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Foreword to volumes 1 and 2

Foreword for the 2nd Edition of Theory and Practice of Modern Antenna Range
Measurements

Since the publishing of the First Edition of this extensive reference book, it has
been the preeminent source for the theory and practical aspects of all the mea-
surement methods that are used to characterise the extremely broad range of
antennas that have been developed as critical components in modern communica-
tion, sensing and space applications. With the completion of this Second Edition,
major improvements and additions have been included to keep pace with the con-
tinuing advancements in this field. The authors have the knowledge and back-
ground to provide authoritative and practical material that is very necessary for the
technical challenges that are required on modern antenna measurement facilities.
The new edition has increased the scope of information and the quality of pre-
sentation and will continue to be a valuable resource for technical experts working
in this field for many years.

Allen C Newell

NIST Retired, Newell Near-Field Consultants
June 2019

Boulder, Colorado, USA
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Preface to volumes 1 and 2

At the time of writing of this text, some 147 years have passed since the publication
of the Treatise on Electricity and Magnetism by James Clerk Maxwell. This was
the text that firmly established the classical theory of electromagnetism in the
mainstream of science and engineering and placed Maxwell within the pantheon of
greats in the fields of science and technology. The success of this classical theory is
attested to by the extraordinarily good agreement that is routinely attained between
theoretical prediction and physical measurement. Its initial triumph was to not only
be able to summarise all previous experiences in the fields of optics, electricity and
magnetism within a small” set of self-consistent equations; but also, for the first
time, to admit the possibility of electromagnetic waves. Crucially, the velocity of
these waves could be deduced exclusively from electrical measurements, which
when compared with the then known velocity of light, the two values were found to
coincide almost exactly.

This inherent accuracy and precision has enabled successive generations of
workers to construct and refine ever more complex and ingenious structures for the
transmission and reception of electromagnetic waves. These waves can be used for
the transmission of information by means of modulating the wave-form to contrive
a signal as used in the field of telecommunications. Alternatively, these modulated
(i.e. radio) waves can be utilised for the remote detection and location of planes,
ships, or other targets as is employed within modern radar (Radio Detection And
Ranging) systems. More recently, the way in which radio waves scatter has also
been harnessed, as this additional information can be used to remotely sense
properties of the physical world without the need to actually visit those locations.
Thus, the sheer multitude and diversity of the applications inexorably drives the
ever-increasing intricacy and sophistication of the design of the devices that are
used to efficiently transmit and receive these electromagnetic waves, so accurately
and rigorously postulated by James Clerk Maxwell.

The achievements of Maxwell are remembered in his home town of Edinburgh in
Scotland where a statue of him seated in his academic gown holding a colour wheel
stands at a busy intersection, with the proud motive ‘James Clerk Maxwell
Mathematical Physicist’, carved into the stone pedestal on which it sits. A more
modern interpretation of the term mathematical physicist might be theoretical physi-
cist, but in fact it should be remembered that in the opening leaf of the Treatise on

“It was actually Oliver Heaviside who reformulated Maxwell’s 20 equations, which were quite difficult
to use, and reduced them to obtain the four very useful equations that are in common use today.
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Electricity and Magnetism, Maxwell refers to himself as ‘Professor of Experimental
Physics in the University of Cambridge’ and as if to emphasise the importance that he
placed on the experimental and empirical aspects of his work he devoted the first 26
numbered paragraphs in the treatise to a preliminary to be read prior to the main text,
this preliminary being entitled ‘On the measurement of quantities’. Still now, after so
many years as a result of the increasing intricacy and sophistication of the devices and
systems designed to utilise the concept of classical electromagnetic field theory, the
problem of the measurement of electromagnetic fields remains as acute as ever.

The development and proliferation of inexpensive, powerful, digital computers
with large amounts of memory in the latter part of the twentieth century has
enabled the use of computer-aided engineering to become commonplace in both the
design and measurement of antenna assemblies. The use of full-wave three-
dimensional computational electromagnetic simulation software tools has allowed
the antenna designer to accurately and precisely predict the performance of a given
structure. These tools harness techniques such as the finite difference time domain, or
method of moments, that simply cannot be effectively deployed without the use of a
digital computer. Modern, now commercially available, software packages have
provided hitherto unknown levels of detail, accuracy and precision leading to their
becoming an indispensable part of the antenna design and development process. Such
design and prediction capabilities have become commonplace throughout academia
and industry alike and have in no small way contributed towards the emergent need
for the antenna metrologist to provide a broadly comparable service.

Clearly, antennas have to be mounted and attached to structures and these can
influence, in some cases significantly, the installed radiation pattern as electro-
magnetic waves ‘couple’ to these structures and subsequently radiate. Additionally,
variations in material properties and the influence of imperfections in manufacturing
mean that in nearly all practical applications the antenna radiation characteristics have
to be measured before a final design can go into commercial production. The
inevitable search for more efficient and accurate techniques for the characterisation of
new, increasingly complex, instruments has been the catalyst for the rapid develop-
ment of modern sophisticated antenna measurement techniques. These developed first
from the early direct observation techniques that were harnessed during the years of
the Second World War (1939-45), and which were still commonplace until only
comparatively recently, to the most advanced indirect near-field techniques.

Very often, antenna metrology is considered to be a difficult discipline that is best
left to a few designated ‘experts’. In part this perception is perhaps attributable to the
realisation as with all science and engineering antenna metrology is fundamentally
both an intellectual, and a practical activity. Thus, in order to take good measurements,
the practitioner needs to be familiar with and adept at both the practical and theoretical
aspects of the work making antenna metrology an extremely broad subject. This dif-
ficulty is further complicated as many of the concepts that are routinely used are found
in the development of the theory of classical electrodynamics which, as already stated
were completed in the nineteenth centuryT and which were originated centuries earlier

fIn 1864 Maxwell published a paper entitled ‘Dynamical Theory of the Electromagnetic Field’.
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than that. Furthermore, and as with any discipline that becomes firmly established (i.e.
entrenched), there is a danger that the principles and concepts that lie behind the
terminology its workers use can become taken for granted, thereby obscuring the
subject and its meaning from all but a few experienced practitioners. This is all
the more acute an issue as the development of the discipline has been sufficiently rapid
over the course of the past few decades that even active workers can, at times, struggle
to keep abreast of the most recent developments. This text aims to address this by
adopting a coherent narrative, terminology and nomenclature throughout. In this way,
it is hoped that this volume can form a useful introduction and reference to graduate
students, researchers and practicing engineers alike.

The first chapters of this text present an initial examination of the properties of
antennas that allow them to enhance the free-space interaction of electronic sys-
tems. This is followed by an introduction to direct far-field and indirect far-field
forms of antenna measurements and their implementation. Chapter 5 presents a
detailed description of the compact antenna test range which is a direct far-field
measurement technique before Chapters 6—8 progress to present alternative indirect
planar, cylindrical and spherical techniques, respectively. Chapter 9 is devoted to
field transformations from non-canonical measurement surfaces based on general
inverse-source formulations. Chapter 10 discusses near-field range error budgets
which are an indispensable part of antenna metrology. Chapter 11 presents a
discussion of modern mobile and body-centric antenna measurements. Finally,
Chapter 12 sets out some of the most recent advances in the various measurement
techniques including aperture diagnostics, phase-less antenna metrology and range
multi-path suppression techniques which currently are amongst some of the most
active topics for researchers.

In summary, this volume will provide a comprehensive introduction and
explanation of both the theory and practice of all forms of modern antenna mea-
surements from their most basic postulates and assumptions to the intricate details
of their application in various demanding modern measurement scenarios.

The authors have not attempted to identify the originators of every concept or
to provide an exhaustive literary survey or historical account as this can very often
obstruct the pedagogy of a text. Additionally, except where specifically stated, it
should be noted that only concepts, techniques and methodologies of which at least
one of the authors has direct practical experience of implementation are included
for discussion in the text. The International System of Units (SI) is used exclusively
with the approximation uo = 47 x 10~ NA 2. Following the redefinition of SI base
units, the kilogram, ampere, kelvin and mole, on the 20th of May 2019, the dif-
ference between this value of u and the new SI (experimental) value of y is less
than 1 x 107 in relative value which is negligible in the context of the uncertainty
budgets discussed herein. However, this assumption should be noted and re-
examined periodically as it does subtlety affect the permittivity of vacuum, impe-
dance of vacuum and admittance of vacuum.

Thanks are due to a great many people who gave freely and generously of their
time to review the manuscript at various stages throughout its preparation, and
especially to Prof. Edward B. Joy of Georgia Tech who carefully reviewed an early
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draft. However, any errors or lack of clarity must, as always, remain the responsibility
of the authors alone. The authors are grateful to their wives (Claire Parini, Catherine
Gregson, Imelda McCormick and Lizette Janse van Rensburg) and children (Robert
Parini, Elizabeth Gregson and Suzette Janse van Rensburg) whose unwavering
understanding, constant support, encouragement and good humour were necessary
factors in the completion of this work. We also thank the organisations and indivi-
duals who generously provided copyright consent.

There are many useful and varied sources of information that have been tapped
in the preparation of this text; however, mention must be made of the following
books which have been of particular relevance and will be referred to throughout.
In no special order:

M.R. Spiegel, Theory and Problems of Vector Analysis and an Introduction to
Tensor Analysis, Schaum Publishing Company.

R.H. Clarke and J. Brown, Diffraction Theory and Antennas, Ellis
Horwood Ltd.

J.E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988.

S.F. Gregson, J. McCormick, and C.G. Parini, Principles of Planar Near Field
Measurements, Institution of Engineering and Technology, 2007.

Although the nomenclature and development of the theory of antenna
metrology as presented within this text has not generally followed that of the
National Institute of Standards and Technology (NIST), the technical publications
originating from that organisation have also been a rich source of valuable infor-
mation. In particular, but in no special order:

D.M. Kerns, Plane-Wave Scattering-Matrix Theory of Antennas and Antenna-
Antenna Interactions, National Bureau of Standards Monograph 162.

A.C. Newell, Planar Near-Field Antenna Measurements, Electromagnetic
Fields Division, National Institute of Standards and Technology, Boulder
Colorado.

A.D. Yaghjian, Near-Field Antenna Measurements on a Cylindrical Surface: A
Source Scattering-Matrix Formulation, Electromagnetics Division, Institute
for Basic Standards, National Bureau of Standards, Boulder, Colorado, NBS
Technical Note 696, 1977.

It is the hope of the authors that this text will act as a sound reference for all
aspects of modern antenna measurements and in some small way enhance the theo-
retical knowledge and practical skills of the reader with relation to antenna range
measurements. As it is clear from careers of the greats in science and engineering, not
least Maxwell’s own, that it is only through the interaction of these intellectual and
practical aspects of science and engineering that effective progress can be made.

Clive Parini, Stuart Gregson, John McCormick, Dani€l Janse van Rensburg
and Thomas Eibert

London, Edinburgh, Atlanta and Munich

March 2020



Chapter 8

Spherical near-field antenna measurements

8.1 Introduction

The third near-field formulation we consider is that defined in a spherical coordi-
nate system. The process in deriving the expressions describing this formulation is
analogous to that outlined in Chapter 7 and the fundamental spherical solution to
Maxwell’s equations presented in [1,2]. An excellent work containing the detailed
formulation, as it applies to antenna measurements, was presented in [3] and two
excellent overviews in [4,5]. The theoretical discussion presented here does not aim
to supplant these references, but to form a cohesive presentation of the process
involved when making spherical near-field (SNF) measurements and the funda-
mental requirements and limitations thereof. Our primary goal is therefore not to
develop the SNF formulation from scratch, but review enough of the detail to
provide the reader with an understanding of the process in order to become a more
confident user of the technique.

Any SNF measurement process requires the sampling of tangential electrical
field components on a spherical surface enclosing the antenna being characterised.
From these sampled field values, we can predict far-field radiation and other
associated parameters. This is conceptually simple, but tricky to implement in
practice. The theory allowing us to convert measured near-field values to valid far-
field radiation patterns is also quite challenging, and both of these aspects will be
addressed in what follows.

The SNF measurement system is typically formed from the intersection of two
rotation stages. The combined motion of these two axes of rotation allows the probe
to trace out a conceptual spherical surface in three dimensions, thereby enabling the
collection of samples on lines of constant longitude or latitude. Here, samples are
taken at regular intervals across a spherical grid with typically the antenna under
test (AUT) being rotated. The two axes of rotation have to intersect in a single point
in space, and they have to be perfectly orthogonal. Several practical solutions to
this are found in the industry, and these are presented in Section 8.2. The SNF
measurement system is the most desirable of the three types of near-field systems
since it is the only technique that can circumvent any kind of truncation. However,
due to the mechanical construction of the maj ority" of these systems, one often has
to contend with the effect of a continuously changing gravitational vector with

'We refer to the ¢/0 configuration as described in Section 8.2.
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respect to the AUT during the course of an acquisition. This can lead to unwanted
dimensional changes during testing that are impossible to assess or correct for.
Figure 8.1 contains a schematic representation of a typical SNF antenna test sys-
tem,' where the conceptual, spherical raster sampling strategy is shown.

Figure 8.2 contains a colour image plot of the measured SNF amplitude of a
ridged guide horn antenna. Here, complete 360° ¢ angular cuts were taken that
spanned a 180° 6 region, keeping with the spherical coordinate system defined below.

The corresponding far-field cardinal cuts are presented in Figure 8.3.

As will be shown within this chapter, the electromagnetic fields emanating
from an arbitrary test antenna radiating into free space can be expanded into a set of
orthogonal spherical modes and these modes and coefficients (SMCs) can then be
used to obtain the electric and magnetic fields everywhere in space outside of a
conceptual spherical surface which encloses the radiator. It will also be shown that
these SMCs can be determined from the measured data in an efficient manner
through the use of Fourier techniques. These mode coefficients are also corrected
for the spatial filtering properties of the measuring near-field probe and used to
determine the true AUT transmitting properties. Parameters such as the far-field
antenna pattern function, axial ratio, tilt angle, directivity and gain of the AUT can
be obtained from two orthogonal tangential near electric field components. This
formulation therefore enables highly accurate, practical, SNF techniques to be
implemented. The coordinate system that will be used during the development of
this spherical formulation is presented in Figure 8.4.

Test
antenna

Probe

Figure 8.1 Schematic of SNF antenna test system (/6 configuration as described
in Section 8.2) showing conceptual scanning surface enclosing AUT.
(Picture used with permission of NSI-MI Technologies LLC.)
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Figure 8.2 SNF colour image plot of measured amplitude pattern of ridged guide
horn. Polarisation 1 is shown at the top and polarisation 2 on
the bottom



Figure 8.3 Far-field cardinal cuts obtained from SNF measurements of a ridged
guide horn antenna

Figure 8.4 Coordinate system for the formulation of standard SNF theory
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Here, for a spherical coordinate system as depicted in Figure 8.4, we can write
that

X =rsiné cos ¢
y=rsinfsing
z=rcosf

wherer > 0,0 < ¢ < 27, 0 < 6 < z. In a rectangular coordinate system, point
P can be expressed as P(x, y, z). Conversely, in a spherical coordinate system, point
P can be expressed as P(6, ¢, r), where the relationship between the two systems is
established through this triad of equations. Conversely, from rearranging the above
equations, we obtain the inverse relationships, namely,”

r = /x2+y2+22

¢ = arctan G)

6 = arccos -
VX2 4y 422

As the electric and magnetic fields are vector quantities, we also need to obtain
expressions that allow the respective vector-field components to be converted from
rectangular to spherical coordinate systems and vice versa. This can be accom-
plished easily using the standard expression

N or or
€| = (8_141)/

Ay
From Figure 8.4, it is clear that in spherical coordinates the position vector r
can be expressed as

r =rsin6 cos e, + rsinf singe , + r cos e,

Then,
or . - . PN
—— =sinf cos ¢e , + sin 6 singe , + cos e,
or
As |Or /Or| =1,
e, =sin6 cos e , + sin 6 sin¢§y + cos e,
Similarly,
or

— = —rsinf singe , +rsin6 cos pe ,

*Where we elect to use the two-argument arctangent function so that quadrant ambiguity can be
eliminated.
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As |0r /O¢p| = r sin 6,

e, = —singe, +cosge,

Similarly,
or _ R 06
20~ r cos 6 cos e  + r cos O singe , + rsinfe .

As |0r /06| =r,
€y =cosfcosgpe, +cosfsinge , + sinfe,
Hence, we can write this in a matrix form as

cosf cos¢p cos@sing sinf
—sin ¢ cos ¢ 0
sinf cos¢p sinfsing cos6

=

Q) IR )
B SN Y
Il
<

IR) IR) )

N

Conversely, as this is an orthogonal and normalised matrix, we can obtain the
inverse relationship by taking the transpose of the square matrix thus

e, cosfcos¢p —sing sinf cos ¢ €y
e,| = |cosfsing cos¢ sinfsing €,
e, sin 6 0 cos 6 e,

As the coordinate and unit vector relationships are now established, these can be
used with Maxwell’s equations so that a solution to the vector wave equation can be
sought using this coordinate system. The following section establishes that the gen-
eral vector wave equation can be reduced to the scalar wave equation in spherical
coordinates, and that this equation can be solved using the method of separation of
variables. In this way, elementary spherical vector wave functions are constructed
that are shown to be amenable for use as the basis of standard SNF theory.

8.2 Types of SNF ranges

In theory, an SNF measurement requires that a near-field probe be moved along a
spherical surface enclosing the AUT while sampling the tangential electric field inten-
sity. Although conceptually simple, it becomes rather challenging to implement such a
device in practice, and there are various approaches that have been taken to do so. The
most common configuration is what we will refer to as the ¢p-over-0 (¢/0)-type systems,
followed by the 8-over-¢ (6/¢) systems. Lastly, we will also describe some articulating
SNF systems that allow for the AUT to remain stationary during measurement.

Roll over azimuth (¢/0) systems’: These SNF scanners are the most common
ones encountered in the industry today and have their origin in the so-called roll

31t should be noted that roll over azimuth is a misnomer since the lower ‘azimuth’ axis of rotation is not
truly an azimuth axis. It is also to be noted that roll over azimuth is also sometimes called a ‘model
tower’ arrangement.
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over azimuth positioners used in the far-field industry for many years before the
advent of near-field testing. An example of such a positioner is shown in Figure 8.5.
In this configuration, two rotation stages are attached through a rigid fixture with
one stage mounted on the floor (with vertical rotation axis) and the second upper
rotation stage (with horizontal rotation axis) mounted to the top of the fixture. The
lower stage forms the 6-axis of rotation, and the upper stage forms the ¢-axis of
rotation, thus the reference to the ¢-over-0 positioner. This configuration is
depicted in Figure 8.1, and it clearly shows that the AUT is rotated around two axes
while the near-field probe remains stationary during the measurement of one
polarisation component (rotated once by 90° for polarisation change).

In order for this positioner to describe a perfect sphere enclosing the antenna,
the following conditions have to be met:

1. The axes of the stages have to intersect at a point.

2. The axes of the stages have to be orthogonal.

3. The stages have to be rigid and run true (no axis wobble or flexing of the stages
under load).

4. The interconnecting fixture has to be rigid.

5. The near-field probe axis has to coincide (not just intersect) with the ¢-axis
when 6 = 0°.

Figure 8.5 A roll over azimuth (¢/0) positioner. (Picture used with permission of
NSI-MI Technologies LLC.)
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If any of these conditions are not met, we are straying from a true SNF
acquisition, and an assessment is needed to determine to what extent the measured
results will be adversely affected. In reality, all of these conditions can be met fairly
easily for a fixed AUT weight loading. What proves to be more challenging is to
meet these conditions amidst varying weight conditions since this leads to the
positioner and structure specifications that are geared for the worst-case condition,
that often leads to overly bulky designs.

Another very significant limitation of the ¢/6 scanner configuration is the fact
that the AUT is rotated during acquisition in such a way that it experiences a
gravity vector that is constantly changing direction. This can be very problematic
for flight space antennas that are gravitationally sensitive since the antenna may
deform when the gravity vector direction changes. This is often also true for testing
breadboard antennas that may not have been designed mechanically to withstand an
arbitrary gravity vector, and in such instances, an alternative SNF test method is
needed.

Swing arm — (6/¢) systems: These SNF scanners were developed to measure
gravitationally sensitive antennas and have become more widely used in the
industry. An example of such a positioner is shown in Figure 8.6. In this config-
uration, two rotation stages are again combined to describe the sphere. However,
they are not interconnected, and both remain stationary during testing. One stage is
mounted on the floor (with the vertical rotation axis), and the second rotation stage
(with the horizontal rotation axis) is mounted on a vertical stand or even a chamber

Support post

/ Probe arm

Probe

DUT and support stand

6 rotation stage (customer supplied)

Swing arm

Counter weight(s) ¢ Rotation stage

Figure 8.6 Depiction of the 0/¢ positioner with swing arm attaching the near-
field probe to the 6-stage. The AUT is supported on the ¢-stage.
(Picture used with permission of NSI-MI Technologies LLC.)
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Figure 8.7 A swing arm (0/¢) SNF antenna test system used for mm-wave
applications. (Picture used with permission of NSI-MI Technologies LLC.)

wall. The lower stage forms the ¢-axis of rotation in this case and the upper stage
forms the 6-axis of rotation, thus the reference to a #-over-¢ positioner. This
configuration is depicted in Figure 8.7 and it shows that the motion is now split
amongst the AUT and the near-field probe. In order for this positioner to describe a
perfect sphere enclosing the antenna, the same conditions as outlined for the ¢/6
positioner have to be met.

With this alternative positioner configuration, we gain certain advantages with the
most significant one being that the AUT experiences gravity in a single direction
during testing. The fact that the near-field probe is being rotated implies that the
swingarm structure can be designed for support of only those near-field probes to be
used, which simplifies design considerably. The fact that the AUT is only rotated on an
axis parallel to gravity has two benefits. It first allows for the testing of gravitationally
sensitive antennas and it second simplifies the AUT mounting considerably. Fairly
heavy antennas can often be supported through a simple column, which also allows for
the use of dielectric columns that have certain perceived advantages when testing very
low gain antennas. The latter leading to this type of SNF configuration being very
popular for testing wireless devices that are often not ideally suited for mounted on a
¢/6 type system (more details on this can be found in Chapter 11).

An alternate SNF implementation of the 6/¢ positioner is shown in Figure 8.8.
Here, an array of near-field probes replaces the mechanical swing arm, attaching a
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Figure 8.8 Alternate implementation of the 6/¢ positioner with an array of near-
field probes replacing the mechanical swing arm attaching the near-
field probe to the 0-stage. The AUT is supported on the ¢-stage on a
dielectric column in this instance and may also be mounted on a
goniometer that allows for limited rotation of the AUT in 6. (Picture
used with permission of ETS Lindgren.)

single near-field probe to the #-stage. The AUT is still supported on the ¢-stage (in
this case on a dielectric column) and the ¢-stage can also be mounted on a goni-
ometer that allows for limited rotation of the AUT in #. A goniometer is a posi-
tioner that rotates an object about a fixed axis in space, where that point is located
above the mounting surface of the goniometer as depicted in Figure 8.9.

The goniometer axis of rotation coincides with the #-axis and is used to sample
data points at a higher sampling density than what the array of probes allows for.
The total angular span of the goniometer therefore only needs to be equal to the
angular spacing of two adjacent probes in the array. The operation of this type of
range is further covered in Chapter 11.

Arch-roll rotated (0/¢) systems: This SNF scanner was developed to measure
steered beam array antennas that cannot be moved and require at least a full-
forward hemisphere of measurement coverage. The scanner is depicted in
Figure 8.10. In this configuration, a large rotator forms the horizontal ¢-axis, on
which a ‘horseshoe’-shaped hemi-spherical rail is mounted. The hemi-spherical rail
forms the theta axis and the near-field probe moves along this rail. The entire
‘horseshoe’ structure rotates around the ¢-axis and the specific positions for
¢ = 45° (left) and ¢ = 0° (right) are depicted in Figure 8.11.
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Figure 8.9 Single axis goniometer schematic

Figure 8.10 An arch-roll rotated — (6/¢) positioner depicted with array antenna
as a rectangular box. The horseshoe rotates on a horizontal ¢p-axis
and the near-field probes rides along the inside of the horseshoe
forming the 0-axis. Static AUT is represented by a large rectangular
box. (Picture used with permission of NSI-MI Technologies LLC.)

The uniqueness of this design is that all SNF motion is performed by the near-
field probe and the AUT remains stationary during testing. The alignment of the
SNF scanner therefore becomes independent of the AUT size and weight (similar to
the PNF case). An obvious disadvantage of this solution is that only a hemisphere
(or marginally more) can be covered by the near-field probe during testing. The
solution is therefore subject to near-field truncation in much the same way as a PNF
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Figure 8.11 The large upper rotator forms the horizontal ¢-axis. The horseshoe-
shaped hemispherical rail forms the theta axis and the near-field probe
moves along this rail. The entire horseshoe structure rotates around the
¢-axis and the specific positions for ¢ = 45° (left) and ¢ = 0° (right)
are depicted here. Static AUT is represented by a large rectangular box.
(Picture used with permission of NSI-MI Technologies LLC.)

solution. Further, in order for this positioner to describe a perfect spherical surface,
the same conditions as outlined for the ¢/6 positioner have to be met. However,
with the introduction of the ‘horseshoe’-shaped rail system, some very specific and
stringent mechanical requirements have to be met as described in [6]. A discussion
of the mechanical performance of this structure is beyond the scope of this text and
the reader is referred to [6] for an in-depth review.

With this positioner configuration, one gains the distinct advantage of the AUT
remaining stationary during testing. The solution is therefore an attractive option
for very sensitive or very heavy antennas. The hemispherical test region allows for
the measurement of steered beam arrays, with a true truncation limit at £90° which
cannot be achieved with a PNF solution. To date, this test solution has not found
widespread use in industry, principally due to the complexity of the mechanical
design and construction of the scanner.

Articulating arm (6/¢) systems: This SNF scanner was developed to measure
on-chip antennas that cannot be moved and require as much of the spherical surface
to be covered as possible. The scanner is depicted in Figure 8.12. The large upper
rotator forms the horizontal ¢-axis. The smaller travelling positioner forms the
0-axis and the near-field probe (as well as frequency converter unit) is mounted on
a curved arm attached to this stage. This entire structure rotates around the ¢-axis.
The specific positions for ¢ = 0° and 8 = —150° (upper left), ¢ = 180° and
6 = —150° (upper right), ¢ = —90° and 0 = —150° (lower left) and ¢ = 90° and
0 = —150° (lower right) are depicted in Figure 8.12. The spherical region shown is
the keep-out region in which the AUT can be located (not shown here).

Again, the uniqueness of this design is that all SNF motion is performed by
the near-field probe and the AUT remains stationary during testing. The align-
ment of the SNF scanner therefore becomes independent of the AUT size and
weight (similar to the PNF case). In order to assess to what extent this positioner
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Figure 8.12  Articulating arm (0/¢) scanner is shown as used for on-chip antenna
testing. The large upper rotator forms the horizontal ¢-axis. The
smaller travelling positioner forms the 0-axis and the near-field
probe is mounted on a curved arm attached to this stage. The entire
structure rotates around the ¢-axis. The specific positions for ¢ = 0°
and 6 = —150° (upper left), ¢ = 180° and 6 = —150° (upper right),
¢ = —90° and 0 = —150° (lower left) and ¢ = 90° and 6 = —150°
(lower right) are depicted here. The static AUT keep-out region is
represented by the sphere shown. (Picture used with permission of
NSI-MI Technologies LLC.)

describes a perfect sphere enclosing the antenna, a very careful structural analysis
or three-dimensional structural assessment using a laser tracker is needed. This
information can then be used to determine the limits of feasibility of using this
type of scanner for SNF testing [7—10]. This solution is an attractive option for
testing of very sensitive antennas (e.g. on-chip antennas where wafer probes are
needed to connect to the AUT).

Robotic arm SNF systems: Agile and accurate articulated robotic arms today
allow one to move a near-field probe along any conceivable measurement surface
and one such a SNF application is described in [11]. A major advantage in this
instance is also that the AUT remains stationary during testing. An example of such
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Figure 8.13  An articulating robotic arm that can move a near-field probe along a
spherical surface enclosing the stationary AUT. (Image used with
permission of Electromagnetics Division of NIST, Boulder, CO,
USA.)

a positioner is shown in Figure 8.13. In this implementation, there is no attempt
made to align any of the robotic arm axes of rotation with the 6 or ¢ axes (as shown
Figure 8.14) describing the sphere and it is only the surface described by the probe
tip that is of interest. This aspect complicates the control of the robotic arm con-
siderably and especially making triggered measurements while the probe is in
motion, becomes very challenging. At the time of writing, this application used
stop-motion acquisition in order to ensure that the probe was stationary and at the
desired location before making an RF measurement.

Another less obvious limitation of articulated robotic arms is the introduction
of exclusion zones, as depicted in Figure 8.14. These are regions where the arm
cannot reach or interferes with the AUT mounting. These exclusion zones therefore
represent areas where the spherical surface remains open. These zones are often not
circularly symmetric or simple to envision and can introduce unwanted truncation
effects in the measurement.
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Figure 8.14 Coordinate system shown for the articulating arm of Figure 8.13
with exclusion zone shown. (Image used with permission of
Electromagnetics Division of NIST, Boulder, CO, USA.)

The articulating arm solution also offers the advantage that the probe weight
remains constant (or does not vary widely from one band of operation to the next).
The two most attractive features of this solution is the fact that the AUT remains
stationary during testing and that the system can in theory be reconfigured for testing
on PNF, CNF or SNF surfaces by simply altering the acquisition control software.
These solutions have not found widespread application in industry and many of the
implementation challenges still have to be addressed. It is also debatable to what
extent these systems can be scaled for larger applications. However, the solution
seems to offer some very unique advantages like near-field acquisitions on non-
canonical surfaces [12] as described in Chapter 9.

8.3 A solution to Maxwell’s equations in spherical
coordinates

In this section, we present a spherical wave solution to Maxwell’s equations, which
forms the basis of the SNF test approach widely used today. We will not present a
derivation for this solution, since this is available in full detail elsewhere [1,2]. It is
still worthwhile to note that one would start off by seeking a solution to the vector
wave equation and applying the Laplacian operator in spherical coordinates, allowing
one to reduce the problem to a set of three coupled scalar wave equations. A solution
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to the vector wave equation can be constructed through the scalar wave function:
W (r) =29 (kr)P" (cos 0)e™?

for which these four versions can be explicitly written as

Wi () = 20 (kr) Py (cos 0)¢™ = i (kr) P, (cos 6)e™

(=2) (1) = 22 (k)P (cos )™ = n,(kr)P!" (cos 0)e™?

(3)(1) = 20 (k) Pl (cos 0)€" = () (kr)P1 (cos )™

(=4 (1) = 23 (kr) PI" (cos 0)e™? = B (kr) P! (cos 6)e™?

where
20 (kr) = j,(kr) = spherical Bessel function of order n
22 (kr) = n,(kr) = spherical Neumann function of order n
283 (kr) = h\!) (kr) = spherical Hankel function of the first kind of order
2 (kr) = h'?) (kr) = spherical Hankel function of the second kind of order n
and
m/2
(1 _ 2) dner .

Py =) T 2

w () 2"n! dxntm (x )
—m 2n+1(n—m)!

(8.1)

Here, P\"lis a Legendre function of the nth degree and the mth order and it can
be evaluated using recursive expressions [13]. F‘nm is the power normalised
Legendre function [14], which we select to use since it allows us to compute power
based on a simple summation of spherical wave modes, as will be shown later. The
variables m and n are commonly referred to as the modal indices with limits
0<n<ooand —n <m < n. A closer inspection of all four z, solutions presented
above shows that there is a radial variation specified through some form of
the Bessel or Hankel function. There is also a @ variation specified through the
Legendre function and finally there is a ¢ phase function specified through the
complex exponential function.

In order to gain insight into how these functions behave, it is worthwhile
plotting them. Figure 8.15 shows the first four degrees of the Legendre function
P"l(x = cos ) (n =0, 1, 2 and 3) plotted for all valid orders of m.

These curves therefore represent how the spherical wave functions behave as a
function of x = cos 0 and they all appear to be well-behaved. We now add the phase
variation function and plot these as surface grids in order to get a better under-
standing of what they look like in three dimensions. Figure 8.16 shows a 3D grid
plot of [P}l (cos §)¢™?| for n = 0, 1, 2 and 3 for all valid orders of m.



Spherical near-field antenna measurements 475

Legendre function Legendre function
1.5 1.5
m=0
1
1 0.5
= =
so = 0
oy &
0.5 0.5
O -
0 -1.5
-1.5 -1 -0.5 0 0.5 1 1.5 1.5 -1 0.5 0 0.5 1 1.5
x x
Legendre function Legendre function
4 6
m=0
m=1 4
3 —m=2 G NS R S
. 2
2 -2
z z
o CCI
0 -8 \
-1 \
0 \ m=0
-1 —-12 G m=1t4
\, —m=2
JE T/ S AU S N S S m=3H
2 —-16 L
-1.5 -1 0.5 0 0.5 1 1.5 -1.5 -1 0.5 0 0.5 1 1.5
x X

Figure 8.15 Legendre functions of zeroth, first, second and third degrees and
valid orders of m in each instance shown

Analogous to the cylindrical case, spherical Bessel functions are used to
represent standing waves, whereas spherical Hankel functions are used to represent
travelling waves. Thus, for the case of free space measurements, we can again
expect that spherical Hankel functions will be the solution of the greatest utility.
The four potential solutions shown above represent standing wave solutions (i = 1
and 7 = 2) and travelling wave solutions (i = 3 and i = 4). For the far-field radiation
case, the outward travelling wave solution® is of particular interest to us and that is
solution 4.

The spherical Bessel (of the first kind denoted as j, and the second kind
denoted as 7, below) and Hankel functions (denoted as 4,, below) can be expressed
in terms of the commonly used Bessel functions J,,(s), Neumann functions Y,,(s),

*We assume a exp (+jwr) time dependency and therefore solution 3 represents an inward travelling wave
and solution 4 an outward travelling wave. In [1, 3], a exp (—jw?) time dependency is assumed, in which
case solution 3 represents an outward travelling wave and solution 4 an inward travelling wave.
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Hankel functions of the first kind H,,"(s) and Hankel functions of the second kind
H,?(s) as defined in Chapter 7 and can be written as

ﬁw=¢§mmw

T

ny(x) = ﬂyn-&-l/Z(x)

JT
hﬁ,l)(x) = \/EH,EL)]/z(x)

T (2
W) =[5 @)

(8.2)

By way of an illustration of the properties of these functions, Figures 8.17 and
8.18 contain plots of spherical Bessel functions of the first and second kinds for
several values of positive n. The spherical Hankel functions can also be written in
terms of the spherical Bessel and Neumann functions as

W (kr) = ju (k) + jng (kr)
W) (kr) = ju(kr) — jng(kr)

As before, the order of the function is defined by the integer n.

Spherical Bessel Function
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Figure 8.17 Spherical Bessel functions of the first kind plotted for several positive
integer values of n
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Figure 8.18 Spherical Bessel functions of the second kind (Neumann functions)
plotted for several positive integer values of n

Figure 8.19 contains a plot of the magnitude of the spherical Hankel function
of the first kind for various positive integer values of n. Conversely, Figure 8.20
contains a plot of the argument of the spherical Hankel function of the first kind for
various positive integer values of n. Figures 8.21 and 8.22 contain equivalent plots
for the spherical Hankel function of the second kind.

From inspection of Figures 8.17 to 8.22, the following qualitative analogies
can be made. Spherical Bessel and Neumann functions, i.e. j, and n,, respectively,
exhibit oscillatory behaviour for real values of & and thus they represent standing
waves. Conversely, the spherical Hankel functions of the first and second kind
represent travelling waves for kr real. Spherical Hankel functions of the first kind
denote waves propagating in the negative r direction, whereas spherical Hankel
functions of the second kind denote waves propagating in the positive r direction.
Thus, spherical Hankel functions of the second kind are the only functions which
possess the appropriate behaviour as » — oo when kr is positive real or imaginary.
Specifically, when kr is real, this corresponds to an outward travelling wave, when
kr is imaginary this corresponds to an evanescent field and when k7 is complex this
corresponds to an attenuated travelling wave. If the opposite (suppressed) time
dependency had been chosen, then spherical Hankel functions of the first kind
would have been the appropriate choice.

We now turn our attention to (8.1) and construct a vector-field solution from
the elementary i = 4 spherical scalar wave function. In an analogous procedure to
the cylindrical case presented in Chapter 7, the radiated electric field in free space
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Figure 8.19 Magnitude of spherical Hankel functions of the first kind plotted for
several positive integer values of n
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Spherical Hankel Function of Second kind
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Figure 8.21 Magnitude of spherical Hankel functions of the second kind plotted
for several positive integer values of n

Spherical Hankel Function of Second kind

200 :
NN n=0
[ N N N [pe—— n=
150 ; i =
SN —m n=2
I ‘\‘:\ \ ————n=3
100 b T
AS T A N A N
[ I N\
NN AN
A S
. s \ |
=2 h ' 1, \ | S
) RN \ 1%, \ \ \ 1,
5 RN AN AN Lk
E N A N R N FAN
ob \ ! | 3 I |
® o I VA AN N I
-50 kN \ i i |
R A N
oM N | \
\ \ ! | \ \ | |
~100 1 Lo N
\\ | \ I\ |
\ 1 \ : \ N :
SR N
-150 - : : . : \\:
) N \ M \

o
[\
~
=N
0
)

12 14 16
kr

Figure 8.22  Argument of spherical Hankel functions of the second kind plotted for
several positive integer values of n

can be split into a transverse electric (TE) and transverse magnetic (TM) part with
respect to the radial vector r. Specifically, this can be expressed as

1
E =V X r/g\rwim(z) —|—%V X (V X ”Erwfnn(f))



Spherical near-field antenna measurements 481

With the two elementary vector wave functions
S 4
=V xe,ry,,(r)

1 .
=2V X (V X729}, ()

in spherical coordinates, the curl operator can be expressed as [15]

) +1< 1 8A,_8(rA¢)>

)

[4

1 9(4y sin®) 94y
v><4_rsint‘)< 00 O 7 \sin 6 0¢ or
1(0(rdg) 04,
r\ or 90 )9

However, as in the prior equation only an » component is present, this becomes

1 (04, -
r \ 00 €o
Thus,

@ _1(1 3% 10y,
Homn = sm08¢ r\ 00 €

Substituting this into the elemental scalar wave function yields the following

1 1 04,
VxAe, (sme 8¢>>

expressions:
) =) | 2P cosole, WJ
M 3) () =norm-h3) (kr)e™ | 22 ep"”‘(cose) %289)1
(1) :"("kf U121 Py (cos o)z,
by [ e g s

1 i .
-@h;ﬁ(kr)}vl, (cosB)e™e,
-

10(krh?) (kr)) GFLm‘(cosﬁ)A Jm —im| .
—I—norm-kr ) e 20 gg—l—mPn (cosO)e,

where
(8.3)

)
norm=—————| ——
2an(n+1) \ |m|
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In these expressions, m ) (r )and n (r) denote un-normalised spherical wave
functions, while M *)(r) and N #)(r) 'denote’ power normalised spherical wave
functions and the variable norm is a normalisation constant. Continuing forward,
we will focus our attention on the normalised spherical wave functions. The deri-

vative expressions found in these spherical wave functions can be expressed as [16]

81_3‘,:"‘ (cos ) —
90

m=0

(n—m+ 1)(n+m)P" " (cos 0)

1 0k ()
kr Okr

The vector wave function M (* )( ) only contains two vector components, both

—mn

tangential to the spherical surface and orthogonal to the r vector and are referred to

(8.4)

as the TE solution relative to 7. The vector wave function N ¥)(r-) also contains a
radial vector component and is therefore referred to as the TM solution relative to r.
The general expression for a radiated electric field can be expressed by a linear

combination of these two vector wave functions® and we may write that as

Z 3 [BLMe) + BN )] (8:5)

n 1 m=—n

Coefficients B',,, and B>, are complex numbers that are weighting coeffi-
cients for the vector wave functions’. They are functions of polarisation, the 6
index m and the ¢ index n. If these coefficients were known for the test antenna,
then these equations would allow the radiating electric field to be evaluated
everywhere in free space. This solution would be valid outside of a conceptual
sphere that is centred about the origin of the measurement coordinate system that
encloses the majority of the current sources, where the radius of this sphere is
defined to be a and is called the maximum radial extent (MRE) or also the mini-
mum radius sphere (MRS).

>Note that we use the uppercase N to denote one of the spherical wave functions here. Later, we also use
integer N as a modal index. The use of the bracketed argument for the spherical wave function should
prevent confusion.

®When we refer to a vector wave function here, it is implied to be a spherical wave function as
defined above.

"The factor k/,/7 is selected here in order to ensure that the summation of the spherical wave function
coefficients will have a dimension of Watt". This is selected for convenience, following [3].
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A summation of coefficients B',,, and B2, allows one to easily compute the
total power radiated as

P=2> 3 B+ 1]
n=1 m=—n

The magnetic field can be calculated from the Maxwell Faraday equation and
is similarly obtained from the same set of spherical mode coefficients from

Y S [BLA ) + B M) (8.5b)

n=1 m=-n

The principal objective of this work is to determine these coefficients for a
given test antenna and is where our attention is focused next.

It should be pointed out that the order of summation in the above two equations
is not critical and can be reversed. When doing so, the limits of summation change:

S (B ) + BN )]

n=1 m=-—n

-y > [ + Bt

I~

)

We will use this interchange of summation order at times when it is convenient
to do so. Also note that for a finite number of modes®, say N, we can simply replace
the limit of 00 with £N. If we look at a typical mode plot as shown in Figure 8.23,
one can conceptually think of the summation S0 ™" filling the triangular
modal region in a column-wise fashion, starting at the apex of the triangle at the
n = 1 column, progressing from left to right (depicted on the left in Figure 8.23).
For the Em, N Z order summation, one can conceptually think of filling the

n#O
triangular modal region in a row-wise manner, starting with the m = —N row,
progressing from bottom to top (depicted on the right in Figure 8.23).

8.4 Relating spherical mode coefficients to SNF data

In practice, one does not have the SMCs. Instead, one has to determine these from
measured near-field data. In order that this can be accomplished, the expressions
that were obtained within the preceding section need to be inverted so that the
mode coefficients can be determined from the measured near-field. This scenario is
depicted in Figure 8.24. The minimum radius sphere (MRS) for the AUT, centred

8Later on, we will relate N to the MRE or MRS and thereby derive a sampling theorem.
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Figure 8.23 SNF mode plot: summation Zf’lv:l Son_ fills the triangular modal

m=—n
region in a column-wise fashion, starting at the apex of the

N
n=|m|
n#0
fills the triangular modal region in a row-wise fashion, starting
with the m = —N row (depicted by arrows on the right)

triangle (depicted by arrows on the left). Summation Zzsz >

Figure 8.24 The MRS for the AUT is shown as well as the MRS for the near-field
probe at a radial distance of A
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on the unprimed coordinate system, is shown as well as the MRS for the near-field
probe, centred on the primed coordinate system at a radial distance of 4.

As pointed out in Section 8.5, the probe radial distance from the measure-
ment coordinate system origin, denoted by 4, is unrelated to the MRS or MRS’ in
Figure 8.24. At the risk of stating the obvious; to avoid mechanical interference
A must be greater than MRS + MRS'. However, in practice we also want to
ensure that we do not have reactive coupling between the near-field probe and
the AUT. This requirement dictates that 4 be selected so that the separation
between the two MRSs is at least 14 and a rule of thumb often used is 34. The
latter being easy to achieve at most microwave frequencies and it is only at
frequencies below 500 MHz where one can find this to become restrictive. It is
important to note that these are guidelines and not absolutes. In Section 8.7, we
will also show that increasing this radial distance 4 has the added advantage of
reducing our reliance on SNF probe correction. On the opposing side, trying to
minimise 4 can reduce facility size (important at low frequencies) and reduce
free space loss.

If we assume that the AUT is transmitting and we want to calculate the energy
coupled to the near-field probe, we have to translate the mode coefficients from
their native coordinate system (unprimed) to that of the probe, denoted as the
primed coordinate system in Figure 8.24. This process will allow us to construct a
transmission formula that describes the coupling between the modes describing the
AUT and the modes describing the near-field probe. It therefore also allows one to
incorporate the effect of the near-field probe fully and therefore compensate for the
effects of the probe.

This coordinate system mapping is achieved through a dual rotation/translation
process. The rotation process can be described as follows and as depicted in
Figure 8.25:

1. Rotation of the (x,y,z) coordinate system around its z-axis through an angle ¢,
leading to coordinate system (xi,)1,21).

2. Rotation of the (x1,),z) coordinate system around its y;-axis through an angle
0y leading to coordinate system (x,,12,25).

3. Rotation of the (x3,),,25) coordinate system around its z,-axis through an angle
%o (which will later be seen to be the probe polarisation angle) leading to
coordinate system (x3,3,23).

The elementary spherical wave functions defined above can be written in terms
of the (x3,y3,23) coordinate system after this rotation process through the use of the
addition theorem for spherical waves [17] as

M) =3 Dl (o, 00,10 ) (1)
H==n (8.6)
N ) = > Dl (o 00, x0)N) (1)

u=-—n
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Figure 8.25 Depiction of the rotation process from coordinate system (x,y,z) to
(x3,93,23)

where vector 73 is the probe position vector within the (x3,y3,z3) coordinate system
and parameter D is referred to as a rotation coefficient and can be expressed as

D/j:ln(¢07 607 XO) = ejm%d;(;rlrz (go)ejmm

n (n—l—u)'(n—u)' 0 e 0 o —m.u+m
di)(60) = eI ) sin Jac M) (cos 6)

where

mu+m
Jac(" H )cos0 2”‘”Zn—m ]'j(

x(cos — 1)"*(cosf + 1)

(n+m)!
m+u+j)(n—u—j)

(8.7)

The function Jac(” M) (cos @) denotes the Jacobi polynomial [18] and can
be evaluated using the summatlon expression in (8.7). It is worthwhile to point out
that (8.7) simply maps each of the spherical wave functions from the unprimed to
the third coordinate system by implementing three Euler rotations (details of Euler



Spherical near-field antenna measurements 487

angles are included within Appendix Section 4.3.4). Two of these rotations
(¢po and y) are simple phase adjustments, while the third rotation (6) is somewhat
more involved as is evident by observing the expression for dp%) (6y) that requires a
summation from —n to +n. However, it should be pointed out that although
somewhat convoluted, the evaluation of d};;,g (6y)is computationally simple.
Equations (8.6) therefore show that after mapping each of the M and N wave
functions they consist of not just a single expression, but a summation of modes.

Finally, the (x3,y32z3) coordinate system is translated (not depicted in
Figure 8.25) by a distance 4 along the z3-axis to obtain the coordinate system (x,)/,
Z') as depicted in Figure 8.24. This translation of the (x3,y3,z3) coordinate system by
distance A along the z3-axis to obtain the coordinate system (x,)/,z') can be
achieved through further application of the addition theorem [17] and this allows
one to write the translated spherical waves as

Z Z elm%d (6o elMXo{ ln,uv( )% (M’l(;)(r_,)

K=yl
v£0

# M) + i)y (VG 4 20)

M) = 30 3 emmaianern] el kg (M) + N 1)
=l
v#£0

+ Culi) 5 (MBI + M) | (5.5

where C| /é ,(kA) is a translation coefficient along the z3-axis over a distance 4. A
number of observations can be made regarding equations (8.8):

e A subset of the translation coefficients C, /énﬂv(kA) is unique for a set of
spherical wave functions (]\_/I( 3 (r) —|—M< )(_’)> or (an) () -Hlfff,) (1’_')>
and this is denoted by the 1 or 2 subscripts.

e A subset of the translation coefficients CiwéN ,(k4) is unique for a spherical
wave function MW (r) or N¥(r) and this is denoted by the M or N
superscript.

e Note the introduction of the M ,(32 (') and N ;fn) (¥ )spherical Hankel functions
of the first kind. This is required since we need a finite solution at the origin of
the primed coordinate system and this is fulfilled by a standing wave solution
interior to the MRS of the probe — in this case written as the sum of the two
travelling wave solutions.

e The translation process leads to cross-coupling between TE and TM spherical

wave modes, since each M 4)(r) mode now contains a summation of
3/4>( ) and N 3/4( ) modes.
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M/N
C1/2n,uv

Ykt = (—1y L \/(2" + D@+ 1)\/(V +0)!(n — p)!

The translation coefficient (kA) can now be computed from

1/2my 2 \Vn(n+ 1w+ 1DV (v—w(n+u)!
n+v
X Z {j_pKa(,u, n, —L, wp)zﬁ(kA)}
p=ln—vl

where
K =05,{n(n+1)+v(v+1)—plp+ 1)} + 03-5,{2jukd}
S = {O fors # o

1 fors=o0

(n+uw)(v—u)(nv nov
oims ) =2+ O (0 00) (7 b))

where we use the Wigner 3 —j symbols as defined in [19], which allows us to write
four specific cases

v [ @) [t
Cl (kA4) = (=1) 2 \/n(n—l—l)v(v—}—l)\/(v—,u)!(n—i—u)!
S~ Gt D)+ 1) —pp 1)
p=ln—vl
Xa(:uvnv_ﬂvvvp>zg(k‘4)]
" o (@) (2v+1) () (n—p)!
Com (K4) = (=1) 2 \/n(n+1)v(v+1)\/(v—u)!(n—l—u)!
ni [J””{kaA}a(ﬂ,n,—ﬂ,v,mz;f(k/l)}
p=ln—|
v e @) b))
Crp (£4) = (=1) 2 \/n(n+1)v(v+1)\/(v—,u)!(n—i—,u)!
S~ [ kA yatun, e vp)z )|
p=ln—vl
N oy @) 2v+ D) (v (n—p)!
Con (kA) = (1) 2 \/n(n+1)v(v+l)\/(v—u)!(nJrﬂ)!

i [j‘p{n(n—i- D4+v(v+1)=pp+1)}a(u,n, —,u,v,p)z;(kA)

p=[n—v|
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which seems once again very intricate, but is in reality quite simple to compute.
Using this notation, we can now write an expression for the electric field in terms of
our original SMCs (B!, and B? ) but using modes defined in the primed (probe)
coordinate system as

ZZ

n 1 m=—n

- 1
mn§ : E e] ¢0d (eo)eIﬂXO{ lntv(kA)E(M/(Erz)(r_/)+M/(::l)(r_/))
K=" y=ly|
v#O

+ Clulit) 5 (V) + N ) |

+ B ZZamq’od (oo)am{cN (kA)%( <>(r_’)+ﬁf;‘2(r_’))

H=T |
v;éO

+ Ol 5 (MBI + M) |

which can be rearranged as

Z Z Z Ze/m%d () e/#?(o

n 1 m=—n u=—n v—\y

V#£0
Bl { Clh k) (M () + M (1)) + €l (k) (M 00 + 32 () |
+ B, {Cﬁw(k@(zx“)(r’)+N<“><r/>) Cl ) (M )0) + M (D)) §

SIS ST

n 1 m=—n u=-n

v=lul
v;éO
(B Clt () + B2, €, (k) ) (MG + M () 9
(B Clh (k) + B2, C, () ) (N 0 >+N<>< )) ’

By comparing (8.5) and (8.9), we see that if we knew the values of the SMCs
(B!, and B2 ) we would be able to compute the electric field intensity in the
unprimed coordinate system or in the primed coordinate systems. In other words,
we can therefore state that in (8.9) the vector # defines the location of the observer
in the primed coordmate system The variables 6y, ¢¢, xo and A (and their asso-
ciated quantities du and C1 5 ﬂv) define how the spherical wave functions in the
unprimed coordinate system are related to those defined in the primed coordinate
system and therefore allows one to use the known SMCs (native to the unprimed
coordinate system) to compute the electric field intensity.
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An SNF measurement will now in principle consist of sampling the tangential
electric field components on a spherical surface and inverting (8.9) in order to
determine the SMCs. In what follows, we continue to develop this process.

8.5 Sampling requirements and spherical
mode truncation

It has been shown that a set of SMCs can be used to describe the radiation from any
radiator. Equation (8.5) (duplicated below for convenience) shows how the SMCs
are used in such a spherical wave expansion to achieve this. However, we also note
that the upper limit of summation extends to infinity and we need to address this in
order to obtain a practical solution

Z S [BLMEE) + BN 0]

n 1 m=—n

The approach we take here is to consider the problem as one of a spherical
waveguide [2,20], which gives us the convenience of mode orthogonality, cut-
off, propagation and evanescence. If we now consider a radiator enclosed within
a spherical surface of radius a and centred’ on the coordinate system origin, we
can view the region exterior to this surface as a spherical waveguide extending
from a to infinity. In this region, we can now use a spherical wave expansion to
represent the radiated field and although there is no cut-off wavelength here,
there is a cut-off radius for the modes. If one expresses the radial wave impe-
dance for each spherical mode in terms of the ratio of its £ and H field
components, it is found that these impedances are predominantly reactive for
ka < n and predominantly resistive when ka > n. We can now designate ka = N
as the point'® of cut-off [20]. What this implies is that reactive wave impe-
dances represent waves bound to the radiation region and these do not con-
tribute to the far radiation field. Resistive wave impedances represent waves
that propagate and therefore contribute to the radiation field. We can therefore
state that once a is known, one can evaluate ka = 2mwa/A = N and this number
represents the limit of # (in (8.5)) for which SMC’s will have a predominantly
resistive wave impedance and therefore contribute to the radiated field. Some
subtle but very significant observation can be made:

1. The value of N (maximum value of the »n index) is determined by the MRS
value a, and a has a lower bound determined by the AUT size. Since N sets the
limit for highest order spherical wave mode to be considered, it suggests the
concept of a specific radiator only ‘supporting” modes of order N or less. This

The centring referred to here is that of the spherical surface and not the radiator. The radiator can be
located anywhere inside this spherical surface.
1%In this case, N is the largest integer value less than or equal to ka.
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notion is incorrect since a radiator can give rise to a field distribution for which
an infinite number of spherical wave modes are needed as an accurate repre-
sentation. However, many of these modes may be evanescent and decay so
rapidly that they may be disregarded for any practical near-field or far-field
application. We are therefore stating that only modes of order N or less (and we
will add a safety margin to this below) will propagate and contribute sig-
nificantly to our computed far-field.

2. The value of N, as stated above, is determined by the MRS value a, and a has a
lower bound determined by the AUT size. However, it is often true that the
AUT is mounted in such a way that a is also affected by the offset of the AUT
from the coordinate system origin. In such instances, higher-order spherical
modes are needed to represent the radiated field as would have been required
had the AUT been mounted centred on the coordinate origin. This seems
somewhat counter intuitive but will be further elaborated on below.

We can therefore state that the field radiated by any finite size antenna can be
described by a spherical wave expansion consisting of a discrete set of functions,
limited by the electrical size of the radiator as well as the relative location of
the radiator with respect to the measurement coordinate system. This concept is
captured by the concept of a ‘minimum radius sphere’ of radius MRS = a,
where this sphere is centred on the measurement coordinate system and
encloses all contributing parts of the radiator. The concept is depicted in
Figure 8.26.

We return to the fact that once a is known we can evaluate the limit N = 27za/A
and this number represents the limit of » for which spherical wave modes can
contribute significantly to the radiated field. Although we like to think of this
boundary as binary, it is not and although the transition from evanescent to resistive
wave impedance is rapid, it has a finite slope [21] and the inclusion of some higher-
order modes are in order, to insure we do not neglect any significant radiated
energy in our solution. In practice, it is found for an MRS of less than 1004 that
adding a safety margin of 10 to the number N incorporates enough of these addi-
tional modes to ensure fidelity of the modal solution [22]. The results justifying this
selection are presented in [23]. We can therefore state that

N = [ka] + 10 = [2% +10 (8.10)

where the square brackets indicate ‘the largest integer value smaller than or
equal to’. It should be noted that for cases where the MRS exceeds 1004, this safety
margin needs to be increased to ensure that a sufficient number of higher-order
spectral modes are included in our solution. This is discussed in more detail in [22].
There are some important concepts to highlight w.r.t. the ‘MRS’ concept:

1. The sphere is centred on the coordinate system origin, which is defined as the
intersection of the 6- and ¢-axes.
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Figure 8.26 The MRS concept is illustrated. The antenna in this case is a flat plate

2.

that

array mounted on an offset arm on the ¢-stage. The MRS is larger
than what would have been required, had the AUT been centred on
the coordinate system origin

The sphere must enclose all radiating parts of interest and if this condition is
violated, the spherical modal expansion may not be representative of the
measurement and contain the required degrees of adjustment to allow accurate
representation of the measured field distribution.

Selecting the sphere larger than required is not a problem in theory. In practice, it is
found that a slight over estimation is acceptable, but a gross over estimation allows
for the inclusion of modal coefficients that are not associated with the object under
test and these typically resolve external reflection sources that then lead to a loss of
measurement fidelity and a significant increase in measurement time.

The distance between the measurement probe and the coordinate origin has no
bearing on the MRS and therefore on the number of modes included in the
modal expansion. This is an important concept, since it implies that the near-
field probe can be located at an arbitrary large distance from the radiator
(within limits of the sensitivity of the RF sub-system). It also implies that all of
the concepts (back projection, MARS) associated with SNF measurements can
be applied to far-field antenna ranges that have positioners that allow for data
acquisition on a spherical surface.

As pointed out earlier, the MRS is affected by the mounting of the radiator in
if the mounting locates the radiator some distance from the coordinate system
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origin, the MRS needs to be enlarged to accommodate this offset. It is important to
realise that this is again not a problem in theory, but in practice it extends test time
(since more samples are required) and it is also true that such measurements are
more sensitive to system misalignment and RF instability. A way to visualise
the problem is to understand that such a test case not only consists of a rotation of
the radiator but also significant translation during measurement, leading to a much
higher phase variation of the near-field, requiring denser spatial sampling to
properly characterise and therefore more spherical modes. This is illustrated in
Figure 8.28, where a z-directed 4/2 dipole is considered, first located on the coor-
dinate origin and then offset from the origin by a distance of 24 as depicted in
Figure 8.27. The 0 electric near-field vector component (amplitude left and phase
right) is shown in Figure 8.28 (top row) for the centred dipole and then on the
bottom row the corresponding information for the case when the dipole is offset
from the coordinate system origin. The similarity in the amplitude patterns is
obvious, but the significant change in phase due to the added translation is what
requires higher near-field sampling density to adequately represent the field dis-
tribution with a spherical modal expansion.

For the dipole shown above, the MRS selected for the case where the dipole is
located at the coordinate system origin is A/4. Once the dipole has been offset this
MRS is too small and using the same sampling density leads to erroneous far-field
results shown in Figure 8.29 on the left. Extending the MRS to 2.251 increases the
sampling density and resolves the problem as shown in Figure 8.29 on the right.

ﬁ Observer

2/ offset along z-axis

Figure 8.27 Geometry of the dipole simulations for which near-field amplitude
and phase are depicted in Figure 8.28
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Figure 8.28 The 0 electric near-field vector component (amplitude left and phase
right) is shown (top row) for the centred dipole and on the bottom
row, the corresponding information for the case when the dipole is
offset (along the z-axis) from the coordinate system origin by 24

As a digression, it is worthwhile to note that although we define the concept
of an MRS that defines N and therefore limits # and m, theory does not require
these limits to be coupled. This implies that we can define two radial distances,
one associated with » and the other with m. We can conceptually think of two
minimum radius cylinders (MRC' and MRC") located coaxially to the 6- and ¢-
axes and enclosing all radiating parts of the AUT. MRC' will therefore define N
and MRC" will define M (limit of m), leading to dissimilar sampling intervals in 6
and ¢. This concept is discussed in [24] and has a very practical benefit, allowing
one to reduce sampling density in one dimension and therefore decreasing test
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= — | —
Dipole centred Dipole off set - Under sampled Dipole centred Dipole offset

Figure 8.29 Dipole centred far-field result is compared to offset case. The left
shows an under-sampled case, leading to the disagreement of
patterns. The right-hand side represents the higher sampling density
case that resolves the problem and the two patterns overlay

time. An example of a case where this may be beneficial would be a linear
radiator mounted coincident with the ¢-axis (the AUT depicted in Figure 8.44 is
an applicable example). In such a case, the length (measured along the ¢-axis) of
the radiator would define MRC' and therefore N, while the width (measured along
the 6-axis) of the radiator would be significantly smaller and will be reflected
through MRC" and a much reduced value of M. An SNF acquisition grid with
high sampling density in 6 and lower sampling density in ¢ will result. The dipole
example for which modal spectra are presented in Figure 8.30 is a prime example
of where this approach would be beneficial. Since the dipole is located on the
¢-axis, we see most energy contained in the low-order m modal indices and
therefore a low sampling density in ¢ would make sense. In what follows, we do
not use the concept of an MRC' or an MRC" and simply retain MRS as our SNF
parameter of interest.

Returning to our dipole example depicted in Figure 8.27, we next turn our
attention to the detail of the spherical wave expansion. From what has been pre-
sented above, it is clear that for any finite size antenna, the number of spherical
modes required to accurately characterise its radiation will be finite and (8.10)
nominally relates the antenna size to a maximum value of n,,, = N. We can
therefore now write (8.5) as

Z Z [Bl (r)+ B2, N >(5)} (8.11)

n 1 m=—n
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Figure 8.30 SNF Mode spectra: amplitude of the SMC’s (B! — left and B® — right)
for the dipole centred case (top row) and dipole offset along the z-

axis (bottom row). Amplitude is displayed in dB, scales from 0
(white) to —100 dB (black)

If we now venture to solve for the SMCs by sampling tangential electric field
components on a spherical surface of radius ry, we can write the following
expressions for the €, and ¢ ;field components:

Bi(n) = 3 S [mLar(n) + ()] 2

n=lm=—

Ey(ro) =%iz B ) () +BLN 0 (n)] -2, (8.12)
==

By now using the orthogonality properties of the spherical modes, we can
state [25]



Spherical near-field antenna measurements 497

rnojz_o {ME;Q (x) 'E"} {M(—L"Zm(l) 'E"} + {M§f2 () 'E¢}{M(—4’3m(5) @4)}

P=

J J (N2} N0 20} + N0 2, N () 2, fsinadodg

we see that a “‘mode selection’ is possible by multiplying the expressions in (8.12)
by each specific mode and the resulting integrals can then be equated to the closed-
form expressions in terms of the spherical Hankel functions. This provides us with
a method to solve for the SMCs and we can therefore multiply (8.11) by M (_“mn( )
and N ¥ (ry), integrate over 6 and ¢ to obtain

JznOJ:OEg(”O) (M9, (r) 20} +E5 () {49, (n) -2, bsino a0y

P=

:irn r B! T'sin0d0dgp = (—1)"B. [h@) (kro)]z
i) ody B p
and
T @) 5 @) 5 Vg
L—o L:OEQ (r_o) {M”"” (r—(’) ’29} +Eo (r_o) {N*'"" (r_o) ~g¢}sm0d()d¢>
- %Eﬂo Jﬂ B2, T2sin0dOdp = (—1)"B2 [hff_)l (kro) —%hnz)(kro)]z
where

)

1 [{a2) 0} (5 ) 2 ) 2o ) 2.}
- {2 2 () 2o [ o) 5 ) 2,)

after which we can rearrange to obtain expressions for the SMCs explicitly as

1)
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The expressions in (8.13) now give us a direct way to evaluate the SMCs based on
measured tangential field components sampled on the surface of a spherical surface of
radius 7. Note that if one elect to use a Hertzian dipole as a probe, a power calibration
factor needs to be introduced. It is shown in [26] that a factor \/6-7;\/17 /2k is required as
a multiplier on the right-hand side of both expressions in (8.13) in this case.

We now turn our attention to the specific integrals in (8.13) since these have to
be evaluated numerically during the measurement process. After evaluating the dot
products, we see that these integrals take on the following forms where the sphe-
rical Hankel functions do not form a part of the integrands since they are not a
function of either angular variable

By = p(n) (M () 20)

\/ﬁ{hﬁ,z)(kro)} o=
+E¢(@>{A_/l(j‘fnn<@) E(p}sinﬂa’é)d(p
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=Q J J Eo(0,9)P, (cos0)e™"?
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sl ’
+E,(0,9) (W) &"7sin0 do do

Bl = S rrﬂ J:OEe(r_o){N(-‘?m(r_o) 2}

ﬁ[hi”l (kro) — ——h) (ko) | """
kr()

+Eq (”—"){N(fﬁm (r_o) -E(p}sine d6 dg

27 7T F|m| 0) . —Im )
- ‘PJ J Eo(0, @% M 4 jmE, (0, )P (cos 0)e™ do dg
=0 Jo=0
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where

_ k(=1)" 1 (_1)'"
ST (kro) /2n(n + 1)\ |m|
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These expressions for the SMC’s can be simplified by recognising that the d¢
integration in each case represents a Fourier transform and since we have to eval-
uate these integrals numerically, we can employ a discrete Fourier transform (DFT)
to do so. This can be expressed as'’

27 N —1
J f(@)e"7de=DFT{f (kAp)[k=0,1,2,....N — 1} =Ap > f(kAg)e™

#=0 k=0
Allowing us to reduce the expressions for the SMC’s (where we use the fact
that the derivative of the Legendre polynomial [27] can be expressed as a linear
combination of lower- and higher-order Legendre polynomials) to obtain
T

B, :QDFT{J Ee(e,kAqS)T’Lm‘ (cos)sinOdo
=0

T _ *‘W’|
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. 2n+1 _ | T
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—pri (cose)}sinede};m >0
k=0,12,..N—1

""Note the use of the variable N’ here that denotes the number of sample points to evaluate the DFT.
Although related to maximum SMC order N and related as N' = 2N+1, they should not be confused.
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(8.14)

In the DFT above, we employ a finite set of N discrete samples in ¢p. We know
that the DFT will render a non-aliased solution of the function being transformed if
it is periodic and band-limited (both conditions hold true here) and N is selected as
shown in (8.10). The remaining integrals in 6 are of the form

TT
J Eg/4(0, kAg)P)" (cos 0)sin 6 dO
=0

and

T
J E,(6,kAp)P™ (cos 0)dO
0=0

and can be evaluated numerically. From the behaviour of the Legendre polynomials
(depicted in Figure 8.15), we see that these are not difficult integrals to evaluate.
Equations (8.14) therefore allow us to find the SMC’s from sampled tangential
electric field values, where these fields were measured on a spherical surface of
radius 7. The angular sample spacing can be calculated as

2 2 k3

AN =Ap="7= =
PENTAINTION

(N> 1)

The MRS is related to the angular sampling density of both the 6 and ¢ vari-
ables through

b4
AO = Ap = —ZnA/{[RS 10
which reduces to
A
AO=Ap =~ ——
¢ 2MRS

if the factor 10 safety margin is ignored.
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It is important to realise that in (8.14), we assume point sampling of the electric
field and there is no probe correction performed whatsoever. It is therefore not a
very practical formulation, but one that does provide further insight into the process
of obtaining SMC'’s, the use of spherical wave orthogonality properties and Fourier
relations in the derivation thereof.

If we return to the example of a z-directed A/2 dipole, first located on the
coordinate origin and then offset from the origin (along the z-axis) by a distance of
2/ as depicted in Figure 8.27, we were able to extract the 6 electric near-field
vector component (amplitude left and phase right) as was shown in Figure 8.28 (top
row) for the centred dipole and then on the bottom row for the case when the dipole
is offset from the coordinate system origin. Figure 8.30 depicts the amplitude of the
SMC’s (B! and B2 ) for the dipole centred case (top row) and dipole offset along
the z-axis (bottom row).

From Figure 8.30, we can make the following observations:

e These mode spectra display a higher density for the offset case than for the
centred case, as expected.

e Only one of the Brlnn and Bﬁmcomponents contains significant energy since the
dipole only has a single 6 polarisation component.

e The only significant modes all have an m = 0 index, indicating no ¢ variation.
Since this dipole is located on and aligned with the ¢-axis, this is again as
expected.

e For the dipole at the coordinate origin, we see only the » = 1, 3 and 5 index
modes having significant energy. However, for the offset case, we note that
there are many n-indices that contain higher levels of energy with the focal
region being centred at roughly » = 12, which can be converted to a radial
distance of 24, which coincides with the offset distance of the dipole.

If we now extend our case study of the z-directed 4/2 dipole to include the case
of a dipole offset from the origin (along the y-axis) by a distance of 24 (the three
cases of interest are depicted in Figure 8.31), we can again extract near-field field
values and relevant SMC’s. The 6 electric near-field vector component (amplitude
left and phase right) is as shown in Figure 8.32 (top row) for the centred dipole and
on the bottom row for the case when the dipole is offset along the y-axis from the
coordinate system origin. If we now evaluate the SMC’s for these two cases, we
obtain the spectra depicted in Figure 8.33. These images depict the amplitude of the
SMC’s (B! and B2 ) for the dipole centred case (top row) and dipole offset along
the y-axis (bottom row).

From Figure 8.33, we can make the following observations:

e The offset along the y-axis leads to a significantly more distributed mode
spectrum than for the case where the offset was along the z-axis.

e Since the polarisation is now distributed between the 6 and ¢ components,
both the B!, and B? components contain significant energy.

e Since we now lose the convenient rotational symmetry that we have when the
dipole is located on the z-axis, we have modes for all values of m.
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Figure 8.31 Geometry of the dipole simulations for which near-field amplitude
and phase are depicted in Figure 8.28

o If we evaluate (8.10) for the offset case along the y-axis, we obtain N = 22,
which we observe to be a sensible limit based on the amplitude values depicted
in the bottom row. Were we to subtract the factor 10 safety margin in (8.10),
we would clearly be excluding modes containing significant energy.

We will next venture into the complex world of probe corrected SNF for-
mulations. In what follows, the intent again is to explain the formulation and not
focus our attention on implementing a numerical solution to the equations pre-
sented. This is expertly covered in [3] and there is no need for repetition here.

8.6 Development of the transmission formula

In order to include probe correction in our SNF formulation, we need to find a
coupling equation describing the interaction between the spherical modes of the
AUT and those describing a near-field probe. Equations (8.9) already describe the
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Figure 8.32 The 0 electric near-field vector component (amplitude left and phase
right) is shown (top row) for the centred dipole and on the bottom
row, and the corresponding information for the case when the dipole
is offset (along the y-axis) from the coordinate system origin by 21

electric field radiated by the AUT in terms of spherical modes in the probe (primed)
coordinate system. We now need to describe the probe receive properties in terms
of a separate spherical wave expansion and formulate the interaction between the
two modal expansions. In order to do so, we first derive a transmission formula.
This formula relates the power applied to the port of the AUT to that received at the
port of the probe. If we consider Figure 8.34 which depicts an AUT (or probe),
enclosed within a minimum sphere of radius » = MRS, we can relate spherical
modes that exist external to this surface to the energy emanating from or entering
the port of the device (denoted by the dashed line). We can make the following
statements related to this:
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Figure 8.33 SNF mode spectra: amplitude of the SMC’s (B' — left and B® — right)

for the dipole centred case (top row) and the dipole offset along the
y-axis (bottom row). Amplitude is displayed in dB, scales from 0
(white) to —100 dB (black)

Voltage incident on the port is designated v and is partly reflected by port
mismatch I', and the difference is transmitted by the AUT (we assume that the
AUT has 100% efficiency).

The field radiated into free-space by the AUT can be described by a spherical
wave expansion and these modal coefficients are designated B! and B2 .
When receiving, this AUT receives energy from space and this can also be
described by a spherical wave expansion and these modal coefficients are
designated 4! and 42, .

Of the voltage received by the AUT (if we again assume a 100% efficiency),
part of it is reflected by the port reflection coefficient, and the rest is denoted as
w and emerges from the port.

Using the concept of port voltage related to spherical wave expansion coeffi-

cients, we can now write the following expressions (disregarding any scattering of



Spherical near-field antenna measurements 505

7

1
Amn

Bl

mn

B2

y

Figure 8.34 Diagram depicting AUT and near-field probe interaction during an
SNF measurement

waves incident on the AUT'?):

w =l + io: En : errmArlnn + RimAim] (815)
n=lm=—n

izn:[BrInﬁBz VE:E: [T+ T (8.16)

n=lm=—n n=lm=-n

where R! and R?, are designated the AUT receiving coefficients and 7!, and 72,
are the AUT transmission coefficients. If we now consider the case of a receiving
probe, we can use (8.15) to relate the spherical modes incident on the probe to the
voltage (w) measured at the probe port as

o0

w= Z Z [ #vA#v + szthxzw}

v=1 u=-v

"It is worthwhile to point out that this is the only approximation that is introduced into the SNF
theoretical derivation.
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where we have now switched the indices to that of the primed coordinate system
and we assume that the probe port is perfectly matched. Returning to the SNF
system since we know what modes are transmitted by the AUT, it is logical that
those are the modes incident on the probe and we can therefore relate the voltage
measured at the probe port to the spherical modes transmitted by the AUT.
Referring to (8.9) again (duplicated below for convenience)

S S e

n 1 m=—nu=-—n V‘M

v#£0

(Bl (k) + B2, €8, ) ) (M) + M () +

(B Clt () + B2, €, (k) ) (N 30 + N 80
we can identify these modes as the M ;fn) (¥')and N jj] (") modes and their coeffi-
cients therefore represent the modes of what is impinging on the probe as

M 3 (') — TEmode coefficients

un

22 Z Z Z €]m¢0d e/ﬂXo (Bl C{Vrlt/,tv(kA) +Bim Znyv(kA)>

n=1 m=—n u=—n v=ul
v;éO

N B (') = TMmode coefficients

—un

2Z DD AL (BLCl () + B2, Ch (k) (8.17)

n=l m=—nu=-n, —|u|
v;éO

It is worthwhile to consider these expressions to come to terms with the
notatlon The coefficients B‘/zare the sought SMC’s for the AUT, the
ef”"f’Od ") (6)e"* functions represent the rotation and the Cl o v(kA) functions
represent the coordinate system translation required to map the spherlcal modes
defined in the unprimed coordinate system to the primed coordinate system.
Each mn mode in the unprimed coordinate system has an equivalent repre-
sentation in the primed coordinate system consisting of an infinite numbers of
spherical modes of which each mode is identified by the uv indices. We can
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therefore now write the following expression for the voltage w received by the
probe:

w(g, 00, %9, 4) Z Z Z Z e/"’%d o) el

n=1 m=—nu=-—n v=|u|

v#£0
(kA) + B2, Y, (kA) ) RY,

(kd) + B2, Cly (kA) B2,

(Bl cM

mn " 1nuv

(B‘ cM

2nuv

(8.18)

where R}, and R, are the receiving coefficients of the probe. These coefficients are
obtained through a probe calibration process and can be seen as weights that apply
to each incident spherical mode impinging on the probe. More information on

probe calibration can be found in Chapter 12.

8.7 Near-field probe correction

Equation (8.18) is also referred to as the transmission formula and is at the core of
probe corrected SNF measurements. Since we can measure values of w in an
antenna range, inversion of this formula allows one to obtain the much sought-after
probe corrected SMC’s. We achieve this by first limiting the number of modes
considered to N as outlined before. We next use the orthogonality property of the
exponential function, which can be written as

2 ,
J M Gy = 2718
0

If we now rewrite (8.18) as

n

W(¢0a007X07A) = Z W#(¢0790aA)ewxo

u=-—n

n B! CM (kA)+ B2 CY (kA))R!
_ Z _Z Z Z e/’"%d ( mn ln,uv( ) mn Znuv( )) o efMXU
pH=—n n= lmffn v=|u| (Bl CZMnuv(kA) +Bz Cﬁz/w(kA))wa
v£0
(8.19)
and multiply by e 7*%and integrating from 0 to 277, we obtain
27 ) 2 n ) )
J W(¢O> 607 XO’A)e_J#XOdXO = J Z W/zt(¢0> 907 A)e]ﬂxoef/AlxodXO
0 0 4—n

= 271w, (g, 00, 4)
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which shows that w, (¢, 0,4) is simply the inverse Fourier transform of the
w(¢o, 60, %o, A) function with respect to the x, variable. Using this orthogonality
property again, we can from (8.19) write for w, (¢, 69, 4):

W;¢(¢07007A) - Z W;¢m(607A)ejm¢0

m=—n

_ Zn: Z Z ( C%ﬂv(kA) +Bz Cévrmv(kA)) Y e/m¢0
=, = (Bl it (kA) + B2, C{Vnw(kA))wa
v;éO

Multiplying by e 7"?oand integrating from 0 to 277 allows us to write

2 n

27
J Wwu(po, 00, 4)e 7" dpy = J Z Wan (00, 4)e" e~ "0 d gy,
0

= 27tW, (60, A)

which similarly shows that wy,,(6y,4) is the inverse Fourier transform of the
Wwu(¢o, 00, 4) function with respect to the ¢, variable. Our final step in finding a
solution to this inversion problem lies in the orthogonality property of the Legendre
polynomial:
Jn d'1) (09)dn) (6o)sin 6 dO = La,m,
0o " 2n+1

By multiplying wy,(6o,4) with d!(tm (6y)sin O and integrating from 0 to 7z, we

obtain

um

u
J Wym(007A)d(n) (0())8111 60d0
0

= > [(BhaClt () + B2, Ch, (k) R,

v=|u]
v#£0

+ (Bl (k) + B3, Y, (k) ) R2 (8.20)

which is to be evaluated for each pair of indices (m,n) and all values of u. We can
now summarise and state that the transmission formula allows us to find the SMC’s
from measurement data by measuring field values w(¢y, 09, %, 4) on a fixed grid.
We then

1. Find the inverse Fourier transform of this data set with respect to y,, which
provides us with w, (¢, 69, 4).
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2. Find the inverse Fourier transform of w, (¢, 6y, 4) with respect to ¢,, which
provides us with wy, (6o, 4).

3. Evaluate integral equation (8.20), containing function w,,, (6, 4) to establish a
set of equations for all (m,n), allowing one to solve for all B)  and B2, for as
many probe indices u as we want to consider.

The last statement related to probe indices ¢ deserves significant discussion.
The theory allows us to consider as many indices as we wish, which implies using a
near-field probe of high radiation complexity. However, in practice, it is common
to restrict our treatment to probes that only contain the 4 = 1 modes. An idea first
introduced in [28] allowing one to simplify the SNF transmission equation and
solving for the SMC’s in a practical and realistic way. This restriction on the near-
field probe implies a probe for which the radiation pattern variation in the cir-
cumferential direction ¢ can be fully represented by the function ™% = %% _ It is
found that this condition is met by rotationally symmetric probes fed by the circular
waveguide, containing the TE;; fundamental mode. This requirement therefore
rules out rectangular horns and open-ended rectangular waveguide (OEWG)
probes. (In what follows, we present results for OEWG probes to illustrate to what
extent violation of this condition can introduce measurement uncertainty.) A
detailed discussion on near-field probes is provided in Chapter 12.

Probes that only contain the u==+1 modes are also referred to as first-order
probes. The spherical mode coefficients for other modes of such carefully con-
structed probes are typically at least 40 dB below the first-order modes. However,
such special probes increase the cost of the measurement system and the probes
may have a smaller bandwidth than similar OEWG probes.

If we turn our attention to (8.20) again under the assumption that we are
restricting the probe to only allow the 4 = 41 modes, we can reduce this equation
to the following two equations in two unknowns:

J W_1m(00,4)d") (64)sin 6y d6y
0

L | (BLACH ) + B2, O () RL,

21T (B, CH () + B2, CN (k) ) B2
T

J Wlm(QO, A)dl(r,ln) (eo)Sil’l 00 d@o

0

| (BhaCl G () + B2, G () )R,

2n 1 +<BrlnnC2Mn(l)l(kA) + B,

mn

Civn(m (kA)>R%1

Under this assumption, we can now state that in order to find w, (¢, 6, 4), we
evaluate the inverse Fourier transform of the measured data set with respect to ¥,
for only two values of x. This implies that two discrete measurements in y,(probe
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polarisation angle) are needed. For convenience, we select only y, = 0°,90° and an
inverse Fourier transform of the measured data set w(¢y, 6o, xo,4) is now eval-
uated for only

p==1

1 27 .
Wu(pg, 00, 4) = %L w(o, 6o, xo,4)e " ody,
u=+1

which can be reduced to

w_1(¢g, 00, 4) = é {w(¢0, 69,0,4) +jW(¢0a 90%”4)} (8.21)

w1 (9,80, 4) = 5 {5, 00,0.4) — jw (0,00, 5 .4) }

These equations show that when a first-order probe is used, measurements are
only required for two polarisation angles (y = 0° and 90°) and numerical integra-
tion of the data for the polarisation variable is not required. This greatly reduces the
measurement time and results in a fast, efficient and accurate numerical technique
to perform the calculations.

Continuing on to find w,, (69, 4), we evaluate the inverse Fourier transform of
the wy—+1(¢g, 0o, 4) data set with respect to ¢, form = —-N, ..., —=1,0,1, ..., N

1 2 o
Wyet1m(00,4) = %J Wuet1 (9o, 00, A)e /"0 dep, (8.22)
0

which can readily be achieved through a fast Fourier transform process [29]. Our
third and final step is evaluation of the integral in 6 for the function wy—+1,,(69,4),
for n = |m|,...,Nand n # 0.

We next investigate the impact of using higher-order probes when our for-
mulation only allows for u = 1. We show simulation results for using an OEWG
probe for SNF testing [30-32]. Since the OEWG probe is widely used, it was
chosen as the probe for this study and all the simulations are for this probe. When
using OEWG probes, errors will be present in the calculated AUT SMC’s and the
resulting far-field parameters. It has been established that if the measurement radius
is large enough, probes such as the OEWG can be used for SNF measurements and
the effect of their higher-order modes will be negligible, and the formulation out-
lined here can be used without causing a significant error in the results. Until fairly
recently, there was limited information available on how large the radius must be
and what the residual effects of the higher-order modes are.

In this simulation measured SNF data is used for both the AUT and an OEWG
probe to calculate the far-field patterns of both the antenna and the probe over a full
sphere. The AUT far-field pattern is then rotated mathematically about the z-axis to
simulate a ¢-rotation and about the y-axis to simulate a 6-rotation. The transmitting
plane-wave spectrum over the forward hemisphere on a k-space (k..k,) grid is then
derived from the rotated pattern. This plane-wave spectrum represents the AUT
rotated in ¢ and 6 as it is in an SNF measurement.
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The far-field probe pattern is then rotated about its z-axis to simulate a
x-rotation and its receiving plane-wave spectrum calculated on the same k-space
grid as that of the AUT. The calculation of a receiving plane-wave spectrum for the
rotated OEWG probe is repeated but, in this case, the spherical modes for all but the
n = £1 modes are set to zero in the calculation of its far-field pattern. The two
spectra represent a higher-order probe and a first-order probe, respectively, with
otherwise identical patterns and polarisation. Figure 8.35 shows the spherical mode
amplitude plots for the B!, SMC’s for the two probes.

To obtain the results presented below, the rotated plane-wave spectra of the
AUT and one of the probes are used to calculate the output of the probe for a
specified x, y, z position of the probe. When x = y = 0, the probe is at the pole of
the measurement sphere and the AUT is positioned at the origin of the sphere or
along the z-axis. The z-position of the probe defines the measurement radius. The
probe output is produced using the PNF transmission equation [33]. If we now add
the rotation angles 6, ¢ and y as variables to the probe output, the AUT spectrum
and the probe receiving spectrum can be used to produce simulated SNF data at
arbitrary (6, ¢)-positions on the measurement sphere with arbitrary y rotations of
the probe. The PNF transmission equation is used for the simulation rather than the
SNF transmission equation since both are equally valid and accurate expressions
for the transmission between a test antenna and a probe at any arbitrary near-field
position and relative orientation. The planar equation is easier to calculate
numerically and can be used without modification for both first-order and higher-
order probes. (Note that it is only the spherical formulation that has this constraint
on the properties of the probe, c.f. Chapter 12.)

Using the derived results, we can establish guidelines for the effect of higher-
order probes in SNF measurements by comparing some near-field or far-field
parameter obtained with the first-order and higher-order probes. It is not practical
to simulate all the possible combinations of AUT, probe, measurement radius, AUT
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Figure 8.35 Spherical mode coefficient amplitudes for Bl for the higher-order
probe with all u modes retained (left) and B! for the first-order
probe with only u = +1 modes (right)
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offset, frequency, AUT and probe rotations and density of points used in the
numerical calculations. Thus, the combinations must be reduced to a manageable
size and the focus should be on the parameters that are likely to have an effect on
far-field results.

In the results presented below, a narrow beam slotted waveguide array with a
gain of 35 dBi was used. It is not likely that the higher-order mode effect is highly
sensitive to the AUT type (in [32] another antenna type is considered to also
investigate a case of lower gain). The frequency is 9.375 GHz and the AUT and the
probe are linearly polarised with an on-axis axial ratio of 40 dB or more. It is
known that the effect of the higher-order modes is reduced as the measurement
radius is increased and it is highly desirable to perform simulations for a large
enough range of radii to derive a guideline for this parameter. It is also desirable to
determine the effect on the far-field results when the higher-order probe is used and
to do this; a hemisphere of near-field data must be simulated and then transformed
to the far-field. A hemisphere of near-field data for the slotted array has over
50,000 data points for each of the two y angles and this requires evaluating the
transmission formula on the order of 100,000 times. This cannot be done for many
measurement radii, and so a complete hemisphere near-field data sets for the first-
order and higher-order OEWG probes were generated for the slotted array at
measurement radii of one and four times the MRS. These were then transformed to
the far-field and both the near-field data and the far-field results for the two probes
compared. Figure 8.36 show contour plots of the simulated 6-component (y = 0)
and ¢-component (y = 90) amplitudes for a measurement radius of one MRS.

Using the simulated amplitude and phase data, the amplitude of the complex
difference between the near-fields for the two probes was calculated at each point
and plotted relative to the peak near-field amplitude as shown in Figure 8.37. Using
the complex difference, rather than just the amplitude difference, includes the
higher-order mode’s effect on both the near-field amplitude and phase and repre-
sents the upper bound effect.

There are some regions where the difference level is as high as —35 dB and
other regions where it is as low as —60 to —70 dB. With this type of variation,
the effect on the far-field should be less than the peak and this is confirmed when
the far-field patterns are computed for the two probes and the amplitude differ-
ence converted to an error signal level. The complex difference is not used in the
far-field since the far-field phase is generally not important for most antenna
measurements. Figure 8.38 shows the far-field amplitude pattern and the error
signal level difference between the two probes for the MRS radius. A peak error
of —41 dB occurs in the region of the main beam and the error level in the side
lobe region is below —60 dB. This characteristic of the effects of probe correc-
tion errors showing up in the main beam region is consistent with other error
analysis studies. If the probe pattern used for spherical processing is changed or
the probe correction is neglected, it is the main beam region of the far-field that
is affected most.

The simulation of a complete near-field and processing to the far-field was also
carried out for a measurement radius of 4MRS. Near-field complex difference
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Figure 8.36  Simulated SNF amplitude for radius = 1 MRS (y = 0° top and
x = 90° bottom). Contour levels are —1, —3, —6, —10, —20, —30,
—40, —50. Solid = first-order probe and dashed = higher-
order probe

results are shown in Figure 8.39 and far-field in Figure 8.40. The maximum far-
field amplitude difference for this case was —53 dB.

Comparing Figures 8.37 and 8.39 clearly show that by increasing the mea-
surement radius, the impact of neglecting the probe higher-order modes becomes
less of a concern since the overall error levels are diminished. One can therefore
state that the effect of the higher-order mode OEWG probe compared to an ideal
first-order probe decreases with distance.
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Figure 8.37 Amplitude of the complex difference relative to the peak near-field
amplitude for y = 0° (left) and y = 90° (right) at measurement
radius of MRS
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Figure 8.38 Far-field contour pattern for slotted waveguide array (solid = first-
order probe and dashed = higher-order probe) and far-field error
relative to the peak of the main beam (RMS level = —75 dB) due to
the use of a higher-order probe for MRS measurement radius. The
near-field and far-field results show acceptable results for the
measurement radius as small as the MRS

The results in [32] show that for radii of 2MRS the differences in the near-field
and far-field are on the order of —50 dB below the peak amplitudes. For larger
measurement radii, the differences are below —60 dB. The difference levels are
also not highly sensitive to the AUT characteristics (in [32] results are presented for
a standard gain horn antenna with a gain of 21 dBi). The primary effect of the
higher-order probe on the far-field pattern is in the main beam region and the side
lobes are relatively unaffected.
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Figure 8.39 Amplitude of the complex difference relative to the peak near-field
amplitude for y = 0° (left) and y = 90° (right) at a measurement
radius of 4MRS
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Figure 8.40 Far-field contour pattern for slotted waveguide array (solid = first-
order probe and dashed = higher-order probe) and far-field error
relative to the peak of the main beam (RMS level = —86 dB) due to
the use of a higher-order probe for 4MRS measurement radius

We can therefore state in summary that the selection of a first-order near-field
probe allows us to simplify the SNF transmission equation so that probe correction
can be achieved and corrected SMC’s obtained. The results above also show that if
we opt to use an OEWG probe (not a first-order probe), the error introduced is
small if we select a sufficiently large (i.e. >2MRS) probe measurement radius.
Formulations do exist that allow for the use (and subsequent correction) of higher-
order near-field probes and we address that below.
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The use of first-order probes, as described above, make for a very efficient
acquisition and processing approach. However, the limited bandwidth of such
probes become very limiting and in a measurement world where wideband probes
(that are non-first-order) present us with significant potential acquisition time
savings, having the capability to use and probe correct for them, is highly
desirable.

The probe correction formulation presented above describes spherical mode
coupling between a modal expansion for the AUT and a separate modal expansion
for the near-field probe. In order to describe this in terms of incident modes at the
probe, the outgoing modes of the AUT must be translated into the local coordinate
system of the probe. The rotation and translation functions allowing for this con-
version leads to a full set of equations that are poorly conditioned and although this
allows for probe correction of higher-order probes, it comes at a significant com-
putational cost and additional measurement time. This was in the past considered to
be prohibitive. However, recent work [34—41] present multiple approaches to sol-
ving this tough problem and today makes the use of higher-order wideband probes
in SNF testing feasible.

In [38], the authors present a SNF probe correction technique that is valid for
any higher-order near-field probe. The approach taken is to express the AUT SNF
modal expansion in terms of a plane-wave expansion. The near-field probe radia-
tion characteristics are assumed to also be known in terms of a plane-wave
expansion (not unreasonable since this corresponds to a simple far-field pattern
result) and the probe correction can then be achieved through coupling of plane
waves, after translation of coordinate systems from the AUT coordinate to that of
the probe. This is of course required for each distinct spatial location of the near-
field probe w.r.t. AUT. Each plane-wave component propagating from the AUT
can be translated to an incident plane wave at the probe, within the probe coordi-
nate system. The far-field receiving pattern of the probe can therefore directly be
used to weight the individual incident plane waves in order to obtain the output
signal of the probe antenna. This approach enables a full correction of arbitrary
field probes with realistic effort and does not require any particular near-field
calibration of the probe.

A higher-order probe correction technique based on the SNF theory presented
here was published in [37]. This correction technique is FFT and matrix inversion
based and allows for full probe correction of any higher-order probe. The authors
demonstrate the effectiveness of the probe correction by measuring a log-periodic
dipole array first, by using a first-order probe and performing traditional probe
correction. This radiation pattern becomes the reference. They then employ a
higher-order probe that requires up to 4 = £8 modes for proper probe character-
isation and repeat their measurement. To further stress their test, they offset the log-
periodic dipole array by 1.6 m (84). The test results reported are shown in
Figure 8.41, where co- and cross-pol radiation patterns are shown for the ¢ = 0°
case on the left and the ¢p = 90° case one the right.

The authors report in [37] that the higher-order probe correction patterns agree
with the reference patterns to within a standard deviation of 0.05 dB in amplitude
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Figure 8.41 Co- and cross-pol radiation patterns are shown for ¢ = 0° (left) and
¢ = 90° (right). Pattern overlays are for the reference pattern (solid)
and the higher-order probe corrected pattern (dashed). © 2020
IEEE. Reprinted, with permission, from [37]

and 1.16° in phase over a —10° < # < 410° angular region. In contrast, when the
higher-order probe correction is limited to only the 4 = +1 modes (so using the
higher-order probe, but not fully compensating for its behaviour), this agreement
changes to a standard deviation of 0.31 dB in amplitude and 2.69° in phase over a
—10° < 6 < +10° angular region.

As mentioned earlier, these higher-order probe correction techniques require
additional computational effort. In [41], it is reported that the FFT and matrix
inversion-based technique described above requires a computational effort
equivalent to O[N*] operations, where N is the electrical radius of the AUT. The
plane wave based technique of [38] requires O[N* log N] operations and the for-
mulation presented in [41] requires O[N°]. However, computational complexity
does not simply translate to the computational cost, since this depends on several
other factors like algorithm implementation [42]. Also, it should be stated that
although promising, these techniques are fairly new and the documented experi-
mental successes of the techniques vary in rigor and ‘significance’ of higher-order
probes being tested. Further testing will ultimately be required to fully explore
limitations of each technique.

8.8 Far-field expressions

We know that once we have obtained the SMC’s, we can evaluate the electric and
magnetic field intensity anywhere in space by evaluating (8.5a) and (8.5b) (repe-
ated again below for convenience)

ZZ B M ) + BN ()]

n 1 m=—n
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and where M 5:,2 (r) and N fj,z (r) are as defined in (8.3). However, when r reaches to
infinity (the true far-field case) we can use the asymptotic forms for these two
functions, which allow us to write [43]
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This allows us to rewrite (8.5a) and (8.5b) in the following far-field specific
asymptotic forms:
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Equations (8.23a) and (8.23b) represent two simplified expressions allowing us
to evaluate the far-field from a set of SMC’s in a very efficient manner.

8.9 Practical acquisition schemes and examples

The classical definition of the spherical coordinate system as presented above
employs the following angular limits: 0° < 6 < 180° and 0° < ¢ < 360° and we
see that both angles are always positive numbers.'*> We will refer to this mode as
Phi_360. In practice, it is often found that SNF data files are acquired using the
following acquisition axis limits'*: —180° < 6 < 180° and 0° < ¢ < 180°. We
will refer to this mode as Phi_180.

A third possible SNF acquisition scenario is where the following acquisition
axis limits are used: —180° < 0 < 180° and 0° < ¢ < 360°. We will refer to this
mode as the Redundant case since the surface of the sphere is covered twice. These
three scenarios can be represented graphically as shown in Figure 8.42. The grey-
scale image represents measured amplitude (for only one polarisation component)
with the 6 angle shown on the horizontal axis and the ¢ angle on the vertical axis.
The complete image represents the Redundant case and it is clear that the measured
beam peak appears twice. The lower half of the Redundant case represents the
Phi_180 case and this is outlined by the solid box in Figure 8.42. The right half of
the Redundant case represents the Phi_360 case'® and this is outlined by the dashed
box in Figure 8.42. With the exception of unit vector reversal (and the associated
phase reversal), the Phi_I180 and Phi_360 cases are theoretically identical since
each region contains all the relevant information covering the full sphere. However,
in practice, it is often found that one acquisition mode has certain advantages over
the other. For instance, their sensitivities to typical alignment errors or chamber

*More information on spherical coordinate systems and the range of spherical angles is presented within
Chapter 12.

!“This convention presumably arose from the use of legacy roll/azimuth positioner-based far-field ranges
where continuous azimuth radiation pattern cuts were taken for select roll positions.

"1t is worthwhile to note that an equivalent Phi_360 region for 6 < 0° can be defined. This is represented
by the left half of the Redundant case image in Figure 8.42, not enclosed by any box.
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Figure 8.42 SNF data sets can be acquired in three different modes. Full image is
the redundant case, the lower portion in the solid line box is the
Phi_180 case and the right portion in the dashed box is the
Phi_360 case

reflection effects may vary significantly and therefore it may be beneficial in some
cases to select the one acquisition mode over the other. By simply inspecting the
full greyscale image in Figure 8.42, it becomes obvious that the regions of dupli-
cation do differ slightly and these differences are caused by such measurement
effects.

When comparing the Phi_I180 and Phi_360 cases, one realises that when using
a ¢/0 positioner as depicted in Figure 8.1, the Phi_180 acquisition case rotates the 6
positioner a full 360° and the face of the upper ¢-stage (and therefore the AUT)
faces all four walls of the anechoic chamber during the course of the measurement.
In the case of the Phi_360 acquisition, the 6 positioner only rotates 180° and the
face of the upper ¢-stage (and therefore the AUT) never faces one side wall of the
anechoic chamber during the course of the measurement. In the case of the alternate
Phi_360 acquisition for 6 < 0°, the 6 positioner again only rotates 180° and the face
of the upper ¢-stage now faces the opposite side wall of the anechoic chamber
during the measurement. Barring any positioner misalignment, this aspect therefore
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gives one the ability to compare reflectivity levels in one half of the chamber vs. the
other. This aspect can be used as a diagnostic tool during range assessments.

When faced with a redundant data set, we have several options available to us.
Simplest is to simply select that portion of the data set of interest to us and allow
one to compare Phi 180 and Phi_360 results. Another interesting option is to
average these two data sets to obtain a single sphere set containing averaged data.
This is easily achieved by simply doing a complex average with a phase reversal to
account for unit vectors that change direction. This technique is often employed to
counter the effect of RF drift, mechanical misalignment or unwanted chamber
reflections (this is often used when calibrating probes, c.f. Chapter 12). However,
one should always attempt to correct problems at their root instead of relying on
such a broad-brush approach.

To understand the advantages of selecting one type of SNF acquisition scheme
over another, it is worthwhile to discuss the concepts of ‘poles’ and ‘seams’ in SNF
data sets. In Figure 8.43, the three vertical arrows indicate sphere pole locations.
The North Pole arrow at & = 0° is the case where the ¢-axis is pointed at the SNF
probe. The two South Pole arrows at @ = —180° and 6 = 180° is the case where the
¢-axis is pointed 180° away from the SNF probe. Both of these poles represent a
single data point on the sphere where the only change is the ¢ variation from 0° to
360°.

The three horizontal lines in Figure 8.43 denote possible sphere seam loca-
tions. These are lines along the sphere where the acquired data is joined and where
measurement imperfections may lead to discontinuities. The Seam 0 line at ¢p = 0°
and the Seam 180 line at ¢ = 180° form such a seam for the Phi_I80 case. The
Seam 0 line at ¢ = 0° = 360° form such a seam for the redundant case. For the
Phi_360 case, only half of the Seam 0 line at ¢ = 0° = 360° forms a seam in the
sphere. When near-field data sets are inspected for fidelity, it is always worthwhile
to check for amplitude and phase discontinuity across any sphere acquisition seam
since measurement imperfections can introduce these. If such a discontinuity is
present in a region of high energy, it may introduce unwanted artefacts in derived
far-field data.

A discontinuity across the seam of a sphere must preferably be corrected by
improving scanner alignment (should that be the prime cause — details of spherical
alignment are presented in Chapter 12), but often RF sub-system scanner drift can
be the cause and this may be impossible to address. In such instances, simply
switching the acquisition scheme to relocate the seam of the sphere with respect to
the region of high energy radiation can circumvent the problem by allowing the
discontinuity to exist in a region of low energy and therefore have a negligible
impact on the derived far-field. This is easily achieved by switching the acquisition
scheme or simply offsetting the AUT in ¢ by a fixed value.

The data presented in Figure 8.43 is for a horn antenna principally radiating
along the ¢-axis and since the main beam of the horn is centred on the North pole
of the sphere it is also referred to as a polar measurement. There is of course
nothing preventing one from mounting the AUT such that it radiates orthogonal to
the ¢-axis and in such a case the main beam will be found along a portion of the
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Figure 8.43 SNF data set ‘poles’ and ‘seams’ shown. Full image is the redundant
case, the lower portion in the solid line box is the Phi_180 case and
the right portion in the dashed box is the Phi_360 case

equator of the sphere. This type of measurement is also referred to as an equatorial
measurement. A typical equatorial mounting scheme is shown in Figure 8.44. In
this image, the ¢-axis is coaxial to the circular support post behind the AUT and the
0-axis is the positioner on the floor. In this image, the AUT is shown facing the
near-field probe at & = 90° and ¢ = 180°.

If this AUT is measured using a Phi_180 acquisition scheme, the main beam of
the AUT (which is broadside to the array face shown) will be located on Seam 180
of the sphere and one would have to guarantee no discontinuity across this seam
since the region of maximum energy will be located here. By simply switching to a
Phi_360 acquisition, the seam will be moved to the ¢ = 0° = 360° location, which
is a region of low energy and the probability of introducing any discontinuity in the
region of highest near-field energy, is minimized.



Spherical near-field antenna measurements 523

Figure 8.44 An AUT is mounted in an equatorial fashion. The ¢-axis is coaxial to
the circular support post behind the AUT, and the 0-axis is the
positioner on the floor. In this image, the AUT is shown facing the
near-field probe

Equatorial acquisition schemes are often employed as they can allow a larger
AUT to be installed within the SNF system than would be the case for a polar
measurement. The far-field data can be presented in exactly the same form, irre-
spective of the way in which the near-field data was acquired. Information on
pattern rotation is provided in Chapter 12.

8.10 Radial distance correction

An assumption that is at the kernel of the SNF theory presented here is that near-
field data is acquired at a fixed radial distance. As a result, all the practical
implementation schemes described earlier, attempt to create such an ideal spherical
surface. However, as with many linear parameters in the near-field process, varia-
tion in terms of wavelength is critical and one finds that when applying SNF test
systems at higher frequencies, variation of radial acquisition distance becomes a
limiting parameter. The articulating arm scanner presented in Section 8.2 is an
example of a system where radial distance variation can become limiting. For such
a system, scanner structural and positioning performance data can be obtained from
laser tracker dimensional measurements (test setup depicted in Figure 8.45). These
results allow one to establish a perturbed (€', ¢', /) grid, based on a regular (6, ¢, r)
SNF grid. Due to visual blockage of the structure only a portion (—110° < 8 < +
110°) of the sphere can be measured. The data measured for the three spherical
variables (', ¢/, r') are compared to (6, ¢, r) to assess effective errors. Figure 8.46
shows radial the distance error (variable /¥’ —r) in mm as a function of variable ¢ for
seven distinct values of variable 6. The curve depicting & = 0° (a solid curve
without any designated symbol) represents the polar case where the SNF probe is
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Figure 8.45 Structural measurement using a laser tracker. Note that only a
portion of the full spherical surface can be evaluated

ideally located in one position and simply rotates its polarisation angle as a function
of rotation in ¢. Instead of observing a fixed zero error, we observe a variation that
approximates a co-sinusoidal curve with a peak-to-peak amplitude of +0.3 mm.
This behaviour is a direct consequence of structural deformation of the arms as well
as the 0 and ¢ rotary stages due to gravity.

Also noteworthy in Figure 8.46 are the two curves depicting 6 = £90° (solid and
dashed curves with [ll symbol). These two cases represent the equatorial motion of
the SNF probe and the extreme deformation condition. We again observe a variation
that approximates a co-sinusoidal curve with a peak-to-peak amplitude of +0.75 mm
which is due to gravitational deformation. We also observe an offset between the two
cases of roughly 0.25 mm and this may be attributed to non-intersection of the 6 and
¢ axes and can be corrected for by shimming of the 6 stage.

Figure 8.47 represents the radial distance variation for the scanner as a function
of the spherical variables (6,¢) and is displayed as a false colour image. This colour
map is obtained through laser tracker measurement and extrapolation to approx-
imate deformation in regions that cannot be directly measured. We can refer to this
as an error map for the radial distance 7. If this variation of r is repeatable, we can
venture to apply a correction technique to negate the impact. This can be done by
adding a mechanical translation stage to the scanner and moving the probe
assembly in a radial direction to counter for this error. However, often correction
for errors in r is not possible through hardware in the absence of a linear radial
actuator. An alternative is to consider a near-field phase correction based upon this
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Figure 8.46 Structural laser tracker measurement showing v error as a function
of ¢ variable. Curves represent discrete values of the 0 variable

error map. To implement this correction, an electrical phase value is calculated for
each SNF probe position as

AD(0, p) = k[F'(0,¢) — 1] (8.24)

and this phase term can then be subtracted from the measured SNF data as a first-
order phase-only, correction term. The effect of this is to remove the phase impact
of the radial structural variation and create a condition where variation in # is
reduced and ideally, removed.

To illustrate the impact of this radial distance variation and correction thereof
on high frequency measurements, one can do the following simulation. In the first
instance (case #1), we consider a half wavelength dipole radiating at 75 GHz and
we locate it at the coordinate system origin. In the second instance (case #2), we
consider a 6 mm x 6 mm square aperture radiating at 75 GHz, located at the
coordinate origin and facing the sphere equator. In the third instance (case #3), we
again consider a 6 mm x 6 mm square aperture radiating at 75 GHz, located at the
coordinate origin but now facing the sphere pole. In all instances, the probe radial
distance is set to 556.7 mm (1391 at 75 GHz), to coincide with the actual test
hardware. For case #2, we also consider an offset of the simulated aperture by
80 mm to increase the required SNF sampling density. This is done to assess the
sensitivity of the process to higher angular sampling density and to stress the test
case by not having our AUT conveniently located on the coordinate origin.

The radial distance variation from laser tracker measurements were found to be
approximately =1 mm (depicted in Figure 8.47), which translates to roughly +90°
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Figure 8.47 Structural laser tracker measurement showing ¥ error as a function
of (6,¢) as false colour image [m] on the spherical surface

of phase change at the simulation frequency (75 GHz). For the dipole example
(case #1), we obtain the patterns shown in Figure 8.48. The solid line is the ideal
dipole reference pattern and the dashed line represents the simulation, where the
measured radial variation of the scanner has been imposed in our simulation. The
difference between these two radiation patterns show an error-to-signal level (this
concept is introduced in Chapter 10) due to this variation of roughly —12 dB, peak
value. If we now apply the first-order phase correction, we see the simulated case
coincides closely with the reference case and the error-to-signal level diminishes to
less than —50 dB.

For case #2, we consider a higher directivity antenna and the principal radia-
tion takes place towards the equator of the sphere, as shown in Figure 8.49. For the
scanner being considered here, this is the case of the antenna radiating towards the
ceiling of the chamber so as to emulate many on-chip antenna measurement cases.
As for the dipole case considered first, reference and perturbed patterns are com-
pared to assess the impact of the probe radial position error as measured using the
laser tracker and we then do the first-order phase correction, so assess the success
of this on the test case. The results are shown in Figure 8.50 where we again have a
reference pattern, a perturbed pattern (due to the radial distance variation) and an
error-to-signal pattern. On the left-hand side, we show the impact before first-order
phase correction and on the right, after. Here, we see a roughly 40 dB improvement
in terms of the error-to-signal level, attesting to the impact of this radial distance
variation at this frequency and the success of the correction technique.

We next consider a variation of case #2, where the radiating aperture is offset
from the coordinate origin by 80 mm. The aperture is still radiating towards the
equator of the sphere, but a much higher SNF sampling density is now required,
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Figure 8.48 Dipole located on the z-axis (case #1) simulation. The reference
pattern is shown (solid), and the simulation subject to the radial
distance variation is shown as the dashed pattern, only visible on the
left. An error-to-signal pattern is also shown and is only evident on
the left, with a peak value of —12 dB. The patterns on the right are
after the first-order phase correction

due to the increase in MRE. The results are shown in Figure 8.51 where we again
have a reference pattern, a perturbed pattern (due to the radial distance variation)
and an error-to-signal pattern. On the left-hand side, we show the impact before
first-order phase correction and on the right, after. Here, we see a roughly 30 dB
improvement in terms of the error-to-signal level. Except for some minor differ-
ences observed at the 160°—180° angular region, the first-order phase correction for
the radial distance variation again seems to be working well.

For case #3, we consider a higher directivity antenna and the principal radia-
tion takes place towards the pole of the sphere, as shown in Figure 8.52. For the
scanner being considered here, this is the case of the antenna radiating towards the
¢ stage of the scanner so as to emulate a forward radiating measurement case, as
shown. As for the two cases considered before, reference and perturbed patterns are
compared to assess the impact of the probe radial position error as measured using
the laser tracker and we then do the first-order phase correction, so assess the
success of this on the test case. The results are shown in Figure 8.53 where we
again have a reference pattern, a perturbed pattern (due to the radial distance var-
iation) and an error-to-signal pattern. On the left-hand side, we show the impact
before first-order phase correction and on the right, after. Here, we see a roughly 35
dB improvement in terms of the error-to-signal level, attesting to the impact of this
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Figure 8.49 For case #2, we consider a higher directivity antenna and the
principal radiation takes place towards the equator of the sphere.
For the scanner being considered here, this is the case of the antenna
radiating towards the ceiling of the chamber
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Figure 8.50 Radiation patterns for case #2, a reference pattern, a perturbed
pattern (due to the radial distance variation) and an error-to-signal
pattern. On the left, we show the impact before first-order phase
correction and on the right, after
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Figure 8.51 Radiation patterns for case #2 with an 80 mm offset from the
coordinate origin. A reference pattern, a perturbed pattern (due to
the radial distance variation) and an error-to-signal pattern. On the
left, we show the impact before first-order phase correction and on
the right, after

Figure 8.52  For case #3, we consider a higher directivity antenna and the
principal radiation takes place towards the pole of the sphere. For
the scanner being considered here, this is the case of the antenna
radiating towards the ¢ stage of the scanner

radial distance variation at this frequency and the success of the correction
technique.

As an experimental test case, we measured a horn antenna (depicted in Figure
8.54) where the principal radiation takes place towards the pole of the sphere. The
test data at 90 and 110 GHz are shown in Figure 8.54. Since we did not have the
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Figure 8.53 Radiation patterns for case #3, a reference pattern, a perturbed
pattern (due to the radial distance variation) and an error-to-signal
pattern. On the left, we show the impact before first-order phase
correction and on the right, after correction
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Figure 8.54 Far-field reference pattern (solid) is shown overlaid with SNF
derived far-field patterns for cases where no radial phase correction
is applied (—) and where radial phase correction is applied (- - ).
Result at 90 GHz is shown on the left and 110 GHz on the right

convenience of a computed reference pattern here, far-field radiation patterns were
used for that purpose (they are shown as the solid line patterns and their noisy
nature is evident). The measured SNF radiation patterns without radial distance
correction are evident and unsatisfactory. This result is not surprising, given that
the +1 mm variation will translate to +108° of electrical phase at 90 GHz and to
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+132° at 110 GHz. Correcting for the measured radial distance variation leads to
the corrected radiation patterns in Figure 8.54 and these resemble the far-field
radiation patterns (without the noisy behaviour — a benefit of the spherical wave
expansion).

As a final word on the correction of radial variations in SNF testing, an
important aspect to highlight is the fact that as one considers applying near-field
test methods to ever-increasing test frequencies, one inevitably runs into fabrication
or implementation limitations. These limitations set an absolute limit on what can
be achieved in terms of positional accuracy and repeatability. If we are to be suc-
cessful in expanding these boundaries, we must become creative and instead of
trying to build absolutely rigid scanners of high structural fidelity, rather record
spatial coordinates of acquisition real-time and adapt our transformation technol-
ogy to rely on this information. This philosophy will set us free from trying to
recreate a measurement surface that conforms to our preconceived mathematical
formulations (planar, cylindrical or spherical surfaces) and rather place the focus on
measuring spatial coordinates during measurement. The techniques presented in
Chapter 9 open the avenue for this type of approach and represents some of the
newest development in antenna measurements today.

8.11 Summary

From the material presented here, it is clear that the theory underlying the SNF
approach is complex and involved to implement. However, it is also very elegant
and provides one with many measurement options and powerful capabilities. The
numerical implementation of the theory can be efficiently deployed through the use
of the fast Fourier transform (FFT) enabling transforms of even electrically large
antennas to be accomplished in a matter of a few seconds on a modern powerful
computer. With the advent of commercially available SNF test systems, the user
can exploit these techniques, largely unimpeded by the burden of the theory or the
implementation thereof. The material presented here highlighted some of the fun-
damental concepts and limitations the user needs to be aware of in order to use
these test systems with confidence.

References

[11 1. A. Stratton, Electromagnetic Theory, McGraw-Hill, 1941.

[2] R. F. Harrington, Time Harmonic Electromagnetic Fields, McGraw-Hill, 1961.

[3] J. E. Hansen, Spherical Near-field Antenna Measurements, Peter
Peregrinus, 1988.

[4] A.W.Rudge, K. Milne, A. D. Olver & P. Knight, The Handbook of Antenna
Design, Volumes 1 & 2, Peter Peregrinus, 1986. (Chapter 8: Antenna
Measurement by J Appel-Hansen, E S Gillespie, T G Hickman & J D
Dyson.)



532
[3]
(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Theory and practice of modern antenna range measurements, volume 2

A. D. Yaghjian, “An overview of near-field antenna measurements,” /EEE
Transactions on Antennas and Propagation, vol. 34, no. 1, pp. 3045, 1986.
G. Hindman & H. Tyler, “High accuracy spherical near-field measurements
on a stationary antenna,” Antenna Measurement Techniques Association
Conference 2010.

D. J. Janse van Rensburg & J. Wynne, “Parametric study of probe posi-
tioning errors in spherical near-field test systems for mm-wave applica-
tions,” North American Radio Science Meeting Digest — URSI 2012,
Chicago, USA, July 2012.

D. J. Janse van Rensburg and S. F. Gregson, “Parametric study of probe
positioning errors in articulated spherical near-field test systems for mm-
wave applications,” CAMA 1’st Annual Conference, Nice, France, Nov.
2014.

P. N. Betjes, D. J. Janse van Rensburg and S. F. Gregson, “An articulated
swing arm system for spherical near-field antenna measurements at milli-
meter wave frequencies,” 36th ESA Antenna Workshop on Antennas and RF
Systems for Space Science, Noordwijk, The Netherlands, Oct. 2015.

D. J. Janse van Rensburg and P. Betjes, “Structural Correction of a Spherical
Near-Field Scanner for mm-Wave Applications,” AMTA 37th Annual
Meeting & Symposium, Long Beach, CA, USA, Oct. 2015.

D. Novotny, J. Gordon, J. Coder, M. Francis & J. Guerrieri, “Performance
evaluation of a robotically controlled millimeter-wave near-field pattern
range at the NIST,” 7th European Conference on Antennas and Propagation
(EuCAP), pp. 4086—4089, 8—12 April 2013.

D. J. Janse van Rensburg, B. Walkenhorst, Q. Ton and J. Demas, “A robotic
near-field antenna test system relying on non-canonical transformation
techniques,” AMTA 41st Annual Meeting & Symposium, San Diego, CA,
USA, Oct. 2019.

M. Abramowitz, I.A. Stegun, Eds., Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, Dover Publications,
Standard Book Number: 486-61272-4, 1964.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 13.

C. A. Balanis, Antenna Theory Analsysis & Design, Wiley, 2005, p. 1085.
M. Abramowitz, I.A. Stegun, Eds., Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, Dover Publications,
Standard Book Number: 486-61272-4, 1964, p. 439, Eq. 10.2.21.

J.H. Bruning & Y. Lo, “Multiple scattering of EM waves by spheres part -
Multipole expansion and ray-optical solutions,” [EEE Transactions on
Antennas and Propagation, vol. 19, no. 3, pp. 378-390, 1971.

M. Abramowitz, I.A. Stegun, Eds., Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables, Dover Publications,
Standard Book Number: 486-61272-4, 1964, p. 775.

A. R. Edmonds, Angular Momentum in Quantum Mechanics, Princeton
University Press, 1974, p. 46.



[20]

(21]

[22]

(23]
[24]
[25]
[26]
[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Spherical near-field antenna measurements 533

A. Ludwig, “Near-field far-field transformations using spherical-wave
expansions,” [EEE Transactions on Antennas and Propagation, vol. 19,
no. 2, pp. 214-220, 1971.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 20.

F. Jensen & A. Frandsen, “On the number of modes in spherical expan-
sions,” AMTA 26th Annual Meeting & Symposium, Stone Mountain, GA,
Oct. 2004.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 19.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 129.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 330.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 42.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 319.

P.F. Wacker, “Near-field antenna measurements using a spherical scan:
efficient data reduction with probe correction,” Conf. on Precision
Electromagnetic Measurements, IEE Conf. Publ. No. 113, pp. 286-288,
London, UK, 1974.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 111.

A. C. Newell & S. F. Gregson, “Estimating the effect of higher order modes
in spherical near-field probe correction,” AMTA 34th Annual Meeting &
Symposium, Seattle, WA, Oct. 2012.

A. C. Newell & S. F. Gregson, “Higher order mode probes in spherical near-
field measurements,” EuCAP, Gothenburg, Apr. 2013.

A. C. Newell & S. F. Gregson, “ Estimating the effect of higher order modes
in spherical near-field probe correction,” AMTA 35th Annual Meeting &
Symposium, Columbus, OH, Oct. 2013.

S. Gregson, J. McCormick & C.G. Parini, “Principles of Planar Near Field
Antenna Measurements,” Appendix A, pp 347-354, IET Publications, 2007,
ISBN 978-86341-736-8.

T. A. Laitinen, S. Pivnenko & O. Breinbjerg, “Odd-order probe correction
technique for spherical near-field antenna measurements,” Radio Science,
vol. 40, no. 5, 2005.

T. A. Laitinen & O. Breinbjerg, “A first/third-order probe correction tech-
nique for spherical near-field antenna measurements using three probe
orientations,” IEEE Transactions on Antennas and Propagation, vol. 56,
pp. 1259-1268, 2008.

T. Laitinen, J. M. Nielsen, S. Pivnenko & O. Breinbjerg, “On the application
range of general high-order probe correction technique in spherical near-



534

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Theory and practice of modern antenna range measurements, volume 2

field antenna measurements,” presented at the 2nd Eur. (EuCAP’07),
Edinburgh, UK, Nov. 2007.

T. A. Laitinen, S. Pivnenko & O. Breinbjerg, “Theory and practice of the
FFT/matrix inversion technique for probe-corrected spherical near-field
antenna measurements with high-order probes,” IEEE Transactions on
Antennas and Propagation, vol. 58, no. 8, pp. 2623-2631, 2010.

C. H. Schmidt, M. M. Leibfritz & T. F. Eibert, “Fully probe-corrected near-
field far-field transformation employing plane wave expansion and diagonal
translation operators,” IEEE Transactions on Antennas and Propagation,
vol. 53, no. 3, pp.737-746, 2008.

F. Saccardi, A. Giacomini & L. J. Foged, “Probe correction technique of
arbitrary order for high accuracy spherical near field antenna measure-
ments,” AMTA 2016, Oct. 30-Nov. 4, Austin, TX, USA.

F. Saccardi, A. Giacomini, L. M. Tancioni & L. J. Foged, “Full Probe
Corrected Spherical Near Field Measurement Technique using Standard
Wideband Antennas as Probes,” EuCAP 2018, 9-13 April, London,
England.

T. B. Hansen, “Spherical near-field scanning with higher-order probes,”
IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4049—
4059, 2011.

S. Pivnenko, O. S. Kim, J. M. Nielson & O. Breinbjerg, “Higher-order near-
field probes,” DTU Report D10, ESTEC Contract No. 22812/09/NL/JD/al,
2012.

J. E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988, p. 315.



Chapter 9

Antenna field transformation
from non-canonical surfaces

9.1 Introduction

This chapter aims to address the need to perform near-field antenna measurements
with improved flexibility as compared to the traditional approaches of canonical
measurement surfaces using regular sampling. Inspired by the enormously power-
ful so-called fast integral equation solvers known from computational electro-
magnetics, we will derive computationally very efficient but still very flexible
inverse equivalent source solvers (IESSs) for the transformation of measured near-
field data into a set of equivalent sources, which can in turn be used to calculate
near and far-fields anywhere in the solution domain. This enables near-field
antenna measurements to be made on non-canonical surfaces and/or with irregular
grids. A by-product of these IESSs is that they allow a very flexible modelling of
the antenna under test (AUT), which can, with the inclusion of a priori knowledge
about the geometric extent of the AUT, provide ‘measured’ currents on the antenna
structure. This approach also offers the possibility of reducing measurement errors
by spatial filtering as well as enabling parts of the AUT sources, or of additional
echo/scattering sources within the measurement environment, to be ignored or
modified in post-processing steps to achieve further improvement of the measure-
ment results or to gain further diagnostic insight.

The antenna field transformations discussed in the previous chapters were all
based on an expansion of the antenna radiation fields into modal solutions of
Maxwell’s equations, where field modes in Cartesian, cylindrical, and spherical
coordinate systems have been considered. Such field modes represent a complete
set of vector expansion functions for the radiation fields and the individual modes
are mutually orthogonal when evaluated on the corresponding coordinate surfaces,
e.g., on planes, cylinders, or spheres. Based on regular equidistant sampling of the
measured fields on these coordinate surfaces and by utilising fast Fourier transform
(FFT) algorithms, it was possible to realise highly efficient and very robust antenna
field transformations for the corresponding, very specialised NF antenna mea-
surement configurations. The enormous efficiency and accuracy of these field
transformation approaches was certainly an important reason for the great success
of NF antenna measurements during the past few decades, and it was very common
in the antenna measurement community to adapt the measurement hardware and
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configuration to the needs of the available field transformation approaches. In
principle, it was certainly also clear how to perform antenna field transformations
for irregularly spaced measurement samples on non-canonical surfaces. However,
the available algorithms and the available computers were not powerful enough to
render such field transformations and the corresponding measurements
competitive.

Besides the considerable growth of computer power during the past few years,
it was in particular the enormous success of fast integral equation solvers in the
field of computational electromagnetics [1-3], which has eventually led to very
powerful antenna field transformation algorithms for irregularly sampled non-
canonical measurement surfaces. Such algorithms do not only support irregular
sampling on the measurement surfaces, but they are commonly also based on very
flexible radiation models of the AUT.

In this chapter, we call such transformation approaches IESSs, since they
represent the AUT radiation by equivalent sources. These sources exist in a volume
comprising the actual AUT volume, and knowledge about the size and shape of the
AUT can thus be considered in setting up the equivalent radiation model. Most
equivalent radiation models do not work with volumetric source distributions, but
they assume surface sources on the surface of the equivalent AUT model, based on
the well-known Huygens and/or equivalence principles of electromagnetics.
First equivalent surface source solvers date back to the 1990s, where flexible
planar surface current models were combined with FFT evaluations of the
radiation operators for planar, equidistant measurements [4,5]. Fully three-
dimensional solvers became popular not before the late 2000s, where [6] pre-
sents a general integral equation approach which was later accelerated by the
Fast Multipole Method (FMM) [7,8]. In [9—-13], three-dimensional IESSs have
been presented which extend the basic inverse source approach by a zero-field or
Love condition, and in [14] the first three-dimensional IESS accelerated based
on the principles of the multi-level fast multipole method (MLFMM) [1,15] was
presented. Following the work in [14] and the related approaches in [16,17],
which did, however, work with expansions of the radiation fields in propagating
plane waves and not with equivalent surface current densities, a series of pub-
lications evolved which report on many extensions and results, which make the
IESSs very flexible, powerful, and efficient [18-24].

In the following sections, inverse equivalent source-based antenna field
transformation algorithms together with the relevant background in electro-
magnetics and numerical algorithms are introduced, discussed, and evaluated. The
considerations start from the basic measurement configuration with non-canonical
surfaces and flexible equivalent source representations. Next, important funda-
mental electromagnetic theorems are recapitulated, before the forward transmission
equation with probe correction is introduced and discussed in various forms. Spatial
domain formulations are the starting point. However, spectral domain formulations
with an expansion in propagating plane waves give further insight and they provide
in particular also the basis for the realisation of acceleration approaches similar to
the MLFMM, by utilising the concepts of operator factorisation together with
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hierarchical operator evaluations. Various equivalent source representations are
discussed together with their discretisation by suitable basis functions. Appropriate
equivalent source representations of the measurement probes are introduced and a
fully discretised representation of the forward transmission problem, from the
sources to the measurement signals, is set up. The inversion of the discretised
forward problem is performed by iterative linear equation system solvers, which
work on a related system of normal equations. Besides the very common normal
residual (NR) equations, the normal error (NE) equations are introduced which
appear to exhibit certain advantages towards the solution of underdetermined
equation systems as mostly encountered in IESSs. A particular focus is then put on
the rapid evaluation of the forward operators by multi-level hierarchical algorithms,
where a single-level algorithm is introduced first and then extended to a hier-
archical multi-level approach. The concept of Gaussian-beam-based translations
helps to further speed up the operator evaluation. Some short notes on the addi-
tionally required evaluation of the adjoint operators and the operators of the con-
straint equations follow, before a wide variety of application and evaluation
examples is considered in order to demonstrate the capabilities and the perfor-
mance of modern IESSs. Finally, an extension of the IESSs to transforms above
ground half-spaces with arbitrary isotropic material properties is discussed and
demonstrated by application examples.

9.2 Measurement configuration with non-canonical
surfaces

Let us consider an antenna measurement configuration as illustrated in Figure 9.1,
where the AUT is located inside of a source volume Vg and where the measurement
samples are collected on a closed surface S,, which is completely enclosing the
source volume. Commonly, the measurement surface is chosen with some distance
to the minimum enclosing surface S; of the source volume Vg in order to avoid the
measurement of strong reactive fields, as well as measurement errors due to mutual
interactions between the AUT and the measurement probe. The measurement probe
in the following is assumed to be arbitrary within some constraints of usefulness,
but its radiation or receiving behaviour is fully known. Also, it is assumed that the
measurement sample locations and the orientations of the measurement probe are
chosen arbitrarily on the surface S,, again of course under the constraint of a certain
usefulness and with full knowledge of the exact locations and orientations. In
general, certain sampling criteria will have to be fulfilled in order to achieve useful
results from the application of field transformation approaches. In the following,
we will assume that the AUT is operated in transmit mode and the measurement
probe in receive mode. However, as long as reciprocity is fulfilled the actual
measurements can also be performed in the reverse direction.

The measurement task can be described as follows:

We want to measure sufficiently many field samples, typically in the near-
field, in order to obtain the far-field of the AUT and in order to obtain diagnostic
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Figure 9.1 Measurement configuration with non-canonical surface: the AUT is
located in the source volume Vs enclosed by a closed surface S; and
its radiation is produced by electric J and magnetic M current
densities within this volume. Near-field observations are collected at
arbitrary sample locations r on an arbitrary surface S located to
completely enclose the source volume Vs (in a certain distance).
Instead of the original radiation sources, equivalent electric and
magnetic surface current densities J , and M ,, respectively, located
on S; may produce the radiation fi elds of the AUT instead of the
original sources in Vg

information about the AUT. The second task is commonly equivalent to deter-
mining the field distribution or, alternatively, equivalent surface source densities,
such as J , and M , as shown in Figure 9.1, very close to the AUT.

In order to solve these tasks, we represent the radiation of the AUT by a set
of equivalent sources which are able to correctly represent any possible radiation
due to an arbitrary AUT located inside the source volume Vs. The equivalent
sources can be selected from a wide collection of choices, where a couple of
different options will be discussed later in this chapter. For the moment, we may
assume that we work with equivalent electric J , and magnetic M , surface cur-
rent densities located on the surface S enclosmg the source Volume Vs, or with
volumetric current densities within the volume Vy. In most cases, we may also
assume that these sources radiate in a homogeneous solution space such as free
space. Later in this chapter, we will see that such a configuration is able to
correctly and uniquely represent the AUT radiation fields. Throughout this
chapter, it is assumed that mutual interactions between the AUT and the probe
antenna can be neglected.

The fundamentals of antenna radiation based on the governing Maxwell’s
equations have already been discussed in Chapter 2. Here, we rewrite Maxwell’s
equations for convenience in the form of
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V x H = joD +J
VX E=—joB -~ M

V-D—p 9.1)
together with material properties
D =¢E = e00F
B =uH = wuH
a9 9.2)
& =g, sto =¢&. —Jje,
e = 1, — !

where we allow electric and magnetic equivalent current densities as excitation
terms. Also, we note that we consider time harmonic fields with a time convention
€' and all field and material quantities may depend on the spatial position r.

H is the vector magnetic field, w is the angular frequency related to the fre-
quency f by w = 2nf, D is the displacement current density, J is the electric
volume current density, £ is the vector electric field, B is the vector magnetic
induction, M is the vector magnetic volume current density, p is the electric charge
density, and p,, is the magnetic charge density.' ¢, is the permittivity of vacuum, z,
is the permeability of vacuum, ¢, is the relative permittivity, and g, is the relative
permeability. The latter two are in general assumed to be complex quantities, where
the real part is primed and the negative imaginary part is double primed. Also, the
electric conductivity o is in general assumed to be part of the imaginary part of the
permittivity, as seen in (9.2). For our purpose, we can assume that the material
properties are linear and isotropic. Also, it should be noted that the surface current
densities J , and M | can be assumed as a special choice of volume current densities
J and M, e.g., in the form of

J = lﬁ(ﬁ(g) ' (z - ZA))» M= MA(S(E(ZA) ' (z - ZA)) ©-3)

where ﬁ(z A) is the unit surface normal at the location , on the surface S_1 and

d(.) denotes the one-dimensional Dirac delta distribution.

9.3 The reciprocity theorem

The reciprocity theorem is one of the fundamental theorems of electromagnetic
fields. It is related to the mutual interaction of sources with fields, or alternatively

"For the considerations in this chapter, the introduced currents and charges are equivalent quantities. The
physical existence, in particular of the magnetic currents and charges, is thus not required.
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Antenna 2 Antenna 1

Figure 9.2 Arbitrary arrangement of two antennas: Antenna 1 may be excited by
current I;, and antenna 2 may be excited by current I,. Excitation of
antenna 1 with current I; causes the terminal voltage U, at antenna 2,
when [, is zero. Excitation of antenna 2 with current I, causes the
terminal voltage U, at antenna 1, when 1, is zero

among antennas [2,25,26]. In our case, we consider two antennas as illustrated in
Figure 9.2.

In transmit mode, antenna 1 may be excited by current /; and antenna 2 may be
excited by current /,, respectively. In receive mode, antenna 1 exhibits the voltage U,
at its terminals and antenna 2 exhibits the terminal voltage U,. Important to note is
that the receive terminal voltages at the two antennas are observed when the corre-
sponding transmit excitation current at this very antenna is zero, i.e., we can write

U, = Znli|p=0, Ui = Zih|n—o 04

where Z;; and Z, are the mutual impedances between the two antennas. From the
reciprocity relations of two-port networks, we can expect that Z,; = Z,.

In order to obtain the connection to an electromagnetic-field-based description
of the problem, we assume that

U1 :—J E12'ds’ U2:_J E21 -ds (95)
a1 B G -
11:” J, - da, Izzﬂ J, da (9.6)
4 4L
where £, is the electric field in the terminal region of antenna 1 along a short curve

C) between the terminal pins due to an impressed excitation current /, at antenna 2
and J | is an impressed electric volume current density in the terminal region of
antenna 1, whose integral over the terminal pin area 4; gives the impressed current
I,. Similar definitions hold for £, and J ), respectively. In order for these defini-
tions to be reasonable, we must assume certain properties of the field and current
distributions in the terminal regions of both antennas, which are commonly fulfilled
for small enough terminal regions, as will be seen in the coming derivations.

Now, let us forget our antenna configuration for a moment and consider an

arbitrary set of impressed sources J, and M | producing fields £, and H ,,, as well
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as a second arbitrary set of impressed sources J, and M, producing fields £,, and
H ,, where electric and magnetic sources are considered in order to maintain suf-
ficient generality. Both fields must fulfill Maxwell’s equations according to

VxH, =joeE) +J,, VxH, =joeE,+J,

VXE, =—joul, =M, VXE, =—joutd,) —M,

©.7)

If we take the scalar product of the first equation of the two equation sets with
E, and E, , respectively, and of the second equation with / , and H ,,, respec-
tively, and take the difference of the resulting expressions, we obtain

—V: (EZI xH,-E, XEZI) =L, Jy,tH, M —E, J —H, M,

(9.8)

12

where the product rule for the divergence can be used in order to show that the left-
hand side of this equation is correct. If this equation is integrated over a certain
volume V, which is completely enclosed by a surface 4(¥) and by utilising the
Gauss integral theorem, we obtain

_#A(V) (EZI XH,—E,x EZI) ~da

- J”V (EZI Sy +H, M, —E\ S, —Hy, -M2>dv 9.9)

which is known as the general integral form of the reciprocity theorem of electro-
magnetic fields. For our purpose of antenna interactions in free space, it is appro-
priate to consider a spherical volume, whose radius r approaches infinity. With the
assumption that there are no sources at infinity, we can utilise the far-field prop-
erties of the fields in form of

Ey = ZH,, E, = —ZHy (9.10)

i.e., the radiated waves have the properties of locally plane waves, where
Z = \/u/¢ is the characteristic impedance of the considered medium, e.g., of free
space. Utilising these relations, the surface integral in (9.9) becomes

#A(V) (Ezl XH,—E,X 521) ~da

= #A(V) [ZHg;]H(pZ + ZHy1 Hyy — ZH¢1H¢2 — ZHﬂlHﬂz]da =0 9.11)

for the assumed far-field terms of the fields and the near-field terms of the fields
decay so fast that their contribution to the surface integral vanishes anyways.
The general form of the reciprocity theorem for infinite space is thus

JJJ (oot~ )= [ (B sy Hy oM )dv012)
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If we come back to our antenna problem as depicted in Figure 9.2, where only
electric excitation current densities J, and J, are present in the terminal regions of
the antennas and where it is p0551b1e to factor the integral over the terminal regions
according to

~U, I
= J £y, -ds ﬂ I, 'dﬂ:JJJ (Elz"ll)dv (9.13)
Cy Ay 14
—-U I

9.14)

as known from circuit theory.

An interesting question at this point is certainly what happens if the terminal
configurations of the considered antennas do not support the factorisation of the
integrals as shown in (9.13) or if we have antennas with waveguide port excitation
for instance. In these cases, the unique definition of voltages and currents may not
be feasible. By working with impressed electric and/or magnetic surface current
densities, it is, however, possible to impress incident waves at waveguide ports and
by using the orthogonality properties of the waveguide modes the common reci-
procity relation S;; = Sj, for scattering parameters can be derived. To show this,
we assume that both antennas are fed by a waveguide port, where on transmit an
incident waveguide mode is impressed and on receive a waveguide mode travelling
out of the port is detected. Writing (9.12) with impressed surface current densities
at the planar waveguide port cross sections 4(P1) and A(P2) gives

” (521 S = Hy Mu)da:” (512 S —Hye MAl)d
A(P2) A(P1)

(9.15)

The excitation of an incident waveguide mode on transmit with power wave

amplitude a;/, can be achieved by choosing JAI/Z = 1)o7/ Zyep1 )21t X le/2 and

M, p = A1) (Q X E p1 /2) /\/Zrer,1 /2> Where 7 is the surface unit normal directed
into the solution domain and Z,,;,,/, is the normalisation impedance for the defi-
nition of the power wave amplitudes a,/, and b;/,. The hat on top of E;fl P and

H 1;1 /> indicates that the fields are normalised to excite an incident port mode with



Antenna field transformation from non-canonical surfaces 543

power wave amplitude 1/W and a normalisation integral equal to 1. Moreover, it
is here assumed that the feed waveguides extend to infinity outside of the solution
domain in order to avoid reflection of the wave travelling out of the ports. Equation
(9.15) becomes thus

(n X E}i’2>

Zref 2

(o 23)
+H d

ol (e vmaean) e, B2,
A(PY) =12’ / Pl —12 Zyef 1

With the relation between in-going and out-going waveguide mode fields [27]

da

azﬂ( Ey Vo2 (8 x Hpp ) + H,,

(9.16)

~in ~out ~in = out

NXEpy=0XEp, nXHp,=-nxHp, 9.17)

and some vector algebraic manipulations, we obtain

[ e () o (e )
—a ref 241 (2
A(P2) 12 Zy2

~out
- out E
——a (E x( Zror 1 H ))+ =P g || dda  (9.18)
”A(Pl) —12 i N/

and this equation can be interpreted as

=8 =Sp=— 9.19)
a ar
if we keep in mind that the integrals over the port areas of the two antennas in
(9.18) give the received power wave amplitudes 2b, and 2b,, respectively, due to
the orthonormality properties of the port mode field distributions [27].

9.4 Mathematical formulation of the Huygens principle
and equivalence principles

The Huygens principle is another fundamental theorem of electromagnetic fields,
which is strongly related to the uniqueness theorem and to the equivalence principle
[2,25,28,29]. In order to derive the mathematical formulation of the Huygens
principle, which has already been introduced in Section 2.7 in a more intuitive way,
let us consider a geometrical configuration as depicted in Figure 9.3.

Moreover, let us introduce the concept of a dyadic Green’s function according to

dE(r) = G (r,1) - dJ (1) (9.20)
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Figure 9.3 Electric and magnetic current densities J and M in a volume V;
completely surrounded by surfaces S; and S;

where the dyadic Green’s function QE (E, 5’) gives the electric field at any obser-
vation location f in a solution domain for excitation with an electric unit dyadic
source [ (3(r —r ) at the source location 7' [30]. In a similar way, dyadic Green’s
functions for magnetic fields (superscript H) and for excitation with magnetic unit
sources (subscript M) can be defined. With this in mind and following the ideas of

Monzon in [31], we consider again two sets of Maxwell’s equations according to

V x H(r) = joe(r)E(r) +J (r)

V X E(r) = ~jou(r)H(r) — M(r) ©-21

V x H, (r) = joe(r)E,(r) +2,0(r — 1)

V x E,(r) = —jou(r)H.(r) (9.22)
where

E(r)=G"(r.r) 2 H.(r)=G"(rr) 2. (9.23)

The hat on top of £, and H , indicates here that these quantities do not have the
dimension of fields, but of Green’s functions. The fields £ . and H . are obviously
auxiliary fields due to the unit Dirac source excitation EG(S(E —r )

Taking the scalar product of the first equation in (9.22) with E and of the
second equation in (9.21) with A, and subtracting both results in

Ve (Bor) < E(r)) =jo[e(E(r) - E(r) +u() () - H ()]
+ H(r) - M(r) +E(r) -2.0(r — /). (9.24)

Similarly, taking the scalar product of the first equation in (9.21) with E . and
of the second equation in (9.22) with A and subtracting both gives

V- (H() xE(r))
= jole(E(r) - E() +u(B () -HO)| +E() - L) 929)
)

whereinbothcases—V~(g><Q =a-Vxb—>b-V xa was used.
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Subtracting (9.24) from (9.25) gives

V- (H() < () - Br) < E())

= () ) - M) B )~ E() 20— ). 0.26)

Using the Gauss integral theorem, e.g., for the volume V) as illustrated in
Figure 9.3, results in

E() 2= ]| (20) Bl - 1) () )

B () X () = H(r) xE(r)) -i(r)da (9.27)

where the filter property of the Dirac delta was used. Also, it is noted that
S(V1) = S1 + S, and that the surface normal 7 is here assumed to be oriented into
the volume V.

By rearranging the vector and scalar products in the surface integral and by
using (9.23), we obtain

Lo T M(K) ’ g;[ (E’K,) .Ee')dv

|t
o)
M~
—
Q)
Il
%
—
=~
N
|~
o)
(~
S—
(i)
<~ o™
—~
i~
I~
—
Q)

+#S<V1) [(i(i) xH(r))- G (rr') -2 — (E(r) xA(r)) - G"(r.r") Ee} da.
(9.28)

Utilizing the reciprocity properties of Green’s functions in the form of [25,31]

GE(rr') = (GE(.r)) | G () = —(GE (r) ' 9.29)

with the superscript 7 indicating the transpose, (9.28) can be written as

) e[| (200 (e0n) e w0 (65 000) 2 )
[0 <1 0)-(65(0) 2 B0 x20)- (65 () 2]

(9.30)

By interchanging r and r’ as well as by utilising the fact that the equation
must be valid for arbitrary constant vectors ¢,, we finally obtain an integral
representation for the electric field £ in every observation location  in V; in the
form of

£0) = |[], (@r) 20) + 65 () )

+ Poonn [GE ) T () + GE (') M ()|l 9.31)

where the vector algebraic relation a - G T= G - a was used and where
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J(r)=0a(r) xH(r), M, (r)=E(r)xn(r) (9.32)

are equivalent surface current densities, which are related to the tangential mag-
netic and electric fields on the surface S(77). With similar arguments as used for
(9.11), it can be shown that the surface integral contribution in (9.31) will vanish
for a spherical surface with radius tending to infinity, i.e., the surface S, in
Figure 9.3 may be shifted to infinity in the form of a sphere and then neglected.

An interesting question is what the result of (9.31) will be if the observation
location 7 is chosen outside of V. Looking into the derivation of (9.31), it is clear
that a key step in the derivation is from (9.26) to (9.27), where the Dirac delta will
only contribute to the volume integral when r is located inside of V;. Consequently,
if 7 is located outside of V7, the integral results of the volume integral and of the
surface integral will cancel and (9.31) will deliver E (r) = 0 for observation loca-
tions outside of .

Alternatively, we may achieve the same result by observing that the surface
current densities J , and M , according to (9.32) cause a jump of the true field just
inside of S(¥7) to zero just outside of S(7;). At this point, it should be mentioned
that surface current densities according to (9.32), which consequently lead to a null-
field condition outside of the considered solution volume V7, are known as Love
surface current densities.

With the knowledge that (9.31) delivers a zero-field outside of the considered
volume V7, it is generally argued that the material properties outside of V; can be
modified without modifying the result of (9.31). This is true as long as the
equivalent surface current densities remain unchanged and the change of the
material properties outside of V) is, thus, equivalent to changing the material
properties for the Maxwell equations in (9.22) but not so for the equations in (9.21).
That is, by changing the material properties in Vs, we change effectively the
boundary conditions of the Green’s functions G and GE which do need to be set

to uniquely define the Green’s functions, but Wthh have not yet been considered so
far. Filling Vs in Figure 9.3, e.g., by a perfect electric conductor (PEC), the electric
surface currents J , will no longer contribute to £ (5) and filling Vs with a perfect
magnetic conductor (PMC), M | will no longer contribute to £ (5), but the Green’s
function for the remaining type of surface currents has to fulfill the boundary
condition on PEC- or PMC-filling, respectively.

In antenna measurements, it is, however, in most situations convenient to work
with a configuration, where the material in Vg is chosen to be identical to the
(homogeneous) material in V. Commonly, we may also assume that there are no
volume sources J and M in the solution volume V7 and that the volume V' ranges
to infinity.

With respect to our measurement configuration in Figure 9.1, we can thus say
that the fields in ¥, which are primarily generated by the primary sources J and M
in Vs, are generated by the secondary sources J, and M , on S, when we utilise
(9.31) in the form of

E(r) = Ps [GE(rr) -2, () + G (ror') - M, ()| e 933)
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where it is, possible to work with homogeneous (free) space Green’s functions Qf
and Qi . Since there are no sources in ¥, or in V5, the surface S, can be chosen

arbitrarily as long as it is completely outside of S. If S, is at infinity, it is clear that
there is no integral contribution to (9.33) [or (9.31)] from it. If it is closer to Sy, e.g.,
at the position where near-field measurements may be performed, there will also be
no contribution to (9.33) [or (9.31)], since an integral contribution from S, could
only come, if there were primary sources in V5.

If we consider the volume V), and calculate the field in it via a similar integral
representation as given in (9.33) (now with integral over S,), the equivalent surface
sources on Sy, would carry the field information of the primary sources in Vy into
the volume 7.

From these considerations, it is also clear that the following statements hold:

e  The knowledge of J, and M , [or of the corresponding tangential fields, see
(9.32)] on S is sufficient to uniquely determine the fields everywhere in V)
and V.

e  The knowledge of J, and M , [or of the corresponding tangential fields, see
(9.32)] on S; is sufficient to uniquely determine the fields everywhere in V5.

e  With appropriately modified Green’s functions, it is clear that either J , or M
(or either one of the corresponding tangential fields) is also sufficient in both
cases, since resonance effects cannot occur in an open measurement
configuration.

If the fixed relation between the surface sources and the tangential fields (Love
condition) is not important, one may also work with any other kind of equivalent
surface sources, which are able to correctly represent the fields on the measurement
surface, i.e., on S, in Figure 9.1. Due to the uniqueness theorem and based on the fact
that /| and V; are free of any further sources, these sources will then also produce the
correct fields anywhere in V; and V,. However, in contrast to the so-called Love
current densities J , and M , other sources may also produce nonzero fields in the
original source volume V. This violation of the zero-field condition is in general no
problem since there is anyways no information about the true fields in V.

Furthermore, it is of course also possible to work with various kinds of
equivalent sources (e.g., volume sources) inside the volume V. Various types and
distributions of sources within Vg are able to correctly represent the fields in V; and
V,, where in particular a representation, e.g., with electric volume current densities
J in the form of

Elr) = m G r.r) - J(r)av (9.34)

with free-space Green’s function Qf is advantageous in terms of simplicity of the

equations. Such volume equivalent source representations are sometimes known
under the name volume equivalence principle.
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In summary, we can say that any equivalent source distribution inside of Vs or
on the surface S; of Vg, which is able to correctly produce the fields on the mea-
surement surface S5, is also able to correctly produce the fields anywhere in V; and
also in V5.

At this point, it must, however, be emphasised that all the statements about the
unique and correct representation of the fields and the sources are only valid under
the assumption of perfect accuracy — for the measurements, for the source deter-
mination, and for the field calculation. In practice, we must be aware of the fact that
the accuracy is limited. In particular, it may be impossible to determine strong
evanescent fields near to the AUT with appropriate accuracy, since these fields may
decay very quickly with increasing distance. The field contributions of such eva-
nescent fields at the measurement surface may be so little that they are beyond the
dynamic range of the measurement system and of the numerical field transforma-
tion approaches. In mathematical terms, we can say that our inverse source problem
is at least mildly ill-conditioned and the recognition of this fact can be very
important for a successful solution of such problems.

An important aspect of equivalent source representations of antennas is related to
the mutual electromagnetic interaction of the antenna with its environment. After the
replacement of an antenna by equivalent sources and the modification/removal of the
true antenna materials, it is no longer possible to correctly account for mutual inter-
actions, e.g., between the AUT and the probe. Therefore, the measurement config-
uration should always be chosen in a way that mutual interactions of the AUT with its
environment are kept as little as possible, in order to avoid measurement errors.

Based on the foregoing discussion, we may ask the question: Why do we not
directly work with the measured field samples on the surface S, in order to deter-
mine the fields in far-field distance or at any other location in V,? The key reason
for this is the influence of the measurement probes. When we measure the fields on
S>, we do only know the output signals of the probes but not the fields incident on
the probes, which would be required to obtain / , =7 x H and/or M | = E x 7, or
some other kind of viable sources, as necessary for the field calculation. The
retrieval of these quantities from the measured signals is actually most advanta-
geously achieved by introducing equivalent radiation sources in some distance
away from S, e.g., on S;. The actual determination of these sources is then
achieved by solving an inverse radiation problem as discussed later in this chapter

Even if we were able to directly measure J , =7 x H and/or M , = E x 1 on
S5, 1.e., probe correction would not be necessary in this case, the ir 1r1tr0duct10n of
equivalent sources at some distance away from S, and solving a corresponding
inverse radiation problem could be beneficial. For a direct computation of the far-
fields from the measured fields or surface current densities on S,, we would have to
numerically perform the integral in the form of (9.33) over the surface S, based on
the corresponding measurement samples. Since the measurement samples may not
be collected in order to support a numerical quadrature rule over the measurement
surface S,, the solution of an inverse radiation problem for the determination of
well-defined surface sources on the surface S, which are subsequently integrated
to obtain the far-fields, can help to overcome such problems.
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9.5 Forward transmission equation with probe
correction

In order to set up the field transformation problem, an appropriate transmission
equation from the equivalent sources representing the AUT to the output signals of
the measurement probes is required and this transmission equation should be
equivalent to the practically measured transmission between the AUT and the probe
antenna.

9.5.1 Voltage-equivalent current formulation

In order to derive a forward transmission equation between AUT and measurement
probe in a voltage-equivalent current formulation, we start from the reciprocity
theorem in a form related to (9.13), given by

“U(r)i(e2) = ] (B -afr ) )
= HJV (Eu(f) ) (z - 51))dv =-U (zl)ll (51)

and consider it for a two-antenna configuration as shown in Figure 9.2, for instance.
Here, we may assume that antenna 2 is the probe antenna and antenna 1 is the AUT.
Next, we assume that both of the antennas are replaced by equivalent electric
volume current densities radiating in free space in the form of (9.34) according to
the volume equivalence principle, i.e., antenna 2, the probe, is replaced by

J, (r - Kz) and antenna 1, the AUT, is replaced by J, (1 - Kl)' By writing these

<

(9.35)

current densities as well as the terminal currents and voltages with respect to the
antenna reference positions r and r,, it is indicated that the antennas, especially
the probe, may have changing locations in space. Based on this, the left equation in
(9.35) can be written as

‘Uz(rzHJLz JZIEF(Q)G)'JJJVIGf(V,r’)-JI (¥ =r ) |av. 936

By using a free-space Green’s function, it is clear that mutual interactions
between both antennas are no longer considered in this equation. Also, it is clear
that the influence of the probe, i.e., of antenna 2, on the measurement result is fully
accounted for by evaluating the volume integral over V, with some kind of
equivalent volume current distribution J, representing the probe. Such a normal-
ised equivalent volume current distribution representing the probe may be called a
probe weighting function

L pvope (£)
Wprane (1) = =722 (9.37)
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which is written here with the assumption that the probe reference location is in the
origin of the coordinate system, and (9.36) can, thus, be written as

~Us(r,) = Jﬂy (mpmbe (r=r) my G (rr) -/, (v -r) dV') dv.
(9.38)

The Green’s function of homogeneous space involved in (9.38) can be written
in the form [25]

o Iklr—r]

1
E I .
G (1) = —jkz (g + szV> (9.39)

Azlr —r'|
with the wavenumber of homogeneous space k& = w,/eu and the characteristic
impedance of homogeneous space Z = \//% With this knowledge, (9.36) can
formally be evaluated, e.g., by numerical integration, for arbitrary volume current
distributions J, and J,. Due to the complicated functional dependence of the
Green’s function, this can, however, be a very cumbersome procedure. Therefore,
we would like to find different representations of (9.36), which are in particular
more amenable to an efficient numerical evaluation.

As a first step, let us look into the far-field formulation of (9.36), i.e., in its
formulation for very large distances between the two antennas. In such a situation,
we can introduce an FF approximation of the Green’s function in the form of

E, eIk o\ e ) e ()
GE ()~ iz (1-2,2,,) 8 e (9.40)
11-'/-'
where ry = |;:2 — £1| with Ty =F, =1 = rzlgm is the distance between the

reference locations of the antennas and where the common FF approximation has
been introduced with respect to the reference locations of the antennas. /¥ can be
seen as an FF unit dyad, which contains only transverse vector comﬁonents as
known from far-fields.

With this representation, (9.36) can be written as

ek EZTX (527 _kgr ) x R
UZ(KZ) = 47tr2] ]kZ - .Elx(zlukgrzl )Il (Kl) (9.41)

where

J o, r—r (A
H iy pk) = _jkzm M-l”e’k&' " =riplay (9.42)
—1/25=1/2 = ne, hplp) =

is commonly called the FF transmit antenna transfer function, here defined for

antenna | or antenna 2, which gives the far-field of an antenna in the direction of E
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With the definition of the FF receive antenna transfer function

H(r k)
Ry _ kK
Hy (ry k) = ZJTZZ (9.43)

the transmission equation in (9.41) can be written as

ek

U2 (l"

_2) = ng(fr _k/érzl)

' 47y, [ilrx(tl’ k@zl )11 (fl) (9.44)

EF‘F(KZ)

which is a common form of writing the FF transmission between ultra-wideband
antennas, where the phase relations dependent on frequency are important. Also, it
becomes clear that the H** receive antenna transfer function is nothing else than
the (complex) effective length of an antenna on receive.

By re-writing the equation in (9.43) in the form of

HE (r k) =jkZH™ (r, . k) = jouH™

Ayl K LRV NAY TS k) (9.45)

1/2 (r, 20K
it becomes moreover obvious that the receive transfer function of an antenna in
time domain is proportional to the temporal derivative of the corresponding trans-
mit transfer function.

In case that an antenna is not represented by an electric current density J, but
by a magnetic current density M, the pertinent Green’s function is

fjk’zf K/’
GE(r,r') = =V x [ - 9.46
:M(f r) =axlr — /| (9-46)
with FF approximation
G* (r,r') ~ jk x IFFﬂejk € (tn) gk €y (12) (9.47)
=M= = = = dary '

and the corresponding FF transmit antenna transfer function thus is

HTX (r

. M r—r o~
iy k) :jkﬂj kox — 2 Z2) (_ _1/2) J = np) g, (9.48)
Vi

Tk
Ly (Kl/z)

where it is still assumed that the antennas are excited by feed currents 7, ,. If an
antenna is represented by a combination of electric and magnetic current densities,
the contributions of both are added and both the integral representations in (9.42)
and (9.48) can of course also be evaluated for surface current densities in the
corresponding way.
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9.5.2  Spectral representation with propagating plane waves

As already mentioned, the numerical evaluation of the near-field transmission
equation in (9.36) requires an evaluation of the integrand for all necessary combi-
nations of » and 5'. In contrast, the far-field transmission equation in (9.44) is
obviously in a much simpler, i.e., a factorised operator form, where the source and
observation integrals can be evaluated independently from each other and where
the final transmission result is just obtained by multiplying several factors. The
goal is now to find a similar factorised, and ideally also diagonalised, representa-
tion of the transmission equation between two antennas, which is valid under near-
field conditions. There are certainly algebraic ways of achieving this goal, once a
discretised representation of the transmission equation has been set up. However,
one of the most successful and powerful ways of achieving a factorised and also
diagonalised form of the near-field transmission equation is to follow the concepts
of the FMM [1,15] and to perform a spherical multipole and subsequent propa-
gating plane-wave expansion of the Green’s function of the scalar Helmholtz
equation according to

e HX ] # w-a Ik ZL: () > oy 27
T lim e < > 20+ DRP OP(R-X)d*E (9.49)
’)ﬁ"‘”_” L0 =0

Tu(X k)

valid for ’)_( ‘ > |d|, where P; is the Legendre polynomial of order / and h§2> is the
spherical Hankel function of order / and second kind. The term 7;(X,k) is
obviously multiplied with a propagating plane-wave propagator within the inte-
grand of (9.49) and is, therefore, called a propagating plane-wave translation
operator. Practically, it is computed as a truncated sum over the involved spherical
multipoles, where the truncation number L is commonly computed in order to
achieve a certain accuracy of the representation. An often used approximation of
the required order for a certain accuracy is [1]

L~ k|d|+ 1.84)7 (k[a]) " (9.50)

where dy = log(1/¢) is the number of decimal digits of the accuracy & for the
representation of the Green’s function of the scalar Helmholtz equation. At this
point, it must, however, also be mentioned that the expansion in (9.49) is only
useful for frequencies, where |0_Z ] is larger than about one fourth of a wavelength,
i.e., it will not be useable at very low frequencies, due to numerical problems in the
evaluation of the involved spherical Hankel functions for small arguments and
large orders. In the following, we drop the ‘lim; _...’, which is actually necessary to
write the ‘=" in (9.49), and assume that sufficiently many multipole terms are
considered in order to achieve accurate results in a numerical implementation of the
related equations and transformations.
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. !
With )ﬁzfszl =r, and d = (2—52) — (C 711), as well as the

utilisation of (9.49) together with (9.39), the near-field transmission equation in
(9.36) can be converted into

]1(1”1> TL(I" k) ~
_ - 21’2 Tx Tx 2
Unlry) == B = 1 k) T ) ©51)

which is a diagonalised and factorised transmission equation with full account of
near-field effects as long as |)£ | > |g | holds. If })7( | > {g | does not hold for a given
arrangement of antennas, one or both antennas can be subdivided into smaller parts
for which the interactions can be evaluated separately and finally summed up. Such
approaches will be discussed later in this chapter in relation to the numerical eva-
luation of the transmission equations.

With the transmission equation in (9.51), the near-field interaction between the
two antennas is obviously obtained by integrating over the far-fields radiated by the
transmitting antenna in all directions multiplied with the far-field receive pattern of
the receive antenna and the plane-wave translation operator 77(r,,, k) as illustrated
in Figure 9.4. Commonly, it is also said that the radiated fields of the transmit
antenna are expanded in propagating plane waves. These plane waves are then
translated to the receive antenna and multiplied with the receive pattern of the
receiving antenna, before the result is integrated over all possible propagation
directions on the Ewald sphere in k-space. The fact that (9.49) is a factorised
representation is obviously clear. The term ‘diagonal’ means that every plane wave
radiated by antenna 1 causes only one single incident plane wave in the same
direction at antenna 2. This is for instance in contrast to spherical-multipole
translations as discussed in Chapter 8, where every mode transmitted by antenna 1

Figure 9.4 Near-field transmission between an AUT and a measurement probe
based on propagating plane-wave representation and translation
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causes in general a full set of receive modes at antenna 2 and where the corre-
sponding translation operator is thus a full translation operator.

A very interesting observation is that the translation operator 7; becomes more
and more like a Dirac delta impulse with its maximum in the direction of the line of
sight between the two antenna centres, i.e., [32]

eIk
Tulryy k) = Ty k) = =0 (k ~ 1) 9.52)
if the distance r,; between the two antennas is more and more increased. With the
filter property of the Dirac delta in (9.52), the transmission equation in (9.51)
becomes identical to the far-field transmission equation in (9.41) or (9.44), which
supports the consistency of the found near-field transmission equation with pro-
pagating plane-wave representation.

9.5.3 Gain normalised transmission equation

The formulation obtained via the field and current source representation in
Maxwell’s equations and the common form of the reciprocity principle has led us to
the propagating plane-wave-based near-field transmission equation in (9.51), which
gives the terminal voltage of the receiving antenna based on the electric feed cur-
rent of the transmit antenna. If we ask what kind of voltage Ua(r,) is, we will
mostly say that it is the open-circuit voltage, even though nobody measures the
open-circuit voltage at a receive antenna under normal circumstances. If desired,
the reciprocity considerations can also be performed for a receive antenna with a
certain load resistance. However, a more natural description for antenna measure-
ments is to work with power waves at the antenna feeding ports, as illustrated in
Figure 9.5, which may not only be suitable for bipolar antenna terminals, but also
for hollow waveguide or dielectric waveguide ports.

In the following, we convert the voltage—current-based transmission equation
as obtained from the corresponding reciprocity considerations into a scattering-
parameter-based transmission equation including gain normalised antenna transfer
functions. This conversion is performed under the assumption that mutual coupling
effects between the AUT and the probe are negligible, i.e., the AUT and the probe
are treated as if they were located in infinite space without backscattering effects
from any other object.

Figure 9.5 Generic antenna with power wave description at the feeding port
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Let us now define the realised gain pattern of an antenna with reference
position in the origin of the coordinate system in the form of

S(rk) 1[IQH 0.6 2

. H 2 _ Tx 2
(9.53)
with
rgg L LOQBE" k) [T H¥(0.k)
PO NGz a Wiz (9:54)
where
_LET (R
and
1(0)v/Zyer = a(0) = b(0) = a(0)(1 =T, (9.56)
The reference of the realised gain is obviously the power
1
Py=la(0) (9.57)

available at the antenna port which may be delivered by the ingoing power wave
with amplitude a(g). In the case of mismatch at the antenna port, an outgoing
power wave with amplitude b( ) Fa( ) dependent on the reflection coefficient
I' may exist. Z,. is the reference impedance for the definition of the power wave
amplitudes.

Using (9.54) in (9.51) for both antennas results in

Ua(r,)

1-T
( 2> Zref

=dap rl #TL 217 (_2 _K) : E?%ka)dzk_\
(9.58)

which is nothing else than

S = ba(ry)

aj Kl

zjk#Tz P KW (ry, k) - Wy K)dk 9.59)

where we have used that

Uz(fz)
2\/ Zref

if Us(r,) is the open circuit voltage at antenna 2.

by(ry) = (1 —-T3) (9.60)
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With the transmission equation in (9.59), we have obviously a transmission
equation, which is directly related to the commonly measured transmission
S-parameter between the two antennas, i.e., between the AUT and the probe
antenna.

If we write the far-field transmission equation in (9.41) in a similar form, we
obtain

b2 (1’2) \/J_'[ e —jkra
Syy =—L =YW  —ke, )- Wi (r, ke,,). 9.61)
ar (Zl) ]k —2 \22 21 \/_r21 21

Since the power density S (52) generated by the transmit antenna at the loca-
tion of the receive antenna is given by
eIk | |

Sl(gz) N W e, S (9.62)

it is obvious that the effective area normalised receive antenna transfer function of
our receive or probe antenna can be written as

VAW (r,, k)

W3y k) = === (9.63)

This results in

Rx )’2 Tx 2 /12
A (k) = W] = W) = - 6k) (9.64)
and shows that our derivation has provided us with the common reciprocity relation
of an antenna as a by-product. In antenna text books, this relation is often derived
from the reciprocity theorem under the assumption that one of the antennas is
known, e.g., by assuming that one of the antennas is a Hertzian dipole.
If we transfer the gain or power normalisation to the original spatial domain
transmission equation as found in (9.38), we obtain

:CIHJVZ mebe<’rz)'mVle(W’)~J1£r&)rl)dv’ dv  (9.65)

with

=2 U (9.66)
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Equation (9.65) represents Sy; in terms of transmission from a normalised
equivalent volume current representation of the AUT to the probe in the form of
spatial probe weighting with the normalised probe weighting function found in
(9.37), where it is one more time noted that mutual coupling effects between the
AUT and the probe have been neglected and the input reflection coefficients of the
AUT and the probe, I'} and I';, respectively, are the input reflection coefficients in
a free-space environment without any backscattering.

9.5.4 Spatial and spectral probe representation

In the previous sections, we have derived forward transmission equations, where
the influence of the measurements probe has been fully accounted for. However,
due to the importance of the probe correction, we want to further elaborate on this
topic. Based on the derivation of (9.36) by the reciprocity theorem, we have
obtained the probe weighting function

J r
W ppope (1) = IZ”’Z(_) (9.67)

which is multiplied with the incident electric field to be measured and integrated
over the probe antenna volume in order to provide the voltage at the probe term-
inals, the open-circuit voltage in most instances. Due to the derivation based on the
free-space Green’s function, it should be clear that we assume here the equivalent
volume currents J, (f) representing the probe to exist in free space. The inci-
dent field to be measured is, therefore, also assumed to be the field existing in free
space. It is noted that the concept of representing the probe by an equivalent
volume current will also work with the probe material present. However, the cor-
responding Green’s function with the probe material present would have to be used
in this case, too, and this is in general not feasible. Moreover, it would also not give
any benefit since the Green’s function with presence of the generally unknown
AUT is not known either and the consideration of mutual interactions between
probe and AUT is, thus, not feasible anyways.

According to the Huygens and equivalence principles and the corresponding
considerations in Section 9.4, it is clear that many different equivalent source
representations may exist to correctly represent the probe behaviour. The only
requirement here is that the fields produced by these sources outside of the actual
probe volume must be identical to the fields produced by the real probe in transmit
mode. We could even go so far that the fields produced by the equivalent probe
sources must only be accurate within the entire AUT volume. Also, it is noted that
the volume currents in the probe volume can be replaced by surface current den-
sities on a Huygens surface around the probe volume, where again infinitely many
different surface current distributions may be used.

Since the evaluation of a weighting integral over the probe volume or over its
surface is commonly not convenient, it is desirable to evaluate the weighting
integral independent from a specific incident field. This can be achieved by
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expanding an arbitrary incident field into a set of known expansion functions for
which the weighting integral is pre-calculated. If this is performed for propagating
plane waves as found under far-field conditions, we arrive at the concept of the far-
field receive antenna transfer function as given in (9.43), which is proportional to
the far-field receive pattern of the probe antenna and normalised as an effective
length. In the spectral representation with propagating plane waves, as introduced
in Section 9.5.2, the total incident field is computed as an integral over propagating
plane waves and the far-field receive function of the probe can, thus, be utilised to
simplify the expressions. By utilising H 5"(52, k) according to (9.43), (9.51)
becomes

Ti(ry k)

= H (k) dk (9.68)

Uary) = h(e) PHE (v, k) -
where it is obvious that every incident propagating plane wave is multiplied by
H 12“ (fzv —k) and then the contributions of all incident plane waves are integrated to
provide the probe output signal U, (r,). Due to reciprocity, it is not really relevant
whether we work here with the FF receive function A 5"({2, —k) of the probe or its
FF transmit function A gx(gz, —k), except for a frequency-dependent factor to be
considered. Also, as demonstrated in Section 9.5.3, probe representations (as well
as AUT representations) with different normalisation, such as gain normalisation,
may be used.

The important observation at this point is that full consideration of the probe
receive behaviour, of course without mutual interactions with the AUT, is possible
by just working with the far-field receive/transmit behaviour of the probe, where
the far-field behaviour must be known in all directions with magnitude, phase, and
polarisation. Even though we work with propagating plane waves, it should be clear
that evanescent wave fields generated by the AUT are also captured by this kind of
field representation as long as the condition for the utilisation of the FMM concepts
according to the expansion in (9.49) is fulfilled.

In different spectral representations, probe correction is performed in a rather
similar way. In planar measurements with regular sampling as discussed in
Chapter 6, we work often with a planar 2D Fourier-type integral with FFT eva-
luation, again with propagating plane-wave representation of the incident field as
well as of the probe receive behaviour. Interesting to note is that this kind of
representation can capture the contribution of evanescent fields produced by the
AUT only in parts, if restricted to the propagating plane-wave region. An extension
to evanescent plane waves would in principle be possible, but then we would need
to know the receiving behaviour of the probe for evanescent plane waves.

The transformation of spherical measurements with regular sampling, as ela-
borated on in Chapter 8§, is often performed with FFT accelerated spherical mode
expansions, where the incident fields and the probe receiving behaviour are
decomposed into spherical modes. In this case, the common spectral integral
representation is simplified into a discrete sum over spherical modes.
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9.6 Types and discretisation of equivalent sources
for representing the AUT

From the discussions of the previous sections, it should have become clear that we
may work with a very large variety of different kinds of equivalent sources in order
to represent the fields radiated by the AUT. The most appropriate kind of sources
depends on what we want to achieve. If we are only interested in a near-field to far-
field transformation, we may work with equivalent sources that are able to accu-
rately represent the measured near-fields and, thus, also the far-fields. That is, the
fields need to be accurately reproduced in the volume ¥, as found in Figure 9.1 and
also on the surface S,. The particular choice of S} and thus also of V is not that
important in this case.

If we are also interested in accurate near-fields very close to the AUT, S| must
be defined very close to the AUT such that the volume V/;, as seen in Figure 9.1, in
which we can expect accurate fields, reaches also very close to the AUT. In this
case, we can inspect the field distribution very close to the AUT, ideally on a
surface tightly enclosing the AUT, and obtain diagnostic information about the
AUT. Based on this, we may understand the AUT radiation behaviour better or we
may identify faults and other problems related to the AUT.

If we restrict ourselves to the far-field case, i.c., without diagnostic intention
close to the AUT, we may directly work with the spectral far-field representation of
the AUT, e.g., as found in (9.59). The AUT representation KITX(K 1, k) can directly
be sampled on the Ewald sphere according to a numerical integration rule, which is
used to evaluate the k-space integral over the Ewald sphere. The sample values of
EITX(Q ,k) at the k-space sample locations are in this case the unknown quantities
to be determined in a corresponding NFFFT. Such a technique has been introduced
in [16] and it has been used in a couple of other works, too, see, e.g., [17,33].

Instead of sampling the Ewald sphere, we can also work with a spherical-mode
expansion of ZITX (r,, k) and arrive at some kind of more general spherical-mode-
based transformation than which is commonly used for standard spherical mea-
surements, as discussed in Chapter 8.

Both of these, let us say, global equivalent source representations of the AUT
have the disadvantage that they are only valid outside the minimum sphere around
the AUT, no matter whether the AUT is really filling up the complete minimum
sphere or only a part of it, as in the case of a planar antenna for instance. Moreover,
these global equivalent source representations are also not well suited for setting up
a very fast evaluation of the operator equations, except for the case of regular
sampling on spherical measurement surfaces as considered in Chapter 8 of course.

In the following, we restrict ourselves to localised source representations,
which can give more detailed diagnostic information about the AUT.

9.6.1 Surface current densities

Surface current densities on a tight surface around the AUT provide probably the
most accurate but still efficient means of representing the AUT radiation under the
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side constraint that the reproduced fields are accurate until very close to the AUT,
i.e., also on the surface S; according to Figure 9.1, where S| can of course be
chosen even closer to the AUT than implied in the figure. The radiated fields of the
AUT are in this case written as in (9.33), which is given here one more time for
convenience,

E() =, (GE(rr') () + GE (o) - M, ()] e (9.69)

Obviously, we have electric J (E/ ) and magnetic M (fl) surface current
densities, which are defined on the surface S;. In order to set up a solvable discrete
transformation problem, the surface current densities are discretised in the form of

T ) =308, (), M) =D M () (9.70)
P q

where S (5) are known expansion or basis functions for the surface current
densities and J, and M, are the unknown expansion coefficients, which need to be
found by the solution of the transformation problem. From the solution of elec-
tromagnetic radiation and scattering problems, it is nowadays well known that
divergence-conforming basis functions defined on appropriate surface discretisa-
tion elements are very well suited to represent the divergence-conforming surface
current densities. For triangular discretisation meshes, which give in general the
best modelling flexibility, the Rao—Wilton—Glisson (RWGQ) basis functions [34] are
in this respect the lowest order basis functions and, thus, the functions of choice.
The RWG functions are defined on triangle pairs in a way that the normal current
flow over the common edges is continuous and that there are no normal current
components at all other edges. The corresponding current density, as also illustrated
in Figure 9.6 on a triangle pair, can be written as

prro(r) = il—c(r —r), V() =7 L (9.71)

—C _ ZA i — _ ZA i

where the functions are here normalised to be free of dimension. One of the signs is
valid for one of the triangles, and the other sign applies then on the other triangle of
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Figure 9.6 Illustration of RWG vector basis function on a pair of triangles
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the triangle pair. The vector r is the position vector inside the triangles, r, is the
location of the vertex of triangle i opposite to the common edge, 4; is the | area of
triangle 7, and /. is the length of the common edge. As seen, the divergence of the
RWG functions is a well-defined, constant expression within the triangles and the
singular behaviour of the very near-fields of these functions is, thus, rather weak.

The RWG functions are so-called mixed-order basis functions, meaning that
the normal component of the surface current density is constant along the common
edge, but varies linearly with the perpendicular distance from the common edge.
Therefore, these functions are sometimes called to be of order 0.5. Basis functions
of higher order can also be utilised to represent the surface current densities [35].
However, due to the fact that the extreme near-field accuracy in inverse source
formulations is first of all not that important and second not that easy to maintain
anyways, higher-order discretisations of the equivalent surface currents are not
recommended in most cases. This is even more the case since higher-order
expansion functions lead often to a worse conditioning of the problem formulation
than low-order functions. In view of this, one may even consider to work with even
simpler basis functions than the RWG functions, e.g., just with electric and mag-
netic Dirac dipoles located at the centres of the mesh edges of the triangle pairs,
i.e., with functions of the form

B(r) = 12o(i(r,) x (r-r.)) (9.72)

where ¢, is a unit vector along the common edge, 7(r,) is the surface normal at the
locatlon r.,and r _is the centre of the common edge, or with meshless functions as
cons1dered later on in this chapter.

As already mentioned earlier in this chapter, a formulation of the inverse
equivalent source problem with electric and magnetic surface current densities at
the same time, but without any further condition is redundant, i.e., it supports a
null-space of non-radiating currents, but it can still deliver the correct near-field
distribution in the complete volume V7.

A formulation with electric and magnetic surface current densities is some-
times called a dual-source formulation. Single-source formulations, which do not
own the mentioned kind of redundancy are possible, but should be carefully
designed. For instance, one could work with either electric or magnetic surface
current densities alone. However, this leads in general to a relatively badly condi-
tioned transformation problem and is, thus, not recommended. A further single-
source formulation will be discussed later on. Before this, we would like to discuss
the possibility to eliminate the mentioned redundancy of the dual-source formula-
tion by setting up a further condition, which needs to be fulfilled by the fields
radiated from the equivalent dual-source representation.

9.6.2 Surface current densities with Love condition

When we look into the derivation of the Huygens principle in Section 9.4, then we
find that the equivalent electric and magnetic surface current densities are related to
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the tangential magnetic and electric fields on the Huygens surface S; (just inside
the volume V) according to
J,(r) =0(r) xH(r), M, (r) =E(r) xa(r). (0.73)
Since the tangential fields are uniquely defined on the surface S, the equiva-
lent surface current densities are, therefore, also uniquely defined, but the question
is how we can enforce the fulfillment of the condition in (9.73). Formally, this is
easy, since we can observe that the presence of these, so-called Love surface cur-
rent densities, causes a jump of the true tangential fields at the surface S| within the
volume V] to zero just on the other side of the surface currents, i.e., just inside the
AUT volume Vg and due to the uniqueness theorem this leads to zero total fields
throughout the complete AUT volume V. From this observation it is clear that we
are going to obtain the Love surface current densities according to (9.73), if we
perform our inverse equivalent current solution under the side constraint that the
currents produce zero fields inside the volume Vs or zero tangential fields just
inside the surface S;. This kind of side condition is known as Love or zero-field
condition and can be written in the form of additional integral equations. Formally,
we can evaluate (9.69) and its dual version for the magnetic field for a collection of
observation points inside the AUT volume Vg and force the result to zero, in order
to implement the Love or zero-field condition. However, such a procedure would
raise the question how to choose the observation points in Vg. More reliable appears
to enforce the zero-field condition directly on the surface S, and implement a
surface integral equation formulation of the zero-field condition in a way as known
from the numerical solution of radiation and scattering problems [1,2]. However,
towards this we have to take care of the singularities of the Green’s functions,
which occur for observation locations approaching the surface S;. If we look into
the mathematical formulation of the Huygens principle in Section 9.4, we can
observe that the Dirac delta in (9.26) is directly located on the surface S; in these
cases. The subsequent volume integration of the Dirac delta will, thus, lead to an
additional %2 related to M ,(r) and J ,(r), if the surface is assumed to be smooth
and the Dirac delta is assumed to be symmetric.” With this in mind, (9.69) and its
dual version for the magnetic field can be written as

M) =3M () - 3(r)

(65 2,0+ G ) M, () ]ad| o

res)

’Instead of relying on a symmetric Dirac delta, it is also possible to slightly deform the integration
surface around the observation point and evaluate the singular integral contribution for a shrinking
deformation according to the original Stratton—Chu approach [87,88].
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Ji(r) = %ZA (r) +2(r)

< B, (G (o) 1, () + 6P (r.r') M ()] de 9.75)
where we have utilised the conditions (9.73) in order to replace the tangential fields
on the left-hand side of the equations and where we indicate the corresponding
surface current densities by the superscript L to make clear that these surface cur-
rent densities fulfill the Love condition, whereas the surface current densities on the
right-hand side of the equations can be any set of equivalent currents which solve
the inverse source problem. In this sense, (9.74) and (9.75) can be seen as projec-
tors, which are known as Calderon projectors in literature [36]. By assuming that
the Love current densities are present on both sides of the equations, we may write
them as constraint equations in the form of

res,

1 ~ ’ / / ’ /
M (1) = =) x ff, [GE(r) -2, () + GE (vor') - 4, () ||
(9.76)
1 ~ ! / / / /
324(0) = +20) x B [G7(ror') - 1,() + G () - M, () ||
(9.77)

where the superscript L indicating Love currents has been dropped. Equation (9.76)
can be seen as an electric field integral equation (EFIE) and (9.77) can be seen as a
magnetic field integral equation (MFIE), where already one of these equations
alone would give a sufficient number of constraint equations after discretisation.
However, such a formulation could possibly suffer from parasitic interior reso-
nances, as known from the numerical solution of radiation and scattering problems
[2,3]. Therefore, it is recommended to enforce both equations simultaneously or a
combination of both equations in the form of a combined field integral equation
(CFIE) as, e.g., given in the form

<@ [G" () S, () + G (o) - M ()] de 9.78)

res,

where a is here the CFIE combination parameter commonly chosen in the range
from 0 to 1, preferably close to one for standard discretisations with RWG basis
functions in order to have a stronger weight for the commonly more accurate EFIE.



564  Theory and practice of modern antenna range measurements, volume 2

9.6.3 Surface current densities with combined-source
condition

The Love or zero-field condition as discussed in the previous subsection is certainly
the most popular side condition for the formulation of the inverse equivalent sur-
face current problem, since it reliably removes the redundancy due to the dual-
source formulation and it results in a well-understood definition of the surface
current densities according to (9.73). However, the utilisation of the Love condition
in a numerical implementation has the downside that it leads to a fully populated
discretised operator equation, whose evaluation or solution can easily consume
more computation time than the evaluation or solution of the inverse source
operator itself. Therefore, it is of great benefit to have side conditions at hand,
which are computationally less demanding.

An excellent side condition in this respect can easily be derived from the CFIE
side condition as given in (9.78) by only keeping the left-hand side of the equation
and setting the right-hand side of the equation to zero, resulting in

2(i(r) % 4, (1)) =M, (1) =0 = M, (1) =2(i() xJ, ()  ©79)

where the choice a = 1/2 is here in general recommended and has been used in
writing (9.79). This kind of condition is known in electromagnetics literature as a
combined-source (CS) condition [20,21] and it is also strongly related to the even
more popular impedance boundary condition [2,3], which is often used for scat-
tering problems, i.e., when a wave is impinging on a material object with certain
material properties. It can be easily verified that the CS condition according to
(9.79) is an exact zero-field condition for the case of a planar Huygens surface and
for a plane wave propagating through this surface in perpendicular direction out of
the AUT volume. The CS condition can approximate the zero-field condition rather
well for smooth and convex surfaces 5.

If we wish to work with RWG basis functions for the discretisation of the
surface current densities and if we wish to fulfill the CS condition in a strong form,
then it is clear that we can only discretise one of the surface current types with

RWG functions ég "G (r), for example, the electric surface current densities J , (r).

The other type of surface currents, in the example the magnetic surface current
densities M , (f)’ will have to be discretised by rotated versions of the RWG
functions, resulting in

2,0) = 380 M) =3 h2(@0) xB"W) 080

A strong-form enforcement of the CS condition for Dirac delta basis functions
as introduced in (9.72) results in elementary radiators with

J(r) =Jdded(r=r.), M) =sz(i(r) xeo(r ~r,)) (9.81)

Such elementary radiators are known in electromagnetics literature under the
name Huygens radiators and they exhibit a main beam directed along the surface
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normal of the surface S; into the volume V. At the same time, they have zero
radiation into the opposite direction, i.e., very weak radiation into the AUT volume
Vs, what is, of course, only strictly valid for AUT volumes of convex shape.
Needless to mention is that the elementary radiators constructed by RWG basis
functions according to (9.80) have a very similar directive radiation behaviour out
of the AUT volume V.

A disadvantage of the strong-form CS condition with RWG function dis-
cretisation is that the divergence-conforming property of the RWG functions is lost
by applying the E(f) x operator. The resulting functions are curl-conforming and,
therefore, very appropriate basis functions for the representation of fields. When
used to represent surface current densities, curl-conforming functions produce
stronger singularities than divergence conforming functions, due to line charges
associated with discontinuous normal current components at the triangle edges. As
mentioned earlier, the Dirac delta functions behave even worse in this respect, even
without CS condition, but in general this issue is not of great relevance for inverse
equivalent source solutions, since the field and current accuracy on and near to the
Huygens surface S; is anyways restricted due to the loss of evanescent field
information. Evanescent waves are commonly caused by strongly varying sources,
but their magnitudes decay strongly away from the sources and in an inverse
equivalent source solution evanescent wave contributions are often below the noise
level at the measurement locations.

Starting from a fully divergence conforming discretisation of both surface
current densities, we will present a weak-form (WF) implementation of the CS
condition in Section 9.8.2.

9.6.4 Sources in complex space

The CS condition as discussed in the previous section provides an approximation of
the Love or zero-field condition. In some way, the functioning of the CS condition
can be explained by the directivity of the corresponding equivalent sources towards
the outside of convex AUT volumes, e.g., in the form of the Huygens elementary
radiators obtained after discretisation. Based on this observation, we can expect that
we find better approximations of the zero-field condition by working with
equivalent sources and corresponding discretisation elements which exhibit even
more directivity than obtained according to the CS condition. Such more directive
equivalent sources can be constructed by shifting any kind of sources from real
space into complex space according to

r=r, Hinr,,)A (9.82)

and by replacing the common Euclidean norm of the space according to
K|l g = A/r" - " in the Green’s functions for calculating the fields due to the

sources by a complex-valued distance according to

7]l = /1" -7 (9.83)
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The star in the superscript of the Euclidean norm stands here for complex
conjugation. Based on these definitions and by choosing the correct branch of the
complex square root function in (9.83), the fields of the sources in complex space
can be computed, where the directivity of the resulting fields can be controlled by
the parameter A in (9.82), which defines the imaginary shift in complex space. The
key effect of the imaginary shift comes from the exponential function within the
Green’s functions see, for instance, the Green’s function of the electric field due to
an electric current in (9.39). In order to conceive an understanding of this effect, let
us consider the exponential in the far-field representation of the Green’s function,

see, e.g., (9.40), whose essential part may be written as €. As said earlier, r/ is
here the complex source location, k is the wavenumber of free space, and ¢, is a
unit vector pointing into the far-field radiation direction. With (9.82), this expo-

nential can be written in the form ek4€r - /’1—\(5:~eal)e’k/§\"‘fieaz and it becomes obvious
that the first exponential with real argument will cause a change of the radiation
magnitude dependent on the radiation direction, whereas the second exponential
with imaginary argument causes the common change of the phase. The magnitude
is obviously maximum in the direction of 7(r),,), i.e., in the direction of the
imaginary shift and minimum in the opposite direction. An illustration of the far-
field magnitude dependence on the imaginary shift A is shown in Figure 9.7 for
different values of A in terms of the free-space wavelength A. From this illustration,
it becomes clear that the imaginary shift must be carefully adjusted dependent on
the wavelength. A value of A = 0.5 leads already to a variation of the magnitude
pattern in the far-field of close to 60 dB. In the near-field close to the source
location, the field dependence is of course more complicated, where in particular

Far-field magnitude due to imaginary shift

Relative magnitude (dB)

-150 -100 50 0 50 100 150
Angle with respect to imaginary shift direction (°)

Figure 9.7 Far-field magnitude dependence on radiation angle due to imaginary
shift A into complex space in terms of wavelength
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also the singular behaviour of the fields is changed as compared to the case of real
source locations.

In order to gain further insight into the far-field behaviour of equivalent sur-
face current distributions, Figures 9.8 and 9.9 illustrate the relative far-field mag-
nitudes of two different RWG basis function based radiators for different imaginary
shifts into complex space. As seen from Figure 9.8, an RWG function electric
current radiator with no imaginary shift exhibits a symmetric radiation pattern with
respect to its surface normal, but by an imaginary shift along the surface normal, we
obtain an adjustable directivity into the direction of the surface normal. In contrast,
the Huygens type radiator as demonstrated in Figure 9.9 owns already a certain
directivity into the direction of the surface normal without any imaginary shift. This
directivity becomes more pronounced by an increasing imaginary shift.

Near-field distributions within the xy-plane for the same two elementary
radiators with different imaginary shifts are found in Figures 9.10-9.15, where
Figures 9.10-9.12 relate to the electric current type RWG function based radiator
and Figures 9.13-9.15 give the corresponding results for the Huygens-type radiator
with electric surface current density in the form of an RWG function and with the
magnetic surface current density in terms of a rotated RWG function. The NF
distributions show also the directive radiation behaviour as already found for the
far-field magnitudes, but interesting is especially also the singular behaviour very
close to the source location. For larger imaginary shifts, a somewhat irregular field
distribution close to the sources is seen. If the near-fields in an inverse equivalent
source solution shall be evaluated very close to the actual AUT surface, it is,
therefore, recommended to stay at least outside of the distributed singularity region
of the equivalent source elementary radiators in complex space.

-10

Relative far-field magnitude (dB)
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0 50 100 150 200 250 300 350
()
Figure 9.8 Far-field magnitude dependence on radiation angle due to imaginary

shift A into complex space of an RWG basis function electric current
radiator



568  Theory and practice of modern antenna range measurements, volume 2

K ——JH,A=024 LA
“04 o JH, A=042 v

Relative far-field magnitude (dB)

0 50 100 150 200 250 300 350
® )
Figure 9.9 Far-field magnitude dependence on radiation angle due to imaginary

shift A into complex space of an RWG function-based Huygens
radiator with J ,(r) = JoB*" (r), M ,(r) = ZuJe (i(r) x B2 (1))
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Figure 9.10 Near-field magnitude distribution of an RWG electric current
radiator with imaginary shift A = 0

9.6.5 Distributed spherical-wave or plane-wave expansion

As already mentioned earlier in this chapter, we may also work with a spectral
representation of the AUT in the form of KITX(KI,@ as, e.g., utilised in the trans-
mission equation (9.59). This spectral representation is nothing else than the
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Figure 9.11 Near-field magnitude distribution of an RWG electric current
radiator with imaginary shift A= 0.2
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Figure 9.12  Near-field magnitude distribution of an RWG electric current
radiator with imaginary shift A = 0.4)

far-field of the AUT with respect to its reference location r,. The downside of this
representation is that it can only represent the AUT fields out51de of the minimum
sphere around the AUT with good accuracy. This in turn means that the equivalent
volume Vg of the AUT is identical to the minimum sphere, but an AUT volume in
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Figure 9.13  Near-field magnitude distribution of an RWG Huygens radiator with
imaginary shift A = 0
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Figure 9.14 Near-field magnitude distribution of an RWG Huygens radiator with
imaginary shift A = 0.24
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Figure 9.15 Near-field magnitude distribution of an RWG Huygens radiator with
imaginary shift A= 0.44

the form of a sphere is often not very suitable, in particular not for elongated AUTs,
where the measurement samples may even be located inside the minimum sphere.
This issue is easily overcome by the spatial current distributions as discussed in the
previous subsection, but another approach with more flexibility are distributed
spectral source representations. In an implementation this means that we work with
a set of spectral AUT representations WTx ,(r, +Ar. k), where i is an index
indicating the / different spectral representaﬁbns and Ar is the location of the
corresponding expansion centre with respect to the AUT reference location 7. As
also discussed earlier, every one of these localised far-field representatlons can
directly be sampled on the Ewald sphere in k-space or a spherical multipole
expansion with a certain order may be used instead. Since now every localised FF
representation models only a small portion of the entire AUT, the number of inte-
gration samples or correspondingly the spherical multipole order is chosen
according to this small volume portion, and, thus, considerably smaller than for the
entire AUT. However, in the course of the solution of the inverse source problem,
the various expansions have, of course, to be appropriately considered altogether.
Figure 9.16 illustrates the placement of distributed spectral expansion centres in a
regular spatial box arrangement, where the expansion centres are located in such
boxes which contain parts of the AUT geometry. Sticking to such a regular box
configuration does not follow the AUT geometry as good as possible and needs
also more expansion coefficients than really necessary, but it has considerable
advantages in the numerical evaluation, in particular together with the efficient
evaluation of the transmission equation by hierarchical concepts according to
the MLFMM.
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Figure 9.16 Placement of distributed spectral expansion centres in a regular box
configuration adapted to the geometry of an AUT

9.7 Equivalent source representations of the
measurement probe

In principle, the measurement probe antenna can be represented by exactly the
same types of sources as the AUT, where the specific source distribution is, how-
ever, assumed to be completely known and does not need to be determined in the
inverse problem solution. In a specific transformation problem, it is nevertheless of
advantage to assume certain properties of the probe and choose an equivalent
source representation of the probe, which is most suited, in particular with respect
to the numerical implementation and evaluation of the inverse problem solution.

In near-field measurements, the utilised measurement probe is often elec-
trically rather small, such that a distributed source representation of the probe is in
general not necessary. Therefore, recommended representations of the probe may
work directly with a discretised form of the spectral far-field representation of the
probe, e.g., of Ksz(ﬁza k) in the form of spectral samples on the Ewald sphere or by
a spherical mode expansion. The number of samples for the representation of the
probe pattern or the corresponding multipole order needs to be chosen according to
the spectral content of the probe, which depends on the geometric extent of the
probe and its properties. Super-directive effects are in general ignored in the esti-
mation of the required sample density and of the multipole order. The discretised
spectral or modal probe representation may be utilised for all situations, where the
probe minimum sphere does not overlap with parts of the AUT. If this happens, a
distributed source representation of the probe may be chosen, e.g., in the form of
sub-spectra as discussed in [37].

Alternatively, the probe may be considered in the form of a discretised repre-
sentation of the probe weighting function as given in (9.67). The simplest case here
would be to place one Dirac delta like current element, i.e., a Hertzian dipole at the
probe reference location. Since a Hertzian dipole senses the aligned electric field
component as it is, such a probe representation would in general imply that we do
not work with any kind of probe correction. The term ‘no probe correction’ means
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that we assume Hertzian dipole probes, where of course, two independent, possibly
orthogonal, polarisations need to be used for general measurements. More accurate
spatial probe representations can be achieved by working with spatial arrangements
of Hertzian dipoles or with other kinds of elementary radiators, as, e.g., discussed in
Section 9.6.

An important question is how we can get the knowledge about the probe beha-
viour and its equivalent source representation. The most straightforward way is to
measure the probe far-field radiation and/or receive behaviour and derive the
equivalent source representation from these measurements. It is understood that the
polarimetric probe pattern needs to be known for all directions with sufficient sam-
pling density for magnitude and phase. With relative probe patterns, relative AUT
patterns and equivalent source distributions can be found. With gain or absolute field
magnitude calibrated probe patterns, similarly calibrated AUT patterns and source
distributions can be determined. Dependent on how well a probe is known and
understood, probe measurements may be replaced by computer simulations in order to
derive the necessary data for reliable probe consideration within the inverse problem
solution. Simulated or measured far-field data can directly be used in an inverse
source problem, if the probe is considered by a spectral far-field representation, e.g., in
the form of KZTX(Q, k). Spatial probe weighting function distributions, e.g., in the
form of the source types as discussed in Section 9.6, representing a given probe can
for instance be obtained by solving an inverse equivalent source problem based on
available far-field measurements or simulations.

In a numerical implementation of the inverse source problem solution, it is in
general recommended to work with a coordinate system, which is either fixed to the
AUT or to the probe. If the AUT is geometrically larger than the probe, then the
recommendation can be further specified to work with an AUT related coordinate
system. This in turn means that the probe antenna (or antennas, in the case of
multiple different probes) needs to be moved and/or rotated within the AUT
coordinate system for every measurement sample. Still, the probe behaviour will be
defined in a probe specific coordinate system, e.g., in a way that the probe FF
representation /1 is defined in the form of W1¥(0, k), i.e., for a reference position
and for a fixed rotation angle. For example, the main beam of the probe may be
directed along the x-axis. Similarly, the elementary radiators in a spatial probe
representation may be located in such a local probe coordinate system.

If the inverse source problem shall now be solved in an AUT fixed coordinate
system, a systematic way to consider the introduced prototype representation of the
probe is to formally perform translations and rotations of the required quantities.
For the spectral representation of the transmission equation in (9.59), this results in

ba(r,)
So1 =
a(r) ,
T Prot,T> T 27
:Z]_k TL(leak)I:e 'Kprzzex(tzv_g'k) 'E]x(flak)d k (984)

where the probe receiving behaviour in the specific measurement location r, is

considered by

2
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Wiy =k) =R W (ry, =R - k). (9.85)

The superscript Prot indicates here the prototype representation of the probe in
its local coordinate system. The dyadic or tensor operator R performs a three-
dimensional rotation operation. First, the propagation direction k£ of a wave incident
on the probe is rotated into the local probe coordinate system, afterwards the probe
pattern vector components are rotated back into the AUT coordinate system by the
transpose of the rotation operator R T

Similarly, a prototype representation of the probe antennas is of course also
useful for a spatial representation of the probe, as for instance used in (9.38), which
may be written as

~ur(r) = [ (& wn (- ()
' m G, (rr') -2, (K/ - Kl)dv')dv (9.86)

n= "

where the operator R performs again the appropriate rotation of the probe.

9.8 Discretisation of the forward problem

In the previous sections, we have introduced several transmission and constraint
equations in continuous form, which need to be inverted or enforced in order to
solve our antenna field transformation problem at hand. Since the continuous
equations have formally an infinite number of degrees of freedom, we must reduce
them to a finite set of unknowns together with a finite set of corresponding trans-
mission and constraint equations. This is commonly achieved by discretisation. In
the following, we restrict ourselves to method of moments (MoM) types of dis-
cretisation, which are very powerful and versatile, and thus very well suited for our
antenna field transformation problem, possibly supplemented by additional con-
straint equations.

For the utilisation of MoM, let us assume that we have one or more operator
equations in the form

K(x(r) +L(y(r)) = b(r). 9.87)

where b(r) is a known right-hand side vector quantity, K(.) and L(.) are linear
vector operators, and x(r) and y(r) are the vector quantities, which shall be
determined. As seen, the right-hand side vector quantity and the unknown quan-
tities, in our case the equivalent sources representing the AUT, depend on », where
the equivalent sources are only defined in the AUT volume Vs or on the surface S}
enclosing the AUT volume.
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In order to derive a discretised version of (9.87), we start with an expansion of
the unknown quantities x(r) and y(r) in the form

=D _uB,(r), 2() =2 yB,(r) (9.88)

where ﬁp /g (E) are a finite set of known expansion or basis functions as, e.g.,

already discussed in the previous section for the surface current densities J , (')
and M, (5’ ) with x, and y, being the corresponding expansion coefficients to be

determined. Plugging these expansions into (9.87), it can no longer exactly be
fulfilled due to the finite number of degrees of freedom and we may write it as

K (Z 5P, (c)) +L (quéq (z)) —b(r) = R(r) (9.89)

where R (5) is a residual vector error term which carries the error due to the dis-
cretisation of the unknown quantities. Due to the assumed linearity of the operators
K(.) and L(.), the order of the expansion summations and the operators can be
interchanged resulting in

pr( )+qu( r)) - b(r) = R(r). (9.90)

The goal is now to minimise this residual error by appropriately choosing the
expansion coefficients x, and y,. In order to achieve this, we can follow different
strategies. In MoM, or the more or less identical method of weighted residuals, we
multiply the whole equation with vector weighting or testing functions w ( ) and
integrate over the support of the weighting functions. The results of these - welghted
residual integrals are forced to zero and we obtain thus a set of linear equations, one
equation for every w (z) , in the form

> 5w, (1)K (8, () ) + D, (1), L(8,(r)) ) = (i, (1), b))

(9.91)

The (.,.) operator stands here for the inner product, which comprises first a
scalar product of the two input vector quantities and a subsequent integration over
the common support of both input quantities. Dependent on the type of operator
equation and the representation of the weighting functions (e.g., in spatial domain
or in spectral domain), the integration domain can be different. Typically, the
known right-hand side vector quantity Q(f) is important in this respect, in parti-
cular the domain on which it shall be evaluated or where it is known.

9.8.1 Discretisation of the transmission equations

If we first look into the transmission equations of our antenna measurement pro-
blem, the weighting or testing process is carried out by the measurement probe,
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when it measures the antenna fields at a certain location in space. The result of this
measurement process is commonly the S ,(r,,) transmission parameter between
the probe at the measurement location and the AUT, which can be measured with
transmitting probe or with transmitting AUT, due to reciprocity. Alternatively, the
measurement signal might be the voltage at the probe output for a transmitting
AUT, as found in several of the transmission equations as discussed in this chapter.
For a spatial probe representation as utilised, e.g., in (9.38) or in the form of a
prototype probe in (9.86), the weighting integral is a volume integral over the probe
volume at the measurement location r, . In contrast, for a spectral domain trans-
mission equation as, e.g., utilised in (9.51), (9.59), or (9.84), the weighting integral
is finally performed over the Ewald sphere in k-space and the corresponding
spectral representation of the measurement probe is used.

The transmission equation, which is most convenient for a numerical solution
of the inverse source problem with full probe correction and more or less arbitrary
location of the measurement samples, is (9.84), but with the AUT far-field transmit
antenna transfer function represented in terms of electric and magnetic surface
current densities. Starting from (9.84) with EIT" replaced by H[* according to
(9.54) and this one subsequently replaced by its integral representation in terms of
electric and magnetic surface current densities according to (9.42) and (9.48),
respectively, we obtain first

S21~m (Zm) - Cz.#TL(le ) E)QT Kﬁ:’Z;TX(Km7 7R : k) ’ E{x(tl ) E)dzic—\

(9.92)
with
1 (1-Ty) [1
_ [ 1 9.93
CTUYk JZy Vdnz ©93)
and then
$21 m #TL m Wirehe _R;m k) iFF
JJ _Al K1) ;(kxﬂfm(f*ﬂ))
: —J
s zn(r zn(r,)
Jek (' — rl)dafdzg (9.94)
with
3= — @ £ (9.95)
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The next step is to represent the electric and magnetic surface current densities
by an expansion as given in (9.70) resulting in

Satm (Km) - 63#TL(K,”1 R W o (1 =R k) - 17

” [Zﬂpﬂ /ZM (k xB, (r ))1 (1) g %
(9.96)

where the expansion in basis functions is performed in a way that the normalisation
by the product of the AUT feed current with the characteristic impedance of free
space ZI, P is appropriately considered. The expansion coefficients J, are
multiplied with the characteristic impedance of free space Z in order to achleve a
better balanced system of equations with unknowns ZJ, and M,, which are on the
same order of magnitude.

Utilising again the linearity of the operators and rearranging summations and
integrations, we obtain

SZl,m(fm) ZZ] #C3TL ml’k)RrZr;'KgZZ:Y(—ma R k) Bp(rlak)dzk\

Ly

Prot,Tx -~ 5 -~
£, Bsen i ORE W R 1) - (B % B (100

King

with ©-97)

B, (k) =17 ﬂ Lo (k=g (9.98)

If we perform a set of measurements for different probe positions with respect
to the AUT, we obtain a corresponding set of linear equations, which may be
written in matrix form as

(L) [Z])] + [Kmg) [My] = [S21m], m=1,....M,p=1,...,P
g=1,...,0. (9.99)

The number of equations M is equal to the number of performed measure-
ments, P is the number of electric surface current unknowns, and Q is the number
of magnetic surface current unknowns. From the definition of the matrix elements,
it is immediately obvious that the linear equation system is fully populated and it is
also clear that the computation of the matrix elements in the form of the multiple
integral representations can be very demanding. An analytical calculation of the
matrix elements is in general not possible. The Fourier-type integral in (9.98) can in
principle be calculated analytically for polynomial basis functions on polyhedral
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domains such as the RWG basis functions on triangles, but a simple Gauss quad-
rature with very few points gives also very accurate results. The computation of the
translation operator 7;(k,r ) requires to evaluate the series representation as
given in (9.49) with the corresponding special functions. It is noted that the order L
for the computation of the translation operator must be chosen very carefully
according to the sizes of the source regions and the observation regions in order to
achieve the desired accuracy. The probe pattern is in general known from mea-
surements or from simulations and should be represented with sufficiently fine
sampling according to its electrical size, and the rotation dyads can be computed
according to the probe orientation with respect to the AUT. As already said, in most
cases it will be convenient to assume an AUT-fixed coordinate system and a probe
which is moving and/or rotating around the AUT.

The k-space integral over the Ewald sphere is commonly evaluated numeri-
cally. The ¢-integration can be performed accurately by a trapezian rule with
equidistant sampling, due to the periodicity in ¢. The J-integration is in most cases
performed by Gauss—Legendre quadrature after the substitution u = cos, see for
instance [1,8,38], but it is also possible to extend the ©J-range from O to 7 to 0 to 2 7
and work then with regular sampling as for ¢, see, e.g., [39,40].

As shown later in this chapter, the matrix elements in (9.99) will in general not
be computed in a one by one fashion, but the matrix products of the complete
matrices with a specific input vector will be computed on the fly according to the
principles of the FMM and its multi-level version (MLFMM).

Finally, it is noted that all the discretised transmission equations may also be
evaluated for source currents which are shifted into complex space, as discussed in
Section 9.6.4, or for distributed spherical-wave or plane-wave expansions.

9.8.2 Discretisation of supplementary constraint equations

In addition to the transmission equations representing the actual antenna mea-
surements, we have introduced the so-called Love and CS condition in Sections
9.6.2 and 9.6.3, respectively. In a numerical evaluation, these additional constraint
equations need to be discretised, too. Discretising the Love condition according to
the CFIE in (9.78) in a fashion as demonstrated for (9.91), we obtain a system of
linear equations in matrix form as

[Lg,} 2,] + [Kg] M) =0, s=1,...Sp=1,....Pg=1,..0
(9.100)

where the superscript C indicates that the equations have been derived from the
CFIE. In a normal situation, the number of electric current coefficients P will be
identical to the number of magnetic current coefficients O, and the number of
equations S will also be the same. However, different numbers of expansion coef-
ficients for the two types of currents can be thought of and the number of equations
will in these cases commonly either be equal to P or equal to O, dependent on how
the equation is tested. If one works with RWG basis functions to represent the
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surface current densities in (9.78), the classical way of testing the equation is to
work with weighting functions w_ (f) = ﬁ({) X ﬁR/WG (5) and the weighting inte-
grals are thus evaluated over the discretised surface S enclosing the AUT.
However, other ways of testing can also be implemented. The discretisation of both
the equations in (9.76) and (9.77) in side constraint form gives even more flexibility
in the choice of the testing schemes, but this results also in a larger number of
equations. If we choose again testing functions w (r) =7 (r) x éﬁZG (r), the result
of the testing procedure is

[L;ﬂ AR [Kf,} M) =0, t=1,....T,p=1,....,Pg=1,...,0
(9.101)

[Kfﬂ AR [Ll‘ﬂ M) =0, s=1,....Sp=1,...Pg=1,..0
(9.102)

where the superscript £ indicates the origin EFIE and the superscript M the origin
MFIE, respectively. Also, in most cased we will have S = T'= P = Q. The MFIE is
here tested differently than the MFIE part in the CFIE in (9.100), which is com-
monly of advantage for the accuracy when low-order RWG functions are used.

In the field of the numerical solution of radiation and scattering problems by
related surface integral equation approaches, a lot of work has been done to
understand the effects of different basis and testing functions and we can only refer
to the relevant literature (for some examples see [2,41,42]). Similarly, the compu-
tation of the matrix elements in (9.100), (9.101), (9.102), or even other forms of the
Love condition side constraint is a topic on which a vast amount of literature can be
found (see, e.g., [2]). Whereas the radiation integrals in the transmission equations
are in general not evaluated close to the actual sources, but only some distance
away at the measurement locations, the integrals here need to be evaluated exactly
on the surface S, where the source current densities are located. Therefore, the
evaluation of the double surface integrals is commonly performed by numerical
quadrature in a spatial domain representation, where the key difficulties of these
integrals are the singular kernels due to the singularities of the involved Green’s
functions. Nowadays, a variety of techniques is available to compute these integrals
up to machine precision. However, for our field transformation problem at hand,
the accuracy is not that essential as for radiation or scattering problems. Equation
(9.78) is ‘only’ a side condition to remove redundancy out of the field transfor-
mation problem. Even if it is not implemented with high accuracy, the field
transformation problem can still be solved with high accuracy. For cases, where the
sources and the testing locations have a large enough separation, these integrals can
also be evaluated according to spectral domain representations, e.g., in the form of
propagating plane waves according to the principles of FMM and MLFMM
[1,15,43].

The projector equations (2.74) and (2.75) can be treated in a similar way as
(9.76)—(9.78), where, however, even four sets of unknown quantities are involved.
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The MoM procedure leads to a linear system of equations in the form

1

—5[Gu] [ME] = [B)] (2] + [Pl ). s=1sp =10,
q=1,...,0 (9.103)

1

>[Gy) [ZJPL} - [ tp} [2),] + [Bﬁ‘(ﬂ M), t=1,... . T.,p=1,.. P,
qg=1,...,0. (9.104)

The elements of the matrix [GS J1q /P] are here given as
1
Gijugsp = 6—4”& wy,(r) B, (r)da (9.105)

where ¢4 is Z or 1 dependent on the specific equation. The weighting and expansion
functions should be chosen in a way that these matrices, which are known as Gram
matrices, can be easily inverted in order to obtain Love surface current densities out
of any other kind of surface current densities. In case of RWG expansion functions,
the weighting functions are commonly also chosen as RWG functions and the
matrix elements can in this case easily be computed analytically. The testing of the
operators on the right-hand side of the equations is in this case not optimal
according to the theory of the involved function spaces, where in terms of accuracy,
however, the Gram matrices on the left- and right-hand side of the equations are
more important. Especially with RWG functions, these Gram matrices limit the
achievable accuracy, where, however, more advanced testing schemes may be
thought of [42]. In contrast to the side-constraint equations (9.78)—(9.80), the pro-
jectors are directly applied to the system of transmission equations of the inverse
source problem and they should, therefore, be evaluated with high accuracy.

If we finally come to the CS condition in (9.79), it should be noted that this
condition can be implemented without any discretisation, i.e., in strong form as
already shown in Section 9.6.3, where, however, the basis functions for the
representation of one type of surface current densities are rotated around the
surface normal by 90°. If this is done with RWG functions, they lose their
divergence-conforming properties and become curl-conforming, and are thus no
longer the appropriate basis functions for the representation of the other type of
surface current density. This issue, which is again not really severe in an IESS,
can be overcome by a WF representation of the CS condition, e.g., in a form as
[21]

(Gu] (M) = |G| [Z6Sy), s=1,00i S, p=1, P g=1,...,0
(9.106)

where the elements of the matrix [G;p] are here given as

Gy = JL w, (1) - () < B, (r) )da. (9.107)

1
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If it is intended to work with sources, which are shifted into complex space
(see Section 9.6.4), then the enforcement of the Love condition is not that
straightforward anymore, since the near-field behaviour of the sources is modified,
but the CS condition, especially as strong-form condition, can still be enforced
without complication.

For the case of distributed spherical-wave or plane-wave expansions, the dis-
cussed surface current density-based constraint equations cannot be enforced
directly, but certain supplementary side constraints can of course still be defined,
which is, however, not further discussed.

9.9 Inversion of the discretised forward problem

The solution of linear systems of equations as obtained from the discretisation of
the forward problem is in general a standard task in numerical mathematics.
However, in the case of the inverse problem at hand, certain peculiarities need to be
considered. First of all, it should be noted that the discretised transmission equa-
tions are in general ill-conditioned in a way that evanescent wave terms, which
determine the equivalent source distribution of the AUT at least in part, can no
longer be measured in some distance away from the AUT. The magnitudes of these
waves decay so fast that unavoidable measurement errors and noise make their
measurement with sufficient accuracy impossible. A second form of ill-
conditioning is related to the dual-source formulations without additional side
constraint, which may even support a null-space of non-radiating currents. If a
possible null-space and all AUT sources related to unmeasurable field contributions
are removed from the equivalent source representation, then a well-posed problem
can be obtained, as common in standard spherical-mode-based transformations in
spherical measurements. However, for measurements and transformations with a
maximum degree of flexibility and with the direct capability to provide diagnostic
information about the AUT, this is in general neither feasible nor desirable.
Consequently, for the solution of the inverse problem in this chapter, we need linear
system of equations solvers which can handle ill-posed problems and which have
certain regularisation properties. In most cases, it is even the case that we have
considerably more source unknowns than field measurement samples, especially
when we work with surface source expansions on complex shaped surfaces around
the AUT. Under such circumstances, it is recommend to solve a so-called system of
normal equations instead of the original system of equations, which leads to a least-
mean-square solution of the original system of equations, possibly together with an
additional constraint, which is commonly inherent to the utilised linear system of
equations solver. Such an additional constraint may for instance require that the
energy of the obtained solution vector is minimised together with the mean-square
solution error. Alternatively, it is also possible to directly solve the original, pos-
sibly over-determined or under-determined, system of equations by utilising the
concept of the pseudo inverse, which is commonly based on a singular value
decomposition of the equations. Since the computation of the singular value
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decomposition is in general a very costly procedure and thus not really feasible for
large problems, we do not further consider this option in the following.

In order to arrive at a solution of the inverse problem, let us first assume a
general linear system of equations in the form

[Amp] [%] = [bu), m=1,....M, p=1,....P, (9.108)

where M is the number of equations and P the number of unknowns, both of which can
be different. The solution accuracy of such a system of equations, in particular when it
is solved by an iterative solver, is commonly evaluated based on the residual error

][] ol
© |[Bm]|

(9.109)

with |[by]| = \/[bm]" [bm]* Where the superscript * indicates complex conjugation
and the superscript 7 the transpose of a vector or a matrix.

A system of normal equations related to (9.108) can be formed by multiplying
the complete system with the adjoint matrix operator resulting in

[A;m} ) [15] = [A;m} bulm=1,....M,p=1,....P (9.110)

where the flipping of row and column indices indicates the transpose of a matrix.
A second set of normal equations can be formed by setting

[x,] = [A;m] ] 9.111)
resulting in
(] {A;m}[um}:[bm], m=1,....M,p=1,...,P. (9.112)

According to [44], the normal equations in (9.110), which are often referred to
as normal residual (NR), are typically used to solve over-determined systems of
equations with M > P. In contrast, the normal equations in (9.112) are often
denoted as normal error (NE) and they are in particular useful to solve under-
determined systems of equations with M < P. The operation in (9.111) can actually
be seen as a step towards an up-sampling scheme as advised in [45] in order to
arrive at a well-conditioned system of normal equations. The NR equations seem to
be more common in literature, even for the solution of under-determined systems,
even though they work in this case on a solution vector which is longer than in the
case of the NE equations. Whereas the NR equations work on the residual of the
system of equations in the space of the solution vector [xp} according to

| [on] o) ] = [5] 4]
N [450] 0]

(9.113)
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the NE equations work directly on the error in the space of the field observations on
the right-hand side vector [b,,] in the form of

Eres = ’ o [Ai?;:ﬁ] - [bm]’ = Eress (9.114)

which is obviously identical to the residual error ¢, of the original system of
equations in (9.108). Since the primary degrees of freedom of the NE equations
exist in the space of the observations of the right-hand side vector [b,], for our
inverse source problem NF or FF observations, the NE equations have a more direct
control of these degrees of freedom than the NR equations, which perform first a
mapping of the right-hand side vector into the space of the solution vector by
applying the adjoint operator. If the original system of equations is under-
determined, it is intuitively clear that the control of the original degrees of freedom
is now less direct. Once, the NR system of equations is solved, it is, however, also
possible to compute the residual error ¢,,, of the original system of equations and
evaluate thus the observation error of our inverse equivalent source problem. This
observation error is obviously a measure of how well the found equivalent sources
can reproduce the measurement samples or observations.

If we write our discretised transmission equation in (9.99) in the form of the
NR equations, we obtain

[KE‘,J[L"”’ Kmq][qu] - [Kz;m] [S21m) (9.115)

where we have omitted the ranges of the indices. The corresponding NE equations are

[me Kmq} |:IL<;§<m :| [um] = [SZI,m] (9116)
qm
with
L*
[ﬁﬂ = [K%’ﬂ[um]. (9.117)

Both of these systems of equations can of course also be written for surface
current densities with strong-form CS condition as discussed in Section 9.6.3, for
sources with shift into complex space as introduced in Section 9.6.4, or with dis-
tributed propagating plane-wave or spherical-multipole expansions as mentioned in
Section 9.6.5, where in these cases the unknowns and the system matrix elements
may of course be different.

The supplementary constraint equations can be considered in a variety of ways.
Since their purpose is to remove the redundancy due to the equivalent source
representation with electric and magnetic surface currents densities, we may take
one of the supplementary constraint equations, solve them for one of the current
sets, and plug the outcome into the system of equations resulting from the trans-
mission equation.
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Starting, e.g., from the WF CS condition according to (9.106), the inversion of
the Gram matrix in front of the magnetic surface current coefficients gives

M, = 6] [ 6] (2] ©.118)

which can be appropriately considered in the solution of (9.115) or (9.116).
Performing an inversion of the Gram matrices of the Calderon or Love pro-
jector in (9.103) and (9.104) results into

zﬂ} G:'D)  G;'BM [ZJ}
pl=20 2 F 7 (9.119)
[ M: G,'B), G,'Di||[M,

and this equation can be utilised as a left-hand side preconditioner of the NR
equation system in (9.115) resulting in

G,'D! GBI TL
v [ KP’”] (L Kong] [ i ]
th ip th tq qm q

_1 1pM
Gip 1D§p Gipl B
Gy By Gy Dﬁ\;

L]‘(I;A [Sa1m]- (9.120)

If one works with the NE equations in (9.116), the Calderon projector can be
applied after the adjoint operator resulting in

G'D/  GJ'BM | TL*
Lm Km Af v 2] o |: lim :| [um] = S21.m (9121)
[ P ‘I] thl B‘rlp thl Dﬁ\(/][ qu [ ) ]

and finally also on the currents in (9.117) according to
2)-
M,y

The inversion of the very sparse Gram matrices can be performed by a speci-
fically optimised direct solver, but more convenient appears here the use of an
iterative system of equations solver such as a conjugate gradient (CQG) solver [44].
Trying to perform the same exercise with the fully populated Love or zero-
field conditions in (9.100), (9.101), or (9.102) is in practice most likely not
recommended due to the large effort for inverting the fully populated matrices.
Instead, it might be more feasible to solve the systems of equations in (9.99) and for

instance the one in (9.100) in a joint effort, e.g., in the form of a system of NR
equations

—1 —1 pM
Gsp Ds]p Gsp B sq

L*
» & P ] (9.122)
thlB‘t; thng[ |:qu:|[ ]

‘pm s mp mq FJp | ‘pm
lK;m chs*] [Asch, lSCKSCJ [ M, } - [K;m] [Sat.n] (9.123)
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where we have introduced the constant multiplier Agc to scale the constraint
equations appropriately with respect to the actual inverse source equations within
the least mean square solution of the system of equations. This multiplier can be
chosen empirically for a certain measurement configuration, but it can also be
retrieved by first analysing certain properties of the submatrices prior to the actual
solution, where it is in general recommended to consider also the noise level of the
available data as, for example, done in the L-curve approach [11,12].
The corresponding solution in the form of NE equations can be written as

me Kmq L;m vV ASCL]E;’* |:l/lm :| . |:S21~,m :| (9 124)
ViscLS, VscKS K, VAscKS | Lvs 0, '

where the scaling parameter has here been considered in symmetric form. The final
solution for the current expansion coefficients can be obtained by the solution of

)=l e ]
M, K, VscKS '

In addition to the degrees of freedom u,, in the space of the NF measurements,
we have now also introduced degrees of freedom vy in the space of the side con-
straint equations.

Instead of solving the inverse source equations in (9.99) together with the
constraint equations due to the CFIE in (9.100), it is also possible to work with the
discretised forms of the EFIE and the MFIE in (9.101) and (9.102), respectively.
For the NR case, this results in

(9.125)

Vs

L K
L* KE* LM*] mp mq 7, LF
0 Asely,  AscKl, [F ”} — | " [Som]  (9.126)
* * * 'p iq % 21,m .
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and for the NE case the resulting equations are

VIsckY ey | L VAseKal st L ]|,
(9.127)
The final surface-source solution is now obtained by solving
2| _ [ VIsclyt VIscK ] |
[MJ_[K;m IsKE T v, (9.128)

and we have degrees of freedom v, and vy in the space of the side constraint
equations together with the original degrees of freedom u,, in the space of the



586  Theory and practice of modern antenna range measurements, volume 2

observations. The explicit number of matrix elements to be considered is now
larger for both the NR and the NE equations, but we should keep in mind that EFIE
and MFIE matrix elements are also needed within the CFIE and the achievable
accuracy with a separate consideration of the EFIE and of the MFIE is often better
than for the CIFE. The residual error according to (9.114) of the NE equations in
(9.124) and (9.127) is not anymore the residual of the original inverse source pro-
blem, but it is comprising additional error contributions related to the fulfillment of
the constraint equations. The pure observation error can be retrieved by performing
the summation for the error calculation only form = 1, ..., M. Moreover, it can be
observed that in particular the NE system of equations in (9.127) has even more
unknowns than the corresponding NR equation in (9.126).

As mentioned earlier, the recommended linear system of equations solvers to
be used for any of the obtained systems of normal equations, either with side
constraint or not, are iterative solvers, which do in general only need repeated
computations of the forward operators instead of explicitly inverting the systems of
equations. Such iterative solvers can advantageously be combined with algorithms
for the rapid and memory-efficient evaluation of the forward operators as discussed
in the following section. This is important due to the fact that the forward operators
are fully populated and their efficient computation is, therefore, of paramount
importance for the practical utility of the inverse source-based field
transformations.

Since the derived systems of normal equations are in general positive definite,
a relatively large collection of iterative equation solvers can be used for its solution.
A wide collection of solvers are for instance found in the book by Saad [44] or in
[46], where in particular Krylov subspace solvers appear to be useful. For the
inversion examples presented later on in this chapter the generalised minimal
residual solver (GMRES) has been used, which can be considered as one of the
most powerful iterative system of equations solvers. A disadvantage of this solver
is that it has rather large memory requirements due the fact that it performs an
explicit orthogonalisation of the search vectors. However, this orthogonalisation is
also a key reason for its superior performance compared to many other solvers.
Also, the GMRES solver is based on a minimisation of the energy contained in the
solution vectors, which is considered to be a suitable regularisation constraint for
the solution of the ill-conditioned systems of equation, as mentioned earlier. Other
variants of Krylov subspace-based solvers, such as the very popular CG solver, are
for instance also discussed in [44] and may be considered for the solution of the
encountered inverse source linear systems of equation, too.

9.10 Rapid computation of the forward operator

As already discussed in the previous sections and as common for integral radiation
operators in electromagnetics, the discretised forward operators of our inverse
problem and of the Love condition result in fully populated linear systems of
equations or correspondingly fully populated matrices. If we assume a discrete
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operator with M rows and P columns, corresponding to, e.g., M equations and P
unknowns, the memory to store this matrix is proportional to MP, i.e., its memory
complexity is of order O(MP), which is quadratic in M or P for M = cP, ¢ = const.
Similarly, the computational or numerical complexity for the computation of a
corresponding matrix-vector product is also O(MP). Since both M and P are pro-
portional to the number of measurement samples, the computational complexity for
the iterative solution of our inverse problems by iterative solvers, which evaluate a
series of matrix-vector products, is at least quadratic in the number of measurement
samples and in general of O(D*), if D is the diameter of the AUT. This is due to the
fact that the number of measurement samples needed to appropriately sample the
radiation field of an AUT is in general proportional to D?. For the overall solution
of the inverse source problem systems of equations, we may further expect a
slightly increasing number of iterations with problem size until convergence and
thus the overall solution complexities can even be worse.

In order to be able to solve large inverse source problems with millions of
measurement samples within acceptable computation times, it is mandatory to
reduce the memory and computation complexities of the forward operators. One
way of achieving such a complexity reduction would be to specialise our inverse
source formulation to the planar, cylindrical, or spherical configurations as dis-
cussed in Chapters 6, 7, and 8. For these configurations, the corresponding eigen-
modes pertinent to Maxwell’s equations with its beneficial orthogonality properties
are utilised to represent the AUT fields, and may allow even a direct inversion of
the forward operator. Furthermore, the FFT algorithm with its implicit hierarchical
multi-level representation helps to considerably speed-up the solution of the inverse
source problem.

In more general terms, we can say that a fast operator evaluation can be
achieved by removing redundancy out of the formulation, by working with a reg-
ular discretisation of the operator equation, and/or by working with a factorised and
possibly diagonalised representation of the forward operator. The latter can be
achieved based on purely algebraic approaches such as adaptive cross approxima-
tion [47,48] or the so-called H-matrices [49], or by analytical concepts such as the
utilisation of eigenmode representations.

In the following, we present first a single-level and then a multi-level algo-
rithm for fast evaluation of the forward operators, which are based on the spectral
plane-wave representation with propagating plane waves corresponding to an
integration in k-space over the Ewald sphere.

9.10.1 Single-level algorithm

Since we are interested in efficient field transformations for measurement config-
urations with non-canonical measurement surfaces and with non-canonical surface
source distributions representing the AUT, we must have a fast algorithm, which
supports full flexibility with respect to these requirements. Therefore, we make use
of the ideas of the FMM [8] for high-frequency field problems, which has proven
its performance and flexibility for the solution of electromagnetic integral
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equations in scattering and antenna problems over many years and more recently
also for antenna field transformations. In the next section, this algorithm will be
further extended to a multi-level algorithm by following the ideas of the MLFMM
[1,15,43].

The algorithm is based on a propagating plane-wave representation of the
radiation operators, as, for example, found in (9.97), and in Section 9.5.2, it was
shown that such a formulation can be derived from a spherical-multipole expansion
of the involved Green’s function of the Helmholtz equation together with a sub-
sequent plane-wave expansion of parts of the multipole representation. The key
properties of a spectral representation as in (9.97) are factorisation and diag-
onalisation. Factorisation means here that the actual source integration according to
(9.98) can be computed independent from the observation locations r and r_, once
the reference location r, has been fixed, and similarly the actual observatlon pro-
cess is independent from ¥ and r,. The source integration means to obtain the
plane-wave representation “of the fields radiated by the sources. The observation
process means to weight the plane waves incident on the measurement probe by
plane-wave receiving coefficients of the probe, which have been obtained before,
e.g., by simulation and far-field integration of the obtained probe sources or by a
calibration measurement of the probe. The interrelation between the fields radiated
by the sources and the plane waves received by the probes is given by translation
with the translation operator 77(k,r ). Since this translation operator translates
every radiated plane wave into just one corresponding incident plane wave at every
receiving probe position, we have a diagonal translation process, which is essential
to achieve a low numerical complexity of the forward operator evaluation. In
contrast, a non-diagonal translation process would produce several incident plane
waves out of every radiated plane wave. Non-diagonal translations are for instance
encountered with the spherical-mode representation as discussed in Chapter 8.

In order to finalise the forward operator computation according to the spectral
representation in (9.97), a spectral integration over the Ewald sphere must be per-
formed in order to sum up all signal contributions received at the probe according
to individual plane-wave components. This integration is commonly performed by
some numerical quadrature rule which is appropriate for integration over a sphere.
Due to the periodic nature, the integration in ¢ is ideally performed by a trapezoidal
rule, i.e., by equidistant sampling with constant integration weights. The integration
in 79 is often evaluated by Gaussian quadrature with the substitution x = cos,
which helps to get rid of the sin J-factor coming from the integration in spherical
coordinates. Alternatively, the ¥-range can also be extended to 27 and thus be
made periodic; by similar concepts as discussed for the spherical transformations
in Chapter 8 or as found in [39,40]. If this is done, a trapezoidal rule can also be
utilised to perform the integration over . Important to note here is that the
spectral functions, which need to be integrated by numerical quadrature, are
band-limited and can thus be integrated with a controllably low error. In the
case of the periodic extension of the )-range, however, some care must be
exercised in order to control the bandwidth of the involved (and not removed)
|sin ¥|-factor.
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In order to facilitate an efficient evaluation of the translation process in (9.97),
it is also important that the reference locations for the spectral representations of
the sources and the probes are chosen on a regular grid. To account for this, we
rewrite (9.97) in the form of

SZl,m (Cm) = 03#E1§;0be,m (KR(m)7 7k) : TL (KRS’ E) ZJpép (ES(p) ’ E) dz/k\
p

(9.129)
where the spectral probe representation with a probe prototype has been replaced
by the representation

W prosem T rny &) = Ter (P ORT - WP (r, R ) (9.130)

—Probe,m —Probe \—m’—,,

defined with respect to a reference location r,, with

Trp (1 gy o) = €7 ) = L), ©9.131)

The subscript S(p) of r S indicates that the source box is chosen according to
the location of the basis function with index p and similarly R(m) indicates that the
receive box is chosen according to the reference location of the measurement probe
with index m.

The reference-location specific spectral representation of the probe in (9.130)
is ideally pre-computed prior to the actual solution of the inverse problem or it may
be computed on the fly, e.g., if the necessary memory for the pre-computed
representation cannot be afforded.

For simplicity, we consider only electric surface current densities at this point,
since the treatment of magnetic current densities is more or less identical and thus
not important for the explanation of the algorithm. Similar to the reference-location
specific spectral representation of the probe, it is recommended to also pre-compute
the spectral representation j (rg,k) of the current basis functions with respect to a
corresponding source referefice location Iy

For the evaluation of (9.129), we introduce a regular box structure as illustrated
in Figure 9.17,%> where " S and r, . are chosen as the box centres, which are as
close as possible to the basis function with index p and the measurement location
with index m, respectively. Assuming, for example, two given source expansion
coefficients J,; and J,,, the receive signals of the probes or correspondingly the
S-parameters Sy, can be computed in three subsequent steps:

First, the radiated plane-wave spectrum of all sources in a source box is
computed by summing up all plane waves aggregated with respect to the box
centre.

Next, the entire plane-wave spectrum is translated to the centre of the receive
box.

3If desired, separate box structures for the sources and the measurement locations may be used.



590  Theory and practice of modern antenna range measurements, volume 2

Tx
robe,m I(ERI > _k) |

Yp,
° ® ° ° - Disaggregation/
/'q Y testing

~ Ir1

Iy Bt 5. / 3
-
T

’(\: / Ti(rris1:k) WropemLr1s &)
® V * Translation . o

r
FAREN

2 _sz(l sik) T

Aggregation

Figure 9.17 Illustration of the computation steps of the single-level propagating
plane-wave-based algorithm for the computation of the source-probe
interactions: the plane-wave expansions of the source basis functions
and of the probes are computed with respect to reference locations
chosen as centres of a regular box partitioning of the computational
domain. With known basis function expansion coefficients J,,; and
Jp2, the radiated plane-wave spectra are aggregated with respect to
the corresponding box centre. The aggregated spectrum is translated
to the box centre containing the receiving probes. Then, the receive
signals at the probes are computed by summing up the receive
spectra multiplied with the probe plane-wave transmit patterns

Finally, the waves received at the receive box are disaggregated to the probes,
i.e., tested or weighted by the receive patterns of the probes with respect to
the box centre, and summed up in order to give the probe receive signals.

In order to better understand this single-level algorithm, let us look into its
computational complexity. As already discussed earlier in this section, the com-
bined radiation/measurement operator is a full operator, since every source basis
function contributes to the signal received by every probe. Therefore, the direct
evaluation of the combined radiation/measurement operator has a numerical com-
plexity of O(M?), if we assume that the number of source basis functions P is
proportional to the number of measurements M.

For the discussed single-level algorithm, the spectral integral over the Ewald
sphere is evaluated by numerical quadrature with a fixed number of, let us say O,
quadrature samples, where the value of O depends on the size of the boxes. If all
spectral quantities are computed at exactly these quadrature samples, the compu-
tational complexity of the algorithm is as follows. The aggregation process is
proportional to the number of basis functions P multiplied with Q, i.e., it is of
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complexity O4(PQ)= 04MQ). Correspondingly, the complexity of the dis-
aggregation/testing process is Op(MQ). Finally, the computational complexity of
the translation process is OHPpoxMpoxQ) = Of(MpoMp,,Q), Where Py, is the
number of boxes containing sources and M,,, is the number of boxes containing
measurement locations. Similar to P and M, it was assumed here that P,,,, is pro-
portional to M,,,. In general, it is here assumed that the spectral representations of
the basis functions and of the probes, as well as the translation operators have been
pre-computed at the required sample locations.

The overall computational effort of the algorithm is given as the sum of the
efforts of the three steps and the computational complexity is thus dominated by the
step with the largest computational complexity. The optimum complexity is
achieved by choosing the size of the boxes such that O4(MQ) = Op(MQ) =
O My My, Q) and this is achieved by selecting M, = /M. For this considera-
tion, it is assumed that the source basis functions are more or less evenly distributed
on a surface and that the same is true for the measurement samples. If such a
surface would be a simple square with side length /g, then the box side lengths would
be /Is. With My, = /M, we have O ~ /M and thus O,(M>?) = Op(M>?) =
OAM*?), i.e., the complexities of the three steps are equally balanced and the
complexity of the overall single-level algorithm is thus also O(M>?) in contrast to
the O(M?) of the direct straightforward computation. The storage complexity of the
precomputed plane-wave spectra of the expansion functions and of the probes will
be on the same order. Due to the chosen regular box structure and the corresponding
translation invariance, only relatively few different translation operators need to be
computed and stored, if they are pre-computed. For the inverse problem at hand,
with typically well-separated regions containing measurement samples and sources,
one may even think of constructing separate box structures for the sources and for
the measurement locations. This would give more flexibility in choosing the box
sizes appropriately, but may require computing considerably more translation
operators. One aspect to consider here is that the basis function distribution is
commonly considerably denser than the distribution of the measurement locations.

Important to note is that the described algorithm can only be employed, if it
delivers the probe signals or the corresponding S-parameters with sufficient accu-
racy. To this end, the multipole order L of the translation operator must be chosen
appropriately, see, e.g., the approximation formula in (9.50) found also in [1],
where d is two times the diameter of the minimum sphere around one box, since the
sizes of the source box and of the receiver box must be added. The multipole order
must be chosen with care according to the accuracy requirements, since increasing
L further and further will finally lead to a break-down of the algorithm and a
complete loss of accuracy. Appreciable accuracy can only be achieved if the source
and observation boxes are well separated, see the requirement |)_( ‘ > |g | given just
after the scalar Green’s function expansion in (9.49). In the case of a common box
grid for the sources and the measurement samples, the translation can only be
accurate if at least one empty box, a so-called buffer box, is between the source box
and the receive box. Better accuracy can be achieved with more than one buffer
boxes. For very short interaction distances between the sources and the
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measurement probes, the algorithm can be supplemented by a direct spatial domain
integration of the interaction integrals related to those source—probe interactions
with too little separation.

In the implementation of the algorithm, the spectral integrals are computed by
numerical quadrature based on appropriately chosen discrete samples of the inte-
grand. The choice of the appropriate number of quadrature samples depends on the
spectral content of the integrand and the spectral content of the integrand depends
on the spectral contents of the various factors in the integrand. In order to represent
the translation operator of order L accurately by discrete samples in spherical
coordinates ¢ and ¢, we need 2L samples in ¢ and in ¢} the number of samples is
commonly chosen as L + 1 [1,50]. The spectral bandwidths of the translated source
and receive spectra on the translation level are only half of the bandwidth of the
translation operator and the spectra can thus be discretised with fewer samples.
However, in common implementations of the algorithm the source and receive
spectra are often sampled with the same number of samples as the translation
operators, which simplifies the algorithm for the cost of increased memory
requirements.

In order to derive an appropriate quadrature rule, the spectral integral in
(9.129) is written in spherical coordinates according to

N 7T 27T +1 27
#‘..dzl_c:J J ...d(psin(ﬁ)dﬂzj J ...dodu,

=0 Jo=0 u=—1Jp=0
u = cos (). (9.132)

The two-dimensional integral is then evaluated by approximating the integra-
tion by a double sum in the form of

+1 27 M N
|| Semdede=3T0 ST S gl 0133

u=—1J =0

where the two one-dimensional integrations are treated in factorised form. The
symbols u,, and ¢, are the sample locations and w,, and w, are the weights of the
numerical quadrature rules.

The integration in ¢ is commonly performed by a trapezoidal rule with equi-
distant samples, which converges here very quickly due to the periodicity of the
integrand in ¢. In the implementation of the algorithm, employing the trapezoidal
rule with the 2L samples mentioned above gives integration results with negligible
error [50]. The numerical quadrature in ¢ is more tricky. As already introduced in
(9.133), it is common to work here with the substitution # = cos () and evaluate
the integration in u by Gauss—Legendre quadrature, where again the L + 1 samples
mentioned above give results with negligible error [50]. The Gauss—Legendre
quadrature optimises the sample locations together with the quadrature weights in
order to exactly integrate polynomials with an as large as possible order with as few
as possible sample points. The result of this nonlinear optimisation process is that
the sample locations are chosen as the zeroes of Legendre polynomials [38].
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In order to better understand what happens in the discrete evaluation of the
integrand and in the quadrature of the integrals, Figure 9.18 illustrates the Fourier
spectra of the g-dependence of the factors within the integrand of (9.129).

As mentioned earlier, the translation operator has a certain spectral bandwidth
with respect to the spectral integration variables, as for instance ¢, characterised by
the corresponding corner frequency /. T ~ L, given here for the ¢-dependence. In
contrast, the source spectra and the probe Vsi;)ectra have a corresponding spectral
bandwidth in ¢ with a corner frequency f 5 ~L /2. Also, it should be noted that
we observe a periodic repetition of all spectra with multiples of the sampling fre-
quency fosample due to the discrete representation. The common choice of the
sampling frequency is fo, sample = 2f¢,T, 5> Which means that the translation operator is
sampled at the sampling limit and the source spectra as well as the probe spectra are
oversampled by a factor of two. The multiplication of the source spectra with the
translation operator results in spectra with a corner frequency of ~3L/2 as also
indicated in Figure 9.18. Since the sampling frequency is no longer sufficient to
correctly represent these spectra, we observe allasmg errors, which do, however,
not affect the range of F,(.) from ol S to f[pS BW An example g-integration with
scalar quantities, as also illustrated in Flgure 9.18, can now be written in the form

27 2Ly
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Z W probe k([{ T }
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(9.134)

where the two factors in the integrand have been expanded in Fourier series in ¢
with Fourier coefficients ngobe’k(ﬁ and < 77/ ; in order to facilitate the integral
evaluation. By re-arranging the different termslf it becomes obvious that the inte-
gration reduces now to an integral over the product of the exponentials of the
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Figure 9.18 Principal illustration of the Fourier spectra F(,) with respect to ¢ of
the factors in the integrand of (9.129), where the factors with vector
character are only considered as scalar quantities
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Fourier series. Finally, due to the orthogonality of the Fourier exponentials, the
double series reduces to a single series, which comprises the range of the Fourier
spectrum of the probe only, i.c., the shaded area in Figure 9.18. This in turn means
that the portions of the spectra, which have been distorted by aliasing errors, do not
contribute to the result of the integration. Thus, the sampling rate in ¢ was chosen
large enough for an accurate evaluation of the integral.

In the numerical implementation, the integral over ¢ is evaluated by numerical
quadrature and one may ask whether higher-order Fourier terms, which are present
due to the discrete representation, may contribute to the integration result. Here, we
can say that such contributions are effectively suppressed by the low-pass and
smoothing character of the quadrature rule. The consideration performed here for
the ¢-dependence can be performed in a similar way for the 9-dependence, too.

A direct consideration of the two-dimensional integrations can for instance be
done by introducing spherical multipole expansions of the factors in the integrand,
as shown in [15]. To demonstrate this, let us consider (9.129) in the form

SZl,m (Km’KS = C3#K£iobe,m(zR’ _K) : {TL(ERS,k)Z(ES,k)}dZE (9135)

where J (Ks,k) Z Jpﬁ ( ) represents the radiated plane-wave spectrum

from all the Sources in one box and Sy Foils indicates that we consider
only the transmission from these sources to the measurement location. Now, we

introduce

W e (1 —k) = ZZW,,,,S (0,9) (9.136)

r=0 s=—r

where Y, (%, ¢) are normalised spherical harmonics and the * indicates complex
conjugation, and

{10l ) ) } = Z S {1}, Y (9, 9) (9.137)

=0 s'=—+

where the multipole order is chosen to be twice the value of the order P required to
appropriately represent the probe and source plane-wave spectra, i.e., appropriate to
represent the translation operator and comparable to f(pT_B ~ L in the consideration of
the ¢@-dependence only, as illustrated in Figure 9.18. Plugging the multipole
expansion into (9.135) results in

S21m P S —C3#ZZW’”” rsﬂqj ZZ{TLJ}”YF’/ﬂngZ
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(9.138)
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where the orthogonality relation of the spherical harmonics

#Yrs(ﬁv QD) Y;:S/ (ﬁ7 @)dE = 6rr’(§ss’ (9 1 39)

has been utilised. d,y is here the Kronecker delta, which is zero except for s = s’
where it is one. As already observed for the ¢-dependence only, the band-limited
probe spectra filter out only the spherical modes up to order R in the incident wave
fields and this knowledge can be used to directly restrict the expansion of the
incident wave fields to a modal order of R.

Another way to evaluate the J-integration in (9.132) is to keep ¢ instead of u
and extend the ¥-range from 0 to 7 to 0 to 2 7, resulting in [39,40]

7T 27
#. LA’k = J J ...dq sin (9)dd

9=0 J =0

1 27 27
= fJ J ... dglsin (9)|d0. (9.140)
2 9=0 J =0

where it is, however, necessary to replace the sin () by |sin (¢)|. Also, the inte-
gration result needs to be divided by 2 in order to account for the fact that the
integration is now performed twice over the original integration range in ¢ and ¢.
The key advantage of this representation is that the integrand is now also periodic
in ¢ allowing to work with the trapezoidal integration rule with equidistant sam-
pling in 9. The downside of this representation is, however, the factor |sin ()]
within the integrand, which is not band-limited leading to a more complicated
numerical quadrature of the integral. The approach to handle this situation is to
appropriately increase the sampling rate and perform a band-limitation of the
|sin (¢)|-term. It turns out that aliasing errors can be completely avoided by doubling
the sampling rate as compared to the case of the g-integration and by low-pass fil-
tering the |sin (J)|-term exactly to this corresponding low-pass band as illustrated in
Figure 9.19. If now the [sin (¢)|-term is multiplied with the incident plane-wave

Fy (Ty()()) woreee Fo()  FaTy®) —
Fy (W 9) ===== Fy(J(9) ===
Fy(|sin(9)]) —-—
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Figure 9.19  Principal illustration of the Fourier spectra Fy(.) with respect to 9 of
the factors in the integrand of the spectral integral according to
(9.129), where the factors with vector character are only considered
as scalar quantities and where the factor |sin(9)| is now also
considered, in contrast to the situation in Figure 9.18
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spectrum in the receive box, corresponding to a convolution of the - s ectra, the
result of the multiplication is fully correct in the range of Fy(.) from fﬂ p o fﬁ B ,
which is finally filtered out in the evaluation of the integral due to the band-limitation
of the probe receive spectrum, similar as shown for the g-integration before.

9.10.2 Multi-level algorithm

In the multi-level algorithm, the regular box configuration is extended to a multi-
level hierarchical oct-tree structure, where in a three-dimensional arrangement, as
exclusively considered in this chapter, the boxes on a coarser level are obtained by
combining eight boxes on the next finer level. The construction of the oct-tree can
be done by starting from the finest level with a given box size, or it can be done by
starting from the coarsest level, where commonly just one box is chosen, which
covers the entire computational volume, and by sub-dividing this box into smaller
boxes on the finer levels. In the latter case, the resulting size of the boxes on the
finest level is kind of arbitrary, where, however, the box construction can of course
also be controlled in a way that a pre-specified box size on the finest level is
achieved. The multi-level algorithm is typically implemented in a way that the
plane-wave spectra of the basis functions and of the measurement probes are first
pre-computed on the finest level. In the actual forward operator evaluation as
illustrated in Figure 9.20 for a two-level situation, the source spectra are then
aggregated for all non-empty source boxes by multiplying the spectra ( vk
with the expansion coefficients J, and adding the results for all basis functions in a
box. Next, the spectra of the non-empty source boxes on the finest level are all
aggregated into the centres of the corresponding boxes on the next coarser level. In
the considered example, the source spectrum on this coarser level is then translated
to one receiver box on this level. The received plane-wave spectrum is next dis-
aggregated to two receive boxes on the finer level, where the received spectra are
disaggregated to the measurement probes. The disaggregation of the spectra on the
fine level to the measurement probes can also be considered as testing the received
spectra with the receive patterns of the measurement probes. In order to obtain the
output signals at the probes, all received plane-wave contributions are summed up.

In Figure 9.20, the r”  indicate the locations of the box centres on the various
levels. r, is for instance the position of the first source box on level 1 containing
sources 1e the subscript numbers the box centres on the level defined by the
superscript, where larger numbers indicate coarser levels. The aggregation, trans-
lation, and disaggregation events are indicated with arrows pointing from the
source centre to the destination centre.

Starting from (9.129), the multi-level approach can be written in a somewhat
simplified form as

o1 m - 63#WProben1 Kﬁ?l (m)? k)TFF(LZQI(m) R( 1)’ k)TL( RlSl’k)

T, =l B (k)R (9.141)
P
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Figure 9.20 Illustration of the computation steps of the multi-level propagating
plane-wave-based algorithm for the computation of source-probe
interactions (two-level case): the plane-wave expansions of the
source basis functions and of the probes are computed with respect to
box centres on the finest level. With known basis function expansion
coefficients J,; and J,,, the radiated plane-wave spectra are
aggregated with respect to the corresponding box centre. The
aggregated spectrum on the finest level is aggregated with respect to
the box centre of the next coarser level. The plane-wave spectrum is
translated to the box centre on the same level containing the receive
probes. Next, the received plane-wave spectrum is disaggregated to
the next finer level. Finally, the receive signals at the probes are
computed by summing up the receive spectra multiplied with the
probe plane-wave transmit patterns

where this equation needs to be evaluated for all m. Similar to the single-level
algorithm, the subscript S(p) of 7 | indicates that the source boxes on the involved
levels are chosen according to the iocation of the basis function with index p and
R(m) indicates that the receive boxes on the involved levels are chosen according to
the reference location of the measurement probe with index m. Since the numerical
quadrature of the spectral integral is not considered in detail at this point, there is no
discrete representation of the plane-wave spectra and the aggregation/disaggregation
processes are just translations of plane waves from one reference location to another,
by multiplying with Trr(rg)) ) = 7’500t p k) as defined in (9.131), after all
spectral contributions in a source/receive box have been summed up. As also seen in
Figure 9.20, the summation over p needs to be organised in a box-wise manner, i.c.,
all spectra from basis functions in a box need to be summed up first, before the
aggregation to the next coarser level can be performed. Similarly, the translation on
the coarser level is not performed before all spectra from non-empty boxes on the
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finer level have been aggregated. In the example in Figure 9.20, there is only one
translation. However, in realistic situations many translations need to be performed
and such translations may also happen on various levels. As noted earlier, a suffi-
ciently large relative distance with respect to the box sizes must be maintained
between the source box and the receive box and short translation distances can,
therefore, only be realised on finer levels. Overall, there are quite some parameters
which need to be chosen appropriately in order to achieve an accurate but still very
efficient multi-level algorithm.

Similar to the single-level algorithm, the performance of the multi-level
algorithm depends strongly on the numerical quadrature of the spectral integrals
over the Ewald sphere and the corresponding discrete representation of the plane-
wave spectra on the various levels. The appropriate choice of the numbers of
sample locations for the representation of the spectra and the translation operator
has been discussed already for the single-level algorithm. Important for the multi-
level algorithm is that the bandwidths of the plane-wave spectra and of the trans-
lation operators are smaller on finer levels, due to the smaller box sizes, and larger
on coarser levels. This fact must be carefully utilised in an implementation of the
algorithm in order to achieve an efficient evaluation of the forward operators. As a
result, the plane-wave spectra on finer levels are represented with fewer discrete
samples than the plane-waves spectra on coarser levels. In turn, this means that the
sample density of a source spectrum must be first interpolated to the sample density
on the coarser level before it can be translated to the centre of the box on the
coarser level and added to the spectrum of the corresponding box. Similarly, on the
receive side the plane-wave spectra are first translated to the box centre on the
finer level, before the spectral content can be reduced to match the sample den-
sity on the finer level by a so-called anterpolation step. Commonly, the ante-
rpolation operation is considered to be an adjoint interpolation operation. In
effect, anterpolation is a low-pass filtering process, which maintains the inte-
gration or summation result over the function. This property is important, since
the quadrature rule for the evaluation of the spectral integral is set up on the
translation level, i.e., with appropriately many quadrature samples, and the
integration result must remain correct through the whole disaggregation process
including the anterpolations. Interpolation and anterpolation can be performed in
different ways, where we assume in the following that the functional dependen-
cies in ¢ and ¢ are treated separately, i.e., only one-dimensional interpolations
need to be performed. If the plane-wave spectra are sampled by the same number
of discrete samples as the translation operators, as commonly done in order to
simplify the algorithm, they are oversampled by a factor of about two and this
property allows to perform the interpolations and anterpolations with appropriate
rules or algorithms of relatively low order.

A very popular and powerful interpolation rule is Lagrange interpolation.
Lagrange interpolation is a polynomial interpolation rule, which constructs the
polynomial of lowest possible order, which fulfills a set of L; given data points
(x7,»1) of a function y = f(x) exactly. A new function value at a new sample
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location x is found by evaluating the constructed polynomial at this position. In the
form of Lagrange, the new interpolated function value can be written as [38]

Lg

Iy (x) = wili(x), (9.142)

with
Li(x) = wi(x) = (X—Xl)-..(x—xl,l)(x—le)...(x_xLG)

(xr = x1) -+ (o = x—1) (07 — xg1) < -+ (%7 — X1)

Such a polynomial interpolation rule is called a local interpolator, since it
works only with data values within a limited range, dependent on the order or
number of sample points L. A local interpolator can only deliver accurate results,
if the target function is oversampled, where the interpolation accuracy increases
with the number of interpolation points. Instabilities as sometimes reported with
higher-order polynomial interpolation rules, and known under the name Runge
phenomenon, are in general not observed, if the interpolator is applied to periodic
functions as found for our spectral integrals over the Ewald sphere. Figure 9.21
illustrates the interpolation of a function y = f'(x) given by its samples on level / to
closer spaced samples on level / + 1. Then new function values are obtained by
taking the weighted sum of given function values on level /, where the weights can
for instance be computed by the Lagrange interpolation rule as given in (9.142). As
mentioned earlier, anterpolation is the adjoint process of interpolation and the
anterpolation process corresponding to the interpolation process in Figure 9.21 is
illustrated in Figure 9.22. Anterpolation performs the interpolation process just in
reverse order, where, however, the multiplications with the weights are not
reversed to divisions, but just retained as multiplications. In case, the weights are
complex numbers they are taken as complex conjugate and as such we obtain the
phase conjugation operation as known from adjoint operators. Interesting to note is
that anterpolation retains the shape of a low-pass function with sufficiently small
bandwidth, but it changes its absolute values according to the sample densities on
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Figure 9.21 Illustration of the interpolation of a new function value of a function
v = f(x) by a four-point local interpolator such as the Lagrange
interpolator. The new function value on level | + 1 is obtained from
given function values on level | by adding the four nearest function
values multiplied with corresponding interpolation weights. The sum
of all interpolation weights is one
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Figure 9.22  Illustration of the anterpolation of a given function value of a
function y = f(x) as adjoint interpolation. The shown situation
corresponds to the interpolation shown in Figure 9.21 and is actually
nothing else than the reversal of the interpolation process. The
function value on level | + 1 with finer sampling is distributed onto
the function values on level | with coarser sampling according to the
interpolation weights

the different levels. Important for the multi-level algorithm is that anterpolation
maintains the integration or summation result over the function as obtained with the
finer sampling. If anterpolation is applied to a function whose bandwidth is larger
than the bandwidth, which can be correctly represented by the samples on the target
level, then this function is low-pass filtered during the anterpolation process. The
low-pass filter function of a polynomial local interpolator is a smooth filter function
as observed for the well-known Butterworth filters, where the filter order increases
with the number of interpolation samples. Increasing the interpolation order further
and further will decrease the interpolation error further and further and if all given
samples are taken into account, the interpolation error should go to zero. For arbitrary
functions, this is certainly not practical. However, for periodic functions as encoun-
tered in our case, a finite number of function samples are sufficient to represent band-
limited functions and an exact global interpolator can be constructed.

Exact interpolation and anterpolation can be realised via a discrete Fourier
transform, commonly performed by a FFT and its inverse, in the form of

[F(ykzl,~~-,L1)k:1,4...,L,} = FFT([yi=1...1,])
k=t ] = IFFT( [F(ykzl,.“,L,)kzlel/27 Ok=1,/241,.. L1y —11/2>

F(ykzls-"vl‘l)k:L,+1—L,/2+1,4..,L/,1:| ) :
(9.143)

First, the FFT of the discrete vector of function values [ykzleJ is computed,
where the number of samples is according to the sample density on the level /.
Next, the vector in the Fourier domain is zero-padded by adding higher-frequency
components with zero magnitude and finally the inverse FFT is computed to obtain
the interpolated vector [ykzl.,.-.-,Lm} with the required number of sample values
according to the sample density on level / + 1. Since the FFT works commonly
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only on equidistant sampling grids, global interpolation is not feasible, if the
J-integration is performed by Gauss quadrature. Therefore, global interpolation is
often only used for the ¢-dependence and for cases, where the J-range is extended
to 27 in order to make it periodic and suitable for equidistant sampling [39,40].

As for the single-level algorithm, the spectral integral over the Ewald sphere is
evaluated by numerical quadrature with a fixed number of, for example, O, quad-
rature samples, where the value of O depends on the size of the boxes. In order to
obtain accurate results, the numerical quadrature is performed on the level on
which the translation is performed. Since translations are commonly performed on
several different levels, there are quadrature rules of different orders involved in the
multi-level algorithm. In general, it is recommended to set up the algorithm in a
way that the box size on the finest level is chosen in order to have a good com-
promise of algorithm accuracy and algorithm efficiency. As a lower bound for the
box size on the finest level, 0.24 is often recommended. Below this size, the
achievable accuracy deteriorates. Larger box sizes can help to achieve better
accuracy. However, also the necessary sample point density of the source spectra
increases, in particular for the spectra of the basis functions and the probes, which
are preferably pre-computed and stored in memory. Therefore, the size of the finest
boxes should not be too large. Finest box sizes on the order of 0.24 to 0.54 appear to
be a good compromise in many situations. For relatively small measurement dis-
tances between the AUT and the probes, the finest box size needs to be chosen as
small as possible. If the algorithm shall work with distributed spherical wave
expansions located in the centres of the boxes, a good choice for the box size is 0.54,
since the sources located in neighbouring boxes are well decoupled with this distance.
Another aspect to consider is the geometric extent of the basis functions and in
particular also of the probe antennas. In order to deliver accurate results, the extent of
the smallest boxes used to carry the plane-wave spectra, should be large enough
compared to the extent of the basis functions or the probes. In particular, for trans-
lations on the finest level, it must be ensured that the geometric supports of the source
and of the weighting functions, i.e., of the probes, do not overlap in order for (9.49) to
be convergent. In general, it is recommended that the geometric extent of the probes
and of the basis functions should be smaller than the geometric extent of the finest
boxes, dependent on the chosen accuracy and sampling parameters. In order to work
with large probe antennas, it is possible to handle the probes on a coarser level than
the basis functions and it is also possible to subdivide the probes into smaller sub-
probes, which are handled in several boxes and combined afterwards [37].

In the multi-level algorithm, translations are performed on different levels and,
dependent on the choice of parameters, certain interactions can be treated by
translations on finer or coarser levels. It is clear that all interactions must be cap-
tured and it is also clear that a certain interaction should only be captured once. In
general, we can say that translations over larger distances can and should be per-
formed on coarser levels, whereas short translation distances must or should be
treated on finer levels. For the situation in Figure 9.20, one translation starting from
box 72 on level 12 is performed. If we want to maintain one buffer box on this

51
level, i.e., translations only over distances with at least one empty box in between,
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then the grey-shaded boxes in the figure cannot be treated by translations on level
12 and must be handled on the level below or even by direct interaction computa-
tion. In order to set up a suitable translation plan for the multi-level algorithm, we
may define a maximum translation distance in number of boxes on a certain level
together with the number of desired buffer boxes. Then, we identify the coarsest
level on which translations need to be performed and we set up a translation table.
Once the translations on the coarsest necessary level have been identified, we move
one level below and identify the possible and necessary translations on this level
and so on, until all necessary translations have been treated.

Once the translation plan has been set up, the necessary translation operators
can be pre-computed and stored in memory. Also, the necessary aggregations and
disaggregations can be identified and the required aggregation operators can also be
precomputed. If a regular oct-tree structure is used covering the sources and also
the observation region including the measurement locations, only relatively few
aggregation and translation operators need to be pre-computed due to the symmetry
properties of the configuration. For the computation of the translation operators, it
is recommended to follow a scheme where the rotationally symmetric translation
operators are first pre-computed for translations along the z-direction on a relatively
fine sampling grid and then interpolated on the corresponding grid for translations
in arbitrary directions [1].

In a numerical implementation, the aggregations and disaggregations in the
form of the operators TFF(K?(;;/R(,;) — Eélé /R(p)’@ in (9.141) must be combined
with appropriate interpolation and anterpofation steps in order to achieve an effi-
cient multi-level algorithm, where the discussed interpolation algorithms can be
used. If the source spectra are handled in an over-sampled representation as needed
with local interpolators, then it is recommended to represent the spectra of the basis
functions on the finest level in a compressed form in order to save memory. For this
purpose, the spherical-multipole expansion

R r
B,(rek) => D8, Yul(.9) (9.144)

r=0 s=—r

of the basis function spectra may be used [15], where the scalar multipoles can
also be replaced by TE and TM vector multipoles [30,51]. The multipole order R
can here be chosen according to the spectral content of the spectra and a conver-
sion to the oversampled source-spectra representation can be performed without
loss of accuracy after the collection of all source contributions in a box by
evaluating the spherical multipoles at the necessary sample locations. For the
small multipole orders on the finest level, this step can be performed with little
numerical effort.

If equidistant sampling with exact global interpolation is used, then the source,
receive, and probe spectra can always be kept at a minimum sampling representa-
tion, where, however, the treatment of the increasingly finer sample densities in ¢
towards the poles of a grid with equidistant sampling can be very cumbersome and
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many extra interpolation and anterpolation steps may become necessary in order to
provide the appropriate sample densities for the translations [39,40].

In order to derive the numerical complexity of the multi-level algorithm, we go
through all the computational steps required to evaluate the complete forward
operator according to (9.141), where we assume that the basis function and probe
spectra with respect to the box centres on the finest level have already been pre-
computed. On the finest level, the spectra of all basis functions in the boxes are first
collected with consideration of given expansion coefficients. With a fixed size of the
boxes on the finest level and thus also a fixed number of plane-wave samples, this
step has a complexity of O(P) = O(M), where P is the number of basis functions and
M is the number of measurement samples. Both of these numbers can be assumed to
be proportional to each other. With a fixed box size on the finest level, we observe
also that the number of boxes on the finest level is proportional to P and thus also to
M. If translations are necessary on the finest level, then the numerical effort of these
translations has a complexity of O(P) = O(M), since the maximum number of
translations for every source box is constant for a fixed maximum translation distance
and the number of boxes is proportional to P. Aggregation to the next coarser level
has again a complexity of O(P) = O(M), if it is assumed that the interpolation is
performed with a local interpolator working with a fixed number of interpolation
samples, since every box on the finest level needs to be aggregated for the given
constant number of plane-wave samples. If we represent our AUT with a surface
source distribution, we can assume that the number of non-empty source boxes on the
next coarser level is four times less than the number of boxes on the finest level.*
However, due to double the size of the boxes on the next coarser level, we need also a
plane-wave sample density on the next coarser level, which requires four times more
sample locations than on the level below (two times in ¥ and two times in ¢).
Consequently, the numerical complexity of all operations, which need to be per-
formed on the next coarser level are all of O(P) = O(M), too, since the reduction in
the number of boxes by the factor of four is compensated by the increase in the
number of plane-wave samples by the same factor of four. If we need to move to even
coarser levels, we make again the same observation, i.c., the number of boxes
decreases by a factor of four and the number of samples increases by a factor of four.
After receiving the translated source spectra, they are disaggregated to finer levels
and here we observe again that all operations on every involved level, including the
final testing on the finest level, are of O(M) if a local interpolator/anterpolator is
assumed. In summary, the operations on every single level of the multi-level algo-
rithm have a numerical complexity of O(M). Together with the fact that the number
of required levels increases for larger solution domains (the next coarser level is in
general needed if the solution domain extent doubles), the overall numerical com-
plexity of the multi-level algorithm is found to be of O(M log(M)), where this com-
plexity law can in general only be observed for relatively smooth surface-source
expansion and measurement surfaces in rather large problem configurations. Also, in
reality, the absolute numerical efforts of the algorithm are often more important than

“Such a statement is of course only true on average for typical smooth surfaces of large enough extent.
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the complexities. Dependent on the applicable multiplication constants in front of the
complexity laws in order to achieve absolute computation times, an algorithm with
small computation complexity can still have a large computation time and dependent
on the particular problem configuration, there is a lot of room to adapt an algorithm
for optimum performance under the constraint of certain accuracy requirements. If
global interpolations with FFT acceleration are used within the multi-level algorithm,
then the interpolations itself are of O(M log(M)) and the overall complexity is thus of
O(M log*(M)), where, dependent on the configuration, the total computation time can
of course be smaller than with local interpolators.

9.10.3 Far-field translations

The major workload of the single and multi-level algorithms comes from the pro-
cessing of the spectral samples of the source and receive spectra as well as of the
translation operators. In general, it is observed that the translation operators due to
the spectral expansion in (9.49) exhibit a maximum into the direction from the
source towards the observation location. However, the decay of the translation
operators with increasing angular distance from its maximum is slow and the
spectral integrals must be evaluated over the entire Ewald sphere. The magnitude of
a typical FMM translation operator is illustrated in Figure 9.23 and it is seen that
the magnitude does not fall much below —30 dB. Since it is clear that under FF
conditions a single plane-wave contribution is sufficient to compute the interaction
of sources with a receiving antenna, one may try to compute all necessary source-
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Figure 9.23  llustration of a typical FMM translation operator for a box size of A,
a translation distance of 10A and a multipole order of L = 15.
The translation direction is here along the positive z-axis
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observation interactions based on FF translation operators according to (9.52), i.e.,
by a spectral translation operator in the form of a Dirac delta.
Writing (9.141) with the FF translation operator results in

I n n e Wiy
SZl,m (£m> = C3#WPr0bem KR (m) ﬁ) Trr (KR(m) KR(m) k) 7‘12( 15(0)
R(m

(S(E 72 S(p)ZTFF 2= )pﬁ( )dZE

~I2
_C3WPrabem( —R(m)’ _krR(p )S(p) )TFF( R(m) _R( ) krR S(p)

J R(m )S()

~I2 12
ZTFF (p krRmS(p) pﬁ ( S(p7 “r S(p)>
(9.145)

R(m)

where the filter property of the Dirac delta has been employed in order to evaluate
the spectral integral. However, in order to make such an approach feasible, it must
be guaranteed that FF translations can provide the desired accuracy and this is in
general only possible if the FF translations are performed on a fine enough level.
Here, it should be kept in mind that the necessary FF distance increases with the
square of the box sizes and for good accuracies of the algorithm, the FF distance
must be chosen so large that an efficient and accurate algorithm is hard to achieve
with FF translations. However, FF translations can advantageously be utilised if the
input (measurement) data for the algorithm is already in the FF, as, e.g., in the case
of FF measurements, or if the NF to FF transformation has already been performed
with another algorithm and the inverse source solver shall be utilised for the
retrieval of diagnostic information by determining equivalent surface-source
distributions.

9.10.4 Gaussian-beam translations

As discussed in the section earlier, FF translations are commonly not an efficient
choice to solve the inversion problem for NF data, if good accuracies are required.
Since FF translations with only one plane-wave sample are obviously not accurate
enough, the question may be asked whether it is possible to find suitable translation
operators which allow one to achieve good enough accuracies but require still less
plane-wave samples than the full standard translation operators. The answer is here
certainly yes and first attempts into this directions were based on windowing
approaches employed during the multipole summation for the computation of the
FMM translation operator in (9.49) [52]. Such approaches have never achieved much
popularity; however, the so-called concept of Gaussian-beam-based translation
operators, introduced by Thorkild Hansen [53], can be considered as a major break-
through in this respect. The idea of the Gaussian-beam-based translation operator is to
rewrite the expansion in (9.49) by choosing X +d = (X ]AX )+ (d + jAX ),
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where A is obviously an imaginary shift in the direction of the translation, which is on
the one hand applied within the multipole summation of the operator, and on the other
hand also multiplied as an angle-dependent exponential to the plane-wave spectra in
order to compensate for the effect of the shift within the multipole summation. The
resulting expansion is, therefore,

o kx| ‘

- = lim ek 4

X +d| oo
K\ ka(ix) ZL (=)' (21 + DA (kX — jkA)Py(k - X) d°k
4 =0 / : ’ T

(9.146)

where it is seen that the angle-dependent exponential outside of the multipole
summation can be treated in the form of a factor in front of the translation operator.
The effect of the imaginary shift introduced in this way is illustrated in Figure 9.24
with A = 4, for the same translation situation as already considered in Figure 9.23.
It is obvious that the translation operator is now much more directive and strongly
attenuated for increasing angular distances with respect to the main-beam direction,
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Figure 9.24 Illustration of a typical Gaussian-beam-based translation operator in
comparison to the corresponding standard FMM translation
operator, for a box size of A, a translation distance of 10A and a
multipole order of L = 15. The translation direction is here along the
positive z-axis. The imaginary shift in the computation of the
Gaussian-beam-based translation operator was chosen to be A
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where the rate of decay, i.e., the directivity can be controlled by A. In a numerical
implementation, care must be exercised in choosing the imaginary shift A, since a
too large imaginary shift can prevent the convergence of the expansion in (9.146).
Even if it is not so large that the convergence breaks down, it may become
necessary to adjust the multipole order L and correspondingly also the sampling
densities of the translation operators as well as of the source and receive plane-
wave spectra. More information on the appropriate choice of the available para-
meters can be found in [53,54].

The numerical evaluation of the forward operator can benefit from the utili-
sation of Gaussian-beam-based translation operators in several ways. First of all,
translation operator values below a certain magnitude threshold, e.g., below —80 or
—90 dB, can be dropped completely and there is no more need to either compute
the corresponding translations or pre-compute and store the corresponding trans-
lation operator values. Second, the spectra of the source and receive boxes can be
restricted to those values, which are needed to perform translations, leading again
to memory and computation time reductions. However, at this point, we should
keep in mind that the extent of the plane-wave spectra must be chosen in a way that
all relevant translations between the various boxes are supported. In order to realise
the possible savings in computation time and memory, which are very remarkable,
the implementation complexity of the multi-level algorithm increases considerably.
In particular, a multilevel algorithm with global interpolation is no longer possible
in a straightforward manner due to the fact that global interpolation leads also to a
global spread of the function values. In contrast, local interpolation with appro-
priate oversampling is still feasible without particular complication.

9.11 Evaluation of constraint equations
and adjoint operators

The various techniques, which have been discussed in Section 9.10 for the compu-
tation of the inverse problem forward operator, can in principle also be employed for
the evaluation of the forward operators in the constraint equations as, e.g., in (9.100).
However, not all of the techniques behave in the same way for the constraint equa-
tions as for the inverse problem equations. The key difference is that the inverse
problem equations relate the sources to distant observers, whereas the constraint
equations work on the sources only. Therefore, in the inverse problem equations,
there are mostly translations over large distances and the observer density is rather
sparse. In contrast, in the constraint equations, there are a large number of short
translation distances and even the singular self-interactions need to be carefully
computed, which are not encountered at all within the inverse problem equations.
Also, the observer density is the same as the source density within the constraint
equations. Nonetheless, we do not intend to further discuss the computation of the
operators within the constraint equations, since there is a vast amount of literature
available on this topic. The constraint equations are more or less identical to the
equations, which are obtained from the MoM solution of surface integral equations
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related to scattering and radiation problems. Such solution methods have been well
established since the 1980s and even its solution by FMM and MLFMM has been
around since the late 1990s. Some textbooks covering the relevant topics are [1-3].

Another important aspect for the solution of the inverse problem is the com-
putation and evaluation of the adjoint operators which have been used to set up the
systems of normal equations in (9.110) and (9.112). If the forward operator is
available in matrix form, then it is clear that the adjoint operator is obtained by
transposing the complex conjugate matrix of the forward operator. When the
operators are computed on the fly, as in the techniques for rapid operator evaluation
in Section 9.10, the adjoint operator computation can be a bit more challenging. A
feasible and relatively easy to comprehend procedure is to perform the algorithm
for the computation of the forward operator in a reverse manner and utilise all the
involved quantities, except for the input coefficients, as its adjoint values. The
transmission equation in (9.141) used to illustrate the multilevel algorithm for the
example of two levels can thus be written in the form of

(SlZp = c;#ﬁ T;F( ") = sy L (g0 6)
ZT;F llm lz(m) k)W W?:Zb@m(zje(m) k)dzk (9147)

where this equation needs to be evaluated for all relevant p. Now, the input vector
represents probe excitation coefficients W,, and the probes radiate conjugate
complex plane-wave spectra. Also, the aggregations, translations, and disaggrega-
tions are performed in an adjoint manner, where adjoint aggregation is dis-
aggregation and vice versa, including the interpolation and anterpolations, which
become anterpolations and interpolations, respectively.

9.12 Applications and evaluations

The antenna field transformation approaches discussed in the previous sections
support a great variety of antenna measurement applications and they can provide
very useful diagnostic information about the considered antenna and its measure-
ment environment. The primary goal of many antenna measurements is to provide
the far-field antenna pattern of the AUT with certain accuracy. This accuracy is in
general quantified by an appropriate error measure. In the following, we quantify
the accuracy of the obtained antenna patterns by their normalised magnitude error
in a linear scale, which is commonly still given in dB, and calculated as

max{ [ )

i.e., the difference of the magnitudes of both fields is normalised with respect to the
maximum of one of the fields, typically the reference field. In most cases, the errors
are given for individual field components, e.g., £ = E, or E = Ey, but it is also

A|E| (dB) = 20 log <M> (9.148)
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possible to give the error for the complete electric field vector £. Since the true
antenna reference pattern is often not known in antenna measurements and also not
in the following considerations, we will mostly use the term ‘difference’ or
‘deviation’ of two antenna patterns, e.g., if both fields are obtained from different
NF to FF transformation approaches or if one field has been obtained from mea-
surements and one from simulation.

In the following, we will consider a variety of antenna field transformations for
different antennas and for different measurement configurations, in order to
demonstrate the applicability and functionality of the inverse equivalent source-
based field transformation for non-canonical measurement surfaces, but, of course,
also for canonical measurement surfaces. Moreover, we will evaluate the perfor-
mance of such transformations with respect to achievable transformation accuracies
and with respect to the retrieval of diagnostic information. In particular, for the
error considerations, we will work with synthetic measurement data, i.e., with
measurement data which has not been measured, but which has been computed
numerically from a given source distribution. To this end, we may consider a col-
lection of dipole sources, which represent a certain antenna [55] or we may take a
computational electromagnetics solver, such as FEKO [56], simulate an antenna,
and export appropriate NF and FF data. With a dipole model, the achievable
accuracy is close to the machine accuracy of the utilised computer. With a com-
putational EM solver, the accuracy has commonly limitations on a considerably
worse level, but with a current-based solver, such as FEKO, the near-fields and the
far-fields are computed from the same source distribution and they are thus very
accurate with respect to our antenna field transformation evaluations.

9.12.1 Pyramidal horn antenna — synthetic
measurement data

The first considered AUT is an ideally conducting pyramidal horn antenna with
infinitely thin walls, where NF measurement data and the FF pattern have been
obtained from FEKO simulations [56]. The utilised FEKO mesh is illustrated in
Figure 9.25. It shows the geometry of the AUT and gives the geometric dimensions.
The simulations have been performed for a frequency of f = 11.0 GHz and all
results will also be given for this frequency. The wavelength at this frequency is
A = 27.3 mm and the commonly accepted FF distance according to rpp = 2D%, /A
is around 0.7 m, where D,yr is the diameter of the minimum sphere around the
AUT. The vertical FF cut of this AUT in the E-plane obtained by FEKO is given in
Figure 9.26 together with results from an inverse equivalent source solution.

We consider here a spherical measurement configuration with equidistant
sampling in 9 and ¢, where synthetic NF data has been computed for different
observation radii with 30 samples in 9} and 60 samples in ¢, two orthogonal
polarisations, without considering the influence of a specific measurement probe,
i.e., the probe is a Hertzian dipole. Overall the number of the virtual measurement
samples is 3,600, where samples at the poles are avoided by starting the sampling in
¥ at 3°. For the IESS, we used the closed triangular mesh consisting of 6,322
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10.2 mm

Figure 9.25

Relative magnitude (dB)

Figure 9.26

FEKO mesh IESS mesh

33.1 mm

Ideally conducting pyramidal horn antenna for a frequency of
11.0 GHz. The illustration shows the triangular mesh as used for
FEKO simulations and the triangular mesh as used for the IESS.
The FEKO mesh is open at the radiation aperture, whereas

the IESS mesh is closed
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E-plane FF cut of the AUT in Figure 9.25. Transformation results of
the IESS are compared to the corresponding FEKO data. The shown
vertical cut has been chosen since the largest transformation errors
are observed in this cut. The IESS results have here been obtained by
computing the inverse source solution from FEKO FF data on a
complete sphere around the AUT
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triangles as shown on the right-hand side of Figure 9.25. IESS transformation
accuracies for the vertical FF cut according to the error definition in (9.148) are
shown in Figures 9.27 and 9.28.

For the results in Figure 9.27, the IESS has been configured to achieve as good
as possible transformation accuracy for the given mesh with low-order RWG cur-
rent basis functions, whereas the results in Figure 9.28 have been obtained with
realistic standard settings providing a good compromise between transformation
time and transformation accuracy. For both cases, equivalent surface sources with
Huygens-type RWG elementary radiators with outward directed radiation pattern
have been used. With the standard settings, the transformation time for one set of
NF data and one frequency (without additional side constraint such as a zero-field
condition) is on the order of half a minute on a typical desktop computer (Intel®
Core™ i7-4820K @ 3.70 GHz, four cores). The pattern accuracy with the standard
settings is below —80 dB and is considered to be more than sufficient for practical
antenna measurements, where it is hardly possible to achieve pattern accuracies on
the order of —60 dB. The maximum achieved pattern accuracy in Figure 9.27 is on
the order of 20 dB better than the standard accuracy in Figure 9.28. The observed
accuracy on the order of —100 dB can be considered as a very good value, which is
not always observed together with generally available numerical solution approaches.
Figure 9.29 shows Love surface current densities obtained with the IESS under
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Figure 9.27 E-plane cut FF pattern deviations with respect to the FEKO
reference data for the AUT in Figure 9.25. The deviations are shown
for IESS results obtained from FF data and obtained from NF data
with a measurement radius of 0.1 m. The IESS has been configured to
obtain as good as possible transformation accuracy
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E-plane cut FF pattern deviations with respect to the FEKO
reference data for the AUT in Figure 9.25. The deviations are shown
for IESS results obtained from NF data with a measurement radius of
0.1 and of 0.3 m, respectively. The IESS has been configured with
recommended standard settings
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Love surface current densities obtained with the IESS solver from NF
data with a measurement radius of 0.1 m, for the AUT in Figure 9.25,
on the mesh on the right-hand side of Figure 9.25

imposition of the Love condition as a Calderon projector according to (9.119). From
the illustration, the appropriate functioning of the antenna becomes obvious.

In Figure 9.30, the IESS iterative solver convergence is depicted for several
solver choices. The graph on the left-hand side of the figure shows the solver
residual for NE systems of normal equations and the graph on the right-hand side of
the figure shows the same results for the corresponding NR systems of normal
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Figure 9.30 IESS iterative solver convergence for NE systems of normal
equations (left-hand side) and for NR systems of normal equations
(right-hand side), with the mesh on the right-hand side of
Figure 9.25. JH: Huygens-type elementary radiators, JM: electric
and magnetic surface current densities without additional side
constraint, JM WF CS: electric and magnetic surface current
densities with WF CS condition, see (9.106), JM Love CP: electric
and magnetic surface current densities with Love condition in the
form of the Love projectors according to (9.103) and (9.104),

JM Love SC: electric and magnetic surface current densities
with Love condition in the form of an additional side constraint
according to (9.101) and (9.102)

equations. The NE residual is directly the observation error (except for the JM Love
SC solution), whereas the NR residual is related to the space of the solution vector
(see Section 9.9). The NE residual, i.e., the observation error reaches here to a
similar level as the FF error in Figure 9.28 and also the NR solvers reach this
observation error level, except for the solver with the Love condition in the form of
Calderon projectors. However, it is to note that the NR residual needs to reach until
below —140 dB before the observation error level of somewhat below —80 dB is
reached. The stopping criterion for all solver runs was relative in a way that the
solver stopped, when 3 iterations in a row did not give a relative residual
improvement of better than 0.9999. All solver choices stopped with this criterion
and also all of them needed about the same number of iterations to reach the
stopping criterion, where the observation error was about the same for all of them,
except for the NR solver with the Calderon projectors. Obviously, the Calderon
projectors introduce additional errors, which limit the achievable observation and
thus also the FF error to around —65 dB when utilised within the NR system of
equations. In the NE system of equations, the Calderon projector does not show any
notable effect. When the Love condition is included in the form of an additional
side constraint as in (9.126) for the NR systems of equations and in (9.127) for the
NE systems of equations, respectively, then it is obvious that the convergence
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behaviour of the solvers changes, where, however, still similar values of the resi-
duals are achieved, if the weighting of the Love condition via the scaling parameter
Asc 1s not too strong. In addition to the solver residuals, Figure 9.31 compares the
observation errors of IESS solutions obtained with NE and NR systems of equa-
tions. Here, it should be noted that the observation error is in general not computed
in the solution of the NR equations and its generation causes a considerable amount
of extra computations. For the NE solutions with Love condition in the form of a
side constraint, the residual comprises the observation error together with an error
contribution related to the fulfillment of the Love condition side constraint equa-
tions. Therefore, the pure observation error as seen in Figure 9.31 is here also
computed in an additional step. The NE solvers with no or a simple CS side con-
straint show obviously the best convergence behaviour with respect to the obser-
vation error, where, however, the NR solutions are not much worse. In both cases,
the solvers with Love condition behave worse than the solvers with no or a simple
side constraint. For the solutions with Love condition as a side constraint, the
convergence behaviour depends strongly on the chosen weighting of the side
constraint, which is, however, not further investigated. The given results are for a
typical value of the weighting parameter.

In summary, we can say that the simple IESSs without additional side con-
straint, or with the simple CS condition, show the best behaviour for the lowest
computational effort and the solution of the NE systems of normal equations allows
for a more direct control of the solution accuracy. For the NR systems, it would
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Figure 9.31 IESS observation errors dependent on the number of iterations for
several solver choices as already shown in Figure 9.30, where the
goal is to compare the observation errors of NE and NR systems of
normal equations



Antenna field transformation from non-canonical surfaces 615

certainly also be possible to control the convergence dependent on the observation
error and not dependent on the residual in order to avoid too many iterations and
possibly occurring observation error instabilities, but this would in general need
extra computations within the solver.

9.12.2  Planar aperture antennas — synthetic
measurement data

The next considered AUTs are circular planar aperture radiators where the syn-
thetic measurement data in an NF observation plane has been computed from a
Hertzian dipole representation of the radiation aperture distribution [55]. The first
measurement configuration is depicted in Figure 9.32. The FF distance of the AUT
with a diameter of 48 cm is more than 60 m at the considered frequency of 40 GHz.
Even though the measurement distance is several hundred wavelengths, it is still
only a small fraction of the FF distance. IESS transformation results are shown in
Figure 9.33 and compared to the reference data from the dipole model. The
achieved linear pattern error is below —100 dB in the main beam and is getting
worse away from the main beam, which is expected due to the truncated scan
aperture. The decay of the NF magnitude towards the edges of the scan plane is on
the order of —37 dB and the commonly assumed valid pattern angle around the
main beam for the considered measurement configuration is around 0,4y = 6.3°,
see also Figure 9.32. As, for example, discussed in [57], the error due to scan plane
truncation is commonly relatively small for an IESS, as compared to the common
plane-wave based and FFT accelerated planar transformation schemes as discussed
in Chapter 6. The reason for the better performance of the IESS is the assumption
of a localised source distribution just in the aperture of the AUT, whereas the planar
plane-wave-based transformation approaches do not assume an a priori localisation
of the sources. In the given case, we worked with a planar triangular surface mesh

Scan plane

n
S

0.56,,/i4 |

<
=

A
®

D s BEEEE

dyyr=0.48 m=64.01 I,y=0.7m=93.41

! ry=2m

Figure 9.32 Planar measurement configuration for a 40 GHz circular aperture
antenna. The square scan plane is regularly sampled with
34,969 sample locations, two polarisations each, where
a horn-like probe antenna has been used
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considered in Figure 9.32. IESS transformation results are compared

to reference results directly obtained from the assumed Hertzian
dipole source distribution

z Scan plane
AUT i
y Ix
<“®“_______E__
dyyr=213m=71.01 i y=250m=28341
I
ry=3m

Figure 9.34 Planar measurement configuration for a 1 GHz circular aperture
antenna. The square scan plane is regularly sampled with
27,889 sample locations, two polarisations each, where
a horn-like probe antenna has been used

consisting of 1,575,882 triangles and Huygens elementary radiators based on RWG
functions have been used as equivalent sources.

The second measurement configuration is shown in Figure 9.34. The FF dis-
tance of the AUT with a diameter of 21.3 m is more than 3,000 m at the considered
frequency of 1 GHz. The measurement distance is here 3 m (around ten times the
wavelength) and thus only a fraction of the aperture diameter. IESS transformation
results are shown in Figure 9.35 and compared with the reference data from the
dipole model. The achieved linear pattern error is here slightly worse than before,
but still close to —100 dB in the main beam. The decay of the NF magnitude
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Figure 9.35 H-plane FF pattern cut of the 1 GHz aperture antenna as considered
in Figure 9.34. IESS transformation results are compared to
reference results directly obtained from the assumed
Hertzian dipole source distribution

towards the edges of the scan plane is on the order of close to —40 dB and the
geometrically estimated valid pattern angle around the main beam is here around
Ovatia = 63.6°, see Figure 9.32 for the definition. To model this aperture antenna
within the IESS, a pillbox-shaped mesh with 3,152,660 triangles was utilised and
Huygens elementary radiators based on RWG functions have been used as
equivalent sources. The pillbox-shaped closed surface mesh was here certainly not
necessary and leads to many more unknowns than actually required. However, with
an appropriate solver of the resulting linear system of equations, such a model can
well be handled and reliably be solved.

The magnitude of the obtained equivalent surface sources on the radiating side
of the pillbox mesh is depicted in Figure 9.36. It shows nicely the aperture tapering,
but also a ring structure, which resembles the original source distribution consisting
of rings of Hertzian dipoles, which had a distance as recovered by the IESS. This
result is a clear demonstration of the diagnostic capabilities of an IESS.

9.12.3 Double-ridged waveguide antenna — spherical
and multi-planar near-field measurements

In this subsection, first spherical near-field measurements of a double-ridged
waveguide antenna, as shown in Figure 9.37 are considered. The antenna is a
DRHI18 from RFSpin [58] and it has been measured in the anechoic chamber at the
Technical University of Munich. The figure gives also an impression of the geo-
metric dimensions of the antenna and it shows its location with respect to the scan
centre and the coordinate system of the measurement setup.

The antenna is specified for a frequency range of about 1-18 GHz. In the
following, we consider measurements at the upper frequency limit at 18 GHz. The
common FF distance of the DRH18 at 18 GHz is around 7.5 m, and the NF mea-
surements have been performed at a distance of 2.68 m, utilising an open-ended
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Figure 9.36  Magnitude of the surface current distribution (elementary Huygens
radiators based on RWG functions) of the IESS solution for the
1 GHz aperture antenna according to Figure 9.34. The source
magnitude decays towards the circumference of the mesh and the
visible ring pattern is due to the assumed original source distribution
consisting of rings of Hertzian dipoles
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Figure 9.37 Double-ridged waveguide antenna DRHI18 mounted on the spherical
positioner in the anechoic antenna measurement chamber at the
Technical University of Munich

rectangular hollow waveguide probe OEWG WR62 from NSI-MI [59]. The mea-
surements have been performed with equidistant sampling in ¢ and ¢ with an
angular spacing of 1.25°, resulting in a total of 41,905 measurement locations with
two orthogonal polarisations each. The principal FF pattern cuts obtained from the



Antenna field transformation from non-canonical surfaces 619

NF measurements are shown in Figure 9.38, where IESS transformation results
from different meshes are compared to modal spherical transformation results
obtained with the Software from NSI-MI [59]. The observed deviations between
the different patterns on the order of —40 dB to —50 dB are on the order of accu-
racy which can be expected with this measurement setup. The spherical mesh IESS
results are closer to the spherical mode results, since the sources of the spherical
mesh are less localised than the sources of the conformal mesh shown in
Figure 9.39, as it is also the case for the spherical mode expansion. Both meshes are
centred around the AUT and are offset with respect to the rotation centre of the
measurements, whereas the modal expansion assumes a minimum sphere around
the scan centre of the measurements, which is larger than the extent of the spherical
mesh. Further FF pattern comparisons are given in Figure 9.40, where both polar-
isations in the E-plane are considered. Only IESS results obtained with the con-
formal mesh in Figure 9.39 are shown. However, different equivalent sources have
now been used to perform the transformation: electric and magnetic surface current
densities without any further constraint (JM), electric and magnetic surface current
densities with Love condition (JM Love), and Huygens-type elementary radiators
(JH). The Love-constrained result is taken as reference for the illustration, but the
observed differences between the three patterns can be considered as very low.
Here, we should keep in mind that we have various parasitic echo field contribu-
tions in the measurement data, e.g., due to the antenna fixture and absorbers as seen
in Figure 9.37, and due to room echoes.

Q- cumponem @ =90° ¥-component, ¢ = 0°
0 -+ — 0 - - - - r
N\ [asm AN m—TTEV]
10 g\ mem || p, \, JHCM
& / '\ |--- NSIsph. = | \|- - - NSIsPh.
= { \ |- HSMdev. || 8 5 fr Y- JH SM dev. | |
_fé -20 I, ‘I JH CM dev. | T 3 A JH CM dev.
= 1k 2 | i
5 30 fi i g 30 A W
g y i o A | ,;:.\‘ﬁ;“ah s ] [
g o PIV e 12 71§ s ‘;Jﬁ«;*.
S i jhe s ' k=l  fal 1H
k| A b | i ".}v.,iﬂh z “f\\.ip."- ,.n{,.
il ) ] i § V) e s 50 J | TR
[~ Sy @ i AL ] 2 | " Il
-50 ..: f il e i g! { ‘?‘ 1 A : .i: \‘y! 1l [ :
| /l ~60 i |t [ it
i il A I L 03 i ¥ i {1 i1 ;;g;‘ i b
‘ i |“ ul m i n(l ”‘E u, H i \é o u "i‘i‘ i Hm u‘! |ilf i ‘!'H “in:_u'“
-150 -100 50 0 50 100 150 —-150 7100 50 100 150

(%) (%)

Figure 9.38 H-plane (left) and E-plane (right) FF pattern cuts at 18 GHz of the
DRH 18 antenna as depicted in Figure 9.37. IESS transformation
results are compared to results obtained by the modal spherical
transformation software from NSI-MI [59]. The IESS
transformations have been performed with Huygens-type elementary
radiators (JH) based on RWG functions for a spherical mesh (SM)
with 340 mm diameter around the AUT and with conformal mesh
(CM) as shown in Figure 9.39
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Figure 9.39 Closed conformal triangular surface mesh used to perform IESS
transformations for the DRH18 antenna shown in Figure 9.37.
The mesh comprises 129,020 triangles
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Figure 9.40 E-plane FF pattern cut for 18 GHz of the DRH18 antenna as depicted
in Figure 9.37. Comparison of different IESS transformation results
obtained with the CM as shown in Figure 9.39

Since the observed differences between the different source models are mostly
dependent on the specific numbers of iterations that were performed during the
solution of the inverse problem, it can be concluded that the chosen source model is
not really important for the obtained FFs. These computations have been performed
with the NE system of normal equations as introduced in (9.116) but very similar
results are also obtained with the NR system of normal equations in (9.115), if the
iterative solver is continued until it reaches the same observation error. An
advantage of the NE equations as compared to the NR equations is that they work
directly on the observation error and the degrees of freedom are also in the space of
the observations, which are often less than the degrees of freedom in the equivalent
sources. Based on this, a relative stopping criterion of the iterative solver appears to
be more predictable and often slightly fewer iterations are required to achieve a
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certain observation error. The electric and magnetic surface current densities
obtained from the IESS transformation with imposition of the Love condition in the
form of a Calderon projector are shown in Figure 9.41. They give a clear insight
into the radiation mechanisms of this antenna and they relate to the magnetic and
electric fields as expected.

Figure 9.42 shows surface source densities obtained from IESS transforma-
tions with Huygens-type elementary radiators (left-hand side) and obtained with
unconstrained electric and magnetic surface current densities (right-hand side).
Both show also the wave behaviour of the radiation, but do not have the clarity
of the Love surface current densities. The physical insight into the antenna
mechanisms is certainly also not as clear as for the Love surface current densities.
If desired, Love surface current densities or magnetic and electric fields can,
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Figure 9.41 Electric and magnetic surface current densities on the conformal
mesh from Figure 9.39, obtained by IESS transformations with
enforcement of the Love or zero-field condition in the form of a
Calderon projector

>5.00e-02 >5.00e-02 | |Real{M,}| (V/m)
<5.00e-02 | |Real{J, ,}| (A/m) <5.00e-02
<4.62e-02 <4.62e-02
<423¢-02 — <423¢-02
38502 | | Tf( W T — <3.85¢-02
<3.466-02 f".' i / <3.46e-02
<3.08¢-02 | <3.08¢-02
<2.69e-02 | <2.69¢-02
<231e-02 | | W <231e-02
<toe02| | \\ \ <1.92¢-02
<1.54¢-02 \! <1.54¢-02
<1.15¢-02 <1.15e-02
<7.69¢-03 <7.69¢-03
<3.85¢-03 <3.85¢-03
<0.00¢+00 <0.00¢+00
v
Max = 3.04e-01 z Max = 3.04e-01
Min = 8.62e-04 Min = 8.62e-04

Figure 9.42 Huygens surface-source density (left-hand side) and magnetic
surface current density from unconstrained electric and magnetic
current densities (right-hand side), shown on the conformal mesh
from Figure 9.39, obtained by IESS transformations
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Figure 9.43  Electric NF magnitude in the yz-cut plane through the AUT model
computed from surface-source densities obtained by IESS solutions.
Left-hand side: electric and magnetic surface current densities
obtained from IESS solution with Love-projectors as shown in
(9.103) and (9.104), and right-hand side. electric and magnetic
surface current densities obtained from IESS solution without
additional side constraint

however, easily be computed from these sources in a post-processing step in order
to provide the full diagnostic information. Near-fields computed in a post-
processing step from the obtained source distributions are shown in Figures 9.43
and 9.44. Figure 9.43 shows NFs computed from electric and magnetic surface
current densities obtained from an IESS solution with Love constraint in the form
of projector equations as found in (9.119) (left-hand side) and from electric and
magnetic surface current densities obtained from an IESS solution without any
additional side constraint. Figure 9.44 shows fields which have been computed
from Huygens-type elementary radiators obtained from a corresponding IESS
solution. Corresponding relative field magnitude differences in linear scale with
respect to the magnitude of the Love-constrained fields are seen in Figure 9.45
within the yz-plane.” The results show that the Love-constrained solution sup-
presses the field inside the closed mesh, whereas the unconstrained electric/mag-
netic surface current solution does not at all show this effect. The Huygens-type
elementary radiators cannot show much field suppression inside the AUT model for
this rather complex and non-convex shape. Some field suppression is visible near
the support of the antenna, and, of course, an important advantage of the Huygens-
type elementary radiators is that only half the number of unknowns are needed as
compared to the case of working with electric and magnetic surface sources.

The normalisation of the field differences is here performed with respect to the average of the reference
field magnitude in a linear scale over the entire illustration area. This is certainly an arbitrary choice, but
to be preferred over a pointwise normalisation, which leads to very large relative errors for very small
field magnitudes.
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Figure 9.44 Electric NF magnitude in cut planes through the AUT model
computed from Huygens-radiator-type surface-source densities
obtained by IESS solution. Left-hand side: yz-plane,
and right-hand side: xz-plane
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Figure 9.45 Relative linear differences of NF magnitudes in the yz-plane through
the AUT model computed from different equivalent surface—source
distributions, where the Love-constraint fields as shown on the lefi-
hand side of Figure 9.43 are taken as reference. Left-hand side:
electric and magnetic surface current densities obtained from IESS
solution without additional side constraint, seen on the right-hand
side of Figure 9.43; and right-hand side: Huygens-radiator-type
surface-source densities obtained by IESS solution, seen in left-hand
side of Figure 9.44

The NF magnitude field differences in Figure 9.45 show good agreement of all
fields within the main beam of the radiation and also in the outside regions of the
mesh. The largest differences are of course observed in the inner of the AUT mesh,
where the fields are not well defined anyways. Interesting is the difference beha-
viour of the NF magnitude in the centre of the plots, near the ridges of the AUT.
The field magnitudes with the Huygens-type radiators show here larger differences
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than the electric/magnetic currents solution, which is, however, expected due to the
different NF behaviour of both models very close to the sources, in particular due to
the different basis functions for the magnetic current part within the Huygens-type
basis functions. Figure 9.46 shows the NF electric field magnitude obtained from
an [ESS solution with WF CS side condition between the electric and magnetic
surface current densities [see (9.106)] on the left-hand side of the figure and the
deviation to the field magnitude obtained with the Love-projector on the right-hand
side of the figure. As expected, the deviations close to the Huygens surface, espe-
cially in the centre of the figure near to the ridges, are now considerably reduced as
compared to the strong-form CS condition in terms of the Huygens-elementary-
radiator-type basis functions. Figures 9.47 and 9.48 show the electric NF magnitude
obtained with a mesh similar to the one in Figure 9.39, where the aperture was,
however, closed by a planar mesh, i.e., the mesh is not following the ridges to the
inside. These illustrations are intended to show the influence of an imaginary shift
of the basis functions normal to the Huygens surface as discussed in Section 9.6.4.

Figures 9.49 and 9.50 illustrate the IESS convergence behaviours for different
solver options. Figure 9.49 relates to the conformal mesh as shown in Figure 9.39,
whereas Figure 9.50 relates to the spherical mesh around the AUT, which has
already been used to obtain some of the results in Figure 9.38. The left-hand side
graph in both figures shows results for NE systems of normal equations, and the
right-hand side graph is for NR systems of normal equations.

As already found for the simulated example in Section 9.12.1, the NE solutions
exhibit a considerably better control of the true solution error and stop reliably with
the applied relative stopping criterion, which stops the solver after three con-
secutive iterations with a worse relative improvement of the residual than 0.999.
Remarkable is, however, that also the NR solutions achieve about the same
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Figure 9.46 Electric NF magnitude in the yz-plane through the AUT model
computed from surface-source densities obtained by IESS solutions.
Left-hand side: electric and magnetic surface current densities
obtained from IESS solution with WF CS condition as given in
(9.106), and right-hand side: deviation to field magnitude obtained
from IESS with Love-projectors as shown in (9.103) and (9.104)
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Figure 9.47 Electric NF magnitude in the yz-plane through the AUT model
computed by IESS solution with Huygens-type elementary radiators
with a mesh similar to the one in Figure 9.39, where the aperture is,
however, closed by a plane. Left-hand side: no imaginary shift of
basis functions, and right-hand side: imaginary shift of 0.24
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Figure 9.48 FElectric NF magnitude in the yz-plane through the AUT model
computed by IESS solution with Huygens-type elementary radiators
with a mesh similar to the one in Figure 9.39, where the aperture is,
however, closed by a plane. Left-hand side: imaginary shift of basis
functions 0.4, and right-hand side: deviation between case with no
imaginary shift and imaginary shift of 0.4

observation errors as the NE solutions, no matter whether they stop with fewer or
more iterations. The additional NR iterations decrease obviously the residual of the
solution further without notable improvement of the observation error. A direct
comparison of the iteration-dependent behaviour of the observation error for both
types of equation systems is shown in Figure 9.51, where it becomes obvious that
the NE solutions show a slightly better performance, and, as already seen for the
simulated example in Section 9.12.1, the solutions with Love constraint behave
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Figure 9.25. JH: Huygens-type elementary radiators, JM: electric
and magnetic surface current densities without additional side
constraint, JM WF CS: electric and magnetic surface current
densities with WF CS condition, see (9.106), JM Love CP: electric
and magnetic surface current densities with Love condition in the
form of the Calderon projectors according to (9.103) and (9.104),
JM Love SC: electric and magnetic surface current densities with

Love condition in the form of an additional side constraint according
to (9.101) and (9.102)
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1ESS iterative solver convergence for NE system of normal equations
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side), for the SM with 340 mm diameter around the AUT as already

considered in Figure 9.38. For the definition of the legends, see the
caption of Figure 9.49
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Figure 9.51 IESS observation errors dependent on the number of iterations for
several solver choices as already shown in Figures 9.49 and 9.50 for
the CM (left-hand side) and for the SM (right-hand side), where the
goal is to compare the observation errors of NE and NR systems of
normal equations

worse, where the Love side constraint solutions depend again strongly on the
chosen weighting of the side constraint. Interesting, but of course expected, is that
the spherical mesh requires considerably less iterations. Here it is to note that the
Love condition helps to achieve a rather early stop of the NR solutions. Finally, it
should be emphasised that the solutions with the spherical mesh lead to smaller
observation errors than the solutions with the conformal mesh. This is also expected
since the spherical mesh has a larger extent around the AUT and is thus able to
represent also the scattering contributions coming from the fixture and the absor-
bers behind the AUT. Due to the spatial filtering behaviour of the conformal mesh,
it is expected that the results obtained with this mesh are more appropriate to
characterise the antenna alone.

In summary, it is concluded that the NE solutions provide again considerably
better controllability of the solution accuracy and that the solver choices without
additional constraint, or with a simple side constraint in the form of the combined-
source condition, are the better choice, due to their lower computation cost and
their good accuracy.

Next, we consider NF measurements of the double-ridged waveguide antenna,
which were collected with the planar NF scanner in the antenna test range of the
Technical University of Munich. These measurements were performed at a fre-
quency of 10 GHz with an OEWG WR90 as probe antenna. In an initial step,
measurement data was collected on the primary scan plane with an extent of 2.4 m
by 1.5 m in x- and y-directions, respectively, as seen in Figure 9.52.

In order to extend the valid range of the FF pattern after the NFFF transfor-
mation, measurement data was collected on four further scan planes, which were
obtained by rotating the AUT on the spherical positioner into new positions, which
were fixed during the planar measurement on the respective plane. The distance of
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Magnitude of one polarisation (dB)

Figure 9.52  Illustration of multi-planar NF measurement of the double-ridged
waveguide antenna. The primary scan plane is parallel to the
xy-plane and has an extent of 2.4 m by 1.5 m in x- and y-directions,
respectively. In order to extend the scan range, four additional scan
planes have been generated by rotating the primary scan plane £45°
in the xz- and yz-planes, respectively, with a rotation radius of 9.73 m
around the AUT

the scan plane from the rotation centre of the spherical positioner was 2.73 m. The
number of equidistant sample locations in the primary scan plane was 36,391 with
two polarisations each, resulting into 181,955 sample locations for all five scan
planes. For comparison, spherical measurements with 32,942 sample locations with
two polarisations each have also been performed with the same probe antenna. The
NFFFTs for the three considered configurations have been performed by an IESS
with the conformal mesh as found in Figure 9.39. The obtained FF pattern results
are depicted in Figures 9.53 and 9.54, where the planar and multi-planar mea-
surement results are compared to the results obtained from the spherical measure-
ments. The restricted valid angular range of the one-plane measurements is clearly
seen in the pattern cuts and corresponds to the valid range to be expected by a
geometrical consideration as for instance illustrated in Figure 9.32. With the five-
plane measurements, the valid angular range of the obtained FF patterns is con-
siderably increased and even the gap in the measurements in y-direction is almost
without influence in the FF pattern.

9.12.4 Parabolic reflector with defect — synthetic
measurement data

We consider the hollow-waveguide-horn fed parabolic reflector as shown in
Figure 9.55. The reflector has a defect in the form of a slot shaped as the logo of the
Technical University of Munich (TUM), where the width of the slot is one wave-
length. As also seen in the figure, the horizontal width of the reflector is 604 for the
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Figure 9.53 E-plane FF pattern cut for 10 GHz of the DRH18 antenna as depicted
in Figure 9.37. Comparison of IESS transformation results obtained
for one measurement plane (1P) and for five measurement planes
(5P) with respect to results obtained by a full spherical measurement.
The IESS results have been obtained with the CM as shown in
Figure 9.39
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Figure 9.54 E-plane FF pattern cut for 10 GHz of the DRH18 antenna as depicted
in Figure 9.37. Comparison of IESS transformation results obtained
for one measurement plane (1P) and for five measurement planes
(5P) with respect to results obtained by a full spherical measurement.
The IESS results have been obtained with the CM as shown in
Figure 9.39

operation frequency of /' = 12 GHz. The reflector has been modelled by a MoM
integral equation solver [15,43] and the reference FF patterns as well as NF samples
(114,756 sample locations, two orthogonal polarisations) on a spherical measure-
ment surface with a radius of 1804 have been computed from the obtained MoM
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Figure 9.55 Electric surface current density on an infinitely thin ideally metallic
reflector with a TUM-shaped slot defect with slot width A, obtained
by a MoM solver [15,43]

current distributions. Some results related to this simulated reflector antenna have
already been published in [18].

In the following, we consider IESS solutions obtained with a closed triangular
mesh around the reflector, where the undistorted reflector surface is shifted 1 cm
forward and backward and closed at the edges. The mesh consists of 576,383 tri-
angles and IESS solutions with Huygens-radiator-type surface sources as well as
with electric and magnetic surface current densities and imposition of the Love
condition in the form of a Calderon projector, see (9.119), have been computed.
The resulting surface-source distributions are illustrated in Figures 9.56 and 9.57.
Figure 9.56 shows the two Love surface current densities on the front side of the
reflector and Figure 9.57 the Huygens-type surface sources on the front side and on
the rear side of the reflector. All the surface-source densities show clearly the
influence of the slot defect and provide thus valuable diagnostic information about
the antenna. The H-plane FF pattern cut of the defected reflector is seen in
Figure 9.58. The two IESS solutions show very good agreement (—80 dB linear
magnitude difference) with the MoM reference solution. The IESS solution with
the Huygens-radiator-type sources was obtained in about 28 min on a standard
desktop computer (Intel® Core™ i7-4820K @ 3.70 GHz, four cores), where the
IESS solver could, however, easily be stopped after 10 min or less, if a somewhat
worse error level can be accepted. The imposition of the Love condition needs
considerable extra computation time and leads to a computation time which is
several times longer.

9.12.5 Satellite mock-up with Ku-band reflectors —
synthetic measurement data

As an example for a modern communication satellite, the generic mock-up as
illustrated in Figure 9.59 is considered. The feed horn is operated at a frequency of
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Figure 9.56 FElectric (top) and magnetic (bottom) surface current densities on a
closed Huygens surface around the reflector and the horn feed from
Figure 9.55. The surface current densities have been obtained from

an IESS solution with Love condition in the form of a Calderon

projector. In both types of surface currents (from one IESS solution),
the effect of the slot defect is clearly seen

f =12 GHz and it illuminates the reflector on the right-hand side of the figure,
where there is, however, also considerable illumination of the left-hand side

reflector and of the fixtures.

The complete mock-up has been simulated by the GRASP simulation package
from TICRA [60] and the far-field has been generated at 142,129 sample locations
(two orthogonal polarisations each) according to the Ticra Grid format, i.e., an
equidistant grid in the xy-plane is projected onto an FF sphere with a normalised
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Figure 9.57 Huygens-radiator-like surface-source density from an IESS solution
on a closed Huygens surface around the reflector and the horn feed
from Figure 9.55. Top: front side of reflector and bottom: rear side of
the reflector. On both sides, the slot defect is clearly seen in the
reconstructed source distribution

radius of 1 m. Both polarisations of the FF in normalised representation are illustrated
in Figure 9.60 showing the quite versatile radiation behaviour of this arrangement.
For the TESS solution, the FF has been assumed to be measured at a distance of
50,000 m and the complete mock-up was modelled with a mesh consisting of
5,224,024 triangles. The IESS solutions have been computed by a spectral trans-
mission equation based on FF translation operators as given in (9.52). The surface-
source distribution of an IESS solution with Huygens-radiator-like surface sources
is shown in Figure 9.61 with two different colour scales in both sides of the figure.
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Figure 9.58 H-plane FF pattern cut of the parabolic reflector with defect as
shown in Figure 9.55. IESS solutions with Huygens-radiator-type
sources as well as with electric and magnetic surface current
densities and Love projectors are compared to MoM results
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Figure 9.59 Communication satellite mock-up with two reflectors and a feed horn
for one of the reflectors

It is obvious that the feed horn beam width is too large for the illumination of the
right-hand side reflector and the left-hand side reflector as well as the reflector
fixtures are thus illuminated, too. Also, it is obvious that further parts of the mock-
up are illuminated by the waves coming from the reflector, causing further distor-
tions of the radiation pattern. At this point, it should be noted that this mock-up has
purposely been designed to malfunction and to demonstrate the behaviour of an
IESS for such a configuration. The authors are grateful to Dr. Dennis Schobert from
ESA ESTEC for generating the mock-up model and for performing the simulations
with the TICRA GRASP software package [60].
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Figure 9.60 Simulated FF of the satellite mock-up in Figure 9.59. The FF is
shown for a normalised FF distance of 1 m and it is regularly
sampled (377 samples in one dimension) in the xy-plane
on a square of 0.4 m by 0.4 m
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Figure 9.61 Huygens-radiator like surface-source density from an IESS solution
on the mesh of the satellite mock-up in Figure 9.59, in different
colour scales on the left- and right-hand sides of the figure

9.12.6 Reflector antenna — irregular near-field
measurements

Another reflector antenna has been measured by the overhead crane-based
portable antenna measurement system (PAMS) [61,62] of Airbus Defence and
Space. The measurement set-up together with the AUT and the PAMS gondola is
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seen in Figure 9.62. The measurements have been performed with a quad-ridged
dual-polarised waveguide probe at a frequency of f = 6.05 GHz. A part of the
collected measurement samples of one polarisation is shown in Figure 9.63, where
the dots indicate individual measurement samples and the colour represents the
magnitude of the measured field values. The measurements have been collected in

Crane robes

C-band reflector
antenna (AUT)
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PA:MS gondola / "2 waveguide
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Active laser
instrumentation tracker target

Figure 9.62 NF measurement of a C-band reflector antenna with the PAMS of
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Airbus Defence and Space in the anechoic chamber of Airbus
Defence and Space in Taufkirchen close to Munich (Photo courtesy
by Airbus Defence and Space)
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Figure 9.63 Illustration of the measurement values and locations of one

polarisation according to the NF measurement in Figure 9.62
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a quasi-planar fashion where, however, certain deviations from an ideal plane are
observed due to the dynamics of the crane and its control. Overall, the deviations
from the intended plane are not very large and the accurate position of the mea-
surement samples together with the orientation of the gondola and, thus, also of the
probe are measured by a laser tracking device, where the active target of the utilised
laser tracker is also seen in Figure 9.63. A total of 52,400 samples with two
polarisations each have been collected and the IESS transformation from the near-
field to the far-field has in this case been performed by working with distributed
spherical multipole expansions as discussed in Section 9.6.5. The obtained FF is
compared to FF pattern results obtained from measurements in the compensated
compact range (CCR) [63] of Airbus Defence and Space in Taufkirchen near
Munich for one cut in Figure 9.64. The observed normalised linear pattern differ-
ence is well below —40 dB for the shown left-handed circular polarised (LHCP)
and right-handed circular polarised (RHCP) components. Further information on
the PAMS system and the performed measurements can be found in [62,64].

9.13 Antenna field transformations above ground

9.13.1 Introduction

When it comes to NF antenna measurements above ground, the ground should be
considered within the NFFFT, if its influence is important. If the AUT radiation is,
for instance, directed predominantly away from the ground, it is clear that the
ground is not really relevant. Such a situation may, e.g., occur with automobile
antennas for satellite communications or satellite navigation. In this case, NF
measurements on a scan plane above the AUT or on a spherical or otherwise curved
sector above the AUT can be sufficient to determine the relevant portion of the

LHCP, ¢ = 90° RHCP, ¢ =90°

Normalised magnitude (dB)
Normalised magnitude (dB)

10 s 0 5 10 =10 s 0 5 10
9°) 3 ()

Figure 9.64 FF pattern cut of the C-band reflector antenna as shown in

Figure 9.62. The IESS solution is compared to measurement results

obtained in the CCR of Airbus Defence and Space, Taufkirchen close
to Munich. Left: LHCP component and right: RHCP component
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Figure 9.65 Antenna radiation mechanisms for an antenna on a car: in a free-
space situation, the primary excitation of the antenna, here given by
a voltage source with V,, causes primary (equivalent) radiation
sources on the car. Above ground, the backscattering from the
ground interface induces secondary (equivalent) radiation sources
on the car and the antenna (together the AUT)

radiation pattern. The ground consideration becomes important whenever the NF
measurement values are influenced by the ground, i.e., when the primary sources of
the AUT® produce radiation towards the ground. In this case, secondary sources
may be induced on the AUT due to the back-scattered waves from the ground and
the measured NF values are therefore modified as compared to the free-space case.
A principle illustration of such a configuration is given in Figure 9.65, where the
focus of antenna measurements above ground is on automobile antennas.

Since an antenna measurement over ground will measure the field values with
the presence of the ground, an IESS can only determine the sum of the primary and
the secondary sources on the AUT, or some other set of equivalent sources on a
Huygens surface around the AUT which are equivalent to these sources.” As
already mentioned, this can be desired or not, but it should be kept in mind,
whenever antenna measurements are performed over ground.

Formally, there are two approaches towards the consideration of the ground
within the NF to FF transformation. First, the ground influence may be included by
additional equivalent sources representing its influence, e.g., the surface current
densities /, and M , as drawn in Figure 9.65. Second, the ground effect can be
considered gy modifying the forward radiation operator appropriately. Further

®The AUT is here the actual antenna together with its carrier platform, e.g., an automobile.
"Here, it is assumed that measures such as time gating or other means of separating multi-path compo-
nents are not feasible due to the close distance of the AUT to the ground.
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approaches might be to pre-process the measured data prior to the NFFFT in order
to consider the ground or to post-process the transformation results in order to
obtain the desired results.

In an inverse equivalent source approach, both of the first two options can be
pursued with full flexibility. An extension of the equivalent sources can be realised
by placing surface-source densities on the ground interface, which are determined
together with the sources representing the AUT. Such an approach may have the
advantage that the sources representing the ground can adapt to the particular
properties of the ground and the ground can basically be of arbitrary material and of
arbitrary geometric shape — within certain constraints of course. Disadvantages are
that it might be complicated to determine the two types of sources correctly, in
particular, the transformation algorithm may not have enough information in a
standard measurement configuration in order to separate the radiation contributions
coming from the ground and coming from the AUT. Since the equivalent sources
representing the ground may reach very close to the measurement locations, the
effective electrical size of the AUT can be very large and a very dense sampling
step size on the order of half a wavelength may be required.

The second option of modifying the radiation operator is also possible within
an IESS as long as it is possible to find an appropriate and practically feasible
representation of the pertinent Green’s functions and in particular also a repre-
sentation which fits into the hierarchical plane-wave-based representation of the
operators. For infinite PEC ground, an exact image theory is available [23] and for
more complex PEC ground shapes or objects, ray-optical extensions of Green’s
functions can, e.g., be considered as already demonstrated in [22,65].

Pre-processing of the measurement data prior to the NFFFT is in particular a
useful choice for the treatment of infinite planar PEC ground within spherical-
mode-based NFFFTs. The idea here is, e.g., to mirror the NF measurement values
based on the image principle in order to achieve an equivalent free-space config-
uration [66—68]. However, as discussed in [68] the application of the image prin-
ciple is only possible (or correct) for measurement probes with certain symmetries,
and highest efficiency of the modal approaches can only be achieved if the PEC
interface is located exactly in the rotation centre of the spherical measurements.

For infinite planar PEC ground, an exact image theory for electromagnetic
sources and its radiation is available and can be utilised within the NFFFT. If the
necessary conditions are fulfilled, it is most straightforward to mirror directly the
measured NF values [66—68] and apply a standard NFFFT for free-space mea-
surements. However, as mentioned earlier the probes must fulfill certain symmetry
conditions and for standard spherical-mode NFFFTs it is required that the PEC
interface is located exactly in the spherical rotation centre [68]. The result of a
standard spherical-mode NFFFT is commonly the FF radiation pattern of the pri-
mary and secondary sources with the presence of the infinite PEC ground. An
extraction of the corresponding free-space pattern, i.e., a separation of the original
sources from its image sources, is commonly not possible with a standard spherical-
mode-based transformation approach. However, with an advanced spherical-mode-
based transformation approach as, e.g., described in [68] such a separation is at
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least possible if the original sources have a certain separation from the ground
interface. Also, this approach is able to consider the image principle within the
NFFFT. Thus, it is not limited to probes with the before mentioned symmetries and
it does also not require that the ground interface is exactly located in the rotation
centre of the spherical measurements.

In realistic measurement configurations, the ground is of course always of
finite extent. However, if the measurement setup is carefully designed the edge
effects of finite ground or of a slot in the ground due to a turntable can in general be
kept so small that they can be neglected, at least for not too high frequencies. If an
accurate consideration of finite ground is really needed, completely modelling the
ground within the NFFFT cannot be avoided. As an approximate solution, it is
possible to employ the image principle in a way as, e.g., discussed in [69—71].

If NF measurements are performed over realistic ground, here called earth-
equivalent ground (EEG), the NFFFT becomes considerably more complicated as
for the case of PEC ground. In the following, it is assumed that the EEG is a planar
half-space of infinite extent and that the electromagnetic behaviour of the EEG can
be described by a homogeneous complex-valued permittivity and a homogeneous
complex-valued permeability.

In contrast to infinite PEC ground, an exact image theory is not available for
EEG. However, it is still possible to find analytical forms of the pertinent Green’s
functions, at least in integral form, which can be used within the necessary radiation
operators. Also, a direct equivalent source modelling of EEG is possible in the
same way as for PEC ground and suffers also from the same limitations. The source
distribution extends typically until close to the measurement probes and, thus, the
effective size of the measurement configuration is very large and may need
appropriately fine measurement sampling. Also, it may happen that standard
measurement configurations, e.g., measurements on just a hemispherical surface
around the AUT, may not deliver sufficient information in order to be able to
separate the AUT sources from the sources used to represent the EEG. In such a
situation, it would be desirable to measure on a closed surface around the actual
AUT, i.e., also between the AUT and the ground that does not really seem to be
feasible.

The investigation of the radiation of electromagnetic sources above planar
material half-spaces goes back to Sommerfeld, who investigated first the radiation
of a vertical Hertzian dipole [72,73] and later also the radiation of a horizontal
Hertzian dipole [74]. The key approach to treat such a problem is to work with an
expansion of the pertinent Green’s function into plane waves or into cylindrical
waves. This is achieved by an infinite planar integral in the wavenumber domain of
plane waves, where the case of cylindrical waves requires only a one-dimensional
integration. Such one-dimensional cylindrical wave integrals are known as
Sommerfeld integrals. The key of this approach is that incident plane or cylindrical
waves on EEG just cause a reflected wave and a transmitted wave of the same type,
where the reflection and transmission coefficients are known analytically. Thus, the
integrand of the wavenumber domain integrals can be constructed analytically
dependent on the appropriate reflection coefficient. The key problem is then the
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evaluation of the spectral integrals, which can in general not be computed analy-
tically and need to be performed numerically. Over the past few decades, a vast
collection of methods have been established for the evaluation of Sommerfeld-type
integrals, but the methods are mostly complex and computationally expensive [75].

The complex image theory is an attempt to establish an image theory for
multilayered dielectric and lossy materials [76,77]. The idea is here to work with
image sources in complex space, whose Sommerfeld integral solutions are known
analytically. A certain number of such complex image sources are chosen and its
parameters are optimised in a way that all of them together with the primary source
and possibly further real sources give a good approximation of the integrand of the
Sommerfeld integral. For multi-layered planar material spaces, it is commonly
necessary to extract surface wave pole contributions out of the Sommerfeld inte-
gral, if the corresponding surface wave pole is located close to the integration path.
For lossy half-spaces, good accuracy of the Green’s functions can be achieved with
relatively few complex images and without surface wave pole extraction.

As an approximation, an asymptotic steepest descent path evaluation of the
Sommerfeld integrals can be performed, which results just in one reflected ray
optical contribution together with the direct line of sight contribution. This so-
called reflection coefficient model is, however, only accurate, if source and
observation locations are rather far away from each other and also from the ground
interface.

Since the IESS considered in this chapter, in its spectral representation with
propagating plane waves, is strongly related to the MLFMM [1], it would be very
desirable to extend the MLFMM for the treatment of lossy dielectric planar ground.
A series of papers have been published by the group of L. Carin from Duke
University starting in the mid-1990s [78,79] and an application of these findings for
wave propagation above the sea surface is found in [80]. These works seem to
employ sophisticated Sommerfeld integral representations of the near-interactions
between sources and observers and purely asymptotic reflected ray contributions
for larger interaction distances. An interesting extension of these considerations
was outlined in [81], where, however, not many details are provided.

An obviously very powerful approach has been published by the group of
Weng Chew in [82]. However, this approach is based on the so-called fast inho-
mogeneous plane-wave algorithm (FIPWA) and thus not directly compatible with
our propagating plane-wave representation. The FIPWA starts directly from
Sommerfeld integrals and employs a saddle point solution for its evaluation over
large interaction distances.

9.13.2 Inverse equivalent source formulation above ground

When we look back into the derivation of our IESS, we may recognise that the
fundamental equations, as, e.g., found in (9.31) and (9.33), are written with the
pertinent Green’s functions of the considered solution environment. In the previous
sections, the considered solution environment was just free space, since the AUT
materials have been removed by invoking the Huygens or equivalence principle.
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Formally, an extension of the derived IESS is possible by just replacing the Green’s
functions of free space by the Green’s functions of another solution environment,
e.g., by the Green’s functions pertinent to a ground half-space with certain material
parameters. As already mentioned, the Green’s functions of ground half-spaces
with arbitrary material parameters of infinite extent are known in principle, even
though their computation can be demanding in terms of computational require-
ments. For a PEC half-space, an exact image principle is available.

In the following, we focus on the spectral domain representation with propa-
gating plane waves of the transmission equation of our IESS and discuss its
extension towards the consideration of a homogeneous material half-space of
infinite extent. If we start from our spectral transmission equation as given in (9.59)
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then a formal consideration of the ground influence may be written as
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where I'(k) is a dyadic reflection coefficient, which considers the ground influ-
ence, and where 7y (r,,, ,k) is a plane-wave translation operator from an image
location below the ground interface. Also, KIT;” (r,, k) indicates that for reflected
waves, which are transmitted from the image location, the z-components of the
k-vectors are flipped in sign.

This formulation is exact if an exact image principle is valid as for the case of
an infinite PEC or PMC material half-space. For the case of the PEC half-space, the
reflection coefficient for the ¢-component of Kﬁ‘m (r;,k) is —1 and for the
¥-component it is +1. For the case of a lossy dielectric material half-space, it
would be desirable to work with a similar formulation, where it can, however, be
accepted that the reflection coefficient I' (k) depends on &.

An exact formulation for material half-spaces with arbitrary material proper-
ties can be achieved by working with the so-called Weyl identity [51]
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which decomposes the free-space Green’s function in plane waves, where the key
property of this representation is that it produces only plane waves propagating
towards the half-space interface, if the source is located above the half-space
interface. In contrast, the formulation in (9.150) works with all propagating plane
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waves on the Ewald sphere, i.e., also upward propagating plane waves impinging
on the half-space interface do exist, even when the source is located above the
interface. A disadvantage of the representation in (9.151) with respect to our pur-
pose is that it works with propagating and evanescent plane waves, where the
evanescent plane waves are not directly available within our spectral formulation
with all propagating plane waves according to the complete Ewald sphere.
Nevertheless, the ground reflected contribution according to (9.151) can be written
exactly in the form of
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where T'(k) is the corresponding plane-wave reflection coefficient at the ground.
Also, the ground interface has been assumed at z = 0 and z,Z’ > 0.

Compared to the full vector formulation in (9.150), we consider at this point
only a scalar reflection coefficient, which will be later one component of the
reflection dyad. Following the concepts in [81], the reflection coefficient in the
spectral integral may be represented by a Taylor series around the specular
reflection direction k. in the form of®
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where the Taylor series may be truncated after the term with index M.
Plugging this expression into (9.152) yields
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which can be further written as
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where r, is the common image location below the ground and where the — within
the = would correspond to z+Z > 0 and the plus sign to z + z/ < 0, which can,

however, not occur due to z,Z/ > 0. If we now replace the scalar Green’s function

8A Taylor expansion around the specular reflection direction is useful, since the largest integral con-
tributions are expected for this direction, but other expansion directions can be chosen, too.
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of the Helmholtz equation by a spectral representation with propagating plane
waves as introduced in (9.49), which is also the basis for the transmission equation
in (9.150), and take the derivatives with respect to z on the basis of this repre-
sentation, the Taylor polynomials in (k, — ko) as found in (9.154) are retrieved and
we can rewrite (9.150) as
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(9.156)

where we have found a representation which just works with a single image loca-
tion below the ground interface. Formally, it seems that the Taylor series expansion
of the reflection coefficient can just be replaced by the original representation of
the reflection coefficient leading to our original equation (9.150)

-[TL( 217k)WTx( k) + TL(KzUm’@E(kZ) 'K{;m(zl’@}dzk
(9.157)

where the ground reflection coefficient is now, however, known as the one found
with the Sommerfeld or Weyl representations.

The obtained formulation is certainly not fully correct, since the involved deri-
vatives with respect to z are taken from different integral representations during the
derivation. Also, it is noted that the order of the Taylor series and of the spectral
integration have been interchanged in (9.155), which is only feasible, if all expressions
converge correctly. Finally, we must assume that the Taylor series is convergent.

An interesting aspect is the interpretation of I' (k.) while the integral over the
Ewald sphere is evaluated. Obviously, positive k,-values correspond to waves
propagating towards the material interface. Grazing waves propagating in parallel
to the material interface have £, = 0 and waves propagating away from the inter-
face will, thus, have negative values. This becomes, e¢.g., clear from the Taylor
series expansion of the reflection coefficient, which will smoothly continue the
reflection coefficient beyond zero. With an isotropic and homogeneous ground
material, the dyadic reflection coefficient in (9.157) has only entries on its main
diagonal corresponding to 7E-waves for the ¢-components and to 7M-waves for
the ¥-components. The scalar reflection coefficients for these two cases are given
as [25,51]
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where i and ¢ indicate the air and ground half-spaces, respectively, 7X can be TE or
TM and

Wi/t
Wipnn = Yo = A (9.159)
z,i/t
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Wijere = Zijire = . (9.160)
z,i/t

Checking out the reflection coefficient dependence on k. = k.; shows that
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This can intuitively be interpreted in a way that an incident plane wave at the
interface, which propagates away from the interface, requires a reflected wave at the
interface, which propagates towards the interface. For such a situation, it is intuitively
clear that the incident wave with the incorrect propagation direction away from the
interface can be divided by the ‘normal’ reflection coefficient, computed for positive £,
in order to fulfill the boundary conditions at the interface. An obvious problem is that
I' (—k.) will become singular at zeros of the ‘normal’ reflection coefficient, leading us
to the conclusion that an incident wave propagating away from the interface cannot
only produce a reflected wave propagating towards the interface together with a
transmitted wave propagating away from the interface. There must also be a transmitted
wave, which propagates towards the interface, where it is not really clear how the
amplitude of this wave can be correctly determined. Zeroes of the reflection coefficient
occur, e.g., for the Brewster angle. If singularities occur near the integration path over
the Ewald sphere, the obtained integral representation will certainly not be correct and
an appropriate numerical treatment must be implemented to avoid a complete failure of
the expressions. In particular, the implementation should guarantee that the results
become equal to the homogeneous-space results, if the material parameters of the
material half-space become identical to the parameters of the upper half-space.

In the realisation of an IESS for field transformations above material half-
spaces, the presented formulation can be utilised to realise an approximation which
allows to perform NFFFTs with good accuracy and which should be sufficient for
most practically relevant NF measurements. For transformations above a PEC half-
space the formulation is exact [83,84].

Towards an IESS solution, the unknown quantity in (9.157) is KITX(EI,@,
which can of course be replaced by H{* according to (9.54), and subsequently H[*
can be replaced by its integral representation in terms of electric and magnetic
surface current densities according to (9.42) and (9.48) as already done in
Section 9.8.1, in order to arrive at a formulation with the discussed equivalent
sources in Section 9.6. In the implementation of the IESS according to the single-
level and multi-level algorithms as discussed in Section 9.10, the grouping of the
source and receive boxes is aligned to the half-space interface as illustrated in
Figure 9.66, where the shown arrangement is for a single-level algorithm but its
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Figure 9.66 Illustration of propagating plane-wave translations for source and
receive probes above a ground half-space

extension to multi-level is straightforward. The source spectra are only computed
for the boxes above the interface and aggregations to coarser levels also need to be
performed only for these boxes. The direct translations are performed as for the
case of a free-space situation. For the image translations, first the image-source
spectra are obtained and these are then multiplied with the pertinent reflection
coefficients and translated to the receive boxes by multiplication with the corre-
sponding translation coefficients. At the receive side, everything is as in a situation
without reflected contributions, i.e., disaggregation and testing is performed only
for the receive boxes above the ground interface.

An interesting question is how the probe behaviour changes, when the probe
location is close to the ground. This depends certainly on the type of the probe and
the required accuracy. In general, however, it is not expected that the probe beha-
viour changes a lot as long as the distance to the ground is on the order of a few
wavelengths, which can easily be realised for not too short measurement distances.
If necessary, an IESS solver can easily be implemented in a way that it has the
capability to consider changing probe receive behaviours dependent on the distance
from the ground interface.

9.13.3 Post-processing of equivalent sources above
different ground materials

Once an inverse equivalent source problem has been solved under consideration of
a certain ground half-space, the obtained equivalent sources can be utilised to
evaluate the FF radiation (and also the NF radiation) of the AUT exactly above the
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same half-space, but it is of course also possible to evaluate the AUT radiation in
different environments. The corresponding procedure is illustrated in Figure 9.67.
First, the equivalent sources are obtained by an IESS solution with consideration of
the Green’s function of the half-space over which the measurements had been
performed. Next, the equivalent sources are placed in a new environment such as
free space or above a ground half-space with modified material properties. Finally,
the far-field is computed in the new environment with consideration of the Green’s
function belonging to this environment.

In order to perform such post-processing tasks, the found equivalent sources
can for instance be loaded into one of the commercial electromagnetic software
packages for further investigations, but especially the FF radiation in free space or
above ground half-spaces with arbitrary material parameters can be computed
relatively easily, since the necessary FF Green’s functions are relatively simple.
The FF Green’s function of free space has for instance been given in Section 9.5.2
and the FF Green’s function above an arbitrary material half-space can be calcu-
lated analytically by a saddle point evaluation of the Sommerfeld- or Weyl-type
integral representations [85,86]. Based on these considerations, the far-field can
easily be extracted from our common propagating plane-wave-based spectral
representations over the Ewald sphere via

FF
E7 (rr, 9, 9) chosmg( rf’k)‘@_(ksim?cosq),ksinﬁsin(p,kcosﬁ)

(9.162)
Far-field L xT e L
above (any) !& X
ground L4 _>/’ / Mg pr .
W
Near-field ," M \ i
measurement above Equivalent sources T S

ground

PRy S
¥ .. J dpr V4
L " ~ A,pr MA o

—
M Ase \ J Ase

AR
(only correct over
correct ground)

Far-field
in free space “

Figure 9.67 Post-processing of equivalent-source radiation in different
environments
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where E is the propagating plane-wave-based representation of the electric field

according to an integral as in (9.98) within the corresponding environment, with

respect to a reference location 7, .

9.13.4  Field transformation results above ground —
synthetic measurement data

As an example for a measurement configuration above ground, we consider the car
body with a vertical monopole antenna on its roof as depicted in Figure 9.68. This
car body model is provided within the FEKO modelling package [56] and FEKO
has also been used for the computation of synthetic NF measurement data for the
configuration together with FF reference results. As a measurement surface we
consider a hemispherical shell with a radius of 5 m above the car and the probe
antennas are Hertzian dipoles which sample directly the - and ¢-components of
the electric field. All IESS solutions discussed in the following have been per-
formed by using the triangular mesh as shown in Figure 9.69, where the bottom is
missing, unless otherwise stated, in order to improve the conditioning of the
transformation problem. Since the hemispherical scan surface is not fully enclosing
the actual AUT, i.e., the car body with the antenna, the solver cannot easily separate
vertical-up radiation contributions coming directly from the car or bouncing back
from the ground. The missing bottom mesh together with the use of Huygens-type-
radiator sources with an imaginary shift of 0.14 avoid primary radiation towards the
ground directly below the car body and thus also reflected waves vertically up.
First, we consider synthetic NF measurements above PEC ground for
f = 1 GHz, where the measurement samples are collected by a virtual spiral scan
over the scan surface resulting into 3,844 measurement samples with two polar-
isations each. The primary radiation of the monopole antenna is clearly seen on the
upper side of the mesh in the surface source illustration in Figure 9.70, and near to
the PEC ground half-space, the influence of the ground interactions is visible.
Figures 9.71 and 9.72 show FF pattern cuts obtained by the IESS solution with

. Monopole

Y

Figure 9.68 NF antenna measurement scenario above ground half-space: car
body with monopole antenna on its roof with a hemispherical NF
measurement surface with a radius of 5 m, rotation centre in the
ground interface at z = ()
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z
Figure 9.69 Simplified triangular mesh around the car body in Figure 9.68

consisting of 90,846 triangles where the bottom of the mesh is
missing, i.e., the meshed surface is not closed

o
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Figure 9.70  Surface-source distribution (elementary Huygens radiators based on
RWG functions with imaginary shift of 0.11) on the triangular mesh
as seen in Figure 9.69 for the virtual NF measurement with spiral
scan above PEC ground

exact consideration of the PEC ground half-space by the image principle in com-
parison to the FEKO reference results, where the difference between the IESS
results and the FEKO results of around —60 dB is good. Additionally, quasi-free-
space patterns obtained from the IESS sources in a post-processing step are shown,
which do not exhibit the strong ripples due to the ground interactions any more.
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Figure 9.71 FF pattern cut in the xz-plane for 1 GHz of the monopole antenna on
the car body above PEC ground in Figure 9.68. The IESS
transformation result obtained with the mesh in Figure 9.69 is
compared to the FEKO reference. Additionally, the free-space (FS)
FF pattern obtained in a post-processing step from the IESS
equivalent sources is shown

§-component, ¢ = 90° ¢@-component, ¢ = 90°
. — 0 . .
S 3
o
= £
& 5
E =
5 g
2 2
= —— IESS PEC = —— IESS PEC
2 80 —-—- IESS FS < -80 —-=- IESS FS
- - .FEKO ~ - - FEKO
IESS PEC dev. IESS PEC dev.
—100 L2 dis —100 Ea =
-80 —60 —40 20 0 20 40 60 80 -80 -60 —40 -20 0 20 40 60 80

9(°) 9(°)

Figure 9.72 FF pattern cut in the yz-plane for 1 GHz of the monopole antenna on
the car body above PEC ground in Figure 9.68. The IESS
transformation result obtained with the mesh in Figure 9.69 is
compared to the FEKO reference. Additionally, the FS FF pattern

obtained in a post-processing step from the IESS equivalent sources
is shown

Next, a measurement and transformation scenario over a lossy dielectric
ground half-space (¢, = 5.0 — j0.25) with the same AUT and again for f = 1 GHz
is considered, where the measurement samples are now regularly spaced with a step
size of 2.4° resulting into 5,700 sample locations with two polarisations each. The
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primary radiation of the monopole is again clearly seen in the surface-source
illustration in Figure 9.73, but the effects due to the ground interactions are now
less pronounced than for the case of the PEC ground.

Figures 9.74 and 9.75 show FF pattern cuts obtained by the IESS solution with
approximate consideration of the lossy dielectric ground half-space by the spectral
image principle according to (9.157) in comparison to the FEKO reference results,
where the difference between the IESS results and the FEKO results of well below
—40 dB is quite satisfactory in view of the fact that the employed spectral image
principle is not exact. Again, quasi-free-space patterns obtained from the IESS
sources in a post-processing step are also shown.

The obtained quasi-free-space pattern cuts obtained with the PEC ground and
with the lossy dielectric ground are shown one more time in Figures 9.76 and 9.77,
but now for the complete angular range and in comparison to the FEKO reference
results. The restricted accuracy is expected, since the equivalent sources used to
compute the FF patterns are not the correct ones for the FS case, due to the multiple
interactions with the ground interface in their respective measurement environ-
ment. Kind of interesting is that the patterns from the two measurement environ-
ments show rather different error behaviours, which may lead us to the conclusion
that the achieved accuracy level depends strongly on the particular antenna con-
figuration. The extrapolation of the FS pattern to downward directions is rather
satisfactory and most likely due to the spatial filtering properties of the IESS.

In Figures 9.78 and 9.79, FF pattern results of two more measurement sce-
narios are shown. In the scenario FS Diel., the antenna together with the car was
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Figure 9.73  Surface-source distribution (elementary Huygens radiators based on
RWG functions with an imaginary shift of 0.14) on the triangular
mesh as seen in Figure 9.69 for the virtual NF measurement with
regular sampling above lossy dielectric ground
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Figure 9.74  FF pattern cut in the xz-plane for 1 GHz of the monopole antenna on the
car body above lossy dielectric ground in Figure 9.68. The IESS
transformation result obtained with the mesh in Figure 9.69 is compared
to the FEKO reference. Additionally, the F'S FF pattern obtained in a
post-processing step from the IESS equivalent sources is shown
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Figure 9.75 FF pattern cut in the yz-plane for 1 GHz of the monopole antenna on
the car body above lossy dielectric ground in Figure 9.68. The IESS
transformation result obtained with the mesh in Figure 9.69 is
compared to the FEKO reference. Additionally, the FS FF pattern

obtained in a post-processing step from the IESS equivalent sources
is shown

first measured under FS conditions (NF, full sphere), and then the equivalent
sources have been obtained by an IESS with the mesh shown in Figure 9.69, but
now containing a bottom mesh, too, and finally, the obtained sources where placed
above the dielectric ground half-space in order to compute the FF pattern. In the
scenario PEC Diel., a similar procedure was followed, except that the NF
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Figure 9.76  (Quasi) FS FF pattern cut in the xz-plane for 1 GHz of the monopole
antenna on the car body in Figure 9.68. The patterns are the same as
those in Figures 9.71-9.74 but show the full angular range and are
compared to the FEKO FS reference results
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Figure 9.77 (Quasi) FS FF pattern cut in the yz-plane for 1 GHz of the monopole
antenna on the car body in Figure 9.68. The patterns are the same as
those in Figures 9.72 and 9.75 but show the full angular range and
are compared to the FEKO FS reference results

measurements were collected above a PEC ground (hemisphere) and that the mesh
did not have a bottom. Close to grazing, both scenarios give remarkably good
results, but vertical-up the accuracy deteriorates.

Since full-sphere NF measurements of a car are not easy to perform, we con-
sider two more cases of the spherical NF measurements, now with truncated
spherical FS NF measurements. The achieved results are depicted in Figures 9.80
and 9.81. In the case of Cutl, the NF measurements were performed on a hemi-
sphere above the car which was extended by 3.6° below the horizontal and in the
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Figure 9.78 FF pattern cut in the xz-plane for 1 GHz of the monopole antenna on

Relative magnitude (dB)

)
[T
§ |

60 L1 vy --=-IESS PEC Diel. --=-IESS PEC Diel.
e ] - - .FEKO - - .FEKO !
70 i | H IESS FS Diel. dev. || IESS FS Diel. dev. |1
e | H - - —IESS PEC Diel. dev. ! - - —IESS PEC Diel. dev. |1
—g0 Liill 1 I T InmEaf - S T

the car body above lossy dielectric ground in Figure 9.68. The IESS
FS Diel. and the IESS PEC Diel. patterns have been obtained from
full-sphere FS NF and hemispherical PEC NF measurements,
respectively, with IESS processing, where the obtained equivalent
sources were placed above the dielectric ground in a post-processing
step, mesh according to Figure 9.69, including also a meshed bottom
in the case of the FS measurement
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Figure 9.79 FF pattern cut in the yz-plane for 1 GHz of the monopole antenna on

the car body above lossy dielectric ground in Figure 9.68. The IESS
FS Diel. and the IESS PEC Diel. patterns have been obtained from
full-sphere FS NF and hemispherical PEC NF measurements,
respectively, with IESS processing, where the obtained equivalent
sources were placed above the dielectric ground in a post-processing
step, mesh according to Figure 9.69, including also a meshed bottom
in the case of the FS measurement
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Figure 9.80 FF pattern cut in the xz-plane for 1 GHz of the monopole antenna on
the car body above lossy dielectric ground in Figure 9.68. The
patterns have been obtained from truncated spherical FS NF
measurements with IESS processing, where the obtained equivalent
sources were placed above the dielectric ground in a post-processing
step, mesh according to Figure 9.69 including also a meshed bottom.
The Cutl measurements were truncated 3.6° below the horizontal,
and the Cut2 measurements 10.6° below the horizontal
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Figure 9.81 FF pattern cut in the yz-plane for 1 GHz of the monopole antenna on
the car body above lossy dielectric ground in Figure 9.68. The
patterns have been obtained from truncated spherical FS NF
measurements with IESS processing, where the obtained equivalent
sources were placed above the dielectric ground in a post-processing
step, mesh according to Figure 9.69 including also a meshed bottom.
The Cutl measurements were truncated 3.6° below the horizontal,
and the Cut2 measurements 10.6° below the horizontal
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case of Cut2, the extension of the hemisphere was 10.6° below the horizontal.
Compared to the full-sphere FS measurements, some slight deteriorations are
visible, but overall the influence of the truncation is very little. A reason for this is
certainly the good extrapolation property of an IESS, due to the localisation of the
sources, but the placement of the antenna on top of the car roof is certainly also
beneficial for the truncated FS measurements. With antennas closer to the ground,
e.g., in the bumper of a car, the situation may be worse. In order to give further
insight into the two-step procedure, the FS patterns obtained from the truncated FS
measurements are shown in Figures 9.82 and 9.83.
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Figure 9.82 FS FF pattern cut in the xz-plane for 1 GHz of the monopole antenna
on the car body in Figure 9.68. The shown patterns are obtained from
the truncated FS measurements as considered in Figure 9.80
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the truncated FS measurements as considered in Figure 9.80
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9.14 Summary

The chapter was inspired by the increasing need and wish to perform near-field
antenna measurements with improved flexibility as compared to the traditional
approaches, discussed in Chapters 6—8, which were based on canonical measure-
ment surfaces with regular sampling. To overcome these restrictions, we started in
this chapter with a general and flexible integral-equation and equivalent-source-
based field transformation approach, which provides full flexibility, but is
numerically intensive. Inspired by the enormously powerful fast integral equa-
tion solvers known from computational electromagnetics, we derived computa-
tionally very efficient but still very flexible IESSs for the transformation of
measured near-field data into a set of equivalent sources, which can in turn be
used to calculate near and far-fields anywhere in the solution domain. A by-
product of these IESSs is that they allow a very flexible modelling of the AUT,
too, and, thus, the inclusion of a priori knowledge about the geometric extent of
the AUT. The resulting AUT adapted equivalent source model can help to reduce
measurement errors by spatial filtering and the illustration of the equivalent
sources on the AUT model gives diagnostic insight into the AUT functioning. If
desired, parts of the AUT sources, or of additional echo/scattering sources within
the measurement environment, can even be ignored or modified in post-
processing steps in order to achieve further improvement of the measurement
results or to gain further diagnostic insight.

A variety of equivalent sources were discussed, where the focus was on
equivalent surface-source densities, such as electric and magnetic surface current
densities. Since both of these source types together form an underdetermined
inverse source problem, side constraints such as the zero-field/Love condition or
the CS condition were discussed.

The discretised inverse equivalent source problems were solved in the form of
systems of normal equations, which lead in general to a least mean square solution
of the inverse problem. In addition to the very popular NR set of equations, we
discussed and investigated also the NE set of equations, which is known to be more
suitable for under-determined systems of equations. For our inverse equivalent
source problem, the NE set of equations turned out to give a more direct control of
the transformation errors, since the residual of the equation system is directly the
error in the space of the near-field measurements, and for the investigated exam-
ples, the NE-based solution by the iterative GMRES-solver gave always a very
clear relative stopping criterion, when the achievable observation error was reached
or almost reached. Since the consideration of the zero-field/Love constraint rather
leads to a worse convergence behaviour of the iterative solver than to an
improvement, the recommendation is to work with rather simple inverse source
formulations without extra side constraint for the equivalent sources or with a
computationally cheap side constraint such as the CS condition, either in strong or
in weak form. If Love surface current densities are desired for diagnostic or other
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purposes, they can more easily be computed from the obtained equivalent sources
in a post-processing step.

As a final scenario, antenna field transformations for near-field measure-
ments above a ground half-space were considered. The consideration of the
ground half-space within the IESS was achieved by working with the pertinent
Green’s functions within the radiation integrals, where a PEC ground half-space
was accounted for by exact image theory for the sources and possibly lossy
dielectric half-spaces were modelled by an approximate spectral image principle
for the propagating plane-wave-based representation of the radiation fields. The
feasibility of these approaches was demonstrated by a virtual measurement
scenario of a monopole antenna on the roof of a car body, where the near-field
measurement samples and the reference far-fields were obtained by full-wave
electromagnetic simulation.
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Chapter 10

Near-field range assessment

10.1 Introduction

The range assessment (RA) concept establishes a formalised process for identifying
and evaluating measurement errors' within a given test facility. A significant por-
tion of the groundwork related to RAs was conducted in an effort to allay the fears
of the engineering community in the early days of near-field antenna testing. At the
time, far-field testing was the norm and the truth model for all other methods of
testing. Needless to say, the new-fangled concept of near-field testing was regarded
with a healthy degree of scepticism, and this led to contributions that today form
the foundation for most of the RA work being performed [1-5].

Although initially focussed on planar near-field (PNF) testing, RA concepts
have been expanded to cylindrical near-field (CNF) [6] and spherical near-field
(SNF) [2] test systems and are today readily applied to far-field test systems as
well. Driven by demanding needs in the defence and communications industry, the
need for ever-higher fidelity in measurement has led to the significant effort being
spent on the reduction of measurement uncertainty and an improved understanding
of their sources. Today, the measurement community has started to adopt the
principle that any measurement being reported without some indication of the
associated uncertainty is not worth being reported at all.

It is important to realise that any measured parameter has an associated
uncertainty and a RA therefore has to be conducted for each one of these. These
RAs can be costly and time consuming, but are essential in understanding a mea-
surement process and potentially improving it. RAs are typically done for gain,
directivity, side lobe level, cross-polarisation or beam pointing error.

10.2 A framework for measurement uncertainty

Once specific sources of measurement uncertainty are listed, one can easily become
overwhelmed with the enormity of the task and it is therefore worthwhile to define

'If we distinguish between the concept of a ‘measurement error’ and a ‘measurement uncertainty’, the former
is in general regarded as a known quantity and can therefore be removed or compensated for, whereas the
latter is an unknown quantity that we are trying to bound. Measurement uncertainty therefore establishes a
region of ‘fuzziness’ within which the true measurement lies. We will use these terms interchangeably here.
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Table 10.1 The broad classes of errors and their potential impact on near-field,
far-field and CATR’s

Class Near-field range Far-field range
and CATR
1 Probe/illuminator-related errors Yes Yes
2 Mechanical/positioner-related Yes Yes
errors
3 Absolute power level-related Gain, EIRP and Gain, EIRP and
€ITors SFED only SFD only
4 Processing-related errors Yes No

a simple classification framework within which these terms can be grouped. The
following general classes of errors form such a framework within which all specific
error sources can be categorised:

Probe/illuminator-related errors
Mechanical/positioner-related errors
Absolute power level-related errors
Processing-related errors

RF sub-system-related errors
Environmental-related errors

S e

Considering these broad classes, one can compile the table of inter-
dependencies as shown in Table 10.1. We can now list each specific error term
within this framework of six classes as in Table 10.2.

The error terms listed in Table 10.2 are almost exclusively systematic in nature and
all of these have a small random component. We do not attempt to resolve this random
component for each and instead lump the random component into term #18. All of
these error terms are assumed to be independent and uncorrelated and their effect can
therefore be assessed independently. It is also important to state that we assume that
there is no error within the near-field theory. The only aspects from a theoretical stand
point where this does not hold are AUT-to-probe multiple reflections and scan plane
truncation and both of these are included as specific terms within this budget.

10.3 The effects of unwanted signals on vector
measurements

When evaluating measurement uncertainties, the usual method for determining
errors through measurement is to isolate and vary a single parameter of the test and
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Table 10.2 List of 18 error terms and their associated categories

Specific error term Class Error type
1 Probe relative pattern Probe/illuminator-related errors Systematic
2 Probe polarisation purity Probe/illuminator-related errors Systematic
3 Probe alignment Probe/illuminator-related errors Systematic
4 AUT alignment Mechanical/positioner-related errors Systematic
5.1 Probe (x, y) positioning Mechanical/positioner-related errors Systematic
5.2 Probe (¢, z) positioning Mechanical/positioner-related errors Systematic
53 Probe (0, ¢) positioning Mechanical/positioner-related errors Systematic
6.1 Probe z positioning Mechanical/positioner-related errors Systematic
6.2 Probe p positioning Mechanical/positioner-related errors Systematic
6.3 Probe 7 positioning Mechanical/positioner-related errors Systematic
7 Gain reference uncertainty Absolute power level-related errors Systematic
8 Normalisation constant Absolute power level-related errors Systematic
9 Impedance mismatch Absolute power level-related errors Systematic
10 Aliasing Processing-related errors Systematic
11 Truncation Processing-related errors Systematic
12 Receiver linearity RF sub-system-related errors Systematic
13 Systematic phase RF sub-system-related errors Systematic
14 Leakage RF sub-system-related errors Systematic
15 Receiver dynamic range RF sub-system-related errors Systematic
16 Multiple reflection Environmental errors Systematic
17 Chamber reflection Environmental errors Systematic
18 Random Environmental errors Random

observe pattern changes. The change in the measurement parameter is designed to
focus on a single error source such as chamber scattering or receiver linearity.
Differences in pattern characteristics, i.e. gain, side lobe level, cross-polarisation
level and pointing, are then recorded. Often it is possible to describe small pattern
differences by computing a signal-to-error level. This signal-to-error ratio can then
be used to evaluate the effects of the same error at a different pattern level.
Figures 10.1 and 10.2 contain a schematic representation of a signal S being
combined with an error E. Here, the true value, designated by S is taken to mean the
value obtained after an infinite series of measurements have been performed under
the same conditions with an instrument not affected by systematic errors. The error
is the result of a measurement, i.e. the measured value, minus the true value. The
measured value is the vector addition of the true value and the error. In practice,
the uncertainty/error in a measurement can never be determined it can only be
estimated.

Here, both £ and S are assumed to be complex quantities. The combination of
these vectors can be represented by using free vectors plotted in the Argand plane
with the measured signal being formed from the vector addition using the paral-
lelogram law. The dotted circle represents the locus of possible measured values.
Figure 10.1 shows the case of S and E being added such that the phases of the error
and signal are in phase or exactly 180° out of phase which would result in the
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Figure 10.1 Worst case amplitude error, S and E are in (or exactly out of) phase.
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Figure 10.2 Worst-case phase error when the resulting signal E + S is in
quadrature with E
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largest change in the measured amplitude. From Figure 10.1, it is clear that the
maximum signal is recorded at S + E and the minimum signal is recorded at S — E,
whereupon the envelope of the measured amplitude value can be expressed as

Measured|qg = 20 log,(S £ E) (10.1)

Conversely, Figure 10.2 contains a combination of S and £ where signals are
combined such that the maximum phase change occurs. This happens when the
measured signal (£ + S) is in quadrature with the error signal E, with E either
leading or lagging S. Thus, from inspection of Figure 10.2 it is clear that the
maximum phase error can be written as

E
Omax = Farcsin <§> (10.2)

Usually, we do not know the value of the error as in practice it is the ratio of
the signal to the error that is available. Thus, taking (10.1) and expressing it in
terms of the signal-to-error ratio £/S (where E/S is a relative error), we obtain

S
Measured|,; = 20 log;, (S + S/—E>

Factorising this and using the law of logarithms yields

1
Measured| z = 20 log;,(S) + 20 log,, <1 + m)

Thus, the measured value can be expressed as
Measured|qg = Signal|qg + Uncertainty|qs

Here, the term uncertainty is used to mean an estimate or approximation of the
error. Thus, when assuming the E£/S ratio is expressed in logarithmic form, which it
usually is, we can write the upper and lower bound uncertainties as

Uncertainty| s = 20 1og10(1 + 10—<<5/E‘dB>/2°>) (10.3)
or

Upper bound uncertainty|; = 20 log;, <1 + 10_((5/5“‘3)/20)) (10.4)

Lower bound uncertainty|;; = 20 log;, (1 — 10’((S/E‘d3)/20)) (10.5)

In practice, when computing the lower bound uncertainty, the absolute part of
the argument of the logarithm is used as the logarithm of a negative number results
in a complex value, which in this case is unwanted.

Figure 10.3 contains a plot of the upper bound uncertainty plotted as a function
of the signal-to-error ratio, whereas Figure 10.4 contains a plot of the phase error
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Figure 10.3 Amplitude measurement error due to signal-to-error ratio
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Figure 10.4 Phase measurement error due to signal-to-error ratio

when plotted as a function of the signal-to-error ratio, thereby illustrating their
respective relationships. By comparing these plots, it is clear that a maximum phase
error of 10° or a maximum amplitude error of 1 dB could be produced by roughly
the same error level. When taking measurements, this is an approximate relation-
ship, i.e. rule of thumb, which is often observed.
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Table 10.3 shows several examples of the conversion between E/S and
uncertainty.

Figure 10.5 illustrates the conversion between E/S and upper and lower bound
uncertainties using (10.4) and (10.5), respectively. When the £/S is high, i.e. greater
than 25 dB, the difference between the lower and upper bounds is negligible. As the
E/S reduces, the difference becomes more pronounced.

The measurement uncertainty means that the true value falls somewhere
between the upper and lower bounds plus the measurement value. Even though the
AUT may not actually have a side lobe, or cross-polarisation value at a particular
level, the error can still be evaluated at that level. To illustrate this procedure,
consider a side lobe measured at —45 dB with a 10 dB E/S ratio. From (10.4) and
(10.5), we can see that this will have a true value that lies between the lower bound
of —48.3 dB (—45 + —3.3) and the upper bound of —42.6 dB (—45 + 2.4). Thus,
for a fixed error level, as the signal level increases, the uncertainty bounds corre-
spondingly decrease. This can be seen illustrated further in Table 10.4 where an
error level of —55 dB has been assumed, and the effect that this has on a side lobe
at varying levels S dB has been calculated.

This can also be seen illustrated further in Figure 10.6 which contains a gra-
phical representation of the side lobe level upper and lower bounds as a function of
signal level for a fixed error level of —55 dB showing the effect that this has on a
side lobe at varying levels S.

Table 10.3 S/E versus uncertainty

E/S (dB) at 0 dB S Lower bound uncertainty (dB) Upper bound uncertainty (dB)

80.0 —0.001 +0.001
75.0 —0.002 +0.002
70.0 —0.003 -+0.003
65.0 —0.005 +0.005
60.0 —0.009 +0.009
55.0 —0.015 +0.015
50.0 —0.028 -+0.027
45.0 —0.049 +0.049
40.0 —0.087 -+0.086
35.0 —0.156 +0.153
30.0 —0.279 +0.270
25.0 —0.503 +0.475
20.0 —-0.915 +0.827
15.0 —1.701 +1.421
10.0 —3.302 +2.387
5.0 7177 +3.876
3.0 —10.691 +4.649
2.0 —13.737 +5.078
1.0 —-19.271 +5.535
0.5 —25.046 +5.774

0.0 —0 +6.021
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