[image: image12.png]




[image: image2]
Modbus Interface
History of the Modbus interface 

Modbus message structure 

Modbus serial transmission modes 

Modbus addressing 

Modbus function codes 

[image: image3.png]DATALOGGING
TRENDING

ALaRMS
(SMS, ENAIL)

INTERNET, LaNs,

wes sasED
DATAPRESENTATION





History of the Modbus protocol

Some communication standards just emerge. Not because they are pushed by a large group of vendors or a special standards organisation. These standards—like the Modbus interface—emerge because they are good, simple to implement and are therefore adapted by many manufacturers. Because of this, Modbus became the first widely accepted fieldbus standard. 

Modbus has its roots in the late seventies of the previous century. It is 1979 when PLC manufacturer Modicon—now a brand of Schneider Electric's Telemecanique—published the Modbus communication interface for a multidrop network based on a master/client architecture. Communication between the Modbus nodes was achieved with messages. It was an open standard that described the messaging structure. The physical layer of the Modbus interface was free to choose. The original Modbus interface ran on RS-232, but most later Modbus implementations used RS-485 because it allowed longer distances, higher speeds and the possibility of a true multi-drop network. In a short time hunderds of vendors implemented the Modbus messaging system in their devices and Modbus became the de facto standard for industrial communication networks. 

The nice thing of the Modbus standard is the flexibility, but at the same time the easy implementation of it. Not only intelligent devices like microcontrollers, PLCs etc. are able to communicate with Modbus, also many intelligent sensors are equiped with a Modbus interface to send their data to host systems. While Modbus was previously mainly used on wired serial communication lines, there are also extensions to the standard for wireless communications and TCP/IP networks. 

Modbus message structure

The Modbus communication interface is built around messages. The format of these Modbus messages is independent of the type of physical interface used. On plain old RS232 are the same messages used as on Modbus/TCP over ethernet. This gives the Modbus interface definition a very long lifetime. The same protocol can be used regardless of the connection type. Because of this, Modbus gives the possibility to easily upgrade the hardware structure of an industrial network, without the need for large changes in the software. A device can also communicate with several Modbus nodes at once, even if they are connected with different interface types, without the need to use a different protocol for every connection. 

On simple interfaces like RS485 or RS232, the Modbus messages are sent in plain form over the network. In this case the network is dedicated to Modbus. When using more versatile network systems like TCP/IP over ethernet, the Modbus messages are embedded in packets with the format necessary for the physical interface. In that case Modbus and other types of connections can co-exist at the same physical interface at the same time. Although the main Modbus message structure is peer-to-peer, Modbus is able to function on both point-to-point and multidrop networks. 

Each Modbus message has the same structure. Four basic elements are present in each message. The sequence of these elements is the same for all messages, to make it easy to parse the content of the Modbus message. A conversation is always started by a master in the Modbus network. A Modbus master sends a message and—depending of the contents of the message—a slave takes action and responds to it. There can be more masters in a Modbus network. Addressing in the message header is used to define which device should respond to a message. All other nodes on the Modbus network ignore the message if the address field doesn't match their own address. 

	Modbus message structure

	Field
	Description

	Device address
	Address of the receiver

	Function code
	Code defining message type

	Data
	Data block with additional information

	Error check
	Numeric check value to test for communication errors


Modbus serial transmission modes: Modbus/ASCII and Modbus/RTU

Serial Modbus connections can use two basic transmission modes, ASCII or RTU, remote terminal unit. The transmission mode in serial communications defines the way the Modbus messages are coded. With Modbus/ASCII, the messages are in a readable ASCII format. The Modbus/RTU format uses binary coding which makes the message unreadable when monitoring, but reduces the size of each message which allows for more data exchange in the same time span. All nodes on one Modbus network segment must use the same serial transmission mode. A device configured to use Modbus/ASCII cannot understand messages in Modbus/RTU and vice versa. 

When using Modbus/ASCII, all messages are coded in hexadecimal values, represented with readable ASCII characters. Only the characters 0...9 and A...F are used for coding. For every byte of information, two communication-bytes are needed, because every communication-byte can only define 4 bits in the hexadecimal system. With Modbus/RTU the data is exchanged in a binary format, where each byte of information is coded in one communication-byte. 

Modbus messages on serial connections are not sent in a plain format. They are framed to give receivers an easy way to detect the beginning and end of a message. When using Modbus/ASCII, characters are used to start and end a frame. The colon ':' is used to flag the start of a message and each message is ended with a CR/LF combination. Modbus/RTU on the other hand uses time gaps of silence on the communication line for the framing. Each message must be preceded by a time gap with a minimum length of 3.5 characters. If a receiver detects a gap of at least 1.5 characters, it assumes that a new message is comming and the receive buffer is cleared. The main advantage of Modbus/ASCII is, that it allowes gaps between the bytes of a message with a maximum length of 1 second. With Modbus/RTU it is necessary to send each message as a continuous stream. 

	Properties of Modbus/ASCII and Modbus/RTU

	 
	Modbus/ASCII
	Modbus/RTU

	Characters
	ASCII 0...9 and A..F
	Binary 0...255

	Error check
	LRC Longitudinal Redundancy Check
	CRC Cyclic Redundancy Check

	Frame start
	character ':'
	3.5 chars silence

	Frame end
	characters CR/LF
	3.5 chars silence

	Gaps in message
	1 sec
	1.5 times char length

	
	
	
	
	

	Start bit
	1
	1

	Data bits
	7
	8

	Parity
	even/odd
	none
	even/odd
	none

	Stop bits
	1
	2
	1
	2


Modbus addressing

Slave Address

The first information in each Modbus message is the address of the receiver. This parameter contains one byte of information. In Modbus/ASCII it is coded with two hexadecimal characters, in Modbus/RTU one byte is used. Valid addresses are in the range 0..247. The values 1..247 are assigned to individual Modbus devices and 0 is used as a broadcast address. Messages sent to the latter address will be accepted by all slaves, but no responses are folowed. A slave always responds to a Modbus message, exception are broadcast requests. When responding it uses the same address as the master put it in the request. In this way the master can see that the device is actually responding to the request. 

Device I/O Address

Within a Modbus device, the holding registers, inputs and outputs are assigned a number between 1 and 10000. One would expect, that the same addresses are used in the Modbus messages to read or set values. Unfortunately this is not the case. In the Modbus messages addresses are used with a value between 0 and 9999. If you want to read the value of output (coil) 18 for example, you have to specify the value 17 in the Modbus query message. More confusing is even, that for input and holding registers an offset must be substracted from the device address to get the proper address to put in the Modbus message structure. This leads to common mistakes and should be taken care of when designing applications with Modbus. The following table shows the address ranges for coils, inputs and holding registers and the way the address in the Modbus message is calculated given the actual address of the item in the slave device. 

	Device and Modbus address ranges

	Device address
(Absolute)
	Modbus address
(Relative)
	Description

	1...10000*
	address - 1
	Coils (Digital outputs)

	10001...20000*
	address - 10001
	Buttons/Sensors (Dig. Inputs)

	30001...40000*
	address - 30001
	Analog Input registers (16 Bits)

	40001...50000*
	address - 40001
	Holding registers (General 16 Bits)

	\___/ Offset
	Relative address = Absolute address - Offset


* Maximum value is device dependent
Modbus function codes

The second parameter in each Modbus message is the function code. This defines the message type and the type of action required by the slave. The parameter contains one byte of information. In Modbus/ASCII this is coded with two hexadecimal characters, in Modbus/RTU one byte is used. Valid function codes are in the range 1..255. Not all Modbus devices recognize the same set of function codes. The most common codes are discussed here. 

Normally, when a Modbus slave answers a response, it uses the same function code as in the request. However, when an error is detected, the highest bit of the function code is turned on. In that way the master can see the difference between success and failure responses. 

	Common Modbus function codes

	Code
	Description

	01
	Read coil status

	02
	Read input status

	03
	Read holding registers

	04
	Read input registers

	05
	Force single coil

	06
	Preset single register

	07
	Read exception status

	08
	Diagnostics

	09
	Program

	10
	Poll

	11
	Fetch Comm. Event Control

	12
	Fetch Comm. Event Log

	13
	Program Controller Y N

	14
	Poll Controller

	15
	Force multiple coils

	16
	Preset multiple registers

	17
	Report slave ID

	18
	Program

	19
	Reset Comm. Link

	20
	Read General Reference

	21
	Write General Reference

	
	Data and Control Functions

	22
	Mask Write 4X Register

	23
	Read/Write 4X Registers

	24
	Read FIFO Queue


Function 01: Read coil status

In Modbus language, a coil is a discrete output value. Modbus function 01 can be used to read the status of such an output. It is only possible to query one device at a time. Broadcast addressing is not supported with this Modbus function. The function can be used to request the status of various coils at once. This is done by defining an output range in the data field of the message. 

	Function 01 query structure

	Byte
	Value
	Description

	1
	1...247
	Slave device address

	2
	1
	Function code

	3
	0...255
	Starting address, high byte

	4
	0...255
	Starting address, low byte

	5
	0...255
	Number of coils, high byte

	6
	0...255
	Number of coils, low byte

	7(...8)
	LRC/CRC
	Error check value


When receiving a Modbus query message with function 01, the slave collects the necessary output values and constructs an answer message. The length of this message is dependent on the number of values that have to be returned. In general, when N values are requested, a number of ((N+7) mod 8) bytes are necessary to store these values. The actual number of databytes in the datablock is put in the first byte of the data field. Therefore the general structure of an answer to a Modbus function 01 query is: 

	Function 01 answer structure

	Byte
	Value
	Description

	1
	1...247
	Slave device address

	2
	1
	Function code

	3
	0...255
	Number of data bytes N

	4...N+3
	0...255
	Bit pattern of coil values

	N+4(...N+5)
	LRC/CRC
	Error check value


Function 02: Read input status

Reading input values with Modbus is done in the same way as reading the status of coils. The only difference is that for inputs Modbus function 02 is used. Broadcast addressing mode is not supported. You can only query the value of inputs of one device at a time. Like with coils, the address of the first input, and the number of inputs to read must be put in the data field of the query message. Inputs on devices start numbering at 10001. This address value is equivalent to address 0 in the Modbus message. 

	Function 02 query structure

	Byte
	Value
	Description

	1
	1...247
	Slave device address

	2
	2
	Function code

	3
	0...255
	Starting address, high byte

	4
	0...255
	Starting address, low byte

	5
	0...255
	Number of inputs, high byte

	6
	0...255
	Number of inputs, low byte

	7(...8)
	LRC/CRC
	Error check value


After receiving a query message with Modbus function 02, the slave puts the requested input values in a message structure and sends this message back to the Modbus master. The length of the message depends on the number of input values returned. This causes the length of the output message to vary. The number of databytes in the data field that contain the input values is passed as the first byte in the data field. Each Modbus answering message has the following general structure. 

	Function 02 answer structure

	Byte
	Value
	Description

	1
	1...247
	Slave device address

	2
	2
	Function code

	3
	0...255
	Number of data bytes N

	4...N+3
	0...255
	Bit pattern of input values

	N+4(...N+5)
	LRC/CRC
	Error check value


Function 03: Read holding registers

Internal values in a Modbus device are stored in holding registers. These registers are two bytes wide and can be used for various purposes. Some registers contain configuration parameters where others are used to return measured values (temperatures etc.) to a host. Registers in a Modbus compatible device start counting at 40001. They are addressed in the Modbus message structure with addresses starting at 0. Modbus function 03 is used to request one or more holding register values from a device. Only one slave device can be addressed in a single query. Broadcast queries with function 03 are not supported. 

	Function 03 query structure

	Byte
	Value
	Description

	1
	1...247
	Slave device address

	2
	3
	Function code

	3
	0...255
	Starting address, high byte

	4
	0...255
	Starting address, low byte

	5
	0...255
	Number of registers, high byte

	6
	0...255
	Number of registers, low byte

	7(...8)
	LRC/CRC
	Error check value


After processing the query, the Modbus slave returns the 16 bit values of the requested holding registers. Because of the size of the holding registers, every register is coded with two bytes in the answering message. The first data byte contains the high byte, and the second the low byte of the register. The Modbus answer message starts with the slave device address and the function code 03. The next byte is the number of data bytes that follow. This value is two times the number of registers returned. An error check is appended for the host to check if a communication error occured. 
01 Read Coil Status

Description

Reads the ON/OFF status of discrete outputs (0X references, coils) in the slave.

Broadcast is not supported.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the starting coil and quantity of coils to be read.

Coils are addressed starting at zero: coils 1–16 are addressed as 0–15.

Here is an example of a request to read coils 20–56 from slave device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

01

Starting Address Hi 
00

Starting Address Lo
13

No. of Points Hi 
00

No. of Points Lo 
25

Error Check (LRC or CRC) ––

QUERY

Figure 10 Read Coil Status – Query

Response

The coil status in the response message is packed as one coil per bit of the data

field. Status is indicated as: 1 = ON; 0 = OFF. The LSB of the first data byte

contains the coil addressed in the query. The other coils follow toward the high

order end of this byte, and from ‘low order to high order’ in subsequent bytes.

If the returned coil quantity is not a multiple of eight, the remaining bits in the final

data byte will be padded with zeros (toward the high order end of the byte). The

Byte Count field specifies the quantity of complete bytes of data.

Here is an example of a response to the query on the opposite page:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

01

Byte Count 
05

Data (Coils 27–20)
CD

Data (Coils 35–28) 
6B

Data (Coils 43–36) 
B2

Data (Coils 51–44) 
0E

Data (Coils 56–52) 
1B

Error Check (LRC or CRC) ––

RESPONSE

Figure 11 Read Coil Status – Response

The status of coils 27–20 is shown as the byte value CD hex, or binary 1100 1101.

Coil 27 is the MSB of this byte, and coil 20 is the LSB. Left to right, the status of

coils 27 through 20 is: ON–ON–OFF–OFF–ON–ON–OFF–ON.

By convention, bits within a byte are shown with the MSB to the left, and the LSB

to the right. Thus the coils in the first byte are ‘27 through 20’, from left to right.

The next byte has coils ‘35 through 28’, left to right. As the bits are transmitted

serially, they flow from LSB to MSB: 20 . . . 27, 28 . . . 35, and so on.

In the last data byte, the status of coils 56–52 is shown as the byte value 1B hex,

or binary 0001 1011. Coil 56 is in the fourth bit position from the left, and coil 52 is

the LSB of this byte. The status of coils 56 through 52 is: ON–ON–OFF–ON–ON.

Note how the three remaining bits (toward the high order end) are zero–filled.

02 Read Input Status

Description

Reads the ON/OFF status of discrete inputs (1X references) in the slave.

Broadcast is not supported.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the starting input and quantity of inputs to be read.

Inputs are addressed starting at zero: inputs 1–16 are addressed as 0–15.

Here is an example of a request to read inputs 10197–10218 from slave device

17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

02

Starting Address Hi 
00

Starting Address Lo
C4

No. of Points Hi 
00

No. of Points Lo 
16

Error Check (LRC or CRC) ––

QUERY

Figure 12 Read Input Status – Query

PI–MBUS–300 Data and Control Functions 27

Response

The input status in the response message is packed as one input per bit of the

data field. Status is indicated as: 1 = ON; 0 = OFF. The LSB of the first data

byte contains the input addressed in the query. The other inputs follow toward the

high order end of this byte, and from ‘low order to high order’ in subsequent bytes.

If the returned input quantity is not a multiple of eight, the remaining bits in the final

data byte will be padded with zeros (toward the high order end of the byte). The

Byte Count field specifies the quantity of complete bytes of data.

Here is an example of a response to the query on the opposite page:

Example

Field Name

 (Hex)

Slave Address 

11

Function 


02

Byte Count

 03

Data (Inputs 10204–10197) 
AC

Data (Inputs 10212–10205) 
DB

Data (Inputs 10218–10213) 
35

Error Check (LRC or CRC) ––

RESPONSE

Figure 13 Read Input Status – Response

The status of inputs 10204–10197 is shown as the byte value AC hex, or binary

1010 1100. Input 10204 is the MSB of this byte, and input 10197 is the LSB.

Left to right, the status of inputs 10204 through 10197 is: ON–OFF–ON–OFF–

ON–ON–OFF–OFF.

The status of inputs 10218–10213 is shown as the byte value 35 hex, or binary

0011 0101. Input 10218 is in the third bit position from the left, and input 10213 is

the LSB. The status of inputs 10218 through 10213 is: ON–ON–OFF–ON–OFF–

ON. Note how the two remaining bits (toward the high order end) are zero–filled.

03 Read Holding Registers

Description

Reads the binary contents of holding registers (4X references) in the slave.

Broadcast is not supported.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the starting register and quantity of registers to be

read. Registers are addressed starting at zero: registers 1–16 are addressed as

0–15.

Here is an example of a request to read registers 40108–40110 from slave device

17:

Example

Field Name 

(Hex)

Slave Address 

11

Function 


03

Starting Address Hi

 00

Starting Address Lo

 6B

No. of Points Hi 

00

No. of Points Lo 

03

Error Check (LRC or CRC) ––

QUERY

Figure 14 Read Holding Registers – Query

PI–MBUS–300 Data and Control Functions 29

Response

The register data in the response message are packed as two bytes per register,

with the binary contents right justified within each byte. For each register, the first

byte contains the high order bits and the second contains the low order bits.

Data is scanned in the slave at the rate of 125 registers per scan for 984–X8X

controllers (984–685, etc), and at the rate of 32 registers per scan for all other

controllers. The response is returned when the data is completely assembled.

Here is an example of a response to the query on the opposite page:

Example

Field Name 

(Hex)

Slave Address 

11

Function 


03

Byte Count 

06

Data Hi (Register 40108) 
02

Data Lo (Register 40108) 
2B

Data Hi (Register 40109) 
00

Data Lo (Register 40109) 
00

Data Hi (Register 40110) 
00

Data Lo (Register 40110) 
64

Error Check (LRC or CRC) ––

RESPONSE

Figure 15 Read Holding Registers – Response

The contents of register 40108 are shown as the two byte values of 02 2B hex, or

555 decimal. The contents of registers 40109–40110 are 00 00 and 00 64 hex, or

0 and 100 decimal.

04 Read Input Registers

Description

Reads the binary contents of input registers (3X references) in the slave.

Broadcast is not supported.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the starting register and quantity of registers to be

read. Registers are addressed starting at zero: registers 1–16 are addressed as

0–15.

Here is an example of a request to read register 30009 from slave device 17:

Example

Field Name 

(Hex)

Slave Address 

11

Function 


04

Starting Address Hi

00

Starting Address Lo

08

No. of Points Hi 

00

No. of Points Lo 

01

Error Check (LRC or CRC) ––

QUERY

Figure 16 Read Input Registers – Query

Response

The register data in the response message are packed as two bytes per register,

with the binary contents right justified within each byte. For each register, the first

byte contains the high order bits and the second contains the low order bits.

Data is scanned in the slave at the rate of 125 registers per scan for 984–X8X

controllers (984–685, etc), and at the rate of 32 registers per scan for all other

controllers. The response is returned when the data is completely assembled.

Here is an example of a response to the query on the opposite page:

Example

Field Name 

(Hex)

Slave Address 

11

Function 


04

Byte Count 

02

Data Hi (Register 30009) 
00

Data Lo (Register 30009) 
0A

Error Check (LRC or CRC) ––
Figure 17 Read Input Registers – Response

The contents of register 30009 are shown as the two byte values of 00 0A hex, or

10 decimal.

05 Force Single Coil

Description

Forces a single coil (0X reference) to either ON or OFF. When broadcast, the

function forces the same coil reference in all attached slaves.

Note The function will override the controller’s memory protect state

and the coil’s disable state. The forced state will remain valid until the

controller’s logic next solves the coil. The coil will remain forced if it is

not programmed in the controller’s logic.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the coil reference to be forced. Coils are addressed

starting at zero: coil 1 is addressed as 0.

The reguested ON/OFF state is specified by a constant in the query data field.

A value of FF 00 hex requests the coil to be ON. A value of 00 00 requests it to be

OFF. All other values are illegal and will not affect the coil.

Here is an example of a request to force coil 173 ON in slave device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

05

Coil Address Hi 
00

Coil Address Lo 
AC

Force Data Hi 
FF

Force Data Lo 
00

Error Check (LRC or CRC) ––

QUERY

Figure 18 Force Single Coil – Query

PI–MBUS–300 Data and Control Functions 33

Response

The normal response is an echo of the query, returned after the coil state has

been forced.

Here is an example of a response to the query on the opposite page:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

05

Coil Address Hi 
00

Coil Address Lo 
AC

Force Data Hi
 FF

Force Data Lo 
00

Error Check (LRC or CRC) ––

RESPONSE

Figure 19 Force Single Coil – Response

34 Data and Control Functions PI–MBUS–300

06 Preset Single Register

Description

Presets a value into a single holding register (4X reference). When broadcast, the

function presets the same register reference in all attached slaves.

Note The function will override the controller’s memory protect state.

The preset value will remain valid in the register until the controller’s

logic next solves the register contents. The register’s value will remain

if it is not programmed in the controller’s logic.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the register reference to be preset. Registers are

addressed starting at zero: register 1 is addressed as 0.

The reguested preset value is specified in the query data field. M84 and 484

controllers use a 10–bit binary value, with the six high order bits set to zeros.

All other controllers use 16–bit values.

Here is an example of a request to preset register 40002 to 00 03 hex in slave

device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

06

Register Address Hi 00

Register Address Lo 01

Preset Data Hi 
00

Preset Data Lo 
03

Error Check (LRC or CRC) ––

QUERY

Figure 20 Preset Single Register – Query

PI–MBUS–300 Data and Control Functions 35

Response

The normal response is an echo of the query, returned after the register contents

have been preset.

Here is an example of a response to the query on the opposite page:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

06

Register Address Hi 00

Register Address Lo 01

Preset Data Hi 
00

Preset Data Lo 
03

Error Check (LRC or CRC) ––

RESPONSE

Figure 21 Preset Single Register – Response

36 Data and Control Functions PI–MBUS–300

07 Read Exception Status

Description

Reads the contents of eight Exception Status coils within the slave controller.

Certain coils have predefined assignments in the various controllers. Other coils

can be programmed by the user to hold information about the contoller’s status,

for example, ‘machine ON/OFF’, ‘heads retracted’, ‘safeties satisfied’, ‘error

conditions exist’, or other user–defined flags. Broadcast is not supported.

The function provides a simple method for accessing this information, because the

Exception Coil references are known (no coil reference is needed in the function).

The predefined Exception Coil assignments are:

Controller Model Coil Assignment

M84, 184/384, 584, 984 1 – 8 User defined

484 257 Battery Status

258 – 264 User defined

884 761 Battery Status

762 Memory Protect Status

763 RIO Health Status

764–768 User defined

Query

Here is an example of a request to read the exception status in slave device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function

07

Error Check (LRC or CRC) ––

QUERY

Figure 22 Read Exception Status – Query

PI–MBUS–300 Data and Control Functions 37

Response

The normal response contains the status of the eight Exception Status coils.

The coils are packed into one data byte, with one bit per coil. The status of the

lowest coil reference is contained in the least significant bit of the byte.

Here is an example of a response to the query on the opposite page:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

07

Coil Data 

6D

Error Check (LRC or CRC) ––

RESPONSE

Figure 23 Read Exception Status – Response

In this example, the coil data is 6D hex (0110 1101 binary). Left to right, the coils

are: OFF–ON–ON–OFF–ON–ON–OFF–ON. The status is shown from the

highest to the lowest addressed coil.

If the controller is a 984, these bits are the status of coils 8 through 1.

If the controller is a 484, these bits are the status of coils 264 through 257. In this

example, coil 257 is ON, indicating that the controller’s batteries are OK.

38 Data and Control Functions PI–MBUS–300

11 (0B Hex) Fetch Comm Event Counter

Description

Returns a status word and an event count from the slave’s communications event

counter. By fetching the current count before and after a series of messages, a

master can determine whether the messages were handled normally by the slave.

Broadcast is not supported.

The controller’s event counter is incremented once for each successful message

completion. It is not incremented for exception responses, poll commands, or

fetch event counter commands.

The event counter can be reset by means of the Diagnostics function (code 08),

with a subfunction of Restart Communications Option (code 00 01) or Clear

Counters and Diagnostic Register (code 00 0A).

Query

Here is an example of a request to fetch the communications event counter in

slave device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

0B

Error Check (LRC or CRC) ––

QUERY

Figure 24 Fetch Communications Event Counter – Query

PI–MBUS–300 Data and Control Functions 39

Response

The normal response contains a two–byte status word, and a two–byte event

count. The status word will be all ones (FF FF hex) if a previously–issued

program command is still being processed by the slave (a busy condition exists).

Otherwise, the status word will be all zeros.

Here is an example of a response to the query on the opposite page:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

0B

Status HI 

FF

Status Lo 
FF

Event Count Hi
01

Event Count Lo 
08

Error Check (LRC or CRC) ––

RESPONSE

Figure 25 Fetch Communications Event Counter – Response

In this example, the status word is FF FF hex, indicating that a program function is

still in progress in the slave. The event count shows that 264 (01 08 hex) events

have been counted by the controller.

40 Data and Control Functions PI–MBUS–300

12 (0C Hex) Fetch Comm Event Log

Description

Returns a status word, event count, message count, and a field of event bytes

from the slave. Broadcast is not supported.

The status word and event count are identical to that returned by the Fetch

Communications Event Counter function (11, 0B hex).

The message counter contains the quantity of messages processed by the slave

since its last restart, clear counters operation, or power–up. This count is identical

to that returned by the Diagnostic function (code 08), subfunction Return Bus

Message Count (code 11, 0B hex).

The event bytes field contains 0-64 bytes, with each byte corresponding to the

status of one Modbus send or receive operation for the slave. The events are

entered by the slave into the field in chronological order. Byte 0 is the most recent

event. Each new byte flushes the oldest byte from the field.

Query

Here is an example of a request to fetch the communications event log in slave

device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

0C

Error Check (LRC or CRC) ––

QUERY

Figure 26 Fetch Communications Event Log – Query

PI–MBUS–300 Data and Control Functions 41

Response

The normal response contains a two–byte status word field, a two–byte event

count field, a two–byte message count field, and a field containing 0-64 bytes of

events. A byte count field defines the total length of the data in these four fields.

Here is an example of a response to the query on the opposite page:

Example

Field Name
(Hex)

Slave Address 
11

Function 

0C

Byte Count 
08

Status HI 

00

Status Lo 
00

Event Count Hi 
01

Event Count Lo 
08

Message Count Hi 
01

Message Count Lo 
21

Event 0 20

Event 1 00

Error Check (LRC or CRC) ––

RESPONSE

Figure 27 Fetch Communications Event Log – Response

In this example, the status word is 00 00 hex, indicating that the slave is not

processing a program function. The event count shows that 264 (01 08 hex)

events have been counted by the slave. The message count shows that 289

(01 21 hex) messages have been processed.

The most recent communications event is shown in the Event 0 byte. Its contents

(20 hex) show that the slave has most recently entered the Listen Only Mode.

The previous event is shown in the Event 1 byte. Its contents (00 hex) show that

the slave received a Communications Restart.

The layout of the response’s event bytes is described on the next page.

42 Data and Control Functions PI–MBUS–300

12 (0C Hex) Fetch Comm Event Log (Continued)

What the Event Bytes Contain

An event byte returned by the Fetch Communications Event Log function can be

any one of four types. The type is defined by bit 7 (the high–order bit) in each

byte. It may be further defined by bit 6. This is explained below.

Slave Modbus Receive Event

This type of event byte is stored by the slave when a query message is received.

It is stored before the slave processes the message. This event is defined by bit 7

set to a logic ‘1’. The other bits will be set to a logic ‘1’ if the corresponding

condition is TRUE. The bit layout is:

Bit Contents

0 Not Used

1 Communications Error

2 Not Used

3 Not Used

4 Character Overrun

5 Currently in Listen Only Mode

6 Broadcast Received

7 1

Slave Modbus Send Event

This type of event byte is stored by the slave when it finishes processing a query

message. It is stored if the slave returned a normal or exception response, or no

response. This event is defined by bit 7 set to a logic ‘0’, with bit 6 set to a ‘1’.

The other bits will be set to a logic ‘1’ if the corresponding condition is TRUE.

The bit layout is:

Bit Contents

0 Read Exception Sent (Exception Codes 1-3)

1 Slave Abort Exception Sent (Exception Code 4)

2 Slave Busy Exception Sent (Exception Codes 5-6)

3 Slave Program NAK Exception Sent (Exception Code 7)

4 Write Timeout Error Occurred

5 Currently in Listen Only Mode

PI–MBUS–300 Data and Control Functions 43

6 1

7 0

Slave Entered Listen Only Mode

This type of event byte is stored by the slave when it enters the Listen Only Mode.

The event is defined by a contents of 04 hex. The bit layout is:

Bit Contents

0 0

1 0

2 1

3 0

4 0

5 0

6 0

7 0

Slave Initiated Communication Restart

This type of event byte is stored by the slave when its communications port. is

restarted. The slave can be restarted by the Diagnostics function (code 08), with

subfunction Restart Communications Option (code 00 01).

That function also places the slave into a ‘Continue on Error’ or ‘Stop on Error’

mode. If the slave is placed into ‘Continue on Error’ mode, the event byte is

added to the existing event log. If the slave is placed into ‘Stop on Error’ mode,

the byte is added to the log and the rest of the log is cleared to zeros.

The event is defined by a contents of zero. The bit layout is:

Bit Contents

0 0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

44 Data and Control Functions PI–MBUS–300

15 (0F Hex) Force Multiple Coils

Description

Forces each coil (0X reference) in a sequence of coils to either ON or OFF. When

broadcast, the function forces the same coil references in all attached slaves.

Note The function will override the controller’s memory protect state

and a coil’s disable state. The forced state will remain valid until the

controller’s logic next solves each coil. Coils will remain forced if they

are not programmed in the controller’s logic.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the coil references to be forced. Coils are addressed

starting at zero: coil 1 is addressed as 0.

The reguested ON/OFF states are specified by contents of the query data field.

A logical ‘1’ in a bit position of the field requests the corresponding coil to be ON.

A logical ‘0’ requests it to be OFF.

The following page shows an example of a request to force a series of ten coils

starting at coil 20 (addressed as 19, or 13 hex) in slave device 17.

The query data contents are two bytes: CD 01 hex (1100 1101 0000 0001 binary).

The binary bits correspond to the coils in the following way:

Bit: 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1

Coil: 27 26 25 24 23 22 21 20 – – – – – – 29 28

The first byte transmitted (CD hex) addresses coils 27-20, with the least significant

bit addressing the lowest coil (20) in this set.

The next byte transmitted (01 hex) addresses coils 29-28, with the least significant

bit addressing the lowest coil (28) in this set. Unused bits in the last data byte

should be zero–filled.

PI–MBUS–300 Data and Control Functions 45

Example

Field Name 

(Hex)

Slave Address 

11

Function 


0F

Coil Address Hi

00

Coil Address Lo 

13

Quantity of Coils Hi 

00

Quantity of Coils Lo 
0A

Byte Count 

02

Force Data Hi (Coils 27-20) 
CD

Force Data Lo (Coils 29-28) 
01

Error Check (LRC or CRC) ––

QUERY

Figure 28 Force Multiple Coils – Query

Response

The normal response returns the slave address, function code, starting address,

and quantity of coils forced.

Here is an example of a response to the query shown above.

Example

Field Name 
(Hex)

Slave Address 
11

Function 

0F

Coil Address Hi 
00

Coil Address Lo 
13

Quantity of Coils Hi 
00

Quantity of Coils Lo 0A

Error Check (LRC or CRC) ––

RESPONSE

Figure 29 Force Multiple Coils – Response

46 Data and Control Functions PI–MBUS–300

16 (10 Hex) Preset Multiple Registers

Description

Presets values into a sequence of holding registers (4X references). When

broadcast, the function presets the same register references in all attached slaves.

Note The function will override the controller’s memory protect state.

The preset values will remain valid in the registers until the controller’s

logic next solves the register contents. The register values will remain

if they are not programmed in the controller’s logic.

Appendix B lists the maximum parameters supported by various controller models.

Query

The query message specifies the register references to be preset. Registers are

addressed starting at zero: register 1 is addressed as 0.

The requested preset values are specified in the query data field. M84 and 484

controllers use a 10–bit binary value, with the six high order bits set to zeros.

All other controllers use 16–bit values. Data is packed as two bytes per register.

Here is an example of a request to preset two registers starting at 40002 to 00 0A

and 01 02 hex, in slave device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

10

Starting Address Hi 
00

Starting Address Lo 01

No. of Registers Hi 
00

No. of Registers Lo 
02

Byte Count 
04

Data Hi 

00

Data Lo 

0A

Data Hi 

01

Data Lo 

02

Error Check (LRC or CRC) ––

QUERY

Figure 30 Preset Multiple Registers – Query

PI–MBUS–300 Data and Control Functions 47

Response

The normal response returns the slave address, function code, starting address,

and quantity of registers preset.

Here is an example of a response to the query shown above.

Example

Field Name 
(Hex)

Slave Address 
11

Function 

10

Starting Address Hi 
00

Starting Address Lo 01

No. of Registers Hi 
00

No. of Registers Lo 
02

Error Check (LRC or CRC) ––

RESPONSE

Figure 31 Preset Multiple Registers – Response

48 Data and Control Functions PI–MBUS–300

17 (11 Hex) Report Slave ID

Description

Returns a description of the type of controller present at the slave address, the

current status of the slave Run indicator, and other information specific to the

slave device. Broadcast is not supported.

Query

Here is an example of a request to report the ID and status of slave device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

11

Error Check (LRC or CRC) ––

QUERY

Figure 32 Report Slave ID – Query

PI–MBUS–300 Data and Control Functions 49

Response

The format of a normal response is shown below. The data contents are specific

to each type of controller. They are listed on the following pages.

Field Name Contents

Slave Address Echo of Slave Address

Function 11

Byte Count Device Specific

Slave ID Device Specific

Run Indicator Status 00 = OFF, FF = ON

Additional Data Device Specific

. . .

Error Check (LRC or CRC) ––

RESPONSE

Figure 33 Report Slave ID – Response

A Summary of Slave IDs

These are the Slave ID codes returned by Modicon controllers in the first byte of

the data field:

Slave ID Controller

0 Micro 84

1 484

2 184/384

3 584

8 884

9 984

50 Data and Control Functions PI–MBUS–300

17 (11 Hex) Report Slave ID (Continued)

184/384

The 184 or 384 controller returns a byte count of either 4 or 74 (4A hexadecimal).

If the controller’s J347 Modbus Slave Interface is setup properly, and its internal

PIB table is normal, the byte count will be 74. Otherwise the byte count will be 4.

The four bytes that are always returned are:

Byte Contents

1 Slave ID (2 for 184/384). See bytes 3, 4 for further definition.

2 RUN indicator status (0 = OFF, FF = ON)

3, 4 Status word:

Bit 0 = 0

Bit 1 = Memory Protect status (0 = OFF, 1 = ON)

Bit 2, 3 = Controller type: Bit 2 = 0 and Bit 3 = 0 indicates 184

Bit 2 = 1 and Bit 3 = 0 indicates 384

Bits 4 - 15 = Unused

The additonal 70 bytes returned for a correct J347 setup and normal PIB are:

Byte Contents

5, 6 PIB table starting address

7, 8 Controller serial number

9, 10 Executive ID

Bytes 11 - 74 contain the PIB table. This data is valid only if the

controller is running (as shown in Byte 2). The table is as follows:

11, 12 Maximum quantity of output coils

13, 14 Output coil enable table

15, 16 Address of input coil/run table

17, 18 Quantity of input coils

19, 20 Input coil enable table

21, 22 First latch number (must be multiple of 16)

23, 24 Last latch number (must be multiple of 16)

PI–MBUS–300 Data and Control Functions 51

25, 26 Address of input registers

27, 28 Quantity of input registers

29, 30 Quantity of output and holding registers

31, 32 Address of user logic

33, 34 Address of output coil RAM table

35, 36 Function inhibit mask

37, 38 Address of extended function routine

39, 40 Address of data transfer routine

41, 42 Address of traffic cop

43, 44 Unused

45, 46 Function inhibit mask

47, 48 Address of ‘A’ Mode history table

49, 50 Request table for DX printer

51, 52 Quantity of sequence groups

53, 54 Address of sequence image table

55, 56 Address of sequence RAM

57, 58 Quantity of 50XX registers

59, 60 Address of 50XX table

61, 62 Address of output coil RAM image

63, 64 Address of input RAM image

65, 66 Delayed output start group

67, 68 Delayed output end group

69, 70 Watchdog line

71, 72 RAM Address of latches

73, 74 Quantity of delayed output groups

52 Data and Control Functions PI–MBUS–300

17 (11 Hex) Report Slave ID (Continued)

584

The 584 controller returns a byte count of 9, as follows:

Byte Contents

1 Slave ID (3 for 584)

2 RUN indicator status (0 = OFF, FF = ON)

3 Quantity of 4K sections of page 0 memory

4 Quantity of 1K sections of state RAM

5 Quantity of segments of user logic

6, 7 Machine state word (configuration table word 101, 65 hex).

The word is organized as follows:

Byte 6:

Bit 15 (MSB of byte 6) = Port 1 setup

Bit 14 = Port 2 setup

Bit 13 = Port 1 address set

Bit 12 = Port 2 address set

Bit 11 = Unassigned

Bit 10 = Constant Sweep status (0 = Constand Sweep OFF, 1 = ON)

Bit 9 = Single Sweep status (0 = Single Sweep OFF, 1 = ON)

Bit 8 = 16/24-bit nodes (0 = 24-bit nodes, 1 = 16-bit nodes)

Byte 7:

Bit 7 (MSB of byte 7) = Power ON (1 = ON, should never = ‘OFF’)

Bit 6 = RUN indicator status (0 = ON, 1 = OFF)

Bit 5 = Memory Protect status (0 = ON, 1 = OFF)

Bit 4 = Battery OK (0 = OK, 1 = Not OK)

Bits 3 - 0 = Unassigned

PI–MBUS–300 Data and Control Functions 53

8, 9 Machine stop code (configuration table word 105, 69 hex).

The word is organized as follows:

Byte 8:

Bit 15 (MSB of byte 8) = Peripheral port stop (controlled stop)

Bit 14 = Unassigned

Bit 13 = Dim awareness

Bit 12 = Illegal peripheral intervention

Bit 11 = Multirate solve table invalid

Bit 10 = Start of Node did not start segment

Bit 9 = State RAM test failed

Bit 8 = No End of Logic detected, or bad quantity of segments

Byte 9:

Bit 7 (MSB of byte 9) = Watchdog timer expired

Bit 6 = Real time clock error

Bit 5 = CPU diagnostic failed

Bit 4 = Invalid traffic cop type

Bit 3 = Invalid node type

Bit 2 = Logic checksum error

Bit 1 = Backup checksum error

Bit 0 = Illegal configuration

54 Data and Control Functions PI–MBUS–300

17 (11 Hex) Report Slave ID (Continued)

984

The 984 controller returns a byte count of 9, as follows:

Byte Contents

1 Slave ID (9 for 984)

2 RUN indicator status (0 = OFF, FF = ON)

3 Quantity of 4K sections of page 0 memory

4 Quantity of 1K sections of state RAM

5 Quantity of segments of user logic

6, 7 Machine state word (configuration table word 101, 65 hex).

The word is organized as follows:

Byte 6:

Bit 15 (MSB of byte 6) = Unassigned

Bits 14 - 11 = Unassigned

Bit 10 = Constant Sweep status (0 = Constand Sweep OFF, 1 = ON)

Bit 9 = Single Sweep status (0 = Single Sweep OFF, 1 = ON)

Bit 8 = 16/24-bit nodes (0 = 24-bit nodes, 1 = 16-bit nodes)

Byte 7:

Bit 7 (MSB of byte 7) = Power ON (1 = ON, should never = ‘OFF’)

Bit 6 = RUN indicator status (0 = ON, 1 = OFF)

Bit 5 = Memory Protect status (0 = ON, 1 = OFF)

Bit 4 = Battery OK (0 = OK, 1 = Not OK)

Bits 3 - 1 = Unassigned

Bit 0 = Memory downsize flag (0 = NO, 1 = Downsize

Memory Downsize: Bit 0 of the Machine State word defines the use of the

memory downsize values in words 99, 100, and 175 (63, 64, and AF hexadecimal)

of the configuration table. If bit 0 = logic 1, downsizing is calculated as follows:

Page 0 size (16-bit words) = (Word 99 * 4096) – (Word 175 low byte * 16)

State table size (16 bit words) = (Word 100 * 1024) – (Word 175 high byte * 16)

PI–MBUS–300 Data and Control Functions 55

8, 9 Machine stop code (configuration table word 105, 69 hex).

The word is organized as follows:

Byte 8:

Bit 15 (MSB of byte 8) = Peripheral port stop (controlled stop)

Bit 14 (984A, B, X) = Extended memory parity failure

Bit 14 (Other 984) = Bad IO traffic cop

Bit 13 = Dim awareness

Bit 12 = Illegal peripheral intervention

Bit 11 = Bad segment scheduler table

Bit 10 = Start of Node did not start segment

Bit 9 = State RAM test failed

Bit 8 = No End of Logic detected, or bad quantity of segments

Byte 9:

Bit 7 (MSB of byte 9) = Watchdog timer expired

Bit 6 = Real time clock error

Bit 5 (984A, B, X) = CPU diagnostic failed

Bit 5 (Other 984) = Bad coil used table

Bit 4 = S908 remote IO head failure

Bit 3 = Invalid node type

Bit 2 = Logic checksum error

Bit 1 = Coil disabled while in RUN mode

Bit 0 = Illegal configuration

56 Data and Control Functions PI–MBUS–300

17 (11 Hex) Report Slave ID (Continued)

Micro 84

The Micro 84 controller returns a byte count of 8, as follows:

Byte Contents

1 Slave ID (0 for Micro 84)

2 RUN indicator status (0 = OFF, FF = ON)

3 Current port number

4 Memory size (1 = 1K, 2 = 2K)

5 Unused (all zeros)

484

The 484 controller returns a byte count of 5, as follows:

Byte Contents

1 Slave ID (1 for 484)

2 RUN indicator status (0 = OFF, FF = ON)

3 System state

4 First configuration byte

5 Second configuration byte

PI–MBUS–300 Data and Control Functions 57

884

The 884 controller returns a byte count of 8, as follows:

Byte Contents

1 Slave ID (8 for 884)

2 RUN indicator status (0 = OFF, FF = ON)

3 Current port number

4 Size of user logic plus state RAM, in kilobytes (1 word = 2 bytes)

5 Reserved

6 Hook bits:

Bits 0 - 2 = Reserved

Bit 3 = Mapper bypass: 1 = Do not execute standard mapper

Bit 4 = End of Scan tests: 1 = Test end of scan hooks

Bit 5 = Reserved

Bit 6 = Logic Solver bypass: 1 = Do not execute standard

logic solver

Bit 7 = Reserved

7, 8 Reserved

58 Data and Control Functions PI–MBUS–300

20 (14Hex) Read General Reference

Description

Returns the contents of registers in Extended Memory file (6XXXXX) references.

Broadcast is not supported.

The function can read multiple groups of references. The groups can be separate

(non–contiguous), but the references within each group must be sequential.

Query

The query contains the standard Modbus slave address, function code, byte

count, and error check fields. The rest of the query specifies the group or groups

of references to be read. Each group is defined in a separate ‘sub-request’ field

which contains 7 bytes:

– The reference type: 1 byte (must be specified as 6)

– The Extended Memory file number: 2 bytes (1 to 10, hex 0001 to 000A)

– The starting register address within the file: 2 bytes

– The quantity of registers to be read: 2 bytes.

The quantity of registers to be read, combined with all other fields in the expected

response, must not exceed the allowable length of Modbus messages: 256 bytes.

The available quantity of Extended Memory files depends upon the installed size

of Extended Memory in the slave controller. Each file except the last one contains

10,000 registers, addressed as 0000-270F hexadecimal (0000-9999 decimal).

Note The addressing of Extended Register (6XXXXX) references

differs from that of Holding Register (4XXXX) references.

The lowest Extended Register is addressed as register ‘zero’ (600000).

The lowest Holding Register is addressed as register ‘one’ (40001).

PI–MBUS–300 Data and Control Functions 59

For controllers other than the 984–785 with Extended Registers, the last (highest)

register in the last file is:

Ext Mem Size Last File Last Register (Decimal)

16K 2 6383

32K 4 2767

64K 7 5535

96K 10 8303

For the 984–785 with Extended Registers, the last (highest) register in the last file

is shown in the two tables below.

984–785 with AS–M785–032 Memory Cartridge:

User State

Logic RAM Ext Mem Size Last File Last Register (Decimal)

32K 32K 0 0 0

16K 64K 72K 8 3727

984–785 with AS–M785–048 Memory Cartridge:

User State

Logic RAM Ext Mem Size Last File Last Register (Decimal)

48K 32K 24K 3 4575

32K 64K 96K 10 8303

Examples of a query and response are provided starting on the next page.

60 Data and Control Functions PI–MBUS–300

20 (14 Hex) Read General Reference (Continued)

An example of a request to read two groups of references from slave device 17 is

shown below.

Group 1 consists of two registers from file 4, starting at register 1 (address 0001).

Group 2 consists of two registers from file 3, starting at register 9 (address 0009).

Example

Field Name 
(Hex)

Slave Address 
11

Function 

14

Byte Count 
0E

Sub–Req 1, Reference Type 06

Sub–Req 1, File Number Hi 00

Sub–Req 1, File Number Lo 04

Sub–Req 1, Starting Addr Hi 00

Sub–Req 1, Starting Addr Lo 01

Sub–Req 1, Register Count Hi 00

Sub–Req 1, Register Count Lo 02

Sub–Req 2, Reference Type 06

Sub–Req 2, File Number Hi 00

Sub–Req 2, File Number Lo 03

Sub–Req 2, Starting Addr Hi 00

Sub–Req 2, Starting Addr Lo 09

Sub–Req 2, Register Count Hi 00

Sub–Req 2, Register Count Lo 02

Error Check (LRC or CRC) ––

QUERY

Figure 34 Read General Reference – Query

PI–MBUS–300 Data and Control Functions 61

Response

The normal response is a series of ‘sub-responses’, one for each ‘sub-request’.

The byte count field is the total combined count of bytes in all ‘sub-responses’.

In addition, each ‘sub-response’ contains a field that shows its own byte count.

Example

Field Name (Hex)

Slave Address 11

Function 14

Byte Count 0C

Sub–Res 1, Byte Count 05

Sub–Res 1, Reference Type 06

Sub–Res 1, Register Data Hi 0D

Sub–Res 1, Register Data Lo FE

Sub–Res 1, Register Data Hi 00

Sub–Res 1, Register Data Lo 20

Sub–Res 2, Byte Count 05

Sub–Res 2, Reference Type 06

Sub–Res 2, Register Data Hi 33

Sub–Res 2, Register Data Lo CD

Sub–Res 2, Register Data Hi 00

Sub–Res 2, Register Data Lo 40

Error Check (LRC or CRC) ––

RESPONSE

Figure 35 Read General Reference – Response

62 Data and Control Functions PI–MBUS–300

21 (15Hex) Write General Reference

Description

Writes the contents of registers in Extended Memory file (6XXXXX) references.

Broadcast is not supported.

The function can write multiple groups of references. The groups can be separate

(non–contiguous), but the references within each group must be sequential.

Query

The query contains the standard Modbus slave address, function code, byte

count, and error check fields. The rest of the query specifies the group or groups

of references to be written, and the data to be written into them. Each group is

defined in a separate ‘sub-request’ field which contains 7 bytes plus the data:

– The reference type: 1 byte (must be specified as 6)

– The Extended Memory file number: 2 bytes (1 to 10, hex 0001 to 000A)

– The starting register address within the file: 2 bytes

– The quantity of registers to be written: 2 bytes

– The data to be written: 2 bytes per register.

The quantity of registers to be written, combined with all other fields in the query,

must not exceed the allowable length of Modbus messages: 256 bytes.

The available quantity of Extended Memory files depends upon the installed size

of Extended Memory in the slave controller. Each file except the last one contains

10,000 registers, addressed as 0000-270F hexadecimal (0000-9999 decimal).

Note The addressing of Extended Register (6XXXXX) references

differs from that of Holding Register (4XXXX) references.

The lowest Extended Register is addressed as register ‘zero’ (600000).

The lowest Holding Register is addressed as register ‘one’ (40001).

PI–MBUS–300 Data and Control Functions 63

For controllers other than the 984–785 with Extended Registers, the last (highest)

register in the last file is:

Ext Mem Size Last File Last Register (Decimal)

16K 2 6383

32K 4 2767

64K 7 5535

96K 10 8303

For the 984–785 with Extended Registers, the last (highest) register in the last file

is shown in the two tables below.

984–785 with AS–M785–032 Memory Cartridge:

User State

Logic RAM Ext Mem Size Last File Last Register (Decimal)

32K 32K 0 0 0

16K 64K 72K 8 3727

984–785 with AS–M785–048 Memory Cartridge:

User State

Logic RAM Ext Mem Size Last File Last Register (Decimal)

48K 32K 24K 3 4575

32K 64K 96K 10 8303

Examples of a query and response are provided starting on the next page.

64 Data and Control Functions PI–MBUS–300

21 (15 Hex) Write General Reference (Continued)

An example of a request to write one group of references into slave device 17 is

shown below.

The group consists of three registers in file 4, starting at register 7 (address 0007).

Example

Field Name 

(Hex)

Slave Address 

11

Function 


15

Byte Count 

0D

Sub–Req 1, Reference Type 
06

Sub–Req 1, File Number Hi 
00

Sub–Req 1, File Number Lo 
04

Sub–Req 1, Starting Addr Hi 
00

Sub–Req 1, Starting Addr Lo 
07

Sub–Req 1, Register Count Hi 00

Sub–Req 1, Register Count Lo 03

Sub–Req 1, Register Data Hi 
06

Sub–Req 1, Register Data Lo 
AF

Sub–Req 1, Register Data Hi 
04

Sub–Req 1, Register Data Lo 
BE

Sub–Req 1, Register Data Hi 
10

Sub–Req 1, Register Data Lo 
0D

Error Check (LRC or CRC) ––

QUERY

Figure 36 Write General Reference – Query

PI–MBUS–300 Data and Control Functions 65

Response

The normal response is an echo of the query.

Example

Field Name 
(Hex)

Slave Address 
11

Function 

15

Byte Count 
0D

Sub–Req 1, Reference Type 06

Sub–Req 1, File Number Hi 00

Sub–Req 1, File Number Lo 04

Sub–Req 1, Starting Addr Hi 00

Sub–Req 1, Starting Addr Lo 07

Sub–Req 1, Register Count Hi 00

Sub–Req 1, Register Count Lo 03

Sub–Req 1, Register Data Hi 06

Sub–Req 1, Register Data Lo AF

Sub–Req 1, Register Data Hi 04

Sub–Req 1, Register Data Lo BE

Sub–Req 1, Register Data Hi 10

Sub–Req 1, Register Data Lo 0D

Error Check (LRC or CRC) ––

RESPONSE

Figure 37 Write General Reference – Response

66 Data and Control Functions PI–MBUS–300

22 (16Hex) Mask Write 4X Register

Description

Modifies the contents of a specified 4XXXX register using a combination of an

AND mask, an OR mask, and the register’s current contents. The function can be

used to set or clear individual bits in the register. Broadcast is not supported.

This function is supported in the 984–785 controller only.

Query

The query specifies the 4XXXX reference to be written, the data to be used as the

AND mask, and the data to be used as the OR mask.

The function’s algorithm is:

Result = ( Current Contents AND And_Mask ) OR ( Or_Mask AND And_Mask )

For example: Hex Binary

Current Contents = 12 0001 0010

And_Mask = F2 1111 0010

Or_Mask = 25 0010 0101

And_Mask = 0D 0000 1101

Result = 17 0001 0111

Note that if the Or_Mask value is zero, the result is simply the logical ANDing of

the current contents and And_Mask. If the And_Mask value is zero, the result is

equal to the Or_Mask value.

Note that the contents of the register can be read with the Read Holding Registers

function (function code 03). They could, however, be changed subsequently as

the controller scans its user logic program.

An example of a Mask Write to register 5 in slave device 17, using the above

mask values, is shown on the next page.

PI–MBUS–300 Data and Control Functions 67

Example

Field Name 

(Hex)

Slave Address 

11

Function 


16

Reference Address Hi 
00

Reference Address Lo 
04

And_Mask Hi 

00

And_Mask Lo 

F2

Or_Mask Hi 

00

Or–Mask Lo 

25

Error Check (LRC or CRC) ––

QUERY

Figure 38 Mask Write 4X Register – Query

Response

The normal response is an echo of the query. The response is returned after the

register has been written.

Example

Field Name 
(Hex)

Slave Address 
11

Function 

16

Reference Address Hi 00

Reference Address Lo 04

And_Mask Hi 
00

And_Mask Lo 
F2

Or_Mask Hi 
00

Or–Mask Lo 
25

Error Check (LRC or CRC) ––

RESPONSE

Figure 39 Mask Write 4X Register – Response

68 Data and Control Functions PI–MBUS–300

23 (17Hex) Read/Write 4X Registers

Description

Performs a combination of one read and one write operation in a single Modbus

transaction. The function can write new contents to a group of 4XXXX registers,

and then return the contents of another group of 4XXXX registers. Broadcast is

not supported. This function is supported in the 984–785 controller only.

Query

The query specifies the starting address and quantity of registers of the group to

be read. It also specifies the starting address, quantity of registers, and data for

the group to be written. The byte count field specifies the quantity of bytes to

follow in the write data field.

Here is an example of a query to read six registers starting at register 5, and to

write three registers starting at register 16, in slave device 17:

Example

Field Name 
(Hex)

Slave Address 
11

Function 

17

Read Reference Address Hi 00

Read Reference Address Lo 04

Quantity to Read Hi 00

Quantity to Read Lo 06

Write Reference Address Hi 00

Write Reference Address Lo 0F

Quantity to Write Hi 
00

Quantity to Write Lo 03

Byte Count 06

Write Data 1 Hi 00

Write Data 1 Lo FF

Write Data 2 Hi 00

Write Data 2 Lo FF

Write Data 3 Hi 00

Write Data 3 Lo FF

Error Check (LRC or CRC) ––

QUERY

Figure 40 Read/Write 4X Registers – Query

PI–MBUS–300 Data and Control Functions 69

Response

The normal response contains the data from the group of registers that were read.

The byte count field specifies the quantity of bytes to follow in the read data field.

Here is an example of a response to the query on the opposite page:

Example

Field Name (Hex)

Slave Address 11

Function 17

Byte Count 0C

Read Data 1 Hi 00

Read Data 1 Lo FE

Read Data 2 Hi 0A

Read Data 2 Lo CD

Read Data 3 Hi 00

Read Data 3 Lo 01

Read Data 4 Hi 00

Read Data 4 Lo 03

Read Data 5 Hi 00

Read Data 5 Lo 0D

Read Data 6 Hi 00

Read Data 6 Lo FF

Error Check (LRC or CRC) ––

RESPONSE

Figure 41 Read/Write 4X Registers – Response

70 Data and Control Functions PI–MBUS–300

24 (18Hex) Read FIFO Queue

Description

Reads the contents of a First–In–First–Out (FIFO) queue of 4XXXX registers. The

function returns a count of the registers in the queue, followed by the queued data.

Up to 32 registers can be read: the count, plus up to 31 queued data registers.

The queue count register is returned first, followed by the queued data registers.

The function reads the queue contents, but does not clear them. Broadcast is not

supported.

This function is supported in the 984–785 controller only.

Query

The query specifies the starting 4XXXX reference to be read from the FIFO queue.

This is the address of the pointer register used with the controller’s FIN and FOUT

function blocks. It contains the count of registers currently contained in the queue.

The FIFO data registers follow this address sequentially.

An example of a Read FIFO Queue query to slave device 17 is shown below. The

query is to read the queue starting at the pointer register 41247 (04DE hex).

Example

Field Name 
(Hex)

Slave Address 
11

Function 

18

FIFO Pointer Address Hi 04

FIFO Pointer Address Lo DE

Error Check (LRC or CRC) ––

QUERY

Figure 42 Read FIFO Queue – Query

PI–MBUS–300 Data and Control Functions 71

Response

In a normal response, the byte count shows the quantity of bytes to follow,

including the queue count bytes and data register bytes (but not including the error

check field).

The queue count is the quantity of data registers in the queue (not including the

count register).

If the queue count exceeds 31, an exception response is returned with an error

code of 03 (Illegal Data Value).

This is an example of a normal response to the query on the opposite page:

Example

Field Name (Hex)

Slave Address 11

Function 18

Byte Count Hi 00

Byte Count Lo 08

FIFO Count Hi 00

FIFO Count Lo 03

FIFO Data Reg 1 Hi 01

FIFO Data Reg 1 Lo B8

FIFO Data Reg 2 Hi 12

FIFO Data Reg 2 Lo 84

FIFO Data Reg 3 Hi 13

FIFO Data Reg 3 Lo 22

Error Check (LRC or CRC) ––

RESPONSE

Figure 43 Read FIFO Queue – Response

In this example, the FIFO pointer register (41247 in the query) is returned with a

queue count of 3. The three data registers follow the queue count. These are:

41248 (contents 440 decimal -- 01B8 hex); 41249 (contents 4740 -- 1284 hex);

and 41250 (contents 4898 -- 1322 hex).

PI–MBUS–300 Diagnostic Subfunctions 73

Chapter 3. Diagnostic Subfunctions

Modbus Function 08 – Diagnostics

Diagnostic Subfunctions

74 Diagnostic Subfunctions PI–MBUS–300

Function 08 – Diagnostics

Description

Modbus function 08 provides a series of tests for checking the communication

system between the master and slave, or for checking various internal error

conditions within the slave. Broadcast is not supported.

The function uses a two–byte subfunction code field in the query to define the

type of test to be performed. The slave echoes both the function code and

subfunction code in a normal response.

Most of the diagnostic queries use a two–byte data field to send diagnostic data or

control information to the slave. Some of the diagnostics cause data to be returned

from the slave in the data field of a normal response.

Diagnostic Effects on the Slave

In general, issuing a diagnostic function to a slave device does not affect the

running of the user program in the slave. User logic, like discretes and registers,

is not accessed by the diagnostics. Certain functions can optionally reset error

counters in the slave.

A slave device can, however, be forced into ‘Listen Only Mode’ in which it will

monitor the messages on the communications system but not respond to them.

This can affect the outcome of your application program it it depends upon any

further exchange of data with the slave device. Generally, the mode is forced to

remove a malfunctioning slave device from the communications system.

How This Information is Organized in Your Guide

An example diagnostics query and response are shown on the opposite page.

These show the location of the function code, subfunction code, and data field

within the messages.

A list of subfunction codes supported by the controllers is shown on the pages

after the example response. Each subfunction code is then listed with an example

of the data field contents that would apply for that diagnostic.

PI–MBUS–300 Diagnostic Subfunctions 75

Query

Here is an example of a request to slave device 17 to Return Query Data. This

uses a subfunction code of zero (00 00 hex in the two–byte field). The data to be

returned is sent in the two–byte data field (A5 37 hex).

Example

Field Name (Hex)

Slave Address 11

Function 08

Subfunction Hi 00

Subfunction Lo 00

Data Hi A5

Data Lo 37

Error Check (LRC or CRC) ––

QUERY

Figure 44 Diagnostics – Query

Response

The normal response to the Return Query Data request is to loopback the same

data. The function code and subfunction code are also echoed.

Example

Field Name (Hex)

Slave Address 11

Function 08

Subfunction Hi 00

Subfunction Lo 00

Data Hi A5

Data Lo 37

Error Check (LRC or CRC) ––

RESPONSE

Figure 45 Diagnostics – Response

The data fields in responses to other kinds of queries could contain error counts or

other information requested by the subfunction code.

76 Diagnostic Subfunctions PI–MBUS–300

DiagnosticCodes Supportedby Controllers

The listing below shows the subfunction codes supported by Modicon controllers.

Codes are listed in decimal.

‘Y’ indicates that the subfunction is supported. ‘N’ indicates that it is not supported.

Code Name 384 484 584 884 M84 984

00 Return Query Data Y Y Y Y Y Y

01 Restart Comm Option Y Y Y Y Y Y

02 Return Diagnostic Register Y Y Y Y Y Y

03 Change ASCII Input Delimiter Y Y Y N N Y

04 Force Listen Only Mode Y Y Y Y Y Y

05–09 Reserved

10 Clear Ctrs and Diagnostic Reg. Y Y (1) N N (1)

11 Return Bus Message Count Y Y Y N N Y

12 Return Bus Comm. Error Count Y Y Y N N Y

13 Return Bus Exception Error Cnt Y Y Y N N Y

14 Return Slave Message Count Y Y Y N N N

15 Return Slave No Response Cnt Y Y Y N N N

16 Return Slave NAK Count Y Y Y N N Y

17 Return Slave Busy Count Y Y Y N N Y

18 Return Bus Char. Overrun Cnt Y Y Y N N Y

19 Return Overrun Error Count N N N Y N N

20 Clear Overrun Counter and Flag N N N Y N N

21 Get/Clear Modbus Plus Statistics N N N N N Y

22–up Reserved

Notes:

( 1 ) Clears Counters only.

PI–MBUS–300 Diagnostic Subfunctions 77

Diagnostic Subfunctions

00 Return Query Data

The data passed in the query data field is to be returned (looped back) in the

response. The entire response message should be identical to the query.

Subfunction Data Field (Query) Data Field (Response)

00 00 Any Echo Query Data

01 Restart Communications Option

The slave’s peripheral port is to be initialized and restarted, and all of its

communications event counters are to be cleared. If the port is currently in Listen

Only Mode, no response is returned. This function is the only one that brings the

port out of Listen Only Mode. If the port is not currently in Listen Only Mode, a

normal response is returned. This occurs before the restart is executed.

When the slave receives the query, it attempts a restart and executes its

power–up confidence tests. Successful completion of the tests will bring the port

online.

A query data field contents of FF 00 hex causes the port’s Communications Event

Log to be cleared also. Contents of 00 00 leave the log as it was prior to the

restart.

Subfunction Data Field (Query) Data Field (Response)

00 01 00 00 Echo Query Data

00 01 FF 00 Echo Query Data

78 Diagnostic Subfunctions PI–MBUS–300

08 Diagnostics (Continued)

02 Return Diagnostic Register

The contents of the slave’s 16–bit diagnostic register are returned in the response.

Subfunction Data Field (Query) Data Field (Response)

00 02 00 00 Diagnostic Register Contents

How the Register Data is Organized

The assignment of diagnostic register bits for Modicon controllers is listed below.

In each register, bit 15 is the high–order bit. The description is TRUE when the

corresponding bit is set to a logic ‘1‘.

184/384 Diagnostic Register

Bit Description

0 Continue on Error

1 Run Light Failed

2 T–Bus Test Failed

3 Asynchronous Bus Test Failed

4 Force Listen Only Mode

5 Not Used

6 Not Used

7 ROM Chip 0 Test Failed

8 Continuous ROM Checksum Test in Execution

9 ROM Chip 1 Test Failed

10 ROM Chip 2 Test Failed

11 ROM Chip 3 Test Failed

12 RAM Chip 5000-53FF Test Failed

13 RAM Chip 6000-67FF Test Failed, Even Addresses

14 RAM Chip 6000-67FF Test Failed, Odd Addresses

15 Timer Chip Test Failed

PI–MBUS–300 Diagnostic Subfunctions 79

484 Diagnostic Register

Bit Description

0 Continue on Error

1 CPU Test or Run Light Failed

2 Parallel Port Test Failed

3 Asynchronous Bus Test Failed

4 Timer 0 Test Failed

5 Timer 1 Test Failed

6 Timer 2 Test Failed

7 ROM Chip 0000-07FF Test Failed

8 Continuous ROM Checksum Test in Execution

9 ROM Chip 0800-0FFF Test Failed

10 ROM Chip 1000-17FF Test Failed

11 ROM Chip 1800-1FFF Test Failed

12 RAM Chip 4000-40FF Test Failed

13 RAM Chip 4100-41FF Test Failed

14 RAM Chip 4200-42FF Test Failed

15 RAM Chip 4300-43FF Test Failed

584/984 Diagnostic Register

Bit Description

0 Illegal Configuration

1 Backup Checksum Error in High–Speed RAM

2 Logic Checksum Error

3 Invalid Node Type

4 Invalid Traffic Cop Type

5 CPU/Solve Diagnostic Failed

6 Real Time Clock Failed

7 Watchdog Timer Failed - Scan Time exceeded 250 ms.

8 No End of Logic Node detected, or quantity of end of segment

words (DOIO) does not match quantity of segments configured

9 State Ram Test Failed

10 Start of Network (SON) did not begin network

11 Bad Order of Solve Table

12 Illegal Peripheral Intervention

13 Dim Awareness Flag

14 Not Used

15 Peripheral Port Stop Executed, not an error.

80 Diagnostic Subfunctions PI–MBUS–300

08 Diagnostics (Continued)

884 Diagnostic Register

Bit Description

0 Modbus IOP Overrun Errors Flag

1 Modbus Option Overrun Errors Flag

2 Modbus IOP Failed

3 Modlbus Option Failed

4 Ourbus IOP Failed

5 Remote IO Failed

6 Main CPU Failed

7 Table RAM Checksum Failed

8 Scan Task exceeded its time limit - too much user logic

9 Not Used

10 Not Used

11 Not Used

12 Not Used

13 Not Used

14 Not Used

15 Not Used

PI–MBUS–300 Diagnostic Subfunctions 81

03 Change ASCII Input Delimiter

The character ‘CHAR’ passed in the query data field becomes the end of message

delimiter for future messages (replacing the default LF character). This function is

useful in cases where a Line Feed is not wanted at the end of ASCII messages.

Subfunction Data Field (Query) Data Field (Response)

00 03 CHAR 00 Echo Query Data

04 Force Listen Only Mode

Forces the addressed slave to its Listen Only Mode for Modbus communications.

This isolates it from the other devices on the network, allowing them to continue

communicating without interruption from the addressed slave. No response is

returned.

When the slave enters its Listen Only Mode, all active communication controls are

turned off. The Ready watchdog timer is allowed to expire, locking the controls off.

While in this mode, any Modbus messages addressed to the slave or broadcast

are monitored, but no actions will be taken and no responses will be sent.

The only function that will be processed after the mode is entered will be the

Restart Communications Option function (function code 8, subfunction 1).

Subfunction Data Field (Query) Data Field (Response)

00 04 00 00 No Response Returned

10 (0A Hex) Clear Counters and Diagnostic Register

For controllers other than the 584 or 984, clears all counters and the diagnostic

register. For the 584 or 984, clears the counters only. Counters are also cleared

upon power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0A 00 00 Echo Query Data

82 Diagnostic Subfunctions PI–MBUS–300

08 Diagnostics (Continued)

11 (0B Hex) Return Bus Message Count

The response data field returns the quantity of messages that the slave has

detected on the communications system since its last restart, clear counters

operation, or power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0B 00 00 Total Message Count

12 (0C Hex) Return Bus Communication Error Count

The response data field returns the quantity of CRC errors encountered by the

slave since its last restart, clear counters operation, or power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0C 00 00 CRC Error Count

13 (0D Hex) Return Bus Exception Error Count

The response data field returns the quantity of Modbus exception responses

returned by the slave since its last restart, clear counters operation, or power–up.

Exception responses are described and listed in Appendix A.

Subfunction Data Field (Query) Data Field (Response)

00 0D 00 00 Exception Error Count

PI–MBUS–300 Diagnostic Subfunctions 83

14 (0E Hex) Return Slave Message Count

The response data field returns the quantity of messages addressed to the slave,

or broadcast, that the slave has processed since its last restart, clear counters

operation, or power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0E 00 00 Slave Message Count

15 (0F Hex) Return Slave No Response Count

The response data field returns the quantity of messages addressed to the slave

for which it returned no response (neither a normal response nor an exception

response), since its last restart, clear counters operation, or power–up.

Subfunction Data Field (Query) Data Field (Response)

00 0F 00 00 Slave No Response Count

16 (10 Hex) Return Slave NAK Count

The response data field returns the quantity of messages addressed to the slave

for which it returned a Negative Acknowledge (NAK) exception response, since its

last restart, clear counters operation, or power–up. Exception responses are

described and listed in Appendix A.

Subfunction Data Field (Query) Data Field (Response)

00 10 00 00 Slave NAK Count

84 Diagnostic Subfunctions PI–MBUS–300

08 Diagnostics (Continued)

17 (11 Hex) Return Slave Busy Count

The response data field returns the quantity of messages addressed to the slave

for which it returned a Slave Device Busy exception response, since its last

restart, clear counters operation, or power–up. Exception responses are

described and listed in Appendix A.

Subfunction Data Field (Query) Data Field (Response)

00 11 00 00 Slave Device Busy Count

18 (12 Hex) Return Bus Character Overrun Count

The response data field returns the quantity of messages addressed to the slave

that it could not handle due to a character overrun condition, since its last restart,

clear counters operation, or power–up. A character overrun is caused by data

characters arriving at the port faster than they can be stored, or by the loss of a

character due to a hardware malfunction.

Subfunction Data Field (Query) Data Field (Response)

00 12 00 00 Slave Character Overrun Count

19 (13 Hex) Return IOP Overrun Count (884)

The response data field returns the quantity of messages addressed to the slave

that it could not handle due to an 884 IOP overrun condition, since its last restart,

clear counters operation, or power–up. An IOP overrun is caused by data

characters arriving at the port faster than they can be stored, or by the loss of a

character due to a hardware malfunction. This function is specific to the 884.

Subfunction Data Field (Query) Data Field (Response)

00 13 00 00 Slave IOP Overrun Count

PI–MBUS–300 Diagnostic Subfunctions 85

20 (14 Hex) Clear Overrun Counter and Flag (884)

Clears the 884 overrun error counter and resets the error flag. The current state

of the flag is found in bit 0 of the 884 diagnostic register (see subfunction 02).

This function is specific to the 884.

Subfunction Data Field (Query) Data Field (Response)

00 14 00 00 Echo Query Data

86 Diagnostic Subfunctions PI–MBUS–300

08 Diagnostics (Continued)

21 (15 Hex) Get/Clear Modbus Plus Statistics

Returns a series of 54 16-bit words (108 bytes) in the data field of the response

(this function differs from the usual two-byte length of the data field). The data

contains the statistics for the Modbus Plus peer processor in the slave device.

In addition to the Function code (08) and Subfunction code (00 15 hex) in the

query, a two-byte Operation field is used to specify either a ‘Get Statistics’ or a

‘Clear Statistics’ operation. The two operations are exclusive - the ‘Get’ operation

cannot clear the statistics, and the ‘Clear’ operation does not return statistics prior

to clearing them. Statistics are also cleared on power-up of the slave device.

The operation field immediately follows the subfunction field in the query:

–– A value of 00 03 specifies the ‘Get Statistics’ operation.

–– A value of 00 04 specifies the ‘Clear Statistics’ operation.

QUERY: This is the field sequence in the query:

Function Subfunction Operation

08 00 15 00 03 (Get Statistics)

08 00 15 00 04 (Clear Statistics)

GET STATISTICS RESPONSE: This is the field sequence in the normal response

to a Get Statistics query:

Function Subfunction Operation Byte Count Data

08 00 15 00 03 00 6C Words 00 - 53

CLEAR STATISTICS RESPONSE: The normal response to a Clear Statistics

query is an echo of the query:

Function Subfunction Operation

08 00 15 00 04

PI–MBUS–300 Diagnostic Subfunctions 87

Modbus Plus Network Statistics

Word Bits Meaning

00 Node type ID:

0 Unknown node type

1 Programmable controller node

2 Modbus bridge node

3 Host computer node

4 Bridge Plus node

5 Peer I/O node

01 0 ... 11 Software version number in hex (to read, strip bits 12–15 from word)

12 ... 14 Reserved

15 Defines Word 15 error counters (see Word 15)

Most significant bit defines use of error counters in Word 15.

Least significant half of upper byte, plus lower byte, contain software version.

Layout: | Upper Byte | Lower Byte |

[ ] [––––Software version in hex––––]

\

Most significant bit defines Word 15 error counters

(see Word 15)

02 Network address for this station

03 MAC state variable:

0 Power up state

1 Monitor offline state

2 Duplicate offline state

3 Idle state

4 Use token state

5 Work response state

6 Pass token state

7 Solicit response state

8 Check pass state

9 Claim token state

10 Claim response state

04 Peer status (LED code); provides status of this unit

relative to the network:

0 Monitor link operation

32 Normal link operation

64 Never getting token

96 Sole station

128 Duplicate station

88 Diagnostic Subfunctions PI–MBUS–300

08 Diagnostics (Continued)

Modbus Plus Network Statistics (Continued)

Word Bits Meaning

05 Token pass counter; increments each time this station gets the token

06 Token rotation time in ms

07 LO Data master failed during token ownership bit map

HI Program master failed during token ownership bit map

08 LO Data master token owner work bit map

HI Program master token owner work bit map

09 LO Data slave token owner work bit map

HI Program slave token owner work bit map

10 HI Data slave/get slave command transfer request bit map

11 LO Program master/get master rsp transfer request bit map

HI Program slave/get slave command transfer request bit map

12 LO Program master connect status bit map

HI Program slave automatic logout request bit map

13 LO Pretransmit deferral error counter

HI Receive buffer DMA overrun error counter

14 LO Repeated command received counter

HI Frame size error counter

15 If Word 1 bit 15 is not set, Word 15 has the following meaning:

LO Receiver collision–abort error counter

HI Receiver alignment error counter

If Word 1 bit 15 is set, Word 15 has the following meaning:

LO Cable A framing error

HI Cable B framing error

16 LO Receiver CRC error counter

HI Bad packet–length error counter

17 LO Bad link–address error counter

HI Transmit buffer DMA–underrun error counter

PI–MBUS–300 Diagnostic Subfunctions 89

Word Byte Meaning

18 LO Bad internal packet length error counter

HI Bad MAC function code error counter

19 LO Communication retry counter

HI Communication failed error counter

20 LO Good receive packet success counter

HI No response received error counter

21 LO Exception response received error counter

HI Unexpected path error counter

22 LO Unexpected response error counter

HI Forgotten transaction error counter

23 LO Active station table bit map, nodes 1 ... 8

HI Active station table bit map, nodes 9 ...16

24 LO Active station table bit map, nodes 17 ... 24

HI Active station table bit map, nodes 25 ... 32

25 LO Active station table bit map, nodes 33 ... 40

HI Active station table bit map, nodes 41 ... 48

26 LO Active station table bit map, nodes 49 ... 56

HI Active station table bit map, nodes 57 ... 64

27 LO Token station table bit map, nodes 1 ... 8

HI Token station table bit map, nodes 9 ... 16

28 LO Token station table bit map, nodes 17 ... 24

HI Token station table bit map, nodes 25 ... 32

29 LO Token station table bit map, nodes 33 ... 40

HI Token station table bit map, nodes 41 ... 48

30 LO Token station table bit map, nodes 49 ... 56

HI Token station table bit map, nodes 57 ... 64

31 LO Global data present table bit map, nodes 1 ... 8

HI Global data present table bit map, nodes 9 ... 16

32 LO Global data present table bit map, nodes 17 ... 24

HI Global data present table bit map, nodes 25 ... 32

33 LO Global data present table bit map, nodes 33 ... 40

HI Global data present table bit map, nodes 41 ... 48

34 LO Global data present table map, nodes 49 ... 56

HI Global data present table bit map, nodes 57 ... 64

90 Diagnostic Subfunctions PI–MBUS–300

08 Diagnostics (Continued)

Modbus Plus Network Statistics (Continued)

Word Bits Meaning

35 LO Receive buffer in use bit map, buffer 1–8

HI Receive buffer in use bit map, buffer 9 ... 16

36 LO Receive buffer in use bit map, buffer 17 ... 24

HI Receive buffer in use bit map, buffer 25 ... 32

37 LO Receive buffer in use bit map, buffer 33 ... 40

HI Station management command processed initiation counter

38 LO Data master output path 1 command initiation counter

HI Data master output path 2 command initiation counter

39 LO Data master output path 3 command initiation counter

HI Data master output path 4 command initiation counter

40 LO Data master output path 5 command initiation counter

HI Data master output path 6 command initiation counter

41 LO Data master output path 7 command initiation counter

HI Data master output path 8 command initiation counter

42 LO Data slave input path 41 command processed counter

HI Data slave input path 42 command processed counter

43 LO Data slave input path 43 command processed counter

HI Data slave input path 44 command processed counter

44 LO Data slave input path 45 command processed counter

HI Data slave input path 46 command processed counter

45 LO Data slave input path 47 command processed counter

HI Data slave input path 48 command processed counter

46 LO Program master output path 81 command initiation counter

HI Program master output path 82 command initiation counter

47 LO Program master output path 83 command initiation counter

HI Program master output path 84 command initiation counter

48 LO Program master command initiation counter

HI Program master output path 86 command initiation counter

49 LO Program master output path 87 command initiation counter

HI Program master output path 88 command initiation counter

PI–MBUS–300 Diagnostic Subfunctions 91

Word Bits Meaning

50 LO Program slave input path C1 command processed counter

HI Program slave input path C2 command processed counter

51 LO Program slave input path C3 command processed counter

HI Program slave input path C4 command processed counter

52 LO Program slave input path C5 command processed counter

HI Program slave input path C6 command processed counter

53 LO Program slave input path C7 command processed counter

HI Program slave input path C8 command processed counter

PI–MBUS–300 Exception Responses 93
	Literature

	-
	The Modbus technical resources on the Modbus-IDA site are a good starting point for those who need the latest information about implementing and using the Modbus interface. Modbus-IDA is the current driving force behind the promotion and implementation of the Modbus protocol.
	Modbus-IDA


Magistrala RS485





Terminal





de control











Reţea





digitală





RS





-485











Protocol de





comunicaţie





Modbus














Echipamente de











Intrare/Ieşire 








[image: image1.jpg]Open Networks

TCP/IP ETHERNET

Ready for immediate operation with the
worldwide standard TCP/IP protocol. APC
connected to the Ethernet hasfull access
toall PLCsin the MELSECNET, all the way
down tothe 1/0s on the production level.

CC-Link

The new open network for the control and
I/0 level. Sensorsand actuators from differ-
ent manufacturers can be connected.Upto
64 stations can be integrated.

SYSTEM DESCRIPTION

PROFIBUS/DP

Enables quick and simple connection of
sensors and actuators from different
manufacturers to MELSEC PLCs, with data
transfer rates of up to 12 Mbaud.

DeviceNet

Cost-effective CAN-based network commu-
nications. Fault-resistant network structure
where components of different manufac-
turers can be integrated quickly and easily.

TCP/IP ETHERNET

F FK2N )

AS-Interface

International standard for the lowest field
bus level. Connection of conventional sen-
sors and actuators with twisted-pair cable.

CANopen

Cost effective network communications
with fault-resistant network structure
where components of different manufac-
turers can be integrated quickly and easily.

COMMAND LEVEL
TCP/IP ETHERNET

CONTROL LEVEL
PROFIBUS/DP
CC-Link

i1 MAR2 MG

PRODUCTION LEVEL
PROFIBUS/DP
DeviceNet
AS-Interface

CCLink

CANopen

DeviceNet

soon
soon

S MITSUBISHI ELECTRIC

NETWORKS 7

SYSTEM




[image: image4.png]


[image: image5.png]


[image: image6.png]


[image: image7.png]


[image: image8.png]


[image: image9.png]


[image: image10.png]


[image: image11.png]


