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Foreword to volumes 1 and 2

Foreword for the 2nd Edition of Theory and Practice of Modern Antenna Range
Measurements

Since the publishing of the First Edition of this extensive reference book, it has
been the preeminent source for the theory and practical aspects of all the mea-
surement methods that are used to characterise the extremely broad range of
antennas that have been developed as critical components in modern communica-
tion, sensing and space applications. With the completion of this Second Edition,
major improvements and additions have been included to keep pace with the con-
tinuing advancements in this field. The authors have the knowledge and back-
ground to provide authoritative and practical material that is very necessary for the
technical challenges that are required on modern antenna measurement facilities.
The new edition has increased the scope of information and the quality of pre-
sentation and will continue to be a valuable resource for technical experts working
in this field for many years.

Allen C Newell
NIST Retired, Newell Near-Field Consultants

June 2019
Boulder, Colorado, USA
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Preface to volumes 1 and 2

At the time of writing of this text, some 147 years have passed since the publication
of the Treatise on Electricity and Magnetism by James Clerk Maxwell. This was
the text that firmly established the classical theory of electromagnetism in the
mainstream of science and engineering and placed Maxwell within the pantheon of
greats in the fields of science and technology. The success of this classical theory is
attested to by the extraordinarily good agreement that is routinely attained between
theoretical prediction and physical measurement. Its initial triumph was to not only
be able to summarise all previous experiences in the fields of optics, electricity and
magnetism within a small* set of self-consistent equations; but also, for the first
time, to admit the possibility of electromagnetic waves. Crucially, the velocity of
these waves could be deduced exclusively from electrical measurements, which
when compared with the then known velocity of light, the two values were found to
coincide almost exactly.

This inherent accuracy and precision has enabled successive generations of
workers to construct and refine ever more complex and ingenious structures for the
transmission and reception of electromagnetic waves. These waves can be used for
the transmission of information by means of modulating the wave-form to contrive
a signal as used in the field of telecommunications. Alternatively, these modulated
(i.e. radio) waves can be utilised for the remote detection and location of planes,
ships, or other targets as is employed within modern radar (Radio Detection And
Ranging) systems. More recently, the way in which radio waves scatter has also
been harnessed, as this additional information can be used to remotely sense
properties of the physical world without the need to actually visit those locations.
Thus, the sheer multitude and diversity of the applications inexorably drives the
ever-increasing intricacy and sophistication of the design of the devices that are
used to efficiently transmit and receive these electromagnetic waves, so accurately
and rigorously postulated by James Clerk Maxwell.

The achievements of Maxwell are remembered in his home town of Edinburgh in
Scotland where a statue of him seated in his academic gown holding a colour wheel
stands at a busy intersection, with the proud motive ‘James Clerk Maxwell
Mathematical Physicist’, carved into the stone pedestal on which it sits. A more
modern interpretation of the term mathematical physicist might be theoretical physi-
cist, but in fact it should be remembered that in the opening leaf of the Treatise on

*It was actually Oliver Heaviside who reformulated Maxwell’s 20 equations, which were quite difficult
to use, and reduced them to obtain the four very useful equations that are in common use today.



Electricity and Magnetism, Maxwell refers to himself as ‘Professor of Experimental
Physics in the University of Cambridge’ and as if to emphasise the importance that he
placed on the experimental and empirical aspects of his work he devoted the first
26 numbered paragraphs in the treatise to a preliminary to be read prior to the main text,
this preliminary being entitled ‘On the measurement of quantities’. Still now, after so
many years as a result of the increasing intricacy and sophistication of the devices and
systems designed to utilise the concept of classical electromagnetic field theory, the
problem of the measurement of electromagnetic fields remains as acute as ever.

The development and proliferation of inexpensive, powerful, digital computers
with large amounts of memory in the latter part of the twentieth century has
enabled the use of computer-aided engineering to become commonplace in both the
design and measurement of antenna assemblies. The use of full-wave three-
dimensional computational electromagnetic simulation software tools has allowed
the antenna designer to accurately and precisely predict the performance of a given
structure. These tools harness techniques such as the finite difference time domain, or
method of moments, that simply cannot be effectively deployed without the use of a
digital computer. Modern, now commercially available, software packages have
provided hitherto unknown levels of detail, accuracy and precision leading to their
becoming an indispensable part of the antenna design and development process. Such
design and prediction capabilities have become commonplace throughout academia
and industry alike and have in no small way contributed towards the emergent need
for the antenna metrologist to provide a broadly comparable service.

Clearly, antennas have to be mounted and attached to structures and these can
influence, in some cases significantly, the installed radiation pattern as electro-
magnetic waves ‘couple’ to these structures and subsequently radiate. Additionally,
variations in material properties and the influence of imperfections in manufacturing
mean that in nearly all practical applications the antenna radiation characteristics have
to be measured before a final design can go into commercial production. The
inevitable search for more efficient and accurate techniques for the characterisation of
new, increasingly complex, instruments has been the catalyst for the rapid develop-
ment of modern sophisticated antenna measurement techniques. These developed first
from the early direct observation techniques that were harnessed during the years of
the Second World War (1939–45), and which were still commonplace until only
comparatively recently, to the most advanced indirect near-field techniques.

Very often, antenna metrology is considered to be a difficult discipline that is best
left to a few designated ‘experts’. In part this perception is perhaps attributable to the
realisation as with all science and engineering antenna metrology is fundamentally
both an intellectual, and a practical activity. Thus, in order to take good measurements,
the practitioner needs to be familiar with and adept at both the practical and theoretical
aspects of the work making antenna metrology an extremely broad subject. This dif-
ficulty is further complicated as many of the concepts that are routinely used are found
in the development of the theory of classical electrodynamics which, as already stated
were completed in the nineteenth century† and which were originated centuries earlier

†In 1864 Maxwell published a paper entitled ‘Dynamical Theory of the Electromagnetic Field’.
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than that. Furthermore, and as with any discipline that becomes firmly established (i.e.
entrenched), there is a danger that the principles and concepts that lie behind the
terminology its workers use can become taken for granted, thereby obscuring the
subject and its meaning from all but a few experienced practitioners. This is all
the more acute an issue as the development of the discipline has been sufficiently rapid
over the course of the past few decades that even active workers can, at times, struggle
to keep abreast of the most recent developments. This text aims to address this by
adopting a coherent narrative, terminology and nomenclature throughout. In this way,
it is hoped that this volume can form a useful introduction and reference to graduate
students, researchers and practicing engineers alike.

The first chapters of this text present an initial examination of the properties of
antennas that allow them to enhance the free-space interaction of electronic sys-
tems. This is followed by an introduction to direct far-field and indirect far-field
forms of antenna measurements and their implementation. Chapter 5 presents a
detailed description of the compact antenna test range which is a direct far-field
measurement technique before Chapters 6–8 progress to present alternative indirect
planar, cylindrical and spherical techniques, respectively. Chapter 9 is devoted to
field transformations from non-canonical measurement surfaces based on general
inverse-source formulations. Chapter 10 discusses near-field range error budgets
which are an indispensable part of antenna metrology. Chapter 11 presents a
discussion of modern mobile and body-centric antenna measurements. Finally,
Chapter 12 sets out some of the most recent advances in the various measurement
techniques including aperture diagnostics, phase-less antenna metrology and range
multi-path suppression techniques which currently are amongst some of the most
active topics for researchers.

In summary, this volume will provide a comprehensive introduction and
explanation of both the theory and practice of all forms of modern antenna mea-
surements from their most basic postulates and assumptions to the intricate details
of their application in various demanding modern measurement scenarios.

The authors have not attempted to identify the originators of every concept or
to provide an exhaustive literary survey or historical account as this can very often
obstruct the pedagogy of a text. Additionally, except where specifically stated, it
should be noted that only concepts, techniques and methodologies of which at least
one of the authors has direct practical experience of implementation are included
for discussion in the text. The International System of Units (SI) is used exclusively
with the approximation m0 ¼ 4p � 10–7 NA–2. Following the redefinition of SI base
units, the kilogram, ampere, kelvin and mole, on the 20th of May 2019, the dif-
ference between this value of m0 and the new SI (experimental) value of m0 is less
than 1 � 10�9 in relative value which is negligible in the context of the uncertainty
budgets discussed herein. However, this assumption should be noted and re-
examined periodically as it does subtlety affect the permittivity of vacuum, impe-
dance of vacuum and admittance of vacuum.

Thanks are due to a great many people who gave freely and generously of their
time to review the manuscript at various stages throughout its preparation, and
especially to Prof. Edward B. Joy of Georgia Tech who carefully reviewed an early
draft. However, any errors or lack of clarity must, as always, remain the responsibility
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of the authors alone. The authors are grateful to their wives (Claire Parini, Catherine
Gregson, Imelda McCormick and Lizette Janse van Rensburg) and children (Robert
Parini, Elizabeth Gregson and Suzette Janse van Rensburg) whose unwavering
understanding, constant support, encouragement and good humour were necessary
factors in the completion of this work. We also thank the organisations and indivi-
duals who generously provided copyright consent.

There are many useful and varied sources of information that have been tapped
in the preparation of this text; however, mention must be made of the following
books which have been of particular relevance and will be referred to throughout.
In no special order:

M.R. Spiegel, Theory and Problems of Vector Analysis and an Introduction to
Tensor Analysis, Schaum Publishing Company.

R.H. Clarke and J. Brown, Diffraction Theory and Antennas, Ellis
Horwood Ltd.

J.E. Hansen, Spherical Near-field Antenna Measurements, Peter Peregrinus,
1988.

S.F. Gregson, J. McCormick, and C.G. Parini, Principles of Planar Near Field
Measurements, Institution of Engineering and Technology, 2007.

Although the nomenclature and development of the theory of antenna
metrology as presented within this text has not generally followed that of the
National Institute of Standards and Technology (NIST), the technical publications
originating from that organisation have also been a rich source of valuable infor-
mation. In particular, but in no special order:

D.M. Kerns, Plane-Wave Scattering-Matrix Theory of Antennas and Antenna-
Antenna Interactions, National Bureau of Standards Monograph 162.

A.C. Newell, Planar Near-Field Antenna Measurements, Electromagnetic
Fields Division, National Institute of Standards and Technology, Boulder
Colorado.

A.D. Yaghjian, Near-Field Antenna Measurements on a Cylindrical Surface: A
Source Scattering-Matrix Formulation, Electromagnetics Division, Institute
for Basic Standards, National Bureau of Standards, Boulder, Colorado, NBS
Technical Note 696, 1977.

It is the hope of the authors that this text will act as a sound reference for all
aspects of modern antenna measurements and in some small way enhance the theo-
retical knowledge and practical skills of the reader with relation to antenna range
measurements. As it is clear from careers of the greats in science and engineering, not
least Maxwell’s own, that it is only through the interaction of these intellectual and
practical aspects of science and engineering that effective progress can be made.

Clive Parini, Stuart Gregson, John McCormick, Daniël Janse van Rensburg
and Thomas Eibert

London, Edinburgh, Atlanta and Munich
March 2020
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Chapter 1

Introduction

1.1 The phenomena of antenna coupling

This text concerns itself with the ‘theory and practice of modern antenna range
measurements’ and as such it is intimately concerned with the problem of the
quantification, interpretation and verification of a range of physically observable
phenomena that, as will be described in this text, are associated with the emission,
reception and scattering of electromagnetic waves. More specifically the technol-
ogies and concepts to be discussed and explained in the text along with their use in
engineering situations are bounded by a range of frequencies from about 10 MHz to
1 THz with a particular focus on the microwave and mm-wave bands.

This volume will not attempt to hypothesise or examine the variety of postu-
lated physical mechanisms by which the interaction, which is optimised by the
antennas, between the electronic systems occurs. However, as it will attempt to
develop a thorough theoretical explanation of the applicability of antenna mea-
surements, it must, at least, be consistent with physical law. Very little that is
encountered within the discipline of electronic engineering is of a more relativistic
nature than the operation of antennas. By definition, the interaction facilitated by
the presence of antennas occurs at the speed of light, thus relativity cannot be
completely ignored when considering the action of antennas. In this text only
transmit (Tx) and receive (Rx) antennas that are in translational equilibrium will be
considered and their velocities relative to each other will be specified to be zero.
Additionally, the electromagnetic interactions will be observed from an inertial
reference frame coincident with the fiducial mechanical datum of the Tx antenna.
These conditions make it to a large extent possible to consider the antenna char-
acterisation without reference to any relativistic effects associated with a multi-
plicity of reference frames or to any non-inertial effects. This simplifies the
explanations, without invalidating them in more complex situations, and allows
descriptions based on the simplified relativistically invariant equations of classical
electromagnetic field theory (EFT) to be used to explain the interaction. Note: Only
when its inclusion will simplify, expand, or illustrate certain facets of the funda-
mental interaction, or some detail of the measurement process or data will be
quantised, non-classical nature of the electromagnetic field will be discussed. This
therefore implies that the problems being discussed only require considerations of
lengths that are large compared to atomic dimensions and charge magnitudes



greatly in excess of those found on elementary particles, e.g. electrons, so that
recourse to quantum fields theories can be avoided. More exactly, classical con-
cepts are characterised by assuming that the world is divisible into distinct ele-
ments, the state of each element can be described in terms of dynamic variables that
can be specified with infinite precision, and that the interdependency between parts
of a system can be described by exact laws that define changes within any system in
terms of dynamic variables.

As a preliminary to any discussion of the theoretical models of the causes of
the phenomena (see Chapter 2) or the explanation of the technologies and instru-
ments that can be used to make the observations (see the majority of the text), it is
important to realise the difference between the phenomena that can be observed
and the non-observable noumena that represent the underlying reality of the
observable physical phenomena [1]. The nature of the electromagnetic fields (the
noumena) which are considered to be the cause of the observable phenomena is
discussed in detail in Chapter 2, but it is important to realise that no direct obser-
vation of an electromagnetic field has ever been, and if modern physical science is
correct will ever be made. Direct observations that relate to electromagnetic fields
are confined to the observable effects that these fields can be inferred to cause, a
clue to these effects being inherent to the units in which these fields are usually
quantified, e.g. volts/metre or newtons/coulomb, where, e.g., voltage, acceleration
and mass are directly observable physical quantities, measurements of which can
be inferred to imply the existence of causal electromagnetic fields.

It has been conjectured that a short article ‘Some Thoughts on Ray Vibrations’
by Michael Faraday which appeared in the Philosophical Magazine in 1846 marks
the birth of electromagnetic field theory. Whether this is considered to be true, and
Maxwell always did consider this to be the case, it is certain that Faraday’s concept
of field and the intrinsic properties of fields that allows them to manifestly influ-
ence the physical behaviour of material objects that are not in direct physical
contact with each other has had a profound effect on science and engineering. Prior
to Faraday’s great theoretical leap in postulating the existence of field (which
appears to have been, at least in part, based upon the observations that he had made,
e.g. the pattern that iron filings form in the presence of a magnetic field), no viable
explanation could be advanced for the interaction of the observed phenomena that,
if correctly stimulated, physically remote electrical systems can interact.

As such the recognition of and the requirement for the development of com-
ponents to be used as circuit elements that enhance this coupling are based on the
observation of this same phenomena that, for physically remote electronic systems
if one system is suitably harmonically excited, energy and momentum can be
transferred sufficiently to generate measurable voltages and currents in a second (or
subsequent) remote electronic system. This is the basis of the phenomena of the
antenna-enhanced coupling that will be one of the primary concerns of this text,
specifically the radiative coupling between electronic systems in free space will be
examined and we will only address reactive near-field aspects when they have
noticeable effects on observable phenomena.
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If coupling between systems that are not physically separated by large dis-
tances is required, various forms of ‘transmission lines’ can be utilised. However,
large separation distances almost invariably require the use of antennas as a phy-
sical connection becomes impractical or inefficient. Communication systems con-
tain Tx and Rx sub-systems, which necessitate the use of at least two antennas.
Broadcast systems may use only a single Tx sub-system, however considerably
more Rx sub-systems may be used. Radars may, or may not, use the same antenna
for their Tx and Rx sub-systems and the coupling may well be profoundly affected
by the scattering from some target. However, in each of these cases, in essence, we
are still considering coupling between electronic sub-systems.

Careful considerations of all electronic systems which utilise antennas as a
component reveal that it is the extent of this coupling that is fundamental to their
operation. Replace Rx antenna with other transducer, e.g. bolometer for power
detection and rectifier for rectenna (power transmission by microwave signal), and
you have summed up almost every possible engineering and scientific circumstance
other than those systems designed to detect transmissions from naturally occurring
radiation sources, e.g. radiometers.

The extent to which electronic systems interact, as a result of this coupling, is
fundamental to large swathes of electronic engineering and therefore also to our
modern technological society. For many systems the existence of this coupling and
its ingenuous exploitation for the transfer of information in the form of a signal is
imperative to the successful operation of these technologies. This of course means
that for these technologies, techniques and components must be developed that
maximise this coupling between such electronic systems. As already stated, many
strategies have been employed to maximise this coupling (and the subsequent
transfer of information between the respective systems), but for physically isolated
systems the only practical strategy for enhancing the interaction is the inclusion of
circuit elements within the electronic systems that enhance this interaction; these
individual circuit components being referred to as antennas.

Clearly engineering design processes for technologies based on the coupling of
remote electronic systems will require a range of observations on prototype, pre-
production and production systems to characterise, verify and define a range of
requirements that will be necessary for successful designs to be implemented. The
antenna test range is specifically designed to provide the data that the assessment of
such designs requires.

1.2 Characterisation via a measurement process

The most common technique adopted to characterise, predict and quantify the
coupling between electronic circuits and systems is to attempt to reduce the pro-
blem of circuit coupling to that of antenna performance. Thus, by characterising
antennas in a known circuit configuration, the extent to which they enhance cou-
pling in other situations can be predicted. This is the fundamental procedure
adopted in antenna test ranges, where the inclusion of antennas in a known,
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carefully controlled configuration of two coupled circuits/systems allows this
measurement process to be performed. This means that the characterisation of the
antennas in this circuit configuration can be used to predict the response of other
circuit configurations, which include the same antennas. This characterisation is
accomplished via a measurement process.

Historically measurement as a tool for rational cognition, when observations of
physical phenomena are designed to extract quantitative information, has often
been defined as [2]:

‘the quantitative determination of a physical magnitude adopted as a
standard, or by means of a calibrated instrument. The result of a mea-
surement is thus a numerical value expressing the ratio between the
magnitude under examination and a standard magnitude regarded as a
unit’.

This is a commonly used definition that was originally made popular by Lord
Kelvin in the nineteenth century. The passage of years has resulted in an increased
level of understanding of the physical process of measurement. This, together with
the introduction of ‘systems centred’ concepts and the development of information
theory, has lead to a more generalised view of the measurement process. This yields
an information conversion definition of measurement which can be stated as [2]:

‘consisting of information transfer with accompanying energy transfer.
Energy cannot be drawn from a system without altering its behaviour;
hence all measurements affect the quantity being measured.
Measurements therefore are a carefully balanced combination of physics
(energy transfer) and applied mathematics (information transfer)’.

In general, when the observations of a physical phenomenon are designed to extract
quantitative information about the physical phenomenon being observed, these
observations are usually referred to as measurements. A range of theoretical
interpretations about the nature of the measurement process have been advanced,
mainly developed from the original concepts as stated by Helmholtz in 1887 in the
epistemological essay ‘Zahlen und Messen erkenntnistheoretisch betrachtet’ [3].
However, in the last century these theoretical interpretations of the measurement
process have inclined more towards the representational theory of measurement
where measurement is usually defined as being [4]

‘the correlation of numbers with entities that are not numbers’.

Figure 1.1 shows the elements of some physical state set (Q), e.g. potential dif-
ference, force, time and power, which are mapped onto a representational set (N),
which is usually the set of real numbers by means of some measurement procedure/
process (M).

Classically a physical quantity, i.e. the extent or extensive nature of a physical
phenomenon, can take any real value, and this was why the mapping of the physical
phenomena onto a representational set was again usually described as an iso-
morphism (i.e. a one-to-one mapping or correspondence) from the physical state set
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onto the real number set. It was not until the early twentieth century when the
quantised nature of physical phenomena was discovered that it became understood
that the physical quantities themselves could not take on any and all real values.
However, in this text the nature of the fields under consideration will be such that in
any practical situation the fields can be assumed to be capable of taking on any
measurable value [5]. Nevertheless, although it had previously been thought that
the physical quantities could take on any value, it was recognised that any practical
measurement system could only map these physical states onto a limited range of
numbers, with these numbers representing rational multiples of the resolution of the
measurement scale. Thus in practice the information that could be extracted from a
measurement process would be restricted to a range of numerical values where a
many-to-one (i.e. homomorphism) mapping would replace the theoretical one-to-
one (i.e. isomorphism) mapping of an imagined perfect measurement process. The
validity of the mapping process is confirmed by the equivalence of the real value
physical state sets and the limited value representational sets under the same set of
automorphisms.

Since the latter part of the nineteenth century and then the twentieth century,
when rigorous statistical methods were adopted in the natural sciences, a more all-
encompassing concept of representational measurement has been accepted.
Essentially the nature of the representation is valid if the scale mapping between
the real physical state and the representational state preserves the relation between
the elements of the ordered set of physical quantities in the representational set.
Conventionally, the relation between the elements in the physical state set has been
visible under the measurement process as a binary relation based on rational
intervals of the smallest resolution of the representational set. So, e.g., if two values
of a physical state set have a given ratio in the physical state set then they have the
same ratio in the representational set. That is to say, a symmetry exists under the
homomorphism of the scale mapping that preserves the rational interval relation
between elements of the sets. However, other relations between the elements of the
sets, e.g. ordinal and/or categorical relations between elements of the sets, can also
be preserved under a range of homeomorphisms so measurement processes that are

Physical
state set

Representational
symbol set

Q N

Measurement
process

M: Q→N
q1

q2

n1

n2

Figure 1.1 A pictorial representation of the set theoretic model of measurement
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not based on rational intervals can also be viable. This can allow a more diverse and
comprehensive range of statistical techniques to be deployed in measurement data
assessment exercises.

Therefore, given that phenomena relating to the coupling of remote electronic
systems can be observed and that these observations can be directly related to the
action of the antennas in the electrical circuits which comprise these systems, what
are the properties of the antennas that need to be assessed via a measurement
process to enable viable engineering solutions to be designed, refined and tested?

1.3 Measurable properties of antennas

An antenna can be described in many ways. For instance, it is possible to describe
an antenna in terms of its mass, which is clearly a critical property if the antenna is
to be used in a space or aerospace application. The physical size of the antenna is
also of importance in many applications where available real estate is in limited
supply, for instance where antennas are installed within a mobile phone or a laptop
computer, and so on. Alternatively, antennas can be categorised in terms of their
physical structure. The following figures (Figures 1.2–1.6) contain examples of
various different classes of antenna.

While these are all entirely valid ways of describing antennas (together with
thermal temperature and colour) in this text, we are only concerned with the elec-
trical properties of antennas, that is to say, those properties of an antenna which
emerge when they are placed within an active resonant electrical circuit. When
considered in this context, for instance, an antenna can be described as being ‘a
means for radiating or receiving radio waves’ [6]. Alternatively they can be con-
sidered to be ‘an arrangement of conductors and/or dielectrics to enhance and

Figure 1.2 Linear dipole antenna
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control radiation’. They could equally well be thought of as being ‘a transducer
between free-space propagation, and guided-wave propagation’. Indeed many take
a profoundly different view and consider the antenna to be purely ‘a component,
system, or product, which is used or sold to return profits to shareholders’.
Although valid (and the likely explanation of much of the interest in antennas and
the existence of the antenna industry) this last description does not advance our
technical understanding. As an antenna is the part of the circuit that is the principal
transducer between free-space (i.e. radiated) and guided-wave (i.e. circuit) regions,
antenna behaviour can be couched in terms of either and in terms of the efficiency
of the transformation from one to another. The free-space characteristics include
properties such as free-space radiation pattern (e.g. pointing, beam-width and side

Figure 1.3 Slotted waveguide planar array antenna

Figure 1.4 Offset parabolic reflector antenna
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lobe level), directivity, polarisation (e.g. tilt angle, axial ratio, cross-polar dis-
crimination) and radar cross-section (RCS), which is a wave-to-wave scattering
measurement. The circuit-element characteristics include properties such as input
impedance and match (cf. reflection coefficient). The transfer characteristics
include quantities such as gain, efficiency, effective isotropic radiated power
(EIRP), effective area and antenna noise temperature, which is a property that also
depends upon the environment in which the antenna is placed. Crucially, as
antennas are invariably required to operate across a range of frequencies, in order

Figure 1.5 Planar patch array antenna (Courtesy of Selex ES)

Figure 1.6 Rectangular pyramidal horn antenna
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that the antenna performance can be completely characterised, all of these prop-
erties are also needed as a function of frequency. This leads to an additional
antenna property, namely that of antenna bandwidth which is the range of fre-
quencies over which the antenna is considered to ‘operate effectively’.

Thus, with the exception of some circuit element characteristics and noise
measurements, all of the above-mentioned properties of antennas are addressed (i.e.
characterised) within modern antenna test ranges. However, of these properties,
perhaps the three most important and specifically related to antennas are gain, free
space radiation pattern and polarisation. These parameters are described in more
detail in the sections that follow.

1.3.1 Antenna gain and directivity
In most electronic systems gain is related to amplification, usually expressed in
terms of voltage or power depending on the types of system under discussion. For
antennas, however, the concept of gain has a different meaning, one which is per-
haps more closely aligned with the focusing ability of a lens. The interaction
between systems facilitated by antennas requires that power is transferred between
the systems from one location in space to another. It is a fundamental law of
physics that energy is conserved globally and locally, and this means that for power
to be transferred between remote systems there must exist a radiative power flux
between the two, otherwise, isolated systems. The gain of an antenna, subject to the
constraints of polarisation, as will be explained in Section 1.3.4, is defined as
follows [7]:

G q,fð Þ ¼ power generated per unit angle in the direction q,fð Þ
total power accepted from the source

(1.1)

Thus the gain relates the power flux density that an antenna radiates in a given
direction relative to the total power accepted by the antenna. Assuming a single
main or major lobe antenna pattern, the maximum gain of an antenna occurs in the
direction of the main-beam (i.e. main-lobe) which, for convenience, is often
referred to as simply the gain of the antenna. The power accepted by the antenna
will differ from the total power that is available to the antenna by an amount that
depends upon the impedance match of the antenna. This definition of gain results in
a slightly more difficult measurement as the antenna mismatch factor must be taken
into account. As will be explained in Chapter 2, the source of the power in a
radiating antenna is vectorial in nature so the ability of an antenna to produce a
power flux density is a function of the direction, relative to some fixed frame of
reference or mechanical datum, that the power flux density is projected, hence the
dependency on the angles q and f in the expression above. The gain is therefore a
directive characteristic of an antenna and a directivity can also be assigned to an
antenna where this can be expressed as follows [7]:

Dðq,fÞ ¼ power generated per unit angle in the direction ðq,fÞ
total power radiated by the antenna

(1.2)
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In the event that an antenna is lossless, the directivity and the gain would be equal.
The ratio of the two quantities, namely

h ¼ Gðq,fÞ
Dðq,fÞ (1.3)

is defined as the radiation efficiency of the antenna. When the efficiency of the
antenna is 100% and thus there is no internal dissipative (e.g. ohmic) loss, the
antenna gain equals the antenna directivity thereby ensuring 0 � h � 1. Thus, of
the two, gain is typically the more useful parameter when describing a given
antenna’s overall performance.

Both gain and directivity can be expressed linearly or in decibel (dB) form
where one decibel is equal to one tenth of a bell (B). As both gain and directivity
can be cast in terms of power ratios (i.e. the ratio of the linear quantity and unity),
the logarithmic forms can be obtained from the linear forms using

GdB ¼ 10 log10 G (1.4)

DdB ¼ 10 log10 D (1.5)

Thus, when expressed in logarithmic form, gain and directivity are related by

GdB ¼ DdB � hdB (1.6)

Note, according to the IEEE standards [6], gain does not include losses arising from
impedance mismatches or from polarisation mismatches. This, perhaps unintuitive,
definition was decided upon because it is always possible to construct a matching
network to ensure the maximum amount of power is transferred to the antenna, and
similarly, as will be explained in the following text, polarisation matched antennas
are assumed.

1.3.2 Antenna cross-section
An alternative way of expressing the effectiveness of antennas to facilitate the
interaction, i.e. transfer of power in the form of voltages and currents, between
coupled systems is that of antenna cross-section. This is also known as antenna
effective area. As will be shown below, the effective area of an antenna is essen-
tially a frequency independent way of expressing how well an antenna can project/
accept radiation into or from a given direction. If S is the power density of the
incoming plane wave in watts per square metre and P(q, f) is the amount of power
absorbed in watts, then the effective area can be defined by

Pðq,fÞ ¼ SAðq,fÞ (1.7)

Here, the area A is in square metres and S is the power density of the plane wave in
watts per square metre. In order that the maximum equivalent area for the antenna
is computed, as will be explained in Section 1.3.4, it is usual to assume that the

10 Theory and practice of modern antenna range measurements, volume 1



antenna and plane wave are polarisation matched. The gain of a 100% efficient
antenna, i.e. one where gain equals directivity, at a specific frequency is usually
stated to be

D ¼ 4pA

l2 (1.8)

where D is the directivity, A is the effective area of the antenna and l denotes
wavelength.

In Section 1.1 it was noted that ‘Only when its inclusion will simplify, expand,
or illustrate certain facets of the fundamental interaction, or some detail of the
measurement process or data will be quantised, non-classical nature of the elec-
tromagnetic field will be discussed’. Box 1.1 contains details about the nature of the
electromagnetic interaction between antennas and how it is constrained by the laws
that govern the transfer of energy and momentum between all physically isolated
systems, electronic or not. The contents of the box are included for the interested
reader. However, as with all isolated boxes in the text it can be read in continuity of
the text, in isolation from the rest of the text, or not at all, as the basic narrative of
the text will be unaffected.

Box 1.1
Although the relationship between effective area, as defined above, and
antenna gain can be obtained from a number of theories, including classical
electromagnetic theory, perhaps the simplest explanation (involving only
basic algebra) can be derived from considerations of the one of the most
fundamental of physical laws, i.e. the Heisenberg uncertainty principle [8]
and how this limits the localisation of any photon. Although relativistic
considerations require that only photons with circular polarisation about an
axis aligned with their propagation vector can exist, linear polarisation can be
considered to be a superposition of equal numbers of right- and left-handed
coherent photons. Circularly polarised photons have angular momentum
(more commonly known as spin angular momentum and does not depend
upon frequency).

Angular momentum is defined as

P ¼ Iw ¼ mR2w (B1.1)

where I is the moment of inertia, w is angular frequency, m is mass and R is
the radius of gyration. For a zero rest mass particle, i.e. any particle that
propagates at the velocity of light, e.g. any microwave photon, the energy
carried by the photon can be expressed in terms of the relativistic rest mass of
the photon:

E ¼ hf ¼ mc2 (B1.2)
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Here, h is Planck’s constant and c is the speed of light. Rearranging this yields

m ¼ hw
2pc2

(B1.3)

From (B1.1)

R2 ¼ P

mw
¼ P2pc2

hw2
¼ h2pc2

2phw2
¼ c2

w2
(B1.4)

From this

R ¼ c

w
¼ f l

w
¼ wl

2pw
¼ l

2p
(B1.5)

Thus the area swept out by the radius of gyration of such a photon is

Ap ¼ pR2 ¼ l2

4p
¼ l2 � 1

4p
(B.16)

This implies that Ap would be the effective area of a unity gain/directivity
lossless isotropic antenna, where any emission or absorption of photons is
limited to the area Ap. In terms of the uncertainty relation the photon’s origin
would be limited to the area Ap but there would be no knowledge of their
momentum; therefore propagation in any direction would be equally likely,
i.e. the probability density function for the photonic interaction would be
isotropic. This means that in order for an antenna to have any level of
directivity greater than unity the antenna would need to be larger than Ap. As
is implied by the uncertainty relations the directivity is linearly related to the
area over which emission or absorption can take place; therefore for an
antenna with greater than unity directivity:

A ¼ l2D

4p
(B1.7)

where, as already stated for (1.8), A is the effective area of the antenna. Thus
it can be seen that the ability of any antenna to directively transfer energy and
momentum in the form of voltages and currents between remote electronic
systems is fundamentally limited by the basic physical principles that govern
the flux of this energy and momentum across space and time.

Rearranging this expression yields

D ¼ 4pA

l2

As per (1.8), thus confirming that the directive nature of EM emissions is
governed by the same laws that describe the transfer of energy and
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momentum between all physically isolated systems, electronic or not. Note:
The relationship between gain/directivity and effective area for antennas can
be established using a variety of different physical models, apart from the
simple method that is shown above and classical electromagnetic theory, e.g.
it can also be established using the tenants of statistical thermodynamics [9].

From the expression

D ¼ 4pA

l2 (1.9)

it can be seen that for a fixed aperture size of, for example, 30 cm by 30 cm, it is
possible to plot directivity as a function of frequency.

Figure 1.7 illustrates an example of the functional relationship between
antenna area, i.e. electrical size in wavelengths, and gain.

1.3.3 Free-space radiation pattern
The ability of an antenna to radiate power in a given direction is an important
measurable characteristic of any antenna; however, the finite spatial extent of any
practical radiating structure means that it is not possible for any antenna to radiate
exclusively in one direction. At any one time an antenna will be radiating more or
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Figure 1.7 Equivalent directivity of a uniformly illuminated rectangular aperture
plotted as a function of frequency
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less power, in a variety of different directions. Hence, the angular pattern of this
radiation is another important characteristic of an antenna that can be measured in a
test range.

As discussed above, antennas do not radiate equally in all directions. However,
the concept of an isotropic radiator is useful as a standard relative to which any
other antenna’s performance can be compared but is in theory and practice
impossible to construct. Therefore the variation in the ratio of the radiated power,
as a function of angle relative to the fixed mechanical datum of any antenna, is an
important parameter. Figure 1.8 defines a coordinate system against which this
variation can be judged with the z-axis or f-axis conforming to the mechanical
datum, often referred to as boresight, of the Tx antenna.

Here, the variables q and f are independent and orthogonal, bq and bf are
orthogonal unit vectors that point in the direction of increasing q and f. Figure 1.9
illustrates the relative angular position of the Tx and Rx systems as the Rx antenna
moves around a circular path at a fixed value of f and R with q varying along the
circular path and with the Tx antenna at its centre. For any sufficiently large fixed
value of Rj j the extent to which power is transferred between the two antennas
relative to the value at q ¼ 0 would vary as a function of the angle q, where R is
defined as

R ¼ Rj j sin q cosfbex þ Rj j sin q sin fbey þ Rj j cos qbez (1.10)

with

Rj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
AMS þ Y 2

AMS þ Z2
AMS

q

(1.11)

Here, the subscript AMS is used to denote coordinates that are in the antenna
measurement coordinate system.

f

q

x

y

z

Figure 1.8 Illustration of the antenna coordinate system, with aperture of
cylindrical horn antenna located at origin
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Clearly this variation in relative power would also be a function of the angle f
so the so-called radiation pattern of the antenna would actually be a function of
both q and f, the angles which define the direction of the displacement R, the path
between Tx and Rx antennas. The pattern function is an important parameter of any
antenna and, assuming the magnitude of R, i.e. the distance between the two
antennas is large, for two such antennas the variation along a segment of the cir-
cular path shown could be of the form shown in Figure 1.10 where the relationship
between the two parameters is represented graphically. Here, the maximum-
recorded signal has been normalised to unity, i.e. zero on a dB scale.

As has been expounded above, any antenna measurement comprises the
interaction of two antennas. In this case, it is clear that one of those antennas is the
antenna under test (AUT), which in this case is a pyramidal horn; the question is,
what is the other antenna? In this case, the second antenna, i.e. the one which is
located at the observation point R, is taken to be an infinitesimal Hertzian dipole
antenna. This constitutes a single oscillating electron which is the most elemental
form of ‘antenna’ and one which can be used as a reference within measurements
and theoretical predictions alike. The exact reason for this choice is expounded in
the following chapters. Here, the pattern has been plotted on a rectangular, i.e.
Cartesian, graph with angle plotted as the abscissa and power as the ordinate. It is
also common practice to present this information using a polar plot. This is illu-
strated in Figure 1.11 for variations in q and in Figure 1.12 for a 3D plot.

The measurement of absolute levels of power coupled, or the levels relative to
calibration standards, is also possible but again detailed discussion of this will be
delayed until a simple model of radiating structures is developed in Chapter 2.
There and in later chapters also, those concepts relevant to the characterisation of
antennas as circuit elements that cannot be measured exclusively in antenna test
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Figure 1.9 Orientation of Tx and Rx antennas, including all circuit components
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ranges will be addressed. These include scattering parameters and their relevance to
definitions of gain in terms of accepted as opposed to delivered power in any circuit
and their possible use in scattering matrix descriptions of Tx and Rx antennas.

1.3.4 Polarisation
Having measured this pattern function, it might be assumed that everything is
known about the angular variations in coupled power between the Tx and Rx sys-
tems. However, for any position of Tx and Rx, were either of the antennas to be
rotated about their mechanical datum, i.e. about the f-axis for the Tx antenna as per
Figure 1.8, a variation in the amount of power coupled as a function of f would be
observed. This variation is ascribed to the polarisation of the antenna, a further
illustration of the vectorial nature of the power source, and various polarisation
bases that can be used to describe this polarisation will be developed over the
course of the text. The concept of polarisation was discussed in Box 1.1 where it
was noted that individual photons themselves exhibit the polarisation character-
istics; however, for our purposes polarisation can be considered as simply another
factor that influences how well two circuits can couple to one another. Thus the
polarisation of an antenna is therefore defined to be the polarisation of a wave
transmitted by the antenna and propagating in some given direction. An example of
this is illustrated in Figure 1.13 which contains a typical measured response of what
would be termed a linearly polarised Rx antenna’s response if a Tx antenna had the
same so-called initial polarisation at 0 degrees.

Polarisation is defined as the direction of the electric field. If the electric field
is horizontal, the antenna is said to be horizontally polarised where the horizontal
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Figure 1.12 Recorded power normalised to 0 dB as Rx is moved around the far-
field sphere presented in the form of a virtual 3D polar plot
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and vertical are defined in the antenna’s coordinate system. Similarly, if the electric
field is vertical, the antenna is said to be vertically polarised and if the electric field
is aligned at some other angle f, the field is said to be slant-linear polarised. If the
electric field rotates, the antenna is said to be elliptically polarised, or in a special
case of this, circularly polarised. If the rotation of the electric field is clockwise
when the wave is propagating towards the observer, the polarisation is left-hand
clockwise, i.e. left-handed circular polarisation (LHCP). Conversely, if the electric
field rotates anticlockwise (counter-clockwise) then it is right-handed circular
polarisation (RHCP). These states are shown in Figure 1.14. Note: Other definitions
of circular polarisation defined by looking from behind the antenna are often
quoted and the reader should be aware that these other definitions exist. In reality
an antenna is never perfectly LHCP or RHCP and is instead always elliptical.
Clearly, LHCP and RHCP are orthogonal and conveniently circular polarisation
can always be expressed as the sum of two orthogonal linear polarised components
and conversely, linear-polarisation can always be expressed as the sum of two
circularly polarised components.

1.3.5 The far-field
Both of the types of measurements discussed above, i.e. pattern and polarisation,
can be made in an effort to characterise the coupling between antennas; however,
one point that has been briefly mentioned will need further explanation. Figure 1.9
shows an Rx system including an antenna placed at a position along the circular
path and Figure 1.11 shows the variation in the antenna pattern with angle q. The
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Figure 1.13 The variation in coupled power as a function of f
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text then goes on to state that ‘provided Rj j is large enough’ the pattern will just be
a function of q and f, without stating how large Rj j has to be for this to be true.

When Rj j is small, i.e. of the order of a few wavelengths in free space, the
extent of coupling between the circuits is profoundly affected by the instantaneous
distribution of charge over the surfaces of the antennas. Here, the ratio of the power
coupled is strongly dependent on Rj j. This is the so-called reactive region around an
antenna where reactive coupling dominates radiative coupling. As the distance Rj j
increases, the power coupled between the circuits is no longer dominated by this
charge distribution; Figure 1.15 illustrates such a situation.

In this figure the displacement from Tx to Rx is again labelled R but as the
antennas are extended objects in space many displacements, e.g. R0, are also
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Figure 1.14 Examples of left- and right-hand circular polarisation of waves
propagating towards the observer
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Figure 1.15 Two of the possible paths between the Tx and Rx antennas
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possible paths between the antennas, meaning that in the situation illustrated, there
is no unique path between the two antennas. Only when Rj j is infinitely large will
the displacements R and R 0 be effectively the same. Therefore, only when Rj j is
infinitely large can we define a unique path with a definite length where all parts of
the two antennas are effectively at equal distances apart; when this is so, the two
antennas are in each other’s true far-field.

In practice, since in the vast majority of engineering situations we are con-
cerned with antennas that are at large but finite distances apart, the far-field is
defined as being when all parts of the Tx antenna are effectively at the same dis-
tance from the Rx antenna. At this distance the angular field distribution is essen-
tially, but not strictly, independent of Rj j. The distances at which Rj j can be
considered to be large enough to define a far-field region will be examined in the
following chapters but it is the requirement that Rj j is in theory sufficiently large
and, as will be explained in the text, modern antenna test ranges are almost
invariably indoor facilities with only short range length that is the spur for much
ingenuity and innovation in the modern antenna test.

That region in which the coupling is dominated by radiation but the distance
Rj j is not sufficiently large to uniquely define a single path is called the radiating

near-field, this is the region surrounding the antennas that will be, in many senses,
the practical focus of this text. In engineering situations, as a result of how they are
employed, almost invariably it is the far-field performance of antennas that is of
interest. However, for practical reasons that will be examined in this text, the ability
to make measurements where Rj j is in fact much smaller than would normally be
required is extremely important in modern antenna metrology.

1.3.6 The phase in the measurement
In the first paragraph of this chapter, it is stated that this text is ‘intimately concerned
with the problem of the quantification, interpretation and verification of a range of
physically observable phenomena that, as will be described in this text, are associated
with the emission, reception and scattering of electromagnetic waves’. This implies
that, as will be described in Chapter 2, the radiation that facilitates the transfer of
energy and momentum between remote electronic systems is based on the propaga-
tion as described in classical wave theory. So far the measurements described have
been related to the magnitude of the voltages and currents that can be induced in
remote systems as a result of antenna coupling, but if the propagation can be
described by classical waves another aspect of the coupling will also be in evidence.

The basis of all free-space antenna measurement techniques, and indeed much of
electromagnetic theory, is the assumption that the AUTs and the systems used in any
test procedures behave in a linear fashion. In fact, lack of linearity will be a source of
uncertainty in the measurement process that will be referred to in Chapter 10. Such
linear systems can be described by linear differential equations like

cn � dnf2ðtÞ
dtn

þ cn�1 � dn�1f2ðtÞ
dtn�1

þ . . .c1 � df2ðtÞ
dt

þ c0 � f2ðtÞ ¼ f1ðtÞ (1.12)
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For any simple system that can support harmonic oscillations this can be truncated
to a second-order equation of the form:

c2 � d2f2ðtÞ
dt2

þ c1 � df2ðtÞ
dt

þ c0f2ðtÞ ¼ f1ðtÞ (1.13)

where the constants and functions in the equation can be related to the usual circuit
parameters of an electronic system, capacitance (C), inductance (L), voltage (V),
charge (q) and resistance (R), to give

L � d2qðtÞ
dt2

þ R � dqðtÞ
dt

þ 1
C
� qðtÞ ¼ V ðtÞ (1.14)

This is an equation relating the circuit parameters, with a harmonic solution that
will be familiar to any student of alternating current (AC) theory. However, such an
equation is inadequate to describe the harmonic solutions present in a circuit at
radio or microwave frequencies. If a voltage is applied to such a circuit, this voltage
will be propagated through the circuit at approximately the speed of light, 3 � 108

metres per second. Thus, at 50 Hz this will produce a spatial harmonic variation in
the circuit voltage which will be cyclic over some 6 000 km. Therefore, for any
circuit harmonically oscillating in time at 50 Hz, it is reasonable to assume that the
voltage and currents are constant at all points in the circuit at any specified time.
However, at the microwave frequency of 10 GHz the associated cyclic spatial
variation of the currents and voltages in any circuit will be repetitive over a dis-
tance of the order of 3 cm. At this frequency, assuming the circuit itself is at least of
the order of a few centimetres in length, the currents and voltages in that circuit will
vary harmonically both as a function of when and where they are observed.

A harmonic system in which such oscillations are a function of space and time
will be described by a partial differential equation. Such an equation that linearly
relates the rate of change of the rate of change of the variables with respect to time,
to the rate of change of the rate of change of the same variables with respect to
space is a wave equation. This means that measurements of the instantaneous
power made at different points in the circuit at the same time will give different
results and these results can be related to provide a measure of the relative phase of
the harmonic oscillation at the different points in the circuit. These measurements,
that can be used to assign a phase to the harmonic coupling, are an additional aspect
of measurements that can be made on antennas. As will be discussed in the text,
these measurements are the source of the in-phase and at quadrature data that will
be fundamental to the near-field measurement process.

1.3.7 Reciprocity
As yet the coupling between antennas has been discussed without explicit reference
to any differences that there might be in the properties of Tx and Rx antennas. It is a
common fallacy to assign properties to antennas that actually belong to the systems
within which they are embedded. By way of example, often antennas are described
as being reciprocal devices, in fact by definition reciprocity is a property that can
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only be applied to objects which are either sources or sinks for energy [10]. Thus it
is correct to say that electronic systems that are reciprocal, e.g. that include gen-
erators and loads and satisfy the usual requirements of isotropy, will not have this
property affected by the inclusion of antennas within them. However, to talk of
antennas in the absence of well-defined waveguide ports or terminals, where load
impedances and source voltages are attached, being reciprocal is to misinterpret the
concept of reciprocity. In fact, almost all of the properties usually assigned to
antennas, and to engineering importance, are in fact properties of systems con-
taining antennas. Antennas do not by themselves transmit or receive energy across
free space; they are simply bi-directional transducers that can be included as circuit
components in electronic systems. It is systems that include antennas as compo-
nents that have the emergent property that they can radiatively couple power across
large ranges in free space.

Thus it should be remembered that the characterisation of antennas via mea-
surements to quantify their performance is really the characterisation of highly spe-
cified electronic systems containing Tx and Rx antennas that can be used to predict
the response of other systems in which the same or similar antennas will be utilised.
Therefore it can be assumed that, unless non-reciprocal components or sub-systems
are included in the overall electronic Tx and/or Rx systems that are being char-
acterised, e.g. ferrite isolators, the response of the Tx and Rx antennas will appear
reciprocal and that the measured gain, pattern and polarisation of any antenna con-
taining system will be the same in Tx as in Rx. Modern nomenclature often refers to
the entire assembly of an active electronically scanned array (AESA) as the antenna.
In such an antenna there may well be non-reciprocal components and/or sub-systems.
However, the actual radiating structure, the bi-directional transducers, will still have
the same gain pattern and polarisation properties in Tx and Rx.

1.3.8 Measurement limitations
The ability to make any of the measurements so far described in the text has not
been addressed. As will be expanded upon in Chapter 2, the action of antennas to
facilitate the transfer of energy and momentum across free space between remote
electronic systems involves the postulated transmission and reception of electro-
magnetic waves that have propagated across the intervening free space between the
Tx and Rx antennas. It is vitally important in any characterisation process based on
measurement that what is actually measured is truly representative of the phe-
nomenon that is under investigation.

For example, in attempting to measure the pattern of a receiving antenna it is
assumed that all of the power incident on it will emanate directly from the Tx
antenna, i.e. there will be no multi-path, interference or any other electromagnetic
error sources in the measurement. The assumption that what is being measured is
what has been postulated unpolluted by any possible error source is also accom-
panied by the assumption that the test range has the capability to make the mea-
surements with the required levels of precision and accuracy. For this to be the
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case, antenna measurement will preferably take place in highly controlled and
isolated environments where the action of the Tx and Rx antennas can be tightly
controlled and accurately and precisely measured, hence the requirement for highly
accurate characterised antenna test ranges.

1.4 The content of this text

The range of measurements detailed above can be used, along with other mea-
surements that do not specifically need an antenna test range, to characterise
antenna performance. It is exactly this requirement to be able to assume that the test
range is measuring what is actually required and measuring with the required levels
of accuracy that has led to the development of the modern antenna test range. The
accurate characterisation of how the presence of antennas will affect the coupling
of electronic circuits can be accomplished using a number of different range con-
figurations and it is the primary purpose of this text to illustrate and explain the
deployment, capability, limitations and rational behind the use of these various
modern antenna test ranges.

In Chapter 1 of this text, we have examined the phenomena of antenna cou-
pling and, after defining what is meant by measurement, have illustrated a number
of measurement parameters of antennas that are important in characterising their
performance via measurement. As is explained in the Preface, and will be expanded
upon in the text as a whole, the fact that these coupled antennas can facilitate the
transfer of energy and momentum between remote electrical systems by exciting
currents and voltages in the circuits of these systems can be used as the basis of a
great many technologies that require the exchange of information in the form of a
signal between widely separated electronic systems.

The most basic of these, the antenna parameters that relate to the spatial
orientation of the Tx and Rx antennas, and the basic raison d’être behind the
requirement for specialist antenna test ranges, have been examined. Other more
concise and refined parameters that can be obtained from measurements in modern
antenna test ranges in concert with other facilities, instrumentation and signal/data
processing will be examined in the main body of the text.

Although the basis of all antenna measurements is the observable phenomena
of antenna coupling and, therefore by definition the existence of a radiative inter-
action between Tx and Rx antennas, a full understanding of the process observed
requires examination of the underlying noumena or mechanism behind the obser-
vable facts. It is not the purpose of this book to critique or examine in detail the
range of hypothesised mechanisms by which the interaction facilitated by the
antennas between the electronic systems occurs, some of these alternatives postu-
lated mechanisms are listed in [11]. In this text in Chapter 2, the interaction will
primarily be described in terms of the propagation of transverse, to take account of
polarisation, waves propagating in a none dispersive medium, these waves being
consistent with solutions to Maxwell’s equations.
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As it is considered essential for any deep understanding of the antenna mea-
surement process, an examination and explanation of the basic concepts/algorithm
behind, and inherent to, the classical theory of electromagnetism as summarised by
Maxwell’s equations are presented in Chapter 2. In a large variety of circum-
stances, this is a particularly successful algorithm for the description of the inter-
action in question, but the treatment, in this volume, will be such that other
hypothesised interaction mechanisms and their attendant mathematical algorithms
will not be precluded by the explanations introduced.

This is followed in Chapter 3 by a survey of far-field and quasi far-field and
near-field forms of antenna measurement techniques. This includes an introduction
to far-field, compact-range, and a variety of near-field scanning measurement
methodologies. Discussion of the basic hardware requirements for the imple-
mentation of such measurement techniques including anechoic chambers, RF sub-
systems and absorber, when required robotic positioners and probe antennas, is also
included along with the definition of a generic antenna measurement process.

Chapter 4 presents a detailed introduction to coordinate systems in the context of
antenna measurements. These concepts are then extended to develop several the more
widely encountered polarisation bases. The subject of coordinate systems is funda-
mental to all form of near- and far-field antenna measurements and the successful
interpretation of both measured and modelled antenna patterns. Consequently, this
material is presented early in on in the text so that the reader is appropriately prepared
for when this knowledge is called upon within the latter chapters.

Chapter 5 concentrates on one particular type of modern antenna test range, the
compact antenna test range (CATR). The different types of CATRs are discussed in
terms of their inherent capability to produce the collimation of electromagnetic
fields and the resultant quiet zones along with how their ability to produce these
conditions can be evaluated. Particular attention is given to the applicability of
CATRs to millimetre wavelength measurements, and the utility of CATRs in
making scattering as well as Tx and Rx measurements is examined with respect to
calibrated RCS measurements.

Chapter 6 is devoted to the technique of planar near-field scanning and its use
as an antenna measurement technique. This involves, by way of explanation,
illustrating the solution of Maxwell’s equations in Cartesian coordinates, the
development of the transmission formula and an examination of the technique of
probe pattern correction.

The technique of near-field scanning is again examined in Chapter 7, but this
time in a different geometry, i.e. in terms of cylindrical near-field antenna mea-
surements. To this end a solution of Maxwell’s equation in cylindrical coordinates
and an appropriate transmission formula relevant to the cylindrical geometry are
derived. As with planar scanning an analogous probe pattern correction formula is
devised and the technique of cylindrical scanning is further developed to illustrate
conical near-field antenna measurements.

In Chapter 8 the techniques of near-field scanning are again revisited but this
time spherical near-field antenna measurements are explained. The different types
of spherical range (phi/theta, theta/phi, arch-role) are illustrated and as with the
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other varieties of near-field scanning a solution of Maxwell’s equations in spherical
coordinates along with the development of the required transmission formula and
probe pattern correction is discussed.

Although the concept of measurement is briefly discussed in the opening
chapters of this text, this is done in terms of the theory of representational mea-
surement; in practice the physical limitations of any measurement system intro-
duces ambiguity and uncertainty into the measurement process. In order to
understand and quantify the extent of this uncertainty in the process, an assessment
must be made of the possible, probable and certain error sources in the measure-
ment procedure.

Chapter 9 seeks to address the need to perform near-field antenna measure-
ments with improved flexibility as compared to the traditional approaches of
canonical measurement surfaces using regular sampling. This chapter derives
computationally very efficient, and very flexible, inverse equivalent source solvers
for the transformation of measured near-field data into a set of equivalent sources,
which can in turn be used to compute near and far-fields anywhere within the
solution domain.

As near-field scanning is a measurement procedure that does not even indir-
ectly measure many of the required characteristics of an antenna, it essentially is a
process in which data is acquired from which predictions of the required char-
acteristics can be processed, it is particularly susceptible to measurement uncer-
tainty. Since this is the case, range assessment is an important area in the effective
use of modern antenna test ranges. Chapter 10 addresses the requirement for such
assessments by analysing the overall effect of the limitations in the measurement
techniques in terms of the errors that may be inherent in the individual components,
instruments and processes used in an antenna test range when antenna measure-
ments are undertaken. The possible error sources are identified and techniques are
advanced for their assessment and reduction/removal; this is illustrated via a
detailed example of range assessment.

Chapter 11 moves away from the consideration of specific types of ranges and
their performance and attributes, instead it concentrates on how these ranges can be
used to advance a specific rapidly evolving area of radio-frequency technology and
as such it concentrates on mobile and body centric antenna measurements. To do
this, it examines the applicability of different measurement methodologies that can
be deployed in modern antenna test ranges to accurately characterise a variety of
antenna types that are used in this technology.

Chapter 12, attempts to summarise, explain and illustrate a number of
advanced antenna measurement techniques, which are currently the most active
topics for researchers; these are designed to

● correct systematic and random errors in measurement procedures,
● increase the range of useful information that can be extracted from antenna

range measurement data,
● simplify and streamline signal and processing techniques that can be used in

antenna range measurements,
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● increase the range and diversity of measurements that can be accomplished in
modern antenna test ranges.

The concluding chapter, Chapter 13 presents an introduction to several widely used
EM simulation methods that can be used to examine, perturb, optimize and design a
range of antenna measurement system. In this chapter, these techniques are intro-
duced and their utility in the derivation or range uncertainty budgets, examination
of error correction techniques and the simulation of complete measurement systems
is presented and discussed.

Chapter 1 describes the most basic and fundamental reason for the requirement
for antenna test ranges that revolve around the understanding of the coupling
between antennas and how this varies as a function of the spatial and angular
orientation of the Tx and Rx antennas. Any rigorous understanding of the spatial
relationship between extended material objects in space, e.g. antennas, requires the
specification of a frame of reference and an accompanying coordinate system
relative to which displacements and orientations can be fixed. For this reason
extensive appendices are included which detail and explain

● the coordinate systems used in antenna measurements,
● polarisation basis used in antenna measurements,
● transformation between the various coordinate systems and polarisation bases.

This description of the contents of this text concludes the introduction which sets
the scene for the detailed descriptions that follow in the Theory and Practice of
Modern Antenna Range Measurements; however, in order to understand the basic
theoretical considerations that will guide the practical application of measurement
techniques, it is necessary to be familiar with part of that underlying theory and
address the nature of the noumena behind the phenomena of antenna coupling. To
this end, Chapter 2 attempts to illustrate those areas of classical EFT that are
required to fully understand and use modern antenna test ranges to their maximum
utility.
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Chapter 2

EM theory and the mechanism behind
antenna coupling

‘The modern view that emerged from Maxwell’s theory is a world with
two layers. The first layer, the layer of fundamental constituents, consists
of fields satisfying simple linear equations. The second layer, the layer of
things that we can directly touch and measure, consists of mechanical
stresses, energies and forces. The two layers are connected, because the
quantities on the second layer are quadratic or bilinear combinations of the
quantities on the first layer. To calculate the energies or the stresses, you
take the square of the electric field strength or multiply one component of
the field by another. The two-layer structure of the world is the basic
reason why Maxwell’s theory seems so mysterious and difficult. The
objects of the first layer are abstractions not directly accessible to our
senses. The objects that we can feel and touch are on the second layer, and
their behaviour is only determined indirectly by the equations that operate
on the first layer. The two layer structure implies that the basic processes
of nature are hidden from our view’.

—Freeman Dyson, Edinburgh 1999*

2.1 Maxwell’s classical electromagnetic field theory

If the basic processes of nature are hidden from our view and only the phenomena
associated with these processes are accessible then an understanding of these
abstract processes must be also based on abstract concepts. Arguably the most
successful abstract concept devised by humanity to demystify the inaccessible
hidden processes of nature has been formalised mathematical abstraction. This
methodology of building a formal mathematical model of the underlying physical
processes and mechanisms of nature as an aid to understanding, along with the
validation of any hypothesis based on these models by the acquisition of objective
factual evidence, is the basis of all physical science. Thus the empirically validated
scientific models of the processes and mechanisms behind observed electro-
magnetic phenomena are the bedrock upon which all RF engineering is built.

*Quote reproduced with the permission of ‘The Society for Industrial and Applied Mathematics’ and the
‘James Clerk Maxwell Foundation’.



In this text, while attempting to explain the observed phenomena of antenna
coupling in terms of the underlying electromagnetic mechanisms, all discussion of
the electromagnetism will be confined to the classical representations of field
concepts. This is usually sufficient for extended macroscopic objects like plat-
forms, targets, transmission lines and antennas, the main categories of assets that
are of concern in antenna and RF engineering. However, it should be borne in mind
that all scientifically based theories have a range of applicability including classical
EM theory, and although more accurate relativistic gauge theories of the EM
interaction will not be addressed in this text, as antenna theory concerns the pro-
pagation of electromagnetic energy between physically remote antennas at the
speed of light, it will not be possible to completely ignore the relativistic aspects of
antenna theory. Thus as with any and all postulated theories developed to describe
all physical phenomena, any description of the action of antennas must be con-
sistent with the fundamental postulates of special relativity, these being:

1. The principle of relativity – ‘The laws of physics must be expressible in the
same formal structure in all inertial frames of reference’.

2. The principle of constancy of the light speed – ‘ . . . light is always propagated
in empty/free space with a definite velocity [speed] c which is independent of
the state of motion of the emitter or the observer’.

This will not invalidate the approach that has been adopted as the principal electro-
magnetic equations used, based on the seminal work of James Clerk-Maxwell, are
themselves relativistically invariant in form and can be considered as the proto-type
for all subsequently advanced gauge theories postulated to describe the fundamental
forces encountered in nature. Note: These forces being variously described as the
gravitational, the electromagnetic, the strong and the weak interactions.

2.2 Electric charge and EM fields

It is an empirical fact that under investigation electric charge appears to exist in two
forms, usually but not exclusively referred to as positive and negative. Another
empirically established fact is the conservation of electric charge. This means that
electric charge can be neither created nor destroyed, thus any change in its dis-
tribution within space must involve the motion of charged particles.

This can be summed up by a continuity equation:

r � j þ @r
@t

¼ 0 (2.1)

where r is the charge density and j is the current density.
It is the presence of, and the motion of, electric charge that is the source and

cause of the interaction between charged particles that is summarised by the con-
cept of an electromagnetic field.

An electromagnetic field can be thought of as constituting that ‘state of exci-
tement’ induced in space by the presence of a possibly time-dependent distribution
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of electric charge that has the potential to act on other charges that are present. To
illustrate this concept, it is best initially to consider the field associated with a
single charged particle, e.g. an electron, positron and beta particle. Such a physi-
cally small object has so little extension in space that, in the context of antenna
engineering, it can be considered as a point charge.

The action on any point charge q1 that is present at a point in space will be such
that it alters, or tends to alter, the state of motion of other charged bodies distributed
in the space around it. Thus the charge can be thought of as producing a force field
in its proximity and any other charged objects in this field will interact with the
field. Note: Although there is only one field, the electromagnetic field associated
with charge distributions, historically it has been split into the concept of an electric
and a magnetic field due to the different circumstances under which the manifes-
tations of both are most easily observed.

When Alexandre Gustave Eiffel designed his famous tower in Paris, he
decreed that the names of 72 of France’s most illustrious scholars in the sciences
should have their names engraved on the tower. Careful examination of the tower
just below the first balcony will be rewarded by the sight of the engraved names of
these 72 great sons of France. Note: This list of 72 notables was compiled in an age
when the women of France, as with other Western countries, either by circumstance
or prejudice, were all but totally excluded from the physical sciences [1]. However,
amongst the notables listed on the tower can be seen the name of Charles–Augustin
de Coulomb whose most important contribution to the physical sciences was his
law of electrical attraction.

The electric field E can be considered in terms of the Coulomb force law:

F ¼ q1q2

4pR2
R (2.2)

where F is the force that acts on q1, by definition equal and opposite to that which
acts on q2, R is the distance between charges q1 and q2, R is the unit displacement
vector in the direction defining the displacement between q1 and q2, and q1 and q2

are two distinct point-like distributions of charge.
Thus

F ¼ q1E (2.3)

where E is defined as

E ¼ q2

4pR2
R (2.4)

As a direct result of the principle of relativity and the equivalence of inertial
reference frames, all states of transitional equilibrium are equivalent. Therefore, it
must be possible to define the force that acts on the test charge even if it is initially
in a state of uniform motion, as opposed to being stationary, in a similar fashion.

However, although a distribution of separate charges may be individually in
translational equilibrium, they may be in motion relative to each other and therefore
there will be no inertial frame relative to which all of the charges constituting the

EM theory and the mechanism behind antenna coupling 31



distribution are stationary. To take account of this relative motion, a second vector
B is defined which relates the force that acts on the test charge in the presence of
fields at the points in space the charge instantaneously occupies when it is in
motion.

From experiment, it is found that these fields apply a force F on the charge q
moving with velocity v which is given by the Lorentz force law as

F ¼ qðE þ v � BÞ (2.5)

Clearly as v ! 0 the Lorentz force law tends to the Coulombic formulation and
additionally the vectors E and B will vary as a function of the inertial state of any
observer. However, a range of Lorentz invariant parameters, e.g. the inner product
of E and H, can be defined which allow transformations of the E and B fields
between inertial reference frames. This allows the Lorentz force law to be con-
sidered a fundamental law of physics and to act as the definition of the vector
quantities E and B.

Up to this point the field produced by the presence of, and the motion of,
electric charge has been described in terms of the physically observable manifes-
tations of the force(s) that it can exert on other charged particles. Although this is of
interest in many areas of electronics and electromagnetics, it is in the ability to
couple remote electronic systems that are of interest with respect to antennas, i.e.
field as a source of electromotive force or EMF.

E field has been defined in terms of the force that is exerted on charged particle
from (2.4) as

F ¼ q2E ;
F

q2
¼ E (2.6)

From this it is clear that the units of the E field are newtons/coulomb, i.e. N/c. A
volt is defined as joule/coulomb, i.e. J/c therefore J ¼ Vc. Also the energy trans-
ferred to an object by a force equals the scalar product of the force and the dis-
placement, therefore in free space J ¼ Nm.

Thus

Nm ¼ Vc ;
N

c
¼ V

m
(2.7)

Therefore for any extended object in the field, the force acting on the individual
particles within the object will induce a voltage across the object and this is the
source of the currents and voltages induced in remote systems. This is the physical
mechanism whereby, if correctly stimulated, physically remote electrical systems
can interact and produce the transfer of energy and momentum required to induce
voltages and currents. Note: The principle of the conservation of energy requires
that if voltages and currents are induced in and across a remote object/system, since
a volt is a joule per coulomb, energy must be transferred from the Tx to the Rx
system. So, as will be examined in Section 2.3, there must be a power flux between
the Tx system and the Rx system.
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The effects that will be induced in the extended objects are a function of its
material constitution, size and shape, etc., but the extent of the field impinging on
the object will be a function only of its remoteness from the source (which relates to
the power of the source excitation) and its spatial orientation relative to the source
(which relates to the pattern and polarisation of the source), the very parameters
that antenna test ranges are designed to characterise.

At this point the second principle/postulate of relativity theory, the principle of
the constancy of the speed of light, can be seen to impact on the predictions of EM
theory as, although this speed is very high, it is not infinite, i.e. 299,792,458 m/s.
Thus, at any point in time the field produced at another point in space remote from
the charge distribution, which is its source, is not equal to the field that would be
produced by the source charge distribution at that instant in time. This is because a
certain period of time must pass before any change in the field can propagate any
finite distance.

Since time elapsed is equal to distance divided by speed, it is in fact the field
that would be created by the charge distribution in a period of time equal to the
magnitude of the displacement of the test charge from the source divided by the
speed of light.

If the point charge is moving as per the curved path in Figure 2.1, the field
experienced at point P at time t when the point charge is at point B is the field that
was produced at A. The field at point P at time t is determined by the position of the
potential source at position A at the earlier time of t � t where the displacement
s ¼ ct ¼ [r � r0(t � t)], and B is the position of the source at time t.

Thus, at any instant of time the field at a point in space mirrors the charge
distribution that was present at a time in the past equal to the magnitude of the
displacement from the source divided by the speed of light. This in turn means that
the effect of any change in the charge distribution will take a finite amount of time
to act on the test charge. Therefore any change in the field will be retarded by a
period of time directly proportional to the magnitude of the displacement of the test
charge from the source. The concept that the finite velocity of propagation retards
the effects of the variation of any field source across space is crucial to the
development of classical electromagnetic field theory.

B

O

A
ct

P

r

s
r′(t – t)

r′(t)

Figure 2.1 Finite temporal displacement of field due to motion of the source
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2.3 Power flux in an EM field

The concept of the field at any point in space relative to the position of a moving
charged particle representing the retarded field is fundamental to the classical
explanation and, as will be developed in Sections 2.4 and 2.5, to why such accel-
erated charged particles emit radiation at all. The normal explanation of this
radiation follows from Maxwell’s equations through the use of retarded potentials
for the field components at large distances from any source. A detailed exposition
of this mechanism can be found in the authors previous text [2], and in a range of
other standard texts [3,4], dedicated to the explanation of EM concepts and a
detailed example is included in Box 2.2 in later sections of this chapter.

However, prior to this detailed discussion, considerable insight into the
mechanisms by which such moving charged particles interact can be found in an
explanation for this radiation first put forward by Noble Laureate J.J. Thomson [5].
This explanation is particularly informative as it indicates why an accelerated
charge radiates, why there is an angular pattern related to this radiation and why
this radiation has polarisation properties.

If we consider a positive charge stationary at the origin of a frame of reference
O, at a time t ¼ 0, that subsequently is subject to a small acceleration to velocity Dv
(where Dv � c so that the field lines still essentially describe a spherical field), in a
small interval of time Dt, this can be visualised as per Figures 2.2 and 2.3.

In Figure 2.2 the charge is at point O at time t ¼ 0, and field lines that actually
spread out in a spherical distribution are shown merely in the plane of the page.
This arrangement of field lines shows the charged particle prior to any acceleration.
If the particle is subsequently accelerated to Dv after a period of time t, we can

0

Figure 2.2 Field lines of positive charge placed at O, the origin of a frame of
reference at time ¼ 0
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identify two regions of field inside and outside a sphere of radius ct. Outside of the
sphere the field lines are still centred on O as, due to the finite speed of light, the
field lines do not know that the source, the charged particle, has moved. Inside this
sphere, at time t, the field lines are radial to the frame of reference of the moving
charge and between these two regions there is a thin shell of thickness cDt in which
the corresponding field lines join. See Figure 2.3.

Clearly within the small shell there is a region where the field lines have a
component in the circumferential direction, as per Figure 2.4 in the iq direction. As
we shall see, this sphere of field with a circumferential component can be though of
as a pulse of electromagnetic field propagating away from the source at the speed of
light and thus, as we shall also see, by virtue of the charge being accelerated there is
an energy loss associated with this pulse which is propagated out from the charge.

To understand why this is so, it is necessary to examine the nature of this small
shell in more detail. Figure 2.4 shows the details of a small cone of field lines at an
angle q with respect to the acceleration vector of the source at time t.

The strength of the Eq component of the field is related to the number of field
lines per unit area which, from the geometry of the figure, is proportional to relative
sizes of the approximate rectangle ABCD.

Thus

Eq

Er
¼ Dvt sin q

cDt
(2.8)

0

Δvt

cΔt
r = ct

c

Figure 2.3 Field lines associated with a positive charge accelerated to position
Dvt at time t
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but

Er ¼ q

4pe0r2
where r ¼ ct (2.9)

therefore

Eq ¼ qðDv=DtÞ sin q
4pe0c2r

(2.10)

However, Dv/Dt is the acceleration of the source a, giving

Eq ¼ qa sin q
4pe0c2r

(2.11)

It is worth noticing at this point that the radial component of the field Er ∝ 1/r2,
while the field associated with the pulse falls off more slowly, i.e. Eq ∝ 1/r.

For any pulse of EM radiation, the flow or energy flux per unit area per unit
time is given by the Poynting vector [6], where S ¼ E � H, which in terms of
the magnitude of this power flux in free space is equal to 1/Z0E2, where
Z0 ¼ (m0/e0)1/2.

Thus the rate of loss of energy through a solid angle dW at distance r from the
source is

� d

dt
ðenergyÞ

� �

rad;dW
¼ Z0q2a2 sin2 q

16p2e2
0c4r2

r2dW (2.12)

0

r

θ

c∆t

A

B

C

D
iriq

∆vt sin q

∆vt
∆v

Figure 2.4 The circumferential component of the E field in the shell of thickness
cDt at displacement r from position of the charge at time t
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From the relationship between c with e0 and m0 along with cancelling the r terms,
this can be simplified to

� d

dt
ðenergyÞ

� �

rad;dW
¼ q2a2 sin2 q

16p2e0c3
dW (2.13)

To find the total radiation rate, this much be integrated over all solid angles, i.e.
with respect to 2p sinqdq, giving

� d

dt
ðenergyÞ

� �

rad

¼
ð
p

0

q2a2 sin2 q
16p2e0c3

2p sin qdq (2.14)

This can be integrated to give

� d

dt
ðenergyÞ

� �

rad

¼ q2a2

6pe0c3
(2.15)

This is exactly the same result, known as the Larmor equation [7], that can be
obtained via the full theory working directly from Maxwell’s equations. This
simple model of the radiative process, illustrated in the above calculations and
figures, highlights the three main areas of radiative emission that are invariably
required to be estimated for more complicated sources, e.g. antennas, via a free-
space EM measurements:

1. The power that is emitted, as given per (2.13) and (2.15), is as a result of an
excitation that accelerates the charge.

2. The dependence of the rate of emission of radiation on the angle q, i.e. the
pattern, in this simple case is of a dipole form where Eq ∝ sinq and thus there is
no tangential field component and therefore no emission along the direction of
the acceleration vector and the radiation is at a maximum perpendicular to this
vector, as per Figure 2.3.

3. The polarisation of the radiation, i.e. the direction of the electric field vector, is
parallel to the acceleration as projected onto the spherical surface at distance r
again as per Figures 2.2–2.4.

The above argument, although simplified and also ignoring second-order effects
like aberration, illustrates many of the facets of the actual mechanism of radiation
from sources such as charged particles. Note: If the acceleration produced a velo-
city that was not very much smaller than c, many of these conclusions would be
invalid.

Box 2.1
It is perhaps worth noting that this explanation as originally advanced formed
part of the work for which J.J. Thomson was awarded the Nobel Prize for his
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work on the conduction of electricity by gases in which he identified the
electron as a classical particle in 1906. Later his son G.T. Thomson was also
awarded the Nobel Prize in 1937 for his work on the wave mechanics of
electron diffraction. Thus, over the course of one generation the Thomson
family was awarded the Nobel Prize twice, essentially for proving that the
electron was a classical particle and then for proving that it was not. Such are
the vagaries of all concepts developed to describe the underlying noumena/
mechanism of observable phenomena and certainly must have made con-
versation at the diner table in the Thomson household interesting.

2.4 Maxwell’s equations

Although the later years of Oliver Heaviside’s life were characterised by a descent
from more or less eccentric behaviour into a pronounced pathology related to his
mental health, there is little evidence to suggest that the quality of his research was
degraded [8]. This is a question that can never truly be answered as the theft shortly
after his death of the manuscript of his ‘electromagnetic theory’ means that the
insights into electromagnetics of his later life have never been reported. However,
the monumental work that he did in translating the 20 equations of Maxwell’s
original theory into the now more familiar form of four partial differential vector
equations has formed the basis of almost all classical electromagnetics-based
engineering for more than a hundred years. These equations essentially relate the
rates of change of the vector fields with respect to time and to the spatial sense of
the fields both tangential to and at a normal to the direction of the fields, as such
they encapsulate all the relations between the vector fields.

Classically, the relationships between the components of any electromagnetic
field are described by Maxwell’s field equations and by the equations representing
the properties of the medium in which that field exists. Maxwell’s equations can be
written in differential form as

r � D ¼ r (2.16)

r � B ¼ 0 (2.17)

r� E ¼ � @B

@t
(2.18)

r� H ¼ J þ @D

@t
(2.19)

The definitions and units of these quantities are as follows:

E ¼ Electric field intensity
H ¼ Magnetic field intensity
J ¼ Current density
r ¼ Charge density
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D ¼ Electric flux density
B ¼ Magnetic flux density

Since only alternating, sinusoidal, time-harmonic quantities are to be considered,
the time dependency of the complex representations of the electromagnetic field
vectors can be taken to be of the form ejwt, where to six decimal places
e ¼ 2:718282 and j ¼ ffiffiffiffiffiffiffi�1

p
is the imaginary unit. Here, w ¼ 2pf is the angular

frequency and f represents the temporal frequency measured in hertz. This complex
exponential form of spatial and time variation of the fields is used for convenience
where it is understood that the actual field quantities are obtained by taking the real
part of the complex quantity, i.e.

E ¼ E0j jcos wt þ fð Þ ¼ Re E0ejwt
� �

(2.20)

H ¼ H0j jcos wt þ fð Þ ¼ Re H0ejwt
� �

(2.21)

Where f is the phase angle of E0.
When using this notation the time factor is usually suppressed, i.e. the complex

exponentials are cancelled on either side of the relevant expressions, and this
convention is adopted throughout. Although it is conventional in electromagnetism
and optics to adopt a positive time dependence, in the study of quantum mechanics
and solid-state physics, the opposite time dependence is more often adopted.
Clearly, as the electromagnetic field vectors are of the form ejwt, the following
operator substitution can be utilised:

Dn ¼ @n

@tn
� ðjwÞn (2.22)

This simply states that differentiating electromagnetic field vectors with respect to
time is equivalent to multiplying the field vectors by the imaginary unit and the
angular velocity of the field which is assumed to be fluctuating in a sinusoidal fashion.

Crucially, the simplification afforded by restricting ourselves to considering
purely monochromatic waveforms in no way restricts the analysis since any angular
frequency may be considered to be a component of a Fourier series, or in the limit a
Fourier integral, thus enabling this analysis to be applied to arbitrary waveforms.

Some of the field components contained within Maxwell’s equations can be
related to one another through the properties of the medium in which the fields exist:

B ¼ mH (2.23)

D ¼ eE (2.24)

J ¼ sE (2.25)

Here, m is the magnetic permeability of the medium, e is the permittivity of the
medium, i.e. the dielectric constant, and s is the specific conductivity. In general, e
and m are complex tensors that are functions of field intensity; however, for the case
of free-space antenna problems they can usually be approximated by real constants.
A vacuum, in classical electromagnetic field theory, can be taken to consist of a
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source and sink-free, simple linear homogeneous and isotropic free space region of
space in which harmonic time varying fields are measured. In such an environment
no charges are present, the current density will necessarily be zero and the resis-
tance of the medium is infinite, i.e. zero conductivity, thus r ¼ 0, J ¼ 0 and s ¼ 0.
In this case, Maxwell’s simultaneous differential equations reduce to two homo-
geneous, i.e. equated to zero, and two non-homogeneous expressions, namely

r � E ¼ 0

r � H ¼ 0
(2.26)

r� E ¼ �jwmH (2.27)

r� H ¼ jweE (2.28)

Eliminating the magnetic field intensity from these equations yields

r�r� E ¼ �jwmðr � H Þ ¼ w2meE (2.29)

Thus the most general solution of Maxwell’s equations in terms of the material
constants and the angular frequency of the electromagnetic radiation is

r�r� E � w2meE ¼ 0 (2.30)

Similarly, eliminating the electric field intensity, the magnetic field can be
expressed as

r�r� H � w2meH ¼ 0 (2.31)

These expressions are often referred to as complex vector wave equations, which
constitute the most general forms of the wave equation. These wave equations are
usually expressed in a simpler form that is particularly convenient for problems
involving rectilinear Cartesian coordinate systems. Using the vector identity

r2A ¼ rðr � AÞ � r �r� A (2.32)

and recalling that r � E ¼ 0 then

rðr � EÞ ¼ rð0Þ ¼ 0 (2.33)

Thus the complex vector wave equation can be rewritten as

r2E þ w2meE ¼ 0 (2.34)

This is known as the vector Helmholtz equation. It is important to be aware that a
solution of the homogeneous vector Helmholtz equation is not necessarily a solu-
tion of the homogeneous Maxwell’s equations. Therefore, the electric field must
fulfill the vector Helmholtz equation and in addition the divergence condition, cf.
[9]. Similarly, as r � H ¼ 0 the magnetic field can be expressed as

r2H þ w2meH ¼ 0 (2.35)
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The vector operator substitution used to obtain the Helmholtz equation from the
general wave equation implies that we need to know how to evaluate the Laplacian
of a vector in a given coordinate system. Fortunately, we do know how to perform
this in Cartesian, cylindrical and spherical coordinates, although the effort required
is greater for the cylindrical and spherical cases. In general, the one-dimensional
transverse wave equation can be expressed as

@2uðx; tÞ
@x2

� 1
c2

@2uðx; tÞ
@t2

¼ 0 (2.36)

where c is taken to denote the velocity of the wave. Assuming again that the wave
is sinusoidal in form this can be expressed as

d2uðxÞ
dx2

þ w2

c2
uðxÞ ¼ 0 (2.37)

Through a comparison with the Helmholtz equation, we find that the phase velocity
c of the electromagnetic wave can be expressed in terms of the properties of the
medium through which the wave is propagating as

c ¼ 1
ffiffiffiffiffimep ¼ f l (2.38)

where f is the frequency in hertz, l is the wavelength in meters and c is the velocity
in meters per second. Here the radical, or root, is assumed positive. For con-
venience, a positive constant k is defined as

k ¼ w
ffiffiffiffiffi

me
p

(2.39)

Clearly then the constant k, often termed the wave number or propagation constant,
is simply related to the wavelength as

k ¼ 2pf
ffiffiffiffiffi

me
p ¼ 2p

l
(2.40)

Thus the Maxwell equations can be transformed into the following vector
Helmholtz, or wave, equations:

r2E þ k2
0E ¼ 0 (2.41)

r2H þ k2
0H ¼ 0 (2.42)

The velocity of an electromagnetic wave is unambiguous when considering simple
solutions, i.e. plane waves. However, as the wave equation also admits solutions
representing standing waves, the concept of a velocity of an electromagnetic wave
can become a little ambiguous.
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When assuming a Cartesian coordinate system, the electric field may be
expressed as

Eðx; y; zÞ ¼ bexExðx; y; zÞ þ beyEyðx; y; zÞ þ bezEzðx; y; zÞ (2.43)

The Laplacian operator r2 when expressed in Cartesian coordinates can be
obtained from:

r2 ¼ r � r
¼ @

@x
bex þ @

@y
bey þ @

@y
bey

� �

� @

@x
bex þ @

@y
bey þ @

@y
bey

� �

¼ @2

@x2
þ @2

@y2
þ @2

@z2
(2.44)

Hence we may separate the field components and write the vector Helmholtz
equation as three equivalent uncoupled scalar Helmholtz equations:

@2Exðx; y; zÞ
@x2

þ @2Exðx; y; zÞ
@y2

þ @2Exðx; y; zÞ
@z2

þ k2
0Exðx; y; zÞ

� �

bex ¼ 0 (2.45)

@2Eyðx; y; zÞ
@x2

þ @2Eyðx; y; zÞ
@y2

þ @2Eyðx; y; zÞ
@z2

þ k2
0Eyðx; y; zÞ

� �

bey ¼ 0 (2.46)

@2Ezðx; y; zÞ
@x2

þ @2Ezðx; y; zÞ
@y2

þ @2Ezðx; y; zÞ
@z2

þ k2
0Ezðx; y; zÞ

� �

bez ¼ 0 (2.47)

Similar expressions also hold for Hxðx; y; zÞ, Hyðx; y; zÞ and Hzðx; y; zÞ. Therefore all
of the components of the electromagnetic field obey the scalar differential wave
(Helmholtz) equation.

@2uðx; y; zÞ
@x2

þ @2uðx; y; zÞ
@y2

þ @2uðx; y; zÞ
@z2

þ k2
0uðx; y; zÞ ¼ 0 (2.48)

This can readily be expressed in a more compact form as

r2u þ k2
0u ¼ 0 (2.49)

This differential equation can be solved by direct integration using Green’s theorem
to yield the Kirchhoff integral theorem.

However, a methodology that will be instructive and gives insight into the
nature of the electromagnetic interaction that is often successfully adopted to
evaluate the electromagnetic fields produced and subsequently radiated by moving
charges is to consider the fields E and B to be the resultants of potentials.

2.5 The electric and magnetic potentials

Since its initial formulation in the nineteenth century, it has been widely accepted
that the behaviour of the classically described forces of nature could be modelled
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using potentials which satisfy the Laplace equation [10]; thus it is possible to for-
mulate electromagnetic field theory in terms of such potentials.

2.5.1 Static potentials
The electric potential f is a scalar potential that is a function of position and time
defined by

fðr; tÞ ¼ 1
4pe0

ð

rðr 0 ; tÞ
r � r 0j j dV (2.50)

where r is the point at which the potential is being evaluated and r0 is location of the
charge density element, and the static electric field is given by

E ¼ �rf (2.51)

Alternatively the magnetic potential A is defined as being a vector given by

Aðr; tÞ ¼ m
4p

ð

J ðr 0 ; tÞ
jr � r 0 j dV (2.52)

and the static magnetic field is given by

B ¼ r� A (2.53)

Equations (2.50) and (2.52) for the potentials give the static electric and magnetic
fields; however, as explained in Section 2.2, at any point that is spatially separated
from the source of the potential, i.e. the source, a finite amount of time must pass
before the influence of the source can affect the potential.

2.5.2 Retarded potentials
Figure 2.1 repeated below as Figure 2.5 illustrates that, as well as the field, the
potential at point P at time t is determined by the position of the potential source at
position A at the earlier time of t � t where the distance s ¼ ct ¼ [r � r0(t � t)],
and B is the position of the source at time t.

B

O

A
ct

P

r

s
r′(t – t)

r′(t)

Figure 2.5 Figure showing potential at time t from point charge moving from
A to B
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Thus, for a distributed charge of density r, the potential at position r and time t
due to the charge in the vicinity of r0 depends on the value of r at the previous time
t � [r � r0]/c; therefore the potential of the entire charge is

fðr; tÞ ¼ 1
4pe0

ð

rðr 0; t � r � r 0j j=cÞ
r � r 0j j dV (2.54)

This formula for the potential that is calculated to take account of the finite speed of
light is referred to as the retarded scalar potential and a similar argument can be
followed to establish a retarded vector potential.

Aðr; tÞ ¼ m
4p

ð

J ðr 0; t � r � r 0j j=cÞ
r � r 0j j dV (2.55)

Therefore (2.51) does not apply for time-dependent systems and must be modified
to take account of the finite but constant speed of light to be

E ¼ �rf� @A

@t
(2.56)

Since the curl of any grad � 0, this satisfies Maxwell’s third equation as

r� E ¼ �r� ðrfÞ � @

@t
ðr � AÞ (2.57)

r� E ¼ � @

@t
ðr � AÞ ¼ � @B

@t
(2.58)

which is in agreement with (2.18). Additionally, (2.53) is still correct for time-
dependent systems as the div of any curl � 0

r � ðr � AÞ ¼ r � B ¼ 0 (2.59)

and from (2.16)

e�1r � D ¼ �r2f� @

@t
ðr � AÞ ¼ e�1r (2.60)

If 1/v2 � @2f/@t2 is inserted into (2.60), where v is the propagation velocity

�r2f� @

@t
ðr � AÞ þ 1

v2

@2f
@t2

¼ r
e
þ 1

v2

@2f
@t2

(2.61)

which is rearranged to give

r2f� 1
v2

@2f
@t2

¼ � r
e
� 1

v2

@2f
@t2

� @

@t
ðr � AÞ (2.62)
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This can be simplified to give

r2f� 1
v2

@2f
@t2

¼ � r
e
� @F

@t
(2.63)

where

F ¼ r � A þ 1
v2

@f
@t

(2.64)

By substitution into (2.19) in a similar fashion, it can be shown that

r2A � 1
v2

@2A

@t2
¼ �mJ þr � F (2.65)

Both of these equations can be simplified if we make

F ¼ r � A þ 1
v2

@f
@t

¼ 0 (2.66)

Equations (2.63) and (2.65) then become

r2f� 1
v2

@2f
@t2

¼ � r
e

(2.67)

r2A � 1
v2

@2A

@t2
¼ �mJ (2.68)

Clearly if the condition set out in (2.66), where F ¼ 0, is met then (2.67) and (2.68)
are decoupled in that (2.67) now defines f in terms of charge density without
reference to current density and (2.68) does likewise for A and current density. The
condition that F ¼ 0, referred to as the Lorentz condition, can in fact always be
satisfied due to the nature of the definitions of f and A.

If A is transformed to A0

A ! A0 ¼ A þrc (2.69)

and

f ! f0 ¼ fþ @c
@t

(2.70)

where c is a function of position and time.
Since

E 0 ¼ E þr @c
@t

� @

@t
rc ¼ E (2.71)

and

B0 ¼ B þr� ðrcÞ ¼ B (2.72)
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the use of either f or f0, or A or A0 is arbitrary as E and B will remain unchanged.
Transformations such as (2.69) and (2.70) are referred to as gauge transformations
and potentials that satisfy the Lorentz condition are said to belong to the
Lorentz gauge.

The retarded potentials (2.54) and (2.55) are solutions of the decoupled (2.67)
and (2.68) in combination with the Lorentz condition; therefore they provide a
consistent method for the solution of Maxwell’s equations. They allow the sources
r and j to be the inputs that can be used to calculate f and A, which in turn allows
the calculation of E and B. This may appear to be a long and convoluted metho-
dology for the calculation of fields from their charge and current density sources,
but it is usually a much easier process than attempting to evaluate E and B directly
from Maxwell’s equations. As an example, the full derivation of the Larmor
equation, (2.15) in the text, is included in Box 2.2 for those with an interest in
examining the nature and extent of the stages of the complete solution to the power
emitted by a moving charge.

Box 2.2
The charge and current densities of a moving point charge are singular and
described by

rðr; tÞ ¼ q@ r � rpðtÞ
	 


(B2.1)

J ðr; tÞ ¼ qvðtÞ@	r � rpðtÞ



(B2.2)

where q is the charge, rp(t) is the instantaneous location of the charge and
v(t) ¼ drp(t)/dt.

Using the Green’s function for any arbitrary wave equation

Gðr � r 0; t � t0Þ ¼ 1
4p r � r 0j j @ t � t0 � r � r 0

c

� �

(B2.3)

and (2.67) and (2.68) from the main text shown below as (B2.4) and (B2.5):

r2f� 1
v2

@2f
@t2

¼ � r
e

(B2.4)

and

r2A � 1
v2

@2A

@t2
¼ �mJ (B2.5)

solutions of the form

fðr; tÞ ¼ q

4pe0

ð

dV 0
ð

dt0
1

r � r0j j @
	

r0 � rpðt0Þ



@ f ðt0Þ½ � (B2.6)
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and

Aðr; tÞ ¼ moq

4pe0

ð

dV 0
ð

dt0
vðt0Þ

r � r 0j j @
	

r 0 � rp t0ð Þ
@ f ðt0Þ½ � (B2.7)

can be advanced where

f ðt0Þ ¼ t0 � t þ r � r0

c
(B2.8)

Carrying out the volume integrals gives

fðr; tÞ ¼ q

4pe0

ð

1

r � rp
0

�

�

�

�

�

�

@ f ðt0Þ½ �dt0 (B2.9)

and

Aðr; tÞ ¼ moq

4pe0

ð

vðt0Þ
r � rp

0
�

�

�

�

�

�

@ f ðt0Þ½ �dt0 (B2.10)

where more explicitly for this case

f ðt0Þ ¼ t0 � t þ r � rpðtÞ
c

(B2.11)

As for any such integrals the delta function can be simplified as:
ð

gðt0Þ@ f ðt0Þ½ �dt0 ¼
ð

gðt0Þ f ðt0Þ½ � 1
df ðt0Þ

dt0

�

�

�

�

�

�

df ¼ gðt0Þ
df =dt0j j
�

�

�

�

�

�

�

�

f ¼o

(B2.12)

R(t)

R(t + dt)

dn

n(t)
n(t + dt)

n(t + dt)

vdt
v4dt

Figure B2.1 The change in the unit vector n̂ caused by the velocity v
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where t0 is now understood as a solution for t0 satisfying f (t0) ¼ 0.
This is in general an implicit equation for t0, giving the time derivative of

f (t0) as

df

dt0
¼ 1 � n̂ðt0Þ � vpðt0Þ

c
¼ 1 � n̂ðt0Þ � bðt0Þ (B2.13)

where n̂ (t0) is a unit vector along the relative distance r � rp(t0), i.e.

n̂ðt0Þ ¼ r � rpðtÞ
r � rpðt0Þ
�

�

�

�

�

�

(B2.14)

and

b ¼ v

c
(B2.15)

The observing time t and the time t0 are related by

1 � n̂ðt0Þ � bðt0Þ
h i

dt0 ¼ dt or
dt

dt0
¼ 1 � n̂ðt0Þ � bðt0Þ (B2.16)

Therefore, after performing the time integration

f r; tð Þ ¼ q

4pe0
� 1
1 � n̂ t0ð Þ � b t0ð Þ �

1

r � rp t0ð Þ
�

�

�

�

�

�

¼ q

4pe0
� 1

k t0ð Þ r � rp t0ð Þ
�

�

�

�

�

�

(B2.17)

and

A r; tð Þ ¼ m0q

4p
� 1

1 � n̂ t0ð Þ � b t0ð Þ �
v t0ð Þ

r � rp t0ð Þ
�

�

�

�

�

�

¼ q

4pe0
� v t0ð Þ
k t0ð Þ r � rp t0ð Þ

�

�

�

�

�

�

(B2.18)

where this gives

k t0ð Þ ¼ 1 � n̂ t0ð Þ � b t0ð Þ (B2.19)

These are the Liénard–Wiechert potentials as formulated originally in 1898*

using these the field can be calculated from (2.56) in the main text, shown
below as (B2.20) explicitly for r and t

E r; tð Þ ¼ �rf� @A

@t
(B2.20)
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Making use of the result from integration by parts that
ð

g t0ð Þ d

df
@ f t0ð Þ½ �dt0 ¼

ð

g t0ð Þ d

df =dt0
d

dt0
f t0ð Þ½ �dt0 ¼� 1

df =dt0
d

dt0
g t0ð Þ

df =dt0

� �� �

f t0ð Þ¼0

¼� i

k t0ð Þ
d

dt0
g t0ð Þ
k t0ð Þ
� �� �

f t 0ð Þ¼0

(B2.21)

then

rf ¼ q

4pe0

ð

r 1

r � rp t0ð Þ @ f t0ð Þ½ �
 !

dt0 (B2.22)

If R t0ð Þ ¼ r � rp t0ð Þ
�

�

�

�

�

� and using the definition of n̂ this can be written as

rf ¼ q

4pe0

ð

n̂
@

@R

1
R
@ f t0ð Þ½ �

� �

dt0 (B2.23)

giving

rf ¼ � q

4pe0

ð

n̂

R2
@ f t0ð Þ½ � � n̂

cR

d

df
@ f t0ð Þ½ �

� �

dt0 (B2.24)

which when integrated gives

rf ¼ � q

4pe0

n̂

kR2
þ 1

ck

d

dt0
n̂

kR

� �� �

(B2.25)

A similar process can be followed for A giving

@A

@t
¼ q

4pe0

1
ck

d

dt0
b
kR

� �

(B2.26)

Thus the electric field E is

E r; tð Þ ¼ q

4pe0

n̂

kR2
� 1

ck

d

dt0
n̂

kR

� �� �

� q

4pe0

1
ck

d

dt0
b
kR

� �� �

(B2.27)

which simplifies to

E r; tð Þ ¼ q

4pe0

n̂

kR2
þ 1

ck

d

dt0
n̂ � b

kR

� �� �

(B2.28)

At this point it is necessary to take into account the vector nature of this
equation and the nature of the variation in the field that produces an energy
flux, i.e. power, with respect to the position of the accelerated charge.
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The unit vector n̂ points along the distance vector R ¼ r � rp t0ð Þ, thus it
can only change its direction through a velocity component that is at a normal
to R, as can be seen in Figure B2.1. Thus

dn̂ ¼ � v?
R

dt0;
dn̂

dt0
¼ � v?

R
(B2.29)

Also since k t0ð Þ ¼ 1 � n̂ t0ð Þ � b t0ð Þ
d

dt0
1

kR

� �

¼ � 1

kRð Þ2

d

dt0
1 � n̂ � b
� 

R
h i

¼ � 1
kR2

v? � b � n̂ � _b
� 

R � c 1 � n̂ � b
� 

n̂ � b
h i

(B2.30)

giving

d

dt0
1

kR

� �

¼ � c

kRð Þ2 b2 � n̂ � b � 1
c

R n̂ � _b
� 

� �

(B2.31)

If we substitute the results of (B2.29) and (B2.31) into (B2.28), this gives

E r; tð Þ ¼ q

4pe0

n̂ � b

kRð Þ2 � n̂ � b

k kRð Þ2 b2 � n̂ � b � 1
c

R n̂ � _b
� 

� �

�
_b

ck2R

" #

(B2.32)

as before, assuming that this is a solution for t0 when

f t0ð Þ ¼ t0 � t þ r � rp tð Þ
c

¼ 0 (B2.33)

This simplifies to

E r; tð Þ ¼ q

4pe0

1 � b2

k3R2ð Þ n̂ � b
� 

þ 1
k3R

n̂ � n̂ � b
� 

� _b
h i

� �

(B2.34)

This equation has two distinct terms, one which is proportional to 1/R2 and
one which is proportional to 1/R. The first term does not include the accel-
eration term _b.

ECoulomb ¼ q

4pe0

1 � b2

k3R2ð Þ n̂ � b
� 

� �

f t0ð Þ¼0

(B2.35)
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It relates to the radial field and therefore has no impact on the power radiated
by the source. The second term

Erad ¼ q

4pe0

1
ck3R

n̂ � n̂ � b
� 

� _b
h i

� �

f t0ð Þ¼0

(B2.36)

includes the _b term and is proportional to 1/R and is the radiation field due to
the charge being accelerated. If the acceleration is tangential to the velocity
where _b � b ¼ 0, as per the example used in Section 2.3 of this chapter, this
term reduces to

Erad ¼ q

4pe0

n̂ � n̂ � _b
� 

ck3R

2

4

3

5

f t0ð Þ¼0

(B2.37)

The angular distribution of this radiation at the observing time t will be

dP tð Þ
dW

¼ ce0 ERad

�

�

�

�

2
R2 (B2.38)

thus

dP tð Þ
dW

¼ ce0
q2

4pe0ð Þ2

n̂ � n̂ � _b
� 

ck3R

2

4

3

5

2

R2

¼ ce0q2

4pe0ð Þ2c2

n̂ � n̂ � _b
� 

k3

2

4

3

5

2

R2

R2
(B2.39)

This can be further simplified to

dP tð Þ
dW

¼ 1
4pe0

q2

4pc

n̂ � n̂ � _b
� 

k3

2

4

3

5

2

f t0ð Þ¼0

(B2.40)

If we denote the angle between _b and n̂ as q, remembering that n̂ is a unit
vector of magnitude one, then

n̂ � n̂ � _b
� h i2

¼ _b
2

sin2 q (B2.41)
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Additionally from (B2.19) and the fact that n̂ � b ¼ b cos q gives

dP tð Þ
dW

¼ 1
4pe0

q2

4pc

_b
2

sin2 q
ð1 � b cosqÞ6

" #

f t0ð Þ¼0

(B2.42)

This is the rate of energy at time t which may not be the same as at the
retarded time t0, to alter this formulation to take this into account. In order to
calculate the rate of energy at P(t0), it is necessary to calculate what is termed
the differential energy, i.e. dx/dW, the energy radiated during the time
between t0 and t0 þ dt0, given that by definition dx ¼ P(t0)dt0. As per
Figure 2.3 in the main text the radiation is sandwiched between two con-
centric spherical surfaces with a volume

dV ¼ R2cdt0ð1 � b cos qÞ (B2.43)

Therefore the differential energy is

dx
dW

¼ 1
2
e0 Erad

�

�

�

�

2
R2cdt0 1 � b cos qð Þ (B2.44)

and also

dP t0ð Þ
dW

¼ 1
4pe0

q

4pc

_b
2

sin2 q
ð1 � b cosqÞ6 � 1 � b cos qð Þ
" #

f t0ð Þ¼0

¼ 1
4pe0

q

4pc

_b
2

sin2 q
1 � b cosqð Þ5

" #

f t0ð Þ¼0

(B2.45)

As already stated in Section 2.3 (where Dv � c so that the field lines still
essentially describe a spherical field), in the non-relativistic limit where
bj j � 1 the radiation will be directed predominantly in a direction perpen-

dicular to the acceleration, thus q ¼ p/2, giving the total radiation power as

P � 1
4pe0

q2 _b
2

4pc

ð

sin2 qdW ¼ 1
4pe0

2q2 _b
2

3c
; when bj j � 1 (B2.46)

From the definition of b in (B2.15) with a representing the acceleration not
scaled in terms of c, this can be rewritten as

P ¼ q2a2

6pe0c3
(B2.47)

This is the same as (2.15) in the main text (the ‘Larmor equation’).
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Note: Although this is a much more complicated methodology to arrive at the same result as
shown in Section 2.3, a number of assumptions and constraints used in that derivation are not
mandatory. Thus this full derivation can be modified to predict the power when v is not very
much smaller than c, the field lines do not describe a spherical field and thus when the primary
direction of radiation is not at a normal to the acceleration and is therefore without these specific
assumptions a universally valid description of the power radiated by accelerated charges.

* Landua L.D., Lifshitz E.M. The Classical Theory of Fields (in Russian), M. Hamermeash
(trans.), 4th rev. edn. Oxford: Pergamon Press; 1973.

Given that a knowledge of the sources r and j can be used as inputs for the
calculation of f and A, which in turn allows the further calculation of E and B, the
fields induced by the sources, it would appear that in attempting to characterise
antennas, measurements of charge and current density (in the form of currents and
voltages) would be the starting point for any attempt to quantify their performance.

2.6 The inapplicability of source excitation as a
measurement methodology

The application of a methodology based on a knowledge of r and j that provides an
algorithm for the calculation of the free-space electromagnetic field propagation
away from or to an antenna structure in terms of currents and charge distributions
excited on a geometrical structure is widely used in antenna design. As basic circuit
theory and methods designed to cope with guided wave paths in systems are based
on the concepts of current and voltage, the interface of these techniques with
antenna design methods is extremely fortuitous.

However, in terms of metrology the concept of excitation currents on a struc-
ture have considerable limitations. The direct probing of the surface of any
radiating structure to determine charge and current distributions, as a result of the
constraints associated with the transfer of signal along a conducting path from any
single or array of sensors, is an extremely intrusive measurement methodology.
Although to some extent all measurement procedures are intrusive, in general the
end result of such an RF surface probing procedure is a very considerable alteration
in the existing state of the system in the course of the measurement procedure.

This alteration can in theory be compensated for via the use of theoretical
models. However, if the measurement procedure results are essentially the results
of a modelling procedure that is no more accurate than the original modelling
procedure included as part of the design process, then measurements cannot be used
to confirm the accuracy or effectiveness of any design.

The accuracy of any compensating mathematical processing can also be
brought into question due to its possible inconsistency with theory. In that, as a
result of space contraction, and therefore the non-invariance of volume under the
Lorentz transformation, current and charge density are not separately relativisti-
cally invariant quantities. Therefore any extrapolation from raw measurement data
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from only one of these two processed measured data may be done without a firm
basis in the physical processes involved. However, an alternative strategy can be
used to determine the radiated fields from an electromagnetic source that can be
more amenable to the constraints of metrology.

2.7 Field equivalence principle

The field equivalence principle is the process of replacing the actual sources that
create an electromagnetic field over some closed surface S, with equivalent sources
located on that same surface. It is in fact a theoretical statement of Huygen’s
principle that any wave front can be viewed as being made up of secondary sources
of spherical waves. Each point on a primary wave front can be considered to be a
new source of a secondary spherical wave and that a secondary wave front can be
constructed as the envelope of these secondary spherical waves, at the same fre-
quency as illustrated in Figure 2.6.

Figure 2.7 defines the field equivalence principle, where a set of electric and
magnetic current sources create the radiated electric, E, and magnetic, H, fields
over an arbitrary closed surface S. The wave fronts that create the radiated field E1,
H1 at point P in the left-hand diagram can be alternatively created by equivalent
electric and magnetic current sources Js and Jm on the surface S of the right-hand
diagram, so creating the same radiated field at point P and indeed everywhere

Wave front at time t

Wave front at time t + Δt

Figure 2.6 Huygen’s principle

Sources

Surface S

No sources

J
E, H

P(E1, H1)

E, H

P(E1, H1)

J

s

m

Figure 2.7 The field equivalence principle
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outside the enclosing surface S which now contains no sources. In order that the
total field throughout the whole of the volume space (both internal and external to
S) is a valid solution to Maxwell’s equations, the equivalent sources must conform
to the proper boundary conditions at S between the internal and external E and H
field at the surface S as well as the radiation condition at infinity. By postulating a
null field inside S, the equivalent surface currents are given by (2.73) and (2.74):

J s ¼ â n � H ðsÞ (2.73)

J m ¼ �â n � EðsÞ (2.74)

where the unit vector an represents the surface normal and E(s) and H(s) represent
the tangential electric and magnetic fields at the surface S.

A particularly valuable modification to the field equivalence comes about
when we note that the zero field within S cannot be disturbed by changing the
material properties within S, e.g. that of a perfect electric conductor. In this case
at the moment the electric conductor is introduced the electric current on the
surface S, Js, is short-circuited. This leaves just the magnetic current, Jm, over
the surface S and it radiates in the presence of the perfect electric conductor to
give the correct fields E1 and H1 at point P in Figure 2.7. Similarly the dual of this
process can be enacted such that the material properties are replaced by a perfect
magnetic conductor, so short-circuiting the magnetic current, Jm, thus leading to
a purely electric current Js radiating in the presence of a perfect magnetic
conductor.

The utility of the field equivalence approach comes when we consider an
infinite surface; this can be a closed surface S or, as will be described in the text,
an infinity flat plane, since here the problems reduce to determining how a
magnetic surface current, Jm, radiates in the presence of a continuous conductor
of infinite extent. From image theory this problem is reduced to that shown in
Figure 2.8.

Infinite electric conductor Images

Jm Jm Jm 2Jm

= 0JsJs Js Js

Figure 2.8 Application of image theory to the radiating magnetic current in
presence of a perfect infinite electric conductor
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Figure 2.8, where in (a) the presence of the electric conductor short-circuits Js,
and the removal of the infinite electric conductor by image theory (b) leads to the
doubled magnetic surface current in an unbounded medium (c), from which the
radiating fields can be determined to the right of the conducting plane. By duality
the use of a perfect magnetic conductor reduces the problem to that of a doubled
electric surface current radiating in an unbounded medium.

As will be expanded upon in later chapters, the above process of equivalent
fields leads to a convenient way forward for a whole class of antenna measurement
techniques in that we can measure the electric field on a surface close to the
antenna’s physical structure. From this process we can derive the generating
magnetic current on this scanned plane, which can then be used to determine the
far-field characteristics of the antenna.

2.8 Characterising vector electromagnetic fields

The choice of spherical coordinates for the far-field is near universal, the choice of
coordinate system to represent the antenna in order to calculate its radiation pattern
very much depends on the structure of the antenna. Considerable mathematical
simplifications in calculating the radiation pattern of a given antenna can be
achieved by choice of a matching coordinating system. For example, the use of
cylindrical coordinates to calculate the radiation of a circular open-ended wave-
guide offers considerable simplification over the use of a rectangular aperture
coordinate frame. In this section we will illustrate the process of determining the
radiated field by considering the z-directed Hertzian dipole and this will also serve
to define the concept of the plane wave.

The fundamental solution for the wave equation in vector potential A (2.62) is
the retarded vector potential of (2.49) at a single source point with current Js

Aðr, tÞ ¼ m
4p

J sðr 0, t � r � r 0j j=cÞ
r � r 0j j (2.75)

This is clearly a function of both source point and field point and defines the ‘action
at a distance’ property of the electromagnetic wave. Equation (2.67) is often called
the Green’s function because by definition a Green’s function is the solution to a
differential equation for a unit source. We will now consider the radiation from this
infinitesimal small (with respect to the radiation wavelength) current element, often
termed the Hertzian dipole (Figure 2.9). For this dipole we have a constant current

J sðr 0; t � r � r 0j j=cÞ ¼ Jobaze
�jkr (2.76)

and so the vector potential can be written as

A ¼ baz
m Jol

4pr
e�jkr (2.77)
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Since the far-field is to be expressed in spherical coordinates, the vector identity
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sin q cosf sin q sinf cos q
cos q cosf cos q sinf �sin q
�sinf cosf 0
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5
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2

4

3

5 (2.78)

yields

A ¼ bar cos q� baq sin qð Þ mJol

4pr
e�jkr ¼ Arðq; rÞ þ Aqðq; rÞ (2.79)

As js is located in the z direction, it is independent of the far-field angle f and so
d/df ¼ 0, thus

H ¼ r� A (2.80)

gives the magnetic field at the observation point r. Expressing the cross-product in
spherical coordinates with d/df ¼ 0 gives

H ¼ 1
r

@ðrAq q; rð ÞÞ
@r

� @Ar q; rð Þ
@q

� �

baf (2.81)

yielding only an Hf component in the far-field.
For the electric field we have

E ¼ 1
jwe

r� Hð Þ (2.82)

x

z

r

Ar

y

q

f

→

Af

Aq

Figure 2.9 Coordinate system for infinitesimal dipole over its length l
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with Hr ¼ Hq ¼ d/df ¼ 0, which yields

Er ¼ 1
jwe

1
r sin q

@ðHf sin qÞ
@q

� �

(2.83)

Eq ¼ 1
jwe

1
r

@ðrHfÞ
@r

� �

(2.84)

Evaluating the three non-zero field components gives

Hf ¼ jkJolsin q
4p

1
r
þ 1

jkr2

� �

e�jkr (2.85)

Er ¼ ZoJol

2p
1
r2

þ 1
Jkr3

� �

cos qe�jkr (2.86)

Eq ¼ jkZoJolsin q
4p

1
r
þ 1

jkr2
� 1

k2r3

� �

e�jkr (2.87)

Near to the dipole 1/r2 and 1/r3 terms dominate, whereas in the far-field only 1/r
terms are significant. Thus the far-fields are given by

Hf ¼ jkJolsin q
4pr

e�jkr (2.88)

Eq ¼ jkZoJolsin q
4pr

e�jkr (2.89)

and we note that Eq/Hf ¼ Zo is the free-space wave impedance. Thus the infini-
tesimal dipole radiates a spherical wave in the radial direction r.

It should be noted that computing the average power flow (Poynting vector) in
the case of the near-field (1/r2 and 1/r3 terms only) results in zero power flow
indicating the field is reactive. For the far-field case real power flow is achieved.

2.9 Reflection and scattering of electromagnetic fields
by extended objects

The interaction of electromagnetic fields with extended objects is at its most fun-
damental related to the interaction of individual charged particles with the field. In
extended objects other parameters are in play that constrain the motion, displace-
ment and localisation of these charged particles and thus alter the induced currents
and voltages across these extended bodies. Such that when the electromagnetic
field impinges on an extended material object the material object can be char-
acterised by values of e, m and s which relate the atomic and molecular properties
of the material from which the object is composed to the overall macroscopic
response of the object to the impinging field.

The variations in the e, m and s values for the object from those of the free
space in which the incident radiation is travelling can be thought of as the cause of
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the interactions which will alter the propagating field. When considered in terms of
classical EM theory, these variations are most effectively described by the
Stratton–Chu equations for scattered fields [3].

The overall reaction of these extended bodies to electromagnetic irradiation
can take the form of absorption, transmission, refraction, diffraction and reflection,
dependent on the physical properties of the objects. Almost all (and all that will be
of concern in this text) of these different reactions to irradiation can be described in
detail using classical electromagnetic field theory.

Modern antenna test ranges can be utilised to investigate many of these
properties that are of interest, as will be examined in later chapters particularly
those related to the scattering of EM waves and the associated scattering or radar
cross-section that these objects project to incident EM radiation.

However, the interaction with these fields is not only a function of the material
properties of the objects, engineering solutions can be provided that turn objects,
e.g. metallic structures that should totally reflect incident radiation, into absorbers
of radiation, i.e. Rx antennas and via reciprocity also Tx antennas. In order to
understand how it is that extended objects like antennas can be used to induce
currents and voltages in circuits as a result of themselves being irradiated when
used in Rx and how they can be excited to induce fields in their vicinity when
excited via a circuit, it is necessary to examine the concept of antenna port or
terminal.

2.10 Antenna port definition

In our discussion of antenna principles we invariably have to refer to electric (E)
and magnetic (H) field intensities, and even though we can at times replace these
for convenience with equivalence currents conceptually these two parameters
remain fundamental to the radiation discussion. From them we can determine
antenna polarisation and calculate all radiation parameters of interest. However,
despite the very fundamental nature of these two parameters, as already described,
we cannot measure these directly and we have to rely on an indirect method of
measurement. To illustrate, consider Figure 2.10, where a transmitting antenna (a)
is depicted as the AUT with a receiving antenna (b) acting as field sensor. In

(a) (b)

Figure 2.10 Antenna under test (AUT) depicted as (a) and probe antenna
depicted as (b)
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practice we measure the complex voltage at the port of antenna (b) and relate that to
the electric field intensity radiated by antenna (a).

In order to measure this complex voltage at the port of antenna (b), we con-
ceptually perform a line integral of the electric field intensity due to antenna (a)
from conductor 1 to conductor 2 along a path of integration designated by G in
Figure 2.11.

V ¼
ð
1

2

Ea � dl

2

4

3

5 (2.90)

In order to obtain a unique voltage measurement, the integration must be path inde-
pendent. The requirement for the voltage measurement to be path independent or
unique is what defines a proper set of terminals. If we consider Figure 2.11 as a more
general case, where we enclose our AUT within a closed surface and we have two
conductors protruding from this surface that we wish to define as the AUT terminals,
then a voltage measurement performed across these two conductors must satisfy

ð

Ea � dl

� �

G1

¼ �
ð

Ea � dl

� �

G2

(2.91)

or
þ

E � dl ¼ �@

@t

ð

Sc

B � ds ¼ 0 (2.92)

Path of current
integration - c

Path of voltage
integration

Closed surface

Radiator

Γ2

Γ1

Figure 2.11 A generic AUT contained within a closed surface with two
conductors protruding from this surface that we define as the
AUT terminals
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where B is the magnetic flux density and this condition requires that there is no
component of B normal to the surface enclosed by the circuit integral. This con-
dition holds when the field in the terminal region is conservative or as a specific
example transverse electromagnetic (TEM).

Once a proper set of terminals have been defined, a complex current mea-
surement can be performed as a closed circuit integral of the magnetic field
intensity as

I ¼
þ

c

H � dl (2.93)

Using the complex voltage and current measured in this fashion, the complex
terminal impedance is readily calculated. A very practical example of a TEM field
condition is a coaxial line and it is therefore common to see coaxial ports on
antennas and these can be used as well-defined terminals as a result.

The question does arise, what to do with antennas where one is faced with a
rectangular or circular waveguide port? In these instances it is common practice to
attach a coax to waveguide port to the waveguide port to establish a convenient
TEM terminal. Note: In cases where the frequency band of operation precludes the
use of a coax to waveguide adapter, some solid-state frequency down-conversion
process invariably converts from the waveguide modes (a non-conservative field
environment) to a TEM or quasi-TEM environment where a unique voltage mea-
surement is feasible.

Thus an extended material object, an antenna, when integrated into a circuit via
its terminals, can produce a current in the circuit as a result of its terminal voltage.
This is the basic transducer action that an Rx antenna performs when it transforms a
free-space electromagnetic field into a current generating EMF in a circuit; thus by
reciprocity a Tx antenna can develop an electromagnetic field in free space as a
result of an applied EMF across its terminals.

2.11 Summary

This chapter has detailed a theory that describes the interaction of antennas through
free space as a process of the propagation of electromagnetic waves; these waves
being directly related to the acceleration of charged particles. A description of these
waves was then provided based on Maxwell’s equations and the derivation of the
scalar Helmholtz equations. Then a description of the basis of the fields that pro-
duce these waves as being related to retarded potentials was expounded.

The basic physical principles of charges, forces and fields, along with the
symmetries inherent in energy and momentum conservation, allow the develop-
ment of a theory of classical electromagnetic fields that can be modelled concisely
by Maxwell’s equations. Using these equations and simplifications and assump-
tions based on them, it is possible essentially to describe all EM interactions that
are of interest to antenna engineers. This includes the fundamental action of
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antennas as transducers between free-space fields and the guided wave paths in
circuits.

Thus this theory describes the unobserved mechanism behind the observation
that electronic systems can be made to induce currents and voltages in other remote
systems that have no connection other than radiative fields in free space if
suitable antennas are included in the remote Tx and Rx systems/circuits. As such, it
highlights the importance of antennas as circuit elements and given the limitations
of direct voltage and current-based measurements with respect to antenna excita-
tions it points to the conclusion that the field equivalence principle should be used
when attempting to characterise the current and voltage distributions on the sur-
faces of antennas.

Given that for engineering purposes antennas need to be characterised and
free-space measurements of fields appear to be the most viable way forward in this,
the next chapter will begin to describe the variety and type of measurement setups
that have traditionally been used to identify and quantify the properties of various
antennas via these free-space measurements.
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Chapter 3

Antenna measurements

3.1 Antenna measurements and alignment

From Chapter 1, it is clear that the purpose of all free space antenna measurements
is to establish the extent to which one electronic system/sub-system will interact
with another system. By characterising antennas in a known circuit configuration,
the extent to which they enhance coupling in other situations can be predicted. This
is the fundamental procedure adopted in antenna test ranges, where the inclusion of
antennas in a known, carefully controlled configuration of two coupled circuits/
systems, represented by an antenna under test (AUT) and a range antenna, allows
this measurement process to be performed.

In Chapter 1, it is also made clear that the extent to which antennas couple is
directly related to their physical orientation and displacement relative to each other;
thus, the main parameters of antenna performance that can be used to characterise
the extent of this coupling between an AUT and a range antenna are

● Gain
● Free space radiation pattern
● Polarisation

Figure 1.8 is included again as Figure 3.1 to help illustrate how these para-
meters are characterised in modern antenna test ranges, where the antenna in the
figure is the AUT and the z direction points directly at the range antenna.

Gain: This (specifically main beam gain when the antenna has a single main
lobe) characterises the magnitude of the coupling of the AUT to the range antenna in
the configuration shown in Figure 3.1, where the main beam of the range antenna is
tangential to the z-axis but aligned with a displacement in the –z direction, the
boresight vector aligned at a normal to the AUT aperture and aligned with the z-axis.

Free space radiation pattern: This characterises how the magnitude (and
phase) of the coupling between the AUT and the range antenna varies as a function
of the angular displacement of the AUT from the z direction in Figure 3.1. In this
figure, this would involve the AUT being rotated to different pointing angles
defined by q and f and would mean that the vector describing the boresight
direction of the AUT is moved to a range of different angular orientations.

Polarisation: This characterises how the magnitude of the coupling varies at
any angular orientation, defined by q and f, as the AUT is itself rotated around the



vector that defines its boresight at that orientation. This characterisation can also be
acquired by rotating the range antenna.

With these measurements undertaken, it will be possible to produce a
calibrated measurement – in terms of gain and free space radiation pattern, the
important parameters of any AUT – for any specifically defined polarisation basis.
See Chapter 4 for a more detailed description of the various polarisation bases that
can be adopted. From these measurement definitions, it is also clear that in order
to fully characterise these interactions, via a measurement process, the two
antennas will have to be realigned and rotated relative to each other to make the
full range of measurements possible. Or, some form of measurement process that
predicts their response if they were to be moved relative to each other needs to be
employed.

3.2 Rotation methodologies

In order to align and move antennas in a test range to correspond to the different
orientations required for the measurements to be performed, the use of antenna
positioners will be required. Figure 3.2 illustrates a small, slotted waveguide array
mounted on a seven-axis positioner that allows the movement and alignment of the
AUT into a range of measurement configurations.

Using these axes, the AUT can be manoeuvred into a number of historically
used configurations, with convenient, associated coordinate systems in which
antenna measurements have usually been performed.

In Figure 3.2, the small, slotted waveguide antenna is mounted directly onto a
polariser axis, above an elevation axis, above the translation axis, above an azimuth
axis, above a second elevation axis, above a second azimuth axis above a final
translational axis. Clearly, the inclusion of so many axes on the antenna positioner
allows the movement of the AUT in a variety of distinct ways. Rotation using the
polariser to vary the f-angle and an azimuth axis to vary q-angle measurements in a
(f, q) coordinate system can be performed.

y

z x

ϕ

θ

Figure 3.1 AUT coordinate system
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Figure 3.3 illustrates how measurements in other commonly used coordinate
systems can be accomplished with a variety of axes included in an antenna posi-
tioner system.

When considering the range antenna to be the Tx antenna in the range, the
measurements that can be made in the various geometries shown in the
figure depend on the ability of the range antenna to produce a plane wave that is
incident on the AUT. This is because in most practical circumstances where the
AUT will be used, it can be assumed that the Tx and Rx antennas will be far

y

z x

ΕΕ

ΑΑ z aa

ee x

y

Figure 3.3 Azimuth over elevation and elevation over azimuth positioning for
AUT Tx and Rx measurements

Figure 3.2 Seven-axis positioner (Courtesy of Leonardo MW)
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apart in each other’s far-field, or other more cost-effective methods of estab-
lishing the required levels of coupling would be adopted, e.g. fixed solid
transmission line.

Although there are a great many ways in which the plane wave illumina-
tion of the AUT can be achieved in practice, their mechanisms can be divided
into two categories, direct and indirect collimation. Those that rely upon direct
collimation include free space ranges, reflection ranges, i.e. compact antenna
test ranges (CATR) and refraction, i.e. dielectric lens ranges. Indirect techni-
ques include all forms of near-field ranges, i.e. planar, cylindrical and sphe-
rical. All types of ranges that will be further discussed in detail later in
the text.

3.3 Far-field ranges

The most basic direct method to generate the plane wave is from a portion of a
spherical wavefront. This can be achieved by having a source antenna at a long
distance from the AUT and so the AUT aperture sees a nearly plane wave when R is
large, as per Figure 3.4. Please see Chapter 4 below for a detailed discussion of
these coordinate systems.

To ensure near-plane wave conditions at the AUT aperture, the phase taper across
the AUT aperture is usually controlled to be a maximum variation of 22.5� (the

Wave fronts

Source antenna

Local approximation 
of plane wave

Range length

Figure 3.4 Plane-wave created from far-field source
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acceptable allowable phase variation can be selected to give the required accuracy in
measured gain and AUT pattern). Referring to Figure 3.5, this can be expressed as

DF ¼ 2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Taking the first term of the Taylor series yields

DF � pD2

4lR
(3.3)

If DF < p=8 or 22.5�, then we get the approximate far-field distance

R � 2D2

l
(3.4)

This length of R is approximately equivalent to the displacement where only
one unique path exists between the AUT and the range antenna, as per Chapter 1,
wherein the limit if only one path existed then DF ¼ zero. Note: this argument has
been constructed in terms of the AUT being in Rx but considerations of reciprocity
show that it is equally valid in Tx.

D

ΔФ

Range length = R

Figure 3.5 Far-field phase taper geometry
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Clearly from (3.4), to allow accurate measurements to be undertaken the dis-
tance associated with the displacement between the AUT and the range antenna
will need to be considerable, e.g. for a 33 dBi circular antenna at 10 GHz the AUT
and range antenna may need to be displaced from each other by over 12 m, for
higher gain antennas, this distance can be many tens or hundreds of metres. This
implies that antenna far-field test ranges either need to be outdoors or established in
very large building structures.

If constructed outdoors, antenna ranges are subject to all the vagaries of
weather interference, vegetation, wildlife and a host of other factors that can
degrade the measurements; therefore, almost exclusively modern antenna test
ranges are indoor ranges. Given that antennas are designed to be used in a free
space environment, it therefore falls upon the range designer to attempt to replicate
these free-space conditions in an enclosed environment.

3.4 Free-space conditions

The first consideration related to producing a pseudo-external environment relates to
the susceptibility of the test range to external interference. To this end, test ranges are
usually constructed within fully screened enclosures such as shown in Figure 3.6.

(a) (b)

(c) (d)

Figure 3.6 (a) Fully screened chamber, (b) details of door, (c) details of corner
construction and cable entry and (d) door seal detail
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Such enclosures/chambers provide a high level of magnetic, electric and
microwave shielding and this allows test facilities to be placed in environments
where there may be high levels of residual radio frequency (RF) energy.
Additionally, as well as mitigating the effects of interference impinging on any test
procedures taking place in the range, the shielding also stops the egress of any
signals from within the test range into the surrounding environment.

Shielding removes any interference that the range may produce in the sur-
rounding environment; this may be an important consideration from the standpoint
of health and safety as it allows high power levels to be used in the test procedures.
It also allows the security aspects of any waveform or signal pattern that is used in
the test procedures to be kept confidential.

Typical shielding values when tested to IEEE299 are

● �100 dB @ 1–500 MHz in the electric field
● �100 dB @ 1–18 GHz in microwave (far-field)

Given that it will be necessary to enclose the test range in a screened chamber,
the proximity of these conducting walls of the chamber will mean that in any test
procedure where one of the antennas in the range is in Tx and the other in Rx, the
direct path between the two antennas will not be the only path that a signal could
follow to couple the response of the range antenna and AUT. The presence of the
conducting walls will, via reflections from the walls, provide a number of other
paths that a signal from Tx to Rx can follow. Note: this signal that travels from Tx
to Rx not via the direct path between the two antennas is usually referred to as
multipath.

To remove the influence of multipath and further enhance the ability of indoor
ranges to mirror the external environment, radar adsorbent material (RAM) needs
to be included in the design of the range. This means that the chamber must be
designed to be anechoic to electromagnetic waves over the bandwidth that it is to
be used for measurements.

In practice, the anechoic environment is not perfect, as typical high-quality,
wide-band RAM with a thickness of four wavelengths has a normal incidence
mono-static reflection coefficient of –40 dB. The bi-static reflection coefficient of
most RAM will increase as the angle of incidence becomes larger whilst the mono-
static backscatter is always present.

A measure of RAM performance is its reflectivity, which is the ratio of the
received signal with absorber to that of the signal received when the absorber is
replaced by a metal plate, see Figure 3.7.

Typical values of reflectivity range from �20 to �50 dB for normal incidence.
This depends on the pyramid size relative to the operational wavelength. The
degradation of reflectivity with angle means that careful consideration should be
made about the size and positioning of AUTs in ranges during measurements to
ensure that multipath is not introduced into the measurement results.

Thus, in practice, the anechoic environment is not perfect and consideration
must be given to the reflection characteristics of the pyramidal RAM material used
in its specification. Essentially, the electrical thickness of the material determines
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how much RF energy is absorbed, with the usual approximation used to determine
this at normal to boresight being

R0ðtÞ ¼ �13:374 lnðtÞ � 26:515 (3.5)

where t is the thickness of the RAM material in wavelengths (see Ref. [1]).
This equation is generally considered to be valid over the range where

0:25l � t � 20l.
However, as will be further described, in most chamber designs at least part of

the included RAM material will not be at a normal to the incident RF radiation. To
address the variation in the reflectivity of RAM materials as a function of angle, a
series of polynomial expressions have been developed that attempt to predict the
response of RAM material at a range of different angles. The generic form of the
polynomial is

Rq t; qð Þ ¼ R0 tð Þ þ A1 tð Þqþ A2 tð Þq2 þ A3 tð Þq3 þ A4 tð Þq4 þ A5 tð Þq5

where the coefficients in the polynomial are dived into two sections that related to
the thickness of the RAM material [2].

For 0:25l � t � 2l;

A1 tð Þ ¼ 1:5252 � 4:8249t þ 6:9479t2 � 3:8332t3 þ 0:7333t4

A2 tð Þ ¼ �0:0754 þ 0:24782t � 0:3984t2 þ 0:2285t3 � 0:0442t4

A3 tð Þ ¼ 0:0016 � 0:00502t þ 0:00938t2 � 0:00577t3 þ 0:001155t4

A4 tð Þ ¼ �1:58 � 10�5 þ 4:91 � 10�5t � 1:015 � 10�4t2

þ6:58 � 10�5t3 � 1:35 � 10�5t4

A5 tð Þ ¼ 5:84 � 10�8 � 1:78 � 10�7t þ 4:02 � 10�7t2

�2:71 � 10�7t3 þ 5:7 � 10�8t4

T

θ

R

Figure 3.7 Measurement of RAM reflectivity
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and for 2l � t � 20l;

A1 tð Þ ¼ 0:1751 þ 0:149t � 0:0119t2 þ 0:00028t3

A2 tð Þ ¼ �0:0105 � 0:00824t þ 0:0007t2 � 1:61 � 10�5t3

A3 tð Þ ¼ 0:00029 þ 0:000123t � 1:13 � 10�5t2 þ 2:57 � 10�7t3

A4 tð Þ ¼ �1:69 � 10�6 � 4:77 � 10�7t þ 5:08 � 10�8t2 � 1:14 � 10�9t3

A5 tð Þ ¼ 0

Figure 3.8 illustrates the output from these polynomials for a range of RAM
thicknesses from 0.25l to 20l and angles up to 85� off-normal incidence.

There are a number of additional limitations related to the polynomial
approximation

● It is only valid out to q ¼ 85�.
● It is only valid up to t ¼ 20l, beyond 20l the reflectivity can be assumed to be

constant.
● At large values of q and t, the approximation can overestimate the reflectivity

by as much as 10 dB.

However, even given these limitations, the polynomial approximation is a
valuable tool in defining the requirements for any far-field anechoic chamber.

3.4.1 Far-field chambers
For far-field chambers, a common rule of thumb used to define the dimensions of
the chamber is that the width and height of an anechoic chamber should be three
times the diameter, D, of the minimum sphere that contains the AUT during the
test. While the test range antenna should be separated from the AUT by at least
2D2/l, where D is a specific number of wavelengths, i.e. D ¼ nl.
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Figure 3.8 Bi-static reflectivity as a function of angle for different RAM
thicknesses in l
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Figure 3.9 shows the geometry of a far-field measurement facility where W is
the width of the chamber which will equal the height of the chamber.

From Figure 3.9

2n2l
W

¼ tan qð Þ (3.6)

Solving for W/2

W

2
¼ n2cotðqÞ (3.7)

This will give the minimum required distance between the centre of the range
and the tips of the RAM material taking into account that the distance between the
edge of the minimum sphere and the tips of the pyramidal RAM must be at least 2l
at the lowest frequency of use.

Since the reflectivity of the RAM material is a function of the angle q the
different values of q will give different levels of multi-path in the chamber. The
required width of the chamber for any given level of reflectivity can be calculated
from consideration of (3.7).

If the required level of reflectivity can be acquired at an angle q, then the
overall width of the chamber can be calculated from

W ¼ ð2n2 cot qð Þ þ 2tÞl (3.8)

where q is the angle at which the required level of reflectivity is acquired and t is
the thickness of the RAM material in wavelengths.

The overall required length of the chamber can be determined via the addition
of a number of terms

● 2n2l is the distance between the range antenna and the AUT,
● nl is the minimum sphere the AUT moves through,
● 4l ¼ 2lþ 2l is the downrange separation from the tips of the RAM from the

range antenna and AUT,
● Kl is the size of the range antenna and
● 2tl is the thickness of the RAM material at both ends of the chamber.

Range antenna
W/2

(2D2)/λ = 2n2λ
D = nλ

θ

Figure 3.9 Basic geometrical requirements for far-field chambers
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Thus, the required length of the chamber, L, is given by

L ¼ ð2n2 þ n þ 4 þ 2t þ KÞl (3.9)

Therefore, from knowledge of the size of the AUT and the minimum sphere, it
will move through during the measurement procedure, along with details of the
RAM material to be used, and the level of reflectivity that is acceptable the mini-
mum width, height and length of a chamber to be used for far-field measurements
can be calculated.

3.5 Alternatives to conventional far-field ranges

3.5.1 Tapered anechoic chambers
From (3.9), it is clear that for long wavelengths the physical size of the chamber
required will be very large. As an alternative at these lower frequencies, a tapered
chamber can be used. Rather than trying to reduce the reflections from the side-
walls, as is attempted in a conventional rectangular far-field chamber, in a tapered
chamber the specular reflection from the sidewalls is used in the illumination of the
AUT. The chamber is shaped to enhance the specular reflections from the sidewalls
with the generic design based on a number of empirical rules [3]. The generic
design of such a chamber is illustrated in Figure 3.10.

● The RAM on the back wall of the chamber should have a reflectivity
suitable for the requirements of the quite zone.

● The rectangular section of the chamber should be cubic with the width (W) and
the height, H, defined by

W ¼ H ¼ QZ þ 4lþ tl (3.10)

where QZ is the size of the quiet zone, l is the wavelength and t is the number of
wavelengths in the back-wall absorber to provide the required level of attenuation
for the quiet zone.

Note: The height of the chamber is required to be the same as its width so that
reflections from the walls ceiling and floor will be approximately the same and the

Range
antenna Trimmed wedge RAM Quiet

zoneTrimmed wedge RAM

Figure 3.10 Generic tapered chamber design
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length of the tapered region should be twice the height of the rectangular section of
the chamber.

The size of the test/quiet zone within the rectangular section of the chamber is
therefore related to the height of the chamber and the requirement to separate the
AUT from the RAM material by 2l.

Thus, in practice, the requirement to replicate a free space environment merely
by placing the antennas sufficiently far apart to produce an approximately plane
wave incident on the AUT means that large chambers completely lined with RAM,
exhibiting very high levels of isolation from the external environment are required
to make far-field antenna measurements indoors.

3.5.2 The compact antenna test range
To deal with larger higher gain antennas in the enclosed volumes available in
indoor ranges, other methods of producing a plane wave have to be adopted. One
of the most successful of these is the concept of the CATR. In a compact antenna
test range, as originally patented by Johnson at Georgia Tech in (1967) [4], the
test antenna is placed within an anechoic chamber on a positioner as already
described. However, in the case of a CATR, the distance between the AUT and
the range antenna is not the factor that describes or determines the nature of the
field incident on either the AUT or the range antenna. Figure 3.11 illustrates
using a simple ray diagram the basic concept of a two reflector CATR, viewed
from above.

Sub-reflector

Centered
quiet zone

Focal point
(centered QZ)
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Main
reflector
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Figure 3.11 Ray diagram plan view of a twin reflector CATR
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From the figure, it can be seen that a range/feed antenna placed at the focal
point of the range when in Tx will have the wave front that is produced in its main
beam sequentially reflected via a main and sub-reflector into an area in the range
referred to as the quite zone. The nature of the curvature and positions on the
reflectors as well as the edge geometry of the reflectors ensures that the field pro-
duced in the quiet zone is comprised of plane waves. Thus, the CATR produces the
type of wave fronts that would be incident on the AUT if it were placed very much
further away from the feed than is in fact the case.

Figure 3.13 shows an example of such CATR where, as in Figure 3.12, the
plane wave is collimated into the quiet zone, the location of the antenna positioner,
placed in the test zone so that the AUT can be tested. This description relates
primarily to the action of the AUT in Rx where the range antenna located at the
feed point is in Tx. However, it is clear from the figures that the collimating action

D

z

x

y

22D
λ

R <<

Figure 3.13 Ray diagram plan of single reflector CATR

Figure 3.12 View of an antenna mounted on a positioner in a CATR enclosed in a
24 m � 14 m � 11 m anechoic chamber (Courtesy of Leonardo MW)
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of the reflectors would be reciprocated if the AUT were transmitting and the col-
limated beam would then be incident on the feed point, allowing testing of the AUT
in Tx and Rx.

Figures 3.11 and 3.12 show a CATR where the collimated beam is produced
via the reflections from a sub-reflector that collimates the beam in the azimuth
plane and a main reflector that collimates it in the elevation plane. It is possible to
collimate in both planes simultaneously as per the range pictured in Figures 3.13
and 3.14. As will be examined in Chapter 4, the inclusion of more than two
reflectors to produce the beam is also possible, and the advantages and constraints
associated with the choice of designs, in terms of numbers and types of reflectors as
well as the geometrical arrangement of reflectors is discussed and illustrated in
Chapter 4.

It can be seen from Figures 3.12 and 3.14 that the edges of the two reflectors
are very different. As will be described in detail later in this text, such reflectors are
designed to convert the spherical wave-front of a point source into a plane wave,
but the finite extent of the reflector means that they will produce diffracted fields
from the rims of the reflector. Figures 3.12 and 3.14 illustrate the two main
methods adopted to reduce these diffracted fields, which provide the reflectors with
serrated edges or rolled edges. The rolled edge following on as an extension from
Johnson’s original patented CATR concept and the serrated or petal edge being
mainly developed by Joy and patented in 1994 [5]. Note: unfortunately, for Ed Joy
the US government owns the patent.

As with a far-field range, the nature of the chamber needed will enclose such a
CATR is directly related to the geometry of the range. The size of the reflector or
reflectors is the principal factor that determines the size of the range.

For a single reflector range the length of the range required can be estimated from

L ¼ C þ 5
4

F þ 1
2

QZ þ ð2 þ tÞl (3.11)

Figure 3.14 Single reflector CATR (Courtesy of NSI-MI Technologies LLC)

76 Theory and practice of modern antenna range measurements, volume 1



where L is the length of the range, F is the focal length of the range, QZ is the size
of the quiet zone, t is the number of wave lengths in the thickness of the end wall
absorber and C is the clearance factor to allow for the inclusion of the reflector in
the chamber.

The required width of the chamber can be estimated from

W ¼ WR þ ð4 þ nÞl (3.12)

where W is the width of the chamber and WR is the width of the reflector.
The height of the chamber is approximated by

H ¼ HR þ ð2 þ K þ 2nÞl (3.13)

where H is the height of the chamber, HR is the height of the reflector and K is the
clearance factor for the height of the reflector above the floor and space for feeds.

Note if the range antenna for the range was mounted on the wall a coverage
factor K1, would need to be utilised in the width calculation and removed from the
height calculation.

For a twin reflector range, K plus an additional secondary coverage factor to
take account of the secondary reflector would need to be added to the width or
height calculation.

A similar collimating effect can be achieved with a lensing structure; although
the nature of lenses that operate at microwave frequencies means that lens-based
ranges tend to have much lower realisable bandwidths than those assembled from
reflectors. Additional difficulties in manufacturing physically large structures with
the required levels of isotropy and homogeneity also limit the effective utilisation
of lensing compact ranges.

However, overall this means that the effect of introducing a collimating
structure (e.g. reflectors, lenses or other collimating methods that will be discussed
in Chapter 5) into an isolated anechoic chamber allows the characterisation of
antennas with near-field/far-field interface distances that are much larger than the
actual dimensions of the chambers. Thus, the CATR provides the capability of
making measurements on a variety of antennas that would normally require very
long-range lengths in conventional far-field ranges.

3.5.3 Indirect measurements
In Section 3.1, it was explained that in order to quantify the main antenna char-
acteristics that are of importance ‘the two antennas will have to be moved and
realigned relative to each other to make the full range of measurements possible. Or
some form of measurement process that predicts their response if they were to be
moved relative to each other needs to be employed’. So far, our discussion has only
involved direct measurement methodologies where the antennas have been moved
and realigned relative to each other so that a plane wave is incident on either the
AUT or the range antenna dependant on which antenna is in Tx.
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In fact, other indirect methodologies exist whereby an AUT can be char-
acterised when no actual plane wave is present. These methods originally pioneered
in the so-called swimming pool in the basement of Electronics Research Building
of the Georgia Tech. Engineering Experimentation Station [4] involves the synth-
esis of a plane, circular or cylindrical wave response from a sequence of other
measurements. Measurement methodologies that are based on the synthesis of these
wave responses are collectively referred to as scanning measurements.

In Section 2.6, it was shown that if we can determine the near-field on a
surface close to a radiating antenna we can subsequently determine the radiated
far-field. We shall, in subsequent chapters, see in detail the mathematical processes
by which these transformations can be undertaken in the most efficient way and
consider the limitations imposed by scanning measurement techniques and how
such limitations can be mitigated. In this section, we consider the basic geometries
required for measuring the near electric field to provide a data set that can be
processed to predict the far-field response of AUTs.

Three commonly employed coordinate systems are utilised for taking near-field
antenna measurements: spherical, cylindrical and planar. These three geometries are
generally considered preferable since not only is the vector Helmholtz equation
separable in each of these systems, but also, in practice, positioner sub-systems that
employ them can be conveniently constructed. These system geometries are shown
schematically in Figure 3.15.

In principle, spherical, cylindrical and planar techniques are endeavouring to
derive a complex vector field function at a large distance from the antenna, via the
sampling of similar complex data over a well-understood surface at a much smaller
distance. This facilitates the testing of electrically large antennas in a controlled
indoor environment.

In all cases, the acquisition of the near complex vector field is accomplished by
placing the range antenna, which is usually described as a probe in near-field
measurements, at a particular position and polarisation, pointing in a particular
direction and allowing the electric field which surrounds the probe to generate an
observable excitation current. The difference in potential between the probe and a
reference is sampled in phase and at quadrature. Provided that two such orthogonal

Spherical near-field 
acquisition geometry

Cylindrical near-field
acquisition geometry

Planar near-field 
acquisition geometry

Figure 3.15 Near-field acquisition surface geometries
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complex voltages are sampled over a well-defined surface at regular intervals, the
principal of modal expansion can be utilised to determine the amplitudes and
phases of an angular spectrum of plane, cylindrical or spherical waves. This enables
the computation of the electric and magnetic fields at any distance from the AUT,
and hence the computation of the fields when infinitely far removed from the
radiator, which results in a far-field vector pattern.

Despite the obvious similarities between the theoretical descriptions at the
generic level, the differing geometries result in a significant divergence in the
specific implementation of each measurement technique.

3.5.3.1 Spherical near-field ranges
In order for the spherical near-field range, a development of the original ‘two
dimensional phase centre range’ [6] to characterise the propagating near-field
component, a test probe is held at rest, while the AUT is nodded in f and rotated in
q. Here, q and f are conventional spherical coordinates. Figure 3.16 illustrates how
rotation of the AUT relative to the probe using commonly used antenna positioners
can be used to produce measurements over a spherical surface. Thus, the rotational
movements of the AUT effectively result in the path of travel of the probe
describing a spherical surface that is attached to the AUT.

From a measurement of the complex voltages acquired on this spherical sur-
face, as will be described in detail in Chapter 8, a full prediction of the far-field
characteristics of the AUT can be obtained. Pictured in Figure 3.17 is an example of
such a range.

Similar considerations that relate to the depth of RAM on the end walls in
wavelengths, te, the space needed for the probe installation, PD, and the minimum

Test
antenna

Probe

θ axis

ϕ axis

Figure 3.16 Spherical near-field antenna measurement configuration
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sphere through which the antenna moves through in wavelengths, n, apply for the
dimensions of the chamber required to make spherical near-field measurements.
Assuming 4l is the distance between the probe and the AUT the minimum length,
L, for a chamber can be calculated from

L ¼ PD þ ðn þ 6 þ teÞl (3.14)

For the chamber width (W)

W ¼ ðn þ 4 þ tsÞl (3.15)

where ts is the depth of the RAM on the side walls in wavelengths.
In estimating the height required for the chamber, H, the dimensions of the

positioner holding the AUT, HP, must also be taken into consideration giving

H ¼ HP þ ðn þ 4 þ tsÞl (3.16)

From these considerations of RAM thicknesses required, space for the AUT,
probe maximum dimensions and a realistic estimate of probe AUT displacement,
the dimensions required for chambers deploying spherical near-field measurement
equipment can be estimated. However, these calculations will give the minimum
sizes and increased dimensions may well be useful in terms of installation of
antennas and other equipment in the chamber.

3.5.3.2 Planar near-field measurements
The implementation of the geometry of planar near-field scanner, PNFS, does not
involve the movement of the AUT at all. To accomplish the near-field data
acquisition in PNFS, it is the probe that is moved (scanned), across the aperture of
the AUT. This is illustrated in Figure 3.18 where it can be seen that by moving the

Figure 3.17 Practical implementation of spherical scanning (Courtesy of NSI-MI
Technologies LLC)
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probe on a plane relative to the AUT, near-field data in the form of complex vol-
tages can be obtained that can, as will be explained in subsequent chapters, be used
to provide a prediction of the far-field characteristics of the AUT.

Pictured in Figure 3.19 is an example of such a range showing the probe
mounted on carriages that allows its movement across, x direction, and up and
down, y direction on a plane.

The geometry of a chamber designed for use with a planar scanner is primarily
defined by the extent of the scan plane and the angle out to which the pattern is
required along with the spacing of the AUT from the scan plane. The relationship
between these variables is illustrated in Figure 3.20.

Figure 3.19 Practical implementation of planar scanning

Figure 3.18 Planar near-field range configuration
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If the displacement of the AUT from the plane Z is defined in numbers of
wavelength, i.e. Z ¼ kl and the size of the AUT is also defined in terms of the
wavelength, i.e. A ¼ nl, then the extent of the scan plane required for and pattern
prediction out to angle q is

Lp ¼ ðn þ 2k tan qð ÞÞl (3.17)

Allowing 2l as a separation between tips of the RAM material and the scanner
with and additional clearance factor of Cs to take account of the scanner structure
out with the plane the width required for the chamber, W, is

W ¼ L þ 4 þ 2tð Þlþ Cs (3.18)

The length required for the scanner chamber, Lc, can be calculated from details
of the depth required for the scanner structure, Ds, and the depth of the AUT (Da);
thus, the minimum length of the range can be defined as

L ¼ Ds þ Da þ ð4 þ k þ tÞl (3.19)

Additionally, a minimum chamber height can be seen to be comprised of
factors that relate to the vertical size of the scan plane, Lv, the height of the scan-
ning probe, Hp, at the bottom of the scan plane

H ¼ Lv þ Hp þ 2 þ tsð Þl (3.20)

3.5.3.3 Cylindrical near-field measurements
As can be seen in Figure 3.21, the cylindrical near-field scanning technique
utilises a hybrid measurement configuration in which the AUT is rotated in
azimuth, whilst a scanning probe is moved linearly in z. Thus, data comprising
complex voltages can be acquired on a cylindrical surface and then

L

X x

Z
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A

Figure 3.20 Geometry of a planar near-field scanner
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subsequently processed to provide a prediction of the far-field characteristics of
the antenna.

Pictured in Figure 3.22 is an example of such a range which shows the AUT
mounted on a positioner that can rotate beside the probe, mounted on a carriage that
can move linearly up and down (in the y direction defined in the range).

The arrangement of RAM material and the chamber design required for such a
cylindrical system can be readily seen to be a combination of the design require-
ments for a planar and spherical test ranges.

Figure 3.21 Cylindrical near-field configuration

Figure 3.22 Practical implementation of cylindrical scanning (Courtesy of NSI-
MI Technologies LLC)
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3.5.3.4 Other geometries for scanning measurements
Planar, cylindrical and spherical are the most widely used configurations for near-
field scanning measurements as they correspond to realisable antenna positioner
combinations and, as will be described in detail in the following chapters, are
suitable for the development of transformation algorithms that allow ease of pre-
diction of the far-field parameters from the measured near-field data. Other geo-
metries have been used, and a combination of antenna characteristics and range
capability can make some of these other configurations preferable.

The data required in planar measurements could, as per Figure 3.18, be
acquired using a raster or rectilinear scan. Figure 3.23 shows two other geometries
that can be used in the acquisition of data, plane bi-polar and plane polar.

As will be explained in Chapter 6, both of these geometries have advantages
and limitations. Additionally, using these measurements, geometries data acquired
in more than one scan of an antenna can be used to predict the far-field char-
acteristics of the AUT, this will be elaborated on in Chapter 12 [7]. Again, as will
be further elaborated on in Chapters 6 and 12, individual scans acquired on tan-
gential or angularly displaced planes can be used to provide accurate far-field
predictions of antenna performance [8]. So, these alternative measurement geo-
metries may have advantages over conventional rectilinear raster scanning in cer-
tain circumstances.

Other geometries not associated with these conventional scanning geometries
are also possible, e.g. Chapter 7 will describe in detail cylindrical measurements, and
also the measurement schemes that rely on data being acquired on conical and conic
frustum surfaces [8,9]. Lastly, Chapter 9 with develop more general measurement
techniques for processing near-field data acquired over non-canonical surfaces.

All these measurement techniques therefore depend on the acquisition of data
at fixed points relative to the AUT from which via a subsequent processing stage
the response that the antenna would make in a far-field data acquisition can be
predicted. This means that the positions at which the data must be obtained must
again be defined rigorously and the mechanical systems that move and rotated the
probes and AUTs must be extremely accurately, precisely and sensitively

Figure 3.23 Plane bi-polar and plane polar data acquisition geometries
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controlled. The requirement in all these different techniques for accurate sampling
of the near-field characteristics on a surface at a sampling interval not more than
l/2 at the highest frequency to be measured means that there are certain generic
similarities between all the near-field techniques.

3.6 Antenna test range RF test equipment

The requirement for isolation and RAM materials in the range is based on the
presence of RF radiation in the range and it is the ability of the AUT and the
antenna test range antennas to couple via this RF radiation that is actually tested in
the range. Thus, the generation control and measurement of this RF power flux as a
function of the two antennas displacement and orientation relative to each other is
fundamental to the action of the range as a test facility. Therefore, a sensitive,
accurate, precise RF system of the same nature as that shown in Figure 3.24 will be
required in the range to provide the basis of the measurements.

As can be seen from the figure, a typical RF test system is essentially a two-
arm microwave interferometer where a range antenna and AUT are inserted into the
test arm. In practice, this is realised with a standard vector network analyser (VNA)
measurement system controlled via a central computer. The configuration shown
could be based around a VNA operating in remote mixing mode where the VNA
will act as the receiver and may also act as one of the sources. For physically small
systems, it is possible to work without remote mixing if cables are short as remote
mixing is merely a way of redistributing the receiver within the chamber to mini-
mise cable losses and improve the system dynamic range.

Although a swept signal generator can be used for local oscillator (LO) and RF
sources, it is more common to use a synthesiser as a signal source. The RF output
from this source is fed via a (typically) 20 dB directional coupler to the transmit
port of the AUT usually using coaxial cable or waveguide. The test mixer is con-
nected to the single port of the range antenna by means of a short coaxial cable or
waveguide and is often padded with a 10 dB attenuator to reduce the effect of
multiple reflections between the range antenna and the mixer using the LO cable.
This mixer is fed with a LO signal, so that an intermediary frequency (IF) can be
passed to the receiver.

Test mixer Range antenna AUT
RF RF

RF

RF source

20 dB directional coupler

Reference mixer

LO
IF

Path II
LO source

Receiver
IF

Path I

LO

Figure 3.24 The fundamental basis of range RF system
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Note: A VNA combines the sources, down converter and receiver in a single
instrument.

When using a swept LO source this is phase locked usually by means of a
reference signal. Using a synthesiser for the LO is more popular nowadays and the
external clock option permits the source synthesiser clock to act as the master for
both synthesisers. Occasionally, third, fifth or even seventh harmonic mixing is
utilised to reduce the attenuation resulting from an electrically long LO test path.
However, this is undesirable as the sensitivity of the RF system is inevitably
degraded, e.g. utilising third harmonic mixing can result in a reduction in the
sensitivity of the receiver of 20 dB. For high microwave frequencies and millimetre
wave operation, a more complex configuration is often necessary as will be
explained in the following text.

The reference mixer similarly mixes down the reference RF signal obtained
from the directional coupler. The lengths of the two LO paths are usually balanced;
i.e. path I and path II are of equal length to minimise the impact of phase variations
resulting from thermal fluctuations and from small frequency changes in the RF
source. The concept is that if the two path lengths are the same, the relative phase
variation between the respective RF paths will be zero, irrespective of how the
temperature fluctuates within the facility.

One arm of the interferometer contains the range antenna and the AUT and the
other arm of the interferometer is a reference path. Provided any actual physical
movement of the AUT does not alter or degrade the fidelity of the Tx/Rx signal,
then any variation in the measured signal should be directly related to the extent to
which the two antennas couple as a function of angle and polarisation.

To allow this overall measurement concept to be undertaken in antenna test
facilities, a variety of specific instruments will need to be specified, acquired and
integrated to allow the development of effective measurement procedures.

3.6.1 RF instrumentation for test ranges
For simple facilities designed to undertake antenna measurements, there will
usually be requirements for

● Receivers
● Sources
● Mixers
● Multipliers
● Amplifiers
● Probes
● RF cables
● Couplers
● Switches
● Attenuators

These are described further in the following sections.
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3.6.1.1 Receivers and sources
The important instrument characteristics related to the requirements for a receiver
relate to

● Noise floor
● Sampling speed
● IF bandwidth
● Compression level

All of these characteristics will need to be taken account of in defining the
requirements for any test range. Figure 3.25 illustrates the input power in dBm and
the output response along with the important features of the receiver response
(dynamic range 1 dB compression point) that need to be considered.

As described in Chapter 1, not only the amplitude of the voltage produced by
the coupling, but also its phase is fundamental to the antenna measurement process.
This is usually accomplished by the use of a synchronous detector in the receiver,
sometimes referred to as quadrature channel detector, quadrature detector, I/Q
demodulator or a coherent detector. Figure 3.26 illustrates that very basic concept
of such a detector, where the measured signal Fsig is mixed with oscillator signal,
Fos using a 90� phase change to provide the quadrature data.

Such a detector used in concert with the rest of a receiver can produce the
required data for the characterisation of antennas.

For sources overall available bandwidth, switching speed, stability, harmonics
levels and noise performance are the important characteristics to be considered.
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Down conversion from the RF frequency may also be required giving a more
manageable (in terms of measurement and system loss) IF frequency.

3.6.1.2 Down conversion mixers and up conversion multipliers
Antenna measurements often involve high levels of free space loss associated with
the movement of RF signals through phase stable cabling that is invariably rela-
tively high loss at RF frequencies. Therefore, down conversion to and much lower
loss IF frequency is a practice often adopted in antenna test ranges.

The most common strategy employed to allow this down conversion to an IF is
the inclusion of remote mixers as shown in Figure 3.24. A direct sampling at the RF
frequency is possible; however, at higher microwave frequencies, the losses in the
cabling in the RF system will be such that the inclusion of remote mixing in the
system will become necessary.

Essentially, a mixer is a set of diodes, embedding in a configuration of biasing
circuitry as shown in Figure 3.27.

RF

IF

LO

Figure 3.27 RF to IF mixer configuration

I channel mixer
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I data

Q data

f = 90 degrees Q channel mixer
f

Figure 3.26 Synchronous/coherent detection
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A monotonic RF signal as per Figure 3.28 is the RF input.
An LO frequency, as per Figure 3.29, that is close to the RF frequency is also

input. This LO signal is heavily compressed so that it is non-linear and is over-
driven to the extent that it is close to a square wave.

The bias on the diodes in the mixer is switched by the incoming RF with a
sampling rate determined by the biasing produced by the highly clipped LO signal
acting as a square wave switching control.

The resultant IF output is as per Figure 3.30. This waveform has a linear
envelope that is at a much lower frequency than the RF input. If subsequent high-
frequency filtering is implemented on this signal, it will produce a linear lower
frequency output that will contain all the essential signal information embedded in
the original RF signal. However, as a result of its much lower frequency, it will
suffer far less loss in the RF cabling.
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Figure 3.28 RF mixer input
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The inclusion of mixers to produce a distributed sub-system where cable losses
are reduced to a minimum is a common solution for antenna test ranges where noise
levels need to be minimised and dynamic range needs to be optimised. This is
especially relevant for electrically large systems since cable losses become prohi-
bitive and the locations of the components comprising the RF subsystem are cri-
tical. By using remote mixers, the use of lower frequency cables with lower loss
becomes feasible and this approach dramatically increases the available power
level at the transmitting antenna and the sensitivity of the receiver. Additionally, by
utilising remote frequency conversion and providing frequencies in the inter-
ferometer arms that are much lower than the RF frequency, existing lower fre-
quency instrumentation can often be used.

There are limitations as to the extent to which frequency conversion can be
accomplished using just a distributed sub-system. If there is a requirement to move
to higher frequencies in the millimetre wave range, other solutions will be required.
The inclusion of multipliers in the system allows the use of conventional RF
measurement instrumentation that may only be instrumented, for example, to only
18, 26 or 40 GHz, to make measurements at much higher frequencies.

RF multipliers are devices that generate an output signal that is a harmonic
product of the input frequency and as such can be used close the point of trans-
mission to up convert microwave frequency signals.

Such frequency multiplying modules can have implications on the mechanical
design on measurement systems, and Figure 3.31 shows that the additional mass
and volume required to implement this solution does impact the design and spe-
cification of measurement systems.

Note: Figure 3.31 shows details of a probe-type range antenna and frequency
multiplier modules that are deployed in a near-field-scanning configuration.

While the use of down conversion to an IF frequency and multiplication will
reduce the levels of loss in the system, the requirement to Tx and Rx RF fre-
quencies in the system will often mean that amplification is required at points in the
measurement system.
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Figure 3.30 Unfiltered IF output
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3.6.1.3 Amplifiers
The most important characteristics of such an amplifier are gain and its noise fig-
ure. The gain is the ratio of the input to output RF power where a maximum input
power that will invoke a linear response is defined. With an input power above this
level, the amplifier will be in compression, and the response will no longer be
linear. In many RF systems, this non-linear condition is the condition in which the
amplifiers are used. In this case, it will be necessary to ensure that the input power
is greater than the linear threshold and the output power will be the maximum that
the amplifier is specified to emit.

The noise figure, F, is a measure of the degradation of the signal to noise ratio
between the input and output of the amplifier.

This is defined as

F ¼ Si=Ni

So=No
� 1 (3.21)

where Si is the input signal power, So is the output signal power, Ni is the input
noise power and No is the output noise power.

The noise figure of such an RF component is sometimes defined in terms of an
equivalent noise temperature, Te, rather than a noise figure. The relationship
between the noise figure and the equivalent noise temperature is

Te ¼ F � 1ð ÞTo (3.22)

where To is 290 K.

Figure 3.31 Frequency multiplier modules mounted behind a probe-type range
antenna on a range antenna carriage (Courtesy of NSI-MI
Technologies LLC)
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3.6.1.4 Probes
In earlier sections, it was stated that in near-field measurements the range antenna
is usually described as a probe. This is because in all near-field measurements the
range antenna/probe is required to have certain common desirable characteristics.

The near-field measurement technique places several requirements upon the
characteristics of the scanning probe. Typically, these are

1. Time-invariant gain and mechanically rigidity.
2. No pattern nulls in the forward hemisphere, i.e. low directivity, i.e. electrically

and physically small.
3. Wide bandwidth.
4. Low scattering cross-section and reflection coefficient – i.e. well matched with

a small return loss. Unfortunately, this requirement cannot usually be satisfied
over a wide bandwidth.

5. Good polarisation purity.
6. Good front to back ratio to minimise sensitivity to probe placing and multiple

reflections. This is at odds with item 2.

Typical near-field probes can include cylindrical waveguide, rectangular
waveguide, corrugated horns and pyramidal horns. Two common probe antennas are
the dual-port choked cylindrical waveguide probe and an open-ended rectangular
waveguide probe. Figure 3.32 shows rectangular waveguide probes with one
mounted protruding from an attached RAM.

One of the most significant contributions, albeit an extremely systematic one, to
the overall error budget of conventional near-field measurement techniques is inac-
curacy in the characterisation of the near-field probe. Conventionally, as the measured
main-component pattern is proportional to the main-component range antenna pattern,
errors in the corrected main polarisation pattern arising from probe characterisation
errors will be a one-to-one mapping. That is, for near-field measurements, they have
the same magnitude and direction as the errors in the probe pattern.

(a) (b)

Figure 3.32 Near-field scanning probes (Courtesy of NSI-MI Technologies LLC).
a) shown with absorber collar and b) a family of probes shown
without the absorber collars
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A generalised three-antenna technique is usually used for precise calibration of
the on-axis gain and polarisation of a near-field probe, and the resulting gain values
can be generally certified to have an uncertainty of approximately 0.10 dB [10].
Once known, the probe gain can then be used to determine the gain of the AUT as
part of the near-field measurement process.

3.6.1.5 Couplers
Microwave couplers are devices that divert a fraction of the signal on one trans-
mission line to another transmission line. The signal exiting the output port of the
first transmission line is called the ‘through’ (sometimes called the ‘direct’) signal
since it is directly connected to the input port and the signal exiting the other
transmission line is called the ‘coupled’ signal. If the coupled signal is traveling in
the same direction as the through signal, the coupler is called a ‘forward-wave’
coupler. If in opposition, it is called a ‘backward-wave’ coupler. Because these
coupled signals are related to the direction of the through signals, couplers are
called directional couplers.

Note: if the outputs of the coupled and through ports are equal in amplitude, the
coupler is often referred to as a hybrid coupler.

In antenna measurements, a coupler is used to a couple of a certain portion of
the Tx signal with this coupled portion being used as the reference path through the
interferometer.

Such couplers are four port devices, where port 1 is the input port, port 2 is the
output/through port, port 3 is the coupled port and port 4 is the isolated port.
Ideally, power into port 1 will only appear at ports 2 and 3, with no power at port 4,
but in real couplers, some power leaks to port 4. For an incident signal at port 1 of
power P1 (and output powers P2, P3 and P4 at ports 2, 3 and 4, respectively), then

● Insertion loss (IL) ¼ �10 log(P2/P1) ¼ �20 log(|S21|)
● Coupling (C) ¼ �10 log(P3/P1) ¼ �20 log(|S31|)
● Isolation (I) ¼ �10 log(P4/P1) ¼ �20 log(|S41|)
● Directivity (D) ¼ �10 log(P4/P3) ¼ 20 log(|S31/S41|)

Additionally, phase unbalance and amplitude imbalance between the coupled
port and the through port over the operating frequency band. Both of these char-
acteristics can be used to define the bandwidth of the coupler.

The choice of coupler to be used in a measurement system will depend on the
relative signal levels required and the bandwidth over which it will be used.

3.6.1.6 Switches
Considerations related to the switching speeds that may be required limits the choice
of switching mechanism in RF measurement systems. MEMS are generally con-
sidered too slow for such systems so FETs and pin diode switches are usually adopted.

Frequency considerations can be important in deciding which variety of switch
to use in the measurement system. PIN diodes have a lower frequency limitation
due to carrier lifetime meaning that they are ineffective at lower frequencies and
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essentially will not operate at all for DC. However, PIN diodes have a significant
high-frequency advantage over FETs at high frequencies because of their low off-
state capacitance, COFF, for a given on-resistance, RON.

The microwave industry uses a figure of merit, FOM, to rate the switching
characteristics of different switch elements. Multiplying RON times COFF gives a
number with units in seconds. This is usually quoted in terms of frequency as

FOM ¼ 1=2pCOFFRON (3.23)

The higher the FOM, the easier to achieve any required bandwidth. Typical
values for a PIN diode, off-capacitance can be of the order of 50 fF, with on-
resistance as low as 1.7 W at 20 mA. The FOM for such a PIN diode would be
1 872 GHz. For a typical FET used in a switch, an on-resistance of 1.5 W and an
off-capacitance of 400 fF giving a FOM 265 GHz.

A useful ‘rule of thumb’ that can be adopted to ensure that your switch can
cope with your required bandwidth is, if you divide the switching FOM by 10, this
will give you a good estimate of the highest frequency that the device can be made
to perform as a switch. As can be seen, using this rule, a typical PIN switch can
operate to frequencies much higher than a typical FET switch.

FETs can have advantages in terms of control and isolation but in measure-
ment systems, switching speed is the overriding concern so PIN diode switches are
usually adopted for such systems.

3.6.1.7 Attenuators
Attenuators are passive resistive elements that are designed to reduce the gain.
They can be added to the RF path in a measurement system if there is a
requirement to reduce signal strength at any point, e.g. to reduce the signal
strength to ensure that amplifiers are working in their linear region and their
output is not compressed.

Adding an attenuator in the RF path in front of an amplifier will adversely
affect the noise figure, and care must be taken if adding it after an amplifier to
ensure that the attenuator can cope with the amplified signal power.

Therefore, care must be exercised in placing attenuating elements in the RF
path to minimise noise and ensure linearity in response is conserved [11].

3.6.1.8 RF cables
The primary concerns that relate to cables in RF systems are ohmic and dielectric
loss combined as insertion loss and additionally return loss. High frequency cables
have considerably more loss than 18 or 20 GHz cables; hence, the requirement for
IF frequencies. Figure 3.33 illustrates the insertion loss per unit length of typical
cables as a function of frequency for typical cables.

Return loss in cabling is directly related to the types and quality of the con-
nectors used so to ensure low return loss certain varieties of connectors are more
suited to limited ranges of frequencies. Figure 3.34 illustrates the frequency ranges
that are applicable to specific types of connector.
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3.6.1.9 Integrated facility instrumentation
A clear understanding of the types of measurements that are to be undertaken is
required to specify the requirements for the RF instrumentation to be used in a
measurement facility and the exact nature of these instruments deployed will mirror
this requirement. Figures 3.35 and 3.36 illustrate a typical microwave measurement
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Figure 3.35 Typical microwave measurement facility RF subsystem (Courtesy of NSI-MI Technologies LLC)



Figure 3.36 mm wave measurement configuration based on frequency multipliers (Courtesy of NSI-MI Technologies LLC)



facility set up and a millimetre wave measurement configuration based on fre-
quency multipliers. Both of these configurations illustrate a type of design process
that can be adopted in the specification of measurement facilities by dividing the
requirement for the overall RF system into compartments related to addressing
specific areas of the design.

3.6.2 Generic near-field antenna measurement process
The measurement of the antenna radiation pattern relative to the antenna
mechanical interface necessitates the accurate determination of the alignment of
the mechanical interface, which is associated with the antenna, relative to the
range co-ordinate system during the acquisition of the near-field data. The known
alignment is then compensated for during the transformation process. Once the
alignment data has been captured, the near-field scanning process is performed.
Following this, the measured near-field data is processed to yield corrected far-
field results. These results are typically presented in Ludwig’s third (co-polar and
cross-polar) polarisation basis [12,13] referenced to a specified electrical bore-
sight system (the system which defines the co-polar direction) which may or may
not be coincident with the antenna plotting system (the output system in which the
field quantities are tabulated). The measurement of absolute gain is a topic in
itself, and is an area that will be described in later chapters. Typically, in near-
field measurements, the substitution method using a calibrated standard is
implemented. Figure 3.37 illustrates schematically the general near-field mea-
surement process that is common to all near-field measurement procedures in the
form of an overview.

Near-field measurements present other difficulties. The sampling of data over
a finite measurement surface, as in planar and cylindrical near-field measurements
results in the failure to sample a portion of the propagating near-field. This intro-
duces truncation errors in the resulting far-field data that restricts the measured
antenna pattern coverage to less than 180�. The failure to account for the multiple
reflections between the probe and AUT within the theoretical description of near-
field measurements results in the appearance of a series of concentric circles in the
calculated far-field pattern, which constitute a microwave equivalent of Newton’s
rings. Furthermore, they introduce a loss in accuracy with which the gain can be
determined.

Additional uncertainties are introduced by incorrect reporting of the posi-
tion at which the amplitude and phase measurements have been taken. Such
positional errors typically result from timing errors within the control sub-
system, as well as from mechanical imperfections within the robotics of the
positioner subsystem.

In general, if the antenna under consideration is linear, of finite extent, operates
at a single fixed frequency, radiates a constant power and, assuming that Maxwell’s
equations accurately describe the region of space in which the antenna and mea-
suring equipment is situated, then the approximations involved within the for-
mulation are
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1. The fields outside the finite sampling interval are zero.
2. The AUT is aligned to the scanner with infinite precision.
3. The robotics subsystem positions the probe at the designated points in space

with infinite precision.
4. The RF interferometer measures the impinged signal with infinite precision.
5. There are no multiple reflections between the AUT and the probe.
6. There are no truncation or rounding errors introduced by data processing.
7. There are no reflections (multipath) from the chamber enclosing the measurement.

Although in practice all of these approximations are incorrect, the extent to
which each of these possible error sources impacts on the accuracy of the predic-
tions is closely related to the extent to which these approximations can be con-
sidered empirically adequate. Clearly, if there is extensive multi-path in the
chamber in which the measurements are made, this will impact on the integrity of
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Figure 3.37 Generic near-field measurement process
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the measurement. However, if the error signal resultant from the multi-path is very
low compared to the direct path signal then the assumption that there is no multi-
path may be valid. It is the job of the range designer to ensure that, while it may be
true that none of these approximations is completely valid, their impact on the
accuracy, precision and sensitivity of any measurements is minimised.

3.7 Summary

Although the practical use of antennas is mainly in an outdoor environment where
there are large separations between Tx and Rx antennas, modern antenna test ran-
ges attempt to make measurements in indoor facilities where Tx and Rx antennas
are in close physical proximity to each other. Such indoor facilities have the
advantages of security, control of the environment and ease of access for equipment
and personnel. However, in order to make measurements in indoor facilities that
mirror what would be expected on large outdoor ranges, a number of engineering
solutions are required. These solutions involve isolating the test range from its
immediate environment, which usually involves placing the range in a metallic
chamber or some other enclosure to ensure the signals generated inside the chamber
stay inside the chamber and signals generated outside the chamber do not interfere
with the measured signals generated inside the chamber.

A metallic isolating structure will be the source of reflections, which will cause
multi-path in the chamber; this can be mitigated by careful design and the inclusion
of RAM within the test range. The placing of positioners within such an anechoic
chamber will allow the movements and/or rotations of range antennas and AUTs to
provide the main antenna characteristics, gain, pattern and polarisation that are
required from measurements.

Measurements of the complex voltages that vary with angle and polarisation
are acquired via the use of an interferometry-based RF system that samples in phase
and at quadrature. This system is usually being based on the use of various RF
sources and a vector network analyser.

The basic interferometer-based concept in practice requires the use of a variety
of different devices, amplifiers, attenuators, mixers, etc., and these must be speci-
fied to meet the requirements of the envisaged teat procedures.

The requirement for the antennas to be in each other’s far-field so that plane
wave illumination is achieved and the resultant spatial demands that result from
this can be mitigated in a number of ways. First, the inclusion of reflecting or
refracting structures that can produce a collimated plane wave in a much shorter
distance than would be possible conventionally in a so-called ‘compact antenna test
range’ can substantially reduce the real estate requirements for a test range.

Alternatively, measurements that depend on the synthesis of a plane wave
response from a number of near-field measurements that can be subsequently
processed to produce a prediction of the required far-field response are also pos-
sible. The use of readily available positioner systems and the ease of subsequent
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processing recommend three preferred geometries on which such measurements
can be accomplished: spherical, planar and cylindrical geometries.

All of these geometries have their limitations and advantages but they all share
the same basic inherent measurement procedure which differs from conventional
far-field measurements, in that a transformation from near-field to far-field data is
required along with the removal of the impact of the measurement probes inherent
pattern.

This chapter has summarised the basic techniques and equipment in use in
modern antenna test ranges to characterise AUTs and subsequent chapters describe
in the required level of detail each of these measurement methodologies starting
with compact antenna test range measurements.
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Chapter 4

Antenna pattern plotting: coordinate systems
and polarisation bases

4.1 Coordinate systems and antenna measurements

Antenna measurement data is collected over a tabulating surface as a function of
position relative to the antenna under test (AUT). In the far-field, where most
antenna pattern comparisons are performed, this reduces to the problem of repre-
senting data as a function of one or more angles with the electrically large mea-
surement radius being arbitrary but fixed. In general, even when taking
conventional far-field data, the antenna measurement engineer seldom uses a single
rotation stage as two-dimensional pattern data is generally required. However, as
will be illustrated below, the data collection/visualisation coordinate system
directly affects how data is mapped to the surface: planar, cylindrical, spherical or
other types. Thus, far-field measurements are usually mapped or converted to
spherical surfaces from which directivity, polarisation and patterns are calculated
and projected. Often the collected coordinate system is not the same as the final-
mapped system, requiring special formulas for proper conversion. In addition,
projecting this data in two- and three-dimensional polar or rectangular plots pre-
sents other problems in interpreting the antenna pattern data. Implicit within this is
the assumption that the tabulating grids are plaid, monotonic and equally spaced.
Whilst not necessary from a theoretical standpoint, these conditions greatly sim-
plify the recording process for a robotic positioner as well as simplifying the tasks
of numerical integration, differentiation and interpolation. The following sections
present a concise description of the most important coordinate systems and then go
on to discuss methods for representing the relationships between them. This section
presents a summary of many of the most commonly encountered coordinate system
formulas and shows how they relate to one another.

Antenna measurements are made to show the performance of an antenna: gain,
pattern, directivity, cross-pol, etc. Data collection of performance characteristics
come in the form of printed patterns, exported files and interactive computer dis-
plays. Various formats have been designed to allow the user to quickly compare
antenna performance to expected results. These comparisons are often in the form
of overlaid patterns, pass–fail specification lines or require additional computation
by other computer programs. It is particularly important to understand the details of
the measurement coordinate system prior to comparing between measurement data



to expected results or data taken on another range. The rotation of the antenna and/
or the probe when making measurements will directly affect the form of the
patterns produced. In addition, natural polarisation vectors are produced by a
positioner system and these can be quite different if compared to those taken using
an alternative positioner configuration. Figure 4.1 shows a classical roll-over-
elevation-over-azimuth positioner. This is a very common positioner configuration
as it supports three standard types of spherical coordinate systems.

Figure 4.1(a) shows the AUT mounted on the top roll axis with the elevation
axis fixed at 90�. This constitutes a standard Theta-Phi coordinate system.
Figure 4.1(b) and 4.1(c) shows how the antenna is mounted for the two other
standard coordinate systems. Each system consists of two movable axes defined for
that system and one fixed axis that is not part of the acquisition system. Each
system has a natural pole orientated in a different direction, that is to say, aligned
with a different axis. The pole is where the AUT does not change its pointing angle
in space when one of the two defined axes is rotated, i.e. a singularity. Table 4.1
shows how the positioner axes are configured to produce each coordinate system.

Figure 4.2 shows the angles a far-field probe makes with respect to the AUT as
it is rotated. Note: it is important to remember that there is a difference between the
angle the antenna points in space and the angle made between the probe and
positioner. In Figure 4.2(a)–(c), the cardinal cuts, which are equivalent, can be seen
to be plotted in bold. The meshes that can be seen were formed by incrementing the
two rotating axes by a constant angular amount where the order of incrementation
is unimportant.

Proper antenna positioner rotation is important to make sure that the range is
properly defined. Far-field positioners often include encoders whose polarity can be
changed based on various needs. The standard definition for positioners is that
when looking from the front of the rotation platen, a clockwise rotation should
produce a positive-going angle (e.g. �170 to �150 or þ10 to þ20). In the case of
the elevation positioner, positive angles will expose the upper side of the AUT to
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Figure 4.1 Roll-over-elevation-over-azimuth positioner system
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the source antenna. Figure 4.3 shows the rotation of each axis to produce a
positive angle.

Three-dimensional antenna measurements are made by rotating two axes to
sweep out a full sphere or section thereof and recording the amplitude and/or phase
at defined locations. In practice, it is usually not possible to measure the complete
sphere without some blockage due to the positioner itself. Nonetheless, a complete

Table 4.1 Coordinate system definition for 3-axis positioner system

System Pole Upper Az Elevation Lower Az

q, f Z-axis f Fixed at 90� q
Az/El Y-axis Az Elevation Fixed at 0�
El/Az X-axis Fixed at 0� Elevation Azimuth

(a) (b) (c)

X X

Y Y

X

Y

Figure 4.2 Spherical rotation systems: (a) polar spherical q, f; (b) azimuth over
elevation; and (c) elevation over azimuth

Figure 4.3 Angle convention for rotation stages
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sphere can be measured by rotating one axis through 180� and the other through
360�. Note: Some configurations, such as elevation-over-azimuth, may have addi-
tional restrictions due to the mechanical makeup of the positioner. In the positioner
configuration shown in Figure 4.1(c), the elevation axis is restricted to �45� < El <
þ90�.

4.1.1 Azimuth over elevation
In order to illustrate how different the patterns can be interpreted, first let us con-
sider a map of the Earth plotted in each of the three main spherical coordinate
systems. In each case, the H ¼ V ¼ 0 point is on the equator in the Atlantic ocean
off the West coast of Africa. As shown in Figure 4.4, the image between
azimuth ¼ �180� and elevation ¼ �90� is easily recognisable as a Mercator pro-
jection [1], i.e. azimuth equates to longitude whilst elevation equates to latitude.
The image beyond elevation ¼ �90� shows the alternate sphere (thus the data
plotted forms a double sphere). In this figure the false-colour denotes altitude.

This map corresponds to an Az/El positioner system whose pole is at the
Y-axis. Note the distortion at the North and South poles. This is because the point at
elevation ¼ �90� is the same point in space irrespective of the azimuth angle. By
plotting the data in this way, each of the poles (which represents a single point in
space) has been stretched out until it becomes a line that is equal in length to the
equator. This causes the map to be deformed significantly near the poles. In
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creating this map, the goal is to create a map where the H and V axes are plaid,
monotonic and equally spaced. This is described with the following expressions:

H ¼ H0 þ DH n � 1ð Þ (4.1)

V ¼ V0 þ DV p � 1ð Þ (4.2)

Here, n and p are positive integers, n ¼ 1, 2, 3, . . . , N and p ¼ 1, 2, 3, . . . , P,
with V0 and H0 being the starting values of the grid in the h- and v-plotting axes,
respectively; DH and DV are the incrementing values in the h- and v-plotting axes,
respectively. In general, a straightforward reliable method for transforming from
one coordinate system to another is by means of equating Cartesian direction
cosines. Direction cosines use three direction angles a, b and g to identify a point in
space. The point is described by a vector r measured from the origin to the point.
Direction cosines relate the vector r to Cartesian coordinates where

r ¼ r0 ube x þ vbe y þ wbe z

� �

(4.3)

Here, u, v and w are called the direction cosines are the weightings for each
orthogonal unit vector and r0 is the magnitude of the position vector r. They are
described by the following expressions:

u ¼ cosa (4.4)

v ¼ cos b (4.5)

w ¼ cos g (4.6)

Here, each of the angles a, b and g is measured from the positive x-, y- and
z-axes, respectively. Note, in a subsequent section on polarisation, the variable a is
used instead to denote the azimuth angle in an elevation over azimuth coordinate
system. The interpretations of the respective nomenclatures are clear from the
context of the different meanings and as they never occur together in the same
expressions or section of this text. Using these expressions, a straightforward
conversion can be performed between any of the antenna measurement coordinates
systems. This is accomplished by normalising the length of the vector r so that
|r| ¼ 1 and then relating the angles in each antenna coordinate system to the three
direction cosines.

As shown in Figure 4.1(b), the rotation of the azimuth angle is made around the
elevation angle. This means that a pole is produced at two elevation points �90�

and 90�. The pole is along the y-axis, thus El ¼ �b þ90� and Az will be a com-
bination of a and g angles in the following way:

u ¼ sin Az cos El (4.7)

v ¼ sin El (4.8)

w ¼ cos Az cos El (4.9)
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By way of illustration, Figure 4.5 contains a false colour checkerboard plot of
radiated power of a standard gain horn (SGH) that has been plotted using a regular
azimuth over elevation coordinate system. One of the difficulties associated with using
this coordinate system in practice is that as a consequence of the positioner stack-up,
the AUT is typically not located at the origin of the measurement coordinate system
meaning that it is translated in space during the acquisition.

It is worth noting that the definitions used here for Az/El (and El/Az developed
in the following section) differ to those used by some proprietary simulation soft-
ware packages where these naming conventions are exchanged. This can cause
confusion to the uninitiated and the reader is wise to refer to the associated doc-
umentation to confirm which convention is used.

4.1.2 Elevation over azimuth
Figure 4.6 contains a plot equivalent to Figure 4.5 for the case of an elevation over
azimuth projection; however, here the distortion appears near the X-axis pole
(azimuth ¼ �90�).

As shown in Figure 4.1(c), the rotation of the elevation angle is made around
the azimuth angle. This means that a pole is produced at two azimuth points �90�

and 90�. The pole is along the X-axis; thus, Az ¼ �g þ90� and Az will be a
combination of a and g angles in the following way:

u ¼ sin Az (4.10)

v ¼ cos Az sin El (4.11)

w ¼ cos Az cos El (4.12)

By way of illustration, Figure 4.7 contains a grey-scale plot of an SGH that has
been plotted using a regular elevation over azimuth coordinate system.
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4.1.3 Polar spherical
In the third case, there are two ways to show the map. One is to display the q-axis
along the horizontal axis of the plot, with the f-axis as the vertical axis of the plot
forming a rectangular plot as shown in Figure 4.8. In this case, distortion appears
greatest along the Z-axis pole (Theta ¼ 0�, �180�, . . . ).
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From Figure 4.8, it is clear that the full sphere pattern can be represented in at
least four different ways:

1. 0 � q � p, �p � f � p,
2. �p � q � 0, �p � f � p,
3. �p � q � p, 0 � f � p, and
4. �p � q � p, �p � f � 0.

Clearly, by allowing q and f to vary by more than modulo 2p or to allow the
spherical angles to be cantered about a value other than zero, an infinite number of
other (typically unhelpful) representations become available. As shown in
Figure 4.1(a), the rotation of the f angle is made around the q angle. This means
that a pole is produced at the Theta points 0�, 180�, 360�, . . . . The pole is along the
Z-axis, and the spherical angles are related to the direction cosines in the following
way:

u ¼ sin q cosf (4.13)

v ¼ sin q sinf (4.14)

w ¼ cos q (4.15)
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For antenna measurement, this arrangement has the advantage that it moves the
AUT through only a small portion of the test zone, and it places the blockage that
results from the AUT mount entirely in the back hemisphere. Moving the AUT by
only a small amount minimises errors associated with imperfections in the illumi-
nation of the test zone and can, in some instances, render probe pattern correction
unnecessary. Occasionally, one comes across the concept of an ‘equatorial’ sphe-
rical measurement system. This is identical to the polar spherical case only here the
main beam of the antenna points to the equator, rather than towards the positive
z-axis (through the pole). In summary, the three coordinate systems can be sum-
marised in a single table as shown in Table 4.2.

When interpreting these plots, it is important to note that (obviously) the Earth’s
continents have not changed, this is a given. Their relative spacing to one another is
also the same. It is the spherical projection onto a flat piece of paper that distorts the
image. This distortion is an unavoidable consequence of trying to represent a three-
dimensional object on a two-dimensional piece of paper. Flat maps could not exist
without map projections because a sphere cannot be laid flat over a plane without
distortion. This can be seen mathematically as a consequence of Gauss’s Theorema
Egregium [2] which essentially states that it is not possible to bend a finite-sized,
i.e. not infinitesimal, non-elastic, piece of paper onto the surface of a sphere.

Overlaying one of the projections onto another, as in the case of overlaying
antenna patterns from ranges with different positioning systems, is worthless in
identifying differences between the patterns except on, or very near, the Cardinal
cuts. To compare data at other cuts between the three systems, a conversion, i.e.
transformation, must be implemented between one coordinate system and another.

By way of illustration, Figure 4.9 contains a false colour plot of an SGH that
has been plotted using a regular polar spherical coordinate system.

4.1.4 True-view (azimuth and elevation)
For any given direction in space, as referenced to a given frame of reference, it is
possible to use an infinite number of different, but equivalent, spherical angles to
describe the relationship. However, in most areas of application, the spherical
angles are limited to modulo 360, or equivalently modulo 2p. However, even if the
range of the spherical angles is limited, it is still possible to describe a given
direction in more than one way. An implicit assumption has been made within text

Table 4.2 Direction cosines for three spherical coordinate systems

System u v w

q–f sin(q) cos(f) sin(q) sin(f) cos(q)
Az/El cos(El) sin(Az) sin(El) cos(El) cos(Az)
El/Az sin(Az) cos(Az) sin(El) cos(El) cos(Az)
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concerning the range of the angles (variables) q and f. These are

0 � q � 180 (4.16)

�180 � f � 180 (4.17)

An alternative but equally valid choice is

�180 � q � 180 (4.18)

0 � f � 180 (4.19)

Typically, this is convenient for displaying cuts, as only one value of f is
required to specify an entire great circle cut. Conversion between the two systems
is facilitated through

q ! �q (4.20)

f ! fþ p (4.21)

These relationships can be justified from Figure 4.10.
This observation provides an alternative possibility of plotting which is to

show the q cuts in the form of a polar diagram. Figure 4.11 shows the q cuts plotted
radially with each cut being rotated by an amount determined by the f angle. Here,
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parts of the pattern with q angles <0 correspond to the alternate sphere with the
mapping between spheres being as stated.

The true-view, that is polar plotting of the polar spherical coordinate system,
differs from the previous plots as this is not achieved by plotting the measured data
using a rectangular, i.e. raster, format. Relaxing the rigid connection between the
plotting system and positioner enables the introduction of other alternative plotting
systems that can potentially offer advantages when interpreting the patterns. Thus,
unlike the coordinate systems described above, the true-view coordinate system is
instead a polar representation of the polar spherical (q, f) coordinate system. Thus,
the x- and y-axes of the plot, denoted by Xg and Yg, respectively, are related to the
spherical angles through

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
g þ Y 2

g

q

(4.22)

f ¼ arctan
Yg

Xg

� �

(4.23)

Here, arctan is used to denote the four-quadrant arctangent function which has
a range of �p to p. Thus,

u ¼ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
g þ Y 2

g

q� �

cos arctan
Yg

Xg

� �� �

(4.24)

v ¼ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
g þ Y 2

g

q� �

sin arctan
Yg

Xg

� �� �

(4.25)

w ¼ cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X 2
g þ Y 2

g

q� �

(4.26)

By way of illustration, Figure 4.12 contains a false colour plot of an SGH that
has been plotted using a regular true-view coordinate system.

4.1.5 Direction cosine
Relaxing the rigid connection between the plotting system and the positioner
enables the introduction of other alternative plotting systems that can potentially
offer advantages when interpreting the patterns. By way of illustration, Figure 4.13
contains an Earth map when plotted using a direction cosine coordinate system.
This system is essentially the same as the k-space coordinate system since the two
are related to a linear scaling of the free-space propagation constant k0. However,
the direction cosine system has the inherent advantage that the system is not
dependent upon (scaled by) the frequency of the radiated field. The direction cosine
coordinate system has no direct analogy with an arrangement of rotation stages.
However, we are still not completely free to choose the values of u, v and w since
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the length of the unit vector which these components represent has, by definition, a
length of unity. Thus,

1 ¼ u2 þ v2 þ w2 (4.27)

Clearly, the direction cosine system corresponds to an orthographic projection
in which the sphere is projected onto a tangent, or secant, plane. Here, only a half-
space is visible at any one time and points on the plot for which

u2 þ v2 > 1 (4.28)

correspond to real f angles and complex q angles. If this system is used to plot
the angular spectrum of plane waves, then the propagating field will be con-
tained within the parts of the pattern when u2 þ v2 � 1, i.e. visible space, and
the reactive field will be contained with parts of the pattern when u2 þ v2 > 1.
Thus, when plotting true asymptotic far-field patterns, the field will be identi-
cally zero outside the unit circle. Here, u and v are related to the spherical
coordinates by

u ¼ sin q cosf (4.29)

v ¼ sin q sinf (4.30)

For the forward half-space,

w ¼ cos q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2 � v2
p

(4.31)

For the back half-space,

w ¼ cos q ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2 � v2
p

(4.32)

By way of illustration, Figure 4.14 contains a grey-scale plot of an SGH that
has been plotted using a regular direction cosine coordinate system.

4.1.6 Arcsine-space plotting coordinate system
Another useful plotting system, which is sometimes favoured by designers of active
electronically scanned array antennas, can be obtained by taking the arcsine of the x
and y plotting axes. This is illustrated in Figure 4.15. In this case, anything outside
of the unit square corresponds to invisible space.

Again, the qxy coordinate system has no direct analogy with an arrangement of
rotation stages and is instead most closely related to the direction-cosine system as

u ¼ sin Xg (4.33)

v ¼ sin Yg (4.34)

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � u2 � v2
p

(4.35)
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By way of illustration, Figure 4.16 contains a false colour plot of an SGH that
has been plotted using a regular arcsin-space coordinate system.

4.1.7 Transformation between coordinate systems
It is often the case that an antenna engineer is presented with antenna pattern data
tabulated in one of the coordinate systems described above and is required perhaps
for the purposes of comparison to re-plot that data in a different plotting system.
This can be interpreted as being the numerical analogue of exchanging variables
within analytical expressions. To help facilitate this, Table 4.3 comprises a sum-
mary of the various coordinate systems discussed above and illustrates how each of
the parameters can be related to one another.

For example, the spherical angles can be related to the azimuth over elevation
angles as

q ¼ arccos wð Þ ¼ arccos cos Azð Þ cos Elð Þð Þ (4.36)

f ¼ arctan
v

u

� �

¼ arctan
tan Elð Þ
sin Azð Þ

� �

(4.37)
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Table 4.3 Transformation between coordinates

Coordinate system x-Axis y-Axis z-Axis

Direction cosine u v w
k-Space kx/k0 ky/k0 kz/k0

Azimuth over elevation sinðAzÞcosðElÞ sinðElÞ cosðAzÞcosðElÞ
Elevation over azimuth sinðAzÞ cos Azð ÞsinðElÞ cosðAzÞcos Elð Þ
Polar spherical sin q cosf sin q sinf cos q
True-view (azimuth and elevation) sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Az2 þ El2
p Þ cosðtan�1 El

Az

� �Þ sinð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Az2 þ El2
p Þsin tan�1 El

Az

� �� �

cosð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Az2 þ El2
p Þ

qxy sin Xg sin Yg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2 Xg � sin2 Yg

q



Here, as usual, we take advantage of the two argument arctangent function so
that quadrant ambiguity can be eliminated. Or conversely, the azimuth and eleva-
tion angles can be related to the spherical angles as

Az ¼ arctan
u

w

� �

¼ arctan tan q cosfð Þ (4.38)

El ¼ arcsin vð Þ ¼ arcsin sin q sinfð Þ (4.39)

Indeed, by transforming via the direction cosines, it is possible to convert from
any one set of coordinates to any other set of coordinates. As a note of caution,
however, when calculating the inverse tangent it is important that the four-quadrant
inverse tangent is used. This function will return angles over a full �180� range
rather than over the more limited �90� range that returned by the conventional
inverse tangent function.

4.1.8 Coordinate systems and elemental solid angles
When evaluating far-field parameters, it is often important to have an expression
for the elemental solid angle each of the coordinate systems that the antenna pattern
is tabulated in. One example where this would be useful is when calculating the
total radiated power or the directivity of an antenna. The expression for the ele-
mental solid angle for each of the systems described above can be seen presented in
Table 4.4.

Thus, we have been able to describe a point in space with a particular antenna
coordinate system and convert it to any other antenna coordinate system by
equating the respective direction cosines.

4.1.9 One-dimensional great circle pattern cuts
One further complication arises when plotting great circle q-cuts for arbitrary but
fixed f-angles. The conventional cardinal cuts are illustrated in Figures 4.17 and
4.18. Here, to the left of the figure, the AUT can be seen depicted as a red square is

Table 4.4 Expressions for the elemental solid angle

Coordinate system Coordinates dW

Direction cosine u; vð Þ 1
cos q dudv

Azimuth over elevation Az;Elð Þ cosðElÞdAzdEl
Elevation over azimuth Az;Elð Þ cosðAzÞdAzdEl
Polar spherical q;fð Þ sinðqÞdqdf
True-view Az;Elð Þ sincðqÞdAzdEl
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shown placed at the centre of the far-field plotting sphere. The great circle cut is
depicted as the blue trace. To the right-hand side of the figure, the cut is presented
again as a blue trace; however, here it is plotted on a regular azimuth over the
elevation coordinate system. Figures 4.19 and 4.20 are equivalent plots only here,
two inter-cardinal plots are shown for various f-angles. Here, it can be seen that
almost none of the points on the cut coincide with points on the regular plaid
azimuth over elevation grid as the inter-cardinal cut corresponds to a sinusoidal
trajectory in the azimuth over elevation domain.
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Figure 4.17 Illustration of the horizontal cardinal cut in three-dimensional space
and on an azimuth over elevation plotting system
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Figure 4.18 Illustration of vertical cardinal cut in three-dimensional space and
on an azimuth over elevation plotting system
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Figure 4.19 Illustration of an inter-cardinal cut in three-dimensional space and
on an azimuth over elevation plotting system, smaller f-angle
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4.2 Polarisation basis and antenna measurements

As shown above, in the near zone, the electric, or magnetic, field is completely
characterised by specifying three vector components, whilst the far-field is defined
unambiguously by specifying two transverse vector components since the vector
component in the direction of propagation is identically zero due to the plane wave
condition. It is customary to define cross polarisation as ‘the polarisation orthogonal
to a reference polarisation’. Unfortunately, this leaves the direction of the reference
polarisation undefined and thus ambiguous for all but circularly polarised waves. The
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Figure 4.20 Illustration of an inter-cardinal cut in three-dimensional space and
on an azimuth over elevation plotting system, larger f angle
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definitions presented below can be used to resolve this ambiguity. In the far-field,
that is when the field point is very far removed from the antenna, a radiator will
produce an electric field perpendicular to the direction of propagation in some
orientation on a plane. That orientation can be described using two spherical angles,
similar to those used above to represent the direction of propagation, that is

Eðr; q;fÞ ¼ A q;fð Þbe q þ B q;fð Þbe f

h i

e�jk0r (4.40)

Eðr;Az;ElÞ ¼ A Az;Elð Þbe Az þ B Az;Elð Þbe El½ �e�jk0r (4.41)

Eðr;a; eÞ ¼ A a; eð Þbe a þ B a; eð Þbe e½ �e�jk0r (4.42)

Here, A and B are complex quantities and the suppressed time dependency of
the complex representations of the electromagnetic field vectors can be taken to be
of the form ejwt, i.e. an assumed positive time dependency. In the asymptotic (true)
far-field, any two unit vectors can be used to describe the polarisation. There are
two special cases for A and B that are important to consider and those are Case 1,
linearly polarised (A or B ¼ 0). In this case, the resulting electric field is indicative
of a field that is polarised in one direction with respect to the direction of propa-
gation. Case 2, elliptical polarisation (A and B are 90� out-of-phase with each
other). In this case, the resulting field appears to rotate around the direction of
propagation. In the special case of elliptical polarisation where the magnitudes of A
and B are equal, circular polarisation results.

When an antenna pattern is measured either in receive or in transmit mode, its
pattern is a function of the polarisation of the far-field probe that is used to measure
it. For example, if the far-field probe, or source antenna as it is sometimes called, is
predominantly polarised as that matching the AUT (co-polarised), then the pattern
will have higher values than when it is imperfectly matched to the AUT polarisa-
tion (cross-polarised). With the far-field probe antenna downrange, pointing at the
AUT positioner, at least two orientations of the probe are required to completely
characterise the AUT’s polarisation. For convenience, the two orientations should be
orthogonal to each other and perpendicular to the direction of propagation. In most
ranges, this is done by making a measurement and rotating the probe by 90� about its
boresight direction and repeating the measurement. If only a linear co-polar and cross-
polar pattern are required, the operator may decide to locate the peak of the pattern and
then rotate the probe’s angle so that the lowest value is received. This angle is the
cross-polar angle. The co-polar pattern is then measured 90� from this angle.

If a complete characterisation of the polarisation is required, then the operator
must measure both the amplitude and the phase for the two orthogonal polarisa-
tions. With these two measurements and a perfect far-field probe, any polarisation
can be synthesised. If the probe’s polarisation is not perfect, additional correction
must be performed to correct for the probe’s polarisation effects. Although this
correction is straightforward, it is not part of this discussion.

Each positioner configuration has a natural basis of polarisation vectors. As
with the pattern tabulating (plotting) angles, these vectors can be converted to other
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bases using a series of transformations. Polarisation patterns include direction
information about the antenna’s performance in a particular orientation. For
example, perhaps it is desired to know how sensitive the antenna is to signals
oriented along the horizon as opposed to those vertical. In general, the AUT’s
pattern will not have the same polarisation at all angles. In fact, at some angles, the
polarisation could be directly opposite of the desired pattern. Some of these become
design issues if cross-pol pattern rejection is of major concern. Understanding,
polarisation conversion and comparison between ranges using different positioner
configurations is very important in determining cross-pol performance.

4.2.1 Ludwig I (Cartesian)
The Cartesian polarisation basis, Ludwig’s definition I [3], corresponds to resol-
ving the electric field onto three unit vectors aligned with each of the three
Cartesian axes. This can be expressed as

E brð Þ ¼ Ex brð Þbe x þ Ey brð Þbe y þ Ez brð Þbe z (4.43)

This definition is valid in the near and far zones. Here, the unit vectors in the
x-, y-, and z-directions are denoted by

X � unit vector ¼ be x (4.44)

Y � unit vector ¼ be y (4.45)

Z � unit vector ¼ be z (4.46)

These are scalar unit vectors where

be x � be x ¼ be y � be y ¼ be z � be z ¼ 1 (4.47)

And,

be x � be y ¼ be x � be z ¼ be y � be z ¼ 0 (4.48)

To illustrate how to find, for example, the x-component of a field vector using
the dot product we see that

E � be x ¼ Exbe x þ Eybe y þ Ezbe z

� �

� be x ¼ Ex (4.49)

This concept is used when evaluating each of the field components defined in
the following section and the generalised definition of the dot product is also
employed when defining circular polarisation bases as will be illustrated below.
This arrangement is illustrated in Figure 4.21 which shows the x-axis orientated
red unit vectors and the y-axis orientated blue unit vectors which are depicted as
arrows placed over the surface of a unit sphere, the z-directed unit vectors have
been omitted from the plot. This illustrates that this definition is effectively
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defining the polarisation on a flat-screen normal to the boresight direction of the
AUT. Clearly around the boresight direction, the co-polar and cross polarisation is
as one would normally measure. The dotted grid lines represent lines of constant
q and f upon which the conceptual far-field vector pattern function is tabulated.

By way of illustration, Figures 4.22–4.24 contain a false colour grey-scale plot
of an SGH that has been plotted using a regular azimuth over elevation coordinate
system having been resolved onto a Ludwig I Cartesian polarisation basis.

4.2.2 Polar spherical
If instead the electric field is resolved onto a spherical polarisation basis, then it is
possible to define three further polarisation bases, each corresponding to placing
the pole along the x-, y- or z-axes, respectively, with each corresponding to one of
the positioner arrangements described above. For the case of the polar spherical
polarisation basis, the electric field is resolved onto three unit vectors, one aligned
to each of the three spherical unit vectors, beq ;bef ;ber . This is illustrated in
Figure 4.25 where the red arrows represent the beq -orientated unit vectors and the
blue arrows represent the bef -orientated unit vectors. The ber -orientated unit vectors
are not plotted, as there is no field in this direction since in the far-field all radiation
is transverse and wave propagation is in the radial direction. As before, the blue
grid lines represent lines of constant azimuth and elevation upon which the far-field
vector pattern function is tabulated.

Y

X

Figure 4.21 Cartesian polarisation basis (LI), Ex, Ey
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Here, the pole of the azimuth over elevation tabulation grid lies north and south
where the �y-axis pierces the unit sphere. Unfortunately, this polarisation basis
displays a soft singularity, i.e. a discontinuity, in the z-direction in both the forward
and back hemisphere, where q ¼ np and n ¼ 0; 1; 2; . . .. Thus, to implement this
definition, a choice must be made as to the orientation of beq and bef at the poles.
Typically, beq is chosen to be aligned to either f ¼ 0� or f ¼ 90� and bef is chosen
to be mutually orthogonal to beq and ber . Within this text, the f ¼ 0� convention has
been adopted. When the electric field is decomposed onto these unit vectors and the
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Figure 4.23 y-Polarised field component of an SGH plotted using an azimuth over
elevation coordinate system

90

60

30

–30

–60

–90
–180 –150 –120 –90 –60 –30 0

Az (deg)

Ex (dB)
El

 (d
eg

)

30 60 90 120 150 180

0

–10

–20

–30

–40

–50

0

Figure 4.22 x-Polarised field component of an SGH plotted using an azimuth over
elevation coordinate system
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radial component is assumed zero, the total field can be expressed mathematically
as follows:

E brð Þ ¼ Eq brð Þbeq þ Ef brð Þbef (4.50)
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Figure 4.24 z-Polarised field component of an SGH plotted using an azimuth over
elevation coordinate system
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Figure 4.25 Polar spherical polarisation basis (Eq, Ef)
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If the position vector to a point can be expressed as r ¼ r u1; u2; u3ð Þ, a tan-
gent vector to the curve u1 ¼ u1 x; y; zð Þ at that point for which u2 ¼ u2 x; y; zð Þ and
u3 ¼ u3 x; y; zð Þ are constant is, @r =@u1. Thus, a unit tangent vector in this direc-
tion is

be1 ¼
@r
@u1

@r
@u1

	

	

	

	

	

	

(4.51)

Similar expressions can be written down for the remaining unit vectors be2 and
be3 . Thus, if the position of the point in space is expressed in spherical coordinates
(Table 4.2), then

r ¼ sin q cosfbex þ sin q sinfbey þ cos qbez (4.52)

then

@r

@q
¼ cos q cosfbex þ cos q sinfbey � sin qbez (4.53)

Thus,

@r

@q

	

	

	

	

	

	

	

	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 q cos2 fþ cos2 q sin2 f� sin2 q
q

¼ 1 (4.54)

Hence, the unit vector in the direction of increasing q that is tangential to the
surface of a sphere

beq ¼ cos q cosfbex þ cos q sinfbey � sin qbez (4.55)

Similarly,

@r

@f
¼ �sin q sinfbex þ sin q cosfbey (4.56)

@r

@f

	

	

	

	

	

	

	

	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 q sin2 fþ sin2 q cos2 f
q

¼ sin q (4.57)

Hence,

bef ¼ �sinfbex þ cosfbey (4.58)

The relationship between the Cartesian and spherical field components can be
expressed in matrix notation as

Eq
Ef


 �

¼ cos q cosf cos q sinf �sin q
�sinf cosf 0


 �

�
Ex

Ey

Ez

2

4

3

5 (4.59)
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As the three-column by two-row matrix is both orthogonal and correctly nor-
malised to unity, the inverse matrix is equal to the matrix transpose and the con-
verse transformation can be expressed again in matrix notation as follows:

Ex

Ey

Ez

2

4

3

5 ¼
cos q cosf �sinf
cos q sinf cosf
�sin q 0

2

4

3

5 � Eq
Ef


 �

(4.60)

This results in there not being a convenient principal co-polar and cross-polar
field value, i.e. definition, around the AUT boresight as this definition involves
placing the pole of the polarisation basis along the z-axis. Although inconvenient in
many ways, this is the polarisation basis that is most closely associated with the
useful phi-over-theta ‘model tower’ positioning system, it is commonly encountered
when making either near- or far-field spherical antenna pattern measurements.

By way of a further illustration, Figures 4.26 and 4.27 contain a grey-scale plot
of an SGH that has been plotted using a regular azimuth over elevation coordinate
system having been resolved onto a polar spherical polarisation basis.

4.2.3 Ludwig II (Az/El, El/Az)
If the electric field is resolved onto a spherical polarisation basis, then it is possible
to define three polarisation bases, each corresponding to placing the pole along the
x-, y- or z-axes, respectively, with each corresponding to one of the positioner
arrangements described above. The z-axis aligned case was discussed in the pre-
ceding section. Ludwig’s definition II [3], therefore, has two useful definitions in
terms of a ‘co-polar’ and ‘cross-polar’ value on boresight. The azimuth-over-
elevation polarisation basis being the first of these which places the poles in the
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Figure 4.26 q-Polarised field component of an SGH plotted using an azimuth over
elevation coordinate system
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y-axis and can be expressed as

Eðbr Þ ¼ Eaz brð Þbe az þ Eel brð Þbe el (4.61)

Again, as we are primarily concerned with representing far-field antenna pat-
terns, the radial orientated field component is not considered, as this is identically
zero which is a direct consequence of the plane-wave condition. This arrangement
is illustrated schematically in Figure 4.28, which shows the vertical (blue) and
horizontal (red) unit vectors depicted as arrows placed over the surface of a unit
sphere and correspond to the case where the pole is placed along the y-axis. The
ber -orientated unit vectors are not plotted.

Clearly, around the boresight direction, the two components are naturally
orthogonal and consistent with Ludwig I. Using the same procedure to obtain the
transformation between the field components as before (Table 4.2), we find that as

r ¼ sin Az cos El bex þ sin El bey þ cos Az cos El bez (4.62)

Then,

@r

@Az
¼ cos Az cos El bex � sin Az cos El bez (4.63)

Thus,

@r

@Az

	

	

	

	

	

	

	

	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 Az cos2 El þ sin2 Az cos2 El
p

¼ cos El (4.64)
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Figure 4.27 f-Polarised field component of an SGH plotted using an azimuth
over elevation coordinate system
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Hence, the unit vector in the direction of increasing azimuth that is tangential
to the surface of a sphere

beAz ¼ cos Az bex � sin Az bez (4.65)

Similarly,

@r

@El
¼ �sin Az sin El bex þ cosfEl bey � cos Az sin El bez (4.66)

@r

@El

	

	

	

	

	

	

	

	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 Az sin2 El þ cos2 El þ cos2 Az sin2 El
p

¼ 1 (4.67)

Hence,

beEl ¼ �sin Az sin El bex þ cos El bey � cos Az sin El bez (4.68)
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Figure 4.28 Ludwig second polarisation basis (LII) Az/El
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The relationship between the Cartesian and azimuth over elevation spherical
field components can be expressed in matrix notation as

EAz

EEl


 �

¼ cos Az 0 �sin Az
�sin Az sin El cos El �cos Az sin El


 �

�
Ex

Ey

Ez

2

4

3

5 (4.69)

As the three-column by two-row matrix is both orthogonal and correctly nor-
malised to unity, the inverse matrix is equal to the matrix transpose and the con-
verse transformation can be expressed again in matrix notation as follows:

Ex

Ey

Ez

2

4

3

5 ¼
cos Az �sin Az sin El

0 cos El
�sin Az �cos Az sin El

2

4

3

5 � EAz

EEl


 �

(4.70)

Figures 4.29 and 4.30 contain a grey-scale plot of an SGH that has been plotted
using a regular azimuth over elevation coordinate system having been resolved
onto an azimuth over elevation polarisation basis.

There is another possible system which comes under the Ludwig II definition
and that is the elevation over azimuth polarisation basis [3]. This is depicted in
Figure 4.31.

Again around the boresight direction, the co-polar and x-polar components are
naturally orthogonal and consistent with Ludwig I. Using the usual procedure
(Table 4.2) to obtain the transformation between the field components as before, we
find that as

r ¼ sinabex þ cosa sin ebey þ cosa cos ebez (4.71)
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Figure 4.29 Azimuth-polarised field component of an SGH plotted using an
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Figure 4.30 Elevation-polarised field component of an SGH plotted using an
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Figure 4.31 Ludwig second polarisation basis (LII) El/Az
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Then,

@r

@a
¼ cosabex � sina sin ebey � sina cos ebez (4.72)

Thus,

@r

@a

	

	

	

	

	

	

	

	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 aþ sin2 asin2 eþ sin2 acos2 e
p

¼ 1 (4.73)

Hence, the unit vector in the direction of increasing azimuth that is tangential
to the surface of a sphere

bea ¼ cosabex � sina sin ebey � sina cos ebez (4.74)

Similarly,

@r

@e
¼ cosa cos ebey � cosa sin ebez (4.75)

Thus,

@r

@e

	

	

	

	

	

	

	

	

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 a cos2 eþ cos2 a sin2 e
p

¼ cosa (4.76)

Hence, the unit vector in the direction of increasing elevation that is tangential
to the surface of a sphere

bee ¼ cos ebey � sin ebez (4.77)

The relationship between the Cartesian and elevation over azimuth spherical
field components can be expressed in matrix notation as

Ea
Ee


 �

¼ cosa �sina sin e �sina cos e
0 cos e �sin e


 �

�
Ex

Ey

Ez

2

4

3

5 (4.78)

As the three-column by two-row matrix is both orthogonal and correctly nor-
malised to unity, the inverse matrix is equal to the matrix transpose and the con-
verse transformation can be expressed again in matrix notation as follows:

Ex

Ey

Ez

2

4

3

5 ¼
cosa 0

�sina sin e cos e
�sina cos e �sin e

2

4

3

5 � Ea
Ee


 �

(4.79)

Figures 4.32 and 4.33 contain a grey-scale plot of an SGH that has been plotted
using a regular azimuth over elevation coordinate system having been resolved
onto an elevation over azimuth polarisation basis.

Outside boresight both Ludwig I and II deviate from what one would normally
measure and indeed use in a practical scenario. Clearly, it is preferable to utilise a
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definition that applies over all angles and the resolution of this difficulty motivated
the adoption of Definition III.

4.2.4 Ludwig III (co-polar, cross-polar and cross-polar
discrimination)

This definition was formulated mathematically by Ludwig after its usage had
become commonplace in the antenna measurement community [3]. This definition
corresponds physically to rolling the range antenna [remote standard antenna
(RSA)] in c as the AUT is rotated in f. It has the inherent advantage that it removes
the soft singularity at q ¼ 0 present within the polar spherical definition. Here, the
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Figure 4.32 a-Polarised field component of an SGH plotted using an azimuth
over elevation coordinate system
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electric field is resolved onto three unit vectors, one aligned to each of the three unit
vectors, beco ;becross ;ber . This is illustrated in Figure 4.34 where the red arrows
represent the x-co-polar beco -orientated unit vectors and the blue arrows represent the
becross -orientated unit vectors. Here, an ‘x-co-polar’ definition has been assumed.
The ber -orientated unit vectors are not shown as in the far-field all radiation is
transverse and propagates in the radial direction. Again, the dotted grey grid lines
represent lines of constant q and f upon which the conceptual far-field vector
pattern function is tabulated.

For the RSA and the AUT to remain polarisation matched, the RSA must be
rotated through an angle �f as the AUT is rotated through an angle f. Thus, let the
polarisation-matched orientation be be co, and an orientation that is mutually ortho-
gonal to this and the direction of propagation be be cr. When the electric field is
decomposed onto these unit vectors the total field can be expressed mathematically
as follows:

E ¼ Ecobe co þ Ecrbe cr (4.80)

where

becross ¼ ber � beco (4.81)

Y

X

Figure 4.34 Ludwig III x-co-polar polarisation basis
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and obviously by design

beco � becross ¼ 0 (4.82)

The so-called co-polar and cross-polar unit vectors are related to the spherical
unit vectors through

be co ¼ cosfbe q � sinfbe f (4.83)

be cr ¼ sinfbe q þ cosfbe f (4.84)

Since, when expressed in matrix notation this is clearly an orthogonal and unit
normalised matrix the matrix inverse is equal to matrix transpose hence

be q ¼ cosfbe co þ sinfbe cr (4.85)

be f ¼ �sinfbe co þ cosfbe cr (4.86)

As

E ¼ Eqbe q þ Efbe f (4.87)

Thus,

E ¼ Eq cosfbe co þ sinfbe crð Þ þ Ef �sinfbe co þ cosfbe crð Þ (4.88)

Hence,

E ¼ Eq cosf� Ef sinf
� �

be co þ Eq sinfþ Ef cosf
� �

be cr (4.89)

Finally,

Eco ¼ Eq cosf� Ef sinf (4.90)

Ecr ¼ Eq sinfþ Ef cosf (4.91)

The relationship between the spherical and Ludwig III field components can be
expressed in matrix notation as

Eco

Ecross


 �

¼ cosf �sinf
sinf cosf


 �

� Eq
Ef


 �

(4.92)

Again, as the two-column by two-row matrix is both orthogonal and correctly
normalised to unity the inverse matrix is equal to the matrix transpose and the
converse transformation can be expressed again in matrix notation as follows:

Eq
Ef


 �

¼ cosf sinf
�sinf cosf


 �

� Eco

Ecross


 �

(4.93)
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Thus, the soft singularity encountered on boresight (q ¼ 0) is removed.
However, this is achieved at the expense of doubling the severity of the singularity
encountered at

q ¼ �p;�3p;�5p; . . . (4.94)

As this is in the opposite direction of the boresight direction, this is generally
of little practical consequence. Often, these equations are modified so that a
reference angle is included that represents the angle from the x-axis to the major
axis of the polarisation ellipse thus

Eco

Ecross

" #

¼ cos f� f0ð Þ �sin f� f0ð Þ
sin f� f0ð Þ cos f� f0ð Þ

" #

� Eq

Ef

" #

(4.95)

Here, f0 is the reference angle and enables, for example, a y-axis co-polar
reference to be chosen in cases where that definition is convenient. Figure 4.35
shows an example of this where the co-polar polarisation basis has been rotated by
40� to illustrate a ‘slanted’ co-polarisation definition. Comparison with Figure 4.34
enables the effect of the generalised rotated polarisation reference as shown in
Figure 4.35 to be seen more clearly.

Y

X

Figure 4.35 Ludwig III rotated-co-polar polarisation basis
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Figures 4.36 and 4.37 contain a false colour plot of an SGH that has been
plotted using a regular azimuth over elevation coordinate system having been
resolved onto a Ludwig III co-polar and cross-polar polarisation basis where the
co-polar reference direction is aligned with the x-axis.

The above definition assumes that the co-polar reference direction is aligned
with the positive x-axis, i.e. horizontal axis. This definition can easily be modified
to accommodate a vertically polarised reference direction by introducing a f-offset
in the definition whereby the relationship between the spherical and Ludwig III
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Figure 4.36 Co-polarised field component of an SGH plotted using an azimuth
over elevation coordinate system
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Figure 4.37 Cross-polarised field component of an SGH plotted using an azimuth
over elevation coordinate system
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field components can be expressed in matrix notation as

Eco

Ecross


 �

¼ cos f� f0ð Þ �sin f� f0ð Þ
sin f� f0ð Þ cos f� f0ð Þ


 �

� Eq
Ef


 �

(4.96)

Here, f0 is used to denote the reference direction measured from the positive
x-axis to the major axis of the polarisation ellipse. Thus, when f0 ¼ p/2, the co-polar
reference is vertically polarised. This definition relies upon the principle that the main
beam direction, i.e. the antenna boresight, is aligned with the z-axis. Although we
have removed the soft singularity on boresight, we have achieved this at the price of
increasing the severity of the polarisation issue in the opposite direction, and this is
illustrated in Figure 4.38. This issue is not normally problematic as for many antennas
there is very little field propagating in this direction and so it is seldom noticed.

When considering mechanically or electrically scanned antennas or a single
spacecraft with many antennas each orientated such that their respective main
beams point in different directions this may not in fact be the case and this is the
motivation for the development of a more general LIII definition. This can be
implemented in a straightforward way, although in this case it is necessary to apply
the isometric rotations to the Cartesian, that is, Ludwig I, field components.
A detailed description of the rotation process is now given as

1. Define the polarisation boresight system as a rotation from the nadir-centred
azimuth over elevation plotting system.

Y

Z
X

Figure 4.38 Ludwig III co-polar and cross-polar polarisation basis viewed
from behind
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2. Transform Cartesian field components into the new rotated basis specified by
the polarisation boresight.

3. Transform the Cartesian direction cosines of the field point into the new
rotated system.

4. Calculate the new spherical angles, q and f, of the data point in the new system.
5. Calculate spherical field components in the rotated coordinate system from the

rotated Cartesian field components.
6. Calculate Ludwig III co-polar and cross-polar field components in the rotated system.

Circular polarisation will be considered in detail in the following sections;
however, it is worthwhile to note that many workers make the conversion from
linear to circular polarisation using the LIII co-polar and cross-polar field compo-
nents. The reason for this is that the fields and the tilt angle are well defined in the
direction of greatest interest.

The differences between the various definitions of cross-polarisation that are
presented in the above sections are subtle and without an attendant definition being
provided with the plotted antenna patterns it is often far from apparent as to which
definition has been used. It is also clear that the cross-polarised patterns show
greater differences and this can become confusing when comparing between pat-
terns if great care is not taken.

4.2.5 Conversion between polarisation bases
It is often the case in practice that an antenna pattern is acquired using one of the
polarisation definitions above and for the purposes of post-processing or pattern
comparison, it is required to convert that data into an alternative definition of cross-
polarisation. This section considers that task and provides formulae for imple-
menting this change of polarisation basis.

As with the conversion of direction vectors, the procedure for converting
polarisation basis is perhaps most readily accomplished by first resolving the fields
onto a triad of Cartesian field components before and then resolving the fields onto
the required basis. This strategy is used to derive the analytic transformations that
are presented in the following sections for convenience.

4.2.5.1 Conversion from polar spherical to azimuth over
elevation bases

The transformation from polar spherical to LII azimuth over elevation field compo-
nents can be accomplished by coupling together the relevant matrix equations thus

EAz

EEl


 �

¼ cos Az 0 �sin Az

�sin Az sin El cos El �cos Az sin El


 �

�
cos q cosf �sinf
cos q sinf cosf
�sin q 0

2

6

4

3

7

5 � Eq

Ef


 � (4.97)
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Multiplying yields a two-by-two matrix multiplied by a column vector. The
elements of the square matrix are

A1;1 ¼ cos Az cos q cosfþ sin Az sin q

¼ cos2 Az cos El cosfþ sin2 q cosf
cos El

¼ cos2 Az cos2 El þ sin2 q
� � cosf

cos El

¼ cosf
cos El

(4.98)

A2;1 ¼ �sin Az sin El cos q cosfþ cos El cos q sinfþ cos Az sin El sin q

¼ � sin2 q sinf cos q cos2 f
cos El

þ cos El cos q sinfþ cos q sin2 q sinf
cos El

¼ �sin2 q cos2 fþ 1 � sin2 q sin2 fþ sin2 q
� � cos q sinf

cos El

¼ 1 � sin2 q cos2 fþ sin2 f� 1
� � � cos q sinf

cos El

¼ cos q sinf
cos El

(4.99)

A1;2 ¼ � cos Az sinf ¼ � cos q sinf
cos El

(4.100)

A2;2 ¼ sin Az sin El sinfþ cos El cosf

¼ sin2q sin2f
cos El

þ cos El

� �

cosf

¼ cosf
cos El

(4.101)

This therefore reduces to the desired final expression

EAz

EEl


 �

¼ 1
cos El

cosf �cos q sinf
cos q sinf cosf


 �

� Eq
Ef


 �

(4.102)

where

cos El ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2 El
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2 q sin2 f
q

(4.103)

The inverse transformation can be expressed by evaluating the matrix inverse
yielding

Eq
Ef


 �

¼ 1

cos2 fþ cos2 q sin2 f
cosf cos El cos q sinf cos El

�cos q sinf cos El cosf cos El


 �

� EAz

EEl


 �

(4.104)
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From trigonometric identities, we can simplify the common denominator as
follows:

cos2 El ¼ 1 � sin2 q sin2 f
¼ 1 � 1 � cos2 qð Þsin2 f
¼ 1 � sin2 fþ cos2 q sin2 f
¼ cos2 fþ cos2 q sin2 f

(4.105)

This therefore yields the simplified final result

Eq
Ef


 �

¼ 1
cos El

cosf cos q sinf
�cos q sinf cosf


 �

� EAz

EEl


 �

(4.106)

4.2.5.2 Conversion from polar spherical to elevation over
azimuth bases

A similar procedure can be used to obtain the conversion expressions that relate the
polar spherical field components to the elevation over azimuth field components,
whereby

Ea
Ee


 �

¼ cosa �sina sin e �sina cos e
0 cos e �sin e


 �

�
cos q cosf �sinf
cos q sinf cosf
�sin q 0

2

4

3

5 � Eq
Ef


 � (4.107)

Multiplying yields a two-by-two matrix multiplied by a column vector. The
elements of the square matrix are

A1;1 ¼ cosa cos q cosf� sina sin e cos q sinfþ sina cos e sin q

¼ cosa cos q cosf� sin2 q cosf cos q sin2 f
cosa

þ sin2 q cosf cos q
cosa

¼ cos2 a� sin2 q sin2 fþ sin2 q
� � cos q cosf

cosa
¼ 1 � sin2 q cos2 f� sin2 q sin2 fþ sin2 q

� � cos q cosf
cosa

¼ 1 � sin2 q cos2 fþ sin2 f� 1
� � � cos q cosf

cosa
¼ cos q cosf

cosa
(4.108)

A2;1 ¼ cos e cos q sinfþ sin e sin q

¼ cos2 q sinf
cosa

þ sin2 q sinf
cosa

¼ sinf
cosa

(4.109)
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A1;2 ¼ �cosa sinf� sina sin e cosf

¼ � cos2 aþ sin2 a
� � sinf

cosa
¼ � sinf

cosa

(4.110)

A2;2 ¼ cos e cosf ¼ cos q cosf
cosa

(4.111)

This therefore reduces to the desired final expression

Ea
Ee


 �

¼ 1
cosa

cos q cosf �sinf
sinf cos q cosf


 �

� Eq
Ef


 �

(4.112)

where a and e are the azimuth and elevation angles, respectively, and

cosa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2 a
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � sin2 q cos2 f
q

(4.113)

The inverse transformation can be expressed as

Eq

Ef


 �

¼ 1

cos2 q cos2 fþ sin2 f

� cos q cosf cosa sinf cosa
�sinf cosa cos q cosf cosa


 �

� Ea

Ee


 � (4.114)

From trigonometric identities, we can simplify the common denominator as
follows:

cos2 a ¼ 1 � sin2 a ¼ 1 � 1 � cos2 qð Þcos2 f
¼ 1 � cos2 fþ cos2 q cos2 f ¼ sin2 fþ cos2 q cos2 f

(4.115)

Hence,

Eq
Ef


 �

¼ 1
cosa

cos q cosf sinf
�sinf cos q cosf


 �

� Ea
Ee


 �

(4.116)

4.2.5.3 Conversion between LII definitions
Often a requirement exists to transform between spherical polarisation bases. This
can be readily accomplished by multiplying out the respective matrices. Let us first
consider transforming between azimuth over elevation and elevation over azimuth
field components

Ea
Ee


 �

¼ cosa �sina sin e �sina cos e
0 cos e �sin e


 �

�
cos Az �sin Az sin El

0 cos El
�sin Az �cos Az sin El

2

4

3

5 � EAz

EEl


 �

(4.117)
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Multiplying out the matrices results in a two-by-two matrix multiplied by a
column vector. The elements of the square two-by-two matrix are

A1;1 ¼ cosa cos Az þ sina cos e sin Az

¼ cosa cos Az þ cos El sin Az cos Az cos El sin Az

cosa
¼ cos2 aþ cos2 El sin2 Az

� � cos Az

cosa
¼ cos2 aþ sin2 a

� � cos Az

cosa
¼ cos Az

cosa

(4.118)

A2;1 ¼ sin e sin Az ¼ sin Az sin El

cosa
(4.119)

A1;2 ¼ �cosa sin Az sin El � sina sin e cos El þ sina cos e cos Az sin El

¼ �cosa sin Az sin El � cos2 El sin Az sin El

cosa
þ cos2 El sin Az cos2 Az sin El

cosa

¼ � cos2 aþ cos2 El � cos2 El cos2 Azð Þ sin Az sin El

cosa

¼ � cos2 aþ cos2 El 1 � cos2 Azð Þð Þ sin Az sin El

cosa

¼ � cos2 aþ cos2 El sin2 Az
� � sin Az sin El

cosa

¼ � cos2 aþ sin2 a
� � sin Az sin El

cosa

¼ � sin Az sin El

cosa
(4.120)

A2;2 ¼ cos e cos El þ sin e cos Az sin El ¼ cos2 El cos Az

cosa
þ sin2 El cos Az

cosa

¼ cos Az

cosa
(4.121)

Hence, the final result is

Ea

Ee

" #

¼ 1
cosa

cos Az �sin Az sin El

sin Az sin El cos Az

" #

� EAz

EEl

" #

(4.122)

This inverse transform can be obtained from taking the inverse of this. Let

a ¼ sin A sin E

cosa
(4.123)

b ¼ cos A

cosa
(4.124)
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Thus,

Ea

Ee

" #

¼ a �b

b a

" #

� EAz

EEl

" #

(4.125)

So that

EAz

EEl


 �

¼ a �b
b a


 ��1

� Ea
Ee


 �

¼ 1
a2 þ b2

a b
�b a


 �

� Ea
Ee


 �

(4.126)

Recalling the relations between the coordinate angles, sina ¼ sin Az cos El,
cos2 a ¼ 1 � sin2 Az cos2 El and recalling the trigonometric identity,
cos2 qþ sin2 q ¼ 1, it can be seen that

a2 þ b2 ¼ sin2 Az sin2 El þ cos2 Az

cos2 a

¼ sin2 Az 1 � cos2 Elð Þ þ cos2 Az

1 � sin2 Az cos2 E

¼ sin2 Az � sin2 Az cos2 El þ cos2 Az

1 � sin2 Az cos2 El

¼ 1 � sin2 Az cos2 El

1 � sin2 Az cos2 El
¼ 1

(4.127)

Hence, the required result is found to be

EAz

EEl

" #

¼ 1
cosa

sin Az sin El cos Az

�cos Az sin Az sin El

" #

� Ea

Ee

" #

(4.128)

4.2.6 Elliptical polarisation, axial ratio and tilt angle
The term polarisation is used to describe the behaviour (that is to say, the path of
travel of the tip) of the instantaneous electric field vector as a function of time at a
fixed point in space. By removing the time dependence from the electric field
expression, these equations can be used to determine the locus of E, that is to say,
the path of travel of the tip of the electric, or magnetic field, vector. To derive
circular polarisation performance for an AUT, one can transform mathematically
the linear polarisation results. The following section presents the development of a
method for accomplishing this task. Let us first choose two orthogonal electric field
components in a plane so that we can write

Eq

E1
¼ coswt (4.129)

Ef

E2
¼ cos wt þ gð Þ ¼ coswt cos g� sinwt sin g (4.130)
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Thus,

Ef

E2
¼ Eq

E1
cos g� sinwt sin g (4.131)

Hence,

Ef

E2
� Eq

E1
cos g

� �2

¼ sin2 wt sin2 g (4.132)

Expanding yields

Ef

E2

� �2

� 2
EqEf

E1E2
cos gþ Eq

E1

� �2

cos2 g ¼ sin2 wt sin2 g (4.133)

Using trigonometric identities,

Ef

E2

� �2

� 2
EqEf

E1E2
cosDfþ Eq

E1

� �2

1 � sin2 g
� � ¼ sin2 wt sin2 g (4.134)

Thus,

Ef

E2

� �2

� 2
EqEf

E1E2
cos gþ Eq

E1

� �2

� Eq

E1

� �2

sin2 g ¼ sin2 wt sin2 g (4.135)

Ef

E2

� �2

� 2
EqEf

E1E2
cos gþ Eq

E1

� �2

� cos2 wt sin2 g ¼ sin2 wt sin2 g (4.136)

Hence,

Eq

E1

� �2

� 2
EqEf

E1E2
cos gþ Ef

E2

� �2

� sin2 g ¼ 0 (4.137)

which is in the same form as the equation for an ellipse, namely,

Ax2 þ Bxy þ Cy2 þ Dx þ Ey þ F ¼ 0 (4.138)

Thus, the tip of the instantaneous field vector traces out a curve which is the
shape of an ellipse. Here, the coefficients are

A ¼ 1

E2
1

(4.139)

B ¼ � 2 cos g
E1E2

(4.140)

C ¼ 1

E2
2

(4.141)

F ¼ �sin2 g (4.142)

Antenna pattern plotting: coordinate systems and polarisation bases 149



Here, there is no x- or y-term, which implies that the ellipse is not translated in
the x- or y-axis as D ¼ E ¼ 0. However, there is an xy term, i.e. B 6¼ 0, which
implies that the ellipse could be rotated. In general, the coordinate axes will not
align with the principal axes of the polarisation ellipse. The amount of rotation is
called the tilt angle and can be calculated from the complex components of the E
field. This is represented schematically in Figure 4.39. Thus, by also calculating the
semi-major and semi-minor axes of the polarisation ellipse, the complete polar-
isation properties of the field can be expressed in terms of the parameters of the
polarisation ellipse.

Expressions for the tilt angle and the semi-major and semi-minor axes can be
obtained from the E field in a straightforward way. As

Ef ¼ E2 cos wt þ gð Þ (4.143)

This can be written as

Efðr ; tÞ ¼ E2ðr Þ coswt cos gþ sinwt sin g½ �
¼ pfðr Þ coswt þ qfðr Þ sinwt

(4.144)

where

pfðr Þ ¼ E2ðr Þ cos g (4.145)

qfðr Þ ¼ E2ðr Þ sin g (4.146)
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Figure 4.39 Polarisation ellipse showing semi-major and semi-minor axes.
E denotes the instantaneous electric field at some time t
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In general, we can write

E ðr ; tÞ ¼ p ðr Þ coswt þ q ðr Þ sinwt (4.147)

So,

pqðr Þ ¼ E1ðr Þ; qqðr Þ ¼ 0 yields Eqðr ; tÞ (4.148)

Thus, g ¼ 0 gives linear polarisation and g ¼ �90� gives circular polarisation
(for E1 ¼ E2) and elliptical polarisation otherwise. We can write

E ðr ; tÞ ¼ Re Uðr Þe�jwt
� �

(4.149)

U ðr Þ ¼ p ðr Þ þ jq ðr Þ (4.150)

Now looking at E point r ¼ r0 as time varies, end point of E describes an
ellipse defined by p and q. Now, we can write

p þ jq
� �

¼ a þ jbð Þejf (4.151)

Here, f is any scalar. Thus, we can write

a ¼ p cosfþ q sinf (4.152)

b ¼ �p sinfþ q cosf (4.153)

If we now choose f so that a and b are perpendicular to each other, the
orthogonality relation yields

a � b ¼ p cosfþ q sinf
� �

� �p sinfþ q cosf
� �

¼ 0 (4.154)

We can now write

E ðr ; tÞ ¼ a þ jbð Þe�jðwt�fÞ ¼ a cosðwt � fÞ þ b sinðwt � fÞ (4.155)

Taking Cartesian axes with origin at r0 and with x and y directions along a and
b yields

Ex ¼ a cos ðwt � fÞ (4.156)

Ey ¼ b sin ðwt � fÞ (4.157)

which is the parametric equation of an ellipse with semi-major axis ¼ a, semi-
minor axis ¼ b and tilt angle ¼ f. Thus, solving for these three parameters will
fully specify the ellipse. By simple geometry, it can be shown that p and q are thus
semi-radii of the ellipse measured in the q and f directions, see Figure 4.39.
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Simplifying the dot product of a and b yields

�p 2 þ q 2
� �

cosf sinfþ p � q cos2 f� sin2 f
� � ¼ 0 (4.158)

1
2

�p 2 þ q 2
� �

sin 2fþ p � q cos 2f ¼ 0 (4.159)

Hence, we obtain the desired result

tan 2f ¼ 2p � q

p2 � q2
(4.160)

If g is used to denote the angle between the vectors p and q, then this can be
expressed as

tan 2f ¼ 2pq cos g
p2 � q2

(4.161)

Thus, the tilt angle f, in radians, is obtained from

f ¼ 1
2

arctan
2pq

p2 � q2
cos g

� �

(4.162)

where g is the phase angle between the vectors p and q. The tilt angle is measured
from the x-axis and is un-rotated when f ¼ 0. The maximum field would be
measured when the measuring frame of reference is a rotation by f and the mini-
mum would be recorded 90� away from this.

Next, we wish to determine the semi-major and semi-minor axes of the
polarisation ellipse. To accomplish this, let us now consider

að Þ2 ¼ ðp cos fþ q sin fÞ2 (4.163)

Expanding yields

a2 ¼ p2 cos2 fþ q2 sin2 fþ 2p � q cosf sinf (4.164)

or

a2 ¼ p2 cos2 fþ q2 sin2 fþ p � q sin 2f (4.165)

Expanding yields

a2 ¼ p2

2
cos 2fþ 1ð Þ þ q2

2
1 � cos 2fð Þ þ p � q sin 2f (4.166)

Simplifying yields

a2 ¼ 1
2

p2 þ q2
� �þ 1

2
p2 � q2
� �

cos 2fþ p � q sin 2f (4.167)

152 Theory and practice of modern antenna range measurements, volume 1



Returning to the expression for the rotation and considering the tangent of an
angle yields a useful trigonometric identity, namely,

tan2 f ¼ sin2 f
1 � sin2 f

(4.168)

Thus,

tan2 2f ¼ 4ðp � q Þ2

p2 � q2ð Þ2 (4.169)

Hence,

sin2 2f
1 � sin2 2f

¼ 4ðp � q Þ2

p2 � q2ð Þ2 (4.170)

p2 � q2
� �2

sin2 2f ¼ 4ðp � q Þ2 � 4 sin2 2fðp � q Þ2 (4.171)

p2 � q2
� �2 þ 4ðp � q Þ2 ¼ 4ðp � q Þ2

sin2 2f
(4.172)

Thus, we obtain the first of our two necessary substitutions

sin 2f ¼ 2ðp � q Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � q2ð Þ2 þ 4ðp � q Þ2
q (4.173)

The second can be obtained from the first using

2p � q

p2 � q2
¼ 1

cos 2f
2ðp � q Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � q2ð Þ2 þ 4ðp � q Þ2
q (4.174)

Hence, we find the second of our two substitutions

cos 2f ¼ p2 � q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � q2ð Þ2 þ 4ðp � q Þ2
q (4.175)

Thus, if these substitutions are used to simplify the expression of a2, we obtain

a2 ¼ 1
2

p2 þ q2
� �þ 1

2
p2 � q2ð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � q2ð Þ2 þ 4ðp � q Þ2
q þ 2ðp � q Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � q2ð Þ2 þ 4ðp � q Þ2
q

(4.176)
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or

a2 ¼ 1
2

p2 þ q2
� �þ p2 � q2ð Þ2 þ 4ðp � q Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � q2ð Þ2 þ 4ðp � q Þ2
q

2

6

4

3

7

5 (4.177)

Hence,

a2 ¼ 1
2

p2 þ q2
� �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � q2ð Þ2 þ 4ðp � q Þ2
q


 �

(4.178)

This can be expressed in terms of the angle between the vectors p and q as

a2 ¼ 1
2

p2 þ q2
� �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p4 þ q4 � 2p2q2 þ 4p2q2 cos2 g
p

h i

(4.179)

a2 ¼ 1
2

p2 þ q2
� �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p4 þ q4 þ 2p2q2 �1 þ 2 cos2 gð Þ
p

h i

(4.180)

Thus, the final result is

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

p2 þ q2
� �þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p4 þ q4 þ 2p2q2 cos 2g
p

h i

r

(4.181)

where the positive radical is chosen. Following a similar procedure, we can obtain a
similar result for b. Thus,

b2 ¼ p2 sin2 fþ q2 cos2 f� p � q sin 2f (4.182)

So that

b2 ¼ 1
2

p2 þ q2
� �� 1

2
p2 � q2
� �

cos 2f� p � q sin 2f (4.183)

Hence,

b2 ¼ 1
2

p2 þ q2
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 � q2ð Þ2 þ 4ðp � q Þ2
q


 �

(4.184)

Thus, as required,

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2

p2 þ q2
� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p4 þ q4 þ 2p2q2 cos 2g
p

h i

r

(4.185)

where again the positive radical is chosen. Here, p and q are thus semi-radii of the
ellipse measured in the q and f directions. Following the IEEE standard, the axial
ratio is the ratio of the major axis to the minor axis of the polarisation ellipse. Thus,
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when denoted with AR, the axial ratio is defined to be the ratio of a and b

AR ¼ a

b
(4.186)

which is clearly equivalent to

AR ¼ Emax

Emin
(4.187)

Here, 1 � |AR| � ?. This is often presented in a logarithmic form

AR dB ¼ 20 log10 ARj jð Þj (4.188)

Often the inverse is calculated as this avoids the divide by zero that would be
encountered at points in space where the field is perfectly linearly polarised. In this
case from the law of logarithms, the AR in dB can be seen to be the negative of the
IEEE definition. Thus, it is possible to describe the polarisation ellipse unam-
biguously as it has a shape that is quantified by the axial ratio, and an orientation
which is specified by the tilt angle. Other representations of the polarisation state
can be used [4]; however, the axial ratio and tilt angle are perhaps the most com-
monly encountered parameters. Although the derivation presented above is based
upon the assumption of a plane wave, this nonetheless yields a very general result
since over local regions of interest many waves (including spherical waves) behave
as though they were plane waves.

For plane waves, the two cases of particular interest are those of plane and
circularly polarised waves. For the case of linear polarisation, the phase difference,
g, between the two components is a multiple of 180� and the polarisation ellipse
degenerates into a straight line (that is to say, an infinitely thin ellipse), which in
general is tilted by an angle f from the x-axis. Thus, for the special case of linearly
polarised fields,

f ¼ 1
2

arctan
2pq

p2 � q2
cos �mpð Þ

� �

(4.189)

where m is an integer and the tilt angle can be expressed as

f ¼ 1
2

arctan
2pq

p2 � q2
�1ð Þm

� �

(4.190)

For the case of circular polarisation p ¼ q and the phase difference between the
two components is an odd multiple of 90� and the polarisation ellipse degenerates
into a circle. Thus, g ¼ mp/2 where again m is any non-zero integer. Two cases are
admitted by the positive and negative rotation of the electric field vector as a
function of time.

It is important to be aware that the same value of semi-major and semi-minor
radii and therefore axial ratio, will be obtained irrespective of the orthogonal spatial
polarisation basis that the field is resolved on to when calculating the values of a
and b. Therefore, any of the orthogonal spatial polarisation basis described above
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can be used, for example, Ex, Ey; Eq, Ef; and so on. However, and as ever, it is
advantageous to choose a polarisation basis that is free from singularities in the
direction of greatest interest.

4.2.7 Linear and circular polarisation bases –
complex vector representations

The various spatial polarisation bases that have been discussed above, that is to say,
the various Ludwig definitions of cross-polarisation, etc., can be used to represent
linear or circular temporal polarisations states of the field. However, when con-
sidering an antenna whose radiation is predominately circularly polarised, alter-
native temporal polarisation bases are often adopted so as to simplify the
visualisation of the fields. Whilst there is no difficulty encountered when plotting
the axial ratio or tilt angle as a function of position (in either one or two dimen-
sions), the cognitive interpretation of fields (either electric or magnetic) can
become highly challenging and some form of simplification is clearly very attrac-
tive. As the complexity arises from the rotating nature of the tip of the electric (or
magnetic) field vector, by removing this time dependency (and therefore spatial
singularity) from the fields would provide the simplification necessary. That is to
say, if the fields were plotted relative to a unit vector that rotated with the same
angular velocity as the field itself, then this difficulty can be resolved, cf. LIII
definition [3]. As two orthogonal bases are required, it is possible to define a sec-
ond vector that rotates in the opposite direction at the same rate. It turns out that
mathematically, this can be conveniently accomplished through the use of complex
unit vectors. Complex vector algebra offers a convenient framework for the ana-
lysis of time-harmonic fields and as such this subject has been treated mainly
within books on electromagnetics in the context of time-harmonic fields. The fol-
lowing section develops the concept of complex vector algebra, a circularly
polarised basis, and the necessary transformations.

When defining linear polarisation bases, the evaluation of a given field
component was based upon the definition of the scalar product that was formed
between a complex field vector and a real unit vector. When constructing circular
components we are required to evaluate the scalar product between complex
vectors. Here, complex vectors are merely vectors whose components are com-
plex numbers such that a complex vector is defined as a combination of two real
vectors such that

A ¼ A re þ jA im (4.191)

The complex conjugate of a complex vector is denoted with a superscript
asterisk and is defined as

A 	 ¼ A re þ jA im

� �	 ¼ A re � jA im (4.192)

Usefully, if A corresponds to a time-harmonic vector, then A* corresponds to a
time-harmonic vector that rotates in the opposite direction. The algebra of complex
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vectors adhere too many of the rules known from real vector algebra; however,
there are some differences that need expounding. For real, non-zero, vectors it is
possible to define parallel vectors such that a � b ¼ 0 and perpendicular vectors
such that a � b ¼ 0. However, for complex vectors, the usual definition of the dot
product can lead to ambiguity. For example, the dot product of a vector with itself
can be zero without the vector itself being the zero vector and this clearly yields
complications for the concepts of length and angle. This difficulty can be resolved
if the definition of the dot product is modified such that it is understood that one of
the vectors is conjugated [5], and in this case, the second vector is modified.
Clearly, if a and b happen to be real, then this definition reduces to the standard
definition of the dot product. Thus, many geometric properties can be retained, all
be it at the cost of giving up the commutative property of the inner product, that is if
a and b are complex, a � b 	 6¼ b � a 	 as a � b 	 ¼ b � a 	ð Þ	. Here, the superscript
asterisk is used to denote the complex conjugate. This makes the definition for the
real-valued squared magnitude of a complex vector

aj j2 ¼ a � a 	 (4.193)

Using this definition, and as before, the complex polarisation vectors can be
defined so that they form an orthogonal set such that

be R � be 	
R ¼ be L � be 	

L ¼ 1 (4.194)

And,

be R � be 	
L ¼ 0 (4.195)

Here, the unit vectors for right-hand, and left-hand, circular components are
defined as follows, where a þjwt time convention has been assumed

be R 

be x � jbe y

� �

ffiffiffi

2
p (4.196)

be L 

be x þ jbe y

� �

ffiffiffi

2
p (4.197)

The total field can be formed from the linear combination of the two ortho-
gonal components

E ¼ ERbe R þ ELbe L (4.198)

Thus, to illustrate how to find, for example, the R-component of a field vector
using the dot product, we see that

E � be 	
R ¼ ERbe R þ ELbe Lð Þ � be 	

R ¼ ERbe R � be 	
R ¼ ER (4.199)
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Thus, if we wish to find the R-component of a field from the linear compo-
nents, we use a similar strategy

ER ¼ E � be 	
R ¼ Exbe x þ Eybe y

� �

� be 	
R ¼ Exbe x þ Eybe y

� �

�
be x þ jbe y

� �

ffiffiffi

2
p (4.200)

Thus, for a þjwt time convention,

ER ¼ Ex þ jEy
ffiffiffi

2
p (4.201)

Similarly,

EL ¼ E � be 	
L ¼ Exbe x þ Eybe y

� �

� be 	
L ¼ Exbe x þ Eybe y

� �

�
be x � jbe y

� �

ffiffiffi

2
p (4.202)

Thus, for a þjwt time convention,

EL ¼ Ex � jEy
ffiffiffi

2
p (4.203)

It is important to note the difference in the signs of the imaginary parts of the
equations for the circular unit vectors and the equations for the circular field
components which results from the definition of the dot product used when treating
complex vectors. Many texts do not make this important distinction. If a different
time convention had been adopted, the difference would have still been present
although the expressions would have been the conjugates of those developed above.
The inverse transformations of unit vectors can be easily obtained. Adding

be R þ be L ¼
be x � jbe y

� �

ffiffiffi

2
p þ

be x þ jbe y

� �

ffiffiffi

2
p ¼ 2be x

ffiffiffi

2
p (4.204)

or, for a þjwt time convention,

be x ¼
be R þ be Lð Þ

ffiffiffi

2
p (4.205)

Subtracting

be R � be L ¼
be x � jbe y

� �

ffiffiffi

2
p �

be x þ jbe y

� �

ffiffiffi

2
p ¼ �2jbe y

ffiffiffi

2
p (4.206)

or, for a þjwt time convention,

be y ¼ �j be L � be Rð Þ
ffiffiffi

2
p (4.207)
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Computing the transform from circular to linear components

Ex ¼ E � be 	
x ¼ ERbe R þ ELbe Lð Þ � be 	

x ¼ ERbe R þ ELbe Lð Þ � be R þ be Lð Þ
ffiffiffi

2
p (4.208)

Hence, for a þjwt time convention,

Ex ¼ ER þ EL
ffiffiffi

2
p (4.209)

Similarly,

Ey ¼ E � be 	
y ¼ ERbe R þ ELbe Lð Þ � be 	

y ¼ ERbe R þ ELbe Lð Þ � j be L � be Rð Þ
ffiffiffi

2
p (4.210)

Hence, for a þjwt time convention,

Ey ¼ j EL � ERð Þ
ffiffiffi

2
p (4.211)

As set out above, the axial ratio is defined as

AR ¼ a

b
¼ Emax

Emin
(4.212)

Thus, when expressed in terms of circular polarised fields, the axial ratio can
be seen to be easily obtained from

AR ¼ ERj j þ ELj j
ERj j � ELj j (4.213)

Here, the sign of the denominator defines the sense of the hand of polarisation.
As a and b are both radii, they are always positive real numbers and as such they
are not able to provide the hand of polarisation. Note that when expressing the axial
ratio in a logarithmic form, we must first take the absolute value of AR as one
cannot evaluate the logarithm of a negative number. Thus, in this case, the sense of
polarisation must be specified separately.

In the past, the testing of circularly polarised antennas on far-field ranges was
often accomplished by continuously rotating a linearly polarised source antenna
while the far-field radiation pattern was measured [6]. This rotation was fast when
compared to the motion of the AUT positioner so that the probe will turn through at
least one complete rotation for each far-field measurement point on the great circle
cut. The intent therefore is to vary the signal source in such a way that the full
polarisation ellipse can be traced out at each far-field pattern angle.

This procedure has two principal advantages. It yields a real-time direct mea-
surement of the axial ratio of the AUT and can be accomplished with the use of a
scalar network analyser. This form of the far-field plot is still popular in some
quarters and can be easily obtained from two complex orthogonal linear field
components which thereby enable such results to be obtained from near-field
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measurements. The measured spin-linear value can be obtained from the semi-
major and semi-minor axes using

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a sin cð Þð Þ2 þ b cos cð Þð Þ2
q

(4.214)

Here, c has been used to denote the spinning polarisation angle and the posi-
tive radical is chosen. Thus, the signal that a purely linearly polarised antenna
would receive when expressed in dB form is

rotating linear ¼ 20 log10 rð Þ (4.215)

As AR is defined to be the ratio of the major to the minor axis and as the
maximum envelope is 20 log10 að Þ and the minimum envelope is 20 log10 bð Þ then,
from the law of logarithms, it is clear that axial ration, AR, will be the difference
between these values when expressed in dB form. In the preparation of Figure 4.40,
the c angle was varied over a full 360� range for each far-field angle. By way of
comparison, an axial ratio plot of the same pattern cut is presented in Figure 4.40.

From inspection, it can be seen that the axial ratio values correspond exactly to
the difference in the envelope of the synthesised spin linear measurement.

4.2.8 Measures of polarisation discrimination
Often, it is desirable to determine the polarisation purity of an antenna, typically in
order that its applicability for use with a frequency reuse scheme can be quantified.
In such circumstances, it is preferable to know how much smaller, or larger, the
cross-polar signal is than the co-polar signal thus the relative cross-polar power, i.e.
the cross-polar discrimination, is calculated. Here, the relative cross-polar field is
taken to be a scalar quantity that can be related to the Ludwig III co-polar and
cross-polar fields through the following expression:

Erelcross ¼ Ecross

Eco
(4.216)
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Figure 4.40 Comparison of axial ratio cut and a traditional spin
linear measurement
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4.3 Isometric rotation of coordinate systems

In the preceding sections, a number of different coordinate systems and polarisation
bases have been developed. Transformations between these various coordinate
systems and polarisation basis were developed. Whilst this provides the practicing
antenna engineer with a great deal of flexibility when presenting data and com-
paring between measurements taken in different facilities using different assump-
tions and conventions, it is always possible that through experimental error or
simply as a result of the orientation of the antenna when it was tested that these
frames of references still do not equate. In such circumstances, a need for techni-
ques for rotating patterns and polarisation basis is clearly motivated. Such techni-
ques are developed and illustrated in the following sections. We start however with
an illustration of the difficulty of representing the surface of a three-dimensional
object on a two-dimensional piece of paper before developing the mathematical
apparatus needed to implement these sorts of transformations.

4.3.1 Illustration of the problem with antenna pattern
plotting – Gauss’s Theorema Egregium

There is a fundamental problem that is associated with representing the surface of a
three-dimensional spherical object on a two-dimensional flat piece of paper. It has
long been known that, with the Earth being spherical, any flat representation gen-
erates distortions such that shapes and areas cannot both be conserved simulta-
neously, distances can never all be preserved for anything other than an infinitely
small region, cf. K.F. Gauss, ‘General Investigations of Curved Surfaces of 1827
and 1825’, The Princeton University Library, Translated 1902. Thus, the mapmaker
must choose a suitable map projection according to the space to be mapped and the
intended purpose of the map. The same is true when visualising antenna radiation
patterns. To illustrate the effect of representing angular antenna pattern data on a
two-dimensional pattern plot, a number of illustrations are presented that show the
Earth plotted as a sphere placed in front of a plane. This example was selected as an
example that is likely to be familiar to many readers. The surface of the sphere is
mapped onto the plane so that both can be seen. Here, the altitude is represented with
a false colour map. This is a direct analogue of the problem that the antenna engineer
faces when presenting results of their pattern measurements or simulations. In this
case, the Earth map has been projected onto the surface of a vertical circular cylinder.
This is then ‘unrolled’ and is shown placed behind the globe. The difficulty with this
approach is that the map becomes progressively more distorted as one moves away
from the equator and travels towards to north or south poles. This is clear as the
length of the equator on the globe and the length of the equator on the flat map are
equal. However, the north-pole corresponds to an infinitesimal point on globe,
whereas it is stretched out into a line that is of equal length to the equator. This
distortion means that areas and shapes are not preserved on the flat map. As may
perhaps be expected, Figure 4.41 shows the Earth map presented with the sphere
nominally aligned. The pattern on the plane is similar to the Gall Peters projection.
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To illustrate the effect that applying a rotation to an antenna pattern, in
Figure 4.42, the Earth has been rotated by 90� in azimuth. Clearly, the Earth itself is
unchanged, however, its representation in the flat two-dimensional surface has
altered. Here, it is clear that the pattern has shifted horizontally with a periodic
boundary condition at the left- and right-hand sides of the plane. That being said, the
planar map projection is merely a translated version of that shown in Figure 4.41.

Figure 4.43 presents a similar case only here the Earth has been rotated in
elevation. Again, the Earth itself has not changed however in this case the two-
dimensional representation is very different as here; points on the plane are moved
towards and away from the poles in the plotting coordinate system. This makes the
interpretation of the two-dimensional information far more challenging than was
previously the case in Figure 4.41.

Lastly, Figure 4.44 presents a result in which the Earth has been rotated by 90�

in roll. Here, points that were hitherto at the pole on the planar plot have been
shifted to the equator and vice versa. Again, it is clear that the Earth itself has not
changed, other than the fact that it has been rotated with respect to the plotting
coordinate system. Instead, it is the two-dimensional representation that has chan-
ged significantly. This plot also nicely illustrates that a 90� rotation in roll is not
equivalent to a transposition of the two-dimensional pattern plot, cf. Figure 4.41.

4.3.2 Use of direction cosine matrices in the rotation
of coordinate systems

Passive transformation matrices are matrices that post-multiply a point vector
to produce a new point vector and is merely a change in the coordinate system. The

Figure 4.41 Globe nominally aligned – no rotation
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Figure 4.43 Globe rotated by 20� in elevation

Figure 4.42 Globe rotated by 90� in azimuth
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relationship between two coordinate systems can be defined with the use of a four-
by-four homogeneous transformation matrix, namely,

x0

y0

z0

1

2

6

6

4

3

7

7

5

¼
A1;1 A1;2 A1;3 A1;4

A2;1 A2;2 A2;3 A2;4

A3;1 A3;2 A3;3 A3;4

0 0 0 1
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�
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5

(4.217)

or

x0

y0

z0

1

2

6

6

4

3

7

7

5

¼ A½ � �
x
y
z
1

2

6

6

4

3

7

7

5

(4.218)

Here, the elements A1,4, A2,4 and A3,4 represent a translation between the ori-
gins of the respective frames of reference. The three-by-three sub-matrix

A1;1 A1;2 A1;3

A2;1 A2;2 A2;3

A3;1 A3;2 A3;3

2

4

3

5 ¼
be x0 � be x be x0 � be y be x0 � be z
be y0 � be x be y0 � be y be y0 � be z
be z0 � be x be z0 � be y be z0 � be z

2

4

3

5 (4.219)

contains the rotational information relating these frames of reference. This can also
be expressed in terms of the cosine of the angles between the various combinations
of unit vectors. This is also why these are termed direction cosine matrices.

Figure 4.44 Globe rotated by 90� in roll
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Specifically then,

A1;1 A1;2 A1;3

A2;1 A2;2 A2;3

A3;1 A3;2 A3;3

2

4

3

5 ¼
cos q1;1 cos q1;2 cos q1;3

cos q2;1 cos q2;2 cos q2;3

cos q3;1 cos q3;2 cos q3;3

2

4

3

5 (4.220)

In essence, we are merely projecting each of the unit vectors of one coordinate
system onto each of the unit vectors of the other. Therefore, each row can be
considered to represent a vector describing the orientation of the unit vector of the
primed coordinate system in terms of the un-primed coordinate system. Similarly,
each of the columns can be considered to represent a vector describing the orien-
tation of the unit vector of the un-primed coordinate system in terms of the primed
coordinate system. As the rotations that we are considering are isometric, that is to
say, the distance of a point from the origin in one system will be exactly the same in
each coordinate system, i.e. it is invariant under the transformation. This can be
expressed mathematically as

l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x02 þ y02 þ z02
p

(4.221)

Similarly, the length of a vector will also remain invariant under these trans-
formations. Clearly then, a unit vector will have a unit length in every system.
Thus, the magnitude of each of the row vectors will be one. Similarly, the magni-
tude of the column vectors will also be one. This can be expressed conveniently as

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
i;1 þ A2

i;2 þ A2
i;3

q

where i ¼ 1; 2; 3 (4.222)

and

1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1;i þ A2

2;i þ A2
3;i

q

where i ¼ 1; 2; 3 (4.223)

Also, as the un-primed unit vectors will be mutually orthogonal, which will
also be the case for the primed unit vectors, then knowledge of any two row vectors
will enable the third to be obtained by taking the cross product of the other two.
Also, as the unit vectors in each coordinate system are orthogonal, only two of any
three vectors can be chosen arbitrarily, the third being recoverable from the cross
product of the other two. Here, this implies that knowledge of any two rows will
enable the third to be determined and similarly, knowledge of any two columns will
enable the third to be deduced. For example,

A 3; 1ð Þ ¼ A 1; 2ð ÞA 2; 3ð Þ � A 1; 3ð ÞA 2; 2ð Þ (4.224)

A 3; 2ð Þ ¼ A 1; 3ð ÞA 2; 1ð Þ � A 1; 1ð ÞA 2; 3ð Þ (4.225)

A 3; 3ð Þ ¼ A 1; 1ð ÞA 2; 2ð Þ � A 1; 2ð ÞA 2; 1ð Þ (4.226)

The determinate of this sub-matrix can be calculated and any significant
deviation from a value of unity can be treated as being indicative of a bad direction
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cosine matrix. Occasionally, a good direction cosine matrix is reported as faulty if
the number of significant figures used to represent the matrix is insufficient.
Typically, all direction cosine matrices should be treated as being of type double
precision in order that truncation and rounding errors remain acceptably small. This
follows from noting that typically the smallest angular increment observable from a
rotary position encoder is �0.01�, or when expressed in terms of a direction cosine
this deviates from unity in the eighth decimal place. Furthermore, the act of mul-
tiplying out one or more direction cosine matrices can further compromise the data,
as the cumulative rounding error can increase appreciably. Conversely, the inverse
transformation can be accomplished with

x0

y0

z0

1

2

6

6

4

3

7

7

5

¼ A½ ��1 �
x
y
z
1

2

6

6

4

3

7

7

5

(4.227)

The adoption of a four-by-four matrix, with its inherent redundancy, is pre-
ferable as the matrix inverse, and thus the inverse transformation, only exists for
square matrices. An added advantage of this definition is that the four-by-four
alignment matrices can be obtained directly from most engineering computer-aided
design packages. By way of illustration, rotations about the x-, y- and z-axes are
represented, respectively, by the three matrices [7]

Rx ¼
1 0 0 0
0 cos qx sin qx 0
0 �sin qx cos qx 0
0 0 0 1

2

6

6

4

3

7

7

5

(4.228)

Ry ¼
cos qy 0 �sin qy 0

0 1 0 0
sin qy 0 cos qy 0

0 0 0 1

2

6

6

4

3

7

7

5

(4.229)

Rz ¼
cos qz sin qz 0 0
�sin qz cos qz 0 0

0 0 1 0
0 0 0 1

2

6

6

4

3

7

7

5

(4.230)

The derivation of the rotation matrix can either be obtained from the use of
trigonometric identities or from geometry. Figure 4.45 illustrates this for the case of
a positive rotation about the positive z-axis.

Thus, from trigonometry, it can be seen that

x0 ¼ x cos qz þ y sin qz (4.231)

y0 ¼ �x sin qz þ y cos qz (4.232)

z0 ¼ z (4.233)
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A similar construction can be used for rotations about the x- and y-axes.
Translation of Tx, Ty and Tz in the x-, y- and z-axes, respectively, can be imple-
mented using

T ¼
1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

2

6

6

4

3

7

7

5

(4.234)

A series of transformation matrices may be concatenated into a single matrix
through matrix multiplication. If A1, A2 and A3 are transformation matrices to be
applied in order, matrix A is the product of the three matrices. Thus,

P � A1ð Þ � A2ð Þ � A3 
 P � A1 � A2ð Þ � A3ð Þ ¼ P � A (4.235)

where the multiplication is non-commutative and

A ¼ A1 � A2ð Þ � A3 (4.236)

In this way, any sequence of rotations can be constructed by sequentially
multiplying out the necessary rotations and translations. Often the only rotational
relationship between two systems is considered. This is often the case when con-
sidering far-field patterns. In this case, the three-by-three sub-matrix can be con-
sidered alone and is used instead of the homogeneous four-by-four transformation
matrix. The utilisation of the three-by-three direction cosine matrix has an impor-
tant benefit. As the direction cosine matrix is orthogonal and normalised the matrix
whose elements are all real, the inverse is identically equal to the matrix transpose.
This means that obtaining the inverse transformation is essentially reduced to a

x

y

x'

y'

z, z'

θz

θz
θz

Figure 4.45 Illustration of a positive rotation about the positive z-axis
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matter of reordering of the elements within the matrix, which is both trivial and
numerically robust.

When direction cosine matrices are used, the determinant of the matrix should
be calculated and any significant deviation from unity can be treated as being
indicative of a bad direction cosine matrix, as the matrix should be normalised to
unity. Occasionally, a good direction cosine matrix can be reported as faulty if the
number of significant figures used to represent the matrix is insufficient. Typically,
all direction cosine matrices should be treated as being of type double precision in
order that truncation and rounding errors remain acceptably small. This follows
from noting that say the smallest angular increment observable from a rotary
position encoder is say �0.01�, or when expressed in terms of a direction cosine
this deviates from unity in the eighth decimal place. Furthermore, the act of mul-
tiplying out one or more direction cosine matrices can further compromise the data,
as the cumulative rounding error can increase appreciably.

Crucially, although almost any number of different angular definitions are
available for describing the relationship between coordinate systems, they can be
related, i.e. equated, to one another via the direction cosine matrix without
knowledge of the rotation or the order in which they were applied.

4.3.3 Azimuth, elevation and roll angles
Any number of angular definitions for describing the relationship between the two
coordinate systems are available. Such rotations are termed passive as each suc-
cessive rotation is applied to the newly rotated system. However, if the angles
azimuth, elevation and roll are used, where the rotations are applied in this order,
we may write the equivalent direction cosine matrix as

A½ � ¼ A1½ � � A2½ � � A3½ � (4.237)

Specifically,

A1½ � ¼
cos rollð Þ sin rollð Þ 0
�sin rollð Þ cos rollð Þ 0

0 0 1

2

4

3

5 (4.238)

A2½ � ¼
1 0 0
0 cos elð Þ �sin elð Þ
0 sin elð Þ cos elð Þ

2

4

3

5 (4.239)

A3½ � ¼
cos azð Þ 0 �sin azð Þ

0 1 0
sin azð Þ 0 cos azð Þ

2

4

3

5 (4.240)

These transformation matrices can be easily derived either from geometry or
from trigonometric identities. Here, in accordance with the rules of linear algebra,
the first rotation matrix is written to the right. When multiplied out A½ � can be
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explicitly expressed as Arow,column,

A1;1 ¼ cos rollð Þ cos azð Þ þ sin rollð Þ sin elð Þ sin azð Þ (4.241)

A1;2 ¼ sin rollð Þ cos elð Þ (4.242)

A1;3 ¼ cos rollð Þ sin azð Þ � sin rollð Þ sin elð Þ cos azð Þ (4.243)

A2;1 ¼ �sin rollð Þ cos azð Þ þ cos rollð Þ sin elð Þ sin azð Þ (4.244)

A2;2 ¼ cos rollð Þ cos elð Þ (4.245)

A2;3 ¼ � sin rollð Þ sin azð Þ þ cos rollð Þ sin elð Þ cos azð Þð Þ (4.246)

A3;1 ¼ �cos elð Þ sin azð Þ (4.247)

A3;2 ¼ sin elð Þ (4.248)

A3;3 ¼ cos elð Þ cos azð Þ (4.249)

where the rotations are understood to have been performed in the following order:

1. rotate about the negative y-axis through an angle azimuth,
2. rotate about the negative x-axis through an angle elevation, and
3. rotate about the z-axis through an angle Roll.

When Az ¼ 0, El ¼ 0 and Roll ¼ 0, the direction cosine matrix will be the
identity matrix and specifies that no rotations are to be applied, i.e.

A½ � ¼
1 0 0
0 1 0
0 0 1

2

4

3

5 ¼ I½ � (4.250)

Clearly, from this matrix, it can be seen that these angles can be obtained from
the matrix A½ � as

az ¼ arctan
�A31

A33

� �

(4.251)

el ¼ arcsin A32ð Þ (4.252)

roll ¼ arctan
A12

A22

� �

(4.253)

Many other definitions for rotating frames of reference exist. These include the
triad of Euler angles (see below), or the yaw pitch, and roll angles. However, the
azimuth, elevation and roll definition is most convenient, for example, when pre-
senting data tabulated in a regular azimuth over the elevation coordinate system.

4.3.4 Euler angles
As an alternative to the azimuth, elevation and roll rotations described above the
triad of Euler angles are often utilised to represent the relationship between two
frames of [8]
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1. rotate about the z-axis through an angle f,
2. rotate about the new y-axis through an angle q, and
3. rotate about the new z-axis through an angle c.

These angles are often used when rotating spherical mode coefficients when
working with spherical near-field measurements. Specifically, if the angles f, q
and c are used, where the rotations are applied in this order, we may write the
equivalent direction cosine matrix as

A½ � ¼ A1½ � � A2½ � � A3½ � (4.254)

where

A1½ � ¼
cos cð Þ sin cð Þ 0
�sin cð Þ cos cð Þ 0

0 0 1

2

4

3

5 (4.255)

A2½ � ¼
cos qð Þ 0 �sin qð Þ

0 1 0
sin qð Þ 0 cos qð Þ

2

4

3

5 (4.256)

A3½ � ¼
cos fð Þ sin fð Þ 0
�sin fð Þ cos fð Þ 0

0 0 1

2

4

3

5 (4.257)

When multiplied out, A½ � can be explicitly expressed as Arow,column

A1;1 ¼ cos c cosf cos q� sin c sinf (4.258)

A1;2 ¼ cosf sincþ cos c cos q sinf (4.259)

A1;3 ¼ �cos c sin q (4.260)

A2;1 ¼ �cosf cos q sinc� cos c sinf (4.261)

A2;2 ¼ cos c cosf� cos q sin c sinf (4.262)

A2;3 ¼ sinc sin q (4.263)

A3;1 ¼ cosf sin q (4.264)

A3;2 ¼ sinf sin q (4.265)

A3;3 ¼ cos q (4.266)

Here, the three angles are referred to as Euler angles. Conversely, the three
Euler angles can be determined from the direction cosine matrix as

q ¼ arccosðA33Þ (4.267)
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If q 6¼ 0, then

c ¼ arctan
A23

�A13

� �

(4.268)

f ¼ arctan
A32

A31

� �

(4.269)

Again, the four-quadrant arctangent is used to evaluate the angles. However, if
q ¼ 0, then a zero divide by zero ambiguity is introduced. In this case, we must use

c ¼ 0 (4.270)

f ¼ arctan
A12

A22

� �

(4.271)

Clearly, when the q rotation is zero, the f and c rotations are equivalent and
hence either rotation may be used. A conversion between the azimuth, elevation
and roll angles and the three Euler angles can be accomplished readily by equating
the elements of their respective direction cosine matrices.

4.3.5 Quaternions
It is well known that complex numbers can be related to two-dimensional geo-
metry, most notably, by virtue of the Euler relation

ejf ¼ cosfþ j sinf (4.272)

where

ejf	

	

	

	 ¼ 1 (4.273)

The multiplication of a complex number by a complex exponential can be
shown to be equivalent to a rotation of the coordinate axes. Hence, we can rotate a
point in a two-dimensional coordinate system by an angle f where the x coordinate
is represented by the real part of the complex number a and the y coordinate by the
imaginary part. The rotation is implemented by multiplying the complex number a
by a complex exponential

a0 ¼ aejf (4.274)

Here, the primed complex number a0 represents the point in the rotated frame
of reference, the real part of a0 represents the x-component and the imaginary part
denotes the y-component in the rotated system. The quaternion is in essence an
extension of this idea where the rotation is applied in a higher dimensional space.

Mathematically, quaternions can be considered to be a non-commutative
extension of complex numbers. It is not the purpose of this section to give a
complete development of quaternions as this is beyond the scope of this text;
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instead, the discussion will be limited to the use of quaternions in implementing
coordinate transforms. By way of an analogy, complex numbers are represented as
a sum of real and imaginary parts. Similarly, a quaternion can also be written as a
linear combination of real and hyper-complex parts

Q ¼ q0 þ q1i þ q2j þ q3k (4.275)

Here, i, j and k are quaternion units and have the property that

i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1 (4.276)

Thus, as a complex number can be represented as a point on a two-dimensional
plane, a quaternion can be considered to be a point in a four-dimensional space. A
quaternion can be computed from a direction cosine matrix using

q0 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ A11 þ A22 þ A33

p

(4.277)

q1 ¼ 1
4q0

A23 � A32ð Þ (4.278)

q2 ¼ 1
4q0

A31 � A13ð Þ (4.279)

q3 ¼ 1
4q0

A12 � A21ð Þ (4.280)

Conversely, a direction cosine matrix can be constructed from a quaternion
using

A11 ¼ 2q2
0 � 1 þ 2q1q2 (4.281)

A12 ¼ 2q1q2 þ 2q0q3 (4.282)

A13 ¼ 2q1q3 � 2q0q2 (4.283)

A21 ¼ 2q1q2 � 2q0q3 (4.284)

A22 ¼ 2q2
0 � 1 þ 2q2

2 (4.285)

A23 ¼ 2q2q3 þ 2q0q1 (4.286)

A31 ¼ 2q1q3 þ 2q0q2 (4.287)

A32 ¼ 2q2q3 � 2q0q1 (4.288)

A33 ¼ 2q2
0 � 1 þ 2q2

3 (4.289)

As is the case for vectors the length, or norm, of a quaternion is utility. This
can be calculated from

Qj j ¼
ffiffiffiffiffiffiffiffiffi

Q	Q
p

¼
ffiffiffiffiffiffiffiffiffi

QQ	p

(4.290)
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Here, the superscript asterisk is used to denote the complex conjugate of Q so
that Q	 þ Q ¼ 2q0. Thus,

Qj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2
0 þ q2

1 þ q2
2 þ q2

3

q

(4.291)

If Pq and Qq are quaternions and are expressed using the vector form of a
quaternion, then

Pq ¼ p0 þ P (4.292)

Qq ¼ q0 þ Q (4.293)

When expressed in this form, the quaternions can be multiplied together using

Rq ¼ PqQq ¼ p0q0 � P � Q þ p0Q þ q0P þ P � Q (4.294)

Here, a dot denotes the scalar dot product and the cross denotes the vector
cross product. When expanded out and expressed in element form this equates to

r0 ¼ p0q0 � p1q1 � p2q2 � p3q3 (4.295)

r1 ¼ p0q1 þ p1q0 þ p2q3 � p3q2 (4.296)

r2 ¼ p0q2 þ p2q0 þ p3q1 � p1q3 (4.297)

r3 ¼ p0q3 þ p3q0 þ p1q2 � p2q1 (4.298)

As was the case for the multiplication of direction cosine matrices, quaternion
multiplication is equivalent to the concatenation of several sequential rotations. As
was the case for direction cosine matrices, multiplications are non-commutative, i.e.

PqQq 6¼ QqPq (4.299)

Inverting a quaternion rotation produces the inverse rotation and the inverse of
a quaternion is equal to the complex conjugate of that quaternion thus

Q�1
q ¼ q0 þ q1 þ q2 þ q3ð Þ�1 ¼ q0 � q1 � q2 � q3 (4.300)

Thus, computing an inverse rotation using the quaternion representation
requires less effort than accomplishing the same task using direction cosine
matrices, as the latter involves a matrix inversion. All rotations can be represented
by a single rotation about an axis in space. The axis and angle of that rotation can
be calculated from the quaternion using

f ¼ 2 arccos q0ð Þ (4.301)

v ¼ v1be x þ v2be y þ v3be z ¼
1

sin f=2ð Þ ½q1be x þ q2be y þ q3be z� (4.302)
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Here, f is used to denote the angle of rotation and v represents the axis of the
rotation. Conversely, the quaternion can be computed from the angle and axis of
rotation using

q0 ¼ cos
f
2

� �

(4.303)

q1 ¼ v1 sin
f
2

� �

(4.304)

q2 ¼ v2 sin
f
2

� �

(4.305)

q3 ¼ v3 sin
f
2

� �

(4.306)

In addition to being a more efficient recording method, quaternions have the
advantage that computing inverse rotations is made significantly easier than is the
case for direction cosine matrices. Also, whilst the multiplication of two direction
cosine matrices can, in the presence of truncation and rounding errors, produce a
direction cosine matrix that is not a rotation, i.e. the components naturally drift which
violates the orthonormality constraints. Quaternions have no such problem, i.e. the
multiplication of two quaternions will always yield a rotation, all be it, perhaps, the
wrong rotation. It is also a comparatively simple matter to adjust for numerical drift,
one merely needs to compute the norm of the quaternion and then divide each
component by it. This takes far fewer operations than matrix orthonormalisation
which would be required in order to attempt to correct a direction cosine matrix.

4.3.6 Orientation of viewer plotting antenna patterns
When making a projection, another important concept is that of a viewing angle.
This is related to the horizontal and vertical axes of the plot. The viewing angle
is related to where the H- and V-axes are cantered and how they are aligned to
the original coordinate system. The plot centre (H0, V0) is the angle relative to
the original coordinate system and is not just a shift in the rotation of the sphere.
Because of this, the pattern at the centre of the plot could be distorted (e.g.
H ¼ 90�, V ¼ �90� in an azimuth over the elevation coordinate system). The
angles are allowed to wrap but the distortion at the poles of the plotting system
will still apply. To illustrate this, Figure 4.46 contains a plot of the Earth tabu-
lated on a regular azimuth over elevation coordinate system. However, in this
case, the Earth has been rotated through �90� about the positive x-axis so that
Antarctica, which is Earth’s most southerly continent, is now plotted at the
equator of the plotting coordinate system. Essentially, this is similar to viewing
the Earth from sub-satellite latitude ¼ �90�, sub-satellite longitude ¼ 0�. Note
also that although Earth map has been rotated, the poles of the plotting system
are still located at �90� in elevation and the equator is still at 0� and �180�

in elevation.
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Such isometric rotations are easily implemented by using a transformation
matrix, as developed above, to rotate the triad of direction cosines. In this instance,
a rotation of y about the positive x-axis can be expressed as

u0

v0

w0

2

4

3

5 ¼
1 0 0
0 cosy siny
0 �siny cosy

2

4

3

5 �
u
v
w

2

4

3

5 (4.307)

An antenna pattern is not a physical boundary as are the continents of the
world. It is a transparent ‘snapshot’ of the pattern at a particular radius. For this
reason, the observer can view the pattern that the antenna makes on the sphere from
inside the sphere or from outside it. This orientation will change the H- and V-axes
slightly based on how they are related to the original angles. It is necessary then to
add two additional constants to the formulas discussed above. These constants are
designated as l and m. They are only permitted to take on the values �1 depending
upon where the observer is situated with respect to the AUT. The three possible
cases are as follows:

● l ¼ 1, m ¼ 1, observer facing the AUT. Thus, looking in the �Z direction (into
the page), the þX-axis is horizontal and increases towards the right and the
þY-axis is vertical and increases upwards.
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Figure 4.46 Earth mapped using an Az/El positioner system with the Earth
rotated about the x-axis by �90�
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● l ¼ �1, m ¼ 1, observer standing behind the AUT. Thus, looking in the þZ
direction (into the page), the þX-axis is horizontal and increases towards the
left and the þY-axis is vertical and increases upwards.

● l ¼ 1, m ¼ �1, observer standing behind the AUT. Thus, looking in the þZ
direction (into the page), the þX-axis is horizontal and increases towards the
right and the þY-axis is vertical and increases downwards.

Case 2 is commonly used within the space industry when plotting antenna
patterns over Earth maps to demonstrate antenna performance compliance with a
given coverage region, which are often specified in terms of geopolitical bound-
aries. Case 3 is commonly used within the RCS measurement community as targets
are routinely mounted upside down on low RCS pylons. In our maps of the world
concept, Case 1 would be looking from space at the earth. Case 2 would be looking
from the centre of the earth out with ones feet pointing at the South Pole. Case 3
would be looking from the centre of the earth out with your feet pointing at the
North Pole. Again, this can be expressed compactly using the l and m integers in
terms of a transformation matrix

u0

v0

w0

2

4

3

5 ¼
l 0 0
0 m 0
0 0 1

2

4

3

5 �
u
v
w

2

4

3

5 (4.308)

4.3.7 Plotting antenna patterns on earth maps
The performance specification of a space telecommunications antenna intended for
use on a satellite stationed in geostationary orbit is often defined in terms of a gain
iso-level coverage contour plotted over an Earth map. In this way, a satellite
operator can specify the radiated power flux density across a particular region of
interest which perhaps follows a coastline or a geopolitical boundary. As a con-
sequence of this, there is a clear need to be able to plot maps of the Earth in the
same coordinate system as that is used to visualise the antenna radiation pattern.
This section is devoted to developing a procedure for creating these sorts of com-
bined, i.e. hybrid, plots.

Figure 4.47 shows the Earth-centred Earth fixed (ECEF) coordinate system
which is generally used for mapping the Earth. This convention represents positions
as x, y, and z coordinates with the point x ¼ y ¼ z ¼ 0 defined as being the centre of
mass of the Earth. The axes are aligned with the international reference pole and
international reference meridian which are fixed with respect to the Earth with the
z-axis passing through true north. The x-axis intersects the sphere of the Earth at 0�

latitude (i.e. at the equator) and 0� longitude (i.e. at the prime meridian) which is
defined by convention to pass through Greenwich, London, in the UK. This is
shown in Figure 4.48.

This means that ECEF rotates with the Earth and therefore coordinates of a
point fixed on the surface of the earth do not change as a function of time.
The angle measured up from the equator is defined as being the latitude and has a
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Figure 4.47 Geometry defining latitude and longitude for an ECEF
coordinate system

Figure 4.48 Photograph of the prime meridian, i.e. longitude 0�, taken at the
Royal Observatory, Greenwich in London. Note that there is some
dispute as to whether this mark is exactly located along the prime
meridian. That being said, it is a nice illustration
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range of �90� � latitude � 90� with negative angles referring to the southern
hemisphere and positive angles referring to the northern hemisphere. Conversely,
the angle measured in the equatorial plane is defined to be the longitude. For this
coordinate system, there is no natural reference for a zero and so the zero datum
line, as described above is taken by convention as being the line through Greenwich
England. Conventionally, f is used to denote latitude, l is used to denote longitude
and a is taken to be the radius of the semi-major axis, i.e. the equatorial radius.

Initially, we shall assume that the Earth is a perfect sphere. This is however a
far less gross assumption for our particular application than may first appear the
case. To illustrate this, it is worth recalling that the peak of Mount Everest is
approximately 8.850 km above sea level and conversely, the deepest known point
in Earth’s oceans is the Challenger Deep in the Mariana Trench which is circa
10.994 km below sea level. As the Earth’s equatorial radius is 6,378.137 km, this
means that the peak-to-peak surface roughness of the Earth is less than �0.18% of
the radius. By way of a comparison, in the UK, a snooker ball is specified as having
a diameter of 52.5 mm within a tolerance of �0.05 mm, or equivalently a peak-to-
peak surface roughness of approximately �0.19%. So were the Earth to be shrunk
down to the size of a snooker ball, the snooker ball would have the more irregular
surface profile.

Now that we have defined the coordinate system in which we shall work, we
return to the specific consideration of a satellite stationed in the geostationary
orbit about the Earth. A geostationary orbit is a circular Earth geosynchronous
orbit above the Earth’s equator with a radius of 42,164 km and rotating in the
same direction as that of the Earth’s rotation with an orbital period equal to the
Earth’s rotational period, i.e. one sidereal day. An object in this sort of orbit
appears to be motionless, i.e. located at a fixed position in the sky, for any
observer on the Earth. This is advantageous as any ground-based antennas that
communicate with the geostationary satellite do not need to rotate in order to track
them over time. That being said, not all satellites are stationed perfectly over the
intersection of the equator and the prime meridian. For cases such as these, a sub-
satellite latitude and a sub-satellite longitude must be introduced to accommodate
this. The sub-satellite longitude can be introduced as a simple subtraction from the
longitudinal coordinate, i.e.

l ¼ long � ss-long (4.309)

Here, long denotes the longitude of the point on the Earth’s surface and the ss-long
denotes the sub-satellite longitude of the spacecraft. Conversely, the sub-satellite lati-
tude can be obtained through an isometric rotation of the ECES coordinate system
about the y-axis as will be shown below. Thus, and as a first approximation, if we
assume that the Earth is a perfect sphere and from inspection of Figure 4.49, then
we can see that the relationship between the latitude and longitude components and a
set of Cartesian coordinates centred at the origin of the sphere can be expressed as

x ¼ a cos fð Þ cos lð Þ (4.310)

y ¼ a cos fð Þ sin lð Þ (4.311)
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z ¼ a sin fð Þ (4.312)

The Earth’s equatorial radius a, or semi-major axis, is the distance from its
centre to the equator. As noted above, the sub-satellite latitude can be introduced
using the rotation:
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x
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z
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3

5 (4.313)

Circular Earth geosynchronous orbits have a radius of 42,164 km. Clearly, the
orbit radius, rOrbit, of a satellite can be related to the altitude h above the Earth’s
spherical surface and the radius of the Earth a through

rOrbit ¼ a þ h (4.314)

Hence, the altitude above the Earth’s surface, h, can be seen to be 35,786.0 km.
This is needed as we wish to convert from an Earth-centred coordinate system to
one that is centred about the geostationary satellite. The geometry for this is pre-
sented schematically in Figure 4.49.

From inspection of Figure 4.49, we can see that

xp ¼ rorbit � x0 (4.315)

yp ¼ y0 (4.316)

zp ¼ z0 (4.317)

Hence, the distance from the satellite to the point on the Earth’s assumed
spherical surface described by the latitude and longitude coordinate is

rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
p þ y2

p þ z2
p

q

(4.318)
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Figure 4.49 Geometry for latitude, longitude to azimuth, elevation coordinate
transformation. Here, the geometry of the ECEF coordinate system
has been adopted
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From trigonometry, the equivalent azimuth and elevation angles can be
expressed as

El ¼ arcsin
zp

rp

� �

(4.319)

Az ¼ arctan
yp

xp

� �

(4.320)

This therefore provides the conversion from latitude and longitude to azimuth
and elevation for a satellite stationed at sub-satellite latitude and sub-satellite
longitude pointing to the centre of the Earth assuming that the Earth is a perfect
sphere. Thus, providing a map of the Earth is available in latitude and longitude
coordinates, as is often the case, it is possible to plot this in the antenna coordinate
system. An example of this can be seen presented in Figure 4.50. Here, the Earth is
viewed from geostationary altitude and subtends approximately �8.7�. Although
sufficient for many applications, this model does not take account of the fact that
the Earth is more accurately modelled as being an oblate spheroid, that is to say, the
radius at the equator is greater than the radius at the pole. Figure 4.50 contains a

10

9

8

7

6

5

4

3

2

1

E
l (

de
g)

0

–1

–2

–3
–4

–5

–6

–7

–8

–9

–10
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0

Az (deg)
1 2 3 4 5 6 7 8 9 10

Figure 4.50 Earth viewed from geostationary altitude. The solid line is an oblate
spheroid model of the Earth, and the dashed line is a perfect
spherical model of the Earth
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secondary mapping of the Earth which is denoted with the solid black line only
here, an oblate spheroid model has been utilised. As expected, for small latitudes
the two models agree well, as the equatorial radii are equal. However for larger
latitudes differences do become more evident, i.e. the lines look ‘thicker’.

This difference is more pronounced in Figure 4.51 which has reduced the axes of
the plot to focus on northern Europe. For many applications, this difference is unim-
portant however for cases considering large elevations this difference may be crucial.

As illustrated above, it is preferable to use an oblate spheroid model of the Earth
when preparing these sorts of plots. We can implement this using the World Geodetic
System 84 (WGS84) ellipsoid model [9], which is the reference system used by the
global positioning system. In this model, we assume that the equatorial radius
a ¼ 6,378.137 km, as we did before; however, we also assume that the polar radius
b � 6,356.752314245 km. For an oblate spheroid, the ellipticity can be computed using

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2

a2

s

b < a ðoblate spheroidÞ (4.321)

Thus, for the WGS84 ECEF model, e ¼ 8.1819190842622e�2, where e has
been defined analogously to eccentricity for the two-dimensional case. For the sake
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Figure 4.51 Earth viewed from geostationary altitude at with reduced axes limits
to highlight differences between Earth models. The solid line is an
oblate spheroid model of the Earth, and the dashed line is a perfect
spherical model of the Earth
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of completion, the inverse flattening (1/f) ¼ 298.257223563 where the flatness can
be obtained from the ellipticity using

f ¼ 1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � e2
p

(4.322)

It can be shown that we can calculate the prime vertical radius of curvature using [9]

N ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � e sin fð Þð Þ2
q (4.323)

We can then convert from geodetic to ECEF Cartesian coordinates using [9]

x ¼ N þ hð Þ cos fð Þ cos lð Þ (4.324)

y ¼ N þ hð Þ cos fð Þ sin lð Þ (4.325)

z ¼ 1 � e2
� �

N þ h
� �

sin fð Þ (4.326)

Here, h denotes altitude of the surface of the Earth above the surface of the
oblate spheroid, which has been assumed to be zero when preparing Figures 4.50
and 4.51. From comparison with the spherical case, it is apparent that the change in
shape is implemented through a scaling of the radius of the Earth which varies as a
function of latitude. The transformation from Cartesian components to azimuth and
elevation coordinates can be implemented using the same transformation as was
developed for the spherical Earth model case shown above. Although we have
illustrated the plotting procedure for the case of an azimuth over elevation antenna
pattern plotting coordinate system, we are not constrained to using that one system
and we can in fact utilise any coordinate system we wish by converting between the
systems using the transformation that we developed within the preceding sections.
By way of an illustration of the consequence of using non-zero sub-satellite latitude
and longitude, Figures 4.52 and 4.53 present example plots of the Earth as seen
from the geostationary altitude from two different positions.

There is one last subtlety that one needs to take account of when plotting an
antenna pattern together with an Earth map and that is the orientation of the AUT
when viewing the pattern data. The coordinate system definitions presented
within the preceding sections plot the pattern while viewing the face of the
antenna. For the purposes of plotting antenna patterns over earth maps, we must
view the pattern data as though we are standing behind the antenna and are
looking in the same direction as the mechanical boresight direction of the antenna
so that in principle we could see both the antenna pattern and the Earth. We
therefore use an antenna plotting system (APS) coordinate axes which, as usual,
forms a right-handed set. However, when plotting we assume that we are looking
in the þz-APS direction towards the far-field, with the x- and y-axes are orien-
tated as follows:

● þx-APS: horizontally towards the left and
● þy-APS: vertically upwards.
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Figure 4.53 Earth map plotted with SS Lat ¼ 0�, SS Long ¼ 90� with oblate
spheroid model
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Figure 4.52 Earth map plotted with SS Lat ¼ �90�, SS Long ¼ 0� with an oblate
spheroid model



Additionally, azimuth is measured away from the þz-APS axis within the
xz-APS plane and increases towards the negative x-APS. Elevation is unchanged
from the usual definition (cf. Figure 4.54).

Thus, the relationship between the azimuth and elevation angles and the
direction cosines can be expressed as

uAPS ¼ �sin Azð Þ cos Elð Þ (4.327)

vAPS ¼ sin Elð Þ (4.328)

wAPS ¼ cos Azð Þ cos Elð Þ (4.329)

This system is used for plotting the far-field antenna pattern data of typically
spaceborne antennas and especially when those antenna patterns are to be plotted
over Earth maps. Other plotting coordinate systems would be similarly modified
through the introduction of a negative sign on the x-component. This has the effect
of flipping the antenna pattern from left to right (in the vertical axis) as though one
were looking through the page from the backside.
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Chapter 5

Compact range measurements

5.1 Introduction

The basic concept of the compact antenna test range (CATR) was described in
Chapter 3 (Section 3.5.1). If we consider the AUT as a receiver, the spherical
radiated field from the CATR horn feed is collimated and transformed into a plane
wave by a lens, a planar array or a reflector. The AUT is placed in this pseudo plane
wave region which forms in the radiating near-field region of the reflector, lens or
array. The radiation characteristics of the test antenna can be obtained by recording
the received fields for different orientations of the test antenna as in a conventional
far-field range.

The AUT couples to this ‘plane wave’ creating the measured radiation pattern,
and so the quality of the plane wave defines the accuracy to which the AUT
radiation pattern can be determined. This region of pseudo plane wave is called the
quiet zone (or test zone) and is determined by the volume of field where the sum of
taper and ripple in amplitude and phase within that volume is confined to peak-to-
peak variations of �0.5 dB and �5� (Figure 5.1). The scattering characteristics of
the AUT (or other object) can be obtained by receiving the scattered signal back at
the CATR horn feed. This enables radar cross-section (RCS) measurements to be
performed in a compact, indoor, secure, environment. The ability to perform
accurate RCS measurements has been one of the reasons why the compact range
has been so very successful.

The first attempts to make antenna test ranges in the laboratory were made
using lenses. In 1950, Woonton, Borts and Caruthers [1] used a metal plate lens as
the collimating device. This had a 35 l square aperture, but the results were not
satisfactory and the failure was attributed to diffraction off the metal edges. The
pioneer of the compact range using a reflector as the collimating device was
Johnson, working at Georgia Institute of Technology. He filed a patent in 1967 [2]
and first described the range in 1969 [3], with more results being published by him
and co-workers in 1973 [4] and 1975 [5]. Initially Johnson constructed two con-
figurations – a line-source range consisting of a parabolic cylinder reflector with a
large Hogg horn feed and a point-source range with a small rectangular horn feed.
Development of the line-source feed did not proceed far due to the disadvantages of
single polarisation and of needing to change the physical size of the line-source
feed for different frequencies. The point-source ‘compact range’ was very



successful and has formed the basis of most of the subsequent developments.
Johnson’s designs were developed by Scientific Atlanta who started marketing the
range in about 1974 [6,7]. Their range used an offset parabolic reflector made of
metal-coated machined fibreglass with a size of about 5 m wide by 3.5 m high
which gave a quiet zone of about 1.5 m diameter. The range had a shaped edge in
order to reduce edge diffraction and was the forerunner for classic single-offset
CATR we know today (Figure 5.2). These designs inherently have a poor utilisa-
tion of the reflector surface, with typical quiet zones about one third the size of the
main reflector. In 1976, Vokurka [8], at Eindhoven University of Technology,
developed a compact range using two cylindrical parabolic reflectors. By colli-
mating the beam in orthogonal planes with two reflectors with large effective focal
lengths, it was easier to make accurate cylindrical reflectors and a high area utili-
sation factor was achieved; Figure 5.3 shows a modern development of this
concept.

Since early days the compact range has become a very popular antenna mea-
surement solution as it offers

● efficient use of real estate for a given quiet zone size,
● low path loss as the beam from the main reflector is collimated and does not

suffer 1/R2 loss,
● secure operation in a controlled indoor environment (temperature controlled,

‘clean room’ capability, freedom from external EM interference),
● RCS measurement capability,
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reflector

Sub-
reflector

x
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y
Z

Figure 5.1 Main elements of a CATR
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● flexible instrumentation including operating in both transmit or receive AUT
configurations,

● inherent wideband operation, since based on ray optics the system is limited
mainly by the surface accuracy and edge treatment of the reflectors,

● operation at millimetre wavelengths.

In the next section we will look at the various ways in which we can collimate
the field from the CATR feed to generate the pseudo plane wave we require.

Figure 5.2 Reflector edge treatment employed by the Scientific Atlanta model
5750 range marketed in the late 1970s

Figure 5.3 View of an antenna mounted on a positioner in a CATR enclosed in a
24 m � 14 m � 11 m anechoic chamber (Courtesy of SELEX ES)
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5.2 Collimation of electromagnetic fields

The principle of the CATR is to take the spherical wave emanating from the feed
horn and convert this to a plane wave. The simplest way to achieve this is to use a
single-offset reflector antenna as shown in Figure 5.4. Here a high-performance
feed (e.g. corrugated feed horn) illuminates the paraboloidal reflector with the feed
phase centre located at the focal point of the reflector. On reflection the spherical
wave of the feed is converted to a ‘plane wave’ offering a uniform phase front in
the quiet zone. This uniform phase comes about from geometric optics that shows
that (Figure 5.4)

FP þ PA ¼ 2F þ Dl (5.1)

where F is the focal length (where FP indicates the magnitude of the distance from
F to P, etc.). Hence the phase across the aperture is constant but the amplitude
varies as 1/r2 (where r is the distance from the focal point to a point P on the
reflector surface). This is by virtue of the paraboloid being a spherical wave to
plane wave transformer.

This is illustrated in Figures 5.5–5.7 where the down range electric field
amplitude and phase are plotted for a single offset reflector. The horizontal scale is
measured in focal lengths and clearly indicates why the industry standard location
for the QZ centre of (5/3F ¼ 1.667) is used. It is also clear from these plots that the
QZ is a volume, and although generally, the QZ is largely determined by the
transverse field taper and ripple (as in Figure 5.6), and it is important to understand
that the QZ is a volume and hence there needs to be a down range “Quiet” field
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(phase error
now spread
over wider
transverse region)

AP

B

ρt

ρb

ρ

Field
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Figure 5.4 The single-offset CATR, showing effect of reflector surface error
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region where the field has low ripple and remains collimated, which for the single
offset case is centred around 5/3F.

Figure 5.4 shows that with the feed boresight pointed to the centre of the offset
reflector (point P), the signal amplitude at the bottom of the reflector will be pro-
portional to rb and at the top to rt offering a small additional amplitude taper to the
feed pattern that projects onto the top half of the reflector. This asymmetry in
amplitude can be improved by aiming the feed antenna higher than the centre point
of the reflector. The resulting aperture field amplitude is shown to the right of the
figure. In order to conform with the desire to have the quiet zone at �0.5 dB, it is
clear that only the central region (typically about one third) of the reflector can be
deployed as a CATR quiet zone. Neglecting extraneous effects such as edge dif-
fraction and feed spill-over the phase in the quiet zone is constant; however, as
shown by point B in Figure 5.4, if the reflector surface is not a pure paraboloid then
a small indentation of depth dr will result in a phase distortion at the quiet zone of
2dr. Thus, if 2dr represents 5� of phase shift in the quiet zone then dr must be
0.007 l in size, which means the rms error needs to be kept to 0.01 l. This is a
significant limitation to the use of CATRs at millimetrewave frequencies, and we
will return to this later in this chapter.

However, surface error is not the only source of quiet zone amplitude and
phase error as Figure 5.8 illustrates. Here we show the different sources of energy
that can reach point A in the quiet zone. Critically we have the contribution due to
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Figure 5.7. Down range electric field phase from a single offset CATR (reflector
shown on the left). The Z-axis is plotted in units of focal length of the
CATR reflector, and the Y-axis is measured in units of D which is the
tip-to-tip reflector size in the vertical direction. The exp(�jk0z) term
removed and field phase normalised to 0�
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edge diffraction at the reflector edges, as well as contributions from reflections
from non-perfect absorber, that lines the whole chamber that encloses the CATR as
well as the direct ray from the feed that ‘spills over’ into the quiet zone and also
contributes to the signal at A.

This situation can become more complicated when a dual reflector CATR is
used (Figure 5.9), where diffraction reflection effects as well as multiple diffraction
will further add to the number of possible interfering sources reaching a given point
in the quiet zone. Here we briefly look at each of these sources of error and in the
following sections we will consider how these various effects can be mitigated in a
given design.

Reflector edge diffraction: This can be reduced by redirecting the diffracted
energy away from the quiet zone by such techniques as serrating (castila-
tions) the reflector edges (see Figure 5.2) or by using a blended rolled edge.
Alternatively, the magnitude of the energy hitting the edge can be reduced
by decreasing the level of the edge illumination through choice of feed;
however, for a simple feed an increased edge taper will reduce the size of the
quiet zone as the narrower feed pattern is projected into the quiet zone (see
Figure 5.4) so an engineering compromise is needed. Alternatively a more
complex shaping of the energy hitting the main reflector can be achieved by
using a multi-shaped reflector feed system.

Feed spillover: This can be overcome by careful feed design, use of absorber
baffles or use of a multi-shaped reflector feed system.

Wall reflections: This is largely down to size of pyramidal absorber used (see
Chapter 3), but also on the shape of the chamber walls as all absorber
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Wall reflections

Edge diffraction

Edge diffraction

Direct ray

Surface
error

Feed spillover

A

Figure 5.8 Sources of quiet zone error
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operates with the best reflectivity at normal incidence. As in any anechoic
chamber the size of the pyramidal absorber used determines its low fre-
quency performance.

Time-gating: A completely alternative approach is to not worry about miti-
gating these effects and to use a time-gating receiver technique to remove
these signals, which have either a shorter time of flight from feed to quiet
zone (e.g. feed spillover) or a longer time of flight (e.g. edge diffraction).
This is covered in more detail in Section 5.2.6.

5.2.1 Reflector edge diffraction
There are several methods of minimising this effect and these will be considered in
detail.

5.2.1.1 Serrated edge reflectors
The problem of reflector edge diffraction was quickly recognised as a critical effect
in successfully designing a CATR, as demonstrated by the early designs of CATR
such as the Scientific Atlanta model 5750 range marketed in the late 1970s (see
Figure 5.2). The concept of the serrated edge is that the continually changing edge
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Figure 5.9 Dual reflector CATR sources of quiet zone error caused by non-
optimised serrations (used with permission from Prof. Dietmar
Fasold, Munich University of Applied Sciences, Munich, Germany)
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angle spreads the diffracted energy over a wider region in the quiet zones and so
avoids constructive mixing of the individual diffraction points which is seen on a
simple straight or curved reflector edge. The first attempt at analysing this was by
Beeckman [9]; the near-field zone of a serrated edge aperture having a rectangular
rim shape was calculated using a scalar Fresnel transform. The triangular shape of
the serrations used allowed an analytic evaluation of the 2D integrals involved in
defining the Fresnel transform. A dramatic improvement of the serrated edge case
over the untreated counterpart was demonstrated. For example, it was shown that
an amplitude ripple of almost 4.5 dB was transformed to only a 0.2 dB ripple when
serrations were introduced. This is shown in the reproduced result from this paper
in Figure 5.10. This nicely demonstrates that enlarging the serrations (and so the
overall aperture size) enlarges slightly the quiet zone size. Figure 5.11 (also from
[9]) shows how the transverse quiet zone at different down range distances (thus
defining the quiet zone Volume) is controlled by the serrations. Work along similar
lines dealing with a circular projected aperture envelope has been reported in
[10–13]. The conclusions were similar in that the serrated aperture provides the
better performance in terms of near-field uniformity.

In [14] the shape of serrations was studied by both theoretical modelling of
different shapes and the experimental verification by measuring the RCS of thin
strips of CATR reflector with the desired shaped serration at each end. From the
RCS measurements the maximum plane wave spectral components of the quiet
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zone were determined and used as a performance measure. The research showed
that at low frequencies where the serrations were only around 5 l in length, trian-
gular serrations worked best. However, at higher frequencies with serrations in
excess of 10 l, a cosine to the power 1.6 shape was the better choice. Serrations aim
to smooth the transition between reflector with maximum current and free space at
reflector edge with no current. As the electrical size of the serrations increases, the
lowest quiet zone ripple is achieved by making the current distribution at the edge
continuous for all derivatives which is offered by a cosine squared shape. The
cosine to the power 1.6 is thus an engineering compromise for the typical range of
operation of a CATR.

However, in [11] the vectorial nature of the fields involved was neglected and
the study concentrated on a single CATR reflector size of 50 l. Two main criti-
cisms can be levelled at these studies. First, when comparing serrated and unser-
rated edge apertures, the serrations were assumed to ‘add on’ to the unserrated
aperture. When considering a retrofit of an existing facility, this approach is sound;
however, from a design and chamber volume point of view, this comparison is
unfair since in this case the unserrated aperture is always smaller than its serrated
counterpart. The second problem is due to the fact that in none of the above studies
was the possibility of imposing an edge taper on the unserrated reflector used in any
comparison. This issue was addressed by one of us (Parini) and is reported in [15]
and summarised below.

The physical optics (PO) method of modelling can be used, since with this
method it is easy to accommodate the impact of serrations and at the same time
provide reasonable accuracy.

Two examples of projected apertures for serrated rim reflector CATRs are
shown in Figure 5.12 where the value of serration length used (30%) was selected
to be representative of practical CATRs. A CATR with a nominal projected
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aperture of 3 m diameter and a focal length of 5.4 m was used in the study operating
at 3 GHz, this being a small 30 l aperture. Results for the circular aperture of
Figure 5.9 [15] with an edge taper of �1 dB do indeed show that the uniformity of
the transverse quiet zone phase (taken at z ¼ 6 m) is substantially improved with
the serrated rim where 70� of phase ripple was reduced to 20�. However, a too low
or too high a value for the serration steepness factor (p) provides no improvement
in the amplitude quality, as compared with the straight edge case with a similar
amount of edge taper.

For large p values, increased amounts of almost straight rim sections reappear
between the serration peaks (Figure 5.12(i)) with the direct consequence of a gra-
dual reinforcement of the edge diffracted field coherence. Additionally, these
straight sections were located at a reduced distance from the apertures centre,
which could explain the increase in amplitude ripple. However, for p values in the
range 1–3, an improvement of as much as 2 dB in quiet zone amplitude ripple could
be observed. A value of p ¼ 2.5 was selected for subsequent calculations. The quiet
zone is far less sensitive to changes in N, the total number of serration periods.
These observations were made by studying the quiet zone field along both the
horizontal and vertical transverse axes. In [12] and [13] the effect of randomised
lengths of the serrations (i.e. not all uniform), the root depths between serrations
and the width of the serrations were studied by Joy for general low side lobe
antennas and the CATR. The ‘flower petal’ shape serrations shown in Figure 5.13
was patented in 1994 (US patent #5,341,150). The conclusion was that there was no
great advantage to randomising the serrations as compared to uniform serrations for
a CATR.
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Serrations provide spatial tapering of the field towards the reflector rim but this
could equally well be done by changing the feed of the equivalent straight rim
reflector to provide a similar edge illumination taper. When the edge taper is close
to �7 dB, comparable results to the serrated case can be obtained, and this is
illustrated in Figure 5.12(ii) for a horizontal scan. The �10 dB field extent is
similar in both the horizontal and the vertical scan, which can be used as an indi-
cation of the similarity between the amplitude and spatial tapering for the corre-
sponding examples.

Similar results can be seen for the superquadratic aperture shape (Figure 5.12(i)b)
with the straight rim aperture performing better than the circular aperture when they
have the same edge taper. The larger edge taper at the corners of the superquadratic
rim, combined with the fact that the noncircular apertures is larger than its circular
counterpart, is the main contributions to the improvement. For the case of the straight
rim with �7 dB edge taper, the amplitude and phase of the superquadratic aperture
satisfy the commonly used quality criteria (�0.5 dB and �5�), yielding a quiet zone
with 0.9 m lateral extent. The equivalent circular aperture would not be able to satisfy
this criterion at 3 GHz. The results for the superquadratic aperture suggest that an
alternative to serrations for reducing diffraction would be to use an aperture shape
which directs the edge diffraction energy away from the test zone. An indication that
this suggestion is valid can be seen by considering the case of the Queen Mary
University of London (QML) CATR which has a sector-shaped aperture
(Figure 5.14). At a frequency of 3 GHz and edge taper �7 dB, the theoretical co-polar
field scans perform similarly to the square projected aperture CATR. As with the
superquadratic aperture, the QML CATR has straight sides and an orientation relative

Figure 5.13 Randomised ‘flower petal’ serrations as used on a low side lobe
reflector antenna, pictured with Ed Joy
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to the feed which directs the edge diffraction energy away from the quiet zone. A
direct result of this is that a quiet zone scan along the vertical has a higher degree of
uniformity than along the horizontal.

In summary when the envelope of a CATR reflector projected aperture is kept
constant, the inclusion of serrations improves the low frequency performance of the
CATR. The improvement offered can be thought of as a consequence of the spatial
tapering induced, and hence the introduction of an equivalent amount of illumina-
tion tapering in an untreated edge reflector will produce quiet zone fields of similar
quality. In this sense spatial tapering (serrations) and feed tapering are electrically
equivalent methods to reduce edge diffraction. The geometric optics (GO) field
component for a CATR with a strongly illuminated serrated rim is uniform over a
larger lateral extent than for the equivalent performance unserrated rim, since for the
later case edge diffraction is reduced by using a stronger edge taper from a simple
feed. If a more complex feed is employed, which can shape the illumination more
effectively near to the reflector edge (using a system of shaped reflectors for
instance), then serrations become unnecessary. Having established the equivalence
between illumination tapering and serrations, the superiority of one approach over
the other can be judged primarily from practical and financial considerations. In this
sense the serration approach may have an advantage, if the best low frequency
performance is required, since at the low frequency limit a feed providing the
necessary illumination taper will be large and expensive to manufacture.

In [21] the concept of the R-card is proposed where double-sided resistive
cards (or plates) are strategically located around the edges of the CATR reflector to
effectively shape the aperture illumination; however, the authors are not aware of
any practical implementation of this technique for a CATR.

5.2.1.2 Blended rolled edges
The concept of the blended rolled edge was first devised by Burnside and reported
in [16]. This uses a smooth transition from the parabolic reflector surface that
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collimates the feed spherical wave to the quiet zone, to an elliptic surface that
progressively steers the energy away from the quiet zone (Figure 5.15). There are
several ways that this edge can be constructed ranging from direct transition from
parabola to ellipse as well as blending from ellipse to parabola via cosine and
cosine squared transition functions, these are compared in Figure 5.16. A good
description of the mathematical process is described in [17].

To demonstrate the effectiveness of this solution in [13], Burnside compared
the diffraction from a 24 l paraboloidal reflector with a knife edge and a blended
rolled edge using geometric theory of diffraction (GTD) showing a significantly
low quiet zone ripple (Figure 5.17). In [18] a direct comparison between the
blended rolled edge and the serrated edge was undertaken for a 20 l � 20 l
reflector surface with the addition of either a 10 l long serration or a 10 l blended
rolled edge (so the overall reflector with edge treatment was in both cases 40
l � 40 l). Figure 5.18 shows a comparison of the transverse quiet zone at a down
range distance of 70 l for both the blended rolled edge and the serrated edge along
with the ideal GO field with no diffraction. These were calculated using the PO
technique with the physical theory of diffraction (PTD). The closeness of the
blended rolled edge to that of the ideal case is clear. How this translates to pattern
measurements is illustrated in Figure 5.19, which shows the backscatter signal from
a 12 l � 12 l diagonal plate simulated in both the serrated and blended rolled edge
CATR. The error in the serration pattern occurs when the ‘main beam’ of the AUT
looks at the serrations and so the stray diffraction signals are amplified by the main
beam, and this signal level can be comparable to that of the true side lobes gener-
ated by the CATR plane wave illuminating the AUT. A typical blended rolled edge
reflector is shown in Figure 5.20, and this is generally much more expensive and
difficult to make than a serrated reflector as the blending from parabola to ellipse
must be smooth to ensure that no diffraction occurs at the boundary. In addition, the

Surface
changes
from
parabola
to ellipse

Figure 5.15 Concept of the blended rolled edge CATR reflector
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inevitable panel construction must ensure that surface currents flow freely and no
‘panel gap’ effect is seen (this issue is covered in Section 5.2.5). In practice, the
benefit is usually not so great as illustrated by these simulated measurements as the
redirected energy of the blended rolled edge needs to be effectively absorbed by
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the anechoic chamber walls for the full benefit to be achieved. A comparison of the
ray paths resulting from the focal point feed illumination of a parabola for both
serrations and blended rolled edge treatment is shown in Figure 5.21.

5.2.1.3 Shaped feed illumination
An alternative approach that is viable for high-frequency operation (milli-
metrewaves) is to shape the illumination that reaches the main reflector so that the
illumination across the major part of the reflector is uniform but rapidly falls of to
�20 dB or less at the reflector edges. The concept is illustrated in Figures 5.22 and
5.23, where a pair of shaped sub-reflectors is used to shape the illumination that hits

15
14
13
12
11
10
9
8
7
6
5

–5 –4 –3 –2 –1 0 1 2 3 4 5

15
14
13
12
11
10
9
8
7
6
5

–5 –4 –3 –2 –1 0 1 2 3 4 5

15
14
13
12
11
10
9
8
7
6
5

–5 –4 –3 –2 –1 0 1 2 3 4 5

–32
–31–30

–31
–29 –29–28

–31
–30–29

–28

–31
–30

–29
–28

–29
–28 –28 –28

–28

–28

–28

X(λ1)
Y(

λ 1
)

Y(
λ 1

)

Y(
λ 1

)

(b)X(λ1)(a)

X(λ1)(c)

–27
–27

–27

–27
–27

–27

–27

–27

–27

–27–28

–28–28

–27

–30

Figure 5.18 Simulated quiet zone contours for serrated edge and blended, rolled
edge-compact range reflectors of 40 l by 40 l. (a) Serrated edge
reflector. (b) Blended, rolled edge reflector. (c) Ideal geometric
optics field (contour lines separated by 0.5 dB) [18]

202 Theory and practice of modern antenna range measurements, volume 1



the main reflector. This has two benefits, first that the reflector can be made with no
edge treatment, and second that the quiet zone size can be up to 70% of the main
reflector diameter, compared to the 30% of a conventional single-offset reflector.
This is particularly desirable for millimetrewave compact ranges where very high
surface accuracy reflectors (e.g. 8 mm rms for 300 GHz operation) are required and
the cost of manufacture is strongly linked to the main reflector diameter.
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Figure 5.19 Simulated backscattered fields of diagonal flat plate ‘measured’
using the (a) serrated edge and (b) blended rolled edge reflector [18]

Figure 5.20 Blended rolled edge reflector 6 m (including rolled edge), quiet zone
of 3 m diameter, rolled edge 1.5 m width and lowest frequency of
500 MHz (Courtesy of MVG-Orbit/FR)
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However, the influence of the shape of the amplitude taper across the quiet
zone on the measured AUT patterns should not be neglected, particularly when
very low side lobe antennas are to be measured. In [19] the effect of a ‘single
hump’ transverse quiet zone amplitude distribution was compared to a ‘double
hump’ (with dip in the middle) distribution, both having the same peak-to-peak
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Figure 5.21 Ray paths resulting from focal point feed illumination of a parabola
for both serrations and blended rolled edge treatment (Courtesy of
Ed Joy)
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Figure 5.22 Tri-reflector CATR which takes the Gaussian feed pattern of a
corrugated horn, shaped by dual reflectors to give an optimal
illumination at the main reflector
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ripple of just 0.25 dB. Theoretical results obtained when ‘measuring’ a 40 dB side
lobe level Chebyshev distribution AUT indicated that the single hump produced a
first side lobe decrease of 1 dB and a gain loss of 0.04 dB, but the double hump
produced a first side lobe increase of 5 dB and a gain loss of 0.12 dB. Clearly this
illustrates that just setting a global maximum quiet zone amplitude ripple may not
be sufficient to guarantee accuracy of measurement for very low side lobe AUTs.
In such cases, simulation of the AUT measurement in a given CATR is vital, and
this topic is considered in Section 5.4.

5.2.2 Feed spillover
As shown in both Figures 5.8 and 5.9, energy from the feed can be directly received
in the quiet zone. This is demonstrated in Figure 5.24 by the simulation taken from
[21] for a single-offset reflector quiet zone cut taken in the vertical (offset) plane. If
this is compared with the similar horizontal plane cut (Figure 5.25), we see a
reduced ripple frequency in the quiet zone plots. This is due to the fact that for the
vertical plane the PWS contribution from the spillover has high angular spectrum,
whereas for the horizontal cut the PWS contribution from spillover is centred
around the low angular spectrum origin.

The use of absorber baffles to isolate the direct path from feed to quiet zone is
a popular solution and can be seen for the single-offset case in the QML range
(Figure 5.14) and for the Airbus Defence and Space dual reflector CATR in
Figure 5.26.

5.2.3 Lenses as collimators
Up till now we have only considered the reflector as the means of collimating the
electromagnetic energy into the required pseudo plane wave; however, as we know
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from basic optics a lens can be deployed equally well. In 1953, Mentzer [23] used a
foam dielectric lens of 33 l in diameter and a relative permittivity of 1.03.
However, the low permittivity meant that the focal length to diameter ratio was
about 10 so that the antenna range was not very compact. In the late 1970s, Olver
and Saleeb demonstrated that a lens type compact range using foam dielectric was
possible [24]. Menzel and Huder [25] later showed that a solid PTFE dielectric lens
could be used to measure antennas at 94 GHz. This had a diameter of 0.5 m, a
spherical contour and a thickness of 20 mm. A tolerance analysis shows that the
accuracy of the lens contour only has to be about 0.5 mm to give the same phase
error as a reflector with 0.1 mm error. This is because firstly the error appears only
once in the transmission path for the lens, but twice for the reflector, and secondly,
this error is weighted by a factor of

p
er � 1, which is about 0.4 in the case of
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PTFE. In this case a very long focal length was used resulting in a range length of
4.5 m. It was successfully used to measure a 30 cm diameter antenna at 94 GHz,
where the far-field distance would be 56.4 m, so it was an effective way of fitting
such an antenna in a reasonably sized anechoic chamber. No quiet zone measure-
ments were reported for this case. In 1991, workers at Helsinki University of
Technology reported [26] a lens CATR with a shaped polyethylene (er ¼ 2.32) lens
for 110 GHz (Figure 5.27), where the shaping provided a uniform amplitude dis-
tribution in the quiet zone. In order to make the quiet zone amplitude ripple from
edge diffraction small, saw tooth serration around the lens was used and shown
theoretically to have quiet zone peak-to-peak ripple of 0.27 dB, with preliminary
measurements showing a ripple of 2.0 dB.

A critical factor in any lens design is the homogeneity of the material forming
the lens as any local non-homogeneity will lead to quiet zone phase ripple in the
same way that surface errors do. The advantage of the lens is the high area utili-
sation, lower edge diffraction (prior to treatment), no direct radiation from the feed
and good cross-polarisation; however, the ability to manufacture with high homo-
geneity severely limits the practicality of this approach.

5.2.4 Hologram CATRs
A successful development of the lens work at Helsinki University of Technology
was the development of the holographic CATR. Here a transmission-type binary
amplitude hologram is used as a collimating element to form a plane wave for

Feed baffles

Figure 5.26 Airbus Defence and Space CATR showing cylindrical absorber
baffles to isolate feed from quiet zone. Copyright 2004, Airbus
Defence and Space
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antenna testing. The hologram is a computer-generated interference pattern etched
on a thin metal-plated dielectric film, which is stretched on a supporting frame. An
example of this work is given in [27] where a 3.0 m diameter hologram was con-
structed for operation at 322 GHz; a diagram of the system is shown in Figure 5.28.
The hologram is designed to generate the plane wave to an angle of 33� from the
hologram normal in order to prevent the unwanted diffraction modes propagating
along the normal from disturbing the quiet zone. The performance of a
0.6 m � 0.6 m prototype hologram made from three pieces of 50 mm thick copper-
plated Mylar film (0.2 m � 0.6 m in size) joined together using a soldering tech-
nique was shown to have a 300 mm diameter quiet zone with amplitude and phase
ripple of 1.5 dB and 10� peak-to-peak. The full 3.0 m diameter hologram CATR
was again made from three sections due to the limitation in manufacturing single
piece holograms any larger than 1.35 m � 3.2 m. The performance of the full
system was limited by an amplitude error in the hologram modelling, but mea-
surements were undertaken on a 1.5 m diameter 322 GHz AUT [28].

The same group extended this work by constructing a 1.0 m diameter hologram
for 644 GHz operation, using a 50 mm thick copper-plated Mylar film as the sub-
strate material [29]. The hologram was manufactured using direct laser writing of
the pattern followed by wet etching. The quiet zone field generated by the holo-
gram had measured peak-to-peak amplitude and phase ripples of approximately 2
dB and 15�.

In [30], the use of a dual reflector feed system (see Section 5.2.1.3) to shape the
amplitude that illuminates the holograms enables a nearly constant slot width in the
hologram pattern, which simplifies the hologram manufacturing by eliminating
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m 220 mm220 mm

Figure 5.27 Shaped dielectric lens CATR with cosine shaped saw tooth
serrations. Lens focal length ¼ 94.7 cm [26]
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the narrow slots in the edge of the hologram pattern, required when a simple cor-
rugated feed horn is used. Wider slots are easier to etch correctly and they are more
tolerant to over-etching.

For millimetrewave and sub-millimetrewave operation, the hologram CATR is
a viable alternative to very high precision reflector antennas. The disadvantage of
the hologram is its narrow bandwidth and single polarisation operation. The narrow
bandwidth is due firstly to the fact that as the frequency changes from the design
frequency the direction of the hologram beam moves, and secondly the quiet zone
amplitude ripple increase, thus a bandwidth limitation of only a few per cent is
practical. However, the much lower cost of manufacturing the hologram means that
a range of holograms could be built to suit a given measurement campaign.

5.2.5 Reflector surface errors and panel gaps
In the introduction to Section 5.2 we have already indicated the issue of reflector
surface errors that need to be kept to about 0.01 l. For millimetrewave CATR
operation this becomes a significant issue, e.g. a 300 GHz CATR; this translates to
a 10 mm surface accuracy. Such accuracy is expensive to achieve over a large
reflector size, particularly if a single-offset configuration is conserved where the
quiet zone is only about 30% of the main reflector diameter. At QML, a tri-reflector
CATR has been developed (see Figure 5.22 [20]) that uses a 1.0 m diameter
spherical main reflector with surface accuracy of 8 mm rms and achieves a quiet
zone size of 0.7 m by the use of a dual shaped reflector feed system (sub-reflectors
also with 8 mm surface accuracy). The spherical reflector can be used to exploit the
symmetry and hence enable it to be machined on a lathe. For such large focal
lengths, the difference between the sphere and the offset paraboloid is small and the
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Figure 5.28 Hologram CATR [27]
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phase error can be corrected for within the design of the dual reflector feed system.
Larger main reflectors are possible and one could conceive of a 1 THz CATR with
1.0 mm surface accuracy and 8.2 m diameter main reflector. Such a reflector could
be constructed using optical mirror technology, where currently the largest single
mirror of useable diameter 8.2 m forms part of the Subaru Telescope located at the
Mauna Kea Observatory on Hawaii (part of the National Astronomical Observatory
of Japan). This reflector is made from ultra-low thermal expansion glass, is 20 cm
thick and weighs 22.8 tons [31]. By using the same construction for such a mirror
with 8.2 m diameter and 0.25 mm rms surface accuracy (typical after fine grinding
and prior to polishing) and metalising, the fine ground mirror surface would lead to
a suitable CATR main reflector. This would enable a 5.7 m diameter quiet zone
(based on 70% of the main reflector) when used with a dual reflector feed system.

High-precision panels to form an offset reflector have been used by QML to
build a millimetrewave CATR in the early 1990s (see Figure 5.29) [32]. The panels
used in the construction of this CATR reflector surface were developed by the
Rutherford Appleton Laboratory (UK) for the James Clerk Maxwell Telescope
(JCMT) based at the Mauna Kea Observatory on Hawaii. This is a millimetrewave
radio-telescope with a 15 m diameter Cassegrain dual reflector antenna. The 5.4 m
focal length primary surface consists of 276 lightweight aluminium panels arranged
in 7 rings and the individual panels have average rms surface accuracies of about
15 mm. The high-precision sector-shaped panels are made using a stretch form
process. A thin aluminium skin is stretched over a numerically machined former. A
layer of aluminium honeycomb, pre-crushed onto the former and bonded to the
facing skin, maintains the surface shape. A second honeycomb layer gives
increased rigidity and beneficial thermal properties. The complete sandwich is

Q

L
P

Figure 5.29 QML panelled single-offset millimetrewave CATR [32]
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bonded together with epoxy adhesive. Each panel weighs about 6.8 kg and has
dimensions of 1 m long and averages 0.5 m in width. The structure shown in
Figure 5.29 is 3.0 m wide and between 2.0 m and 4.3 m high and made of 18 panels
formed from the third, fourth and fifth rings of the telescope structure. To keep the
overall height of the structure low, the plane of offset is horizontal with range
boresight parallel to the ground and 3.0 m above it. The panels are supported on a
space-frame backing structure with three-point mounting permitting panel adjust-
ment via micrometer adjusters with 10 mm accuracy. The panels were aligned using
a theodolite-based scheme, as shown in Figure 5.29, and achieved an estimated
surface accuracy of 70 mm rms. The single-offset reflector enables a 3.0 m diameter
projection on its surface leading to a 1.0 m diameter quiet zone based on the use of
a simple corrugated horn feed.

In [33] the GO/UTD technique was employed to study the effects of inter-
panel gap edge diffraction. The conclusions of this work were that at milli-
metrewaves gap edge diffraction can impair the CATR ‘quiet zone’ quality.
When an antenna is tested in a panelled CATR with untreated gaps then spurious
lobes are induced in its measured pattern. These lobes are centred at angles
where the gaps are subtended by the AUT main beam. The severity of the gap-
induced effects is determined primarily from the width of the gap and from the
panel misalignment. The latter is the dominant factor when its magnitude
exceeds the figure of l/60 as demonstrated below. At 183 GHz, a typical
measured value for the strength of the spurious lobes was found to be around
�30 dB. To rectify this situation a thin metallic tape can be used to cover the
gaps and an extensive analysis of the performance based on this solution was
presented in [34].

Figure 5.30 shows the modelled effect of both a gap and a panel misalignment
at 180 GHz, while Figure 5.31 shows the effect of 10 mm thick, 40 mm wide
conducting metal tape on a perfect surface, with that for a tape covered gap with 60
mm panel misalignment, with and without tape pillowing. The effect on the mea-
sured radiation pattern of taped and untaped panel gaps can be seen in Figure 5.32,
where a 226 mm diameter aperture Cassegrain antenna operating at 186 GHz was
measured in the QML panelled CATR.

The degree of alignment between adjacent panels is very important. Under tape
treatment a figure of panel edge misalignment of about l/60 will result in spurious
lobes with strength near to �50 dB for a measurement scenario similar to the one of
Figure 5.32. The amount of tape pillowing is generally proportional to the width of
the gap which the tape covers. Hence, panels manufactured accurately enough to
allow for a gap width around 1 mm or smaller should be used, rather than the
2–3 mm used for the QML range. Experimentally spurious lobes with a level of
around �45 dB have been observed when a 10 mm wide tape covered a 2 mm wide
panel gap. This figure is about 7 dB higher than the value that would be expected as
a result of scattering from its edges only. Tape deformation and panel edge mis-
alignment are contributing to this discrepancy. Although conducting metal tape can
be used, the quality of the continuity of the current flow across the gap is often
unknown and would be an additional factor in any design. It is clear that the effect
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of the gaps can be mitigated but not removed by this technique, although the
MARS technique (see Section 5.4.5.1) may offer a possible processing solution.

It should be noted that the panel gaps considered above are electrically large
(in excess of 1 wavelength) and in the case where the panel gaps are fractions of a
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wavelength the effect on the quiet zone and hence AUT measurement error is much
reduced. In [35] the effect of panel gaps with dimensions less than 0.3 l was
modelled as slot antennas and shows the polarisation sensitivity of the gaps. As an
example the paper considers the Fort Hauachuca (Arizona) outdoor compact range
shown in Figure 5.33, which has a 15 m test zone and panel gaps in the range
0.5–1 mm, and operates up to 40 GHz. The analysis indicated that the additional
cross-polar amplitude ripple would be increased by about 0.3 dB peak-to-peak and
the co-polar amplitude ripple was negligible.

5.2.6 Time-gating and the absorber-less chamber
It is clear from Figure 5.8 that many of the sources of quiet zone error result from
signal paths that have clearly longer or shorter ray path lengths from the CATR
feed to the quiet zone. This implies that a time-gating solution to managing the
quiet zone ripple would be viable as illustrated in Figure 5.34, where a short pulse
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left) in the panelled QML CATR (inset top right), with AUT aperture
pointing at centre of panel 11. –�–�–�– ¼ measured with bare gaps;
—— ¼ measured with taped gaps, - - - - ¼ theoretical prediction with
tape treatment [34]
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is transmitted by the CATR feed and the desired direct path is identified and the
other responses are time gated out.

There are essentially two approaches to time-gating, hardware time-gating and
software time-gating. For software time-gating (often called pseudo time-gating), a

Figure 5.33 Fort Hauachuca (Arizona) outdoor panelled compact range
(Courtesy of Ed Joy)
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Figure 5.34 Time-gating in a CATR
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vector network analyser (VNA) sweeps across a wide range of frequencies for each
antenna pattern point, a fast Fourier transform (FFT) is then applied to the fre-
quency sweep (called the frequency span) and the time domain plot (as shown in
Figure 5.34) is obtained. For most modern VNAs this is available as a hardware/
software option with the FFT being undertaken in hardware to provide a near real-
time time domain plot. A software gate can then be applied to the time domain plot
(Figure 5.34) and the resulting gated response is then subject to an inverse FFT to
recover the frequency domain response of the AUT from just the direct path. The
effective ‘pulse width’ of such a system is approximately equal to 1/(frequency
span), and the maximum time span that this can achieve is then approximately
equal to 1/Df, where Df ¼ frequency span/(N � 1) and N ¼ the number of frequency
samples taken across the frequency span (typically 101–10 001). So an 8–12 GHz
sweep with 10 001 points would give a pulse width of 250 ps, Df of 0.4 MHz and a
maximum time span of 2.5 ms. The pulse width translates in free space to 75 mm in
range distance, which is thus the smallest path difference that can be resolved. The
maximum time span dictates the alias free range which translates in free space to a
distance of 750 m. The user needs to be aware of the following issues:

● The AUT must have a bandwidth which supports the frequency span required.
Should the AUT limit the bandwidth of the signal received/transmitted, the
resulting frequency span will not permit the required time-gating.

● Windowing improves the dynamic range of the time domain measurement by
modifying (filtering) the frequency domain data prior to conversion to the time
domain to produce an impulse stimulus with lower side lobes.

● Gate shape controls the flatness, roll-off rate and side lobe level of the gate.

These and other issues can be found in a variety of texts, e.g. [36].
For hardware time-gating this can be achieved in one of two ways. Firstly,

using a VNA and RF modulator switch controlled via VNA and external pulse
generator (Figure 5.35). Gating is achieved usually at IF via internal gate switching,
typically with a time resolution of 50 ps. Secondly, using a dedicated pulse radar
system which could be reproduced to some extent by a pico-second pulse generator
and digital sampling oscilloscope as in Figure 5.36. For this latter case a 50 ps pulse
would cover the frequency range to 20 GHz (1/pulse width) with a typical pulse
repetition frequency of 250 kHz (4 ms period). In [36] this concept has been taken
to the extreme where antenna measurements were performed in a single-offset
CATR with no absorber surrounding the system and no reflector edge treatment.

The offset reflector antenna of the CATR was a commercially available
Ku-band direct-broadcast satellite antenna of diameter 165 cm with F/D ¼ 0.6, and
a WR90 open-waveguide antenna was used as a feed. The system achieved a quiet
zone volume of about 55 cm with a magnitude taper of 1 dB and a quiet zone ripple
of �0.5 dB and �5� at 12 GHz. Using a 30 ps pulse the system was successfully
used to measure a 60 cm diameter Ku-band antenna as well as a 25 cm diameter
Ka-band antenna.

It is important to realise the full implications of time domain measurements
and this is addressed in [37] in relation to the coherence time of the AUT. In receive
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mode the radiation pattern of an antenna is essentially an interference pattern of the
incoming plane waves incident on its aperture. This is illustrated in Figure 5.37,
where in order to obtain a perfect radiation pattern, the coherent length of the
receiving waves must be greater than or equal to the physical path length difference
that is seen by the incident waves within the antenna structure. When a finite time
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Figure 5.35 Hardware time-gating using VNA

Power
amplifier

Power
amplifier

Low noise
amplifier

Low noise
amplifier

Sampling oscilloscopeSampling oscilloscope

PretriggerPretrigger

Data
acquisition unit

Data
acquisition unit

Step generatorStep generator
Pulse generatorPulse generator

TriggerTrigger

TxTx RxRx
PulsePulse

Figure 5.36 Hardware time-gating using a pico-second pulse generator and
digital sampling scope
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pulse is imposed, it can be regarded as the coherence time of the incident plane
waves, which means that when the corresponding coherent distance becomes less
than the target physical path length difference within the AUT conventional CW
interference no longer takes place and the resulting measured pattern is distorted.
For the antenna of Figure 5.37 this occurs at a radiation pattern angle of qm for the
time pulse of width Dt, where

qm ¼ sin�1 cDt

D

� �

(5.2)

For pattern angles that exceed this value, the diffraction pattern of the antenna
will be significantly distorted. This has been experimentally demonstrated for a 60 cm
diameter reflector antenna fed with an open-ended waveguide [Figure 5.38(a)]. It is
apparent that with a 1 ns gate there are large discrepancies between the time-gating
pattern and the CW pattern, also the far-out side lobes from about 45� onwards are
distorted significantly. As predicted, there is improvement when the gate width is
increased to 2 ns. The pulse width was subsequently increased up to 4 ns and a
measurement errors summary is shown in Figure 5.38(b), demonstrating the impor-
tance of careful pulse width in time domain antenna pattern measurement. It is
important to note that this effect applies to hardware gating for the transmit pulse and
for both hardware and pseudo time-gating for the choice of gate width. It is also a
critical issue in RCS measurement and this is addressed in Section 5.6.4.

5.3 Types of ranges and their design issues

In the previous section a wide range of different CATR configurations have been
described in order to achieve a collimated plane wave in a quiet zone region. In this
section we will classify the various CATR configurations and comment on their

D

θ

D sin θ

Figure 5.37 Coherence length in an AUT
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main design issues. We have limited the review to CATRs that have been practi-
cally implemented and reported in the open literature.

5.3.1 Single-offset reflector CATR
This is by far the most widely used CATR offering a simple low-cost solution. The
main issue is that with a simple feed horn the edge taper and edge illumination level
compromise results in a quiet zone that is approximately one third the diameter of
the CATR reflector. In addition, because a single-offset reflector has inherent
cross-polarisation in the offset plane, the cross-polar performance is likely to be at
best �30 dB and that is only when a long focal length is used. Reflector edge
treatment is vital and both serrations and blended rolled edges (e.g. Figure 5.20)
have been successfully used. It has also been demonstrated that CATR operation
without edge treatment can be achieved using a commercial communications offset
antenna along with a time domain gated approach [37].

5.3.2 Dual cylindrical reflector CATR
In this approach the issue of manufacturing large reflector antennas with high surface
accuracy of at least l/50 and ideally l/100 (to give the desired �5� quiet zone per-
formance at high frequency) is approached by constructing a pair of cylindrical
antennas that provide collimation first in the horizontal plane and then in the vertical
plane, as shown in Figure 5.39. Using such an approach exploits the fact that it is easier
to make highly accurate reflector surface when there is just one plane of curvature.

5.3.3 Dual shaped reflector CATR
Here both reflector surfaces are shaped which offers the following advantages:

● Low differential path loss when using large focal lengths.
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● Zero cross-polarisation from the reflectors when the Mizugutch condition is
used (here the cross-polar from one reflector cancels that from the second
reflector). The only cross-polarisation comes from the feed and diffraction
effects.

● Reduced edge effects due to shaping.

Because of the excellent cross-polar performance (typically <�40 dB peak in
the quiet zone), such systems are often employed to measure space craft antennas,
and an example is shown in Figure 5.40 [39]. To achieve such a performance an
optimised range feed with <�50 dB cross-polarisation in the field of view is
required (see Figure 5.41).

Vertical collimation

Horizontal collimation

(a) (b)

Quiet
zone

Figure 5.39 (a) Dual cylindrical CATR ray diagram, (b) dual cylindrical CATR
(Courtesy of SELEX ES)

Figure 5.40 Dual shaped CATR at Airbus Defence and Space offering a
5 m � 8 m quiet zone at 1.5 GHz to 500 GHz. Reflector surface
accuracy ¼ 20 microns. Copyright 2003, Airbus Defence and Space
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5.3.4 Tri-reflector CATR
This system employs a dual reflector quasi-optical feed system to provide a shaped
illumination on the main reflector for millimetrewave operation (see Section 5.2.1.3).
The system developed at Queen Mary University of London is shown in Figure 5.42.

Figure 5.41 Feed system from Airbus Defence and Space CATR system shown in
Figure 5.37. Copyright 2000, Airbus Defence and Space

Figure 5.42 Tri-reflector CATR for operation up to 350 GHz with 1 m diameter
spherical main reflector and 700 mm diameter quiet zone
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This uses a spherical 1 m diameter main reflector with 8 mm surface accuracy and a
pair of 350 mm diameter shaped sub-reflectors also with 8 mm surface accuracy.

Measured QZ transverse scans of amplitude and phase for an identical system
are shown in Figures 5.43 and 5.44 at frequencies of 173 and 285 GHz,
respectively.

5.3.5 Hologram CATR
This technique has been described in Section 5.2.4 and the system used at 322 GHz
at Helsinki University of Technology is shown in Figure 5.45.

5.3.6 Lens CATR
These are reviewed in Section 5.2.3 but although several lens CATR designs have
been reported in recent years [40], none to our knowledge have been implemented
and reported in the open literature.

5.4 Quiet zones and performance evaluation

The use of the uniformity of the quiet zone in determining the maximum size of test
antenna that can be measured in a given CATR has been the accepted method since
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Figure 5.45 Hologram CATR for operation at 322 GHz using a 3 m diameter
hologram, MilliLab, Radio Laboratory, Helsinki University of
Technology [28]
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its inception. The definition of a quiet zone as one having ripple less than �0.5 dB
in amplitude and �5� in phase has become a near universal standard. In
Section 5.4.1, we take a critical look at this ‘measure of quality’ by understanding
exactly how a CATR works by using a full 3D simulation of the antenna pattern-
measurement process. In subsequent sections we look at the various ways in which
the quiet zone ripple of a CATR facility can be evaluated. Finally we look at ways
in which a given pattern measurement can be improved by such techniques as
multiple scans and post-processing.

5.4.1 How does a CATR actually work?
In general, a user of a CATR is primarily interested in the accuracy to which the
radiation pattern of a given antenna can be measured in a given facility. Such
questions as ‘what is the error bound on the sixth side lobe?’ are often posed.
Specifying the quiet zone ripple does not answer this, but an answer is possible
using simulated pattern measurements by employing a realistic CATR model. In
this section we attempt to answer these questions as well as understand how a
CATR operates by using a full 3D analysis of the electromagnetic coupling
between the CATR antenna and the AUT. Such a simulation can be used for the
purpose of studying the impact of the various operating parameters, optimising
existing facilities or comparing candidate CATR configurations in terms of the
pattern measurement accuracy offered.

The CATR is essentially a ‘plane wave synthesiser’, so coupling between
the CATR and the AUT can be best expressed in terms of the plane wave spectra
(PWS) of the transmitting (T) CATR and the receiving (R) test antenna. Candidate
test antennas are assumed to be either focused apertures or at least ones where their
pattern possesses an identifiable ‘limited-size’ main beam. Thus the bulk of the
transmitted energy, or the peak sensitivity in the receiving case, is taking place over
a limited-size angular region. For the CATR, such an assumption is automatically
satisfied due to the very nature of the collimation process. In its most general form
the coupling equation expresses the power transfer between a transmitter and a
receiver, the domain of integration spanning the whole spectral space which is
computationally difficult. However, a considerable restriction of this angular
domain can be achieved by invoking the following arguments:

1. The first sub-domain to be included is a spectral region S1 over which
the bulk of the transmitted energy is taking place. For a focused aperture
this region can be identified as the spectral space occupied by the main
beam of the transmitter PWS plus perhaps a small number of adjacent
side lobes.

2. The second sub-domain to be included is a region S2 over which the peak
receiver sensitivity occurs. For a focused aperture this region is simply the
spectral space around the main beam of the receiver PWS plus again a small
number of adjacent side lobes.

3. The third sub-domain that should be included is a region S3 around the sta-
tionary points of the Green’s function associated with the physical separation
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between CATR and test antenna. This is essential since the exponential factor
affects directly the way that the transmitted energy is distributed in space. The
behaviour of this term becomes the dominant factor that determines the cou-
pling as the separation distance between receiver and transmitter approaches,
or exceeds, the Rayleigh value.

The coupling integral can then be efficiently evaluated numerically about these
three regions. The PWS involved in the coupling calculation can be directly derived
from the far-field patterns, if these are available. Alternatively they can be found
through Fourier transformation from aperture fields. Full details of the analysis
process can be found in [41], and here it is used to first give an understanding of
CATR operation and then to understand what drives the measurement error process
for a given size of AUT in a given CATR.

The specific CATR configurations which will be used here are the circular
aperture (of diameter 3 m) with straight or serrated rim and the sector-shaped rim
used in the QML CATR of Figure 5.29. The PWS of the CATR collimator, required
for the coupling calculations, are derived through the Fourier transformation of the
tangential electric field which exists on a planar aperture 4 m � 4 m in size placed
at the position z ¼ 1.6 m. These fields have been calculated with the PO method. A
sampling interval of l/2 was used with the test antenna being placed at z ¼ 6 m and
set to face the centre of the collimator aperture. The AUTs are taken as circular
apertures having a Taylor distribution, as it is possible to control the strength of a
prescribed number of almost equi-level side lobes that are adjacent to the main
beam. It was found that if the coupling integral sub-domains (S1 to S3) were given
the appropriate size so as to accommodate the AUT main beam plus two near-in
side lobes, then the RMS error was of the order of �60 dB.

For an AUT diameter of l m, the co-polar pattern for a circular aperture CATR
with edge taper (ET) ¼ �7 dB is shown in Figure 5.46. From the error curve, it is
obvious that a spurious lobe is formed at the angle where the test antenna ‘looks’ at
the CATR edges. The value of the induced error is about �30 dB, and in this case
has caused an error of 5 dB in the side lobes of the measured pattern but the
beamwidth of the test antenna is not affected. If the value of the CATR edge taper
is decreased to �l dB, the only noticeable effect is a proportional increase in the
value of the error peak to �24 dB. This behaviour shows that, with a relatively
small test antenna, the CATR measurement is predominantly edge-diffraction
limited.

Pattern measurements and quiet zone measurements have a distinct difference
in the way in which edge diffraction is presented. During quiet zone measurements,
the field is measured in such a way that all (or nearly all, depending on the probe
gain) possible diffraction sources contribute to the value of the field at a given
point. During pattern measurements, on the other hand, only the diffraction sources
‘looked at’ by the test antenna are contributing to the induced error at a given angle.
The ability of the test antenna to discriminate (filter) between the various diffrac-
tion sources means that the error induced on the pattern measurement is weaker
than that suggested from quiet zone measurements.
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The distribution of the diffraction-induced spurious lobe is affected by the size
of the AUT. The creation of an error due to edge diffraction is made clear by the
situation depicted in Figure 5.47, where the AUT is transmitting. The bulk of the
energy leaving the AUT will be mainly confined along a tubular beam with an
increasingly large cross-section with distance. Fundamental Gaussian-beam-mode
(GBM) theory [43] is particularly successful in giving a simple, yet realistic, pic-
ture of how the transmitted energy is travelling at close and intermediate distances
away from the test antenna. If this beam illuminates the edge E of the CATR
(Figure 5.47), then strong edge diffraction will be generated with a wide angular
distribution and so a diffracted field component will reach the CATR feed leading
to the introduction of a diffraction-induced error in the pattern. For a fixed transmit
power, the field strength of the point in the GBM impinging on the CATR reflector
edge will be inversely proportional to the test-antenna diameter. From UTD ana-
lysis, the strength of the edge diffraction is directly proportional to the field
strength of the particular ray intercepting the edge. When an antenna with an
increasing size is tested in a CATR, the edge-related spurious lobe induced will
decrease in peak strength but will distribute more widely in the measured pattern.
This is demonstrated in Figure 5.48, where a simulated-pattern measurement of a
test antenna with 1.5 m diameter and Taylor distribution is shown. Comparison
with Figure 5.46 shows that the spurious-lobe beamwidth, defined by e�1 points, is
Dq ¼ 6.1� if the AUT diameter is l m, and Dq ¼ 8.1� if the AUT diameter is 1.5 m.

Figure 5.46 Simulated measurement of an l m diameter AUT in a 3 m single-offset
circular rim CATR with straight rim. Frequency 3 GHz, CATR edge
taper ¼ �7 dB. ____ ¼ ideal pattern, � � � � ¼ ‘measured’
pattern, error pattern shown as - -�- - -�
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To confirm the validity of the simulated-pattern-measurement process, a GBM
analysis of the situation depicted in Figure 5.46 was performed which yielded
values of Dq ¼ 6.5� and Dq ¼ 8.5� respectively. Considerable agreement
is observed between the values derived, giving confidence in the simulation
process.

Where the AUT diameter was l.0 m, a decrease in the absolute value of the
CATR edge taper resulted in a universal increase of the error induced. For a 1.5 m
aperture test antenna (Figures 5.48 and 5.49), the error induced in some parts of the
pattern (above 8�, approximately) does indeed increase for ET ¼ �l.0 dB, but at
lower angles the error decreases. Around boresight, an increase in the beamwidth
and a decrease in the level of the near-in side lobes is seen when ET ¼ �7 dB. This
behaviour suggests that the prime source of error is the amplitude taper of the
CATR GO field. For ET ¼ �7 dB, the projection of the CATR GO taper onto the
AUT aperture means that, as it is rotated, increasingly larger portions of its aperture
are falling inside the more uniform parts of the field and hence the effects due to the
GO-amplitude taper are minimised. It is clear from the simulated measurement of
the 1.5 m diameter AUT that its boresight characteristics are affected by the
GO-amplitude taper, while at larger angles the pattern is affected primarily by edge
diffraction.

CATR
receiver

CATR
transmitter

CATR

Test antenna

R

E

ζ

ρ

θE

Figure 5.47 CATR edge illumination considered in the reciprocal mode
of operation
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Figure 5.49 Simulated measurement of a 1.5 m diameter AUT in a circular rim
3 m single-offset CATR with straight rim at 3 GHz and ET ¼ �1 dB.
____ ¼ ideal pattern; � � � � ¼ simulated measurement;
� � � � ¼ error pattern
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Figure 5.48 Simulated measurement of a 1.5 m diameter AUT in a 3 m
single-offset CATR with straight rim at 3 GHz and ET ¼ �7 dB.
____ ¼ ideal pattern; � � � � ¼ simulated measurement;
� � � � ¼ error pattern
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In Section 5.2.1.1 it has been demonstrated that there is an equivalence in quiet
zone quality between a straight-rim CATR with ET ¼ �7 dB and a serrated-rim
CATR with ET ¼ �1.0 dB. This is confirmed by pattern simulation of a 1 m dia-
meter AUT when the co-polar pattern error is plotted for the two cases (Figure 5.50).
It is also evident that in both cases the error due to the CATR GO-amplitude taper,
expected near boresight, is very small. The extended flatness of the error curve in
the serrated-rim example shows that the improvement offered is achieved by the
dispersion of the edge-diffracted energy over a wider angular domain. Moreover,
this dispersion mechanism suggests that it is likely that the mainbeam region will be
more in error than for the example of a straight-rim CATR. Hence, the suggestion
that the serrated-rim CATR offers superior performance based on the quiet zone
field performance is not founded for small AUT when a pattern simulation is per-
formed. This clearly demonstrates the importance of using the pattern-simulation
process in assessing CATR performance.

When an antenna with diameter of 1.5 m (half the CATR size) is tested in a
straight-rim CATR with �7 dB edge taper, the measurement errors are primarily
attributed to the GO-field non-uniformity. The example of the simulated pattern
error measured in the serrated rim CATR is compared in Figure 5.51. As a result of
the small illumination taper used in the serrated-rim example, the AUT boresight
characteristics are reproduced with better accuracy than where a straight-rim CATR
is used. There is now a clear advantage of using a serrated-rim CATR when large
antennas are tested. The peak error for the serrated-rim CATR has a level
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Figure 5.50 Comparison of simulated co-polar pattern measurement error for
straight and serrated-rim CATR for 1 m AUT. •¼ straight rim
ET ¼ �7 dB; � ¼ serrated rim ET ¼ �1 dB
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dominated by edge diffraction and it can be seen (Figure 5.51) that the value of this
peak error is almost equal to the error due to edge diffraction in the straight-rim
example. In conclusion, the advantage of serrated-rim CATRs over the straight-rim
implementations is not that there is somehow the potential of an improved edge-
diffraction suppression, but rather that, whatever level is achieved, it is not made at
the expense of the general GO-field uniformity. Thus larger antennas can be
measured in a serrated-rim CATR.

Two-dimensional modelling of the coupling integral can also be performed
offering a computationally rapid evaluation of performance; it cannot, of course,
handle the two polarisations which are present simultaneously in a realistic test
antenna. It has been demonstrated [44] that, when the CATR rim is irregular, the
quiet zone characteristics cannot be represented accurately from a simple 2D model
under similar prime illumination characteristics. The same is to be expected for
pattern measurements. However, when the rim has a regular shape, or when an
equivalent prime illumination can be derived, the two-dimensional model can
provide useful information in a simple and fast way. To verify the two-dimensional
approach, the pattern measurement error between the 3D and the 2D models was
compared for the example of the QML CATR (Figure 5.52). For the 3D model the
QML CATR was considered during azimuth-pattern-cut measurements. In the 2D
model, the plan view of this facility (i.e. a simple offset paraboloid) was used. The
strong edge illumination and the low frequency (3 GHz) of operation provide a
good test concerning the capabilities of the 2D method to predict the diffraction
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Figure 5.51 Comparison of simulated co-polar pattern measurement error for
straight- and serrated-rim CATR for 1.5 m AUT. •¼ straight rim
ET ¼ �7 dB; � ¼ serrated rim ET ¼ �1 dB
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effects accurately. Close agreement is observed between the two error patterns,
giving confidence in the 2D calculations as a method of providing the correct
magnitude for the measurement error and its general trends.

The computational speed of the 2D simulation of CATR pattern measurements
allows the exhaustive performance testing of any facility which is amenable to a 2D
modelling process. As an example, a 2D facility derived from the QML CATR of
Figure 5.29 was studied in this way. The induced pattern error is a combined result
of edge diffraction and the amplitude taper introduced by the prime illumination
characteristics of the CATR. The ‘ripple’ specification of the quiet zone cannot
discriminate between these error sources, but during pattern measurements they do
appear in distinct ways. The relative significance of these error mechanisms is
determined by two factors: the illumination characteristics of the feed and the
relative size of the AUT. By considering AUTs with a size varying from 0.5 m to
1.5 m operating in a 2D model of the QML CATR, the change in pattern-error
distribution was studied. Since diffraction effects will be worse at the lowest fre-
quency of operation, a value of 6 GHz (the facility’s lowest operating frequency)
was used. The AUT aperture distribution was a cosine on a pedestal, with edge
illumination of �10 dB, placed at z ¼ 6 m (¼ 2DCATR), and facing the centre of the
collimator’s projected aperture. The patterns resulting from the simulation showed
that, for AUTs below a DAUT/DCATR of 1/3, edge diffraction was clearly the
dominant factor. Increasing the illumination taper improved the quality of the
pattern measurement. As the size of the AUT is increased, the emphasis gradually
shifts towards errors due to the amplitude taper, while at the same time the room for
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Figure 5.52 Comparison between two- and three-dimensional pattern-
measurement error predictions for the QML CATR at 3 GHz with
ET ¼ �1 dB. ____ ¼ 2D; � � � ¼ 3D
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compromise between the two types of error decreases. For the largest DAUT/DCATR

studied (l/2), there was almost an equal amount of increase in boresight errors
(GO-taper induced) for a corresponding decrease in the errors due to edge diffraction.

The detailed distribution of the induced error is dependent on the intrinsic
characteristics of the AUT, and in [41] this was studied for a given diameter AUT
with different aperture distributions. There was considerable similarity in the gen-
eral trends of the error distribution between the different AUT aperture distribu-
tions, with the peak level being largely independent of the test-antenna type. This is
an important result, since the pattern-error function obtained under simulation with,
for example, the Taylor aperture distribution is applicable to a wide range of other
AUT aperture distributions which could be generally classed as those that produce
a focused beam. Thus realistic CATR pattern-error estimation can be made without
the need to consider each individual test antenna’s aperture distribution. It therefore
is possible, for a given CATR, to produce measured pattern-error curves as shown
in Figure 5.53 for the QML CATR of Figure 5.29. Here the pattern measurement
error is represented by two indicators: the peak error and the RMS error calculated
over the �50� angular range. These error indicators are presented as functions of
the electrical size of the CATR, the relative size of the AUT, and the CATR edge
taper. An AUT located at z ¼ 2DCATR, with uniform illumination, has been used to
produce these results. These curves can be used as a powerful aid in the design of a
single-offset reflector CATR.

The definition of the acceptable performance for a CATR is directly related to
the amount of error we are prepared to tolerate. The adoption of envelope curves
restricting the allowable error strength and distribution is a very appropriate way to
define the CATR performance. The standard procedure of adopting the �0.5 dB
and �5� ripple in the uniformity of the quiet zone as an acceptable performance is
clearly an indirect measure of range performance, and so too conservative, under-
estimating the accuracy that a given CATR can achieve. However, let us try to
interpret this allowable ripple in terms of an acceptable measurement error. If we
make the simplistic (2D) assumption that the �0.5 dB ripple in the quiet zone is a
consequence of the interference between a desired uniform plane wave front plus
two spurious plane waves coming from the direction of the CATR edges, then the
peak error pattern allowed would correspond to two edge sources of about �31 dB.
Returning to the pattern-simulation results, if we require that the �31 dB target
should be met for antennas having a DAUT/DCATR of at least 1/3, then the lower
frequency limit of the CATR operation can be identified. With this definition in
mind, it has been found that the electrical size of the collimator should be about
40 l in order that an appropriate selection of edge illumination can bring the peak
error to the acceptable value. For the QML CATR example, this would require an
edge taper of �15 dB, a value difficult to meet with a simple compact feed. Taking
this into consideration, a more realistic value should be over 50 l, where the
requirements for edge illumination would now be met with a smaller value of edge
taper in the range between �8 dB and �10 dB.

The power of the pattern-simulation method can be illustrated in the following
example. For the QML CATR operating at 6 GHz (60 l diameter collimator) [44],
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the ripple over the zone spanning 30 l (DAUT/DCATR ¼ 0.5) is 2.5 dB and �5�,
which would lead one to expect that pattern errors would be unacceptably high,
based on the �0.5 dB and �5� ripple criterion. However, we see that pattern
simulation (Figure 5.53) demonstrates that the peak pattern error would be �30 dB
and the RMS error would be below �40 dB when a CATR edge taper of �8 dB was
employed. In many cases this level of error would be acceptable, indicating that
antennas with DAUT/DCATR larger than 1/3 can be measured successfully. For a
CATR using a single-feed-per-frequency band, an optimum selection of its illu-
mination characteristics will result in an error with a peak value balanced among
the different sizes of the candidate test antennas. From Figure 5.53 we can see that,
for a collimator with a size of 60 l, the optimum feed will produce an edge taper of
�8 dB. Similar curves to Figure 5.53, calculated at higher frequencies, showed that
the balance shifts towards smaller values of edge taper, �4 dB being about opti-
mum for the QML CATR operating at 18 GHz.

In summary, the accuracy of an AUT radiation pattern measured in a single-
offset-reflector CATR is limited by two factors: the edge diffraction, which usually
manifests as a fast-changing ripple in the quiet zone, and the amplitude taper
imposed by the feed. Diffraction from the CATR edges affects the pattern region
which corresponds to angles where the test-antenna main beam is directed towards
them. Both co-polar and cross-polar patterns are likely to be affected by the edge
diffraction. Amplitude taper, on the other hand, affects mostly the boresight region
of the AUT pattern. Direct effects of the amplitude taper are the broadening of the
main beam and a level decrease for the boresight side lobes. The power of the
pattern measurement simulation process is that it permits the error in the measured
pattern to be quantified, so extending the size and decreasing the frequency of test
antennas which can be measured with quantifiable accuracy by a given CATR
facility. Although we have concentrated on the single-offset CATR, the method can
be extended to simulate other CATR configurations.

In Chapter 13 (Section 13.2), we consider more extensively both the modelling
of a CATR quiet zone (QZ) and the end-to-end simulation of the CATR measure-
ment process. This chapter compares five different modelling methods for the
CATR quiet zone and concludes that the ‘Current Element’ or ‘Physical Optics’
approaches offer the best agreement. In Section 13.2, we describe the mathematics
of each of the five modelling methods considered and from this the reader could
then write software to analyse their own CATR QZ. Alternatively, commercial
reflector antenna software packages such as GRASP [45] or FEKO can undertake
the QZ modelling process. Such modelling enables QZ volume to be determined as
well as effects such as feed spill-over. Modern computing facilities mean that these
3D modelling techniques are now completely viable on a modest desk-top com-
puter. Indeed, in Section 13.2.9, we demonstrate the viability of full end-to-end
simulation of the CATR measurement process using the reaction theorem, enabling
full-sphere simulated measured data for a given CATR AUT combination. In
Section 13.2.10, we demonstrate that we can employ this method to create a ‘per-
fect’ CATR QZ and then investigate the effects on a ‘measured’ AUT of: QZ
amplitude taper, QZ amplitude and phase ripple, effect of the spatial frequency of
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the QZ ripple, and AUT position within the QZ volume. Indeed, we are able to
demonstrate that, for the case where we have a 1 dB amplitude taper, 1 dB
amplitude ripple and 10� phase ripple in the QZ, this has the effect on a AUT
�20 dB side lobe that approximates to a �1 dB error value, which is the accepted
rule of thumb that is often stated (and never derived from theory) that originates
from what one typically sees in practice.

Although we make a strong case here for pattern simulation, quiet zone ripple
has been shown to be a conservative choice in fixing the performance envelope of a
given CATR facility, and is very much the industry standard. In Section 5.4.2 we
consider ways in which the quiet zone ripple can be measured, as to date this
remains the universal performance criterion.

5.4.2 Measurement of the quiet zone by field probing
This is the standard method of evaluating the quiet zone for a compact range. Here
some form of transverse field scanner, which could be a planar scanner or a plane-
polar scanner, is used to measure the amplitude and phase of the quiet zone as a
function of transverse position. Planar scanners used for near-field scanning are
ideal for purpose [Figure 5.54(a)]; however, for larger ranges a plane-polar
approach is often preferred [see Figure 5.54(b)]. The probe antenna needs to be
electrically small and have a radiation pattern that predominantly looks in the
forward hemisphere. An open-ended waveguide is often used (see Figure 5.55),
where the probe assembly can be seen to consist of a chamfered rectangular
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Figure 5.53 Predicted radiation-pattern-error curves for the QML CATR as a
function of edge taper CATR diameter ¼ 60 l (6 GHz). � ¼ DAUT/
DCATR ¼ 1/6; & ¼ DAUT/DCATR ¼ 1/3; D ¼ DAUT/DCATR ¼ 1/2
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waveguide section and a swam cone. The cylindrical section is included to displace
the flat circular RAM sheet that is used to screen the CATR, from the
waveguide probe.

It is important to cover as much of the scanner as possible with RAM and it is
interesting to note that for the 650 GHz hologram CATR at Millilab, Finland (see
Section 5.2.4), the plane-polar probe was covered in carpet (Figure 5.56), which

(a) (b)

Figure 5.54 (a) Planar field probe, (b) plane polar field probe (Courtesy of
NSI-MI Technologies LLC)

Figure 5.55 Field probe (Courtesy of SELEX)
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makes an excellent absorber at the frequency with maximum reflectivity of about
�48 dB, as shown in Figure 5.56(b).

Spherical quiet zone probing can also be undertaken, and has the advantage of
using the existing range spherical positioner. The method is described in [46] and
consists of using a probe antenna (e.g. open-ended waveguide) mounted on the
spherical positioner and scanning the field in theta and phi. Conversion of this data
to the plane wave spectrum can then be used to identify the direction of a scatter.
Spherical probing of the test zone has the advantage of documenting energy
arriving into the test zone for all angles.

The process of scanning the quiet zone enables one to determine the volume of
the quiet zone (by successive transverse scans moving down range of the CATR)
using the �0.5 dB and �5� ripple criteria. It also enables the correct alignment of
the CATR reflectors and the CATR feed.

5.4.3 Phase-less quiet zone scanning
When millimetrewave systems are used it becomes increasingly difficult to scan
the phase due to cable effects; this is also true for very large CATR facilities
operating a microwave frequencies. In [49] an effective CATR phase-less testing
algorithm for superquadratic apertures based on the Jacobi–Bessel expansion of the
aperture field is reported. The process finds the amplitude and phase of the field
radiated by the CATR in the quiet zone from the knowledge of its amplitude on two
transverse measurement planes S1 and S2 suitably located in the near-field zone of
the CATR aperture. To reduce the computational complexity and to improve the
conditioning of the problem, the number of unknowns is kept as low as possible by
means of an effective aperture field representation, involving orthogonal functions
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matching the aperture shape. In this method the Jacobi–Bessel representation of the
aperture field distribution is adopted yielding aperture field expansions truncated to
the minimum number of unknown coefficients M � N. These unknown coeffi-
cients, which represent the CATR aperture, are evaluated to best match the mea-
sured data on S1 and S2. The method was tested in simulation using the QML
single-offset CATR (Figure 5.29) with the measurement planes S1 and S2 being
taken at Z1 ¼ 200 l and Z2 ¼ 260 l shown in Figure 5.57, where only S1 is located
within the quiet zone. To make the simulation as realistic as possible, the direct
field radiated by the feed towards the measurement planes was added to the one
scattered by the collimator and a uniformly distributed noise added to the data with
SNR ¼ 35 dB. To analyse the performance of the approach, the CATR phase and
amplitude field was numerically simulated over five additional quiet zone test
planes of Z3 to Z7 of Figure 5.57. The resulting reconstructed amplitude and phase
quiet zone plots are shown in Figure 5.57(b), with the maximum amplitude and
phase error across all five planes Z3 to Z7 being <0.3 dB and <3� respectively.
These results are modelled and as far as the authors know the method has not been
practically compared with directly scanned results, but this offers an attractive
alternative for millimetrewave CATR evaluation where phase measurement is a
major problem.

5.4.4 Quiet zone evaluation using RCS of a known target
Here a reference target with known RCS response is rotated in azimuth and ele-
vation within the quiet zone. A comparison with the target’s well-known RCS
response provides a measure of the quality of the quiet zone. Applying the Fourier
transform to the RCS data provides the amplitude and phase distribution across the
reference target in the quiet zone. From this plane wave spectral components
(PWSC) can be determined which can be used as an alternative measure of CATR
quiet zone quality offering fuller information than a simple quiet zone transverse
scan. A variety of targets have been used for this method including a straight metal
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rod [50] and a flat diagonal plate [51]. The method is demonstrated in [50] where a
reference target of a metal bar that is approximately twice the length of the trans-
verse quiet zone is measured for RCS at a down range location in the middle of the
quiet zone volume. Such a measurement can be made simultaneously at all fre-
quencies of interest making for a relatively rapid measurement. From the RCS
measurements and the known RCS of the target, the transverse fields and PWSC
are determined. Once the PWSC are known the transverse fields at other down
range distances can be determined (by taking into account the phase factor for the
new down range location), and indeed the down range field as a function of down
range distance, offering a complete volumetric characterisation of the quiet zone.

In [52] the 6 m � 5 m test zone of the ESA CATR was evaluated by measuring
the RCS of a 2 m diameter flat plate with 0.02 mm rms surface error. The plate was
constructed from an aluminium sandwich construction with high density honey-
comb material inside to ensure a rigid low-weight structure. When the flat plate is
illuminated by a non-planar wave from the CATR, the complex scattered field is a
function of its azimuth (a) and elevation angles (b):

S u; vð Þ ¼
ðð

A

E2W ðx; yÞe jðu�xþv�yÞdxdy (5.3)

where E2W(x,y) is the illuminating field of the plate, A is the surface area of the
plate, and u ¼ 2k sin(a) and v ¼ 2k cos(a) sin(b). This equation can be inverted
giving the 2D test zone field across the plate:

E2W x; yð Þ ¼ 4p2
ðð

A

S u; vð Þe�jðu�xþv�yÞdudv (5.4)

The one-way quiet zone field is thus obtained from

E1W x; yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2W x; yð Þ
p

(5.5)

In the ESA CATR the measured RCS of the flat plate was taken at 12 GHz and
the data transformed as above to obtain the quiet zone field over the 2 m diameter
plate. The amplitude and phase deviations were approximately 0.7 dB and 8�

within a test zone diameter of 1.5 m. The truncation associated with the plate size
of 2 m limits the accuracy of the quiet zone field near the edges of the plate.
However, for small millimetrewave CATRs where the plate can be made larger
than the CATR quiet zone, this offers another attractive alternative to the diffi-
culties (and cost) of planer scanning at millimetrewaves.

In [51] a diagonal flat plate (which offers low SAR side lobes in the two
principal planes) is used via ISAR (inverse synthetic aperture radar) to ‘image’ the
quiet zone and hence can be used as a diagnostic tool to locate and possibly remedy
undesirable range reflections. A stray signal response will peak up when the plate is
oriented such that the stray signal is specularly reflected back in the plane wave
direction (CATR boresight). The size of the plate can be optimised to enable the
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null of the flat plate RCS to lie in the direction of the CATR reflector edge in order
to accurately diagnose its treatment [53]. The ISAR concept is covered in
Section 5.6.5.

A flat plate can also be valuably deployed to determine the accurate beam
pointing of an electrically large CATR reflector, in particular for millimetrewave
applications. The basic principle is to measure the monostatic or bistatic RCS of the
flat plate (constructed from a large plate glass mirror metallised on the front sur-
face) and from that pattern determine the direction of the pattern boresight in
turntable azimuth and elevation coordinates. Figure 5.58 shows this using a bistatic
set-up, where by taking a series of raster cuts (azimuth plots stepped in elevation)
around the main beam of the RCS pattern, a contour plot of the main beam can be
generated. By spline fitting ellipses to a range of contour levels, determining the
centroid of the ellipse in each case, the average centroid determines the beam
pointing. The problem is then one of transferring the position of the flat plate on the
turntable to that of the AUT on the same turntable. The approach to be used
requires that the AUT and flat plate be simultaneously mounted on the
turntable with their respective beam pointing directions separated by approximately
180� in azimuth, as shown in Figure 5.58. It is then required to know the pointing of
the flat plate relative to a fixed reference point on the AUT. In the case of space-
based instruments these have alignment mirror cubes mounted on them in order that
the orientation of the instrument can be accurately aligned to that of the spacecraft
body. By using the AUT’s mirror cube (MC) in conjunction with one mounted on
the flat plate, the exact position of the plate surface relative to the AUT’s MC can
be determined.

The procedure involves using an auto-collimating telescope to align the
pointing of the flat plate MC with that of the AUT’s MC. This is undertaken by
setting an externally mounted auto-collimating telescope to be aligned with the
AUT’s MC (this being best done by using the turntable azimuth and elevation
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Figure 5.58 Flat plate boresight determination measurement technique
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adjustment set to fine adjust). The turntable is then rotated in azimuth until the flat
plate MC comes into view and then adjusting the flat plate elevation angle using the
mechanical adjustment on the mirror mount along with the azimuth turntable until
the telescope auto-collimates with the MC. The flat plate and instrument MCs now
have identical elevation pointing and their azimuth difference is determined by the
amount of azimuth rotation of the turntable ¼ x�. The RF pointing axis of the range
has now been transferred to the instrument MC by the single azimuth angle x�. The
main sources of error in this technique are the accuracy to which the telescope can
auto-collimate with the MCs, and the accuracy of flat plate and AUT RF pointing
measurements. Measurements with the QML CATR at 90 GHz have indicated MC
transfer errors (RSS) of order 0.0007� and an overall accuracy of about 1% of the
flat plate half power beamwidth.

5.4.5 Improving measured CATR patterns
In this section we look at several approaches of improving the measured radiation
patterns in a CATR.

5.4.5.1 Mathematical absorber reflection suppression
(MARS)

This mathematical post-processing technique (described in detail in Chapter 10)
can be deployed to antenna pattern data taken using a far-field or CATR facility
using only a single great circle cut to efficiently correct far-field, frequency domain
data. We have seen in this chapter that reflections in a CATR can often be the
largest source of measurement error within the error budget of a given facility. This
mode orthogonalisation and filtering technique that has proved so successful in
near-field ranges (planar, cylindrical, spherical) is applied to 2D far-field mea-
surements in [54]. This technique requires only a minimum amount of information
about the AUT and measurement geometry, and is able to suppress reflections in a
direct far-field one-dimensional antenna range measurement.

It is well known that the 2D far-fields of an antenna can be represented as a
linear superposition of orthogonal cylindrical mode coefficients (CMCs) and this
permits the application of cylindrical mode orthogonalisation and filtering algo-
rithms to suppress reflections within measurements made using non-cylindrical
systems [55,56]. This observation permits the MARS technique to be applied to the
CATR. Contrary to usual antenna measurement practice, the MARS technique
deliberately displaces the AUT from the centre of rotation. This has the effect of
making the differences in the illuminating field far more pronounced than would
otherwise be the case, and it is exactly this greater differentiation that makes their
identification and subsequent extraction viable. Figure 5.59(a) shows an AUT
installed within a typical spherical geometry measurement system, centred about
the origin of the range coordinate system, and the conceptual smallest sphere that
circumscribes the majority of the current sources which is centred on the inter-
section of the rotational axes. Conversely, Figure 5.59(b) shows an equivalent
MARS measurement where the AUT has been displaced away from the centre of
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rotation and the maximum radial extent (MRE) has been correspondingly
increased. Once the far-field great circle pattern cut has been acquired and the AUT
has been mathematically translated back to the origin of the measurement coordi-
nate system by means of a differential phase change, the equivalent CMCs can be
deduced from the measured fields.

The CMCs for the now ideally centrally located AUT are then recovered, so
any mode representing fields outside the ideal conceptual minimum MRE can be
filtered out thereby removing contributions that are not associated with the AUT.
Thus from standard cylindrical theory it is possible to filter out all higher order
modes without affecting the integrity of the underlying antenna pattern function.
CMCs associated with the AUT are confined to a narrow band that is tightly dis-
tributed about the n ¼ 0 CMC. As the total power radiated by the AUT must be
conserved, the amount of power per mode must increase as the total number of
modes associated with the AUT decreases. As the amount of noise per mode can be
seen to be roughly constant with respect to the maximum level, the effective system
SNR of the measurement is significantly increased. Crucially, and as has been
observed previously with all other MARS implementations, although the AUT has
been translated back to the origin of the measurement coordinate system, this is not
the case for the scatterers which are spatially extended and are represented by many
higher order modes. In effect, the contributions in the CMC domain of the AUT and
the scatterers are separated so that they do not interfere and are in essence

(a) (b)

Figure 5.59 (a) AUT measured conventionally at rotation origin with smaller
MRE. (b) AUT measured with offset from rotation origin with
larger MRE

240 Theory and practice of modern antenna range measurements, volume 1



orthogonalised from one another. The asymptotic MARS processed far-field pat-
tern can be obtained from a simple summation of CMCs. As these transforms and
their inverse operations can be evaluated with the FFT, this makes the F-MARS
algorithm very efficient in terms of computational effort. The mathematical details
of this technique are covered in Section 12.4.2, and here we apply the technique to
the QML CATR of Figure 5.29, the process being fully reported in [54].

To demonstrate the method repeat measurements were taken of the far-field
great circle azimuth cut of a medium gain (aperture diameter 127 mm) X-band
corrugated horn. A single parametric change was introduced into the measurement;
this change consisted of introducing a 0.6 m by 0.6 m flat reflecting plate into the
chamber that was located in the same horizontal plane as the AUT and was chosen
as it constituted a worst case configuration as the specular reflection of the main
beam of the corrugated horn directly illuminated the CATR reflector. This
arrangement is shown in Figure 5.60, where the AUT is displaced backward from
the centre of rotation by 195 mm. Figure 5.61 shows the great-circle far-field
co-polar amplitude and phase patterns of the AUT where the reference trace is
taken without the reflecting plate. Conversely, the measured trace is taken with the
reflecting plate installed within the chamber and clearly shows the effects of the
additional scattering as an additional large amplitude side lobe at around 50�.

Figure 5.62 shows the CMCs for the case of Figure 5.61, and illustrates the
strong peak from the plate as well as the filtered region used to reconstruct the
radiation pattern. From inspection of the F-MARS processed patterns, it can be
seen that the effects of the spurious scatterer have been effectively suppressed in
both the amplitude and phase plots as the respective traces are clearly in good
agreement. Corrugated horns are generally renowned for their excellent symmetry.

Figure 5.60 X-band corrugated horn AUT installed within QML CATR shown
together with 0.6 m by 0.6 m reflecting plate, shown to right
of picture
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It is clear that the F-MARS processed patterns demonstrated a very high deal of
symmetry as f (Az) is approximately equal to f (�Az), where f denotes the amplitude
or phase function.

Figure 5.63 shows the F-MARS processed far-field great circle cuts of the
corrugated horn that were taken with, and without, the 0.6 m by 0.6 m flat reflecting
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plate together with the equivalent multipath level (EMPL) that is used to quanti-
tatively represent the similarity between the respective measurements. Clearly the
patterns are in encouraging agreement and this is further demonstrated by the
EMPL, which is below �70 dB in the region where the specular reflection had
greatest impact. Interestingly, the wide angle high angular frequency ripple that is
known to result from diffraction from the edges of the CATR main offset reflector
has also been suppressed by the F-MARS processing, cf. pattern ripple for |az| >
60. Although the results presented above show pattern data limited to the range |
az| < 100�, which is merely a sector of a great circle, the F-MARS technique itself
is capable of processing pattern data over a complete �180� angular range.

Far-field MARS processing can be used with a very high degree of confidence
since all the steps in the measurement and analysis are consistent with the well-
established principles of standard cylindrical near-field theory and measurement
technique. The offset of the AUT and the resulting finer sample spacing are esti-
mated using conventional rules, and the mathematical translation of the AUT to the
origin is rigorous and is described in Chapter 5. The selection of the mode cut-off
for the translated pattern is based on the physical dimensions of the AUT and its
translated location. The final result with MARS processing can be degraded if the
translation of the AUT is incorrectly applied, or the mode filter is too tight, i.e.
abrupt. The results of far-field MARS processing will reduce but cannot entirely
eliminate the effect of scattering in a CATR.
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Figure 5.63 Comparison of F-MARS processed AUT patterns with and without
flat reflecting plate installed within the QML CATR
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Chapter 13 addresses the electromagnetic modelling of antenna measurement
ranges, and in Section 13.2.11 the CATR modelling process to verify scattering
suppression using MARS was used. We also demonstrate that QZ amplitude and
phase ripple suppression is also possible (with sufficiently high QZ ripple spatial
frequency) with MARS, as is feed spill-over suppression.

5.4.5.2 Antenna pattern comparison (APC) methods
The APC process of taking several sets of antenna amplitude pattern cuts at slightly
different AUT transverse and down range distances, with the corrected pattern
being obtained by averaging the measured patterns has been used for many years
[57,58]. Because the spurious signal arrives from a different direction than the
desired plane wave, the relative phase difference between the spurious signal and
the desired plane wave is different at each measurement position. Thus the effect of
the spurious signals can be compensated for by averaging across all the measured
antenna patterns. For a CATR, APC using small changes (less than l/2) in AUT
position within the quiet zone can be used to compensate the errors caused by
standing waves between the transmitter and focusing element as well as errors
caused by other spurious signals such as edge diffraction and absorber reflections.
Most CATR AUT positioning systems (e.g. roll-over-azimuth) only provide a
horizontal slide at the bottom of the AUT positioning system, perpendicular to the
plane wave propagation. This thus limits APC to horizontal displacement only in
such cases. In [59] the use of CATR feed displacement to achieve APC is described
which overcomes the problem of lack of vertical AUT movement, as this is
replaced by the more simple to achieve vertical movement of the CATR feed.

A method described in [60] for CATR use (particularly for millimetrewave
operation) is based on determining the desired AUT measurement positions in the
quiet zone by determining them from the location of the peaks and troughs of a
measured quiet zone amplitude scan of the CATR. In [61] a similar process is
described where the CATR feed is moved instead of the AUT. Here, by moving the
feed in both vertical and horizontal directions from the nominal CATR reflector
focus, the quiet zone impinging on the AUT is changed and so averaging can again
take place. However, there is an additional complexity here in that as the feed is
moved so is the direction of the pseudo plane wave that comes from the CATR.
Thus the pointing of each of the measured AUT patterns needs to be corrected
before the APC averaging process can be done. This pointing correction can be
calculated from the geometry of the CATR reflector system.

Advanced APC is offered as being superior to the traditional APC method
because both amplitude and phase data are used to estimate the error vector, in turn
reducing the number of measurements required (to a minimum of three). In the
AAPC method [62], the main field is represented by the complex vector Ed, and the
vector sum of the extraneous field components is represented by the complex
vector Er. The error vector is calculated from a circle-fitting technique based on
some minimisation criterion, typically least squares. The method then assumes the
frequency and polarisation of Ed and Er are identical. However, the most critical
assumption is that only one extraneous source is present, the single interfering wave
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paradigm. Corral in [63] critically studies the method and concludes that for a given
pointing direction of the AUT in a CATR, there needs to be one dominant error
source for the method to be successful, and so is really applicable to high gain AUTs.
The method has been successfully used in, for example, the ESA CATR (see [52]).

Compared to simple APC, these processes require considerable post-
processing and appear to be more complicated than applying the F-MARS method.

5.4.6 Feed scanning for static AUT measurements
For very large AUTs (e.g. antenna mounted on a spacecraft) it is not always
possible to move the AUT to undertake conventional CATR pattern measure-
ments. Planar near-field measurement is one solution to this, and poly-planer
near-field overcomes the restriction of the need for very large scanning planes
[64]. However, it is possible to provide some static AUT measurement with a
CATR by scanning its feed, and hence changing the direction of the pseudo plane
wave hitting the AUT. The concept is depicted in Figure 5.64 for the case of a
dual reflector CATR, where the long equivalent focal length offers the best
capability.

The effects of the feed displacement means that the incoming plane wave
arrives at a different direction to the AUT and hence the AUT antenna pattern can
be measured. The relationship between feed movement and the CATR pseudo
plane wave can be calculated from the geometry of the CATR reflector system.
However, the CATR quiet zone ripple characteristics also change with feed
movement. The deviation of the wave front from a plane is independent of the
frequency; however, the actual quiet zone phase and amplitude are a function of the

Figure 5.64 Feed scanning in a dual reflector CATR
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frequency. This means that the maximum allowable feed displacement depends on
the size of the AUT and on the axial position of the AUT in the test zone. The larger
the AUT, the smaller the scan range; the closer it is to the CATR reflector, the
larger the scan range.

The relative phase at the AUT varies strongly with the feed displacement
because the distance between antenna and feed changes as the feed moves, so the
phase has to be corrected for this effect. Both horizontal and vertical scans can be
obtained, and the preferred direction of the feed displacement for horizontal scans
is along the focal line of the sub-reflector since in that case the latter is not defo-
cused, resulting in a cylindrical phase error in the test zone. A vertical feed dis-
placement gives a vertical scan, but with both horizontal and vertical phase errors
in the antenna aperture [61].

Since the CATR of Figure 5.64 has a large focal length, the phase and
amplitude errors for a certain scan angle are small. The feed has to be moved by
considerable distances, which is helpful in accurate positioning of the feed and
which allows several feeds to be used simultaneously to illuminate an AUT with
two beams simultaneously (see, e.g., [39]).

As an example [61] describes a dual reflector CATR with a main reflector of
2.07 m � 1.90 m in front-view, excluding the serrations. The AUT is about
1.65 m � 1.50 m, so there is a margin of about 0.2 m on all sides to the GO
boundaries. The available scan range for a 1 m diameter circular antennas is 6.4� in
azimuth and 3.8� in elevation. The required feed displacement for this scan range is
76 cm horizontally and 27 cm vertically. The maximum amplitude variation across
the AUT aperture was a maximum of 0.2 dB and the maximum phase was 43� at
60 GHz.

5.5 Radiation pattern and power parameter
measurement

In this section we will look at the process of measuring the far-field radiation
pattern of an antenna using the CATR. We will also consider how other antenna
‘power’ parameters can be measured in the CATR such as Directivity, Gain,
Effective Isotropic Radiated Power (EIRP) and Saturating Flux Density (SFD).

5.5.1 Radiation pattern measurement
As far as measurement of the radiation pattern of an AUT is concerned, we make
use of the fact that the CATR provides a pseudo plane wave across the AUT
aperture and so use a conventional azimuth over elevation (or elevation over azi-
muth) turntable to directly take the pattern measurements as is the convention in a
far-field range. Specific issues that arise in the CATR are multiple reflections
between the AUT and CATR reflector feed horn particularly around the boresight
direction, which manifests itself as a ripple around the boresight of the radiation
pattern. The effect can be quantified as in the case for antenna pattern comparison
(APC) (see Section 5.4.5.2) by monitoring the boresight received signal as the
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down range distance is moved incrementally through a distance of half a
wavelength.

Because the ‘path-loss’ in a CATR is low (see Section 5.1), there is a real
possibility of reflections from the front surface of the AUT support structure or the
turntable system acting as an open resonator with the CATR reflector and feed.
Careful attention to the use of absorbers to mitigate this effect is vital for successful
radiation pattern measurement in a CATR. The use of time domain gating, either
direct or using swept frequency methods, offers a valuable solution to this issue,
and indeed the time domain response can be helpful in identifying sources of
reflection within the CATR chamber (see Section 5.2.6).

The CATR is a valuable facility for measuring active antennas such as phased
array radars, where the CATR acts as the receiver. In this case care needs to be
taken concerning power levels if the radar system is to be tested at full power as the
focusing property of the CATR reflectors means that very high power densities can
occur around the CATR feed area and the edges of the sub-reflector [65]. To
determine where high power absorber needs to be placed in a given CATR con-
figuration, a full 3D EM model of the range is required (see Section 5.4.1).

In the above sections we have looked at various sources of error during the
measurement of the radiation pattern in a CATR. In any given measurement cam-
paign, it may not be possible to devise or implement measurement techniques that
can effectively remove or suppress all systematic errors. There will certainly be
limitations on the numbers of repetitions of measurements that can be made to
reduce random nondeterministic errors. The formation of an error budget for a
given facility is a valuable tool and consists of a quantitative assessment of the
impact of the combination of individual error sources on the measurement. Thus an
accurate and complete examination of the measurement errors associated with a
given set of measurements in a CATR facility can be used to assign an expected
uncertainty, via extrapolation, to other measurements made in the same facility.
The primary error sources for antenna measurements in a CATR are the following:

● Alignment of AUT (geometrical)
● Multi-path (geometrical)
● Test zone quality (geometrical)
● RF path dynamic/static variation (geometrical)
● RF system linearity (RF system fidelity)
● RF system dynamic range (RF system fidelity)
● Leakage and cross talk (RF system fidelity)
● Channel imbalance (RF system fidelity)
● System drift (environmental)
● Random errors (environmental)

The most practical empirical methodology for assessing the ability of any test
facility to make measurements and to establish its error budget is by way of repe-
tition of the measurement procedure. This repetition can be accomplished without
alteration in the measurement configuration, to simply address repeatability and
precision, or with the inclusion of parametric variations to assess sensitivity. Such a
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study was undertaken in [65] for the SELEX CATR facility in Edinburgh
(Figure 5.3), and a sample plot is shown in Figure 5.65 for percentage error against
dB below the peak of the radiation pattern, i.e. from the plot a feature in the pattern
at �40 dB below peak would have an error of the order of �10%. The figure shows
that without the use of any advanced measurement techniques (see Section 5.4.5 as
well as Chapter 12), a main beam error of some �0.4 dB could be expected.

5.5.2 Power parameter measurement
In this section we address four power parameters that are often the end goal of an
entire measurement campaign. Since these parameters are so important and there
are subtle differences that often lead to confusion, a complete discussion is war-
ranted at this point in the book. Of course these parameters can be measured in a
variety of ways, certainly not just in a CATR; however, since this CATR chapter is
the first ‘Method’ chapter we chose to address these definitions here. The para-
meters of interest are Directivity, Gain, EIRP and Saturating Flux Density (SFD),
and the first three of these are formally defined in the IEEE Standard Definitions of
Terms for Antennas as [66]:

● Directivity (of an antenna) (in a given direction). The ratio of the
radiation intensity in a given direction from the antenna to the
radiation intensity averaged over all directions. The average radia-
tion intensity is equal to the total power radiated by the antenna

–75
0

10

20

30

40

50

60

70

80

90

100
% Error at 10 GHz gain pattern measurement Vz dB below peak

–70 –65 –60 –55 –50 –45 –40 –35 –30 –25 –20 –15 –10 –5 0

Figure 5.65 Percentage error as a function of dB below peak for SELEX CATR
facility, 10 GHz [65]

248 Theory and practice of modern antenna range measurements, volume 1



divided by 4p. If the direction is not specified, the direction of max-
imum radiation intensity is implied.

● Gain (in a given direction). The ratio of the radiation intensity, in a
given direction, to the radiation intensity that would be obtained if the
power accepted by the antenna were radiated isotropically. The
radiation intensity corresponding to the isotropically radiated power
is equal to the power accepted by the antenna divided by 4p. If an
antenna is without dissipative loss, then in any given direction, its
gain is equal to its directivity. If the direction is not specified, the
direction of maximum radiation intensity is implied.

● The Equivalent Isotropically Radiated Power (EIRP) of an antenna
in a given direction is the gain of a transmitting antenna multiplied by
the net power accepted by the antenna from the connected transmit-
ter. This is also known as effective isotropically radiated power.

There is no formal definition for SFD, but this parameter can loosely be
described as the receive equivalent of EIRP and is described in [67] as follows:

● The Saturating Flux Density (SFD) is the flux density required to
saturate the system receiver and is expressed in terms of the input
power into and the gain of the transmitting antenna.

In the case of Directivity (and Gain) one can also refer to partial Directivity
(or Gain) and this can be described as the quantity derived for a given polar-
isation. So in a given direction, it is that part of the radiation intensity corre-
sponding to a given polarisation divided by the total radiation intensity averaged
over all directions. The (total) Directivity (or Gain) of an antenna, in a specified
direction, is the sum of the partial Directivities (or Gain) for any two orthogonal
polarisations.

Another term often encountered in industry is that of Realised Gain. Since
the formal definition of Gain does not include losses arising from impedance
mismatches, Realised Gain accounts for this and is often the more sought-after
parameter in practice. Figure 5.66 illustrates the relationship between the
Directivity, Gain and Realised Gain parameters schematically. Directivity is
unique as it can be determined purely from the antenna pattern itself and is cal-
culated from the full-sphere measurement. Gain takes into account losses within
the antenna (loss due to heat) and is therefore always less than or equal to (only if
the antenna is lossless) the Directivity. Realised Gain further takes into account
any power loss due to port impedance mismatch and is less than or equal to (only if
the antenna is connected to a line impedance matched to the conjugate of its port
impedance) the Gain.

Chapter 12 contains formal definitions of all these four power parameters and
presents the methods available to measure these parameters using both far-field and
near-field techniques.

For the case of gain measurement in a CATR, the options are as follows.
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5.5.2.1 Gain measurement using the substitution technique
This is by far the most commonly used method in industry today and involves
comparing the antenna under test to a calibrated standard gain antenna. The theory
behind this is given in Chapter 12 (Section 12.6.2) and for the CATR it involves
noting the peak boresight signal level Rr (dB) for the reference antenna, then
replacing this with the antenna under test so that the apertures of both antennas are
centred on the same point in the range. The peak boresight signal level Rt (dB) for
the AUT is then noted and the AUT dB gain is then given by Gt ¼ Gr þ (Rt � Rr),
where Gr is the dB gain of the reference antenna. To improve accuracy this process
is repeated with the reference and test antenna apertures co-located at several dif-
ferent points in the transverse quiet zone plane and taking the average of the
measured gains. Accuracy is at its best when the AUT and reference antenna have
similar size apertures and hence gains. It should always be remembered that
matching of the AUT and reference antenna impedance to the line impedance is
important and it is simple to test for this if a swept frequency response at the
boresight position of the antenna is taken. The mismatch will manifest itself as a
standing wave between the AUT and CATR. This can be much reduced by placing
an attenuator at the output port of both the AUT and reference antennas (preferably
a waveguide attenuator), so reducing the standing wave. Correct alignment of the
polarisation of the AUT and reference antennas with that of the CATR is also
important for maximum accuracy. An extensive study of the uncertainties for
calibration of standard gain horns from measured directivity and estimated loss can
be found in [68] together with uncertainties for the gain transfer method on a
CATR. This study indicates that gain uncertainty (95% confidence level) from
radiation pattern–based directivity measurements can be as good as 0.08 dB and for
the gain transfer method 0.15 dB.

5.5.2.2 The three-antenna gain method
This is a well used method for conventional far-field ranges and can be adapted for
use in a CATR. It has the advantage of not requiring a calibrated gain reference
antenna, but requires at least two of the antennas to not be circularly polarised, see
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Figure 5.66 Schematic representation of Directivity, Gain and Realised Gain
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Section 12.6.2 as well as [69]. In this case the AUT, a second antenna and the
CATR feed form the three antennas applying so the CATR feed will be replaced by
one of the two other antennas during the test procedure. The replacement feed must
have its phase centre positioned at the focal point of the CATR reflector and the
feed pointing alignment is also critical if the resulting quiet zone is not to have an
unwanted phase taper across it. The use of a different feed to that for which the
CATR was designed will also clearly affect the quiet zone size and performance, a
lower gain feed will result in more edge diffraction and hence more quite zone
ripple, a higher gain feed will result in a reduced quiet zone size which may well
not then be ‘plain’ over the AUT aperture, hence adding significant measurement
error. For all these reasons the only viable way a CATR can be used for the three-
antenna method is to have two near identical CATR feed horns for antennas 1 and 2
with the AUT making up the third. As discussed in Section 5.5.2.1, making the
measurement at several points in the quiet zone and averaging the results will
improve the accuracy. Reference [70] reports a study of using the three-antenna
method at 34 GHz and well illustrates the problems associated with not using two
identical CATR feed horns in the process.

5.5.2.3 Direct gain measurement
This is based on using the Friis transmission formula and the direct measurement of
power with a suitable power meter. The Gain is given by

GAUT ¼ Pr=Pt
1

Gfeed

� �

l
4pR

� ��2

(5.6)

where GAUT is the gain of the AUT, Gfeed is the gain of the CATR feed, Pr is the
receive power of the AUT, Pt is the transmit power at the CATR horn input, the
distance R between the test antenna and the CATR feed reduces to the distance
from the CATR feed to main reflector (i.e. the spherical wave path) and provides
the equivalent distance with spherical attenuation. For the case of a single-offset
CATR (Figure 5.67), this is the distance R shown and is related to the focal length.

R = F sec2
2

R
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Pt
Focal length = F

AUT

CATRθ'
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Figure 5.67 Single-offset CATR geometry
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For multi-reflector CATRs this distance needs to be determined from its optical
geometry and thus the equivalent focal length of the system; see for example the
case for a dual reflector system in Figure 5.68. A typical set-up is shown in
Figure 5.67, with Pr and Pt measured using a power meter or preferably a VNA, the
latter offering gain as a function of frequency.

5.5.2.4 EIRP measurement
Since EIRP ¼ GtPt, where Gt is the AUT transmit gain, then

EIRP ¼ Pr-catr=Gfeedð4pR=lÞ2 (5.7)

where Pr-catr is the power received by the CATR feed from the transmitting AUT
and the remaining terms are as in (5.6). See also Section 12.6.3.

5.5.2.5 Saturating flux density measurement
SFD is flux density to saturate the AUT transponder so

SFD ¼ GtPt
1

4pR2

� �

(5.8)

where Gt is the gain of the CATR feed, Pt is the transmit power at the CATR feed
and R is as in (5.6). See also Section 12.6.4.

5.6 Radar cross-section measurements

It is no understatement that the development of the CATR revolutionised the
measurement of RCS. The ability to have a large pseudo plane wave illuminating a
target in a compact and fully controlled, secure and repeatable environment was the
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Figure 5.68 Dual offset CATR geometry
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key to this revolution and some very large facilities capable of taking complete
aircraft now exist.

5.6.1 RCS measurement in a CATR
Here we give a brief review of RCS; for a detailed description the reader should
consult one of the many texts such as [71]. The magnitude of the scattering from a
given object is a function of both its shape and the surface characteristics. Ignoring
the complications inherent in the minimum signal to noise constraints on system
response, the impact of pulse-based integration and processing as well as the sta-
tistical nature of the scattering response from all but very simple targets and any
polarisation-based complications the basis of RCS can be seen from the simplified
bistatic radar equation:

Pr ¼ PtGt

4pR2
t

s
Ar

4pR2
r

(5.9)

where Pt, Gt and Rt are the transmitting power, gain and range, Ar and Rr the
effective receiving antenna area and range, with s being the RCS which in itself
can be expressed as

s ¼ Ar2G (5.10)

where A is the target area, r its reflectivity and G the targets gain in the receive
direction.

For a monostatic RCS using a CATR, (4.9) becomes

Pr ¼
PtG2

f

4pð Þ3R4
sl2 (5.11)

where Gf is the CATR feed gain and R becomes the distance from feed to reflector
centre (in the case of a single-offset CATR and as described in Section 5.5.2.3),
thus accounting for the spherical wave loss since as the path from reflector to target
is collimated and so suffers no 1/R4 loss.

It is worth noting at this point that this collimation property has been another
important factor to the success of the CATR for RCS measurements, since for the
alternative far-field approach a distance between target (of diameter D) to source
antenna needs to be 4D2/l rather than the radiation pattern far-field criteria of 2D2/l
because of the double path for the RCS signal.

As an example for a CATR operating at 10 GHz with R ¼ 6 m, Gf ¼ 10 dB can
detect a target with RCS of 10�5 m2 using a receiver offering a minimum dis-
cernable signal level of �100 dBm with a transmit power of 24.5 dBm. However,
for large CATR facilities, kilowatt transmit powers are required. The undesirable
sources of reflection and scattering in a CATR (shown in Figure 5.8) are added to
by the fact that the return path to the feed adds additional sources of error as
illustrated in Figure 5.69 and all these are sources of error (so called ‘Clutter’) for
RCS measurements. This is particularly true for targets that have low RCS at small
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angles away for the maximum (such as a flat plate) and Figure 5.70 illustrates a
worst case where a flat plate peak RCS return points to the CATR edge diffracted
signal creating a strong error signal compared to the true very low RCS return from
the plate at this angle. It can be seen in this figure that the path length of the error
signal is similar to the direct ray path, so time-gating would not help here.
However, for many other of the additional error sources shown in Figure 5.69,
time-gating is a valuable tool for the RCS measurement range (see Section 5.2.6).

Subtracting the background is a popular solution for clutter reduction, where
the signal is recorded as the model tower is rotated without the target and this is
then vector subtracted from the same data with the target present as a post-

WallWall

Wall reflectionsWall reflections

TargetTarget

Model
tower
Model
tower

Feed spilloverFeed spillover
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Figure 5.69 Additional sources of error (- - - -) in a monostatic RCS range due to
the return path to the feed
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Figure 5.70 RCS of flat plate corrupted by edge diffraction from CATR reflector

254 Theory and practice of modern antenna range measurements, volume 1



processing exercise (nowadays nearly in real time). Of course the entire comple-
ment of chamber and hardware must be stable over time and temperature for this
method to work. To use it one assumes that there is no ‘shadowing’ of the chamber
by the mounted target so that the background is not affected by the presence of the
target. An example of how both background subtraction and time-gating can
improve a target is shown in Figure 5.71 for the NASA Almond target (shown in
Figure 5.72), which exhibits an RCS that varies between �24 dBsm and �45 dBsm
in azimuth at X-band. Clearly without background subtraction small RCS targets
cannot be clearly defined.

All practically achievable RCS measurements that are undertaken are essen-
tially substitution measurements in that initial measurements are made using a target
of known scattering cross-section and then the results of these measurement are used
to calibrate the data acquired for the target under test. This means that a range of
calibration targets are required if quantitative RCS measurement are to be made.

Often the simplest possible targets are used for such calibration, a sphere with
a uniform response in all directions and at all frequencies being the optimum. This
is shown in Figure 5.73 mounted on a low RCS column. Often the use of a sphere is
not possible due to the nature of the RCS mount, e.g. a pylon with a mounted
positioner will not be compatible with a sphere, in this case a squat cylinder is
usually used as it has a uniform response in azimuth and if sufficiently squat a wide
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main beam in elevation. However, other targets with equally predictable scattering
cross-sections can be used, e.g. dihedrals, trihedrals (corner reflectors) and flat
plates can all be used. Corner reflectors are an example of targets that are said to be
re-entrant, since they efficiently trap and re-radiate energy; use of these as cali-
bration targets can lead to anomalies in phase and time domain windowing if not
properly compensated for.

The polarisation of a target’s backscatter depends on the target structure and in
general differs from the polarisation of the incident signal. For example a thin
straight wire can be distinguished from a sphere by measuring the backscattered
signal as the transmit polarisation is rotated. The return from the sphere will be
constant with polarisation rotation but the wire will vary between a maximum and
minimum value. Thus for a complete knowledge of the target’s RCS, the polar-
isation matrix must be determined by measuring the RCS in all possible

Figure 5.73 Spherical calibration target on top of low RCS column (Courtesy of
SELEX ES)

Figure 5.72 NASA Almond in position on low RCS, (40 dBsm) column in the
SELEX ES CATR (Courtesy of SELEX ES)
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polarisation combinations. Taking V to be vertical polarisation and H to be hor-
izontal polarisation, then transmitting on horizontal and receiving on vertical is
called an HV measurement, so the full polarisation matrix is HH, VV, HV, VH
[72]. Most RCS CATR measurement systems provide this polarisation measure-
ment matrix capability automatically via switching between the orthogonal output
ports of the transmit and receive horns as well as using multiport receivers.
A typical RCS measurement set-up using a 4-port VNA as the core receiver is
shown in Figure 5.74. It is of course possible to use a 2-port VNA along with a
2-port PIN switch to switch between the V-pol and H-pol measurements at the
expense of measurement time and possibly some accuracy dependent on the
repeatability of the positioner as scans would need to be done twice since mea-
surements are generally done with continuous movement of one axis (so called
‘on the fly’). A detailed look at errors such as this can be found in Chapter 12.

5.6.2 Sources of RCS measurement error in a CATR
The primary error sources for RCS measurements in a CATR are the following:

● Alignment within the chamber (geometrical)
● Multi-path (geometrical)
● Test zone quality (geometrical)
● RF system linearity (RF system fidelity)
● RF system dynamic range (RF system fidelity)
● Leakage and cross talk (RF system fidelity)
● Channel imbalance (RF system fidelity)
● Polarisation purity (RF system fidelity)
● Standards (environmental)
● Backscatter, chamber and mount (environmental)
● System drift (environmental)
● Random errors (environmental)

Again we refer to the study undertaken in [65] for the SELEX ES CATR
facility in Edinburgh (Figure 5.3; see also Figure 5.76), where the simple config-
uration used to develop the RCS budget involved the use of two RCS standards one
of approximately –11 dBsm and the other with a RCS response that varied around
15 dBsm as a function of frequency. All measurements were made in CW mode
and a software gate was used to isolate the target response in the time domain. The
targets were mounted on a 4.5 m expanded polystyrene column initially in the
centre of the test zone and background subtraction was used to reduce the impact of
the mount and the chamber-intrinsic RCS, which were anticipated to be approxi-
mately �40 dBsm and �65 dBsm, respectively. The RCS set-up ensured that RCS
levels of approximately 25 dBsm could be acquired without signal compression and
if single polarisation measurements were to be acquired only, single polarised quasi
monostatic feeds were deployed. Typical results were [65] as follows:

● At 8 GHz a 20 dBsm target could be measured to within (þ0.34, �0.37) dBsm,
(108 � 92) m2, 100 m2 � 8%.
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● At 9 GHz a 0 dBsm target could be measured to within (þ0.36, �0.40) dBsm,
(1.09 � 0.91) m2, 1 m2 � 9%.

● At 10 GHz a �20 dBsm target could be measured to within (þ0.60, �0.70)
dBsm, (0.0111 � 0.0085) m2, 0.01 m2 � 11%.

● At 11 GHz a �40 dBsm target could be measured to within (þ1.57, �2.49)
dBsm, (0.000144 � 0.0000564) m2, 0.0001 m2 � 44%.

● At 12 GHz a �50 dBsm target could be measured to within (þ2.87, �12.00)
dBsm, (0.0000194 � 0.000000631) m2, 0.00001 m2 � 94%.

Figure 5.75 illustrates a typical RCS response over a 1 GHz window for a
specific squat cylinder target, showing both measured and predicted result.

5.6.3 RCS model towers
A vast amount of material exists in the open literature of the design of model towers
(or pylons). If only a target is to be supported then a low-reflection foam support
can be used (Figure 5.73); if the target is large or heavy or requires active con-
nection via cables then a hollow non-rotating metallic tilted tower often with ogive
cross-section is used to minimise reflection back to the CATR feed (see, e.g.,
Figure 5.76). Alternatively absorber covered rotating cylindrical columns can be
used. In extreme cases wires or ‘strings’ have been used.

5.6.4 Time-gating for RCS
To achieve high levels of rejection for clutter signals closely spaced in time to the
signal of interest, one requires pulses with very rapid rise times of several nano-
seconds or less. This in turn requires high instantaneous bandwidth for the transmit
and receive channels, being as much as 200 MHz. To achieve the equivalent of a
CW measurement with pulses, one must make the length of the pulse cover the
target. The leading edge of the pulse should be allowed to travel the full length of
the target, Lt, and return to the front of the target (a time of 2tL, where tL ¼ Lt/c) to
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form the complete radar signature; only then, once this composite signal has
reached the receiver, does one want to open the receive gate of the radar receiver.
Thereupon it is left open for a period of time ts, corresponding to the sampling
window of the receive gate. The requirement for the pulse width may be written
mathematically as

tP � tR þ 2tL þ ts þ tF (5.12)

where tR and tF are the rise and fall times of the gated CW pulse [73].
In making RCS measurements with time-gated waveforms, one must choose

the height of the model tower to make the distance of the target above the ground,
ht, sufficiently large that the ground bounce ray does not illuminate the target
during the time interval when the target return signal is being formed. Thus

ht � 0:5ð2Lt þ ctsÞ (5.13)

where c is the speed of light.
Equations (5.12) and (5.13) also set the minimum height and width for the

rectangular CATR chamber dimensions, so the target should be at least two target
dimensions away from the side walls and ceiling.

Typical performance parameters for a gated CW radar system instrumentation
used in RCS measurements are given in Table 5.1 [73], which can achieve a sensi-
tivity of �70 dBsm at frequencies below 18 GHz. Clutter levels of –60 to –65 dBsm
are attainable in chambers of sufficient size.

5.6.5 Target imaging
An excellent summary of target imaging was given by Hess in [73], which has the
various data acquisition and processing routines as listed below:

● RCS vs Aspect Angle: Set the frequency to a fixed value and scan the azimuth
and/or elevation axes of the target rotator. This is the classical RCS pattern
measurement.

Figure 5.76 Tilted ogive large RCS pylon during installation in the SELEX ES
CATR (Courtesy of SELEX ES)
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● RCS vs Frequency: Set the azimuth and elevation position angles of the target
to fixed values and step or sweep frequency through a range of values.

● RCS vs Range (Range Walk): Set the azimuth and elevation position angles and
step the gate delay through a set of values starting at zero and ending with the range
length beyond the target. This is used to identify range artefacts and to confirm the
choice of range gate delay setting in the two measurement procedures above.

● RCS vs Cross Range: By performing a Fourier transform on an ‘RCS vs
Azimuth’ data trace, one obtains an ‘RCS vs Cross Range’ data trace, where
the cross range coordinate is in units of distance measured laterally across the
target on a horizontal line that is perpendicular to the range axis.

● RCS vs Down Range: By performing an inverse Fourier transform on an
‘RCS vs Frequency’ data trace, one obtains an ‘RCS vs Radial Distance’ along
the range axis.

● RCS Image Formation or Inverse Synthetic Aperture Radar (ISAR)
Imaging: By performing a two-dimensional Fourier transform on a data set
that is RCS vs Azimuth Angle & Frequency, one obtains a two-dimensional
data set that is RCS vs cross range distance and down range distance. This
resulting data set is termed an ‘Image of the Target’ because it can be readily
compared with a perspective optical view of the target. See, e.g., Figure 5.77.

An example of achievable performance is demonstrated in [74] where clutter
levels below –75 dBsm were achieved using a gated CW radar on a large 8.1 m focal
length CATR. This employed imaging with background subtraction to distinguish
clearly three small –61 dBsm spheres resting upon a foam column at Ku-band.

5.7 Radome testing

5.7.1 Radome measurements in a CATR
The term ‘Radome’ originates from ‘Radar Dome’ which was a weather protective
dome-shaped covering for ground-based radar antennas, but is nowadays used to
refer to any protective covering for an antenna in both civil and military

Table 5.1 Typical performance parameters of a gated CW radar instrumentation
system for CATR use [73]

Frequency range 2–40 GHz
Pulse repetition frequency Up to 5 MHz
Transmit and receive on/off ratio 120 dB
Transmit and receive isolation 130 dB
Transmit pulse width 10–499 ns
Receive gate width 10–499 ns
Receive delay 30–499 ns
Rise/fall time <2 ns
Jitter 0.03% plus 25 ps
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applications. Typical radome applications include aircraft radar, missiles, satellite
communications, and mobile base-station antennas, and in many cases, the radome
offers both weather protection and performing an aerodynamic function.

The radome obviously has to offer a high degree of transparency to the elec-
tromagnetic waves operating frequency band of the enclosed antenna, and so they
are usually made from a plastic composite material (e.g. fibre-glass). Since the
radome has non-unity dielectric constant and a finite thickness, the electromagnetic
wave from the enclosed antenna will be distorted resulting in changes in the beam
direction, reduction in peak amplitude, distortion of the antenna radiation pattern
and changes to the antenna VSWR. Figure 5.78 illustrates how the direction of the
antenna beam can be changed by the radome presence, and Figure 5.79 shows the
effect of a ‘nose-cone’ radome on the boresight ray path.

Radomes can be placed into two categories, the first are lightweight radomes
with primary function of providing weather protection (keeping water and dirt
away from the enclosed antenna); they generally have low impact on the enclosed
antennas performance. Such radomes have application in communications and
aircraft-mounted surveillance radars.

The second category could be called ‘radomes for fire control radars’, these are
usually mounted as nose-cone radars on supersonic platforms and require radomes
with considerable mechanical resilience; these always have a significant impact
on antenna performance in terms of: insertion loss, return loss, blockage; and

54B

49B

44B

30B

Figure 5.77 2D RCS image with envelope of aircraft outlined [73]
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aberration. These are usually composite radomes, often of a C sandwich design
(multilayer structure) and will have insertion loss in terms of power that will reduce
main beam gain. Additionally as the radome will have a geometry that meets the
aerodynamic and structural requirements of the platform, the beam will pass
through areas of the radome at different angles and different thicknesses. The dif-
ferent insertion phases associated with these thicknesses and direction will effec-
tively introduce a differential phase across the antenna beam with resultant impacts
on null depths and beam pointing angle, i.e. aberration.

Antenna measurements with radome mounted imply installed performance
measurements; therefore, realistic radomes should be used. In practice, on airborne
platforms, radome are liberally festooned with addition furniture such as pitot
tubes, lightning strips, and refuelling nozzles, all of which introduce blockage that
will impact on antenna performance.

Clearly, since a lot of design effort goes into optimising the performance of a
given antenna, it is vitally important to know what effect a given radome has on the
antenna performance and this is usually determined by a comparison of the with
and without radome measurement of the antenna parameters. For a simple fixed
microwave back-haul application where the radome does not move with respect to
the antenna, this is a relatively simple procedure to undertake with and without test
of the main antenna parameters.

However, in the case where the antenna scans, either electrically or mechani-
cally, inside a radome (such as an aircraft weather radar or a fire control radar),
there will be different levels of radome distortion depending on the relative
pointing of the antenna within the radome. For fire control radars, extreme care is
needed to ensure that with and without radome measurement comparisons are valid
as the results are usually used to verify look-up tables installed in the radar that are
used to correct the beam steering angle to take account of aberration; this look-up
table needs to be accurate to some small number of milli-radians. Hanging a
structurally strong radome that may weight many tens of kilograms off the front of
an antenna will exert a considerable moment about the mounting point of the
antenna. This will alter the angle of the mechanical datum of the antenna and so
measurements intended to characterise aberration angles will be compromised by
this additional change in the datum angle. Therefore, mounts have to be devised
that do not alter the centre of gravity of the AUT whether it is measured with or
without the radome present. For a radome to be fully characterised in this way
requires the use of separate translation/rotation stages for the antenna and its
radome. Assuming this can be done insertion loss measurements are simple com-
parisons and pattern measurements will indicate the extent to which blockage is
degrading the pattern. However, the extent of blockage aberration, the magnitude
and direction of flash lobes will be a function of the angles through which
the antenna beam is pointing. Therefore, to fully characterise the response of the
antenna installed behind a radome is a huge task. This means that most radome
measurements are diagnostic in form or designed to validate already produced
prediction of the antennas performance behind a radome by fully characterising a
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limited range of scenarios by measurement that can then be compared to extensive
comprehensive modelled results.

The standard radome test parameters are:

Reflectivity: Change in VSWR at the antenna input port with and without the
radome present.

Transmission efficiency: Percentage of transmission power that passes through
the radome determined by with and without measurement.

Pattern distortion: Change in the radiation pattern of the antenna with and
without the radome installed. Pattern parameters to be measured are beam
width, side lobe level, image lobes, and tracking null fill-in.

Beam deflection: Boresight and tracking null shift with and without radome.

The CATR offers an efficient, environmentally controllable test facility for a
radome measurement. However, the CATR quiet zone volume needs to be suffi-
ciently large to be able to enclose the radome and antenna in all the radome scan-
ning positions.

5.7.2 Positioner overview – mechanically scanned AUTs
A radome positioner system is shown in Figure 5.80 where independent control of
the radome position is provided and the antenna has its own two-axis positioner
termed a gimbal mount. An example of a gimbal mount is shown in Figure 5.81,
where the centre of rotation of gimbal corresponds to the centre of actual antenna’s
mount. Gimbals are often constructed from direct drive motors offering very fast

Figure 5.80 Radome test positioner which provides independent control
of radome orientation from the gimbol mounted AUT
(Courtesy NSI-MI Technologies LLC)
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rates of movement and wide angles of coverage. An example of an aircraft radome
mounted on a radome test positioner is shown in Figure 5.82 (with radome) and
Figure 5.83 (without radome).

There are various ways that the antenna parameters can be measured using the
radome test positioner; however, in this text we shall concentrate on using the
CATR as it is one of the more efficient and commonly encountered approaches.

5.7.3 Measurement of reflectivity, transmission efficiency,
pattern distortion, boresight shift, flash lobe

5.7.3.1 Reflectivity
This is a measure of the change in magnitude of the reflection coefficient at each
antenna port with and without the radome installed for a given position of antenna

Figure 5.81 2-Axis gimbol positioner with direct drive motors and �70� of travel
in both axes (Courtesy NSI-MI Technologies LLC)

Figure 5.82 Radome positioner of Figure 5.80 with RAM and radome mounted in
a CATR (Courtesy NSI-MI Technologies LLC)
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with respect to radome. The measurement setup is illustrated in Figure 5.84 for the
case with the radome installed. This method can employ either high-quality
absorber and/or the use of background subtraction of the case without the radome.
For a fixed antenna and radome structure (e.g. for the case of a communications

Figure 5.83 Radome positioner of Figure 5.82 with radome removed to view
gimbal mounted antenna (Courtesy NSI-MI Technologies LLC)

Signal

Signal source Receiver

reference

Figure 5.84 Reflectivity measurement taken with and without radome

Compact range measurements 267



antenna), this is a relatively simple measurement that is performed as a function of
frequency. For a scanning antenna within a radome, the measurements need to be
made over a range of scan angles with respect to radome, whilst simultaneously
ensuring that the absorber is kept normal to the antennas main beam direction. In
this case, the return loss of the radome cannot be effectively measured but the main
impact of this return loss is clear in range measurements. The geometry of the
radome means that the reflections from the radome walls will produce flash lobes in
the antenna pattern. These flash lobes will impact on system performance parti-
cularly in terms of range Doppler processing for medium and high PRF radar.

5.7.3.2 Transmission efficiency
Here, we compare the measured boresight power level with and without the radome
taking into account any skewing of the boresight direction resulting from diffrac-
tion, absorption and reflection as the field passes through the radome. The relative
change in angle of arrival is measured in the boresight shift measurement described
below. For a scanning antenna within a radome, measurements need to be made
over a range of scan angles with respect to radome. The measurement is illustrated
in Figure 5.85. The requirement to measure a 2D solid angle for a large number of
scan angles is one of the more time consuming aspects of radome testing that lends
itself to characterisation with a CATR as opposed to, for example, spherical near-
field measurement. It is possible to use a near-field system and cylindrical near-
field test systems have been used for this application however the additional time

CATR wavefront CATR wavefront

Change in angle
of arrival

Figure 5.85 Transmission efficiency measurement taken with and without radome
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required to perform the two-dimensional near-field acquisition tends to be a
detractor.

5.7.3.3 Pattern distortion
This is a measure of the full 3D radiation pattern with and without the radome to
determine the effect on the radiation pattern main beam and side lobes. For a
scanning antenna within a radome measurements need to be made over a range of
scan angles with respect to radome.

5.7.3.4 Boresight shift
Here, we start with the gimbal mounted tracking antenna without radome aligned to
the CATR wavefront. The radome is then added and then as the radome is rotated
the CATR wavefront is tracked with the antenna gimbal. The azimuth and elevation
angles of the tracker determine the boresight shift for different radome orientations
with respect to the CATR wavefront.

5.7.3.5 Flash lobe
With the antenna plus radome in transmit mode flash lobes result from a component
of the reflected ray from the radomes inner surface (made up of reflections from the
inner and out surface) finding its way via transmission through the radome and
hence adding to the far-field radiation pattern. This can result from either direct
transmission of the internally reflected ray or through multiple internal bounces
before exiting the radome. An illustration of flash lobes can be seen in Figure 5.86
where the radiation pattern of a 900 mm array antenna is shown with and without
an ogive radome with the antenna main beam pointing along its nose. This effect is
most commonly encountered when using ogive radomes and is a function of the
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Figure 5.86 Left: radiation pattern of 900 mm array antenna. Right: antenna with
beam pointing along the nose of a 3 m ogive radome of diameter
1,200 mm [75]
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scan angle, radome surface profile, polarisation of incident field and the frequency.
The main rings close to the main beam correspond to the first flash lobe region. The
second flash lobe region due to second-order internal bounce is clearly discernible
as a set of fainter secondary rings that are visible at wider pattern angles. Here, the
measurement is undertaken as in Section 5.7.3.3. The position of the first flash lobe
can, in many cases involving ogive radomes, is estimated as being twice that of the
scan angle of the antenna. This means that as the antenna scans, quite quickly, the
flash lobes shift out and appears in the back half-space beyond q ¼ 90�, meaning
that very often large, possible near full sphere, angular spans are needed to fully
characterise the behaviour of the antenna radome assembly.

5.7.4 Examples of radome measurement ranges
Radomes can take a variety of forms depending on their specific application. For a
nose-cone type radome, an example of a typical test system is shown in
Figure 5.82. Conversely, an example of an airborne radome for satellite commu-
nications applications is shown in Figure 5.87. Often custom mechanical support
equipment is required containing a gimbaled test antenna to support the radome
during the measurements. As illustrated in the above sections, a large number of
measurements need to be made to accommodate the various combinations of
antenna and radome orientations. Stability of the RF system and the CATR during
the measurement process is vital for accurate measurements. Mechanical repeat-
ability of ‘with and without’ radome measurements is also vital and a measurement
campaign that optimises the minimum amount of radome mounting and de-
mounting that is desirable whilst ensuring RF stability (which is particularly critical
for the transmission efficiency measurements). The presentation of results can be
particularly challenging and often a contour, i.e. iso-level, graph of a measurement
parameter plotted over the unrolled surface of the radome is used (Figure 5.88).

Figure 5.87 Airborne satellite communications radome in CATR. Inset: the
gimbaled antenna on radome test rig [76]
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5.8 Satellite testing

5.8.1 Satellite and telecommunications payload testing
in a CATR

The measurement of a fully assembled satellite payload parameters is highly suited
to being undertaken in a compensated CATR (CCR). This form of CATR offers the
low cross-polarisation required for the polarisation isolation measurement, and the
long focal length of the system offers quiet zone transverse scanning to accom-
modate the simultaneous illumination of the antenna farm normally located on both
sides of the spacecraft body.

For the measurement of the antenna patterns, the spacecraft is usually mea-
sured unpowered via an antenna test port integrated into the spacecraft design. The
AUT of interest is located at the QZ centre, which is achieved by transversely
moving the spacecraft on the multi-axis AUT positioner (Figure 5.89). Antenna
patterns are then taken with a raster scan using the azimuth and elevation axes of
the AUT positioner. Usually, a dual-polarised feed (Figure 5.41) is used to measure
both polarisations simultaneously. A fast, synthesised source and range receiver is
used to accommodate multi-frequency measurements during the motion scans. The
antenna gain can be measured in the CCR using the ‘direct gain measurement’
method as described in Section 5.5.2.3.

The RF boresight of an antenna mounted on a spacecraft has to be aligned to
that of the spacecraft body to a high precision (of order 0.01�–0.02�). This is
usually achieved optically using a theodolite and mirror cubes mounted on the
spacecraft body. With the antenna placed in the measured AUT RF boresight
direction, the theodolites measure the location of the spacecraft with respect to the
CCR range axis to thus determine the pointing. The CCR range axis having been

80

60

40

–40

–40

–40

–40 –40–40
–37.5 –37.5

–47.5

–47

–50

–35–35
7.5 –42.5

–42.5

–42.5

–42.5 –42.5

–42.5–45

–45

–45

–45

–47.5–50

A
nt

en
na

 e
le

va
tio

n 
(d

eg
)

Antenna azimuth (deg)

20

0 –150 –100 –50 0 50 100 150
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radome after evaluation of all the radiation patterns [77]
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previously measured, for a given feed position, using, for example, the RCS of a
flat plate as described in Section 5.4.4.

Recently, measurement facilities that combine both CCR and planar NF
measurement systems in the same chamber have been constructed, for example, the
European Space Agency HERTZ facility. Reference [78] compares the payload
measurement process using both CCR and Planar NF, and Van Rensburg [79]
discusses the process of group delay measurement in a planar NF facility. In the
following sections, we consider the measurement of the various payload parameters
that are more commonly encountered. Several useful publications that cover this
topic in further detail are [78,80–82].

5.8.2 End-to-end testing and the compensated CATR
Because of the long effective focal length of the CCR, it is possible, by movement
of the CCR feed, to scan the QZ to cover antenna farms located on either side of the
spacecraft body [83], as shown in Figure 5.90. This facility thus enables complete
end-to-end testing of the powered spacecraft (TWT’s in linear mode) by placing a
synthesised source of known power at the ‘R’ feed port in Figure 5.90 and then
receiving the frequency translated signal from the spacecraft on the CCR ‘T’ feed
port. As in the direct measurement of gain, we use the knowledge of the CCR’s
spherical path loss distance for both the T and R feed ports to calculate the free
space losses for the two different frequencies for the satellites transmit and receive
paths. From this, we can calculate the amplitude frequency response (AFR) [80]

AFR ¼ PT PRGT GR
lTlR

4pð Þ2RT RR

 !2

(5.14)

Satellite
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T

Quiet zone

Translate satellite to 

Sub-
reflector
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Focal point
(centred QZ)

place ‘T’ antenna in 
quiet zone

Figure 5.89 Satellite antenna pattern measurement setup in a compensated CATR

272 Theory and practice of modern antenna range measurements, volume 1



where PT is the power transmitted at CCR feed port R (power meter), PR is the
power received at CCR feed port T (power meter/spectrum analyser), GT is the gain
of CCR port R feed, GR is the gain of CCR port T feed, RT is the spherical wave
path for CCR from the feed R port, RR is the spherical wave path for CCR to the
feed T port and lT and lR are wavelength of satellite transmit and receive fre-
quencies, respectively.

As these equations are measuring power, the measurement needs to be first
calibrated for cable and system losses.

For the case shown in Figure 5.90, the overall spacecraft does not fit within the
CCR ‘boresight’ QZ and so the CCR feeds are substantially offset to relocate the
QZ. For the case where the spacecraft does fit within the boresight QZ, only a small
CCR feed offset is required in order to just give space for the location of the two
feeds. In the former case, it is thus likely that the QZ phase front will not be aligned
to the spacecraft antenna boresight, so the beam pointing loss associated with this
off-boresight illumination needs to be corrected for in PT and PR in (5.14).

Using the same measurement satellite and CCR setup, the gain over frequency
(G/F) can be measured using a vector network analyser (VNA), as shown in
Figure 5.91. G/F describes the system gain consisting of uplink antenna, trans-
ponder, and downlink antenna and it is commonly measured over a certain channel
bandwidth. G/F is defined as the ratio of the transmitted and received power
(the S21 parameter of the NWA) which has to be corrected for the gain of the range
antennas as well as for the free space loss on uplink and downlink paths and the
losses in the measurement system [78],

G

F
¼ S21

1
GT GR

� �

4pð Þ2RT RR

lTlR

 !2

(5.15)
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Feed for TFeed for R

Focal point

Figure 5.90 Scanned quiet zones for air-to-air link testing
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As in the AFR case above, the ratio of PR/PT ¼ S21 needs to be corrected for
any beam pointing loss associated with off-boresight illumination of the spacecraft
antennas by the CCR feed displacements. Again the measurement needs to be first
calibrated for cable and system losses (which include in this case the loss through
the mixer).

5.8.3 EIRP measurements
The effective isotropic radiated power (EIRP) is the maximum power that can be
transmitted by the satellite over a certain antenna and using a certain transponder.
This can be measured in an air-to-air configuration in the CCR, and in Figure 5.92,
the synthesised source is used to drive the chosen receive antenna and transponder
combination into saturation. The satellite transmit antenna boresight is then aligned

Satellite
R

T

VNA

LO

GT

GR

Figure 5.91 Gain over frequency setup (CCR reflectors of Figure 5.90 not shown
for simplicity)

Satellite
R

T

Synthesiser

Spectrum
analyser

GT

GR

Power
meter

Uplink carrier

Downlink signal

Figure 5.92 EIRP measurement setup (CCR reflectors of Figure 5.90 not shown
for simplicity)
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to the CCR T port wavefront direction using the AUT positioner and the down link
signal received by the CCR is connected to a power meter. A spectrum analyser is
also connected by a directional coupler in order to monitor the linearity of the
received signal.

The point of saturation describes the point of the maximum output power of
the TWT amplifier which is found at the peak of a nonlinear curve. The most
sensitive method to determine this point is to transmit an AM modulated carrier and
detect this with a spectrum analyser to detect the maximum AM suppression of the
first sidebands of the carrier signal as retransmitted by the satellite down link [82].
To reach saturation, the satellites chosen TWT gain is increased in small power
level steps via satellite electrical ground support equipment (EGSE) command until
the point of maximum AM-suppression is reached. The fine tuning can be per-
formed by increasing or decreasing the transmitted uplink power level. The EIRP is
then given by

EIRP ¼ ð4pRR=lT Þ2PR=GR (5.16)

Since the uplink path is used just to saturate the transponder, if only one
radiated channel is available a test coupler built into the payload receiver could be
used in order to drive the payload into saturation. Again the measurement needs to
be first calibrated for cable and system losses.

5.8.4 SFD measurements
The saturating flux density (SFD) is the power density that is required at the uplink
antenna of the satellite to drive a given transponder into saturation. The setup is the
same as Figure 5.92 but now the satellite receive antenna is aligned to the CCR R
port wavefront direction using the AUT positioner. The SFD is then given by

SFD ¼ PT GT ð1=4pRT
2Þ (5.17)

Since the downlink path is used just to detect saturation of the transponder, if
only one radiated channel is available a test coupler built into the payload trans-
mitter could be used in order to detect saturation. Again, the measurement needs to
be first calibrated for cable and system losses and the value of PT determined via a
calibrated power meter.

5.8.5 G/T measurements
The gain over noise temperature (G/T) gives the figure of merit of the satellite
receiver. It is determined with the satellite receive antenna aligned with the
boresight of the CCR port R wavefront using three power measurements in the
case of a fixed gain transponder. The measurement setup is shown in
Figure 5.93, first the noise power of the measurement equipment P1 is mea-
sured, second the noise power of the equipment and the satellite P2 is measured,
and finally the overall noise power is measured together with the carrier signal
resulting in P3.
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In Figure 5.93, the synthesiser provides an uplink signal via the CCR R port,
the downlink is then received at the CCR T port, amplified, and then connected to a
spectrum analyser for down conversion and measurement of the IF power. To
measure P1 the CCR T port, antenna is removed and terminated in a matched load,
thus measuring the noise of the measurement system. With the CCR T port antenna
reconnected, and the satellite configured with the transponder connected to the
transmit antenna power P2 is measured. Finally, with the carrier present and
transmitted through the transponder power EIRP and P3 is measured. In all three
power measurements, the same bandwidth B is used via the spectrum analyser and
power meter. The G/T is then given by

G

T
¼ kB

EIRP
P3 � P2

P2 � P1

4pRR

lR

� �2

(5.18)

where the EIRP is measured and calculated as in Section 5.8.3 for the particular
transponder operating point.

5.8.6 Group delay measurements
Group delay (GD) is defined as the negative of the rate of change of transmission
phase angle with respect to frequency. Ideally, the GD of a component or system
should be the same for all frequency components if distortion at the output is to be
avoided. GD can be considered to represent the delay of the envelope of the
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Figure 5.93 G/T measurement setup
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modulating signal and serves as a transfer function to characterise signal disper-
sion. Mathematically, GD can be expressed as

GD fð Þ ¼ � 1
2p

dF fð Þ
df

(5.19)

where F( f) defines the insertion phase (the phase of S21) in radians at frequency f.
For practical numerical cases, (5.19) can be approximated by a sided difference
where the frequency step is made as small as is practical,

GD fð Þ ¼ � 1
2p

F f1ð Þ �F f0ð Þ
f1 � f0

(5.20)

Alternatively, and providing the frequency points are monotonic and equally
spaced, a more accurate numerical derivative can be obtained by taking central
differencing (with sided-differences being taken at the extremities of the data
arrays) [79]

GD fð Þ ¼ � 1
2p

F f1ð Þ �F f�1ð Þ
f1 � f�1

(5.21)

The measurement setup is the same as the G/F case (Figure 5.91) except that
we measure the angle (F21 in radians) of S21 rather than the magnitude. We need to
first calibrate out all the system GD and then measure and remove the GD of both
CCR horns using the following formulation to determine the GD of the satellite
system:

GD fð Þ ¼ � 1
2p

F21 f1ð Þ �F21 f0ð Þ
f1 � f0

� GDT fð Þ � GDR fð Þ (5.22)

The calibration out of the GD due to the mixer shown in Figure 5.91 is an
import issue and can be relatively easily undertaken using modern VNA’s,
the details of this process are outside the scope of this text but can be found in
reference [84].

5.9 OTA testing for 5G antennas

The fifth generation (5G) mobile network promises to deliver multi-Gbps data
capacity [85]. Achieving this requires the widespread adoption of several new
technologies with the use of higher frequency, millimetre wave, bands and more
complex massive MIMO (multiple input multiple output) architectures being
principal among them [85,86]. As the intended circa 10–20-fold increased in data
capacity is one of the most prominent promises of the 5G roll-out, absolute data
throughput is perhaps the primary figure of merit (FOM) used for the verification of
network performance [85]. The adoption of OTA communication system-level
performance metrics and the tighter integration between the physically smaller
massive MIMO array antenna and the increasingly complex active electronics

Compact range measurements 277



means that widespread interest in classical antenna performance parameters is
waning. Instead, focus is shifting towards alternative communication system level
parameters such as far-field error vector magnitude (EVM), bit error rate (BER),
and signal-to-interference-plus-noise-ratio, which predicate the use of quadrature
amplitude modulation (QAM) waveforms of varying orders and more directly
relate to data rates [86].

This, therefore, represents a very significant shift for the far-field antenna
measurement community where hitherto monochromatic CW, or at most a pulsed
CW, RF signal was used almost exclusively. The requirement for broadband
orthogonal frequency-division multiplexing (OFDM) with QAM schemes when
combined with the requirement that system performance be determined in far-field
mode has resulted in the recent, and very significant, resurgence of interest in the
CATR. CATRs have the inherent advantage that they offer a way to determine
real-time, broadband, far-field performance at a very much reduced, fixed, range
length. This is of particular importance for 5G applications where testing the
higher-frequency, larger apertures required by active mm-wave massive-MIMO
antennas results in far-field distances that are very much larger than those which
were previously required when working with prior generations of networks at sub-
6 GHz frequencies and which cannot otherwise be conveniently realised econom-
ically indoors. This is illustrated in Table 5.2 where far-field distances for typical
26 and 39 GHz MIMO antennas are tabulated.

We have seen in this chapter (as well as Section 13.2) that CATR modelling is
a well-established, mature discipline capable of determining quiet-zone quality and
measurement uncertainties for a range of typical antenna parameters for a known
antenna under test (AUT)/CATR combination. However, it has not previously been
possible to equate this to the effect that this would have on OTA system-level
properties such as EVM and BER. Here, we present the results of a recent study
that extended the work of Section 13.2 to include these system performance metrics

Table 5.2 Far-field distances for typical MIMO antennas (entries in green
indicate those that could be achieved economically in an indoor
far-field chamber)

Frequency 
(GHz)

Array dimension 
(cm)

Far-Field 
distance (m)

Path loss 
(dB)

26

10 1.7 66

15 3.9 73

20 6.9 78

39

10 2.6 73

15 5.9 80

20 10.4 85
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to enable the design and optimisation of a CATR test system that is capable of
providing sufficient reliability, repeatability and an acceptable level of measure-
ment uncertainty for a given 5G OTA testing application. Preliminary results are
presented and discussed.

5.9.1 Simulating a communications system using OFDM
OFDM is a very flexible and efficient modulation technique that is at the heart of
all major wireless and wired standards used today including 5G. Examples of
standards that use OFDM are 4G, LTE, 5G, WiMAX, Video Broadcast and ADSL.

OFDM separates the channel bandwidth into multiple narrow-band subcarriers
to transmit the information. A single data stream is split across several separate
narrowband channels at different frequencies. The original data stream of bits is
transmitted in parallel but at lower speed in each sub-stream when compared to the
original. Thus, we need to simulate the behaviour of the CATR and AUT combi-
nation at each of these frequencies to be able to simulate a 5G application.

In Section 13.2, we presented frequency domain modelling technique and this
can be extended by repeating the simulations at various frequencies to cover a
communications bandwidth, which typically might be 400 MHz. Over such a band,
we would expect to see that the CATR:

● Feed pattern remains fairly stable with frequency.
● Amplitude taper therefore is fairly stable with frequency.
● Amplitude and phase ripple will vary with frequency (due to edge diffraction

effects).
● AUT antenna gain will vary with frequency (typically increases for an aperture

antenna).
● AUT location of side lobes changes with frequency.

So, to model the communications link, we need to repeat the simulation of
coupling (S21) at boresight (or any other fixed angle) across a band of frequencies,
which could be 200 or so over the 400 MHz bandwidth. Now, 200 complete CEM
CATR AUT simulations are computationally intensive. However, we have found
that implementing the processing in parallel on a typical PC can lead to circa 600�
speed up, leading to single frequency modelling times for a 100 wavelength CATR
and 25 wavelength AUT of the order of 7 s. This thus makes simulating several
hundred frequencies completely viable, giving several hundred S21 values over the
communications band.

Modern communication systems typically use QAM schemes. So, each OFDM
sub-carrier, i.e. signal, is modulated with for example 256 QAM.

Figure 5.94 shows a typical constellation diagram for both QPSK and 256
QAM in the presence of noise. Whilst it is possible to create these from the S21

CATR AUT simulations what is actually needed is a figure of merit for the whole
link. EVM is a measure of the modulator or demodulator performance of an
impaired signal. The EVM is a modulation-quality metric that measures the error
between the transmitted signal and the ideal signal, calculated as the magnitude
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of the vector difference between the transmitted and reference vectors, repre-
sented on a complex plane (i.e. constellation diagram). In practical measure-
ments, a modulated reference data stream (or vector set rk, where k ¼ 0, . . . , N
symbols) is transmitted through the transmit chain. The distorted signal mk at the
antenna output port is then detected, demodulated and quantified on the con-
stellation diagram corresponding to the modulation scheme used in the test
vector, against the reference data (see Figure 5.95). In this example, we choose
to modulate the signal using OFDM and 256 QAM, and this is illustrated in
Figure 5.96.

To see how this signal is affected by the signal being transmitted through
the CATR and received by the AUT, we need to determine the complex S21 of
this transmission path so that the magnitude and phase change experienced by
each sub-carrier frequency can be established. A typical S21 result for the
CATR AUT measurement is shown in Figure 5.97. Here, a simple linear
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The magnitude and phase of 
each sub-carrier is modulated to 
transport data.

0

0

–10
–20
–30
–40
–50
–60
–70
–80
–90

–100
–5M –4M –3M –2M –1M 0 1M 2M 3M 4M 5M

–10
–20
–30
–40
–50
–60
–70
–80
–90

–100
–60M –48M –36M –24M –12M 0 12M 24M 36M 48M 60M

1
0.8

0.6
0.4

0.2
0

–0.2
–0.4

–0.6

–0.8

–1
–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

Figure 5.96 Orthogonal frequency-division multiplexing (OFDM) and Quadrature amplitude modulation (QAM) provide 256 QAM
modulation as the basis for the EVM test signal



Fr
eq

ue
nc

y

Time

Linear 
estimate

Simulated channel

This difference is the source of increased EVM
Sub-carrier Sub-carrierReference symbols

Equalised symbols = Symbols ×

16 2
0

–2
–4
–6
–8

–10
–12
–14
–16
–18

0 5 10 15 20 25

× 10–3 S21 linear magnitude S21 phase

Ph
as

e 
in

(r
ad

)

M
ag

ni
tu

de

14

12

10

8

6

4

2
0 5 10 15 20 25

Channel
Channel estimate

Simulated
Estimated

Simulated
Estimated

Figure 5.97 S21 of CATR AUT measurement channel showing the simulated result and a simple linear estimation for the
equalisation process required in order to recover the signal



estimation is used for the equalisation process which is required in order to
recover the signal.

The test signal we will use to determine the EVM is an image, as the human
eye is very sensitive at discerning errors. Our image signal is a 512 � 512 RGB
(red green blue, 8 bits per colour) modulated with 256 QAM (8 bits per symbol)
with image data mapped byte by byte onto the symbols. Each symbol error
produces an error in one colour channel of a pixel. Each frequency in the input
file is treated as a separate sub-carrier. Symbols are transmitted by sequentially
looping through the available sub-carriers until all the data has been transmitted.
The received signal has to be equalised to remove the influence of the channel
and recover the original data. Transmission attenuates the signal (reduces the
size of the constellation diagram) and changes the phase of the signal (rotates the
constellation diagram); therefore, we need to equalise the received signal to
recover the transmitted information. Thus, quality of the equalisation used
directly affects the result and the estimated EVM value. If we take the simple
linear equalisation shown in Figure 5.97, the difference between this and the
actual S21 is the source of the EVM at each sub-carrier. To calculate a single
EVM number, we take the RMS value over all the symbols forming the trans-
mitted image. This is defined in Figure 5.98.

We can therefore assess the impact of CATR plus AUT on a measurement by

● Calculating EVM (%) – RF measure of performance.
● Calculating bit rrror rate (%) – digital measure of performance.
● Data throughput ~R(1 – BER/100), where R is the data rate (if any errors occur,

then we need to resend and throughput drops further).
● Calculate image structural similarity index (normalised measure) for measur-

ing image quality [87]. This is an objective, quantitative, holistic way of
‘looking’ at the recovered image.

Figure 5.99 shows examples of perfect and imperfect transmission through the
CATR and AUT system (we here use the standard test image ‘lake’ [88]). To
illustrate the change in EVM through the CATR plus AUT system, we mechani-
cally rotate the AUT so the received signal is away from boresight. In
Figures 5.100–5.104, we rotate the AUT in azimuth for 0�, 10�, 20�, 30� and 40�,

Ideal symbols

Difference between ideal and received 
symbols

EVMRMS =
1 ∑      (ek)N

N
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1 ∑      (I2

k + Q2
k)N
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Figure 5.98 Definition of EVM used in our calculations
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respectively. The results for 30� are particularly bad because as we step through the
frequency band we pass through a side lobe null of the AUT.

EVM is becoming an increasingly important parameter in 5G systems and
current 3GPP specifications [89] are moving towards a specified EVM con-
formance level within a communications cell (Figure 5.105). The need to thus
measure the EVM as a function of AUT beam angle will be required for manu-
facturers of 5G antennas to prove conformity. It is thus important to be able to
access the effects of the measurement process on EVM and to optimise the design
of a CATR, or any test system, that is intended for communications (5G) testing
applications.
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[47] Ala-Laurinaho J., Heinonen J., Häkli J., et al., ‘A 650 GHz hologram com-
pact antenna test range, task 5 and 6 report: Fabrication of hologram CATR
elements and installation and verification of hologram CATR’, ESA contract
no. 19131/05/NL/LvH; March 2007
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Chapter 6

Planar near-field antenna measurements

6.1 Introduction

In Section 2.6, it has been shown that if we can determine the near-field on a
surface close to a radiating antenna, we can subsequently determine the radiated
far-field. Additionally in Chapter 3, it has been shown that a number of physical
geometries allow the sampling of the near-field of an antenna on specific surfaces
that are convenient in terms of the hardware required to make the measurements
and the necessary processing required to allow the far-field prediction. One of these
configurations is the so-called ‘planar near-field antenna test range’. Figure 3.15
illustrates the basic physical geometry of the surface over which data is collected in
such a test range as it is usually implemented, although other planar acquisition
coordinate systems can be devised (see Figure 3.23).

6.2 Near-field measurement facility

Figure 3.18 illustrates the basic nature of the RF measurement methodology usually
involved in data acquisition. The data is obtained by moving a probe/range antenna
across a plane in front of the AUT, sampling the data at the required spatial rate, i.e.
<l/2 [1], where the measured signal from two orthogonal polarisations would be
required to be obtained for full characterisation of the AUT near-field. As well as
sampling the data at the required sampling interval, it should be observed that the
plane over which the data is acquired is finite and as such if a substantial portion of
the power generated and radiated by the AUT is not incident on this plane, then, as
described later in this chapter, the fidelity of the far-field prediction will be severely
impaired.

This implies that the planar near-field range is only a useful tool if it is used for
highly directive antennas where it can be assumed that by far the vast majority of
the radiated power is incident on the plane over which the data is sampled.
However, many antennas are of this nature and the fact that in the course of the
measurement process the AUT does not have to be moved does offer considerable
advantages in certain circumstances over other measurement geometries where
there would be less, as explained later, truncation in the data set.

Conventionally, planar near-field measurement systems operate by sampling
the amplitude and phase of the propagating near-field at regular intervals on a plaid



monotonic grid over a planar surface, which is tangential to that of the antenna
aperture plane and is located a few wavelengths in front of it. This arrangement is
illustrated in Figure 6.1.

The range antenna, or near-field probe, that will be scanned over the plane
must be in the propagating near-field region, not the reactive near-field, because
evanescent coupling is omitted from the antenna–antenna coupling formulae. An
electrically small, i.e. a low gain, low scattering cross-section probe is used to
radiate at each of the pre-selected points within the planar surface. Typically, the
measurements are made on a lattice that corresponds to a regular rectangular
Cartesian grid along paths that are parallel to pre-defined x- and y-axes.

6.2.1 RF sub-system
Acting as a transmitter, the field from the probe produces a quasi-spherical wave
within the free-space port of the AUT. Amplitude, phase and polarisation of the
radiation from the near-field probe are held constant for all positions of the probe,
and a plane wave is synthesised at the surface by the superposition of these quasi-
spherical waves. This process is repeated, but the probe antenna is rotated through
90� about the normal to the plane to form an orthogonally polarised plane wave
since two orthogonal tangential field components are required to determine the
complete polarisation properties of the AUT.

Ey
Ex

Z = Zt
z

y

0

Antenna under test

x

Sampling plane
Measurement point

r′

Figure 6.1 Coordinate system for planar scanning
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Just as the free-space port plane wave is formed through the superposition of a
large number of quasi-spherical waves, the response of the AUT to the synthesised
plane wave is formed by the superposition of the responses of the AUT to the quasi-
spherical waves. The synthesised plane wave can then be steered to other directions
by linear phase shifting. This process of phase shifting and summing can, as is
elaborated on in the following section, be recognised as a Fourier transform and is
carried out using either the Discrete Fourier Transform (DFT) algorithm or when
appropriate, the efficient Fast Fourier Transform (FFT) algorithm. Thus, the planar
near-field antenna methodology, as well as offering a range configuration where
the AUT is static, also provides a convenient and fast far-field prediction process
based on the concept of the spatial as opposed to the more usual temporal Fourier
transform.

Figure 6.2 shows a typical scheme for a planar near-field range.
As shown in Figures 3.35 and 6.2, the system is essentially a standard Vector

Network Analyser (VNA) measurement system controlled via general-purpose
interface bus (GPIB) or Ethernet via a central computer. This configuration is based
around a VNA operating in remote mixing mode. However, for small systems
where cable losses are acceptable, it is possible to work without remote mixing
because with short cables, remote mixing becomes merely a way of redistributing
the receiver within the chamber to minimise cable losses and improve the system
dynamic range.

In the far-field case the necessary dynamic range is principally determined by
the type of antenna being tested and must have sufficient dynamic range so that the
entire far-field antenna pattern (main beam peak down to lowest side lobe of
interest) fits within the system dynamic range. Processing gain of the near-field to
far-field transform can suppress noise and increase the usable system dynamic
range. This is why near-field ranges can often use poorer absorber than would be
the case for an equivalent far-field system.

The multiplexed LO and IF signals are carried from test mixers on flexible
phase-stable RF cables (one for each channel) to the RF equipment via flexible
conduit. This conduit confines the two RF cables for test channels to constant
rolling bends to achieve phase stability. The mechanical dependence arises since
the dielectric constant is a function of mechanical stress and strain. When the
cables are twisted, the inside of the bend will be compressed and the outside will
be stretched, thereby affecting the characteristic impedance that will vary in a
complex fashion. Over recent years, the use of a pantograph and rotary joint
assembly has become less popular, as the performance of rotary joints degrades
with time and imposes limits on the frequency range that the facility can usefully
operate.

It should be noted that harmonic mixing does not help ease the phase stability
requirements for the moving guided wave path (cable). Although the cables will
change the phase of the signal less, since we then take the nth harmonic this will
also similarly multiply up the phase change. The amplifiers in Figures 3.35 and
3.36 are likely to be solid-state LNAs to keep weight low, as the probe carriage is
generally limited in permitted mass.
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A potential problem with cables is that PTFE dielectric can suffer a nonlinear
volumetric change at certain temperatures, which will make phase stability at and
around these temperatures difficult to control. The need for a highly controlled
environment within the range to ensure stability during the measurement process,
including temperature stability, is thus again re-enforced.

The reference and test RF signals obtained from the directional coupler and
the AUT are similarly mixed down to an IF frequency, frequently 20 MHz, by
the reference and test path mixers. The lengths of the two LO paths are usually

Roll
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Figure 6.2 Schematic of near-field measurement system
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balanced, i.e. of equal length to minimise the impact of phase variations resulting
from thermal fluctuations. The concept is that if the two path lengths are the
same, the relative phase variation between the respective RF paths will be zero,
irrespective of how the temperature fluctuates within the facility. As one arm of
the interferometer contains a probe, an AUT, and free space, this can never
completely succeed; however, it has been found to be of some use. The IF signal
is relatively low in frequency, i.e. 20 MHz, and for convenience it is usually
carried from the test mixer to the receiver within the same coaxial cable as the
LO signal.

Note: Many VNAs use the time convention,

e j wt�kzð Þ (6.1)

However, published literature has adopted the opposite (NIST) time convention,
namely,

e j kz�wtð Þ (6.2)

Thus care must be taken to ensure that the correct phase convention is adopted
within the transformation process. This book, in common with the majority of
works that utilise the angular spectrum, has adopted the positive time dependency
of (6.1).

Reciprocity can be invoked to show that it makes no difference whether the
AUT is characterised while in transmit or receive mode. However, for passive
antennas, it is convenient to transmit from the AUT as the RF source can be placed
directly behind the stationary AUT so that signal losses are minimised. In practice,
the bandwidth over which the facility as a whole can operate is determined by other
factors, principally the planarity and precision of the robotics positioner and the
absorption characteristics of the RAM placed within the chamber. A number of
VNA vendors offer LO/IF distribution units, but for clarity these have been omitted
from these discussions as their function is merely to amplify, level and distribute
the RF and LO signals.

6.2.2 Robotics positioner system
Two main design concepts are usually adopted for planar scanners: tower and rail
inverted scanners, and box frame scanners. Figure 6.3 shows examples of these two
varieties.

Generally, frame scanners offer improved rigidity and positional accuracy over
tower and rail designs; however, the metallic frame inevitably introduces additional
scattering sources. Thus one of the most attractive advantages of the inverted T is
the reduction in possible multi-path.

Note: The frame design was initially favoured for the implementation of many
of the smaller PNF scanners designs, but the mechanical constraints imposed by
anchoring both axes at both ends made planarity adjustment very difficult. The
complexity of this process of alignment eventually led to the development of the

Planar near-field antenna measurements 301



inverted T design, where the second axis was constrained at only one end. This
design has proved to be much simpler to construct and align.

In most test systems a vertical configuration is chosen, since it affords easy
access to the AUT and near-field probe that is crucial when configuring complex
active array antennas and acquiring the alignment of the AUT in the range.
However, there are special cases where the horizontal plane is employed. In these
cases the nature of the AUT and or the possible temperature gradient in the
chamber may cause concerns when very large AUTs are to be tested. A good
example of this is the unfurlable space-craft antenna where horizontal mounting
ensures the reflector surface is not distorted by gravity, see for example Figure 6.8.

Both types of scanner consist of two orthogonal carriages, X and Y, which
are supported on a rigid framework to enable the scanning probe to be moved
within the xy-scan plane. The probe carriage is mounted on the Y carriage that is
located within the X carriage. The scanner size varies enormously, from small
(0.8 � 0.8)-m scanners used for small antennas to the massive (33 � 16)-m
scanners and even bigger.

The position of each of the axes is usually determined using rotary optical
encoders that send a train of pulses as the positioners are moved. A typical encoder
system transmits 12 192 pulses per inch in the x- and y-axes and 80,000 pulses per
inch in the z-axis. The in-plane resolution of the encoders corresponds to an upper
frequency limit of 2.88 THz, assuming a positional tolerance of l/2. In practice, this
is not realised as the planarity, orthogonality and linearity of the axes (discussed in
Chapter 10) are very much poorer than this limit. Crucially, as a rule these encoders

Figure 6.3 Tower and rail inverted T scanner and box frame scanner (Pictures
courtesy of NSI-MI Technologies LLC)
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are relative rather than absolute so they measure how far the positioner has tra-
velled, rather than where the positioner is. Hence, in the event that the power
supply is disrupted, which could occur whenever the control computer is restarted,
the absolute position of the scanner can be irrevocably lost.

A data acquisition software suite is used to control the robotics as with the RF
sub-system. The acquisition software provides four degrees of freedom, as it con-
trols the electric motors that are used to drive the moving parts of the scanner by
means of a power control unit (PCU) via a GPIB card or Ethernet connection. Each
motor is used to drive one of the axes of motion x-, y-, z-, or polarisation with the
probe carriage being moved with a parabolic velocity profile to minimise
mechanical strain. Generally, in order to minimise acquisition times, measurements
are made while the probe carriage is in motion, i.e. measurements are made ‘on
the fly’.
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6.2.3 Near-field probe
Typical near-field probes can include cylindrical waveguide, rectangular wave-
guide, corrugated horns and pyramidal horns. Two common probe antennas are the
dual port choked cylindrical waveguide probe and an open-ended rectangular
waveguide probe. Figure 3.32 shows the number of waveguide probes that would
be used to cover a range of frequencies. As can be seen from this figure a wide
range of probes is required to cover a large bandwidth. This is related to the second
requirement listed in Section 3.6.1.4 (No pattern nulls in the forward hemisphere)
and the subsequent small size, and the low RCS that is required of the probes.
These are further examined in Section 6.5.2.

6.3 Limitations in the accuracy of the near-field
measurement data

The accuracy with which any prediction of the far-field can be made from the
acquired near-field data is dependent on the fidelity with which the measurement
system can represent the actual amplitude and phase of the electric field produced
by the AUT across the extent of scan plane. Clearly no measurement system
has unlimited dynamic range and no noise floor, but as well as these inherent
limitations the planar near-field measurement concept is subject to a number of
other limitations that are inherent to this and other antenna measurement
methodologies.

6.3.1 Mechanically based limitations
First, as elaborated on in Chapter 10 on near-field assessment, the measurements
are made over a finite scan plane and as such the data is truncated to a section of the
surface enclosing the antenna. This means that the data set acquired will be trun-
cated to the angular extent of the size of the angle that subtends the measurement
plane relative to the AUT as per Figure 6.4, where as a result of the finite extent of
the scan plane ¼ 2X the pattern can only be predicted out to the angle q1.

This truncation means that no prediction of the antenna pattern beyond this
angle is possible and, as explained in Chapter 10, this primary truncation can have
an impact inside this angle, which is dependent on the prediction of the antenna
directivity and pattern within q1 [2]. Again, the accuracy with which any prediction
can be made is also dependent on other factors related to the nature of the scan
plane over which the probe is moved (see Chapter 10). One of these is the accuracy
with which the sampling positions can be defined on this scan plane.

Generally with a requirement to sample at l/2 spatial intervals, the positional
accuracy error is specified as being smaller than l/50. If this is not achievable, i.e.
either the scan plane is large or the measurement frequency is too high, then often
this requirement is relaxed so that the repeatability is better than l/50. The posi-
tional error is then calibrated, often with the use of laser interferometers, and the
positional error corrected within the transformation software, e.g. k-correction [3].

304 Theory and practice of modern antenna range measurements, volume 1



Unfortunately unless very carefully implemented [4] this approach is often unsuc-
cessful as most commercially available laser interferometers cannot acquire the
position of the probe to the required degree of accuracy while the probe is in
motion. Thus, in practice, the tabulated positional errors do not correspond with the
actual positional errors while the data of probe samples is on the fly as is usual in
antenna measurements.

Note: The positional accuracy can also be affected by vibration within the
scanner and the requirement to keep this to a minimum can favour box frame
scanners in certain circumstances.

6.3.2 RF system limitations
In the microwave system shown in Figure 6.2, the multiplexed LO and IF signals
are carried from test mixers on flexible phase-stable RF cables, one required for
each channel, to the RF equipment via flexible conduit. The mechanical depen-
dence of these conduits arises since the dielectric constant is a function of
mechanical stress and strain. When the cables are twisted, the inside of the bend
will be compressed and the outside will be stretched, thereby affecting the char-
acteristic impedance of the cables. Thus, the necessity of connecting the RF path
through a moving probe antenna in the measurement technique will introduce
errors associated with the amplitude and particularly the phase of the RF signal is
affected by the required movements of the RF probe.

In Tx the near-field measurement technique depends on whether the field
measured on the plane is representative of the field that would exist on this plane in
the absence of the mechanical and RF measurement system, i.e. if the AUT was
only radiating into free space. The limitations so far discussed relate to how
accurately the sampling can take place on this plane and how the measured signal
can be corrupted in the RF path that transfers the signal to the receiver. However,
another source of error is the field that is incident on the scan plane as a result of the
presence of structures within and those composing the chamber in which the
measurements are to be made.
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Figure 6.4 Primary truncation of predictable far-field data
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As described in Chapter 1, the radiation that is incident on the scan plane that is
not related to the direct path from the AUT to the plane is referred to as multi-path.
In any actual planar scanner, great efforts will be made to reduce multi-path usually
by the incorporation of RAM materials. In fact when the installation of the inverted
T scanner shown in Figure 6.3 is complete, its appearance would be more like
Figure 6.5 where, with an AUT in place, it can be seen that it is installed in a RAM
lined room with RAM material placed around all areas of the scanner that could
contribute to the production of multi-path.

From Figure 6.5 it can be seen that the effort to reduce multi-path in the
measurements has meant that a considerable quantity of RAM is required,
depending on the size and configuration of the scanner. Additionally, it can also be
seen that, due to the greater preponderance of metal work, a box frame scanner
would require considerably more attention to reduce multi-path in its vicinity, a
reason for favouring an inverted T type configuration. Clearly great care must be
exercised in the design implementation and installation of near-field test ranges so
that the integrity of any data sets acquired within the ranges can be relied upon to
meet the requirements of the test and measurement procedures.

The factors so far discussed in this chapter relate to requirements for and the
limitations of acquiring near-field amplitude and phase data on a plane in the
radiative near-field of the AUT. However, we are of course in the majority of
circumstances interested in the far-field characteristics of the AUT so a method
must be devised whereby this near-field data is transformed in the far-field pattern
of the AUT.

AUT Probe antenna

Figure 6.5 Inverted T scanner installed in a chamber (Courtesy of QMUL)
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6.4 Solution of Maxwell’s equations in Cartesian
coordinates

Near-field methodologies require that far-field antenna parameters such as pattern,
gain, directivity, polarisation and others be derived analytically from measurements
taken over a convenient smooth surface in the near-field of a radiator. For such
parameters that cannot be obtained directly from measurements made in the near-
field, a transformation from one surface to another is necessitated. This transfor-
mation, of monochromatic but otherwise arbitrary waves, can be accomplished by
representing the field at an arbitrary point in space as a summation of any ele-
mentary wave solutions to Maxwell’s equations. Here, the mode coefficients to
these solutions are determined by matching the fields over the surface on which the
fields are known by using mode orthogonality. Solving this modal expansion for
the fields over the surface of a sphere with an infinite radius centred about the AUT
results in the far-field pattern.

As already mentioned in Chapter 1, a degree of mathematical convenience can
be obtained from selecting a modal basis that is commensurate with the measure-
ment geometry, and in the case of planar measurements this is best accomplished
by utilising plane waves and the concept of the plane wave spectrum (PWS).

6.4.1 Plane wave spectrum
In the case of certain types of elementary field, i.e. mode, if the amplitude, phase
and direction of propagation of a plane wave are known at one location in space,
then the properties of this field can instantly be determined everywhere in space.
Thus, if the complex field distribution associated with some radiator can be
decomposed into a summation of plane waves propagating in diverse directions,
then similarly the properties of the complex field distribution can be determined
throughout space from a summation of the properties of the respective plane waves.
Thus, the transform of the acquired near-field data in a range is usually based on the
plane wave spectrum representation of electromagnetic fields. This generalised
interpretation can be shown to stem from the free-space solution of the scalar wave
equation, which itself follows directly from classical electromagnetic theory and
Maxwell’s equations, where the four Maxwell equations are postulated, mathe-
matical generalisations of a great many macroscopic experimental observations of
electricity and magnetism.

Any variations in the measured field on the measurement plane for a mono-
tonic plane wave that occurs at a rate of change that is higher than that which would
be observed in a free-space wave travelling tangentially to the plane can only be
explained by the projection of the wave onto the plane at different angles. Thus, the
measured signal on the plane represents the summation of the various spatial
wavelengths produced by the range of angles at which any waves are projected onto
the plane. This relationship between the spatial period measured on the plane
and the spatial frequency, which can be directly related to an angle of projection
onto the plane, is the basis of the transform used to predict the far-field pattern of an
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antenna from the measured near-field data on a plane. Thus, just as the temporal
period and the temporal frequency are related by a Fourier transform, so likewise
are the spatial period and frequency.

This means that a spectrum of monotonic waves, a plane wave spectrum, can
be viewed as the summation of plane waves that would produce the asymptotic far-
field pattern of the antenna. Thus, the plane wave spectrum can be seen to represent
a generic algorithm for obtaining the particular solution to the problem of pre-
dicting the far-field pattern of an antenna utilising the boundary conditions repre-
sented by infinity on a hemisphere in front of the antenna and the plane on which
the data is measured.

This angular spectrum can be obtained directly from the sampled tangential
near-field data using

FT kx, ky, z ¼ 0
� � ¼

ð
1

�1

ð
1

�1
ET x, y, z ¼ 0ð Þe j kxxþkyyð Þdxdy (6.3)

The propagating electric field everywhere in the forward half-space can be
obtained from the tangential angular spectra as

E x, y, zð Þ ¼ 1
4p2

ð
1

�1

ð
1

�1
FT kx, ky

� �� bez
kT � FT kx, ky

� �

kz

" #

e�j kxxþkyyþkzzð Þdkxdky

(6.4)

Here, the longitudinal component of the electric field has been obtained from
the tangential components using the plane wave condition.

Fzðkx, kyÞ ¼ � kT � FT ðkx, kyÞ
kz

(6.5)

For the case where only propagating plane wave mode coefficients are con-
sidered, as is the case for near-field antenna measurements, the normal component
of the propagation vector is obtained from the tangential components,

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � k2

x � k2
y

q

(6.6)

If only propagating plane wave mode coefficients are considered then
k2

x þ k2
y � k2

0 . The propagating magnetic field everywhere in space can be obtained
from the tangential components of the angular spectra as

H x, y, zð Þ ¼ 1
4p2wm

ð
1

�1

ð
1

�1
k � FT kx, ky

� �� bez
kT � FT kx, ky

� �

kz

" #

� e�j kxxþkyyþkzzð Þdkxdky (6.7)
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At the stationary points kx ¼ k1 and ky ¼ k2, the far-field tangential electric field
components can be obtained from the tangential angular spectra using

E kx, ky

� � � j
e�jk0r

lr

kz

k0
F kx, ky

� �

(6.8)

Alternatively, when expressed in terms of the propagation vector, the magnetic far
zone fields can be obtained from the far zone electric field at the stationary points
kx ¼ k1 and ky ¼ k2 as

H kx, ky

� � ¼ 1
Z0k0

k kx, ky

� �� E kx, ky

� �

(6.9)

This transformation algorithm forms the basis of the methodology used to trans-
form near-field planar measurement data into far-field antenna pattern predictions.
Figure 6.6 illustrates the result of implementing the 2D Fourier transform on the
measured spatial domain data that would be obtained using a planar scanner.

Note: The explanation above for the relationship between the near-field mea-
surement data and the far-field pattern is necessarily brief and terse; a much fuller
and more rigorous explanation can be found in [5].

The transform algorithm described above then allows the prediction of the far-
field pattern from the measured near-field data, which will provide an accurate
prediction of the far-field pattern provided the measured data is representative of
the actual fields produced by the AUT. However, the measurement process intro-
duces a systematic error into the measured near-field data that is related to the
characteristics of the probe used to make the measurements. Thus the data in the
spectral domain does not faithfully represent the actual far-field pattern until this
systematic error can be compensated for.

6.5 Probe pattern compensation

The probe used in near-field scanning is itself an antenna and as such has its
own antenna pattern. This has the effect of contributing a systematic error in the
form of a singular mapping on top of the actual fields generated by the AUT.
Thus the measured near-field data is in fact the convolution of the AUT and
probe responses.

Taking account of the convolution theorem, [6] that relates convolution to
multiplication in the relation between the function spaces involved in the transform,
this means that the predicted far-field data is now the product of the AUT and probe
far-field characteristics. This means that in order to realise the correct far-field data
for the AUT, the far-field data set needs to be compensated by the removal of the
probe far-field response.

Essentially then, this means that the probe pattern at a particular direction in
space will correspond to an error at that angle being introduced into any antenna
pattern data. This can potentially constitute one of the largest but most
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repeatable and predictable measurement errors. Thus it is clear that in order to
obtain reliable measurements, the electromagnetic properties of the near-field
probe must be known very accurately indeed.

6.5.1 Effect of the probe pattern on far-field data
The probe pattern can be thought of as a device that spatially filters the fields
received from different parts of the AUT. In a planar range as already stated, the
effects include something very similar to a direct multiplication of the far-field
probe pattern with the far-field AUT pattern and can be shown to be a direct result
of the nature of the convolution theorem and can be visualised directly from the
mechanical operation of the scanner. It is not usually possible to neglect these
effects in a planar range because of the large angles of validity required, and the
short measurement distance employed. However, the effects of probe pattern cor-
rection can be minimised by utilising a probe of pattern similar to a Hertzian dipole,
i.e. a linearly polarised source with an aperture small in comparison to the half
wavelength sample spacing.

The general effects of the directivity pattern of the near-field probe on the
resulting far-field pattern function of the AUT are illustrated in Figures 6.7 and 6.8.

From these figures, the general effect of the probe pattern on the far-field
pattern of the AUT can broadly be determined. The pattern of the probe suppresses
the co-polar pattern of the AUT by an amount equal to the directive loss of the
probe pattern at the angle of observation.

As has already been shown, this is not a general statement as effects associated
with cross-polarisation and polarisation purity have been ignored. Furthermore, it
has been assumed that the AUT and the probe are perfectly aligned. However, it is
true to say that in the far-field, the effect of the probe on the AUT pattern is a one-
to-one mapping, i.e. the pattern of the probe at a given angle will only affect the
AUT pattern at that same angle.

From the impact on AUT pattern, produced by the probe pattern, it is clear why
pattern nulls in the forward hemisphere of the probe antenna are best avoided, as
they are difficult to characterise accurately and they correspond to large correction
terms in the far-field antenna pattern that introduce additional uncertainties.

6.5.2 Scanning probe characteristics
The above explanation of the impact of the probe characteristics on the integrity of the
measurement data clearly indicates why in-depth knowledge of and tight parameter
control of probes is necessary. Thus the six criteria listed as probe requirements in
Chapter 3 can now be explained in terms of their impact on the measurement process.

1. Time invariant gain and mechanical rigidity: The probe must be resilient
against gravitational deformation, etc. Any variation in the electromagnetic
performance of the probe between the time when it was characterised and the
time when it was used to measure an AUT corresponds to the near-field
measurements being corrected with the wrong probe pattern data.
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2. No pattern nulls in the forward hemisphere corresponding to a low directivity:
Electrically and likely physically small probe. Pattern nulls correspond to
angles in which the probe is insensitive, i.e. blind, to incoming radiation. This
would necessarily correspond to the introduction of large correction terms
within the probe compensation process that would render corrected far-field
pattern susceptible to spurious signals, i.e. noise. This noise could be intro-
duced either within the antenna measurement process itself, or within the
original probe characterisation, e.g. uncertainties associated with the mea-
surement of the null depth.

3. Wide bandwidth: This minimises the necessity to use a multitude of probes to
cover the operational bandwidth of the facility, thus reducing the time and
uncertainties introduced by the changing and swapping of probes if measure-
ments are required over large bandwidths. Unfortunately, it is not usually
possible to satisfy all of the other requirements over an extended bandwidth,
i.e. of greater than 20%.
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4. Low scattering cross-section and reflection coefficient – i.e. well matched with
a small return loss: This is required to minimise the magnitude of the multiple
reflections that are set up between the near-field probe and the AUT. Such
multiple reflections are omitted from the theoretical treatment of the near-field
measurement process and therefore cannot be corrected for. From a practical
standpoint, such multiple reflections can result in the introduction of ghost side
lobes and can upset the excitation of radiating elements within array antennas.
(The importance of this is readily illustrated when the effective area of a planar
range is roughly equal to the area of the scan plane.)

5. Good polarisation purity: This is required in order that the various field com-
ponents can be resolved. Although in principal it is possible to use the probe
pattern correction process to effectively improve the polarisation response of
the range, it is less demanding, and therefore often more reliable, if a probe
with good polarisation purity is employed in the first place.

6. Good front to back ratio: To minimise sensitivity to probe placing and multiple
reflections. Unfortunately, in practice this is at odds with item number 2.

In this chapter up to this point, the discussion has centred on the imple-
mentation of planar near-field scanning as illustrated in Figure 6.1, the most
common geometry employed where the AUT near field is sampled on a rectilinear
plaid monotonic grid over a planar surface, which is tangential to that of the
antenna. As is illustrated in Figure 3.23, this is not the only planar surface over
which it may be convenient to sample the data, and since plane-polar measurements
are possible using only a linear translation stage and a polariser or rotator, this
geometry is often to be encountered as a technique utilised to provide planer near-
field data.

6.6 Plane-polar near-field antenna measurements

Although the plane-rectilinear geometry is by far the most commonly encountered
planar implementation, plane-polar [7] and plane-bipolar [8] geometries can also be
constructed using mechanically convenient commercially available positioning
equipment and are in use in industry and academia.

The combination of the rotation and linear axes enables the probe to trace out a
radial vector in two dimensions, thereby allowing the collection of samples across
the surface of a plane on a set of concentric rings. Here, samples are taken at
regular intervals across a polar grid with, typically, the probe moving in a fixed
radial direction and the AUT rotating axially. This arrangement is illustrated in
Figure 6.9. Here a large 12 m diameter horizontal plane-polar system is shown
testing a large deployable reflector antenna.

In addition to yielding a simplification to the positioning and RF sub-systems,
a crucial feature of the technique is the ability of the scan plane diameter to be as
much as twice as large as the length of the linear translation axis. Potentially, this
enables measurements to be taken across scan planes that are significantly larger in
physical extent than the measurement system or even the enclosing test chamber.
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Crucially, the plane-polar (and plane-bi-polar) geometries provide additional
scope for suppressing range multi-path effects that are not typically available when
using conventional plane-rectilinear implementations. As the integrity of the mea-
surement can be compromised in a large part by these reflections, this can con-
stitute another very attractive attribute of these geometries. The following section
provides an introduction to the plane-polar near-field to far-field transform and
presents some typical results.

6.6.1 Application of spectral methods to plane-polar
antenna measurements

As has been shown in Section 6.4.1, and can be extrapolated from (6.3), an angular
spectrum of plane waves can be obtained directly from the sampled tangential near-
field components using

F T kx, ky

� � ¼
ð
1

�1

ð
1

�1
E T x, yð Þej kxxþkyyð Þdxdy (6.10)

Figure 6.9 Kyoto University horizontal plane-polar system with a 6 m radius
(12 m diameter) translation axis (Picture courtesy of
Kyoto University & NICT)
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It is also known that, from an application of the stationary phase algorithm [9],
the asymptotic far electric fields can be easily obtained from the angular spectrum
since as r ! ?

E kx, ky

� � � j
e�jk0r

lr

kz

k0
F T kx, ky

� �� kT � FT ðkx, kyÞ
kz

be z

� �

(6.11)

As is, these equations are not suitable for use with a plane-polar or plane-bi-
polar measurement system and some adaption is necessitated. Two methods for
accomplishing this task are:

1. Interpolate the data from a plane-polar or plane-bi-polar measurement grid to a
plane-rectilinear grid and then utilise the standard techniques of Section 6.4 to
obtain the far-field pattern.

2. Recast the near-field to far-field integral transform in terms of the plane-polar
or plane-bi-polar coordinate systems.

The principal advantage of utilising interpolation is that the fast Fourier
transform can be directly used to significantly improve the efficiency of the
transform; however, this is sought at the price of having to interpolate rapidly
varying complex near-field data at a very early stage within the transformation
processing chain. Conversely, deploying the near-field to far-field transform in
each of these measurement geometries removes the requirement for such approx-
imation but will inevitably increase the amount of computational effort required to
obtain far-field data. The remainder of this section is devoted to recasting the
transmission equation into a plane-polar form.

In fact it turns out that via the use of a multidimensional exchange of variables,
it is a comparatively straightforward task to recast the plane wave expansion in a
form that is directly applicable to the plane-polar measurement system where the
samples are taken on a plaid, monotonic and equally spaced plane-polar grid. The
plane-polar coordinate system is presented in Figure 6.10.

In this case the transformation from Cartesian to plane-bi-polar coordinates
is a one-to-one mapping, the analytic functions are continuous, the necessary
partial derivatives exist and are continuous, and assuming the initial condition is
specified in a plane-polar coordinate system where the condition that r � 0
applies (as will be shown below, this is not a practical limitation) such that x ¼ r
cos f, y ¼ r sin f, with z arbitrary but fixed. Here, the Jacobian can be expressed
as [10]

@ x, yð Þ
@ r,fð Þ ¼

@x

@r

@x

@f
@y
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@y

@f

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ cosf �r sinf
sinf r cosf
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�

�

¼ r cos2 fþ sin2 f
� � ¼ r (6.12)
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Using the exchange of variable formula for double integrals

ðð

R

f x, yð ÞdAx,y ¼
ðð

S

f x u, vð Þ, y u, vð Þð Þ @ x, yð Þ
@ u, vð Þ
�

�

�

�

�

�

�

�

dAu,v (6.13)

yields

F kx, ky

� � ¼
ð
2p

0

ð
1

0

f r,fð Þejk0r u cos fð Þþv sin fð Þð Þrdrdf (6.14)

The transformation from plane-polar to Cartesian unit vectors can be expressed as

be x ¼ cosfbe r � sinfbe f (6.15)

be y ¼ sinfbe r þ cosfbe f (6.16)

Thus, the Cartesian components of the angular spectrum of plane waves can be
obtained directly from the plane-polar electric field components sampled on a
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+POL
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+R

Figure 6.10 Plane-polar schematic showing coordinate system and three axes
of motion
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regular plane-polar grid. The corresponding near-fields can be recovered from the
plane wave spectrum (PWS) giving

E x, y, zð Þ ¼ 1
4p2

ð

ky0

�ky0

ð
kx0

�kx0

F kx, ky, z ¼ 0
� �

e�jk0 uxþvyþwzð Þdkxdky (6.17)

Here, kx0 ¼ k0y ¼ 2p/l. When implemented numerically, the infinitesimal area of a
sector of the plane-polar grid must be replaced with a finitely small elemental area.
When the angle f is in units of Radians, the area A of a sector can be expressed as

A ¼ r2f=2 (6.18)

Thus, the elemental segment area of each sample is

A ¼ f
2n

r þ d=2ð Þ2 � r � d=2ð Þ2
h i

¼ rdf=n (6.19)

Here, r is the radius of the sample, d is the sample spacing, f is the sector angle in
radians and n is the number of samples in each ‘ring’. The centre point is a special
case with an elemental area of

A ¼ Area of sector
n

¼ 1
2n

d
2

� 	2

f ¼ d2f
8n

(6.20)

The near-field probe can be conceived of as being a device that spatially filters the
fields received from different parts of the AUT. It is not usually possible to neglect
these effects in a planar range because of the large angles of validity required, and
the comparatively short measurement distance employed. The necessary expres-
sions required to correct the measured near-field data for the directive properties of
the measuring probe can be shown to be

A½ 	 ¼ l
j

M½ 	�1 � P½ 	�1 � S½ 	ejkzz0 (6.21)

Here, the matrix [A] is used to denote the probe-corrected fields of the AUT, the
matrix [S] is the angular spectra derived from the measured near-field, kz is the
z-directed components of the propagation vector and z0 is the AUT-to-probe
separation. Incorporating the probe pattern correction within the near-field to
far-field transformdeveloped above commences by recognising that the AUT-to-
probe coupling will change differentially from linear scan to linear scan as the AUT
is rotated in f across the acquisition interval. Hence, as the probe polarisation
rotation angle depends directly on f, the task of applying probe pattern correction
has to be moved inside of the double integral with the linear integration being
evaluated first.

In order that the probe pattern correction technique can be extended to
accommodate the case where the probe has been rotated by an arbitrary, but fixed,
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angle f about the positive z-axis of the range, all that is required is to rotate the
pattern of the probe and the pattern of the, output, infinitesimal Hertzian dipole, and
then to resolve the corrected fields back onto the range polarisation basis. A
detailed verification of this can be found in [11]. In this way, probe-corrected far-
field data can be obtained with no loss in rigour. Although this approach still
requires the use of approximation, i.e. interpolation, in the preparation of the
rotated probe pattern, the probe pattern is typically grossly over sampled, and by
design will be a low gain, slowly varying far-field pattern function which is easily
approximated by piecewise polynomial fitting. Or, alternatively, it could be
obtained from analytic models in the event simple open-ended rectangular wave-
guide probes are employed [12].

It is worth noting that the plane-polar measurement techniques inherently
rotate the probe about the range z-axis during an acquisition. Thus, the AUT-probe
coupling will change differentially across the acquisition surface. This is not the
case with plane-rectilinear scanning where the angular relationship between the
probe and the acquisition window is unchanged while characterising each near
electric field component. This difficulty can be resolved if the probe is rotated by
an equal and opposite amount to counter the rotation and to maintain the angular
alignment between the probe and AUT, cf. a Ludwig III spherical far-field mea-
surement. In this way the complexity of the probe compensation as set out above
reduces to conventional plane-rectilinear correction as expounded in earlier sec-
tions of this chapter. One additional advantage of this counter-rotating scheme is
that it significantly eases the demands placed upon the accuracies required for the
probe calibration as the principal polarisations of the probe and test antennas
remain largely matched for the duration of the measurement. If the probe is not
counter-rotated, and does not have a rotationally symmetrical pattern, then the
rotation of the probe about the z-axis must be accounted for within the compen-
sation process as presented above.

As an illustration of the effectiveness of the plane-polar measurement config-
uration, measurement results for a slotted waveguide x-band planar array antenna
measured using both a conventional 2.6 m � 2.6 m vertical scanner and a 1.3 m
horizontal plane polar scanner are shown. These systems are presented in
Figures 6.11 and 6.12 respectively. Note: In both cases a WR90 opened waveguide
probe with an AUT to probe separation held constant was used. In each case a
WR90 openended rectangular waveguide (OEWG) probe was used with the AUT-
to-probe separation kept consistent.

The plane-polar system shown in Figure 6.12 comprises a 0.9 m linear travel
stage above an azimuth rotator to provide the scanning motion. Thus, when the
motion provided by the linear stage is combined with the rotation provided by the
azimuth rotator, a maximum effective scanning area of 1.8 m diameter can be
achieved. The plane-polar measured orthogonal tangential near electric field com-
ponents are presented in the form of false grey-scale checkerboard plots in
Figures 6.13 and 6.14. For this measurement, no counter-rotation of the linearly
polarised probe was implemented. A non-rotational, symmetric, open-ended rec-
tangular waveguide probe was used to acquire this data, thereby fully exercising the
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generality of the plane-polar near-field to far-field transform algorithm as
developed above.

Figures 6.15 and 6.16 show that the respective far-field co-polar patterns are in
a very encouraging agreement. Here, the patterns are presented in the form of false

Figure 6.11 NSI-300V-12 � 12 vertical plane-rectilinear system (Picture
courtesy of NSI-MI Technologies LLC)

Figure 6.12 NSI-920PP-6 horizontal plane-polar system (Picture courtesy of
NSI-MI Technologies LLC)
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grey-scale checkerboard plots with the pattern tabulated on a plaid monotonic and
equally spaced direction cosine grid, with the electric fields resolved onto a Ludwig
II azimuth over elevation polarisation basis, cf. Chapter 4. When acquiring these
near-fields, samples were taken at every half wavelength in the linear scan axis, and
with an angular increment that corresponded to acquiring one sample at every half
wavelength around the circumference of the circular planar sampling interval. This
implies that points within the outermost circular cut are over sampled. However,
when scanning in the angular f-axis, and taking data on the fly, which is the
standard acquisition mode, by using a fast RF sub-system, which is commonly
available in the modern laboratory, the scan time is typically limited by the max-
imum angular velocity of the rotation stage as opposed to the speed of the vector
network analyser that is being used. This means that although it is possible to use
various strategies to ‘thin’ the amount of measured near-field data, in many cases
there is very little practical improvement in acquisition times.

When examining these results, it is important to recognise that the plane-
rectilinear and plane-polar measurements were taken using completely different
test systems installed within separate chambers. Thus, the differences in low-level,
wide-out patterns are most likely attributable to differences in scattering between
the respective measurements. The plane-rectilinear system was housed in a par-
tially absorber lined chamber, whereas the plane-polar system had some metallic
surfaces exposed, thereby increasing the scattering in some localised directions.
Although not shown, the agreement attained between the respective cross-polar
patterns was similarly encouraging, with only small differences being observed on
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boresight, which resulted primarily from the use of a theoretical probe pattern
correction that was not able to take account of imperfections in manufacture. This
impacted on the polarisation purity of the realised probe.

A comparison of the horizontal, u, cardinal cut is presented in Figure 6.17,
where the agreement attained between the plane-polar and plane-rectilinear mea-
surements is similarly encouraging.

By way of further validation, Figures 6.18 and 6.19 contain, respectively, the
reconstructed aperture illumination function of the waveguide array as obtained
from planar and plane-polar near-field testing. Similarly, Figures 6.20 and 6.21
contain equivalent phase functions. From these figures it is clear that the agreement
is very encouraging. The underlying functional form of the respective amplitude
and phase patterns are the same, with a very slight difference in horizontal phase
taper evident between the plane-rectilinear and plane-polar holograms, indicating
slight azimuth misalignment of the AUT when it was installed within the plane-
rectilinear range.

6.6.2 Conventional and alternate plane acquisition types
As is evident from the plane-polar coordinate system, plane-polar antenna pattern
measurements can be taken using several different acquisition types. Three com-
monly utilised cases are:
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Figure 6.16 Far-field power pattern from plane-polar measurement
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1. 0 � r � rMAX , �p � f � p, (conventional plane),
2. �rMAX � r � 0, �p � f � p, (alternate plane),
3. �rMAX � r � rMAX , �p � f � p, (redundant).

Case 3 requires the f-axis to intersect with the centre of the linear translation
stage as illustrated in Figures 6.9 and 6.10. Conversely, Figure 6.12 shows the
f-axis in the usual position used for plane-polar measurements (i.e. Case 1) where
negative r motion is not possible. Here, when the angles are in radians, the mapping
from the ‘alternate’ (or second) plane to the conventional (or first) plane can be
expressed mathematically as, r ! �r and f ! f 
 p. Clearly then, by allowing f
to vary by more than modulo 2p or, alternatively, by allowing the polar angle to be
centred about a value other than zero, an infinite number of other, trivial, repre-
sentations become available but these offer no additional utility to those presented
above and are not considered further. Although each of these schemes acquires the
same scan area, the position of the AUT and the probe within the facility when the
data is acquired is different.

This therefore provides a simple and effective way to assess and, potentially,
suppress chamber multi-path, i.e. clutter. Figure 6.22 contains a comparison of the
conventional and alternate planes (with the alternate plane x-polarised electric near-
field data having been mapped into the conventional plane using the aforemen-
tioned coordinate transformation) for the case of an x-band slotted waveguide
planar array antenna of approximate diameter 10 in. (0.254 m). Here, the patterns
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Figure 6.21 Aperture illumination phase function from plane-polar measurement
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have been plotted tabulated on a plaid monotonic plane-polar grid with the near-
field being acquired with the probe counter-rotated (in a Ludwig III type acquisi-
tion scheme, cf. Chapter 4) so that the AUT and probe field remain polarisation
matched throughout the near-field scan. For a correctly aligned system, differences
between the respective conventional and alternate contours primarily result from
range reflections. A quantitative measure of the similarity between the measured
data sets can be obtained by evaluating equivalent multi-path level (EMPL) [13].
The EMPL is half the absolute difference between the patterns expressed in dB and
can be thought of as the amplitude necessary to force the two different pattern
values to be equal. Here, the differences that result primarily from range clutter
peak at the circa �30 dB level with respect to the peak of the pattern. As there are
no systematic differences evident, it is possible to confirm that measurement errors
resulting from imperfections in range alignment (r ¼ 0 offset error – more attention
is devoted to this error below), backlash or drift are minimal and can be ignored for
the purposes of this comparison exercise. As this measurement is over determined
(i.e. containing ‘redundant’ data), it constitutes an excellent candidate for verifying
the effectiveness of clutter suppression techniques.

Clearly, it is possible to obtain far-field data using the conventional plane, the
alternate plane and the average of the two data sets where the averaging process can
be used to suppress the effects of range reflections. However, although a viable
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strategy, this would result in a doubling of the measurement time which is unde-
sirable in many applications. Alternatively, as the AUT is an ‘aperture antenna’, it
is possible to perform a back propagation of the radiated near-fields to the antenna
aperture plane (i.e. infinitesimal planar interface between the conduction current
and the displacement current being the majority carrier) before applying a two-
dimensional band pass spatial filter function so as to set the fields outside of the
antenna’s aperture plane to zero whereupon the filtered far-field pattern can be
recovered, cf. Chapter 12. Lastly, the P-MARS mode orthogonalisation and filter-
ing algorithm can be harnessed to obtain multi-path suppressed far-fields [14].
More details on this last option are provided in Chapter 12.

6.6.3 Plane-polar alignment
As with all near-field methodologies, accurate and precise probe positioning is of
paramount importance to the success of the technique and comprises an important
term within the facility level uncertainty budget, cf. Chapter 10.

In order to perform valid plane-polar near-field measurements, several funda-
mental alignment requirements must be met:

1. The near-field probe should travel along a linear translation stage (radial axis)
while maintaining a constant position in both transverse directions.

2. The vector of the scanner’s f-axis rotator should be orthogonal to and intersect
with the direction of probe travel.

3. The vector of the probe’s polarisation rotator should also be orthogonal to the
radial axis and anti-parallel to the f-axis.

The position of the probe along the radial axis where the scanner’s polarisation
and f-axis are coincident should be defined as its zero position, r0. There should be
no deviation of this from the true zero, and as the plane-polar system has a pole in
the coordinate system, this is a non-arbitrary point in space. A great deal of effort
and ingenuity has been devoted to the mechanical alignment of plane-polar antenna
test systems, through mechanical and optical measurements, cf. [15]. However, it is
also possible to augment these measurements with electrical tests to further verify
and refine the systems alignment.

As discussed above, the mechanical f-axis rotator must be correctly aligned
with the linear axis and the probe placed in the proper location when performing
plane-polar near-field measurements. In some cases it may be impractical to place
the optical alignment equipment on the AUT or optical instruments may not be
available. In these cases, it may be desirable to check the alignment using electrical
measurements on the actual AUT and probe. Appropriate comparison and analysis
of two near-field measurements (which can be extracted from a carefully orche-
strated single acquisition) that should be identical yield precise measures of some
rotator and probe alignment errors.

While in principle these tests are independent of the AUT pattern, as shown in
Figure 6.23, judicious choice or placement of the antenna can significantly increase
the sensitivity of this procedure. Careful examination of the 180� f scan

Planar near-field antenna measurements 327



acquisition, recalling that the mapping from the ‘alternate’ (or second) plane to the
conventional (or first) plane can be expressed mathematically as r ! �r and f !
f 
 p, illustrates that the f ¼ 180� cut represents a repeat measurement of the
f ¼ 0� cut. This is illustrated in Figure 6.23, which contains a comparison of
f ¼ 0� and f ¼ 180� cuts showing effect of r0 error on near-field data. That is to
say, the point on the linear scan axis that is defined to be zero is not coincident and
synonymous with the f rotation axis.

The misalignment is clear from this ‘flip’ test. Perhaps the simplest and most
reliable method for determining the displacement between these patterns is to
determine the spectral content and examine the relative phase difference. An
alternative approach would be to interpolate the measured patterns to sequentially
shift the respective patterns and to assess the correspondence by evaluating the
cross-correlation coefficient; however, the spectral method is a more direct, noise
suppressing technique. The one-dimensional spectral content of the cut can be
obtained by evaluating the one-dimensional Fourier transform [16] using,

F uð Þ ¼
ð
1

�1
f rð Þejk0urdr (6.22)
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Figure 6.23 Comparison of f ¼ 0� and f ¼ 180� cuts showing effect of r0 error
on near-field data
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Here, the range of the one-dimensional integral collapses so that the Dirichlet
conditions [17] and the Nyquist [1] sampling conditions are satisfied, which would
be the case for any conventional near-field measurement from which conceivably
this data would be extracted. The resulting magnitude and phase spectra are pre-
sented in Figures 6.24, 6.25 and 6.26 respectively, where the traces denote spectra
arising from the f ¼ 0� cut and the f ¼ 180� cut. The slight differences in the
spectra result in the different truncation suffered by the respective near-field mea-
surements. In the absence of truncation, these two sets of spectra would be
identical.

Here, it is assumed that f ¼ 0� and f ¼ 180� are parallel and anti-parallel
respectively with the linear axis of the plane-polar near-field test system.
Figure 6.26 shows that, with the shifting properties of the Fourier transform, a
linear phase taper is introduced into the far-field pattern. The underlying linear
phase function D, when expressed in radians, can be determined from the ratio of
the respective spectra as (Figure 6.24)

D uð Þ ¼ imag ln
F0 uð Þ

F180 �uð Þ
� 	� 	

(6.23)

Here, imag is used to denote a function that returns the imaginary part of the
argument, and ln is the natural logarithm. The slope of D(u) can be obtained
numerically by performing a least squares best fit to a linear phase function (i.e.
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linear regression), y ¼ mx þ C about the spectral region of greatest intensity. Once
the gradient, m, of D(u) is known, the linear displacement term can be obtained
using

r0 ¼ Dx ¼ m= 2k0ð Þ (6.24)

Here, the additional factor of a half is included as the displacement is obtained from
the difference between the f ¼ 0� and f ¼ 180� cuts. As each individual cut
contains the r0 error, the phase difference will contain twice the expected error and
this factor compensates for that. It has been found that this algorithm can correctly
recover the r0 offset (a half wavelength for the case shown). However, it was also
found that much smaller offsets could be reliably recovered, with offsets as small as
a twentieth of a wavelength (�1.6 mm at 9.375 GHz) being readily resolved. This
data therefore confirms that calculation of a phase reference position based on two
cuts (f ¼ 0� and f ¼ 180�) taken from a single near-field acquisition can provide a
measure of the near-field r0 error (error in the index offset) without the need to
make auxiliary mechanical measurements. This type of calibration can be per-
formed at a single frequency, and the information recovered can then be used for all
subsequent measurements at all frequencies to correct for the alignment error.
While this method is not able to distinguish between probe translation and AUT
translation, by repeating the measurement and instead rotating the probe by 180� a
similar procedure can be used to first determine and subsequently remove probe
translation effects before then establishing the r0 [15].

The importance of an r0 error can be illustrated with the measurement of a
narrow beam, slotted waveguide array, with a gain of 35 dB as the AUT with an
operating frequency of 9.375 GHz. Plane-polar near electric fields have been
simulated for each of these modes with varying r0 errors being introduced into the
simulations. The equivalent far-fields were then determined using standard plane-
polar near-field to far-field transformation techniques.

As defined above, the r0 error was taken to be the linear distance between the
zero on the linear scan axis (i.e. the point that is defined to be the pole of the plane-
polar coordinate system r ¼ 0) and the true point where the rotation axis actually
intersects with the linear axis. Figure 6.27 contains the great circle cardinal cut as
obtained from the 360� f acquisition data with r0 errors at 0 (ideal reference), l/20,
l/10 and l/5. From these figures it is clear that the peak of the pattern noticeably
reduces as the r0 error increases. This is also shown in Figure 6.28 in which the axes
of the plot have been adjusted so as to focus on the main beam region of the antenna
patterns. From this figure, it is evident that a comparatively small r0 error, i.e. one-
twentieth of a wavelength resulted in a reduction in the peak pattern level of circa
0.1 dB. This would correspond to a comparatively large component in the overall
facility level gain uncertainty budget. Furthermore, as the r0 error increased, the
location of the side lobes progressively shifted to wider angles. This behaviour was
expected as larger r0 errors result in an apparent reduction in the spatial extent of
the AUT, thereby reducing the measured gain value and increasing the beam-width
of the observed far-field pattern.
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Figures 6.29 and 6.30 contain far-field patterns equivalent to those in Figures 6.29
and 6.30 contain equivalent far-field patterns to Figures 6.27 and 6.28 above; only here
the far-field patterns were obtained from the 180� f acquisition.

From Figure 6.30 it is evident that the peak level is far less sensitive to the r0

error than was the case for 360� f scan data. The location of the side lobes varies
with the r0 error, exhibiting similar behaviour to the 360� f scan data. The apparent
insensitivity in peak level to the r0 error for the 180� f scan data requires further
examination, as this behaviour is perhaps not immediately apparent. One explanation
for this behaviour can be obtained by considering the effect that this error has on the
projected effective area of the antenna as measured in the near-field. For the case of
the 360� f scan, as the r0 error gets larger, the projected area of the AUT decreases.

Conversely, for the case of the 180� f scan, the projected area remains con-
stant. This makes sense from the scan type standpoint since for the case of a 180� f
scan mode, an r0 error merely displaces the AUT in each individual cut with the
true ‘width’ of the illumination being preserved as the AUT is, in essence, merely
translated linearly from its true position. This is not the case for the 360� scan in
which the AUT is apparently shrunk (or conversely enlarged depending on the sign
of the r0 error) with radiated energy being omitted from the measurement. Clearly,
although preserving the area of the near-field illumination within the 180� f scan
will yield a more stable far-field peak, a consequence of the non-physical dis-
continuity in that near-field illumination will inevitably result in the appearance of
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Figure 6.29 Far-field cardinal cut of 360� f measurements showing pattern for
various r0 errors
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spurious high angular frequency side lobes in the far-field. Thus, correctly deter-
mining the r0 point remains critical if reliable antenna measurements are to be
obtained from the plane-polar methodology.

6.6.4 Remaining data acquisition factors of planar scanning
Having established the capabilities, requirements and limitations of planar near-
field measurements in terms of RF sub-systems, robotic positioners, near-field
probes, planar acquisition geometries and near-to-far-field transforms, it can be
realised how data sampled on a planar surface can be effectively used to predict the
far-field pattern of an antenna.

Section 6.2 confirms the usual requirements related to the Nyquist sampling cri-
teria for planar near-field measurements. However, near-field measurements can pre-
sent particular challenges in terms of acquiring suitable sampled data that are related to
the measurement methodology and particular attention must be paid to the implications
of these challenges if effective near-field measurement results are to be obtained.

6.7 Sampling (interpolation theory) and aliasing

Following the development presented above, it is well known that if the measured
field is band limited in the x- and y-axes to kx0 and ky0, then a sample spacing of Dx,
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Figure 6.30 Far-field cardinal cut of 360� f measurements showing pattern for
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Dy will be sufficient to allow the entire function to be reconstructed from the
sampling theory when assuming a plane rectilinear acquisition scheme is adopted
[18]. A result of the sampling theorem is that one may consider evaluating the
necessary integrals by replacing them with summations with equal sample spacing
without introducing an error, the power of the sampling theory lies within recog-
nising that the summation itself is rigorous, providing only that the sample spacing
is less than some specific finite value in each axis where the sample spacing in the
x- and y-axes is given, respectively, by

Dx ¼ p
kx0

(6.25)

Dy ¼ p
ky0

(6.26)

For propagating, i.e. homogeneous plane-wave spectra, the spectrum is limited to

kx0 ¼ ky0 ¼ 2p
l

(6.27)

Thus, the sample spacing required to guarantee this, when related to the
wavelength, is given by

Dx ¼ Dy ¼ p
2p
l
¼ l

2
(6.28)

This implies that, at the baseband, we need two samples per free-space
wavelength to uniquely characterise the field across the planar acquisition interval
which satisfies the Nyquist sampling theorem. Thus, the limits of integration col-
lapse to a finite interval and the continuous field can be reconstructed from the
samples. However, as shown above, in order to apply the sampling theorem, the
function must be band-limited. However, the plane-wave spectrum is not truly
band-limited in the strictest sense although, as we shall now show, a practical band
limit does exist since evanescent modes, i.e. non-homogeneous plane waves,
attenuate very rapidly as a function of distance. The attenuation when expressed in
decibels can be obtained from the propagation vector using

AdB ¼ 20 log10 ejkzz
� �

(6.29)

Here, A is the attenuation expressed in a logarithmic, i.e. dB, form. For eva-
nescent modes, the propagation vector kz will be complex as, cf. Chapter 4,

g ¼ �j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2 � 1
p

(6.30)

where kx ¼ k0u and ky ¼ k0v. Thus, the attenuation can be expressed as

AdB ¼ 20 log10 ek0z
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þv2�1
p
 �

¼ 20 log10 e2pðz=lÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2þv2�1
p
 �

(6.31)
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Hence, assuming that the attenuation when written in a decibel form is repre-
sented by a negative number and, from the law of logarithms,

AdB ¼ �54:6
z

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2 � 1
p

(6.32)

This illustrates that on the unit circle there is no attenuation; however, beyond
the unit circle the amount of attenuation increases. This is illustrated in Figure 6.31
which contains plots of the attenuation experienced by the modes on circles of
various radii, i.e. these are higher order evanescent modes which are being used to
illustrate that higher order modes attenuate more rapidly with increasing separation.

The plane-wave spectrum segregates propagating (homogeneous) and non-
propagating (non-homogeneous evanescent) plane waves with the evanescent
modes being located outside the unit circle, i.e. where u2 þ v2 > 1. This is illu-
strated in Figure 6.32 which shows the plane-wave spectrum obtained from fields
taken within the aperture plane of an AUT, which in this case was an x-band
pyramidal horn. Figure 6.32 also contains white circles that denote the unit circle,
i.e. the interface between propagating (homogeneous) plane waves and reactive
(non-homogeneous) plane waves. Two additional circles are plotted with radii of 2
and 3 cycles per wavelength that correspond to the 2KT/k0 and 3KT/k0, respectively.
Here, the 2KT/k0 circle corresponds to the 2KT/k0 trace presented in Figure 6.31.

Thus, if one were in possession of an RF sub-system with infinite precision,
then it would be possible to detect these reactive fields and finer sample spacing
would therefore be needed. However, this absence of the detection of evanescent
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Figure 6.31 Plot of attenuation of evanescent modes as a function of distance

336 Theory and practice of modern antenna range measurements, volume 1



modes imposes a limit to the maximum resolution of the measurement. That is to
say, when no evanescent fields are detected, the maximum resolution of the mea-
sured field is one-half wavelength. For example, when the separation d ¼ 3l, the
lowest order reactive field is attenuated resulting in the PWS outside of the unit
circle being largely absent, or in practice being dominated by random noise
resulting from thermal noise or processing errors, e.g. resulting from truncation or
rounding. This is illustrated in Figures 6.33 and 6.34 which contain greyscale
checkerboard plots of the magnitude of the plane-wave spectrum as calculated from
simulation of an x-band pyramidal horn where the fields were sampled across a
plane that was 0.09l, i.e. just skimming the aperture of the AUT, and 3l, at a
typical measurement distance, from the aperture plane of the horn respectively. In
each plot, the unit circle, cf. the Ewald sphere, is plotted in white designating the
interface between the propagating, i.e. ‘visible’, and the non-propagating, i.e.
‘invisible’ portions of the spectrum. For the case where the sampling plane is very
close to the aperture plane of the AUT, a significant portion of the evanescent
field is sampled resulting in the presence of reactive plane-wave component
which lie outside of the unit circle, i.e. where a2 þ b2 > 1. However, as the
separation is increased between the aperture plane of the antenna and the sam-
pling plane, the reactive plane-wave component is greatly attenuated resulting in
the absence of field outside the unit circle. However, the propagating field is
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Figure 6.32 Greyscale plot of the intensity of the plane-wave spectrum obtained
from samples taken in the aperture plane of a pyramidal horn
showing both propagating (visible) and evanescent (non-visible)
regions of the plane-wave spectrum
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unaffected meaning that the pattern within the unit circle is unchanged between
Figures 6.33 and 6.34.

The similarity of the propagating portion of the plane-wave spectra and the
difference in the reactive portion of the plane-wave spectra are illustrated in
Figure 6.35, where the 0.09l data set is plotted using a solid line and the 3l data set
is plotted using a dotted line. The vertical dashed lines at 
1 denote the boundary
of the visible portion of the spectrum. Clearly then, the visible part of the spectrum,
i.e. the propagation modes, will reach the measurement plane, whereas the eva-
nescent waves will not reach the measurement plane as they are attenuated rapidly
with distance.

Thus, the finest detail that can be observed within a measurement is limited by
the highest spatial frequency contained within the plane-wave spectrum and is
therefore related directly to the wavelength of the RF (i.e. light) that is being used
for taking the measurement. If near-field evanescent waves are detected, greater
image resolution can be attained. In principle, evanescent can be considered to
represent plane-waves which flow back and forth in the aperture plane, that is to
say, they are surface waves which store energy until a probe is placed in close
proximity whereupon they can couple into that probe and then propagate within the
waveguide. An interesting point which is worth noting is that the phase velocity of
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the inhomogeneous plane wave is less than that of a homogeneous plane wave. The
reason for this is that as the velocity v is determined by the product of the frequency
and the wavelength, i.e. v ¼ fl and as f is fixed this implies that v < c, the free-space
speed of light, then wavelength must also be shorter than that of homogeneous
plane-wave. As the wavelength is shorter, we need to use a finer sample spacing to
avoid aliasing and will result in higher spatial frequencies in the plane-wave
spectrum, which is why we see these components fall outside the unit circle. Thus,
free space can be seen to constitute a velocity selecting medium attenuating waves
which propagate at velocities other than c.

When we sample a signal, we impose a periodic nature of the spectra of the
sampled signal. This is also true here however as we sample in two dimensions, i.e.
x- and y-axes, we also impose periodicity in both the kx and ky dimensions (or
equally, u, v), that is to say, we obtain a periodically repeating spectrum in two
axes. This is illustrated in Figure 6.36. Here, the planar near-field data was sampled
a wavelength spacing in both the x- and y-axes. As the maximum spectrum is
determined from the sample spacing from

k0x max ¼ p
dx

�

�

�

�

�

� ¼ p
l

�

�

�

�

�

� (6.33)

Thus, the maximum value of u or v is 
0.5. That is to say, the computed
spectra repeat beyond 
0.5 which is evident from inspection of Figure 6.36. Thus,
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at wavelength spacing, the visible portion of the spectral pattern is aliased back into
the visible space. At half-wavelength spacing, the pattern is repeated at 
1.0 and
this can be seen illustrated in Figure 6.37 where again the limit of visible space is
represented with a unit radius white circle. This implies that only the non-visible
portion of the plane-wave spectrum suffers from aliasing. This is a region that is not
of interest when determining far-field antenna parameters and is acceptable in
many, although not all applications. Lastly, Figure 6.38 presents the spectrum for
the case where the near-field was sampled with a quarter wavelength sample spa-
cing. Here, the spectrum repeats beyond 
2.0 meaning that even AUT-to-probe
multiple reflections, etc., would not be aliased into the visible portion of the
spectrum in the event that they had been present, see the next section.

6.8 Finer than Nyquist sampling

As expounded within the preceding section, conventional plane rectilinear near-
field measurements are acquired using sample spacing on a plane rectilinear grid of
one-half wavelength in each axis, the reader is referred to Chapter 3 for a treatment
of minimum sampling antenna measurements. However, there are cases where this
sampling scheme can be seen to become insufficient with the ensuing far-field
patterns suffering from aliasing artefacts which manifest themselves in the form of
spurious side lobes in the computed far-field pattern. This effect is illustrated in this
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section together with a method for identifying and compensating for the artefact.
Figure 6.39 presents a false-colour checkerboard plot of the amplitude pattern of
the angular spectrum obtained from a measurement of a slotted waveguide array
antenna that was sampled using half-wavelength sample spacing in the x- and
y-axes. Here, as expected, cf. Figure 6.37, the sampling in the spatial domain results
in periodicity in the spectral domain. However, in this example, the measured near-
fields were modulated by multiple reflections between the scanning probe and the
planar array antenna that was being tested. In general, AUT-to-probe multiple
reflections will modulate the measured signal and can have a maximum spatial
frequency that is double that of the un-modulated transmitted free-fields. In this
particular example, elements within the array were laid out on a regular lattice that
further modulated the total field that was measured by the near-field probe. In this
case, an x-band slotted waveguide array was measured at different sample spacing
in the x- and y-axes with an AUT-to-probe separation held fixed at 0.9 wavelengths
which resulted in the high level of multiple reflections seen here.

As expected, the main beam and side lobes are aliased outside of visible space,
with the maximum extent of visible space being represented with a red unit circle in
each plot. Unfortunately, at half-wavelength spacing, some of the AUT-to-probe
multiple reflections are aliased back into visible space through the effect of circular
convolution. At quarter wavelength, multiple reflections are also shifted outside of
visible space as is evident in Figure 6.40. In practice, when measuring periodic
antennas, it is worth acquiring a near-field data set at finer than Nyquist sample
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spacing and to examine the plane-wave spectrum for the appearance of these side
lobes. Once known, the location of the side lobes can be used to specify the correct
sample spacing so that the measured pattern is free from these effects. Clearly,
increasing the separation between the AUT and the probe will reduce the amount of
multiple reflections present within the measurement, however, that will either
necessitate in a larger scan area being used or an increase in truncation if it is not
possible to increase the span of the measurement in the x- and y-axes.

6.9 Introduction to non-canonical near-field scanning –
planar transform example

In general, we take measurements on a canonical surface in electrically close
proximity to a radiator. We have a forward equation, as derived above, which we
invert to solve for the unknown mode coefficients of the basis functions that are
commensurate with the surface that we are testing over. Once we know this set of
coefficients, then we can correct them for the effects of the measuring probe. Here,
we have assumed that the implementation of probe pattern correction in this way is
only possible providing all measurements are performed with a certain probe in a
predefined orientation. We then use these compensated coefficients with the for-
ward equation to solve for the field anywhere outside of the near-field sampling
surface including the far-field region where we choose a sphere of infinite radius.
In each of the formulations, i.e. the planar case treated above, or the cylindrical or
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spherical cases that are treated below, we can concisely express the relationship
between the measurements and the unknown mode coefficients in terms of a matrix
equation. As was shown above, the electric field at a point in space can be
expressed in terms of an angular spectrum of a plane wave propagating in diverse
directions with varying complex amplitudes as

E rð Þ ¼ 1
4p2

ð
1

�1

ð
1

�1
F kð Þe�jk :r dkxdky (6.34)

Typically, we invert the transmission equation by exploiting mode orthogon-
ality. We shall illustrate this procedure first before progressing to obtain an
equivalent solution using an alternative more flexible strategy.

We can try to isolate a single plane-wave coefficient by integrating both sides
of this equation with respect to the spatial coordinates thus

ð
1

�1

ð
1

�1
E x;yð Þej k 0xxþk0yyð Þdxdy

¼
ð
1

�1

ð
1

�1

1
4p2

ð
1

�1

ð
1

�1
F kx;ky

� �

e�j kxxþkyyð Þdkxdky

2

4

3

5ej k 0xxþk0yyð Þdxdy (6.35)
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Here, k0x and k0y are dummy variables. Exchanging the order of integration and
factorising the complex exponentials yields

ð
1

�1

ð
1

�1
E x; yð Þej k 0xxþk0yyð Þdxdy

¼ 1
4p2

ð
1

�1

ð
1

�1

ð
1

�1

ð
1

�1
F kx; ky

� �

e�j kx�k0xð Þxþ ky�k 0yð Þyð Þdxdydkxdky (6.36)

Using the formal integral representation for the two-dimensional Dirac delta
function

d kx � k0x; ky � k0y

 �

¼ 1
4p2

ð
1

�1

ð
1

�1
e�j kx�k0xð Þxþ ky�k 0yð Þyð Þdxdy (6.37)

We see that this reduces to

ð
1

�1

ð
1

�1
E x; yð Þej k 0xxþk 0yyð Þdxdy ¼

ð
1

�1

ð
1

�1
F kx; ky

� �

d kx � k0x
� �

d ky � k0y

 �

dkxdky

(6.38)

However,

d kx � k0x; ky � k0y

 �

¼ 1 when kx ¼ k0x and ky ¼ k0y
0 otherwise

�

(6.39)

Then,

ð
1

�1

ð
1

�1
E x; yð Þej k 0xxþk 0yyð Þdxdy ¼ F k0x; k

0
y


 �

(6.40)

Removing the primes, i.e. by choosing a different set of dummy variables, and
reordering yields the required inverted expression for the mode coefficients in
terms of a Fourier integral of the measured fields

F kx; ky

� � ¼
ð
1

�1

ð
1

�1
E x; yð Þej kxxþkyyð Þdxdy (6.41)
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Thus, we have successfully isolated a single plane-wave coefficient and thus
inverted the forward equation. In practice, we are able to reconstruct the plane-
wave spectrum from a discrete set of samples using the sampling theorem and thus
we obtain the discrete form of this expression as required

F kx; ky

� � ¼ DxDy
X
N�1

n¼0

X
M�1

m¼0

E nDx;mDyð Þej kxnDxþkymDyð Þ (6.42)

However, we are able to obtain an equivalent, more general, form of the
transform using linear algebra. As was shown above, when considering a band-
limited example or even a quasi-band-limited case, as is usually the situation when
antenna testing, we may use the sampling theorem to express the field in the form
of a summation of plane waves

E r n

� � ¼ DkxDky

4p2

X
M

m¼1

F k m

� �

e�jk m�r n (6.43)

where km is the mth propagation vector and rn is the nth position vector such that

r n ¼ xnê x þ ynê y þ znê z (6.44)

k n ¼ kx;nê x þ ky;nê y þ kz;nê z (6.45)

Thus, for the planar case with a discrete set of samples E(r1, 2, ..., n), this can be
expressed equivalently in a matrix form as

E r 1ð Þ
E r 2ð Þ

..

.

E r n

� �
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6

6
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7

7

7

5

¼ DkxDky

4p2

e�j k 1�r 1ð Þ e�j k 2�r 1ð Þ e�j k 3�r 1ð Þ � � � e�j k m�r 1ð Þ
e�j k 1�r 2ð Þ e�j k 2�r 2ð Þ e�j k 3�r 2ð Þ � � � e�j k m�r 2ð Þ

..
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. ..

. . .
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(6.46)

When expressed compactly in a matrix form, this becomes

v ¼ Ab (6.47)

or, obviously, exactly equivalently as

Ab ¼ v (6.48)
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Here, v is a column vector set of measurements, A is a matrix of basis
functions, i.e. wave functions, and b is a column vector set of unknown mode
coefficients. Typically, we invert the forward transmission equation by
exploiting the orthogonality relationship, cf. Chapters 7 and 8. However, it is
also possible to solve, i.e. invert, the forward equation using brute force and
ignorance by writing

b ¼ A�1v (6.49)

Again, it is important to note that we have assumed that all measurements were
performed with the same probe in the same orientation. If this is not the case, then
the probe influence should be included within the forward equation so that its
influence is directly considered within the equation system inversion.

In inverting this system of equations, we have assumed that matrix A is a
non-singular square matrix and superscript �1 denotes the matrix inverse such
that by definition A�1A ¼ I, where I is the identity matrix. In general, matrix A
will not be square (as we will assume that we have more equations than
unknowns) and we will need to find its inverse using some degree of estimation.
Fortunately, we can find a pseudo-inverse by using the principle of least squares
to obtain an approximate solution. Multiplying by the Hermitian (conjugate)
transpose of A, we obtain

AT Ab ¼ AT v (6.50)

Here, AT is the Hermitian transpose of A. Thus, when the columns of A are
linearly independent, the product ATA is invertible and we may write

b ¼ AT A
� ��1

AT v (6.51)

or

b ¼ Apv (6.52)

where Ap denotes the pseudo-inverse matrix that is given by

Ap ¼ AT A
� ��1

AT (6.53)

As an aside for readers familiar with the programming language MATLAB�,
this is equivalent to using b ¼ A\v. Thus, we have obtained the least squares
solution for the inversion of our forward transmission equation where we have
minimised the quantity

Ab � vj jj j2 (6.54)
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Thus, when written expressly, we obtain
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(6.55)

The merit of this strategy is that we have successfully inverted the forward
equation without the need to rely upon mode orthogonality. Although this looks to
be a reasonable strategy, the difficulty associated with this is that matrix A will, for
any practical measurement, be large and most probably very large. That is to say,
the computational effort required to find the pseudo-inverse of A is very significant
and grows rapidly as the size of A increases placing very significant demands on the
computational recourses in terms of run-time and memory. Hence, alternative more
efficient methods for computing the pseudo-inverse are generally needed with the
iterative conjugate gradient method [19] or the least squares conjugate gradient
(LSQR) method [20] being a popular choice. Here, LSQR is a particular imple-
mentation of the conjugate gradient method which offers a more attractive solution
as will be shown below. A discussion of this algorithm is beyond the scope of this
text and is left to the open literature.

By way of an illustration, Figure 6.41 presents the plane-wave spectrum plot-
ted for homogeneous and non-homogeneous plane-wave components as computed
using the standard DFT-based transformation developed above. This planar near-
field measurement was of an x-band pyramidal horn. Conversely, Figure 6.42
presents the equivalent plane-wave spectrum computed using the matrix inversion
technique which was computed using the conjugate gradient method. Here, a
relative residual 1.7e–12 was achieved with 38 iterations. Increasing the number of
iterations did not significantly improve the degree of agreement attained. Clearly,
these two results are in very good, but not exact, agreement. Similarly, an
encouraging agreement was obtained between the respective phase patterns. To
better determine the degree of similarity, the equivalent multipath level (EMPL)
was computed to illustrate the degree of similarity between these two results and
this can be found presented as a greyscale checkerboard plot in Figure 6.43. The
mean EMPL was �70 dB relative to the peak of the pattern which is a very
encouraging result. The large amounts of signal outside the unit circle are a result
of the very high levels of truncation and the resulting spectral leakage.

For the conjugate gradient method to work, coefficient matrix A must be
square, i.e. an n � n matrix, and should be large and sparse. For the number of rows
and columns in A to be equal, this implies that the number of measured points must
equal the number of plane-wave coefficients. Note that this is the same constraint
that is imposed by the standard FFT algorithm, although not the slower and simpler
DFT equivalent. Additionally, it is not possible to have fewer near-field measure-
ments than plane-wave coefficients as this would mean that we have fewer
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Figure 6.41 Plane-wave spectrum computed using standard Fourier transform
method. Note the inclusion of the reactive plane-wave
mode coefficients
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Figure 6.42 Plane-wave spectrum computed using the inverse matrix method.
Again note the inclusion of the reactive plane-wave mode coefficients
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equations than unknowns meaning that this simultaneous equation cannot be
solved, i.e. inverted. In practice, we may well wish to have a larger number of
points in the angular spectrum than we do in the near-field. This difficulty can be
overcome by zero-padding the measured near-field data set in exactly the same
manner as we do when using the FFT algorithm. However, this means we have to
enlarge the size of the arrays with which we are working further increasing the
computational effort and increasing the risk of obtaining unreliable results as a
consequence of numerical instabilities.

To illustrate the computational demands associated with this method, it is per-
haps worth taking the above, electrically small, case as an example. Here, the mea-
sured near-field data set comprised an array of 62 by 62 complex values for each of
the two tangential orthogonal polarisations. Selecting a, coarsely sampled, direction
cosine space grid comprising 62 by 62 elements implies that the coefficient matrix
A contains 62 � 62 � 62 � 62 ¼ 14 776 336 complex elements requiring 236 421
376 bytes of memory. By way of further comparison, for the example considered
here, the DFT took 0.067 s, whereas the matrix inversion method took 3.245 s to
process. That is to say, when running on the same machine, the matrix inversion
algorithm was circa 50 times slower than the DFT-based algorithm. This difference
increases even more as the array sizes grow. Although the solution time could be
reduced by utilising fewer iterations, there are very few occasions where one would
happily sacrifice measurement accuracy. Additionally, the processing can, very
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Figure 6.43 Equivalent multipath level plot comparing the degree of agreement
attained between transformation algorithms for the propagating and
non-propagating mode regions of the plane-wave spectrum
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easily, become numerically unstable yielding erroneous results and this is especially
true in the event that the initial problem is not posed appropriately.

A more efficient, less resource-intensive and more numerically stable matrix
inversion algorithm is the LSQR algorithm of Paige and Saunders [20]. This
method has the additional advantage that matrix [A] may be square or rectangular,
that is to say, it can be either over-determined or under-determined and may have
any rank. In practice, it is often preferable to use the LSQR algorithm as a result of
its improved speed, lower memory requirements and greater numerical stability. By
way of an illustration of the improved processing time, for the example discussed
above, the LSQR algorithm took 0.789 s to perform the necessary matrix inversion
which is a significant speed-up when compared to the conventional conjugate
gradient method. Practically then, this enables larger array sizes to be handled
whilst also reducing the likelihood that the processing will encounter numerical
instabilities during its computation.

Although a number of limitations to the matrix inversion method are expoun-
ded above, there is a significant benefit in terms of the generality of the approach.
Crucially, it is possible to deploy this method over non-canonical surfaces and is
our motivation and justification for the increase in effort and complexity. As an
example, we shall consider the case of taking planar near-field measurements over
an imperfect planar surface. Here, the radiator comprised a simple uniformly illu-
minated square aperture cut in a perfectly conducting infinite ground plane. A
sinusoidal disturbance was introduced into the z-coordinate of the measurement
plane of amplitude 0.2 wavelengths simulating an imperfectly flat measurement
system, cf. [21,22]. This is significantly larger variation than would be anticipated
in practice however an extreme case was chosen to highlight both the effectiveness
and the limitations of the correction technique. The resulting electric field was then
used to determine the equivalent angular spectra that would include artefacts
resulting from these measurement positioning errors. The result of this can be found
presented in Figure 6.44. Here, the effect of the comparatively modest positional
errors can be seen to have seriously altered the angular spectra. Pattern nulls can be
seen to have filled in and it is evident that energy has been moved from the
direction of the main beam to other directions altering the level and location of the
side lobes. Similarly, Figure 6.45 presents the phase plot that is obtained from using
the standard DFT processing which also exhibits significant distortion.

Figures 6.46 and 6.47 show the corresponding results obtained from applying
the inverse matrix method. Figures 6.48 and 6.49 present equivalent patterns
obtained from using the k-correction method, presented below. Again, this can be
compared with the angular spectra of Figures 6.50 and 6.51 which were determined
from a near electric field located perfectly on the plaid, monotonic, equally spaced,
perfectly flat sampling grid. Although not perfect, as a result of processing noise,
the improvement in the resulting pattern is clearly significant with the main beam
and side lobes regaining much of their symmetry with the well-defined pattern nulls
again becoming apparent once again. Only comparatively minor errors are evident
within the wide-out side lobes in the inter-cardinal region of smaller field inten-
sities. By way of further comparison, Figures 6.48 and 6.49 contain equivalent
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Figure 6.44 Amplitude plot of angular spectra of un-corrected data transformed
using standard DFT-based processing with the z-position error
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Figure 6.45 Phase plot of angular spectra of un-corrected data transformed using
standard DFT-based processing with the z-position error
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Figure 6.46 Amplitude plot of angular spectra of data transformed using inverse
matrix method-based processing with the z-position error
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Figure 6.47 Phase plot of angular spectra of data transformed using inverse
matrix method-based processing with the z-position error
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using the inverse matrix method using near-field data sampled over a
perfect plane
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angular spectra only here standard first-order k-correction [21,22] has been used to
compensate for the non-planarity of the measurement surface. This is a standard
correction technique that is widely deployed within the antenna measurement
community. Clearly, the matrix inversion results are in closer agreement with the
reference patterns, especially the phase plots further illustrating the advantage of
this more computationally intensive, but far more general method. Although
impressive as this is, it is perhaps worth remembering that when using the con-
jugate gradient method or its variants to invert the matrix that this is an approx-
imate method and it assumes that the exact position of the probe is known at the
time when the measurement was taken.

A further illustration of the generality of this technique is its deployment to
correct for in-plane positioning errors. Traditionally polynomial interpolation or
Taylor series correction-based techniques have been used to compensate near-field
measurements for the inability of the robot positioning system to acquire the data
on a perfect plaid monotonic, and usually equally spaced, grid. To illustrate this,
the same configuration as was used above was employed only here the magnitude
of the probe displacement error was varied sinusoidally across the measurement
plane, i.e. within-plane position measurement errors, where the magnitude of the
positional error was 0.4l, cf. [23]. The result of transforming this data to the far-
field using the standard DFT-based technique where the samples were assumed to
have been taken at the ideal sampling points can be seen presented in Figure 6.52
which presents the amplitude of the computed plane-wave spectrum. Here, it is
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Figure 6.52 Amplitude plot of angular spectra of un-corrected data transformed
using standard DFT-based processing with the xy-position error
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clear that there is a significant amount of distortion within the pattern on both the
main beam and the side lobes, cf. the ideal reference plot of Figure 6.50. Certain
side lobes have become displaced and misshapen, and pattern nulls have been
partially filled in with the symmetry of the pattern being degraded.

Figure 6.53 presents the amplitude of the angular spectrum as computed by the
matrix inversion method. Here, the corrected angular spectrum resembles far more
closely the angular spectra obtained from the error-free near-field data presented
previously. The shape and location of the main beam and side lobes is far more
accurately predicted than was previously the case and the pattern nulls can now be
seen to be both deeper and lie in the correct directions. The distortion of the
acquisition grid can be quite gross, providing the sampling criteria are satisfied.

As a furthermore extreme and potentially more useful example, it is possible to
use this algorithm to process plane-polar, or plane-bi-polar near-field measured
data that was considered above. This can be implemented providing the probe is
rotationally symmetrical or mechanically counter-rotated during the data acquisi-
tion. Plane-polar scanning involves taking measurements on a plane polar grid.
Incremental samples are taken by varying the polar angle f and radial displacement
r such that the sampled field falls on a raster polar coordinate system where the
condition that r � 0 applies then u r;f; z ¼ 0ð Þ ¼ f r;fð Þ, where [24]

x ¼ r cos fð Þ (6.56)
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Figure 6.53 Amplitude plot of angular spectra of data transformed using inverse
matrix method-based processing with the xy-position error
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y ¼ r sin fð Þ (6.57)

z ¼ z (6.58)

This plane-polar coordinate system can be seen presented in Figure 6.54.
Example near-field plane-polar data can be seen presented in Figure 6.55 where it
has been represented in the form of a greyscale checkerboard plot of the amplitude
of the x-polarised component of the near-electric-field.

This data was transformed to the angular spectrum using the matrix inversion
method developed above, with the resulting amplitude and phase patterns being
presented in Figures 6.56 and 6.57, respectively. This transform was repeated using
a standard approach of first interpolating the data to a regular plane-rectilinear grid
before computing the angular spectrum using a Fourier transform. The resulting
amplitude and phase patterns are presented in Figures 6.58 and 6.59, respectively.

Clearly, these results are in very encouraging agreement, in both amplitude and
phase, with only minor differences being evident at wide-out pattern angles nearing
the limit of the onset of the first-order truncation effect. When examining the phase
plots, it is worth noting that very small differences in the phase angle around 
180�

will result in a very significant change in the grey-scale value used to depict that
point in the plot as a result of the linear greyscale map.

Thus, we have illustrated how this transformation technique can be used to
compensate for in-plane and out-of-plane errors providing that the position of the
probe is known where we have deployed the LSQR algorithm for the purpose of
performing the matrix inversion where its efficiency and numerical stability are
paramount to the success of the method. That being said, unreliable angular spectra
can be produced in some cases where the near-field contains large amounts of low-
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Figure 6.54 Plane-polar coordinate system
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Figure 6.58 Amplitude plot of angular spectra of data transformed using
interpolation and Fourier transform-based algorithm
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intensity field points or when the angular spectrum is inappropriately constrained.
In summary, this method presents a, conceptually, simple method for processing
near-field data which has been acquired over non-canonical, but known, surfaces
which may be used to provide reliable far-field data. In Chapter 9, far more
sophisticated generalised transform algorithms are introduced where more
advanced techniques for speeding up the computation are deployed.

6.10 Electro-optical planar near-field scanning

One of the advantages of the planar near-field technique lies within its ability to
place the scanning probe in very close physical proximity to the AUT. The
cylindrical and spherical scanning techniques rely upon rotating the AUT about one
or more axes and this means that the turning radius imposes a lower limit on the
measurement radius which can, for aperture type antennas, be significantly larger
than that which could be achieved with planar scanning. This ability to potentially
place the probe in very closer mechanical and electrical proximity to the radiator
has led to the deployment of a planar positioning system for the purposes of ima-
ging antennas and other radiating structures. Conventionally, placing the AUT and
scanning near-field probe so close to one another has led to the introduction of
comparatively high levels of multiple reflections, i.e. standing waves, between the
AUT and probe which can significantly disturb the very field that one is attempting
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Figure 6.59 Phase plot of angular spectra of data transformed using interpolation
and Fourier transform-based algorithm
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to measure. Thus, in cases where accuracy is of paramount importance, especially
when measuring low-level side lobes, or very low cross-polar levels, one has
generally had to accept the use of separations that are much larger than that sug-
gested purely by the desire to remain outside of the reactive near-field region. This
often leads to the use of distances which are far larger than the generally accepted
three to five wavelength separation. The recent development of minimally invasive
electro-optical (EO) probes seeks to address this shortcoming, cf. Chapter 10.

EO field probes rely upon the principle that imposing an external EM field on a
suitable micro-machined, e.g. gallium-arsenide (GaAs), crystal introduces a change
in the refractive index within that crystal where the change is proportional to the
applied electric field strength. If one were to simultaneously shine a polarised beam
of laser light through the crystal, this change in the refractive index would result in
a change in the polarisation of that beam. Therefore, the light beam reflected from
the probe contains, encoded within it, the electro-optic signal which has been
modulated by the impressed RF electric field. In this way, the linear electro-optic
effect, also called the Pockels effect [25], may be harnessed as a means of detecting
RF and microwave EM fields with the use of a non-conducting minimally invasive
probe [26]. This typically small change in polarisation, i.e. linear birefringence, can
be used with a suitable arrangement of polarisers, e.g. orthogonally polarised fil-
ters, to produce a change in the optical intensity of the illuminating laser light
which can be detected with an avalanche photodiode and the amplitude recorded.
Here, we are assuming that the birefringent axis of the crystal is at 45� to the axes
of the input and output polarisers. The use of a GaAs crystal means that there is no
need to use highly reflective metallic probes to scan the field radiated by an
antenna, or other structure, thereby reducing the invasiveness of the test system as
the EO crystal probe has a relative permittivity of circa 12. As the EO probe is
physically small, as it is typically integrated into the optical fibre cable to maximise
the optical coupling, it can be used to sense the fields within enclosures or guiding
structures. Furthermore, the EO probe is inherently a broadband device with, for
example, frequency ranges that span the 200 MHz to 40 GHz range becoming
commonplace with the possibility of a single EO probe spanning a frequency range
from a few hundred MHz up to W-band.

The EO crystal is mounted on a suitable gradient index lens which in turn is
connected to a fibre-optic cable. The input optical probe beam illuminates the
crystal which in turn reflects the optical beam back along the optical fibre. This
means that an EO system can be used to take frequency domain near-field mea-
surements of antennas or other EM devices [26]. Figure 6.60 contains a photograph
of a planar near-field test system which utilises an EO probe-based RF sub-system,
whereas Figure 6.61 presents a close-up view of the EO probe scanning a micro-
wave transmission line.

In Figure 6.61, the EO crystal can be seen located at the tip of the optical chain,
positioned just above the surface of the microwave transmission line that is being
imaged and is less than one cubic mm in volume. EO probes can be constructed to
sample the longitudinal or tangential electric field components. Two orthogonal
tangential fields can be acquired by rotating the EO probe by 90� about its
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longitudinal axis although the polarisation purity is relatively limited by conven-
tional scanning standards. Thus, EO probe-based systems are capable of measuring
the amplitude and phase of an impressed EM field across a frequency band that
extends from a few MHz up to mm-wave frequencies although the details of the
phase measurement are not well documented in the open literature. In principle
then, near-field data acquired in this way is directly amenable for processing with
any of the near-field techniques discussed within this text. The single-micrometre

Figure 6.60 Planar electro-optic near-field scanning system with RF sub-system.
Pictured at the n3m-labs courtesy of NPL

Figure 6.61 Close-up image of electro-optic probe scanning the very near-fields
of a microwave device. The crystal probe can be seen in the centre of
the image scanning immediately above the surface of the microwave
transmission line. Pictured at the n3m-labs courtesy of NPL
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spatial resolution, broad frequency bandwidth and low invasiveness of the EO
probe sensor lend the technique to extreme near-field mapping and fault location of
microwave integrated circuits. However, as the crystal is of finite size, this means
that the light beam reflected from the probe contains an average of the impressed
RF electric field where the average is taken across the volume of the probe.
Although the spot size of the laser beam can be small, e.g. less than 10 mm, the
crystal can be circa 1 mm in depth. Thus, although small, a probe effect is present
within the measured EM field that becomes progressively more significant as the
frequency of the impressed EM field increases and the wavelength reduces. Further
EO imaging applications of this system can be found in the open literature [27,28].

6.11 Summary

This chapter has described the basic geometry and operation of a conventional
planar near-field scanner. It has done this by examining the separate sub-systems
employed in a scanner facility – primarily the RF sub-system, the robotic posi-
tioned sub-system and the range antennas or probes that would be used in the
measurement process. In the course of this examination, certain limitations and
constraints, e.g. primary and secondary truncations are highlighted in advance of
their detailed discussion in Chapter 10.

The solution of Maxwell’s equations in Cartesian coordinates has been illu-
strated in such a way as to be relevant for an explanation of the far-field antenna
pattern via the concept of the plane-wave spectrum. Then the impact of the range/
probe antenna on the far-field prediction was examined and the convolution theo-
rem invoked so as to allow compensation of the predicted far-field pattern.

Till this point, the chapter has concerned itself with conventional near-field
measurements where the probe is scanned over a rectangular Cartesian grid of
points that are parallel to the x- and y-axes. However, other planar scanning options
are available, i.e. plane-polar and plane bi-polar, and the text has then moved on to
an explanation of these alternative scanning techniques. This involves a description
of the spectral techniques that can be used to produce a far-field pattern from data
that is not acquired on a raster scan. Additionally, the modifications required in
probe correction and/or deployments have also been examined and solutions
illustrated.

The alignment errors that can be encountered in these alternative techniques
were examined and solutions to overcome or mitigate them and, in certain circum-
stances, exploit them to quantify and correct other errors in the planar measurement
process were described. Although we have concentrated on the plane-polar coordi-
nate system, much of the conclusions concerning alignment also apply to the plane
bi-polar system.

Attention was then given to the practical implications of the sampling regimes
and various transformation algorithms that can be used to address the particular
characteristics and limitations of near-field scanning data. This is illustrated by a
number of plots that highlight the practical implications of acquiring data in the
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near-field and how the deployment of a variety of different sampling and proces-
sing techniques can address these issues.

Finally, the new developing techniques related to the use of electro-optical
probes for near-field scanning is introduced and the basic mechanisms behind the
operation explained and illustrated.
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Chapter 7

Cylindrical near-field antenna measurements

7.1 Introduction

The right circular cylindrical near-field measurement system is formed from the
intersection of a linear translation stage and a rotation stage where the linear translation
axis is parallel to the axis of rotation. A right circular cylinder is taken to be a 3D
object comprising two congruent circles (that is to say two surfaces that have the same
dimensions and shape) as parallel bases and a connecting lateral surface. The centres of
the two circles form a line that is perpendicular to the bases. The combination of single
rotation and single linear axes enables the probe to trace out a conceptual cylindrical
surface in three dimensions, thereby allowing the collection of samples on a set of
coaxial rings. Here, samples are taken at regular intervals across a cylindrical grid with,
typically, the probe moving in a fixed linear direction, and the antenna under test
(AUT) rotating in parallel. Typically, the linear axis and rotation axes are aligned to the
local gravity vector. This not only simplifies the alignment of the axes of the robotic
positioning system, but also ensures that the AUT does not suffer a variation in the
effect of gravity during an acquisition. In addition to yielding a simplification to the
positioning and RF sub-systems, this geometry enables complete azimuth patterns to
be obtained providing a wide out antenna pattern including front-to-back ratio, while
maintaining the gravitational vector with respect to the AUT during the course of an
acquisition. This makes this a particularly attractive proposition for testing grav-
itationally sensitive, e.g. space antenna assemblies. Thus, the cylindrical technique is
most appropriate for fan-beam type antennas where the finite length of the linear scan
axis and the inevitable truncation that result from this are of minimal importance.

Figure 7.1 contains a schematic representation of a typical cylindrical near-
field antenna test system where the conceptual, truncated, cylindrical raster
sampling strategy is shown.

By way of a further illustration, Figure 7.2 contains a picture of a cylindrical
near-field antenna test system that is shown testing an offset reflector antenna. The
vertical linear axis can be seen to the right of the image with a waveguide probe
mounted on the carriage. The rotation stage onto which the AUT is mounted is
obscured by absorber.

Figure 7.3 contains a grey-scale checkerboard plot of the measured cylindrical
near-field amplitude of a fan-beam antenna. Here, complete 360� angular cuts were
taken that spanned a linear axis of 1.56 m in length.



Figure 7.1 Schematic of cylindrical near-field antenna test system sowing
conceptual scanning surface enclosing AUT

Figure 7.2 Large vertical cylindrical near-field test system (Picture courtesy of
the David Florida Laboratory, Canadian Space Agency)
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The corresponding far-field cardinal cuts have been presented in Figure 7.4
where the truncated elevation axis (this axis corresponded to the vertical linear scan
axis) is evident.

As will be shown within this chapter, the electromagnetic fields outside an
arbitrary test antenna radiating into free space can be expanded into a set of
orthogonal cylindrical mode coefficients (CMCs) and these modes and coefficients
can then be used to obtain the electric and magnetic fields everywhere in space
outside of a conceptual cylindrical surface which encloses the radiator. It will also
be shown that these CMCs can be determined from the measured data in a very
efficient manner through the use of the fast Fourier transform (FFT). Once
obtained, these mode coefficients can be corrected for the spatial filtering proper-
ties of the measuring near-field probe and used to determine the true AUT trans-
mitting CMCs. It will then be shown that a highly efficient FFT-based summation
process can be utilised to obtain the asymptotic far electric and magnetic fields,
thus all the stages of the process illustrated in Figure 3.37 defining the generic near-
field measurement process, as described in Section 3.62, can be undertaken using a
cylindrical measurement geometry.

It is thus proved that parameters such as the far-field antenna pattern function,
axial ratio, tilt angle, directivity of the AUT can all be obtained from two ortho-
gonal tangential near electric field components. This formulation, therefore,
enables highly accurate, practical, cylindrical near-field techniques to be
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implemented. The geometry that will be used during the development of this
cylindrical formulation is presented in Figure 7.5.

Here, for a right circular cylindrical coordinate system, as depicted in
Figure 7.5, we can write that

x ¼ r cosf (7.1)

y ¼ r sinf (7.2)

z ¼ z (7.3)

where r � 0, 0 � f � 2p, �?� z �?. In a rectangular coordinate system, the
point P can be expressed as P(x, y, z). Conversely, in a right cylindrical coordinate
system the point P can be expressed as P(r, f, z) where the relationship between
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the two systems is established through this triad of equations. Conversely from
rearranging the above equations, we obtain the inverse relationships, namely

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

(7.4)

f ¼ arctan
y

x

� �

(7.5)

z ¼ z (7.6)

Here, we take advantage of the two argument arctangent functions so that quadrant
ambiguity can be eliminated yielding angles that span the complete 2p range. As
the electric and magnetic fields are vector quantities, we also need to obtain
expressions that allow the respective vector field components to be converted from
rectangular to cylindrical coordinate systems and vice versa. This can be accom-
plished easily using the standard expression,

be1 ¼ @r=@u1

@r=@u1j j (7.7)

Test
antenna

z

a0
b0

O

Q

y

P( ρ, φ, z)

x

φ

ρ

θ

ρ

S0

Figure 7.5 Geometry for the formulation of standard cylindrical near-field theory
showing test antenna in its own coordinate system
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From Figure 7.5 it is clear that in cylindrical coordinates, the position vector r can
be expressed as

r ¼ r cosfbex þ r sinfbey þ zbez (7.8)

Then

@r

@r
¼ cosfbex þ sinfbey (7.9)

Since @r
@r

�

�

�

�

�

� ¼ 1

ber ¼ cosfbex þ sinfbey (7.10)

Similarly

@r

@f
¼ �r sinfbex þ r cosfbey (7.11)

As @r
@f

�

�

�

�

�

� ¼ r

bef ¼ �sinfbex þ cosfbey (7.12)

Hence we can write this in matrix form as

ber

bef

bez

2

6

4

3

7

5 ¼
cosf sinf 0

�sinf cosf 0

0 0 1

2

6

4

3

7

5 �
bex

bey

bez

2

6

4

3

7

5 (7.13)

Conversely, as this is an orthogonal and normalised matrix, we can obtain the
inverse relationship by taking the transpose of the square matrix, thus

bex

bey

bez

2

6

4

3

7

5 ¼
cosf �sinf 0

sinf cosf 0

0 0 1

2

6

4

3

7

5 �
ber

bef

bez

2

6

4

3

7

5 (7.14)

As the coordinate and unit vector relationships are now established, these can be
used with Maxwell’s equations in order that a solution to the vector wave
equation can be sought using this coordinate system. The following section
establishes that the general vector wave equation can be reduced to the scalar
wave equation in cylindrical coordinates, and that this equation can be solved
using the method of separation of variables. In this way, elementary cylindrical
vector wave functions are constructed that are shown to be amenable for use
as the basis of standard cylindrical, and subsequently by extension of conical,
near-field theory.
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7.2 Solution of Maxwell’s equation in cylindrical
coordinates

As was shown earlier in Chapter 2, Maxwell’s field equations can be used to obtain
the vector wave equation

r2E ¼ �k2E (7.15)

As was noted above, as only alternating, sinusoidal, time-harmonic quantities are to
be considered the time dependency of the complex representations of the electro-
magnetic field vectors can be taken to be of the form ejwt (i.e. a ‘positive’ time
dependency), where w ¼ 2pf is the angular frequency and f represents the temporal
frequency measured in Hertz. Both f and w are positive and greater than zero. As
before a complex exponential form of time dependency is assumed, and as is
usually the case when using this notation, the time factor is suppressed, that is to
say, the complex exponentials are cancelled on either side of the relevant expres-
sions. Some caution is taken at this point. Many texts adopt the opposite time
dependency to that being assumed herein. As the time dependency is generally
suppressed, this difference is not always instantly apparent. Some changes within
formulae are introduced, and these can include opposite signs within the complex
exponentials and in the case of the cylindrical near-field theory the use of Hankel
functions of the first kind as opposed to Hankel functions of the second kind. When
comparing between various references, awareness of this sort of variation is abso-
lutely crucial.

Let us now assume that the field can be expressed in the form of

E r,f, zð Þ ¼ Er r,f, zð Þber þ Ef r,f, zð Þbef þ Ez r,f, zð Þbez (7.16)

Then as the vector Laplacian operator can be expressed in cylindrical coordinates
as [1]

r2E ¼ r2Er � Er

r2
� 2
r2

@Ef

@f

� �

ber þ r2Ef � Ef

r2
þ 2
r2

@Er

@f

� �

bef þ r2Ez

� 	

bez

(7.17)

The underlying reason for the form of the z-component is that the z-axis is a
Cartesian axis. This is a very useful property that we will exploit within our
development of the cylindrical near-field technique. Thus, rearranging yields

r2Er�Er

r2
� 2
r2

@Ef

@f

� �

berþ r2Ef�Ef

r2
þ 2
r2

@Er

@f

� �

befþ r2Ezð Þbez

¼�k2Erber�k2Efbef� k2Ezbez (7.18)

Hence the vector wave equation can be reduced to three simultaneous scalar partial
differential equations yielding

r2Er � Er

r2
� 2
r2

@Ef

@f
¼ �k2Er (7.19)
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r2Ef � Ef

r2
þ 2
r2

@Er

@f
¼ �k2Ef (7.20)

r2Ez ¼ �k2Ez (7.21)

Here, in each of these expressions, the Laplacian is of a scalar quantity (that is in
cylindrical coordinates). This is in contrast to general wave equation which con-
tained a Laplacian of a vector quantity. Crucially, the z-polarised cylindrical
component is an uncoupled second-order partial differential equation which can be
solved. As these are simultaneous equations, it is possible to select any one of these
and then to find its solution. Thus, we are free to select whichever is the most
convenient of these equations and then to find its solution. The third expression
comprises an uncoupled second-order partial differential equation. The other two
equations are coupled second-order partial differential equations which are more
difficult to solve. Thus, the solution of this uncoupled equation will become the
subject of the remainder of this section.

The scalar wave equation can be expressed in cylindrical coordinates as fol-
lows. The Laplacian can be expressed in cylindrical coordinates using [2]

r2y ¼ 1
h1h2h3

@

@u1

h2h3

h1

@y
@u1

� �

þ @

@u2

h3h1

h2

@y
@u2

� �

þ @

@u3

h1h2

h3

@y
@u3

� �
 �

(7.22)

where, for cylindrical coordinates, u1 ¼ r, u2 ¼ f, u3 ¼ z, be 1 ¼ ber, be2 ¼ bef,
be 3 ¼ bez, h1 ¼ hr ¼ 1, h2 ¼ hf ¼ r, and h3 ¼ hz ¼ 1. Thus

r2y ¼ 1
r

@

@r
r
@y
@r

� �

þ @

@f
1
r
@y
@f

� �

þ @

@z
r
@y
@z

� �
 �

(7.23)

Simplifying this yields

r2y ¼ 1
r
@

@r
r
@y
@r

� �

þ 1
r2

@2y
@f2 þ

@2y
@z2

(7.24)

The first term is the derivative of a product. Thus, using the rule for differentiating
a product

d

dx
uv½ � ¼ v

du

dx
þ u

dv

dx
(7.25)

Hence

@

@r
r
@y
@r

� �

¼ @y
@r

þ r
@2y
@r2

(7.26)

Thus, in cylindrical coordinates, the scalar Laplacian can be expressed as

r2y ¼ @2y
@r2

þ 1
r
@y
@r

þ 1
r2

@2y
@f2 þ

@2y
@z2

(7.27)
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When expanded, the scalar wave equation in cylindrical coordinates can be
written as

@2y
@r2

þ 1
r
@y
@r

þ 1
r2

@2y
@f2 þ

@2y
@z2

¼ �k2y (7.28)

Here, y(r, f, z) is a scalar function that is used to denote a field component.

7.3 Solution of the scalar wave equation in cylindrical
coordinates

Within this section, we are going to attempt to solve this equation by harnessing the
method of separation of variables. We are therefore going to assume that a solution
can be found of the form:

y r,f, zð Þ ¼ R rð ÞF fð ÞZ zð Þ (7.29)

Substituting the assumed solution into the scalar Helmholtz equation

@2y
@r2

þ 1
r
@y
@r

þ 1
r2

@2y
@f2 þ

@2y
@z2

¼ �k2y (7.30)

yields

F fð ÞZ zð Þ @
2R rð Þ
@r2

þF fð ÞZ zð Þ 1
r
@R rð Þ
@r

þ R rð ÞZ zð Þ 1
r2

@2F fð Þ
@f2

þ R rð ÞF fð Þ @
2Z zð Þ
@z2

¼ �k2R rð ÞF fð ÞZ zð Þ (7.31)

Dividing throughout by the solution yields

1
R rð Þ

@2R rð Þ
@r2

þ 1
R rð Þ

1
r
@R rð Þ
@r

þ 1
F fð Þ

1
r2

@2F fð Þ
@f2 þ 1

Z zð Þ
@2Z zð Þ
@z2

¼ �k2

(7.32)

or

1
R rð Þ

@2R rð Þ
@r2

þ 1
R rð Þ

1
r
@R rð Þ
@r

þ 1
F fð Þ

1
r2

@2F fð Þ
@f2 þ 1

Z zð Þ
@2Z zð Þ
@z2

þ k2 ¼ 0

(7.33)

Using the argument that was first deployed when solving the wave equation in
rectangular coordinates, the fourth term is not a function of r or f. Also, and as
all of the terms sum to zero, it must also not be a function of z. Thus, we can set
this term equal to a convenient constant that is yet to be determined. Thus, as we
are free to choose the constant, we can make this equal to the square of a
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constant for convenience (and consistency with the planar case) and we may
write that

1
Z zð Þ

@2Z zð Þ
@z2

¼ �k2
z (7.34)

This equation is called the harmonic equation and its solutions are called harmonic
functions. As was the case for the planar case, as treated in Chapter 6, these solu-
tions can take the form of sin(kzz), cos(kzz), exp(jkzz) or exp(�jkzz) where any two
of these are linearly independent. Substituting this separation constant into the
scalar Helmholtz equation yields

1
R rð Þ

@2R rð Þ
@r2

þ 1
R rð Þ

1
r
@R rð Þ
@r

þ 1
F fð Þ

1
r2

@2F fð Þ
@f2 � k2

z þ k2 ¼ 0 (7.35)

Multiplying throughout with r2 yields

r2

R rð Þ
@2R rð Þ
@r2

þ r
R rð Þ

@R rð Þ
@r

þ 1
F fð Þ

@2F fð Þ
@f2 þ k2 � k2

z

� 	

r2 ¼ 0 (7.36)

Now, the third term is independent of r or z and thus, similarly, it too can be set
equal to a constant of our choice. Hence

1
F fð Þ

@2F fð Þ
@f2 ¼ �m2 (7.37)

Or

d2F fð Þ
df2 þ m2F fð Þ ¼ 0 (7.38)

This again is a harmonic oscillator equation. As was found before, the solutions of
this expression are of the form,

F�
m ¼ F0e�jmf (7.39)

However, since we clearly have a periodic boundary condition we require any
physical solution to have the same value when f ¼ 0 as when f ¼ 2p. More
generally, this boundary condition requires the physical solution to have the same
value at f as it has for f � 2p, thus

e0 ¼ 1 ¼ ejm2p (7.40)

Alternatively, by using Euler’s identity this can be expressed as [3]

1 ¼ cos m2pð Þ þ j sin m2pð Þ (7.41)

Thus, this equation can only hold when m is an integer. This is different to the z
equation case where the separation constant could take on integer and non-integer
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values. Thus, the scalar Helmholtz equation in cylindrical coordinates reduces to an
equation in r only and the equation is therefore separated as required

r2

R rð Þ
@2R rð Þ
@r2

þ r
R rð Þ

@R rð Þ
@r

� m2 þ k2 � k2
z

� 	

r2 ¼ 0 (7.42)

This can be rewritten in a more recognisable form by multiplying through with R(r)
and since this is now an ordinary differential equation we obtain

r2 d2R rð Þ
dr2

þ r
dR rð Þ

dr
þ k2 � k2

z

� 	

r2 � m2
� 

R rð Þ ¼ 0 (7.43)

For convenience, if we define a new constant kr as

k2
r ¼ k2 � k2

z (7.44)

Then we can write that

r2 d2R rð Þ
dr2

þ r
dR rð Þ

dr
þ krr
� 	2 � m2
h i

R rð Þ ¼ 0 (7.45)

With

d2F fð Þ
df2 þ m2F fð Þ ¼ 0 (7.46)

where m is an integer, and

d2Z zð Þ
dz2

þ k2
z Z zð Þ ¼ 0 (7.47)

The f and z equations are harmonic equations, which give rise to harmonic func-
tions, cf. the Cartesian case discussed in the preceding chapter. However, the r
equation is definitely not a harmonic equation. It is, however, a modified (i.e.
parametric) version of Bessel’s equation. This can be seen by making a simple
linear exchange of variables. Using the substitution

s ¼ krr (7.48)

where we can also write that

ds

dr
¼ d krr

� 	

dr
¼ kr (7.49)

The derivatives within our differential equation can be exchanged using the
following operator substitutions and using the chain rule we obtain

dR

dr
¼ dR

ds

ds

dr
¼ dR

ds
kr (7.50)
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And from using the chain rule for higher derivatives we see that

d2R

dr2
¼ d

dr
dR

ds

ds

dR

� �

¼ d2R

ds2

ds

dr

� �2

þ dR

ds

d2s

dr2
¼ d2R

ds2
k2
r þ 0 (7.51)

Thus, we can exchange the variables in our parametric Bessel equation, from dr to
ds and from krr to s and transform it into the standard form since

s

kr

� �2 d2R rð Þ
ds2

k2
r þ

s

kr

� �

dR rð Þ
ds

kr þ s2 � m2
� 

R rð Þ ¼ 0 (7.52)

Simplifying yields Bessel’s equation

s2 d2R rð Þ
ds2

þ s
dR rð Þ

ds
kr þ s2 � m2

� 

R rð Þ ¼ 0 (7.53)

for which the solutions are well known
The point s ¼ 0 is a singular regular point for this equation and we can therefore
expand its solution as a Frobenius series [4]. Commonly used solutions are Bessel
functions Jm(s), Neumann functions which are also known as Bessel functions of
the second kind, Ym(s), Hankel functions of the first kind H 1ð Þ

m sð Þ and Hankel
functions of the second kind H 2ð Þ

m sð Þ. In each of these functions we recall that
s ¼ krr. The subscript m is known as the order of the Bessel function and although
we can define Bessel functions of non-integer order, as was shown earlier, the
values of m in this boundary value problem are integers. Any two of these functions
are linearly independent solutions of Bessel’s equation, so in general a linear
combination of any two of these is used as solution with the particular choice being
dependent upon the particular boundary value problem that is being treated.

Typically, Bessel functions are used to represent standing waves, whereas
Hankel functions are used to represent travelling waves. Thus, for the case of free-
field measurements which is our area of application, we can expect that Hankel
functions will be the solution of greatest utility. Since the anticipated solution to the
Helmholtz equation in cylindrical coordinates was expressed as the product of three
functions, i.e.

y r,f, zð Þ ¼ R rð ÞF fð ÞZ zð Þ (7.54)

the solution can be expressed as

ykr, m, kz
r,f, zð Þ ¼ R rð ÞF fð ÞZ zð Þ (7.55)

Or more specifically as in this case, the most appropriate solution, or elementary
wave function, is of the form,

ykr, m, kz
r,f, zð Þ ¼ Z ið Þ

m krr
� 	

h mfð Þh kzzð Þ (7.56)

where we recall that the separation constants are related through the equation

k2
r ¼ k2 � k2

z (7.57)
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And

Z ið Þ
m krr
� 	 ¼

Jm krr
� 	

when i ¼ 1

Ym krr
� 	

when i ¼ 2

H 1ð Þ
m krr
� 	

when i ¼ 3

H 2ð Þ
m krr
� 	

when i ¼ 4

8

>

>

>

>

<

>

>

>

>

:

(7.58)

A more general solution can be formed from these elemental wave functions as
linear combinations of wave functions must also be solutions of the Helmholtz
equation. We may therefore sum over the various possibilities, thus

y r,f, zð Þ ¼
X

m

X

kz

Bm, kz Z
ið Þ

m krr
� 	

h mfð Þh kzzð Þ (7.59)

Here B is a constant to be determined from the boundary conditions. In the limit,
the summation can tend to an integral across the separation constant kz in which
case the general solution can be expressed as

y r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
Bm kzð ÞZ ið Þ

m krr
� 	

h mfð Þh kzzð Þdkz (7.60)

Here we have chosen to integrate across kz as the cylindrical near-field measure-
ments yield data, i.e. the boundary conditions, that are a function of f and z with r
fixed. If instead, the measurement had been taken with r varying and z fixed, as
would be the case when taking plane-polar measurements, then it would have been
more appropriate to take the integration in kr. In either case, the summation is
retained in f as only integer values of m are needed which is a requirement of the
physically imposed periodic boundary conditions. As will be shown later, this
solution can be used to construct Fourier integrals which have many attractive
properties.

Before progressing, it is important that the mathematical properties and phy-
sical interpretation of the various functions are well understood so that the correct
choice can be made for a particular application at hand. Let us first consider
solutions of the form,

h kzzð Þ ¼ e�jkzz (7.61)

Here, for a fixed frequency, the z-directed propagation constant cannot vary inde-
pendently as

kz ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2
r

q

(7.62)

Thus, kz can take on real and imaginary values. For a positive supressed time
dependency, when kz is positive and real, this represents waves propagating in the
positive z direction that are unattenuated. Conversely, when kz is negative and real,
this represents waves propagating in the negative z direction that are unattenuated.
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However, if kz is complex, as is the case when k2
r > k2, these represent waves that

are either attenuated or amplified depending on whether the imaginary part is
positive or negative as

e�jkzz ¼ e�j aþjbð Þz ¼ e�jazebz (7.63)

Here a is used to denote the real part of kz, whereas b denotes the imaginary part of
kz. From inspection of this expression it is clear that when the real part of kz is
positive and the imaginary part is positive then this represents waves that are pro-
pagating in the negative z direction and that are augmented, i.e. increasing. If
instead, the real part of kz is positive and the imaginary part is negative then this
represents waves that are propagating in the negative z direction and that are atte-
nuated. If instead, the real part is identically zero, and the imaginary part is non-
zero, then this represents evanescent fields, i.e. which are non-homogenous waves.
Thus, for k2

r � k2 the positive root is chosen to ensure that the waves propagate
outward in the positive z direction, while the negative imaginary root is chosen
when k2

r > k2 so that the waves decay exponentially as they propagate outwards in
the positive z direction and remain finite when z ! ?.

If the opposite sign had been chosen then this would have represented as an
exponentially increasing wave that would become infinitely large as z ! ? which
is prohibited. Hence

kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2
r

q

when k2
r < k2

�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
r � k2

q

otherwise

8

>

<

>

:

(7.64)

Hence, the solution of the scalar wave equation in cylindrical coordinates can be
expressed as

y r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
Bm kzð ÞZ ið Þ

m krr
� 	

h mfð Þe�jkzzdkz (7.65)

Next we can consider the f solution which is also a harmonic equation; however,
here only discrete values of the separation constant m are admitted.

h mfð Þ ¼ e�jmf (7.66)

Since the vales of m are allowed to take on both positive and negative values, there
is no need to retain both the positive and negative solutions explicitly. Thus,
without loss of generality, we are able to express the solution of the scalar wave
equation as

y r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
Bm kzð ÞZ ið Þ

m krr
� 	

ejmfe�jkzzdkz (7.67)
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The final step is to select the appropriate function for ZðiÞ
m where for our application

we recall that the argument of the function is s ¼ krr,

Z ið Þ
m sð Þ ¼

Jm sð Þ when i ¼ 1

Ym sð Þ when i ¼ 2

H 1ð Þ
m sð Þ when i ¼ 3

H 2ð Þ
m sð Þ when i ¼ 4

8

>

>

>

<

>

>

>

:

(7.68)

where from the method of Frobenius, for positive values of m, the Bessel function
of the first kind is [5]

Jm sð Þ ¼
X
1

n¼0

�1ð Þn

n! n þ mð Þ!
s

2

� �2nþm
(7.69)

However, Bessel functions with negative orders, i.e. values of m, are also needed if
a complete set of wave functions are to be available. However, as m is an integer in
our case, we may write that negative values of m can be obtained from the Bessel
function of positive m using

J�m sð Þ ¼ �1ð ÞmJm sð Þ (7.70)

This relation is obtained by substituting m by –m in the series representation of the
first-order Bessel function. In our application, a second solution can be obtained
from a limiting procedure; the result of this can be expressed as [5]

Ym sð Þ ¼ Jm sð Þ cos mpð Þ � J�m sð Þ
sin mpð Þ (7.71)

By way of an illustration of the properties of these functions, Figures 7.6 and 7.7
contain plots of Bessel functions of the first and second kinds for several values of
positive m.

As has been noted earlier, for wave propagation, it is often convenient to
introduce two further functions which are formed from a combination of these
functions. Thus, Hankel functions of the first and second kinds are defined as

H 1ð Þ
m sð Þ ¼ Jm sð Þ þ jYm sð Þ (7.72)

H 2ð Þ
m sð Þ ¼ Jm sð Þ � jYm sð Þ (7.73)

As before, the order of the function is defined by the integer m. Hankel functions of
negative order can be calculated from Hankel functions of positive order from the
following identity:

H 1ð Þ
�m sð Þ ¼ ejp mj jH 1ð Þ

mj j sð Þ (7.74)

H 2ð Þ
�m sð Þ ¼ e�jp mj jH 2ð Þ

mj j sð Þ (7.75)

Thus, the real part of the Hankel function shares the properties of the Bessel
function of the first kind, whereas the imaginary part of the Hankel function shares
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Figure 7.6 Bessel functions of the first kind plotted for several positive integer
values of m
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Figure 7.7 Bessel functions of the second kind plotted for several positive integer
values of m
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the properties of the Bessel function of the second kind. Thus, it is perhaps more
illustrative to inspect the magnitude and argument of the Hankel functions.
Figure 7.8 contains a plot of the magnitude of the Hankel function of the first kind
for various positive integer values of m. Conversely, Figure 7.9 contains a plot of
the argument of the Hankel function of the first kind for various positive integer
values of m, where the phase angle has been plotted in decimal degrees.
Figures 7.10 and 7.11 show equivalent plots for the Hankel function of the
second kind.

From inspection of Figures 7.6 and 7.11, the following qualitative analogies
can be made. Bessel functions of the first and second kinds, i.e. Jm and Ym

respectively, exhibit oscillatory behaviour for real values of s. This is true for the
sinusoidal functions and thus they represent standing waves. Conversely, the
Hankel functions of the first and second kinds represent travelling waves for s real.
Hankel functions of the first kind denote waves propagating in the negative r
direction, whereas Hankel functions of the second kind denote waves propagating
in the positive r direction. These observations are summarised in the following
expressions:

Jm sð Þ analogous to cosðsÞ (7.76)

Ym sð Þ analogous to sinðsÞ (7.77)
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Figure 7.8 Magnitude of Hankel functions of the first kind plotted for several
positive integer values of m
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H 1ð Þ
m analogous to ejs (7.78)

H 2ð Þ
m analogous to e�js (7.79)

As was the case when selecting appropriate wave functions for the z-axis, we are
interested in travelling wave solutions. Thus, Hankel functions of the second kind
are the only functions which possess the appropriate behaviour as r ! ? when kr
is positive real or imaginary. Specifically, when s is real, this corresponds to an
outward travelling wave; when s is imaginary, this corresponds to an evanescent
field; and when s is complex, this corresponds to an attenuated travelling wave. If
the opposite (suppressed) time dependency had been chosen then Hankel functions
of the first kind would have been the appropriate choice. Thus, the reader is cau-
tioned when comparing results from texts that have differing assumed, and usually
supressed, time dependencies. Finally, we are able to express the solution of the
scalar wave equation as

y r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
Bm kzð ÞH 2ð Þ

m krr
� 	

ejmfe�jkzzdkz (7.80)

Thus, when keeping in mind the properties of the Hankel functions, it is possible to
recognise this as a Fourier integral in the z direction and a Fourier type series in the
f direction. Here, kz specifies a ‘direction of propagation’ since the phase of the
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Figure 7.11 Argument of Hankel functions of the second kind plotted for several
positive integer values of m
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cylindrical wave in the z direction is given by exp(�jkzz). The next section will
develop methods for constructing vector fields from these scalar wave functions.

7.4 Construction of vector fields

In order that a vector field can be constructed, it is necessary to develop elementary
cylindrical vector wave functions that are derived from the elementary cylindrical
scalar wave functions. The radiated electric field in free space can be split into
transverse electric (TE) and transverse magnetic (TM) parts with respect to the
cylindrical z-axis. Specifically this can be expressed as [6]

E ¼ r	 bezy1 þ
1
k
r	 r	 bezy2

� 	

¼ r	 bezy1 þ kbezy2 þ
1
k
r @ y2ð Þ

@z

� �

(7.81)

Here, y1 and y2 are related to the TE and TM parts of the electric field respec-
tively. Thus, we can define two elementary vector wave functions

M 2ð Þ
mkz

¼ r	 bezy1 (7.82)

N 2ð Þ
mkz

¼ 1
k
r	 r	 bezy2

� 	

(7.83)

In cylindrical coordinates, the curl operator can be expressed as

r	 A ¼ 1
r
@Az

@f
� @Af

@z

� �

ber þ
@Ar

@z
� @Az

@r

� �

bef þ 1
r
@ rAf
� 	

@r
� 1
r
@Ar

@f

� �

bez

(7.84)

However, as the scalar field only acts in the z direction, this becomes

r	 Azbez ¼
1
r
@Az

@f
ber �

@Az

@r
bef (7.85)

Thus

M 2ð Þ
mkz

¼ 1
r
@y1

@f
ber �

@y1

@r
bef (7.86)

Substituting the elemental scalar wave function yields

M 2ð Þ
mkz

¼ 1
r
@H 2ð Þ

m krr
� 	

ejmfe�jkzz

@f
ber �

@H 2ð Þ
m krr
� 	

ejmfe�jkzz

@r
bef (7.87)

or

M 2ð Þ
mkz

¼ 1
r

H 2ð Þ
m krr
� 	

e�jkzz @ejmf

@f
ber � ejmfe�jkzz

@H 2ð Þ
m krr
� 	

@r
bef (7.88)
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Hence, taking the derivatives and factorising yields

M 2ð Þ
mkz

¼ jm

r
H 2ð Þ

m krr
� 	

ber �
@H 2ð Þ

m krr
� 	

@r
bef

" #

ejmfe�jkzz (7.89)

Now, the derivative of a Hankel function in this case is merely differentiation of a
function and we have standard tools available for tackling those types of problems.
Thus, as before, let s ¼ krr so that

ds

dr
¼ d krr

� 	

dr
¼ kr (7.90)

Recalling the standard formula so that

dH

dr
¼ dH

ds

ds

dr
¼ dH

ds
kr (7.91)

We, therefore, obtain the following operator substitution,

@H 2ð Þ
m krr
� 	

@r
¼ kr

@H 2ð Þ
m sð Þ
@s

¼ krH 2ð Þ0
m krr
� 	

(7.92)

where H 2ð Þ0
m krr
� 	

represents the derivative with respect to the argument of the
Hankel function of the second kind. Thus

M 2ð Þ
mkz

¼ jm

r
H 2ð Þ

m krr
� 	

ber � krH 2ð Þ0
m krr
� 	

bef


 �

ejmfe�jkzz (7.93)

If needed, a similar argument can be used to derive the derivative of the Hankel
function of the first kind. Be aware that some workers prefer to explicitly retain the
derivative of the Hankel function so as to explicitly state with what the derivative is
with respect to. This would make the vector elementary wave function

M 2ð Þ
mkz

¼ jm

r
H 2ð Þ

m krr
� 	

ber �
@H 2ð Þ

m krr
� 	

@r
bef

" #

ejmfe�jkzz (7.94)

However, that is a cumbersome nomenclature and one which is not particularly
helpful when developing computer code to implement the cylindrical mode
expansion, which is of course the final objective here. Thus, as we have explicitly
defined the derivative we will retain this rather more compact form. Specifically,
the operator substitution

H ið Þ0
m sð Þ ¼ d

ds
H ið Þ

m sð Þ
� �

¼ H ið Þ
m�1 sð Þ � m

s
H ið Þ

m sð Þ (7.95)

where i can take on the value i ¼ 1 or i ¼ 2 only with s 6¼ 0. As will be shown, this
is a particularly convenient expression that we will use during the numerical
implementation of the cylindrical mode expansion. The N elementary vector wave
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function is obtained using an analogous procedure. Thus, recalling the definition of
the second elementary vector wave equation

N 2ð Þ
mkz

¼ 1
k
r	 r	 bezy2

� 	

(7.96)

Using the previously obtained results, we can write that

N 2ð Þ
mkz

¼ 1
k
r	 jm

r
H 2ð Þ

m krr
� 	

ber � krH 2ð Þ0
m krr
� 	

bef


 �

ejmfe�jkzz

� �

(7.97)

However, obtaining the second elementary vector wave function using this strategy
results in expressions that contain higher-order derivatives of the Hankel function
which are inconvenient. Thus, we shall employ an alternative strategy which will
alleviate this difficulty. The N elementary wave function can be expressed in an
alternative form [6]:

N 2ð Þ
mkz

¼ 1
k
r	 r	 bezy2

� 	 ¼ kbezy2 þ
1
k
r @ y2ð Þ

@z

� �

(7.98)

where the derivative with respect to the z direction can be obtained as

@ y2ð Þ
@z

¼ @

@z
H 2ð Þ

m krr
� 	

ejmfe�jkzz
� �

¼ �jkzH
2ð Þ

m krr
� 	

ejmfe�jkzz (7.99)

The gradient operator in cylindrical coordinates can be expressed as

ry ¼ ber
@y
@r

þ bef
1
r
@y
@f

þ bez

@y
@z

(7.100)

Hence

N 2ð Þ
mkz

¼ kbezH
2ð Þ

m krr
� 	

ejmfe�jkzz þ1
k
ber

@

@r
�jkzH

2ð Þ
m krr
� 	

ejmfe�jkzz
� �

þ1
k
bef

1
r
@

@f
�jkzH

2ð Þ
m krr
� 	

ejmfe�jkzz
� �

þ1
k
bez

@

@z
�jkzH

2ð Þ
m krr
� 	

ejmfe�jkzz
� �

(7.101)

Evaluating the derivatives in each direction yields

N 2ð Þ
mkz

¼ kH 2ð Þ
m krr
� 	

ejmfe�jkzz
bez �

1
k

jkz
@H 2ð Þ

m krr
� 	

@r
ejmfe�jkzz

ber

þ1
k

1
r

mkzH
2ð Þ

m krr
� 	

ejmfe�jkzz
bef �

1
k

k2
z H 2ð Þ

m krr
� 	

ejmfe�jkzz
bez (7.102)
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Factorising yields

N 2ð Þ
mkz

¼ � jkz

k

@H 2ð Þ
m krr
� 	

@r
ber þ

mkz

kr
H 2ð Þ

m krr
� 	

bef

 

þ k2

k
H 2ð Þ

m krr
� 	

bez �
k2

z

k
H 2ð Þ

m krr
� 	

bez

�

ejmfe�jkzz (7.103)

or

N 2ð Þ
mkz

¼ � jkz

k

@H 2ð Þ
m krr
� 	

@r
ber þ

mkz

kr
H 2ð Þ

m krr
� 	

bef

 

þ k2 � k2
z

k

� �

H 2ð Þ
m krr
� 	

bez

�

ejmfe�jkzz (7.104)

Using the definition of k2
r

k2
r ¼ k2 � k2

z (7.105)

This can be expressed in a more compact form:

N 2ð Þ
mkz

¼ � jkz

k

@H 2ð Þ
m krr
� 	

@r
berþ

mkz

kr
H 2ð Þ

m krr
� 	

befþ
k2
r

k
H 2ð Þ

m krr
� 	

bez

 !

ejmfe�jkzz

(7.106)

Finally, using the derivative of the Hankel function in place of the Hankel function

@H 2ð Þ
m krr
� 	

@r
¼ kr

@H 2ð Þ
m sð Þ
@s

¼ krH 2ð Þ0
m krr
� 	

(7.107)

The second elementary vector wave function can be expressed as

N 2ð Þ
mkz

¼ � jkz

k
krH 2ð Þ0

m krr
� 	

berþ
mkz

kr
H 2ð Þ

m krr
� 	

befþ
k2
r

k
H 2ð Þ

m krr
� 	

bez

 !

ejmfe�jkzz

(7.108)

Hence, as the general expression for a radiated electric field can be expressed by a
linear combination of the M and N vector wave functions, we may write that

E r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
B1

m kzð ÞM 2ð Þ
mkz

r,f, zð Þ þ B2
m kzð ÞN 2ð Þ

mkz
r,f, zð Þ

h i

dkz

(7.109)

with

M 2ð Þ
mkz

¼ jm

r
H 2ð Þ

m krr
� 	

ber � krH 2ð Þ0
m krr
� 	

bef


 �

ejmfe�jkzz (7.110)
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and

N 2ð Þ
mkz

¼ 1
k

�jkzkrH 2ð Þ0
m krr
� 	

ber þ
mkz

r
H 2ð Þ

m krr
� 	

bef

�

þk2
rH 2ð Þ

m krr
� 	

bez

�

ejmfe�jkzz (7.111)

The coefficients B1
m and B2

m, which are also known as Cylindrical Mode Coefficients
(CMC), are complex numbers that are weighting coefficients for the vector wave
functions and that are not functions of the scanning variables z and f. They are,
however, functions of the polarisation index, the f index n and the Fourier variable
kz. These are the only quantities in these formulae that depend upon the test antenna.
If these coefficients were known for the test antenna then these equations would
allow the electric field to be evaluated everywhere radiating in free space outside of a
conceptual cylinder that is centred about the origin of the measurement coordinate
system that encloses the majority of the current sources where the radius of this
cylinder is defined to be a, and is called the maximum radial extent (MRE) or also
the minimum radius cylinder (MRC). The magnetic field can be similarly obtained
from the same set of CMCs from using the Maxwell Faraday equation

H r,f, zð Þ ¼ �1
jwm

r	 E r,f, zð Þ (7.112)

Thus, the magnetic field can be obtained from

H ðr;f; zÞ ¼ �1
jwm

X
1

m¼�1

ð
1

�1
B1

mðKzÞr 	 M 2ð Þ
mkz

ðr;f; zÞ
h

þB2
mðKzÞr 	 N 2ð Þ

mkz
ðr;f; zÞ

i

dkz (7.113)

Now from the definitions of the vector solutions as set out above, we have that

N 2ð Þ
mkz

r,f, zð Þ ¼ 1
k
r	 M 2ð Þ

mkz
r,f, zð Þ (7.114)

Similarly [7]

M 2ð Þ
mkz

r,f, zð Þ ¼ 1
k
r	 N 2ð Þ

mkz
r,f, zð Þ (7.115)

Thus, the magnetic fields can be obtained using the analogous equation

H r,f, zð Þ ¼ �k

jwm

X
1

m¼�1

ð
1

�1
B1

m kzð ÞN 2ð Þ
mkz

r,f, zð Þ þ B2
m kzð ÞM 2ð Þ

mkz
r,f, zð Þ

h i

dkz

(7.116)

where the CMCs B1
m and B2

m depend upon the AUT. Thus, the principal objective of
this work is to determine these coefficients for a given test antenna and so inverting
the above equations is where our attention must next be focused. The M and N
vectors wave functions were chosen as they possess certain orthogonality
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properties that are convenient and, as we will show, can be used to invert these
integrals. The derivation of these relationships is the subject of the next section.

7.5 Derivation of cylindrical mode coefficients
from cylindrical near-field data

In practice, one does not have the CMCs. Instead, one has to determine these from
measured near-field data. In order that this can be accomplished, the expressions
that were obtained within the preceding section need to be inverted through the use
of three useful orthogonality relations. Deriving these expressions will be the first
task tackled within this section.

7.5.1 Orthogonality properties of cylindrical wave vectors
Three orthogonality relationships are needed for the M and N vector wave functions
in order that the field equations can be inverted to enable the CMCs to be deter-
mined from measured cylindrical near-fields. These orthogonality relations are
derived within the following sections before being used to obtain expressions for
the CMCs in terms of two measured orthogonal tangential near electric field
components.

7.5.1.1 Property A
The first orthogonality property can be expressed as

ð
1

�1

ð
2p

0

M 2ð Þ
mkz

	 M 2ð Þ
m0k0z

� �

� berdfdz ¼ 0 (7.117)

Here, the primed quantities are used to distinguish the respective m and kz variables
and are not used to denote derivatives, cf. the notation used for the Hankel func-
tions. As was shown above

M 2ð Þ
mkz

¼ jm

r
H 2ð Þ

m krr
� 	

ber � krH 2ð Þ0
m krr
� 	

bef


 �

ejmfe�jkzz (7.118)

Here, it is evident that M has no z-directed component. Thus, the cross-product of
this vector with itself can therefore only have a z-directed component. Thus, the
scalar product of the z-directed and r-directed vectors will be zero as these are
orthogonal vectors. Hence the integral must also be identically zero thereby ver-
ifying the first orthogonality property. Note that this is true even if the arguments of
the respective Hankel functions are different.

7.5.1.2 Property B
The second orthogonality property can be expressed as

ð
1

�1

ð
2p

0

N 2ð Þ
mkz

	 N 2ð Þ
m0k 0z

� �

� berdfdz ¼ 0 (7.119)
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Here, as before, the primed quantities are used to distinguish the respective m and kz

variables and are not used to denote derivatives, cf. the notation used for the Hankel
functions. The integrand within the above expression can be significantly simpli-
fied using the following standard vector identity,

B 	 Cð Þ � A ¼ C � A 	 Bð Þ (7.120)

Thus

N 2ð Þ
mkz

	 N 2ð Þ
m0k 0z

� �

� ber ¼ N 2ð Þ
m0k0z � ber 	 N 2ð Þ

mkz

� �

(7.121)

This is convenient as a unit vector crossed with another vector will result in a vector
with components that act purely within a single plane in space. Since

N 2ð Þ
mkz

¼ 1
k

�jkzkrH 2ð Þ0
m krr
� 	

berþ
mkz

r
H 2ð Þ

m krr
� 	

befþk2
rH 2ð Þ

m krr
� 	

bez

� �

ejmfe�jkzz

(7.122)

Then

ber 	 N 2ð Þ
mkz

¼ 1
k

� k2
rH 2ð Þ

m krr
� 	

� �

bef þ mkz

r
H 2ð Þ

m krr
� 	

� �

bez


 �

ejmfe�jkzz

(7.123)

The required integral can be obtained from taking the scalar dot product of this, and
the elementary cylindrical vector mode function yielding

N 2ð Þ
mkz

	 N 2ð Þ
m0k 0z

� �

� ber ¼
1
k2

mkzk2
r

r
H 2ð Þ

m0 krr
� 	

H 2ð Þ
m krr
� 	

"

�m0k 0
zk2

r

r
H 2ð Þ

m0 krr
� 	

H 2ð Þ
m krr
� 	

#

ejm0fe�jk0zzejmfe�jkzz

(7.124)

Factorising yields

N 2ð Þ
mkz

	 N 2ð Þ
m0k 0z

� �

� ber ¼
k2
r

k2r
mkzH

2ð Þ
m0 krr
� 	

H 2ð Þ
m krr
� 	

h

�m0k0zH
2ð Þ

m0 krr
� 	

H 2ð Þ
m krr
� 	

i

ej m0þmð Þfe�j k 0zþkzð Þz

(7.125)

Now, when integrating this with respect to f and z, the quantity within the brackets
will be constant, thus the integral can be expressed as

ð
1

�1

ð
2p

0

constej m0þmð Þfe�j k 0zþkzð Þzdfdz (7.126)
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Thus, the integral can be split into two 1D integrals, namely

ð
1

�1

ð
2p

0

constej m0þmð Þfe�j k0zþkzð Þzdfdz ¼ const
ð
2p

0

ej m0þmð Þfdf
ð
1

�1
e�j k 0zþkzð Þzdz

(7.127)

Evaluating the first integral and assuming that m 6¼�m0 then

ð
2p

0

ej m0þmð Þfdf ¼ � j

m0 þ m
ej m0þmð Þf


 �2p

0

¼ � j

m0 þ m
þ j

m0 þ m
¼ 0

(7.128)

This is true provided m and m0 are both integers which in this application they are.
When m ¼ �m, the integral is non-zero, as is shown in the following section.
Similarly, for the integral in z, this can be recognised as being an integral repre-
sentation of the Dirac delta function [8] namely

d t � xð Þ ¼ 1
2p

ð
1

�1
ej t�xð Þzdz (7.129)

Rearranging this so as to match our expression yields

2pd �kz � k 0
zð Þ ¼

ð
1

�1
e�j kzþk 0zð Þzdz (7.130)

which is zero everywhere except at �kz � k0z. Thus, the product of the f- and
z-integrals is zero everywhere except when m0¼�m and when k0z ¼ �kz. An
alternative way to view the z-integral is to evaluate the z-integral providing
kz 6¼ �k 0

z which yields

ð
1

�1
e�j k 0zþkzð Þzdz ¼ j

k0z þ kz
e�j k0zþkzð Þz


 �1

�1
(7.131)

For which the magnitude and phase remain finite for all values of z. This follows
from noting that the magnitude of a complex exponential is unity and the argument
is wrapped modulo 2p. Thus, the product of the f and z integrals will be zero
providing m 6¼�m0 and kz ¼ �k0z. However, when m0 ¼ �m and when k0z ¼ �kz,
the complex exponentials equate to unity and the integral is non-zero unless the
terms within the parentheses are also equal to zero. Under these circumstances, the
terms within the parenthesis that we must consider are

mkzH
2ð Þ

m0 krr
� 	

H 2ð Þ
m krr
� 	� m0k0zH

2ð Þ
m0 krr
� 	

H 2ð Þ
m krr
� 	

(7.132)
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However, when m0 ¼ �m and when k0z ¼ �kz this becomes

mkzH
2ð Þ

�m krr
� 	

H 2ð Þ
m krr
� 	� mkzH

2ð Þ
�m krr
� 	

H 2ð Þ
m krr
� 	

(7.133)

Note that the arguments of the Hankel functions are exactly equal in this case since
kr depends upon kz by definition. Thus, the sum equates to zero. The second
orthogonality relationship is therefore confirmed. Again, this relation holds even if
the arguments of the respective Hankel functions are different since in those cases
kz 6¼ �k0z and the complex exponential in the definite f integral will be
identically zero.

7.5.1.3 Properties C and D
The third orthogonality property we need can be obtained from crossing the N and
M functions and integrating as before, where the integrand can be significantly
simplified using the following standard vector identity,

B 	 Cð Þ � A ¼ B � C 	 Að Þ ¼ �B � A 	 Cð Þ (7.134)

Thus, the integrand in the preceding equation can be expressed equivalently as

N 2ð Þ
mkz

	 M 2ð Þ
m0k0z

� �

� ber ¼ �N 2ð Þ
mkz

� ber 	 M 2ð Þ
m0k 0z

� �

(7.135)

Again, this is convenient since this will result in a vector with components that act
purely within a single plane in space. Here, as M has only r- and f-directed
components this will result in

ber 	 M 2ð Þ
m0k 0z ¼ �k0rH

0 2ð Þ0
m ejm0fe�jk0zz

bez (7.136)

Here, the argument of the Hankel function has been suppressed for the sake of
brevity. As before, the required integral can be obtained from taking the scalar dot
product of this, and the elementary cylindrical vector mode function yielding

N 2ð Þ
mkz

	 M 2ð Þ
m0k 0z

� �

� ber ¼ N 2ð Þ
mkz

� k0rH 2ð Þ0
m0 ejm0fe�jk0zz

bez

� �

¼ k2
rk0r
k

H 2ð Þ
m H 2ð Þ0

m0 ejmfe�jkzzejm0fe�jk0zz

¼ k2
rk0r
k

H 2ð Þ
m H 2ð Þ0

m0 ej mþm0ð Þfe�j kzþk 0zð Þz (7.137)

Now, when integrating this with respect to f and z, only the complex exponentials
are variables, all of the remaining factors are constants with respect to the inte-
gration; thus, as with the second relation we are able to consider this integral
separately. Thus, evaluating the f integral and assuming that m 6¼�m0 then again
we may write that providing they are also integers

ð
2p

0

ej m0þmð Þfdf ¼ 0 (7.138)
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However, when m ¼ �m0 this becomes

ð
2p

0

ej m0þmð Þfdf ¼
ð
2p

0

df ¼ f½ �2p0 ¼ 2p (7.139)

Next we must consider the integral in z. Here we have to evaluate

ð
1

�1
e�j kzþk 0zð Þzdz (7.140)

However, as before, where rearranging this so as to match our expression yields

2pd �kz � k0z
� 	 ¼

ð
1

�1
e�j kzþk0zð Þzdz (7.141)

Thus, when m ¼ �m0 and kz ¼ �k0z, we may write that

ð
1

�1

ð
2p

0

N 2ð Þ
mkz

	 M 2ð Þ
m0k 0z

� �

� berdfdz ¼ k2
rk0r
k

H 2ð Þ
m H 2ð Þ0

m0 4p2d �kz � k0z
� 	

(7.142)

Substituting in m ¼ �m0 and noting that the argument of the Hankel function and
the argument of the derivative of the Hankel function are equal yields the required
integral result:

ð
1

�1

ð
2p

0

N 2ð Þ
mkz

	 M 2ð Þ
m0k 0z

� �

� berdfdz ¼ 4p2k3
r

k
H 2ð Þ

m H 2ð Þ0
�m d �kz � k0z

� 	

(7.143)

Thus, the complete orthogonality property can be expressed as

ð
1

�1

ð
2p

0

N 2ð Þ
mkz

	 M 2ð Þ
m0k0z

� �

� berdfdz

¼
4p2k3

r

k
H 2ð Þ

m H 2ð Þ0
�m d �kz�k0z

� 	

for m0 ¼ �m

0 otherwise

8

<

:

(7.144)

where it is understood that the delta function belongs under an integral sign.
Following directly from this relationship we can write Property D as

ð
1

�1

ð
2p

0

M 2ð Þ
m0k 0z 	 N 2ð Þ

mkz

� �

� berdfdz

¼ � 4p2k3
r

k
H 2ð Þ

m H 2ð Þ0
�m d �k � zk 0

zð Þ for m0 ¼ �m

0 otherwise

8

<

:

(7.145)
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which is the final orthogonality property that is needed. It is noted that the condi-
tion that is applied to these orthogonality relation can be expressed equivalently
using the Kronecker delta which is zero unless m0 ¼ �m in which case it equates to
unity. Hence, using this notation these relationships can be restated more compactly
as

ð
1

�1

ð
2p

0

N 2ð Þ
mkz

	 M 2ð Þ
m0k 0z

� �

� berdfdz ¼ 4p2k3
r

k
H 2ð Þ

m H 2ð Þ0
�m d�mm0d �kz � k0zð Þ

(7.146)

ð
1

�1

ð
2p

0

M 2ð Þ
m0k 0z 	 N 2ð Þ

mkz

� �

� berdfdz ¼ � 4p2k3
r

k
H 2ð Þ

m H 2ð Þ0
�m d�mm0d �kz � k0zð Þ

(7.147)

where the Kronecker delta is defined as

d�mm0 ¼ 1 if m0 ¼ �m
0 if m0 6¼ �m

�

(7.148)

7.5.2 Determining cylindrical mode coefficients from
measured near electric field components

In order that the vector cylindrical wave coefficients can be determined from
measurement, the field equation that was derived in the previous section needs to
be inverted. This can be accomplished by using the orthogonality relations that
were derived within the preceding section. Two sets of CMCs are needed to
represent the field radiated into free space and we must obtain each of these. The
following sections contain the required derivations for obtaining the B1 and B2

CMCs from tangential measured near electric fields.

7.5.2.1 Derivation of B1 cylindrical mode coefficients
Consider crossing the N elementary vector wave function into the near electric
field. This can be achieved by evaluating

N 2ð Þ
m0, k0z 	 E r,f, zð Þ (7.149)

where

E r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
B1

m kzð ÞM 2ð Þ
m, kz

r,f, zð Þ þ B2
m kzð ÞN 2ð Þ

m, kz
r,f, zð Þ

h i

dkz

(7.150)
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Hence supressing the arguments of the Hankel functions for brevity yields

N 2ð Þ
m0, k 0z 	 E r,f, zð Þ ¼

X
1

m¼�1

ð
1

�1
B1

m kzð ÞN 2ð Þ
m0, k 0z 	 M 2ð Þ

m, kz

h

þB2
m kzð ÞN 2ð Þ

m0, k 0z 	 N 2ð Þ
m, kz

i

dkz
(7.151)

Dotting this with the r-directed unit vector and integrating across the imaginary
scanning cylinder yields

ð
1

�1

ð
2p

0

N 2ð Þ
m0, k 0z 	 E r0,f, zð Þ

� �

� ber dfdz

¼
ð
1

�1

ð
2p

0

X
1

m¼�1

ð
1

�1
B1

m kzð ÞN 2ð Þ
m0, k 0z 	 M 2ð Þ

m, kz

h i

dkz

0

@

1

A � berdfdz

þ
ð
1

�1

ð
2p

0

X
1

m¼�1

ð
1

�1
B2

m kzð ÞN 2ð Þ
m0, k 0z 	 N 2ð Þ

m, kz

h i

dkz

0

@

1

A � berdfdz (7.152)

Here, r0 denotes the radius of the scanning cylinder. Exchanging the order of
integration and summation yields

ð
1

�1

ð
2p

0

N 2ð Þ
m0, k 0z 	 E r0,f, zð Þ

� �

� berdfdz

¼
X
1

m¼�1

ð
1

�1

ð
1

�1

ð
2p

0

B1
m kzð ÞN 2ð Þ

m0, k0z 	 M 2ð Þ
m, kz

h i

� berdfdzdkz

þ
X
1

m¼�1

ð
1

�1

ð
1

�1

ð
2p

0

B2
m kzð ÞN 2ð Þ

m0, k0z 	 N 2ð Þ
m, kz

h i

� berdfdzdkz (7.153)

Thus, this is now in a form that the orthogonality properties that were developed
within the preceding section can be applied. Using Property B yields

ð
1

�1

ð
2p

0

N 2ð Þ
m0, k 0z 	 E r0,f, zð Þ

� �

� berdfdz

¼
X
1

m¼�1

ð
1

�1

ð
1

�1

ð
2p

0

B1
m kzð ÞN 2ð Þ

m0, k0z 	 M 2ð Þ
m, kz

h i

� berdfdzdkz (7.154)
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Using Property C

ð
1

�1

ð
2p

0

N 2ð Þ
m, kz

	 M 2ð Þ
m0, k 0z

� �

� berdfdz

¼
4p2k3

r

k
H 2ð Þ

m H 2ð Þ0
�m d �kz � k 0

zð Þ for m0 ¼ �m

0 otherwise

8

<

:

(7.155)

Yields (note that the use of primes in the orthogonality relation and the field
expression are interchanged with one another)

ð
1

�1

ð
2p

0

N 2ð Þ
m0, k0z 	 E r0,f, zð Þ

� �

� berdfdz

¼ 4p2k3
r

k

ð
1

�1
H 2ð Þ

�mH 2ð Þ0
m B1

m kzð Þd �kz � k0zð Þdkz (7.156)

Thus, from the definition of the Dirac delta function and assuming f (t) is con-
tinuous at t0, we know that

ð
1

�1
f tð Þd t � t0ð Þdt ¼ f t0ð Þ (7.157)

Thus, the orthogonality property of the elementary vector wave functions has the
effect of tapping off the value of the multiplying function at the sampling point as
determined by the argument of the delta function. Recalling that d(t) ¼ d(�t)

ð
1

�1

ð
2p

0

N 2ð Þ
m0, k 0z 	 E r0,f, zð Þ

� �

� berdfdz ¼ 4p2k3
r

k
H 2ð Þ

�mH 2ð Þ0
m B1

m �k0zð Þ (7.158)

Rearranging this yields

B1
m �k0zð Þ¼ k

4p2k3
rH 2ð Þ

�m krr0

� 	

H 2ð Þ0
m krr0

� 	

ð
1

�1

ð
2p

0

N 2ð Þ
m0,k 0z 	E r0,f,zð Þ

� �

�berdfdz

(7.159)

Here, the argument of the Hankel function has been reintroduced. The vector
operation within the integrand will result in a scalar quantity that is formed from
difference between the z-polarised electric field component multiplied with the f
component of the vector wave function and the f-polarised electric field compo-
nent multiplied with the z-component of the wave function. That is to say, when
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suppressing the dependency of the field components for the sake of brevity, the
integrand can be expressed as

N 2ð Þ
m0, k0z 	 E

� �

� ber ¼ �H 2ð Þ
m0 krr0

� 	 1
k

m0k0z
r0

Ez þ k2
rEf


 �

ejm0fe�jk0zz (7.160)

Substituting this into the preceding expression for the CMC and recalling that
m ¼ �m0 and that kz ¼ �k0z yields the desired result

B1
m kzð Þ ¼ �1

4p2k3
rH 2ð Þ0

m krr0

� 	

	
ð
1

�1

ð
2p

0

mkz

r0
Ez r0,f, zð Þþ k2

rEf r0,f,zð Þ
� �

e�jmfejkzzdfdz (7.161)

7.5.2.2 Derivation of B2 cylindrical mode coefficients
A similar procedure is used to obtain the second orthogonal set of CMCs. Here,
however, the strategy is to cross the M function into the expression for the electric
field and then to integrate. This can be achieved by evaluating

M 2ð Þ
m0, k 0z 	 E r,f, zð Þ (7.162)

Again suppressing the argument of the Hankel function for brevity yields

M 2ð Þ
m0, k 0z 	 E r,f, zð Þ ¼

X
1

m¼�1

ð
1

�1
B1

m kzð ÞM 2ð Þ
m0, k 0z 	 M 2ð Þ

m, kz

h

þB2
m kzð ÞM 2ð Þ

m0, k 0z 	 N 2ð Þ
m, kz

i

dkz (7.163)

Dotting this with the r-directed unit vector and integrating across the imaginary
scanning cylinder yields

ð
1

�1

ð
2p

0

M 2ð Þ
m0, k0z 	 E r0,f, zð Þ

� �

� berdfdz

¼
ð
1

�1

ð
2p

0

X
1

m¼�1

ð
1

�1
B1

m kzð ÞM 2ð Þ
m0, k0z 	 M 2ð Þ

m, kz

h i

dkz

0

@

1

A � berdfdz

þ
ð
1

�1

ð
2p

0

X
1

m¼�1

ð
1

�1
B2

m kzð ÞM 2ð Þ
m0, k0z 	 N 2ð Þ

m, kz

h i

dkz

0

@

1

A � berdfdz

(7.164)

Again, exchanging the order of integration and summation and this time using
orthogonality Property A yields

Cylindrical near-field antenna measurements 399



ð
1

�1

ð
2p

0

M 2ð Þ
m0, k0z 	 E r0,f, zð Þ

� �

� berdfdz

¼
X
1

m¼�1

ð
1

�1

ð
1

�1

ð
2p

0

B2
m kzð ÞM 2ð Þ

m0, k 0z 	 N 2ð Þ
m, kz

h i

� berdfdzdkz

(7.165)

Recalling Property D

ð
1

�1

ð
2p

0

M 2ð Þ
m0k 0z 	 N 2ð Þ

mkz

� �

� berdfdz

¼ � 4p2k3
r

k
H 2ð Þ

m H 2ð Þ0
�m d �kz � k0zð Þ for m0 ¼ �m

0 otherwise

8

<

:

(7.166)

where again we assume that the product acting on the Delta function is well
behaved and enables the result of the integral to be expressed as

ð
1

�1

ð
2p

0

M 2ð Þ
m0,k 0z 	E r0,f,zð Þ

� �

�berdfdz¼�4p2k3
r

k
H 2ð Þ

m H 2ð Þ0
�m B2

m �k 0
zð Þ (7.167)

Or writing the second set of CMCs in terms of an integral of the elementary vector
mode functions and the electric field yields

B2
m �k0zð Þ ¼ � k

4p2k3
rH 2ð Þ

m H 2ð Þ0
�m

ð
1

�1

ð
2p

0

M 2ð Þ
m0, k 0z 	 E r0,f, zð Þ

� �

� berdfdz

(7.168)

Examining the integrand and expressing the terms in component form yields

M 2ð Þ
m0, k 0z 	 E

� �

� ber ¼ �krH 2ð Þ0
m krr0

� 	

Eze
jm0fe�jk 0zz (7.169)

Substituting this into the previous result and recalling that m ¼ �m0 and kz ¼ �k0z
yields

B2
m kzð Þ ¼ k

4p2k2
rH 2ð Þ

m krr0

� 	

ð
1

�1

ð
2p

0

Ez r0,f, zð Þe�jmfejkzzdfdz (7.170)
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Finally, we obtain the principal formula for determining CMCs from two ortho-
gonal transverse near electric field components. These are

B1
m kzð Þ¼ �1

4p2k3
rH 2ð Þ0

m krr0

� 	

	
ð
1

�1

ð
2p

0

mkz

r0
Ez r0,f,zð Þþ k2

rEf r0,f,zð Þ
� �

e�jmfejkzzdfdz (7.171)

B2
m kzð Þ¼ k

4p2k2
rH 2ð Þ

m krr0

� 	

ð
1

�1

ð
2p

0

Ez r0,f,zð Þe�jmfejkzzdfdz (7.172)

From this it is clear that for the case where measurements are taken using an
infinitesimal electric dipole probe, the probe correction problem reduces to the
limiting case of an application of the orthogonality relationships for the M and N
elemental vector wave functions. This is also true for the planar and spherical cases.
Once these mode coefficients have been obtained, it is possible to calculate the
electric field radiated into free space everywhere outside of a conceptual, infinitely
long cylinder of radius r0, i.e. where r � r0 using

E r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
B1

m kzð ÞM 2ð Þ
m, kz

r,f, zð Þ þ B2
m kzð ÞN 2ð Þ

m, kz
r,f, zð Þ

h i

dkz

(7.173)

For the case where measurements are taken using an infinitesimal Hertzian dipole
probe, these equations enable the near-field to far-field transform to be accom-
plished through the application of a cylindrical mode expansion of the fields. It
follows that for theoretical or computational electromagnetic applications, these
formulae are very useful. However, evaluating the formula for the electric fields is
formidable but can be dramatically simplified when the fields are only required to
be determined in the true far-field. This is the subject of the next section.

7.6 Derivation of asymptotic far-field parameters
from cylindrical mode coefficients

As was shown in the preceding section, it is possible to compute the field radiated
into free space from a set of CMCs anywhere in space outside of a conceptual right
circular cylinder that encloses the current sources so that r> a, where a denotes the
MRC. These equations can be modified so that they automatically produce the
asymptotic far-field as this is often of greatest interest in practice [9]. The first step
is to utilise the large argument value of the Bessel function of the first and second
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kinds. These can be expressed, respectively, as [10]

Jm xð Þ 

ffiffiffiffiffiffi

2
px

r

cos x � mp
2

� p
4

� �

(7.174)

Ym xð Þ 

ffiffiffiffiffiffi

2
px

r

sin x � mp
2

� p
4

� �

(7.175)

From the definition of the Hankel function of the second kind, the large argument
asymptotic form of this function can be obtained from

H 2ð Þ
m xð Þ 


ffiffiffiffiffiffi

2
px

r

cos x � mp
2

� p
4

� �

� j sin x � mp
2

� p
4

� �h i

(7.176)

Or equivalently using Euler’s formula, this can be written more compactly as

H 2ð Þ
m xð Þ 


ffiffiffiffiffiffi

2
px

r

e�j x�mp
2 �p

4ð Þ ¼ jð Þm

ffiffiffiffiffiffi

2
px

r

e�j x�p
4ð Þ (7.177)

Now, the asymptotic large argument derivative of the Hankel function with respect
to the argument can be obtained by using the standard relation namely

dH 2ð Þ
m axð Þ
dx

¼ aH 2ð Þ
m�1 axð Þ � m

x
H 2ð Þ

m axð Þ (7.178)

Again, substituting the large argument form of the Hankel function into this yields

dH 2ð Þ
m axð Þ
dx

¼ a jð Þm�1

ffiffiffiffiffiffi

2
px

r

e�j x�p
4ð Þ � m

x
jð Þm

ffiffiffiffiffiffi

2
px

r

e�j x�p
4ð Þ (7.179)

Or

dH 2ð Þ
m axð Þ
dx

¼ aj�1H 2ð Þ
m axð Þ � m

x
H 2ð Þ

m axð Þ (7.180)

In the limit, where x ! ? this can be approximated by the useful formula

dH 2ð Þ
m axð Þ
dx

¼ H 2ð Þ0
m axð Þ ¼ �jaH 2ð Þ

m axð Þ (7.181)

These two substitutions can be used to obtain expressions for the electric field in
the far-field where the argument of both the Hankel function and its derivative are
large. When the product krr ! ?, the M and N elementary vector wave functions
can be expressed as

M 2ð Þ
mkz

¼ j
m

r
ber þ krbef


 �

H 2ð Þ
m krr
� 	

ejmfe�jkzz (7.182)
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And with the same restriction

N 2ð Þ
mkz

¼ 1
k

�kzkrber þ
mkz

r
bef þ k2

rbez

� �

H 2ð Þ
m krr
� 	

ejmfe�jkzz (7.183)

For notational convenience, let us define the following two vector functions:

M mkz
¼ j

m

r
ber þ krbef


 �

(7.184)

N mkz
¼ 1

k
�kzkrber þ

mkz

r
bef þ k2

rbez

� �

(7.185)

Thus, using these definitions, the far electric field radiating into free space can be
expressed as

E
r!1

r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
B1

m kzð ÞM mkz

�

þB2
m kzð ÞN mkz

i

jð Þm

ffiffiffiffiffiffiffiffiffiffi

2
pkrr

s

e�j krr�p
4ð Þejmfe�jkzzdkz (7.186)

Hence, by exchanging the order of integration and summation, the far electric field
can be written in terms of these functions and the mode coefficients as

E
r!1

r,f, zð Þ ¼
ð
1

�1

ffiffiffiffiffiffiffiffiffiffi

2
pkrr

s

ejp4
X
1

m¼�1
jð Þm

	 B1
m kzð ÞM mkz

þ B2
m kzð ÞN mkz

h i

ejmfe�jkrre�jkzzdkz
(7.187)

These equations can perhaps be interpreted more easily if we define a new vector
quantity

ekz
r,fð Þ ¼

ffiffiffiffiffiffiffiffiffiffi

2
pkrr

s

ejp4
X
1

m¼�1
jð Þm B1

m kzð ÞM mkz
þ B2

m kzð ÞN mkz

h i

ejmf (7.188)

Hence, the far electric fields can be expressed equivalently, and more compactly, as

E
r!1

r,f, zð Þ ¼
ð
1

�1
krekz

r,fð Þ e�jkrr

kr
e�jkzzdkz (7.189)

In this form, it is clear that this is a Fourier relationship where kz is the Fourier
variable with z and kz being conjugate variables. That is

E
r!1

r,f, zð Þ ¼ =�1 krekz
r,fð Þ e�jkrr

kr

� �

(7.190)
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Here, =�1 is used to denote the inverse Fourier transform. Similarly, = will be used
to denote the Fourier transform operation. As this is a Fourier relationship, we may
instantly bring to bear the enormous power of analysis borne from Fourier theory.
One such tool is the convolution (or sometimes Faltung, which is German for
folding) theorem. This theorem, as examined in Section 6.5 and elaborated on in [5]
and [6], states that the Fourier transform of a convolution is given by the product of
the individual Fourier transforms. Conversely, the Fourier transform of a product is
given by the convolution of the individual transforms. This is the case here since
Fourier transforming both sides of this expression yields the following expression
where it is evident that right-hand side comprises a multiplication of two functions
namely

= E
r!1

r,f, zð Þ
� �

¼ krekz
r,fð Þ e�jkrr

kr
(7.191)

Thus, taking the inverse transform (so as to recover the original equation) and using
the convolution theorem yields

E
r!1

r,f, zð Þ ¼ =�1 krekz
r,fð Þ

n o

�=�1 e�jkrr

kr

� �

(7.192)

where the symbol � is used to denote the convolution operation. Specifically, the
convolution of two functions is defined by the integral

f zð Þ � h zð Þ ¼ 1
2p

ð
1

�1
f xð Þh z � xð Þdx (7.193)

where x is a dummy variable. Since the integration is in x, as far as the integration
process itself is concerned, the z variable is, momentarily, regarded as being a
constant. Hence

E
r!1

r,f, zð Þ ¼ 1
2p

ð
1

�1
=�1

x krekz
r,fð Þ

n o

=�1
z�x

e�jkrr

kr

� �

dx (7.194)

Now, the second inverse Fourier transform, that is to say the transform of a com-
plex exponential, can be shown to be the integral representation of the zeroth-order
Hankel function of the second kind. Specifically this transform can be expressed as

=�1
z�x

e�jkrr

kr

� �

¼
ð
1

�1

e�jkrr

kr
ejkz z�xð Þdkz (7.195)

From the large argument Hankel function of the second kind, which was derived
above, the zeroth-order function, i.e. when m ¼ 0, can be expressed as

H 2ð Þ
0 xð Þ 


ffiffiffiffiffiffi

2
px

r

ejp4e�jx (7.196)
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Hence

pH 2ð Þ
0 xð Þ 


ffiffiffiffiffiffi

2p
x

r

ejp4e�jx (7.197)

When

x ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z � xð Þ2 þ r2

q

¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 � 2zxþ x2 þ r2

q

(7.198)

Now from the cylindrical geometry, z and r can be related to the polar spherical
angle q using

z ¼ r cos q (7.199)

r ¼ r sin q (7.200)

Hence using a standard trigonometric identity, we can write that

x ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 2rx cos qþ r2

q

¼ kr
x
r

� �2

� 2x cos q
r

þ 1

 !1=2

(7.201)

The first few terms of the Taylor series expansion can be written as

1 þ að Þm ¼ 1 þ maþ m m � 1ð Þ
2!

a2 þ � � � (7.202)

Thus, using this expansion and retaining just the first term, we obtain

x ¼ kr 1 þ 1
2

x
r

� �2

� 2x cos q
r

 !" #

¼ kr þ kx2

2r
� kx cos q (7.203)

Thus, ignoring the inverse r terms as these will tend to zero as r tends to infinity in
the complex exponential and retaining just the first term in the square root factor
yields

pH 2ð Þ
0 xð Þ 


r!1

ffiffiffiffiffiffi

2p
kr

r

ejp4e�jkrejkx cosq (7.204)

Hence, the far electric field can be expressed as

E
r!1

r,f, zð Þ ¼
ffiffiffiffiffiffiffiffiffiffi

1
2pkr

r

ejp4e�jkr
ð
1

�1
=�1

x krekz
r,fð Þ

n o

ejkx cosqdx (7.205)

Now, the last integral represents the Fourier transform of an inverse Fourier
transform. Hence the resultant is the original function scaled by a factor of 2p to
preserve the normalisation and is evaluated at kz ¼ k cos q as in this case x and
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kcosq are the conjugate variables with k cos q varying linearly, as opposed to
varying linearly with the polar angle.

E
r!1

r,f, zð Þ ¼
ffiffiffiffiffiffi

2p
kr

r

ejp4e�jkrkrekz
r,fð Þ (7.206)

Recalling our original definition for kr and using a simple trigonometric identity
means that we can relate this to the polar angle as

kr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2
z

q

¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � cos qð Þ2
q

¼ k sin q (7.207)

Hence

E
r!1

r,f, zð Þ ¼
ffiffiffiffiffiffi

2p
kr

r

ejp4e�jkrk sin qekz
r,fð Þ (7.208)

Rewriting this in terms of the CMCs yields

E
r!1

r,f,zð Þ¼ j2k sinq

ffiffiffiffiffiffiffiffiffiffiffi

1
krkrr

s

e�jkr
X
1

m¼�1
jð Þm B1

m kzð ÞM mkz
þB2

m kzð ÞN mkz

h i

ejmf

(7.209)

In component form this becomes

Ef
r!1

r,f, zð Þ ¼ j2k sin q

ffiffiffiffiffiffiffiffiffiffiffi

1
krkrr

s

e�jkr
X
1

m¼�1
jð Þm B1

m kzð Þjkr þ B2
m kzð Þmkz
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ejmf

(7.210)

or

Ef
r!1

r,f, zð Þ ¼ j2
r

e�jkr
X
1

m¼�1
jð Þm B1

m kzð Þjk sin qþ B2
m kzð Þm cos q

r sin q


 �

ejmf

(7.211)

As the B2 CMCs are scaled by a factor of r�1, in the far-field that are invariably
smaller than the B1 coefficients, thus in the far-field we can express the f-polarised
far electric fields purely in terms of the B1 coefficients and thus we may write that

Ef
r!1

r,f, qð Þ ¼ �2k sin q
e�jkr

r

X
1

m¼�1
jð ÞmB1

m k cos qð Þejmf (7.212)

Here, and as per the usual convention, the unimportant far-field spherical phase
factor and inverse r term are usually suppressed in each of the far-field compo-
nents. Thus, we obtain the usually quoted formula

Ef
r!1

r,f, qð Þ ¼ �2k sin q
X
1

m¼�1
jð ÞmB1

m k cos qð Þejmf (7.213)
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This process can now be repeated for the q-polarised field component; however,
here we have a further complication as the M and N quantities are expressed in
terms of the cylindrical unit vectors. Thus, we need to transform these into an
equivalent spherical form. The relationship between cylindrical and spherical unit
vectors can be expressed as [11]

beq ¼ ber cos q� bez sin q (7.214)

bef ¼ bef (7.215)

When transformed into polar-spherical components, the q-polarised component of
M and N can be expressed as

M mkz
¼ j

m cos q
r

beq (7.216)

N mkz
¼ � 1

k
kzkr cos qþ k2

r sin q
� �

beq

¼ �k cos2 q sin qþ sin2 q sin q
� 	

beq
¼ �k sin qbeq

(7.217)

The q-polarised far electric field component can be expressed as

Eq
r!1

r,f, zð Þ ¼ j2
r

e�jkr
X
1

m¼�1
jð Þm B1

m kzð Þ jm cos q
r sin q

� B2
m kzð Þk sin q
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ejmf

(7.218)

Here, as a result of the r�1 factor in the equation the far-field B1, CMCs are smaller
than the B2 coefficients. We can therefore express the f-polarised far electric fields
purely in terms of the B2 coefficients, and thus we may write that

Eq
r!1

r,f, qð Þ ¼ �2k sin q
e�jkr

r

X
1

m¼�1
jð ÞmjB2

m k cos qð Þejmf (7.219)

Thus, the asymptotic far-field pattern can be obtained from a simple summation of
mode coefficients as follows:

Eq
r!1

r,f, qð Þ ¼ �j2k sin q
X
1

m¼�1
jmB2

m k cos qð Þejmf (7.220)

Ef
r!1

r,f, qð Þ ¼ �2k sin q
X
1

m¼�1
jmB1

m k cos qð Þejmf (7.221)

In the far-field, as a consequence of the plane-wave condition, i.e. these are
transverse electromagnetic waves, thus k � E ¼ k � H ¼ 0 and we can therefore write
that

Er
r!1

r,f, qð Þ ¼ 0 (7.222)
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With

H
r!1

r,f, qð Þ ¼ 1
Z0
ber 	 E r ! 1, q,fð Þ (7.223)

where Z0 denotes the impedance of free space. Thus

Hq
r!1

r,f, qð Þ ¼ 2k sin q
Z0

X
1

m¼�1
jmB1

m k cos qð Þejmf (7.224)

Hf
r!1

r,f, qð Þ ¼ �j
2k sin q

Z0

X
1

m¼�1
jmB2

m k cos qð Þejmf (7.225)

Hr
r!1

r,f, qð Þ ¼ 0 (7.226)

Here, and as per the usual convention, the unimportant far-field spherical phase
factor and inverse r term have been suppressed and it is understood that kz ¼ k cos q.
From these expressions we can see that the s-index in Bs

m k cos qð Þ specifies the
polarisation of the wave since s ¼ 1 modes produce f-component (horizontal) far-
fields and s ¼ 2 modes produce q-component (vertical) far-fields (with horizontal
and vertical designations assuming that the z-axis is vertical as shown in Figure 7.5).
The useful aspect of these expressions is that they represent a summation of the
CMCs, with no numerical integration or evaluation of Hankel functions necessi-
tated. Here, as was demonstrated earlier, the CMCs themselves are computed by
evaluating

B1
m kzð Þ¼ �1

4p2k3
rH 2ð Þ0

m krr0

� 	

	
ð
1

�1

ð
2p

0

mkz

r0
Ez r0,f,zð Þþ k2

rEf r0,f,zð Þ
� �

e�jmfejkzzdfdz (7.227)

B2
m kzð Þ¼ k

4p2k2
rH 2ð Þ

m krr0

� 	

ð
1

�1

ð
2p

0

Ez r0,f,zð Þe�jmfejkzzdfdz (7.228)

Thus, for the ideal case where the tangential orthogonal cylindrical near electric
field components are sampled with an infinitesimal electric dipole probe, the
complete electromagnetic six-vector can be obtained outside of the conceptual
measuring cylinder. As the complete electromagnetic six-vector is obtained, it is
possible to compute any asymptotic far-field parameter, e.g. total radiated power,
gain, directivity, tilt angle, axial ratio, complex polarisation ratio and so on. This,
therefore, provides the basis for modern cylindrical near-field antenna testing. The
next section will extend this formulation so that non-ideal probes, that is to say real-
world probes such as open-ended rectangular waveguides, can be used to acquire
near-field data. These are probes for which the output of the probe is not
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proportional to a single vector component of the incident field at a point in space
but instead are determined from a weighted average of all vector components
across some finite non-zero area.

7.7 Development of the transmission formula

Probe-compensated near-field measurements on a cylinder with arbitrary probe
pattern compensation were first presented in the open literature in [12] and the
development presented in the subsequent sections follows a procedure similar to
that outlined therein. The derivation of the transmission equation is accomplished
as follows:

1. Express the antenna fields in cylindrical coordinates using elemental vector
mode functions.

2. Write the scattering matrix for the antenna and probe in their respective
coordinate systems.

3. Derive the joining equations, using field expressions in each coordinate
system.

4. Use joining equations and scattering matrix for each antenna to derive the
transmission equation.

5. Solve the transmission equation for the unknown test antenna CMCs.
6. Sum the test antenna CMCs to obtain the asymptotic far-fields.

A detailed derivation of this development is presented in the following section
together with an illustration of the effect of probe compensation in cylindrical near-
field measurements. This section concludes with a necessary derivation of a vector
translation theorem.

7.7.1 The coupling equation – derivation of
probe-compensated cylindrical near-field
antenna measurements

Using the mathematical apparatus that we have established earlier, and from linear
superposition, it is possible to write the fields between the AUT and the probe in
the form

E r,f,zð Þ ¼
X
1

m¼�1

ð
1

�1
b1

m kzð ÞM 2ð Þ
m,kz

r,f,zð Þþb2
m kzð ÞN 2ð Þ

m,kz
r,f,zð Þ

h in

þ a1
m kzð ÞM m,kz

r,f,zð Þþa2
m kzð ÞN m,kz

r,f,zð Þ
h io

dkz (7.229)

H r,f,zð Þ¼ �1
jwm

r	E r,f,zð Þ (7.230)

Here, modes with coefficients denoted with b1
m and b2

m are associated with the fields
from the AUT, whereas the modes with coefficients denoted by a1

m and a2
m are
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associated with the fields from the probe antenna. As will be shown, the relation-
ship between the wave amplitude in the waveguide feed of the AUT and the wave
amplitude in the waveguide feed of the probe can be obtained from the source
scattering matrix formulation. The defining equation for S parameters can be
expressed in matrix notation as

b½ � ¼ S½ � � a½ � (7.231)

In this application, the transducer scattering matrix encapsulates the linear beha-
viour of the antenna to all possible excitations from impressed incident waves. That
is to say, the set of outgoing wave amplitudes [b] will be determined linearly by a
set of incident voltage wave-amplitudes [a] and can be taken as a definition of
linearity for the AUT. The scattering matrix representation of test antenna probe
interaction can be found presented in Figure 7.12. Here, un-primed variables refer
to the test antenna’s scattering matrix, whereas primed variables relate to the
probe’s scattering matrix.

Using the configuration depicted in Figure 7.12, the source scattering matrix
equation can be expressed (in expanded form) for the test antenna as [13]

b0 ¼ G0a0 þ
X
1

m¼�1

ð
1

�1
R1

m kzð Þa1
m kzð Þ þ R2

m kzð Þa2
m kzð Þ� 

dkz (7.232)

b1
m kzð Þ ¼ T1

m kzð Þa0 þ
X
1

v¼�1

ð
1

�1
S1, 1

m, v kz, k 0
zð Þa1

v k0zð Þ þ S1, 2
m, v kz, k0zð Þa2

v k0zð Þ
h i

dk 0
z

(7.233)
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Figure 7.12 Schematic representation of cylindrical scattering matrix formulation
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b2
m kzð Þ ¼ T2

m kzð Þa0 þ
X
1

v¼�1

ð
1

�1
S2, 1

m, v kz, k0zð Þa1
v k0zð Þ þ S2, 2

m, v kz, k0zð Þa2
v k0zð Þ

h i

dk 0
z

(7.234)

Here, G0 is the voltage reflection coefficient of the AUT defined at the surface S0.
Here, R denotes the receiving properties of the AUT, T denotes the transmitting
properties of the AUT and S denotes the scattering properties of the AUT. When
multiple reflections between the test antenna and the probe are neglected, that is to
say when a1

v(k0z) ¼ a2
v(k0z) ¼ 0, the field leaving the antenna can be expressed as

b1
m kzð Þ ¼ T1

m kzð Þa0 (7.235)

b2
m kzð Þ ¼ T2

m kzð Þa0 (7.236)

This assumption is valid provided the scattered field is small when compared to the
incident fields. Although this is often the case in practice, this is an approximation
whose impact must be assessed. Therefore, evaluation of this comprises one term
within the facility-level range assessment, cf. Chapter 10. This assumption is
common to all forms of near-field measurements irrespective of the particular
coordinate system being considered. The importance of these expressions is that
they imply that if T1

m and T2
m can be determined, then probe-corrected far-fields for

the test antenna can be obtained from the b1
m and b2

m CMCs using the summation
process developed in the preceding section. The next step in determining the T1

m
and T2

m mode coefficients from measured data involves relating the probe and AUT
coordinate systems and scattering matrices.

7.7.2 Probe and test antenna
Let us define a cylindrical coordinate system that is fixed to the probe and that is
coaxial with the AUT’s coordinate system. Here, coordinates that are associated
with the probe are denoted with primes. The geometry of this arrangement can be
found presented schematically in Figure 7.13.

Now, in the same way as we did for the AUT, we are able to write the source
scattering matrix for the probe as

b0o f0, z0ð Þ ¼ G0
0a00 þ

X
1

m¼�1

ð
1

�1
R01

m kzð Þa01m kzð Þ þ R02
m kzð Þa02m kzð Þ

h i

dkz

(7.237)

As was shown in Figure 7.12, b00 is the output of the probe which is recorded as the
probe scans across the conceptual cylindrical sampling surface. As can be deduced
from the mechanical acquisition process, cf. Figure 7.1, the probe coordinate sys-
tem is merely the AUT’s coordinate system rotated about the z-axis by an amount
f0, and translated along the z-axis by a distance z0. Thus, f0 and z0 vary during the
course of the cylindrical near-field measurement while the radius remains fixed so
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that

r0 ¼ r (7.238)

f0 ¼ f� f0 (7.239)

z0 ¼ z � z0 (7.240)

Here, f0 and z0 vary such that

0 � f0 � 2p (7.241)

�1 � z0 � 1 (7.242)

Clearly, the fields at a point in space are the same irrespective of the coordinate
system used to specify them. Thus

E0 r0,f0, z0ð Þ ¼ E r,f, zð Þ (7.243)

Hence

E0 r,f� f0, z � z0ð Þ ¼ E r,f, zð Þ (7.244)

Although not stated here, similar expressions can be written down for the equiva-
lent magnetic fields. Writing the fields explicitly in terms of the respective
cylindrical wave coefficients yields

Antenna under test

Probe
P

f0

f′

f

z, z′

S0′ a0′
b0′

r, r′

Figure 7.13 Schematic representation of the transmission system for cylindrical
probe compensation derivation

412 Theory and practice of modern antenna range measurements, volume 1



E r,f, zð Þ ¼
X
1

m¼�1

ð
1

�1
b1

m kzð ÞM 2ð Þ
m, kz

r,f, zð Þ þ b2
m kzð ÞN 2ð Þ

m, kz
r,f, zð Þ

h in

þ a1
m kzð ÞM m, kz

r,f, zð Þ þ a2
m kzð ÞN m, kz

r,f, zð Þ
h io

dkz

(7.245)

E0 r0,f0, z0ð Þ ¼
X
1

m¼�1

ð
1

�1
a01m kzð ÞM 2ð Þ

m, kz
r0,f0, z0ð Þ þ a02m kzð ÞN 2ð Þ

m, kz
r0,f0, z0ð Þ

h in

þ b01m kzð ÞM m, kz
r0,f0, z0ð Þ þ b02m kzð ÞN m, kz

r0,f0, z0ð Þ
h io

dkz

(7.246)

where

M 2ð Þ
mkz

¼ jm

r
H 2ð Þ

m krr
� 	

ber � krH 2ð Þ0
m krr
� 	

bef


 �

ejmfe�jkzz (7.247)

and

N 2ð Þ
mkz

¼ 1
k

�jkzkrH 2ð Þ0
m krr
� 	

ber þ
mkz

r
H 2ð Þ

m krr
� 	

bef þ k2
rH 2ð Þ

m krr
� 	

bez

� �

ejmfe�jkzz

(7.248)

Equating coefficients using the orthogonality properties of the elementary cylind-
rical wave functions yields

bs
m kzð ÞM 2ð Þ

m, kz
r,f, zð Þ ¼ a0sm kzð ÞM 2ð Þ

m, kz
r0,f0, z0ð Þ (7.249)

and

as
m kzð ÞM 2ð Þ

m, kz
r,f, zð Þ ¼ b0sm kzð ÞM 2ð Þ

m, kz
r0,f0, z0ð Þ (7.250)

where s is used as a polarisation index which is equal to 1, or 2, only. Thus

bs
m kzð Þejmfe�jkzz ¼ a0sm kzð Þejmf0

e�jkzz0

¼ a0sm kzð Þejm f�f0ð Þe�jkz z�z0ð Þ (7.251)

Cancelling like terms yields

bs
m kzð Þ ¼ a0sm kzð Þe�jmf0 ejkzz0 (7.252)

or equivalently

a0sm kzð Þ ¼ bs
m kzð Þejmf0 e�jkzz0 (7.253)

Similarly

b0sm kzð Þ ¼ as
m kzð Þejmf0 e�jkzz0 (7.254)
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This behaviour can also be interpreted as arising from the shifting property of the
Fourier relationship that exists between the sampled fields and the corresponding
CMCs. Crucially, these equations express the relationship between the probe and
antenna coefficients. Thus, these relations can be used to link the two scattering
matrix equations to give the required transmission formula. Now, in the same way
as we did for the AUT, we are now able to write the source scattering matrix for the
probe as

b0
0 f0,z0ð Þ¼G0

0a0
0þ

X
1

m¼�1

ð
1

�1
R01

m kzð Þa01m kzð ÞþR02
m kzð Þa02m kzð Þ

h i

dkz (7.255)

Here, b00 is the output of the probe which is recorded as the probe scans across the
conceptual cylindrical sampling surface. Using the relationship connecting the
probe and AUT scattering equations we obtain

b0
0 f0,z0ð Þ¼G0

0a00 þ
X
1

m¼�1

ð
1

�1
R01

m kzð Þb1
m kzð ÞþR02

m kzð Þb2
m kzð Þ

h i

ejmf0 e�jkzz0 dkz

(7.256)

As before, when multiple reflections between the test antenna and the probe are
neglected this can be expressed in terms of the transmitting properties of the AUT
yielding

b00 f0,z0ð Þ ¼ G0
0a00 þ a0

X
1

m¼�1

ð
1

�1
R01

m kzð ÞT1
m kzð ÞþR02

m kzð ÞT2
m kzð Þ

h i

	 ejmf0 e�jkzz0 dkz (7.257)

Let us now assume that the input to the probe is zero, that is to say when a0
0 ¼ 0,

which would be the case when the AUT is transmitting and the probe is terminated
with a perfectly matched load. In this case the transmission formula reduces to

b0
0 f0, z0ð Þ ¼ a0

X
1

m¼�1

ð
1

�1
R01

m kzð ÞT1
m kzð Þ þ R02

m kzð ÞT2
m kzð Þ

h i

ejmf0 e�jkzz0 dkz

(7.258)

This is the transmission formula for the case of negligible multiple reflections
between the AUT and the probe. This integral has to be inverted in order to be able
to express the unknown T1

m and T2
m AUT transmit CMCs in terms of the measured

amplitude and phase b00. Fortunately, as this is a Fourier integral and a Fourier
series, this can be immediately inverted to yield

R01
m kzð ÞT1

m kzð Þ þ R02
m kzð ÞT2

m kzð Þ ¼ 1
4p2a0

ð
1

�1

ð
2p

0

b0
0 f0, z0ð Þe�jmf0 ejkzz0 df0dz0

(7.259)
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Thus, by evaluating this integral it is possible to compute this for as many values of
m and kz as are required. The number and range of values of m and kz are discussed
below when examining the sampling theorem for cylindrical near-field antenna
measurements. Clearly, this integral can be evaluated using the efficient FFT
algorithm and that too is discussed in the following sections. However, there is one
remaining difficulty as there are two unknown values of the AUT transmitting
coefficients (T1

m, T2
m) produced by a single integration. This can be resolved if a

second measurement is taken as this would enable the construction of two simul-
taneous equations which could then be solved for the unknown AUT transmit
coefficients. Thus, for the second cylindrical near-field measurement, we may write
the corresponding expression

R001
m kzð ÞT1

m kzð Þ þ R002
m kzð ÞT2

m kzð Þ ¼ 1
4p2a0

ð
1

�1

ð
2p

0

b00
0 f0, z0ð Þe�jmf0 ejkzz0 df0dz0

(7.260)

Here, the values of b00
0 can most easily be obtained by using the same probe and

merely rotating it about its boresight direction by 90�. Alternatively, a second probe
with a different pattern could be used; however, it is more convenient in most
applications to use a mechanical rotation stage to simply reposition a single probe
between successive cylindrical near-field scans. Typically then, the b00 measured
amplitude and phases would correspond to measurements taken with the principal
polarisation of the probe being aligned with the unit ef vector, and the b000 corre-
sponding to the case where the principal polarisation of the probe being aligned
with the unit ez vector. Thus, provided the receiving characteristic of the two probes
are known, the simultaneous equations can be solved for the AUT transmitting
functions as follows. In matrix form, as we did with the planar case, these simul-
taneous equations can be expressed as

I 0m kzð Þ
I 00m kzð Þ

 �

¼ R01
m kzð Þ R02

m kzð Þ
R001

m kzð Þ R002
m kzð Þ

" #

� T1
m kzð Þ

T2
m kzð Þ


 �

(7.261)

where

I 0m kzð Þ ¼ 1
4p2a0

ð
1

�1

ð
2p

0

b0
0 f0, z0ð Þe�jmf0 ejkzz0 df0dz0 (7.262)

I 00m kzð Þ ¼ 1
4p2a0

ð
1

�1

ð
2p

0

b000 f0, z0ð Þe�jmf0 ejkzz0 df0dz0 (7.263)

Thus, provided this does not result in a singular matrix, these simultaneous equa-
tions can be inverted by evaluating the inverse of the square matrix as

T1
m kzð Þ

T2
m kzð Þ


 �

¼ R01
m kzð Þ R02

m kzð Þ
R001

m kzð Þ R002
m kzð Þ

" #�1

� I 0m kzð Þ
I 00m kzð Þ

 �

(7.264)
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where, from linear algebra we know that the inverse of a (not necessarily ortho-
gonal and normalised) matrix can be obtained from

R01
m kzð Þ R02

m kzð Þ
R001

m kzð Þ R002
m kzð Þ

" #�1

¼ 1

R01
m kzð ÞR002

m kzð Þ � R02
m kzð ÞR001

m kzð Þ� 	

� R002
m kzð Þ �R02

m kzð Þ
�R001

m kzð Þ R01
m kzð Þ

" #

(7.265)

This is valid provided the denominator of the multiplying factor is non-zero. This
denominator is actually the determinant of the original square matrix and would be
zero in the event the original matrix is singular. Avoidance of this difficulty is
generally assured provided each probe responds predominantly to one polarisation,
i.e. ef or ez respectively. Thus, each scan must be taken using a different probe or,
with the same probe only using a different orientation, e.g. with the probe having
been rotated by 90� about its z-axis. Assuming the matrix determinant is non-zero,
the AUT transmit coefficients can be obtained from

T1
m kzð Þ

T2
m kzð Þ

" #

¼ 1

R01
m kzð ÞR002

m kzð Þ � R02
m kzð ÞR001

m kzð Þ� 	

� R002
m kzð Þ �R02

m kzð Þ
�R001

m kzð Þ R01
m kzð Þ

" #

� I 0m kzð Þ
I 00m kzð Þ


 �

(7.266)

Finally, writing this explicitly for the two sets of linearly independent AUT trans-
mit coefficients we obtain

T1
m kzð Þ ¼ R002

m kzð ÞI 0m kzð Þ � R02
m kzð ÞI 00m kzð Þ

R01
m kzð ÞR002

m kzð Þ � R02
m kzð ÞR001

m kzð Þ� 	 (7.267)

and

T2
m kzð Þ ¼ R01

m kzð ÞI 00m kzð Þ � R001
m kzð ÞI 0m kzð Þ

R01
m kzð ÞR002

m kzð Þ � R02
m kzð ÞR001

m kzð Þ� 	 (7.268)

Thus, provided the receiving coefficients of the probes are known, the AUT transmit
coefficients can be determined from the measured amplitude and phases at the probe,
i.e. b00(f0, z0) and b000(f0, z0). The last task to address before the probe-compensated
cylindrical near-field theory is complete is to obtain the probe-receiving coefficients
in the AUT coordinate system from known probe transmitting coefficients specified in
the probe coordinate system and to derive the requisite vector elemental cylindrical
wave functions.

The probe compensation scheme developed above requires that the probe coef-
ficients are provided in a coordinate system that is centred on the measurement axis.
From the shifting property of the Fourier transform that relates the measured cylind-
rical near-field data and the CMCs, we can expect that a rotation in the f-axis
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corresponds to a linear phase change in the mode domain that is applied in the m-axis.
Similarly, a displacement in the z-axis would similarly correspond to a linear phase
change to the CMCs purely in the kz axis. Thus, applying a translation in two of the
three orthogonal cylindrical axes can be implemented rigorously in the mode domain
in a trivial way. However, a translation in the radial direction would change the
distribution of modes in a fundamental way. This can be seen intuitively from a
consideration of the sampling theorem which is treated in detail in the following
section. A probe centred at the probe coordinate system would be expected to contain
only a very few, low-order CMCs. However, as the probe is displaced away from the
origin of its coordinate system, a larger number of higher-order mode coefficients
would be required in order that the more rapidly varying phase function is correctly
represented. Thus, even an electrically small probe antenna, which contains perhaps
only a first-order mode, when displaced away from its origin by a distance that is
equal to the radius of the conceptual cylindrical near-field measurement surface, will
contain mainly higher-order modes. This is also true for spherical near-field mea-
surements as illustrated in Figure 8.33 in Volume 2. Thus, when the probe compen-
sation is applied to the spectrum of CMCs, every mode is affected and not just a few
low-order coefficients. This is a very crucial feature of the translation of origins that is
central to cylindrical (and also spherical) probe compensation formula. The translated
probe receive coefficients can be obtained using a summation formula [14,15]. This
formula is based upon Graf’s addition theorem [15] which states that a displaced
cylindrical harmonic function can be constructed from a linear superposition (i.e.
which in this case is an infinite summation) of un-displaced cylindrical harmonic
functions. This formula can therefore be used to enable cylindrical mode coefficients
that are expressed in terms of a cylindrical coordinate system that is centred outside of
the probe to be related to the cylindrical mode coefficients that are expressed in terms
of a cylindrical coordinate system that is centred on the probe.

However, in an alternative method that will be further developed in
Chapter 12, it is possible to displace a radiator by transforming to the asymptotic
far-field, and then by applying a differential phase change, cf. Section 12.4.1. As
shown above, this transform between modes and far-fields can be implemented
numerically through the use of one-dimensional fast Fourier transform; this method
is both rigorous and highly efficient. Furthermore, as most probe patterns are
derived from far-field measurements, which are typically taken using spherical
systems, the starting point for preparing the probe cylindrical mode expansion is in
fact far-field data. Thus, this phase change can be conveniently applied early on
within the data processing chain, i.e. before transforming to determine the transmit
probe cylindrical mode confidents. However, irrespective of how the translation of
origins is actually implemented, the displacement is equal to the measurement
radius of the cylindrical near-field measurements that this data is to be used to
correct. The receive coefficients can be obtained from the transmit coefficients
using the reciprocity relation [16]

Rs
n kzð Þ ¼ �1ð Þn 4pk2

r

k

Zg

Z0
Ts
�n �kzð Þ (7.269)
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Here, Z0 is the impedance of free space and Zg is the impedance of the single mode
in the waveguide transmission line. These expressions can be used to obtain
translated probe receiving coefficients for each of the two probes whereupon they
can be used with the probe compensation formula that was developed above. The
next section provides an illustration of the effect and significance that probe cor-
rection has on an example cylindrical near-field antenna measurement.

7.7.3 Effect of probe compensation in cylindrical near-field
measurements

This section contains an illustration of the typical effect of probe pattern compen-
sation in cylindrical near-field measurements. Figures 7.14 and 7.15 contain car-
dinal cuts that show the far-field antenna patterns which were obtained from
cylindrical near-field measurements with and without probe compensation. Here, it
can be seen that when acquiring data from an AUT, which in this cases is a medium
gain x-band planar-slotted waveguide array antenna, the effect of probe compen-
sation is most significant in the vertical elevation axis which is the axis that is most
closely associated with the linear-scan axis. This follows from the comparatively
small AUT-to-probe separation and the large linear span which corresponds to field
being incident on the probe from comparatively large incidence angles. Thus, the
directive properties of the probe, that is to say the angular sensitivity of the probe,
are most crucial in the linear axis. For the angular scanning axis, the AUT is rotated
such that the field incident on the near-field probe arrives from a far smaller range
of incidence angles than was the case for the orthogonal axis. Thus, the sensitivity
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Figure 7.14 Comparison of azimuth cuts with and without probe compensation
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of the probe as a function of angle is less pronounced. This can be seen illustrated
in the results presented in Figure 7.14 where the effect of probe compensation in
the f-axis is very limited. Indeed, providing the probe pattern illumination is
constant across the conceptual minimum cylinder, then in the f-axis, probe com-
pensation can be ignored. Conversely, for the q-axis, as shown in Figure 7.15, the
effect is far more pronounced and equates broadly to the planar case that was
treated earlier in Chapter 6. Thus, the observations regarding the characteristics of a
planar near-field probe are equally applicable here. That is to say, a probe that is
intended for use with cylindrical testing should have a broad pattern that does not
contain pattern nulls within the forward half-space as this would result in exces-
sively large correction coefficients being used within the compensation procedure.
This can lead to numerical instabilities or loss of sensitivity in the corresponding
far-field directions. Similarly, errors within the calibration of the probe pattern will
be introduced into cylindrical measurements that are corrected with this data and
the error approximately corresponds to a one-to-one mapping in the q-axis.

The form of the probe compensation can perhaps be better interpreted if the
formulae are written in a slightly different form. Let us rewrite the probe correction
formula as

T1
m kzð Þ ¼

I 0m kzð Þ
R01

m kzð Þ �
R02

m kzð ÞI 00m kzð Þ
R01

m kzð ÞR002
m kzð Þ

1 � R02
m kzð ÞR001

m kzð Þ
R01

m kzð ÞR002
m kzð Þ

� � (7.271)
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Figure 7.15 Comparison of elevation cuts with and without probe compensation
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Let two complex polarisation ratios be defined as:

<0
m kzð Þ ¼ R01

m kzð Þ
R02

m kzð Þ (7.272)

<00
m kzð Þ ¼ R001

m kzð Þ
R002

m kzð Þ (7.273)

Thus, the probe compensated AUT transmit coefficients can be obtained using

T1
m kzð Þ ¼

I 0m kzð Þ
R01

m kzð Þ �
I 00m kzð Þ
R002

m kzð Þ
1

<0
m kzð Þ

1 � <00
m kzð Þ

<0
m kzð Þ

(7.274)

Similarly

T2
m kzð Þ ¼

I 00m kzð Þ
R002

m kzð Þ �
I 0m kzð Þ
R01

m kzð Þ <00
m kzð Þ

1 � <00
m kzð Þ

<0
m kzð Þ

(7.275)

This is a form that is analogous to that which is used to represent the planar, or
spherical, probe compensation formula and is a version that is often used when com-
piling range assessments, cf. Chapter 10. From inspection of these equations we can
see that when one assumes that probe no. 1 (denoted by single primes) is H-polarised
(Ef) and probe no. 2 (denoted by double primes) is V-polarised (Eq), we see that the
ratio of ℜ00

s/ℜ0
s approaches 0 and thus

T1
m kzð Þ 
 I 0m kzð Þ

R01
m kzð Þ �

I 00m kzð Þ
R002

m kzð Þ
1

<0
m kzð Þ (7.276)

And similarly

T2
m kzð Þ 
 I 00m kzð Þ

R002
m kzð Þ �

I 0m kzð Þ
R01

m kzð Þ<
00

m kzð Þ (7.277)

Both of these equations now consist of two terms, the first being what can be called
a ‘pattern correction’ term and the second a ‘polarisation correction’ term, cf. the
detailed discussion presented in Chapter 8.

7.7.4 Calculation of probe cylindrical mode coefficients
from far-field data

The equivalent CMCs that represent the displaced antenna can be obtained from an
inversion of equations that compute the far-field from the CMCs. As was shown
earlier, asymptotic far-field data can be obtained using

Eq
r!1

r,f, qð Þ ¼ �j2k sin q
X
1

m¼�1
jmB2

m k cos qð Þejmf (7.278)
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Ef
r!1

r,f, qð Þ ¼ �2k sin q
X
1

m¼�1
jmB1

m k cos qð Þejmf (7.279)

Thus, as this is a Fourier series, its inverse transform can be immediately written
down as

B1
m k cos qð Þ ¼ � j�m

4pk sin q

ð
2p

0

Ef
r!1

r,f, qð Þe�jmfdf (7.280)

B2
m k cos qð Þ ¼ �j

j�m

4pk sin q

ð
2p

0

Eq
r!1

r,f, qð Þe�jmfdf (7.281)

The factor of 2p is introduced in the denominator to preserve the normalisation of
the resulting CMCs. These transforms can be evaluated numerically through the
use of the efficient 1D inverse FFT, or trapezoidal FFT. These equations enable the
probe CMCs to be obtained from far-field data. Far-field probe data would need to
be provided having been tabulated on an appropriately spaced far-field grid, which
in this case corresponds to a plaid, monotonic and equally spaced azimuth over
elevation coordinate system with the fields resolved onto a Ludwig II azimuth over
elevation (az/el) polarisation basis, cf. the appendices for a detailed treatment of
polarisation bases. This definition corresponds to the spherical (r, f, q) grid that is
used within the standard cylindrical derivation with the positive z-axis vertical,
cf. Figure 7.5. The far-field data can be either measured on this grid, or alter-
natively, approximation, e.g. piecewise polynomial interpolation can be used to
produce data that is tabulated as required. The relationship between the az/el
coordinates and the polar spherical coordinates can be expressed as

az ¼ f (7.282)

el ¼ p
2
� q (7.283)

Thus, the relationship between the unit vectors in these two coordinate systems can
be expressed as

beaz ¼ bef (7.284)

beel ¼ �beq (7.285)

These equations are also utilised with the development of the cylindrical mathe-
matical absorber reflection suppression and far-field mathematical absorber
reflection techniques that are developed in Chapter 12.

One important aspect to the preparation of the probe pattern for use in the
compensation of near-field measurements is to ensure that the probe pattern phase
reference is located in the centre of the aperture at the tip of the probe. This ensures
that when the measurement radius, etc., is measured, the distance used is the
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distance from the origin of the measurement coordinate system (which in this case
is measured from the assumed vertical f-axis to the tip of the probe). This appears
self-evident for the example of an open-ended rectangular waveguide probe;
however, this is also true for non-aperture type probes, e.g. log-periodic dipole
array (LPDA) antennas or open-boundary dual ridge tapered horns. For these types
of probes, the active radiating portion of the structure will generally move along the
probes, z-axis as a function of frequency. However if, as part of the auxiliary probe
pattern calibration measurements, the probe is acquired across its frequency band
with the tip always located exactly at the origin of the measurement coordinate
system, which for a spherical test system is the intersection of the q- and f-axes,
then this means that when this pattern data is used to compensate measurements
taken using this probe, any displacement in the location of the active portion of the
probe will be correctly compensated for.

Probably the most commonly used probe for cylindrical near-field testing
comprises an open-ended rectangular waveguide section that is excited by the
dominant TE10 mode. The well-behaved broad pattern function that is free from
nulls in the forward hemisphere, has good polarisation purity, and exhibits a low
scattering cross-section make these devices particularly well suited to being used as
general purpose near-field probes. Two commonly used non-aperture type, broad-
band, probe antennas can be seen in Figures 7.16 and 7.17. Neither of these probes
has a single aperture; however, if the above procedure is used both can be suc-
cessfully used for the acquisition of cylindrical near-field data provided the probe
pattern is not overly narrow and the side lobes too low, then they can be effectively
used as probes. If the pattern falls off too rapidly with angle, then the probe is
insensitive to a wave incident from these directions, and consequently the com-
pensation coefficients become too large and the measurement becomes insensitive
for these (primarily elevation) directions. For the case of the LPDA antenna, as the
frequency increases, the radiating centre moves progressively towards the tip of the

Figure 7.16 0.20–3 GHz log-periodic dipole array antenna used as a broadband
probe (Image courtesy of RF-Spin)
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probe where the shortest dipole elements are located with the longer elements
acting as reflectors. This is the converse behaviour to that of the open boundary
quad-ridge horn (QRH). In this case, as the frequency increases, the ‘radiating’
portion of the device moves away from the ‘aperture’ of the probe down the throat
of the horn towards the region where the separation between the ridges becomes
narrow. In either case, provided the auxiliary calibration is performed as described
earlier, and the radius of the cylindrical measurement is taken from the axis of
rotation to the tip of the probe, no further parallax-correction, etc., is needed. A
detailed treatment of probe and probe characterisation is presented in Chapter 12.

7.8 Sampling requirements for cylindrical near-field
measurements

Band limits of the AUT pattern in the q direction define a data point spacing in z
like the planar case. Also, the Fourier variable kz can be limited to �k0 (equiva-
lently, where kr ¼ 0) as these are the highest-order propagating modes. As the
sample spacing, i.e. resolution, is determined from the maximum value of kz, we
can write that

dz ¼ p
k
¼ l

2
(7.286)

where l denotes the wavelength. This corresponds to taking one sample per half
wavelength for a homogeneous wave propagating in the �z direction which is the

Figure 7.17 2–6 GHz dual-port quad-ridge open boundary horn used as
broadband probe (Image courtesy of RF-Spin)
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fastest rate of change of phase for a non-evanescent wave, cf. Nyquist’s result that
equi-spaced data should be sampled with at least two points per cycle of highest
frequency component, see Chapter 6 [1]. Due to the exponential decrease in the
reactive cylindrical modes the maximum m value (cf. the spherical case as devel-
oped in Chapter 8) can be expressed in terms of the free-space wavenumber and the
MRC, rt, as

M ¼ krt þ M0 (7.287)

Here, M0 is a positive integer that is a safety margin that depends upon the accuracy
required. A value of M0 ¼ 10 is sufficient for many test applications not involving
super-directive antennas. Figure 7.18 contains a schematic representation of the
plan-view of a cylindrical test system. Here, the AUT can be seen to be displaced
from the f-axis. The MRC is centred on the axis of rotation and is sufficiently large
in diameter to be able to circumscribe the majority of the current sources. The
measurement radius is coaxial with the MRC but must be larger than the MRC to
prevent mechanical interference between the AUT and the probe. The cylindrical
near-field theory as developed above will work for any measurement radius that is
larger than the MRC; however, when the AUT-to-probe separation is larger than
this by several wavelengths, reactive coupling of evanescent modes is minimised
and the aforementioned sampling criteria is valid. That is to say

r0 > rt þ nl (7.288)

where n is a positive number � 0. As has been shown within the development of
the planar theory, reactive fields are attenuated very rapidly with distance and when
n � 3, all appreciable reactive modes are effectively attenuated before they reach

Probe
AUT linear stage

AUT azimuth positioner

Axis of rotation
f-axis

0 m

AUT support

AUT
d

M
RE rt

D

Radius r0

z-axis
(out of page)

Figure 7.18 Illustration of MRE ¼ MRC in cylindrical near-field measurements
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the probe. The angular sample spacing, in radians, is determined from the highest-
order cylindrical mode that contains appreciable amounts of power and is thus,

Df � p
M

(7.289)

when M � 1. Thus, when krt � M0, then this equates to taking samples at every
half wavelength around the circumference of the cylinder defined by the MRC,

Df � p
krt þ M0


 l
2rt

(7.290)

Here, the angular sample spacing is expressed in radians. Thus, the maximum mode
index, M, is driven by the frequency, size and mounting offset of the AUT being
considered and is independent of the measurement radius. It is found that when
testing antennas outside of the reactive near-field, higher order cylindrical modes,
specifically those corresponding to the region outside of a circle defined by

m2 þ kzrtð Þ2 ¼ M2 (7.291)

will be attenuated very rapidly and the infinite summations can be truncated to a
finite number without incurring appreciable error. This can also be expressed as

m2 þ kzrtð Þ2 ¼ krt þ M0ð Þ2 (7.292)

Thus, in practice the amplitude of the CMCs is found to attenuate rapidly outside
the circle defined by the circle of radius krt, which is shown in white in Figure 7.19.
This concept is used extensively in Chapter 12 when developing the cylindrical
Mathematical Absorber Reflection Suppression (C-MARS) technique multipath
suppression technique.

Hence, we have shown that the practical upper bounds on the sampling interval
equate to taking one sample per half wavelength across the surface of the con-
ceptual minimum cylinder. It is important to note at this stage that we are not
completely free in our choice of Df. While we need to ensure that we satisfy the
sampling criteria, we also need to ensure that the f span constitutes a closed
sampling interval, that is to say the maximum and minimum angular limits do not
overlap, or leave a gap, as this would result in an appreciable error being introduced
into the computed CMCs and resulting far-field pattern data. Clearly, and as is the
case with planar testing, larger AUT-to-probe separations necessitate larger linear
scan axes for a given maximum far-field valid angle which is merely a consequence
of limiting measurement truncation in this axis.

As stated earlier, there are no limits in the theory that require a measurement
distance, d, of 3 wavelengths or greater. However, when testing at reduced
separations, the required data point spacing to correctly sample the fine structure of
the evanescent field will decrease, requiring some experimentation to determine
what the spacing should be, and often increases the measurement time. In the planar
case, the reduced distance will increase the angular region of validity, or reduce the
scan lengths, which are good reasons to move as close as possible. However, at

Cylindrical near-field antenna measurements 425



shorter ranges, the multiple reflection error may increase significantly and this is
one of the reasons for choosing the larger distance. Thus, due to these band limits,
the integration required to obtain the CMCs, etc., can be replaced by summation
without approximation and the discrete, or more usually fast Fourier transform can
be used to compute the CMCs.

The specification of the sample spacing in the angular and linear axes enables
the specification of a plaid, monotonic and equally spaced lattice of points (r0,
mDf, nDz) at which samples are to be taken where m and n are integers such that
0 � m � M – 1 and 0 � n � N – 1 with M and N being positive integers. Here, it
is assumed that the measured fields are zero when z < 0 and z > (N – 1)Dz. In
practice, this can only be achieved if the linear scan-axis is infinitely long.
However, for most practical cases, the test antenna would be installed within a
truncated conceptual measuring cylinder so that there is no appreciable radiation
propagating in the �z direction. That is to say, the AUT must have directive gain in
this axis and N must be set to a suitably large value. It has been found that trun-
cation in the z-axis at a fairly high level of field circa �10 dB leads to the intro-
duction of a spurious ripple on the far-field q-axis radiation pattern. This effect is
most noticeable in side lobe level variation, and in the computed antenna direc-
tivity, which will therefore also affect the predicted gain value. However, it can be
stated that the overall far-field f-axis pattern obtained with a severely z-shortened
cylindrical near-field data may be acceptable for many applications. Further
improvements are possible through the use of near-field filter functions to soften
the effect of scan height truncation. So that this can be illustrated, Figure 7.20
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Figure 7.19 Cylindrical mode coefficients attenuate rapidly outside the circle of
radius ka – shown in white
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contains a z-axis cut of measured cylindrical near-field data. Here, the three data
sets have been truncated in the linear axis and correspond to a span in the linear
axis of 0.84 m, 0.6 m and 0.4 m respectively. This data was transformed to the far-
field using the standard probe-corrected cylindrical processing as developed earlier.
The resulting far-field q- and f-axis cuts are presented in Figures 7.21 and 7.22,
respectively. Here, the variation in the q-axis (elevation) cut is most pronounced.
This is expected as the z-axis truncation corresponds most closely to this far-field
axis. As the truncation is increased, the maximum far-field angle out to which
reliable data is available reduces and the degree of spurious high-frequency ripple
also increases. Variation in the f-axis (azimuth) cut is also evident even though this
axis is not truncated in the near-field. This follows from the anti-reductionist
relationship between the near- and far-fields. As expected, however, the degree of
change is less than was the case for the q-axis.

Table 7.1 shows the computed directivity values for the various truncation
cases considered earlier. It is clear that the reduced scan area artificially raises the
measured directivity value. However, these are gross examples of truncation and in
practice some degree of truncation level may be tolerable in some applications.
Methods for establishing the degree of error, mostly using perturbation-based
techniques, are established in Chapter 10.
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Figure 7.20 Near-field data for a vertical cut, with varying z-axis truncation
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The necessary integrals can be evaluated efficiently by using the FFT algo-
rithm. When using the FFT to evaluate the integral for the CMCs, the integral
transform domain data will be produced on a grid such that the maximum value of
kz can be determined using

kz0j j ¼ p
Dz

�

�

�

�

�

� (7.293)

Thus, the sample spacing can be obtained using, cf. the planar case developed
earlier

Dkz ¼ 2kz0

N
¼ 2p

NDz
(7.294)

where N is the number of points in the kz axis. Hence

kz,n ¼ kz0 þ nDkz ¼ n
2p

NDz
� p
Dz

(7.295)

Thus, in terms of direction cosines we obtain the usual expression for the lattice
coordinate

kz,n

k
¼ l

NDz
n � N

2


 �

(7.296)

Note that when using a standard FFT algorithm, the DC point, i.e. the component
that corresponds to a cylindrical wave propagating in the xy-plane, is placed at the
first element in the array, not midway between elements. Since the polar spherical
angle is related to kz, the Fourier transform parameter for the z-part of the cylind-
rical modes through

kz ¼ k cos q (7.297)

This implies that the far-fields will be provided on a lattice of (q, f) points with q
determined by

qn ¼ arccos
kz,n

k

� �

(7.298)

hence

kr,n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � kz,n

q

(7.299)

Table 7.1 Computed directivity versus z-axis truncation

CNF scan height (m) Measured directivity (dBi)

0.84 27.95
0.6 27.88
0.4 28.05
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Thus, as n is an integer, the points will be distributed evenly in ‘cosine space’, and
non-equally in angle space, cf. again the planar case treated earlier. The use of the
FFT algorithm requires that for the first time we must consider evaluating non-
integer order Hankel (and potentially Bessel) functions. The reason for this is that,
beyond the use of zero padding to increase the array bounds of the near-field data
arrays, as the number of point returned by a FFT must equal the number of points
provided to the algorithm, we are not therefore free to arbitrarily choose the sample
spacing of the transformed arrays. Computationally, this is not too inconvenient as
routines for the computation of Hankel functions of non-integer orders are available
and the expression for evaluating negative-order functions and the derivative of the
Hankel functions are also valid for non-integer orders. For the mode index axis, m,
a similar treatment can also be employed, thus and using analogous notation to the
kz case considered earlier

m0j j ¼ p
Df

�

�

�

�

�

�

�

�

(7.300)

With

Dm ¼ 2m0

M
¼ 2p

MDf
(7.301)

where M is the number of points in the m-axis, and i is a positive integer, thus

mi ¼ m0 þ iDm ¼ i2p
MDf

� p
Df

(7.302)

The angular axis is assumed to comprise a closed sampling interval, otherwise
further truncation will be introduced. Thus, we are not free to choose the f-axis
span, sample spacing and number of samples with complete freedom. It is also
important to recall that here it is assumed that there is no angular harmonic m
greater than p/Df. Using these relationships, the integrals required to compute the
CMCs can be replaced as FFT-type summations, thereby allowing highly efficient
cylindrical near-field to far-field transform algorithms to be deployed.

7.9 Implementation of cylindrical near-field to far-field
transformation

In the preceding sections a detailed development of the cylindrical near-field to far-
field transform process is presented. Although the mathematical development is
lengthy and in places involved, the resulting formula and the corresponding com-
puter algorithm are not too complex. The transformation process is illustrated later
where example data is passed through the standard cylindrical algorithm in an
attempt to highlight the important steps and features of the process. Figures 7.23
and 7.24 are respectively the horizontal (f) and vertically (z) polarised measured
cylindrical near-field amplitude patterns that have been presented in the form of a
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Figure 7.23 Horizontally (f) polarised measured cylindrical near-field
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grey-scale checkerboard plot. Although not shown, corresponding phase data is
also recorded as part of the acquisition.

For this example, the near-field data was taken at 8 GHz. The MRC was
0.1270 m, making k0 
 167 m�1. Thus, the highest-order CMC was 31 meaning
that all modes of orders �31�m� 31 were computed during the transformation.
This implied that the angular sampling increment should be no greater than 5.7�

and so an actual sample spacing of 4� was used when acquiring this near-field data.
In the linear axis a spample spacing of 0.0187 m should be used to satisfy the
Nyquist criteria and in actuality this measurement was slightly oversampled as an
actual sample spacing of 0.0120 m was used during the acquisition.

Using the formula derived earlier, the CMCs can be computed. Figures 7.25
and 7.26 respectively show plots of the S ¼ 1 and S ¼ 2 polarised CMCs which
have again been presented in terms of a greyscale checkerboard plot. Here, the
amplitude has been presented in dB form. CMCs are complex quantities and as
such possess a phase pattern that has not been presented. Here, as only radiated,
rather than reactive, fields contribute to the asymptotic far-field pattern, CMCs
have only been computed and plotted over the range �k0 � kz � k0. Similarly,
modes have only been computed up to |m| � mmax, where mmax is determined by
the angular sample spacing.

Once the measured electric fields have been expended onto a set of cylindrical
modes, these modes can be corrected for the directive properties of the measuring
probe. In this example, a WR90 open-ended rectangular waveguide section excited
by the fundamental TE10 mode was used as a near-field probe. As required by the
cylindrical near-field theory as developed earlier, two different probes are
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Figure 7.25 S ¼ 1 polarised measured cylindrical mode coefficients
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necessary to implement probe correction; two measurements were made where the
probe had been rotated by 90� about its length between successive measurements.
This is the reason why two orthogonal components of the near electric field were
measured. Once the measured cylindrical modes have been compensated for the
measuring probe, two new sets of modes corresponding to the AUT are obtained.
These can be found presented in Figures 7.27 and 7.28 which correspond to the
S ¼ 1 and S ¼ 2 polarisations, respectively. From comparison of these and the
equivalent plots prior to probe correction, it can be seen that the greatest change can
be observed in the kz axis. This phenomenon is apparent as the far-field pattern is
obtained through a summation in m, with the kz axis essentially only being rela-
belled between mode domain and the far-field. Probe correction in cylindrical near-
field measurements typically has the greatest impact in the q-axis which corre-
sponds to the (vertical) linear z-axis. As with the planar case that was treated in the
previous chapter, this follows from the comparatively short-range length and the
large subtended elevation angles observed at the probe. Conversely, in the f-axis,
the probe is nominally always receiving AUT-radiated fields from the boresight
direction and hence the comparatively minor change observed in the m-axis.

Once the probe-corrected AUT CMCs have been obtained, these can be sum-
med to compute the asymptotic far-field pattern. The f- and q-polarised far electric
field components can be found presented in Figures 7.29 and 7.30, respectively.
Here, the patterns have been plotted as a function of f and q on a plaid, monotonic
and equally spaced polar spherical grid, cf. Figure 7.5.

Here, the peak of the pattern has been normalised to 0 dB with the q-polarised,
i.e. cross-polar, pattern being plotted with respect to the peak of the f-polarised, i.e.
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Figure 7.26 S ¼ 2 polarised measured cylindrical mode coefficients
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co-polar, pattern. In Figures 7.29 and 7.30, the f-axis has been shifted so that the
f ¼ 0� (boresight) direction lies in the centre of the plot in agreement with general
convention. The following section presents an interesting extension of the standard
cylindrical near-field transform as outlied earlier that enables near-field data to be

–150

–100

–30 –20 –10 0
m

10 20 30

0

–5

–10

–15

–20

–25

–30

–35

–40

–45

–50

–50

0K
z

50

100

150

B1

Figure 7.27 S ¼ 1 polarised probe-corrected cylindrical mode coefficients
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Figure 7.28 S ¼ 2 polarised probe-corrected cylindrical mode coefficients

434 Theory and practice of modern antenna range measurements, volume 1



acquired over the surface of a cone and transformed to provide probe-corrected far-
field data. A data processing (i.e. flow) diagram for the probe-corrected cylindrical
near-field to far-field transform can be seen presented in Figure 7.31. As a final part
of the cylindrical processing, two further commonly implemented steps have been
shown in this flow diagram. The first of these is the change in polarisation basis and
a detailed treatment of coordinate systems, polarisation basis can be found pre-
sented in the appendices. The second is the inverse transform from the far-field
back to the antenna aperture plane which is a commonly used method of non-
invasive, non-destructive diagnostics. Detailed information regarding this can be
found presented in Chapter 12 on advanced antenna measurement techniques.
These two topics are more general topics that are used with other near-field geo-
metries being, as they are, not limited to the cylindrical implementation.

7.10 Conical near-field antenna measurements

Conceptually, the right conical measurement system is perhaps most closely related
to the well-documented, well-understood cylindrical near-field scanning technique.
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Only here, the axis of rotation of the AUT and the linear translation stage which
carries the probe are no longer constrained to be exactly parallel to one another. By
taking samples incrementally on a raster grid by varying the azimuthal (f) angle
and linear displacement, the near electric field can be sampled over the surface of a
right cone [17]. An example of this arrangement can be seen presented in
Figure 7.32. Here, a standard NSI-200V-5 	 5 combination planar-cylindrical
antenna test system is being used to acquire conical near-field data.

Here, the vertical axis of the 1.5 m by 1.5 m planar scanner has been tilted from
the vertical using a precision tilting fixture that allowed for 0� or 30� half cone-
angle, which is the angle between the local gravity vector and the linear axis. As
conical measurements were made, the (horizontal) x-axis was not used during the
acquisitions. The rotational f-axis of the cylindrical system remains vertical and is
aligned to the local gravity vector. The WR-90 open-ended rectangular waveguide
probe is aligned so that its z-axis (axis coaxial to the waveguide section) is hor-
izontal. Thus, the probe is used to acquire horizontal and vertical near electric fields
which correspond to the standard cylindrical f- and z-polarised unit vectors. The
AUT was an x-band standard gain horn (SGH). The acquisitions were made using
standard cylindrical data acquisition software with no modification to the software
being required with only the addition of the cone being needed to be recorded. The
implementation of the conical transform can be derived from the integral used to

Read in tangential
near electric field

components

Compute CMC using
two-dimensional FFT

Apply probe
compensation to CMCs

Compute far-fields
using one-dimensional

FFT

Resolve far-field pattern
onto desired
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Inverse Fourier
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plane if required

Output data to disk and
post process if required

Compute CMC using
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Measure far-field
probe pattern

Calculate receive CMCs
from transmit CMCs

Figure 7.31 Flow diagram for cylindrical near-field to far-field transform

436 Theory and practice of modern antenna range measurements, volume 1



determine the CMCs from the measured fields. By noting that the measurement
radii are a function of the z-axis, we can write that

B1
m kzð Þ ¼ �1

4p2k3
r

ð
1

�1

ð
2p

0

1

H 2ð Þ0
�m krr0 zð Þ� 	

mkz

r0 zð ÞEz r0 zð Þ,f, zð Þ
�

þ k2
rEf r0 zð Þ,f, zð Þ

�

ejmfejkzzdfdz (7.303)

B2
m kzð Þ ¼ k

4p2k2
r

ð
1

�1

ð
2p

0

1

H 2ð Þ
m krr0 zð Þ� 	

Ez r0 zð Þ,f, zð Þejmfejkzzdfdz (7.304)

The far-fields are obtained from the B1 and B2 CMCs using the usual summation
process developed earlier. Clearly, for the case where probe pattern correction is
needed, this would also be needed to be implemented within the z-integral. In this
way, the near-field to far-field transform is implemented by performing a cylind-
rical mode expansion on each infinitesimal thin cylindrical scan (i.e. ring) in turn
and then using the principle of linear super-position to obtain the resulting modal
expansion. It is possible to transform each ring of data to the far-field and then to
integrate the fields there to obtain equivalent results; however, the computational
effort required is greater in this case.

Figure 7.32 Conical near-field antenna measurements being acquired using
an NSI-MI Technologies LLC combination planar-cylindrical
positioning system
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In practice, the number of CMCs can be truncated to a finite number which
equates approximately to half wavelength sampling over the surface of a con-
ceptual cylinder that is centred on the origin of the measurement coordinate system,
and that encloses the majority of the current sources. This is also true for the
conical case. Thus, the maximum mode index M is given by M ¼ krt þ M0, where rt

is the MRC and M0 is a safety margin that depends upon the accuracy required. A
value of M0 ¼ 10 is sufficient for many applications not involving super-directive
antennas. Also, as was the case for the cylindrical geometry, the Fourier variable kz

can be limited to �k0 (equivalently, where kr ¼ 0) as these are the highest-order
propagating modes. As the sample spacing, i.e. resolution, is determined from the
maximum value of kz, we can write that dz ¼ p/k0 ¼ l/2, where l denotes the
wavelength. Thus, for the conical case, the angular sample spacing is held fixed for
all values of z at an amount determined by the size of the MRC, with samples being
taken at every half wavelength along the linear scan axis, that is over the surface of
the cone, i.e. not along the rotation axis where the two amounts differ by a factor of
the cosine of the half cone angle.

To illustrate the conical measurement system, the system shown in Figure 7.32
was used to acquire a conical and cylindrical near-field measurement of the same
test antenna. The first measurement consisted taking a conventional cylindrical
near-field measurement and this was to be used as the baseline measurement
against which the conical test case could be compared. The second measurement, as
illustrated, involved tilting the vertical axis of the scanner through 30� so that an
equatorial conical near-field measurement could be made. This case was selected
so that the basic conical near-field to far-field transform could be verified against
the baseline cylindrical case. Measured cylindrical and conical near-field amplitude
data of the horizontally (i.e. f) polarised electric field can be found presented in
Figures 7.33 and 7.34, respectively.

These measured data sets were transformed to the far-field using the algorithm
outlined earlier where the results shown in Figures 7.35 and 7.36 were obtained.
These results can be compared directly with the results shown in Figures 7.29
and 7.30.

As is evident from inspection of the plots of the near-field measured patterns,
the data sets are all truncated to some degree in the nominally vertical linear axis
which will inevitably lead to some leakage in the far-field pattern. First, and as is
the case with planar scanning, the first-order truncation effect will result in the error
within the pattern being effectively infinitely large outside of some angular limit
which can be approximated by geometry (cf. an infinite frequency, geometrical
optics approximation). Second, the holistic nature of the relationship that exists
between the near-field and far-field regions will result in the introduction of some
ripple into the far-field pattern within even this angular range.

Unfortunately, as these measurements were preliminary in nature, they were
not conducted within a screened anechoic environment and as such, the multi-path
within the measurements did differ between each measurement configuration
which degraded the agreement attained. This was particularly crucial as both the
orientation of the AUT and the probe changed between measurements. Crucially,
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Figure 7.33 Cylindrical near-field amplitude data of the f-polarised near electric
field component
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Figure 7.34 Conical near-field amplitude data of the f-polarised near electric
field component
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the radii of the cylindrical, and particularly the conical, measurements were not
accurately determined during these measurements which are the most likely cause
of the small discrepancies in the location of the side lobes. Further verification of
this technique can be found presented in [17].

Ideally, the boresight of the AUT would be orientated so that it points directly
through the tip of the cone, i.e. in a polar mode (cf. the equatorial mode measure-
ments discussed herein) so that the undesirable effects of truncation are minimised.
In practice, however, any imperfection in the alignment of the conical system could
result in the introduction of significant errors in the corresponding far-field pattern.
This is a consequence of the fact that, naturally, the boresight direction of the AUT,
and thus the region of greatest field intensity, will be directed towards the tip of
the cone, which is where the set of radial conical linear cuts intersect and where the
alignment issues are most critical. Obviously, this can be eased by orientating
the AUT so that it ‘looks’ out through the side of the cone thus avoiding the tip
region, but this is perhaps an inelegant solution. One alternative that has been
used with considerable success is the closely related poly-planar measurement
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Figure 7.35 f-Polarised far-field antenna pattern
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Figure 7.36 q-Polarised far-field antenna pattern
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technique. For the poly-planar case, a truncated pyramid, i.e. a pyramidal frustum,
was employed to resolve this difficulty. Here, however, an analogous conical
frustum would be used which is a frustum created by slicing the top of a right cone
where the cut is made parallel to the base of the cone. Here, the cap that is used to
replace the tip of the conic section constitutes a conventional plane-polar mea-
surement. It is intended to displace the intersection between the individual cuts
from the region of greatest field intensity to a less sensitive location. Thus, in the
event that the adjacent scans do not intersect perfectly, the resulting positional error
will impact less on the far-field pattern.

It is often preferable when taking near-field antenna measurements that the
selected measurement geometry is selected which is commensurate with the geo-
metry of the AUT. Thus, this technique would be particularly well suited to the
characterisation of base-station antennas, or arrays installed behind tangent ogive
radomes, such as those commonly employed with nose-mounted fire-control radars
which generally constitutes an electrically large test article that often presents the
experimentalist with both electromagnetic and mechanical challenges. Details of
this are left to the open literature, e.g. [18] and [19].

7.11 Summary

This chapter has presented a development of the standard probe-corrected cylind-
rical near-field antenna measurement theory. While a detailed understanding of the
cylindrical near-field theory is perhaps not generally required for most testing
applications, an understanding of the theory and its implications will be valuable in
solving measurement problems and insuring good data is acquired and reliable far-
field data produced. The great advantage of the cylindrical approach is that it is
instantly applicable to testing antennas for which it is desired to compute the
complete 360� far-field azimuthal pattern. This is a significant advantage when
compared to the planar approach for which the far-field pattern is only obtainable
over a half-space without recourse to repeating the measurement and post-
processing. However, the cylindrical approach is limited in the polar axis as the
field at q ¼ 0� and 180� is excluded, both practically due to the finite length of any
realised linear translation axis and theory as the Hankel functions are not defined
for these angles. That being noted, as shown earlier, any antenna that is tested
broadside for which there is some reasonable gain, the q-axis can provide complete
azimuthal (f-axis) far-field pattern data. However, for the class of antennas that do
not satisfy this directivity requirement, recourse must be sought in spherical near-
field antenna testing which is developed within the following chapter. Further very
detailed information on cylindrical near-field antenna testing can be found in [9]
and [12] which contain much of the original ground-breaking work that under-
pinned this technology. Much of the mathematical framework and many of the
concepts that are necessitated by the spherical theory are in common with that
presented earlier. Thus, development of the cylindrical near-field theory provides a
perspicuous introduction to the probe-compensated spherical near-field theory.
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Dirac delta function 393
direct gain measurement 251–2
direction cosine coordinate system

114–16
direction cosine matrices 164
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impedance mismatch 249
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cylindrical near-field scanning
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planar near-field scanner (PNFS) 80–2
spherical near-field range 79–80
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(LSQR) method 348, 351, 358

left-handed circular polarisation
(LHCP) 18

lens CATR 221
lenses as collimators 205–7
linear and circular polarisation bases

156–60
linear dipole antenna 6
local oscillator (LO) signal 85
log-periodic dipole array (LPDA) 422
Lorentz force law 32
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physical theory of diffraction (PTD)

200
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aliasing 334–41
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polarisation matrix 256
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of 85
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receive sub-system 3, 17
reciprocity 21–2, 301
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reflector edge diffraction 193

blended rolled edges 199–202
serrated edge reflectors 194–9
shaped feed illumination 202–5

reflector surface errors and panel gaps
209–13

remote standard antenna (RSA) 137–8
retarded potentials 34, 43–53
RF multipliers 90
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calculation of probe cylindrical
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coupling equation 409–11
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effect of probe compensation
in 418–20
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simulated performance of 205
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characterising 56–8
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vector network analyser (VNA)
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299
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