to
modify	the	code	to	put	your	own	IFTTT	key.

Then,	navigate	to	the	folder	with	the	file	with	a	terminal	and	type	the	following:

sudo	npm	install	request

Then,	install	the	module	for	the	DHT	sensor	with	the	following	command:

npm	install	node-dht-sensor

Finally,	start	the	project	using	the	following	command:

sudo	node	temperature_alerts.js

If	like	me,	you	set	the	threshold	to	a	quite	high	value,	you	should	quickly	receive	a	message
inside	your	email	box:

You	can	now	use	your	Pi	to	send	automated	notifications	through	email!

Receiving	measurement	SATA	through	push
notifications
In	the	last	project	of	this	chapter,	we'll	learn	how	to	use	the	project	we	built	in	the	previous
section	to	actually	not	send	you	alerts,	but	just	keep	you	updated	about	the	current	temperature
and	humidity	measured	by	Pi.

Here	however,	we	are	going	to	use	something	new	to	alert	you:	push	notifications.	These
notifications	will	immediately	show	up	on	your	phone	if	you	have	the	right	app	installed.

As	the	app,	we'll	use	Pushover	that	is	available	for	iOS	and	Android.	You	can	install	it	from
your	App	Store	and	find	more	information	at	the	following	URL:

https://ifttt.com/

Then,	add	the	Pushover	channel	inside	IFTTT:

Now,	create	a	new	recipe	and	choose	the	Maker	channel	again	as	the	trigger:

https://ifttt.com/

I	used	data	as	the	trigger:

Then,	select	Pushover	as	the	action	channel	and	enter	the	following	message:

Here,	we'll	use	the	variables	Value1	and	Value2	to	display	the	temperature	and	humidity	inside
the	message.	We'll	see	in	a	moment	how	to	actually	send	that	to	IFTTT	from	the	Pi.

You	can	also	select	the	target	device	for	this	recipe:

Lets	now	see	how	to	configure	this	project.	As	it's	really	similar	to	the	previous	project,	I	will
just	highlight	the	main	differences	here.

We	need	to	give	the	name	to	the	event	that	we'll	trigger	from	the	Pi:

var	eventName	=	'data';

Then,	inside	the	sensor	object	we	measure	data	at	regular	intervals	and	pass	the	measurements
to	the	logIFTTT()function:

var	sensor	=	{

				initialize:	function	()	{

								return	sensorLib.initialize(11,	sensorPin);

				},

				read:	function	()	{

								//	Read

								var	readout	=	sensorLib.read();

								temperature	=	readout.temperature.toFixed(2);

								humidity	=	readout.humidity.toFixed(2);

								console.log('Current	temperature:	'	+	temperature);

								console.log('Current	humidity:	'	+	humidity);

								//	Send	event

								logIFTTT(temperature,	humidity);

								//	Repeat

								setTimeout(function	()	{

												sensor.read();

								},	interval);

				}

};

Let's	now	see	the	details	of	this	function.	Compared	to	the	previous	projects	of	this	chapter,
we	are	now	going	to	pass	the	temperature	and	humidity	parameters	to	the	function	and	send
this	data	to	IFTTT:

function	logIFTTT(temperature,	humidity)	{

		//	Send	alert	to	IFTTT

		console.log("Sending	message	to	IFTTT");

		var	url	=	'https://maker.ifttt.com/trigger/'	+	eventName	+	'/with/key/'	+	key;

		url	+=	'?value1='	+	temperature	+	'&value2='	+	humidity;

		request(url,	function	(error,	response,	body)	{

				if	(!error	&&	response.statusCode	==	200)	{

						console.log("Data	sent	to	IFTTT");

				}

		});

}

Let's	now	test	the	project!	First,	grab	all	the	code	from	the	GitHub	repository	of	the	book	and
make	sure	to	modify	the	code	with	your	IFTTT	maker	key.	Then,	install	the	request	module
with	the	following	command:

sudo	npm	install	request

Once	that's	done,	install	the	module	for	the	DHT	sensor:

npm	install	node-dht-sensor

Finally,	start	the	project	using	this	command:

sudo	node	temperature_notifications.js

After	a	minute,	you	should	get	the	notification	on	your	phone	displaying	the	current
temperature	and	humidity	in	your	home:

You	can	now	use	your	Pi	to	receive	automated	reports	containing	data	about	your	home!

Summary
In	this	chapter,	we	learned	all	the	basics	about	sending	automated	notifications	from	your
Raspberry	Pi.	We	learned,	for	example,	how	to	send	notifications	via	email,	text	messages,
and	push	notifications.	This	is	really	important	to	build	a	smart	home,	as	you	want	to	be	able
to	get	alerts	in	real-time	from	what's	going	on	inside	your	home	and	also	receive	regular
reports	about	the	current	status	of	your	home.

You	can	of	course	improve	the	projects	of	this	chapter	in	many	ways.	It	would	be	easy	for
example	to	have	several	Pi	Zero	boards	in	your	home,	each	sending	you	alerts	on	your	phone
for	example.	You	could	give	a	name	to	each	of	the	boards	and	include	that	name	inside	the
alerts	so	you	know	which	Pi	sent	the	message.

In	the	next	chapter,	we	are	going	to	use	everything	we	learned	so	far	in	the	book	to	build	a
simple	security	system	using	the	Raspberry	Pi	Zero	board.

Chapter	7.	Use	the	Raspberry	Pi	Zero	to	Build	a
Security	System
In	this	chapter,	we	are	going	to	learn	how	to	build	a	modular	security	system	using	the
Raspberry	Pi	Zero	board.	The	Raspberry	Pi	board	is	really	cheap	and	has	a	very	small	form
factor,	you	can	use	many	such	boards	inside	your	home	to	build	a	complete	security	system
for	your	home.

We	are	going	to	integrate	three	types	of	components	into	our	system:	motion	sensors,	alarms,
and	security	camera.	These	modules	will	communicate	with	a	central	server	application	that
will	either	run	on	your	computer	or	on	another	Raspberry	Pi.	First,	we	are	going	to	see	how
to	configure	each	board	individually	and	then	configure	the	central	server	and	a	basic
interface.

Hardware	and	software	requirements
As	always,	we	are	going	to	start	with	the	list	of	required	hardware	and	software	components
for	the	project.

In	this	chapter,	we	are	going	to	use	at	least	three	Raspberry	Pi	Zero	boards:	for	a	motion
sensor,	an	alarm	module,	and	a	camera	module.	Of	course,	you	can	perfectly	use	more	of
each	module	in	your	security	system.

For	the	motion	sensor	module,	I	will	use	a	simple	PIR	motion	sensor.

Then,	for	the	alarm	module,	I	will	be	using	a	small	buzzer,	as	well	as	an	LED	and	a	330	Ohm
resistor.

For	the	camera	module,	I	will	use	a	Logitech	C270	webcam.	Here,	any	camera	compatible
with	the	UVC	protocol	would	work,	which	is	the	case	for	most	of	the	cameras	sold	these	days.

Finally,	you	will	need	the	usual	breadboard	and	jumper	wires.

This	is	the	list	of	components	that	you	will	need	for	this	chapter,	not	including	the	Raspberry
Pi	Zero:

PIR	motion	sensor	(https://www.sparkfun.com/products/13285)
LED	(https://www.sparkfun.com/products/9590)
330	Ohm	resistor	(https://www.sparkfun.com/products/11507)
Logitech	C270	USB	camera	(http://www.logitech.com/en-us/product/hd-webcam-c270)
Breadboard	(https://www.adafruit.com/products/64)
Jumper	wires	(https://www.adafruit.com/products/1957)

Of	course,	all	the	additional	components,	for	example	the	WiFi	dongle	and	power	supply,	will
need	to	be	multiplied	by	the	number	of	Raspberry	Pi	boards	that	you	will	use	inside	the
project.

On	the	software	side,	you	will	just	need	to	have	Node.js	installed	on	your	Raspberry	Pi	Zero
boards.

https://www.sparkfun.com/products/13285
https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/11507
http://www.logitech.com/en-us/product/hd-webcam-c270
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957

Building	a	motion	sensor	with	the	Pi	Zero
The	first	module	that	we	are	going	to	assemble	in	this	chapter	is	the	motion	sensor	module.
These	modules	will	be	deployed	in	key	parts	of	your	home,	to	detect	any	intruder	in	your
home.

The	hardware	configuration	for	this	part	will	actually	be	very	simple.	First,	connect	the	VCC
pin	of	the	motion	sensor	to	a	3.3V	pin	of	the	Raspberry	Pi.	Then,	connect	the	GND	pin	of	the
sensor	to	one	GND	pin	of	the	Pi.	Finally,	connect	the	OUT	pin	of	the	motion	sensor	to	the
GPIO17	pin	of	the	Raspberry	Pi.	You	can	refer	to	the	previous	chapters	to	find	out	about	pin
mapping	of	the	Raspberry	Pi	Zero	board.

This	is	the	final	result:

Let's	now	see	how	to	configure	this	module	so	we	can	access	it	remotely	through	WiFi.	This
application	will	be	based	on	the	aREST	framework	again,	which	we	already	saw	in	the
previous	chapters	of	the	book.

Here	is	the	complete	code	for	this	part:

//	Modules

var	express	=	require('express');

//	Express	app

var	app	=	express();

//	aREST

var	piREST	=	require('pi-arest')(app);

piREST.set_id('34f5eQ');

piREST.set_name('motion_sensor');

piREST.set_mode('bcm');

//	Start	server

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	motion	sensor	started!');

});

You	can	now	simply	grab	this	code	from	the	GitHub	repository	of	the	book	or	simply	paste	it
into	a	file	called	motion_sensor.js,	then	using	a	terminal	inside	the	same	folder	as	the	file
type:

sudo	npm	install	express	pi-arest

Once	the	required	modules	are	installed,	type	the	following	command	to	start	the	project:

sudo	node	motion_sensor.js

Finally,	navigate	to	the	IP	address	of	your	Pi	on	port	3000,	followed	by	the	digital	command
on	pin	17:

http://192.168.0.105:3000/digital/17

This	should	immediately	return	a	JSON	object	with	the	value	of	pin	17.	You	can	now	try	to
pass	your	hand	in	front	of	the	sensor	and	repeat	the	operation:	you	should	be	able	to
immediately	see	that	the	value	of	pin	17	is	equal	to	1,	indicating	that	motion	has	been	detected
by	the	sensor.

Making	a	simple	alarm	module
In	the	second	part	of	this	chapter,	we	are	going	to	learn	how	to	build	an	alarm	module	for	our
security	system.	You	will	usually	have	one	of	those	modules	in	your	home	that	will	flash	light
and	emit	sound	in	case	motion	is	detected.	Of	course,	you	can	perfectly	connect	it	to	a	real
siren	instead	of	a	buzzer	to	have	a	loud	sound	in	case	any	motion	is	detected.

To	assemble	this	module,	first	place	the	LED	in	series	with	the	330	Ohm	resistor	on	the
breadboard,	with	the	longest	pin	of	the	LED	in	contact	with	the	resistor.	Also	place	the	buzzer
on	the	breadboard.

Then,	connect	the	other	side	of	the	resistor	to	GPIO14	of	the	Pi	and	the	other	part	of	the	LED
to	one	GND	pin	of	the	Pi.

For	the	buzzer,	connect	the	pin	marked	as	+	on	the	buzzer	to	GPIO15	and	the	other	pin	of	the
buzzer	to	one	GND	pin	of	the	Pi.

This	is	the	final	result:

To	configure	this	module,	we	will	again	use	the	aREST	library,	so	the	code	will	be	very
similar	to	the	one	we	used	in	the	previous	section:

//	Modules

var	express	=	require('express');

//	Express	app

var	app	=	express();

//	aREST

var	piREST	=	require('pi-arest')(app);

piREST.set_id('35f5fc');

piREST.set_name('alarm');

piREST.set_mode('bcm');

//	Start	server

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	alarm	started!');

});

You	can	now	simply	grab	this	code	from	the	GitHub	repository	of	the	book	or	simply	paste	it
into	a	file	called	alarm.js	using	a	terminal	inside	the	same	folder	as	the	file	type:

sudo	npm	install	express	pi-arest

Once	the	required	modules	are	installed,	type	the	following	command	to	start	the	project:

sudo	node	alarm.js

Finally,	let's	just	try	to	set	the	buzzer	on;	navigate	to	the	IP	address	of	your	Pi	on	port	3000
followed	by	the	digital	command	on	pin	15:

http://192.168.0.105:3000/digital/17/1

This	should	immediately	set	the	buzzer	on	and	it	should	continuously	emit	sound.	To	switch	it
off	again,	simply	type	the	same	command	followed	by	a	0.

Building	a	wireless	security	camera
We	are	now	going	to	build	the	module	that	will	act	as	a	wireless	security	camera.	You	can
have	one	or	many	of	those	modules	inside	your	home;	it	will	allow	you	to	observe	what	is
going	on	in	your	home	from	a	central	location.

The	hardware	configuration	for	this	part	will	be	really	simple,	as	we	are	using	an	USB
camera.	However,	you	will	need	to	use	an	USB	hub	here,	as	we	will	need	to	connect	the	USB
camera	and	the	usual	WiFi	dongle	on	the	Raspberry	Pi.

This	is	the	final	result:

Let's	now	test	the	camera	first,	by	taking	a	simple	picture	from	the	command	line.	You	will
need	to	install	the	fswebcam	utility.	To	do	so,	simply	type	the	following	command	inside	a
terminal:

sudo	apt-get	install	fswebcam

Then,	still	from	a	terminal,	you	can	take	a	picture	with	the	following	command:

fswebcam	-r	1280×720	image.jpg

This	will	make	a	lot	of	messages	appear	inside	the	terminal,	confirming	that	the	picture	has
been	taken:

You	can	now	use	an	image	utility	to	open	the	picture	you	just	took.	I,	for	example,	used
GPicView:

Now	that	we	are	sure	that	the	camera	is	working	correctly,	we	can	use	it	to	stream	video	on
the	network.	For	that,	we'll	use	software	called	MJPG-streamer.	To	install	it,	first	clone	the
GitHub	repository	from	a	terminal:

git	clone	https://github.com/jacksonliam/mjpg-streamer

Then,	install	some	required	packages:

sudo	apt-get	install	cmake	libjpeg62-dev

Once	that's	done,	navigate	into	the	folder	of	the	mjpg-streamer	software	and	type:

sudo	make	clean	all

When	the	compilation	of	the	software	is	done,	type:

export	LD_LIBRARY_PATH=.

Finally,	start	the	software	with	the	following	command:

./mjpg_streamer	-i	"./input_uvc.so"	-o	"./output_http.so	-w	./www"

You	should	be	able	to	see	a	similar	output	inside	the	terminal:

Then,	simply	navigate	to	port	8080	of	your	Raspberry	Pi	to	access	the	interface	of	the
streaming	software,	for	example:

http://192.168.0.105:8080

You	should	be	able	to	see	the	interface:

You	can	now	just	click	on	Stream	to	access	the	live	stream	from	the	camera:

From	there,	you	can	monitor	the	live	stream	from	the	camera.	In	the	next	section,	we	are
going	to	see	how	to	integrate	this	stream	(and	streams	from	other	cameras	if	you	have	many)
into	a	central	interface.

Note

Note	that	this	project	would	also	work	with	the	official	Raspberry	Pi	camera.	However,	the

first	versions	of	the	Raspberry	Pi	Zero	board	didn't	have	the	connector	for	the	Raspberry	Pi
camera,	so	first	make	sure	if	your	board	has	this	connector	(which	is	on	the	side	of	the
board).	For	more	information,	visit	this	link:

https://www.raspberrypi.org/blog/zero-grows-camera-connector/

https://www.raspberrypi.org/blog/zero-grows-camera-connector/

Creating	a	security	system
In	the	last	section	of	this	chapter,	we	are	going	to	learn	how	to	integrate	all	the	modules	we
built	in	this	chapter	into	a	central	interface,	from	which	you'll	be	able	to	monitor	them.

For	this	project,	I	ran	this	last	part	on	my	personal	computer,	but	you	can,	of	course,	use
another	Pi	Zero	board	(or	any	Raspberry	Pi	board)	to	run	this	software.

Let's	now	see	the	code	for	this	last	section.	It	will	be	again	composed	a	main	Node.js	file	for
the	server,	and	one	HTML	and	JavaScript	files	for	the	interface	itself.

Let's	first	see	the	Node.js	part.	It	starts	by	importing	all	the	required	modules:

//	Modules

var	express	=	require('express');

var	app	=	express();

var	request	=	require('request');

//	Use	public	directory

app.use(express.static('public'));

Then,	you	will	need	to	modify	the	code	to	put	the	IP	addresses	of	the	Raspberry	modules	you
will	be	using	in	the	project	(except	the	camera	modules,	we'll	set	their	IPs	directly	inside	the
interface):

var	motionSensorPi	=	"192.168.0.104:3000";

var	alarmPi	=	"192.168.0.103:3000"

We	also	define	the	pins	of	the	different	components	that	are	connected	to	our	modules:

var	buzzerPin	=	15;

var	ledPin	=	14;

var	motionSensorPin	=	17;

Then,	we	can	define	the	different	routes	of	the	project.	It	starts	with	a	main	route	that	will
serve	the	interface:

app.get('/',	function	(req,	res)	{

		res.sendfile(__dirname	+	'/public/interface.html');

});

We	also	need	to	define	a	route	to	get	the	current	state	of	the	alarm:

app.get('/alarm',	function	(req,	res)	{

		res.json({alarm:	alarm});

});

Then,	we	set	another	route	to	set	the	alarm	off:

app.get('/off',	function	(req,	res)	{

		//	Set	alarm	off

		alarm	=	false;

		//	Set	LED	&	buzzer	off

		request("http://"	+	alarmPi	+	"/digital/"	+	ledPin	+	'/0');

		request("http://"	+	alarmPi	+	"/digital/"	+	buzzerPin	+	'/0');

		//	Answer

		res.json({message:	"Alarm	off"});

});

We	also	start	the	server	itself:

var	server	=	app.listen(3000,	function()	{

				console.log('Listening	on	port	%d',	server.address().port);

});

Finally,	we	create	a	loop	that	will	check	the	status	of	the	motion	sensor	every	two	seconds	and
set	the	alarm	if	motion	is	detected:

setInterval(function()	{

		//	Get	data	from	motion	sensor

		request("http://"	+	motionSensorPi	+	"/digital/"	+	motionSensorPin,

				function	(error,	response,	body)	{

						if	(!error	&&	body.return_value	==	1)	{

								//	Activate	alarm

								alarm	=	true;

								//	Set	LED	on

								request("http://"	+	alarmPi	+	"/digital/"	+	ledPin	+	'/1');

								//	Set	buzzer	on

								request("http://"	+	alarmPi	+	"/digital/"	+	buzzerPin	+	'/1');

						}

		});

},	2000);

Let's	now	see	the	interface	file,	starting	by	the	HTML.	It	starts	by	importing	all	the	required
libraries	and	files	for	the	project:

<head>

		<script	src="https://code.jquery.com/jquery-2.2.4.min.js"></script>

		<link	rel="stylesheet"	

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/bootstrap.min.css">

		<script	

src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.6/js/bootstrap.min.js">

</script>

		<script	src="js/script.js"></script>

		<link	rel="stylesheet"	href="css/style.css">

		<meta	name="viewport"	content="width=device-width,	initial-scale=1">

</head>

Then,	inside	a	<script>	tag	on	the	same	page,	we'll	define	some	JavaScript	functions	to
integrate	the	live	video	stream	into	the	page.	We	start	by	declaring	the	required	variables:

var	imageNr	=	0;	//	Serial	number	of	current	image

var	finished	=	new	Array();	//	References	to	img	objects	which	have	finished	

downloading

var	paused	=	false;

Then,	we	declare	a	function	that	will	create	the	image	layer	on	the	page	that	will	later	display
the	video	server:

function	createImageLayer()	{

		var	img	=	new	Image();

		img.style.position	=	"absolute";

		img.style.zIndex	=	-1;

		img.onload	=	imageOnload;

		img.onclick	=	imageOnclick;

		img.src	=	"http://192.168.0.105:8080/?action=snapshot&n="	+	(++imageNr);

		var	webcam	=	document.getElementById("webcam");

		webcam.insertBefore(img,	webcam.firstChild);

}

We	then	define	a	function	to	load	the	next	image:

function	imageOnload()	{

		this.style.zIndex	=	imageNr;	//	Image	finished,	bring	to	front!

		while	(1	<	finished.length)	{

				var	del	=	finished.shift();	//	Delete	old	image(s)	from	document

				del.parentNode.removeChild(del);

		}

		finished.push(this);

		if	(!paused)	createImageLayer();

}

We	also	add	the	possibility	to	stop	the	stream	in	case	we	click	on	the	picture:

function	imageOnclick()	{	//	Clicking	on	the	image	will	pause	the	stream

		paused	=	!paused;

		if	(!paused)	createImageLayer();

}

We	also	set	the	required	function	on	the	<body>	tag,	to	load	the	stream	when	we	load	the
HTML	page:

<body	onload="createImageLayer();">

For	the	interface	itself,	we	first	define	an	indicator	for	the	current	status	of	the	alarm:

<div	class='row	voffset50'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4	text-center'>

						Alarm	is	OFF

				</div>

				<div	class='col-md-4'></div>

		</div>

In	the	following	section,	we	create	a	button	to	deactivate	the	alarm	if	it	has	been	triggered:

<div	class='row'>

				<div	class='col-md-4'></div>

				<div	class='col-md-4'>

						<button	id='off'	class='btn	btn-block	btn-danger'>Deactivate	

Alarm</button>

				</div>

				<div	class='col-md-4'></div>

		</div>

Finally,	we	create	the	element	that	will	hold	the	live	video	stream:

<div	class='row	voffset50'>

				<div	class='col-md-3'></div>

				<div	class='col-md-7'>

						<div	id="webcam">

								<noscript>

										

								</noscript>

						</div>

				</div>

		</div>

Let's	now	have	a	look	at	the	JavaScript	file.	We	will	first	link	the	button	to	the	correct	action
on	the	server:

$("#off").click(function()	{

				//	Deactivate	alarm

				$.get('/off');

		});

For	the	indicator	of	the	current	state	of	the	alarm,	we	refresh	the	element	of	the	interface
every	two	seconds:

setInterval(function	()	{

				//	Current

				$.get('/alarm',	function(data)	{

						if	(data.alarm	==	true)	{

								$("#alarm-status").text("ON");

						}

						else	{

								$("#alarm-status").text("OFF");

						}

				});

		},	2000);

It's	now	finally	time	to	test	the	last	part	of	the	chapter!	Grab	all	the	code	from	the	GitHub
repository	of	the	book	and	inside	the	folder	where	the	code	files	are	type:

sudo	npm	install	express	request

Then,	start	the	application	with	the	following	command:

sudo	node	system_interface.js

You	can	now	simply	navigate	to	the	IP	address	of	the	computer	or	Pi	on	which	the	application
is	running,	followed	by	port	3000.	For	example:

http://192.168.0.100:3000

You	should	immediately	see	the	simple	interface	that	we	just	created,	as	well	as	the	live	stream
from	security	camera:

You	can	now	try	to	pass	your	hand	again	in	front	of	the	motion	sensor;	you	should	instantly
hear	the	sound	from	the	buzzer	and	see	the	confirmation	on	your	screen	inside	the	interface.
Then,	simply	click	on	the	button	to	deactivate	the	alarm.

If	you	can't	see	the	page,	check	your	firewall:	it	might	be	blocking	the	IP	address	of	your	Pi	or
the	port	on	which	the	application	is	running	(3000).

Summary
In	this	chapter,	we	learned	how	to	build	a	modular	security	system	based	on	Raspberry	Pi
Zero.	There	are	of	course	many	ways	to	improve	this	project.	For	example,	you	can	simply
add	more	modules	to	the	project,	like	having	more	motion	sensors	that	triggers	the	same
alarm.	You	can	also	use	some	simple	software	like	Ngrok	to	access	the	live	video	stream
remotely,	even	if	you	are	outside	of	the	WiFi	network	of	your	home.

In	the	next	chapter,	we	are	going	to	dive	into	the	Internet	of	Things	again,	and	learn	how	to
monitor	and	control	your	home	from	anywhere	in	the	world!

Chapter	8.	Monitor	Your	Home	from	the	Cloud
In	this	chapter,	we	are	going	to	delve	more	into	a	very	exciting	topic	related	to	building	a
smart	home:	the	Internet	of	Things.	Indeed,	today	most	of	the	smart	homes	are	connected	to
the	Internet	and	allows	the	user	the	monitor	her	or	his	home,	even	when	they	are	at	the	other
end	of	the	globe.

In	this	chapter,	we	are	going	to	learn	how	to	build	the	three	projects	that	will	allow	you	to
monitor	your	home	from	a	distance.	First,	we	are	simply	going	to	add	a	sensor	to	our
Raspberry	Pi	Zero	and	monitor	the	measurements	from	a	cloud	dashboard.	After	that,	we	are
going	to	learn	how	to	build	our	own	cloud	dashboard	to	monitor	several	sensors	remotely.
Finally,	we'll	learn	how	to	monitor	the	live	camera	stream	via	a	wireless	security	camera
from	anywhere	in	the	world.	Let's	dive	in!

Hardware	and	software	requirements
As	always,	we	are	going	to	start	with	the	list	of	required	hardware	and	software	components
for	the	project.

For	the	sensors,	we'll	use	a	simple	DHT11	sensor,	along	with	a	4.7k	Ohm	resistor.	We'll	also
use	a	PIR	motion	sensor.

For	the	camera	module,	I	will	use	a	Logitech	C270	webcam.	Here,	any	camera	compatible
with	the	UVC	protocol	would	work,	which	is	the	case	for	most	of	the	cameras	sold	those	days.

Finally,	you	will	need	the	usual	breadboard	and	jumper	wires.

This	is	the	list	of	components	that	you	will	need	for	this	whole	chapter,	not	including	the
Raspberry	Pi	Zero:

PIR	motion	sensor	(https://www.sparkfun.com/products/13285)
DHT11	sensor	with	4.7k	Ohm	resistor	(https://www.adafruit.com/products/386)
PIR	motion	sensor	(https://www.adafruit.com/products/189)
Logitech	C270	USB	camera	(http://www.logitech.com/en-us/product/hd-webcam-c270)
Breadboard	(https://www.adafruit.com/products/64)
Jumper	wires	(https://www.adafruit.com/products/1957)

To	connect	the	camera	to	your	Pi,	I	also	recommend	using	a	USB	hub	for	this	chapter,	as
there	is	only	one	USB	port	on	the	Pi.

On	the	software	side,	you	will	need	to	have	Node.js	installed	on	your	Raspberry	Pi	Zero
board.

https://www.sparkfun.com/products/13285
https://www.adafruit.com/products/386
https://www.adafruit.com/products/189
http://www.logitech.com/en-us/product/hd-webcam-c270
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957

Monitoring	data	from	a	cloud	dashboard
In	this	first	section	of	the	chapter,	we	are	going	to	connect	a	temperature	and	humidity	sensor
to	our	Raspberry	Pi	Zero	board	and	send	those	measurements	to	the	cloud.	Later	in	this
section,	we	are	also	going	to	learn	how	to	visualize	those	measurements	on	a	dashboard.

We	first	need	to	connect	the	DHT11	sensor	to	our	Pi.	First,	place	the	sensor	on	the	board,	and
then	connect	the	4.7k	Ohm	resistor	between	pin	1	and	2	of	the	sensor.	Then,	connect	the	first
pin	of	the	sensor	to	a	3.3V	pin	of	the	Pi,	the	second	pin	to	GPIO4	of	the	Raspberry	Pi,	and
finally	the	last	pin	of	the	sensor	to	a	GND	pin	of	the	Pi.

The	following	image	is	the	final	result:

We	are	now	going	to	see	how	to	configure	our	Raspberry	Pi	Zero	so	it	automatically	sends
data	to	the	cloud.	For	that,	we'll	use	Node.js	to	send	data	to	a	service	called	Dweet.io,	which
will	allow	us	to	easily	store	data	online.

Let's	first	see	the	details	of	the	code.	First,	we	declare	the	modules	that	we	will	use	for	this
section:

var	sensorLib	=	require('node-dht-sensor');

var	request	=	require('request');

After	that,	we	need	to	give	a	name	to	our	thing,	which	is	the	name	we'll	use	to	identify	the

object	storing	the	measurements	on	Dweet.io:

var	thingName	=	'mypizero';

We	will	also	define	a	main	measurement	loop,	in	which	we'll	make	measurements	from	the
sensor	and	send	those	measurements	to	Dweet.io:

var	sensor	=	{

				initialize:	function	()	{

								return	sensorLib.initialize(11,	4);

				},

				read:	function	()	{

								//	Readout

								var	readout	=	sensorLib.read();

								console.log('Temperature:	'	+	readout.temperature.toFixed(2)	+	'C,	'	+

												'humidity:	'	+	readout.humidity.toFixed(2)	+	'%');

								//	Log	data

								logData(readout);

								//	Repeat

								setTimeout(function	()	{

												sensor.read();

								},	2000);

				}

};

After	that,	we	need	to	initialize	the	sensor:

if	(sensor.initialize())	{

				sensor.read();

}	else	{

				console.warn('Failed	to	initialize	sensor');

}

Let's	now	see	the	details	of	the	function	that	is	used	to	log	data	on	the	Dweet.io	server:

function	logData(readout)	{

		//	Build	URL

		var	url	=	"https://dweet.io/dweet/for/"	+	thingName;

		url	+=	"?temperature="	+	readout.temperature.toFixed(2);

		url	+=	"&humidity="	+	readout.humidity.toFixed(2);

		//	Make	request

		request(url,	function	(error,	response,	body)	{

				if	(!error	&&	response.statusCode	==	200)	{

						console.log(body)	//	Show	response

				}

		});

}

We	basically	form	a	request	to	Dweet.io,	passing	the	measurements	inside	the	request	URL

itself.

It's	finally	the	time	to	test	the	project!	Grab	all	the	code	from	the	GitHub	repository	of	the
book	and	place	it	inside	a	folder	on	your	Pi.	Then,	inside	this	folder,	type	the	following
command	with	a	terminal:

npm	install	node-dht-sensor

This	will	install	the	required	sensor	library.	Then,	install	the	request	module	with	the
following	command:

sudo	npm	install	request

Finally,	you	can	start	the	software	by	typing:

sudo	node	sensor_cloud_log.js

You	should	immediately	see	the	answer	from	Dweet.io	as	the	data	is	recorded	to	the	cloud:

You	can	actually	already	visualize	this	data	right	in	your	web	browser,	by	typing	the
following	URL:

This	is	nice,	but	it's	not	great	to	actually	visualize	data	as	it	is	recorded.	That's	why	we	are
now	going	to	use	Freeboard.io,	which	is	a	service	that	will	allow	us	to	create	cloud
dashboards	using	the	Dweet.io	data.

You	can	already	create	an	account	at:

http://freeboard.io/

Inside	Freeboard.io,	first	create	a	new	dashboard:

Then,	add	a	new	datasource	with	the	following	parameters:

http://freeboard.io/

This	will	basically	link	your	dashboard	to	the	'thing'	that	is	storing	your	data	on	Dweet.io.
After	that,	you'll	see	that	the	connection	is	active	inside	the	dashboard	itself:

Now,	create	a	new	pane	inside	your	dashboard	and	also	a	new	Gauge	widget	for	the
temperature,	using	the	following	parameters:

You	should	be	able	to	immediately	see	the	temperature	measurements	being	displayed	in	the
dashboard:

Now,	do	the	same	for	humidity,	using	the	following	parameters:

You	should	now	have	both	gauges	inside	your	dashboard,	giving	you	an	immediate	glance	at
the	temperature	and	humidity	inside	your	home:

You	can	now	add	more	visualizations	of	the	same	data.	For	example,	I	added	two	additional
widgets	of	the	type	sparkline	for	each	measurement,	giving	me	an	instant	view	of	the	recent
history	of	each	variable:

Creating	a	cloud	dashboard	for	your	devices
In	the	second	part	of	this	chapter,	we	are	going	to	add	a	motion	sensor	to	the	project	we	built
in	the	first	part	and	also	learn	how	to	monitor	all	those	sensors	from	a	single	dashboard.	I
will	connect	all	the	sensors	to	a	single	Raspberry	Pi	Zero	board,	but	you	could	of	course	have
them	connected	to	several	boards	that	are	in	different	parts	of	your	smart	home.

The	project	itself	will	be	really	easy	to	assemble.	First,	make	sure	that	you	followed	all	the
instructions	from	the	previous	project.	Then,	simply	connect	the	motion	sensor	to	the	project:
VCC	goes	to	the	3.3V	pin	of	the	Raspberry	Pi,	GND	to	GND,	and	the	SIG	pin	of	the	sensor	is
connected	to	Raspberry	Pi	GPIO18.

The	following	image	is	the	final	result:

Let's	now	see	how	to	configure	the	project.	In	order	to	access	the	measurements	from
anywhere	in	the	world,	we'll	use	the	aREST	framework	again,	which	we	have	already	used	in
several	projects	of	the	book.	However,	here	we'll	use	the	cloud	access	of	aREST	that	will
allow	us	to	access	those	measurements	from	anywhere.

Inside	the	code	itself,	we	first	include	all	the	required	modules:

var	sensorLib	=	require('node-dht-sensor');

var	express	=	require('express');

var	app	=	express();

var	piREST	=	require('pi-arest')(app);

We	then	define	the	ID	and	the	name	of	the	board:

piREST.set_id('73gutg');

piREST.set_name('pi_zero_cloud');

piREST.set_mode('bcm');

Note	that	as	the	ID	is	unique	for	each	Raspberry	Pi	board,	you	need	to	change	it	and	insert
your	own	ID	here.	Then,	inside	the	main	measurement	loop,	we	expose	the	temperature	and
humidity	measurements	to	the	aREST	framework:

piREST.variable('temperature',	readout.temperature.toFixed(2));

piREST.variable('humidity',	readout.humidity.toFixed(2));

We	also	do	the	same	for	a	variable	called	motion	that	depends	on	the	current	state	of	the
motion	sensor:

piREST.digitalRead(18,	function(data)	{

										if	(data	==	1)	{

												piREST.variable('motion',	"Motion	Detected");

										}

										else	{

												piREST.variable('motion',	"No	Motion");

										}

								});

After	that,	we	connect	to	the	aREST	cloud	server:

piREST.connect();

Finally,	we	start	the	server	with	the	following	code:

var	server	=	app.listen(80,	function()	{

				console.log('Listening	on	port	%d',	server.address().port);

});

It's	now	finally	time	to	test	the	project!	Inside	the	same	folder	as	you	put	the	files	of	the	first
project	of	this	chapter,	type:

sudo	npm	install	express	pi-arest

When	the	modules	are	installed,	start	the	project	using:

sudo	node	sensor_cloud_arest.js

This	will	immediately	make	the	project	connect	to	the	aREST.io	cloud	server.	You	can
actually	test	it	by	typing	the	following	URL	inside	your	favorite	web	browser,	of	course	by
changing	the	ID	of	your	device:

In	order	to	display	this	data	inside	a	dashboard,	we	are	going	to	use	the	dashboard	of	the
aREST	framework	that	you	can	access	from:

http://dashboard.arest.io/

From	there,	create	a	new	account	and	then	a	new	dashboard:

Inside	this	dashboard,	add	a	new	element	with	the	following	parameters,	which	will	be	used	to
display	the	temperature	inside	the	dashboard:

Once	it	is	done,	you	can	do	the	same	for	humidity.	You	should	now	have	both	the	data
showing	up	inside	your	dashboard:

Finally,	do	a	similar	operation	with	the	motion	variable:

http://dashboard.arest.io/

You	should	now	have	all	the	variables	measured	by	your	Pi	displayed	inside	the	same
dashboard:

Congratulations,	you	can	now	monitor	your	home	from	anywhere	in	the	world!	Also	note	that
you	can	have	measurements	from	several	Raspberry	Pi	boards	displayed	in	the	same	cloud
dashboard.

Accessing	your	security	camera	from	anywhere
Inside	the	last	section	of	this	chapter,	we	are	going	to	revisit	a	project	we	built	in	the	last
chapter:	the	wireless	security	camera.	Here,	we	are	going	to	learn	how	to	visualize	the	live
video	stream	coming	from	a	camera	from	anywhere	in	the	world.

Assembling	this	project	is	really	simple;	you	simply	need	to	plug	the	USB	camera	to	the
Raspberry	Pi	using	the	USB	hub	as	you	also	need	to	plug	the	Wi-Fi	dongle.	This	is	the	final
result:

Now,	we	are	again	going	to	use	the	MJPEG-streamer	software	to	create	a	live	video	stream
from	the	camera.	If	you	haven't	installed	it	yet,	you	can	check	the	last	chapter	of	the	book	to
learn	how	to	install	it.

Then,	go	inside	the	folder	where	the	software	is	installed,	and	type:

./mjpg_streamer	-i	"./input_uvc.so"	-o	"./output_http.so	-w	./www"

This	will	immediately	start	the	streaming	software	on	your	Raspberry	Pi:

Now,	I	want	you	to	open	another	terminal	window	or	tab,	as	we	will	need	to	run	another
software	while	the	streaming	software	is	running.	We	are	going	to	use	software	called	Ngrok;
this	will	allow	us	to	access	the	video	stream	from	anywhere	in	the	world.

In	the	second	terminal	window,	type:

wget	https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-arm.zip

This	will	download	Ngrok	on	your	computer.	Then,	unzip	the	file	with:

unzip	ngrok-stable-linux-arm.zip

Finally,	start	Ngrok	using	the	following	command:

./ngrok	8080

This	will	basically	create	a	web	URL	that	you	can	use	to	access	your	Pi	on	port	8080,	which	is
precisely	the	port	on	which	the	streaming	software	is	running.	Once	Ngrok	is	running,	you
should	be	able	to	see	the	URL	you	need	inside	a	window:

You	can	now	simply	copy	this	URL	and	type	it	inside	any	web	browser.	You	should	then
immediately	be	able	to	see	the	interface	created	by	the	streaming	software:

Now,	simply	click	on	Stream	to	see	the	live	stream	coming	from	the	board:

Congratulations,	you	can	now	access	your	wireless	security	camera	from	anywhere	in	the
world	and	monitor	your	home	remotely!

Summary
In	this	chapter,	we	learned	how	to	use	the	IoT	to	monitor	our	homes	remotely	from	anywhere
in	the	world.	We	first	learned	how	to	log	data	in	the	cloud	and	visualize	this	data	using	two
different	IoT	platforms.	Then,	at	the	end	of	the	chapter,	we	learned	how	to	visualize	the	live
stream	coming	from	a	video	camera	from	anywhere	in	the	world.

There	are	of	course	many	ways	to	improve	the	projects	that	we	discussed	in	this	chapter.	You
could,	for	example,	create	a	web	server	that	takes	the	live	video	streams	from	several	video
cameras	and	then	use	Ngrok	to	visualize	all	those	live	video	streams	at	once.	This	will
instantly	give	you	a	video	security	system,	that	you	can	use	to	monitor	your	home	from
anywhere	in	the	world!

In	the	next	chapter,	we	are	going	to	continue	diving	into	the	Internet	of	Things,	but	this	time	to
control	devices	inside	your	home.

Chapter	9.	Control	Appliances	from	Anywhere
In	this	chapter,	we	are	going	to	continue	exploring	the	IoT	field,	and	learn	how	we	can	use	it
for	a	smart	home.	In	the	previous	chapter,	we	learned	how	to	make	our	home	send	data	to	the
cloud,	using	the	Raspberry	Pi	Zero	board.	Here,	we'll	actually	do	the	opposite;	we	are	going
to	learn	how	to	control	appliances	in	your	home	from	anywhere	in	the	world.

We	are	going	to	start	with	a	simple	example,	controlling	a	simple	LED	from	anywhere	in	the
world.	Then,	we'll	see	how	to	control	lamps	using	the	same	principles.	After	that,	we	are
going	to	use	IFTTT	again	(as	we	did	in	Chapter	6,	Sending	Notifications	using	Raspberry	Pi
Zero)	to	build	two	exciting	applications:	a	lamp	that	switches	on	when	motion	is	detected	and	a
cloud	thermostat.	Let's	start!

Hardware	and	software	requirements
As	always,	we	are	going	to	start	with	a	list	of	required	hardware	and	software	components	for
the	project.

For	the	devices	to	control,	we'll	use	a	simple	LED	with	a	330	Ohm	resistor	and	then	the
PowerSwitch	Tail	Kit	that	we	already	used	in	several	chapters	of	this	book.

For	the	sensors,	which	we	will	need	at	the	end	of	the	chapter,	we'll	use	a	simple	DHT11
sensor,	along	with	a	4.7k	Ohm	resistor.	We'll	also	use	a	PIR	motion	sensor.

Finally,	you	will	need	the	usual	breadboard	and	jumper	wires.

The	following	is	the	list	of	components	that	you	will	need	for	this	whole	chapter,	not
including	the	Raspberry	Pi	Zero:

LED	(https://www.sparkfun.com/products/9590)
330	Ohm	resistor	(https://www.sparkfun.com/products/11507)
PowerSwitch	Tail	Kit	(https://www.adafruit.com/products/268)
PIR	motion	sensor	(https://www.sparkfun.com/products/13285)
DHT11	sensor	with	4.7k	Ohm	resistor	(https://www.adafruit.com/products/386)
PIR	motion	sensor	(https://www.adafruit.com/products/189)
Breadboard	(https://www.adafruit.com/products/64)
Jumper	wires	(https://www.adafruit.com/products/1957)

On	the	software	side,	you	will	just	need	to	have	Node.js	installed	on	your	Raspberry	Pi	Zero
board.

https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/11507
https://www.adafruit.com/products/268
https://www.sparkfun.com/products/13285
https://www.adafruit.com/products/386
https://www.adafruit.com/products/189
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957

Control	a	LED	from	anywhere	in	the	world
For	the	first	project	of	this	chapter,	we	are	simply	going	to	learn	how	to	control	a	simple	LED
from	a	cloud	dashboard.

For	this	project,	you	will	need	a	LED	and	a	330	Ohm	resistor.	For	the	connection	of	the
components	to	the	Pi,	you	can	refer	to	Chapter	4,	Control	Appliances	from	the	Raspberry	Pi
Zero	of	this	book,	in	which	you	will	learn	how	to	connect	those	components.	You	need	to
connect	the	LED	to	GPIO14	of	the	Pi.

This	is	the	final	result:

Let's	now	see	how	to	configure	the	board,	so	we	can	control	it	from	the	cloud.	To	do	so,	we'll
use	the	aREST	framework	that	we	have	already	used	several	times	in	this	book.	The	following
is	the	complete	code	for	this	part:

//	Required	modules

var	express	=	require('express');

var	app	=	express();

var	piREST	=	require('pi-arest')(app);

//	Thing	name

piREST.set_id('98t52d');

piREST.set_name('pi_zero_cloud');

piREST.set_mode('bcm');

//	Connect	to	cloud.aREST.io

piREST.connect();

//	Start	server

var	server	=	app.listen(80,	function()	{

				console.log('Listening	on	port	%d',	server.address().port);

});

Of	course,	make	sure	that	you	modify	the	ID	of	the	board	inside	the	code,	as	it	will	identify
your	board	on	the	aREST	cloud	server.

Then,	either	put	this	code	inside	a	file	or	get	the	whole	code	from	the	GitHub	repository	of
the	book.

Then,	inside	a	terminal,	type:

sudo	npm	install	pi-arest	express

This	will	install	the	required	modules	for	this	section.	Then,	start	the	software	using:

sudo	node	arest_control.js

You	can	then	go	to	the	following	website	and	register:

http://dashboard.arest.io/

We'll	basically	use	this	site	to	build	a	cloud	dashboard	to	control	our	LED.	Once	you	create	an
account,	create	a	new	dashboard:

Inside	this	dashboard,	create	a	new	element	by	giving	the	ID	of	your	Raspberry	Pi	that	you	set
in	the	code	earlier.	I	chose	a	'Push'	button	as	the	type	of	the	element	and	14	as	the	pin	to
control.

Once	you	have	created	the	element,	this	is	what	you	should	be	able	to	see	on	the	dashboard:

http://dashboard.arest.io/

You	can	now	test	the	push	button	of	the	dashboard:	when	you	keep	the	button	pressed	ON,	you
should	immediately	be	able	to	see	the	LED	turning	ON	on	your	Pi.	Note	that	this	is	purely
done	in	the	cloud,	so	you	can	now	control	your	LED	from	anywhere	in	the	world!

Creating	several	lamps	from	the	cloud
In	the	second	project	of	this	chapter,	we	are	going	to	apply	what	we	learned	earlier	and
control	several	lamps	from	the	cloud	using	a	single	dashboard.

To	actually	assemble	the	project,	I	recommend	checking	Chapter	4,	Control	Appliances	from
the	Raspberry	Pi	Zero	where	we	saw	how	to	connect	the	PowerSwitch	Tail	Kit	to	the
Raspberry	Pi	Zero.	You	need	to	connect	the	PowerSwitch	to	GPIO14	of	the	Raspberry	Pi
board.

This	is	how	one	module	looks	like:

Now,	configure	each	board	with	the	exact	same	code	as	in	the	previous	section	and	give	a
different	ID	to	each	board.	I	also	recommend	changing	the	name	of	the	boards	inside	the
code;	for	example,	to	know	where	you	placed	them	in	your	home	(bedroom,	living	room,	and
so	on).

Then,	go	back	to	the	website	where	we	created	a	cloud	dashboard	and	create	a	new	dashboard:

In	there,	create	a	new	On/Off	element	for	each	lamp	you	want	to	control,	on	pin	14:

This	is	how	your	dashboard	should	look	like	at	the	end:

You	can	now	try	it:	whenever	you	click	on	one	of	the	On	buttons,	the	lamp	connected	to	this
Raspberry	Pi	should	immediately	turn	on.

Make	a	motion-activated	lamp	using	IFTTT
In	this	section,	we	are	now	going	to	use	what	we	learned	in	this	chapter	and	combine	it	with
what	we	already	learned	in	the	previous	chapters	about	the	web	service	IFTTT.	We	are	going
to	use	this	knowledge	to	build	a	lamp	that	is	automatically	activated	when	motion	is	detected
by	a	motion	sensor.

For	this	section,	you	will	need	two	Raspberry	Pi	modules:	one	with	a	motion	sensor	and	one
connected	to	a	lamp	via	the	PowerSwitch	tail.	To	learn	how	to	assemble	these	modules,	please
refer	to	the	previous	chapters	of	the	book.

This	is	the	assembled	Raspberry	Pi	Zero	with	a	PIR	motion	sensor	on	GPIO18:

We	are	first	going	to	create	the	IFTTT	recipes	so	you	and	the	two	boards	can	communicate.
First,	make	sure	that	the	Maker	channel	is	activated	on	your	IFTTT	account:

Then,	create	a	new	recipe,	with	the	Maker	channel	as	the	trigger:

For	the	event,	enter	motion_detected:

Choose	the	Maker	channel	as	the	action	channel:

For	the	action	itself,	choose	Make	a	web	request:

We	want	to	activate	the	lamp	if	motion	is	detected,	enter	the	following	URL	as	the	action	when
this	recipe	is	activated:

You	can	now	save	this	recipe.	Of	course,	we	also	want	to	switch	the	light	off	again	when	no
motion	is	detected,	so	we	need	to	create	another	recipe	with	this	event:

This	action	is	the	same	as	the	previous	one,	but	with	a	0	at	the	end,	meaning	we	are	switching
the	light	off:

At	the	end,	you	should	have	both	recipes	active	inside	the	dashboard:

Let's	now	see	how	to	configure	the	boards.	For	the	board	connected	to	the	PowerSwitch	tail,
you	can	use	the	same	code	that	we	used	in	the	previous	sections	of	this	chapter.

For	the	motion	sensor	board,	the	code	starts	by	including	the	required	modules:

var	request	=	require('request');

var	gpio	=	require('rpi-gpio');

Then,	we	define	the	IFTTT,	as	well	as	the	name	of	the	two	events	we	used	in	recipes:

var	key	=	"key"

var	eventOnName	=	'motion_detected';

var	eventOffName	=	'no_motion';

After	that,	we	define	the	pin	on	which	the	sensor	is	connected:

var	motionSensorPin	=	18;

var	motionSensorState	=	false;

We	create	a	main	measurement	loop	in	which	we	check	the	status	of	the	sensor	every	second:

setInterval(function()	{

		//	Check	sensor

		gpio.setup(motionSensorPin,	gpio.DIR_IN,	checkSensor);

},	1000);

If	the	state	of	the	sensor	changes,	we	send	the	right	command	to	IFTTT:

function	checkSensor()	{

		gpio.read(motionSensorPin,	function(err,	value)	{

						//	If	motion	is	detected

						if	(value	==	true	&&	motionSensorState	==	false)	{

								//	Send	event

								alertIFTTT(eventOnName);

						}

						//	No	motion	anymore

						if	(value	==	false	&&	motionSensorState	==	true)	{

								//	Send	event

								alertIFTTT(eventOffName);

						}

						//	Set	status

						motionSensorState	=	value;

		});

}

Here	is	the	detail	of	the	function	that	sends	the	alert	to	IFTTT:

function	alertIFTTT(eventName)	{

		//	Send	alert	to	IFTTT

		console.log("Sending	alert	to	IFTTT");

		var	url	=	'https://maker.ifttt.com/trigger/'	+	eventName	+	'/with/key/'	+	key;

		request(url,	function	(error,	response,	body)	{

				if	(!error	&&	response.statusCode	==	200)	{

						console.log("Alert	sent	to	IFTTT");

				}

		});

}

You	can	now	grab	all	the	code	from	the	GitHub	repository	of	the	book	and	extract	it	in	a
folder	on	the	Pi	with	the	motion	sensor.	Then,	inside	a	terminal,	install	the	required	modules
with:

sudo	npm	install	request	rpi-gpio

Once	that's	done,	start	the	software	with:

sudo	node	motion_trigger.js

Also	make	sure	that	the	aREST	sketch	is	still	running	the	other	board.	Then,	simply	pass	your
hand	in	front	of	the	sensor;	it	should	immediately	light	up	the	lamp	that	is	connected	to	the
other	Raspberry	Pi	board.

Build	an	automated	cloud	thermostat
In	the	last	section	of	this	chapter,	we	are	going	to	apply	what	we	learned	in	the	previous
section,	but	this	time	to	build	a	cloud	thermostat	that	will	work	using	IFTTT.

Apart	from	the	Raspberry	Pi	Zero	that	will	control	an	electrical	heater	via	the	PowerSwitch
Tail,	you	will	need	another	Raspberry	Pi	Zero	with	a	DHT11	sensor	that	we	have	already	used
several	times	in	this	book.	In	order	to	assemble	this	module,	I	recommend	checking	for
example	the	second	chapter	of	this	book.

Once	you	have	your	two	modules	assembled,	go	again	to	IFTTT	and	create	a	new	recipe,
using	the	Maker	channel	for	the	trigger	and	for	the	action	channels.

For	the	trigger,	enter	the	following	event:

Of	course,	if	the	temperature	is	too	low,	it	means	that	we	want	to	activate	the	heater.	We
therefore	need	to	send	this	command	to	the	board	that	controls	the	heater:

Once	this	recipe	is	created,	create	another	for	the	temperature_high	event:

When	the	temperature	is	too	high,	we	automatically	switch	off	the	heater:

At	the	end,	you	should	have	two	new	recipes	in	your	dashboard:

For	the	board	that	controls	the	electrical	heater,	just	use	the	same	software	as	before.

For	the	board	with	the	DHT11	sensor,	we	first	need	to	include	the	required	modules:

var	request	=	require('request');

var	sensorLib	=	require('node-dht-sensor');

Then,	we	define	the	key	for	the	Maker	channel	and	the	name	of	the	two	events:

var	key	=	"key";

var	eventNameLow	=	'temperature_low';

var	eventNameHigh	=	'temperature_high';

We	also	declare	on	which	pin	the	DHT11	sensor	is	connected	to:

var	sensorPin	=	18;

Then,	we	set	a	target	(the	temperature	we	want	to	reach)	and	a	tolerance:

var	target	=	25;

var	tolerance	=	1;

After	that,	we	create	the	main	measurement	loop,	in	which	we	check	for	the	right	event	to	send
to	IFTTT:

var	sensor	=	{

				initialize:	function	()	{

								return	sensorLib.initialize(11,	sensorPin);

				},

				read:	function	()	{

								//	Read

								var	readout	=	sensorLib.read();

								temperature	=	readout.temperature.toFixed(2);

								console.log('Current	temperature:	'	+	temperature);

										if	(temperature	<	target	-	tolerance)	{

												//	Send	event

												alertIFTTT(temperature_low);

										}

										if	(temperature	>	target	+	tolerance)	{

												//	Send	event

												alertIFTTT(temperature_high);

										}

								//	Repeat

								setTimeout(function	()	{

												sensor.read();

								},	2000);

				}

};

We	also	end	the	sketch	by	initializing	the	sensor:

//	Init	sensor

if	(sensor.initialize())	{

				sensor.read();

}	else	{

				console.warn('Failed	to	initialize	sensor');

}

Here	are	the	details	of	the	function	that	we	use	to	make	a	request:

//	Make	request

function	alertIFTTT(eventName)	{

		//	Send	alert	to	IFTTT

		console.log("Sending	alert	to	IFTTT");

		var	url	=	'https://maker.ifttt.com/trigger/'	+	eventName	+	'/with/key/'	+	key;

		request(url,	function	(error,	response,	body)	{

				if	(!error	&&	response.statusCode	==	200)	{

						console.log("Alert	sent	to	IFTTT");

				}

		});

}

It's	now	time	to	test	the	thermostat	project!	Simply	get	all	the	code	from	the	GitHub	repository
of	the	project	and	then	type:

sudo	npm	install	node-dht-sensor	request

Once	that's	done,	start	the	software	with:

sudo	node	temperature_trigger.js

You	should	now	be	able	to	see	that	the	Raspberry	Pi,	with	the	electrical	heater	control,	will
automatically	react	based	on	the	temperature,	even	if	both	boards	are	not	in	the	same	Wi-Fi
network!

Summary
In	this	chapter,	we	continued	to	explore	the	field	of	the	Internet	of	Things	and	we	used	it	to
control	our	smart	home	remotely.	We	first	saw	how	to	control	devices	remotely,	like	simple
LEDs	and	lamps.	Then,	we	learned	how	to	combine	what	we	learned	with	IFTTT	to	create
more	complex	projects,	for	example	making	a	cloud	thermostat.

You	can	of	course	improve	what	you	learned	in	this	chapter.	For	example,	you	can	combine
what	you	learned	in	this	chapter	and	the	previous	chapter	to	create	cloud	dashboards	from
where	you	can	both	monitor	your	devices	and	control	other	devices	remotely.

In	the	next	chapter,	we	are	going	to	use	everything	that	we	learned	in	this	book	to	create	a
complete	home	automation	system	based	on	the	Raspberry	Pi	Zero.

Chapter	10.	Building	a	Home	Automation
System	with	Raspberry	Pi	Zero	Boards
As	this	is	the	final	chapter	of	this	book,	we	are	going	to	integrate	everything	that	we	learned
in	the	book	to	build	a	complete	home	automation	system	based	on	the	Raspberry	Pi	Zero.	We
are	first	going	to	see	how	to	assemble	and	configure	several	modules	based	on	the	Raspberry
Pi	Zero	boards,	and	then	learn	how	to	create	a	server	that	will	communicate	with	the	boards.
Note	that	this	server	will	be	able	to	run	on	your	own	computer,	and	also	on	a	Raspberry	Pi
Zero	board.

We	will	then	learn	how	to	define	behaviors	inside	the	code,	for	example	to	send	you	an	alert	if
motion	is	detected.	After	that,	we	are	going	to	learn	how	to	create	advanced	behavior	inside
the	server,	and	finally,	we'll	see	how	to	access	your	home	automation	system	from	anywhere
in	the	world.	Let's	start!

Hardware	and	software	requirements
As	always,	we	are	going	to	start	with	a	list	of	required	hardware	and	software	components	for
the	project.	We	are	going	to	use	four	modules	in	total:	a	sensor	module,	an	appliance	control
module,	a	motion	sensor	module,	and	a	camera	module.

Of	course,	you	will	need	one	Raspberry	Pi	Zero	board	for	each	module	you	use,	along	with
supporting	components,	such	as	SD	cards	and	power	supplies.	If	you	plan	to	run	the	central
interface	on	a	Raspberry	Pi	Zero	as	well,	you	will	need	an	additional	Pi	Zero	board.

For	the	sensors	module,	we'll	use	a	simple	DHT11	sensor,	along	with	a	4.7k	Ohm	resistor.

For	the	appliance	control	module,	we'll	use	the	PowerSwitch	Tail	Kit	that	we	already	used	in
several	chapters	of	this	book.

For	the	motion	sensor	module,	we'll	use	a	simple	PIR	motion	sensor.

For	the	camera	module,	we	are	going	to	use	the	C270	HD	camera	from	Logitech.	However,
you	can	use	any	USB	camera	here.

You	will	also	need	the	usual	breadboard	and	jumper	wires.

This	is	the	list	of	components	that	you	will	need	for	this	whole	chapter,	not	including	the
Raspberry	Pi	Zero:

LED	(https://www.sparkfun.com/products/9590)
330	Ohm	resistor	(https://www.sparkfun.com/products/11507)
PowerSwitch	Tail	Kit	(https://www.adafruit.com/products/268)
PIR	motion	sensor	(https://www.sparkfun.com/products/13285)
DHT11	sensor	with	4.7k	Ohm	resistor	(https://www.adafruit.com/products/386)
PIR	motion	sensor	(https://www.adafruit.com/products/189)
Logitech	C270	camera	(http://www.logitech.com/en-us/product/hd-webcam-c270)
Breadboard	(https://www.adafruit.com/products/64)
Jumper	wires	(https://www.adafruit.com/products/1957)

On	the	software	side,	you	just	need	to	have	Node.js	installed	on	your	Raspberry	Pi	Zero
boards.

https://www.sparkfun.com/products/9590
https://www.sparkfun.com/products/11507
https://www.adafruit.com/products/268
https://www.sparkfun.com/products/13285
https://www.adafruit.com/products/386
https://www.adafruit.com/products/189
http://www.logitech.com/en-us/product/hd-webcam-c270
https://www.adafruit.com/products/64
https://www.adafruit.com/products/1957

Building	all	the	modules
In	the	first	part	of	this	chapter,	we	are	going	to	see	how	to	build	the	modules	that	we	will	use
in	our	home	automation	system.	As	we	have	already	seen	how	to	build	all	these	modules	in
the	book,	I	will	simply	point	to	the	correct	chapters	to	build	all	the	modules.

The	first	module	you	need	to	build	is	the	sensor	module,	which	is	with	the	DHT11	sensor.	To
learn	how	to	build	this	module,	please	refer	to	Chapter	2,	Measure	Data	Using	Your	Raspberry
Pi	Zero	Board,	of	the	book.

This	is	what	you	should	get	at	the	end:

For	the	module	that	will	be	used	to	control	appliances	in	your	home,	such	as	lamps,	please
refer	to	Chapter	3,	Building	a	Smart	Home	Thermostat,	to	know	how	to	assemble	the	module.

This	is	what	you	should	get	at	the	end:

For	the	motion	sensor	module,	which	is	basically	composed	of	a	PIR	motion	sensor
connected	to	the	Pi,	you	can	refer	to	Chapter	6,	Sending	Notifications	using	Raspberry	Pi	Zero.
You	will	get	the	following	outcome	at	the	end:

Finally,	for	the	camera	module,	simply	connect	the	USB	camera	to	the	Raspberry	Pi	zero
board	using	a	USB	hub.	This	is	the	result:

Once	you	have	all	those	modules,	connect	them	to	a	source	of	power	and	make	sure	that	the
latest	version	of	Raspbian	is	installed	on	them	(along	with	Node.js),	and	also	make	sure	they
are	accessible	though	Wi-Fi.

Configuring	the	modules
We	are	now	going	to	configure	each	of	the	modules	of	our	home	automation	system,	so	we
can	access	them	remotely	later.	The	goal	here	is	to	configure	the	modules	to	respond	to
commands	coming	from	our	central	server	and	to	not	act	as	independent	units,	as	shown	in
earlier	chapters.

Let's	start	with	the	sensors	module;	this	is	the	complete	code	for	this	module:

//	Modules

var	express	=	require('express');

var	sensorLib	=	require('node-dht-sensor');

//	Express	app

var	app	=	express();

//	aREST

var	piREST	=	require('pi-arest')(app);

piREST.set_id('4g0d7f');

piREST.set_name('sensor_module');

piREST.set_mode('bcm');

//	Start	server

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	motion	sensor	started!');

});

//	Sensor	loop

var	sensor	=	{

				initialize:	function	()	{

								return	sensorLib.initialize(11,	4);

				},

				read:	function	()	{

								var	readout	=	sensorLib.read();

								console.log('Temperature:	'	+	readout.temperature.toFixed(2)	+	'C,	'	+

												'humidity:	'	+	readout.humidity.toFixed(2)	+	'%');

								setTimeout(function	()	{

												sensor.read();

								},	2000);

				}

};

if	(sensor.initialize())	{

				sensor.read();

}	else	{

				console.warn('Failed	to	initialize	sensor');

}

As	you	can	see,	we	are	once	again	using	the	aREST	framework	to	get	access	to	our	Raspberry
Pi	Zero	data.	Here,	we	expose	two	variables	to	the	API	that	contain	the	measurements	done	by
the	sensor.

You	can	now	grab	this	code	from	the	GitHub	repository	of	the	book	or	simply	grab	the	code
and	paste	it	inside	a	file.

Then,	using	a	terminal	from	the	folder	where	the	code	files	are,	type	the	following:

npm	install	node-dht-sensor

Once	this	module	is	installed,	install	the	rest	of	the	modules	with	the	following	command:

sudo	npm	install	pi-arest

Now,	start	the	project	with	this	command:

sudo	node	sensor_module.js

Note	that	you	will	need	the	IP	addresses	of	all	the	Raspberry	Pi	later,	so	it	is	a	good	time	to
actually	check	the	IP	address	of	each	Raspberry	Pi	board	you	are	configuring.	To	get	the	IP
address	of	a	Pi,	simply	type	the	following	command	inside	a	terminal:

ifconfig

Let's	now	configure	the	module	that	will	be	used	to	control	the	appliances	remotely.	Here	is
the	complete	code	for	this	part:

//	Modules

var	express	=	require('express');

//	Express	app

var	app	=	express();

//	Use	public	directory

app.use(express.static('public'));

//	aREST

var	piREST	=	require('pi-arest')(app);

piREST.set_id('34f5eQ');

piREST.set_name('lamp_module');

piREST.set_mode('bcm');

//	Start	server

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	lamp	module	started!');

});

You	basically	just	need	to	change	the	name	of	the	module	inside	the	code	if	you	wish.	Then,
grab	the	code	from	the	GitHub	repository	of	the	book	and	type	the	following	command:

sudo	npm	install	pi-arest	express

After	that,	start	the	code	with	this	command:

sudo	node	lamp_module.js

We	are	now	going	to	see	how	to	configure	the	module	connected	to	the	PIR	motion	sensor.
For	this,	here	is	the	complete	code:

//	Modules

var	express	=	require('express');

//	Express	app

var	app	=	express();

//	aREST

var	piREST	=	require('pi-arest')(app);

piREST.set_id('47g40f');

piREST.set_name('motion_module');

piREST.set_mode('bcm');

//	Start	server

app.listen(3000,	function	()	{

		console.log('Raspberry	Pi	Zero	motion	sensor	started!');

});

Again,	grab	the	code	from	the	GitHub	repository	of	the	book	and	type	this	command:

sudo	npm	install	pi-arest	express

Then,	start	the	software	with	this	command:

sudo	node	motion_module.js

Finally,	let's	see	how	to	configure	the	module	with	the	USB	camera.	You	first	need	to	clone
the	following	GitHub	repository	using	a	terminal:

git	clone	https://github.com/jacksonliam/mjpg-streamer

Then,	install	the	required	packages:

sudo	apt-get	install	cmake	libjpeg62-dev

Once	that's	done,	navigate	to	the	mjpg-streamer	software	folder	and	type	this:

sudo	make	clean	all

When	the	compilation	of	the	software	is	done,	type	the	following:

export	LD_LIBRARY_PATH=.

Finally,	start	the	software	with	the	following	command:

./mjpg_streamer	-i	"./input_uvc.so"	-o	"./output_http.so	-w	./www"

You	should	be	able	to	see	a	lot	of	text	output	inside	the	terminal,	meaning	that	the	streaming
software	is	active.	Make	sure	to	not	stop	this	software,	as	we'll	need	to	access	the	stream
remotely	from	our	central	server.

Integrating	the	modules	into	a	single	interface
Now	that	our	modules	are	up	and	running,	we	are	going	to	learn	how	to	integrate	everything
into	a	single	interface,	so	you	will	be	able	to	run	it	on	your	computer	or	on	another
Raspberry	Pi.	You	will	then	be	able	to	control	and	monitor	your	smart	home	from	a	single
interface.

We	will	first	configure	the	server	that	will	allow	us	to	connect	all	the	modules	that	we
configured	earlier.	Then,	we'll	build	an	interface	on	top	of	that.

The	code	for	the	server	starts	by	importing	the	required	modules:

//	Modules

var	express	=	require('express');

var	request	=	require('request');

//	Express	app

var	app	=	express();

After	that,	this	is	where	we'll	define	the	IP	addresses	of	the	different	modules	in	our	home
automation	system:

//	Raspberry	Pi	boards	IP	addresses

var	motionSensorPi	=	"192.168.0.101:3000";

var	sensorPi	=	"192.168.0.102:3000"

var	lampPi	=	"192.168.0.103:3000"

We	also	need	to	define	the	pins	on	which	the	lamp	and	the	motion	sensor	are	connected:

//	Pins

var	lampPin	=	12;

var	motionSensorPin	=	17;

Of	course,	if	you	connect	the	components	to	different	pins,	you	will	need	to	change	that	here.

Then,	we	can	declare	the	folder	in	which	we	will	store	the	files	for	the	interface,	as	well	as	the
main	route	of	the	application	that	will	serve	the	interface:

//	Use	public	directory

app.use(express.static('public'));

//	Routes

app.get('/',	function	(req,	res)	{

		res.sendfile(__dirname	+	'/public/interface.html');

});

We	then	create	a	route	that	will	send	us	back	the	state	of	the	motion	sensor,	by	calling	the
required	command	on	the	motion	sensor	module:

app.get('/motion',	function	(req,	res)	{

		request("http://"	+	motionSensorPi	+	"/digital/"	+	motionSensorPin,

				function	(error,	response,	body)	{

						//	Answer

						answer	=	{

								status:	body.return_value

						};

						res.json(answer);

		});

});

We	also	define	a	route	that	will	give	us	the	temperature	measured	by	the	DHT11	sensor,	by
calling	the	corresponding	Raspberry	Pi:

app.get('/temperature',	function	(req,	res)	{

		request("http://"	+	sensorPi	+	"/temperature",

				function	(error,	response,	body)	{

						//	Answer

						answer	=	{

								temperature:	body.temperature

						};

						res.json(answer);

		});

});

We	do	the	same	for	humidity:

app.get('/humidity',	function	(req,	res)	{

		request("http://"	+	sensorPi	+	"/humidity",

				function	(error,	response,	body)	{

						//	Answer

						answer	=	{

								humidity:	body.humidity

						};

						res.json(answer);

		});

});

Finally,	we	define	a	route	to	turn	on	the	module	that	control	appliances:

app.get('/on',	function	(req,	res)	{

		request("http://"	+	lampPi	+	"/digital/"	+	lampPin	+	'/1');

		//	Answer

		answer	=	{

				status:	1

		};

		res.json(answer);

});

We	also	define	a	similar	route	to	turn	the	appliance	off	again:

app.get('/off',	function	(req,	res)	{

		request("http://"	+	lampPi	+	"/digital/"	+	lampPin	+	'/0');

		//	Answer

		answer	=	{

				status:	0

		};

		res.json(answer);

});

We	start	the	server	at	the	end	of	the	file	with:

//	Start	server

app.listen(3000,	function	()	{

		console.log('Home	automation	system	started');

});

We	now	have	a	server	that	we	can	use	to	control	&	monitor	your	home	using	all	the	modules
that	we	deployed.	However,	we	will	now	create	an	interface	on	top	of	this	server	that	will
allow	us	to	easily	monitor	&	control	the	whole	system.

First,	let's	see	build	the	graphical	interface	itself.	It	starts	by	creating	a	set	of	buttons	to	switch
the	appliance	on	or	off:

<div	class='row'>

				<div	class='col-md-1'></div>

				<div	class='col-md-2'>Lamp</div>

				<div	class='col-md-3'>

						<button	id='on'	class='btn	btn-block	btn-primary'>On</button>

				</div>

				<div	class='col-md-3'>

						<button	id='off'	class='btn	btn-block	btn-warning'>Off</button>

				</div>

		</div>

After	that,	we	create	two	indicators	for	the	sensor	module:

		<div	class='row'>

				<div	class='col-md-1'></div>

				<div	class='col-md-2'>Temperature</div>

				<div	class='col-md-3'	id='temperature-status'></div>

				<div	class='col-md-2'>Humidity</div>

				<div	class='col-md-3'	id='humidity-status'></div>

		</div>

We	also	create	an	indicator	for	the	motion	sensor:

		<div	class='row'>

				<div	class='col-md-1'></div>

				<div	class='col-md-2'>Motion	Sensor</div>

				<div	class='col-md-3'	id='motion-status'></div>

		</div>

Finally,	we	create	a	field	for	the	stream	from	the	camera:

		<div	class='row	voffset50'>

				<div	class='col-md-1'></div>

				<div	class='col-md-2'>Camera</div>

				<div	class='col-md-7'>

						<div	id="webcam">

								<noscript>

										

								</noscript>

						</div>

				</div>

		</div>

Let's	now	see	the	script.js	file	that	will	basically	make	the	link	between	the	interface	and	the
server.	It	starts	by	linking	the	buttons	to	the	correct	routes	on	the	server:

$("#on").click(function()	{

				//	Set	lamp	ON

				$.get('/on');

		});

		$("#off").click(function()	{

				//	Set	lamp	OFF

				$.get('/off');

		});

Then,	we	create	a	loop	that	will	regularly	update	data	coming	from	the	motion	sensor:

		//	Indicators

		setInterval(function	()	{

				//	Current

				$.get('/motion',	function(data)	{

						if	(data.status	==	true)	{

								$("#motion-status").text("No	Motion");

						}

						else	{

								$("#motion-status").text("Motion	Detected");

						}

				});

		},	2000);

We	also	create	another	loop	to	update	the	temperature:

		setInterval(function	()	{

		//	Temperature

				$.get('/temperature',	function(data)	{

						$("#temperature-status").text(data.temperature);

			

				});

		},	2000);

And	finally,	we	do	the	same	for	humidity:

		setInterval(function	()	{

				//	Temperature

				$.get('/humidity',	function(data)	{

						$("#humidity-status").text(data.humidity);

			

				});

	},	2000);

Note	that	I	also	added	some	additional	piece	of	required	code	inside	the	interface	and	as	I	only
highlighted	the	most	important	parts	here,	I	recommend	getting	the	whole	code	from	the
GitHub	repository	of	the	book.

It's	finally	time	to	test	the	interface!	Put	all	the	code	inside	a	folder	on	your	computer	or	on
another	Raspberry	Pi	and	type	the	following	command:

sudo	npm	install	request	express

Once	all	the	modules	are	installed,	start	the	server	with	this	command:

sudo	node	interface.js

Now,	simply	navigate	to	the	IP	address	of	your	computer	(via	localhost)	or	to	Pi	on	which

you	started	this	server.	For	example:

http://localhost:3000/

This	is	what	you	should	see:

You	can	now	try	the	interface;	for	example,	using	the	buttons	to	control	an	appliance	or	by
passing	your	hand	in	front	of	the	motion	sensor	you	should	immediately	see	the	result	inside
the	interface.	You	now	have	a	central	interface	for	your	home	automation	system	that	you	can
use	to	control	your	smart	home!

Automating	your	home
Now	that	we	have	our	central	server	running	and	you	can	use	it	to	control	&	monitor	your
home	from	a	single	interface,	we	can	actually	define	some	behaviors	inside	the	server	in
order	to	create	some	automation	within	your	smart	home.

As	an	example,	we	are	going	to	automatically	switch	on	the	lamp	when	motion	is	detected	by
the	sensor.	You	can	imagine	the	scenario	in	which	the	appliance	control	module	is	connected
to	a	lamp	in	your	hallway	and	that	you	want	it	to	automatically	switch	on	whenever	a
movement	is	detected	by	the	motion	sensor.

For	that,	here	is	the	code	you	need	to	add	into	the	server	code:

setInterval(function()	{

		//	Check	sensor

		request("http://"	+	motionSensorPi	+	"/digital/"	+	motionSensorPin,

				function	(error,	response,	body)	{

						//	If	motion	was	detected

						if	(body.return_value	==	true)	{

								request("http://"	+	lampPi	+	"/digital/"	+	lampPin	+	'/1');

						}

						else	if	{

								request("http://"	+	lampPi	+	"/digital/"	+	lampPin	+	'/0');

						}

		});

},	1000);

Let's	now	see	what	this	code	does	exactly.	We	basically	check	the	state	of	the	motion	sensor
every	second	and	then	control	the	lamp	accordingly.	Note	that	every	request	is	taking	the
correct	IP	address	of	the	Raspberry	Pi	board	to	control.

You	can	now	use	the	same	approach	to	build	more	complex	behaviors	into	your	home,	for
example	by	linking	the	measurements	made	by	the	sensor	module	to	an	appliance	or	an
electrical	heater,	which	we	already	saw	earlier	in	the	book.

Accessing	your	home	automation	system	from
anywhere
In	the	last	section	of	this	chapter,	we	are	going	to	learn	how	you	can	access	the	interface	of
your	home	automation	system	from	anywhere	in	the	world.	This	way,	you	will	be	able	to
monitor	and	even	to	control	your	home	when	you	are	not	around.

For	that,	we	are	going	to	use	a	tool	called	Ngrok,	which	will	allow	us	to	access	the	server
running	on	our	Raspberry	Pi	or	computer	from	anywhere	in	the	world.

If	like	me	you	deployed	the	server	on	another	Raspberry	Pi	(as	my	computer	is	switched	off
when	I	am	away	from	home),	type	the	following	command:

wget	https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-arm.zip

This	will	download	Ngrok	on	your	computer.	Then,	unzip	the	file	with	this	command:

unzip	ngrok-stable-linux-arm.zip

Finally,	start	Ngrok	using	the	following	command:

./ngrok	3000

This	will	basically	create	a	web	tunnel	to	the	web	server	that	is	running	on	port	3000.	Inside
the	window	that	appeared	on	your	Raspberry	Pi,	you	should	now	be	able	to	see	the	URL	that
you	can	use	to	access	your	Raspberry	Pi	from	outside	of	your	Wi-Fi	network.

You	can	now	visit	this	URL	and	you	should	be	able	to	see	the	exact	same	interface	as	before:

You	can	use	this	URL	to	access	your	home	automation	interface	from	anywhere	in	the	world!

Summary
In	this	final	chapter,	we	used	everything	we	learned	in	the	book	to	build	a	complete	home
automation	system	based	on	the	Raspberry	Pi.	We	used	several	of	those	boards	and	connected
each	one	of	it	to	a	different	type	of	components	and	then	interfaced	all	those	boards	with	a
common	interface	running	on	your	computer	or	on	another	Pi.

We	also	learned	how	to	create	more	complex	behaviors	and	use	this	central	server	to	make
the	Raspberry	Pi	modules	communicate	with	each	other.	Finally,	we	also	saw	how	to	access
your	home	automation	system	from	anywhere	in	the	world.

You	now	have	all	the	tools	to	transform	your	home	into	a	smart	home	using	the	Raspberry	Pi
Zero	board.	I	hope	that	this	book	allowed	you	to	understand	how	to	use	this	small,	cheap	but
incredibly	powerful	board	to	automate	your	home.	I	now	invite	you	to	experiment	with	all	the
projects	we	saw	in	the	book	and	I	can't	wait	to	see	what	you	are	going	to	do	with	it	in	your
own	home!

Index
A

Adafruit
references,	for	products	/	Hardware	and	software	requirements

alarm	module
creating	/	Making	a	simple	alarm	module

aREST	framework	/	Building	a	motion	sensor	with	the	Pi	Zero
reference	link	/	Creating	a	cloud	dashboard	for	your	devices

C
cloud	dashboard

creating	/	Creating	a	cloud	dashboard	for	your	devices
cloud	thermostat

building	/	Build	an	automated	cloud	thermostat
component

testing	/	Testing	individual	components

D
data

reading,	from	DHT	sensor	/	Reading	data	from	the	sensor
monitoring,	from	cloud	dashboard	/	Monitoring	data	from	a	cloud	dashboard

data	remotely
accessing	/	Accessing	the	data	remotely

data	sensor
storing	/	Storing	sensor	data

data	stored
plotting	/	Plotting	the	stored	data

DC	motor
speed,	controlling	/	Controlling	the	speed	of	a	DC	motor
reference	link	/	Controlling	the	speed	of	a	DC	motor

DHT11	sensor
reference	link	/	Hardware	and	software	requirements

Dweet.io	/	Monitoring	data	from	a	cloud	dashboard

F
Freeboard.io

URL	/	Monitoring	data	from	a	cloud	dashboard

H
HighCharts	/	Plotting	the	stored	data
home	appliances

controlling	/	Controlling	home	appliances
reference	link	/	Controlling	home	appliances

home	automation	system
software	requisites	/	Hardware	and	software	requirements
hardware	requisites	/	Hardware	and	software	requirements
modules,	building	/	Building	all	the	modules
modules,	configuring	/	Configuring	the	modules
modules,	integrating	into	single	interface	/	Integrating	the	modules	into	a	single
interface
graphical	interface,	building	/	Integrating	the	modules	into	a	single	interface
graphical	interface,	testing	/	Integrating	the	modules	into	a	single	interface
implementing	/	Automating	your	home
accessing,	from	anywhere	/	Accessing	your	home	automation	system	from
anywhere

I
IFTTT

URL	/	Hardware	and	software	requirements
used,	for	creating	motion-activated	lamp	/	Make	a	motion-activated	lamp	using
IFTTT

interface
reference	link	/	Controlling	the	thermostat	remotely

L
lamps

creating,	from	cloud	dashboard	/	Creating	several	lamps	from	the	cloud
LED

software	requisities	/	Hardware	and	software	requirements
hardware	requisities	/	Hardware	and	software	requirements
componenets	/	Hardware	and	software	requirements
controlling,	from	cloud	dashboard	/	Control	a	LED	from	anywhere	in	the	world

LEDs
controlling	/	Controlling	LEDs
references	/	Controlling	LEDs

M
measurement	SATA

receiving,	through	push	notifications	/	Receiving	measurement	SATA	through	push
notifications

modular	security	system
software	requisities	/	Hardware	and	software	requirements
hardware	requisities	/	Hardware	and	software	requirements
components	/	Hardware	and	software	requirements
creating	/	Creating	a	security	system

motion-activated	lamp
creating,	IFTTT	used	/	Make	a	motion-activated	lamp	using	IFTTT

motion	sensor
creating,	to	send	text	messages	/	Making	a	motion	sensor	that	sends	text	messages

motion	sensor	module
building,	Raspberry	Pi	Zero	used	/	Building	a	motion	sensor	with	the	Pi	Zero

N
Ngrok	/	Accessing	your	security	camera	from	anywhere
Node.js

installing	/	Installing	Node.js

P
power	consumption

logging	/	Logging	your	energy	consumption	over	time

R
Raspberry	Pi	camera

reference	link	/	Building	a	wireless	security	camera
Raspberry	Pi	Zero

hardware	requisites	/	Hardware	and	software	requirements,	Hardware	and	software
requirements
software	requisites	/	Hardware	and	software	requirements,	Hardware	and	software
requirements
components	/	Hardware	and	software	requirements
used,	for	building	motion	sensor	module	/	Building	a	motion	sensor	with	the	Pi
Zero

Raspberry	Pi	Zero	board
about	/	Introducing	the	Raspberry	Pi	Zero	board
components	/	Required	components	for	the	Zero	board
components,	assembling	/	Assembling	the	different	components
configuring,	remote	access	used	/	Configuring	the	board	for	remote	access

Raspberry	Pi	Zero	Board
hardware	requisites	/	Hardware	and	software	requirements
software	requisites	/	Hardware	and	software	requirements
hardware	configuration	/	Hardware	configuration
software	configuration	/	Software	configuration

Raspbian
installing	/	Installing	Raspbian

Raspbian	image
URL,	for	downloading	/	Installing	Raspbian
URL,	for	installation	/	Installing	Raspbian

remote	access
used,	for	configuring	Raspberry	Pi	Zero	board	/	Configuring	the	board	for	remote
access

S
sensor_test.js	/	Reading	data	from	the	sensor

URL	/	Reading	data	from	the	sensor
smart	home

software	requisities	/	Hardware	and	software	requirements
hardware	requisities	/	Hardware	and	software	requirements
components	/	Hardware	and	software	requirements

smart	plug
software	requisities	/	Hardware	and	software	requirements
hardware	requisities	/	Hardware	and	software	requirements
components	/	Hardware	and	software	requirements
hardware	configuration	/	Hardware	configuration
configuring	/	Configuring	the	smart	plug
interface,	creating	/	Creating	an	interface	for	the	smart	plug

SparkFun
references,	for	products	/	Hardware	and	software	requirements

sparkline	/	Monitoring	data	from	a	cloud	dashboard
System-on-a-Chip	(SoC)	/	Introducing	the	Raspberry	Pi	Zero	board

T
temperature	alerts

sending,	through	email	/	Sending	temperature	alerts	through	email
thermostat

hardware	requisites	/	Hardware	and	software	requirements
software	requisites	/	Hardware	and	software	requirements
hardware	configuration	/	Hardware	configuration
building	/	Building	the	thermostat
remotely,	controlling	/	Controlling	the	thermostat	remotely

W
wireless	security	camera

building	/	Building	a	wireless	security	camera
accessing	/	Accessing	your	security	camera	from	anywhere

	Building Smart Homes with Raspberry Pi Zero
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Configuring Your Raspberry Pi Zero Board
	Introducing the Raspberry Pi Zero board
	Required components for the Zero board
	Assembling the different components
	Installing Raspbian
	Configuring the board for remote access
	Installing Node.js
	Summary
	2. Measure Data Using Your Raspberry Pi Zero Board
	Hardware and software requirements
	Hardware configuration
	Software configuration
	Reading data from the sensor
	Storing sensor data
	Accessing the data remotely
	Plotting the stored data
	Summary
	3. Building a Smart Home Thermostat
	Hardware and software requirements
	Hardware configuration
	Testing individual components
	Building the thermostat
	Controlling the thermostat remotely
	Summary
	4. Controlling Appliances fromthe Raspberry Pi Zero
	Hardware and software requirements
	Controlling LEDs
	Controlling the speed of a DC motor
	Controlling home appliances
	Summary
	5. Making a Smart Plug with the Raspberry Pi Zero
	Hardware and software requirements
	Hardware configuration
	Configuring the smart plug
	Creating an interface for the smart plug
	Logging your energy consumption over time
	Summary
	6. Sending Notifications using Raspberry Pi Zero
	Hardware and software requirements
	Making a motion sensor that sends text messages
	Sending temperature alerts through email
	Receiving measurement SATA through push notifications
	Summary
	7. Use the Raspberry Pi Zero to Build a Security System
	Hardware and software requirements
	Building a motion sensor with the Pi Zero
	Making a simple alarm module
	Building a wireless security camera
	Creating a security system
	Summary
	8. Monitor Your Home from the Cloud
	Hardware and software requirements
	Monitoring data from a cloud dashboard
	Creating a cloud dashboard for your devices
	Accessing your security camera from anywhere
	Summary
	9. Control Appliances from Anywhere
	Hardware and software requirements
	Control a LED from anywhere in the world
	Creating several lamps from the cloud
	Make a motion-activated lamp using IFTTT
	Build an automated cloud thermostat
	Summary
	10. Building a Home Automation System with Raspberry Pi Zero Boards
	Hardware and software requirements
	Building all the modules
	Configuring the modules
	Integrating the modules into a single interface
	Automating your home
	Accessing your home automation system from anywhere
	Summary
	Index

