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Preface to the Second Edition

The second edition of the book “Applied Photometry, Radiometry, and
Measurements of Optical Losses” includes a vast majority of material published in
its first edition in 2012, while also expanding and extending some of its sections.
Due to continuous enhancement of measurement techniques and methodologies,
this edition adds Chap. 12 on the Spectroscopic Interferometry, including FTIR,
Brillouin Scattering, Frequency Comb, Terahertz Spectroscopies, plus upgrades
paragraph 6.4 with techniques for Enhancement of Sensitivity and Mitigation of
Fluorescence in Raman Scattering. These additions could be seen as broadening the
scope of the book somewhat beyond commonly assigned subject areas of photo-
metric and radiometric studies and expanding measurement techniques into
far-infrared and even terahertz spectral regions, overlapping with spectral inter-
ferometry, biomedical and biotech sensing, and more; although such developments,
while enhancing techniques and methods of laser spectroscopy, exemplify essential
broadening of spectroradiometric methodologies via lasers or newer sources or
detectors of optical radiation.

I wish to express my sincere appreciation to all readers of the first edition of this
book, and, especially, to Jonathan Barletta for pointing out to an erroneous typo in
Eqs. (2.1)–(2.3). I sincerely appreciate the curtesy of David Wright for thoroughly
reviewing sections of the newly written Chap. 12 of the 2nd edition and am grateful
to Mikhail Smirnov for helpful suggestions.

This edition is dedicated to my dearest and ever caring mother, to my dear
brother and to Alla and Roberta, to my lovely daughter and to Pierre, and to my two
loveliest granddaughters Anastasia and Laetitia, and also to the memory of Avrush
Shwartsman.

Cranbury, CT, USA and Southampton, England Michael Bukshtab
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Preface to the First Edition

The broad variety of technical challenges has attracted the lasting attention of
optical scientists and engineers to develop sensitive and accurate optical mea-
surements – such as creating pure colors and making efficient laser systems or
sensors. This interest resulted in the appearance of diverse measurement methods
and technologies, often claiming unprecedented and even contradicting results, with
the individual attention focused on achieving either high specular reflectance, direct
transmittance, low absorptance, scattering, birefringence, or phase dispersion.
Increased usage of lasers and pulse-modulated light sources intensified the interest –
as a result, an orientation dilemma exists. Publications on the subject (see [0.1–
0.47]) describe contrasting methods of measurements or implementations, and the
methods can often appear to be different in terms of physical principles and real-
ization conditions, but, at first sight, may remain almost indistinguishable from the
standpoint of the accuracy and sensitivity achieved.

In this book, the analysis of measurement methods and techniques is given not
only by the totality of light sources, detectors, and recording systems, but rather by
detailed classification of the measurements performed and by the optimized con-
ditions for the recognition of the optical property examined, by the objects and the
aims of the study, by the boundaries of applicability, by advantages and short-
comings, and by the measurement methods, appropriate devices, and the exami-
nation systems themselves. The main considerations are given to measurements
of the optical properties of highly reflecting mirrors for laser resonators and
high-resolution interferometers, transparent optical crystals, glasses, and fibers, and
the materials for their fabrication. Substantial features for studying weakly
absorbing liquids and gases, including air pollutions, are examined as well. In spite
of the existence of a fairly ample literature on radiometry and light measurements,
even the conventional material is revisited from the point of executing the methods
of photometric and radiometric measurements. Analyzed techniques are separated
by determination of the parameters and extents of radiation and the optical prop-
erties of bodies and substances in that radiation. Special attention is given to
approaches involving laser radiation. The high spectral density of laser light and the
broad dynamics of modern photodetectors permit one to perform experiments
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which are incompatible with routine radiometric and photometric methodologies,
reaching sensitivity or accuracy unattainable with conventional approaches. At the
same time, high spatial and temporal coherence, and sometimes unavoidable
instabilities of laser radiation, complicate the measurement processes. This book
provides an analysis of and solutions to the various measurement situations and
describes ways to design some nontrivial equipment.

The sequence adopted for the analysis in the second part of the book reflects
development processes for the advanced low optical loss measurement technologies –
from the conventional spectrophotometric methods, reaching up to 10−3–10−5 cm−1

sensitivity, to modern techniques, sensing losses down to 10−6 cm−1 and lower.
Certain advanced methods may not necessarily lead to increasing sensitivity for a
given study of optical loss and the accuracy of detection, while the increased
diversity of optical-examination techniques being developed could be caused by the
difficulties in detecting changes of optical characteristics at levels of thousandths and
millionths of the measured extents. The challenges are enhanced by dependencies of
measured optical losses not only on the properties of analyzed objects, but also on
specific measurement conditions, such as light wavelength, its angle of incidence
and state of polarization, viewing and irradiation conditions, etc. At high exposure to
laser light, the expected outcome can be influenced by the power extents of an
incident beam of such laser radiation. The results of measurements may also be
dependent on the spatial configuration used to study sample surfaces and localization
of the light beam itself. Any desirable increase of measurement accuracy, achieved
by some decrease of locality, could make informativity higher only by way of not
resolving thus concealed nonuniformity of the object being studied.

Traditional photometric methods do not possess extremely high sensitivity
without special measures being taken, but they allow one to obtain information
about the characteristics of an object under study as a whole by a direct mea-
surement. Application of laser light with low divergence and high power density
enables spatial and spectral selectivity of conventional measurements, thus
expanding the prospects of low-loss detection. Exceptionally, high sensitivity to the
bulk or surface absorption may be realized by focusing a laser beam into the object
being studied, while registering changes of the object’s temperature, its index of
refraction, or noticing laser-induced birefringence. Under certain conditions, the
process of stimulated emission of light is characterized by high sensitivity to
selective optical losses introduced into a laser resonator, but it could be obstructed
even by low-reflecting surfaces of the object being studied. Furthermore, the tasks
of identifying absolute optical losses remain challenging and may require added
comparisons with known standards.

Consequently, this book starts by deriving the main radiometric and photometric
laws, definitions, and assumptions, and analyzing apparently simple methodologies,
followed by more complex and sensitive optical techniques, while highlighting,
within the bounds of every method, the exact features of each measurement pro-
cedure. The methods for low-loss detection – from interferometric, calorimetric,
resonator, polarization, phase-shift and ring-down decay, wavelength- and
frequency-modulation to pulse-separation, resonant, multipass, emissive, and
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colorimetric ones – are analyzed and compared for the applicability of studying
free-space and polarization optics, fibers, and waveguides. Ultimately, the content
returns to the direct laser and spectroradiometric methods, but executed with the
knowledge sequentially accumulated by experience of precision optical measure-
ments. Every section of the book is completed with a description of the major
results obtained by the most characteristic experiments.
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Abstract

This book provides an expansion into the radiometric and photometric approach to
physical optics for measuring the energy and power extents of optical radiation,
while exploring diverse, but not necessarily photometric, measurement techniques
for examining the optical properties of the mediums, bodies, and substances using
light. The major objective of that effort is to review all the accumulated knowledge
and the essence of optical methods and techniques expanded within photometry and
radiometry of quasi-monochromatic continuous, pulsed, spontaneous, coherent, and
laser radiation, as well as of polychromatic light by analyzing up-to-date method-
ologies and metrology for the detection of ultra-low optical losses in various
objects, materials, and elements, and comparing the majority of relevant mea-
surement equipment. Conceptually, the initial thoughts of the analysis emphasized
here were developed for two previous books: Measurements of Low Optical
Losses, published by Energoatomizdat in Leningrad (now St. Petersburg) in 1988,
and Photometry and Radiometry for Engineers, written in close cooperation with
A. A. Wolkenstein and A. S. Doynikov, the publication of which was announced by
Polytechnika (Mashinostroenie), St. Petersburg, in 1991, but only proofs of the
manuscript were printed, and the book was left unpublished.

This book consists of two interconnected parts. In the first part, fundamental
photometric and radiometric principles, designations, methods, and devices are
discussed via fundamental laws and methods developed within the concepts of
physical optics applicable to photometric and radiometric systems. Attention is
given to specifics of optical measurements, partially with coherent and pulsed
radiation, corrections for diffraction, verification of authenticity for analyzing
methods, and confirmation of photometric accuracy for photometers and
radiometers. The second part of the book focuses on methods and systems,
designed for evaluation of low optical losses in radiation interacting with trans-
parent crystals and glasses, highly reflecting mirrors, thin-film coatings, weakly
absorbing solids, liquids or gases, optical fibers, or any other objects. Optical losses
may occur anywhere when reflection, scattering, or absorption of radiation causes a
noticeable reduction of efficiency for the radiant energy transfer. Multitudes of
pulsed, resonator, calorimetric, interferometric, polarization, acousto-optic, active
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or passive, and other methods are analyzed side by side and in comparison with the
conventional spectrophotometric and radiometric techniques for accurate optical
measurements. Finally, advancements in direct methods of precision measurements
attributing to the newest developments of highly stabilized laser light sources,
balanced detectors, and computerized registration systems are described with
insights into certain novel applications.

The book is intended for practicing scientists and engineers of need to apply
measurement methods and procedures for optical analysis and practical evaluation
of transparent, reflecting, scattering, absorbing, and aggregated objects, as well as
for determination of power and energy parameters, and the extents of radiation and
color properties of light. It is also hoped that this book will serve as an accom-
modating resource of optical measurement ideas for students of optics.

xiv Abstract



Contents

Part I Applied Photometry and Radiometry

1 Radiometric and Photometric Quantities and Notions . . . . . . . . . . 3
1.1 Physical Sense of Radiometric Conception . . . . . . . . . . . . . . . . 3

1.1.1 Statistical Field of Optical Radiation . . . . . . . . . . . . . . 3
1.1.2 Propagation of Light Waves . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Intensity of Radiation and Light Rays . . . . . . . . . . . . . 6

1.2 Parameters of Optical Radiation . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Radiometric Quantities and Units . . . . . . . . . . . . . . . . 9
1.2.2 Parameters of Optical Radiation . . . . . . . . . . . . . . . . . 12
1.2.3 Invariable Parameters of a Light Tube . . . . . . . . . . . . . 15
1.2.4 Flux and Radiance of Optical Radiation . . . . . . . . . . . . 17
1.2.5 Intensity and Emittance of a Light Beam . . . . . . . . . . . 19
1.2.6 Irradiance and the Inverse-Square and Cosine Law . . . . 23

1.3 Interactions of Radiation with Material Objects . . . . . . . . . . . . . 27
1.3.1 Factors and Coefficients of Attenuation . . . . . . . . . . . . 27
1.3.2 Localized Optical Properties . . . . . . . . . . . . . . . . . . . . 32
1.3.3 Multiple Optical Elements . . . . . . . . . . . . . . . . . . . . . . 36
1.3.4 Diffuse Irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2 Methods of Photometric and Radiometric Measurements . . . . . . . . 49
2.1 Evaluation of Power and Energy Extents

of Optical Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.1.1 Methods of Optical Flux and Energy Measurements . . . 49
2.1.2 Measurement of Surface Density of Light . . . . . . . . . . 53
2.1.3 Absolute Flux Measurement Via an Integrating

Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.1.4 Spherical Density of Radiation . . . . . . . . . . . . . . . . . . 56
2.1.5 Measurement of Angular Density of Radiation . . . . . . . 59
2.1.6 Radiance and Luminance Measurements . . . . . . . . . . . 60

xv



2.2 Analysis of Attenuation Factors . . . . . . . . . . . . . . . . . . . . . . . . 62
2.2.1 Measurements in Transmitted Light . . . . . . . . . . . . . . . 62
2.2.2 Measurements of Reflectance . . . . . . . . . . . . . . . . . . . 66
2.2.3 Directional Scattering Measurements . . . . . . . . . . . . . . 73

2.3 Measurements of Color Coordinates and Indices . . . . . . . . . . . . 75
2.4 Photometry of Integrating Spheres . . . . . . . . . . . . . . . . . . . . . . 91

2.4.1 Uniformly Scattering Spheres . . . . . . . . . . . . . . . . . . . 91
2.4.2 Relative Measurements . . . . . . . . . . . . . . . . . . . . . . . . 94
2.4.3 Samples Performing as Nonuniform Diffusers . . . . . . . 98
2.4.4 Absolute Measurements in an Integrating Sphere . . . . . 99
2.4.5 Baffling Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
2.4.6 Efficiency Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 101
2.4.7 Viewing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2.4.8 Reduction of Systematic Errors of Absolute

Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
2.4.9 Spheres of Nonisotropic Diffusers . . . . . . . . . . . . . . . . 107
2.4.10 Fully Isotropic Irradiation of Integrating Sphere . . . . . . 112
2.4.11 Essentials of Diffuse Transmittance Measurements . . . . 113
2.4.12 Separation of Direct and Diffuse Transmittance . . . . . . 116
2.4.13 Coupling of Integrating Spheres . . . . . . . . . . . . . . . . . 118
2.4.14 Integrating Spheres for Isotropic Irradiation . . . . . . . . . 121

3 Radiometry of Partially Coherent Radiation . . . . . . . . . . . . . . . . . . 129
3.1 Coherence and Radiative Transfer . . . . . . . . . . . . . . . . . . . . . . 129

3.1.1 Observability and Statistical Properties of Radiation . . . 129
3.1.2 Planar Sources of Incoherent and Coherent Light . . . . . 135
3.1.3 Quasi-Homogeneous Partially Coherent Planar

Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.1.4 Propagation of Coherence and Observation

of Polychromatic Radiation . . . . . . . . . . . . . . . . . . . . . 140
3.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3.2 Laser and Pulsed Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.2.1 Propagation Extents of Laser Radiation . . . . . . . . . . . . 144
3.2.2 Applicability of Lasers for Various Optical

Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.2.3 Optical Radiation as a Pulse Train . . . . . . . . . . . . . . . . 151
3.2.4 Measurements in Pulsed Radiation . . . . . . . . . . . . . . . 153

3.3 Interference Phenomena and Optical Measurements . . . . . . . . . 159
3.3.1 Fringe Visibility of Interference Patterns in

Transmitted and Reflected Light . . . . . . . . . . . . . . . . . 159
3.3.2 Reductions of Interference Noise . . . . . . . . . . . . . . . . . 163
3.3.3 Interference Effects Induced by Birefringence . . . . . . . 169
3.3.4 Stabilization of Radiation Emission . . . . . . . . . . . . . . . 179
3.3.5 Polarization Measurements . . . . . . . . . . . . . . . . . . . . . 183

xvi Contents



3.4 Diffraction Corrections and Gratings in Radiometry
and Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
3.4.1 Diffraction on Beam-Defining Apertures . . . . . . . . . . . 186
3.4.2 Maxima-Shifting Anomaly for Step-Function

(Surface-Relief) Diffraction Gratings . . . . . . . . . . . . . . 191
3.4.3 Diffraction Gratings as Spectral and Color Filters . . . . . 210

4 Photometers and Radiometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
4.1 Optical Design and Absolute Calibration of Radiometers . . . . . 213

4.1.1 Spectrally Unselective Systems . . . . . . . . . . . . . . . . . . 213
4.1.2 Diffuse Attenuators . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
4.1.3 Radiometric and Photometric Energy and Power

Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
4.1.4 Absolute Calibration of Photoelectric Radiometers . . . . 225
4.1.5 Detector-Based Spectroradiometric and Photometric

Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
4.1.6 Optical Elements of Radiometric and Photometric

Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
4.1.7 Radiometric and Photometric Scales for Spectral

Irradiance and Luminous Intensity . . . . . . . . . . . . . . . . 234
4.2 Attenuation and Color Photometers and Spectrophotometers . . . 236

4.2.1 Measurements of Direct Transmittance and Specular
Reflectance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

4.2.2 Polychromatic and Spectrophotometric Systems . . . . . . 239
4.2.3 Reference Transmission Spectrophotometers . . . . . . . . 242
4.2.4 Specialty Spectrophotometers . . . . . . . . . . . . . . . . . . . 244
4.2.5 Systems of Multiple-Beam Interactions . . . . . . . . . . . . 246
4.2.6 Measurements at Intensive Irradiation . . . . . . . . . . . . . 248
4.2.7 Studies of Integrated Scattering . . . . . . . . . . . . . . . . . . 249
4.2.8 Specialty Applications of Integrating Spheres

for Optical Calibrations and Measurements . . . . . . . . . 257
4.2.9 Color-Coordinate Measurements . . . . . . . . . . . . . . . . . 260

4.3 Photometric Accuracy and Verification of Linearity . . . . . . . . . 263
4.3.1 Measurements with Fixed Attenuation . . . . . . . . . . . . . 264
4.3.2 Dual-Aperture and Superposition Methods . . . . . . . . . . 269
4.3.3 Pulsed Measurements . . . . . . . . . . . . . . . . . . . . . . . . . 271
4.3.4 Arrangements for Light Addition Studies . . . . . . . . . . . 274

Part II Measurements of Optical Losses

5 Conventional Loss-Measurement Techniques . . . . . . . . . . . . . . . . . 285
5.1 Internal Transmittance and Attenuation Coefficient . . . . . . . . . . 285
5.2 Specular Reflectance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
5.3 Scattering Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

Contents xvii



6 Systems of Multiple Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
6.1 Flat-Mirror and Prism Reflector Cells . . . . . . . . . . . . . . . . . . . . 319
6.2 Multipass Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

6.2.1 Long-Path Matrix Cells . . . . . . . . . . . . . . . . . . . . . . . 329
6.3 Mirror Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
6.4 Raman Scattering: Enhancement of Sensitivity

and Mitigation of Fluorescence . . . . . . . . . . . . . . . . . . . . . . . . 345
6.4.1 Multiplication Schemes . . . . . . . . . . . . . . . . . . . . . . . . 346
6.4.2 Mitigation of Fluorescence and Background

Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

7 Laser Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
7.1 Active Intracavity Measurements . . . . . . . . . . . . . . . . . . . . . . . 363
7.2 Comparison of Intracavity Methods . . . . . . . . . . . . . . . . . . . . . 369
7.3 Intracavity and Ringdown Spectroscopy . . . . . . . . . . . . . . . . . . 374

7.3.1 Sensitivity Limitations of Intracavity Laser
Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378

7.3.2 Cavity Ringdown Spectroscopy . . . . . . . . . . . . . . . . . . 379
7.4 Reduction of Interference Fringes in Multipass

and Derivative Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 396

8 Measurements in Passive Resonators . . . . . . . . . . . . . . . . . . . . . . . 403
8.1 Pulse-Separation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 403
8.2 Interferometric Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411

8.2.1 Elimination of Interference . . . . . . . . . . . . . . . . . . . . . 415
8.3 Resonant Phase-Shift and Decay-Time Studies . . . . . . . . . . . . . 418

8.3.1 Interference Safeguards . . . . . . . . . . . . . . . . . . . . . . . . 421
8.3.2 Decay-Time Measurements . . . . . . . . . . . . . . . . . . . . . 424

8.4 Quality-Factor Transfer Method and Asymmetric-Cavity
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432
8.4.1 Measurements in Tuning Resonators . . . . . . . . . . . . . . 437
8.4.2 Quality-Factor Transition Between Two Resonator

Eigenstates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
8.4.3 Nonresonant, Off-Axis Techniques . . . . . . . . . . . . . . . 442
8.4.4 Resonant Asymmetric-Cavity Techniques . . . . . . . . . . 444

8.5 Evaluation of Loss Dichroism and Phase Dispersion . . . . . . . . . 448
8.5.1 Recognition of Phase Dispersion . . . . . . . . . . . . . . . . . 451
8.5.2 In Situ Laser-Based Measurements . . . . . . . . . . . . . . . 454
8.5.3 Spectrophotometric Study of Phase Dispersion . . . . . . . 456
8.5.4 Colorimetric Approach to Phase Recognition . . . . . . . . 462
8.5.5 Spatial-Spectral Interferometry . . . . . . . . . . . . . . . . . . 464

9 Determination of Absorption Losses . . . . . . . . . . . . . . . . . . . . . . . . 469
9.1 Laser Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469

9.1.1 Local Absorptance . . . . . . . . . . . . . . . . . . . . . . . . . . . 479

xviii Contents



9.2 Thermal-Lensing, Photothermal, and Photoacoustic
Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
9.2.1 Thermal Lensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
9.2.2 Photothermal Deflection . . . . . . . . . . . . . . . . . . . . . . . 488
9.2.3 Photothermal Interferometry . . . . . . . . . . . . . . . . . . . . 495
9.2.4 Photoacoustic Spectroscopy . . . . . . . . . . . . . . . . . . . . 504
9.2.5 In Situ and Remote Photoacoustic Spectroscopies . . . . 507
9.2.6 Trace-Gas Photoacoustic Analysis . . . . . . . . . . . . . . . . 511
9.2.7 Optical Spectroscopy of Ultrasonic Waves . . . . . . . . . . 516

9.3 Emissive Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
9.4 Integrating Spheres as Multiple-Reflection Cavities . . . . . . . . . . 522

9.4.1 Integrating-Cavity Absorption Measurements . . . . . . . . 522
9.4.2 Integrating Spheres as Absorption Cells

for Gaseous Substances . . . . . . . . . . . . . . . . . . . . . . . 532

10 Direct Attenuation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . 539
10.1 Differential, Ratio, and Single-Channel Systems . . . . . . . . . . . . 539
10.2 Derivative Frequency Spectroscopy . . . . . . . . . . . . . . . . . . . . . 548
10.3 Wavelength Tuning and Balanced Detection . . . . . . . . . . . . . . . 557

10.3.1 Tunable Diode Systems . . . . . . . . . . . . . . . . . . . . . . . 558
10.3.2 Balanced Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

10.4 Separation of Bulk and Surface Losses . . . . . . . . . . . . . . . . . . 570
10.4.1 Distinction of Surface Losses . . . . . . . . . . . . . . . . . . . 570
10.4.2 Resolving Internal Properties . . . . . . . . . . . . . . . . . . . . 573

10.5 Reflection Spectrophotometry . . . . . . . . . . . . . . . . . . . . . . . . . 578
10.5.1 Reflected-Light Measurements . . . . . . . . . . . . . . . . . . . 586
10.5.2 Sensitivity Comparison . . . . . . . . . . . . . . . . . . . . . . . . 588

11 Propagation Losses in Fibers and Waveguides . . . . . . . . . . . . . . . . 591
11.1 Measurements of Internal Optical Attenuation for Guided

Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
11.1.1 Integrated Waveguides . . . . . . . . . . . . . . . . . . . . . . . . 597
11.1.2 Absorption and Scattering Losses . . . . . . . . . . . . . . . . 599
11.1.3 Analysis of Scattering Losses . . . . . . . . . . . . . . . . . . . 603
11.1.4 Polarization Dependent Losses . . . . . . . . . . . . . . . . . . 607

11.2 Analysis of Return Losses via Backscattered Radiation . . . . . . . 612
11.3 Partition of Distributed Losses and Attenuation Factors

in Reflected Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 620
11.4 Interference Noise and Crosstalk in Fiber Transmission

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
11.4.1 Crosstalk and Systems with Multiple Interferers . . . . . . 644

Contents xix



12 Spectroscopic Interferometry and Laser-Excitation
Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655
12.1 Fourier-Transform Spectroscopic Interferometry . . . . . . . . . . . . 655

12.1.1 Advantages of Fourier Transform Spectroscopy . . . . . . 655
12.1.2 Conceptual FTIR Interferometers . . . . . . . . . . . . . . . . . 658
12.1.3 Enhanced FTIR Instruments . . . . . . . . . . . . . . . . . . . . 661
12.1.4 Comparison of FTIR Instrumentation . . . . . . . . . . . . . . 664
12.1.5 Spatial Heterodyne Spectrometry . . . . . . . . . . . . . . . . . 667
12.1.6 Polarization FTIR Interferometry . . . . . . . . . . . . . . . . . 671
12.1.7 Comparison of Some Experimental Results . . . . . . . . . 674

12.2 High-Dispersion Interferometers for Brillouin Spectroscopy . . . . 678
12.2.1 Studies with Tunable, Single, and Multistage

Fabry-Perot Etalons . . . . . . . . . . . . . . . . . . . . . . . . . . 678
12.2.2 Properties of Virtual Imaging Phase Arrays (VIPA) . . . 682
12.2.3 Measurements of Brillouin Scattering in Biological

Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 686
12.3 Spectral Measurements with Frequency Combs . . . . . . . . . . . . . 695

12.3.1 Frequency-Comb Scale . . . . . . . . . . . . . . . . . . . . . . . . 695
12.3.2 Frequency Comb Fourier-Transform Spectroscopy . . . . 699
12.3.3 Cavity-Enhanced Spectroscopy With Frequency

Combs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 701
12.4 Time- and Frequency-Domain Terahertz Spectroscopy . . . . . . . 704

12.4.1 Time-Series Analysis of Transmittance and
Reflectance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704

12.4.2 Coherent Time-Domain Measurements Via Pulse
Delays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 711

12.4.3 Frequency-Domain Photomixing Terahertz
Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 715

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 719

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 775

xx Contents



Part I
Applied Photometry and Radiometry

I.1. Background

As the term photometry is the derivative of words “light” and “metrein”, radiometry
may be defined as a measurement science, studying the parameters and charac-
teristics of radiative energy transfer. Photometry deals with photometric and
radiometry deals with radiometric quantities, determining the temporal, spatial, and
spectral distributions of radiation and optical properties of the substances, mediums,
and bodies as intermediates or detectors of such a transformation. Radiometry, in
which photometry could be seen as the discipline for visible light, studies the
properties of optical radiation by ignoring the finiteness of space, time continuity,
and related phenomena. It deals with the observable space- and time-averaged
parameters of radiation emitted by sources, propagating in mediums, and interacting
with substances and material bodies in ultraviolet, visible, and infrared wavelength
regions.

The radiant intensity, as a main parameter of energy transport of light, may be
defined as a surface integral over the product of radiation Poynting vector by an
outer normal to an enclosing surface at a given instance of time. Therefore, the
radiometric interpretation of optical radiation power and energy, as its time
derivative, is by definition provided via introduction of the finite time and space
intervals. The dimensions of the finite intervals must, respectively, exceed the
oscillation times or the wavelengths of optical radiation. The finiteness causing
additivity of photometric and radiometric quantities or the independence of indi-
vidual light components, combined or summed, arises not from imperfection or
incomprehension of radiometric theory but from imposed limits of observation for
the phenomena considered. Under such limitations, the finiteness of light wave-
lengths can be disregarded by setting them as tending to zero. Thus, mutual
independence of amplitude and phase fluctuations remains valid for any radiometric
or photometric superposition of radiation.



The concept of photometric and radiometric quantities distinguishes the power
and energy extents of light and their derivatives using various systems of mea-
surement, such as the radiant, photon, luminous, or otherwise reduced system. Such
a distinction is only terminological and concerns units of measurements without
regard to fundamentals of science, methods of study, or temporal, spatial, and
spectral distributions of light. Diverse radiometric quantities are always derivatives
with respect to a small, but finite interval of length, area, bulk, frequency, or time,
and may also be represented as integrals of basic radiant or luminous parameters.
The variety of names does not alter the nature of the phenomenological under-
standing of every phenomenon.
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Chapter 1
Radiometric and Photometric Quantities
and Notions

1.1 Physical Sense of Radiometric Conception

1.1.1 Statistical Field of Optical Radiation

The energy conservation law for any electromagnetic field implies, that the time
derivative @Q=@t of the field energy for optical radiation, which ranges from a
wavelength as short as 1 nm to one as long as 1 mm, when propagating in a
homogeneous, isotropic, and low-absorbing medium whose properties satisfy the
material equations D ¼ eE;B ¼ lH; J ¼ rE and whose elements are in a steady
position or in slow motion, is [1.1]:

dQ
dt

¼ � dP
dt

� K�
Z
A

S � r d A; ð1:1Þ

whereP is the work done for the travel time t; K is the total loss, caused by resistive
dissipation of energy Q, if the medium is a conductor; S is the Poynting vector; r is
the outward normal unit vector to any arbitrary boundary surface A situated far away
from a source of the field; E andH are the electric and the magnetic vectors; D is the
vector of electric displacement, B is the vector of magnetic induction; e is the
dielectric constant (permittivity), l is the magnetic permeability, and r is the specific
conductivity of the medium. The integral in Eq. (1.1) identifies the flow of energy
crossing the boundary surface A reached by the optical wave. Thus, when dealing
with a transfer of energy of optical radiation in the absence of moving elements or
conductors, the space-time derivative in Eq. (1.1) represents the flow of optical
energy crossing such a boundary surface A per unit of time. By definition, the
radiant flux, or the flux of optical radiation or flux, is:

U � dQ
dt

¼ �
Z
A

S � r d A: ð1:2Þ
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As follows from Eq. (1.2), the integral of a scalar product of vectors S and r has the
physical meaning of the average power of a beam of radiation. On the basis of such
a definition, it is impossible to resolve the detailed distribution of vector S, which
defines the density of the energy flow of radiation. Radiometrically speaking, for a
steady flow of optical energy emitted from any given point of space within an
enclosing surface A, it is only possible to speak about the mean radiant flux U and
the mean Poynting vector S of radiation for small but finite space and time intervals.

Consequently, the radiometrically observable energy action of optical radiation
is identified not by the instantaneous electromagnetic field, but by parameters of the
averaged statistical field of that radiation. The statistically averaged domain may be
defined as the field of optical radiation or the field of optical vector. The optical
vector can be identified by the following statistical equation:

Dl ¼ hSi ¼ 1
t

Z
�Sdt: ð1:3Þ

Here angular brackets identify time averaging and t is the mean time interval, much
larger than the fundamental period of oscillation for the wave component at
wavelength k: t � 2p=x ¼ 1=v ¼ k=c:

The defined concept of statistical field and statistically averaged vector of optical
radiation is very closely allied with the character of observation of light waves in
the optical domain and originates from the impossibility to construct the instant
power density operator of the photon flux at any single point [1.2]. Thus, the
statistical parameters of optical radiation may be observed or measured only in
some space and time domains, or in some enclosed vicinity of frequency or k-space.
The nature of that notion is stipulated by extraordinary high frequencies of elec-
tromagnetic oscillations for the optical domain allowing one not to consider, at least
within the photometric and radiometric averaging concept, principal correlations
between oscillations for optical radiation.

1.1.2 Propagation of Light Waves

The electromagnetic field, denoting optical radiation, consists of waves having
wavelengths approximately from 1 nm to 1 mm and frequencies from 3 � 1017 to
3 � 1011 Hz. For lots of processes of emission of optical radiation or its interactions
with substances, bodies, and mediums the high oscillation frequencies of light can
be considered as tending to infinity without violating the integrity of the analysis.
Hence, the physical phenomena particularly studied by radiometry and photometry
are concerned with any propagation of optical radiation in isotropic dielectric
substances and observed at distances much longer than the wavelength or a set of
wavelengths of radiation. The radiometric concept of optical-radiation transfer
considers frequencies of radiation oscillations to be infinitely high and ignores the
finiteness of radiation wavelengths, which subsequently interact with all real
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apertures of optical systems by way of propagation. The smallness of radiation
wavelengths in comparison with material apertures and propagation distances
identifies the specifics of observation for optical radiation.

Applying the concept of geometrical optics [0.1–0.50, 1.1–1.3] for the notion of
photometry and radiometry, one may represent the light wave having a
tending-to-zero solitary wavelength k ! 0, propagating in a substance with
refractive index n =

ffiffiffiffiffi
el

p
, in the direction of a unit vector s and in the far field from

its source at the position of a unit vector r, as a plane homogeneous electromagnetic
wave of number k0 and of electric E and magnetic H vectors:

E0 ¼ e exp½ik0nðs � rÞ ¼ e rð Þexp� ½ik0L rð Þ ; H0 ¼ h exp� ½ik0nðs � rÞ ¼ hðrÞexp� ½ik0L rð Þ�:
ð1:4Þ

Here e and h are the constant vector amplitudes; k0 is the wavelength in vacuum;
k0 ¼ x0=c ¼ 2p=k0; and r is the distance to a light source and is much larger than the
wavelength: r � k0. In contrast to the generally complex vector functions e(r)
and h(r), the function L(r) is the scalar function of a position and a direction along a
way from the source to the point of the radiation field at distance r and identifies the
optical path for the propagation of the plane light wave.

Since the subjects of radiometric studies are monochromatic waves with big k0
values in homogeneous and low scattering mediums, restricting radiometric obser-
vations to limits of not large changes for grad L, e, l and in the absence of electric
currents or charges, one can rewrite Maxwell’s equations in simplified forms [1.1]:

gradL� hþ ee ¼ 0 ; ð1:5aÞ

gradL� e� lh ¼ 0 ; ð1:5bÞ

e � gradL ¼ 0 ; ð1:5cÞ

h � gradL ¼ 0 : ð1:5dÞ

For grad L, e, l values on the order of 1.0, the radiometric restriction is justified if
changes of e and h at distances compatible with the radiation wavelength are small
in comparison with the individual values of e and h. That condition is violated at
sharp changes of radiation intensity, for example, around light or shade boundaries,
in nonisotropic and highly scattering mediums, near an optical focus, and in the
presence of a sizeable medium conductivity or polarization. A nontrivial (other than
zero) solution for the system of Maxwell’s equations (1.5) is obtained via substi-
tution for h from (1.5b) into (1.5a) [1.1]:

1=lð Þ e � gradLð Þ gradL� e gradLð Þ2
h i

þ ee ¼ 0: ð1:6Þ

According to the third equation in (1.5): e � gradL = 0, expression (1.6) transforms
at e 6¼ 0 and

ffiffiffiffiffi
el

p
= n into the eikonal equation – the fundamental law of geo-

metrical optics and radiometry:
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gradLð Þ2 ¼ n2: ð1:7Þ

The explicit form of Eq. (1.7) in the Cartesian system is given by the eikonal
equation as:

dL=dxð Þ2 þ dL=dyð Þ2 þ dL=dzð Þ2 ¼ n2 x; y; zð Þ: ð1:8Þ

In consequence with the eikonal equation, any monochromatic beam of light,
which acts or is viewed at distances of many wavelengths from a source, can be
treated as a plane homogeneous wave in every homogeneous and isotropic sub-
stance. Therefore, for monochromatic light the surface:

L rð Þ ¼ const; ð1:9Þ
is the equal-phase geometrical wave surface determining a singular position of the
geometrical wave front of radiation. Since the field of a plane wave is characterized
by equality to zero of the scalar products E � s and H � s, in such a specific case,
the electric and magnetic vectors of the optical radiation lie in the planes perpen-
dicular to the direction of light propagation, and since these two vectors form the
right-handed orthogonal coordinate system, the Poynting vector is:

S ¼ ðc=4pÞ E�Hj j ¼ ðc=4pÞ
ffiffiffiffiffiffiffi
e=l

p� �
Ej j2s ¼ ðc=4pÞ

ffiffiffiffiffiffiffiffi
l=e

p� �
Hj j2s; ð1:10Þ

and represents the spatial density of electric or magnetic energy in the direction of
propagation.

1.1.3 Intensity of Radiation and Light Rays

For identified statistically observable radiation, it is impossible to instantly measure
the E and H or S magnitude of a single-wave oscillation. Thus, radiometry and
photometry deal with both space or time averages in the stationary and ergodic field
of optical radiation.1 Radiometry observes an electric or a magnetic energy density
of light at a time interval longer than the principal period of oscillation at a mean
frequency of radiation �x : T ¼ 2p=�x. The equations for these averaged electric and
magnetic energies respectively are:

\Qe[¼ ðe=16pÞ � e � e	; \Qm[¼ ðl=16pÞ � h � h	; ð1:11Þ

where the complex conjugate magnitudes are marked with an asterisk. Considering
a light beam with a tending-to-infinity wavelength, it may be shown [1.1, 1.3] that

1It is more correct to speak about the averaging with respect to some appropriate ensemble of
values, which characterizes statistical properties of the electromagnetic field of radiation, but as
long as the optical radiation fields are, by vast majority, ergodic and statistically homogeneous,
their space and time averages coincide with the average by the ensemble.
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the time-averaged electric and magnetic energy densities with accuracy k ! 0 are
\Qe[¼\Qm[¼\Q[=2 and the Poynting vector is:

\S[¼ ðc=nÞ � ð\Qe[þ\Qm[Þ � grad L=n ¼ v\Q[ s: ð1:12Þ

According to the eikonal equation (1.7), beam unit vector s lies in the direction of
the average Poynting vector \S[ and is collinear with vectors gradL=n and
gradL= gradLj j pointing in the same direction, where v ¼ c=n is the light velocity.
Equation (1.12) confirms that statistical vector \S[ lies in the direction of the
outer normal to a geometrical wave front of light and, within apparent accuracy of
the conventional approximation k ! 0, the time-averaged energy density \Q[ of
the light field propagates with the light velocity v ¼ c=n.

From Eq. (1.12) it also follows that in any homogeneous medium the wave
normal to the geometrical wave front of the beam of quasi-monochromatic radiation
coincides with its optical vector (see Eq. (1.3)) and, consequently, with the direction
of the energy transfer. Therefore, if the wavelength of that light can be considered
as notably small in comparison with obstacles it interacts with, such as various
substances, instrument apertures, and radiation receivers, the time-averaged density
of that radiation energy \Q[ propagates with the velocity of light vi, being
defined by every specific medium index of refraction: vi ¼ c=ni. Therefore, the
direction of energy transfer coincides with the outer normal to the wave front of
radiation, which is characterized, in turn, by constancy of the eikonal. When such
conditions are observed, light is transmitted according to the laws of geometrical
optics and the correlation of energy and power parameters of specific fluxes of
radiation obeys linear and additive interactions. Studies of that radiation and of the
radiation’s interactions with material objects are the subject of photometry and
radiometry.

Following Eq. (1.12), the absolute value of the Poynting vector equals the
product of the average energy density of a given wave group of radiation and the
velocity of its propagation:

\S[j j ¼ v\Q[ � I, ð1:13Þ

where the sign � indicates the introduction of a new designation. Expression (1.13)
characterizes the average angular power density at a point of the electromagnetic
field or the energy of radiation per unit of time, in the selected direction per unit of
solid angle, which falls, propagates, or is irradiated from one imaginary platform
perpendicular to that direction. Since such a product defines the angular power
density of the electromagnetic field at a given time or the power action of radiation
per unit of solid angle, it designates the angular intensity or the intensity I of the
optical field at any given point of space per unit of time. Intensity I is an inclusive
power extent of optical radiation, which is not affiliated with any specific process of
emission of radiation by the sources, its propagation through material objects, or its
actions on such radiation receivers.
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According to Eqs. (1.12) and (1.13), the outer normal to a wave front of the
radiation flow may serve as an approximation of that radiation beam indicating the
straightforward propagation of electromagnetic energy. Therefore, light propagation
in a homogeneous and isotropic medium occurs in a straight line. Since every light
beam whose symmetry axis coincides with its wave normal carries energy other than
zero, a real beam of optical radiation would be considered as a certain material line.
For example, it could be radiated from a source through a small aperture of any
opaque baffle, whose dimensions in comparison with actual distances permit one to
consider that aperture as the material point. Moreover, in consequence of the
diffraction phenomenon, the bounds of a light beam with the surroundings are not
sharp and the intensities of the shade regions are not reduced to zero in comparison
with the highest intensity of radiation in the irradiated zone. However, the dimensions
of the respective inhomogeneous transition regions are approximately equal to a set
of wavelengths for the propagating light beam. That is why the tending-to-zero
wavelength requirement k! 0 also allows one to ignore phenomena which overstep
the limits of geometrical optics. As a result, while realizing photometric and radio-
metric analysis and specific experiments with objects or apertures at considerably
large dimensions, compared with light wavelengths, one can consider the flow of
quasi-monochromatic optical radiation as a beam of rays or as a light tube.

Up to now monochromatic radiation has been considered under the assumption
of a single received or emitted wave. A monochromatic wave could be seen as a
single Fourier component of a multiwave optical field. From that angle, the in-
tensity I of a physical light beam is given by the entirety of single-component
intensities, formed by compound elementary radiating harmonic oscillators:

I ¼ jhSij ¼ c
4p

X
n;m

jhEn �Hmij ¼ c
4p

X
n

jhEn �Hnij þ c
4p

X
n 6¼m

jhEm �Hmij;

ð1:14Þ

The second sum in Eq. (1.14) characterizes the correlations among fluctuations of
different light components. In every case, when correlations are absent, or more
accurately, if they can be disregarded while presuming these different components
of radiation to be incoherent, the total field is given by the additive sum of indi-
vidual fields of each single oscillator:

I ¼
X
n

Snh ij j; ð1:15Þ

making the light beam a stochastic mixture of incoherent, monochromatic, infinitely
long waves.

On the basis of Eqs. (1.9)–(1.15), one could define radiometry and photometry
as the science of analysis and measurement of the parameters and characteristics of
radiant and luminous energy transfers operating with observable optical radiation of
uncorrelated waves, i.e., with the electromagnetic field of time- and space-averaged
Poynting vectors. According to that concept [1.1–1.8], light in radiometry and
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photometry propagates in the isotropic medium and meets particles having
dimensions considerably larger than light wavelengths. The validity of the radio-
metric and photometric laws of light propagation obtained according to the k ! 0
assumption can be violated in anisotropic, highly scattering, and absorbing sub-
stances,2 when radiation is passing small, compared with the light wavelength,
particles, at shade boundaries, or in regions of sharp intensity changes, as well as
when there is considerable correlation among fluctuations of individual radiation
components, i.e., when light beams are coherent. This does not necessarily mean
that particular radiometers or photometers are not capable of measuring exact in-
tensity distributions of optical radiation in any diffraction and interference patterns
or for any specific power level of laser radiation with any plausible coherence
length, or in other situations. These conditions only restrict the application of
radiometric and photometric laws to particular phenomena of light propagation and
bounds of radiometric correlations between parameters of light beams related to
some potentially strong interactions and to the existence of particles having
dimensions comparable to or smaller than light wavelength.3

1.2 Parameters of Optical Radiation

1.2.1 Radiometric Quantities and Units

By definition, radiometry and photometry operate with space- and time-averaged
Poynting vectors. As a result, radiometric and photometric quantities are the ones
that identify temporal, spatial, and spectral distributions of optical radiation, and
properties of substances, mediums, and bodies as intermediaries of emission,
transformation, and reception of radiation energy. The additivity principle,
emphasized by that identification, fundamentally regulates radiometric and photo-
metric considerations. The additivity principle substantiates the presumption of
statistically averaged physical processes of emission, reception, and interaction of
light with the substances in which propagation occurs. For each such process it is
possible to disregard, on one hand, the finiteness of the light wavelength and
relevant diffraction phenomena and, on the other hand, interdependence of indi-
vidual intensity fluctuations in diverse light beams comprising the total optical field,
additively averaging the results of interference for radiometrically added beams.4

2In optical glasses any practical anisotropy of scattering molecules is averaged by their great
quantity even for a volume on an order of k3.
3Correlation between fluctuations of Fourier components of optical radiation, and criteria of
practical exposures of coherence and diffraction effects in radiometry will be analyzed in Chap. 3.
4The term “no interference” means no interference effect may affect the radiometric concept, which
from the standpoint of the law of conservation of energy means that all effects of any actual
interference pattern, which may occur while adding coherent light beams, are to be averaged over
the space or time of the specific radiometric or photometric observation.
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Concepts of radiometric and photometric quantities unite the means of
expressing energy and power extents of optical radiation and its time and space
derivatives. These quantities may differ by a system of units, compliant or reduced
to a given law of energy or power conversion: radiant, photon, luminous, or
otherwise. The radiant quantities Xe are derived to be compliant with the universal
physical energy and power units: joule and watt. The photon units Xp are not
dimensional and correspond to the number of photons in a given light beam. The
optical science which expresses all physical parameters and characteristics of op-
tical radiation as the radiant power or energy quantities is called radiometry of
optical radiation, or radiometry.

A system of reduced photometric quantities Xr may be formed using a mathe-
matical model of any linear spectrally additive receiver executing a physical pro-
cess. Such a process transforms the units of a given radiant spectral quantity to units
of the reduced quantity. The conversion law is:

Xr ¼ K
Z
0

Xe;kS0ðkÞdðkÞ; ð1:16Þ

where K is the conversion factor from a specific radiant quantity to the unit based
on any given reduced system; Xe;k is the spectral density of the radiant photometric
quantity, with respect to which a specific reduction is realized; and S0ðkÞ is the
relative spectral response of a receiver making the transformation. The reduced
photometric quantity is called the luminous quantity, if the values of S0ðkÞ are
defined by the relative spectral efficiency function VðkÞ of the monochromatic
radiation for photopic vision with the coefficient Kmax ¼ 683 lm �W�1 [1.5]. This
magnitude corresponds to the maximum luminous spectral effectiveness, which
coincides with a wavelength of approximately 555 nm for the photopic vision.
A receiver for the transformation is not a perfect eye of a concrete person, but the
model reflecting the average responsiveness of human vision and representing the
standard colorimetric observer of the International Commission on Illumination
(CIE) for the visual field of 2°. The optical science that concerns visible radiation
and considers the parameters and characteristics of such radiation to be expressed
by means of the luminous quantities is called the photometry or light measurements.

To describe a spectral, spatial, and temporal distribution of the energy of radiation
recognizing a distinct system of units, the physical parameters of radiation are named
to specifically characterize spectral densities and spectral distributions of radiometric
and photometric quantities. These quantities specify the spatial, angular, and/or
spectral density of a light beam at a given region of space, the distribution of the light
beam surface density over its cross section, and the dependency of a given quantity on
time. From the standpoint of time-dependent quantities, two types of light envelopes
are distinguished: the continuous radiation, existing at any instant of the observation
time t, and the pulsed radiation, existing during a time interval s smaller than the
observation time. The time interval sp, at which the values of a photometric or
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radiometric quantity of a light pulse exceed a given relative level, typically 0.5 of its
maximum, is called the duration of the light pulse.

The spectral density Xk of a given radiometric or photometric quantity is rec-
ognized as the physical quantity identified by the ratio of any considered quantity
dX within a small spectral interval containing a mean light wavelength k to width
dk of that spectral interval: Xk ¼ dX=dk. Analogously, the spectral density can be
formed on various scales: Xf by a frequency f, Xm by a wave number m, or by their
logarithms, etc. The spectral distribution of a photometric or radiometric quantity is
the dependence of its spectral density versus wavelength, frequency, wave number,
etc. Respectively, the section of radiometry in which the parameters of optical
radiation are expressed through the spectral densities of radiometric quantities is
called spectroradiometry. One specific section, in which the properties of materials,
bodies, or substances are identified via relations between spectral densities and the
radiometric quantities to be analyzed, is called spectrophotometry.

The study of parameters and characteristics of emission, transfer, and reception of
optical radiation is provided by photometers and radiometers. Two basic types of
photometers and radiometers are distinguished. A radiometer utilizes some physical
receiver of radiation as the primary optical transformer, directly converting the
energy or power of a light beam into a signal to be registered. For a visual pho-
tometer, the receiver is the human eye, establishing photometric equilibrium between
analyzing and comparing light waves due to equality of surface-angular densities of
the viewed luminous fluxes as the equality of luminance values of the visible spots.

The availability of such a natural photometric observer as the human eye enabled
the establishment of the luminous units of measurements in photometry historically
independent of the system of radiant units. It was natural in the early years of
photometry to use a standard candle, emitting a given luminous flux into the space
region limited by a unit solid angle of one steradian. The luminous intensity of such
a standard source was initially designated as the candle (cd). Later, the unit of
luminous measurements was reproduced via the spectral emittance of the blackbody
radiator under a specific fixed temperature. As a result, the following definition was
introduced: the candela equals the luminous intensity irradiated in the perpendicular
direction from 1=600; 000 of a square meter of a blackbody with its surface at the
temperature of platinum solidification at a pressure equal to 101; 325N=m2.

The existence of various units of measurement for energy or power extents of
radiation defines varieties for quantitative estimations of radiant or luminous
actions. Nevertheless, reproduction of the dimension of any unit of measurement
can be realized on the basis of one unified systematic approach. For that purpose the
relative spectral luminous efficiency of monochromatic radiation for photopic
vision can be normalized within one system. That is based on the correlation
between radiant flux expressed in radiant units and luminous flux of radiation in the
maximum of the responsiveness for a standard CIE photometric observer, which
represents one statistically averaged eye. In October 1979 the 16th General
Conference on Weights and Measures ultimately adopted a new conclusive defi-
nition for the candela within the radiometric-term system: “The candela is the
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luminous intensity, in a given direction, of a source that emits monochromatic
radiation of frequency 540 � 1012 Hz and that has a radiant intensity in that
direction of 1=683W � sr�1.”

The adopted radiometric definition for the candela allows one to practically
reproduce the actual dimensions of radiant, photon, luminous, and, by analogy, any
arbitrary reduced unit of measurement by the sources of optical radiation of a
consecutive spectrum: from continuous to pulsed sources in any state of coherence
at a fixed or changeable wavelength. The reduced units can be, in turn, determined
by measuring the radiant or luminous fluxes, or any other spatial, spectral, or
temporal extents of radiation by a given radiometer or photometer with either
unselective, preferential, or accordingly corrected optical characteristics of its ra-
diometric or photometric response.

1.2.2 Parameters of Optical Radiation

The normal radiometric viewpoint on any radiant transfer presumes that an electro-
magnetic field, localized in finite spatial and temporal regions, is being averaged in
these regions near every given point of observation. Thus, if there is a superposition of
different beams of radiation with equal spectral and temporal distributions, providing
the phase statuses of radiation components are independent of each other, then the
radiometric effect at a chosen point is identified by the combined intensity of those
radiation components. The combined intensity is set in a unit area, a unit volume,
within a unit solid angle, or in a unit temporal or spectral interval. The spatial or
temporal distributions of radiation in space and time may be characterized by the
respective radiometric quantities, which represent the spatial or the temporal integral
or derivative of theflux or energy of optical radiation over any enumerated coordinate.

The primary radiometric and photometric quantity is, respectively, the radiant or
luminous flux of radiation U, which is equal to the power P of radiation as the ratio
of the energy Q transferred by radiation to the time t of the transfer that greatly
exceeds the period of electromagnetic oscillation of radiation: U ¼ P ¼ dQ=dt: The
radiant flux is measured in the radiant unit watt (W), and is designated by radiant
index e: Ue ¼ dQe=dt. The luminous flux is measured in the luminous unit lumen
(lm), identified by the luminous energy Qv per unit of time t. The luminous flux is
designated by the visual index v: Uv ¼ dQv=dt. The mean or average power of
radiation �U or �Ue (observation of luminous quantities practically always implies
averaging) represents the radiant flux, defined as the radiant energy transferred by
continuous or by pulsed radiation during the time of such a transformation. In the
pulsed mode, the maximum power Umax of a beam of optical radiation is determined
as the greatest magnitude of the radiation power during the time of its observation.

The utmost spatially localized power parameter of the statistically averaged field
of optical radiation is the radiance Le, measured in radiant units, or the luminance
Lv, measured in luminous units. Radiance or luminance denotes a surface-angular
density of light. It is given by a radiant flux d2Ue or a luminous flux d2Uv related to
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a geometric extent d2G of a light beam irradiated from a small platform dA con-
taining a specified point of observation into a small solid angle dX of a direction ‘
forming an angle H with the normal to the platform dA of the light beam formed:

L ¼ d2U
d2G

¼ d2U
d A cosHdX

¼ d2U
d AndX

: ð1:17Þ

The radiance and luminance have the physical meaning of flux of optical radiation
propagating in a given solid angle into a chosen direction from a normally situated
(dAn) platform of a unit area. The measurement units are watts per steradian per
square meter for radiance ½W=ðsr �m2Þ�, and lumens per steradian per square meter
½lm=ðsr �m2Þ� or candela per square meter for luminance ½cd=m2�.

The angular density of radiation is characterized by the radiant intensity Ie for
radiant units, and by the luminous intensity Iv for luminous units. The angular
density or the intensity of light is defined by ratio of flux dU, propagating from a
given source of radiation in a small solid angle of observation dX containing an
analyzing direction ‘, into solid angle dX of light propagation:

I ¼ dU
dX

¼
Z
A

L cosHdA: ð1:18Þ

The units of measurement are watts per steradian for radiant intensity ½W=sr�, and
candela, which is equivalent to lumens per steradian ½lm=sr�, for luminous intensity.

The designations of photometric quantities characterizing the spatial density of
light depend on the localities. The radiant emittanceMe and the luminous emittance
Mv designate the surface density of the emitted flux. Each is defined by the ratio of
radiant or luminous flux d2U flowing out from a small part of an emitting surface,
containing any observation point, to an area dA of that part:

M ¼ d2U
dA

¼
Z
X

L cosHdX: ð1:19Þ

The units of measurement are watts per square meter ½W=m2� and lumens per square
meter ½lm=m2�. Two supplementary quantities, the irradiance Ne and the illuminance
Nv, characterize the surface density of radiating flux falling on an object under study
and irradiating or illuminating that object. These quantities are defined by the ratio of
the radiant or luminous flux d2U falling on a small surface containing a given point
to an area dA of the surface:

N ¼ d2U
dA

: ð1:20Þ

The units of measurement are watts per square meter ½W=m2� and lux (lx). The
surface density of radiant flux dUe=dA or radiant energy dQe=dA characterizes the
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surface density of either continuous or pulsed radiation. The flux density is defined
by the ratio of radiant flux transferred by a small section of a physical beam, retaining
a point being studied, to an area of that section and is measured in watts per square
meter ½W=m2�. The radiant flux surface density integrated over time characterizes the
radiant energy density or fluence, which defines the surface energy density and the
strength of radiation field, and is measured in joules per square meter ½J=m2�.

The three-dimensional spatial density of optical radiation is characterized by the
spherical irradiance N0,e and by the spherical illuminance N0,v, identifying the
entirety of normal irradiance or illuminance values dNn originating from the totality
of the beams contained in small solid angles of all directions ‘i, in the space with a
vertex at an observation point P, which fall on the small platforms dAi perpen-
dicular to each named direction ‘i, which contain the observation point P:

NO ¼
Z

dNn ¼
Z
4p

LdX: ð1:21Þ

The units of measurement for the spherical irradiance and spherical illuminance are
as for irradiance and illuminance.

The three-dimensional angular intensity of light is defined by the spherical
density of radiant intensity I0,e and the spherical density of luminous intensity I0,v,
respectively identified by the ratio of the radiant intensity dIeðu; hÞ or the luminous
intensity dIvðu; hÞ of a small volume V of an emitting, scattering, or fluorescent
medium, containing an observation point, in a direction formed by angles u and H
to that volume dV. The spherical densities are measured in watts per steradian per
cubic meter ½W=ðsr �m3Þ� and in candelas per cubic meter ½cd=m3�, respectively.

Alternatively to instantaneous observation, pulse radiometry and photometry
study time-sensitive events. For pulsed radiation, when a temporal action is
observed, the energy extent of light may be identified by an integral of a respective
photometric or radiometric quantity over the observation time. Depending on the
units of the study, the following quantities may be used: the integral radiant
intensity he and the integral luminous intensity hv, identified by integrals of radiant
and luminous intensities over time and measured in joules per steradian ½J=sr� and
candela seconds ½cd � s]; the radiant exposure He and the light exposure Hv, iden-
tified by integrals of the irradiance and the illuminance over time and measured in
joules per square meter and lux seconds ½J=m2� lx � s½ �; the integral radiance Ke and
the integral luminance Kv, defined by the integrals of the radiance and the lumi-
nance over time and measured in joules per steradian per square meter ½j=sr �m2�
and in candela seconds per square meter ½cd � s=m2�; as well as the spatial radiant
exposure H0,v and the spatial light exposure H0,v, identified by integrals of the
spatial irradiance and the spatial illuminance over time and measured in joules per
square meter ½J=m2� and in lux seconds 1x � s½ �.
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1.2.3 Invariable Parameters of a Light Tube

Consider a beam of optical radiation at wavelength k propagating in free space with
the wave front of the beam defined by the eikonal equation (1.7). In that optical
beam an arbitrary element of volume dV at a point P could radiate or be irradiated,
and by the Huygens principle the element can be viewed as a source of secondary
waves. Equation (1.2) defines the flux dU of radiation inside volume dV. To pro-
vide for radiometric observation, the volume’s dV dimensions should be notably
larger than wavelength k. The smallest element of volume dV for the integration in
(1.2), while radiometrically observing optical radiation in any ultraviolet–visible–
near infrared spectral domain, can be considerably smaller than common apertures
of optical systems and the distances between their elements. Therefore, such a
volume dV may be considered as one material point, from which radiation beams or
rays are irradiated forming the light tube.

To determine the distribution of radiant or luminous intensity in a light tube, let
us take a look (see Fig. 1.1) at a beam of light propagating from an element dA1 of
a given wave front L1ðrÞ ¼ const, at a distance ‘1 from a designated point P, to an
element dA2 at a distance ‘2 forming a wave front L2(r). If the volume dV enclosed
by the tube and elements dA1 and dA2 contains no internal light sources and no
energy absorbers, the law of conservation of energy Eq. (1.2) of the time- and
space-averaged optical field inside the light tube can be expressed using a curve
integral over volume dV as [0.5]:I

dV

hSi� r dA ¼ 0: ð1:22Þ

Taking into account relations (1.12, 1.13) for the radiant intensity I, Eq. (1.22)
transforms into: I

I s � r dA ¼ 0: ð1:23Þ

Here s is the unit vector of a wave normal and r is the unit vector of an outer normal
to the element.

Since the scalar product s � r of vectors s and r is þ 1 on irradiated surface dA2

and −1 on radiating surface dA1, as well as zero on the lateral tube surface,
Eq. (1.23) converts to:

s

r1

r2

s
s

dA2dA1

P

1
2

dV

Fig. 1.1 A physical beam
forming a light tube
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I2dA2 � I1dA1 ¼ 0 or I1dA1 ¼ I2dA2: ð1:24Þ

Hence, the flux dU of radiation inside the light tube is invariable along direction of
its propagation, and the normal cross section of the tube serves as a measure of the
surface density of radiation flux.

The processes of emission and reception of optical radiation by arbitrary surfaces
inside the light tube can be analyzed via individual material points, interconnected by
inscribed light beams (Fig. 1.2). Elements dA1 of emitting surface A1 are connected
with elements dA2 of irradiated surface A2, and vice versa. Every light beam that
irradiates surface A2 from each arbitrary element dA1 is inscribed in the solid angle
X1 ¼ A2 cosH2=r12. Every beam irradiating each arbitrary element dA2 from the
surface A1 is inscribed in solid angle X2 ¼ A1 cosH1=r22. Angles X1 and X2 define
how surfaces A1 and A2 are observed from elements dA2 and dA1. The full entirety of
all the beams that have reached surface A2 from elements dA1 represents one material
beam of optical radiation emitted from surface A1 and irradiating surface A2. Since
r1 ¼ r2 ¼ r, that beam has a physical constant:

X1A1 cosH1 ¼ X2A2 cosH2 ¼ const � G: ð1:25Þ

Such a physical constant G serves as the measure of the angular-surface density of
optical radiation carried by a light beam or by the light tube [0.5, 1.4]. G is called
the geometric extent of a light beam, which may be directly approximated by the
light tube. Equation (1.25) defines that the intensity of an optical beam forming the
light tube remains constant independent of the position of an inner point for which
the intensity is analyzed: emitting, irradiated, or situated in between.

If a light beam propagates through substances with unequal refractive indices,
the invariance of the geometric extent is more general. In the case of incidence of a
beam of light falling within solid angle dX ¼ sinu � du � da onto a border of two
dielectric substances, having refractive indices n1 and n2 (Fig. 1.3), the beam’s
angle u2 of refraction should satisfy Snell’s law:

dA2

A1

s

dA1

n

n

A2

s

Ω1

Ω2

Θ1

Θ2

r1

r2

Fig. 1.2 Geometry of a beam
of radiation
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n1sinu1 ¼ n2sinu2: ð1:26Þ

The azimuth angle a in the plane perpendicular to the plane of incidence does
not change, and after raising the left and right sides of Eq. (1.26) to the second
power and differentiating, one can obtain:

n12 sinu1 cosu1du1 ¼ n22 sinu2 cosu2du2: ð1:27Þ

Further multiplying both sides by dA�da gives:

n 2
1 ðdA cosu1Þ sinu1du1da ¼ n 2

2 ðdA cosu2Þ sinu2du2da; ð1:28Þ

and re-writing the equation in the form separating the geometric extent for the
element 1 and 2:

n 2
1 dX1dA cosu1 ¼ n 2

2 dX2dA cosu2; ð1:29Þ

one may obtain Gershun’s invariant [0.5]. The invariant may also be re-written in
the form:

n12d2G1 ¼ n22d2G2 ¼ const: ð1:30Þ

Gershun’s invariant states that in a light tube the product of the square of the
optical refractive index and the tube’s geometric extent is a constant of the tube’s
material beam propagating in substances with unequal refractive indices. By
analogy, the geometric extent is sometimes called the optical extent (étendue) of a
light beam (see, for example, (1.25)), since it specifies the medium properties for a
geometric extent [1.4, 1.5]. The term d2G in (1.30) indicates that the geometric
extent is a function of two variables: dA and dX.

1.2.4 Flux and Radiance of Optical Radiation

Let a surface dA represent any single element of an emitting or irradiated surface in
a light tube. In the tube a material beam at an arbitrary point P in a direction ‘

ϕ1

ϕ2

dϕ2

dϕ1
dΩ1

dΩ2

dα

dαn1 n2
Fig. 1.3 Refraction of a light
beam on a boarder of two
mediums
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makes an angle u with the inner or outer normal n to the surface (see Fig. 1.2). The
radiant flux d2U propagating in a small solid angle dX in a direction s via element
dA and carrying a portion of energy in a small but finite time interval longer than
the period of electromagnetic oscillation is:

d2U ¼ L cosðs^nÞdAdX: ð1:31Þ

Here L is the proportionality factor – a function of two spatial variables: point P and
direction s. Taking into consideration Eq. (1.25), relation (1.31) can be re-written in
a one-factor form:

d2U ¼ L � d2G: ð1:32Þ

Equation (1.32) defines that the flux carried by a light beam, is related in radiant
units to its geometric extent, which identifies the beam geometry, by only one
variable—called the radiance. The radiance has the physical meaning of the radiant
flux passing a unit surface by a surface normal in the unit solid angle. The lumi-
nance determines the luminous flux carried by a beam of light in proportion to the
geometric extent. The two factors define the surface-angular density of radiation.

Equation (1.32) identifies the radiance and luminance, as well as the geometric
extent, being invariant parameters of a light beam. According to Eq. (1.25), the
radiance, the luminance, and the geometric extent of a given beam remain
unchanged, L ¼ const1; d2G ¼ const2, for any propagation of radiation in nonab-
sorbing or nonscattering mediums if the flux d2U remains constant. In the
first-known work devoted to photometry [0.1] this statement was misformulated as
equality of the luminance of an object and of its image, formed by optically perfect
lenses or mirrors, but the statement only applies to the no-loss approximation of
image formation and radiation transfer [1.4].

If a beam passes a border of two substances with a relative refractive index
n ¼ n2=n1, the flux d2U carried by the light beam is altered, even if the border
absorption and scattering losses are negligible:

d2U2 ¼ d2U1ð1� qÞ: ð1:33Þ

Here q is the specular reflectance of the border of two substances, given by the
Fresnel formulae [0.3, 1.1]:

qjj ¼
n cosu1 � cosu2

n cosu1 þ cosu2

���� ����2¼ tan2ðu1 � u2Þ
tan2ðu1 þu2Þ

; ð1:34Þ

for a light wave polarized in the plane of incidence. For the wave polarized per-
pendicularly to the plane of incidence:
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q? ¼ cosu1 � n cosu2

cosu1 þ n cosu2

���� ����2¼ sin2ðu1 � u2Þ
sin2ðu1 þu2Þ

: ð1:35Þ

When light is incident on the border normally, the differences vanish: qjj ¼ q? ¼
q0; and the specular reflectance is:

qn � q0 ¼
n� 1
nþ 1

� �2

, ð1:36Þ

At normal incidence the border reflectance is independent of the state of light
polarization. The designated angles H1ðu1Þ and H2ðu2Þ are, respectively, the angle
of incidence and the angle of refraction defined by Snell’s law (relation (1.26)); n is
the relative refractive index of the boundary of two substances: n ¼ n2=n1.

Combining Eqs. (1.30), (1.32), and (1.33), one can obtain the following
relationship:

L2 ¼ ð1� qÞ n2=n1ð Þ2L1: ð1:37Þ

It implies that any given radiance or luminance of a light beam, transferred from the
less dense to the denser medium, increases in proportion to the square power of
mediums’ relative refractive index, owing to a decrease of the solid angle filled by
the beam after refraction on the mediums’ border. If either the medium or the border
absorbs and scatters radiation, by the law of conservation of energy:

d2U1 ¼ ð1 � q� a� rÞd2U2; ð1:38Þ

where a and r are the absorptance and the scattering factor of the border. If
necessary, the factual absorptance and scattering factor of a given border can be
taken into account in Eq. (1.37):

L2 ¼ ð1 � q� a� rÞ n2=n1ð Þ2L1: ð1:39Þ

1.2.5 Intensity and Emittance of a Light Beam

Let us rewrite Eqs. (1.31) and (1.32) for the flux d2U of a beam via its dependence
on the solid angle dX and the area dA of a light-emitting element (Fig. 1.2):

d2U ¼ L � cosðs ^nÞdA dX ¼ dI � dX; ð1:40Þ

d2U ¼ L � cosH dA dX ¼ dM � dA: ð1:41Þ
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Designated by Eqs. (1.40) and (1.41), the proportionality factors dI and dM are:

dI ¼ d2U=dX ¼ L cosHdA; ð1:42Þ

dM ¼ d2U=dA ¼ L cosHdX: ð1:43Þ

Here H is the planar angle between the beam’s direction s and the normal n to dA.
The angular extent:

IðHÞ ¼
Z
A

L cosHdA ¼
L¼const; h¼0

LA; ð1:44Þ

is the intensity of optical radiation in direction s (relation (1.18)). It converges to
the radiant intensity or the luminous intensity for radiant or luminous units. The
intensity is the measure of the flux of radiation propagating from a point in a unit
solid angle in a given direction. The surface extent:

MðPÞ ¼
Z
X

L cosHdX, ð1:45Þ

is the emittance of optical radiation at point P (relation (1.19)): the radiant emit-
tance and the luminous emittance for radiant and luminous units. The emittance
describes the functionality of a source emitting a beam of radiation or the spatial
density of a light beam irradiating or illuminating a surface. The emittance is a
measure of the flux of radiation propagating from or onto a unit platform containing
a point of observation.

The magnitude L of radiance or luminance in the integral in relations (1.44) and
(1.45) is dependent on the direction of observation and on the coordinate of a given
point of a wave front at which the integration is realized. In many cases, the
angular-surface density of a light beam emitted by a primary or a secondary source
of light is a constant of the source or changes according to a particular law. For
example, under thermodynamic equilibrium, a blackbody at a steady-state tem-
perature totally absorbs, i.e., with absorptance a ¼ 1:0 and reflectance Rq ¼ 0, all
incident radiation independently of its spectral composition, direction, or state of
polarization. Only under such specified conditions do diverse parts of a blackbody
exchange equal portions of energy. Since the radiance and luminance of each point
of the blackbody represent equivalent fluxes, radiated by the unit platform into the
unit solid angle, the surface-angular density of the radiation energy within the
blackbody remains unchanged for any point in any direction. It only changes as a
function of the blackbody temperature and thus is called blackbody (or black-
cavity) radiation.

The angular intensity IðHÞ of radiation for a uniformly emitting source whose
radiance and luminance does not depend on the direction of observation:
LðHÞ ¼ const � L0, is defined by Lambert’s law [0.2]:
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IðHÞ ¼ cosH
Z

Lð‘ÞdA ¼ cosH
Z

L0dA ¼ I0 cosH: ð1:46Þ

Here I0ðHÞ is the radiant or luminous intensity of the uniform source with any
constant radiance or luminance L0. From (1.43) the radiant emittance and radiance
of the uniformly emitting source or the luminous emittance and luminance are
interrelated to each other by the equation:

MðPÞ ¼ L0

Z
p

cosHdX ¼ L0

Z
cosH 2p sinHdH ¼ pL0: ð1:47Þ

Here dX ¼ 2p sinHdH is the elementary solid angle into an angle of observation
dH at a point P, which defines the elementary emittance dM(P). Factoring of L0

outside the integrals in Eqs. (1.46) and (1.47) is enabled by the constancy of
radiance (luminance). If Lambert’s law is not satisfied, relations (1.46) and (1.47)
become incorrect, and intensity and radiance are governed by relations (1.44) and
(1.45).

The spatial distributions of radiance or luminance and of radiant or luminous
intensity for real light sources mostly do not satisfy Lambert’s law. A distinction as
a function of observation direction can be defined via the indicatrix of a relative
distribution of the radiance or luminance:

cðHÞ ¼ LðHÞ=L 0ð Þ; ð1:48Þ

or via the indicatrix of relative distribution of radiation intensity:

fðHÞ ¼ IðHÞ=I 0ð Þ; ð1:49Þ

where L(HÞ and I(HÞ are the radiance and radiant intensity in the direction of angle
H to the outer normal to a given surface, and L(0) and I(0) are the values in the
normal direction of the beam for H ¼ 0.

The indicatrix of either radiance (luminance) or intensity can be expressed via L0

and I0 magnitudes for the isotropic diffuser, which by analogy to the uniform source
would reflect or emit optical radiation according to Lambert’s law (see Eq. (1.46)),
making a Lambertian reflector or emitter:

c0 ¼ LðHÞ=L0; ð1:50Þ

f0 ¼ IðHÞ=I0: ð1:51Þ

The isotropic or uniform diffuser emits the uniformly diffused radiation. Owing to
the equivalence:
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dIðHÞ ¼ LðHÞdA cosH ¼ cðHÞ L 0ð ÞdA cosH ¼ cðHÞdI 0ð ÞcosH; ð1:52Þ

indicatrixes of radiance (luminance) and radiant (luminous) intensity are related by
the following equations:

fðHÞ ¼ cðHÞ cosH; f0 ¼ c0 cosH: ð1:53Þ

By comparing them with the isotropic diffuser, Eqs. (1.47), (1.48) may be
analogously written as:

Ið‘Þ ¼ IðHÞ ¼
Z
A

cðHÞLðHÞ cosHdX ¼
Z
A

cðHÞL0 cosHdA ¼ I0 f ðHÞ; ð1:54Þ

MðPÞ ¼
Z
p

cðHÞLðHÞ cosHdX ¼ L0

Z
f ðHÞdX ¼ L0Xe: ð1:55Þ

Here the integral of intensity indicatrix Xe is the equivalent solid angle containing
the uniformly distributed flux of optical radiation and having a total emittance
matching that of the actual source:

Xe ¼
Z
p

f ðHÞdX: ð1:56Þ

Besides a blackbody at thermodynamic equilibrium, some secondary light
sources may be considered as nearly uniform emitters or diffusers, such as coatings
based on barium sulfate or magnesium oxide or their compositions, and highly
reflective or translucent opal glasses or polymers in reflected or in transmitted light.
Some sources have almost uniform distribution not of radiance or luminance, but of
radiant or luminous intensity. The spatial distribution of radiation emitted by such
sources corresponds not to Lambert’s law, but to Euler’s law. One example of a
uniform-intensity source is a mirror sphere viewed in reflected light if it is irradiated
by a parallel light beam [0.1, 1.4].

Analogously to the absolutely perfect emittance of such an ideally isotropic,
effective, uniform primary source of radiation as a blackbody of emissivity
e ¼ a ¼ 1, the perfect diffuser is a model for a perfectly isotropic and effective
secondary source of light of unity reflectance and uniform radiance or luminance.
The perfect diffuser reflects radiation with complete reflectance q ¼ 1:0 and at a
constant radiance or luminance such that the radiant or luminous intensity in any
direction H is IðHÞ ¼ I0cosH, where the intensity I0 in the normal direction is
defined by that constant radiance L0 over its surface A: I0 ¼

R
L0dA. Despite the

fact that the actual light distribution and reflectance indicatrix of all known white
objects deviate from the ideal model for the secondary light source providing ideal
transformation factors, evaluation of discrepancies between optical properties of
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existing and perfect diffusers can reasonably simplify computations of parameters
of radiation reflected by such actually imperfect, but realizable objects. Therefore,
in theory, the “perfect diffuser” provides support in verifying correlations among
different objects themselves.

Conformity of a particular radiance or luminance profile of any actual diffuser in
reference to the perfect diffuser can be identified versus either the radiance factor or
the luminance factor:

b ¼ Lð‘Þ=LPð‘Þ: ð1:57Þ

The factor defines the ratio L/Lp of the radiance or luminance L of the object being
studied and of the perfect diffuser Lp for equivalent irradiation or illumination
settings. According to Eqs. (1.50)–(1.53), the radiance (luminance) factor relates to
the indicatrix of radiance (luminance) or intensity as:

bðHÞ ¼ b 0ð ÞcðHÞ ¼ b 0ð Þ fðHÞ=cosH: ð1:58Þ

If an actual diffuser reflects or transmits optical radiation while maintaining its
radiance and luminance unchanged in every direction of the hemisphere to which
such radiation is being reflected and transmitted, respectively, such a diffuser is
called an isotropic diffuser [1.5].

1.2.6 Irradiance and the Inverse-Square and Cosine Law

Let us consider a narrow beam of light emitted from element dA into solid angle
dX, crossed by two arbitrary planes A1 and A2, making angles H1 and H2 with the
outer normal to the beam wave front at points P1 and P2 (Fig. 1.4). If we presume
the beam exists in a transparent – nonabsorbing as well as nonscattering – medium,
the flux d2U carried by the beam over planes A1 and A2 is the constant of the beam,
and is identified by the beam radiance L and by its geometric extent d2G:

d2U ¼ L � d2G ¼ LdA cosHdX ¼ IdX: ð1:59Þ

The solid angle dX filled by the beam defines the beam intensity I and is identified
by the ratios:

Fig. 1.4 Surface-density
concept for a beam of
radiation
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dX ¼ d A1 cosH1

‘21
¼ d A2 cosH2

‘22
: ð1:60Þ

Since by definition (Eq. (1.20)) irradiance dN of a surface reached by the wave
front at a point P is the ratio of the radiant (luminous) flux d2U falling on that
element to the element area dA, the surface irradiance (illuminance) from point P1
to point P2 changes according to the distance ‘i and the angle Hi:

NðP1Þ ¼ d2U
dA1

¼ IdX
dA1

¼ IdA1 cosH1

dA1‘
2
1

¼ I cosH1

‘21
: ð1:61Þ

NðP2Þ ¼ d2U
dA2

¼ IdX
dA2

¼ IdA2 cosH2

dA2‘
2
2

¼ I cosH2

‘22
: ð1:62Þ

Equations (1.61) and (1.62) define the main relationship in photometry and ra-
diometry: the inverse-square and cosine law. Alterations of the area of an emitting
or irradiated surface, created by changes in the inclination of falling rays or in the
distance to the light source, cause corresponding changes of the surface density of
the flux of radiation and of the irradiance or illuminance made by such a constant
flux. At a constant intensity across any irradiated surface, the optical flux itself may
be identified by a product of that intensity and the solid angle under which the
surface is irradiated.

If a light beam is transformed by lenses or mirrors, making an intermediate
image of a source of radiation, expressions (1.61) and (1.62) change. Evidently, the
intensity of radiation transmitted by a lens objective Is or reflected by a mirror
objective Iq is lower than the intensity of an incident beam in proportion to the
transmission or reflection factor of an objective. Assuming absence of aberrations
or diffraction, the radiant or luminous intensity I 0 of an image O0 of a given point
source O (Fig. 1.5) becomes:

I0s ¼ s IsdX1=dX2 ¼ s Isð‘2=‘1Þ2; I0q ¼ qIqð‘2=‘1Þ2; ð1:63Þ

Fig. 1.5 Modification of
irradiance or illuminance by
a lens
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where s and q are the transmittance and the reflectance of each objective, respec-
tively. The ratio of transmitted flux or the ratio of reflected flux or any extent of
angular (surface) density of radiation to the incident extent give the transmission or
the reflection factor. Angles X1 and X2 are small solid angles, under which the clear
aperture of the objective is seen from the given point source O and from its image,
respectively; ‘1 and ‘2 are the distances from the source O and the image O0 to
principal planes H and H′ of each lens system.

The irradiance created by the secondary source O0 at a point P of an imaging
plane AB that makes an angle H0 6¼ 90° with the optical system axis becomes
(see Eqs. (1.62), (1.63)):

N0 ¼ I 0 cosH0

‘23
¼ s I cosH0 ‘2

‘1‘3

� 	2
¼ s

‘2
‘1

� 	2I cosH0

‘23
; ð1:64Þ

where the multiplier in square brackets is the factor for transformation of the
intensity of the source to the intensity of the image. Thus, transformation of a
radiant flux by any optical system converts the inverse-square and cosine law from
the space of objects to the space of images. That holds true for transformation of
irradiance or illuminance by any image of any light source [0.1, 1.4].

Realization of the inverse-square and cosine law in actual photometric and ra-
diometric experiments may be applied to confirm either calibration or evaluation of
photometric accuracy of radiometers and photometers. Verifications can be made
by measuring conversions of power and energy extents of radiation to corre-
sponding responses, as functions of distances from light sources to images, or as
functions of inclinations of the planes of observations. Deviations from the values
predicted by law conversions identify the limits of the radiometric and photometric
description, in terms of geometric optics, at which light sources can be seen as point
sources at given distances.

Deviations of the inverse-square and cosine law can appear not only owing to the
finiteness of the dimensions of the light sources and their images at insufficiently
large distances, but also in astigmatic beams of light, for which a beam emerges as
not being emitted from a single material point. For example, a homocentric physical
beam of light transmitted by a border of mediums of unequal bulk indices of
refraction at an angle deviating from the normal to the border becomes astigmatic
(Fig. 1.6a) since the refraction of the beam takes place only in the plane containing
the wave normal to the border and the incident beam. For the process of refraction
for meridional beams OA and OB reaching two observation points A and B, the
beams look as if they have been emitted from meridional image O′m of light source
O. Sagittal beams OA and OC appear to have been emitted from sagittal image O′s,
situated on the outer normal to adjacent border substances. Wide-beam reflection
from a spherical mirror leads to similar astigmatism via two images O′ and O″
(Fig. 1.6b).
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In consequence of the fact that solid angle Xast filled by an astigmatic beam is
defined by the product of the respective distances to meridional rm and sagittal rs
images of its vertex O as:

dXast ¼ dA cosH=ðrmrsÞ; ð1:65Þ

the irradiance or illuminance created by such an astigmatic light beam is [0.1, 1.4]:

dEast ¼ dI0 cosH0=ð‘m‘sÞ: ð1:66Þ

Here dI 0 is the radiant or luminous intensity of the image, and ‘m and ‘s are the
distances from the transmission or reflection image, respectively, of the source to
the point of image observation.

If a light beam interacts with a border of two mediums, the law of conservation
of energy:

M ¼ sN ¼ ð1 � q� a� rÞN; ð1:67Þ

M ¼ qN ¼ ð1� s� a� rÞN; ð1:68Þ

defines losses of light intensity on the border. Here M and N are the radiant or
luminous emittance and the irradiance or illuminance of the border; s and q are the
factors of the energy transformation process of radiation at such a border, which is
either transmittance or reflectance, respectively; and a and r are the absorptance and
the scattering factor of the border, considered as losses. Therefore, in expression
(1.66), the radiant intensity of the image has to be considered as given by I0 ¼ s I.

In reflected light, owing to equivalence of the angles of incidence and of
reflection (Fig. 1.6b):

A

Θ’ 

B

Θ

(a) (b)

Om’

Os’

C

Θ
MO'2

O'1

O
ϕM-incident

ϕM-reflected

N

R

⋅⋅ ⋅ ⋅

⋅
O

Fig. 1.6 Transformation of a homocentric beam into an astigmatic one: in transmitted (a) and in
reflected (b) radiation
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I
OM2 ¼

I 0

O0
1M � O0

2M
; ð1:69Þ

where I0 ¼ qI. According to Eq. (1.69), irradiance or illuminance EN at arbitrary
point N due to mirror astigmatism is defined by the inverse-square law, transformed
via the meridional and the sagittal prolongation of the astigmatic image, formed in
reflection from the spherical mirror:

EN ¼ q
I

OM2

O0
1M � O0

2M
O0

1N � O0
2N

cosH ¼ q
I
‘2
rm
‘m

rs
‘s

cosH: ð1:70Þ

1.3 Interactions of Radiation with Material Objects

1.3.1 Factors and Coefficients of Attenuation

During propagation of radiation, any changes of its intensity, such as angular and
surface density, like irradiance, illuminance, radiance, and luminance, may be
caused by changes in the parameters of light beams due to refractive index trans-
formations at medium borders. Concurrently, interactions of light with bodies,
substances, or propagation mediums, in the absence of added sources of energy,
inevitably cause attenuation of light intensity. Only under specially taken measures
may the magnitude of attenuation be negligible.

Three fundamental mechanisms of attenuation of radiation are to be considered:
reflection on borders of substances with unequal indices of refraction, absorption
causing transformation of electromagnetic energy to thermal, chemical, or any other
form of energy, and scattering, or diffraction, of light by the composition, inho-
mogeneities, and/or density fluctuations of elements of light propagation. The
transmission action of a given cross section DX of any attenuating, but homoge-
neous, substance under study that interacts with optical radiation can be written as:

Q� Q0 ¼ DQ ¼ �Q lDX, ð1:71Þ

where Q0 and Q are the input and output energy for the given layer with thickness
DX and l is the attenuation factor dependent on the attenuation properties of the
substance being studied. The negative sign indicates the decrease of energy in the
interaction (the only exception is the inverted active medium, having a negative
absorption coefficient due to supply of energy from external sources).

If the optical properties of irradiating substance are independent of coordinate X
along length ‘ of propagation with a constant attenuation coefficient l‘, integration
of Eq. (1.71) gives:
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ZQ
Q0

dQ
Q

¼ �
Z‘
0

l dX: ð1:72Þ

The solution for input and output energies of radiation gives the Bouguer–Beer–
Lambert law:

Q ¼ Q0 expð�l‘ ‘Þ: ð1:73Þ

If the attenuation is not a function of time, a similar dependence holds true for
the power of radiation U ¼ dW=dt at an arbitrary instant of time t or for a mean
power over period Dt ¼ t� t0:

U
��
Dt ¼ U0

��
Dt expð�l‘‘Þ: ð1:74Þ

If the attenuation factor l varies over thickness ‘ for l‘ 6¼ const, the extinction
process can be integrated:

Q‘ðkÞ ¼ Q0ðkÞ exp �
Z‘
0

l‘ð‘Þd‘
24 35: ð1:75Þ

Equations (1.72)–(1.75) provide the physical sense for function l‘ as the linear
attenuation coefficient defining the energy or power loss, caused by the object being
studied at a unit distance. That function determines the specific internal reduction of
power or energy of radiation transmitted by a medium and the rate of its exponential
decay. The units of the measurements are per meter, per centimeter, per millimeter
[m−1, cm−1, mm−1], etc.

Natural attenuation by length ‘ of an object is defined by the Napierian optical
density:

DN ¼ l‘ ¼ ln Q0 � ln Q: ð1:76Þ

The decimal logarithm of the ratio of two radiant fluxes or energies that are,
respectively, incident upon and emerging from the object or substance defines the
optical density of the object:

D ¼ ld‘ ¼ lg Q0=Qð Þ: ð1:77Þ

Accordingly, ld is the decimal coefficient of attenuation. From expressions
(1.74)–(1.77), it follows that:
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ld ¼ 0:434l; DN ¼ 2:303D: ð1:78Þ

The total loss in a beam of radiation propagating via any homogeneous object or
substance that does not contain specifically reflective inclusions is due to absorption
and scattering losses:

Q ¼ Q0 exp ½�ðaþrÞ ‘�: ð1:79Þ

Here a is the linear absorption coefficient and r is the linear scattering coefficient.
These coefficients are defined by analogy with the linear attenuation coefficient. The
scattering phenomenon is seen here as any deflection of radiation propagation from
directions defined by Snell’s law (Eq. 1.26) from the lines of a compass set by
specular reflection at the angles opposite to the angles of light incidence:
uref ¼ �uinc. Therefore, the coefficient r characterizes the actions of inhomo-
geneities and fluctuations of the density of the medium or the composition of the
irradiated or illuminated substance.

From the radiometric standpoint, i.e., from the point of energy transfer, which is
integrated over dimensions larger than the light wavelength, the task of defining the
radiation intensity totally or partially scattered into the entire reflection and trans-
mission 4p space can be characterized by one integral scattering coefficient or
factor. Such a factor at any given wavelength k can be independent of a specific
interaction phenomenon, such as a coherent light interaction without phase changes
conserving the propagation direction, an incoherent interaction distributed in 4p
space, or even any combination of both. In every case, only a specific localization
of the scattering phenomenon is required to define the intensity commensurate with
the given scattering mechanism.

If radiation is incident upon a boundary of two mediums with distinctively
different indices of refraction, the change of radiation velocity can be very
sharp. Alteration of the optical properties of contacting mediums is often distributed
over such a small distance that the border’s action may be considered to be
described by a step function. Consequently, each interaction of radiation with such
a border – transmission, reflection, scattering, or absorption – can be expressed by a
single dimensionless factor equal to the ratio of the power, or energy, or other
radiation extent (see Sect. 1.2) directly transmitted Qs, specularly reflected Qq,
absorbed Qa, or scattered Qr into spherical solid angle 4p to a respective extent:
flux U0, energy Q0, or other radiation extent of light incident on the border:

sr ¼ Qs

Q0
¼ Us

U0
; qr ¼ Qq

Q0
¼ Uq

U0
; a ¼ Qa

Q0
¼ Ua

U0
; r ¼ Qr

Q0
¼ Ur

U0
:

ð1:80Þ

The factors are respectively called the direct (regular) transmittance ðsrÞ, the direct
reflectance or specular reflectance (qr), the absorptance (a), and the scattering
factor or total scattering factor (r).
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The specular reflectance of a perfect, i.e. nonabsorbing and nonscattering, border
of uniform and homogeneous dielectrics, is identified by the Fresnel formulae:
(1.34)–(1.36). The magnitude of that reflectance depends on the relative refractive
index n of two bordering dielectrics, the state of radiation polarization, and the
angle of incidence of a given light beam. The relative refractive index n is a
function of wavelength k, as the respective indices of bordering dielectrics are:
nðkÞ ¼ n2ðkÞ=n1ðkÞ. Accordingly, a beam transmitted by such an idealized border
is not attenuated by nonexisting border absorption and does not contain scattered
components; thus, a border transmission factor or the transmittance s is equal to the
direct transmittance sd defined by the ratio of the energy or power of total radiation
transmitted through the border to the energy or power of the incident beam of light.
According to the law of conservation of energy, in the absence of scattering and
absorption on the border, that border direct transmittance sd;ideal complements its
specular reflectance qs;ideal and thus sd;ideal ¼ 1� qs;ideal:

sd;ideal þ qs;ideal ¼ Qs þQq


 ��
QR ¼ Us þUq


 ��
UR �

a ! 0
r ! 0

1:0: ð1:81Þ

The Fresnel formulae [0.3] for transmission (see Eqs. (1.34)–(1.36) for reflection)
of light polarized orthogonally to the plane of incidence s?, q?, in the plane of
incidence sk, qk, and at normal incidence of light sn, qn (Fig. 1.7) are:

s? ¼ sin2u1 sin2u2

sin2ðu1 þu2Þ
; ð1:82Þ

sk ¼
sin2u1 sin2u2

sin2ðu1 þu2Þ cos2ðu1 � u2Þ
; ð1:83Þ

sn � s0 ¼ 4n= nþ 1ð Þ2: ð1:84Þ

In the absence of scattering or absorption: sþ q ¼ 1, the border’s reflection factor
is specular reflectance qr, being the power or energy of reflected light related to the
power or energy of the incident light. If radiation polarized in the plane of incidence

(a) (b) (c)

Fig. 1.7 Incidence of direct (a) and diffused (b) light on the infinite border of two dielectrics, and
polarization in reflection at the Brewster angle (c)
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is incident at the Brewster angle uB on the border of two dialectics with relative
refractive index n, the border reflectance qk ¼ 0 at:

tanuB ¼ n; ð1:85Þ

since at this angle (Fig. 1.7c), the reflected and the transmitted light rays are
orthogonal to each other: sinu2 ¼ sinð90
 � u1Þ ¼ cosu1, thus the reflected light
beam has no component in the plane of incidence.

The scattering factor r defines the ratio of the flux or energy of light scattered
into spherical angle 4p related to the flux or energy of incident light. The relative
intensity of light scattered by a material object backward into solid angle 2p defines
the diffuse reflectance qd. Similarly, the relative intensity of light, scattered forward
into solid angle 2p, defines the diffuse transmittance sd. For the case of a mixed
reflectance and transmittance, when every beam contains direct and diffuse light
components, the total reflectance equals to the sum of direct and diffuse compo-
nents: q ¼ qr þ qd, and the total transmittance is the sum of direct and diffuse
factors: s ¼ sr þ sd, with scattering factor: r ¼ qd þ sd.

When a substance exhibits some permittivity, which most optical materials do,
its dielectric constant be is a complex function of the complex phase velocity v̂ and
dielectric permeability ê:

n̂ ¼ c=v̂ ¼
ffiffiffiffiffi
lê

p
¼ nð1þ ivÞ ¼ n� ij: ð1:86aÞ

Here v and j are the attenuation or absorption index and the extinction coefficient,
respectively:

n2ð1� v2Þ ¼ l � e; ê ¼ ðn� ijÞ2: ð1:86bÞ

The Bouguer-Beer-Lambert law Eq. (1.73) defines the relationship between the
extinction j and absorption a coefficients of a conducting medium for angular
frequency x of incident light (see also Sect. 12.4 for details):

I
I0

¼ e�l�‘ ¼ e� aþ rð Þ‘; at scattering coefficient r ! 0; a ¼ 2x
c
nj ¼ 4p

k0
nj ¼ 4p

k
j;

ð1:87Þ

where k0 is the wavelength of light in a vacuum; the other designations are as in
Eq. (1.1). Following from Bouguer’s law (Eqs. (1.73) and (1.87)), the physical
quantity reciprocal to the absorption coefficient is the distance d, at which the
density of the radiation energy decreases over e times:

d ¼ 1
a
¼ k0

4nj
¼ k

4j
: ð1:88Þ
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Therefore, at high levels of conductivity, the exponential distance d ¼ a�1 could be
much smaller than the radiation wavelength k in the UV (ultraviolet), VIS (visible),
or IR (infrared) optical domains.

When radiation is incident on a border dividing a dielectric and a conductor, the
refraction law and the reflectance amplitude R versus the incident amplitude A and
the state of polarization become:

sinu1 ¼ n̂ sinu2; ð1:89Þ

Rk ¼ tanðu1 � û2Þ
tanðu1 þ û2Þ

Ak; R? ¼ �sinðu1 � û2Þ
sinðu1 � û2Þ

A?: ð1:90Þ

In that case, the equivalent angle of refraction bu2, and, respectively, both ratios
Rk=Ak and R?=A? are complex. The presence of absorption by a substance that
interacts with light makes surfaces of constant amplitude and phase be detached
from each other and refracted beams become heterogeneous; thus linearly polarized
light reflected by a conductor is elliptically polarized [1.1, 1.6–1.8]. At normal
incidence Rk¼ R? and, similarly to (1.36), the reflectance becomes:

q0 ¼
n̂� 1
n̂þ 1

���� ����2 ¼ n2ð1þ j2Þþ 1� 2n
n2ð1þ j2Þþ 1þ 2n

: ð1:91Þ

Here n and j are the refractive index and the extinction coefficient for wavelength k,
respectively.

1.3.2 Localized Optical Properties

Considering interactions of optical radiation with a material object, which is likely
more dense than its surroundings, let us review the local properties of the object,
separating surface and bulk actions. In view of various types of optical losses, the
law of conservation of energy for any border of two adjacent substances
(see Eq. (1.80)) becomes:

qr þ qd þ aþ sr þ sd ¼
qd þ sd �r

qr þ aþ rþ sr � 1:0: ð1:92Þ

Here r is the total scattering factor of the border given by the sum of its diffuse
reflectance qd and its diffuse transmittance sd. The total scattering factor defines the
ratio of the energy or power extent of the radiation scattered at the border into 4p
spherical space to the incident energy, except in the directions of direct transmission
and specular reflection. Subsequently, any act of interaction of radiation with a
material object under study can be characterized by a total attenuation factor c. By that
definition, the transformation factor K of the light’s interaction with the border is
K ¼ 1� c.
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The action of all local and bulk factors and coefficients for the direct propagation
of a beam of radiation by a contingent totality of several homogeneous plain
elements may be given as a sum:

Qs;m ¼ Q0

Ymþ 1

i¼1; j¼1

si; j exp½
Xm
i¼1

ð�li‘iÞ�

¼ Q0

Ymþ 1

i¼1; j¼1

½1� ðqrÞi; j � ðqdÞi; j � ai; j � ðsdÞi; j� expð�
Xm
i¼1

li‘iÞ;
ð1:93Þ

where index i refers to the uniform and homogeneous ith layer of any given sub-
stance or element, indices i and j correspond to a border of ith and jth elements, and
m is the number of elements. Identifying the total factors and the average bulk
attenuation coefficient �l, (1.93) transforms to:

Qs;m ¼ Q0sR expð�Rli‘iÞ ¼ Q0ð1� qrR � aR � rRÞ expð��l‘RÞ: ð1:94Þ

Let us separate every action and consider transmission of light via a relatively thin
sample of a transparent dielectric in any dielectric homogeneous surrounding med-
ium. The accepted designation of the “transparent” sample presumes its scattering
and absorption losses are low in comparison with the regular reflectance for each flat
homogeneous sample surface: front and back, with the direct transmittance through
the entire sample. Let us characterize three possible configurations of the front and of
the back surface for that sample (Fig. 1.8a–c): (a) – infinitely large, in comparison
with the beam dimensions, but not parallel to each other; (b) – parallel to each other,
but not perpendicular to the optical axis of the beam; and (c) – parallel to each other
and perpendicular to the optical axis of the light beam incident on that sample.

For a small angle of incidence, in each configuration of a dimensionally unre-
stricted plate, either the transmitted or the reflected beam contains an infinite se-
quence of individual components of retroreflected light with amplitudes dependent
on the reflectance q of the sample surfaces, the linear attenuation coefficient l of the
sample bulk and its length ‘i, and a number of notable reflections, defined by the
sensitivity of the relative intensity measurements. The first component in the
transmission semispace represents the light beam transmitted directly:

Qs1 ¼ Q0ð1� qÞ expð�l‘1Þð1� qÞ � Q0ð1� qÞ2s1: ð1:95Þ

The first component in the reflection semispace is due to specular reflection on the
front surface:

Qq1 ¼ Q0q: ð1:96Þ

In Eq. (1.95) s1 is the internal transmittance of the sample bulk for thickness ‘1.
The second pair of components is defined by light retroreflected twice within the
sample’s bulk and transmitted through the sample:

1.3 Interactions of Radiation with Material Objects 33



Qs2 ¼ Q0ð1� qÞ2s1s2s3q2, ð1:97Þ

and by light transmitted twice via the first surface after being reflected from the
second surface:

Qq2 ¼ Q0 1� qð Þ2s1s2q. ð1:98Þ

The mth components of the sample as a plate with flat front and back surfaces are:

Qsm ¼ Q0ð1� qÞ2q2mexp½�ð2mþ 1Þl‘ 2mþ 1�; ð1:99aÞ

Qqm ¼ Q0ð1� qÞ2q2mþ 1exp½�2ðmþ 1Þl‘ 2ðmþ 1Þ�: ð1:99bÞ

In Fig. 1.8a, the first transmitted beam is incident normally on the first surface of
the plate, having relative refractive index n, and reaches the second surface at angle
H0, passing through at angle: u1 ¼ arcsin(n � sinHÞ �H. The second component,
which goes via two reflections, is deflected at angle u2 ¼ arcsinð3n � sinHÞ �H,
the third component is deflected at angle u3 ¼ arcsinð5n � sinHÞ �H, etc., until
total internal reflection occurs. Analogously, in reflection the beams diverge at
incidence on the wedge-shaped plate at expanding angles u1;u2, … . In the case of
oblique incidence onto the plane-parallel plate depicted in Fig. 1.8b, the direction of
the transmitted beam having 2 m refractions remains unchanged with respect to
direction of the incident beam. After the first displacement during beam propaga-
tion, the beam is displaced at every cycle of two retroreflections by the double
distance d:

d ¼ 2‘tgu0 cosu ¼ 2‘ sinu 1� n cosu
n0 cosu0

� �
ffi

u!0
2‘ sinu: ð1:100Þ

(a) (b) (c)

Fig. 1.8 Propagation of a light beam via a single, variously-shaped sample a wedged; b and
c plane-parallel tilted and perpendicular to the beam axis
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In every configuration it is possible to separate each spatially distributed com-
ponent, or at least some of them, by using apertures and detectors. The intensity Iq
of the beam reflected at angle u by the first surface with reflectance qu is Iq ¼ I0qu,
where l0 is the intensity of the incident radiation. The single-pass transmittance of a
plate of length ‘ and internal bulk loss l irradiated at angle u is:

spl�par;single ¼ Is;single
I0

¼ ð1� quÞ expð�l‘Þð1� quÞ ¼
l!0;‘!0

ð1� qÞ2: ð1:101Þ

Imagining a semi-space wide detector, which collects all retro-reflected components
at infinite number of inner-sample reflections m! 1, the total reflectance and total
transmittance respectively are:

sR ¼ ð1� �qÞ2 expð��l‘sÞ
1� �q2 expð�2�l�‘Þ ; ð1:102Þ

qR ¼ q 1þ ð1� �qÞ2 exp ��lð‘s þ ‘rÞ½ �
1� �q2 expð�2�l�‘Þ

( )
; ð1:103Þ

where the additive summation law applies and �q is the mean reflectance averaged
from the angle of incidence H to the angle of total internal reflection
H0 ¼ arcsin 1=nð Þ; ‘s and ‘q are, respectively, the length of the first radiation pass in
transmission and the length in reflection from the second to the first sample surface,
�‘ is the average length of the internal pass via the sample bulk, and �l is the average
linear bulk attenuation coefficient for the sample material.

In Fig. 1.8c, a quasi-parallel beam of light is incident on the plane-parallel plate
as its wave normal; thus, multiple reflected light components propagate via the
normal-to-plate direction. Both transmittance and reflectance of the dielectric plate
are sums of retroreflected light components:

sR;n ¼ ð1� q0Þ2 expð�l‘0Þ
1� q20 expð�2l‘0Þ ; ð1:104Þ

qR;n ¼ q 1þ ð1� qÞ2 expð�2l‘0Þ
1� q20 expð�2l‘0Þ

" #
; ð1:105Þ

where ‘0 and q0 are the plate thickness and its surface reflectance at normal inci-
dence. If l‘R � q0, making the internal loss inside the sample negligibly low in
comparison with the surface reflectance, the low-bulk-loss equations for the total
transmittance and total reflectance of the plate are:
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sn ¼ ð1� q0Þ2
1� q20

¼ 1� q0
1þ q0

; ð1:106Þ

qn ¼
2q0

1þ q0
: ð1:107Þ

Either single-pass transmittance or single reflectance of any plane-parallel plate at
normal incidence may only be distinguished in space if the multiple reflection factor
q20 expð�2l‘Þ is negligibly low. If internal multiple reflections do contribute to the
entire-plate reflectance, each retroreflected component may be separated in time
(see Fig. 1.8c). If the duration tp of a light pulse is shorter than the time interval
needed for the pulse to pass the plate twice: tp\2n‘0=c, every beam reflected by
either the front or the back surface can be separated with sufficient time resolution.

1.3.3 Multiple Optical Elements

Let us consider interactions of a beam of light of low divergence with a set of parallel
optical elements, such as plane-parallel plates of an identical material, having
refractive index n 1 and identical thickness ‘ (Fig. 1.9). Equations (1.71)–(1.79)
and (1.94)–(1.99) can be rewritten for the incident beam intensity I0 by assigning a
single transmission factor sint;u describing attenuation via one internal pass of each
single plate at any defined angle of light incidence u, as well as individual reflection
and transmission factors qu and su defining a plate surface interaction with light at the
angle u. Considering one pile of consecutive parallel plates, unchanged in relation to
the positions of transmitted and reflected beams, the equations are:

Is;1 ¼ I0susint;usu ¼ I0 1� qu

 �2

sint;u; Is;2 ¼ I0 1� qu

 �2

sint;u � q2us
2
int;u;

Is;n ¼ I0 1� qu

 �2

q2us
2
int;u

� �n�1
;

Iq;1 ¼ I0qu; Iq;2 ¼ I0 1� qu

 �2

s2int;uqu; Iq;3 ¼ I0 1� qu

 �2

s2int;u sint;uqu

 �2

qu;

Iq;n ¼ I0 1� qu

 �2

q2us
2
int;u

� �n�1
qu:

ð1:108Þ

ϕ

ϕ
ϕ’

1 2 3 4 n - 1 n Fig. 1.9 Transmission and
reflection beams via a pile of
plates
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Assuming all plates to be infinitely large at su \ 1; qu \ 1, the intensity of the
beam eventually decays to I ¼ 0, and presuming the law of additive summation to
be valid (see Chap. 3 for interference-bound computations and effects), the total
transmitted and reflected intensities for the plate are:

Is;1�2;ad ¼ I0s1�2;u ¼ I0 1� qu

 �2

sint;u 1þ q2us
2
int;u þ � � � þ q2 n�1ð Þ

u s2 n�1ð Þ
int;u

� �h i
¼ I0 1� qu


 �2 sint;u
1� q2us

2
int;u

;

Iq;1�2;ad ¼ I0q1�2;u ¼ I0 qu þ 1� qu

 �2

s2int;uqu þ 1� qu

 �2

s2int;uq
2
us

2
int;uqu þ � � �

h i
¼ I0qu 1þ 1� qu


 �2 s2int;u
1� q2us

2
int;u

" #
¼ I0qu

1þ 1� 2qu

 �

s2int;u
1� q2us

2
int;u

:

ð1:109Þ

Note that at sint;u ! 1, Eqs. (1.109) for the beams transmitted and reflected by each
plate at angle u converge to (1.106) and (1.107) for the total transmittance and
reflectance of the plate at normal incidence:

Is;plate;ad ¼
sint!1

I0
1� qu

 �2
1� q2u

¼ I0
1� qu
1þ qu

;

Iq;plate;ad ¼
sint!1

I0qu
1þ 1� 2qu


 �
1� q2u

¼ I0
2qu

1þ qu
:

ð1:110Þ

When light exits the first plate and is reflected from and transmitted by the first
surface of the second plate (plane 3, Fig. 1.9), light transformation can be viewed as
the combined action of surfaces 1 and 2 with known factors s1�2;u and q1�2;u and
of surface 3 for reflected and transmitted intensities:

Is;1�2�3;ad ¼ I0s1�2�3;u ¼ I0s1�2;u s3;u þ s3;uq1�2;uq3;u þ � � �
 �
¼ I0

s1�2;us3;u
1� q1�2;uq3;u

¼
sint!1

I0
1� qu
1þ qu

� �
1� qu

1� 2q2u= 1þ qu

 � ;

Iq;1�2�3;ad ¼ I0q1�2�3;u ¼ I0 q1�2;u þ
s21�2;uq3;u

1� q1�2;uq3;u

 !

¼
sint!1

I0
2qu

1þ qu
þ 1� qu

 ��

1þ qu

 � �2

qu
1� 2q2u= 1þ qu


 � !
:

ð1:111Þ

Presuming the additive summation of retroreflected components, the intensities in
transmission and reflection for the first two infinite plates are:
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Is;1�4;ad ¼ I0s1�4;u ¼ I0s1�2�3;u sint;us4;u þ q4;us
2
int;uq1�2�3;usint;us4;u þ � � �

� �
¼ I0

s1�2�3;usint;us4;u
1� q1�2�3;us

2
int;uq4;u

;

Iq;1�4;ad ¼ I0q1�4;u ¼ I0 q1�2�3;u þ 1� q1�2�3;u


 �2
s2int;uq4;u þ � � �

� �
¼ I0 q1�2�3;u þ

s21�2�3;us
2
int;uq4;u

1� q1�2�3;us
2
int;uq4;u

 !
:

ð1:112Þ

Another way of seeing the action of four surfaces is by considering them as two
plates at sint;u � 0 :

Is;1�4;ad ¼
sint!1

I0
s1�2;us1�2;u

1� q1�2;uq1�2;u
¼ I0

1� qu
1þ qu

� �2 1

1� 2qu
�

1þ qu

 �
 �2

¼ I0
1� qu

 �2

1� qu

 �2�4q2u

¼ I0
1� qu
1þ 3qu

;

Iq;1�4;ad ¼
sint!1

I0 1� Is;1�4;ad

 � ¼ I0 1� 1� qu

1þ 3qu

� �
¼ I0

4qu
1þ 3qu

:

ð1:113Þ

Let us now rewrite Eq. (1.111) for three identical reflective surfaces with the same
reflectance qu:

Is;1�2�3;ad ¼
sint!1

I0
1� qu
1þ qu

� �
1� qu

1� 2q2u= 1þ qu

 � ¼ I0

1� qu
1þ qu

1� qu

 �

1þ qu

 �

1þ qu � 2q2u

¼ I0
1� qu

 �2

1� q2u þ qu � q2u
¼ I0

1� qu
1þ 2qu

;

Iq;1�2�3;ad ¼
sint!1

I0 1� 1� qu
1þ 2qu

� �
¼ I0

3qu
1þ 2qu

:

ð1:114Þ

One can see the particular tendency from Eq. (1.110) to (1.114) and in (1.113) at
m! 1, sint ! 1, whereas the straightforward solutions [1.9–1.21] can be derived
by considering either interactions of dual sets of surfaces M ¼1, 2, … for the
respective plate sets N ¼1, 2, … [1.9, 1.14] or by resolving the determinant for the
sequence of 2 m single parallel surfaces [1.11, 1.18]:

Is;u;n ¼
sint!1

I0
1� qu

1þ m� 1ð Þqu ; Iq;u;n ¼
sint!1

I0
mqu

1þ m� 1ð Þqu ; ð1:115Þ
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where m is the number of infinitely wide nonabsorbing and nonscattering surfaces
divided by the transparent plate’s bulk or by the plate’s separation distance in the
nonattenuating air. Figure 1.10 shows the transmittance and reflectance of a pile of
plane-parallel plates versus the number of surfaces in the pile and versus the change
of the refractive index of the plate’s internal bulk.

1.3.4 Diffuse Irradiation

Previously, optical radiation interacting with any material object was viewed as
quasi-parallel physical beams of light of low divergence. Uniformly diffused
radiation of intensity I given by Eq. (1.46) defines spatially symmetric propagation
opposite to the light-ray concept. Owing to defined spatial symmetry, the param-
eters of uniformly diffused beams of radiation and the optical characteristics of
material objects – transmittance, reflectance, scattering factor – can be determined
by spatial integration of light beams in all possible directions for 2p or 4p space.

Consider a point source of uniformly diffused radiation (see Fig. 1.7b) emitting at
constant radiance or luminance L in any arbitrary direction and to which an infinite
plane in the far field is exposed. Let us presume that the intensity distribution of
radiation conforms to Lambert’s law (relations (1.46), (1.47)). If such an isotropic
source irradiates an infinite border of two homogeneous dielectrics, either the mod-
ification factor of the border or its optical response does not depend on the coordinates
of the irradiated points. Thus, it is sufficient to determine the surface transmittance
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Fig. 1.10 Transmittance-reflectance of a pile of parallel-plate plates for refractive index from 1.3
to 1.7 n steps of 0.1
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and reflectance for the single and arbitrary radiating elementary flux dU. Using the
conversion of solid angle dX in Eq. (1.47) as a function of the vertex angleH of a light
cone (cone of radiation): dX ¼ 2p sinHdH, and integrating all radiation components
emitted from a platform dA within the limits: 0�H� p=2, the entire radiant or
luminous flux irradiated by every elementary source of the platform dA is:

dU ¼
Z
X

d2U ¼ 2pLdA
Zp=2
0

cosH sinHdH ¼ pLdA: ð1:116Þ

The total elementary flux reflected by that infinite border with specular reflectance
q ¼ qðH; nÞ is:

dUd
q ¼ 2pLdA

Zp=2
0

qðH; nÞ cosH sinHdH; ð1:117Þ

where n is the relative index of refraction for a chosen monochromatic component
of radiation.

Consequently, the diffuse reflectance of an object can be defined as the reflec-
tance on either irradiation or observation within 2p-angle of the irradiation or
observation semispace, which is:

qd ¼ dUd
q=dU ¼ 2

Zp=2
0

qðH; nÞ cosH sinHdH: ð1:118Þ

The components of the diffuse reflectance for S and P polarization, namely S and P
diffuse reflectance, for light polarized either in the parallel or in the perpendicular
plane to the plane of incidence are [1.4]:

qdS ¼qdjj ¼ 2
Zp=2
0

tg2ðH1 �H2Þ
tg2ðH1þH2Þ cosH1 sinH1dH

¼ n7ðn� 4Þ � 8n5ðn� 1Þþ 2n3ð3n� 2Þþ 1

ðn4 � 1Þ2

þ 16n4ðn4 þ 1Þ
ðn4 � 1Þ2ðn2 þ 1Þ ln n�

2n2ðn2 � 1Þ2
ðn2 þ 1Þ3 ln

nþ 1
n� 1

� �
;

ð1:119Þ

qdP ¼ qd? ¼ 2
Zp=2
0

sin2ðH1 �H2Þ
sin2ðH1 þH2Þ

cosH1 sinH1dH ¼ ðn� 1Þð3nþ 1Þ
3ðnþ 1Þ2 : ð1:120Þ
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The reflectance of an infinitely-wide plane surface: qdU ¼ ðqdS þ qdPÞ
�
2, for unpo-

larized diffuse irradiation follows its specular reflectance for direct irradiation as a
function of the refractive index n (Fig. 1.11).

In the 1.4 < n < 1.8 range, the diffuse and specular reflectance are different by a
nearly constant term:

qdU ffi qdir:r þ 0:05: ð1:121Þ

The transmittance of an infinite plane-parallel plate for uniformly diffused ir-
radiation is affected by internal multiple reflections. Assuming ideal transparency of
the plate’s bulk for diffuse irradiation by flux dU ¼ pLdA, hemispherical integra-
tion similarly identifies the total diffuse transmittance of the plate:

sdpl: ¼ 2
Zp=2
0

1� qðH; nÞ½ �2
1� q2ðH; nÞ cosH sinH dH ¼ 2

Zp=2
0

1� qðH; nÞ
1þ qðH; nÞ cosH sinHdH:

ð1:122Þ

The plate diffuse-transmittance components for S and P polarization respectively
become [1.4]:

sdpl:P ¼ sd? ¼ 2
Zp=2
0

sin2ðH1 þH2Þ � sin2ðH1 �H2Þ
sin2ðH1 þH2Þþ sin2ðH1 �H2Þ

cosH1 sinH1dH

¼ n� ðn2 � 1Þ arctanð1=nÞ;
ð1:123Þ

sdpl:S ¼ sdjj ¼ 2
Zp=2
0

tan2ðH1 þH2Þ � tan2ðH1 �H2Þ
tan2ðH1 þH2Þþ tan2ðH1 �H2Þ cosH1 sinH1dH

¼ 2n3

n4 þ 1
� 4n4ðn2 � 1Þ

ðn4 þ 1Þ2 arctan n þ n2ðn2 � 1Þðn4 � 1Þ
ðn4 þ 1Þ2 ln

nþ 1
n� 1

: ð1:124Þ

1.3 Interactions of Radiation with Material Objects 41



The diffuse transmittance functions of a plane-parallel plate versus the plate’s
refractive index are seen in Fig. 1.12. The graphs also show the plate’s average
transmittance (line 3): �sdpl: ¼ ðsdpl:S: þ sdpl:PÞ=2, and the direct (not diffuse) trans-

mittance sdir:pl: of such a plate (line 4) for comparison.
The internal attenuation coefficient l of any homogeneous infinite layer of an

absorbing or a scattering substance which is irradiated by the uniformly diffused
light can be identified as:

sdint: ¼ 2
Zp=2
0

expð�l‘= cosHÞ cosH sinHdH

¼ ð1� l‘Þ expð�l‘Þþ l2‘2
Z1
ll

expð�tÞdt
t

: ð1:125Þ

Solutions for Eq. (1.125) can be found by numerical integration of the exponential
function for variable t ¼ l‘=cosH. If the optical density l‘ of the internal layer is
small, an approximate solution is:

sdint:transp: ffi ð1� l‘Þ expð�l‘Þ ffi ð1� l‘Þ2 ffi 1� 2l‘: ð1:126Þ

Consequently [1.4], the total internal attenuation factor for the uniformly diffused
radiation in a transparent, i.e., nonabsorbing and nonscattering substance, is only
about 2 times higher than the total internal attenuation factor for direct radiation
having the same spectral composition.

If integral properties of one diffusely irradiated plate are known, behavior of a pile of
plates are defined by Eqs. (1.108)–(1.115). For i + 1 infinitely wide plates at ith

diffuse transmittance si,d and reflectance qi,d, single-surface factors ss ¼ 1� qs, bulk
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thicknesses ‘ and linear attenuation coefficient l being under the uniform diffuse
irradiation, transmittance and reflectance become:

siþ 1;d ¼ si;dsint;d 1� qsð Þ2
1� qi;ds

2
int;dqs

¼ si;dsd
1� qi;dqd

;

qiþ 1;d ¼ qi;d þ
s2i;ds

2
int;dqs

1� qi;ds
2
int;dqs

¼ qi;d þ
s2i;dqd

1� qi;dqd
:

ð1:127Þ

The equations for the diffuse transmittance and reflectance of a pile of plates are
quite elaborate [1.12–1.18]. Nevertheless, on the basis of the observation that for
tending-to-infinity number i of plates the pile reflectance reaches its maximum:
qmax;iþ 1 !

i!1
qmax;i; Eq. (1.127) for the diffuse reflectance of the pile can be

rewritten by swapping the ðiþ 1Þth pile and the ð1þ iÞth one, and thus [1.13]:

qpile;iþ 1;d ¼ qd þ
s2dqi;d

1� qdqi;d
�

i!1
qi;d;

qpilemax;d ¼
1� s2d þ q2d

 �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� s2d þ q2d

 �2� 4q2d

q
2qd

:

ð1:128Þ

Besides extreme cases of direct and diffuse irradiation or reception, in many
instances other mixed conditions may be realized. Figure 1.13 illustrates interme-
diate settings of the incident (view a) and reflected (view b) geometry of light
irradiation and observation, being not strictly direct or uniformly diffused (similar
conditions occur in transmitted radiation). Respective modification factors for the
intensity of radiation in these settings can be derived from known ones, not nec-
essarily remaining constant under various irradiation and reception conditions.

The model-based reflectance of the perfect diffuser does not depend on the irra-
diation settings, such that the amount of light reflected by the perfect diffuser and
dispersed into any solid angle X � 2p depends only on the magnitude of the angle.
Conversely, for diffuse irradiation of a regular object, not only reflectance and
transmittance, but also the geometry of the irradiation and of the observation define
this object transformation factor. Consider element dA of an opaque surface

(a) (b)

Fig. 1.13 Diffused irradiation (a) and reception (b)
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irradiated by a light beam at constant radiance Li within solid angleXi in the direction
specified by elevation Hi and azimuth ui angles (Fig. 1.14). The radiant flux dUi

incident on the surface element dA is: dUi ¼ Li cosHi � dAdXi ¼ Li � dAdX0
i, where

dX 0
i can be viewed as the projected solid angle [0.1, 0.12]. The radiation flux dUr

reflected to elementary solid angle dXr in direction Hr, ur respectively is:
dXr ¼ LrdAdX

0
r , where Lr is the reflected elementary radiance of irradiated surface

in a given direction. By definition, the reflectance qr of element dA directed into
elementary solid angle dXr is:

qr ¼ dUr=dUi ¼ LrdX
0
i=LidXi

0 ¼ Lr=LidX
0
i


 �
dXi

0 � qb Hi;ui;Hr;urð ÞdXi
0;

ð1:129Þ

and describes the properties of the surface element and the geometry of irradiation
and observation.

Here the sign � introduces the bidirectional reflectance qb, defining such a
reflectance of an opaque surface per unit solid angle in observation space. That
function of irradiation and reception geometry is identified as the bidirectional
reflectance distribution function (BRDF) [1.22]. The analogous bidirectional trans-
mission function can be introduced for translucent objects. By definition, the bidi-
rectional reflectance distribution function defines the radiance to irradiance ratio of
any irradiated surface: qb ¼ dLr=dLidXi

0 ¼ dLr=dEi. For the perfect diffuser, the
bidirectional reflectance qb is constant in every direction and its total diffuse reflec-
tance is simply qRb ¼ qb ¼ p

R
dX0 ¼ pqb. According to Helmholtz’s reciprocity

theorem [1.1], the bidirectional reflectance distribution function is a symmetrical
function of coordinates qb H1;u1;H2;u2ð Þ ¼ qbðH1;u1;H2;u2Þ. Consequently,
full integration of either the bidirectional-reflection function or the bidirectional-
transmission function yields the total radiation conversion.

Clearly, only two ideal optical transformers, such as the perfect diffuser and the
ideal mirror, can be considered as geometrically transforming substances. Their
optical properties are predetermined and the intensities of light transformed by them
are only functions of the irradiation and observation geometries. For either the
perfect diffuser or the ideal mirror, the entire reflectance is 1. The ideal mirror

Fig. 1.14 Bidirectional
reflectance settings
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reflects light by Snell’s law and the perfect diffuser reflects light by Lambert’s law.
The intensity of any beam reflected by an ideal mirror of q0 = 1 remains
unchanged. The perfect diffuser redistributes all incident light spatially. Hence, its
radiance (luminance), emittance, and irradiance (illuminance) are given via a
straightforward relation: L ¼ M=p ¼ E=p (Eq. 1.47). Only for these two opposite
cases of ideal objects is the radiation-transformation factor defined by the spatial
geometry of emission and reception [1.23, 1.24]. Common spatial conversion
factors of optical radiation reflected by an ideal mirror and a perfect diffuser are
given in Table 1.1.

In particular, the incident flux dUin irradiating an object may be viewed as the
product of the object’s radiant emittance M and the incident beam cross section
dA (Eq. 1.46): dUin ¼ M�dA. The total flux Urefl reflected in solid angle Xrefl ¼ X2

by the perfect diffuser for radiance L and irradiance E is:

Urefl ¼ LA
Z

Xrefl:

cosHrefldX ¼ E A
p

Z
X2

cosH2dX: ð1:130Þ

Here Hrefl ¼ H2 is the reflection observation angle. The total reflectance qP of the
perfect diffuser is:

qP ¼ 1
p

� �Z
X2

cosH2dX: ð1:131Þ

Owing to the fact that the ideal mirror converts the semispace of incident light into
the specularly reflected semispace, it acts as an ideal directional converter and its
light conversion factors are defined only by the geometry of incidence and

Table 1.1 Interdependence of irradiation and observation geometries

No Type of reflectance
(irradiation/observation)

Transformation factors

Ideal mirror Perfect diffuser

1 qð2p=2pÞ 1 1

2 qð2p=X2) ð1=pÞ R
X2

cosH2dX ð1=pÞ R
X2

cosH2dX

3 qð2p=H2Þ ð1=pÞ cosH2dX ð1=pÞ cosH2dX

4 qðX1=2pÞ 1 1

5 qðX1=2pÞ
R
X2

cosH2dX=
R
X1

cosH1dX ð1=pÞ R
X2

cosH2dX

6 qðX1=H2Þ cosH2dX=
R
X1

cosH1dX ð1=pÞ cosH2dX

7 qðH1=2pÞ 1 1

8 qðH1=X2) 1 or 0 ð1=pÞ R
X2

cosH2dX

9 qðH1=H2Þ 1 or 0 ð1=pÞ cosH2dX
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observation. Therefore, loss factors of actual objects due to reflection, absorption,
and scattering can be defined via the performance of the ideal mirror.

The characteristics of real diffusers with respect to perfect diffuser can be given
by the radiance factor b (see Eqs. (1.57), (1.58) and Table 1.1). For example, for
any reflective object and arbitrary irradiation and observation geometry X1=X2, the
relative intensity dI1,2 of its surface is a function of an unknown for now radiance
L1;2 : dI1;2 ¼ L1;2dX2. The total radiant flux Usc, scattered by the object into solid
angle X2, can be determined via integration over X2:

Usc¼ A
Z
X2

L1;2 cosH2dX; ð1:132Þ

where A is the irradiated area of the object andH2 is the angle of observation. Since
for the perfect diffuser UP ¼ pLPA, the reflectance of the object is given by the ratio
q ¼ U=UP; thus:

q ¼ 1
p

� �Z
X2

b1;2 cosH2dX; ð1:133Þ

where b1;2 ¼ L1;2=LP is the radiance factor of the object at the irradiation and
observation geometry given by solid angles X1 and X2 in directions of irradiation
H1 and observation H2 (see Fig. 1.14). That derived dependence can be obtained
from the fifth row in Table 1.1 by substitution of the radiance factor into the
expression specifying the actual geometry of q1,2 reflectance for the perfect diffuser.

Table 1.1 also allows one to distinguish the optical properties of any actual
diffuser for inverted irradiation and observation directions. Under limited irradiation
within a given solid angle X1 and for observation over the entire 2p semispace (see
Eq. (1.131)), the reflectance is:

qX1;2p ¼ 1
p

� �Z
2p

b1;2 cosH2dX: ð1:134Þ

According to the second row in Table 1.1:

qp2p;X2
¼ 1

p

� �Z
X2

cosH2dX: ð1:135Þ

Consequently, for the actual diffuser one obtains:

q2p;X2
¼ 1

p

� �Z
X2

b2p;X2
cosb2dX: ð1:136Þ
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The reflectance of an actual diffuser can also be seen as its radiance factor under
the equivalent irradiation to observation geometry, providing the geometric extent
of the beam remains constant: d2G ¼ const; thus, the ratio of radiances is equal to
the ratio of fluxes (Eq. 1.32). Under inverse geometry: X1 ¼ �X2, and because of
Snell’s law, the inverted radiance factors are equal: bX1;2p ¼ b2p;X2

: Accordingly,
the reflectance of the diffuser at the inverse geometry is:

qX;2p ¼ b2p;X: ð1:137Þ

As a result, the magnitude of the diffuse reflectance of a practical diffuser irradiated
within the solid angle X, restricted to be smaller than 2p, can be represented by the
radiance factor of that diffuser, irradiated by radiation of uniformly diffused radi-
ance of the perfect diffuser within the 2p semispace, for the respective observation
of reflected light at the defined limited solid angle X.
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Chapter 2
Methods of Photometric and Radiometric
Measurements

2.1 Evaluation of Power and Energy Extents
of Optical Radiation

The ability of any flow of optical radiation to make energy actions is identified by the
statistical average of the Poynting vector designated as the optical vector satisfying
(Eq. 1.3). The spatial, temporal, and spectral densities of the space- or time-averaged
flow of radiation in the UV, visible, and IR optical-frequency domains identify the
radiometric and photometric extents of radiation. Luminous actions of optical
radiation are given by the vector, which forms luminous power and energy extents
with the relative spectral luminous efficiency of radiation for the photopic vision of
the human eye. In every case, a particular extent or parameter of radiation transfer, as
intensity, radiant intensity, radiance or luminance, and radiant or luminous flux, can
be identified via the spatial, surface, angular, or temporal density of radiation. The
specifics of any measurement of a power or energy derivative for the radiation flow
define the choice of the density of either radiant or luminous flux or the energy
density of a beam at a given localized space and time region.

2.1.1 Methods of Optical Flux and Energy Measurements

Two balancing main approaches are viable for the measurement of the power or
energy extent of a light beam. For the first one, the power or energy extent of
radiation is obtained directly by an objective physical detector, which is already
calibrated in power or energy units (watts or joules). For the second measurement
approach, the power or energy extent of the radiation is obtained in comparison
with the same extent of calibrating light, presumably with spectral intensity dis-
tribution equivalent to that of the radiation being studied.
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Until recently, the latter approach was used for the photometric system of
luminous-power quantities comparing luminous actions of light beams by a subjective
receiver, such as a human eye. The candela, conventionally determined by a model
candle emitting within a fixed solid angle under unaltered conditions, was chosen as
the basic unit for luminous intensity. A model source reproduced the unit of luminous
intensity given by the flux to angle ratio by expression (1.18). Luminous parameters of
secondary sources were determined in comparison with the luminous intensity of the
primary source. Since the joule and the watt are units of any kind of power and energy,
the approach based on a coequal system of radiant units was recently established in
radiometry and photometry. Comparison of statistically averaged power actions of a
calibrating electrical current of known magnitude and of a light beam under test
provides a conversion for such a radiant unit transfer. Knowledge of the specific time
term is required for conversion to the measure of the radiant energy.

For direct measurement of the power or energy of a beam of radiation, the entire
beam must be completely transferred into heat by a physical detector with ab-
sorptance a � 1.0, and the heat needs to be measured or substituted by an electrical
current, carrying an equivalent amount of thermal power (energy). The measure-
ment results for energy Q and power U transformations become:

Qa ¼ J2Rt ¼ @

@T
ðCVDTÞ; ð2:1Þ

Ua ¼ J2R ¼ qARDT: ð2:2Þ

Here a is the absorptance for the radiation being measured, J and t are the
magnitude and the duration of the heat-substituting current, respectively, R is the
resistance of the heat-generating resistor, C and V are the heat capacity and the
volume of the heat detector used, DT is the stable rise of the detector’s temperature,
q is the convective heat transfer in the detector in the state of thermal equilibrium,
and AR is the total area of the detector’s surface [2.1, 2.2]. An identical method of
measurement can be applied for the reverse power or energy conversion for mea-
suring the transformation factor of other forms of energy: electric, thermal, or
chemical, into optical radiation by equations:

Q ¼ eJ2Rt; U ¼ eJ2R; ð2:3Þ

where e ¼ Qr=Qo ¼ Ur/Uo is the emission factor, or the emissivity, of the light
source being studied, Q0 and U0 are the optical energy and power which are emitted
by the light source, and Qr and Ur are the electrical energy and power supplied to
the light source to initiate the emission, and t is the time interval of that action.

Consequently, an identical method of measurement for the power or energy of
radiation can be used for either electrical or thermal calibration of a source or a
detector and for determination of the emission and absorption factors. Without
attention to the specifics of the calibration in one or another unit of measurement
(see Chap. 4 for details), let us note some assumptions in relations (2.1)–(2.3). For
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either emittance or absorptance measurement in any given spectral interval, the
same section of the object being examined must be used. Otherwise, possible
nonuniformity of the radiating or absorbing properties of the object must be known.
Under radiation or irradiation Qi and calibration Qc conditions, a strict linearity of
each energy-transformation step needs to be maintained, such as:

ðQiÞa=ðQiÞb ¼ ðQcÞa=ðQcÞb: ð2:4Þ

Here subscripts a and b characterize arbitrary points within the full dynamic
range of measurement and calibration. The entire process must be performed in the
steady-state mode while random changes of object’s absorptance and emissivity
and any unknown functions of temperature fluctuations not to exceed the margins
of measurement errors. Systematic errors, as nonlinearity, nonuniformity, and
unsteady conditions, need to be known and taken into account, introducing cor-
rection factors. Extremely sensitive but relative measurements may be made via
displacement sensing by light-weight oscillator in a calibrated interferometer [2.96].

An example of the goniophotometric method for measuring the flux or energy of
a beam emitted into 2p or 4p space, for which the notes above are applicable, is
seen in Fig. 2.1. The total flux U emitted by source S is determined as:
UR ¼Pp

i¼0 Ui Hð ÞDHi þ
Pp

j¼0 Uj wð ÞDwj, and detector D integrates elementary
fluxes Ui within DHi and Dwj for 0 � Hi, wj � p. The comparison of radiant or
luminous fluxes for various light sources is presumed to be performed under
identical conditions. If the spatial distributions of radiation emitted by sources to be
compared differ, the diffusing integrating sphere can integrate and balance out any
nonequivalence [2.3, 2.4]. For source S in the integrating sphere, having diffuse
wall reflectance q0, flux US emitted by source S and retroreflected by sphere walls
makes the sphere irradiance N:

N ¼ N0 þ N1 � � � þ N1
¼ US=A0 þ q0US=A0 þ � � � ¼

q� 1
US 1� qm0
� �

= A0 1� q0ð Þ½ � ¼
m!1US= A0 1� q0ð Þ½ �;

ð2:5Þ

where A0 is the entire internal area of the sphere. Equation (2.5) denotes
Kirchhoff’s law for the sphere, since at thermal equilibrium the flux introduced into

Fig. 2.1 Goniometric
measurement of the angular
distribution of a source flux
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the sphere and that absorbed with factor a by its surface, exposed to sphere irra-
diance N, are complementary functions [0.12, 1.12]:

U ¼ NA0a ¼ NA0ð1� q0Þ ! a ¼ 1� q0: ð2:6Þ

If the sphere of surface A0 has a small output aperture of area A, screened by a
not large opaque baffle of area AB, any external detector D, protected by the baffle
from source S (Fig. 2.2), measures signal JS, defined by sphere irradiance N, due to
flux US, and area A: JS ¼ A � US/[A0(1 − q0)]. Referencing for comparison the
detector signal JS to another signal JC of the calibrating light source emitting its
known total flux UC, the source flux US can be obtained via the ratio of two
consecutive readings of external detector D: US ¼ UC � JS/JC.

From the standpoint of the detailed distribution of the sphere’s irradiance or il-
luminance by a light source, the direct-irradiation component of sphere wall
irradiance N0 at a point-size source inside and with no baffles and openings
– N0 ¼ Uq0/A0; N1 ¼ Uq1/A0; … Nm ¼ Uqm/A0 – can be distinguished from irra-
diance of the sphere for the baffled source: Na0 ¼ k0E0; Na1 ¼ k1E1; Nam ¼ kmNm.
Here q0, q1 ¼ q0

2,…, qm ¼ q0
m+1 are the total reflectance of the sphere wall for the

first, second, and mth reflection cycles, respectively, and k0, k1, and km are the
correction factors for the respective irradiance component Na for the ideal sphere
versus the baffled one. Comparing multiple-reflection totals, one obtains [2.5]:

kmðqÞ ¼ Nam=Nm ¼ ðk0 þ qk1 þ � � � þ q m�1ð ÞkmÞð1� q0Þ; ð2:7Þ

providing in the integrating sphere of uniformly diffuse reflectance at point-size
inclusions all successive reflectances are constant q0,1 ¼ q0,2 ¼ q0,m (see Sect. 2.4,
Eqs. (2.102), (2.103)).

At m ! 1, correction factor km ¼ k∞ for irradiance of a one-baffle sphere
versus an ideal unbaffled sphere is:

k1 ¼
m!1A0= A0 þ 2Sð Þ; ð2:8Þ

Fig. 2.2 Comparison of
source emissions via an
integrating sphere
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where since the baffle is irradiated from two opposite directions inside the sphere,
its surface S is counted twice. Factor k∞ may also be seen as the ratio of irradiances
of ideal and baffled spheres irradiated by any given flux U. Three major zones can
be considered in the integrating sphere for flux measurement (see Fig. 2.2): (1) the
baffle zone for which flux US creates irradiance NB; (2) the wall zone, not seen from
the center of port A, on which flux US creates irradiance NW; and (3) the viewing
zone, opened to a detector D and for which irradiance NV is seen on the first
reflection m ¼ 1, whereas irradiances NB and NW are both seen only on the second
reflection m ¼ 2. The irradiance of each zone can be determined via the portion of
the source flux US received by the zone [2.5].

NV ¼ UVq
m= A0 þ 2Sð Þ; NW ¼ UWq

m= A0 þ 2Sð Þ; NB ¼ UBq
m= A0 þ 2Sð Þ:

ð2:9Þ

Owing to the definition above, UV ¼ US − UB − UW, where UB, UW, and UV

are the flux components for irradiances NB, NW, and NV. From Eqs. (2.5) and (2.7),
the respective relations follow:

NV ¼ UV

A0 þ 2Sð Þ
q

1� q
; NW ¼ UWq

A0 þ 2Sð Þ
q

1� q
; NB ¼ UBq

A0 þ 2Sð Þ
q

1� q
:

ð2:10Þ

The combined irradiance (illuminance) NR of the integrating sphere surface at
the center of port A is:

NR ¼ NV þNW þNB ¼ UV þUWqþUBq
A0 þ 2Sð Þ

q
1� q

¼ US � UW þUBð Þ 1� qð Þ
A0 þ 2Sð Þ

q
1� q

¼ US � a UW þUBð Þ
A0 þ 2Sð Þ

q
1� q

;

ð2:11Þ

where the total source flux is US ¼ UV þ UW þ UB and the absorption factor of the
entire sphere is a ¼ 1 − q (see Eqs. (2.5) and (2.6)). Relations (2.11) confirm that the
accuracy of any flux measurement using a real-dimension auxiliary integrating
sphere versus the ideal sphere of negligibly small apertures and openings is limited
by the discrepancy of the reflectance values from 1.0 for the wall and the baffle of the
auxiliary sphere. Instead of baffling a port, two spheres can be used sequentially: one
collecting the flux and one uniformly irradiating the detector [2.97].

2.1.2 Measurement of Surface Density of Light

By definition, irradiance (illuminance) represents the surface density created by the
radiant (luminous) flux: N ¼ dU=dA. To determine the surface density, the mean or
averaged power of a given beam of radiation of any known area Ac.s of the beam

2.1 Evaluation of Power and Energy Extents of Optical Radiation 53



cross section can be measured. Within the first-order approximation neglecting
higher-order diffraction effects, the beam may be formed by an aperture with the
flux being a product.

U ¼ N � Ac:s� ð2:12Þ

To determine the irradiance or illuminance by measurement of a radiant or
luminous flux, one should notice that Eq. (1.20) defines irradiance as a function of a
point and a direction.

dN ¼ d2U cosH
dA

¼ dNn cosH ¼ d2U=dAn: ð2:13Þ

The result of such a measurement is identified not only by area An of an irradiated
aperture, which should be practically defined by the beam’s cross section Ac.s,
but also by the angle of observationHi, being the slope angle between the axis of the
incident beam and the wave normal to the aperture. In (2.13), Nn is the normal
irradiance for irradiation by a wave normal to the direction of observation and An is
the area of the aperture, viewed by the normal, defining cross section Ac.s of the
beam making the irradiance on the surface element of area A. The reduction of
surface density due to the inclination (slope) angle is given by optical vignetting
(see Fig. 2.3).

Equations (2.12) and (2.13) also allow one to determine the average surface
density created by any arbitrarily distributed radiant or luminous flux existing in the
entire semispace above the test surface and falling onto a region limited by the
defining aperture of area An. A radiometric detector, by virtue of limitations to its
transverse dimensions and time constants, will react only to time and space averages
of the square amplitudes of all contributing electromagnetic oscillations, therefore
summing the entire actions of the total number of light fluxes passing through the
aperture within semispace solid angle 2p. Even if the emitted light beams are par-
tially coherent and make a randomly localized but steady-state interference pattern,
the result can be averaged over the measured interference pattern across the obser-
vation area. Consequently, the irradiance and illuminance may remain additive ra-
diometric and photometric parameters, each representing the arithmetic totality of

S

D

An S

D

AA An

(a) (b)

Fig. 2.3 Irradiance or illuminance as a function of angle of incidence
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either the local irradiance or the local illuminance transmitted by the aperture. If the
distance to the light source is notably larger than the linear dimensions of the source,
the irradiance or illuminance created by the source is given by Eq. (2.13) and defined
by the inverse-square and cosine law (see Chap. 1). The criterion in the point-source
approach is also based on potential observability of fluxes radiated from unequally
spaced emitting elements. Hence, in every practical situation the source of radiation
must be the point source. Only for the point source can the distance ‘i to each diverse
ith element of the source (see Fig. 2.3) be considered unchanged when crossing from
the center of the source to its edges. Any practical margins of that approximation are
always defined by the required accuracy of the observation.

2.1.3 Absolute Flux Measurement Via an Integrating
Sphere

Applying the inverse-square distance law (Eqs. (1.61), (1.62)) for an integrating
sphere, one may accomplish measurements of the absolute flux for radiation emitted
by a given source into the entire 4p space [2.6, 2.7]. A known flux USS of radiation
(Fig. 2.4) from a standard source SS enters the sphere via the opening AS and
creates irradiance Ess. A measuring flux US from source S in the sphere center
irradiates the sphere walls, but baffles B1 and B2 protect it from being directly
viewed by internal sphere detector D. According to Eqs. (1.61) and (2.13), the
normal irradiance Nn of standard SS at the plane of aperture Ass is Nn ¼ ISS=‘

2,
where ISS is the standard’s radiant (luminous) intensity. Equation (2.5) for the
measured source irradiance NS on sphere detector D seeing only radiation retro-
reflected by sphere walls becomes:

NS ¼ USq= 4pR2 1� qð Þ� �
; ð2:14Þ

where R is the sphere radius. At the same time, the detector D is exposed to the first
reflection of flux emitted by the standard: USS ¼ NnASS, thus reacting to

Ass

D

B1

S
SSAs

Ess

B2

Fig. 2.4 Absolute flux
measurement via an
integrating sphere
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first-reflection-added sphere irradiance: NSS ¼ USSq= 4pR2 1� qð Þð Þ. The ratio of
the sphere’s irradiances Ns/Nss for baffled detector D gives the flux US:

NS=NSS ¼ US=USS ¼ JS=JSS; US ¼ ISSASS=‘
2� �

JS=JSSð Þ: ð2:15Þ

Here JS and JSS are the readings of detector D measuring the light flux from the
source and standard.

2.1.4 Spherical Density of Radiation

The irradiance or illuminance in a point of space created by a sum of any arbitrary
light sources averaged within the limits of a solid angle X can be defined as:

NX ¼
Z
X

NdX=X: ð2:16Þ

Similarly, the mean or averaged spherical irradiance due to any radiation existing
in 4p space is:

N4p ¼ 1
4p

Z
4p

NdX: ð2:17Þ

The mean spherical irradiance at a given point can be identified and measured
via the irradiance of the outer surface of a sphere of negligibly small diameter with
its center at the given point. The elementary flux dUs falling on element
dA ¼ R2dX of that spherical surface becomes:

dUs ¼ N � dA ¼ R2NdX; ð2:18Þ

where dX is the elementary solid angle at which dA is seen from the center of the
small sphere of radius R. The radiant or luminous flux Us irradiating the entire
surface of the sphere is given by:

U0 ¼ R2
Z
4p

NdX ¼ 4pR2N4p: ð2:19Þ

According to Eq. (2.19), one way to measure the mean spherical illuminance or
irradiance becomes straightforward – by making the sensitive area of the light
detector as a solitary spherical receiver or making such a receiver from a number of
negligibly small flat detectors [1.4].
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Another possibility for spherical irradiance measurement at a given point is
associated with implementing a sphere formed from a translucent material, which
transmits radiation diffusely and which center coincides with that point [2.8]. The
main feature of the translucent sphere is due to effects of multiple reflections and
transmission via low-absorbing walls. If that sphere transmits a given spectrum of
radiation diffusely for diffuse transmittance sd � 1 − qd, owing to its wall ab-
sorptance a being lower than the error of the radiance measurement to be made,
then the initial flux U0 of direct or diffuse irradiation will be uniformly distributed
inside the sphere, resulting in multiple reflections for internal sphere flux Usph:

Usph ¼ Uint;R ¼ U0sþU0sqþ � � � þU0sq
n ¼

n!1;
q�1:0

U0
s

1� q
¼

s¼1�q;
a!0

U0: ð2:20Þ

The error of the assumption for the derivation is DU=U ¼ Ds ¼ a. For most opal
glasses and translucent synthetic materials the values of the linear absorption
coefficient a are not higher than 0.001−0.0001 cm−1. Hence, actual errors attributed
to using equation (2.20) at the translucent sphere wall thickness under 1 cm should
not exceed ones of accurate spectrophotometric measurements.

The fact that such a translucent sphere of diffuse nonabsorbing material reflects
or transmits incident light with no attenuation seems unusual and is only true in the
absence of absorption, a�DU=U, diffusing incident power U0 into total external
flux Uext:R:

Uext;R ¼U0qþU0s
2 þU0s

2qþ � � � þU0s
2qn

¼
n!1U0qþU0

s2

1� q
¼

1�q¼s
U0ðqþ sÞ ¼

a!0
U0:

ð2:21Þ

The explanation for this straightforward, but a bit deceptive phenomenon [2.8]
described by Eqs. (2.20) and (2.21) relates to the spatial separation of incoming and
outgoing fluxes uniformly distributed in 4p space owing to the properties of a
diffusely reflecting sphere (see Sect. 2.4). For no wall absorption, a sphere formed
by the uniformly diffuse reflecting and transmitting material balances the incident
radiation into the surroundings, not adding or diminishing anything and flux U0 is
contained within every imaginary sphere coincident with the integrating one
(Fig. 2.5).

Fig. 2.5 Translucent sphere
irradiation and observation
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If a small detector makes up a spherical segment of area Ad on surface As of the
translucent sphere, the Ad/As ratio defines the detector’s signal. If the irradiance of
the internal surface of the sphere is:

Ns ¼ Us

As
¼ U0

4pR2 : ð2:22Þ

then, the radiant flux Ud measured by the detector is equal to:

Ud ¼ NsAd ffi pr2

4pR2 Us ¼ U0r
2=4R2; ð2:23Þ

where r and R are the radii of the segment and of the sphere. Using Eq. (2.19)
relation (2.23) becomes:

Ud ¼ NsAd ffi pr2N4p: ð2:24Þ

The total flux received by the sphere from the surroundings may be seen as the
sum of normal irradiations by flux components. Since the area of sphere projection
on any plane is pR2, and the elementary flux dU is dU = pR2dNn, the total flux
inside the sphere can be written as:

Us ¼ pR2
Z
4p

dNn: ð2:25Þ

Since the mean spherical and normal irradiances are N4p ¼ Us=4pR2 and
Nn ¼ L cos0� dX, one obtains:

N4p ¼ 1
4

Z
4p

dNn ¼ 1
4

Z
4p

LdX: ð2:26Þ

Finally, the spherical and mean spherical irradiances (see Sect. 1.2 and
Eq. (2.17)) are:

N0 � 4N4p ¼
Z
4p

LdX ffi 4Ud=pr
2: ð2:27Þ

Spherical irradiance N0 characterizes, up to the inverse of the velocity of light 1/c
[1.4], the spherical density of radiant energy in adjoining space: Q0 ¼ (1/c)N0.
Assumptions of low absorption and smallness of a spherical segment removed by a
detector of actual area AD ¼ pr2=4pR2 define actual systematic errors of spherical
irradiance measurements using a low-absorbing translucent sphere.
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2.1.5 Measurement of Angular Density of Radiation

One method for measurement of radiation intensity comes directly from its defi-
nition. Expressions (1.61) and (1.62) defining the cosine and inverse-square law
give essential conditions for the realization of such a measurement. The ratio of
normal irradiances Nn,i created by the light source under study at respective dis-
tances ‘1 and ‘2 is inversely proportional to the one for distances, since the light
intensity I remains constant:

Nn;1‘
2
1 ¼ Nn;2‘

2
2 � I; Nn;1=Nn;2 ¼ ‘22=‘

2
1: ð2:28Þ

The accuracy of the respective substitution of irradiances measured via the dis-
tances to the point source determines the accuracy of measurements and the mini-
mum allowed distance ‘1 for the source to remain a point source. For the minimum
distance identified, the first magnitude of the irradiance or illuminance can be
measured. The second magnitude can be measured at the distance ‘2 ¼ ‘1 þD‘, at
which the second magnitude can be positively distinguished from the first one over
the error of the measurement. As a result, two equations to be studied are E ¼ N1‘

2
1

and E ¼ N2(‘1 þ D ‘)2. After removing the parentheses and using ‘1 ¼
ffiffiffiffiffiffiffiffiffiffi
I=N1

p
,

the irradiance E is [0.6].

E ¼ N1D‘
2 N2 þ

ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p� �
= N1 � N2ð Þ

h i2
: ð2:29Þ

The first distance ‘1 does not need to be measured. Its magnitude only estab-
lishes the validity of the square-power character for a changing irradiance or illu-
minance given by the source studied.

Another procedure, called the telecentric method, does not require measurements
to be made at several observation points and can be accomplished via an optical
system of an aplanatic lens and an aperture stop imitating a test source as placed at
infinity (Fig. 2.6). The aperture stop Af is installed in the focal plane of lens L to
select from all beams radiated by the source only the cones of a small solid angle X.
Aperture Af is seen from the lens plane under angle X to the optical axis of the
system independently of the traverse distance from a point P of the source or the
lens. Since the lens is aplanatic, the system’s sine term: h/sinH ¼ f, remains con-
stant independently of distance h from the object’s or lens’s point P to the optical
axis of the system. If the lens maintains a constant transmittance sh for traverse
points, the radiant (luminous) flux U through aperture Af is:

U ¼ sh Af=f2
� �

I: ð2:30Þ

Here I is the emission intensity of the source of radiation, f is the focal length of
the lens being used, and Af/f

2 = X is the solid angle, which defines the fixed solid
angle X of radiation emission for all points of the source, viewed via aperture stop
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Af [2.9]. Within the limits of the unchanging transmittance s for different zones of
the system’s lens, the telecentric method allows one to realize every measurement
of the radiant or luminous intensity independently of a distance between the sys-
tem’s lens and the source. Likely restrictions of the method are bound by vignetting
of the beam by the lens mounting if the following condition is not satisfied:

ðhmax þ ‘maxtgHÞ�Ddet=2: ð2:31Þ

Here hmax is the maximum source height across the optical axis, ‘max is the
maximum distance from the source to the detector of diameter Ddet, and 2H is the
plane vertex angle for solid angle X.

2.1.6 Radiance and Luminance Measurements

The spatial-angular density of radiation making a beam of known spatial geometry
defines the beam radiance (luminance) and can be measured via radiant (luminous)
intensity or irradiance (illuminance) for a beam of known cross section. The
measurement layout follows from Fig. 1.2, where indices 1 and 2 refer to the source
and detector for appropriate beam wavelengths. When the radiant or luminous
intensity of the source is measured via the area of the emitting surface, the radiant or
luminous flux identified by these parameters is:

d2U ¼ dI1dX1 ¼ L1dA1dX1: ð2:32Þ

Likewise, the radiance or luminance of the source at a defined emitting area Aem

is given by the ratio:

L ¼ I=Aem; ð2:33Þ

where Aem is the area of the source emitting surface. By analogy, irradiance Ne or
illuminance Nv measured within a solid angle dX, at which the entire source is seen
from the detector’s center:

d2U ¼ dNndA2 ¼ L1dA1dX1; ð2:34Þ

Fig. 2.6 Telecentric method
for beam-intensity
measurement

60 2 Methods of Photometric and Radiometric Measurements



determines the radiance or luminance via the irradiance or illuminance by the
normal or at angle H:

L ¼ Nn=X0 ¼ N=X0 cosH. ð2:35Þ

Here X0 is the solid angle of observation and H is the inclination angle of the
detector plane to the beam’s axis.

If the area of the emitting section of the source is unknown, there are difficulties
in determining it, and if the radiance distribution over the source does not remain
constant, it is possible to designate only some limited solid angle defining a beam
coming from the restricted part of the source (Fig. 2.7). Since the geometric extent
is a constant of a physical beam of light (see Eq. (1.25)) and does not depend on the
selection of the cross section of that beam, an aperture stop of area Af placed at a
distance ‘f from detector D limits the solid angle X2 viewed from the test source S.
The aperture stop explicitly defines a specific physical beam of light that is emitted
from the restricted area As of the source at any mutually parallel position of the
source and of the detector surfaces: A1X1 ¼ A2X2.

Thus, knowing area Af of the aperture and distance ‘f defined by the detector’s
pupil (see Fig. 2.7a), one can identify the radiance or luminance of the zone restricted
this way by a specific measurement of irradiance or illuminance in the structured
beam. In such a case, owing to Eq. (2.35), the angle is X0 ¼ X2 ¼ Af

0=‘f , where Af
0

is the area of the spherical segment cut out by the aperture Af from an imaginary
sphere with radius ‘f . By cross-scanning the source or detector across the optical axis
of the system, one will register any radiance changes as a function of coordinate for
the zone pointed out by the detector. The dimensions of that zone are limited by the
aperture size, the tube length, and sensitivity of the detector to the radiation spectrum.

Similar measurements can be realized by a lens of known integral transmittance
sob (see Fig. 2.7b). With the lens, the lateral dimensions of the measured beam are
set by diameter Dcl of the lens’s clear aperture and by distance ‘1 from its principal
plane to the source. Since no vignetting of the detector is allowed, the total flux U
transmitted by the lens objective to the detector is: U ¼ sob � L � As � X, where L is
the test source radiance or luminance. For paraxial beams when the measurements
are made at large distances in comparison with sizes of the apertures to comply
with: ‘1 	 Dcl, the radiance is:

L ¼ 4U‘21=pD
2
clAs: ð2:36Þ

(a) (b)

Fig. 2.7 Measurement of radiance (luminance) via irradiance (illuminance) using an aperture
(a) and an objective plus an aperture (b)
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If image area A0
s is known, the measurement with the lens permits determination

of the average radiance or luminance of a source by setting up a limit on the solid
angle X2 of detection. This can be done by implementing an aperture stop of area Af

(Fig. 2.7b). Such a stop can only restrict the amount U0 of flux received from the
source, but cannot change image area A0

s. Hence, the radiance is:

L ¼ U0sob=A0X2: ð2:37Þ

Further installation of an auxiliary aperture with a much smaller area, Ad 
 A0
s,

over the detector’s sensitive surface allows one to create a receiving geometry
similar to that for the procedure with no lens objective. Consequently, the source
radiance L in this case is straightforwardly identified by the transmittance of the lens
objective and the ratio of the measured irradiance N to the solid angle X2:

L ¼ sobN=X2: ð2:370Þ

2.2 Analysis of Attenuation Factors

A straightforward method for measurement of attenuation, such as of the attenua-
tion factor of a given object, is based on two consecutive measurements of either
the power or the energy extent of some stable beam of defined radiation measured
before and after its interaction with the object. Virtually any energy or power
parameter of radiation can be used for measurements: flux, intensity, radiance,
luminance, illuminance, etc. The main feature of attenuation measurements dis-
tinguishing them from methods of power or energy determination is affiliated with
no need to measure the chosen power or energy extent by way of absolute units,
since only the ratio of two values of one extent is used for obtaining the result of
measurements. The primary task of attenuation measurement is in ensuring suffi-
cient stability of emission of the source of radiation and sensitivity of the detector
during the measurement cycle, reproducing initial and intermediate states of mea-
surement and maintaining linearity in the full system. Mutual orientation of light
sources, detectors, projection optics, dynamic and spectral ranges of their perfor-
mance, etc. cumulatively determine, in every specific case, the most suitable
method for the measurement of the optical characteristic being studied.

2.2.1 Measurements in Transmitted Light

As follows from Eqs. (1.101)–(1.107), attenuation of a light beam transmitted by an
object made from a test substance with a refractive index distinct from the refractive
index of its surrounding is determined by the entire loss inside that substance and at
its front and back surfaces. Therefore, a comparison of the incident and of the
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transmitted energy or power of the beam of light makes it possible to identify only
the total transmittance sR of that object:

sR ¼ s1ssints2sK; ð2:38Þ

where s1s and s2s are the transmittances of the first and of the second surfaces of the
object under study, sint is the object’s internal transmittance defined as: sint ¼
expð�l‘0Þ (see Chap. 1), where ‘0 and l are the thickness and the linear attenu-
ation coefficient of the substance, and K is the factor of multiple reflections.
Equation (2.38), owing to too many undetermined variables (see, e.g., expressions
(1.93)–(1.99)), does not allow one to distinguish a particular coefficient or factor for
the test substance or either surface. Nevertheless, for a variety of practical tasks and
under specially taken measures, potential discrepancies between the ideal surface,
not having any absorbing or scattering layers, and the high-quality polished optical
surface may be disregarded. As a result, if multiple reflections are absent or are
presumed to be negligible, the measurement formula becomes:

sRðkÞ ¼ s2s ðkÞsintðkÞ ¼ ½1� qsðkÞ�2sintðkÞ: ð2:39Þ

Two possibilities for exclusion of the effect of internal multiple reflections on the
measurement result are shown in Fig. 2.8. Either the object to be studied is made as
a wedge or the object having plane-parallel faces is tilted by such an angle u that,
after a double reflection cycle inside, the retroreflected beam does not overlap with
the incident beam in the forward direction transmitted directly. To determine the
internal attenuation of that object in transmitted light, its front and back surface
reflectance values need to be measured at the spectral distribution of light as for
attenuation studies to compute surface losses via Fresnel formulae (relations (1.34)–
(1.36)). At the normal or 90°-slide incidence, differences between reflectances q||
and q⊥ vanish and the transmittance of each surface is independent of the state of
radiation polarization. In other cases, the angles of incidence u1 and of refraction
u2(k) or the index of refraction n(k) for any given wavelength and states of
polarization must be known. For the measurement in statistically averaged unpo-
larized light, the mean surface reflectance qunp is:

qunp ¼
1
2

sin2ðu1 � u2Þ
sin2ðu1 þu2Þ

þ tan2ðu1 � u2Þ
tan2ðu1 þu2Þ

� �
: ð2:40Þ

Fig. 2.8 Attenuation
coefficient measurements in
transmitted light
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Only when studying a thin slab of a transparent substance, where its internal
transmittance exp(�l‘0Þ may not be distinguished from 1.0 with guided-away
internal multiple reflections, can the total transmittance of the slab, viewed not at
normal incidence but with sliding irradiation via its surfaces of one equivalent
reflectance q0 (see Eq. (1.101)), be determined as ssgl ¼ ð1� q0Þ2: If all multiple
reflections are included in the directly transmitted beam, the transmittance is (for-
mula (1.106)): smul ¼ ð1� q0Þ=ð1þ q0Þ. When refractive index n ¼ 1.5 and thus
q0 ¼ 0.04, the relative difference ds between single ssgl and multiple smul factors
becomes ds ¼ (smul − ssgl)/ssgl, corresponding to 0.0016. For some applications
such a distinction can be considered as negligible, whereas for others it may be
significant. The validity of all supposed assumptions: expð�l‘Þ ¼ 1:0; q ¼ q0 6¼
qðuÞ; has to be verified, for example, by sufficient-to-sense inclinations of a sample
from normal incidence.

A more sensitive and reliable method of internal loss measurements is asso-
ciated with irradiation of several identical, or as similar as possible, samples of a
test substance. Then, the determination of internal attenuation is realized by
comparing changes of the energy or power of a light beam transmitted by a long
sample with changes of the energy or power of a light beam propagating not in a
surrounding medium, but in a shorter sample of the test substance, at all four
equivalent surfaces. The relative transmittance srl at reflectances q1,lg, q2,lg, q1,sh,
q2,sh is:

srl ¼ slg
ssh

¼
qi 6¼qj

ð1� q1;lgÞð1� q2;lgÞ
ð1� q1;shÞð1� q2;shÞ

exp½�lð‘lg � ‘shÞ�
1� q1;shq2;sh expð�l‘shÞ
1� q1;lgq2;lg expð�l‘lgÞ ;

ð2:41Þ

where indices lg and sh refer to the long and the short samples and the indices 1 and
2 mark the first surface and the second surface of each sample. Equation (2.41)
shows that for such a technique of attenuation measurements, the surface reflec-
tance ratio and the multiple reflection factor both become the order of a magnitude
lower variables in comparison with the transmittance of every sample (see also
Chaps. 4 and 5).

Comprehending the evident practical limitation for realizing high accuracy of the
transmission measurement method just described, consider the results obtained via
interdependence of the variables involved in the measurement process. Possible
alterations of the transmittance and reflectance: s ¼ 1 − q, of any perfectly polished
optical surface via negligibly low absorptance and low scattering surface factors are
defined only by the changes of its specular reflectance:

Ds
s

¼ Dq
1� q

¼ Dq
s
: ð2:42Þ
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Here Ds and Dq are the changes of transmittance and reflectance. An accidental
change of specular reflectance q can be expressed via conceivable variations Dn of
the surface refraction index n:

Dq ¼ 4ðn� 1Þ
ðnþ 1Þ3 Dn: ð2:43Þ

Considering normal incidence of light onto a surface to be measured and the
following equality:

s ¼ 1� n� 1ð Þ= nþ 1ð Þ½ �2 ¼ 4n=ðnþ 1Þ2; ð2:44Þ

the relative alteration of such a single-surface transmittance becomes:

ds � Ds=s ¼ Dq=s ¼ Dn=nð Þ � n� 1ð Þ= nþ 1ð Þ: ð2:45Þ

Allowing for variations of optical properties of four surfaces of two compared
samples, the relative magnitude of uncontrollable changes of the measured relative
internal transmittance is:

Dsrl
srl

¼ Dsint ¼ 4
Dn
n

� n� 1
nþ 1

: ð2:46Þ

Depending on the accuracy requirements of the measurement provided, one or
another difference or variation of a surface refraction may be allowed. Thus, within
the scope of random error caused by the allowance, sensitivity to the studies of the
internal loss may be considered from the following equations:

sint ¼ exp½�lð‘lg � ‘shÞ�; dsint ¼ Dsint=sint ¼
l¼const

�lD‘: ð2:47Þ

For the capability of sensing ±0.01% transmission changes at l ¼ 0.1 cm−1, D‘
must be constant to at least ±10 lm.

To conclude, let us consider one main aspect of any transmittance measurement:
conversion of the optical path length of the beam of radiation having two com-
parative transmissions: first, via the surroundings, which are usually air, and, sec-
ond, via a test sample. Depending on the angle u of incidence on the sample surface
and on the divergence of the beam during normal irradiation, the changes of the
beam diameter D0 on passage via the sample bulk of thickness ‘ and on passage in
air are:

Dair ¼ D0 þ 2‘ tanu;

Dsmp ¼ D0 þ 2n‘ tan½arcsinðsinu=nÞ�: ð2:48Þ

Consequently, the larger the magnitudes of ‘, n, and u, the stronger should be
the requirements for uniformity of sensitive area of the detector and the
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measurement system itself. The system can also be arranged with some compen-
sation of an extended optical path length of light propagation via a long test sample
by diminishing spot-size variations of the beam which irradiates the detector.

2.2.2 Measurements of Reflectance

The principal measurement concept for specular reflectance is the same as for direct
transmittance: the change of intensity of the incident beam before and after its
interaction with an object is to be resolved and measured. One insignificant, as may
seem, aspect of reflectance studies, i.e., opposite directions of light incidence and
reflection, notably complicates the process, especially if high accuracy is required.
Figure 2.9 reveals a few approaches for a direct measurement of specular reflec-
tance. Four conceivable source-detector combinations are seen. After the mea-
surement by the first detector of the intensity of the beam incident directly from
light source S, the reflective object under study can be positioned in the incident
beam at any desired angle u with the detector accordingly relocated to new position
D0 matching dual angle 2u for the incidence and reflection. An identical mea-
surement can be made via the source moved into new position S0 for the object
rotated 180°. Two other combinations are realized by having the second detector
identical to the first one set at position D0 or the second source, as the first one, set at
position S0. The requirement for the first two measurements is to reproduce the
initial position of the incident beam on the detector to be moved. For the second
measurement pair, the emittance of sources S and S0 or the sensitivity of detectors
D and D0 must be identical. In every specific case, the choice among the four
procedures considered above, or even more complicated ones (see later), is defined
by the required accuracy, the spectral and dynamic ranges of measurements, sen-
sitivity to determining specular reflectance under study, accessibility of the com-
ponents, overall setup dimensions, etc.

Fig. 2.9 Measurement
arrangements for specular
reflectance: S—source, D—
detector, M—mirror under
study
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Compared with transmission measurements, measurements in reflected light
have a definite advantage – high sensitivity to the state of the reflective surface. At
normal incidence (relation (1.36)), reflectance-based sensitivity to refractive index
change Dn for a single surface irradiated by a wave normal is (see Eq. (2.43)):

dq � Dq
q

¼ Dn
n

� 4n
n2 � 1

: ð2:49Þ

For light reflected by a glass-air border and glass relative index of refraction
n ¼ 1.5, the changes of glass-surface specular reflectance are nearly 5 times greater
than respective variations of the refractive index. Compared with transmittance
measurements for a single glass surface (see Eq. (2.45)):

dq
ds

¼ s
q
¼ 4n

ðn� 1Þ2 ; ð2:50Þ

reflection-based sensitivity is much higher. For glass with n ¼ 1.5, ratio (2.50)
becomes D(q/s) ¼ 24.

The high sensitivity to changes of reflectance versus transmittance may be useful
for achieving higher accuracy of surface studies in reflected light. However, if
relatively low magnitudes of reflectance are to be measured, a higher dynamic range
and a higher sensitivity of the detector may be required. For glass with n ¼ 1.5 and
q ¼ 0.04, the intensity of light reflected from its single surface is 25 times lower
than the intensity of the incident light. Thus, it becomes necessary to have not only
much higher spectral responsivity of the detector, but also a higher dynamic range
to achieve the same accuracy of measurements for reflected light – compare the
ratios of the incident dU0 ¼ DU0=U0 versus reflected dUq ¼ DUq=Uq fluxes of
radiation for the single surface analyzed. For that reason, the specular reflectance
measurement is often provided via the so-called standard sample. Reflectance qs of
the standard is measured by means of more precise equipment, taking care of the
requirements mentioned above. Therefore, the reflectance qi of a test surface is
measured via the reflectance qs of the standard, having similar characteristics:

qi ¼ qsUi=Us; ð2:51Þ

thus, only high detector sensitivity is required. The accuracy of that measurement is
defined by error Dqs of determining the standard‘s reflectance qs and by error
2D Ui=Usð Þ of two flux measurements.

One concept for direct absolute measurement of specular reflectance following
from Fig. 2.9 is seen in Fig. 2.10. Utilization of two mirrors in sequence – one as a
standard and the other as one to be measured – instead of a single mirror addresses
the dynamic-range concern. First, intensity I1, not of a source light, but of radiation
reflected from a mirror standard is measured (Fig. 2.10a), giving I1 ¼ const � qstand.
Then (Fig. 2.10b), rearranging the entire system, one places the standard and the
sample in the light path at an unchanged angle of incidence H1 for the standard and
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the same angle of incidence H2 ¼ H1 for the sample, and makes another intensity
measurement, I2 ¼ const � qx � qstand, where qx is the reflectance of the sample.
Accordingly qx ¼ I2/I1.

For the absolute measurement of specular reflectance performed by altering the
positions of the sample mirror and of the standard, the reflection-symmetry
approach can be used [0.6] (Fig. 2.11). The flux Ustd of radiation reflected once by
the standard in position 1 is measured first (view a). Second, the standard is rotated
180° around the system’s symmetry axis into position 2 (view b), and the total flux
UR reflected by the standard once and twice by the wide sample in its axis plane is
measured. The standard‘s reflectance may be unknown, but must remain stable
during the measurement cycle. The ratio of two measured intensities provides the
twofold specular reflectance �q2S of the sample averaged over surface spots M and N:
�q2s ¼ UR/Ustd.

Figure 2.12 illustrates the approach for absolute measurements of specular
reflectance and direct transmittance at oblique incidence of radiation onto a plane
opaque or transparent sample S [2.10]. For symmetrically aligned mirror pairs M2,
M4 and M3, M5, presumed to have equal reflectance, detector D measures the ratio of
the light fluxes incident on and reflected by the sample. When sample S is trans-
parent, the ratio of detector readings with and without the sample gives the difference
and the sum of attenuation for transmittance s and reflectance q: (1 − s − q)/

(a) (b)

Fig. 2.10 Absolute measurements of reflectance

(a)
(b)

Fig. 2.11 Relative (a) and absolute (b) measurements of reflectance
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(1þ sþ q), measuring the total absorption and scattering loss: (r þ a)/(2 − r − a).
Chopping the incident beam by modulator M for two separate time instances in
detection of the reflected and transmitted beams permits one to measure the s/q ratio.
Rotating transparent sample S in and out of the beam at low modulation frequencies
allows one to detect the difference-to-sum ratios: (1� q)/(1þ q) or (1� s)/(1þ s)
(see Chap. 10), when either reflectance or transmittance is measured. In the latter
case, the reflected beam is blocked by black light trap B and only the transmitted
beam reaches detector D with and without sample S in its rotating holder (Fig. 2.12).

When measuring optical properties of objects in reflected light, special measures
need to be taken for studies at normal light incidence. Since reflectance at normal
incidence is not sensitive to random polarization changes of incident radiation,
measurements at normal incidence appeal to a variety of applications. One way to
capture normally reflected light from specularly reflective objects is to use a
semitransparent beam splitter [2.11]. Figure 2.13 illustrates such a method of rel-
ative measurement of specular reflectance at normal incidence. A quasi-parallel
beam of light is incident on beam splitter 1 from a light source or a spectral selector,
such as a monochromator. Test sample 2 and reference standard 3, installed on one
sliding carrier providing parallel displacement, are inserted sequentially into the
beam’s path. Light reflected and transmitted back via beam splitter 1 is received by
detector 4, which may be used with an objective. Dark-glass reflector 5 and
absorber 6 help reduce multiple reflections of incident light and can be replaced by
a telescope to align the measurement system.

Fig. 2.12 Spectral evaluation
of absolute reflectance

4

source

6

1

23

5

Fig. 2.13 Reflectance study
at normal incidence
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Another concept for measurement at normal incidence via two equivalent
transparent plates aligned to redirect light to same spot on a single detector [2.12,
2.13] is seen in Fig. 2.14. A light beam from a source or a monochromator prop-
agates via inclined plate P1 and is reflected from test sample S and from plate P1 to
the detector. Without sample S incident light is reflected from equalizing plate P2 to
same detector spot. Added aperture A1 selects images only from the first, but not
the second, surfaces of plates P1 and P2. When sample S is transparent, shutters Sh1
and Sh2 sequentially allow either the transmitted or the reflected beam to pass
[2.13]. An earlier version of that design intended for normal or variable incidence of
light [2.12] had single mirror M placed at positions M0 and M00 instead of the plates,
allowing one to measure the intensity of incident light and the intensity of light
reflected by crystal sample S by varying the angle of incidence.

A system for absolute reflectance measurement at normal incidence of light
via a 45° rotating beam splitter is seen in Fig. 2.15. Semitransparent beam splitter
B having a 50% reflecting and 50% transmitting coating on its first surface, and
an antireflection coating on another surface, is set to be rotatable into two
orthogonal but fixed positions a and b. In position a, the respective signal Na of
detector D is created by radiation directly incident from a source S and reflected
by splitter B:

Fig. 2.14 Reflectometer for
normal incidence

(a) (b) (c)

Fig. 2.15 Absolute measurement of specular reflectance at normal incidence of radiation: S—
source; B—beam splitter; M—reflective sample; D, D′, D″—detector in altered positions
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Na ¼ kU0qB: ð2:52Þ

The detector’s signal Nb in splitter position b, while sample M remains as shown
in view a, is defined by the properties of two elements – the sample and the splitter
– as splitter B transmits light and both the sample and the splitter reflect light to
detector D:

Nb ¼ kU0sBqqB: ð2:53Þ

Here U0 is the flux emitted by source S, q is the reflectance under study, k is the
sensitivity factor of steady measurements defined by the detector’s sensitivity and
the system’s spectral transmittance, and sB and qB are the transmittance and
reflectance of beam splitter B. From Eqs. (2.52) and (2.53), we obtain:

qsB ¼ Nb=Na: ð2:54Þ

The two measurements described above determine only the product of the
sample reflectance and the splitter transmittance. The splitter transmittance sB is to
be measured in the exactly same position as in Fig. 2.15b. This can be accom-
plished, for example, by replacing sample M by detector D at position D0.
Fundamentally, the concept of measurement via rotating beam splitter B needs to be
supported by at least (sBqB)

−1 times higher sensitivity than for the direct trans-
mittance measurement. Thus, a semitransparent beam splitter with sB ¼ qB ¼ 0.5
provides the highest intensity of the conversion: C ¼ sBqB ¼ 0.25, being the most
efficient. Another disadvantage is due to displacement of the beam passing the
splitter. This could result in errors caused by likely nonuniformity of detector D.
To prevent such errors, a balancing plate P (see Fig. 2.15c) with the same trans-
mittance: sP ¼ sB, and same thickness as beam splitter B can be inserted into the
sample‘s light path. Another way is to set splitter B in one permanent position
(Fig. 2.15b), adding two detectors D0 and D00, or moving detector D to position D00

and making the third reading of splitter transmittance sB at position D0.
In that case, the semitransparent beam splitter enables absolute measurement of

mirror reflectance not only at normal incidence as in Figs. 2.14 and 2.15, but at any
confined angle H desired (Fig. 2.16). Since a nonscattering beam splitter BS yields
no light in the direction of incidence, added standard mirror M serves here to confine
the back reflection. Light from source S is normally incident on mirror M. Beam
splitter BS splits light reflected by the mirror into detector D. When any mirror
sample is implemented at a desired angle H, mirror M is rotated around the sample
into its new position determined by the dual angle 2Hmaintaining normal incidence
of light. The ratio of these measurements gives the twofold reflectance of the sample
at the desired incidence angle H for the section of its surface selected by the beam.

One distinctive way for the absolute measurement of reflectivity [2.14] deploys
the absolute blackbody emitter, as depicted in Fig. 2.17. First, the blackbody
emissivity is measured via small aperture A, selecting only radiation retroreflected
by walls of the emitter to detector 1. Then, the detector or blackbody itself is rotated
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such a way that light reflected by an isolated sample inside the blackbody cavity is
seen by the detector in position 10 and measured. The ratio of signals gives absolute
sample reflectance qs

d for hemispherical irradiation. For the sample, which does not
violate the blackbody equilibrium and has graybody emissivity es ¼ 1 − qs

d at
wavelength k (see Sect. 9.3 for detail), the measured diffuse reflectance of sample S
becomes:

qds ¼
Mk;2

Mk;1
¼ Mk;cqds þ esMk;s �M0

Mk;c �M0
¼

es¼1�qds

qds Mk;c �Mk;s
� �þ Mk;s �M0

� �
Mk;c �M0

;

ð2:55Þ

where qs
d is the diffuse reflectance of the sample at the thermal equilibrium and Mk,c,

Mk,s, and M0 are the emissivity of the emitter, sample, and surroundings, all at a
blackbody temperature.

(a) (b)

Fig. 2.16 Absolute reflectance measurement at confined incidence of light

Fig. 2.17 Emissivity-based
reflectance study
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2.2.3 Directional Scattering Measurements

As long as scattered light can be diffused into 4p or 2p space surrounding an object
under study, the spatial distribution of the object’s scattering factor with arbitrary
irradiation and observation geometry X1/X2 can be determined by a goniometer
[0.4, 0.5]. The goniometric technique essentially allows determination of the
object’s scattering indicatrix at any conceivable geometry of irradiation and ob-
servation with regard to the object positioned in the center of the goniometer‘s
rotation. The measurement formula for direct irradiation does not differ from that
for transmittance or reflectance: rX1=X2 ¼ Ur=U0; where Ur(X2) and U0(X1) are,
respectively, the flux of radiation scattered into solid angle X2 of reception and the
flux incident within solid angle X1 of irradiation. Relations for the scattering factor
for diffuse irradiation with uniform irradiance follow from Table 1.1. If either
irradiation or illumination is not uniform and the object’s radiance or luminance is
therefore dependent on the point and the direction of observation, the magnitudes
for the radiance or luminance indicatrix can be defined according to expressions
(1.55)–(1.57). Likewise, the object’s scattering indicatrix expresses the distribution
of scattered light.

The total radiant or luminous flux Ur scattered into the hemisphere of solid
angle 2p is:

Ur ¼
Z2p
0

dw
Zp=2
0

IðH;wÞ sinHdH; ð2:56Þ

where I(H,w) is the radiant or luminous intensity of the secondary light source
formed by the scattering object, and H and w are the radial and the azimuth angles
which the light makes with the normal to the sample. The radiant or the luminous
intensity IP of radiation scattered by a perfect diffuser under identical conditions of
irradiation and observation as for the sample (see Eqs. (1.57), (1.58)) is:

IðH;wÞ ¼ bðH;wÞIp cosH: ð2:57Þ

Thus, the equivalent radiant or luminous flux scattered by a perfect diffuser may
be rewritten as:

Ur ¼ Ip

Z2p
0

dw
Zp=2
0

bðH;wÞ cosH sinHdH : ð2:58Þ

Since the flux falling onto the sample may be expressed via the flux reflected by
a perfect diffuser: U0 ¼ pIP, the sample‘s 2p-space scattering factor r2p, or its
diffuse reflectance or transmittance, becomes:
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r2p ¼ 1
p

Z2p
0

dw
Zp=2
0

bðH;wÞ sinH cosHdH : ð2:59Þ

For any homogeneous substance of symmetrical properties in the azimuth and
radial directions:

r2p ¼ 2
Zp=2
0

bðH;wÞ sinH cosHdH : ð2:60Þ

That measurement method for radiance (luminance) factor b(H) and radiance
(luminance) indicatrix c(H) can be simplified in comparison with the evaluation of
the angular distribution for radiation intensity. Since these factors are always ratios
of space-angular densities of radiation, both can be measured as ratios of intensities
of a primary light source and one formed by the test object irradiated or illuminated
by that primary source [2.15]. Schematically, such a method is illustrated in
Fig. 2.18. An arbitrary source S of light of a limited emitting area As irradiates an
aperture A1, situated at a distance ‘1 from S. If small area As of the source aperture
or its long distance ‘2 from detector D allows that aperture to be considered as the
point source, intensity I0 on the detector is identified by the square-distance law for
source S. When solid angle X1 constrained by aperture A1 is not restrained by
aperture A2, no vignetting occurs (presuming no noticeable diffraction occurs at any
aperture), and signal N1 of detector D is strictly due to solid angle X1 for aperture
A1 seen from the center of source S:

N1 ¼ k � I0 � X1 ffi k � I0 � A1=‘
2
1: ð2:61Þ

To determine radiant or luminous irradiance, the object is placed behind aperture
A1, confining the area of the object’s irradiation (Fig. 2.18b). To measure either
object’s radiance or luminance factor, detector D is reinstalled in its new position
corresponding to observation angle H, still at normal incidence. Aperture A2 is

(a) (b)

Fig. 2.18 Measuring a radiance or a luminance factor

74 2 Methods of Photometric and Radiometric Measurements



placed in front of detector D, denoting solid angle X2 at which aperture A2 is seen
from the object’s center, now serving as the point source. In such an orientation:

N2 ¼ kLobjðA1 cosHÞX2 ffi kLobjAobjA2=‘
2
2: ð2:62Þ

Here Lobj is the radiance or luminance of radiation scattered by the sample and
Aobj ¼ A1cosH is the equivalent area of the sample in the direction perpendicular
to the direction identified by angle H. Both Eqs. (2.61) and (2.62) are obtained
under the assumption that apertures As and A1 are very small or are placed far away
from the detector, so each can be treated as a point source (see Sect. 1.2).

Equation (2.62), rewritten via the radiance or luminance LP of the perfect dif-
fuser, becomes:

LP ¼ MP=p ¼ EqP=p ¼
qP¼1

E=p; ð2:63Þ

N2 ¼ kbðHÞ I=p‘21
� �

AobjA2=‘
2
2

� � ¼ krcðHÞIA2Aobj

pð‘1‘2Þ2
: ð2:64Þ

From Eqs. (2.61) and (2.64), the object’s radiance factor b as a function of angle
H at Aobj ¼ A1cosH is:

bðHÞ ¼ N2=N1ð Þ p‘22A1=A2Aobj
� � ¼ N2=N1ð Þ p‘22=A2 cosH

� �
: ð2:65Þ

Finally, at the round apertures of radii r1 and r2, Eq. (2.65) in reflected radiation
converts to:

bðHÞ ¼ qnd � cðHÞ ¼ N2=N1ð Þð‘22=r22Þ 1=cosHð Þ; ð2:66Þ

where qd
n is the diffuse reflectance of the test object viewed in the direction of the

outer normal.

2.3 Measurements of Color Coordinates and Indices

The photometric additivity principle enables the existing system of colorimetry,
defined by the International Commission on Illumination (CIE), based on equally
weighted color excitation functions of the CIE standard reference observer [2.16–
2.36]. According to the definition of relation (1.16), the system of photometric
quantities Xp is formed by a mathematical model of a linear spectrally additive
receiver – CIE-standardized reference human eye executing a color-sensitive pro-
cess of visualizing optical radiation within spectral domain kp 2 360–830 nm (for
all practical purposes kp ffi 380–780 nm), with the luminance-to-radiance conver-
sion factor Kp ¼ 683 lm ∙ W−1 [1.3]. Kp provides the maximum luminous spectral
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efficiency at wavelength kmax ≅ 555 nm for photopic vision. The conversion factors
and kmax are different for scotopic vision and other reduced quantities.

The sensation of color is associated with all the sensations arising from the
activity of the retina of a human eye and its attached nervous mechanisms produced
by visible radiation [2.18]. The system of colorimetry is based on three standardized
and equally weighted spectral distributions for the equienergy reference stimuli [X],
[Y], [Z] of the CIE standard reference observer. Any color stimulus C is, respec-
tively, defined as a space vector C ¼ X½X� þY½Y� þZ½Z�, where X, Y, and Z are
the tristimulus values of vector C; [X], [Y], and [Z] are unit vectors of CIE-defined
reference stimuli for the reference colorimetric observer [2.22]. Other colors are
located inside Maxwell’s triangle (Fig. 2.21) drawn as a two-dimensional X–Y
projection for space vector C [2.16]. For a set of reference stimuli [X], [Y], [Z], the
normalized tristimulus values �x kð Þ;�y kð Þ;�z kð Þ for monochromatic radiations ki are
derived as the equal sums over all wavelengths ki of the equienergy spectrum
having �y kð Þmax ¼ 1: X

i

�x kið Þ ¼
X
i

�y kið Þ ¼
X
i

�z kið Þ: ð2:67Þ

By that definition �y kð Þ is the spectral luminous efficiency function V(k) for the
photopic vision specified by the CIE for the reference observer. Normalized tris-
timulus values �x kð Þ;�y kð Þ;�z kð Þ are the color-matching functions �x kið Þ;�y kið Þ;�z kið Þ
for determining tristimulus values X, Y, Z of a color stimulus standardized by CIE
as x-, y-, and z-bars for reference colorimetric observers (Figs. 2.19 and 2.20).
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Fig. 2.19 CIE 2° color matching functions: 360–830 nm for x-bar, y-bar; 360–649 nm for z-bar
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The chromaticity, or color, coordinates x, y, z are derived from tristimulus values
X, Y, Z as:

x kð Þ ¼ X
Xþ Y þ Z

; y kð Þ ¼ Y
X þ Y þ Z

; z kð Þ ¼ Z
X þ Y þ Z

: ð2:68Þ

By definition, xþ yþ z � 1. The color coordinates for the normalized tristim-
ulus values are similarly:

x kð Þ ¼ �x kð Þ
�x kð Þþ�y kð Þþ�z kð Þ ; y kð Þ ¼ �y kð Þ

�x kð Þþ�y kð Þþ�z kð Þ ;

z kð Þ ¼ �z kð Þ
�x kð Þþ�y kð Þþ�z kð Þ :

ð2:69Þ

The chromaticity coordinates xE, yE, zE for the equienergy spectrum are derived
as equal sums:

xE ¼
X
i

�x kið Þ ¼ 0:333334; yE ¼
X
i

�y kið Þ ¼ 0:333331;

zE ¼
X
i

�z kið Þ ¼ 0:333335:
ð2:70Þ

If there is a color stimulus described by a spectral function uk(k), then the
tristimulus values of a color stimulus uk(k) are defined as sums carried out at 1 nm
intervals Dk ¼ 1 nm over the entire visible spectrum from 360 to 830 nm for the
CIE matching functions �x kð Þ;�y kð Þ;�z kð Þ:
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Fig. 2.20 CIE 10° color matching functions: 360–830 nm x-bar10, y-bar10; 360–559 nm z-bar10
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X ¼ k
X
k

uk kð Þ�x kð ÞDk; Y ¼ k
X
k

uk kð Þ�y kð ÞDk; Z ¼ k
X
k

uk kð Þ�z kð ÞDk:

ð2:71Þ

Here k is the normalizing constant, the value of which is set to maximum
spectral luminous efficiency km ¼ 683 lm/W for illuminants or self-luminous
objects, being set to give Y ¼ 100 for objects with reflectance q(k) or transmittance
s(k) equal to unity at all wavelengths: q(ki) ¼ 1; s(k) ¼ 1, thus:

k ¼ kq;s ¼ 100=
X
k

S kð Þ�y kð ÞDk; ð2:72Þ

where S(k) is the relative spectral distribution function of the object’s illuminant,
such as any of the CIE standard illuminants applied to illuminate the reflective or
transmissive object being studied.

Similarly, the measures for objects to be colorless are defined conversely for
transparent and for reflective observation. For transparent objects, any coloration,
such as yellowness, may be identified by the definition of Eq. (2.67): Dc ¼ [(X − Z)/
Y] 6¼ 0. Depending on specific illumination and observation conditions, the yel-
lowness index YI is defined by ASTM [4.68] for CIE sources and observers as:

YI ¼ 100 � CxX�CzZð Þ=Y: ð2:73Þ

The equation constants for CIE illuminant D65 and 2° reference observer are
Cx ¼ 1.2985 and Cz ¼ 1.1335. For reflective objects two characteristics – white-
ness index and tint index – are defined by the CIE [2.33]:

WI ¼ Yþ 800 xn � xð Þþ 1700 yn � yð Þ; ð2:74Þ

TI ¼ 1000 xn � xð Þ � 650 yn � yð Þ; ð2:75Þ

where xn ¼ 0.333334 and yn ¼ 0.333331 are the color coordinates of the perfect
diffuser (see Chap. 1, Eq. (1.52)) and Y is the object’s reflectivity – equal to 100 for
the perfect (perfectly white) diffuser.

Since visual perception of color depends on the geometry of illumination and
observation, the CIE defines two fields of view: 2° and 10°. All viewing angles
between 1° and 4° are considered as 2° and angles above 4° are considered as 10°.
If marked by no specific indices, as all definitions above, 2° or 1–4° is the angle for
CIE color matching functions, also called �x, �y, and z-bars, or the spectral coordi-
nates for 2° reference observer, or 2° reference stimuli, or primary colors red (R),
green (G), and blue (B) (Fig. 2.19).

For 10°-visual field as for 2°-visual field specified by Eqs. (2.67)–(2.72), the
normalized tristimulus values �x10 kð Þ;�y10 kð Þ;�z10 kð Þ of the monochromatic radia-
tions for the reference stimuli [X10], [Y10], [Z10] match wavelength ki of the
equienergy spectrum:

P
i �x kið Þ ¼Pi �y kið Þ ¼Pi �z kið Þ, with the maximum
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�y10 kð Þmax ¼ 1. The chromaticity coordinates x10, y10, z10 of tristimulus values X10,
Y10, Z10 are:

x10 kð Þ ¼ �x10 kð Þ
�x10 kð Þþ �y10 kð Þþ�z10 kð Þ ; y10 kð Þ ¼ �y10 kð Þ

�x10 kð Þþ �y10 kð Þþ�z10 kð Þ ;

z10 kð Þ ¼ �z10 kð Þ
�x10 kð Þþ �y10 kð Þþ�z10 kð Þ :

ð2:76Þ

The chromaticity coordinates x10E, y10E, z10E for the equienergy spectrum at 10°
(>4°) are the sums:

x10;E ¼
X
i

�x10 kið Þ ¼ 0:333334; y10;E ¼
X
i

�y10 kið Þ ¼ 0:333331;

z10;E ¼
X
i

�z10 kið Þ ¼ 0:333335:
ð2:77Þ

The CIE 10° illumination color matching functions of reference stimuli are
shown in Fig. 2.20.

Figure 2.21 illustrates Maxwell’s triangle, plotted for the CIE 2° reference
observer. It is more precisely a semicircle construction, since its base only connects
the circle, being the actual Y versus X function. The semicircle represents chro-
maticity coordinates for the color being perfectly neutral or white.

CIE tristimulus values X, Y, Z of a color stimulus uk(k) are obtained via spectral
coordinates of color-stimulus function uk(k) at every wavelength by corresponding
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Fig. 2.21 Chromaticity plot for X-Y color coordinates of CIE 2 reference observer
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to the angle-of-view CIE color-matching function integrated over the visible
spectrum from 360 to 830 nm. The integration is practically carried out by
numerical summation for CIE 1 nm standard tables (Eq. 2.71):

X ¼ k
Z
k

uk kð Þ�x kð Þdk; Y ¼ k
Z
k

uk kð Þ�y kð Þdk � Vk; Z ¼ k
Z
k

uk kð Þ�z kð Þdk:

X10 ¼ k10

Z
k

uk kð Þ�x10 kð Þdk; Y10 ¼ k10

Z
k

uk kð Þ�y10 kð Þdk � Vk10; Z10 ¼ k10

Z
k

uk kð Þ�z10 kð Þdk:

ð2:78Þ

Along with defining the properties of standard observers, the CIE recommends
and defines properties of standard CIE illuminants for analysis of color stimuli and
for measurement of color coordinates: illuminant A and illuminant D65. Other
illuminants with CIE-defined properties can also be used in specific illumination
circumstances. The properties of the standard illuminants are based on a given
spectral distribution of radiation emitted by the blackbody at the specified correlated
color temperature TD65 ¼ 6500 K for CIE illuminant D65 and TA ¼ 2854.742 K
ffi 2855 K for CIE illuminant A. The spectral irradiance Le,k(k,T) of a blackbody in
thermodynamic equilibrium at temperature T (K) in a medium with relative index of
refraction n is defined by Plank’s law:

Le;k k; Tð Þ ¼ c1n�2k�5

p
exp

c2
nkT

� �
� 1

h i�1
; ð2:79Þ

where c1 ¼ 2phc2 and c2 ¼ hc/k, where c is the speed of light in a vacuum, h is the
Plank constant, k is the Boltzmann constant, and k is the wavelength of radiation in a
given blackbody medium. The CIE values are: c1 ¼ 3741771� 10�16 W �m2 and
c2 ¼ 14388� 10�16 m � K. From Eq. (2.79), the spectral distribution for CIE stan-
dard illuminant A in air having standardized refractive index n ¼ 1.00028 becomes:

SA kð Þ ¼ Le;k k; Tð Þ=Le;k 560 nm; Tð Þ: ð2:80Þ

Historically, when determining the color temperature, Plank’s equation (2.79) in
a vacuum and with n ¼ 1.0 is used owing to wavelength dependency for the
refractive index of air. The relative spectral distribution SA kð Þ of power for CIE
standard illuminant A is given by the normalized equation:

SA kð Þ ¼ 100 560=kð Þ5 exp 1:435 � 10�7=2848 � 560� �� 1
� �

= exp 1:435 � 10�7=2848 � k� �� 1
� �

;

ð2:81Þ

where k is the wavelength in nanometers. The normalization in Eq. (2.81) results in
SA kð Þ ¼ 100 at k ¼ 560 nm. CIE standard illuminant D65 has the relative spectral
distribution of a daylight phase at the nominal correlated color temperature T ffi
6500 K. If neither CIE illuminants A or D65 can be used, another CIE daylight
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illuminant (D) is defined as having chromaticity coordinates xD and yD, correlated
color temperature Tcp,D, and relative spectral distribution SDðkÞ by the equations:

yD ¼ �3:000x2D þ 2:870xD � 0:275; for 0:250� xD � 0:380;

xD ¼ �4:6070 � 109=T3
cp;D þ 2:9678 � 106=T2

cp;D

þ 0:09911 � 103=Tcp;D þ 0:244063 for 4000K � Tcp;D � 7000K;

xD ¼ �2:0064 � 109=T3
cp;D þ 1:9018 � 106=T2

cp;D þ 0:24748 � 103=Tcp;D
þ 0:237040 for 7000K\Tcp;D � 25000K;

SD kð Þ ¼ S0 kð ÞþM1S1 kð ÞþM2S2 kð Þ; whereM1 ¼ �1:3515� 1:7703xD þ 5:9114yD
0:0241þ 0:2562xD � 0:7341yD

;

M2 ¼ 0:0300� 31:4424xD þ 30:0717yD
0:0241þ 0:2562xD � 0:7341yD

:

ð2:82Þ

Spectral distributions of the relative intensity for CIE illuminants A and D65,
and for color-temperature dependent CIE daytime illuminant D via functions S0(k),
S1(k), and S2(k) are shown in Figs. 2.22 and 2.23.

Other color systems can be derived by linear transformation of the specified
functions. For example [2.20], an infinite number of excitation curves: v, c, n, may
be found for �x kið Þ;�y kið Þ;�z kið Þ:
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v ¼ K1xþK2yþK3z;

c ¼ K4xþK5yþK6z;

» ¼ K7xþK8yþK9z:

ð2:83Þ

where K1–K9 are arbitrary constants, forming the determinant which is distin-
guished from zero:

K1 K2 K3

K4 K5 K6

K7 K8 K9

							
							 6¼ 0: ð2:84Þ

Xv ¼ v
vþ cþ »

; Yc ¼ c
vþ cþ »

; Z» ¼ »

vþ cþ »
: ð2:85Þ

x ¼ �v kð Þ
�v kð Þþ�c kð Þþ�» kð Þ ; y ¼ �c kð Þ

�v kð Þþ�c kð Þþ�» kð Þ ;

z ¼
�» kð Þ

�v kð Þþ�c kð Þþ�» kð Þ : ð2:86Þ

In the case of a visual mixture of two color stimuli, �v1 kð Þ;�c1 kð Þ;�»1 kð Þ;
�v2 kð Þ;�c2 kð Þ;�»2 kð Þ, the mixture’s stimulus is identified as the combination
�vm ¼ �v1 kð Þþ �v2 kð Þ;�cm ¼ �c1 kð Þþ�c2 kð Þ;�»m ¼ �»1 kð Þþ�»2 kð Þ. The tristimulus co-
ordinates of the visual color mixture as the linear combination of the two are:
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Fig. 2.23 Relative spectral power distributions of CIE functions for the daytime illuminants D
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x kð Þ ¼ �v1 þ �v2
�v1 þ �v2 þ�c1 þ�c2 þ�»1 þ�»2

; y kð Þ ¼ �c1 þ�c2
�v1 þ �v2 þ�c1 þ�c2 þ�»1 þ�»

;

z kð Þ ¼
�»1 þ�»2

�v1 þ �v2 þ�c1 þ�c2 þ�»1 þ�»
:

ð2:87Þ

From the additivity principle of the CIE color system, the color coordinates of
any composite summation object R are:

xR ¼ x1 þ x2
2

; yR ¼ y1 þ y2
2

; xR þ yR ¼ x1 þ x2
2

þ y1 þ y2
2

¼ x1 þ y1
2

þ x2 þ y2
2

:
ð2:88Þ

Since correlations among color stimuli may be represented in vector forms
considering each color as one vector in X, Y, Z space with respective unit vectors
~x;~y;~z for three color coordinates:

~C � X~xþ Y~yþ Z~z; ð2:89Þ

color difference DC between two stimuli can be seen as the difference of two vector
modules:

DCi;j ¼ ~Ci � ~Cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi � Xj
� �2 þ Yi � Yj

� �2 þ Zi � Zj
� �2q

: ð2:90Þ

Color coordinates for the CIE 2° reference observer given by Eqs. (2.67)–(2.72)
(Figs. 2.19 and 2.20) lead to a nonuniform x–y color space and unequal transfor-
mation factors among diverse colors. The CIE 1976 uniform chromaticity scale is
reset by transforming the projected x–y diagram into:

Abscissa : u0 ¼ 4X= X þ 15Y þ 3Zð Þ; Ordinate : v0 ¼ 9Y= Xþ 15Y þ 3Zð Þ;
ð2:91Þ

at tristimulus values X, Y, Z, with w0 being the third uniform chromaticity coor-
dinate w0 ¼ 1� u0 � v0.

The three-dimensional CIE 1976 uniform color space is formed by establishing a
white color object stimulus, such as that of the perfect diffuser (see Chap. 1),
plotted in rectangular coordinates:

L� ¼ 116 � f Y=Ynð Þ � 16; a� ¼ 500 f X=Xnð Þ � f Y=Ynð Þ½ �;
b� ¼ 200 f Y=Ynð Þ � f Z=Znð Þ½ �; ð2:92Þ

where X, Y, Z and Xn, Yn, Zn are the tristimulus values of the test color object and
the white color object. For a perfectly white object, Xn, Yn, Zn are the tristimulus
values of a CIE standard light source applied for illumination of the test object, and
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Yn ¼ 100 is the normalizing constant in Eq. (2.72). The values of the functions in
Eq. (2.92) depend on the ratios of the tristimulus values for two objects:

f X=Xnð Þ ¼ Y=Ynð Þ1=3 if fðX=XnÞ[ 24=116ð Þ1=3; ð2:93Þ

f X=Xnð Þ ¼ 841=108ð Þ Y=Ynð Þþ 16=116 if f X=Xnð Þ� 24=116ð Þ1=3: ð2:94Þ

Identical correlations exist for f(Y/Yn) and f(Z/Zn) as in Eqs. (2.93) and (2.94)
[2.33]. The CIE 1976 color difference between color stimuli 1 and 2 can be cal-
culated as the Euclidian distance between space points 1 and 2 representing the two
color stimuli in three-dimensional uniform space:

DE�
a;b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DL�ð Þ2 þ Da�ð Þ2 þ Db�ð Þ2

q
; ð2:95Þ

where the above-mentioned differences for points 1 and 2 are DL* ¼ L*2 − L*1,
Da* ¼ a*2 − a*1, and Db* ¼ b*2 − b*1.

When the CIE standard reference observer views optical radiation with an
equienergy spectral distribution function, making the tristimulus values X, Y, Z
equal, the resultant observer response represents an unaltered white color. If the
radiation viewed consists of the three primary colors red, green, and blue with
uneven spectral distribution, having respective spectral radiances LR(k), LG(k), and
LB(k) (see Fig. 2.19), the resultant tristimulus values converted to luminance units,
seen by the observer, are as shown for the red color component:

XR ¼ 683
Z
k

Lk;Ry�x kð Þdk ¼ 683R
Z
k

Lk;R;max�x kð Þdk � RXR;max;

YR ¼ 683
Z
k

Lk;R�y kð Þdk ¼ 683R
Z
k

Lk;R;max�y kð Þdk � RYR;max;

ZR ¼ 683
Z
k

Lk;R�z kð Þdk ¼ 683R
Z
k

Lk;R;max�z kð Þdk � RZR;max;

ð2:96Þ

where the primary color luminances are Lk;R ¼ R � Lk;R;max; Lk;G ¼ G � Lk;G;max;
and Lk;R ¼ B � Lk;B;max. The linear superposition of red, green, and blue color
components is observed with the tristimulus values:
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X ¼ 683
Z830nm

360nm

Lk;R þ Lk;G þ Lk;B
� �

�xkdk ¼ RXR;max þGXG;max þBXB;max;

Y ¼ 683
Z830nm

360nm

Lk;R þ Lk;G þ Lk;B
� �

�ykdk ¼ RYR;max þGYG;max þBYB;max;

Z ¼ 683
Z830nm

360nm

Lk;R þ Lk;G þ Lk;B
� �

�zkdk ¼ RZR;max þGZG;max þBZB;max:

ð2:97Þ

The system of linear Eqs. (2.97) can be solved in matrix notations for the matrix
inverse as:

X
Y
Z

24 35 ¼
XR;max XG;max XB;max

YR;max YG;max YB;max

ZR;max ZG;max ZB;max

24 35 R
G
B

24 35;
R
G
B

24 35 ¼
XR;max XG;max XB;max

YR;max YG;max YB;max

ZR;max ZG;max ZB;max

24 35�1 X
Y
Z

24 35:
ð2:98Þ

The founding principle of tristimulus colorimetry is the assumption which states
that if for any pair of two light stimuli there is a precise match of each tristimulus
value, the CIE standard observer experiences a color match for the pair. That
assumption is based on two fundamentals: (1) cone photoreceptors of the CIE
standard reference observer generate an invariant response to the same stimuli and
(2) the photoreceptors of the standard reference observer individually carry no
information about any spectral distribution of light absorbed by them. Therefore,
only by comparing signals for the defined three classes of eye photoreceptors for the
standard reference observer can one extract the information needed for perception
of each individual color [2.29–2.31]. Another factor is that the CIE color matching
functions are based on relative spectral radiometric measurements but their con-
nections to the absolute luminance scale are provided by mathematical transfor-
mation of the measured data while normalizing one color matching function
�y kð Þ � V(k). Future photometric and color systems could be based on measuring
actual spectral sensitivities of three color classes of the eye cones, while not nec-
essarily relying on linear assumptions [2.29] and addressing likely UV corrections
for photopic luminous efficiency function V(k) [2.31–2.32].

A color stimulus associated with an object may be identified by measuring the
transmission, reflection, or scattering spectrum of that object in the visible domain.
The associated tristimulus coordinates for such an object can be determined by
converting the spectrum measured as the mathematical model for the product of the
spectrum of the object itself, the emission spectrum of a standardized source of
observation, illuminating the object, and the normalized tristimulus values

2.3 Measurements of Color Coordinates and Indices 85



�x kð Þ;�y kð Þ;�z kð Þ of the CIE reference observer. Measurements of the object’s
spectral transmission, reflection, or scattering must be provided by means of absolute
spectral measurements, such as made by an absolute spectrophotometer, matching
spectral and illumination characteristics of a specified standard source and spectral
and observation characteristics of the CIE standard reference observer. Any stan-
dardized color index of interest, such as the yellowness or the whiteness index, may
be acquired from the measured tristimulus spectral color coordinates of the object.

The perception of color in the CIE-standardized scale for an object being studied
can be obtained directly by illuminating that object by a source spectrally matching
the standard source and by observing the reaction of the object to that radiation
using a receiver matching the spectral sensitivity of one of the standardized
observers. That straightforward principle was the foundation for using spec-
trophotometers for detecting spectral functions of color objects [2.23].
Nevertheless, specific applications and developments of tristimulus colorimeters led
to measuring color coordinates by trying to physically emulate CIE-standardized
sources and reference observers, and building them into the spectrophotometer‘s
hardware. Such an approach made systems inflexible while imbedding emulation
errors into measured color coordinates, since the properties of standard CIE sources
and observers or specific geometries were not matched for one or another reason in
devices as intended [2.37–2.40]. Similar matching errors affect color measurements
modeled by color measurement and analysis software tools [2.41] when the stan-
dard emulation approach is applied for determining the test object’s color coordi-
nates and indices. Special calibration measures utilized to correct colorimeter
measurements could reduce but not eliminate errors [2.42–2.44].

To enable true and absolute color measurements, the measurements of spectral
distribution functions uk(k) for color stimuli must establish a direct correlation to
standardized CIE spectrums, for example, by deploying actual data for standard
sources and reference observers. A common approach for measurements of tris-
timulus values X, Y, Z consists in irradiating a color object by a quasi-standard
source S0ðkÞ with spectral mismatch error A(k) and obtaining a quasi geometry-
matching spectrum T0ðkÞ of the reflection, transmission, or scattering of the object
for mismatch error O(k) by a quasi-standard observer with color coordinates x0,y0,z0

at respective mismatch spectral errors R(k), G(k), and B(k), and finally determining
the tristimulus values ~X; ~Y ; ~Z by approximations:

~X ¼ k
Z
k

S0 kð Þ � T 0 kð Þ � x0 kð Þdk;

~Y ¼ k
Z
k

S0 kð Þ � T 0 kð Þ � y0 kð Þdk;

~Z ¼ k
Z
k

S0 kð Þ � T 0 kð Þ � z0 kð Þdk;

ð2:99Þ
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~X ¼ k
Z
k

A kð Þ S kð Þ½ � � T kð ÞO kð Þ½ � � R kð Þ x kð Þ½ �dk;

~Y ¼ k
Z
k

A kð Þ S kð Þ½ � � T kð ÞO kð Þ½ � � G kð Þ y kð Þ½ �dk;

~Z ¼ k
Z
k

A kð Þ S kð Þ½ � � T kð ÞO kð Þ½ � � B kð Þ z kð Þ½ �dk:

ð2:100Þ

Here T(k) is the true transmittance, reflectance, scattering or another color
transformation factor of the object being studied, S(k) is the relative spectral power
of a CIE standard illuminant applied for the object’s illumination, x(k), y(k), and
z(k) are the color matching functions of a standard reference observer, such as any
CIE-defined reference observer used, and k¼ 683 lm/W. Owing to absolute source–
observer mismatches, AðkÞ � RðkÞ; AðkÞ � GðkÞ; AðkÞ � BðkÞ, the ~X; ~Y ; ~Z values
measured by applying imperfect sources and observers deviate from tristimulus X,
Y, Z values by substantial margins. Various calibration methods may correct some
mismatches, but leave inevitable residual errors.

A true color stimulus function of any object can be determined by applying a
substitution method of absolute measurements in such a way that all color mea-
surements are to be made via utilizing exact CIE color functions [2.45]. First, the
color stimulus function ukðkÞ of a test object is identified by measuring its absolute
transmission, reflection, or scattering functionality within an applicable standard-
ized spectral region of visible radiation defined by the CIE. Second, absolute data of
the object’s measured color stimulus ukðkÞ are fitted into a mathematical model
combining the emission spectrum of a CIE standard source matching an illumi-
nation condition and tristimulus values: the color matching functions
�x kð Þ;�y kð Þ;�z kð Þ of the CIE reference observer for an observation condition. The
object’s actual transmission, reflection, or scattering spectrum must be provided by
means of the absolute spectral measurement, such as performed by any absolute
spectrophotometer, satisfying the conditions of illumination and observation
defined by the CIE and reproducing precise wavelengths, but not necessarily
intensities of illumination and observation spectrums for the CIE standard source
and the reference observer used. The limits for the sensitivity for such measure-
ments are only restricted by the principal discrimination confinements to measure
color differences, as determined by a vector difference of two color stimuli—true
and measured – which must be discriminable, as long as the discrimination defining
spectrum ukðkÞ is detectable.

The defined absolute color evaluation concept implies that each measurement
provides the object’s absolute transformation spectrum at the specified
optical-geometry condition of the illumination and observation. That absolute
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transformation spectrum in reflection, transmission, or scattering can be further
embedded into any CIE-standardized color-coordinate determination technique,
such as that defined by Eqs. (2.67)–(2.75), to determine the object’s tristimulus
values X, Y, Z. If absolute measurement processes for obtaining the object’s
characteristics are realized under specified irradiation and observation conditions,
the properties measured may be further used to identify the object’s color coordi-
nates for either CIE-standardized sources or reference observes, specifically under
the irradiation and observation condition of the measurement provided.

The absolute measurement method described can use actual standard CIE
functions for optical radiation sources and for CIE matching functions X, Y, Z. The
concept is illustrated in Figs. 2.24 and 2.25. The principal functional arrangement
for the absolute color measurement method is shown in Fig. 2.24. A CIE standard
source, a color test object, and a CIE reference observer are all deployed at
CIE-standardized geometry for the object’s illumination and observation. CIE
standard illuminant A, D65, or D (Figs. 2.22 and 2.23) can be deployed as a source
for that system.

The CIE standard illumination geometry for illumination by the normal and
normal observation at identical right-circular conic geometry for a light beam,
having up to 5° half-angle divergence in transmission, may be applied. The CIE
standard observer is provided by a daytime CIE X, Y, Z reference observer with
CIE 2° color matching functions �x;�y;�z [2.45] (see Sects. 4.1, 4.2) that defines �x;�y;�z
values for every 1 nm from 360 to 830 nm (Fig. 2.19). Figure 2.25a shows a
physically separable measurement insert, which contains three of the five elements
in Fig. 2.24: the illumination geometry, the color object, and the observation
geometry, leaving out the source and the observer. The remaining two system

CIE Standard Source Illumination 
Geometry Color Object Observation 

Geometry
CIE Standard Observer

Fig. 2.24 Absolute color measurement methodology

Spectral
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Observation 
Geometry
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Geometry Color Object

Observation 
Geometry

Actual Spectral Source Illumination 
Geometry Color Object Observation 

Geometry
Actual Spectral Observer

(a)

(c)

(b)

Fig. 2.25 a Concept of absolute color measurement insert. b Absolute spectral color measurement
calibration. c Absolute spectral measurement for a color object
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elements – the CIE standard source and the CIE standard reference observer are to
be recombined with the first three elements of the measurement insert depicted
when the results of the absolute color measurements are obtained, as shown below.

Figure 2.25b depicts the calibration step for the absolute color spectropho-
tometer enclosure per CIE-defined spectral and spatial conditions. Figure 2.25c
depicts the color measurement step. When the spectrophotometer completes any
absolute spectral measurement for the color object, and while the absolute spectrum
measured only contains information about the object itself, the actual functions of
the spectral source and of the spectral observer of that spectrophotometer for a
specific spectral region measured are replaced by the model mathematical functions
of the CIE standard source and the CIE reference observer matching the spectral
region of the source and the observer of the spectrophotometer (see Fig. 2.26). The
color characteristics of the color object, as its color coordinates and tristimulus
values, are determined via its absolute spectrum T(k):

eX ¼ k
Z
k

S kð Þ � T kð Þ � �x kð Þdk;

eY ¼ k
Z
k

S kð Þ � T kð Þ � �y kð Þdk;

eZ ¼ k
Z
k

S kð Þ � T kð Þ � �z kð Þdk:

ð2:101Þ

Since the absolute measured spectrum T(k) of the object and the spectrums of
the standardized source S(k) and the reference observer x (k), y (k), z (k) are all
used for such absolute determination of the object’s tristimulus values ~X; ~Y ; ~Z,
mismatch errors DTk of measurements can only be caused by measurement errors
of the object’s absolute spectrum T(k) versus the true one Tk: DT(k) ¼ |Tk − T(k)|/
Tk. Spectral values of the error function DT(k) will be much smaller than those for
common color measurements, since typical absolute spectrophotometric measure-
ment errors amount to tens or even hundreds of parts of 1% (0.01−0.1%), while
errors of color measurements are orders of magnitudes higher and even in stan-
dardizing institutions can be several percentage points. Another advantage of that
absolute method is for any future corrections in standard source or reference
observer data to be directly included in the color coordinate measurement results, if

Mathematical model of 
CIE Standard Source

Illumination 
Geometry Color Object Observation 

Geometry
Mathematical model of 
CIE Standard Observer

Fig. 2.26 Absolute spectral color measurement model
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(a)

(b)

(c)

(d)

Fig. 2.27 a Absolute spectral measurement in transmission for normal illumination/observation
geometry. b Absolute color measurement in transmission or reflection for diffuse illumination/
observation geometry. c Absolute color measurement in transmission or reflection for diffuse
illumination/observation geometry: the direct component of the object’s transmission is included.
d Absolute color measurement in transmission or reflection for diffuse illumination/observation
geometry: the direct component of the object’s transmission within 1° angle of incidence is
excluded
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the CIE, for example, would adopt the short-wavelength correction for the luminous
efficiency function �yk kð Þ relying on flicker photometry of matching radiances for
alternating colors [2.31].

Several specific examples of illumination and observation geometries for the
absolute color measurements are illustrated in Fig. 2.27: normal illumination and
observation in transmission (Fig. 2.27a); diffuse-diffuse illumination–observation in
either transmission or reflection (Fig. 2.27b); and diffuse illumination and normal
observation with (Fig. 2.27c) and without (Fig. 2.27d) a direct component in
transmission.

The example in Fig. 2.27b involves application of a translucent sphere (see
Sects. 2.2 and 2.4) for uniform diffuse illumination of the object in transmitted and
in reflected radiation incident on an object from a source. Other illumination-
observation geometries specified by the CIE can be used [2.45].

2.4 Photometry of Integrating Spheres

2.4.1 Uniformly Scattering Spheres

It may not be obvious for the integrating sphere with a highly diffuse-reflecting
isotropic coating on its internal surface to be the device to collect light scattered by
a test object into a 2p hemisphere or a 4p sphere if the object’s hemispherical or
spherical scattering factor is measured. One could instead suggest utilizing a
specularly reflecting wall for a mirror-bound integrating sphere. Let us consider
irradiation of the internal surface of a partially reflective and transmissive inte-
grating sphere of radius R via a small opening by a direct light beam with radiant
flux U0 and having cross section A0. If the entire internal sphere wall reflects light
as a solitary mirror having specular reflectance qr, then the sequence of multiple
reflections inside the sphere should create either uniform or close-to-uniform irra-
diance E only when an infinitely high number of reflections inside is approached.
That condition is satisfied if the wall’s reflectance qr tends to unity: qr ! 1:0.
Presuming that qr weakly depends on the angle of incidence, the total irradiance
Er,R of a specular sphere wall dispersed over the sphere surface Asph, is:

Er;R ¼ 1
4pR2 ðU0 þU0qr þ � � � þU0q

n
r Þ ¼

U0

4pR2

1� qnr
1� qr

¼
qr ! 1
n ! 1

U0

Asph

1
1� qr

:

ð2:102Þ

The distinction of wall specular reflectance from 1.0 defines the closeness of
consecutive irradiances Ei and Ej and distinction of the total irradiance ER from the
irradiance created by the directly irradiating beam: E0 ¼ U0/A0. Therefore, irradi-
ance inside a mirror sphere is affected by unequal irradiance terms of multiple
reflections arbitrary distributed over the sphere surface. Consequently, only if qr !
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1.0 can a specularly reflecting sphere become uniformly irradiated by its own
internal reflections.

In contrast, any isotropic diffuser converting light with uniform radiance or
luminance creates perfectly uniform irradiation of an ideally spherical surface even
for diffuse reflectance not equal to 1.0 [2.3, 1.4, 0.4]. Arbitrary point O of the sphere
(Fig. 2.28) under the condition of uniform diffuse reflectance qd is the isotropic
second source of radiant intensity: I ¼ Ið0Þ cosu. Light reflected in direction u to
point M creates irradiance EM for the surface tilted to an inner normal by a given
angle u such that:

EM ¼ I cosu

‘2
¼ Ið0Þ cos2u

ð2R cosuÞ2 ¼
Ið0Þ
4R2 : ð2:103Þ

Here I(0) is the intensity of radiation reflected by the normal to irradiated point
O. Thus, irradiance inside the diffusely reflecting sphere does not depend on the
coordinates of observation point M.

Each subsequent sphere reflection contributes to supplemental but constant ir-
radiance or illuminance. The only difference between the first reflection and further
reflections from a sphere wall made of an isotropic diffuser consists in receding
magnitudes of the reflection terms. The first beam irradiating the wall is reflected at
the direct-diffuse factor of the irradiation–observation geometry. Table 1.1 defines
this is as (0/d) geometry. Further reflections from the wall have diffuse-diffuse or
other (d/d) geometry. The effective sphere reflectance changes from the first to the
second reflection and then to other reflections since it is impossible to launch a
material beam of light into a sphere and lead it out if the sphere’s inner surface is
covered by any opaque reflecting material with no apertures. Depending on the
number of apertures, their entire area, and their ability to reflect light back to the
sphere, the effective hemispherical reflectance q0

0 of the total surface of the sphere
for uniform diffused irradiation is:

Fig. 2.28 Irradiation of
sphere wall
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q0
0ðd=dÞ ¼ q0ðd=dÞ 1�

P
i¼1

1� qiðd=dÞ=q0ðd=dÞ½ �Ai

Asph

8<:
9=;: ð2:104Þ

Here q0(d/d) is the reflectance of the sphere’s aperture-free zone for uniform
diffuse irradiation, Ai and qi(d/d) are the area and reflectance of the ith aperture, and
Asph ¼ 4pR2 is the sphere’s area for no apertures. If distinctions of sphere-diffuser
properties for direct and diffused irradiation may be disregarded, the sphere’s
reflectance is q0ð0=dÞ ¼ q0ðd=dÞ � q0. If qR,i ¼ 0, the effective reflectance
becomes:

q0
0 ¼ q0ð1� AR;i=AsphÞ: ð2:105Þ

When summing the actions of all multiple reflections inside the diffusely
reflecting sphere, the equation for internal irradiance E of an integrating sphere
beyond any zone of its first irradiation is:

Esph ¼ U0

4pR2 q0ð0=dÞþ q0ð0=dÞq00ðd=dÞþ � � �½ � ¼ U0

4pR2

q0ð0=dÞ
1� q00ðd=dÞ

; ð2:106Þ

where q0
0 designates the effective reflectance. In the simplified form expression

Eq. (2.106) becomes:

Es ¼ U0

4pR2

q0
1� q00

: ð2:107Þ

One may conclude that irradiance or illuminance of an integrating sphere is
inversely proportional to the square of the sphere’s radius and is directly propor-
tional to the diffuse reflectance of the directly irradiated wall, and to the effective
reflectance of its entire internal surface for diffuse irradiation. The internal sphere
irradiance differs in the area A0 directly irradiated by the incident beam. Within that
area, the sphere irradiance increases by the term U0/A0. If instead of a direct first
irradiation the entire sphere is irradiated diffusely by flux U0(d), Eq. (2.106)
becomes:

EsphðdÞ ¼
A0¼Asph

U0ðdÞ
4pR2 1þ q00ðd=dÞþ � � �
 � ¼ U0ðdÞ

4pR2

1
1� q00ðd=dÞ

: ð2:108Þ

If the first irradiation is uniformly diffused over a 4p angle, Eq. (2.108) is even
correct for the mirror sphere, inverting the distribution according to Snell’s law after
each reflection (Table 1.1).

Inclusion of entrance or exit ports, baffles, detectors, and samples into an inte-
grating sphere will change the sphere irradiance created by the beam reflected from
or transmitted by a sample. Owing to these necessary inclusions, the sphere’s
effective reflectance q0

0 changes via any irradiated area of each successive
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reflection, but the internal sphere irradiance Ed created by a beam reflected from the
uniform diffuser of diffuse reflectance qd follows from Eq. (2.106).

Ed ¼ U0qd
4pR2

1
1� q00ðd=dÞ

: ð2:109Þ

For a specularly reflecting sample having specular reflectance qr, when the
directly reflected sample beam irradiates an unbound spot of the sphere wall but not
the detector, the equation for the irradiance becomes:

Er ¼ U0qr
4pR2

q0ð0=dÞ
1� q00ðd=dÞ

: ð2:110Þ

If the sample is a nonuniform diffuser of any arbitrary scattering indicatrix f(H)
characterized by equivalent solid angle Xe (Eq. 1.55) and if the detector is baffled
against direct irradiation by light reflected or transmitted by that sample, the
resulting irradiance Ex for the baffled detector is:

Ex ¼ U0qx
4pR2

q0
0ðXe=dÞ

1� q00ðd=dÞ
: ð2:111Þ

2.4.2 Relative Measurements

Relative, i.e., in reference to any standard, measurements of diffuse reflectance or
transmittance of an object may be obtained by having the integrating sphere as an
integrator of radiation diffused by that object into a 2p or 4p solid angle. An object
and a standard may substitute one another at a sphere spot for comparison. The
effective sphere reflectance q0

0 may be unknown if that reflectance remains
unchanged during one measurement cycle of irradiating the object and the standard.
If the sphere reflectance q0

0 changes, the measurement equation becomes:

qob ¼ qst
Nst

Nob
D; ð2:112Þ

where D is the correction factor accommodating the effective sphere reflectance
variation q0;ob

0 6¼ q0;st
0 from the object to the standard of equivalent solid angle Xob

or Xst, respectively (Eq. 1.56).
There are two general methods for making relative measurements. The first

method involves direct irradiation by incident flux U0 of the standard and object
installed consecutively behind one sample port of an integrating sphere. Another
method consists in irradiation in turn of the standard and of the test object (samples)
while both are placed simultaneously into one sphere behind equivalent ports. The
first measurement procedure, the substitution method, uses a pair of small ports –
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one, for the entrance of light into the sphere and another, for the installation of each
sample. The second technique, the comparison method, requires either an extra pair
of ports or one larger entrance opening and two sample ports to concurrently set the
sample and the standard in the sphere, having the advantage of the effectiveness of
multiple reflections in the comparison integrating sphere, identified by Eq. (2.103),
remaining unchanged. To identify the effectiveness of the two methods, under the
assumption of perfect diffuse reflectance of the sphere’s surface, several intuitive
[2.3–2.5] and exact [2.46–2.59] approaches were used, and obtaining the exact
solution requires solving the integral or matrix equations for the irradiated internal
surface of a sphere with actual samples, sample ports and entrance openings, and
other inclusions with finite-difference equation [2.50] or matrix [2.54] methods to
simplify the calculations. Let us further apply the irradiance equations derived in
[2.49] and slightly corrected in [2.53] for large inclusions.

Consider a small region dA0 at spherical coordinates H0;w0 of the internal sur-
face of an integrating sphere to be directly irradiated by a source beam (Fig. 2.29).
Light diffusely reflected from that region creates irradiance EðH;wÞ on the entire
sphere’s surface. Initial irradiance E0ðH;wÞ for region dA0 is made by direct irra-
diation by the input beam. The irradiance E0ðH;wÞ is zero everywhere in the
sphere, except in irradiated region dA0, situated on the sample surface or on the
standard with which the sample is to be compared, both with coordinates H0;w0. By
that designation, the complete irradiance for region dA0 is E0ðH0;w0Þ þEðH0;w0Þ,
where the first term defines the initial irradiation condition for the sphere and the
second term is not known but needs to be determined. For those cases when the
sample studied reflects all radiation incident on it as an isotropic diffuser with
reflectance qðH0;w0Þ and constant radiance L0, the radiant emittance M of the region
dA0 can be formulated as:

M ¼ pL0 ¼ qðH0;W0Þ½E0ðH0;W0Þ þEðH0;W0Þ�: ð2:113Þ

Considering the relationship between the flux and the radiance in any light beam
(see Eqs. (1.31, 1.47)), the flux U emitted by arbitrarily located platform dA0 into

Fig. 2.29 Flat inclusions in
an integrating sphere
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another zone dA of the sphere with coordinates ðH;wÞ can be identified by the
following equation (see [2.49] for more details):

U ¼ qðH0;w0Þ
p

E0ðH0;w0Þ þEðH0;w0Þ½ �dA0 �p � n0
pj j

� 
dA

p � n
pj jp2

� 
; ð2:114Þ

where n0 and n are the unit vectors of outer normal at denoted points with coor-
dinates H0;w0and H;w and p is the vector joining small platforms dA and dA0 and
having a direction from dA0 to dA. Finally, the irradiance of the internal sphere
surface not irradiated by the direct beam is given by [2.49]:

EðH;wÞ ¼ 1
p

Z
A

E0ðH0;w0ÞqðH0;w0Þ ð�p � n0Þðp � nÞ
p4

dA0

þ 1
p

Z
A

EðH0;w0ÞqðH0;w0Þ ð�p � n0Þðp � nÞ
p4

dA0: ð2:115Þ

Because irradiance E0ðH0;w0Þ is known, Eq. (2.115) is a Fredholm-type integral
equation for the symmetrical spherical space with only one variable of integration.
Such a variable is area dA0 of the elemental spherical segment irradiated by light
reflected from the entire sphere’s surface:

EðH;wÞ ¼ f ðH;wÞþ k
Z
A

KðH;w;H0;w0ÞEðH0;w0ÞdA0: ð2:116Þ

Here k is a parameter and KðH;w;H0;w0Þ is the nucleus of that equation. The new
function fðH;wÞ represents the irradiance at a point of coordinates H;w formed by
the first reflection of the direct beam carrying flux U from the sample occupying a
particular region with spherical coordinates H0;w0. Radiation reflected once again
from all the internal sphere surface including the irradiated sample creates an addi-
tional irradiance fðH0;w0ÞKðH;w;H0;w0ÞdA0 in the sphere’s H;w region, etc.

Approaching a relatively small opening port of an area Aq\\Asph in a perfect
sphere with no deviation from its geometry, Eq. (2.115), with its geometrical factor:
�p � n0ð Þ p � nð Þ=p4 ¼ 1= 4R2

� �
, becomes:

Eperf ðH;wÞ ¼ 1
4pR2

Z
A

E0ðH0;w0ÞqðH0;w0ÞdA0

þ 1
4pR2

Z
A

EðH0;w0ÞqðH0;w0ÞdA0:
ð2:117Þ
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For the substitution method, the irradiance ratio Es/Ec for the spherical sample of
reflectance q and the spherical comparison sample of reflectance qc, matching the
sphere curvature, is [2.49]:

Es

Ec

� sph

sub
¼ q

qc
1� ðqc � qÞAq=Asph

1� q0Aq0=Asph � qAq=Asph

� �
: ð2:118Þ

Here Aq0 and Aq are the areas of the sphere’s surface with reflectance q0 and of
the sample studied with reflectance q. Equation (2.118) is obtained for an identical
area Aq of the comparison sample having reflectance qc, assuming geometrical
perfection of the sphere for any one of the samples installed.

In the absence of flat inclusions, the comparison method is realized without
systematic errors:

Es=Ecð Þsphcom ¼ q=qc: ð2:119Þ

If both the test sample and either the comparison or the substitution sample are
flat at plane areas Aq ¼ pðR2 � ‘2Þ, either one or two sections of area A0

q ¼
2pR2ð1� ‘=RÞ of the active sphere surface are substituted by flat sample inclusions
at distance ‘ from the center of the sphere (see Fig. 2.29). For small samples, the
geometry may be approximated as:

ð � p � n0Þðp � nÞ
p4

ffi ðR� ‘ cosHÞð‘� R cosHÞ
ðR2 þ ‘2 � 2R‘ cosHÞ2 : ð2:120Þ

For the assumption of small diffuse-reflecting samples inside a relatively large –
in comparison with the dimensions of the samples – integrating sphere, the sub-
stitution method with two flat samples gives [2.49]:

Es

Ec

� flt

sub
¼ q

qc
1� ðqc � qÞðA0

q=AsphÞðq0Aq0=AsphÞ
1� ðq0Aq0=AsphÞð1þ qA0

q=AsphÞ

" #
: ð2:121Þ

For the comparison method, flat samples also bring imperfections to the sphere.
By contrast to the substitution method, in the latter case the diffuse reflectance q
being measured is diminished when it is smaller than the reflectance qc of the
comparison sample. The correction factor for the flat samples, using the comparison
method, is still considerably lower than that for the substitution method:

Es

Ec

� flt

com
¼ q

qc
1þ ðqc � qÞA0

q=Asph

1þ qA0
q=Asph

" #
: ð2:122Þ
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Sufficient experimental studies [2.51, 2.60–2.62, 4.49] verified that Eqs. (2.118)–
(2.122), derived in [2.49] for relatively small samples are true for most practical
applications. Studies also confirmed the absolute accuracy of 0.1% or less reached at
high and low levels of reflectance measured [2.55]. For relatively large dimensions
of sphere inclusions, a second-order correction for the equations can be used [2.53].
Since the only approximation made was for integration of area As over a presumed
negligibly small sample, and thus not resolved coordinates H0;w0 (see Fig. 2.29),

at the polar angle Hs ¼ arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � ‘2

p
=R

� �
of the sample, Eq. (2.120)

transforms to:

ð�p � n0Þðp � nÞ
p4

¼ ðcosHs � cosHÞ 1� cosHs cosHþ sinH tanH0 cos w0 � wð Þ½ �f g
1� 2 cosHs cosH þ sinH tanH0 cos w0 � wð Þ½ � þ cos2Hs sec2H

0f g2
;

ð2:123Þ

where cosHs ¼ ‘=R. Owing to such a detailed integration factor for the geometry of
the sphere, Eq. (2.121) for two flat samples is converted to [2.53]:

Es

Ec

� Flt:Lrg

sub
¼ qs

qc
1�

qc � qð Þðq0Aq0=AsphÞ A0
q=Aq

� �
A0

q=Asph

� �
1� ðq0Aq0=AsphÞ 1þ q A0

q=Aq
� �

A0
q=Asph

� �h i
8<:

9=;:

ð2:124Þ

For the comparison method with a flat sample versus a spherical standard of
area A0

p:

Es

Ec

� Flt:Lrg

com
¼ q

qc

A0
q=Aq

1þ q A0
q=Aq

� �
A0

q=Asph
� � : ð2:125Þ

2.4.3 Samples Performing as Nonuniform Diffusers

Equations (2.118)–(2.125) were derived for the integrating sphere of an isotropic
diffuser, where every component of the internal sphere irradiance except the
component of irradiance created by an entrance beam does not depend on its
coordinate. In that case, there is no certainty only about the irradiance distribution
due to light reflected or transmitted by a sample, since that distribution may not
remain constant over all points and directions, while each reflectance from the
sphere wall itself creates the uniformly distributed irradiance. Thus, it is sufficient to
install an isotropically reflecting baffle protecting a sphere detector from directly
viewing the sample and from being affected by nonuniformly diffused light. When
the protective baffle has same properties as the sphere wall, the irradiance or illu-
minance starting from the second reflection from the sphere wall also does not
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depend on the coordinate. As a result, all derived equations for the determination of
diffuse reflectance remain unchanged. Irradiation of the specularly reflecting sample
in any integrating sphere is accompanied by a similar effect as having the baffle for
the nonuniformly reflecting diffuser. The beam specularly reflected from the sample
can be directed to the sphere wall, making the following reflection from the sphere
uniformly diffused when viewed by a detector. The substitution or comparison
measurement for objects of mixed, i.e., specular or direct plus diffuse, reflectance
and transmittance in the integrating sphere at the isotropically reflecting baffle
between the object and sphere detector is not linked to additional systematic errors,
except the ones accounted for in Eqs. (2.118)–(2.125).

2.4.4 Absolute Measurements in an Integrating Sphere

The prospects of obtaining absolute reflectance measurements in the integrating
sphere of either the comparison or the substitution method follow from Eqs.
(2.106)–(2.111). Here the term absolute measurement implies that a given method
does not require any extra calibration of the absolute magnitude of either reflectance
or transmittance, measured by inherently relating to an internal comparison object,
such as the integrating sphere wall itself. The irradiance or illuminance for a
geometrically symmetrical integrating sphere at its section protected against direct
irradiation from the sample by an isotropically reflecting baffle is:

Esph
smpð0=dÞ ¼

U0qdð0=dÞ
4pR2

q0
0ðd=dÞ

1� q00ðd=dÞ
; ð2:126Þ

where qd 0=dð Þ is the diffuse sample reflectance for direct irradiation. Comparing
irradiance Esph

smpð0=dÞ with irradiance Esph
0 (Eq. 2.106) for direct irradiation of the

wall with reflectance q0(0/d) without inclusions, any internal sphere detector
exposed to wall reflectance directly has:

Esph
smp

Esph
0

¼ qdð0=dÞ
q00ðd=dÞ
q0ð0=dÞ

: ð2:127Þ

Only under uniform diffuse irradiation of the internal sphere surface, creating
constant radiance L0 irradiating directly the detector and the sphere’s surface, do
any measurements of diffuse reflectance and transmittance have no systematic error,
since in Eq. (2.127): q0ð0=dÞ ! q00ðd=dÞ, and:

Esph
smp=E

sph
L¼const ¼ qdð0=dÞ q00ðd=dÞ=q00ðd=dÞ


 � � qdð0=dÞ: ð2:128Þ

Accordingly, for the absolute measurement in the integrating sphere to be
realized without systematic error, the internal sphere detector must be irradiated by
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the radiation either reflected from or transmitted through the sample studied not
directly, but via the sphere wall, causing the isotropic diffuse reflection to be
sustained further. An ideal comparison measurement would be obtained by com-
paring detector readings for the direct irradiation of the baffled sample and the
unbaffled internal sphere surface, while maintaining its irradiation geometry as of
light diffused by the sample. Studies of specularly reflecting and directly trans-
mitting samples do not require diffuse irradiation of the sphere since from Eqs.
(2.106) and (2.110) the specular reflectance is:

qr ¼ Esph
smpðr=dÞ=Esph

0 ð0=dÞ: ð2:129Þ

For specularly reflecting and directly transmitting samples, it is only necessary to
preserve the equivalence of optical properties for sections of the sphere wall irra-
diated directly by an incident beam and specularly reflected/directly transmitted by
the sample. Equations (2.127)–(2.129) are true while multiple reflection factor
1= 1� q0

0ðd=dÞ½ � remains constant, i.e., a spherical sample having the same radius
of curvature as the integrating sphere is measured by the comparison method.

2.4.5 Baffling Method

Let us note certain impediments to performing sequential irradiation of a test
sample by a parallel beam of light having constant irradiance and of the internal
sphere surface by a power- or energy-equivalent beam with a spherical wavefront
normally and uniformly irradiating the entire sphere, conditionally converting
Eq. (2.127)–(2.128) in a straightforward manner. The major reason for such a
conversion is that the actual properties of many white diffusers can be approximated
as those of near-perfect isotropic diffusers, deviating at angles of observation only
near 90°. Presuming equalities q0ð0=dÞ ffi q0ðd=dÞ and q0ðd=dÞ ffi q00ðd=dÞ by
supposing that the area of all apertures and material inclusions inside the absolute
sphere is much smaller than the area of the entire internal surface,

P
Ai 
 4pR2,

we can convert measurement Eq. (2.127) for either a diffusely reflecting or a
diffusely transmitting sample into the form:

qdð0=dÞ ffi Esph
smpð0=dÞ=Esph

0 ð0=dÞ: ð2:130Þ

The concept of simplified absolute measurement of diffuse reflectance and
transmittance by Eq. (2.130) defines the generalized Taylor method [2.46]
(Fig. 2.30). Figure 2.30 illustrates one realization of the method and can be mod-
ified depending on applications. To obtain the irradiance Esph

smpð0=dÞ created by a test
sample, a beam of incident light from source 1 is directed by mirror 2 at near
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normal incidence though aperture 3 onto the sample under test 5, placed behind a
poling aperture of the integrating sphere 4. The specular component of light
reflected by the sample is directed onto the sphere’s wall (dotted line). An opaque
baffle 6 fabricated from the sphere material protects internal sphere detector 7 from
being directly irradiated by the diffused component of light reflected by the sample.
To obtain the second irradiance Esph

0 ð0=dÞ, mirror modulator 8 is placed into the
beam and mirror 2 is rotated into position 20 (dashed lines); thus, the redirected
beam irradiates wall spot 9. Possible specular reflection from spot 9 is directed to
the wall, but its diffuse component irradiates detector 7. The method may also be
realized in the unchanged direction of propagation by alternating the positions of
sample 5 and of removable sphere cap 9 as the absolute comparison sample. The
entire sphere may be rotated around its center, shifting the positions of the entrance
openings (dual arrow in Fig. 2.30).

2.4.6 Efficiency Approach

Another option for absolute measurements in an integrating sphere can be
accommodated by consecutive alterations of the effective sphere reflectance (Eqs.
(2.104) and (2.105)). The measurement process is multistaged [2.47]. First, with no
test sample, two sphere-wall caps are located at positions 5 and 9, with
second-beam port 30 closed (Fig. 2.30). The cap replacing a sample is irradiated,
and the first sphere irradiance is measured. For the second measurement, the second
cap is removed, decreasing the sphere’s effective reflectance. For equal areas Asph

of sphere caps and of the input port at a small area of the sphere detector the
measurement ratio is:

N1

N2
¼ 1� q0ðd=dÞð1� 2A=AsphÞ

1� q0ðd=dÞð1� A=AsphÞ : ð2:131Þ

Relation (2.131) defines the sphere cap’s reflectance q0(d/d). For unknown
reflectance qx(d/d), a third identical measurement is needed with the sample
installed, but not in the incident beam:

Fig. 2.30 Absolute
reflectance measurements in
the integrating sphere
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N1

N3
¼ 1� q0f1� A=Asph � ½1� qxðd=dÞ=q0ðd=dÞ�A=Asphg

1� q0ðd=dÞð1� A=AsphÞ : ð2:132Þ

By contrast to the method using Eq. (2.130), efficiency measurements are made
with uniform diffuse irradiation, altering the reflectance of the integrating sphere, but
at least three measurements are necessary. At the same time, the latter measurements
are practically free of systematic errors and require only maintaining a relatively
small area of the sphere detector, considered to be negligibly small by expressions
(2.131) and (2.132). However, a more substantial requirement of the efficiency
method is that, besides somewhat higher total measurement error due to one extra
measurement being required, it is necessary to distinguish a difference in the effective
reflectance q0

0ðd=dÞ by means of the sample under study in the presence and the
absence of the sphere cap inside the integrating sphere. To provide for such a dif-
ference significant enough to be registered by the sphere’s detector, the most efficient
way consists in making the magnitude of ½1� q0

0ðd=dÞ��1 as high as possible.
Another but not so effective way consists in increasing the relative area of the samples
and caps compared with that of the sphere itself. Such an approach decreases the
effectiveness of the sphere’s surface and, therefore, increases systematic errors due to
the imperfect sphere’s surface during any study of flat samples.

2.4.7 Viewing Method

Internal sphere measurements of reflectance under diffused irradiation can be
realized via the reciprocity concept (see Chap. 1) for the irradiation and the ob-
servation directions (Fig. 2.31). If the internal sphere wall emittance due to multiple
reflections is observed via various openings in the inner sphere surface and also via
direct irradiation of the sphere wall by the source beam, the ratio of irradiance
magnitudes depends not only on the reflectance values of specific wall sections
being irradiated, but on the effective number of internal sphere reflections as well
[2.15, 2.48, 2.56]. Consider Sections 1 and 2 being irradiated as simply distinct
zones of the integrating sphere wall having unaltered wall reflectance q0, but let the
first zone be directly irradiated by light reflected from the sphere wall and the

Fig. 2.31 Viewing-method
technique

102 2 Methods of Photometric and Radiometric Measurements



second zone be protected from the direct irradiation via an opaque baffle. If the
detector is consequently placed into these zones, it readings become:

M1 ¼ U0

4pR2 q0 þ q0q
0
0 þ � � �
 � ¼ U0

4pR2

q0
1� q00

; ð2:133Þ

M2 ¼ U0

4pR2 q0q
0
0 þ q0q

0
0q

0
0 þ � � �
 � ¼ U0

4pR2

q0q
0
0

1� q00
: ð2:134Þ

M2=M1 ¼ q00ðd=dÞ: ð2:135Þ

For equally irradiated zones 3 and 4 having sphere effective reflectance q00x and
q00 as with a sample and sphere cap installed in position 5 in sequence, the ratio of
detector irradiances 3 and 4 by analogy is:

M3=M4 ¼ q00x=q
0
0

� � ð1� q00Þ=ð1� q00xÞ
� �

: ð2:136Þ

Under the assumption of relatively small ports of known area Ap compared with
the sphere of internal spherical surface A0 ¼ Asph ¼ 4pR2;Ap\\A0:

M3 �M2

M4 �M1
¼ q00xðd=dÞ

ð1� q00ðd=dÞÞ
ð1� q00xðd=dÞÞ

¼
Ap
A0

q00xðd=dÞ: ð2:137Þ

Measurements of diffuse wall plus sample reflectance q00xðd=dÞ by the Sharp–
Little method just described are like the Taylor method under a similar approxi-
mation of effective sphere reflectance q00  q00x, giving:

q0xðd=dÞ ffi ðM2 �M3Þ=ðM1 �M4Þ: ð2:138Þ

The anomaly of viewing versus efficiency study is the necessity to measure q00
before determining qx.

2.4.8 Reduction of Systematic Errors of Absolute
Measurements

Let us rewrite Eq. (2.106) for irradiance of the internal sphere surface when the
sphere cap is directly irradiated by light entering the sphere with flux U0.
Since the sphere irradiance created by reflection from the isotropic diffuser
covering the sphere’s surface does not depend on the directions of irradiation or
observation, the sphere irradiance can always be considered as the sum of the first
reflection and all other reflections:
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E0ð0=dÞ ¼ U0q0ð0=dÞ
4pR2 1þ q00ðd=dÞ

1� q00ðd=dÞ
� �

: ð2:139Þ

The consequent irradiation by input flux U0 of a sample having an arbitrary
scattering indicatrix f(H), equivalent solid angle of scattering Xe � p, and reflec-
tance q(0/d) leads to the next sphere irradiance, which can also be represented in the
form of only two additive components [2.58]:

Esphð0=dÞ ¼ U0q0ð0=dÞ
4pR2

pf ðHÞ
Xe cosH

þ 1�
Pm
i¼1

f ðHÞð1� qi=q0ÞAi

4R2Xe cosH

2664
3775 q0ðXe=dÞ
1� q00ðd=dÞ

8>><>>:
9>>=>>;:

ð2:140Þ

Here ratios f(H)/cosH and Xe/p characterize the alterations from the cosine law
and inequalities of scattering characteristics of the sample and of the sphere cap
from the ones of the isotropic diffuser.

Baffling radiation due to the first reflection from the sample and the sphere wall,
and assuming fðHÞ ¼ cosH, which is true for the majority of known samples at
small angles of observation, Eqs. (2.139) and (2.140) lead to Eqs. (2.118) and
(2.119) or (2.121) and (2.122) for absolute measurements of diffuse reflectance. The
supposition of flat-to-spherical irradiation equivalence for the sphere’s wall
reflectance, which closely resembles a perfect diffuser: q0 0=dð Þ ffi q0 d=dð Þ; con-
firms the validity of Taylor’s ratio:

Esph

Eo
¼ q

q 0
0

q0
ffi q 1�

P
i¼1

ð1� qi=q0ÞAi

Asph

24 35 � q0: ð2:141Þ

As a result, the absolute Taylor method measures not the actual but the effective
sample reflectance.

The inherent systematic error due to preset parity: q0ð0=dÞ ffi q0ðd=dÞ, by
Eq. (2.130) may be avoided if direct irradiation of the sample under study leads to
internal sphere irradiance:

Esph ¼ U0q
4pR2

q0ð0=dÞ
1� q00ðd=dÞ

: ð2:142Þ

To comply with Eq. (2.142), the sphere baffle could be made having radiation
reflected from the sample to irradiate an internal sphere detector via baffle trans-
mittance s satisfying the anticipation [2.60]:
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E ¼ U0q
4pR2 sþ 1�

P
i¼1

ð1� qi=q0ÞAi

Asph

24 35 q0
1� q00

8<:
9=; � U0q

4pR2

q0
1� q00

: ð2:143Þ

To convert equation (2.143) to (2.142), the baffle diffuse transmittance s should
satisfy the following equation:

s ¼ q0 � q0
0ð Þ= 1� q0

0ð Þ: ð2:144Þ

According to equations (2.127)–(2.129), the presence of the specular component
in the sample reflection irradiating the inner sphere wall but not passing out via sphere
openings does not change relation (2.144). A certain paradox of using a partially
transparent baffle is defined only by the loss of diffused radiation reflected from the
sample into sphere openings proportionally compensating for the loss of light
effectively reflected by the integrating sphere itself. Any material may be used for
such a baffle: from a transparent material, when the sample‘s reflectance is practically
isotropic, to a translucent material, when discrepancies from quasi-isotropic reflec-
tion can occur.

For a centered layout (Fig. 2.32) of an integrating sphere [2.57], a similar error-
correction method can be applied [2.60]. Illustrated by Fig. 2.32, design allows a
measurement when no protecting baffle is required at all, since the sample under
study is situated near the center of the sphere, and the bottom hemisphere is totally
in shade. When detector 2 is placed in the shade of the sample‘s irradiation, the top
hemisphere serves as a retroreflecting section for the first reflection from sample 1.
When sample 1 is turned out of the entrance beam into new position 10, detector 2 is
irradiated as in all previous absolute methods by the direct reflection from the
sphere wall. In this case, the relative loss of the first component of light reflected by
sample 1 into the entrance aperture is 4 times higher, owing to the 2 times smaller
distance to the entrance aperture and the reduced area of the effective retroreflecting
surface of the sphere, compared with when the same sample is placed onto the
sphere wall. For compensation of that error, the detector can be moved into new
position 20 in the top hemisphere. The location of the detector is identified by angle
Hi versus the direction of the incident beam. In that case, the irradiance Ei of the
detector’s sensitive surface is:

Fig. 2.32 Absolute sphere
for the internal placement of a
test sample
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Ei ¼ U0q
4pR2 4 cosHi þ 1�

4
P
i¼1

ð1� qi=q0ÞAi

Asph

24 35 q0
1� q00

8<:
9=;: ð2:145Þ

If angle H is selected to convert the right side of Eq. (2.145) to that in (2.144),
this leads to:

cosH ¼ q0 � q0
0ð Þ= 1� q0

0ð Þ: ð2:146Þ

Accordingly, the sphere surface irradiance directed by angle H corresponds to
that predicted by relation (2.142). To irradiate the detector by diffuse reflectance of
wall cap 3, the sample is moved out of the beam into position 10 to make its
irradiance determined by Eq. (2.139) as in Taylor’s design. If a shading effect of a
sample holder in transmitted light is absent, the totality of the sample diffuse
reflectance and its diffuse transmittance qþ s can also be measured as:

ER ¼ U0q
4pR2 q

4ðq0 � q0
0Þ

1� q00
þ q 1�

4
P
i¼1

ð1� qi=q0ÞAi

Asph

24 35 q0
1� q00

þ s
q0

1� q00

8<:
9=;

¼ U0

4pR2

q0
1� q00

ðqþ sÞ:

ð2:147Þ

Similar techniques may be applied to compensate for systematic errors for all of
the methods of absolute measurements mentioned and all types of integrating
spheres. The alteration procedure is based on the creation of a supplemental sphere
irradiance equivalent to that which is actually reflected from the sample under study,
but that is lost in sphere apertures. The opposite way to perform the correction is to
subtract the irradiance lost on irradiation of the sample from the irradiance falling on
the sphere during measurements of irradiance E0 (Eq. 2.139). The correction may be
made by the sphere cap with a remedial aperture of relative proportions, reducing the
sphere cap’s reflectance or the wall’s reflectance from q0 to q0

0. The corrective effect
of such an error reduction is independent of whether the corrective sphere cap is
acting under direct or under diffuse irradiation for the absolute method.

Let us consider an error-correcting opening of reflectance qc and area Ac in a
sphere cap of an internal sphere surface with reflectance q0 and area A0. That
opening, when it is covered, for example, by a certain protective glass, can have
higher than zero reflectance. The properties of a sphere cap with the correcting
opening should be such that the subsequent equality is satisfied:

1� ð1� qc=q0ÞAc=A0 ¼ 1�
Xm
i¼1

1� qi=q0½ �Ai=Asph; ð2:148Þ
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where m is the number of sphere openings, each with a reflectance qi. As a result,
under irradiation of the correcting cap by the beam whose cross section matches cap
area A0, the cap’s effective reflectance qAo is equal to reflectance q0

0 for the sphere
itself, no matter what the wavelength of incident radiation is. If the correcting
sphere cap is used in the baffling method to be directly irradiated by the same beam,
possible errors for qAo 6¼ q0

0 are defined by deviations of the sphere properties from
those of the perfect diffuser. The error vanishes when either the efficiency or the
viewing method is used, since both the cap and the rest of the internal sphere
surface are irradiated by multiple reflections of equivalently diffused radiation.

Figure 2.33 depicts an arrangement of an integrating sphere having the cor-
recting opening, which is designed for the absolute measurement by the compar-
ison, the baffling, or the viewing method [2.61, 2.62]. Sample 1 and sphere cap 7,
having the correcting opening, are installed in turn behind sample ports 5 and 6 and
both always remained in sphere 4. A direct beam of a cross section A0 carrying flux
U0 is incident on the cap or sample placed behind sample port 6. Sphere irradiance
E at exit port 2 or the sphere’s wall emittance M via exit port 2 is measured by a
single detector, conforming to Eq. (2.130) or (2.131), respectively. If sample 1 is
irradiated and irradiance E or emittance M is measured, opaque baffle 3 is placed
between sample 1 and the detector in respective ports 6 and 2, or between sample 1
and the spot of the sphere wall opposite to exit port 2. Next, when cap 7 and sample
1 are swapped between ports 6 and 5, baffle 3 is moved into position 30, and either
E0 or M0 is measured [2.61].

2.4.9 Spheres of Nonisotropic Diffusers

The analyzed above absolute and relative methods of measurement using inte-
grating spheres highlight one key drawback limiting the accuracy of each mea-
surement – the necessity of the diffuse reflectance of the sphere wall not only to be
Lambertian, but also not to change from direct to diffuse irradiation. This means the
measurement must be made using a sphere of a practically perfect isotropic diffuser.
Therefore, it is important to distinguish the actual difference in the properties of any
actual diffuser versus the perfect diffuser, or to exclude the necessity for the diffuse
sphere reflectance for direct irradiation, q0(0/d), to be equal to its effective

Fig. 2.33 Absolute
comparison sphere settings
for non spectrally-selective
error compensation
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reflectance for following multiple reflections, q00(d/d). The latter can be realized by
irradiating an entire inner sphere surface when measuring the first sphere irradiance
E0. Let us consider the measurement of the sphere irradiance for a nonisotropic
diffuser irradiated by a direct beam via its entrance aperture. Let us also extend that
concept [2.8] to integrating spheres made of translucent materials directly irradiated
via an input spot of the sphere wall with diffuse transmittance and reflectance
sd þ qd ¼ 1.

When a collimated beam carrying flux U0 is incident on an outer region of area A
of a diffusely transmitting sphere wall, it in turn irradiates the rest of the internal
surface of such a translucent sphere in conformity with that sphere wall’s scattering
indicatrix in transmission: fðHÞ ¼ cðHÞcosH ¼ ðLH=L0ÞcosH, and with the wall’s
diffuse transmittance sd (Fig. 2.34). When the beam enters via the entrance port, the
reflectance indicatrix for the wall and the transmittance sa of the port both need to be
known. Here L is the radiance of the emitting sphere wall in the observation direction,
L0 is the wall’s radiance viewed from the normal, andH is the angle of observation.
The flux dUM

A emitted by element dA in the direction of platform dM is:

dUA
M ¼ IAMdX ¼ IA0 f ðHÞdX; ð2:149Þ

where IAM is the intensity of a point source equivalent to element dA viewed in the
direction of platform M and dX is the solid angle of observation. The flux UA either
diffusely transmitted or reflected back into the sphere is:

UA ¼
Z
p

IA0 f ðHÞdX ¼ IA0Xe; ð2:150Þ

where Xe ¼
R
p
f ðHÞdX is the equivalent solid angle for such a translucent internal

sphere surface, which may not remain the same in transmission and in reflection,
respectively changing to Xe,s and to Xe,q.

Fig. 2.34 An arbitrary
scattering sphere
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The irradiance EA
M of a randomly chosen platform M due to radiation emitted by

the irradiated region dA and incident at an angle u1 to the outer normal for the
viewing platform M is:

EA
M ¼ IAM

r21
cosU1 ¼ IA0 f ðHÞ

4R2cosU1
: ð2:151Þ

Taking into account the relationship between indicatrixes of the radiance and
irradiance: f ðHÞ ¼ cðHÞcosH (see expressions (1.53)), and equality of the inscri-
bed angles: H ¼ U1, one may obtain:

EA
M ¼ IAMcðHÞcosH

4R2cosU1
¼ IA0

4R2 cðHÞ: ð2:152Þ

Since: UA ¼ sdU0 ¼ IA0Xe, the equation for internal irradiance of an arbitrarily
nonuniform sphere, or for internal illuminance, created by light transmitted by or
reflected from that sphere wall, is:

EdðHÞ ¼ sdU0

4R2Xe
cðHÞ ¼ qdU0

4R2Xe
cðHÞ: ð2:153Þ

Platform M, reflecting light with a diffuse reflectance qd, irradiates another
arbitrary element N:

dEM
N ¼ dIMN

r22
cosu2 ¼

dIM0 f ðHÞ
r22

cosu2 ¼
dIM0 cðU2Þ

r22
cosu2

2: ð2:154Þ

Considering, for the time being, identical indicatrixes in transmitted and
reflected radiation:

dEM
N ¼ L0dAMf ðHÞ cosu2

r22
¼ EA

M

p
qdf ðHÞ dAM cosu2

r22
¼ EA

M

p
qdf ðHÞdX: ð2:155Þ

Integration, with respect to all reflecting elements inside, provides the expression
for the sphere irradiance created by the first reflection of radiation from the entire
internal surface of the sphere:

Eq00;1 ¼
Ed

p
q00

Z
p

f ðHÞdX ¼ Edq
0
0
Xe

p
; ð2:156Þ

where q00 is the effective diffuse reflectance of the internal sphere surface with
openings:
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q00 ¼
Z
p

qdðuÞ 1�
Xm
i¼1

½1� qiðuÞ=qdðuÞ�Ai=Asph

( )
du; ð2:157Þ

and qdðuÞ ¼ 1� sdðuÞ is the reflectance of the translucent sphere wall, which may
depend on the angle of incidence u. The irradiance En after n reflections in the
sphere, converting light at negligible losses, is:

Eq00;n ¼ Ed q00
Xe

p

� n

: ð2:158Þ

As a result, the irradiance for the translucent lossless sphere, irradiated via
transmission of its wall, and the irradiance for the reflective integrating sphere,
irradiated via its similarly lossless open port, are [2.8].

ER;s ¼ U0

4pR2

cðHÞ
Xe=p

sd
1� qd 0Xe=p

; ð2:159aÞ

ER;q ¼ U0

4pR2

cðHÞ
Xe=p

qd
1� qd 0Xe=p

: ð2:159bÞ

The first factor in both equations characterizes the irradiance, being created by
the isotropic and nonabsorbing diffuser. The second factor identifies changes of the
irradiance as a function of the nonuniformity of a scattering indicatrix for the actual
diffuser. The third part finally determines the efficiency of multiple reflections,
being contingent to irregularity of the indicatrix. Equation (2.159a) derived for the
irradiance of a translucent lossless sphere can be further transformed by separating
the transmission and reflection observations, while taking into account a potential
difference of the equivalent solid angles Xe;s and Xe;q in transmitted and in reflected
radiation:

ER ¼ U0

4pR2

cðHÞ
Xe;s=p

sd
1� qd 0Xe;q=p

: ð2:160Þ

For any translucent sphere with negligible absorption, providing its actual wall
absorptance a is below the measurement sensitivity (see Sect. 2.1), the wall diffuse
transmittance is sd ¼ 1� qd and:

ER;s¼1�q ¼ U0

4pR2

cðHÞ
Xe;s=p

1� qd
1� qd 0Xe;q=p

: ð2:161Þ

If the integrating sphere reflecting light by its inner surface of high diffuse
reflectance is exposed to direct radiation flux U0 via its clear aperture, the factor
1 − qd in Eq. (2.161) changes to q0 and:
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ER;q ¼ U0

4pR2

cðHÞ
Xe;q=p

q0
1� q00Xe;q=p

: ð2:162Þ

Let us now express the nonuniformity K of the scattering indicatrix of the
integrating sphere as a single factor by revealing the difference in irradiances cre-
ated by an actual diffuser and the isotropic diffuser. For a translucent and lossless,
i.e., weakly absorbing, sphere (Eq. 2.161):

Ks ¼ cðHÞ
Xe;s=p

1� qd
1� q0dXe;q=p

: ð2:163Þ

For diffuse-reflecting sphere nonuniformity Kq is defined by relations (2.159)
and (2.162) for factor Xe:

Kq ¼ cðHÞ
Xe;q=p

q0
1� q00Xe;q=p

; ð2:164Þ

Xe ¼
Z
p

cðHÞ cosH2p sinHdH ¼ p
Zp=2
0

cðHÞ sin2HdH: ð2:165Þ

By way of an example, let us consider the values of K for an opal glass with
diffuse reflectance qd ¼ 0:6 and diffuse transmittance sd ffi ð1� qdÞ ffi 0:4 and its
radiance indicatrix given at fixed angles of observation as in the following table:

H° 0 10 20 30 40 50 60 70 80

c(H) 1.00 1.00 1.00 0.99 0.98 0.96 0.92 0.83 0.64

The scattering nonuniformity for that diffuser can be approximated with error
lower than 1% as:

Xe ¼ p
Z60�
0

cos0:1 H sin2HdHþ
Z70�
60�

cos0:15 H sin2HdHþ
Z90�
70�

cos0:25 H sin2HdH.

ð2:166Þ

A trapezium calculation gives Xe ¼ 0:925p. Considering Xe;s ¼ Xe;q, and with
the detector located 45° to the emitting zone, giving cð45�Þ ¼ 0:97, the K value for
relative area of apertures A=Asph ¼ 0:05 is:

K ¼ 0:97p
0:925p

0:6
1� ð1� 0:6Þ � 0:95 � 0:925 ¼ 0:97:
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If the diffuser with this table indicatrix has diffuse transmittance sd ¼ 0:7 and
reflectance qd ¼ 0:3, the nonuniformity factor becomes: K ¼ 0:997, making one
sufficiently uniform integrating sphere at 0.3% accuracy, but at the inversed values:
sd ¼ 0:3 and qd ¼ 0:7, the nonuniformity of irradiance becomes prohibitively
large: K ¼ 0:817. The large difference in the value of K from 1.0 is caused by the
strong influence of the multiple reflection factor (1 − q0) at q0 ! 1.0, enhancing the
irradiance nonuniformity via highly pronounced multiple reflections in the higher
reflecting sphere. That notion may explain the considerable discrepancy among
published experimental data for certain absolute spectral measurements [2.56]. One
cause of potential nonuniformity of sphere irradiance is due to imperfections of
diffusers and nonisotropic diffuse reflectance for direct irradiation, leading to sub-
sequent reduction of sphere efficiency as for a mirror sphere.

2.4.10 Fully Isotropic Irradiation of Integrating Sphere

One earlier discussed concept for absolute measurement which completely elimi-
nates the cause of nonuniformity in the sphere’s irradiance on the first direct irra-
diation of the sphere consists in the uniform diffused irradiation of the sphere
surface by a beam of constant radiance, relating to the conversion of irradiance E0

from Eq. (2.127) to (2.128). A combinational set of integrating spheres for absolute
measurement is shown in Fig. 2.35. Translucent sphere 7 of low-absorbing opal
glass or a diffuser satisfying relations (2.20) and (2.21) is placed inside primary
integrating sphere 3, having typical high-diffuse reflectance. An incident flux U0

from light source 1 via an entrance aperture directly irradiates any sample under
study 6 protected from detector 4 by the opaque baffle 5. If the translucent sphere,
having sufficiently uniform scattering indicatrix and absorptance a of its wall under
the noise sensitivity limit DN/N of detector 4, is located at position 7 near the center
of primary sphere 3, radiation that falls from source 1 is uniformly diffused in
sphere 3. According to Eqs. (2.21) and (2.108), by keeping distortions of the main
sphere irradiance below the detector sensitivity limit ±DN/N, combinational sphere
irradiance E0 at such diffuse irradiation becomes:

Fig. 2.35 Combination of
integrating spheres
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E0 ¼ U0=4pR2

1� q00ðd=dÞ
; ð2:167Þ

where q0
0ðd=dÞ is the effective reflectance of all internal sections of sphere 3,

including translucent sphere 7. The next measurement is provided when sphere 7 is
moved into position 70 and the sample under test 6 is directly irradiated by flux U0.
Irradiance E of the sphere wall protected by baffle 5 is:

E ¼ U0

4pR2

qxð0=dÞ
1� q00ðd=dÞ

: ð2:168Þ

If there are no further assumptions other than the scattering uniformity and
a � DN/N, the sample reflectance is:

qxð0=dÞ ¼ E=E0: ð2:169Þ

2.4.11 Essentials of Diffuse Transmittance Measurements

One obvious difference for any diffuse transmittance versus a reflectance study in an
integrating sphere consists in the opposite directions of light scattering. Another
effect makes diffuse transmittance measurements more complicated: increase of the
cross section of a light beam expanded by a diffuse scattering object. That leads to
the necessity of making the entrance port of the integrating sphere for diffuse
transmittance studies nearly twice as big as the beam’s cross section. Hence, the
already considered measurement errors due to a specific method or the sample’s
flatness, respectively, increase, and thus error corrections require the use of precise
Eqs. (2.124) and (2.125). The computations are complicated to perform, but
analysis of diffuse transmittance measurement error in an integrating sphere with
large input ports and flat sections can also be achieved via the more intuitive
finite-difference equation method [2.50–2.52].

The derivation of the finite-difference equations is based on the reciprocity of
indicatrix or the form factors K1, K2,…, Kn for correlation of fluxes of radiation,
exchanged among emitting and irradiated surfaces A1, A2,…, An at thermal equi-
librium K1nA1 ¼ Kn1An. Thus [2.51], emittance M1 of sphere section A1 of
reflectance q1 which is directly irradiated by a light beam creating irradiance E0 can
be expressed via emittance values M1,…,Mn for sequential surfaces A1,…,An:

M1 ¼ q1M1K11 þ q1M2K12 þ � � � þ q1MnK1n þ q1M0: ð2:170Þ

Here K11 gives the fraction of radiation totally reflected from A1 that is incident
on A1 itself. Since A1 belongs to an n-surface system, the entirety of balances
makes a set of linear equations [2.50] similar to ones of resistance and can be solved
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as an electrical network [2.59]. Solutions due to that method are similar to relations
(2.118)–(2.120), but do not necessarily predict small factors as for samples and
sphere ports, correctly resolved via the integrated-equation formalism [2.49, 2.53,
2.54].

The characteristic layout of an integrating sphere for diffuse transmittance
measurements is depicted in Fig. 2.36. A beam of light, carrying flux U, is incident
at angle H on translucent object 1, placed in front of the entrance aperture of area
Ae. The object may have the distinctive diffuse transmittance sH and reflectance qH

at angle H and hemispherical reflectance qp – all different from the properties at
normal incidence. The sphere has different reflectances q0

p and q0
H for hemi-

spherical and direct irradiation, respectively, and reflectance q0
HH in the direction

of the entrance port. The port area and the absorptance for hemispherical irradiation
are A0 and a0p. Light entering the sphere is either absorbed by its walls or by the
internal detector having reflectance qd

p or lost in its apertures. The radiant flux
balance in the sphere may be described similarly to Eqs. (2.5) and (2.6):

UsH ¼ UsHqHH
0 1� qH
� �

Ae= A0 þAe þAsð ÞþUsHap0
þEA0a

p
0 þEAd 1� qpd

� �þEAe 1� qpð ÞþEAs:
ð2:171Þ

Here E is the irradiance of the internal sphere surface at thermal equilibrium. By
re-arrangement [2.63]:

E ¼ UsH 1� qHH
0 1� qH
� �

Ae= A0 þAe þAsð Þ � aH0
� �
A0ap0 þAd � Adqpd þAe � Aeqp þAs

: ð2:172Þ

When object 1 is moved to formerly opened port As at position 10, keeping
comparison settings (Fig. 2.36), the beam enters without attenuation, sH ¼ 1 and
qH ¼ qp ¼ 0, causing Eq. (2.172) to converge to:

E0 ¼
U 1� qHH

0 Ae= A0 þAe þAsð Þ � aH0
� �

A0ap0 þAd � Adqpd þAe þAs � Asqp
: ð2:173Þ

Fig. 2.36 Diffuse
transmittance study
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Consequently, the ratio of the two equations gives the diffuse transmittance of
the sample being studied:

E
E0

¼ sH
1þ qHH

0 qHAe= A0 þAe þAsð Þ
1� qHH

0 Ae= A0 þAe þAsð Þ � aH0

1� Aeqp þAsqp

A0ap0 þAd � Adqpd þAe þAs � Asqp

: ð2:174Þ

If the comparison sphere is opaque for a given wavelength and performs as a
uniform diffuser:

sHcom ¼ E
E0

1� Aeqp þAsqp

A0ap0 þAd � Adqpd þAe þAs � Asqp

1þ qHAe= A0 þAe þAsð Þ
1� Ae= A0 þAe þAsð Þ

; ð2:175Þ

since for a uniform diffuser a0
H ¼ a0

p, q0
HH ¼ q0

p, and q0
p ¼ 1 − a0

p. For the
substitution measurement with one open port, Eq. (2.175), representing the com-
parison method, is changed to [2.63]:

sHsub ¼
E
E0

1� Aeqp= A0ap0 þAd � Adqpd þAe
� �

1� 1� qHð ÞAe= A0 þAe þAsð Þ : ð2:176Þ

It should be kept in mind that Eqs. (2.171)–(2.176) are derived assuming all
integrating sphere inclusions to be spherical and to have the sphere’s radius. Since
flat surfaces do not result in uniform irradiance in reflected light as spherical ones,
to obtain correction factors the Fredholm integral equations (2.116, 2.117) or the
finite-difference (2.170) ones are to be solved.

For a small sample in a substitution sphere of a uniform diffuser, the diffuse
transmittance s becomes [2.64].

sdsub ¼
E
E0

Uinc;0

Uinc
1� qpq0As;pl=As

1� q0 1� As;pl=As
� �" #

: ð2:177Þ

Here q0 is the reflectance of the sphere wall, presumed to be equal for direct and
hemispherical irradiation, Uinc,0/Uinc is the ratio of measured fluxes, and As,pl/As is
the ratio of the plane area of the sample port to the area of that spherical segment.
Equation (2.177) is similar to (2.118) and does not account for second-order cor-
rections as (2.121) and (2.124). A similar approach [2.64] for a comparison sphere
does not distinguish correction factors of small flat samples given for reflective
samples by Eqs. (2.122) and (2.125).
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2.4.12 Separation of Direct and Diffuse Transmittance

Commonly, the diffuse transmittance of any translucent sample is measured as the
diffuse reflectance in the integrating sphere, attached to a double-beam or
single-beam spectrophotometer. The measured spectrum is then referred to the
spectrum of a diffuse standard of seemingly uniform scattering indicatrix as of the
perfect diffuser. Considering that correction factors for flat inclusions are accounted
for by Eqs. (2.175)–(2.177), obtained under the small flat-sample assumption, one
extra benefit from combination studies in transmission is to validate sphere cor-
rection factors via the specular and diffuse-scattering components measured.

The universal design of the integrating sphere for transmittance–reflectance
measurement is depicted in Fig. 2.37. The sample and reference beams propagate
through the sphere via ports 1 and 2, being reflected back into the sphere by a
sample, a standard, or the sphere cap via ports 3 and 4. Extra port 5 lets the specular
component of reflectance escape from the sphere. Round opaque baffle 6 protects
sphere detector 7 from being directly irradiated by transmitted or by reflected light.
When ports 3 and 4 are occupied by equal white standards, the detector readings are
equalized: N0 ¼ const � ksamq1/krefq2 ! 1, where q1 ≅ q2 ≅ qst are identical
reflectances of the standards and ksam ≅ kref ≅ k are the escape factors for channel
losses in entrance ports. When a sample covers port 1:

Ns ¼ const � sspksamqst þ 1� Dð Þsdf ksamqst þDsdf
� �

= krefqst
� �

; ð2:178Þ

where D is the fraction of the sample diffuse transmittance, directly irradiating the
sphere wall, but not the standard. Removing the standard from port 3 or replacing it
by a blackbody gives:

Nc ¼ const � 1� Dð Þsdf k0samqst þDsdf

 �

= k0refqst
� �

: ð2:179Þ

Fig. 2.37 Dual-beam sphere
arrangement
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Here k0 is not equal to k since one more port is opened and the effectiveness of
multiple reflections is changed. If the ports are much smaller than the sphere and the
escaping factors are approximately identical, the specular and diffuse transmittance
can be expressed as [2.65, 2.66]:

ssp ¼ Ns � Ncð Þ=N0; sdf ¼ Nc= N0 1� Dð ÞþD= kqstð Þ½ �; sR ¼ ssp þ sdf :

ð2:180Þ

A single-beam integrating sphere for the measurement of specular and diffuse
transmittance by the substitution method is seen in Fig. 2.38. Transmission sample
1 is either absent or installed in the sphere transmission-entrance port as for the
substitution study (10 is sphere-reflectance port). Internal detector 2 is protected by
protruding baffle 3 from direct irradiation by either the sample or sphere port 10. If
the disturbance of sphere irradiance by flat inclusions is not counted, the sample’s
total transmittance is obtained analogously to Eqs. (2.171)–(2.180) [2.67].

sR ¼ 1� q0 1� Asl=Ashð Þ
1� q0 1� Asl=Asp

� �þ Asl=Ash

� �
q

h i
�
sdf þ ssp q0 1� qsp0 =q

df
0

� �
Asl=Ash

� �� �
þ qsp0 =q

df
0

� �
Asl=Ash

� �
q

h i
q0 1� qsp0 =q

df
0

� �
Asl=Ash

� �� � :

ð2:181Þ

Here Asl and Ash are the areas of the sample port and the sphere, q and q0 are
reflectances of the sample and sphere wall, q0

sp and q0
df are the specular and diffuse

components of wall reflectance q0, and ssp and sdf are the specular and the diffuse
transmittance of a sample studied, such that ssp þ sdf ¼ sR. It is clear that to
identify sR, the scattering indicatrixes of the sample and the wall have to be
identified. When the sample scattering indicatrix is not uniform but without a

Fig. 2.38 Single-beam
integrating sphere
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noticeable direct transmittance, a correction factor could be introduced similarly to
the diffuse reflectance (see above and [2.8]). However, if the direct transmittance is
noticeable, thus leading to substantial losses to the reflectance port (marked 10 in
Fig. 2.38), a correction factor for a given geometry of the sphere and for a specific
indicatrix need to be determined experimentally [2.94].

2.4.13 Coupling of Integrating Spheres

A natural step in making simultaneous measurements of diffuse reflectance and
transmittance is associated with combining two integrating spheres: one in reflected
and one in transmitted light [2.95, 2.98]. A joined reflection–transmission sphere is
shown in Fig. 2.39. Sample 1 to be studied is fitted in between integrating spheres 2
and 3, having individual detectors 4, 5, screened from sample 1 by baffles 6, 7.
A spot of sphere 2 wall is irradiated at angle of incidence u and the sample 1 is
irradiated at a design angleH, letting specularly reflected light be collected in sphere
2 or lost in its entrance port at normal incidence. For any translucent sample 1, light
interchanges between spheres 2 and 3. To resolve additive effects of each second
sphere, let us review in more detail the relations for single-sphere irradiance (2.140)
and (2.162), while evaluating inputs of flat sections by Eqs. (2.121)–(2.125). All
terms in the new equations will have indices rf and tr for the reflectance–transmit-
tance spheres, indices sh, wl, en, and sl for the sphere, walls, entrance port, and the
sample, and letters s and q for transmittance and reflectance. The flux U0 incident on
each sphere wall creates single-sphere irradiance:

Erf
wl ¼

U0

Arf
sh

sHenq
H
0;rf 1� DqpenA

rf
en

qp0;rf A
rf
sh

� DqpslA
tr
en

qp0;rflA
rf
sh

 !
qp0;rf

1� qp 0
0;rf

� U0

Arf
sh

sHenq
H
0;rf

f rffs q
p
0;rf

1� qp 0
0;rf

:

ð2:182Þ

Fig. 2.39 Doubling of
integrating spheres
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Here q0 and q 0
0 are the sphere’s actual and effective reflectances (equations

(2.104) and (2.105)), q0
p and q0

H are the diffuse reflectances of the wall for
hemispherical irradiation and at angle H, Asl, Aent, and Adt are the relative areas of
the sample, entrance ports, and detectors related to area A0 of the sphere, sHen is the
entrance port transmittance, ffs is the effective factor of the sphere surface viewed
from an exposed spot, Dqen ¼ q0 − qen, and Dqsl ¼ q0 − qsl. If the sample is
irradiated, the first sphere irradiance is:

Erf
sl ¼

U0

Arf
sh

suen qsp;usl qu0;rf þ qdf ;usl f rffs q
p
0;rf

� � 1
1� qp 0

0;rf
; ð2:183Þ

where qdfsl and q
sp
sl are the specular and diffuse components of the sample reflectance

at given angle u.
The corresponding equations for transmitting sphere 3 when its wall is directly

irradiated and when translucent sample 1 occupies its entrance port, being the exit
port for reflecting sphere 2, are:

Etr
wl ¼ U0s

H
enq

H
0;rf

Atr
en

Arf
sh

þErf
wlA

tr
en

 !
spsl f

tr
wl

qp0;tr
1� qp 0

0;tr
; ð2:184Þ

Etr
sl ¼ U0s

u
ens

df ;u
sl þErf

wlA
tr
ens

p
sl

� �
f trfs q

p
0;tr þU0s

u
ens

dr;u
sl qu0;tr

h i 1
1� qp 0

0;tr

1
Atr
sh
: ð2:185Þ

Here Aent is the relative area of the entrance port of sphere 3, related to its total
surface, and ssp;usl ; sdf ;usl ; and spsl are the sample specular and diffuse transmittance at
angle u and the sample transmittance for hemispherical irradiation. Note that every
specular component is incident on a sphere wall with no inclusions. For diffused light,
the effective reflecting area has some inclusions identified by the specific sphere
factor ffst.

If both spheres perform concurrently, the four internal irradiances considered
are, respectively:

Erf þ tr
wl ¼ Erf

wl þ Erfl
wl 1þ DqpslA

tr
en

qp0;rf A
rf
sh

 !
þ U0sHen

Arf
sh

qH0;rf

" #
Atr
ens

p
sl

� �2
Arf
shA

tr
sh

f trfs q
p
0;tr

1� qp 0
0;tr

: ð2:186Þ

Erf þ tr
sl ¼ Erl

sl þ Erl
sl 1þ DqpslA

tr
en

qp0;rf A
rl
sh

 !
spsl þ

U0suens
u;df
sl

Arf
sh

" #
Atr
en

f trfs q
p
0;tr

1� qp 0
0;tr

(

þU0suens
u;dr
sl

qu0;tr
1� qp 0

0;tr

)
spslA

tr
en

Arf
shA

tr
sh

: ð2:187Þ
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Etrþ rf
wl ¼ Etr

wl þ Etr
wl 1þ DqpslA

tr
en

qp0;trA
tr
sh

 !
þU0s

H
enq

H
0;rf

Atr
en

Arf
sh

spslq
p
0;tr

f trfs
Atr
sh

" #

� Atr
ens

p
sl

� �2
Arf
shA

tr
sh

f rffs q
p
0;rf

1� qp 0
0;rf

:

ð2:188Þ

Etrþ rf
sl ¼ Etr

sl þ Etr
sl 1þ DqpslA

tr
en

qp0;rf A
rl
sh

 !
þU0s

u
ens

u;df
sl qp0;tr

f trfs
Atr
sh

þU0s
u
ens

u;dr
sl

qu0;tr
Atr
sh

" #

� Atr
ens

p
sl

� �2
Arf
shA

tr
sh

f rffs q
p
0;rf

1� qp 0
0;rf

:

ð2:189Þ

In all equations, the factor (1 þ DqAen/(q0Ash)) accounts for loss of single
sphere irradiance to each second sphere and the factor (Aenssl)

2/(AshAsh) stands for
conversion of incident flux to irradiance in a single sphere converting back and
forth via the sample aperture into another sphere irradiance.

Equations (2.186)–(2.189) for a dual sphere are based on knowledge of irradi-
ance for each detached sphere. Expressions (2.181)–(2.185) for single reflection
and transmission spheres contain two pairs of the sample‘s direct and diffuse
reflectance and transmittance, qdfsl; q

dr
sl; s

df ;u
sl ; sdr;usl , and ones for the sphere,

qH uð Þ
0;rf ; q

p
0;rf ; q

H uð Þ
0;tr ; qp0;tr . The equations can be resolved by performing two extra

measurements of direct transmittance and specular reflectance for the sample,

presuming a uniform diffuse coating for sphere surfaces: qH uð Þ
0;rf ¼ qp0;rf and

qH uð Þ
0;tr ¼ qp0;tr .
Measurements of specular reflectance and direct transmittance can be performed

by adding for the joined spheres extra beam splitter 8, exit port 9 for the trans-
mission sphere, and extra detectors 10 and 11 (Fig. 2.40). To determine the char-
acteristics of the sample, both specular factors and two diffuse factors for the sample

Fig. 2.40 Added specular
reflectance and direct
transmittance
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and four factors for the spheres need to be detected in separate and connected
sphere settings. In the double-sphere arrangement, each sphere irradiance must be
measured separately to be resolved by Eqs. (2.182)–(2.185).

2.4.14 Integrating Spheres for Isotropic Irradiation

Ideally, the integrating sphere should produce uniform Lambertian irradiation of its
inner surface – that nearly happens when sphere inclusions are infinitely small.
Practical implementations can present various challenges owing to finite dimen-
sions of the sphere entrance and exit ports, owing to dependence of wall reflectivity
for practical sphere surfaces on the angle of light incidence and polarization, or
owing to design errors [2.70–2.75]. Nevertheless, there are many practical ways,
some of which were reviewed above, for making sphere irradiance or illuminance
practically uniform for given considerations and measurements.

One straightforward way to minimize disturbance of internal sphere irradiance
by a port is to cover its opening by a diffusely transmitting and reflecting material,
such as an opal glass [2.76]. The sphere wall emittance at a first-order approxi-
mation of sphere irradiance (Eqs (2.5) and (2.6)) is:

M0 ¼ U0q0 þU0q20 þ � � � þU0qn0
4pr20

¼ U0

4pr20

q0
1� q0

; ð2:190Þ

where q0 is the effective diffuse reflectance of a perfect sphere and U0 is the flux of
radiation directly irradiating a wall (Eq. 2.102). For a port of diffuse reflectance
qp, its into-sphere emittance consists of two components: one of the sphere itself
and one of input flux U0 at cross section 2rp:

Mp ¼ U0

4pr2
qp

1� q0
þ U0

pr2p
: ð2:191Þ

Following [2.76], for total-sphere emittance to be uniform M0 and Mp should be
equal; therefore:

r0
rp

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 � qp

4qp 1� q0ð Þ

s
: ð2:192Þ

Considering the measurement in a nearly ideal highly diffuse-reflecting sphere of
wall reflectance q0 ¼ 0.99 at qp ¼ 0.5, the ratios of the sphere-to-port radius and of
the sphere-to-port areas become r0/rp ¼ 5 and S0/Sp ¼ 100 and make the internal
sphere irradiance nearly uniform (compare Eq. (2.104)).
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Although the first-order approximation by Eqs. (2.190)–(2.192) may not hold
true for a sophisticated integrating-sphere design, the applicability of a translucent
diffuser, covering detector ports, is established as the universal solution for reliable
and absolute reflectance measurements using integrating spheres [2.8, 2.46, 2.49,
2.58, 2.60–2.62]. However, in certain cases, the detector cannot be directly attached
to an integrating sphere especially if extensive cooling is required; therefore, a
section of a sphere surface without inclusions must be projected to a remote
detector (see Fig. 2.41). As an internal sphere detector (Fig. 2.41a), a remote one
can be screened from direct irradiation by shielding the viewing area via a baffle
(Fig. 2.41b) or by protrusion of the detector or a projecting lens (Fig. 2.41c).
A common recipe for internal sphere uniformity is use of highly reflecting materials
for baffles as for the primary internal sphere reflector keeping relative areas of flat
samples, baffles, or protruding sections negligibly small, ultimately approaching the
unbaffled sphere [2.84].

The protruding holder can also focus and collect radiation on the detector [2.77,
2.78]. The hyperbolic concentrator (see Fig. 2.42 using Fig. 2.41 designations)
provides an example of supplemental light collection effort by increasing light
concentration via hyperboloid mirror surface 7 [2.79]. External placement of the
detector also allows adjustment of its field of view on the inner sphere surface,
while portions of radiation not accepted by the concentrator are recycled back into
the main sphere.

(a) (b) (c)

Fig. 2.41 Baffling in integrating spheres: detector (a), projecting area (b), via protrusion (c):1—
sphere; 2—sample; 3—detector; 4—baffle; 5—translucent glass; 6—lens; 7—protruding holder

Fig. 2.42 Integrating sphere
with non-imaging
concentrator
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Despite every design effort to create an isotropic integrating sphere, practical
implementations deal with constraints and deviations from modeled design conti-
nuity and the ideal uniformity of Lambertian light scattering for actual diffusers and
configurations [2.80–2.99]. Various modeling recommendations of integrating
sphere reflectivity, as the linear mixture of perfectly diffuse and ideally specular
scattering, predict significant measurement errors occurring for non-Lambertian
sphere wall scattering. However, modeling results show the relative independence
on the detector field of view, except for viewing areas irradiated by specular
components, while errors are minimized [2.81] as sphere wall reflectance approa-
ches the ideal 1.0 limit as for a mirror sphere (Eq. 2.102). Furthermore, at certain
sphere arrangements, restricting areas of direct irradiation can lead to nonuniform
initial irradiance, even for curved-surface interreflections [2.82]. The actual distri-
bution functions and design models for internal sphere irradiance can serve as
correction factors [2.86].

However, individual integrating sphere designs may unintentionally lead to
nonuniformity of sphere irradiance at specific angles of observation, particularly
owing to the restricted field of view. Figure 2.43 depicts one easier-to-model
unbaffled integrating sphere, in which to avoid use of baffles and irradiation of the
detector by nonuniform irradiance of a test sample, one optical fiber bundle of small
dimensions and low numerical aperture is utilized [2.83]. A 10.6 cm-diameter in-
tegrating sphere with 2.54 cm circular opening has a fiber-optic cable output port
positioned at 90° to the optical axis of the entrance port. The incident beam carrying
flux U0 is directed at zenith angles 0–80° at 10° increments and at any azimuth
angle ranging from 0° to 345° with 15° increments. The fiber-optic cable has a
0.254 cm input diameter bundle of 0.28 numerical aperture [2.83]. The half-view
angle is 16.32° at refractive index 1.46 and at 0.035 reflectance for normal light
incidence. Via the energy-balance approach introduced in Sect. 2.1, and using
input–output equilibrium of light, the ratio of the sphere’s output flux Ur to flux U0

entering the sphere is directly proportional to the loss of sphere wall reflectance due
to openings (relations (2.104)–(2.110)) and to output-coupling loss at the numerical
aperture to all the sphere area:

Ur

U0
¼ 1� qrð Þ Ar

A0
NA2 q0

1� q0 1� Ain þArð Þ=A0ð Þð Þ : ð2:193Þ

Fig. 2.43 Simple
fiber-coupled and unbaffled
integrating sphere
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Here A0, Ain, and Ar are the areas of the sphere and the input and receiving ports,
q0 and qr are reflectances of the sphere and the bundle, and NA is the numerical
aperture, where NA2 characterizes the viewing area of the port versus the hemisphere.

Particular allocations of sphere wall reflectivity and nonuniformity can be
modeled via a probability density function of the photon distribution using prob-
abilistic techniques (see Sect. 9.4 or [0.24, 2.83, 2.86] for details). Since an inte-
grating sphere should behave as a cosine-law collector, the intensity I(H) of
radiation reflected at angle H versus input intensity I0 is defined by Lambert’s law
(Eq. 1.46). By definition (see relations (1.40) and (1.47)), the total flux U(H)
reflected within solid angle X0 subtended by the azimuth angles u0 ¼ 0� 180� and
zenith angles H0 ¼ 0�H� is:

U hð Þ ¼
Z2p

u0¼0

Zh
h0¼0

I0 cos h0ð Þ sin h0ð ÞdU0dh0 ¼ I0p sin2 hð Þ: ð2:194Þ

When related to full flux U0 reflected into the entire hemisphere, expression
(2.194) provides the cumulative probability distribution for radiation emitted into
subtended-angle range 0−H° [2.83].

FðHÞ ¼ sin2ðHÞ: ð2:195Þ

Despite certain nonuniformity of the specific sphere design in Fig. 2.43 for
40–50° zenith angles, revealed by Monte-Carlo simulation of the distribution
function via random numbers as angles H per Eq. (2.195): H * sin(√F(H)), the
total flux averaged by angles within 0°–90° was found equivalent to the analytical
solution via energy-balanced Eq. (2.193) at nearly 0.25% [2.83]. Similar levels of
scattering uniformity, within 0–2% and 0.2–2.6%, were experimentally confirmed
by in-depth radiance-gradient measurements for inclusion-free areas of integrating
spheres and for the spectral regions of high diffuse reflectivity of internal-surface
sphere coatings [2.85, 2.88].

Considering uniformly diffused transmission via any integrating sphere, one
could think of spheres as in Figs. 2.4 and 2.5. Another transmitting integrating
sphere design is shown in Fig. 2.44, which aims to use one port simultaneously for
incoming and outgoing radiation [2.89]. The goal is similar to the idea of absolute

Fig. 2.44 Integrating-sphere
radiator
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reflectance measurements (Eqs. (2.126)–(2.128)) and that for evaluation of absolute
flux (Fig. 2.4, relations (2.14) and (2.15) – to block any viewing of the first sphere
reflection. Following Eqs. (2.5) and (2.6), Kirchhoff’s law for the thermal equi-
librium of the sphere [1.13, 2.4] states that the fraction of radiation being reflected
inside the sphere must be in equilibrium with the radiation transmitted by sphere
ports and absorbed by its walls. For an integrating sphere with radius r and spherical
surface A0 ¼ 4pr2 for diffuse reflectance q, except for the opening of area A with
no reflectivity, its effective surface reflectance (see relation (2.104)) is
q0 ¼ qð1� A=A0Þ. For the incoming flux U0:

Uq ¼ U0 qþ q � q0 þ � � � þ q � q0nð Þ ¼
n!1

U0q
1� q0

¼ U0q
1� q 1� A=A0ð Þ

¼ U0qA0

A0 � q A0 � Að Þ ; ð2:196Þ

Us ¼ U0 q
A
A0

þ q � q0 � A
A0

þ � � � þ q � q0n � A
A0

� 
¼

n!1
U0q
1� q0

A
A0

¼ U0qA
A0 � q A0 � Að Þ ; ð2:197Þ

Ua ¼ U0 q
A0 � A
A0

þ � � � þ q � q0n � A0 � A
A0

� 
¼

n!1
U0q
1� q0

A0 � A
A0

¼ U0q0

1� q0

¼ U0q A0 � Að Þ
A0 � q A0 � Að Þ :

ð2:198Þ

Here Uq, Us, and Ua are the reflected, transmitted, and absorbed portions of the
flux U0 and A/A0 and (A0 − A)/A0 are the relative areas of the port and the sphere
surface. The equilibrium is:

Uq ¼ U0q
1� q0

¼ Us þUa ¼ U0
qAþ q A0 � Að Þ
A0 � q A0 � Að Þ ¼

U0qA0

A0 � q A0 � Að Þ
¼ U0q

1� q 1� A=A0ð Þ : ð2:199Þ

One drawback of aiming to avoid not-uniform first sphere reflection by directing
a viewing area outside the spot, irradiated by incident light, is in this case leading to
a quite large input port. The same thermal-equilibrium set for a sphere section of
reflectance q0 guarded from direct irradiation is:

2.4 Photometry of Integrating Spheres 125



Uq2 ¼ U0qq
0A0= A0 � q A0 � Að Þð Þ ¼ U0q

2 A0 � Að Þ= A0 � q A0 � Að Þð Þ;
Us2 ¼ U0qq

0A= A0 � q A0 � Að Þð Þ ¼ U0q
2 A=A0ð Þ A0 � Að Þ= A0 � q A0 � Að Þð Þ;

Ua2 ¼ U0qq
0 A0 � Að Þ= A0 � q A0 � Að Þð Þ ¼ U0q

2 A0 � Að Þ2=A0

� �
= A0 � q A0 � Að Þð Þ:

ð2:200Þ

As discussed for measurements of reflectance, having one large opening may not
benefit a sphere design, unless its practical implementation overcomes challenges
and is verified experimentally. Finally, considering implementations of integrating
spheres with fully or partially coherent laser radiation, one should also keep in mind
that, as for any other dense diffusers, the multiple beam interference may exhibit
itself via speckle effects, which may be minimized by spatial averaging and inte-
gration, though the root cause of most problems is in random phase noise con-
version to intensity noise that exhibits itself via specific signal fluctuations (see
Chaps. 3, 6, and 8 on the measures for reducing interference phenomena). In some
cases a relatively high frequency beam modulation or agitation of the receiver, or
the sphere itself, can decrease speckle effects [2.90]. Also, similarly to integrating
spheres, other surface integrating elements, such as long cylinders, can be used for
multiplication of reflected light as employed in solid-state laser resonators [2.91].

Since coupling of two integrating spheres provides double integration of light
scattering via the spheres and likely more uniform Lambertian integration than a
single sphere [4.51], coupled integrating spheres could supplement each other for
auxiliary measurements of the radiant flux [2.93]. One measurement concept is
based on the coupling of symmetrical integrating spheres to simultaneously detect
emission of a test source in two spheres, presuming the complete equality for two
sphere properties (Fig. 2.45). Concurrent use of two identical detectors in each
sphere, measuring respective sphere irradiance due to a test source in a single
sphere, provides for an extra sphere modification factor via the signal ratio of both
detectors and could simplify absolute calibration, providing the spheres are iden-
tical. Test source S emitting flux U0 is placed in the center of sphere 1 connected via
a port of area Ac to sphere 2. The spheres have the same detectors of close-to-zero
reflectivity observing each sphere irradiance via identical ports with spherical
surface Ad ¼ Ac. Matching baffles 1, 2, and 3 screen the detectors from being

Fig. 2.45 Symmetrical
coupled integrating spheres
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directly irradiated by source S or by the source plus sphere 1. Irradiance E1 of
sphere 1 for its area A0 due to source S is:

E1 ¼ U0

A0

q0
1� q 0

01
¼ U0

A0

q0A0

A0 � q0 A0 � Ac � Adð Þ �
U0

A0
F1: ð2:201Þ

Presuming both spheres have identical reflectivity q0, irradiance E2 of sphere 2
due to source S is:

E2 ¼ E1Ac

A0

q0
1� q 0

02
¼ U0

Ac

A0
F1

q0A0

A0 � q0 A0 � Ac � Adð Þ � U0
Ac

A0
F1F2: ð2:202Þ

To equalize the efficiencies of the spheres, identical baffle 4 and not-emitting
source S0 are added to sphere 2:

E2 ¼
F1¼F2¼F0

U0
Ac

A0
F2
0 ¼ U0

Ac

A0

q0A0

A0 � q0 A0 � Ac � Adð Þ
� 2

: ð2:203Þ

Then, at identical efficiencies and reflectivities, efficiency F0 � F1,2 can be
measured via the ratio:

E2=E1 ¼ AcF0 ¼ Acq0= 1� q00
� � ¼

Ac¼Ad

q0A0Ac= A0 � q0 A0 � 2Acð Þð Þ: ð2:204Þ

For certain applications while studying skin tissue or biological samples, it is
advantageous to use an integrating sphere as a uniform diffuse irradiator of a
sample. If light reflected by such a sample is retroreflected by the sphere wall, the
probability model for sample reflection to reach the internal sphere detector or to be
further absorbed by the wall can be based on Markov chains [2.87]. This way the
integrating sphere system as a whole has a number n of finite states, of which m are
absorbing ones, where the probability of light exiting the sphere is zero. The
probability for a photon to hit a given section of the integrating sphere is determined
by the spherical area of the section. For a sphere wall of uniform diffuse reflectance
q0 and inner-surface area A0 having a spherical sample of reflectance qs and area As

with a fully absorbing spherical detector of area Ad, the detector signal due to the
first reflectance of direct light from the sample inside the sphere is proportional to
the number m of absorbing states related to the total area A0 of the sphere
surface; thus:

m=A0 ¼ Ad=1� qsAs � A0 1� q0ð Þ: ð2:205Þ

If the relatively small but flat sample experiences uniform diffuse irradiation via
the wall of a large sphere, the large-sphere and small near-spherical sample
approximation model becomes [2.87].
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m
A0

¼ Ad 1� 1� qsð ÞAsð Þ
1� As � A0 1� q0ð Þ 1� 1� qsð ÞAsð Þ : ð2:206Þ

Solving Eq. (2.206) gives an estimation of the probability of sample reflectance
via sphere irradiation:

qs ¼ 1� Asð Þ m 1� A0 1� q0ð Þð Þ � AdA0ð Þ
AsA0 Ad þm 1� q0ð Þð Þ : ð2:207Þ

Calibrating the detector responsivity via known reflectance references would
quantify the model [2.87].
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Chapter 3
Radiometry of Partially Coherent
Radiation

3.1 Coherence and Radiative Transfer

3.1.1 Observability and Statistical Properties of Radiation

The origin of the photometric and radiometric concept is associated with the desire
to observe and quantify radiation and to measure physical parameters of light beams
via energy and power extents. Owing to the finiteness of the dimensions and time
constants of visual and radiometric detectors, the observation and the measurement
processes are defined not only by wave amplitudes of the electromagnetic oscil-
lations observed, but also by the detector’s response to the squared amplitude of the
wave averaged by detector time and space constants. The properties of the actual
detectors define the space–time averages of radiant or luminous parameters of
optical radiation and cause high-frequency filtration for observable radiation,
leading to an evident lack of correlation between radiometric observation and the
description of wave oscillations by electric and magnetic vector amplitudes [1.2].
Only in the electromagnetic field of a plane monochromatic wave, with the phase of
its oscillation being an amplitude-invariable function of time, is it possible to
construct a single-valued square correlation between the field intensity and its
amplitude. Light waves emitted by sources are not strictly monochromatic owing to
the finiteness of source dimensions and a great number of elementary dipoles
affecting one another. Each light excitation made by a physical source is always
given by a sum of Fourier decompositions to infinitely long individual
monochromatic groups. Therefore, the wave amplitudes and phases of light in any
actual wave field undergo certain irregular fluctuations within spectral width Dm of
effective radiating frequency m.

Furthermore, the amplitude of electromagnetic oscillations producing a
quasi-monochromatic light wave at an average frequency �m can be presumed to be
constant only during a time interval s considerably smaller than the wave coherence
time: Ds ffi 1=ðDmÞ, and within a distance ‘ notably smaller than the spatial
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coherence length D‘ ffi c=ðDmÞ ¼ ð�kÞ2=ðDkÞ of the wave source. The constancy of
the wave amplitude holds true within the coherence region at a given point of the
wave field [1.1]. Such a coherence concept does not contradict traditional radio-
metric definitions, which presume the law of additive superposition of light beams
holds true and expect the absence of observable interference phenomena.
Knowledge of coherence properties of the quasi-monochromatic waves interacting
by engaging in interference or diffraction and the of conditions under which these
coherence properties do not manifest themselves allows one to reveal the bounds of
additive radiometric concepts, the manners of diminishing interference effects, and
the reasons for potential deviations from the additive laws.

Let us consider an electromagnetic field of a number of correlated wave groups
interacting with each other to form the ergodic and, consequently, stationary field of
radiation in statistical equilibrium. This balance means that the field averages by
any ensemble of realizations have identical results as the time average [3.1]. In such
a field, the second-order correlations between two arbitrarily chosen points p1(r1)
and p2(r1) are characterized by the mutual coherence function:

Cðr1; r2; sÞ ¼ Uðr1; tþ sÞU�ðr2; tÞh i; ð3:1Þ

where U(r, t) is the complex analytic representation of the wave oscillation cor-
responding to the amplitude of the electric component of this electromagnetic field
at any established point P(r) of the observation defined by a radius vector r at an
arbitrary moment of time t, and s is the difference in propagation time of a given
wave from points P1(r1) and P2(r2) to the point of superposition P(r). Here the
angle brackets designate the statistical average either by time or by an ensemble,
and the asterisk indicates the complex conjugate. The complex degree of spatial
coherence is represented by the normalized correlation function of the observable
field of optical radiation between spatial points designated by radius vectors r1 and
r2 at instants of time separated by the delay s [1.1]:

cðr1; r2; sÞ ¼ Cðr1; r2; sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðr1ÞIðr2Þ

p : ð3:2Þ

The mutual coherence function C(r, r, 0) at a field point defines the mutual
radiation intensity I(r, 0) at s = 0:

Iðr; 0Þ ¼ Uðr; tÞU�ðr; tÞh i ¼ Cðr; r; 0Þ; ð3:3Þ

while I(r, t) is the average radiation intensity or the mean angular density of the field
at point P(r) and at time instant t. For all possible magnitudes of the argument and by
contrast to oscillations U(r, t) and U*(r, t), the correlation function C(r1, r2, t) and the
similar, but normalized function:

0� cðr1; r2; sÞj j � 1; ð3:4Þ
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which is the complex degree of spatial coherence, are always observable and
experimentally measurable.

The interpretation of the normalized correlation function c(r1, r2, s) as the degree
of coherence corresponds to observation of interference of light beams emanating
from points P1 and P2 and traveling to point P of observation. The resultant radiant
intensity I(r) of two interfering light components becomes:

IðrÞ ¼ I1ðrÞþ I2ðrÞþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1ðrÞI2ðrÞ

p
Re½cðr1; r2; s1;2Þ�; ð3:5Þ

where time constant s is defined by distances PP1 and PP2 and the speed of light in a
given medium:

s1;2 ¼ ðPP1 � PP2Þ=c; ð3:6Þ

I1 and I2 are the radiant intensities of beams emitted from points P1 and P2 as if they
reached P from P1 and P2 with no superposition. For P1 ¼ P2, the modulus of c
defines the fringe visibility V of the interference pattern:

V ¼ ImaxðrÞ � IminðrÞ
ImaxðrÞþ IminðrÞ ¼ cðr1; r2; s1;2Þ

�� ��: ð3:7Þ

Imin and Imax are two extreme values of the average intensity at immediate closeness
to point P.

The complex degree of spatial coherence is the field-correlation criterion,
defining the visibility of the interference pattern by any physical or subjective
detector in either the space domain or the time domain. However, most properties of
radiative energy transfer via substances, bodies, and mediums are spectrally
selective. To express correlations of waves in terms of frequencies, it is natural to
analyze the coherence extents of radiation in the space–frequency domain.
Disregarding conceivable polarization effects, any fluctuating optical field can be
represented by a complex analytical amplitude U(r, t), which, in that case, is the
scalar function of distance and time. The resulting Fourier transform of the complex
wave amplitude with respect to the time variable is [3.1, 3.2]:

Uðr; tÞ ¼
Z1
0

Uðr; mÞ expð�2pimtÞdm: ð3:8Þ

The inverse Fourier transform gives:

Uðr; mÞ ¼
Z1
�1

Uðr; tÞ expð2pimtÞdt: ð3:9Þ
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The average magnitude of amplitude product U*(r1,m) � U(r2,m0), corresponding to
correlation between points P1(r1) and P2(r2) at two different frequencies m and m0

within the limits of all their values, is:

U�ðr1; mÞUðr2; m0Þh i ¼
Z1
�1

Z
U�ðr1; tÞUðr2; tþ sÞh ie2piðm�m0Þte2pim

0tdtds; ð3:10Þ

where t0 ¼ tþ s and U�ðr1; tÞUðr2; tþ sÞh i is the mutual coherence function
Cðr1; r2; sÞ, defined by Eq. (3.1). Since the wave amplitude in a steady-state optical
field is not time-dependent, the result of direct integration over t in Eq. (3.10) is
represented by Dirac’s delta function d:

U�ðr1; mÞUðr2; m0Þh i ¼ dðm� m0ÞWðr1; r2; mÞ; ð3:11Þ

where Wðr1; r2; mÞ is the cross-spectral density function, characterizing a measure
of the correlation for wave oscillations at frequency m at points P(r1) and P(r2) (see,
e.g., [3.3]), and is:

Wðr1; r2; mÞ ¼
Z1
�1

Cðr1; r2; sÞ expð2pimsÞds: ð3:12Þ

The inverse Fourier transform of Eq. (3.12) gives [3.1, 3.4]:

Wðr1; r2; sÞ ¼
Z1
0

Cðr1; r2; mÞ expð�2pimsÞdm: ð3:13Þ

Expressions (3.11)–(3.13) establish that the cross-spectral density function
Wðr1; r2; mÞ characterizes correlations between generalized Fourier components of
light oscillations at given points. These Fourier components of different frequencies
m and m0 do not correlate with each other, and the correlation at frequency m and
delay s are characterized by functionsWðr1; r2; mÞ,Wðr1; r2; sÞ. That assertion [3.4]
presumes a continuous function of m exists for each pair of radius vectors r1 and r2,
which excludes the possibility of having rigorously monochromatic waves, which
are not detected in reality.

From Eq. (3.11) it follows [3.4] that Wðr1; r2; mÞ ¼ Wðr2; r1; mÞ, and the phys-
ical quantity:

lðr1; r2; mÞ ¼ Wðr1; r2; mÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðr1; r1; mÞIðr2; r2; mÞ

p ; ð3:14Þ
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in the space–frequency domain, as the complex degree of spatial coherence
cðr1; r2; sÞ in the space–time domain, can be normalized in such a way that for all
possible magnitudes of arguments r1; r2; m:

0� lðr1; r2; mÞj j � 1: ð3:15Þ

Consequently, the function lðr1; r2; mÞ defines the complex degree of spectral
coherence and the spatial correlation factor for the random field of light of fre-
quency m and at points P1(r1) and P2(r2). Equation (3.14) can be rewritten similarly
to (3.2) and (3.3) in terms of angular frequency x ¼ 2pm as:

lðr1; r2;xÞ ¼ Wðr1; r2;xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðr1;xÞIðr2;xÞ

p ; ð3:16Þ

and the normalizing factor for the not negative continuous cross-spectral density
function [3.4, 3.5]:

Iðr;xÞ ¼ Wðr; r;xÞ; ð3:17Þ

represents the statistically averaged intensity I of optical radiation at each point r1
and r2 at frequency x.

The theory of coherence for the statistically averaged steady-state optical field
[3.1–3.10] allows one to define the law-governed nature of the spatial-angular dis-
tribution of light emitted by an isotropic planar source. The theory is also applicable
to any source that can be reduced to a planar one in a far field where it can be
considered as a material point. The distribution of the intensity of light emission over
such a source is determined by cross-spectral density function W(0)(r1, r2, x) in that
approximation plane, having the source coordinate z ¼ 0. The inverse-square law
for the radiant intensity Ix(s) in the far field for the source, where wave number
k ¼ x=c multiplied by distance r to observation point P(r) identified by
three-dimensional vector s tends to infinity, is given by [3.12]:

IxðsÞ=r2 ! const ¼ Ið1Þðrs;xÞ: ð3:18Þ

Here Ið1Þ is the angular density of the radiation flux at infinity, which is not
dependent on the modulus of r: rj j ¼ r. The magnitude Ið1Þðrs;xÞ, in turn, can be
determined by taking a four-dimensional Fourier transform ~W ð0Þðks?;�ks?;xÞ of
function W(0)(r1, r2, x) (see [3.11]), giving:

Ið1Þðrs;xÞ ¼ ð2pkÞ2cos2H 1
r2

~W ð0Þðks?;�ks?;xÞ

¼ k
2pr2

� �2

cos2H
Z1
�1

Z
Wð0Þðr1; r2;xÞ exp �iðks? � r1 � ks? � r2Þ½ �d2r1d2r2;

ð3:19Þ
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where s? ¼ ðsx; sy; 0Þ is the two-dimensional projection of a unit vector s, pointing
in the direction of energy flow at the angleH to the positive axis: þ z (outer normal
to the source). From Eqs. (3.18) and (3.19):

IxðsÞ ¼ ð2pkÞ2cos2H ~W ð0Þðks?;�ks?;xÞ

¼ k
2p

� �2

cos2 H
Z1
�1

Z
Wð0Þðr1; r2;xÞ exp �iks? � ðr1 � r2Þ½ �d2r1d2r2:

ð3:20Þ

By introducing the difference r0 ¼ r1 � r2 and the average r¼ðr1 þ r2Þ=2 coordi-
nates, one can express respective expressions for the radiant intensity and for the
radiance, as well as for the radiant emittance of any partially coherent planar source
in the following forms [3.6, 3.11]:

IxðsÞ ¼ k
2p

� �2

cos2 H
Z1
�1

Z1
�1

Wð0Þðrþ r0=2; r� r0=2;xÞexp �iks? � r0ð Þd2rd2r0;

ð3:21Þ

Lxðr; sÞ ¼ k
2p

� �2

cosH
Z1
�1

Wð0Þðrþ r0=2; r� r0=2;xÞ exp �iks? � r0ð Þd2r0;

ð3:22Þ

MxðrÞ ¼ k
2p

� �2 Z1
�1

Z
ð2pÞ

Wð0Þðrþ r0=2; r� r0=2;xÞexp �iks? � r0ð Þ cos2 Hd2r0dX:

ð3:23Þ

Equations (3.21)–(3.23) characterize the interdependence of the angular,
surface-angular, and surface densities of optical radiation on the cross-spectral
density function W(0) of the isotropic planar source for any arbitrary state of co-
herence. These relations make the principal consonance among observable radio-
metric parameters and the spatial spectrum of a random electromagnetic field. They
also presume mutual correlation among radiometric parameters Mx(r) and Ix(s) and
spectral radiance function Lx(r, s) designated by Eq. (3.22), which all are to obey
radiometric relationships:

IxðsÞ ¼ cosH
Z
A

Lxðr; sÞdA; ð3:24Þ

MxðsÞ ¼
Z

ð2pÞ

Lxðr; sÞ cosHdX; ð3:25Þ

with such generalized radiance Lxðr; sÞ satisfying the subsequent transfer equation
(see Chap. 1):
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d½Lxðr; sÞ�=ds ¼ 0: ð3:26Þ

In conjunction with the conventional concept reviewed in Chaps. 1 and 2,
Eq. (3.26) confirms the generalized radiance Lx in a material light beam remains
unchanged and the energy of the optical field in free space propagates along straight
lines. At the same time, the generalized spectral radiance Lx and emittance Mx

defined by Eqs. (3.22) and (3.23) can intermittently have negative values. It also
does not follow from any of the expressions above that spectral radiance Lx given
by Eq. (3.22) actually satisfies Eq. (3.26). Moreover, equivalent expressions for Lx
exist, which when substituted in Eq. (3.24) for intensity Ix and then integrated over
the equivalent plane of a given partially coherent source, give the correct formula
for the angular density of its spectral flux as a function of direction. That is the
consequence of the mutual Fourier conjugation for vectors r and s on which any
particular radiance depends simultaneously and of the applicability of the uncer-
tainty principle in the attempt to determine a localized property of a random wave
field [3.12]. Hence, the radiance as a measurement parameter could be unobservable
itself and is defined more precisely at the expense of either a spatial or an angular
position [3.13]. At the same time, the angular density Ix(s) determined for any
source with an arbitrary state of coherence by means of Eq. (3.21) is always an
observable parameter of the optical field. Thus, the spectral radiant intensity Ix(s) of
light emitted by a partially coherent source in the far-field zone from its equivalent
projection plane z ¼ 0 can be considered as the main radiant parameter at frequency
x for any arbitrary direction s.

3.1.2 Planar Sources of Incoherent and Coherent Light

Following Eq. (3.11), the cross-spectral density function of a spatially incoherent
source in the equivalent plane of emission is the product of the two-dimensional
delta function and the spectral distribution Ið0Þ of radiant intensity in the plane [3.4]:

W ð0Þðr1; r2;xÞ ¼ Ið0Þðr;xÞdðr1 � r2Þ; ð3:27Þ

Since the delta function is zero everywhere outside point Pðr1 ¼ r2Þ, where its
magnitude becomes infinite, the intensity Ið0Þðr;xÞ is also zero everywhere outside
the plane of emission. Therefore, the substitution of expression (3.27) into Eqs.
(3.21)–(3.23) gives [3.14]:

Lxðr; sÞ ¼ k
2p

� �2

cosHIð0Þðr;xÞ; ð3:28Þ

MxðrÞ ¼ k2

6p
Ið0Þðr;xÞ; ð3:29Þ
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IxðsÞ ¼ k
2p

� �2

cos2 H
Z
A

Ið0Þðr;xÞdA: ð3:30Þ

Equations (3.28)–(3.30) indicate that as well as conventional radiometric quan-
tities, the radiance, radiant emittance, and radiant intensity of a spatially incoherent
isotropic planar source, defined on the basis of a statistical wave approach, take
positive values in semispace z > 0 and disappear concurrently in the emission plane
with the coordinate z ¼ 0, as they should in accordance with the inverse-square law
at ‘ ! 0. Nevertheless, there is a considerable distinction of the predicted spatial
distribution for the source of equal-to-zero complex degree of coherence since:

IxðsÞjl¼0 ¼ Ix;0 cos2 H; ð3:31Þ

Here Ix,0 is the radiant intensity along direction H ¼ 0�. Consequently, a source
of uniform radiance and of uniform radiant intensity, distributed by the cosine law
I ¼ I0 cosH, has some unequal-to-zero complex degree of coherence. Hence,
oscillation fluctuations in the field of the radiation correlate inside a spatial domain
approaching a length of the order of the average radiation wavelength k.

In the limit of fully coherent light source with equal-to-unity complex degree of
coherence l(0), Eq. (3.11) for the cross-spectral density function of that source can
be rewritten as [3.12]:

W ð0Þðr1; r2;xÞ ¼ Uð0Þðr1;xÞUð0Þ�ðr2;xÞ: ð3:32Þ

Here Uð0Þðr1;xÞ is the scalar potential of the optical field across the plane vanishing
in semispace z > 0 and beyond the limits of source area A. For a cophasal planar
source with the Gaussian intensity distribution Ið0Þðr1;xÞ ¼ I0exp[� r2=ð2r20Þ�; the
field pattern in plane z ¼ 0 is also a Gaussian function:

Uð0Þðr1;xÞ ¼
ffiffiffiffi
I0

p
exp½�r2=ð4r02Þ�; ð3:33Þ

where I0 is the radiant intensity along the axis of the beam and r0 is the distance at
which intensity I0 decreases

ffiffiffi
e

p
times. From Eqs. (3.21) and (3.22), taking into

account s?2 ¼ sin2 H, one obtains:

Lxðr; sÞ ¼ 2
p
ðkr0Þ2Ið0Þðr; sÞ cosH exp½�2ðkr0Þ2� sin2 H

¼ Lw;0ðrÞ cosH exp½�2ðkr0Þ2� sin2 H;

ð3:34Þ

IxðsÞ ¼ ð2kr0Þ2I0 cos2 H exp½�2ðkr0Þ2� sin2 H
¼ Iw;0ðrÞ cos2 H exp½�2ðkr0Þ2� sin2 H:

ð3:35Þ

Figure 3.1 shows modeled angular distributions of radiant intensity (angular
density) and radiance (spatial-angular density) distinguished by the cosH factor for
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Fig. 3.1 Angular distributions of the normalized radiant intensity (1–3) and the normalized
radiance (4–6) of a fully coherent laser source at kr = 0 = cosH(1, 4), kr = 1 (2, 5) and kr = 2 (3, 6)

fully coherent and cophasal planar sources while operating in the lowest transverse
mode with the Gaussian dependence of optical intensity. Since in the optical range
kr0 	 1, such as at k ¼ 632:8 nm and r0 ¼ 1 nm, the product kr0 ¼ 9:9 � 104 and
the radiation intensity is reduced from that in the forward direction by the factor e−2

already at h ¼ 1:01 � 10�4 [3.12].

3.1.3 Quasi-HomogeneousPartiallyCoherent PlanarSources

Let us presume the linear dimensions of source studied are much larger than the
wavelength k of radiation, and the spatial distribution of the radiant intensity in
plane z ¼ 0 is defined by the function Ið0Þ ¼ Ið0ÞðrÞ changing much more slowly
than its complex degree of spectral coherence lð0Þ ¼ lð0ÞðrÞ. Suppose l is different
from zero only in a small region r′ in comparison with the source dimensions, then
the cross-spectral density function W, according to Eq. (3.16), can be given as the
radiant intensity along average coordinate r ¼ ðr1 þ r2Þ=2 multiplied by the com-
plex degree of spectral coherence l, which only depends on r0 ¼ ðr1 � r2Þ=2:

W ð0Þðr1; r2;xÞ ¼ Ið0Þðr;xÞlð0Þðr0;xÞ: ð3:36Þ

A corresponding substitution from Eq. (3.36) into expressions (3.21)–(3.23)
leads to [3.14]:

IxðsÞ ¼ k2 cos2 H~Ið0Þð0;xÞ
Z1
�1

lð0Þðr0;xÞ exp �iks? � r0ð Þd2r0; ð3:37Þ

Lxðr; sÞ ¼ k
2p

� �2

cosHIð0Þðr;xÞ
Z1
�1

lð0Þðr0;xÞ exp �iks? � r0ð Þd2r0; ð3:38Þ

MxðrÞ ¼ k
2p

� �2

Ið0Þðr;xÞ
Z1
�1

Z
ð2pÞ

lð0Þðr0;xÞexp �iks? � r0ð Þ cos2 Hd2r0dX; ð3:39Þ

3.1 Coherence and Radiative Transfer 137



where ~Ið0Þð0;xÞ is the two-dimensional spatial Fourier spectrum of intensity
Ið0Þðf; xÞ at f ¼ 0:

~Ið0Þðf;xÞ ¼ 1

ð2pÞ2
Z1
�1

Ið0Þðr;xÞ exp �if � rð Þd2r: ð3:40Þ

Since l(0)(r, x) > 0 inside region r′, the radiance of a quasi-homogeneous
partially coherent planar source, viewed from the phenomenological radiometric
standpoint, remains positive over the entire semispace z > 0. At the same time
[3.12], the source radiance Lx(r, s) expressed by Eq. (3.38) remains unchanged
along any direction s over a distance ‘ defined by the limit:

‘ 
 2 cos4 H
�
sinH

� �
k
�
fj jmax

� �3
k; ð3:41Þ

where H is the angle between the propagation direction s and the positive z axis,
and fj jmax is the maximum spatial frequency for the intensity distribution of radi-
ation emitted by the source and identified by Eq. (3.40). By definition, changes of
I(0)(r, x) at any distance on the order of a given light wavelength are not large and
the k

�
fj jmax ratio is much greater than unity. Thus, radiance constancy remains

within relatively broad distances compared with wavelength k defined for the
ergodic optical field. Therefore, inequality (3.41) identifies the limits for the main
Eq. (3.26) of radiant transfer and for the primary radiometric invariant derived from
phenomenological considerations.

The radiant emittance of a quasi-homogeneous source due to Eq. (3.39),
according to its radiometric meaning as the ratio of its flux to the source area while
the source is seen as a material point, may be viewed via the distribution of the
angular density multiplied by factor Cx [3.15]:

MxðrÞ ¼ UxI
ð0Þðr;xÞ=

Z1
�1

Ið0Þðr;xÞ d2r ¼ Ið0Þðr;xÞCx: ð3:42Þ

Thus, Cx defines the propagation efficiency of radiation emission by the source
at frequency x:

Cx ¼ k
2p

� �2 Z1
�1

Z
ð2pÞ

lð0Þðr0;xÞexp �iks? � r0ð Þ cos2 Hd2r0dX; ð3:43Þ

where Ux is the total flux emitted by the source at the contributing frequency.
Therefore, the radiant emittance MxðrÞ of any quasi-homogeneous planar source is

given by the complex degree of its spectral coherence l
ð0Þ ðr0;xÞ. Owing to the

restriction 0� lð0Þðr0;xÞ�� ��� 1, the emittance of a quasi-homogeneous planar

source can never exceed the magnitude of Ið0Þðr;xÞ in the source plane.
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If radiation of a quasi-homogeneous source is correlated in such a way that the
complex degree of its spatial coherence l, distributed in the source plane, is a
Gaussian function, represented as:

lð0Þðr0;xÞ ¼ exp½�r02=ð2rl2Þ�; ð3:44Þ

major radiometric quantities can be expressed in a more traditional way. The
spectral radiance of a quasi-homogeneous Gaussian planar source may be repre-
sented by the following equation [3.15]:

Lxðr; sÞ ¼ krl
2p

� �2

Ið0Þðr;xÞ cosH exp �ðkrlÞ2
2

sin2 H

" #

¼ Lx;0 cosH exp �ðkrlÞ2
2

sin2 H

" #
;

ð3:45Þ

with its radiant intensity I at frequency x in direction s being consequently iden-
tified as:

IxðsÞ ¼ 2pðkrlÞ2~Ið0Þð0;xÞ cos2 H exp½�0:5ðkrlÞ2 sin2 H�
¼ Ix;0 cos2 H exp½�0:5ðkrlÞ2 sin2 H�:

ð3:46Þ

Here rl is the effective radius of coherence. From Fig. 3.2, it is seen that the
larger is the product krl defining the source effective coherence area, the more
directional this radiation propagation becomes. In another limiting case, krl ! 0,
the radiance of a Gaussian-correlated quasi-homogeneous source at tending-to-zero
coherence area changes as cosH for radiant intensity changing as cos2H. Similarly,
if the magnitude of lð0Þðr0;xÞ increases, the propagation efficiency of Gaussian-
correlated light emitted by such a source also increases with coherence area
krl ! ∞ and its divergence tends to zero.
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Fig. 3.2 Angular distributions of the normalized radiance (1–4) and the normalized radiant
intensity (5–8) of a Gaussian correlated homogeneous source as a function of the coherence area
equal to: 0 - (1, 5), 1 - (2, 6), 2 - (4, 8), 8 - (3, 7); lambertian - (9)
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For a blackbody source maintained at thermal equilibrium, its radiant intensity
Ix;0 from the effective emitting plane of coordinate z ¼ 0 does not change when
viewed via an exit aperture of negligibly small area A. The blackbody complex
degree of spectral coherence becomes [3.14]:

lð0Þðr0;xÞ ¼ sin kr0

kr0
; ð3:47Þ

where r0 ¼ r0j j. Equations (3.37) and (3.38) make it evident that the blackbody
radiance emitted by a small open aperture A, notably larger than the observed
wavelengths of its radiation, remains unchanged:

Lxðr; sÞ ¼ 1
2p

Ix;0 ¼ Mx;0

p
: ð3:48Þ

Here (see Eq. (3.42)):

Mx;0 ¼ Ix;0Cx ¼ Ix;0=2; ð3:49Þ

is the effective radiant emittance of the blackbody source given by the product of its
propagation efficiency and the angular-density distribution function across the
source, defining the light intensity. The blackbody radiant intensity changes in
proportion to the cosine of the observation angle:

IxðsÞ ¼ A
2p

Ix;0 cosH ¼ A �Mx;0

p
cosH: ð3:50Þ

Equation (3.49) indicates that the propagation efficiency of radiation in free space at
thermal equilibrium is Cx ¼ 0:5. The second equalities in Eqs. (3.48) and (3.50)
coincide with fundamental radiometric dependencies derived from phenomeno-
logical considerations in Chap. 1 and confirm the imperative agreement between
the phenomenological and statistical observation. This is especially significant in
view of Eq. (3.47), implying that even a uniform Lambertian source of radiation is
not fully spatially incoherent and the field of optical radiation correlates over a
minute but finite distance compatible with the radiation wavelength [3.11].

3.1.4 Propagation of Coherence and Observation
of Polychromatic Radiation

Further overcoming the limitations of the generalized radiance function Lx(r, s),
introduced via Eq. (3.22), that does not necessarily follow the properties of ra-
diometric radiance L by Eq. (1.31), the short-wavelength-limit models for gener-
alized radiometry of light transfer define the quasi-homogeneous sources of
nonstationary polychromatic optical radiation [3.16–3.25]. For any planar
quasi-homogeneous secondary source of radiation, the fluctuations of which may be
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represented via the statistically stationary ensemble fUðr; mÞ exp ð�2pimtÞg of
monochromatic oscillations, the cross-spectral density function W(r1, r2, m) at
frequency m for points p1 and p2 of radius vectors r1 and r2 to the center of the
source, taking a finite part of the source plane z ¼ 0, can be expressed in the space–
frequency domain [3.13] as:

Wðr1; r2; mÞ ¼ U�ðr1; mÞUðr2; mÞh i: ð3:51Þ

If each realization is expressed via the angular spectrum of plane waves, in
half-space z � 0 [3.17]:

Wðr1; r2; mÞ ¼
Z1
�1

Z
Aðs1; s2; mÞ exp ikðs2 � r2 � s1 � r1Þ½ �d2s1?d2s2?; ð3:52Þ

where Aðs1?; s2?; mÞ ¼ a�ðs1; mÞaðs2; mÞh i is the angular correlation function for
two-dimensional projections s1⊥ and s2⊥ onto the z plane, then by designating sum
and difference vectors s ¼ ðs1 þ s2Þ=2 and s0 ¼ ðs1 � s2Þ, having s1 ¼ s� s0=2 and
s2 ¼ sþ s0=2, while counting contributions from homogeneous but not evanescent
waves, rapidly decaying away from plane z ¼ 0, Eq. (3.52) becomes [3.17]:

Wðr1; r2; mÞ ¼
Z1
�1

d2s0?

Z
d2s?Aðs? � s0?

�
2; s? þ s0?

�
2; mÞ

� exp ik s � ðr2 � r1Þþ s0 � ðr2 þ r1Þ=2½ �f g:
ð3:53Þ

The omission of evanescent waves allows one to keep the integration in Eq. (3.52)
within domains s1⊥ � 1.0 and s2⊥ � 1.0, and to introduce for this approximation
a generalized radiance Lm:

Lmðr; sÞ ¼ sz

Z
s2? � 4

Aðs? � s0?
�
2; s? þ s0?

�
2; mÞ exp iks0 � rð Þd2s0?; ð3:54Þ

which for sufficiently short wavelengths, making k ¼ 2p=k ! 1 [3.17], acquires
the properties of the radiometric radiance identified by Eq. (1.31). For z > 1.0 the
cross-spectral density is:

Wðr1; r2; mÞ ¼
Z
2pð Þ

Bm r1 þ r2ð Þ=2; s½ � exp iks � r2 � r1ð Þ½ �dX; ð3:55Þ

where dX ¼ dsxdsy
�
dsz is the element of solid angle for unit vector s pointing to

half space z > 0.
Most previous considerations of generalized radiometry were given for

monochromatic and stationary optical fields. Other definitions for the generalized
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radiance can be invoked for polychromatic and nonstationary fields [3.19]. In a
stationary field, the correlation of amplitudes for two time–space field points are
defined by the mutual coherence function C(r1, t1; r2, t2) related to cross-spectral
density function W(r1, r2, x) at frequency x via a temporal Fourier transform [3.18]:

Cðr1; r1; sÞ ¼
Zþ1

0

dx exp �ixsð ÞWðr1; r1;xÞ; ð3:56Þ

where s ¼ t1 − t2 is the time difference between selected field points p1 and p2,
which in this case are not necessarily located in one plane, and for which the
cross-spectral density function can be represented by a complex scalar function
Ux(r) of the field, while omitting evanescent waves:

Wðr� p=2; rþ p=2;xÞ ¼ U�
xðr� p=2ÞUxðrþ p=2Þ	 


; ð3:57Þ

where r and p are the mean-position and separation vectors for the given arbitrary
points p1 and p2. For the considered approximation of a stationary and
quasi-homogeneous field, the complex generalized radiance function Lcðr; s;xÞ for
the polychromatic field can be defined via the mutual coherence function C(r � p/2,
r þ p/2,s) for field points r � p/2 and r þ p/2 positioned symmetrically to mean
point r as [3.20]:

Lcðr; s;xÞ ¼ k2

2pð Þ3c

Z
d3p �i ðk � p� xsÞ½ �Cðr� p=2; rþ p=2; sÞ; ð3:58Þ

giving the Fourier-transform pair for mutual coherence Cðr� p=2; rþ p=2; sÞ and
complex generalized radiance Lc(r, s, x) functions:

Cðr� p=2; rþ p=2; sÞ ¼ c
Z

d3k
k2

exp i k � p� xsð Þ½ �Lcðr; s;xÞ: ð3:59Þ

The mutual intensity function I(r, r, 0) is obtained via mutual coherence
C(r � p/2, r þ p/2, 0) setting s ¼ 0; here k ¼ ks is the wave-number vector. The
complex generalized radiance Lc(r, s, x) converts to the generalized radiance
function Lx(r, s) by Eq. (3.22) via cross-spectral density functionW zð Þðr1?; r2?;xÞ:

Lxðr; s;xÞ ¼ sz
k
2p

� �2Z
d2p? exp �ik? � p?ð ÞW zð Þðr? � p?=2; r? þ p?=2;xÞ; ð3:60Þ

and defines the cross-spectral density function of a quasi-homogeneous optical field
[3.20, 3.19]:

Wðr� p=2; rþ p=2;xÞ ¼
Z

dX sð Þ exp ik � pð ÞLcðr; s;xÞ; ð3:61Þ
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where W(z)(r1⊥, r2⊥, x) is the cross-spectral density function in a given projection
plane z ¼ const, and dX(s) is the element of solid angle into the direction of unit
vector s at the mean position r. The mutual coherence function of the polychromatic
field within given domain r ± p/2 is [3.20]:

Cðr� p=2; rþ p=2; sÞ ¼
Zþ1

0

dx expð�ixsÞWcðr� p=2; rþ p=2;xÞ; ð3:62Þ

where Wcðr� p=2; rþ p=2;xÞ; is the complex version of cross-spectral density
function, leading the complex generalized radiance Lcðr; s;xÞ to be seemingly
valid regardless of the state of coherence [3.19]:

Lcðr; s;xÞ ¼ k2

ð2pÞ3c

Z
d3p½ð�ik � pÞ�Cðr; rþ pÞ: ð3:63Þ

The necessity to invoke the complex radiance and cross-spectral density func-
tions evolves from inequivalence of the averaged z-component of phase vector kzpz
for points k1 and k2 designated by vectors r and r + p of the polychromatic field to
the arithmetic average, which becomes [3.20]:

kz;1 þ kz;2
2

� �
pz ¼ kzpz þ pz

4k3z
k2z p

2
? � k? � p?ð Þ2

h i
þ const � p4?

� �
: ð3:64Þ

3.1.5 Summary

Coherence theory provides transitions to main radiometric parameters of optical
radiation via the functions of cross-spectral density and complex degree of spectral
coherence of the statistically stationary and quasi-homogeneous optical field. The
inverse task, which defines the coherence properties of radiation by the observable
distribution of its radiant or luminous intensity, remains imperative and valuable.
The primary postulate for the identification of the state of radiation coherence is
formulated as the van Cittert–Zernike theorem (see [1.1, 3.6] for details) and can be
summarized by the following two statements: (1) the complex degree of spectral
coherence, describing the correlation among fluctuations of the light field created by
any quasi-homogeneous planar source, is identical to the normalized amplitude of
the diffraction pattern, commencing in the field for the aperture of the same form and
dimensions as the source; (2) the pattern resulting from interference at two given
points of the wave field of the planar source is equivalent to the diffraction pattern on
the aperture, which is equivalent to that of a planar source of the spherical wave with
the intensity distribution as that of the source [1.1]. It can be also stated [3.2, 3.15]
that within the accuracy of a geometrical phase factor the complex degree of spectral
coherence of a beam of optical radiation in the far-field zone of any
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quasi-homogeneous planar source is equal to the normalized Fourier transform of the
distribution of optical, radiant or luminous, intensity across that source. The
approaches and specific methods for reduction or elimination of the coherence
effects produced in respective spatial and/or temporal distributions of optical radi-
ation intensity from those predicted by the phenomenological radiometric approach
are reviewed in paragraph 3.3, while diffraction effects in photometry and radiometry
and spectral or color measurements are assessed in paragraph 3.4.

3.2 Laser and Pulsed Light

3.2.1 Propagation Extents of Laser Radiation

Two major properties of optical radiation generated by lasers—high directness and
narrow spectral bandwidth—noticeably distinguish laser radiation from radiation
spontaneously emitted by thermal sources. Both the high directness and the high
spectral density of laser light are defined by distinguishable correlations among
wave oscillations in the field of laser radiation owing to the high degree of spatial
and temporal coherence. The directness of laser light sets a limit on the potential
applicability of all previously considered approximations of geometrical optics and
on the radiometric relationships for propagation of light emitted by point sources.
The ability of laser radiation to execute spatial and temporal interference of high
contrast restricts the additive rule of superposition for the overlapping light beams.
To consider the outcome on radiometric laws and rules of measurement due to
coherence of laser radiation, let us review specific properties of laser light, such as
nonisotropic angular distribution of the radiation intensity and the great ability of
laser light to generate interference patterns with unequal-to-zero contrast.

Consider an ideal laser as a fully spatially coherent and cophasal planar source
(see Sect. 3.1 for terminology) with a Gaussian intensity distribution profile of
radiation given by equation:

Ið0Þðr;xÞ ¼ I0 exp[� r2=ðr20Þ�: ð3:65Þ

The emittance M of such laser radiation can be obtained from Eqs. (3.23), (3.42)
and (3.43) [3.8]:

MxðrÞ ¼ 1� FðaÞ
a

� �
Ið0Þðr;xÞ; ð3:66Þ

where a ¼ ffiffiffi
2

p ðkr0Þ (see Fig. 3.1), and F(a) is the Dawson integral [3.8, 3.12, 3.26]:

FðaÞ ¼ expð�a2Þ
Za
0

expðx2Þdx: ð3:67Þ
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Defining UR ¼ R1�1 Ið0Þ r;xð Þd2r; the propagation efficiency Cx ¼ Ux/UR of
such coherent light is [3.8]:

Cx ¼ 1� F
ffiffiffi
2

p ðkr0Þ
� �
ffiffiffi
2

p ðkr0Þ
: ð3:68Þ

If kr0 ! 1, efficiency Cx ! 1.0, and the wave front of radiation from this
cophasal and coherent source is that of the infinite plane wave that for negligible
diffraction produces one freely propagating light ray, and the efficiency diagram of
such radiation is a straight line (see Fig. 3.3).

Equations (3.34), (3.35), and (3.42) define that for a cophasal and fully coherent
laser of Cx ¼ 1 with observation direction H ¼ 0°, the main radiometric param-
eters of laser light transform to:

IxðsÞ ! Ix;0ðrÞ; Lxðr; sÞ ! Lx;0ðrÞ; MxðrÞ ! Ið0Þðr;xÞ: ð3:69Þ

In all other directions H 6¼ 0°, both Ix and Lx, which are dependent on s, become
zero. A much less coherent laser light is emitted by a Gaussian-correlated
quasi-homogeneous source with its complex degree of spatial coherence given by
expression (3.44). By substitution of Eq. (3.44) into Eq. (3.43), the propagation
efficiency for a Gaussian-correlated source can be expressed as [3.15]:

Cx ¼ 1� F ðkrlÞ=
ffiffiffi
2

p� �
krl=

ffiffiffi
2

p : ð3:70Þ

Comparison of Eqs. (3.68) and (3.70) for the propagation efficiency demon-
strates that at the limit kr0 ! 1, the highest degree of coherence causes the
maximum propagation efficiency (Fig. 3.3).

In practical terms, in the regular optical spectral domain the product krl can be
large, but not extremely large; therefore, the complex degree of spatial or temporal
coherence and the propagation efficiency of laser radiation defined by krl all
asymptotically tend to 1.0. Similarly, even the fundamental TEM00 mode of laser
emission forms not an infinite but a limited plane wave having its divergence
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defined by diffraction on an output coupler of a respective laser resonator. In the
approximation of the far-field zone, corresponding to Fraunhofer diffraction, which
begins from distances on an order of magnitude larger than ‘ ffi r20

�
2k [3.27], the

overall divergence of a laser radiation beam, defined by the half value of the
radiation intensity along its optical axis, is H ffi k=ð2r0Þ. As a result, toward the
far-field distances ‘F 	 ‘0, the cross section of a laser beam can be defined by its
initial diameter 2r0 plus the diffraction-limited divergence:

D ¼ 2r0 þ ‘Fk
2r0

: ð3:71Þ

Equation (3.71) identifies conditions of the radiometric approach for represent-
ing a material beam of laser radiation. It is sufficient that at relatively long distances
‘ the first term in Eq. (3.71) can be disregarded. Then, the diameter of the beam is
D ffi ð‘FkÞ=2r0. Consequently, such a laser beam can be considered as having
emerged from a single point P′ (see Fig. 3.4), and from that perspective the laser
emission is to the far-field zone as of the effective point source. If at a distance ‘d in
the far-field zone, a detector is completely irradiated by the defined laser beam, the
longitudinal transformation of the detector’s position will change its irradiance in
square proportion to distance ‘d from the effective point source P′ identifying the
far-field radiation. Thus, the irradiance changes at each point of this field of laser
radiation, such as points 1 and 2, are given by the inverse-square law E2 ¼ E1‘

2
1=‘

2
2,

as defined by radiometric and photometric phenomenological concepts for restricted
conditions of these observations.

In every particular case, it is appropriate to chose a criterion to satisfy the
requirement of the far-field zone: ‘F 	 ‘0. The suitable far-field conditions can be
determined in each given situation, such as the particular type of laser resonator,
certain projective optics, and the surrounding medium. Therefore, the applicability
of the inverse-square law for laser radiation (see Chaps. 1 and 2) requires one to
establish distance limits for the appropriate far-field-zone approximation.

Within the near-field region for laser radiation: ‘N 
 ‘0, which corresponds to
Fresnel diffraction with an irradiance level within a laser source beam that virtually
does not depend on distance, measurements of the power or energy of such a laser
beam become quite straightforward. Consider a physical detector whose cross
section is wider than that of the laser beam which is placed in position D0 within its

D0

laser cavity

DD’

P

Fig. 3.4 Laser beam with Gaussian intensity distribution
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near-field region defined by distance ‘0 in Fig. 3.4. When the detector sensitivity in
absolute terms is known and is independent of beam position, the detector reading
gives directly the absolute power or energy of the laser beam (see Chap. 4 for
details). In particular, the lack of need to collimate laser radiation in a near-field
zone considerably enhances the applicability of lasers and laser-based systems for
measurements of optical properties of substances, bodies, and mediums.

3.2.2 Applicability of Lasers for Various Optical
Measurements

The high monochromaticity and low divergence of laser radiation do not neces-
sarily cause any unusual conditions for measurements to be made. Likely irregu-
larities may only be caused by superposition of partially coherent laser beam
components. If a free-propagation state for partially coherent laser light forming a
material beam is broken by the presence of collimating optics, by bounds of sep-
arating mediums with diverse refractive indices, or by noticeable index disconti-
nuities compared with laser light wavelengths, the interference patterns can change
the rule of additive summing owing to superposition of light paths for interfering
laser beam components. In every specific situation, deviations from radiometric
additivity, appearing because of interference effects, are defined by the length and
time of laser coherence, by particular spatial and temporal delays of interfering
components, and by specific localizations of space and time regions in which the
laser light observations are realized.

Since the notions of the length and time of coherence (Eqs. (3.1)–(3.17)) are set
as conditioning factors over the totality of all interacting monochromatic vibrations
f(m) forming a laser beam F(t):

FðtÞ ¼
Z1
0

f ðmÞ expð�2pimtÞdm; ð3:72Þ

the larger is the number N of Fourier components passing at observation time T via
a chosen spatial point, the more precisely the average intensity �I of the beam is
given by the additive sum [0.27, 1.1, 3.34]:

�I ¼ N
2T

Z1
�1

f ðmÞj j2dm: ð3:73Þ

The lower is the total number N of components, the more compressed the
effective frequency domain of its Fourier spectrum Dx ffi ð2pÞ=ðDtÞ or Dm ¼
1=ðDtÞ becomes, and the smaller is the number of randomly distributed components
passing the observation point during any fixed time interval. Owing to that spectral
compression, the additive rule of summing becomes less precise for this wave
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group. The time and the space intervals Dt and D‘ of the wave group correlation,
D‘ ¼ cDt, define the time and the length of coherence and identify deviations from
the additive-summation law.

At the same time, according to the law of conservation of energy, the total
intensity of light components forming an interference pattern distributed in space or
in time may not be different from the additive sum obtained in the absence of any
interference. Therefore, an obvious way to prevent an influence of the interference
on the result of the radiometric measurement is to obtain a respective space or time
integral of all interfering radiation components on the sensitive surface of a physical
detector. Such a notion means that when partially coherent light is measured, the
additive rule of radiometric summation may be strictly observed if not enough
resolution, spatial or temporal, for the measurement detector is utilized. The av-
eraging and integrating in time and space domains considerably larger than the
specific temporal and spatial dimensions of interference patterns occurring allows
one to observe the averaged statistical ensemble of interfering intensities:

E2
	 
 ¼ E2

i

	 
þ E2
j

D E
: ð3:74Þ

Particular optical schematics for forming characteristic spatial interference pat-
terns are well known and include plane-parallel plates as beam splitters, objectives,
and interferometers (Fig. 3.5a). The origination of a temporal interference pattern
distributed in time is seen in Fig. 3.5b. Laser light source 1 emits a
quasi-monochromatic plane wave k, shown as a parallel beam, in one example.
Plane-parallel plate 2 of thickness ‘ with refractive index n is placed in the beam’s
near field in another example. Beam splitter 2 may be viewed as an effective Fizeau
interferometer [1.1, 1.6] making two respective interference patterns, localized
within the reflected and the transmitted beam paths. The phase shift ds in the
transmission pattern between two neighboring components for the infinite sequence
of the light beams retroreflected within the plate becomes:

ds ¼ 4p=k0ð Þn‘ cosu: ð3:75Þ

The consecutive phase shift dq for the respective pattern in radiation reflected
from the splitter is:

dq ¼ 4p‘
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2 sin2 u

q
 p: ð3:76Þ

4

(a) (b)
1 2 3

ϕ

Fig. 3.5 Overlapping of light
paths on superposition a and
splitting b of beams
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Here u is the angle between the wave normal to splitter 2 and the optical axis of the
laser beam. The interference patterns are additive to one another: the maximum in
reflected light corresponds to the minimum in transmitted radiation and vice versa.
The spatial patterns in the reflected and transmitted paths appear with displacement
d ffi 2‘ sinu (Eq. 1.100). Intensity detectors 3 and 4, set in the transmitted and
reflected light paths, respectively, measure beam intensities Is and Iq transmitted by
the splitter bulk and retroreflected between two splitter surfaces, then sequentially
transmitted by the splitter and reflected from it. To summarize all reflected com-
ponents, the effective apertures of both detectors must be larger than the cross
sections of the beams. If the spatial resolution of detectors 3 and 4 does not allow
one to distinguish any of these interference patterns, and if the sum of each ret-
roreflected component intensity across every light path is registered, one will not
see interference affecting the results of these measurements. Even if the source
emits any number of monochromatic components in spectral interval Dk, the ra-
diometric observation may not be necessarily obscured. The spatial interference
patterns become more complicated, but as long as the spatial and temporal patterns
are not resolved by detectors, the sums remain unchanged.

Furthermore, the necessary steady-state condition for the measurement of spatial
and temporal patterns is achieved only when the totality of all spectral components
F(t) of a laser beam (Eq. 3.72) is not changed during a measurement cycle within
observation time Dt. Equations (3.75) and (3.76) reveal that if a specific subset of
light emitted by any given source is changed, the phases of retroreflected compo-
nents compared with the phases of directly transmitted components or of other
components reflected by two splitter surfaces may change. Moreover, these changes
are additive in transmitted and reflected light. At diverse time instances ti, combined
spectral components ki in reflected and transmitted radiation have interference
patterns with the supplementary to each other extrema, being functions of the
2‘n cosu=ki ratio. Thus, the beam splitter conversion of spectral instabilities in
laser emission into transmitted and reflected radiation enables observation of ran-
dom spatial or temporal interference patterns.

A certain irregularity in the spectral composition of light emitted by every source
of radiation and frequency fluctuations among its components is the fundamental
characteristic of the emission process. The concept of partial coherence is defined
by statistical correlations among fluctuations for the field of observable optical
radiation. Particularly for any laser source, except a nonlinear regime at a high
power density, the act of lasing is a Gaussian random process with an irregular
structure, having the interval of correlations defined by the cavity intermode dis-
tance of the laser. The intensity distribution function ~IðmÞ for any given independent
single laser mode versus its averaged emission intensity ~IðmÞ	 


at frequency m can
be expressed in the form [3.28, 3.29]:

f ~IðmÞ � ¼ 1
~IðmÞ	 
 exp �

~IðmÞ
~IðmÞ	 


" #
; ð3:77Þ
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and the spectrum of laser-radiation emission is defined by the statistics of its
specific noise process.

When laser light interacts with an optical system, the existence of all mentioned
fluctuations is manifested through various interference effects. For the plane-parallel
beam splitter (Fig. 3.5b) formed as a transparent plate with surface reflectance q,
the intensity Is of radiation transmitted via the plate is identified by the intensity I0
of emission, its wavelength, and the splitter’s optical thickness:

Is ¼ I0
ð1� qÞ2

ð1� qÞ2 þ 4q sin2ðd=2Þ : ð3:78Þ

For low surface reflectance q of the splitter, the maximum beam intensity and the
minimum beam intensity:

Is;max ¼ I0; Is;min ¼ I0
1� q
1þ q

� �2

; ð3:79Þ

do not significantly change from the mean intensity �Is of transmission in the
absence of interference:

�Is ¼ I0
1� q
1þ q

: ð3:80Þ

The opposite situation exists for the intensity of optical radiation reflected by the
splitter:

Iq ¼ I0
4q sin2ðd=2Þ

ð1� qÞ2 þ 4q sin2ðd=2Þ : ð3:81Þ

The maximum intensity in the multiple-beam interference pattern occurring in
reflected light,

Iq;max ¼ I0
4q

ð1þ qÞ2 ; ð3:82Þ

exceeds the average intensity �Iq of the reflected beam nearly twice (compare
Eqs. (1.106), (1.107)):

�Iq ¼ I0 2q= 1þ qð Þ½ �: ð3:83Þ

At the same time, the intensity of the interference minimum for the
reflected-light pattern becomes zero.

As a result, the relative intensity changes from the mean level to the maximum
and the minimum are:
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dIs ¼ DIs
Is

¼  1� 1� q
1þ q

� �
¼  2q

1þ q
ffi
q
1

2q; ð3:84Þ

dIq ¼ DIq
Iq

¼  2q
1þ q

� 1
� �

¼  1� q
1þ q

ffi
q
1

ð1� 2qÞ: ð3:85Þ

The practical probability of full intensity transfer of radiation from any ki maximum
or minimum to another of kj, causing the opposite result of interference, is extre-
mely small. Intensity fluctuations in actual experiments are much lower than those
predicted by Eqs. (3.84) and (3.85) expecting interference extrema to be completely
swapped. However, the change of the spectral distribution of light emission needed
for a given extremum to be swapped is so trivial it can take place at will, especially
for unstabilized laser sources. For example, for the splitter thickness ‘ ¼
2:5mm, n ¼ 1:5; u ¼ 0� and Dk ¼ 1059� 1061 nm (Fig. 3.5b), changes of an
emitting wavelength by every 0.11 nm determine the transfer from the minimum to
the maximum of reflected-light interference.

Propagation of laser light can often be accompanied by multiple interactions
with optical elements and mediums of propagation. This may be accompanied not
only by spectral changes, but also by fluctuations of the light-propagation direction
and of the divergence of the laser beams formed. Therefore, to provide accurate
measurements using optical radiation emitted by lasers, one must either fully
eliminate or integrate in space and time all spatial and temporal interference pat-
terns, while achieving feasible stabilization of spectral, spatial, and temporal
parameters of laser light.

3.2.3 Optical Radiation as a Pulse Train

Conventional radiometry and photometry always assume the radiant and luminous
parameters of radiation can be represented and characterized as derivatives of a
steady-state flux of light flowing within the entire time of observation. However,
any material beam of optical radiation can almost never be actually considered as an
infinitely long harmonic oscillation having a constant frequency and constant
amplitude. Even the sum of two equivalent harmonic oscillations, having stable
amplitudes, becomes an amplitude-modulated traveling wave:

EðtÞ ¼ E cosðx1tÞþE cosðx2tÞ ¼ Emod cosð�xtÞ; ð3:86Þ

where EmodðtÞ ¼ 2E cosðxmodtÞ, xmod ¼ ðx1 � x2Þ=2, and �x ¼ ðx1 þx2Þ=2.
Thus, when measuring a flow of quasi-continuous radiation emitted by a number of
oscillators, one may consider the amplitude-modulated flux of radiation as the mean
(averaged) power �U existing at observation time T:
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�U ¼ 1
T

ZT
0

UiðtÞdt; ð3:87Þ

where UiðtÞ is the instantaneous radiant flux of quasi-continuous radiation at the ith

instant of time.
Let us consider a wave function W(t) representing the superposition of a great

number N of oscillations with equivalent amplitudes w(t) and initial phases u = 0,
where the oscillation frequencies xi are spread within frequency range Dx ¼
x2 � x1: If single-wave oscillations are close enough to be approximated by one
mean frequency �x ¼ ðx2 þx1Þ=2, the resulting oscillation represents a pulse
existing only during a limited time interval: Dt ¼ 1=Dx [3.30]. The fact that the
pulse exists clearly assumes that the pulse amplitude is not zero. The maximum
potential amplitude N � w(t) of the pulse corresponds to the number N of fully
synchronized oscillations in the superposition. If all oscillation phases are corre-
lated, the time interval Dt of pulse existence is defined as DtDx ffi 2p or DtDm ffi 1.
The wave function W(t) at interval Dt exceeds the zero level, which corresponds to
isotropic distribution of independent harmonic oscillations within the 2p
angular-frequency limit (see paragraph 3.1). If the phases of its components are not
correlated, but just have some phase shift, the superposition, as the pulse being
considered, does not reach its maximum and the time interval of the resulting pulse
existence respectively increases. Consequently, in the case of a certain random
harmonic phase distribution, leading to the product: DtDm 	 1, the total duration of
the effective pulse tends to infinity and its amplitude becomes equal to the statistical
average of the component amplitudes of such a superposition. Therefore, the pulse
ceases to become distinguishable, and the resulting function represents the
quasi-continuous signal. Consequently, depending on the existing phase correlation
among light components, the wave function of the quasi-continuous signal analyzed
is equivalent to that of a certain sequence of pulses and can be represented as a set
of standard pulses, the response to whose actions by a particular measurement
system may already be known.

At an instance of time t, the response gðt; sÞ of a measurement system to a unit
pulse pi(t) is:

piðtÞ ¼ 1½t � ði� 1=2ÞDT � � 1½t � ðiþ 1=2ÞDT �; ð3:88Þ

being equal to 1 at ði� 1=2ÞDT � t�ðiþ 1=2ÞDT and to zero at all other instances
[3.30]. Thus, exposing the system to the pulse at time interval s = (1 − 1/2)DT, the
response can be expressed via operator P:

g½t; ði� 1=2ÞDT� ¼ P½piðtÞ�: ð3:89Þ

A linear system responding to input action m[pi(t)] makes a proportional reaction
mP[pi(t)]; thus:
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P½pi tð Þþ pj tð Þ� ¼ P½pi tð Þ� þP½pj tð Þ�: ð3:90Þ

As a result, the input action provided by any arbitrary function U(t) for a linear
system can be approximated by the sequence U′(t) of N pulses expressed by means
of these unit pulse impacts:

U0ðtÞ ¼
XN
i¼�N

uðiDTÞf1½t � ði� 1=2ÞDT � � 1½t � ðiþ 1=2ÞDT �g: ð3:91Þ

Accordingly, the shorter time interval DT is, the better the function U(t) is
approximated by the set of oscillations U0ðtÞ. As a result, the following response of
the measurement system to the signal represented by such a sequence can be more
appropriately expressed by means of reactions to unit pulses. Keeping in mind that
the derivative of any step function is the Dirac delta function:

d1ðt � sÞ=ds ¼ �dðt � sÞ; ð3:92Þ

at the DT ! 0; N ! 1 limit, one can replace the input action U(t) by a continuum
of sequential pulses:

UðtÞ ¼
Z1
�1

uðtÞdðt � sÞds: ð3:93Þ

Thus, the system’s response Y(t) to the input action can be represented by a
convolution integral:

YðtÞ ¼
Z1
�1

uðtÞhðt � sÞds: ð3:94Þ

Here h(t − s) is the pulse response of the measurement system, which determines
its reaction at time instant t to the delta pulse acting at moment s. For a steady-state
system, its pulse response depends only on the interval remaining after the action,
and is not a function of the time instance at a start of the action. Following
Eq. (3.92), pulse response h(t) represents the derivative of the transient function
H(t), which itself determines the system’s response to the action of a unit pulse:

HðtÞ ¼ 1� expð�t=sÞ: ð3:95Þ

3.2.4 Measurements in Pulsed Radiation

The ability to quantitatively determine a radiometric, as well as a photometric,
reaction of a specific optical system to either power or energy action of radiation
arbitrary dispersed in time allows various measurements of radiation parameters and
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extents to be performed. One can determine the reaction of such a radiometric
system not only to an average flow of continuous radiation, but also to the energy
WR carried by radiation over a time interval T:

WR ¼
ZT
0

UiðtÞdt; ð3:96Þ

or to the maximum power Umax in a single pulse, or to the power at an arbitrary
instance of time t:

Umax ¼ dW
dt

jd2W=d2t¼0: ð3:97Þ

The temporal response of the measurement system to a given power extent depends
on relationships among the repetition time T of observing the pulse sequence, the
duration s of a single pulse, and the time constant sd of the system defined by the
inverse magnitude of the equivalent transmission frequency band (see Fig. 3.6). At
sd > s, T, the entire energy of any recurrent pulse sequence is measured as that of a
single long pulse. At sd < s, T, the system’s resolution allows one to distinguish the
power parameters of a single pulse. Further possibilities for altering either power or
energy extents in a sequence of light pulses are obvious and follow from Eqs. (3.96)
and (3.97). At the same time, an increase of the duration of each pulse, for any
specific but constant mean or average power and repetition rate, allows one to
increase the energy of such a pulse; a decrease permits one to increase the maxi-
mum pulse power (see Fig. 3.6).

Typical temporal emission spectrums of prevalent light sources of pulsed radi-
ation are not nearly such right-angled functions as in Fig. 3.6. Thus, straightforward
estimations for averaged extents:

W ¼ UDt; Umax ¼ W=ðDtÞ; ð3:98Þ

are often used to approximate either the 0.35 or the 0.5 level of the maximum power
of an actual pulse. A single pulse emitted by a pulsed lamp may be approximated by
an asymmetric bell-shaped profile:

IðtÞ ¼ Imax exp ðt=tmaxÞð1� t=tmaxÞ½ �b; ð3:99Þ
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Fig. 3.6 Alteration of maximum and average power or pulse energy via parameters of the pulse

154 3 Radiometry of Partially Coherent Radiation



where Imax is the maximum pulse power, tmax is the time interval to reach the
maximum, and b is the pulse-form approximation parameter dependent on the
inductance of a discharging circuit (see Fig. 3.7a) [3.31]. Stimulated emission likely
leads to creation of quasi-symmetrical pulses, but in some cases the intensity profile
of the laser pulse may be similar to a symmetrical bell-shaped function [3.27]:

I ¼ I0 exp ðb� aÞct½ �; ð3:100Þ

where a is the linear absorption coefficient in a generated spectral line and b is the
linear gain factor for a small signal, which depends on a population inversion DN(t)
changing at various stages of laser generation. A sequence of randomly distributed
peaks in a laser pulse during one cycle of its stimulated emission can be examined
in the following form [0.16, 3.32]:

IðtÞ ¼ 0:5ð1� cos xtÞ 1ðtÞ � 1ðt � 2pÞ½ �: ð3:101Þ

Figure 3.7b illustrates pump-light conversion to laser emission spikes and an
integrated-output pulse.

Analogously to irradiance in continuous radiation, the surface energy density or
fluence in pulsed light is the ratio of the energy Ws of a pulse of duration s falling or
propagating in small-beam cross section containing a point P to area A of the
section: dWs/dA. The angular-surface energy density of radiation in the beam of
pulsed light is the radiance over the pulse duration s:

d2W s

d2G
¼ d2W s

dA cosudX
¼ s

P
s UiðtÞ

dA cosudX
: ð3:102Þ

The mean surface density and mean radiance or luminance during the full pulse
duration s are:

dUðt;AÞ
dA

¼ 1
T
d
ZT
0

Uiðt;AÞdt
2
4

3
5=dA; ð3:103Þ
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Fig. 3.7 Examples of pulse asymmetry: a asymmetric quisi-continuous pulse emitted by a pulsed
lamp; b laser radiation pulses: pumping pulse (series 1), unsaturated stimulated-emission pulses
(series 3), integrated output of pulsed laser-light emission (series 2)
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dU2ðt;AÞ
dAdX

¼ 1
T
d2

ZT
0

Uiðt;A;XÞdt
2
4

3
5=ðdAdXÞ: ð3:104Þ

The radiant exposure created by arbitrarily distributed in time pulsed or continuous
radiation over time may be distinguished by the integral created by its irradiance
over the time interval T:

He ¼
ZT
0

Ee;idt ¼
ZT
0

dUiðAÞ=dA½ �dt: ð3:105Þ

The integral radiant intensity may be similarly determined by the integral of radi-
ation intensity:

Ne ¼
ZT
0

Ie;idt ¼
ZA
0

ZT
0

Le;iðA; tÞ cosudAdt: ð3:106Þ

A pulse of radiation of arbitrary shape X(t) can be defined by a generalized quantity
Xgen:

Xgen ¼

R
s
XrðtÞ½ �2dtR

s
XrðtÞdt ; ð3:107Þ

where Xr(t) is the time distribution function of the respective rectangular pulse, the
temporal action of which is equivalent to that of observing pulse X(t), for which the
following relations are valid [3.33]:Z

s

XrðtÞdt ¼
Z
s

XðtÞdt;
Z
s

XrðtÞ½ �2dt ¼
Z
s

XðtÞ½ �2dt: ð3:108Þ

Comparison with that conceptually shaped pulse allows one to avoid uncertainties
of referencing to a pulse of nonuniform power distribution, but requires one to
concurrently measure the time dependence of the compared pulse parameters as the
square power. These extra measurements necessitate using either a nonlinear optical
or a nonlinear electrical element to obtain the known square-power dependence in a
system.

The optical properties of mediums, substances, and bodies are inherent to the
object, independently of in what kind of light—pulsed or continuous—such a
property measurement is realized. However, the results of measurements in pulsed
light, particularly in pulsed laser radiation, can be substantially different from those
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in spontaneous continuous light owing to the considerable increase of the applied
power. Depending on the portion of radiation absorbed in bulk of the object
studied:

Wa ¼
ZT
0

UiðtÞð1� qÞ expð�a‘Þ½ �dt; ð3:109Þ

potential extra heating, excited coloring, transparency, nonlinear frequency con-
version, emission, or scattering can take place, changing the integral optical
property of the object under study. In Eq. (3.109), q is the surface reflectance and a
and ‘ are the linear absorption coefficient and thickness of the object. As a function
of any conceivable surface absorptance as of the given object and of the surface
density dUi/dA of the flux Ui of incident radiation, even some surface evaporation
for the object studied and potential destruction of its internal bulk can arise.
The nonlinear effects, which are functionally associated with the increase of the
radiation power above a linearity threshold, inevitably lead to a related nonlinear
change of the observed power extent of radiation interacting with an object.
Inconsistency of presumably linear relations:

ðU=U0Þi ¼ ðU=U0Þj ¼ k; ð3:110Þ

where k is the factor studied at i and j levels of the incident power, indicates the
appearance of the nonlinearity, leading to a discrepancy of that pulsed measurement
from one in continuous light.

Another noticeable distinction for measurements obtained in pulsed and pulse-
modulated laser light is defined by likely higher intensity fluctuations than those for
continuous generation of radiation, as well as for spontaneous emission of spec-
trally equivalent light. The smaller is the time width Ds of the laser pulse, the wider
is the spectrum of its effective frequency Dm ffi 1=Ds and the higher is the proba-
bility of random phase fluctuations among single-pulse components, at least due to
extra instability of the pulse width. The process is amplified by mode competition
inside a laser resonator and by added thermal noise. Noise, i.e., an accidental
disordered wave field situated in the same spectral interval as the fundamental
signal, causes fluctuations of power or energy of the radiation considered in both
pulsed and quasi-continuous regimes. As a result, the optical field of that laser
radiation can be mostly viewed as the additive sum of two components: one being
mutually uncorrelated and the other slowly changing in comparison with expðixtÞ.
The first component defines randomly distributed uncorrelated radiation compo-
nents, and the second indicates cophasal light. Hence, the total mean power aver-
aged by a statistical ensemble is [3.34]:

�P ¼ U2 þ 2r2; ð3:111Þ
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where U is the amplitude of the field of laser generation and r2 is the
root-mean-square deviation of that amplitude. The root-mean-square deviation for
the average power of laser radiation is:

DP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðtÞ � �P½ �2

q
¼ 2r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pþ r2

p
; ð3:112Þ

where P is the radiant power measured in the absence of noise. Considering that the
uncertainty of the power transferred by laser light characterizes a threshold level
PTh, at which fluctuations are equal to the signal itself, the magnitude PN of laser
noise can be determined from the following expression:

PTh ¼ PNð1þ
ffiffiffi
2

p
Þ: ð3:113Þ

This added power noise in laser, and more generally, in pulsed optical radiation
sets limits on the sensitivity and accuracy of measurements realized in that radiation.
To diminish radiation deviations due to noise caused by peak-power or average-
power fluctuations, as well as pulse-energy fluctuations, a stabilization system
limiting fluctuations of the measured power or energy extent by providing an optical
feedback to either the source or the detector can be used. Stabilization of both the
source and the detector can also be applied simultaneously. Figure 3.8 illustrates a
measurement system utilizing one stabilization and one reference channel, each
completed by an optical beam splitter with transmittance si and reflectance qi. Every
random change DI of emitted intensity I is manifest in each channel: the measure-
ment, the reference, and the stabilization one. Hence, the ratios are:

N1 ¼ kmsðIþDIiÞ
krqðIþDIiÞ ¼

kmsðIþDIjÞ
krqðIþDIjÞ ¼

kms2
krq2

¼ const1;

N2 ¼ kmsðIþDIiÞ
ktqðIþDIiÞ ¼ kmsðIþDIjÞ

ktqðIþDIjÞ ¼ kms3
ktq3

¼ const2:
ð3:114Þ

Keeping the two-channel ratio signal as the system’s constant allows one to perform
accurate measurements within such a system with no need to know the optical
properties of its elements as long as the actual characteristics s2, q2, s3, and q3 of the
channel beam splitters as well as spectral sensitivities km, kr, and kt, of all three
channels involved are not altered in any way during the entire measurement cycle
needed to evaluate the optical property under study. Here indices k, r, and m relate to

1

7

8

6

5

2 34

Fig. 3.8 Measurement layout
for radiation-stabilization
feedback and referencing: 1 -
source, 2,3 - beam splitters;
3,4,5 - detectors, 7 - power or
energy measuring radiometer;
8 - feedback control
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the reference, the reflectance, and the transmittance channel, respectively. For related
methods using the ratio-based and balanced techniques as well as other measurement-
stabilization techniques, see further sections and Chap. 10 in particular.

3.3 Interference Phenomena and Optical Measurements

3.3.1 Fringe Visibility of Interference Patterns
in Transmitted and Reflected Light

Every power and energy measurement of optical radiation, as well as any mea-
surement of the optical properties of objects in such radiation, is realized using one
or another optical element which transmits and reflects some portion of radiation.
Consider the interaction of a light beam with a dielectric plane-parallel plate, having
the transmittance of its input and output surfaces and of its internal bulk not
necessarily equal to each other or to unity. That plate is an optical element, acting in
transmitted and reflected light, and is widely used in power and energy measure-
ments to create a reference channel or to seal the measurement enclosure, etc. Let it
be a beam splitter having a thickness ‘, distinct transmittances s1 and s2 and
reflectances q1 and q2 of its two surfaces, and unequal-to-unity bulk transmittance
sint ¼ expð�l‘Þ, where l is the linear attenuation coefficient of the bulk (Fig. 3.9).

The amplitude transmittance and reflectance of the splitter’s surfaces at wave-
length k, viewed from a less-dense surrounding medium with refractive index n, are
s1a; s2a; q1a; q2a; respectively. The same factors remain inside the dielectric plate
of refractive index n0: s01a; s

0
2a; q

0
1a; q

0
2a: Its internal amplitude transmittance is sa.

In sequence of the multiple reflections for that beam splitter, made as a sufficiently
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Fig. 3.9 Conversion of wave
amplitudes in light
transmitted by a plane-parallel
dielectric plate
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wide plate for all multiple reflections to decay to zero, the total light amplitude for a
given quasi-monochromatic wave k reflected from the splitter’s plate is:

Eq ¼ E0½q1a þ s1asaq
0
2asas

0
1ae

id þ . . .þ s1as
0
1as

2
aq

0
2aðq01aq02as2aÞm�2eiðm�1Þd�

¼ E0 q1a þ s2as1aq
0
2as

0
1ae

id 1� ðq01aq02as2aÞm�2eiðm�2Þd

1� q01aq
0
2as

2
ae

id

" #
;

ð3:115Þ

where E0 is the amplitude of the radiation incident on the plate, m is the number of
reflections, d ¼ 2pð2‘=kÞn0 cosu0 is the phase difference between consecutive
reflected or transmitted waves, and u0 is the angle of refraction. As the last wave
term ðq01aq02as2aÞm�2 in the reflected sequence goes to zero owing to a low surface
reflectance, a high internal transmittance, or a tending to infinity number of
reflections, Eq. (3.115) becomes:

Eq ¼ E0 q1a þ s2as1aq
0
2as

0
1ae

id 1
1� q01aq

0
2as

2
ae

id

� �
: ð3:116Þ

According to Snell’s law, the intensity factors in reflection are:
q2a;m ¼ qm; s

2
a ¼ s; s2a;m ¼ sm , and the sign of the amplitude reflectance at every

interaction is changed to the opposite sign, q1a ¼ �q01a, but the transmittance is
unchanged, s1a ¼ s01a [1.1]. Owing to the law of conservation of energy for a plate
of nonabsorbing internal medium: s2a;m þ q2a;m ¼ qm þ sm ¼ 1, the reflected ampli-
tude at the unequal surface reflectances of the plate becomes:

Eq ¼ E0
q1a þ q21aq

0
2as

2
ae

id þ s2as1as
0
1aq

0
2ae

id

1� q01aq
0
2as

2
ae

id

� �

¼ E0
q1a � s2aq2aðq21a þ s21aÞeid

1� s2aq1aq2ae
id

¼ E0

ffiffiffiffiffi
q1

p
1� s

ffiffiffiffiffiffiffiffiffiffiffiffi
q2=q1

p
eid

� �
1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
eid

:

ð3:117Þ

For the complex conjugate:

Eq
� ¼ E0

�
ffiffiffiffiffi
q1

p
1� s

ffiffiffiffiffiffiffiffiffiffiffiffi
q2=q1

p
e�id

� �
1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
e�id : ð3:118Þ

After substituting the equalities: ð1� keidÞð1� ke�idÞ ¼ 1þ k2 � 2k cos d;
cos d ¼ 1� 2 sin2ðd=2Þ, the product of Eqs. (3.117) and (3.118) gives the total
intensity of fully reflected radiation [3.35]:
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Iq ¼ EqEq
� ¼ I0

q1 þ s2q2 � 2s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
cos d

1þ s2q1q2 � 2s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
cos d

¼ I0
ð ffiffiffiffiffi

q1
p � s

ffiffiffiffiffi
q2

p Þ2 þ 4s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin2 d=2ð Þ

ð1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p Þ2 þ 4s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin2 d=2ð Þ :

ð3:119Þ

Accordingly, the extrema of that intensity distribution for phase difference: d ¼
2pm at m ¼ 1; 2; . . .; are:

Iqmax ¼ I0

ffiffiffiffiffi
q1

p þ s
ffiffiffiffiffi
q2

p
1þ s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
� �2

; Iqmin ¼ I0

ffiffiffiffiffi
q1

p � s
ffiffiffiffiffi
q2

p
1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
� �2

: ð3:120Þ

Similarly, in light transmitted by the plane-parallel plate with unequal surface
reflectances:

Es ¼ E0 s1asas2a
1� ðq02aq01as2aÞeiðm�1Þd

1� q02aq
0
1as

2
ae

id

� �
¼

m!1
E0

s1asas2a
1� q02aq

0
1as

2
ae

id ; ð3:121Þ

Is ¼ EsEs
� ¼ I0

s1s2s
1þ q1q2s2 � 2s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
cos d

¼ I0
s1s2s

ð1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p Þ2 þ 4s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin2ðd=2Þ ;

ð3:122Þ

Ismax ¼ I0
s1s2s

1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2 ; Ismin ¼ I0
s1s2s

1þ s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2 : ð3:123Þ

Presuming: q1 ¼ q2 ¼ q; s1 ¼ s1 ¼ s ¼ 1� q; at sint ¼ 1, Eqs. (3.120) and
(3.123) become Airy formulae:

Iqmax ¼ I0 4q
.

1þ qð Þ2
� �

; ð3:124aÞ

Iqmin ¼ 0; ð3:124bÞ

Ismax ¼ I0s
2
.

1� qð Þ2 ¼ I0 1� qð Þ2
.

1� qð Þ2 � I0; ð3:125aÞ

Ismin ¼ I0 1� qð Þ2
.

1þ qð Þ2: ð3:125bÞ

Assuming q1 ¼ q2 ¼ q and sint 6¼ 1:0 and designating F � 4sintq/(1 − sintq)
2, Eqs.

(3.119) and (3.122) are:
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Iq ¼
sint 6¼1

I0
q 1� sintð Þ2

.
1� sintqð Þ2 þF sin2ðd=2Þ

1þF sin2ðd=2Þ ; ð3:119cÞ

Is ¼
sint 6¼1

I0
sint 1� qð Þ2

.
1� sintqð Þ2

1þF sin2ðd=2Þ : ð3:122cÞ

The maximum and minimum of interference for the plate of attenuating bulk
become:

Iq;max ¼ I0
q 1þ sintð Þ2
1þ sintqð Þ2 ; Iq;min ¼ I0

q 1� sintð Þ2
1� sintqð Þ2 ;

Iq;max

Iq;min
¼ 1� sintqð Þ2

1þ sintqð Þ2
1þ sintð Þ2
1� sintð Þ2 :

ð3:124cÞ

Is;max ¼ I0
sint 1� qð Þ2
1� sintqð Þ2 ; Is;min ¼ I0

sint 1� qð Þ2
1þ sintqð Þ2 ;

Is;max

Is;min
¼ 1þ sintqð Þ2

1� sintqð Þ2 ;
Iq;max

Iq;min

Is;max

Is;min
¼ 1þ sintð Þ2

1� sintð Þ2 :
ð3:125cÞ

The observability of each respective interference pattern can be described by
fringe visibility V:

Vq ¼ Iqmax � Iqmin

Iqmax þ Iqmin
¼ 2s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p ð1� q1Þð1� s2q2Þ
q1ð1� s2q2Þ2 þ s2q2ð1� q1Þ2

; ð3:126Þ

Vs ¼ Ismax � Ismin

Ismax þ Ismin
¼ 2s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
1þ s2q1q2

: ð3:127Þ

Since the fringe visibility gives the difference between the maxima and minima
versus a twofold intensity 2IR ¼ Imax + Imin, which corresponds to the case of no
interference occurring, if s ¼ sint ¼ 1.0 and q1 ¼ q2, the observed visibility in
reflected light is the highest: Vq ¼ 1, independently of the value of q1 ¼ q2. The
same effect is produced by any absorbing plate having q1 ¼ s2q2. The only
exceptions are for zero and 1.0 reflectance of each surface that removes light
superposition. In transmitted light for the plate with nonabsorbing and nonscattering
bulk and equal surface reflectances, the fringe visibility is a function of the surface
reflectance, reaching unity at q ¼ 1:

Vs ¼sint¼1

q1¼q2
2q=ð1þ q2Þ : ð3:128Þ
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Figure 3.10 shows how notably the effects of the interference can modify the
outcome of measurements made at the presumption of the additive summation
neglecting the interference.

3.3.2 Reductions of Interference Noise

As analyzed previously, the radiometric and photometric description of radiation
transfer and the interaction of radiation with physical objects and mediums is valid if
associated interference phenomena are either not detectable or are integrated in space
and/or time. Interference infringes all photometric and radiometric laws and
descriptions by breaking the additive rule of summing that forms the basis of con-
ventional photometry and radiometry. If the surfaces of optical elements interacting
with light have ideal antireflection (AR) coatings, surface-induced interference ef-
fects will be inherently absent, since no reflection, and thus no superposition, exists.
One way to reduce interference effects due to surface reflections is affiliated with
introducing nonparallelism among two or more reflecting surfaces, converting the
multiple-beam interference among any multiple parallel surfaces to the two-beam
interference among pairs of overlapping reflections. Equations (3.122)–(3.128)
reveal (see Fig. 3.10) that in transmitted light such a measure only makes sense when
considering highly reflecting surfaces. For reflectance q lower than 0.05, the
multiple-reflection multiplier, q1q2s

2, even for internal plate transmittance s ¼ 1, is
smaller than 0.0025; thus, the influence of such reflections virtually does not man-
ifest itself on transmitted intensity Is. One may keep in mind that the effectiveness of
a wedge-shaped plate comes at the detriment of the radiometric or photometric goal
to accomplish spatial averaging and therefore spatial integration for every interfer-
ence pattern localized in both reflected and transmitted light.

Averaging effects can be seen as follows. If the phase difference d between two
interfering zones of a light beam changes by p within the cross section of the beam,
the intensity of the beam averaged over that cross section should remain unchanged,
as without interference at all. While applying such a concept to determine the total
reflectance and the total transmittance of a plane-parallel plate of transparent bulk,
one can integrate the cross-section of the incident beam at the small angle u around
the normal u ≅ 0 and obtain equations that are equivalent to (1.106) and (1.107):
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Fig. 3.10 Fringe visibility of transmitted (1, 3) or reflected (2, 4) interference pattern: 1,4 -
transparent plate with equal reflectances; 2,3 - high first reflectance of transparent plate
corresponds to low second reflectance and vise versa
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�spl ¼ 1
p

Zp
0

ð1� qÞð1� qÞ
1þ q2 � 2q cos d

dd � sR;0 ¼ 1� q
1þ q

; ð3:129Þ

�qpl ¼
1
p

Zp
0

2qð1� cos dÞ
1þ q2 � 2q cos d

dd � qR;0 ¼
2q

1þ q
: ð3:130Þ

The required phase difference d within the beam cross section, such as the beam
diameter D, can be achieved by use of a small wedge-angle a between plate
surfaces a ffi tg a ¼ D‘=D. For d ¼ 4p‘n0 cos u0=k ¼ p that angle should be equal
to a ¼ k=ð4Dn0 cos u0Þ, where n0 and u0 are the plate index and the respective
angle of refraction. The Fourier transform of expression (3.129) gives [3.36]:

�spl ¼ sR;0 þ 2sR;0
X1
m¼1

qm cosðmdÞ; ð3:131Þ

and for the integrated total transmittance, averaged over the light beam diameter, it
becomes:

�spl ¼ sR;0 þ 2sR;0
D

ZD=2
�D=2

X1
m¼1

qm cosðmk1xþ k2Þdx

¼ sR;0 þ 4sR;0
k1D

X1
m¼1

qm cosðmk2Þ sinðmk1D=2Þ;

ð3:132Þ

where k1 ¼ 4pn0a cosu0=k; k2 ¼ 4pn0‘ cosu0=k. Since the right part of Eq. (3.132)
is smaller than sR;0 þ 4sR;0 arcsin q

�ðk1DÞ� �
, for the purpose of determining the

accuracy of averaging one may assume [3.36]:

�spl ¼ sR;0ð1þ 4 arcsin q
k1D

Þ: ð3:133Þ

This way, relative averaging error d�spl becomes:

d�spl ¼ �spl � sR;0
sR;0

¼ 4 arcsin q
k1D

����
����: ð3:134Þ

Finally, for such a wedged plate and a parallel beam in transmission, the minimal
angle is:

asmin � kmax arcsin q
d�splpn0Dmin cos d

����
����: ð3:135Þ
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Because:

�qpl � qR;0
qR;0

¼ 1� �spl � 1þ sR;0
qR;0

¼ sR;0 � �spl
qR;0

; ð3:136Þ

the relative error d�qpl of spatial beam averaging in reflection given by such a wedge
plate becomes:

d�qpl ¼
sR;0 � �spl

sR;0

sR;0
qR;0

¼ d�spl
�� �� sR;0

qR;0
: ð3:137Þ

As a result, to provide the spatial averaging of interference patterns for light
beams reflected by the wedge-shaped plate, the required minimal wedge between
the plate surfaces must be:

aqmin � sR;0kmax arcsin q
qR;0d�qplpn

0Dmin cos d

�����
�����: ð3:138Þ

Equations (3.135)–(3.138) demonstrate that the plate wedge angle for interfer-
ence averaging increases with the incident beam diameter decreasing in proportion
to the radiation wavelength. In reflected radiation, the requirements are nearly
1 order of magnitude higher than in transmitted light. The ratio of the plate’s
transmittance and reflectance determines the distinction (see Eq. (2.50)):

spl
�
qpl ¼ sR;0

�
qR;0 ¼ ð1� qÞ=2q ¼ 4n

.
ðn� 1Þ2: ð3:139Þ

For example, for n0 ¼ 1:5; kmax ¼ 1 lm, and D ¼ 2:5 mm, to satisfy the
requirement of d � 0.1%, angle as needs to be not less than 15′, but to achieve the
same averaging in reflected light the minimal angle becomes 2°.

One reason for the mentioned wedge requirements in reflected light to be
noticeably greater than those in transmitted radiation is conditioned by the con-
siderably higher fringe visibility Vq in reflection versus the visibility Vs in trans-
mission. This is due to equality of the amplitudes of interfering waves reflected
from the first and second surfaces of the thin transparent plate Eq. (3.110) being
interposed within the combined cross section of both reflected beams. In transmitted
radiation, incident and transmitted beams interfere only after one dual reflection
within the plate. The beams’ intensity ratio is 1/q2, making the interference termffiffiffiffiffiffiffiffiffiffi

1=q2
p

lower. If the surface reflectances of a plate increase, interference effects in
transmitted light become more visible than in reflected light.

The straightforward way to eliminate the effects of interference is to separate
interfering beams from one another. Since for a glass plate as a beam splitter the
highest visibility of interference is caused by the reflected light, the optical thick-
ness of the splitter and its wedge may be chosen to make the reflected beams
completely separated from one another (see Fig. 3.11). For a relatively thick plate,
the beams reflected from the first and second surfaces are only crossed by incident
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and transmitted beams once (the sections are shown patterned). In this case, any
interference among the components having similar intensities is eliminated. In
addition, every sequential amplitude of an intersecting beam becomes much lower
owing to the very small surface reflectance q.

Applications of wedge-shaped optical elements, redirecting reflected beams and
reducing the effects of interference, may be efficient, but are not the most advanced
measure. They set limits on the choice of wavelengths, beam cross sections, and
thicknesses of optical elements. Especially, when an optical system contains mul-
tiple components, any changes of a set direction of light propagation are not
convenient. One more way for efficient reduction of interference follows from Eqs.
(3.126) and (3.127). These equations were derived to account for the likely dif-
ference among surface reflectances of each optical element multiplied by its bulk
transmittance as the square power. The fringe visibility of the interference pattern
occurring in transmitted light created by a plane-parallel plate with surface reflec-
tances q1 and q2 and internal transmittance s is defined by the product s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
,

tending to zero as s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ! 0. Consequently, sufficient decrease of all interfer-
ence phenomena in transmitted as well as in reflected light may be achieved by AR
coatings applied to at least one plate surface or to both plate surfaces. Another, not
so obvious, way of reducing interference may be provided by bulk absorption. It is
applicable, but is not the most efficient way, since absorption can lead to over-
heating or even damage of the optical bulk of a transmission element when it is
used in powerful laser radiation. The solutions change in reflected light. As illus-
trated in Fig. 3.10, equivalent reduction of both surface reflectances does not
decrease the fringe visibility of interference in reflected radiation. If any internally
attenuating substrate of transmittance sinner bulk 6¼1 is used, the obstacle is still not
fully resolved. If the properties of the surfaces and the substrate are such that
q1 ¼ s2q2, the resultant fringe visibility in reflected light is unity as for a trans-
parent plate of equal surface reflectances. Only any substantial difference of the first
surface reflectance q1 from the product of the bulk transmittance as the square
power over the reflectance of the second surface, s2q2, significantly diminishes the
fringe visibility of a beam reflected from such an attenuating optical element.
Figure 3.12 illustrates contingency of Vq and Vs as functions of plate properties q1,
s, and q2. Series 4 and 6 are not distinguished in Fig. 3.12 owing to the described
transmission symmetry of the reversed positions of two plate surfaces.

Any absolute increase of the difference modulus reduces the fringe visibility of
the interference in reflected light, concurrently somewhat increasing Vs in trans-
mitted radiation [3.35]. For some applications, a plate may be used sequentially in
reflected and in transmitted light. If two fields are viewed separately, the lower is

Fig. 3.11 Retroreflections in
a long substrate as a wedged
beam splitter
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the visibility of every interference pattern, the better is the situation for both beams.
In that case, the intersection point of the transmission and the reflection function
matches the equally low visibility for both divided patterns and sets the visibility
limit. Let us introduce the new function Vq;s equal to Vq when Vq > Vs and to Vs

when Vs > Vq, to be called the function of largest fringe visibility. Visibility Vq;s

has one minimum at Vq ¼ Vs:

2s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ð1� q1Þð1� s2q2Þ
q1ð1� s2q2Þ2 þ s2q2ð1� q1Þ2

¼ 2s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
1þ s2q1q2

: ð3:140Þ

Discarding terms of second order of smallness, the reflectance leading to the
intersection is:

q1 ¼
1� 2s2q2
ð1� 3s2q2Þ

: ð3:141Þ

For s ¼ 1 and q2 ¼ 0:1, the magnitude q1 ¼ 0:57 corresponds to maintaining equal
visibilities in transmitted and reflected light; for s ¼ 0:5 and q2 ¼ 0:01, reflectance
q1 should be 0.5, but for s ¼ 0:5 and q1 ¼ 0:01, no intersection point is present.
Accordingly, as it is seen for curves 5 and 6 in Fig. 3.12, the optimal deployment of
any absorbing beam splitter is sensitive to its orientation. In minimizing negative
interference effects by a beam splitter, the specific condition which leads to the
intensities of all the interfering beams being unequal rather than similar is
preferable.

For any intensity-ratio measurement, such as in the two-channel system seen in
Fig. 3.8, the largest fringe visibility function Vq;s does not fully represent the
outcome of the combined transmitted and reflected interference pattern when nei-
ther pattern can be disregarded. Since reflection plus transmission interference
fringes are complementary, the sum of the ratios of transmitted intensity Is to
incident intensity I0 and reflected intensity Iq to incident intensity I0 equals to unity:
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Fig. 3.12 Fringe visibility for interference patterns in reflected (1, 3, 5) and in transmitted (2, 4, 6)
light versus values of surface reflectance and bulk transmittance: 1,2 - T = 1, R2 = 0.01; 3,4 -
T = 0.5, R2 = 0.01; 5,6 - R1 = 0.01, T = 0.5
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Is=I0 þ Iq=I0 ¼ 1; ð3:142Þ

A minimum of one pattern exactly corresponds to a maximum of another and to
account for the total effect, the combined correlative interference pattern of mutual
fringe visibility VR needs to be analyzed. Within the temporal-spatial pattern lo-
calized not at any particular point, but in the space-time region adjoining the
splitter, the single intensity magnitudes should be substituted by the ratios of
matching intensities: Is/Iq or Iq/Is. Counting the fringe visibility VR of the mutual
pattern as:

VR ¼ Iqmax=Ismin � Iqmin=Ismax

Iqmax=Ismin þ Iqmin=Ismax

¼ Ismax=Iqmin � Ismin=Iqmax

Ismax=Iqmin þ Ismin=Iqmax
;

ð3:143Þ

and bearing in mind, that s1 ¼ 1� q1; s2 ¼ 1� q2, from Eqs. (3.120) and (3.123),
we obtain [3.37]:

VR ¼
ffiffiffiffiffi
q1

p þ s
ffiffiffiffiffi
q2

p� �2� ffiffiffiffiffi
q1

p � s
ffiffiffiffiffi
q2

p� �2
ffiffiffiffiffi
q1

p þ s
ffiffiffiffiffi
q2

p� �2 þ ffiffiffiffiffi
q1

p � s
ffiffiffiffiffi
q2

p� �2 ¼ 2s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
q1 þ s2q2

: ð3:144Þ

Mutual visibility function VR, as well as visibility Vq;s has one maximum equal
to unity at: q1 ¼ q2; s ¼ 1, becomes lower at q1 6¼ q2 or s 6¼ 1 , and equals to zero
along with either surface reflectance or bulk transmittance (Fig. 3.13). At s 6¼ 1, the
mutual fringe visibility VR, the same as Vq;s, depends on the splitter orientation to
the beam propagation direction. The higher is the difference between the first
surface reflectance and the product of the bulk transmittance squared and the second
surface reflectance, the lower is the mutual fringe visibility of the shared pattern and
the smaller are the effects of interference on the results of measurements by the
two-channel optical system.
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Figure 3.13, as well as Fig. 3.12, depicts how substantially the entire influence
of the interference is reduced by purely redistributing surface reflectances of the
channel beam splitter. By fixing the total transmittance and total reflectance of the
transparent beam splitter, but redistributing one surface reflectivity by its AR
coating to q1 ¼ 0:0025, and increasing another surface reflectance to q2 ¼ 0:1, one
reduces the mutual fringe visibility VR for the splitter to 0.3. This is 3 times less
than for the plate of the same transmittance with identical surface reflectances.
A similar effect may be achieved by reducing the internal bulk transmittance of the
splitter, but as a result losing the radiation throughput. To obtain visibility VR ¼ 0:3
via the bulk absorptance, the beam splitter bulk transmittance should be s ¼ 0:155.
Accordingly, the intensity of light transmitted via that absorbing splitter becomes
6.5 times lower than that transmitted by a transparent glass plate.

From Eq. 3.144 and Fig. 3.13 it also follows that among any multiple-channel
optical system the highest decline of interference phenomena can be achieved if light
is transformed via beam splitters and combiners of high reflectance and low trans-
mittance. In such a system, implementation of a beam splitter with first surface
reflectance q1 ¼ 0:9, bulk transmittance s ¼ 1, and second surface reflectance q2 ¼
0:025 provides exactly the same distribution of energy as the conventional trans-
parent plate does. The difference is only defined by the swapped two system chan-
nels. The measurement channel receives the reflected light, but the reference channel
receives radiation transmitted by the splitter (Fig. 3.14). In this case, fringe visibility
VR ≅ 0.03 of the mutual interference pattern becomes more than 30 times lower than
that for the conventional two-channel optical system, which utilizes a plane-parallel
beam splitter of two similar surface reflections such as of the transparent glass plate.

3.3.3 Interference Effects Induced by Birefringence

Most of the optical elements considered above, for which the optical thickness is
not optimized to be a multiple of the light wavelength, are arbitrarily modifying
phase differences of interacting beams of light and producing certain interference
noise, rather than a predictable alteration of light intensity due to a stable and
observable interference pattern. Another situation occurs when radiation interacts
with a linear phase retarder, which is intended to match that radiation wavelength,

M

RBS

S 

MD 

RD
ρ1 ρ2

Fig. 3.14 Interference supressing dual-channel measurement system: S - light source; RBS -
reflecting beam splitter; RD - reference detector; M - mirror; MD - main detector
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such as a crystal wave plate creating a predictable phase shift, owing to the bire-
fringence between its two orthogonal optical axes of unequal wave refraction.
When one measures the phase retardance, the result of interference of light waves
propagating along each optical axis of the wave plate is defined by the birefringence
between the ordinary and extraordinary axes and thus can be accounted for.

As a starting point in analysis of interference effects induced by birefringent
substances, let us consider a random orientation of each vibration direction P, A,
singled out by a polarizer and an analyzer from radiation at a wavelength k at
normal incidence, versus the location of the ordinary No and extraordinary Ne axes
of a birefringent plate under study, as in [1.1]. In addition, let us take into account
losses induced by surface reflections of the plate. Let c be the angle between
positive directions ZP and ZA for respective transmission of radiation by the po-
larizer and the analyzer, and let u be the angle between the plate’s ordinary axis and
direction ZP (Fig. 3.15). Let light emerging from the polarizer be incident normally
onto the retarder under study. The light’s amplitude E may be represented through
two orthogonal projections along the ordinary and extraordinary axes of the plate:
EO ¼ E cosu and Ee ¼ E sinu. The amplitudes transmitted by the wave plate are
ZO ¼ Es0o

2cosu and ZT ¼ Es0e
2sinu, where s0o and s0e are the respective ampli-

tude transmittances of each plate surface, subsequently determined along the cor-
responding vibration direction No, Ne. The analyzer transmits only light
components parallel to its vibration direction ZA. Thus, projections ZM and ZN of
wave components ZO and ZT onto direction ZA are:

ZM = E s02O cosu cosðu� cÞ; ð3:145Þ

ZN = E s02e sinu cos½90� ðu� cÞ� ¼ E s02e sinu sinðu� cÞ: ð3:146Þ

The components of the state of polarization transmitted by the analyzer interfere
as two monochromatic waves incurring a phase shift d ¼ ð2p=kÞðne � noÞh that is
dependent upon the component’s wavelength k, the plate’s birefringence b = ∣ne −
no∣, and the thickness h of the plate slab. The resultant intensity becomes:

I ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2

p
cos d: ð3:147Þ
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Fig. 3.15 Positions of
radiation vibration
components transmitted by
the polarizer, retarder, and
analyzer
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For the waveplate with unequal transmittances: so 6¼ se, along two optical axes,
we obtain:

I ¼ E2f½so cosu � cosðu� cÞþ s sinu � sinðu� c�2
� ðsoseÞ sin 2u � sin 2ðu� vÞ sin2 d=2g:

ð3:148Þ

Let us note that Eq. (3.148) has a solution for the phase retardance d; therefore, if
the magnitudes of u and of c and the measured intensities I0 and Is of the incident
light and the light transmitted via the system are known, the phase shift introduced
by the wave plate can be resolved. It is also seen that the first term converts to cos2c
only if the plate’s transmittances along both optical axes are equal: so2 ¼ se2.
Another simplification comes from the arrangements of the measurement system. If
the polarizer and analyzer are crossed, thus angle c ¼ 90�, and if the optical axis of
the wave plate (usually the ordinary one) is set at u ¼ 45� to directions ZP and ZA,
the resultant intensity is:

I? ¼ ðIo=4Þ½ðso � seÞ2 þ 4sose sin2 d=2�: ð3:149Þ

When the polarizer and analyzer axes are parallel, c ¼ 0, and when the wave
plate remains at u ¼ 45�,

Ik ¼ ðIo=4Þ½ðso � seÞ2 � 4sose sin2 d=2�: ð3:150Þ

Equations (3.149) and (3.150) transform into well-known conventions [1.1] for
zero reflectances qo and qe:

I? ¼ Io sin2 d=2; ð3:151Þ

Ik ¼ Ioð1� sin2 d=2Þ. ð3:152Þ

The reduction predicted by relations (3.148)–(3.150) for the intensities of waves
transmitted by the wave plate does not include all polarization components retro-
reflected by plate’s surfaces. To analyze the influence of reflections and changes of
intensities of light beams transmitted by any measurement system, let us consider the
infinite sequence of reflections as two isolated parallel wave sequences along the
ordinary and extraordinary vibration directions of the retarder. Each retarder surface
may have distinct reflections qo1, qe1, qo2, and qe2 along each vibration direction. For
convenience we will consider the wave plate to be uncoated, having two identical
back and front surface reflectances: ordinary reflectance qo = [(1 − no)/(1 + no)]

2

along the ordinary axis, and extraordinary reflectance qe = [(1 − ne)/(1 + ne)]
2 along

the extraordinary axis. We will also assume that every beam reflected from the first
(the front) surface of the plate is not returned to the system.

After passing via the first plate surface and its crystal bulk, which we will
assume to be of low scattering and low absorption, each light component for both
axes splits into several beams. The first two components with intensities Is,o and Is,e
along the ordinary and extraordinary directions of the plate are directly transmitted
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according to Eq. (3.148). The second series are created by single reflections from
each plate surface and have intensities Iq,o1 and Iq,e1. The intensities of the mth

components with 2m reflections are Iq,om and Iq,em (Fig. 3.16). The intensity factor
of each double pass is defined by ordinary or extraordinary reflectance of the first
and second surfaces: qo1qo2 and qe1qe2. The phase shift does not remain constant
even for the sequential components along optical axes. For every pair of coequally
retroreflected light waves, the phase difference d expands step-by-step as dm ¼
(2m + 1)(de − do). Here do ¼ (2p/k)(hno) and de ¼ (2p/k)(hne), and m ¼ 1, 2, …
is the integer denoting an order of a wave term in a sequence. For m ¼ 0 the phase
difference is d ¼ de − do, and between the two interfering beams, experiencing any
unequal number of surface reflections mo 6¼ me, the phase shift is no longer a
multiple of d.

Ordinary and extraordinary components of each optical beam transmitted by the
wave plate interfere separately along every orthogonal vibration direction with each
other, but not with ones of the opposite state polarization propagating via another
axis. Two additional interference phenomena exist for projections of these com-
ponents into the polarization direction of analyzer. Let us separate two processes for
waves of equal and distinct amounts of transmission, such as the comparative and
cross-reference interference events, respectively. As a result, only beams, which
share each comparative interference event will have similar amplitudes. The
resultant complete action for the triple-step interference event transforms
Eq. (3.148) into the form:

IR ¼ Is;o þ Iq;o1. . .þ Iq;om þ Is;e þ Iq;e1. . .þ Iq;em

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
Is;oIs;e

p
cos dþ . . .þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iq;omIq;em

p
cos½ð2mo þ 1Þdo � ð2me þ 1Þde� þ . . .

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Is;oIq;em

p
cos d0 � ð2mþ 1Þde½ � þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iq;omIs;e

p
cos ð2mþ 1Þd0 � de½ �:

ð3:153Þ

To categorize the infinite number of terms in Eq. (3.153), let us identify the inten-
sities of all interfering beams to be counted. Keeping in mind that interference terms
may be omitted if the intensities or amplitudes of the interfering waves, such as I1, I2,
and I3, are not compatible, when I1, I2 	 I3, we may replace the sum accounting for
multiple interference: I1 þ I2 þ I3 þ 2

ffiffiffiffiffiffiffi
I1I2

p
cos d1;2 þ 2

ffiffiffiffiffiffiffi
I1I3

p
cos d1;3 þ 2

ffiffiffiffiffiffiffi
I2I3

p
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Fig. 3.16 Schematic
separation of interfering
waves (the dotted lines
designate insignificant
interactions)
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cos d2;3; by I1 þ I2 þ I3 þ 2
ffiffiffiffiffiffiffi
I1I2

p
cos d1;2: Since the intensities of light components

which participate in the cross-reference interference differ by the product of both
surface reflections of the retarder, let us distinguish the most valuable retroreflected
terms presuming that ðqo1qo2Þ2; ðqe1qe2Þ2 
 1. For identical front and back surface
reflections, the presumption leads to (qo)

2 
 1, (qe)
2 
 1, meaning that only in-

terference of waves separated by at least two dual-reflection cycles inside the retarder
will not be counted (denoted by the wave marks in Fig. 3.16). That is the only
presumption needed to obtain the following complete quantitative description of the
multiple-reflection fringes with the wave plates. It also gives the succeeding order of
discreteness of the interference phenomena considered in comparison with broadly
identified restrictions for the wave plate refractive indices 1 < n < 2 in early studies
[3.41] and with the first-order approximation of qo 
 1, qe 
 1 in work done later
[3.42]. With such a second-order approximation accounting for mutual interference
interactions among all components affected by the dual transmission via the retarder
(wave plate), Eq. (3.153) transforms into:

Is;R ¼ I0
1� qoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� qoð Þ2 þ 4qo sin
2 do

q cosu cos u� cð Þ

2
64

þ 1� qeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ2 þ 4qe sin

2 de

q sinu sin u� cð Þ

3
75
2

� I0sose
Xm
i¼1

qm�1
o qm�1

e sin2
2m� 1ð Þd

2

� �
þ qmo q

m�1
e sin2 mdo þ d

2

� ��

þ qm�1
o qme sin2 mde þ d

2

� ��
sin 2u sin 2 u� cð Þ½ �:

ð3:154Þ

Equation (3.154) defines the incidence of entirely random orientation of all
polarization-sensitive parts and for two most practical cases of the orthogonal and
parallel orientation of the polarizer and analyzer: c ¼ 90�; u ¼ 45� and c ¼ 0�;
u ¼ 45�, respectively becomes:

I?;R ¼ I0
4

1� qoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qoð Þ2 þ 4qo sin

2 do

q � 1� qeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ2 þ 4qe sin

2 de

q
0
B@

1
CA

2

þ 4 1� qoð Þ 1� qeð Þ

�
Xm
i¼1

qm�1
o qm�1

e sin2
2m� 1ð Þd

2

� �
þ qmo q

m�1
e sin2 mdo þ d

2

� �
þ qm�1

o qme sin2 mde þ d
2

� �� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
;

ð3:155Þ
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Ijj;R ¼ I0
4

1� qoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qoð Þ2 þ 4qo sin

2 do

q þ 1� qeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ2 þ 4qe sin

2 de

q
0
B@

1
CA

2

�4 1� qoð Þ 1� qeð Þ

�
Xm
i¼1

qm�1
o qm�1

e sin2
2m� 1ð Þd

2

� �
þ qmo q

m�1
e sin2 mdoþ d

2

� �
þ qm�1

o qme sin2 mde þ d
2

� �� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
:

ð3:156Þ

The first terms in Eqs. (3.154)–(3.156) define two infinite sequences sharing
multiple-beam interference along every vibration direction. The algebra applied is
based on the approximation:

1þ qoqe þ qo þ qe þ qoqeð Þ2 þ qoq
2
e þ qeq

2
o þ q2o

þ q2e þ qoq
3
e þ qeq

3
o þ . . . ffi

qo;qe\1;m!1
1� qoð Þ 1� qeð Þ½ ��1:

ð3:157Þ

Terms under the sum signs in Eqs. (3.155) and (3.156) designate the two-beam
interference of every ordinary and every extraordinary component of the first two
terms further transmitted by the analyzer, and while only interference terms for
wave components with vastly different amplitudes are omitted from the final results,
and while each equation term counts an infinite number of reflections.

Equations (3.155) and (3.156), because of not the first but the second-order
limitation used, include an unlimited number of interfering terms with distinct
phases. The pattern of multiple interference of retroreflected beams overlaps the
main two-beam interference with phase difference d as a disordering factor, owing to
the resolved coherence property of the particular light source with all
multiple-reflection interference fringes counted. Making those fringes spatially or
temporarily integrated over every distinctive optical path length, along ordinary and
extraordinary directions of the retarder, or using incoherent light, one can simplify
the phenomenon. We may also clarify the terms under the sum signs in Eqs. (3.154)–
(3.156) by omitting the components of the higher orders of reflection. By reducing in
all instances the invoked approximation to qo1qo2; qe1qe2 
 1 or qo

2
 1; qe
2
 1,

only the interference terms with no more than two reflections from the retarder
surfaces are counted further. Consequently, the integral intensities of light sequences
being spatially integrated within the double optical thickness of the wave plate, still
making an angle of 45° to the vibration directions of the respectively crossed or
parallel polarizers, can be rewritten as:

�I?;R ¼ I0
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qo
1þ qo

s
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qe
1þ qe

s !2
þ 4ð1� qoÞð1� qeÞ

8<
:

� sin2
d
2

� �
þ qoqe sin

2 3d
2

� �
þ qo sin

2 do þ d
2

� �
þ qe sin

2 de þ d
2

� �� ��
;

ð3:158Þ
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�Ik;R ¼ I0
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qo
1þ qo

s
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qe
1þ qe

s !2
� 4ð1� qoÞð1� qeÞ

8<
:

� sin2
d
2

� �
þ qoqe sin

2 3d
2

� �
þ qo sin

2 do þ d
2

� �
þ qe sin

2 de þ d
2

� �� ��
:

ð3:159Þ

The algebra used for all denominators in the first terms is based on parity:

1þ q2 þ . . .þ qm ¼ 1� q2ð Þ�1
:

To analyze the derived equations and to verify the limits of their applicability, let
us apply them to some known cases of light transmission via birefringent and
isotropic substances. If any isotropic plate is located between two crossed polar-
izers, no light can pass through, since disot ¼ de − do ¼ 0. As a result, Eqs. (3.155)
and (3.158) become zero and (3.156) and (3.159) convert to:

�Is;isot;coherent ¼ 1� qð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qð Þ2 þ 4q sin2 dthickness

q ;�Is;isot;incoherent ¼ 1� q
1þ q

: ð3:160Þ

Assigning in relations (3.158) and (3.159) the average transmittance, reflectance,
and phase difference between two axes of the wave plate, respectively, as �s ¼
(so þ se)/2, �q ¼ (qo þ qe)/2, and �do;e ¼ (do + de)/2:

�I?;R;av ¼ I0 1� �qð Þ2 sin2
d
2

� �
þ �q2 sin2

3d
2

� �
þ 2�q sin2 �do;e þ d

2

� �� �
; ð3:161Þ

�Ijj;R;av ¼ I0 1� �qð Þ2 1� �q2
� ��1� sin2

d
2

� �
� �q2 sin2

3d
2

� �
� 2�q sin2 �do;e þ d

2

� �� �
:

ð3:162Þ

The first-order approximation confirms that the bulk retardance of a wave plate
due to single-pass phase difference d obtained by a transmission measurement of
integral intensity �I? or �Ijj is affected by the comparative and cross-reference
interference terms within the intensity limits:

�Icomp ¼ �q2 sin2 3d=2ð Þ;
�Icross ¼  qo sin

2 do þ d=2ð Þþ qe sin
2 de þ d=2ð Þ� �

¼ 2�q sin2 �do;e þ d=2
� �

:

ð3:163Þ

The meanings of the derived mathematics may be double checked at extreme
points of the wave plate’s phase retardance. For a full-wave plate at d ¼ 0, 2p …,
the intensity of radiation transmitted by the full-wave retarder deviates from zero or
unity for the polarizer and analyzer if they are crossed or parallel:
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�I?;2p;R ¼ I0 A� Bð Þ2
.
4þC qo sin

2 d0 þ qe sin
2 de

� �h i
;

�Ijj;2p;R ¼ I0 AþBð Þ2
.
4� C qo sin

2 d0 þ qe sin
2 de

� �h i
;

ð3:164Þ

where A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qoð Þ= 1þ qoð Þp

;B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ= 1þ qeð Þp

;C ¼ 1� qoð Þ 1� qeð Þ.
For the average terms:

�I?;2p;R;av ¼ I0 1� �qð Þ22�q sin2 �do;e;
�Ijj;2p;R;av ¼ I0 1� �qð Þ= 1þ �qð Þ 1� 2�q 1� �qð Þ2sin2 �do;e

h i
:

ð3:165Þ

Assuming also the cross-reference interference is entirely absent, the equations
convert to ones for an isotropic plate, since full-wave retardance leaves the phase
status of passing light unchanged:

�I?;2p;R;av ¼ 0; �Ijj;2p;R;av ¼ I0ð1� �qÞ=ð1þ �qÞ: ð3:166Þ

If the full-wave retarder is replaced by a half-wave retarder making the phase
difference d ¼ p, intensities Iǁ and I⊥ in transmission for the crossed and parallel
polarizers are interchanged. For d ¼ p, relations (3.158) and (3.159) become:

�I?;p;R ¼ I0 A� Bð Þ2
.
4þC 1þ qoqe þ qo cos

2 d0 þ qe cos
2 de

� �h i
;

�Ijj;p;R ¼ I0 AþBð Þ2
.
4� C 1þ qoqe þ qo cos

2 d0 þ qe cos
2 de

� �h i
:

ð3:167Þ

Averaging the plate’s optical properties and omitting the cross-reference inter-
ference terms keeping the comparative components for any equal number of
reflections to the limit m ! ∞, the intensity relations become the opposites of
Eq. (3.166):

�I?;p;R;av ¼ I0 1� �qð Þ= 1þ �qð Þ; �Ijj;p;R;av ¼ 0: ð3:168Þ

Let us note that the virtually impossible occurrence of cophasal maxima for the
cross-reference interference patterns with phases do and de corresponds to the
equivalent maxima of multiple-beam interference along each vibration direction of
a wave plate (see Eqs. (3.154)–(3.156)). If such limited-probability instances occur
concurrently, the intensities of light transmitted by full-wave and half-wave plates
between parallel or crossed polarizers will reach respective maxima:

�Ijj;2p;R;cophasal ¼ I0=4ð Þ 1� qoð Þ= 1� qoð Þþ 1� qeð Þ= 1� qeð Þ½ �2¼ I0;

�I?;p;R;cophasal ¼ I0 1� �qð Þ2
.

1� �qð Þ2 ¼ I0:
ð3:169Þ
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Another specific case of the extreme influence of two-beam interference is for
the quarter-wave retarder having d ¼ p/2, 3p/2,…, etc. Keeping the earlier assigned
designations, we can derive:

�I?;p=2;R ¼ I0
�
A� B

�2.
4þ C

h
ð1þ qoqeÞ=2þ qo sin

2 d0 þ p
4

� �n
þ qe sin

2
�
de þ p

4

�io
;

�I?;p=2;R ¼ I0
�
Aþ B

�2.
4� C

h
ð1þ qoqeÞ=2

n
þ qo sin

2 d0 þ p
4

� �
þ qe sin

2
�
de þ p

4

�io
;

ð3:170Þ

In terms of average transmittance and reflectance, and ignored cross-reference
interference, the ratio of Eqs. (3.170) is:

�I?;p=2;R;av ¼ �Ijj;p=2;R;av ¼ I0=2ð Þ 1� �qð Þ= 1þ �qð Þ: ð3:171Þ

For conventional assumptions of equal-to-unity transmittances along both
optical axes, we obtain:

�I?;p=2;ideal ¼ �Ijj;p=2;ideal ¼ I0=2: ð3:172Þ

Figures 3.17 and 3.18 depict the actual intensities of light transmitted by two
crystal quartz wave plates computed by Eqs. (3.155) and (3.156) and (3.158) and
(3.159). One may clearly observe that especially for any thin (zero-order) retarder
both examples of interference events are characterized by intensity noise, caused by
the cross-reference interference of light components incurring different amounts of
reflection (compare the 2q and q2 factors in Eq. (3.163)). Such noise is lower if
interference is not noticeable on the double pass of a plate, i.e., if the coherence
length of radiation is smaller than the double thickness of the retarder. This case is
depicted in Figs. 3.17b and 3.18b for two waveplates: multiple order and zero
order. To verify the concept of limited coherence length, let us further reduce the
approximation by disregarding the rest of the cross-reference interference terms for
the wave components having different numbers of the surface reflections.

If we keep the comparative interference term for interfering beams with only two
reflections, since the change of optical path lengths for these beams: L3d ¼ 3(ne− no)h,
is much lower than the length difference for any cross-reference pair: L2de + d ¼
[2ne þ (ne − no)]h or L2do + d ¼ [2no þ (no − ne)]h, the intensities of the light
beams with the limited coherence length after passing through the analyzer are:

�I?;R;lim ¼ I0
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qoð Þ= 1þ qoð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ= 1þ qeð Þ

p� �2�
þ 4 1� qoð Þ 1� qeð Þ sin2 d=2ð Þþ qoqe sin

2 3d=2ð Þ ��
:

ð3:173Þ
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�Ijj;R;lim ¼ I0
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qoð Þ= 1þ qoð Þ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ= 1þ qeð Þ

p� �2�
�4 1� qoð Þ 1� qeð Þ sin2 d=2ð Þþ qoqe sin

2 3d=2ð Þ ��
:

ð3:174Þ

Equations (3.173) and (3.174) opposite to Eqs. (3.158) and (3.159) have the
second-order phase terms, but these terms are the derivatives of the expected
retardance d and not of cross-reference phase shifts 2do and 2de caused by the
optical thickness of each extra double pass along every single vibration direction.
Figure 3.19a shows the intensities resolved by Eqs. (3.173) and (3.174) (curves 3,
4) in comparison with relations (3.155) and (3.156) for fully coherent radiation
(noisy curves 1, 2). The retarder, a first-order k/8 plate for 532 nm, was notably
chosen to have its phase shift d not to be a multiple of either p/2 or p/4. The graphs
clearly demonstrate that Eqs. (3.173) and (3.174) compute the space averaged
intensity of radiation transmitted by the retarder, both representing integrated light
whose coherence properties are not distinguished on either double cross-optical
paths 3do − de or 3de − do. It is also seen (curves 5, 6) that trivial expressions
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Fig. 3.17 Interference phenomena in coherent (a) and partially-coherent (b) radiation for a
multiple-order retarder: the parallel and crossed axes orientations of the polarizer and the analyzer
are marked as p and c, respectively
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zero-order waveplate: the parallel and crossed axes orientations of the polarizer and the analyzer
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(3.151) and (3.152) do not closely reflect the actual phase retardance caused by the
wave plate even for relatively low surface reflectances. The opposite case for the
surfaces of each plate having increased reflectances: qo;R ¼ q0 þ 0:2; qe;R ¼
qe þ 0:2; is seen in Fig. 3.19b. In this case, the spectral dependencies for a
zero-order k/4 retarder at wavelength k ¼ 750 nm are also computed, first, by
presuming completely coherent radiation (lines 1, 2), and, second, spatially inte-
grated, and thus not cross-interfering, light with limited coherence length (lines 3,
4). Such a plate transmittance counted as for an ultimate nonreflecting element,
omitting all the reflection terms (lines 5, 6), is sufficiently different from the values
obtained by Eqs. (3.173) and (3.174) (compare the indicated points of intersec-
tions). Lines 3 and 4 exhibit some consistent phase difference instead of very noisy
lines 1 and 2 for coherent light. Besides, it may be demonstrated (see beginning of
this paragraph), that implementation, as in Fig. 3.19b, of the auxiliary, but equal
surface reflectances qo,R and qe,R becomes equivalent to materialization of unequal
front plate and back plate reflectances, such as qo,1 ¼ qo and qe,1 ¼ qe and
qo,2 ¼ qo + 0.5 and qe,2 ¼ qe + 0.5, since:

1� qo;R
� �2 ¼ s2o;R ¼ so;1so;2 ¼ 1� qo;1

� �
1� qo;1
� �

;

1� qe;R
� �2 ¼ s2e;R ¼ se;1se;2 ¼ 1� qe;1

� �
1� qe;1
� �

:

3.3.4 Stabilization of Radiation Emission

Owing to unavoidable correlation of light oscillations, the inevitable instabilities of
emission spectrums and propagation directions are notably manifested while
observing laser and pulse-modulated light. Either the spatial or the temporal in-
terference pattern formed by optical elements interacting with unstable radiation
generated by laser and pulsed sources becomes highly observable. Therefore, one
way to make measurements in laser and pulsed radiation is aligned with reduction
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Fig. 3.19 Computed cross-reference interference effects in coherent light for a quartz (a) and a
high-reflecting (b) retarder
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of instabilities of intensity with concurrent decrease of fringe visibility for all likely
interference events that are randomly distributed in space or time.

Let us consider a way for practical stabilization of either a spatial or a temporal
distribution of partially coherent light emitted by any pulsed or continuous source,
looking concurrently for an appropriate manner for minimization of observability for
all coexisting interference patterns. To moderate the most notable impact of inter-
ference noise for radiation emitted by pulsed lasers and, to some extent by pulsed
lamps, a two-channel measurement system is commonly realized. Any relatively
large expansion, distortion, or longitudinal mode discrimination of the laser light
pulses creates irregular temporal and spatial formations of pulse-to-pulse spectral
patterns [3.29, 3.39]. For laser resonators a random change of localization for either
an uncoated glass or a crystal surface owing to, for example, the resonator’s irregular
pump heating by k/2 or the transformation of a coated surface reflectance by
Dq=q ffi 10�3, is sufficient for the excitation of a new longitudinal mode. Only
almost complete elimination of any stray-mode discrimination providing the
mode-locking state results in practically reproducible generation of laser light [3.32].
Similar effects [3.40], though to lower extents, accompany unstable settings of pulsed
lamps. Accordingly, the influence of interference caused by temporal fluctuations or
spatial irregularities in a spectral composition of radiation emitted by a lamp should
be reduced when the lamp’s disturbance factors are removed.

The two-channel measurement system using a pulsed laser or lamp source with the
goal of neutralizing temporal and spatial instabilities of signal detection due to
interference noise is shown in Fig. 3.20. Pulsed laser or lamp 1 irradiates two similar
channels, measurement channel 5 and reference channel 8, via spectral selector or
monochromator 2, spatial filter 11, and beam splitter 3. Both channels have identical
detectors 6 and 7 and attenuators 4 and 5. Attenuators 4 and 5 are tunable translucent
opal glass stacks or integrating spheres, if higher spatial uniformity is needed. The
distances between the detectors and the attenuators may vary, but must be long
enough to produce uniform irradiation of each detector. The measurement system
allows one to modify channel attenuation factors, compensating for the desired
dynamic range of any attenuation factors to be measured. It also maintains channel
signals unchanged, concurrently integrating spatial fluctuations of the radiation
intensity profile in every beam. Each channel signal is registered separately or syn-
chronously by ratio meter 10 with a sample Pi to be tested.

1 

2 3

10
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4

5 6

7

8

9

PiFig. 3.20 Measurements
with variable splitting and
attenuation
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Separate verification experiments [3.35, 3.37, 3.39] were conducted using a
Nd:glass laser at k ¼ 1.053 lm and a flash lamp built into a pulsed spectropho-
tometer for the 400–750-nm spectral domain. In the laser experiment, broadband
laser radiometers UPM (see Chap. 4, Fig. 4.7) were used as two combined systems
of elements 4–6 and 7–9 in Fig. 3.20. A practically identical in structure
dual-channel system based on a UM-89 pulsed spectrophotometer (Chap. 4 and
Fig. 4.15) was utilized during the lamp experiment. First, the laser measurements
were made using a not optimized laser cavity consisting of a right-angled prism as
its total internal reflector and a set of glass plates as the output coupler. Random
error of measurements in series was evaluated by the standard deviation of the mean
of up to ten ratios of signals in the measurement and reference channels. These
measurements were characterized by root-mean-square deviation 2r ¼ (1.5–2)%.
Implementation of a dense opal glass and a collimator functioning as spatial filter
11 eliminating respective spatial and polarization changes (see Fig. 3.20) due to
formation of a quasi-parallel uniform beam via diffusely transmitted radiation
caused 2r reduction only by 0.3–0.5%. At the same time, when the cavity prism
and glass set were replaced by a multiple-layer high-reflecting mirror and an output
coupler, made using coatings on a similar wedged substrate, the initial reduction
was doubled and tripled, reaching 2r ¼ (0.5–0.6)%. That magnitude is shown as
the opening point in Fig. 3.21. These measures for redesigning the laser resonator
eliminating all consecutive multireflecting surfaces led to temporal and spatial
stabilization of the laser emission spectrum to a base level.

As the second step in the attempt to further reduce any potential interference
effects, the notion for discrimination of laser resonator longitudinal modes was
tested. These modes were created by uncoated surfaces of the active element inside
the laser cavity. To suppress the effects of the surfaces, the efficiency K ¼
ð1� q1q2Þ�1 (see Eq. (2.5)) of total multiple reflections inside that laser resonator
with a semitransparent output coupler (series 1 in Fig. 3.21) was increased from
K ¼ 2 to K ¼ 4 by implementing the output coupler with q2 ¼ 0.75 (series 2).
Finally, its ultimate efficiency was further increased to K ¼ 10 by deploying a 90%
reflecting output coupler in the system (series 3). The highest elimination of the
implied interference effects during any single measurement by the dual-channel
system examined was conclusively achieved by the additional AR coating of the
second surface of the beam splitter, and by increasing the reflectivity of its first
surface to qsp1 ¼ 0.2, 0.5, and 0.8, respectively.
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Spectral measurements with pulsed lamps can be accompanied by similar effects
as with lasers. Usually, a relatively slow repetition rate of lamp pulses in com-
parison with the pulse recovery time needed to return its heated emitting plasma to a
steady-state condition is the major reason for spectral instability in the pulsed
lamp’s emission. As a result, the intensity of every linear spectral component of
thermal emission can fluctuate with respect to a continuous portion of plasma
emission as a blackbody or a graybody. Hence, the ratio of the continuous spectrum
to the totality of the pulsed components emitted by a lamp does not remain constant
[3.31]. The lamp interference experiments were done using a UM-89 pulsed
spectrophotometer (see Chap. 4) with a tungsten filament flash lamp having a pulse
discharge energy 90 J and time width t ¼ 0.9 ms [3.39]. Initially the measurement
channel (see Fig. 3.20) had a grating monochromator as a spectral selector, but the
reference channel used a “white” integrated lamp spectrum. To maintain the same
spectral intervals as in the measurement channel, a set of interference filters,
matching the maximum wavelength kmax and bandwidth Dk of the transmission
spectrum, was installed in the reference channel.

The results are given in Table 3.1. A medium-density translucent opal glass was
used as the spatial filter as in the laser experiment, making sure spatial fluctuations
of the discharge did not affect the experimental results. Subsequently, measure-
ments were made at short, but equal time intervals, then at medium time intervals,
and, finally, at uneven time intervals between pulses, as shown in Table 3.1. To
verify the effects of possible spectral distinctions between the channels, measure-
ments were made at two levels of a spectral width in the measurement channel—
unequal to and equal to Dk of the reference channel. Following that evaluation of
the spectral character for the temporal fluctuations observed, the first surface of the
beam splitter was high-reflection-coated to q1 ¼ 0.2, and the second surface was
AR-coated to q2 ¼ 0.005. To raise the plasma temperature and increase the

Table 3.1 Root-mean-square deviation of spectral measurement with pulsed lamp

Measurement conditions Δt (s) Measurement channel: k = 534 nm

Δk = 6 nm Δk = 12 nm

Reference channel

k = 534 nm
Δk = 12 nm

“White
light”

k = 534 nm
Δk = 12 nm

“White
light”

Complement condition of
the setup

10
15
10, 15,
20

1.4
0.9
1.5

1.1
0.6
1.1

1.3
0.7
1.2

1.0
0.5
1.1

Spatial filter is inserted 10 1.3 1.2 1.2 1.1

Splitter is HR & AR coated 10 0.5 0.7 0.4 0.6

Lamp is in the reflector 10
15

0.7
0.4

0.8
0.3

0.6
0.4

0.8
0.4

Pre-heated lamp in the
reflector

15 0.2 0.3 0.15 0.3
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effectiveness of plasma broadband emission, the lamp was placed inside a tight
mirror reflector [3.39, 3.40]. The best results were obtained by a preliminary lamp
heating with a pulse train of 10–15 pulses, and by providing measurements with the
smallest, but sufficient time intervals for the plasma, pulsed spectrophotometer, and
its registration system to fully recover (final raw).

3.3.5 Polarization Measurements

For the experimental verification of interference effects with the birefringent plates
discussed above, likely influences of multiple reflections were measured using three
equivalent quartz wave plates [3.43]. The first plate was not coated, and the other
two had, respectively, a single surface and front and back surfaces coated to 10
times less residual reflectance than the plate with no coating. For a retarder with a
single reflecting surface, Eqs. (3.155) and (3.156) become:

�I?;R;single ¼ I0 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qoÞ

p
=2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qe

p
Þ=2

h i2
þ ffiffiffiffiffiffiffiffi

sose
p

sin2ðd=2Þ
� �

; ð3:175Þ

�Ijj;R;single ¼ I0 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qoÞ

p
=2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� qe

p
Þ=2

h i2
� ffiffiffiffiffiffiffiffi

sose
p

sin2ðd=2Þ
� �

: ð3:176Þ

In terms of average ordinary–extraordinary surface transmittance �s, Eqs. (3.175)
and (3.176) are:

�I?;R;single;av ¼ I0�s sin2ðd=2Þ; �Ijj;R;single;av ¼ I0�s½1� sin2ðd=2Þ�: ð3:177Þ

The transmission spectrums, computed via optical constants in [3.44] for the
wave plates with no coatings, one face coated, and both surfaces coated leading to
no face reflections (Eqs. (3.173–3.176, 3.151, and 3.152) are shown in Fig. 3.22.

The experiments were performed using a standard PerkinElmer 330 spec-
trophotometer in two spectral regions: 500–700 nm and 900–1100 nm. Three
identical 15th-order quarter-wave quartz wave plates for k ¼ 632.8 nm were
evaluated by another method [3.45] as having identical retardance within k/500.
Broadband AR coatings had reflectances q � (0.5–0.7)% from 0.4 to 1.2 µm. Two
equivalent AR-coated Glan–Thompson polarizing prisms were utilized as the po-
larizer and the analyzer, respectively. The alignment of the prisms and all wave
plates to be tested was made via a He–Ne laser. Corrections of the 100% lines were
performed for the parallel vibration directions of the polarizer and analyzer. The
dark signal of the spectrophotometer at the crossed polarizer and analyzer without
any wave plates did not exceed ±0.1%. The spectral resolution of all studies was
set to 0.1–0.2 nm in the visible and IR regions. The measured transmission spec-
trums in the visible region are depicted in Fig. 3.23. Some slight differences seen
among the curves in Figs. 3.22 and 3.23 were created by intensity fluctuations (the
IR curves looked the same [3.43]).
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The analysis and experiments confirm that every individual effect for retro-
reflected beams participating in the comparative and cross-reference interference of
ordinary and extraordinary radiation components with different and equal numbers
of reflections can be quantified. The experiments demonstrated that cross-reference
interference, concerning waves of the orthogonal vibration directions with an
unequal number of retroreflections, is responsible for interference terms, which are
manifested as errors of phase measurements. Instead, the impact of interference for
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light components propagating in parallel with opposite states of polarization and
equivalent numbers of reflections affects the single-pass retardance in a linear and
direct way. That effect is responsible for the slight shift of the total retardance in
intensity measurements of any reflecting wave plate estimated as an AR-coated not
reflecting retarder. The experimentally confirmed predictions of main Eqs. (3.155)
and (3.156) via Eqs. (3.173) and (3.174), as well as (3.175) and (3.176), and con-
versions of all those equations to ones known for isotropic substances indicate that
the intensity of light transmitted by a linear retarder can be correctly predicted if both
bulk and surface properties are accounted for. Even when the retarder has relatively
high surface reflections, its transmission intensity measurement via radiation with a
limited coherence length should detect an increase of its phase retardance.

The concept of interference-effect analysis in coherent light, while omitting
third-order and higher reflection terms, makes linear retardance of a deliberately
reflecting wave plate virtually undistinguishable from random noise (see Fig. 3.19).
Such noise is viewed as random, since it follows actual fluctuations of emission of a
light source and conversions of its coherence length. The only exception corresponds
to quarter-wave retardance, leading to destructive interference for retroreflected
components when interference extrema are lowest (see Fig. 3.18). Depending on the
applications of a retarder with reflecting surfaces, the multiple reflections in spon-
taneous or spatially integrated light with a restricted coherence length linearly
increase or decrease the single-pass phase retardance. Other reductions of interfer-
ence effects are seen at spectral points at which the intensity of light transmitted by
the retarder between crossed or parallel polarizers tends to zero: the full-wave and
half-wave retardance – no retroreflection effects are observed. For all other phase
points, a linear retarder with reflecting surfaces, in contrast to any coated wave plate
with identical internal properties, moves the expected magnitude of the transmission
to a new wavelength. Thus, if a wave plate is expected to function only at spectral
points of specific phase extrema, such as those leading to any multiple of the
half-wave shift, that wave plate does not require any antireflection coating. That
could be useful for coherence-restrained applications of uncoated wave plates.

When retardance measurements are obtained with partially coherent radiation,
the resultant interference effects can make transmittance measurement results look
different. As follows from Eqs. (3.154) to (3.158) in the region of a quarter-wave
retardance the essential phase exchange provided by the interference terms for
equivalent numbers of reflections which are participating in the comparative pattern
becomes significantly diminished. This occurs since the derivative of the function
sin2[(2 m − 1)p/2] tends to zero in the regions described. One can clearly observe
how dramatically the oscillations in Figs. 3.17 and 3.18 drop around every
quarter-wave point. The interference effect is also apparent in Fig. 3.19a, but is
much less visible in Fig. 3.19b, where the cross-reference interference for the
retroreflecting terms with different numbers of reflections creates intensive random
noise owing to the high reflectance of the retarder surfaces. Similar effects when
interference fringes are enhanced or diminished at the extrema of interference, as
well as when the fringes are averaged via spatial or temporal integration of multiple
optical paths of light propagation, can be observed in other experiments (see
paragraphs 6.5 and 11.4 and references therein).
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One notion to perceive is that multipath-interference noise occurs owing to
spatial as well as temporal interpolation of multiply retroreflected light components
contributing to the interference observed as a result of the interpolation. If each of
these interpolating components is resolved either spatially or temporarily, no in-
terference occurs, and multipath interference noise vanishes. Examples of mea-
surements without interference noise when propagation of retroreflected light is
guided to its own path can be seen in cavity ringdown spectroscopy applications
(see paragraph 7.3) or other time-resolved and spectrally resolved multipath res-
onator studies [3.83–3.85]. This way, for example, the minute residual birefrin-
gence was measured in the time domain and normalized by the sum of intensities of
two orthogonal components [3.84], and polarization mode-coupling in a
polarization-maintaining fiber was resolved via a Fourier transform process applied
to reconstruct spectral-phase changes [3.85].

3.4 Diffraction Corrections and Gratings in Radiometry
and Photometry

3.4.1 Diffraction on Beam-Defining Apertures

Most radiometric and photometric methods do not intend to obstruct the radiation to
be measured, thus involving apertures that do not shield beams, but rather baffle
possible stray light. The only beam-defining apertures used for the measurements are
detector frames typically set at immediate proximities of their sensitive elements (see
Chaps. 2 and 4 for details). In circumstances for which apertures are fully or partially
defining, serving as entrance pupils of optical systems, while high accuracy of
photometric and radiometric measurement remains essential, diffraction phenomena
at such apertures can notably destroy approximations of geometrical optics that
presume infinitely small wavelengths ki ! 0 of the measured radiation (see Chap. 1
), thus causing measurement error. Two limiting cases of aperture-defined geometry
are (1) where the detector is irradiated by light from a partially viewed expanded
source and (2) where the detector is overfilled by point-source light.

Figure 3.24 illustrates the geometry of either a limiting-defining or nonlimiting
circular aperture between a source of light and a detector when the source or
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Fig. 3.24 Diffraction on
limiting and nonlimiting
aperture
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detector or both are not necessarily point objects (see paragraphs 1.2, 2.1). From the
standpoint of geometrical optics [1.1, 3.48, 3.49], for all objects with cylindrical
symmetry considered, the irradiation of the detector’s plane by source S of radius rs
at distance ds to aperture A of radius ra creates a fully irradiated circle of radius rc:

rc ¼ ra þ ra � rsð Þ=ds½ �dd
¼ ra 1þ rs=rdð Þ � rsdd=ds ¼ ra ds þ ddð Þ=ds � rsdd=ds:

ð3:178Þ

Here dd is the distance from the detector of radius rd to aperture A. The finite
height of source S causes its geometrical projection onto the detector’s plane to
have a circular penumbra of radius rp:

rp ¼ ra þ ra þ rsð Þ=ds½ �dd ¼ ra ds þ ddð Þ=ds þ rsdd=ds: ð3:179Þ

For radiometric observation via a defining aperture, while applying paraxial
treatment enabling a small-angle approximation for viewing solid angle h of source
S from the center of aperture A: X ¼ 4psin2(h/2) � ph2, of the flux U1 received by
detector D for a source radiance L (see Eq. (1.31)) is:

U1 ¼ pr2a2p 1� cos hð ÞL ¼ pr2a4p sin2 h=2ð ÞL ffi
sin h!h

p2h2r2aL: ð3:180Þ

For the nondefining, e.g., baffling aperture, detector irradiation Ed is given by the
inverse-square law (Eqs. (1.17)–(1.61)), making the flux U2 received in the paraxial
approximation via aperture view angles h and u:

U2 ¼ Edpr
2
d ¼ p2r2s r

2
dL
.

ds þ ddð Þ2 ffi
tan h;u!h;u

L phudsdd= ds þ ddð Þð Þ2: ð3:181Þ

Consider diffraction of source S light of wavelength k on aperture A, first, as
underfilling, and, second, as overfilling detector D. In both cases, source S makes a
directly irradiated region of radius Rc and a penumbra of radius Rp. The detector
irradiance in each case is formed as an image of the source S via the diffracting
aperture A [1.1]. The spread function of irradiance Ed is that for Fresnel diffraction
by circular aperture A given as [3.46–3.51]:

Ed ¼ p2r4a
�
k2d2s d

2
d

� � � K u; vð Þ � Iðu; vÞ
¼ p2r4a

�
k2d2s d

2
d

� � � Kðu; vÞ � 4 U2
1 u; vð ÞþU2

2 u; vð Þ �
=u2; ð3:182Þ

where b is the viewing angle of the edge of aperture A to the center of the source and
detector that in the small-angle approximation is b ¼ ra(1/ds + 1/dd), u ¼ (2p/k)
[(ds + dd)/dsdd]ra2 and vd(s) ¼ (2p/k)rard(s)/dd(s) are new variables, and I(u, v) is the
light intensity distribution, being the spread function for Fresnel diffraction which is
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defined by Lommel functions U1(u, v) and U1(u, v) [3.46]. The light intensity
distribution I(u, v) in the detector’s plane can be expanded into the form [3.46]:

I u; vð Þ ¼ 4
u2

1þV2
0 u; vð ÞþV2

1 u; vð Þ � 2V2
0 u; vð Þ cos u

2
þ v2

2u

� ��

�2V2
1 u; vð Þ sin u

2
þ v2

2u

� ��
;

ð3:183Þ

where nth functions Vn(u, v) are defined via Bessel functions of the first kind of
order (n + 2s) [3.47]:

Vn u; vð Þ ¼
X1
s¼0

�1ð Þs v=uð Þnþ 2sJnþ 2s vð Þ: ð3:184Þ

K(u, v) in (3.182) is the autocorrelation function, that is:K(u, v) ¼ 0 at v � vs + vd
and K(u, v) ¼ 1 at u < vd − vs.

Considering the source radiance and detector sensitivity as constant, the total
flux U integrated over the detector surface obtained via diffraction of the source
radiation on aperture A is [3.51]:

U u; vs; vdð Þ ¼ p2
�
2

� �
h2r2aL

Zvs þ vd

0

I u; vð ÞK u; vð Þvdv; ð3:185Þ

where K(u, v) ¼ 0 for v� 2pra=kð Þ hþuð Þ ffi vs þ vd . In the first radiometric case,
for detector D to view source S flux via a limiting aperture, rd � rp, the ratio of flux
U due to diffraction on aperture A obtained by Eq. (3.185), to flux U1 obtained by
radiometric considerations by Eq. (3.180) is [3.48, 3.50]:

F1 u; vs; vdð Þ ¼ 1
2

Zvs þ vd

0

I u; vð ÞK u; vð Þvdv ¼
v[ u; K¼ 1

1
2

Zvd
0

I u; vð Þvdv: ð3:186Þ

For a point source or a point detector, which can be treated via reciprocity:
vs = 0 [3.51, 3.52]:

F1 u; 0; vdð Þ ffi
v[ u

1� 2vd
p v2d � u2
� � þ cos2 vd

p v2d � u2
� � þ . . . ffi

v	u
1� 2

pvd
: ð3:187Þ

For the radiometric case when detector D is placed within a fully illuminated
region, rd < rc, thus making a factual radiance or luminance observation (see
Chap. 2), and when the relation in the first case is reversed, u > v, the ratio of the
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flux U obtained via diffraction on aperture A obtained by relation (3.185) to the flux
U2 obtained by the radiometric consideration by Eq. (3.181) is [3.51]:

F2 ¼ 1
2

u
vd

� �2
" # Zvs þ vd

0

I u; vs; vdð ÞK u; vð Þvdv ¼
u[ v

u2

2v2

Zvd
0

I u; vð Þvdv: ð3:188Þ

Since for u 	 v, successive terms multiplied by v2/2u in Eq. (3.183) decay
rapidly, Eq. (3.183) can be approximated with reasonable accuracy by only the V0

and V1 terms [3.52]:

I u; vð Þ ¼
u	v

4
u2

1þ J20 vð Þþ v2

u2
J21 vð Þ � 2J20 vð Þ cos u

2
þ v2

2u

� ��

�2
v
u
J1 vð Þ sin u

2
þ v2

2u

� ��
:

ð3:189Þ

Integrating and approximating for u 	 vs, vd in Eq. (3.185) with relation (3.189)
gives [3.52]:

F2 u; vð Þ ffi
u	v

1þ J20 vð Þþ J21 vð Þ � 4
v
J1 vð Þ cos u

2
þ v2

2u

� �
: ð3:190Þ

For v 	 1, Eq. (3.190) may be further simplified by using asymptotic forms of
functions J0 and J1:

F2 u; vdð Þ ffi
vd	1

1þ 2
pvd

� 4
vd

ffiffiffiffiffiffiffi
2
pvd

r
sin vd � p

4

� �
cos

u
2
þ v2d

2u

� �
: ð3:191Þ

On the axis of the paraxial optical system for u 	 v, Eq. (3.190) and rigorous
Eq. (3.183) both lead to the ratio of intensities for the diffracted and geometrically
transferred light as [3.52]:

F2 u; 0ð Þ ¼
u	v

2� 2 cos u=2ð Þ: ð3:192Þ

Equation (3.192) gives the ratio of intensities for the on-axis diffraction pattern,
compared to the geometrical-optics approach, and provides corrections due to
diffraction effects on any baffling aperture for a radiometric measurement to be
made. Figure 3.25 provides numerical values of the ratio F2(u, 0) at k ¼ 500 nm,
revealing dual-beam interference-like phenomena. Figure 3.26 illustrates the
diffraction correction ratio F2 obtained by Eq. (3.191) for u/vd ¼ 10 and k
500 nm. Figure 3.27 gives diffraction ratio F1 obtained by relation (3.186) com-
paring v > u and v 	 u approximations. More precise, but more complicated
analytical expressions for diffraction corrections can be invoked if higher accuracy
is required, along with a detailed numerical evaluation [3.53–3.62].
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3.4.2 Maxima-Shifting Anomaly for Step-Function
(Surface-Relief) Diffraction Gratings

In view of diffraction corrections in radiometry, let us examine the applicability of
diffraction gratings for optical measurements. It has been known almost since
introduction that diffraction gratings exhibit abrupt anomalies at critical diffraction
angles or wavelengths which may occur owing to finite beam sizes for wide-angle
diffraction phenomena or as deviations from the wavelength of maximum blaze
efficiency for echelle gratings. Step-function (surface-relief) diffraction gratings,
being susceptible to the step-shadowing effects for incident and for diffracted light,
may exhibit certain angular anomalies of diffraction maxima at much smaller angles
than expected in view of all other considerations. The step-function diffraction
gratings often maid as the surface-relief gratings consist of recurring, mainly
rectangular steps in the sub-wavelength-thick layers, could exhibit the maxima-
shifting anomalies for relatively small angles of incidence or small angles of ob-
servation, when such a grating does not have the sufficiently high number of grating
periods. The first-order maxima-shifting anomaly follows the phase modulation of
the step around the grating normal: away from the direction of light illumination for
phase thicknesses between p and p/2 or toward the illumination direction for phase
thicknesses between p/2 and 0, with the tendency to be most pronounceable as the
phase thickness tends to p and to zero.

Traditionally, for the diffraction grating consisting of a large number N of
parallel grooves with period p, the grating equation: sinHþ sinH0 ¼ mk=p; that
defines the positions of the maxima for the angles of diffraction H versus angles of
incidence H0 and light wavelength k is considered fundamental and thus is not
expected to change [1.1]. Nonetheless, certain grating anomalies have been
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revealed and also experimentally confirmed [3.63, 3.64]. The known echelle grating
anomalies reported were for wavelengths of the maximum blaze efficiency slightly
different from wavelengths satisfying the wavelength equation and for the angular
positions of some diffraction orders violating the grating equation. An explanation
has been given [3.64] for the angular grating anomaly as the straightforward result
of the finite beam size for the observed strictly wide-angle diffraction phenomena.
However, for medium to small angles of incidence, the anomalies seemed vanish,
with the grating equation correctly predicting the angular positions of all interfer-
ence maxima. At the same time, various upcoming technologies, pushing the
dimensions of the grating features into tens of nanometers, provide new ways to
make diffraction gratings, such as of the step-function profile made by relieving
alternating surfaces of solid-state structures and consisting of periodic rectangular
steps with thicknesses being less than of the wavelength of incident light. These
thin step-function gratings are often considered as making negligible shadows to
affect the grating equation, especially at the angles of incidence and diffraction for
which the small-angle approximation, cosH ≅ cosH0 ≅ 1.0, could be used [3.65].

As detailed below, even at relatively small angles of incidence and diffraction,
nearly satisfying the small-angle approximation, the step-function diffraction grat-
ing with insufficiently high numbers of grating periods N clearly exhibits certain
maxima-shifting anomaly [3.75]. Such an anomaly could be identified by the
step-shadowing effects due to the angles of incidence and diffraction deviating from
the step-function grating normal, leading to an asymmetric step modulation of
diffraction intensity and causing the positions of the centroid of at least the first-
order diffraction maximum to shift about the grating normal—away from and
toward the direction of incidence of radiation. The maxima-shifting anomaly is the
most pronounceable, whereas the phase-modulation function of the grating step
tends to its extrema at p and 0 phase values. Let us analyze the circumstances
affecting the maxima-shifting anomaly and review the measures leading to
improvements of the efficiency of surface-relief gratings.

In the classical case of diffraction on any periodic structure [1.1], interference
defines the formation of diffraction maxima. If the diffraction grating of period p is
seen in reflected light (Fig. 3.28), the optical path difference D for beams interfering
on the grating becomes Dref ¼ AC − DB ¼ p(sinb − sin(−a)), where a and b are
the angles of incidence and diffraction, respectively. For the interference maximum
to occur, the path difference must satisfy the diffraction grating equation defining
the mth order of diffraction with m ¼ 0, ±1, ±2,… as:

p

α
β

A

C D

B

Fig. 3.28 Path difference of incident and diffracted beams for a diffraction grating in reflected
light
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p sin bþ sin að Þ � mk or p � mk= sin bþ sin að Þ: ð3:193Þ

The specific case of the step-function diffraction grating in reflected light is
illustrated in Fig. 3.29. Let us start by following an earlier analysis [3.65] for the
small-angle approximation, which omits near unity cosine terms for incidence and
diffraction: cos(a, b)! 1.0. The optical path differenceDi for all beams incident on the
grating at step point A and trench point B becomes CB ¼ Di � BD + DC ¼
(p/2) � sina + t � cosa ≅ (p/2) � sina + t, where the latter of the two expressions is the
small-angle approximation. Continuing with the small-angle estimate, the path differ-
ence Dr in reflected light by analogy becomes Dr � (p/2) � sinb + t � cosb ≅ (p/2) �
sinb + t.

The resultant small-angle path difference DS for beams diffracted on the
step-function grating is DS ≅ (p/2)(sina + sinb) + 2t at angles of incidence and diffr-
action small enough for the unity approximation: cosa ≅ cosb ! 1.0. Diffracted
light intensity IS at equidistant steps and trenches a ¼ b ¼ p/2, as for a Foucault
grating [3.65], is modulated by a cosine-squared function:

I a; b; p; tð ÞS ¼ 4a2
sin p sin a þ sin b

k

� �
a

p sin a þ sin b
k

� �
a

0
@

1
A

2
sin 2Np sin a þ sin b

k

� �
a

sin 2p sin a þ sin b
k

� �
a

0
@

1
A

22
64

3
75

� cos2 p
sin a þ sinb

k

� �
a þ 2tp

k

� �
: ð3:194Þ

The first term in square brackets in Eq. (3.194) is for a Foucault grating of the
equivalent period to the step grating and the second one is the modulation function
of the step-function grating, vanishing for all even orders of diffraction and keeping
the zero order and odd orders at m ¼ 0, ±1, ±3, ±5,… .

Figure 3.30 illustrates the spectral distribution profile of the intensity of light
modeled by Eq. (3.194) of a diffraction grating, made, for example, either litho-
graphically or any other way, as the series of equidistant trenches in an opaque
matrix. The viewing wavelength domain starting at 800 nm and ending at 900 nm

t

p=a+b
a b

psin α

α

α

β

tcos α

D

B

C
A

p/2
Fig. 3.29 Incident and
diffracted light for one grating
period
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is centered at 850 nm wavelength and is chosen to be irradiated at 20° and to be
observed at the first diffraction order in the normal direction to the grating, leading
to the grating period: p ¼ k/|sina| ¼ 2.485 µm. The 11-period grating comprises
12 steps, 11 trenches, all etched in a solid substrate, and is 31.065 µm wide with
a ¼ b ¼ 1.243 um. Figure 3.30 shows the intensity of diffraction for a 40-nm-thick
surface-relief diffraction grating.

One can clearly see the shift of the maximum intensity for the central wavelength
k0 ¼ 850 nm from the direction of the grating normal b0 ¼ 0° to b+,0 ¼ 0.16°. For
the opposite incidence at −20° (see [0.50]), the shift of maximum intensity is
mirrored precisely to the same extent: b−,0 ¼ −0.16°.

Let us now evaluate, if the small-angle approximation is responsible for the
maxima-shifting anomaly. Following the preceding steps, actual angle-path differ-
ences in reflected light (Fig. 3.29) for radiation incident onto the step-function grating
Di and for radiation diffracted by the gratingDr become:Di ¼ (p/2) � sina + t � cosa
and Dr ¼ (p/2) � sinb + t � cosb. The combined path difference is:

DA ¼ p=2ð Þ sin aþ sin bð Þþ t cos aþ cos bð Þ: ð3:195Þ

Equation (3.194), with all aspects of its derivation unchanged except DS ! DA,
becomes:
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Fig. 3.30 Intensity distributions for step-grating diffraction at 20° incidence in small-angle
approximation
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I a; b;N; p; tð ÞA ¼ 4a2
sinp sin aþ sin b
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:

ð3:196Þ

Identical toFig. 3.30, the plot inFig. 3.31 for 20° shows the anomaly doesnot vanish,
but the grating’s efficiency is noticeably reduced: Imax,1,S ¼ 3.17 � 10−11 W/m2 �
rad at bmax ¼ 0.16° and Imax,1,A ¼ 2.53 � 10−11 W/m2 � rad at 0.20° for the
small-angle approximation and the actual 20° angle; with the respective values for
b ¼ 0°, I0,1,S ¼ 3.06 � 10−11 W/m2 � rad and I0,1,A ¼ 2.42 � 10−11 W/m2 � rad.
A lesser degree of maxima-shift occurs for a twice as thick step of the same grating
modeled by Eq. (3.196) at bmax ¼ 0.07° (see Fig. 3.31b in [0.50]). Conversion of
Eq. (3.194) into (3.196) and accommodating the effects of a step thickness via cosk
and cosb does not account for the maxima-shifting anomaly seen in Figs. 3.30 and
3.31.

Figure 3.32 illustrates shadowing effects caused by the finite thickness of the
grating step when deviating from the grating normal for light incidence and
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Fig. 3.31 Intensity distribution of light diffracted on a 40-nm step-grating at 20° incidence
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diffraction. Considering that the period p of the grating for step thickness t is in
effect shadow-reduced by 2 t � tana and 2 t � tanb for both incident and diffracted
light, the shadow-bound step-function grating equation could be rewritten from
Eq. (3.193) by replacing grating period p by effective periods p − 2 t � tana for
irradiation and p − 2 t � tanb for diffraction:

peff ;out sin b� peff ;in sin a ¼ p� 2t � tan bð Þ sin b� p� 2t � tan að Þ sin a � m � k;

psh � m � k
sin b� sin a

þ 2t � sin
2 b
�
cos b� sin2 a

�
cos a

sin b� sin a
:

ð3:197Þ

For observation by the grating normal, b ¼ 0, Eqs. (3.193) and (3.197),
respectively become:

p0 � m � k
sin aj j : ð3:198Þ

pstep;0 � m � k
sin aj j þ 2t � tan a: ð3:199Þ

For the step-function grating seen inFig. 3.31, Eq. (3.199) gives thematchingperiod
pstep,0 ¼ 2.5144 µm and astep,0 ¼ bstep,0 ¼ 1.2572 µm versus p0 ¼ 2.4852 µm and
a0 = b0 = 1.2426 µm. Figure 3.33 shows the plot of Fig. 3.31 by Eq. (3.196) for a
matching step grating with the shadow-bound period pstep,0 of Eq. (3.199).
The maxima-shifting anomaly virtually disappears.

Let us rewrite Eqs. (3.194) and (3.196) counting the shadow-bound effects for the
step grating. Keeping designations for the optical path difference as in Fig. 3.29, while
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Fig. 3.32 Shadowing effects in the formation of effective grating period p for step thickness t
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counting off grating shadow-bound sections in Fig. 3.32 and assigning respective
effective periods p − 2t � tana for illumination and p − 2t � tanb for diffraction, the
resultant path differences for a¼ b¼ p/2 for incident and diffracted light become: Din
¼ ((p − 2t � tana)/2) � sina + t � cosa ¼ (a − 2t � tana/2) � sina + t � cosa, and Ddif ¼
(p/2− 2t � tana/2) � sina + t � cosa + (p/2− 2t � tanb/2) � sinb + t � cosb¼ a � (sina + sinb)
+ t � (cosa + cosb)− t � (sin2a/cosa + sin2b/cosb). If diffracted light is viewed by the
grating normal at b ¼ 0, the later expression for the diffraction path difference
becomes: Ddif, 0 ¼ (p/2) � sina + t � (cosa + 1) − t � (sin2a/cosa). The resultant
entire phase difference for the diffracted beam is:

d ¼ 2p
k
Ddif ¼ p � p sin aþ sin b

k
þ 2p

k
t cos aþ cos bð Þ � sin2 a

cos a
þ sin2 b

cos b

� �� �
� ppuþ 2pte;

ð3:200Þ

where u ¼ sin aþ sinb=k and e ¼ cos aþ cos b� sin2 a
�
cos a� sin2 b

��
cos bÞ�k. For the equidistant steps, a ¼ b ¼ p/2, mainly dictated by technological
reasons, the amplitude A of diffracted light becomes [3.65]:
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Fig. 3.33 Step-function grating diffraction intensity for the shadow-bound period at the actual
angle of 20°
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2
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ð3:201Þ

The resultant intensity I of diffracted light for a step grating with defined des-
ignations u and e for p ¼ 2a is:

I u; eð Þ ¼ 4 p=2ð Þ2 sin pup=2
pup=2

� �2

� sinN2pup=2
sin 2pup=2

� �2

cos2 pup=2þ pet½ �; ð3:202Þ
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Figure 3.34 depicts the intensity distribution obtained by Eq. (3.203) for the
same light diffracted by the modeled 11-period, 40-nm-thick step grating with
period pstep,0 defined by the shadow-bound grating Eq. (3.199) exhibiting no
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Fig. 3.34 Shadow-bound intensity distribution for a 40-nm 11-period step grating at 20°

198 3 Radiometry of Partially Coherent Radiation



anomaly at ±0.00° accuracy. Notice the reductions of the grating efficiency, and
therefore the intensity maxima are about 10% lower than those in Fig. 3.33 and are
another 10% lower than those in Fig. 3.31.

The cosine-squared function of the period, depth, and angles of incidence and
diffraction in Eq. (3.203):

W a;b; p; tð Þ ¼ cos2 p
sin a þ sin b

k

� �
p
2
þ tp

k

�

� cos aþ cos bð Þ � sin2 a
cos a

þ sin2 b
cos b

� �� ��
;

ð3:204Þ

provides the step-thickness modulation in addition to period p and angles a and b.
At b ¼ 0°, W becomes:

W a; b ¼ 0; p; tð Þ ¼ cos2 p
sin a
k

p
2
þ tp

k
cos aþ 1ð Þ � sin2 a

2 cos a

� �� �
: ð3:205Þ

Figure 3.35 gives respective profiles of function W at 20° irradiation for the
nominal grating period. The obvious asymmetry in Fig. 3.35 versus the direction of
the grating normal: b ¼ 0°, contributes to the uneven modulation of diffracted light
being eliminated for t ¼ 0 nm when p � psh (Fig. 3.36).
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Fig. 3.35 Cosine-squared modulation function for a 40-nm thick step-function grating at 20°
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Fig. 3.36 Cosine-squared modulation function of Fig. 3.35 for a = 20° and b = 0° with the
eliminated step at t = 0
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Fig. 3.37 Zero- order diffraction on the grating for zero step-thickness
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If the step thickness is zero, the grating diffraction becomes that as of the mirror,
and if the phase thickness is p, the first-order maximum for wavelength k vanishes
(see Fig. 3.37 and [0.50]).

If the step phase thickness is between p and p/2, function W swaps its asymmetry
and the first-order maximum shifts in the opposite direction from the grating normal
and from the irradiation (Fig. 3.39). The shadow-bound equation (3.203) predicts the
lowest shift while relations Eqs. (3.196) and (3.194) consecutively increase the
anomaly: for the 400-nm step the maxima shifts are 0.20°, 0.30°, and 0.33°,
respectively. Equation (3.194) incorrectly predicts the termination of the first-order
maximum for k ¼ 800 nm matching dual-step thickness at normal incidence owing
to its small-angle approximation (see [0.50] for more detail), while relation (3.196)
corrects and Eq. (3.203) normalizes the spread among modeled wavelengths.

If the value of W is optimized by the step thickness, setting e � t ¼ ±1, 2… to
give W ¼ cos2(pua ± kp/2) (Eqs. (3.203, 3.204)), the thickness modulation van-
ishes at t ¼ 234.1362 nm, 20° incidence, and 0° observation, and hence function W
becomes symmetric for central wavelength k ¼ 850 nm (Fig. 3.38).

For that optimized step thickness the anomaly is absent for nominal period p as
seen in Fig. 3.39.

When themagnitude ofW is lowered from 1.0 toW0° ¼ cos2(pua ± kp/4) ¼ 0.5,
the maxima-shifting anomaly in the intensity profile given by Eq. (3.203) is also
absent, but the spectral profile is asymmetric (Fig. 3.40a). Conversely, the maxima-
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Fig. 3.38 Symmetric cosine-squared modulation function W at the optimized step for first order
diffraction
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shifting anomaly is manifested if Eq. (3.194) is used for the grating with W0° ¼ 0.5,
thus having k/8 step thickness (Fig. 3.40b).

If the diffraction intensity is computed according to Eq. (3.203) for the grating of
nominal period p satisfying grating Eq. (3.198) and when the value of W is between
cos2(pua ± kp/4) and cos2(pua ± kp/8), the maxima-shifting anomaly is practically
not noticeable. When the step thickness is lowered further from k/16 to near k/24,
the shadow-bound grating Eq. (3.199), used alongside Eq. (3.203) for the
step-matching grating period pstep, compensates for the maxima-shifting anomaly,
as seen in Fig. 3.43 for approximately k/21 step thickness. However, if the step
thickness goes below W ¼ cos2(pua ± kp/12) levels, even Eqs. (3.203) and
(3.199) together do not relieve the anomaly, giving a positive-shift maximum for
k ! 0. The negative-shift maximum is reached for thicknesses t ! k/2 for phase
thickness of the grating’s step approaching p (Eqs. (3.194), (3.196), (3.203)). Since
the anomaly’s asymmetry is centered at step-modulation function W equal to 1.0 for
step thickness t � tc, the compensation algorithm for grating period pc can be
written from Eqs. (3.193), (3.198), and (3.199) via the difference of the actual step
thickness t from tc:

pc;0 � m � k
sin aj j þ tc � tð Þ � tan a: ð3:206Þ

Figure 3.41 shows the compensation effect for 11-period, 5-nm, and
463-nm-thick step-function gratings for the intensity-spectrum obtained by
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Fig. 3.39 Intensity of an optimally thick step-function grating for p/2 phase and W � 1.0, thus
eliminating the anomaly
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Fig. 3.40 Grating intensity for p/4 phase-thickness with no anomaly if accounted for by the
shadow-bound equation (a), and with 0.25° maxima-shift for first-order diffraction if
step-shadowing is not counted (b)
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Eq. (3.203) and grating period pc satisfying Eq. (3.206). The first-order intensity
maxima for both thicknesses, being about equidistant from t ¼ 0 and t ¼ 468.27
nm—for the phase thickness to become p, are centered within +0.06° and −0.07°
from the grating normal for otherwise +0.7°, −0.75° shifts in opposite directions
from the same normal. Equations (3.203) and (3.206), providing linear compen-
sations for the nonlinear anomaly, do not fully balance the maxima shifts for all step
thicknesses, for which Eq. (3.203) provides exact matches at compensation period
p11 fully eliminating the anomaly. For example, for 463-nm and 5-nm grating steps,
the compensation periods are p11-463 ¼ 1.195 µm versus pc-463 ¼ 1.201 µm and
p11-5 ¼ 1.2875 µm versus pc-5 ¼ 1.284.3 µm (see [0.50] for more detail).

For the nominal grating period, the anomaly may be substantially reduced by
limiting the angle of incidence: 2° versus 20° illumination limits the anomaly from
0.7° to 4 arc minutes (Fig. 3.42).

Reduction of the angle of incidence by itself does not remove the anomaly—
0.12° maxima shift at 10° incidence at 11 periods, but increasing the number of
steps does—the shift is reduced to 0.03° (Fig. 3.43) which is within a calculation
error for 10° incidence for the number of periods being doubled to 22. Increasing a
number of periods makes the anomaly virtually disappear in otherwise largely
anomalous settings –10° incidence leads to the only 0.015° shift for 44 grating
periods for a 20-nm-thick step (Fig. 3.44). For a 5-nm-thick step the anomaly is
equally limited to 0.015° for 88 periods [3.75].

Making the final step in modeling of the step-function grating properties for the
nanoscale step thickness, let us increase the angle of incidence from 20° in our main
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Fig. 3.41 Intensity profile for a step grating with the shift-compensation period pc for 5-nm step
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Fig. 3.42 Intensity profile of a 5-nm thick step at 2° (a) versus 20° (b) incidence for nominal
grating periods
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Fig. 3.43 Intensity profile of a 40-nm thick step grating for 10°-incidence at 22 grating periods
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Fig. 3.44 Intensity profile of a 20-nm, 44 period step grating for 10°-incidence
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example, instead of lowering it to reduce the anomaly. Such a large angle of
incidence as 40° makes a 80-nm-thick step grating with period p40° ¼ 1.3224 um to
shift its maximum to only 0.27° for 11 periods [0.50], and when the grating width is
increased from 11 to 22 periods the anomaly is decreased further from 0.6° to only
0.17° for the 40-nm-thick surface-relief grating of our main example (Fig. 3.45).

The anomalies seen in Fig. 3.31 were verified by strict numerical modeling
using rigorous finite-element analysis of the electromagnetic field [3.74]. The
results shown in Fig. 3.46 exhibit quite evident maxima shifts for the step thick-
nesses of the surface-relief gratings modeled: 80 nm and 40 nm.

The irregularities in the angular positions of the diffraction maxima for thin
step-function gratings can affect the performance of various devices for upcoming
nanotechnologies, as well as extremely short-wave lithography applications. The
magnitudes of the grating-step thickness modeled in the analysis are dictated by
forthcoming applications. Already developed prototypes of absorber layers for EUV
(Extreme UV) lithography are near 42–40 nm in thickness and the thickness may be
lowered to 30 nm in an attempt to avoid shadowing effects due to EUV light incidence
of 6° [3.67]. Shadow-bound Eq. (3.203) for the intensity of reflected light being
diffracted on a surface-relief diffraction grating can be applied tomitigate themaxima-
shifting anomaly increasing the otherwise lowered grating efficiency at angles of
incidence or observation causing the grating step shadows. When considering the
properties of the step-modulation function for a phase thicknesses between p and p/2
as mirroring those between 0 and p/2, the maxima-shifting anomaly associated with
the nanoscale-level thicknesses of step-function gratings, even when approaching
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Fig. 3.45 Intensity profiles for 40° incidence at 40-nm-thick step for 22 periods
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hundredths and thousandths of the illuminating wavelengths, must be affecting these
novel applications. Phenomenologically, one can think of shadowing effects as
shifting the effective grating toward the irradiating light, as schematically depicted in
Fig. 3.47. Figure 3.47a, illustrates shadow-bound regions at incident and diffracted
angles a and b; Fig. 3.47b, gives a view from the perspective of incident light
schematically tilting the grating via the direction of radiation incidence. From that

(a) (b) (c)

Fig. 3.47 Phenomenological illustration of the grating-step-bound maxima-shifting transforma-
tion effect
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Fig. 3.46 Numerical results for 40-nm (a) and 80-nm (b) gratings: 11 periods, 20° illumination,
0° observation [3.74]
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angle, the grating is seen as being shifted toward the direction of light incidence by its
one shadow-bound distance: t � tana. When the step thickness t is reduced toward
k/20 or below, the grating profile becomes almost indistinguishable and the incident
light virtually faces edge bumps of the grating structure seen from its direction to be
“(t � tana)-shifted,” as depicted in Fig. 3.47c. The t � tana lateral shift is exactly half
of the difference for shadow-bound period pstep computed by expression (3.199)
versus period p given by grating Eq. (3.198). For example, for grating step thickness
t ¼ 20 nm, angle of incidence a ¼ 20°, and observation of the first diffraction order
by the grating normal at b ¼ 0°, the shift is precisely half of the period difference:
(t � tana) ¼ (pstep − p)/2 ¼ 7.2794 nm.

Limiting the angles of incidence allows one to contain the anomaly to a mini-
mum. For 12° versus 20° illumination for a 40-nm step, 11-period grating, the
maxima shift is limited to 0.12° from 0.20° with no grating modification. Increasing
the grating period from p ¼ 4.0883 µm to pstep ¼ 4.1053 µm using Eq. (3.199)
brings it further down to 0.06°. Another advantage of using smaller angles of illu-
mination, down to close to normal incidence, if the number of grating steps cannot be
sufficiently high is associated with the subsequent reduction of the half-width
half-maximum intensity of diffraction maxima. For 12° versus 20° illumination, the
half-width half-maximum intensities of first-order maxima are reduced to 1.2° from
1.8° for an 80-nm step, to 1.1° from 1.7° for a 40-nm step, and to 1° from 1.6° for a
20-nm step—all for our main example of the step-function grating with 11 periods.
The maxima widths are higher for the modeled broadband source at half-spectral
width Dk ± 50 nm. Since the numerical aperture of a diffraction-observation system
is always limited, the narrower is the diffraction order, the lower is the error of axial
intensity registration due to a potential anomaly.

For certain applications altering the nominal grating period toward the highest
efficiency of a given diffraction order by Eqs. (3.199) and (3.206) or, most
straightforwardly, Eq. (3.203) versus grating Eqs. (3.193) or (3.198) provides
valuable alternatives to otherwise inefficient application of that specific grating.
Although such a grating modification should diminish the particular anomaly, the
attempt would rather make the grating design be strictly application-specific.
Limiting the angles of incidence and observation and, most importantly, increasing
the number of grating periods should be the two best alternatives. At the same time,
enhancements in understanding the step-function grating functionality and the
performance of the grating in various applications may be accomplished by
invoking a more rigorous analysis, such as a matrix-vector, finite-element, and/or
weight of a ray formalism [3.68–3.73], especially for a grating-step thicknesses on
the nanoscale, where phenomenological theory may not apply and errors in making
uniform nanometer-thick step surface-relief gratings over all steps and trenches
embody other complex challenges [3.73].

The analyzed angular-shifting anomaly of diffraction maxima for step-function
gratings to satisfy the grating equation resembles the asymmetrical irradiance dis-
tribution for echelle gratings exhibiting a substantial angular shift of the centroid
from the diffraction angle predicted by the grating equation for wide-angle
diffraction orders [3.64, 3.75]. By analogy to phase-status formation of interference
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maxima in a resonator, becoming narrower and spreading wider when the number
of multiple reflections is increased (see Chap. 8, Fig. 8.35), the anomaly of
small-angle approximation discussed in this section, being primarily caused by an
insufficiently high number of grating periods N, resembles other incomplete
multibeam interference phenomena when insufficient interactions of available
interferers do not allow the diffraction pattern on the inadequately long
step-function grating to become fully formed, as it happens at a tending-to-infinity
number of step-function periods of the sufficiently long surface-relief grating.

3.4.3 Diffraction Gratings as Spectral and Color Filters

Alternatively to using diffraction gratings in reflected light at orders other than zero,
avoiding overlapping by specular reflection, gratings in transmitted light allow both
zero-order and higher-order applicability for spectral and color filtering [3.76–3.90].
A schematic of a surface-relief phase grating with step-function rectangular grooves
made in a transparent matrix to be used in transmitted light is illustrated in Fig. 3.48.
A parallel beam of light of wavelength k is incident from source S on grating G,
made of a material of refractive index n, by its wave normal, while the transmitted
and diffracted into 0th order beam is collected by lens L into image Im, whereas any
ith diffraction order propagating at an angle ai is not imaged. The cross-coupled
combination of two transmission gratings (compare Fig. 12.23 with reflection ones)
could serve not only as a spectral filter, but as a color combiner adding red, green,

zero order
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Fig. 3.48 Diffraction grating in transmitted light
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Fig. 3.49 Cross-coupled diffraction gratings as a spectral selector or a beam-shaping color
combiner
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and blue waves to create white light (Fig. 3.49). The cross-coupling of view
(a) accommodates for physical sizes of three color sources R, G, and B, combining
them into one white beam on a color display [3.91]. Figure 3.49b shows a substrate
of thickness h and widthW of a transmission grating with a mirror reflecting surface
deployed for back-coupling of individual color components of a white beam sepa-
rated via diffraction into fibers or waveguides [3.86–3.88].

For a transmission grating (Fig. 3.48), as only axis-centric beams are imaged, the
interactions occurring within 0th diffraction order are due to dual-beam interference
on grating groves b and steps a via the path length D ¼ t � (n − 1) and phase
difference d ¼ (2p/k) � D ¼ (2p/k) � t � (n − 1). The total intensity IR for
dual-beam interference at the equidistant grating steps and trenches a ¼ b is [1.1]:

IR ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffi
I1I2

p
cos d ¼

I1¼I2
4I1 cos2 d=2ð Þ; ð3:207Þ

where I1 and I2 are the intensities of the interfering beams. Considering for a given
case the one-dimensional transmission grating as depicted in Fig. 3.48 with steps
and grooves of equal width, being irradiated at normal incidence by the light beam
with intensity I0, two interfering uniaxial beam components are: I1 ¼ I2 ¼ I0/4,
thus the transmission function T(k) versus wavelength k becomes:

T kð Þ ¼ cos2 t � p n� 1ð Þ=k½ �; ð3:208Þ

having the transmission profile changing from maxima of 1.0 to minima of zero.
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Fig. 3.50 Transmission profiles of a thick surface-relief grating at equal groove and step widths
a = b (series 1, 3) and at a = 3b (series 2, 4) for the step thickness t = 10 micron (series 1, 2) and
for t = 5 micron (series 3, 4) versus wavelength k in the visible domain
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When the widths of the grating steps and trenches are not equal within the period
d: a 6¼ b, at a + b ¼ d, the transmittance T(k) changes to having asymmetrical
maxima and minima [3.80]:

T kð Þ ¼ 1� 2a=dð Þ2 þ 4ða=dÞ 1� a=dð Þ cos2 t � p n� 1ð Þ=k½ �; ð3:209Þ

with the transmission profile transitioning from unity maxima to unequal-to-zero
minima [3.81], according to the aspect ratio a/d of the step versus the period of
surface-relief grating, a/d ¼ 1 − b/d 6¼ 0.5:

Tmax ¼ 1; Tmin ¼ 1� 2a=dð Þ2: ð3:210Þ

The dependence of refractive index versus wavelength k of irradiation: (n − 1)/k,
and the aspect ratio of the grating step: a/d ¼ 1 − b/d, define a color of grating
conversion and its saturation depth. As seen in Fig. 3.50, either a transmission or
reflection grating can serve as a broadband spectral filter or a color selector, con-
verting radiation in a function of its step thickness and the step profile.
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Chapter 4
Photometers and Radiometers

4.1 Optical Design and Absolute Calibration
of Radiometers

4.1.1 Spectrally Unselective Systems

As discussed in Chap. 2, by utilizing the thermoelectric reception, having practi-
cally equal to unity absorptance over a relatively broad spectral region, one can
provide direct measurements of any power or energy parameters of optical radiation
“straight” with no optical component added. The linear range of measurement of a
thermal detector is limited, on one hand, by low thermal noise and, on the other, by
the thresholds of either nonlinearity or damage due to laser radiation. To reduce the
thermal noise of the detector, hence accessing the lowest limit of power or energy to
be measured, the area of its sensitive surface needs to be minimized. This measure
also reduces the detector’s time constant. For a direct measurement the light beam
to be measured is expected to fit the detector’s entrance aperture. Lenses and
attenuators can be used to modify the beam’s size and the detector’s linear dynamic
range by increasing the upper threshold at which nonlinear effects or irreversible
changes of sensitivity due to thermal damage do not materialize.

Photoelectric transformation of the power or energy of light directly into an
electrical signal allows one to achieve higher sensitivity for power and energy
measurements, reaching photon counting levels, if needed. However, the linear
limits of direct measurements are constrained to magnitudes substantially lower
than the actual laser damage or nonlinear transformation threshold levels of the high
power and energy to be studied. Thus, actual measurement solutions for one or
another radiant and luminous power or energy extent are defined not only by all
choices of detectors and registering systems, but, in many respects, also by the best
design of the optical system transforming light beams in the desired manner, while
having a known transformation factor, as well as by the methods used for absolute
calibration of the system in the radiant or reduced units of measurements used.
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Thermocouple-based calorimetric detectors are utilized for measurement of the
continuous wave (cw) or pulse-average power and single-pulse energy of laser
light. Usage of surface absorbers with thermally conductive substances of broad-
band absorptive coatings is typical for this kind of measurement. Since absorption
in such a case occurs in a thin layer of the coating, the high peak power of a laser,
especially in pulsed mode, can cause thermal damage. Volume absorbers rely on
exponential attenuation in their materials, and thus can withstand a much higher
maximum pulse power than surface absorbers and are more suitable for pulsed
lasers. Owing to lower steady-state heat conduction, they are less sensitive and
mostly have a narrower flat spectral response. A pyroelectric detector inherently
reacts to a change in its temperature and is optimized to measure parameters of
pulsed optical radiation or operate with continuously modulated cw light beams.

The main limitation for high-power laser pulse measurements consists in possible
damage of the absorbing substance of the detector used. If intense optical radiation
encounters surface absorbers, measures need to be taken to predict the actual irra-
diance formed by laser light, which should be below the absorber’s damage
threshold. When a bulk absorber, such as gas, liquid, or solid, is used, the spherical
density of laser light must be limited correspondingly. Solid bulk absorbers based on
neutral-density glasses are widely used since their high thermal diffusivity allows
minimization of time constants for pulsed measurement of energy or power [4.1].
A laser calorimeter using two glass-plate absorbers (1 and 2) is shown in Fig. 4.1.
The main fraction of the incident beam is absorbed in plate 1. Plate 2 precludes laser
damage of electroformed copper-surface absorbers 4 by light reflected from the first
plate. Volume absorbers are made of neutral-density glass contacting electroformed
cavity via electrically calibrated heaters 3 attached to back corners. The radiation
energy is measured by applying the calorimeter ֹ’s electrical-calibration constant with
no corrections since the entire incident energy is absorbed in the calorimeter [4.2].
By analogy, gas bulk absorbers can be used to maintain sufficient sensitivity and low
damage susceptibility at high laser powers [4.3].

When a thermoelectric detector measures either radiant power or energy, the
measurement transformation function is anticipated to have as close to unity total
absorptance aR as dictated by the task. The difference Da ¼ 1� aR gives the loss of
conversion of the measured energy to heat and measurement error. To minimize

Fig. 4.1 Bulk-absorbing
calorimeter
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unconverted absorption, an additional multiple-reflection cavity can be formed from
discrete sensitive elements. The total absorptance of the cavity becomes:

aR ¼ aþ qaþ � � �þ qma ¼ að1� qmÞ
1� q

; ð4:1Þ

where q is the effective reflectance of the additional cavity, combining the specular
and diffuse reflections of the entire cavity, and a ¼ aðkÞ is the spectral absorptance
of a cavity wall. The effective diffuse reflectance of the cavity depends on the
entrance aperture opening: q0d ¼ ð1� Aap=AcavÞqd . Assuming that the total loss into
this aperture is not significant, thus q0d ffi qd and q ¼ 1� a , we have:

aR ¼ 1� qm: ð4:2Þ

The lowest number m of required reflections, leading DaR to be lower than
Damin, can be estimated from either (4.1) or (4.2). Using the assumptions of
Eq. (4.2): Aap � Acav, for a ¼ 0:95 and DaR ¼ 0:01% only four reflections are
required to obtain aR equal to 0.9999. Since the number of reflections may not be
necessarily large, a cone-shaped sensitive cavity is frequently deployed. Such a
cavity does not create any excessive increase of the detector’s opening; hence, it
does not increase the detector’s total time constant and inclusive thermal noise of
the entire measurement system.

The cone-shaped cavity allows one to utilize multiple reflections, thus increasing
the absorbing power of radiation measured in proportion to the threshold-sustain-
able irradiance and the increased surface for the multiple reflections to be taking
place. Depending on the ratio of reflectance q to absorptance a and the angle u of
incidence, the optimal cavity shape of angle H can be used. The decrease of local
absorptance al may be equalized by an increase of the total energy absorbed as a
result of a correspondingly increased length of multiple interactions. For the law of
conservation of energy as: q ≅ 1 − a, Eq. (4.2) with q ffi a ffi 0:5 leads to the total
cavity absorption factor aR reaching 0.999, while approaching only ten reflections.
In the case of a ¼ 0:1; q ffi 0.9, that happens for 66 interactions. Several other
configurations for surface-absorbing cavities may also be applied [0.12–0.20, 0.22].

Figure 4.2 shows the laser calorimeter design with a hollow glass cone and the
external absorbing coating. The cone design at the optimized vertex angle 2h

Θ

ϕ

Fig. 4.2 Cone-shaped
sensitive element
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anticipates for its axis, approaching oblique incidence of an input light beam at
angle u, to be oriented to lead the incident beam being reflected at 90° after the mth

interaction. This reflected beam is returned the same way as it entered after
2m actions without getting to the cone vertex [4.4].

Another way of achieving nearly unselective spectral attenuation for power
measurements of potent laser radiation is depicted in Fig. 4.3. The notion of that
classical attenuation action is based on low dispersion of most optical glasses in the
UV–VIS–near IR spectral domain. Consequently, specular reflectance of a single
surface of an optical element made from that glass can be considered as a known
constant. To use only the first surface reflection, the element could be made from a
highly absorbing glass, totally dissipating light reflected by the second surface. To
increase its damage threshold to laser radiation, the element may consist of two or
more plates. The first plate could be made from any transparent and, thus, mostly
radiation-resistant glass. The absorbing second plate or wedge could be optically
contacted to the back surface of the first one. One pair of combined elements
oriented at a desired angle of incidence u in the two orthogonal planes (Fig. 4.3 is
projected into one plane) is commonly used to compensate for polarization effects,
and a 45° angle for inclination of each plate is technologically prevalent [4.5, 4.6].
Since the smaller is the angle, the lower is the constraint on adjustment and lower
polarization sensitivity that can be achieved, smaller angles are advantageous.

To provide measurements with optical attenuators, a radiometer needs to have an
extended linear dynamic range η covering every attenuator. Range η allows one to
measure the conversion factor k ¼ 1/η for each given attenuator. The set of two
reflective plates with reflectance q in Fig. 4.3 has conversion factor k ¼ (1/q)2,
requiring the specific photometer’s linear dynamic range η to be higher than at least
1/q2. To determine actual k values, at least two light power or energy measurements
need to be made. First, the power or energy of light incident from source 1 is
measured after it has passed each rectangular prism 3 and 5 and is then reflected
with no attenuation owing to total internal reflection on the hypotenuse side of the
prism. For the second intensity measurement, the prisms are removed from the light
path and radiation reflected by attenuation plates 4 and 6 is measured. To make the
optical path length invariable, two additional plates 2 and 7 made from the same
material as prisms 3 and 5 of an equivalent optical thickness are inserted into the
system. That system conversion factor ks is determined as the ratio of two readings
detector of 8 at constant intensity of radiation. Knowing the reflectance difference D

Fig. 4.3 Quasi-unselective
attenuation of intense laser
radiation
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between q?2 and qjj2, one can determine the specific alignment of prisms com-
pensating for fabrication errors by converging a given polarization status of the
incident beam into the orthogonal state.

A similar degree of attenuation can be achieved by deploying a set of neutral
glass plates or thin-netted attenuators installed in transmitted light. No such optical
elements can be fully spectrally neutral; therefore, each attenuation factor needs to
be measured as that of the prism pair. The higher is the attenuation factor required,
the higher the auxiliary measurement uncertainty becomes. An increase of the
optical density of a glass plate itself leads to a lower damage threshold for intensive
laser radiation. Implementation of several attenuators in a set increases the optical
path length, likely increasing the respective spot size on the system’s detector, and
could lead to interference of beams reflected by plate surfaces, causing higher
random errors of measurement. Netted attenuators do not function in sets because of
evident screening and diffraction effects.

If a very high attenuation is needed, a twin-prism attenuator (Fig. 4.4), being
common for the millimeter wave range, may be used [4.7]. Its principle is based
upon the phenomenon of frustrated total internal reflection [1.1]. For a distance
b between two prisms much greater than wavelength k, attenuation Yk (in decibels)
of light polarized in the plane of incidence depends linearly on b:

Yk ¼ 54:58bðb=kÞ � 20 log10 4nb cosH
.

n2 � 1
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2sin2 H� cos2 H
ph in o

; ð4:3Þ

where n is the relative refractive index of both prisms, H is the angle of internal

incidence in the air gap, and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2sin2H� 1

p
. In the approximation of long

distance b and therefore high attenuation, the attenuation factor Y changes linearly
with air gap b. If the electric vector of the incoming beam is parallel to the plane of
incidence, no additional reflection losses occur on the prism surfaces of total
internal reflection. In that arrangement at k ¼ 10.6 lm, some linear motion of two
triangular prisms was applied in a direction nearly parallel to the opposing prism
surfaces controlled interferometrically by a He–Ne laser [4.7]. The actual attenu-
ation range reached 4–80 dB for values of b � 0.5k, but lower factors of atten-
uation were not realized owing to probable deviation from parallelism of opposing
prism surfaces, since the mechanical tolerance and temperature control of that
application were not sufficiently adequate.

Fig. 4.4 Variable beam
attenuator
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4.1.2 Diffuse Attenuators

One obvious difficulty in making reliable measurements of energy or power extents
of laser radiation consists in preserving some uniform measurement reaction for a
spatially and temporarily nonuniform distribution of laser light. The reflective and
transparent attenuators reviewed earlier do not minimize the initial nonuniform
spatial distribution of incident light beams and can even increase directional
uncertainty. That constraint can be reversed if diffuse attenuators averaging spatial
distributions of laser or spontaneous radiation are used.

Figure 4.5 shows a parallel orientation of diffuse emitter E and detector D
separated by distance ‘ and inscribed in a sphere of radius R. Emitter E as disk 1 is
seen by detector D as the totality of single point sources located at increasing
distance ‘R from the center from the point of disk 2. The closer are emitting and
sensing disks E and D (compare Fig. 2.28), the greater is the prospect of nonuni-
form irradiation even with high radiance and uniform scattering indicatrix of the
diffuser.

As reviewed in Sect. 2.4 (see also [4.51–4.53]), any integrating sphere with a
diffuse-reflecting internal surface is a more effective spatial integrator than a single
diffuser, since after the first reflection of light by a sphere wall, each following
irradiance distribution of the internal sphere surface is uniform. Even if the effective
reflectance q00 of the internal sphere surface is only approximately 0.9, not fewer
than ten effective sphere reflections take place, increasing uniformity of the sphere
irradiance tenfold. Figure 4.6 illustrates the optical system [4.5] combining the
simplicity of use of an attenuator with the spatial uniformity of the integrating
sphere to measure the power extents of laser light.

The intensity of radiation entering the system is initially attenuated by an extra
set of absorbing plates 1, preliminarily measured at operating wavelengths. The
measurements can be performed by the radiometric system itself, for nonuniformity
of each plate transmission averaged by the integrating sphere, presuming that the
plates’ attenuation factors are independent of the beam structure. Objective 2, via a
fairly small aperture 3, causes a parallel incident beam to be expanded over sphere
wall 4, reducing the first sphere irradiance to prevent laser radiation damage of its

(a) (b)Fig. 4.5 Direct connectivity
of radiating and irradiated
surfaces: a inscribed disks 1,
2; b increase of point source
distance 1, 2
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surface. Uniformly diffused light, emerging from aperture 5 onto detector 7, can be
attenuated by a set of net attenuators or apertures 6. Spectral filters, selecting the
measurement wavelengths, can be installed in any part of the light path. These
elements can be combined with attenuators 1 to reduce background noise and
preselect testing sources.

The attenuation factor k of any integrating sphere fundamentally depends on the
effective spectral reflectance q00 (see Sect. 2.4) of the internal sphere surface of the
total area A0 and on the relative area Aout of its output port or ports: k ¼ (Aout/A0)/
(1 − q00). Therefore, the output port aperture (6 in Fig. 4.6) may serve as the
compensator of wavelength-dependent changes: q00 ¼ q00ðkÞ. One major disadvan-
tage of an optical radiometer with an integrating sphere is due to the relatively high
and fixed basic attenuation. For effective reflectance q00 ¼ 0:9 and diameters of
sphere 4 and aperture 6 of 70 and 7 mm, respectively, the sphere attenuation is
0.025, decreasing with reflectance. Yet, with an electrically calibrated pyroelectric
detector, as high as the −50 to +30 dBm dynamic range is obtainable in the 1250–
1650-nm wavelength range [4.53].

One of the first clear-cut fairly accurate laser calibration techniques was
deployed not using diffuse transmission, but using diffuse reflection [4.8]. Since the
diffuse reflectance of highly reflective white diffusers is close to 1.0 as for the
perfect diffuser (see Chaps. 1 and 2), the laser-calibration concept could be based on
conformance to the inverse-square law, presuming a uniform distribution of light
reflected by the diffuser. If a small detector at distance ‘ to the diffuser is irradiated
by the reflected radiation at nearly normal incidence, the ratio of detected and
incident power is given by the areas of the detector and an imaginary hemisphere of
radius ‘ : U=U0 ¼ Aq cosH=ð2p‘2Þ. Here the reflected radiation is assumed to be
uniformly distributed over the hemisphere, and H and q are the angle of the actual
incidence and the diffuser reflectance, which are supposed to be 0° and 1.0,
respectively.

A more compact and universal measurement system with a likely broader dy-
namic range of spectral attenuation involves diffuse transmission of light via a layer

Fig. 4.6 Integrating-sphere-based radiometer
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or sequence of layers of an appropriate thickness, but diffusely transmitting opal
glass of sufficiently high scattering factor [4.9]. The first front attenuator consists of
a translucent single or combined diffuser having one superpolished input surface to
increase its laser damage threshold. Added diffusers, apertures, and a detector are
separated by air gaps. The added diffusers can be likewise placed in reflected light.
The uniform diffuser can be considered as the equivalent point source; thus, the
diffuser transformation factor at a given wavelength in the far-field zone is (see
Chaps. 1 and 2) [1.12, 1.15]:

Us;q ¼ sdU0Xd;s=p ¼ qdU0Xd;q=p; ð4:4Þ

where U0 is the radiant flux emitted by the uniform diffuser as the point source, sd
and qd are the diffuse transmittance and the diffuse reflectance of the diffuser, and
Xd;s and Xd;q are the solid angles in reflection and transmission at which the
detector centered via the normal to the beam axis is seen from the center of the
diffuser. For uneven scattering distributions of transmitted or reflected light:

Us;q ¼ sdU0

Z
Xd

fsðHÞ dX=Xe;s

¼ qdU0

Z
Xd

fqðHÞ dX=Xe;q:

ð4:5Þ

Here fqðHÞ; fsðHÞ;Xe;q, and Xe;s are the scattering indicatrixes and the equivalent
solid angles in reflection or transmission, and Hi is the observation angle for solid
angle Xi (see (Eq. 1.55)).

If a diffuser cannot be viewed as a point source (see Fig. 4.5), the transformation
factor can be obtained via the coupling efficiency w1,2 between diffuse emitting
surfaces in a sphere [0.7, 0.11]. The coupling efficiency for two parallel uniformly
diffuse radiating disks is given by:

w1;2 ¼
L2 � L1
2r1

� �2

¼ 1� cos b2
1þ cos b1

: ð4:6Þ

Here b1 and b2 are the angles defining the views of the diffuse emitter and receiver
radii from the center of their common circumference (see Fig. 4.5). Equation (4.6)
assumes uniformly radiating diffusers and is only applied to the section being
irradiated, not to an entire opening. If a section is part of an entrance diffuser
irradiated by a beam whose power or energy is measured, the diameter of the full
entrance aperture opening characterizes the maximum coupling efficiency.

Figure 4.7 depicts one example of a combined optical system for broadband
laser radiometers with the goal of increasing the dynamic range of measurements by
adding optical elements with attenuation factors lower than the intrinsic dynamic
range of the registration system. Input section 1 consists of field aperture 2 and a
spectral filter or low-attenuating diffuser or absorbing glass 3 mounted on a metal
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Fig. 4.7 Radiometer combining spatial averaging and attenuation tuning

baffle—each serves to avoid potentially high laser irradiance, which could damage
the following dense diffuser. Optical head 4 incorporates either single or dual
combination diffuser 6 mounted inside insert 5, establishing the main attenuation of
the system for the flux or energy of radiation measured. Apertures 8 and 9
sequentially limit the initial irradiance of sensitive head 7, including system detector
10. Several additional apertures 8 protect the detector’s surface from beams ret-
roreflected by mounts and walls.

Either section 1 or section 4 can be attached to sensitive head 7, having atten-
uation factor F1 or F4 adjusted by changing either the distance from the diffuser to
detector 10 or to a following diffuser. To make continuous laser power or energy
measurements within one expanded dynamic range of the entire system, every
attenuation factor must be lower than the maximal linear dynamic range D of
detector 10. If the maximum Imax and minimum Imin of either linearly registered
power or linearly registered energy relates as: Imax=Imin ¼ D ffi F1 ffi F4, the dy-
namic range of the combined system DR must be DR ¼ 3D. That range lessens
from 3D to 2D if both heads 1 and 4 are installed, and from 2D to D and from D to
the detector’s initial level if only head 4 is operated and detector 10 directly
measures incident laser radiation. This way, all of the system’s attenuators can be
self-calibrated in any given spectral region, while being implemented in the system
as a transmission object to be studied. Small aperture or apertures 9 serve as
additional attenuators if a diffuser is present in section 1 or section 4 [4.10].

As emphasized when deriving Eqs. (4.3)–(4.5), a single or combined diffuser
results in spatial integration for nonuniform beams of light if the diffuser irradiates a
subsequent detector as the secondary point source and the relative displacements of
its effective emitting area are not high. Its attenuation factor is constant if the
diffuser performs as a uniform diffusely emitting plane and intermediate device
elements are irradiated by uniformly scattered light. If beam displacements do not
allow a diffuser to perform as the point source, some additional measures must be
taken to establish uniform irradiation. As seen in Chap. 2, the source does not
perform as a material point if during observation from the center of a detector to its
various emitting areas any visible changes of observation angle h lead its edge
emittance to be lower than that of the source center.

An alternative design illustrated by Fig. 4.8 provides a more balancing attenu-
ation by a lens-shaped transmitting diffuser via the gradient of its optical thickness,
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Fig. 4.8 Optical radiometer
with lens-shaped diffuser: 1 -
aperture; 2 - filter; 3-5 -
diffusers; 6 - detector; light
diode

as the inverse function of the cosine of the angle of observation: cosH [4.11]. Such
a measure allows one to increase the diameter of incoming beams so they are
approximately twice the diameter of the detector: from 14 to 30 mm with a spectral
attenuation factor about 200. The cross section of either primary or secondary
diffuser 3 and 5 is nearly 40% larger than that of the input aperture. Moreover, the
diffusers are enclosed in one container 4 of identical diffusing material to increase
the system’s integration action, maintaining the uniform diffused transmission for
shorter distances between diffusers 3 and 5. The tested spatial nonuniformity of a
detector was reduced from ±5 to ±0.3% for a 6-mm-diameter probe laser beam.
Light emitting diode 7 was used for control and calibration purposes. The
lens-shaped diffuser depicted in Fig. 4.8 allowed the input aperture diameter to be
increased from 9 mm to almost 15 mm for an attenuation factor of about 1000. The
attenuation factor remained variable from approximately 3000 to 150 at approxi-
mately 70–40 mm distances from the diffuser to the detector.

The reviewed designs of the radiometers and photometers for power and energy
measurement were targeted at increasing the upper limits of the respective detector’s
dynamic range for optical-to-electrical signal conversion. The diffuser-based attenu-
ators also improve the spatial or angular uniformity of individual detectors.However, if
the detectors themselves are eminently uniform and insensitive to spatial and angular
beam displacements of incoming light beams, there is no need for optical elements
homogenizing spatial light distributions. A uniformly sensitive detector with a high
damage threshold and a broad dynamic range only requires spectral selection and
stray-light elimination. A high-threshold thermal detector needs an air- or water-
cooling arrangement to maintaining its stable thermal settings. Still, the concept of
increasing the intrinsic dynamic range for a radiometric measurement can be used
independently of the need for the spatial averaging while measuring parameters of
optical radiation. The advantages of using diffusers are also associated with the
relatively high damage threshold for most commercial opal glasses, reaching
109–1010 W/cm2 without notable nonlinear effects. Such a threshold is usually much
higher than the equivalent threshold for absorbing glasses and spectralfilters [4.12, 4.13].

4.1.3 Radiometric and Photometric Energy and Power
Scales

The transfer (calibration) of a given unit of measurement to a specific radiometer or
photometer can be realized by a comparison of the light action and the respective
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power or energy dissipation of a known physical process. Such a transfer of a
measurement unit is usually established by a thermal detector that functions as the
effective blackbody radiator. To measure any energy or power extent of an
incoming light beam, additional knowledge of the beam’s spectral, spatial, and
temporal distribution is likely required. Accordingly, a unique system of calibration
standards and calibration outlines is developed for each radiant, luminous, or
reduced parameter of light to be measured, such as radiant power, luminous flux,
radiant energy, radiant intensity, and irradiance. Consequently, spectral, spatial, and
temporal distributions, along with the coherence properties of all measured radia-
tion beams, must be known.

Two evident measurement approaches provide viable solutions to the calibration
concepts. According to the first one, the optical response measurement for a ra-
diometer to be calibrated is performed directly by using a beam of radiation car-
rying a measure of the power or the energy of the transferring unit of measurement.
In the second approach, two or more measurements of radiant or luminous intensity
of a steady beam of light of known spectral content are sequentially made by a
standard radiometer, being the absolute transformer of a given unit, and by the
radiometer to be calibrated. The first method is used to make the calibration via
measuring the irradiance distribution according to the inverse-square law from a
blackbody at any known temperature and distance with the calibrated radiometer
placed perpendicularly to a direction of the blackbody emission. The second
approach compares the reactions of a standard thermal detector or a standard
photodiode, each calibrated in the transferring unit, and a test radiometer.

Most of the conceptual methods for power and energy measurement were
reviewed in Chaps. 1 and 2. Each method considers transfer of a radiant or lumi-
nous unit by an incoherent light beam of a known spectral, luminous, and effec-
tively reduced spectral or visual efficiency. Conversions for space or time
derivatives of power or energy units can be made according to their definitions.
Figure 4.9 illustrates relationships among power and energy parameters of optical
radiation [4.14].

Certain precautions must be taken when dealing with coherent laser radiation in
narrow spectral intervals. Owing to the implicitly high degree of coherence and
specific lasing conditions of laser light (see Chap. 3), laser radiation, especially
partially coherent pulsed and pulse-modulated beams in comparatively broad
spectral domains, may exhibit excessive spatial or temporal fluctuations.

Fig. 4.9 Measurements of power and energy derivatives in confined beams of optical radiation:
AR – antireflection
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One common procedure for a transfer of the absolute radiometric scale of either
the power or the energy to a beam of laser radiation, presumed to be stable and
continuous, can be fulfilled by an electrically calibrated thermal detector or
self-calibrated photodiode of uniform spatial distribution of its sensitivity across an
entrance aperture, adequately larger than the beam’s cross section not to necessitate
diffraction corrections (see Sect. 3.4). The power or energy of the beam is measured
in watts or joules, respectively, while maintaining spectral fluctuations of laser
emission not to exceed a threshold of spectral sensitivity for the detector. A similar
approach can be realized by measuring pulsed laser light for the maximum power
reached by a pulse [0.19].

Figure 4.10 depicts adding a precision modulator 3 and synchronization device 6
for absolute power–energy scale conversion in continuous laser light. When the
average power of laser light is measured, modulator 3 is in the open position. When
the energy of a pulse is measured, modulator 3 rotates and detector 5 receives laser
light during a time interval s for modulator 3 to be open and create the light pulse.
The second, high-speed detector is needed to measure the pulse form and obtain
corrections for the actual pulse shape from a perfectly rectangular form. As the
speed of the modulator rotation increases, fewer corrections are required for the
slow thermal detector. The top modulator speeds are limited by the detector time
constant, restricting the intervals required to measure the power of laser radiation
pulses. For the specific calibration standard [0.18], the systematic error of the Joule
energy scale was ±3.5%, adding ±1.5% of random error. For semiconductor lasers
with wavelength k ¼ 0.85 lm, light modulation was realized internally, reducing
the systematic error for transformation of the energy unit to ±1.5% with ±2%
random error. Other spectral coordinates can be added via various sources.

Further transformation of each radiometric power or energy scale from one
standard to test and reference radiometers may be made by analogy. Depending on
the transformation task, the emitting part of the standard, either the laser source or
the modulator, can be used to calibrate the detector of a lower-level standard or
measurement device. A blackbody-based thermodetector may be used to calibrate a
source. Even transitions to scales for the radiant intensity, irradiance, and radiance
can be accomplished. Any additional elements, such as calibration apertures for the

Fig. 4.10 Conversion of
energy and power scales
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radiant intensity and irradiance, as well as aperture sets at known distances for the
radiance calibration, can be used for further transformation based on the primary
power-energy standard.

The optical-power measurement standard at the National Institute of Standards
and Technology (NIST) is based on the NIST cryogenic radiometer [4.26].
Measurement and electrical calibration procedures for the radiometer are made at
cryogenic temperatures around 5 K. The low temperatures allow for substantial
reduction of radiative effects due to thermal emission caused by the equilibrium
temperature variations of a blackbody cavity. The ability to use superconducting
wires permits elimination of a likely nonequivalence of optical and electrical
heating, since heat practically does not dissipate in such wires. Reduction of cop-
per’s heat capacity at 5 K temperature lets utilize a large blackbody cavity without
increasing its time constant. The relative 3r uncertainty of measurements achieved
by that cryogenic radiometer reached 0.021% at 0.8-mW power level [4.26]. For
on-chip fiber-coupled cryogenic micro radiometer, the power levels measured
reached 50 femto-W to 20 nW at ±0.3% repeatability and NEP (noise equivalent
power) of *5 � 10−15 W=

ffiffiffiffiffiffi
Hz

p
at 2-Hz modulation frequency using a 9-micron

core SMF fiber [4.89].

4.1.4 Absolute Calibration of Photoelectric Radiometers

An evident way of calibrating sensitive photoelectric-detector-based radiometers is
in transferring either a power or an energy scale directly from the source of radiation,
possessing the power or the energy calibrated in the unit of a transferring scale, to a
radiometer under calibration. The challenge consists in a likely mismatch of the
power or energy of a source, such as a cw or pulsed laser, and either the sensitivity or
damage threshold of the radiometer’s thermodetector or photodetector. That chal-
lenge can be resolved by implementing attenuators of known attenuation. In turn, the
evaluation process for the attenuator’s transformation factors must be done, first, for
given source wavelengths, and, second, within the accuracy of calibration. If at-
tenuation reaches several decades, measurement accuracy can be limited by par-
ticular radiometer limitations to the linear dynamic range of the detector and the
changes in its spatial sensitivity due to expansion of the beam by the attenuator.

Figure 4.11 illustrates the absolute-scale transfer method for indirect calibration of
two detectors of distinctly different sensitivity. A sufficiently powerful laser source 1
of radiation at a wavelength of calibration k irradiates low-sensitivity thermal detector
3 via either antireflection-coated or wedge-shaped beam splitter 2 to avoid interfer-
ence effects. The absorption and scattering losses of the splitter need to be lower than
the measurement errors. For the coated splitter, this means that low absorptance and
scattering for both surfaces – one reflective, the other one with the antireflection
coating. For the wedge beam splitter, its thickness and wedge must separate the
retroreflected beams so they do not interfere within the detector’s entrance aperture.

First, two measurements of the power emitted by source 1 with and without the
beam splitter are made by the standardized, power-scale-preserving detector 3. For
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Fig. 4.11 Wide-range
power-energy comparison

the wedge-shaped splitter, calibration equations defining the ratios of the fluxes
transmitted and reflected by its surface U0 and Us. are:

Us ¼ U0ssp ¼ U0ð1� qsurf Þ2; ð1� ffiffiffiffiffiffi
ssp

p Þ ¼ qsurf ;

Uq ¼ U0qsurf ¼ U0ð1� ffiffiffiffiffiffi
ssp

p Þ ¼ U0ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Us=U0

p
Þ:

ð4:7Þ

If the splitter is a plane-parallel plate, coated in such a way that the reflectance
and transmittance of its first and second surfaces are, respectively, q1 ¼ 1� s1 and
s2 � 1; q2 ! 0, equations (4.7) become:

Us ¼ U0s1 ¼ U0ð1� q1Þ;
Uq ¼ U0q1 ¼ U0ð1� s1Þ ¼ U0ð1� Us=U0Þ:

ð4:8Þ

After calibration of the beam splitter, the scale transformation from detector 3 to
photodetector 4 is made either by Eqs. (4.7) or by Eqs. (4.8). For a wedged glass beam
splitter, the power reflected by its single surface is about 25 times lower than that
emitted by the source. If the power is still too high to be directly measured by sensitive
photodetector 4, stronger attenuation may be achieved by a low-reflectivity coating.
The advantage of such a sequential graduation consists in unchanged calibration
conditions: properties of the splitter are measured at actual angles of incidence and
reflection and can be reexamined at any time. Afterwards, a source less powerful than
laser 1, such as a spontaneous emitter for the same wavelength k, could be calibrated
further by already calibrated radiometer 4.

The following indirect procedure for power-to-energy scale transfer is depicted in
Fig. 4.12 and is based on a high-frequency power-modulation scheme [4.15] real-
izing a single-pulse energy scale via the pulse power and its duration. The procedure
is undertaken by measuring the average power of a sequence of steady pulses, but
controlling the duration of an individual pulse and thus knowing the particular
energy of each pulse within such a sequence. When a given light source 1 emits a
steady string of pulses at frequency f, and when the time constant s of thermal
detector 4—upon which the transferring power scale is based – considerably exceeds
the pulse-string period T ¼ 1/f of the string, the response of inertial thermal detector
4 equals the response of the detector receiving the same power of cw radiation.
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In Fig. 4.12, three front objectives 2 form two beams via splitter 3. One irradiates
slow power-scale thermal detector 4 or fast radiometer 5 being calibrated in the energy
scale. Beam splitter 3 separates a small part of source light so it irradiates fast reference
detector 6. The respective time responses s5 and s6 of radiometer 5 and detector 6 are
faster than the pulse string period T but slower than the time duration t of each single
pulse emitted by source 1. Thus, when a string of light pulses from source 1 irradiates
slow detector 4, only the average power of transforming radiation is measured. For
irradiation of fast radiometer 5 by the same string, the energy of each pulse is regis-
tered. In any case, if the initial frequency f of the pulse string is changed, reference
detector 6 detects the relative variation of energy in a single pulse. As a result, the
transformation of the radiometric power scale from the average power of pulse-
modulated light to the energy of each pulse in the string sequence is given by:

Q ¼ Q Usingle=Ufreq
� � ¼ P=f

� �
Usingle=Ufreq
� �

: ð4:9Þ

Here Q is the single-pulse energy measured, Q ¼ P=f is the average energy in
the sequence of pulses at frequency f ;P is the mean (average) power of the beam
registered by thermal detector 4, and Usingle and Ufreq are the respective signals of
reference detector 6 for the measurement of energy of the single pulse at frequency
f and for the calibration of radiometer 5. As follows from Eq. (4.9), the higher is
frequency f of the pulse string, the lower is, at constant average power P, the energy
of a single pulse in the sequence. The higher is the temporal resolution of a
radiometer to be calibrated, the lower is the energy for the power-to-energy scale
transfer to be granted [4.15].

4.1.5 Detector-Based Spectroradiometric and Photometric
Scales

The preceding considerations for calibration of photometers and radiometers were
based on referencing a power–energy scale to either an absolute source or a
detector. For sensitive instruments, using the blackbody radiator or the absolute

Fig. 4.12 Transformation of power into energy scale via the time domain
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calorimeter leads to obvious dynamic-range mismatch. Meanwhile, the definition of
the candela adopted in 1979 (see Chap. 1) is encouraging broader usage of spec-
trally selective and unselective sources or detectors of monochromatic radiation.
That encouragement has opened up prospects for calibration of absolute-scale
radiometers based on photodiodes and pyroelectric detectors, which are much more
sensitive than any similar thermopile calorimeters.

The advantage of using a pyroelectric detector for absolute calibration is due to
the dependence of the detector’s response to rate-of-time changes of the detector
temperature’s, opposite to thermopiles and bolometers, the outputs of which are
proportional to temperature gradients. Reaction of a pyroelectric detector to the
power or energy of incident light depends on a temperature-induced change of the
state of its permanent electric polarization. Radiation absorbed by the pyroelectric
crystal is converted to heat, which induces a charge, registered by electrodes on the
opposite surfaces of that crystal. If the crystal’s polarization linearly depends on
temperature, its mean output current becomes [4.16]:

J ¼ AðdP=dTÞ dT=dt
� �

; ð4:10Þ

where A is the area of the contacted crystal surfaces, dT=dt is the volume average
of the rate of the crystal’s temperature change over time, and dP=dT is the average
change of the dipole moment at a temperature presumed to be uniform. For a light
beam of intensity I0 steadily modulated at frequency x the current is:

J ¼ 1ðA=‘Þ ðdP=dTÞ=Cv½ 	I0 expðixtÞcðxÞ; ð4:11Þ

where f is the absorbed fraction of the incident power of light, ‘ is the distance
between contacted electrodes, Cv is the heat capacity per unit volume of pyroelectric,
and c(x) is the complex function of the modulation frequency at a given boundary
condition. Unfortunately, c(x) is not a constant, especially for low frequencies. At
relatively high frequencies, the function approaches a permanent value, most likely
not equal to 1.0. Instability of the temperature coefficient for the crystal’s respon-
sivity could be a source of inaccuracy, to overcome which a null-type procedure
[4.17] is often applied maintaining a consistent reference to some thermal source.
Typically, the light beam is modulated by a waveform-independent chopper, having
its blades larger than the cross section of the incident light beam [4.18]. When the
chopper blades fully screen the beam, any electrical heating of the detector is con-
tinually balanced against the radiant heating of the detector.

Another physical approach is more appropriate for absolute calibration of such a
spectrally selective detector as a photodiode, relaying on complete photo-to-electric
conversion efficiency for ideally manufactured photodiodes [4.19]. That technique
is independent of the conventional methods based on thermal emission of a
blackbody or an electrical-substitution radiometer. The electrical self-calibration
procedure defines the absolute reflectivity and the quantum efficiency for the perfect
photodiode. Application of the reverse electrical bias to the photodiode structure,
which saturates the electrical current, created by a beam of monochromatic
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radiation incident on such a photodiode, allows one to determine its absolute
response. To introduce the electrical bias while detecting the power or energy of the
beam, a removable transparent electrode, such as a weak aqueous solution of boric
acid, not contaminating the diode, can be used. The diode quantum efficiency n(k)
at wavelength k of radiation is determined by the direct and reversed magnitudes of
the electrical bias. The direct value n0(k) is measured as the ratio of the pho-
tocurrent, obtained with zero bias, to the one at the actual bias, which saturates the
photocurrent generated by the given light beam. The reversed bias voltage produces
the conforming reverse magnitude nR(k). Assuming that n0(k) and nR(k) represent
all recombination mechanisms in the diode, the entire quantum efficiency at
wavelength k of incident light is:

nðkÞ ¼ n0ðkÞnRðkÞ= 1� 1� n0ðkÞ½ 	 1� nRðkÞ½ 	f g: ð4:12Þ

The absolute response S(k) of the photodiode is defined by its reflectivity and
spectral dependence of the quantum efficiency n(k):

SðkÞ ¼ ½1� qRðkÞ	 � nðkÞ � k=K; ð4:13Þ

where qRðkÞ is the total specular and diffuse reflectance of the photodiode and
K ¼ 1.23985 lm �W � A�1. Since the diffuse-reflectance component for a silicon
photodiode is quite low, only the specular-reflection spectrum is controlled for the
calibration, making sure the photodiode antireflection coating is sufficiently effec-
tive. Multiple experimental comparisons for the self-calibrated photodiodes and
absolute electrical substitution radiometers confirmed the adequate match of the two
absolute power scales [4.19, 4.22, 4.23].

Absolute detectors are advantageous for transformation of spectrally selective
scales, such as spectroradiometric and photometric power and energy scales. The
spectral radiance Ls(k) of a thermal source can be approximated using theoretical
spectral-radiance function Lk,b(Tc) for a blackbody: Ls(k) ¼ B0(k)Lk,b(Tc), while
applying individual corrections B0(k) when the source and blackbody emit at a given
equivalent color temperature Tc. For a tungsten lamp, light emission can be estimated
by the third-degree polynomial for the lamp’s radiant intensity I(k) given as [4.20]:

IðkÞ ¼ b0 þ b1kþ b2k
2 þ b3k

3� �
c1=k

5� �
exp c2=kTcð Þ � 1½ 	�1: ð4:14Þ

Owing to the smooth spectral distribution and high stability of the tungsten lamp
emission, its spectrum, within a narrow spectral region that could be approximated
by a single wavelength ki selected via a spectral filter or monochromator, can be
assumed to be independent of k:

I kið Þ ¼ b0 þ b1ki þ b2k
2
i þ b3k

3
i

� � Z
Lki Tcð Þ dAs

Z
siðkÞ dk; ð4:15Þ
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where As is the source area and si is the transmittance of the spectral selector. At a
distance r from the lamp, if it may be considered as a point source, the normal
irradiance at the calibrating detector is E(ki) ¼ I(ki)/r

2. The detector’s output cre-
ated by that irradiance is proportional to its absolute spectral response
SðkÞ : Ji ¼

R
EðkÞSðkÞsiðkÞ dk. Consequently, presuming a constant E(ki) within

ki:

B0ðkÞ ¼ b0 þ b1ki þ b2k
2
i þ b3k

3
i

¼ EðkiÞr2
. Z

LkiðTcÞdAs

Z
siðkÞdk

Z
SðkÞsiðkÞdk

� �
:

ð4:16Þ

Sensing irradiance at four wavelengths resolves all coefficients of the third-degree
polynomial [4.20].

A luminous photometric scale for luminous flux Uv(k) can be derived via the
spectral distribution of radiant flux Ue(k) emitted by the standard source according
to Eq. (1.16) (see Chap. 1):

Uv ¼ Kmax

Z
UeðkÞVðkÞ dk: ð4:17Þ

Here V(k) is the visual response function defined and tabulated by the
International Commission on Illumination (CIE); Kmax¼ 683 lm � W−1. The
current J of a scale-calibrating detector for radiant flux Ue is:

J ¼
Z
k

UeðkÞsðkÞ dk ¼
Z
k

UeðkÞsð555ÞsnðkÞ dk; ð4:18Þ

where s(k) and sn(k) are the detector’s absolute and relative spectral sensitivities;
s(555 nm) ¼ 1.0 at wavelength k ¼ 555 nm. The luminous responsivity s(v) of any
luminous photometer which can be designed on the basis of such a scale-calibrating
photodetector can be expressed via a spectral mismatch factor Fv [4.21, 4.22]:

sv ¼ J
Uv

¼ sð555Þ
Kmax

R
k UeðkÞsnðkÞ dkR
k UeðkÞVðkÞ dk ¼ sð555Þ

Kmax
Fv: ð4:19Þ

Supposing the relative sensitivity of the photodetector to be corrected exactly as
matching the standard visual response function V(k), Eq. (4.19) leads to sv(k) ¼ V
(k). Thus, for Fv � 1 the photodetector becomes the perfect visual photometer.
From Eq. (4.15) it follows that for the point source its luminous intensity as the
illuminance at distance r over any preset area Ad is:

Iv½kd	 ¼ Kmax½lm=W 	Fv½sr�1	J½A	r2½m2	= sð555Þ½A=W 	Ad ½m2	� �
; ð4:20Þ
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where angle brackets designate the units of measurements. Accordingly, the
spectral calibration requires evaluating the mismatch of a correction function for the
calibrating photometer [4.22].

4.1.6 Optical Elements of Radiometric and Photometric
Standards

Any practical realization of an absolute unit-scale-carrying system involves high
accuracy and repeatability of calibration measurements, thus requiring special
measures to be implemented in designs of radiometric and photometric standards.
Unaccounted losses of radiation, systematic errors, and/or nonlinearities are among
the major causes of calibration errors, as well as various noise components com-
bined into a random error. Let us review some examples of realization of optical
elements which might serve in the radiometric and photometric standards.

Figure 4.13 shows a practical example of a fully quantum efficient photodiode
assembly in providing the absolute calibration by Eqs. (4.12) and (4.13). Four
photodiodes serve as a complete light-trapping assembly for incident radiation to be
definitively absorbed within seven interactions over windowless SiO2-diode
structures [4.23]. The trap efficiency, measured as only the first-diode signal I1, with
others cut by the shutter (dotted line in Fig. 4.13), versus the total signal IR:

qd ffi 1� 1� q7d
� �

I1=IR ffi 1� I1=IR; ð4:21Þ

reached 0.999 for almost the entire visible range of near 400–800 nm, even at low
power levels as approximately 2 mW; in (4.21) qd is the remaining spectral reflec-
tivity of each diode with an antireflection coating applied to its top surface, presuming
that qd,0° 
 qd,45° is a nearly sufficient assumption for low-reflectivity levels.

A similar light-trapping concept is adopted for the absolute spectral response
scale at NIST [4.28]. Figure 4.14 depicts the light-trapping detector assembly for
five, instead of seven, reflections to accommodate the system’s independence of
radiation polarization for the optical signal. Incident light comes at 45° to plates 1
and 2, oriented in orthogonal to each other’s planes, reflects by the wave normal
from plate 3, and thus exits the same way as it enters the light trap.

Fig. 4.13 Collinear assembly
of four additive photodiodes

4.1 Optical Design and Absolute Calibration of Radiometers 231



The arrangement of plates 1 and 2 provides for the first and fifth reflections to be
in the orthogonal planes to the second and the fourth ones – all at 45°, with the third
reflection at 0°. The full trap detector’s assembly is aligned for the reflected and the
incident beam directions to be within 0.01 rad of each other. The entire assembly is
positioned on one translation stage, setting the light-trapping detector in the middle
between points of ±80% of the signal’s maximum. Each front surface of the
photodiodes has a thermally grown SiO2 layer as an antireflection coating, reducing
the remaining reflectance below 0.4% for most of the 406–920-nm wavelength
range. Owing to low reflectance, the responsivity of the light-trapping detector
assembly was nearly insensitive to reflectance changes as a result of variations in
the quantity of absorbed water vapor for each photodiode (see Part II for details on
the low-reflectance and trace-absorption measurements) [4.28].

For an absolute calibration measurement performed by a thermal detector, a
cone-shaped cavity, similar to the one in Fig. 4.2, is widely used [4.25].
Figure 4.15 illustrates a broadband receiver assembly designed as a 45° cone for the
incident beam to have at least four internal reflections before being absorbed with
overall absorptance a � 0.99%. The cone with a 3.2-cm diameter aperture is
constructed of oxygen-free high-conductivity copper with 0.13-mm-thick walls
blazed to a 0.05-mm-thick and 30.4-mm-long stainless steel cylinder as an inter-
mediary heat sink connected to the main one. The inner surface of the cone is

Fig. 4.14 Light-trapping
detectors

Fig. 4.15 Thermal detector
assembly
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coated with specularly reflective carbon black paint and the outer surface is attached
to the resistance thermometers and heaters. The measured specular reflectance of
the cone ranged from 5 to 10.5% for 0.3–40-lm wavelengths with diffuse com-
ponent of less than 1%, leading to a calculated absorptance above 99%. The testing
performed by an expanded He–Ne laser beam at 633 nm confirmed 99.8 ± 0.1%
absorptance [4.25]. Implementation of an absorbing cone into a radiometer involves
external systems of stray light baffling and temperature stabilization, quite elabo-
rated in optical and mechanical design [4.26].

A typical system for the radiometric comparison of various standards or the
transfer of a unit of measurement consists of a source of radiation of any wave-
length of comparison and a system for swapping the comparing devices into
identical positions of receptions for the source’s radiation. Figure 4.16 depicts a
laser system for comparing scales of a thermal-cone detector and photodiode-trap
detector, dedicated for the NIST high-accuracy cryogenic radiometer [4.26]. Owing
to the cryogenic temperatures utilized in the standard, first developed at National
Physical Laboratory [4.29], the relative standard uncertainties for optical power
measurements are within ±0.01%. To compare or transfer the optical power scale at
that level for the broadband thermal detector and narrow-band photodiode, the
laser’s wavelength bandwidth is also maintained within ±0.01%, as is the geometry
and positioning of an optical beam formed by the system’s spatial filter.

A polarized beam of radiation from the laser is power-controlled by the stabilizer
operated via the feedback monitor, receiving the signal reflected from the wedged
window placed at the far end of the system to accommodate alignments for most of
its elements. The beam geometry is defined by a 25-µm spatial filter positioned at
focal points of two microscope objectives. Only the central spot of the Airy
diffraction pattern between two minima passes through, thus minimizing diffraction
or edge scattering errors. The polarizer filters birefringence errors in the wedged
window and maintains the light polarization perpendicular to the plane of incidence
at the mirror. The shutter blocks the laser light during the electrical calibration of
the thermal detector.

Fig. 4.16 Laser-based radiometric comparison scheme for optical-power transfer measurements

4.1 Optical Design and Absolute Calibration of Radiometers 233



4.1.7 Radiometric and Photometric Scales for Spectral
Irradiance and Luminous Intensity

Since the CIE accepted the definition of the candela via the spectral radiant intensity
(see Chap. 1), any conversion of a radiometric or photometric scale became
adoptable to spectroradiometric means of a given choice. Calibrating the scales of
radiant or luminous intensity via the scale of spectral irradiance is particularly
advantageous owing to the availability of blackbodies, producing practically a
Planckian radiation distribution at precise temperatures, and owing to straightfor-
ward conversion of irradiance into radiant intensity at a precisely known distance to
the source (see Fig. 4.9). As one example of scale conversion, Fig. 4.17 depicts the
scheme for spectral-irradiance calibration via blackbody radiation of the standard
source at NIST [4.28].

The radiance scale is set by a high temperature blackbody source via its output
aperture, and is then converted to the scale of irradiance or illuminance for the
calibrating radiometer or photometer with its aperture and NIST standardized
spectroradiometer, as a radiance-to-irradiance/illuminance scale transformer [4.30].
Application of the high-temperature blackbody source operating at temperature
T � 3000 K versus a similar gold-freezing source is driven by the need to increase
the spectral output Wk(T) of the source radiation in accordance with Wien’s law:

WkðTÞ ¼ c1=k
5� �

exp �c2=kTð Þ: ð4:22Þ

Here c1 ¼ 3.74177118 � 10−16 W � m2 and c2 ¼ 1.4387752 � 10−2 m � K are the
first and second radiation constants.

By comparing the responses of the standard and calibrating spectroradiometer
and photometer, one can transform the irradiance scale, while also identifying the

Fig. 4.17 Spectral irradiance or illuminance calibration scheme
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temperature of the blackbody radiation being used for the transformation.
A comparable approach is applied to transformation of the luminous intensity scale
via the absolute detectors and standardized sources versus each other for a spectral
reaction (Fig. 4.18).

Similarly to Fig. 4.17, each calibrating photometer is fitted with a precision
aperture while measuring the illuminance. The absolute and calibrating detectors
substitute each other on the photometric bench via standardized sources calibrated
by blackbodies, while Eqs. (4.12)–(4.20) are utilized for the conversion of the
radiant to luminous intensity [4.30].

During spectral calibration measurements it is useful to attest the relative spectral
distributions of power Uk and sensitivity Rk for respective sources and detectors,
when dealing with reduced, such as photometric, quantities or scales:

ukðkÞ ¼ UkðkÞ=Uk kpeak
� �

; rkðkÞ ¼ RkðkÞ=Rk kmaxð Þ; ð4:23Þ

where kpeak and kmax are the peak and the maximum wavelengths for source
radiation and detector sensitivity, respectively. The detector-integrated sensitivity
RR as a spectrally reduced quantity is:

RR ¼
Z1
0

UkðkÞRðkÞ dk
. Z1

0

UkðkÞ dk ½A=W 	 : ð4:24Þ

Utilizing the designations of Eq. (4.23), the normalized detector’s sensitivity
becomes [4.31]:

RR ¼ Rkmax

Z1
0

ukðkÞrðkÞdk
.Z1

0

ukðkÞdk ½A=W 	: ð4:25Þ

Fig. 4.18 Spectral calibration of photometric response
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4.2 Attenuation and Color Photometers
and Spectrophotometers

4.2.1 Measurements of Direct Transmittance and Specular
Reflectance

Common design concepts for broadband and while-light photometers, as well as
spectrally selective radiometers and spectrophotometers, often implement the
methods of attenuation measurements discussed in Chap. 2. Realization of a given
method in a specific device requires certain broad precautions to be used. For
example, all attenuation photometers, and spectrophotometers especially, must
prevent negative effects of radiation-beam displacements and instabilities of source
power or energy on the measurement results. The reasons for variations may be
varied, but preventive actions are universal.

Introduction into a light path of a substance of length ‘ and refractive index ns
not equal to the refractive index n0 of the surroundings changes the length of that
path by D‘ ¼ ‘ðns � n0Þ. The path-changing effect does not mean much for the
attenuation under study by itself, though, owing to expected divergence 2H of the
incident light beam, any position changes as functions of both 2H and D‘; including
the sign of displacement D‘ (Fig. 4.19), may alter the reaction of the system’s
detector. Retroreflections among sample surfaces of refractive index ns and an
optical element with index ni (see Chaps. 1 and 2 and Fig. 4.19c) could lead to
random changes in the detector’s response. A certain design elegance for any
attenuation photometer would consist in establishing the stability of the detector’s
spatial sensitivity not exceeding the random error of the photometer’s measurement.
The balance can be established by the detector itself or can be aimed at via addi-
tional spatial integrators.

The ways to reduce spatial nonuniformity in power measurements were
reviewed with the analysis of optical radiometers in Sect. 4.1. In attenuation studies
the beam displacements are relatively small and it is often sufficient to install the
single diffusing plate in front of a detector. Integrating spheres are rarely used since
even one diffuser distant from the detector can decrease the effects of measured
beam spatial fluctuations without significantly increasing beam attenuation
(Fig. 4.19a). An alternative solution is shown in Fig. 4.19b. The negative lens

(a) (b) (c)

Fig. 4.19 Beam cross-section transformation (a), its compensation (b), and some retroreflection
effects (c)
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slightly widens the beam if a test sample is present (dotted lines in Fig. 4.19b), and
narrows the beam when the sample is absent (solid lines in Fig. 4.19b). A lens can
also serve to measure the detector’s spatial sensitivity to beam diameter change.

In contrast to the features of the single-sample transmittance study seen in
Fig. 4.19, specular reflectance measurements are not altered by changes in the cross
section of the reflected bean. However, the beam exposure on the surface of most
detectors is very sensitive to its position and inclination angle. Each displacement
made by relative dislodging of an optical axis of the beam may cause one or another
modification of the detector’s output. Corrective measures for a given reflectometer
could provide an unwavering transformation of the propagation direction for the
incident beam or maintain some extra optical compensation for a substantial dis-
placement of the reflected beam.

Figure 4.20 illustrates two examples of conventional compensation measures.
Without test mirror 3, each compensation element—spherical mirror in Fig. 4.20a and
transparent plate in Fig. 4.20b—is in initial position 4. When studied reflector 3 is
implemented, mirror 4 is moved to position 40, but plate 4 is taken out of its optical
path, with the beam splitter swapped from position 2 into 20. A suitable compensation
in the first case [4.32] is achieved bymoving test reflector 3 around a geometrical center
of spherical mirror 4 at the mirror’s focal length much longer than the displacement. In
the second case, the compensation is ensured by the thickness and position of com-
pensation plate 4, which neutralizes parallel beam displacements by beam splitter 2
during the transmission–reflection measurement cycle. Typically, reflectometers with
compensators require preliminary nonuniformity testing since spatial changes of
reflectance of the spherical mirror as a function of the beam cross section and the
position of the mirror axis affect the results of reflectance measurements.

Let us review one scheme of the two-beam stabilized attenuation photometer
and/or spectrophotometer for the measurements of specular and mixed reflectance
and transmittance depicted in Fig. 4.21. This design was explicitly used for a
pulsed-radiation spectrophotometer, though the design involves common stabi-
lization concepts [4.33, 4.34]. A given light source 1 emitting spatially and tem-
porary unstable radiation in pulsed or cw mode irradiates thin opal glass 2. Diffuser

(a) (b)

Fig. 4.20 Regular reflectance measurements with compensations of beam displacements: 1 - light
source; 2 - supplemental mirrors and beamsplitter; 3 - mirror under test; 4 - displacement
compensator; 5 - detector
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Fig. 4.21 Dual-channel attenuation photometer

2 serves to smooth the spatial distribution of that emittance, but it causes some
additional attenuation. If the distance between source 1 and diffuser 2 is small, the
extent of such attenuation is low. For a flashlamp with translucent emitting plasma,
added integrating sphere 3 with either diffuse or specular reflectance of its wall
could be more effective (see Chaps. 2 and 3), since it makes the emittance of source
1 spatially uniform and also increases the throughput of light emitted back by the
source. That action is not effective for halogen lamps with opaque emitters.

Two objectives 4 form an image of thin diffuser 2 functioning as a secondary light
source in front of the entrance pupil of spectral selector 8. Part of its output beam is
directed via low-reflectivity beam splitter 5 to reference detector 6. Depending on the
measurement task being performed, either a monochromator or a set of interference
filters serves as spectral selector 8. Diffraction grating 11 and a not shown extra set of
intensity filters or spectral filters are placed in the parallel path formed by objectives
9 and mirrors 10, providing steady quasi-normal incidence of radiation on each
spectral selector: either a monochromator or a filter. Objective 12 shapes a parallel
beam of light irradiating transparent object 13 under study. The beam of transmitted
light is received by the second spatial integrator 14, decreasing the influence of beam
displacements and reirradiating detector 16 spaced from integrator 14 by blackened
cylinder 15, reducing stray light. For measurements of diffuse reflectance and diffuse
transmittance, integrating sphere 17 is placed in the same parallel beam path as for
any transmission study. Reflective sample 18 is irradiated at a relatively small angle
of incidence of 4° or less, directing reflected light onto the sphere wall. Baffles 19
preserve the viewed-by-detector sphere wall and output aperture from being irra-
diated by radiation directly scattered by sample 18. Objective 20 forms a
diffuse-scattering beam, irradiating internal detector 21. Translucent sample 180 is
installed before an entrance opening, and an aperture for reflecting samples is then
substituted by the detachable cap of the integrating-sphere wall. Depending on the

238 4 Photometers and Radiometers



measurement task to be performed, a variety of the measurement methods analyzed
in Chap. 2 can be used.

4.2.2 Polychromatic and Spectrophotometric Systems

When studying optical properties of a fast process having sharp features in broad
spectral domains, one obvious shortcoming of the optical schemes reviewed above
is defined by the relatively long time intervals needed to register a quickly changing
property, while a monochromator provides any sequential wavelength scanning
over a broad spectral interval. From the standpoint of simultaneous registration, a
polychromator registering an entire source spectrum at once becomes advantageous
for fairly fast phenomena.

Figure 4.22 illustrates the integrating-sphere polychromator designed for trans-
mitted, reflected, and scattered light in broad spectral domains. Incident light is
diffusely transmitted or reflected by samples 1 or 1′ (dotted line) and registered
inside integrating sphere 2 by set 3 of either different spectral detectors or similar
receivers, seen via individual spectral filters 4. A 100% line is measured concur-
rently for all these detectors when the output aperture of sphere 2 is filled in by the
undisturbed spherical cap 5, reflecting incident radiation as the sphere surface with
no inclusions. For high sensitivity of each detector, the sphere diameter and con-
sequently the number of detectors can be high enough to cover any broad spectral
domain. For low reflectivity of that sphere, its effectiveness might not be sufficient.
If the power or energy of the light source is unstable, one of these detectors would
serve as the reference detector. That measure establishes a stable ratio of each
spectral selection either to spectrally unresolved radiation or to any given spectral
line [4.35]. Certain restrictions apply to such a method and to its spectral resolution.
Besides, the accuracy of measurements in the integrating sphere with lots of
inclusions may not be adequately high (see Sect. 2.4).

Conventional measurements of internal sample bulk transmittance are com-
monly performed by dual-beam spectrophotometers. Two samples of contrasting
lengths of the test substance are installed in sequence in the main beam or at once in

Fig. 4.22 Polychromatic
integrating sphere
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the main and reference beams. If all four surfaces of these two samples are
equivalent to each other, the internal transmittance s of the test substance is
determined by Eqs. (2.41) and (2.47) as the ratio of two sample transmittances. In
such a case, the requirements for the four surfaces to be assumed equivalent are not
exceptionally strong. For example, a relative change of the total sample transmit-
tance at a given wavelength k : ss;k ¼ ð1� qÞ2, due to reflectance change Dq of
any single surface without accounting for internal multiple reflections is:

Dss;k=ss;k ¼ �2Dq=ð1� qÞ ¼
s¼1�q

�2Dq=s : ð4:26Þ

For n ¼ 1.5 and Dn ¼ ± 0.001, the magnitude of the total reflectance change for
the entire sample q ¼ ðn� 1Þ= nþ 1ð Þ½ 	2 becomes Dq ¼ �0:25%, but the relative
transmittance error remains small:Dss=ss ¼ �2 � 10�4=0:96 ffi 0:02%. The sample’s
internal transmittance, countingmultiple reflections, is s0s ¼ ð1� qÞ2= ð1� q2Þ, with
uncertainties Ds0s=s

0
s ¼ �2:08 � 10�4. Thus, the bulk transmittance measurement for

comparable samples may be made without knowing the exact surface reflectances.
The layout of a common dual-beam spectrophotometer with an optical-null

element is shown in Fig. 4.23. The main challenge of instrument design is in
maintaining equivalent attenuation of light for the main and reference beams. In this
arrangement, channel equivalence is maintained via additivity of the transmittance
and reflectance of beam splitters 5 and 50, s5 þ q50 ffi q5 þ s50 , assumed to be
identical and expecting equivalence of the reflectance values of mirrors 6 and 60.
Providing the equivalence of both channels is established, the measured difference
in attenuation of light for samples 9 and 10 is defined only by inequality of their
optical densities. When electronics identify a noticeable difference in two sample
densities, wedge 7 and subwedge 8 provide compensation for the difference
noticed. When the measurement is made by maintaining equal attenuations in the

Fig. 4.23 Structure of a dual-beam spectrophotometer: 1 - stabilized light source; 2, 4 - objectives;
3 - spectral selector (monochromator); 5 - beam-splitters; 6 - mirrors; 7–8 - null element: wedge and
sub-wedge; 9, 10 - short and long samples; 11 - spatial integrator; 12 - detector
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beams being compared, sector attenuators substitute optical wedges (dotted insert in
Fig. 4.17) to equalize for extra attenuation created by the long sample. Preceding
calibration of attenuators at least by their light-shading geometry (see Sect. 4.3)
identifies the attenuation by relative positions of the wedges. The factual equality of
the measuring and reference beams needs to be verified for each measurement,
which defines the achievable accuracy for that method [4.36].

Figure 4.24a depicts an optical structure of a registering spectrophotometer
providing simultaneous reflectance and transmittance measurements by having a
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Fig. 4.24 Optical structure of a dual-purpose symmetrical reflection–transmission spectropho-
tometer (a) and experimentally measured transmittance: series 3, and front and back reflectance:
series 1 and 2, of a ZnS sample (b)
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symmetrical dual-beam optical design [4.37]. As analyzed in Chap. 2, when com-
plementary attenuation factors of a sample, such as reflectance and transmittance, are
concurrently determined at a given spectral coordinate, its scattering and absorption
losses can be obtained more accurately than when making separate transmittance and
reflectance measurements. Here two light beams from 100-W tungsten-halogen
lamps 1 and 2 irradiate a reference or a studied sample marked RE and ST via
nondispersive mirror optics consisting of prisms P and concave mirrors M. Extra
absorbers A reduce the intensities of beams reflected back to the system from beam
splitters BS. Four shutters S sequentially isolate every pair of transmitted and
reflected beams, evenly transformed to an entrance slit of the monochromator. The
simultaneous measurements of transmittance and reflectance from two opposite
directions were performed by tuning the beam splitters individually [4.37]. Since the
transmittances in both directions must have been equal, the measured difference
confirmed the systematic error of approximately 1% (see Fig. 4.24b).

4.2.3 Reference Transmission Spectrophotometers

Most reference spectrophotometers applied for standardization purposes are required
to maintain measurement accuracy near the ±0.01% level. Especially tight require-
ments for each aspect of a spectral transmittance measurement procedure should be
implemented to achieve or exceed that level of accuracy (see Chaps. 1, 2 and 3 and
Part II and Chap. 5, in particular, for further details). In this section let us review the
concepts of two versions for such a reference spectrophotometer, deployed at NIST
and NRCC [4.44, 4.45], respectively, with each based on the single-beam measure-
ment method schematically shown in Fig. 4.25. Every version deploys normal

(a)

(b)

Fig. 4.25 Reference transmission spectrophotometers: S - source; PMT - photomultiplier; PM,
SM - plane and spherical mirror; PB - off-axis parabolic mirror; PR - prism pre-dispenser; DG -
diffraction-grating based monochromator; P - polarizer; Sh - shutter; Ch - chopper; RM - rotating
mirror; PbS, PMT - detectors; LA, CA - limiting and circular aperture
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incidence of light on a plane-parallel slab as the reference sample, avoiding mea-
surement discrepancies due to inconsistent angles of incidence or propagation, but not
spatially separating the multiple reflections between two sample surfaces themselves
and other normal to the beam elements, therefore adding the potential complexity of
the coherence-induced phenomena associated with the spectral studies.

Figure 4.26 depicts the arrangement of spectral irradiation of a sample for
spectrophotometric imaging. The monochromator’s exit slit serves as a secondary
source of spectrally narrow radiation, which is imaged by the objectives on the
detector. Coherence properties of such a source could contribute to interference and
diffraction effects caused by partial coherence of the source (see Chaps. 3, 6 and 10
for details). According to the Van Cittert–Zernike theorem [1.1] (see Sect. 3.1), the
image of the monochromator slit carrying the properties of the sample being studied
would have a section of size D0 ¼ 0:16 � k=u illuminated almost coherently by a
quasi-monochromatic uniform incoherent source of angular radius u ¼ r=R; where
r is the source radius and R is its distance to the image.

Thus, within the accuracy of geometrical optics, an incoherent
quasi-homogeneous uniform source of light creates a section within the exit pupil of
the coherently illuminated area of size:

D0
coh ffi 0:16 � �k0= n0 sinu0ð Þ ¼ 0:16 � �k= sinu0ð Þ; ð4:27Þ

where �k ¼ �k0=n0 is the mean wavelength of radiation in the image space. The size
of this coherent image can be evaluated by observing either the interference pattern
or the diffraction pattern and measuring the radius of the first Airy ring,
rA ¼ 0:61�k0=NA0, where NA0 is the numerical aperture of the image [1.1, 4.44]:

D0
coh ffi 0:26a0r 0

A =r
0: ð4:28Þ

Here a0 is the size of the exit pupil or exit slit in Fig. 4.26 and r0 is the size of the
geometrical image of the exit slit of monochromator serving as the secondary light
source for coherently irradiated spot D0

coh. IfD0
coh � 2a0, the image space is irradiated

coherently, causing the creation of visible interference or diffraction patterns owing
to nonuniformity of irradiation or sample properties (Fig. 4.26, spots 1, 2).

Fig. 4.26 Irradiation of a sample in a spectrophotometer
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Considering the occurrence of a final-size area of source coherence during
spectrophotometric measurements of transmittance, certain measures need to be
taken to limit the size of that area and to provide sufficient spatial and temporal
averaging of potential interference and diffraction patterns created during the sample
study. For example, schemes of light focused on the sample are particularly sensitive
to such effects, and thus should not be used for measurements. Each reference-
spectrophotometer design shown in Fig. 4.25 addresses various aspects of accurate
spectral measurements of transmittance – preserving the light-beam uniformity and
divergence, parallelism of sample surfaces, elimination of multiple reflections within
the sample and among sample and system’s elements, reducing interference and
diffraction effects, and accounting for light detector nonlinearities (see Sect. 4.3).
Instead of lens objectives for sample irradiation, off-axis parabolic mirrors are used,
having their optical axes on opposite sides of the system axis. The alignment laser
serves for setting optical elements and sample surfaces at normal incidence. The main
polarizer sets the defined state of polarization for the grating monochromator and the
second one is used for linearity verification. Any stray-light level is minimized using
dual monochromators with lens predispensers, maintaining 1-nm-level spectral
resolution for 2–3 mm-wide exit slits to minimize interference. The design in
Fig. 4.25a uses the averaging integrating sphere to prevent detector-homogeneity
error due to beam displacements by the sample; the system in Fig. 4.25b is
sufficiently uniform with a diffuser placed in front of each detector. Repeatability of
transmittance measurement in both systems for neutral filters without steep spectral
slopes was maintained within ±(1–4) � 10−5 for systematic errors estimated not to
exceed ±(1–2) � 10−4 [4.44, 4.45].

4.2.4 Specialty Spectrophotometers

If the spatial uniformity of an object needs to be studied with submillimeter resolution
or the samples themselves are of miniature sizes, the spectrophotometer’s designmay
evolve to accommodate these tasks. Figure 4.27 depicts a fiber-based system for
transmission and reflection measurements of optical components for wavelength
division multiplexing [4.52]. Addressing, to a certain extent, the coherence issues
discussed above, the design involves channel splitting and combining in white light
spectrally resolving signals just prior to detection. White light from the source is
coupled into a 200-µm-core optical fiber, the output of which is magnified and
focused into a set of pinhole apertures via variable attenuators to establish beam sizes
from 0.1 to 2 mm. The input beam is split to the reference detector and the main part
is refocused on the reflective and transmissive sample via semitransparent mirrors.
Transmitted light and reflected light via two 400-µm intermediate fibers are delivered
in sequence by the moving mirror into the 600-µm-core fiber and the spectrum
analyzer. Since owing to the design requirement the system focuses light into sample
and pinhole apertures, diffraction and coherence-induced phenomena should play a

244 4 Photometers and Radiometers



role in affecting the measured transmittance and reflectance. Comparison of the
designed system and a PerkinElmer Lambda 18 spectrophotometer revealed near
1.5% discrepancy between the loss measurements performed with the two instru-
ments despite ±(0.01–0.1)% repeatability of the individual studies [4.52].

Figure 4.28 shows a system for spectral transmittance and reflectance measure-
ments of powder substances to be dispersed within a clear immersion fluid [4.54].
The outgoing beam from the spectral selector of the spectrophotometer is guided via
optical fibers into main and reference channels, synchronously modulated by chopper
Ch, and received by detectors DM and DR. Two configurations are used: configu-
ration a for transmittance and configuration b for refractive-index measurements. The
60°-sapphire Dove prism DP is used for each measurement. A thin layer of
immersion fluid with isotropic powder-substance particles is defined by moving
window W via the null reading when touching the prism’s window. The prism itself
is immersed in purified water to reduce front and back surface reflections, and
apertures A1 and A2 in front of polarizer P and main detector DM serve to reduce the
overall scattered light, though they can contribute to unobserved diffraction phe-
nomena. S-polarized light was used for the studies at a given wavelength and varying
the angle of incidence by the stepper motor [4.54]. For waveguide applications the

Fig. 4.27 Sub-millimeter beam size spectrophotometer

(a)

(b)

Fig. 4.28 Immersion spectrophotometer: a transmittance; b reflectance
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spectrometers themselves can be miniaturized using on-chip technologies by
deploying microring and microdonut resonators and diffraction grating arrays in
silicon-on-insulator or other CMOS-compatible platforms to reach sub-nanometer
resolutions in narrow operating bandwidths [4.76, 4.77].

4.2.5 Systems of Multiple-Beam Interactions

As follows from Eq. (2.41), for dual-beam comparison, the larger is the difference of
the lengths for two measured samples: D‘ ¼ ‘long � ‘short, the smaller are the bulk
losses that can be detected, with linear attenuation coefficient l of the samples’ bulk:

l ¼ ln ssh � ln slg
� �

= ‘lg � ‘sh
� �

: ð4:29Þ

The smallest difference of the two logarithms in expression (4.29) to be distin-
guished is defined by the resolving power dN ¼ 1� slg=ssh of a given measurement
system. The longest possible length of any test sample is restricted by the permissible
dimensions of a measurement system and the possibilities of fabricating a particular
material. To have high sensitivity with limited resolving capacity, a high effective but
not necessarily actual sample-length contrast of a test substance needs to be achieved.

Two typical layouts designed to increase a number of light interactions with an
object to be measured are depicted in Fig. 4.29: the dual-transmission measurement
system [4.38] and the dual-interaction cavity for the reflectance study [0.6, 4.32,
4.39]. In each system light interacts twice with test sample 3: once directly and
again by backreflection from supplemental mirror 4.

The prism and mirror dual-pass cavity for the measurement of transmittance is
formed via prism 2 and mirror 4. For all reflectance studies, the dual-interaction
cavity is made via mirrors 2 and 4. The initial 100% line in Fig. 4.29a is registered
with the moving mirror in initial position 4′, which is then moved to measurement
location 4, defined by the length and index of refraction of sample 3 maintaining the

(a) (b)
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Fig. 4.29 Dual interaction with objects to be studied: 1 - source; 2 - prism or mirror; 3 - object
under test; 4 - mirror; 5 - detector
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beam cross-section unchanged. To insert mirror sample 3 in Fig. 4.29b spherical
mirror 2 is swapped around the sample’s axis (lower view) into new position 2′, not
changing the direction of light propagation and therefore doubling the number of
light interactions with the test mirror.

Both settings result in 2 times higher sensitivity to total attenuation of the entire
test object, though spatially averaged by two beam passes and two angles of
incidence. As a result, the increase of the measurements sensitivity coincides with
the decrease of locality. In addition, for the transmission system, two light inter-
actions with a transparent object double the number of surface reflections.
Therefore, the measurement resolving power for the internal sample loss is limited
by uncertainties not of dual magnitude of the surface reflectance (see Eq. (4.26)),
but by its fourfold value. Consequently, the achieved twofold increase of sensitivity
to internal optical density D ¼ lD‘ coincides with the same increase of random
error for these measurements. Accordingly, such dual-pass measurements are
adequately accurate only when they are simultaneously supported by equally higher
stability of all four surface reflectances for two samples to be compared.

If multiple reflections are created for an object with no intermediate medium
(face surface), the sensitivity of the measurement to the object’s attenuation factor j
is expanded by the number m of reflections:

Nn

N0
¼ jm or

Dj
j

¼ 1
m

DNm

Nm
þ DN0

N0

� �
; ð4:30Þ

where Nm and N0 are the system reflection numbers after the mth light interaction
with and without the object, respectively. Consequently, if inside the measurement
system shown in Fig. 4.29 the gap between two retroreflectors is filled by a gaseous
substance under study, the sensitivity to the average linear attenuation coefficient l
is doubled in comparison with single light propagation, while the spatial averaging
assists in decreasing the effects of gas-density fluctuations. By analogy with studies
of reflectance at normal light incidence (Chap. 2, Figs. 2.13 and 2.14), the semi-
transparent beam splitter is an efficient light coupler in measurements of the av-
eraged and local optical properties. Figure 4.30 depicts exemplary schematics for
normal-incidence measurement at beam splitter BS separating the incident and
reflected beams. In Fig. 4.30a, detector D is calibrated via reflectance from nearly

(a) (b) (c)

Fig. 4.30 Dual-interaction reflection measurements at normal incidence
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50:50 beam splitter BS; in Fig. 4.30b, the reflectance of output coupler 1, being also
presumably 50% reflecting and 50% transmitting but not noticeably absorbing and
scattering, is measured; and in Fig. 4.30c, the resonator formed from output coupler
1 and mirror 2 is assembled for testing. For semitransparent output coupler 1 and
highly reflecting mirror 2, the measurement sensitivity to local reflectance of the
resonator is doubled when testing mirror 2 at precalibrated coupler 1 (see Part II for
details on measurement methods and settings for multiple beam interactions).

4.2.6 Measurements at Intensive Irradiation

High levels of power for the laser and pulsed sources used in measurement systems
may cause not only the appearance of nonlinear effects, complicating measurements
under presumption of linear attenuation factors, but may also expand the dynamic
range of measurements. An increase of the detecting power or the energy of the
radiation itself does not allow one to extend the contributing dynamic range of
measurements restricted by a particular detection system. An actual range extension
can be achieved as a result of the combination of several measurement actions. Let
us examine potential ways of measuring an attenuation factor j by a detection
system with linear dynamic range D. Let us set range D to be smaller than the
inverse attenuation factor 1/j, being limited by the upper Umax and lower Umin

boundaries for the linear reaction of the measurement system to the radiation flux
U0, while having first power U0 higher than Umax.

To provide linear attenuation measurements at high flux power U0 above the
upper level of the system’s linear threshold, the power must be attenuated to fit the
Umax − Umin ¼ D range of the linear system reaction, correlating to the additivity
principle (see Chap. 1). By using at least two attenuators with unknown transmittance
sa1 and sa2 and reflectance qa1 and qa2 that both reduce flux U0 to fit into the linear
range D, the measurement sequence to evaluate the parameter of the attenuators and
provide power measurements consists of the reaction of the detection system to four
fluxes of radiation – the radiation fluxes transmitted (reflected) by the first attenuator,
the second attenuator, the first and second attenuators, and the test sample:

Na1 ¼ const � sa1U0; NR ¼ const � sa1sa2U0;

Na2 ¼ const � sa2U0; Ns ¼ const � ssampleU0:
ð4:31Þ

The first three equations in 4.31 give the attenuation factors of two attenuators,
sa1 ¼ NR/Na1 and sa2 ¼ NR/Na2, and all four equations identify sample transmit-
tance ssample ¼ Ns=Na2ð Þ NR=Na1ð Þ. The actual optical properties of attenuators and
the limited levels of radiation power must satisfy the inequalities:

sa1; sa2 �Umax=U0;
sa1 � sa2; ssample �Umin=U0:

ð4:32Þ

In the example above, two measurement procedures by the Na1 and Na2 pair of
equations (4.31) can be omitted if attenuators of known attenuation factors at a
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given wavelength are available. Considering the attenuation measurements, a broad
range of methods may be developed if the twofold error of measurements associ-
ated with extra evaluation of the attenuation factors is acceptable. An overpowering
level of radiation also allows one to determine thresholds of nonlinear phenomena
affecting measurements of attenuation factors for direct irradiation of samples and
attenuators. To adjust a prohibitively high level of irradiation by observing likely
nonlinearities for changing magnitudes of a linear attenuation factor, an extra
measurement can be made as:

sR;1=sR;2 ¼ U0;1ðsa � ssÞ1=U0;2ðsa � ssÞ2: ð4:33Þ

If the ratio of the attenuation factors kR,2/kR,1 ¼ sR,2/sR,1 measured at unequal
levels of irradiance is reliably recognized by the measurement system as being dif-
ferent from unity, the nonlinear effects are initiated. It is clear that both high-power
nonlinear phenomena and the noise level of small-signal detection restrict the upper
and lower thresholds of the linear dynamic range for attenuation measurements.

4.2.7 Studies of Integrated Scattering

If the dependence upon the direction of observation for scattering factors to be
measured can be ignored, there is no need for a complex goniometric study, and an
integrating sphere can integrate light scattered by a test sample. An additional
advantage would be realized for capturing the scattering light in directions close to
0° and to 180° from the direction of incident light, which is not effortlessly
achievable by relatively large goniometers [4.48–4.50].

Let us also note that multiple reflections in an integrating sphere can increase its
sensitivity to low scattering, since a highly reflecting sphere not only integrates but
also magnifies the detector’s reaction via summing scattered by the sample light
over various directions by factor:

K ¼ Adt=4pR2� �
1= 1� q 0

0

� �	 

: ð4:34Þ

Here R is the sphere radius, Adt is the area of spherical segment substituted by a flat
detector out of the internal sphere surface, and q00 is the effective reflectance of the
sphere (formulae (2.104), (2.105)). If in such a sphere having internal surface of
area A0 only the entrance aperture and the detector opening of areas Aen and Adt

have zero reflectance, Eq. (4.34) converts to:

K ¼ 1
A0
Adt

1

1� q0 1� Aen
A0

� Adt
A0

� �h i ¼ 1
A0
Adt

� q0
A0
Adt

� Aen
Adt

� 1
� �

¼ 1
A0
Adt

1� q0ð Þþ q0 1þ Aen
Adt

� � : ð4:35Þ
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Expression (4.35) clearly reveals that the increase of both ratios Adt/A0 and
Adt/Aen extends the positive effect of multiple reflections, while errors of both
substitution and comparison methods enlarge with the higher number of sphere
imperfections. Thus, some balance must be reached for every specific situation
depending on the required sensitivity and accuracy of the study.

The integrating sphere seen in Fig. 4.21 depicts an easily accessible though
highly sensitive attachment, utilizing the simplest substitution method for inte-
grating sphere measurements. Its simplicity is given by direct sequential irradiation
of a sample under study and the substitution standard at equivalent angles of
incidence. Such a measurement procedure does not require switching of the
direction of the incident beam. The absence of additional apertures for the sample of
comparison minimizes the sphere losses into sphere openings and allows the use of
a comparatively small integrating sphere. The disadvantages of substitution mea-
surements are given by comparatively large systematic errors, depending on the
difference of the magnitudes for scattering factors of substitution samples and the
dimensions of the sphere, samples, and apertures (see Chap. 2).

Expression (2.118) for spherical samples, which do not disturb the sphere
geometry, and expression (2.121) for flat samples permit one to implement cor-
rection factors based on the assumption of identical characters of the scattering
mechanisms for all objects to be substituted. This applies to the measurement of
uniform diffuse scattering, specular reflectance, and regular transmittance. Samples
with a mixed scattering indicatrix may be represented by the sum of uniformly
diffused and specular components. Since systematic error of integrating sphere
measurements is absent for light specularly reflected by a spherical sample and
directed to diffusely reflecting sphere wall, one can draw the conclusion that the
correction factor for the sample with close-to-uniform scattering is equivalent to
that obtained for the sample of mixed reflectance, as well as of mixed transmittance.
The error of the diffuse, specular, and mixed reflectance measurement by the at-
tenuation photometer in Fig. 4.21 for the substitution integrating sphere did not
exceed ±0.2–0.3% [4.34] even for single-surface reflecting samples of reflectance
as low as q ≅ 0.04 when using correction factors for the actual sphere design. The
errors of the direct transmittance measurement by the attenuation photometer
without the integrating sphere were practically the same within ±0.1–0.2% [4.33].

Figure 4.31 shows a widely used integrating-sphere design for comparison
measurements in a dual-beam spectrophotometer [4.36]. Light from source 1 is split
into two beams via Nicol (2, 4) and Wollaston (3) prisms, entering integrating
sphere 6 via mirrors 5 and 50 via separate apertures. Diffuse and specular reflecting
samples – test sample 7 and comparison sample 8 – are placed at respective output
ports. Either a transparent or a translucent sample is placed at position 70 of the
entrance port for the measurement beam. To enable the absolute reflectance and
transmittance studies, comparison reference sample 8 is made as the cap of the
sphere wall at the same radius of curvature as the sphere and is placed in the output
port of the reference beam. For the absolute measurement purposes, light diffusely
reflected or transmitted from either test sample 7 or 70, but not from comparison
sample 8, must be baffled from detector 9 by opaque baffle 10 or 100. Within the
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zones of expected specular reflectance, removable sphere cap 110 is taken out or
placed back to remove or keep the specularly reflected light inside. The angle of
incidence u at each sample is a constant of a given sphere design and is commonly
larger than 4°–5° (compare with the ones in Figs. 2.36 and 2.37).

Let us note that for a compact design of an integrating sphere, aiming for high
sensitivity, the existence of several sphere ports contributes to increasing the
amount of stray light entering such a sphere, which is especially noticeable for
measurements of low scattering factors if specularly reflected light must leave the
sphere via additional exit apertures (see Fig. 4.32). One way of measuring
stray-light intensity consists in opening and closing each port, such as using the
sphere-wall cap to close the port and fully absorbing cone as the light trap to open it
[4.34]. Applying Eqs. (2.118)–(2.122) to a sphere of known port sizes, one can
evaluate and correct the samples’ reflectivity range and curvatures and the intensity
of stray light, respectively [4.34, 4.43].

Fig. 4.31 Comparison
dual-beam sphere

Fig. 4.32 Multi-port
integrating sphere
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For the absolute measurement methodology to offset the systematic error of the
integrating sphere measurement the intensity of radiation directly scattered by the test
sample and reaching any detector mounted on the sphere wall must satisfy Eq. (2.126).
Following the discussions in Sect. 2.4, an alteration of radiation intensity may be
provided by making the sphere baffle transmittance or the intensity of incident light
irradiating the sphere wall satisfy Eqs. (2.126)–(2.128) for the test sample or for the
comparison measurement, respectively. The corresponding baffle transmittance can
be obtained using transparent or translucent materials, as well as by making a small
corresponding aperture of area DA in the baffle, which relates to its total area A as
ðq0 � q00Þ= 1� q00

� �
(equation (2.144)). Baffle choices are confined by the spectral

characteristics of the internal sphere surface and available materials. The relationship
between the surface areas of the aperture and the baffle is surely not spectrally
selective and it may not compensate for any spectral dependence of the sphere
reflectance on light wavelengths. Making the sphere and baffle frommaterials having
identical spectral characteristics could compensate for the spectral asymmetries in
Eq. (2.143). If the baffle acts as a uniform diffuser in transmitted light, preventing
nonuniformity for direct irradiation of the sample studied, the entire portion of light
transmitted by the baffle becomes uniformly diffused. Therefore, following Eq. (4.6),
the baffle diffuse transmittance sd should satisfy:

sd
1� cos b2
1þ cos b1

¼ q0 � q00
1� q00

; ð4:36Þ

where the angle designations are given in Fig. 4.33. If the sphere and baffle are both
made of any identical translucent material, only having different thicknesses to
obtain the high reflectance and high transmittance, respectively, for the sphere and
baffle, the optical properties should have a somewhat similar spectral behavior.
Other advantages of applying low-absorbing translucent material are associated
with low optical losses inside the integrating sphere itself, resulting in the higher
effective reflectance of the full-sphere enclosure.

Figure 4.33 depicts the comparison integrating sphere for a single-beam appli-
cation having one shifting baffle [4.41]. Integrating sphere 3 has only a single
entrance aperture. Swing mirror 1 transfers irradiating light from test sample 2 to

Fig. 4.33 Swing-mirror
integrating sphere having a
translucent baffle

252 4 Photometers and Radiometers



the sphere wall with no inclusions. To compensate for absolute measurement error
[2.60], translucent baffle 4 instead of the reflective one protects detector 5 from
irradiation by light directly scattered by sample 2. In the absolute-reflectance study
when a sphere wall spot is irradiated, the baffle is shifted to position 40, thus not
blocking reflected light. The sphere design is convenient, but has two significant
side effects. The angle of light incidence on the sphere wall does not remain
constant over the beam cross section and is not equal to the angle of light incidence
on the sample. Besides, for other conditions being equal even to the ones of
substitution spheres, the sphere entrance aperture must be larger than in previous
designs to maintain beam shifts and balance, thus varying the angles of incidence
on the sphere wall and the sample.

Another design that excludes wide apertures in the integrating sphere, but adds
internal elements [4.42], is depicted in Fig. 4.34. Such an approach restrains the
need of using protection baffles by placing the sample and the detector in one plane.
Swing opaque mirror 2 is installed in this comparison measurement sphere instead
of the protecting baffle (Fig. 4.34a). That internal mirror 2 sequentially positions the
incident light spot onto test sample 3, and then onto inner-sphere wall section 5 by
swapping orthogonal mirror positions in sphere 1. Expressions (2.145) and (2.146)
show that two flat sphere elements with sample 3 and detector 4 (Fig. 4.34a) create
substantial systematic errors even for the comparison-method measurements.
Reduction of the flat section (Fig. 4.34b) by installing detector 4 onto the sphere
surface, being baffled by opaque mirror 2, allows one to compensate for some
systematic error. Irradiation of a small compensation part DA of the sensitive sur-
face A of the detector by radiation directly scattered by the sample (see Sect. 2.4)
diminishes any error of absolute measurements similarly to the layout in Fig. 4.33.
The design in Fig. 4.34 by definition assumes the sphere-wall reflectance at dif-
ferent angles ui of radiation incidence is unchanged (arrows in Fig. 4.34b), while
obstructing any sphere measurement of diffuse transmittance due to scattered light
irradiating the detector.

As pointed out by Table 1.1, when the sample under study is irradiated by a
direct beam at an angle of incidence H, the uniform diffuse reflectance of such a

(b)(a)

Fig. 4.34 Integrating spheres having the internal swing mirror
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sample into the hemispherical angle 2p can be substituted by its irradiance factor in
the reciprocal irradiation and observation directions Eq. (1.137). Besides, a prac-
tically uniform irradiation within the approximately 2p hemisphere can be realized
by implementing a number of light sources inside half of the uniformly diffuse
reflecting sphere (Fig. 4.35a). However, as shown in Chap. 2, the main advantage
of the integrating sphere consists in the uniform irradiance distribution produced by
reflection from its spherical surface. Thus, the disadvantage of multiple inclusions is
multiplied by every implementation of a not diffuse reflector in the sphere.
Figure 4.35b depicts the likely prospect of utilizing the translucent sphere (see
Fig. 2.5) for determination of the radiance factor. One or several light sources 1
irradiate translucent sphere 2 made of a low-absorbing diffuser, the properties of
which satisfy Eq. (2.21). Complete equality among all radiant fluxes emitted by
every source of radiation is not required, since test sample 3 is directly compared
with the assumed perfect diffuser 30. Each sample is located fully inside the
translucent integrating sphere 2 for the cycle of comparison measurements.
Objective 4 forms a stable observation geometry for light scattered by measured
sample 3 or comparison sample 30 and viewed by detector 5 in direction H within
solid angle X. The precise locations of samples 3 and 30 are obtained in the sphere’s
geometrical center, maintaining hemispherical irradiation. Such hemispherical
irradiation obtained inside the translucent sphere has the dual advantage of directing
radiation from the outside sources into the sphere and keeping it within the sphere.

Certain drawbacks of the preceding integrating sphere layouts can be linked to
some inability of the sphere designs to capture radiation reflected via the entrance
apertures for the directly irradiated spheres. One design layout allowing simulta-
neous measurements of the sum of the specular and diffuse-reflectance or trans-
mittance of a test sample is depicted in Fig. 4.36. It provides absolute comparison
studies at normal incidence of radiation on either a reflecting or a transmitting
sample and on the error-equalizing comparison spherical cap, representing in its
properties the effective internal sphere wall [2.55]. As reviewed in detail in Sect. 2.4,
the sphere cap is the comparison reference sample, with both sphere cap 6 and

(a)

(b)

Fig. 4.35 Determination of sample’s scattering properties via the radiance factor
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studied sample 7 always remaining inside the sphere and being sequentially inserted
into the incident beam of light. Equalizing sphere cap 6 also has the small
balance-opening port, the area of which compensates for the systematic error of the
absolute measurements by Eq. (2.144). In Fig. 4.36a, the sphere cap is directly
irradiated at location 6, the sample is set to position 70, while the opaque baffle is
turned out of the beam into location 50. Figure 4.36b depicts direct irradiation of the
reflecting sample at position 7, while the equalizing cap and the baffle are placed in
opposite locations 60 and 5, respectively. When any translucent sample is studied at
position 700, opaque baffle 5 is returned to spot 50 and the sphere extra cap is placed at
spot 600 to cover the sample port of the sphere. Nonabsorbing beam splitter 2 and
additional detector 3, identical to detector 4 of the sphere, serve to determine the
specularly reflected components of incident radiation.

Two initial readings of detectors 3 and 4 registered in positions depicted in
Fig. 4.36a, are:

N3;0 ¼ j3Uqspl; N4;0 ¼ j4Ussplq
0
0 1� q00
� ��1

; ð4:37Þ

where j3 and j4 are the proportionality factors,U is the total flux of the source beam,
qspl and sspl are the reflectance and the transmittance of splitter 2, and q00 is the
effective reflectance of equalizing sphere cap 6, which is made equal to the effective
reflectance of the entire internal sphere surface (see Eqs. (2.144), (2.148)). For sphere
elements being in new positions as in Fig. 4.36b, each detector signal becomes:

N3 ¼ j3Uqsplqrqspl; N4;q ¼ j4Ussplqdq
0
0 1� q00
� ��1

; N4;s ¼ j4Ussplsrþ dq
0
0 1� q00
� ��1

;

ð4:38Þ

where sr+d is the mixed transmittance for translucent sample 700. Another signal N0

is measured by sphere detector 4 with no splitter 2 in either arrangement shown in
Fig. 4.36 to determine all optical properties:

(a) (b)

Fig. 4.36 Diffuse- and specular-reflectance measurement sphere
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N 0
4;q ¼ j4Uqdq

0
0 1� q00
� ��1

: ð4:39Þ

The factors characterizing all properties of reflective or translucent samples are
resolved as:

qd ¼
N4;q

N4;0
; sd ¼ N4;s

N4;0
; qr ¼

N3

N3;0

N 0
4;q

N4;q
: ð4:40Þ

Let us note that the dynamic range for diffuse-scattering measurements by
detector 4 in that integrating sphere is restricted by the factual transmittance of
incident radiation via extra beam splitter 2. Thus, the transparent beam splitter with
one of its surfaces having an antireflection coating is the most effective. This is
based on much higher attenuation inside the sphere, being:

U4 ¼ U0
Adet

Asph

q00
1� q00

; ð4:41Þ

where U0 is the flux entering the sphere, and Adet and Asph are the areas of the
detector and the internal sphere surface. In contrast, flux U0,3,max to detector 3 is
defined by incident flux U0 and reflectance qspl of splitter 2.

One more version of an integrating sphere design for measurements of the
scattering factor that does not introduce systematic error of determining diffuse
reflectance and transmittance of spherical samples is seen in Fig. 4.37a. Versus the
internal translucent sphere layout, illustrated in Fig. 2.35, this design deploys the
translucent nonabsorbing sphere 5, which is external to main integrating sphere 1.
Error corrections in that version are only for imbedding flat inclusions into main
sphere 1 and for changing its effective reflectance via added sphere 5 in its entrance
port 2. First, the reflective test sample 6 is irradiated by the direct beam from a light
source via entrance port 2 with sphere 5 being out of the beam and internal detector
4 protected from light scattered from sample 6 by conventional opaque slightly

(a)

(b)

Fig. 4.37 Comparison spheres: true-diffuse illuminating (a) and specular-excluding (b)
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curved baffle 3. Then, an entire inner surface of sphere 1 including the sample and
detector 4 is irradiated by uniformly diffused flux U0 of the incident beam via
translucent sphere 5 of a nonabsorbing translucent material, in position 50 (see
Chap. 2). The ratio of all inner surface of sphere 5 to its spherical surface fitted to
port 2 of sphere 1: A5 and A2, define the attenuation factor of translucent sphere
qsample-6 ¼ (N/N0)(A2/A5). The assumption for zero absorptance of translucent
sphere 5 defines the measurement accuracy.

Figure 4.37b depicts a comparison integrating sphere of spectrophotometer Cary
5000, which is equipped with specular-reflectance excluding port 7 and curved
detector baffles 3, 30. The main beam irradiates sample 6 via port 2 and the reference
one is directed to sphere-matching reference reflector 5. That sphere was used for
measuring of powder samples behind a transparent quartz window [4.81], which
attenuated the sample beam and contributed to multiple reflections of the sphere,
thus numerical-fitting models were needed for empirical corrections to sample’s
spectral reflectance. Empirical-based modeling is also required for small samples
using large-beam off-the-shelf systems, while deploying sample masks, reshaping
beams, or altering specimen [4.82–4.84].

4.2.8 Specialty Applications of Integrating Spheres
for Optical Calibrations and Measurements

Exceptional averaging and depolarization properties of integrating spheres [2.47–
2.88, 4.40–4.53] can be used for absolute calibration of light sources [2.3, 2.7]. When
radiant or luminous fluxes emitted by standard and test sources are sequentially
compared in a sphere, only the spectral-correction factor of the sphere, but not its
internal reflectance, needs to be known and should be a sphere constant for com-
parison of light sources. However, if only theflux from a test source is being integrated
by the sphere (Fig. 4.38), the sphere’s spectral conversion factor also needs to be
known. A numerical solution for a particular calibration task can be developed by
solving the integral equation for the sphere’s irradiance (see Sects. 2.1, 2.4) in view of
screening factors Bi(A, A0) for the sphere’s internal baffles and specific position
factors Pi(A, A0) of various inclusions or ports at each ith reflection [2.6]:

Fig. 4.38 Comparison of
fluxes via integrating sphere
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EiðAÞ ¼
ZZ

qðA0ÞEi�1ðA0ÞBiðA;A0ÞPiðA;A0ÞdA0: ð4:42Þ

Here q(A) is the uniform diffuse reflectance of the sphere wall within ith area Ai,
irradiated from A0. For each setting, the optimal sphere configuration defines the
positions of windows and baffles. In a practical implementation [4.47], illustrated in
Fig. 4.38, versus the original implementation [4.46] shown in Fig. 2.4, the
open-port screening baffle was removed to reduce sphere nonuniformity caused by
added objects inside. In this case, the size of the spherical port a–a was controlled
by the extra flat diaphragm b–b, establishing correction factors for loss of light into
the port for test source S versus standard SS.

Another role of an integrating sphere is associated with its ability to uniformly
irradiate spherical or elliptical objects with uniformly diffused light. This uniform
irradiance can be formed inside a reflective integrating or diffusely transmitting
sphere of negligible absorptance a of its wall at wavelengths under study Eq. (2.20).
The inaccuracy v of the assumption made in that relation is: v�DU=U ¼ Ds ¼ a.
For opal glasses with absorption coefficients a of 0.001–0.0001 for visible to
near-IR wavelengths, low glass absorptance enables diffuse sample irradiation via
direct irradiation of the translucent sphere. In the absence of notable absorption, any
sphere formed by diffuse reflecting and diffuse transmitting material balances all
incident radiation into the surrounding space without adding or diminishing the
total amount of that radiation; thus flux U0 incident onto a translucent sphere
remains located within imaginary spheres, coincident with the main sphere (see
Fig. 2.5). If the test sample, made as the sphere of radius r smaller than the internal
radius R of translucent sphere, is placed inside the translucent sphere irradiated by a
probe beam with flux U0, then instant irradiation of the sphere will next irradiate the
entire outer surface of the sample (which in turn can be investigated for its surface
defects such as material or structural small-area cracks or flaws) with the flux
density of U0/S, where S is the area of the sample’s outer surface 4pR2. The
sensitivity of such defect detection will be defined by the relative area of defects,
changing the reflectivity of the sample measured and skewing the 4p scattering
distribution of the spherical irradiance in the translucent sphere.

Depending on the properties of the sample’s surface, the measurement sensitivity
may need to be improved to recognize surface defects, and for that purpose, that
sample itself may be used as a semitransparent resonator for the wavelength of irra-
diation for which the sample’s absorptance becomes sufficiently low, enhancing
propagation of radiation through the sample. Owing to multiple reflections inside the
sample in the translucent sphere (Fig. 4.39), for sample reflectance qk, bulk absorp-
tance ak, and diameter D, the spectral flux URk within the sphere at wavelength k is:

URk ¼ Ukqk þUk 1� qkð Þ2ak þ � � � þUk 1� qkð Þ2akq2ka2k

¼ Uk qk þ
1� qkð Þ2ak
1� q2ka

2
k

 !
:

ð4:43Þ
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If the sample’s spectral bulk absorptance ak is low and is presumed to be
ak ¼ 0, Eq. (4.43), differentiated versus the flux Uq,k ¼ Ukqk reflected from the
sample, becomes:

UR;k ¼
ak!0

Uk qk þ 1� qkð Þ= 1þ qkð Þð Þ;
UD ¼ UR;k � Ukqk ¼

ak!0
Uk 1� qkð Þ= 1þ qkð Þ: ð4:44Þ

For studies in spectral regions of negligibly low bulk absorptance of the sample
itself, as well of the translucent integrating sphere, the only sample’s loss to be
taken into account is its surface spectral scattering lk; therefore, Eqs. (4.43) and
(4.44) convert to [4.75]:

UR;k ¼ Uk qk þ lkð ÞþUk 1� qk � lkð Þ2 1þ qk þ lkð Þ2 þ � � �
h i

¼ Uk qk þ lkð Þþ 1� qk � lkð Þ2
1� qk þ lkð Þ2

" #
;

ð4:45Þ

UR;k

Uk
¼

ak!0
qk þ lk þ

1� qk � lk
1þ qk þ lk

� �
: ð4:46Þ

This derivation presumes identical 2p-scattering losses lk into upper and lower
semispheres of the sample’s surface in semitransparent resonator measurements,
which retains its sensitivity for low and high spectral reflectance of the sample.
Resonator studies also double the measurement sensitivity to likely changes of
spectral reflectance of surface, as well as to reflectance defects by Eq. (4.44) for UD,
enhancing sensitivity via the multiple reflectance product (1 − q)/(1 þ q), analo-
gously to Eqs. (1.106), (10.42) (see Chaps. 1 and 10). Further enhancements can be
made via spectral tuning of the translucent-sphere to diffuse properties of expected
samples, choosing a matching diffuse material for its wall and optimizing the wall
thickness, to improve sensitivity of measurements as diffuse properties vary (see
[4.85–4.87]).

Fig. 4.39 Specular sphere
inside a diffuse sphere
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4.2.9 Color-Coordinate Measurements

Surface defects, such as ones in the silicon nitride rolling elements, as an example
[4.55], can be sensed similarly to label-free bio molecule or tissue identifications
[4.88] by comparing color changes due to those defects versus the likely uniform
color of defect-free surface, in which a color change of the sintered silicon nitride
surface facilitates identification of pores, chips, or versus foreign-matter defects of
different colors being formed at the surface (see Sect. 2.3). The color stimulus is
best determined by measuring the absolute but not relative transmission or reflec-
tion spectrum of the object for any standardized radiation bandwidth (see Chap. 2).
Using measured data obtained from the object, its tristimulus coordinates would be
identified [2.45] by converting the spectrum measured as the mathematical model
for the product of the emission spectrum of a standardized source, the spectrum of
the object measured, and the tristimulus values �xðkÞ;�yðkÞ;�zðkÞ for one of
CIE-identified standard observers. The anticipated measurement [4.75] of the
spectral transmission or reflection of the object should be obtained by means of an
absolute spectral measurement via any absolute color spectrophotometer, satisfying
the conditions of illumination and observation defined by the CIE and reproducing
the precise wavelengths but not necessarily the intensities of illumination and ob-
servation spectrums of a standardized CIE source and of a standardized observer.
The limits of potential sensitivity for such measurements are only restricted by
discrimination confinements for the measured color difference, being determined by
the vector variance of two color stimuli that are discriminable, as long as the
spectrum of optical radiation defining a given color discrimination is measurable.

Figure 4.40 illustrates the direct-diffuse illumination and observation geometry
for absolute measurements of color defined by the CIE [2.33]. Figures 4.41 and
4.42 give examples of the experimental confirmation of color sensitivity of the
absolute technique (Chap. 2) for measuring the color coordinates of two transparent

Integrating sphere

CIE Spectral Source
CIE Spectral Observer

Transparent Color Object

Reflective Color Object

Fig. 4.40 Absolute transmission or reflection color measurement in direct-diffuse configuration
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Fig. 4.41 Expanded transmission spectrums of studied transparent polymer samples No. 1 and
No. 2
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Fig. 4.42 Reflection spectrums of two studied polymer samples No. 1 and No. 2

4.2 Attenuation and Color Photometers and Spectrophotometers 261



materials in the CIE-specified spectral domain of 380–780 nm and calculating the
yellowness index according to ASTM E 313-00 [4.80] by Eq. (2.73) as:

YI ¼ 100 � Cxx� Czz
y

¼ 100 � 1:2985x� 1:1335z
y

½%	; ð4:47Þ

where the ASTM-defined coefficients for the D65 CIE source applied are
Cx ¼ 1.2985 and Cz ¼ 1.1335. The whiteness index in reflected light is defined by
Eq. (2.74) at xn ¼ 0.333334 and yn ¼ 0.333331:

WI ¼ Y þ 800ðxn � xÞþ 1700ðyn � yÞ: ð4:48Þ

Figure 4.41 identifies the transmittance spectrums for two samples of some
unknown history, made by a deliberately untraced, but established process, which
were identified by that process as color-identical and seemingly confirmed as such
by the indistinguishable transmission charts.

Figure 4.42 shows reflectance spectrums of both samples remeasured at identical
illumination and observation geometries in reflected light with following absorption
spectrums (not shown) computed as the difference: a(ki) = 1 − s(ki) − q(ki),
where a, s, and q are the absorption, transmission, and reflection at ki (see [0.50]
for more details). As seen from the reflectance spectrum, samples 1 and 2 are not
equal to one another, but conventional color measurements in transmission do not
reveal the distinction (Table 4.1).

As it is seen, the sensitivity of that absolute color coordinate measurement
technique is at least on the level of ±5 � 10−5 for color indices X and Y, and at least
near ±1 � 10−4 (±0.01%) for the yellowness index and the whiteness index,
nonetheless the photometric accuracy of spectrophotometer used for the measure-
ments was at usual ±0.1%, while regular color detection methods do not normally
distinguish color differences below 0.1%.

The well-known high sensitivity of color-coordinate measurements enables
color-based studies even for the light-path difference as low as k/8 or lower
[4.72–4.74]. Aside from phase-detection techniques further discussed in Sect. 8.5,
let us briefly review one more option for a color-sensing phase measurement [8.28].
Recalling Fig. 3.15 and Eqs. (3.147)–(3.162), among which is Eq. (3.151) for the

Table 4.1 Differences of color coordinates and yellowness and whiteness indices

Transmission YI X Y Z

Sample 1 t 0.675037 0.3133 0.329758 0.356942

Sample 2 t 0.625845 0.313263 0.329695 0.357043

Delta measured 0.049192 3.73E-05 6.34E-05 −0.0001

Reflection WI X Y Z

Sample 1 r 20.9235 0.308507 0.324665 0.366828

Sample 2 r 18.6529 0.309311 0.325467 0.365222

Delta measured 2.270597 −0.0008 −0.0008 0.001606
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radiation intensity, I⊥ ¼ I0sin
2(d/2), transmitted via the crossed polarizer and an-

alyzer is the most commonly used, one can construct a functional dependence for
the phase difference: d ¼ d0 þ dk, versus the initial difference d0 at the wavelength
k0, called the sensitive color [4.69, 4.73]. Then, using any one of the Eqs. (2.78)–
(2.100) for the tristimulus values X, Y, Z of the measured intensity of polarized
polychromatic light between the arbitrarily oriented polarizer and analyzer versus
the beam phase in transmission, one may construct color coordinates x þ y þ z �
1, all as functions of the phase difference d ¼ d(k). Sensing color-coordinate
changes versus the phase difference, one could build a matrix system of quadratic
equations for the one-to-one correspondence of color and phase [4.74].

4.3 Photometric Accuracy and Verification of Linearity

Every radiometric or photometric consideration requires making one or another
measurement of the power or energy extent of radiation. If a given optical property
– transmittance, reflectance, scattering, or absorptance – is measured, the change of
intensity of the incident beam of light before and after interaction of that beam with
the object under study must be detected. If any power-driven parameter of light,
such as power, energy, or radiance, is measured, an extra calibration measurement
via an emission or reception standard must be performed for the absolute mea-
surement. As a result, the limits of photometric accuracy are actually explored or
tested in each photometric or radiometric test, being identified by double error of
single-versus-reference measurement of light power or energy and by the nonlin-
earity of a given radiometer for its inadequate reaction Ri to linear changes of light
intensity Ii, as R1/R2 6¼ I1/I2. Methods for evaluation of deviations from linear
radiometric reactions on radiation actions and of unresolved remainders of sys-
tematic errors used for any compensation of nonlinearities are examined below.

One example in which any manifestation of nonlinearity is deliberately obscured
is shown in Fig. 4.43. This compensation method is widely utilized in recording
spectrophotometers in such a way that internal detector 7 performs just as an
intensity equalizer for two fluxes to be compared. In Fig. 4.43, a beam from source
1 is divided after monochromator 2 by a mirror-chopper or identical device 3 into
two differential beams. If one of the two beams interacts with the sample under
study 4, the intensity of the second beam is attenuated by matching wedge 5 and
subwedge 6; detector 7 equalizes the intensities of the two beams. The result of that
measurement is determined by the actual distance of the motion for wedge 5 with

Fig. 4.43 Schematic
illustration of compensation
measurements
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reference to a fixed position of subwedge 6. This compensating method prevents a
nonlinearity of the photometer from manifesting itself. To calibrate the combined
motion of wedges, another linear measurement tool is required, therefore creating
auxiliary error of calibration due to unequal propagation of light via two diverse
paths and complicating the measurement procedure for the spectrophotometer as
having residual errors, without resolving the potential nonlinearity itself.

The very unique difference for any methodology of the photometric-accuracy
measurement from a procedure that detects, for example, spatial nonuniformity or
inhomogeneity, is evident. If the sensitivity of a radiometer or photometer to position
changes of a beam is measured, there is no need to detect the intensity of the beam
itself. When nonlinearity is being measured, the transformation behavior of the
studied radiometer to foreseeable changes of intensity of optical radiation must be
determined. The choices of optimum procedures are provided by given measurement
tasks and the conditions under which they are performed. Measurements using
unstable laser or pulsed light can substantially differ from those in uniform spon-
taneous light. Detecting linear behavior in a wide dynamic range is quite different
from testing highly linear responses for small intensity changes.

4.3.1 Measurements with Fixed Attenuation

Any study of photometric accuracy must determine the function for conversion of
light intensity into a respective detection signal or its deviation from a linear
conversion. The function can be detected by an action, governed by a linear law,
such as the change of irradiance or illuminance dependent on the square distance to
a point source or a reduction of radiant or luminous intensity in proportion to the
density of the attenuating substance or angle of rotation of a polarization prism. In
any case, the nonlinearity is nonconformance of a reaction of the system to a
defined linear action, governed by a validated physical dependence.

A well-defined method for detection of photometric accuracy is associated with
confirmation of a photometric or radiometric reaction of a test radiometer to
alteration of the irradiance or illuminance generated by a point source of light
according to the inverse-square-distance law [0.4, 0.6, 0.12] (Sect. 1.2).
Equations (2.28) and (2.29) identify the sensitivity of such a measurement as a
smallest distance change which transforms irradiance into the minimal reaction of
the radiometer. The actual dynamic range of such a measurement method is defined
by limits ‘min and ‘max at which a light source may be confirmed as the point source
and at which the test radiometer may detect irradiance. The main assumptions of the
inverse-square law need to be preserved: transmittance of a medium between
sources and detectors should not depend on distance. In air the assumption holds
true only within certain limits. For example, at a temperature 25 °C and humidity of
65%, the internal transmittance: sint ¼ exp �lkð‘max � ‘minÞ½ 	, of a 5-m air gap
differs from 1.0 by 0.06% at k ¼ 1.06 lm, but by 0.09% at k ¼ 530 nm. Such
errors may restrict the applicability limits for most accurate measurements.
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The bigger is the magnitude of ‘min, allowing a source to be considered as the
point source, the longer is the respective distance ‘max at which the expected change
of source irradiance actually takes place:

Emin=Emax ¼ ð‘min þ ‘maxÞ=‘max½ 	2: ð4:49Þ

Therefore, longer ‘min distance leads to narrower limits for evaluation of pho-
tometric accuracy. In spite of restrictions and inconvenience, either a decrease or an
increase of irradiance established by the inverse-square law is predictable for any
sources or detectors. This means the actual behavior of a test device can be eval-
uated in terms of the function E ¼ Eð‘�2Þ at any point of its dynamic range.

More convenient are the measurement procedures relying on sets of precali-
brated or preestimated attenuators inserted into a beam of light directly propagating
from a source to a test radiometer. There are several possibilities for making the
linearity measurements. One possibility is that every attenuator, as well as the entire
set of attenuators, if needed, is precalibrated by a system already identified as being
linear, though having identification error as a result. Another possibility is that
attenuation is provided by methods not requiring precalibration. Yet another pos-
sibility is that measurements are made by attenuators whose properties, as well as
absolute reactions to them by test radiometers, do not need to be known.

The measurement procedures of nonlinearity tests with precalibrated attenuators
are the most apparent and only require establishment of conditions matching those
of the calibration process. Settings include equivalent radiation in spatial, temporal,
and spectral domains and mode distributions, similar light divergence or surface
density, and prevention of multiple reflections among singularly calibrated atten-
uators. Convenient methods for nonlinearity measurements not requiring any pre-
ceding calibration use geometrical vignetting for a spatially and temporary
homogeneous distribution of radiation. One known example is a measurement
technique with net attenuators made either as sets of relatively small apertures in
any opaque substrate or motorized choppers and shutters, having an open sector or
sectors in a steady screening matrix instead of apertures.

The net attenuators have a number of clear apertures; flux Us transmitted by the
apertures is defined as the surface density Ek of a given beam of light multiplied by
the area A0 of the apertures: Us = A0�Ek. Therefore, the bounds of applicability for
the net-measurement method are the light-beam surface density and diffraction
limit. For fixed flux U0 of the incident beam, the upper threshold level obtainable by
a net attenuator is defined by the beam’s cross section, and the lower one is
restricted by diffraction of wavelength k on the smallest net aperture. The upper and
the lower measurement limits of the method’s linear dynamic range are Umax ¼
U0AiR=A0 and Umin ¼ U0Ai=A0, where A0 is the beam’s cross section and Ai and
AiR are the areas of the ith smallest aperture and of the largest number of combined
apertures in the beam.

The use of motorized choppers for linearity measurement is limited by the ratio
of the maximum possible rotation frequency fmax to the inverse time constant s of
the radiometer being tested. When: s  f �1

max ¼ T , the test radiometer reacts to the
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mean power of light transmitted by the chopper during its period of rotation T; thus,
each open sector acts as the d-pulse existing at the instant of time Dt � T � s.
Such a sector transmits incident flux U0 due to the ratio Ds/T of two d-pulses:

Uchoper ¼ U0Dt=T ¼ U0xsec=2p: ð4:50Þ

Here xsec is the central angle of the disk open sector. If s � T, the radiometer to
be tested may react to every rotation circle as to the pulse, the amplitude of which
changes from zero to U0 and then back to zero. In a system with synchronous
detection, the modulation frequency f of light has to be at least 1 order of magnitude
higher than that of the disk rotation [4.56]. When time intervals t1 and t2 corre-
sponding to central angles x1 and x2 obey t1;2\s\T , nonlinearity studies can be
made by measuring the energies of pulses produced by sectors rotating at constant
velocity v:

W1=W2 ¼ U0t1=U0t2 ¼
v¼const

t1=t2: ð4:51Þ

The practical limitations for chopper-based studies are similar to those for net
attenuators, restricting the upper and lower limits of applicability for
motorized-chopper measurements. In both cases, a shared operation of several
attenuators is prohibited, since it could cause a coincident opening and closing of a
single beam of radiation, and the total action of such a set would not be additive.

One apparent advantage of the net or chopper attenuator is due to simplicity of
calibration: just by geometries of transparent and screening areas – presuming
noticeable diffraction effects are prevented. Spectrally selective attenuators are more
complex to use. Even considering that the spectral properties of absorbing or
scattering glasses are generally known, a calibration process requires one to obtain
consistent spectral measurements, being especially intricate, if high accuracy of
linearity studies is required. Routinely it is much easier to measure spectral trans-
mittance (or reflectance) of a glass plate as a whole, and to use the data for
nonlinearity testing. By contrast with aperture-based attenuators, while taking strict
measures preventing multiple-beam interference, one can use glass plates in at-
tenuation sets. The concept of simultaneous studies provides the basis for so-called
methods of addition of light that provide numerous measurement possibilities.

The ability to deploy a combination of various attenuators concurrently placed
into a beam of light allows one not only to resolve the major disadvantage of using
singularly calibrated objects, but also to reject any needs for absolute linearity-scale
calibration at all. Nonlinearity measurements applying unknown single actions rely
on the additivity principle, under the presumption of the absence of any noticeable
interference, diffraction, or radiation-induced nonlinearity. The linear system’s ra-
diometric reaction to the sum of two single actions should be equal to the aggregate
of the reactions to these actions occurring independently. Here the light-addition
nonlinearities are for all possible radiation-induced effects, as well as for the
multiple reflections among single elements. Reflections must be counted separately,
since they break the independence of individual actions for every individual
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attenuator as the basis of the additivity principle. Every consecutive procedure of
light addition with attenuators is expected to start from any vertex of the dynamic
range to be studied—when such a range is established, a light-addition test could be
performed in reverse order. First, the initial signal N0 corresponding to the highest
radiant flux U0 is measured. Then, two attenuators with unknown attenuations K1

and K2 are brought in turn into the incident beam of light, having presumed to be
constant flux U0, and each individual reaction N1 and N2 to the attenuator action is
recorded. Finally, both attenuators are deployed at once, and reaction NR to their
total action is measured. The difference D ¼ |NR − (N1 þ N2)| identifies the
absolute deviation from linearity, and the ratio d ¼ D/(N1 þ N2) gives its relative
magnitude. Since the dynamic range of linear measurements by a test radiometer is
unknown even within initial magnitudes N0 − N1 and N0 − N2, the optical density
D of each attenuator needs to be as small as possible for the procedure to have the
smallest measurement steps.

There are a few ways to continue the process from the point N1 þ N2. The initial
flux U0 can be attenuated any possible way to the sum signal NR ¼ N1 þ N2. Then,
the cycle of two attenuator actions is repeated to the next attenuation point, etc. The
method can be used with various alterations, but the results obtained might not
always be correct for the entire dynamic range studied: D ¼ m�NR, where m is the
number of measurement cycles. One example of a nonlinear transformation consists
of an unresolved chain of nonlinear sections fitted to a nonlinear dependence,
caused by the exponential – instead of liner – reaction, as shown in Fig. 4.44.

The step function in Fig. 4.44 could be mistaken as being quasi-linear if re-
peatability of the measurement is not sufficient to resolve small variations as of the
nonlinear deviation for one step. At sufficiently high sensitivity and accuracy, only
a procedure starting each measurement step from the point of initiation is capably of
fully resolving the actual nonlinearity. It is always accurate to start every new step
from the first point of any given dynamic range. To continue from the first to the
second step, the action must begin again from the start with another pair of
attenuators of higher optical density. The light action of the second pair of atten-
uators needs to coincide with the total attenuation NR of the first pair at point 2NR to

Fig. 4.44 Measured
quasi-linear steps fitted to a
relatively-nonlinear
transformation curve
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be measured next. The process continues until a consistent deviation from linearity
is reached. Consequently, the intensity interval between the first and the preceding
point until the nonlinearity has occurred represents the dynamic range of linear
photometric response.

Elimination of diffraction phenomena is a required measure for linearity mea-
surements using net attenuators, but multiple reflections among two or more ele-
ments must be prevented during every method of light addition. Since such
prevention concerns only light reaching a radiometer under test, exclusion of
multiple reflections can be achieved via wedge-shaped elements, antireflection
coatings, or by immersing all reflective surfaces. Adding uncalibrated transmission
attenuators such as wedge plates should be restricted owing to unequal angles of
incidence on the element and set. Antireflection coatings are more effective (see
Chap. 3), but the effectiveness of a coating depends on the spectral range of
application; thus, immersing the set is the simplest action minimizing effects of
multiple reflection to under the sensitivity limit.

Chart 4.1 demonstrates the actual efficiency of such a not precisely matching
immersion as immersion of glass attenuators in purified water. Related experiments
[3.37] were performed using unstable pulsed laser light when the multiple reflec-
tions could be very apparent owing to spectral instability of laser emission. The
measurement setup was shown in Fig. 3.20. Attenuation factors Ki ¼ 1=si for three
plane-parallel neutral-glass plates Pi at k ¼ 1.06 lm were evaluated separately in
water and in air by one radiometer and then combined in all aggregations among
them. Repeatability of measurements characterized by the margin of error at 95%
confidence for each individual measurement of radiation intensity with filters in
water was improved by an order of magnitude – to 0.1–0.9% from 4.4 to 8.0%. The
factual random errors of series of the individual intensity measurements with sets of
attenuators present in the light beam were correlating to reductions of the surface
reflectance—from q ≅ 0.04 for a glass of refractive index n ¼ 1.5 in the air to
respective q ≅ 0.005 for the glass immersed in purified water with index of
refraction nw ≅ 1.3 (nim ¼ 1.33299 at k ¼ 589.3 nm).
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Chart 4.1 Effectiveness of nonprecise immersion: a - linear responce; b - filters in water;
c - filters in air
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4.3.2 Dual-Aperture and Superposition Methods

Usually, a technique for photometric accuracy measurements will start from the
highest level of radiation intensity and finish at the lowest level: for example, from
the smallest to the largest distance from a point source of light or without and with the
attenuators. The opposite way – starting from the lowest intensity level – could be
very productive as well: adding to a main light source an auxiliary one with equiv-
alent spatial, temporal, and spectral parameters of its radiation, and superposing them
together over the same section of an entrance aperture of a radiometer or photometer
under test. Successive measurement steps remain the same – sequentially adding
more sources of equal parameters or increasing the intensity of each source twofold,
moving to double intensity and allowing measurement with no calibration. This
superposition scheme was suggested centuries ago – two candles or kerosene lamps
being added to each other as light sources [4.57].

There are several methods for addition and removal of extra light sources –

either actual or effective, to irradiate a test object from different directions. Doing
so, one has to evaluate each action for its individual effectiveness considering
possible changes of the spatial and directional sensitivity of the test detector if
positions of the source images vary. Of course, the safest way is to accommodate
each source in a virtually mixed beam of light irradiating the radiometer under test.
There are a few methods for that accommodation. One consists in implementation
of several real sources in a reflective cell or in an averaging sphere having a single
output aperture collimated into the radiometer to be tested. Another way is asso-
ciated with effectively or actually small light sources, such as light-emitting diodes,
projected onto the test radiometer by a beam, forming a shared image, spatially
averaging individual positions, and also fitting the detector’s aperture.

As net attenuators open and close various sections of an incident light beam, the
notion of open regions under similar restrictions to diffraction limits can be used to
add multiple light sources equivalent to each other in their spectral, spatial, and
temporal domains. By forming m apertures in an opaque matrix, inscribed into any
incoming beam, and then sequentially closing and opening each aperture, one makes
the m-factorial action of light on the radiometer under test. The structures defining
the superposition and double-aperture methods [4.38–4.45] are shown schemati-
cally in Fig. 4.45. Revolving disks 1 and 2 in Fig. 4.45a have m identical openings.
Any openings, fitting inside cross section 3 of an incident beam, denote two sections
of the light beam passing through. For any uniform irradiance across the light beam
and unchanged sensitivity of radiometer 4 being tested two selections of summed
beam sections, the ratio of open areas in the light beam gives the change ratio of the
light action applied. First, any two nearly identical apertures in disks 1 and 2 are
inserted into the light beam sequentially producing respective signals Ni,1 and Ni,2.
Second, both apertures are inserted simultaneously, and the difference DNR of the
two-aperture signal Ni,R from the expected sum: Ni,1 + Ni,2, is measured. When as
with attenuators, if the areas of openings are made proportional to 2m, where m = 1,
2, 3…, the intensity for each subsequent open aperture is doubled that for the
previous one: Ai+1 = 2Ai; Ai+2 = 4Ai, etc. The entire area of circle 3 defines the
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upper limit, representing the beam’s cross section for the uniform irradiance dis-
tribution of incident light. If adequate correlations among the areas of single aper-
tures are known, the process is quick even for small steps among every action. Any
desired sequence can be achieved. Typical formulae for continuance from the initial
two equal steps are i − 1 ! 1:1:2:3:4:5…, or (i − 1) + (i − 2) ! 1:1:2:3:5:8…,
where i is the number of steps starting from i = 3.

If the relationships among the areas of all apertures are unknown, or if properties
of a given light source do not allow making uniform distribution of irradiance in a
beam, the superposition procedure has to be realized by measuring every photo-
metric reaction to a singular light action. Every (i þ 1)th step is made nearly equal
to the sum of the previous two i steps, making i þ 1 ¼ 2i. The final action is made
by the superposition of light beams corresponding to the sum of all openings.
Equality of the sum for individual actions to the doubled light action confirms that
the radiometer studied linearly transforms the intensity of light between points
corresponding to each single opening and to the sum of two opening. This pro-
cedure performed by combined adaptable individual light actions governed by the
2m law is called the double-aperture method.

In the layout in Fig. 4.45b, two m-aperture disks from Fig. 4.45a are replaced by
two sliding sectors as adaptable rhombs 1 and 2 of triangular or any other suitable
profile in opaque matrixes 3 and 4. First, with only sector 1 open the smallest light
action producing signal N1,min is measured. Second, for the closed first sector the
nearly same signal N2,min of presumably identical light action is registered with
sector 2 open. Then, both sectors in the first two positions are opened simultane-
ously and the combined signal Nmin,R must be the sum of the first two signals:
N1,min þ N2,min, if the detection system performs linearly. Each light action for the
next pair of actions to be summed is nearly equal to the sum of the two previous
actions, and so forth. The same concept may be realized with two independent
variable sources 1 and 2 irradiating any test radiometer 4 via semitransparent beam
splitter 3 (Fig. 4.45c). The ability to diversify initial and intermediate actions is one

(a) (b) (c)

Fig. 4.45 Measurements of photometric accuracy by superposition (a), double-aperture (b), and
supplemental-light (c) techniques
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advantage of such measurements, though some restrictions of the method are
associated with the possibilities of quasi-nonlinear transformations, as depicted in
Fig. 4.44. In other words, the higher is the intensity of a single light action, the
smaller is the relative sensitivity to any deviation from the linear behavior.
A trustworthy procedure must provide the least single light action in all the dynamic
range of the expectedly linear behavior.

Somewhat broader potentials can be realized by the so-called supplemental-light
method, deploying any number n of spectrally, spatially, and temporally identical
light sources, though being able to vary any discretization step; for example, several
light-emitting diodes, emitting out of the integrating sphere, or a matrix of n aper-
tures implemented in a beam of a single variable source of radiation, capable of
being turned on and off independently. Each action or combination of them can be
counted separately since the photometric reaction to every light action gives one
independent discretization step. If the total action for the entirety of effective
sources fits the linear behavior of the radiometer or photometer under test, the
number of such supplemental sources, or the discretization step, or the emittance of
a single, but variable light source, should be increased further to identify the highest
point of the linear dynamic range of the photometric reaction tested.

4.3.3 Pulsed Measurements

The capability to tune not only the power but also the energy or duration of light
action of radiation may advance measurement prospects by expanding all the
methods of photometric accuracy measurements considered. Distinction of mea-
surements for pulsed radiation can be expressed via variable relations of time con-
stants for irradiation and reception. Other aspects are similar to those in continuous
light, but the limitations are greater. Analogously to nonlinearity factor KU of an
averaged reaction Ji,avj of a test radiometer to a mean power Ui,avj of cw radiation:

KU ¼ J1;avj=U1;avj
� �

= J2;avj=U2;avj
� �

; ð4:52Þ

similar factor KW can be used for reaction to energy Wi of any pulse, integral radiant
intensity Hi, radiant exposure Hi, as the spatial integral of irradiance N, or other
pulse extents (see Chap. 1):

KW ¼ J1
W1

=
J2
W2

¼ J1;j
H1;i

=
J2;j
H2;i

¼
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sr

J1;j dtR
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U1;i dt
�
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U2;i dtR
sr

J2;j dt

¼
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J1;j dtRR
S;sp

N1;i dtds
�
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:

ð4:53Þ

4.3 Photometric Accuracy and Verification of Linearity 271



Here indices 1, 2; p, r; i, j are respectively related to the first and the second pulse
reaction, to the incident pulse p and to the temporal response r of the radiometer, to
the ith and jth instant of time.

The fact that the sensitivity Sk,const of a detector to a continuous light action of
flux power U and the sensitivity Sk,pulse to a d-pulse carrying maximum power
Umax ¼ Pmax in the same spectral domain is the detector constant gives the cor-
relation for the sensitivities to continuous and pulsed radiation:

sk;cont ¼ UR=ðRUÞ ¼ sk;pulse ¼ CUC=W ; ð4:54Þ

where W is the energy of the d-pulse, R and C are the internal resistance and the
capacity of the detector, and UR and UC are the maximum detector signal ampli-
tudes in continuous and pulsed modes [4.65]. To make the sensitivity correlation,
parameters R and C of the detector must be accurately determined. That is not a
trivial task since both parameters depend on the intensity of irradiation. When they
are unknown at a time of measurement, the load of the test radiometer has to have
resistance and capacity higher than those of its detector [0.16]: Rl;Cl  Rd;Cd .
Such pulsed measurements, as ones in continuous light, are obtained for the inte-
grals of each ith factor during the time t of observation:

KW ¼
Z
t

UiKU;i dt =
Z
t

Ui dt: ð4:55Þ

The characteristics for measurements of photometric accuracy in pulsed radia-
tion are defined by the requirements of individual methods of such measurements
themselves. For example, when conformity of a pulse response to a change in any
radiant or luminous exposure in inverse proportion to the square distance from a
pulsed source is studied, the likely spatial fluctuations of the locality of the source’s
pulse discharge could have a weighty influence on the relevant uncontrollable
changes of exposure. Accordingly, photometric accuracy measurements in such a
case are expected to be made with spatial integration, dispersing respective intensity
fluctuations of unstable light pulses.

The accuracy of pulsed measurements for the double-aperture or supplemental-
light method is likely limited by spatial pulse-to-pulse fluctuations and temporal
dissynchronization among pulses. Inappropriate spatial changes of the light inten-
sity between separate pulses will cause unequivocal single actions even by aper-
tures with equal areas. Any asynchronous time behavior of distinct pulsed sources,
concurrently applied for addition or supplemental actions, may not be tolerable by a
relatively fast detector, reacting to power distributions of pulses as the actions of
divergent intensities. In contrast to power measurements, a radiometer with a slow
pulse response (see Sect. 3.2 for terms) can integrate different actions in such a way
that its time-integrated reaction will remain additive to the sum of all light beams
accepted in unequal time intervals. This opens up possibilities not only for the
spatial but also for the temporal addition or supplement of light pulses.
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Figure 4.46 shows one method for the temporal light supplement, where the
actual summation of individual radiometric actions is realized in the time domain via
a detection system with time constant si positively larger than total time period T of
an entire sequence of pulses (Fig. 4.46c). If the time constant sd of the system’s
detector is compatible with the duration Ds of pulses, it may modify the shape of the
pulses processed (Fig. 4.46b), not processing the maximum power P of the incident
pulse (Fig. 4.46a). Nevertheless, the reaction of an integration system such as that in
Fig. 4.46c is proportional to the total number of single pulses emitted by a source.
Such a procedure allows action back and forth, while determining likely deviations
from linearity simply by variation of the number of emitted light pulses. If the
repetition rate f ¼ 1/Dt of a pulse sequence is greater than the cut-off frequency 1/sd
for the detector itself the test may be applied for the detector only, or for the entire
radiometer with the detector. Measurements for this method of the temporal sup-
plement of light by a sequence of pulses with constant amplitude can be quite simple.
Every single pulse in a string determines the discretization step and the amplitude of
each single action, and the total number of pulses defines the limits of the dynamic
range of measurement, and a correlation between constants Ds and sd sets respective
boundaries on the potential applicability of a given method for a particular detector
or the entire pulse radiometer or photometer, including its electrical circuits.

Certain combinations of temporal and spatial light supplement can be arranged
via short light pulses, the duration of which precludes overlapping of multiple
reflections at longer round trip times (see Chaps. 1 and 3, Fig. 1.8). Such techniques
[4.71] become quite applicable with ultrashort pulses from terahertz sources in the
0.1–4-THz bandwidth range where silicon has negligible absorption and
silicon-plate loss can be attributed strictly to Fresnel surface-reflection losses. For
picosecond light pulses, using millimeter-thick plates with the same air gaps
ensures intersurface round trip times of tens of picoseconds, thus avoiding pulse
overlapping with intensity attenuation steps:

IN=I0 ¼ ð1� qÞ2
� �N

; ð4:56Þ

(a) (b) (c)

Fig. 4.46 Transformation of short pulses by a fast detector and an integrator
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where N is the number of plates with surface reflectance q. For silicon plates of
refractive index n ¼ 3.41 and q ¼ 0.2986, each single-plate attenuation step on
sole-pulse detection gives I1/I0 ¼ 0.4919 
 0.5 [4.71]. The deviations from linear
responses for photodetectors caused by harmonic distortions are investigated add-
ing two or more heterodyned laser sources, emitting on slightly offset wavelengths
to generate an RF tone, or combining RF-modulated sources for multiple-tone
studies [4.78, 4.79].

4.3.4 Arrangements for Light Addition Studies

Figure 4.47 illustrates the typical layout for double-aperture measurement of pho-
tometric accuracy. The arrangement shown resembles Young’s dual-slit interfer-
ence experiment [1.1], having potential interference errors due to diffraction and the
following interference (see Chap. 3). The visibility of the dual-beam interference
pattern on the optical axis created by light of wavelength k diffracted by two
apertures of width w separated by distance d can be expressed as [1.1, 4.62]:

V ¼ sinð2pdu=kÞ=ð2pdu=kÞj j; ð4:57Þ

where u and H are the angular radii of the source and detector apertures for the
angular distribution of flux dU on the detector being

�
sin2ðpdH=kÞ=ðpdH=kÞ2�dH if

only one of two apertures is open. As follows from Eq. (4.57), the smaller are the
separations between apertures and the angular sizes of the source and detector, the
lower is the visibility of the interference pattern that may be achieved. Appropriate
precautionary measures should be taken to either avoid a highly visible interference
or to provide spatial and temporal integration of as many fringes as possible,
making sure any redistribution of radiation intensity caused by the diffraction and
interference is averaged out.

Spatial fluctuations of light emission, typical for pulsed radiation, can affect but
will not exclude the capabilities to obtain photometric nonlinearity measurements by
addition of light. Suitable spatial integration over a cross section of a beam of pulsed
light may be sought while implementing a chosen method of pulse measurements.
One practical realization for obtaining a sufficient-enough spatial integration in par-
tially coherent radiation emitted by a relatively unstable pulsed laser source 1 is
illustrated in Fig. 4.48 [3.37]. Static opaque light-additionmatrix 5 and cover plates 6

Fig. 4.47 Double-aperture
diffraction
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and telescope objectives 4 were placed after spatial integrator 3, as an opal glass
diffuser. The intensities of added light pulses were measured by test radiometer 7 and
reference detector 8 via splitter 2, all behind diffusers 3′ and 3″. An even numberm of
apertures were made in permanent matrix 5, and removable cover plates 6 concur-
rently opened up any n out of m apertures in matrix 5. The number ratio m/n defined
the actual number of plates 6 opening all m apertures sequentially. Accordingly, the
ratio m/2n defined the limited number of plates needed to uncover only 2n apertures,
only 4n, and so forth. Eventually all matrix apertures were uncovered at once by
removing every cover plate. A nonlinearity dlin for every single point of the dynamic
range under study, defined by the particular cover plate used, was identified by the
sum of reactions onto i ¼ k plates chosen: dlin ¼ ðU0 � Rk

i¼1UiÞ=U0. Here Ui is the
flux transmitted by the ith cover plate. Despite the increased number of single
measurements required at every point of the dynamic range, the technique did not rely
on any assumptions, leading to systematic errors.

Figure 4.49 depicts a 16-aperture opaque matrix for independent light supple-
ment. The first eight cover plates open two apertures at once (sets a), four cover
plates open four apertures (sets b), and two cover plates open eight random aper-
tures. Thus, deviations from linear behavior of a test radiometer may be measured
eight times at the 0.125U0 intensity point, four times at the 0.25U0 point, and twice
at the 0.5U0 middle point. In the experiment conducted [3.37], two pulsed light

Fig. 4.48 Testing photometric accuracy in pulsed light

(a) 

(b)

(a)

Fig. 4.49 Independent light
supplement
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sources were utilized: a Nd:YAG laser in Q-switch mode at k ¼ 1.06 lm, and a
halogen flashlamp emitting radiation in the 400–700-nm wavelength range. In each
case, the beam diameter in the parallel path was 14 mm. The diameters of the
permanent apertures in the matrix and cover plates were 1.2 and 1.8 mm, respec-
tively. All laser measurements were made via an opal glass integrator with diffuse
transmittance sd 
 0.5. The margin of error at 95% confidence of every single
pulse measurement even for a nonstabilized laser was only ±0.2%. The same error
due to spatial and temporal fluctuations among different apertures with a flashlamp,
a monochromator, and a less dense spatial integrator was ±0.05%.

Two measurement arrangements are outlined in Fig. 4.50. The layout in
Fig. 4.50a is based on the double-aperture linearity tester for the NIST reference
transmittance spectrophotometer, developed to perform measurements with a
standard deviation of ±4 � 10–5 [4.44] (see Fig. 4.25a for spectrophotometer
design). For linearity measurements the source emission was varied by changing the
current of the tungsten lamp and using a neutral-density wedge. The repeatability of
least-squares-fitted measurements for at least 20 readings was within ±2 � 10−5.
The largest correction factors for nonlinearities of the reference spectrophotometer
were near (2.7–2.8) � 10−4 at the middle point of each decade. Similar cascaded
double-aperture measurements, further expanded using two quartz surface reflec-
tions, confirmed an over eight-decade linear dynamic range for unbiased (photo-
voltaic) silicon diodes [4.63].

Figure 4.50b illustrates a version of the linearity tester in the quasi-parallel beam
of light for the NRCC reference spectrophotometer (see the design in Fig. 4.25b)
[4.68]. The dual-aperture technique was realized via the adaptable-rhomb scheme
shown in Fig. 4.45b. The area of the opening for every sequential aperture was
defined by moving two steel blades by linear actuators. Dark signals with closed

(a)

(b)

Fig. 4.50 One realization of double-aperture technique
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blades were subtracted from the test results. The reliability of performed linear-
ity measurements verified versus a known highly linear silicon photodiode was
±(1–3) � 104 over a 3400:1 dynamic range at a 97% confidence level.

Attempts can be made to perform automated testing of photometric accuracy
(see [4.66–4.70]). Figure 4.51 depicts the beam cojoiner, which splits and recom-
bines a single light source onto a detector, attenuating two single and one combined
beam in automated steps with 125 combinations [4.67]. White light from lamp L is
collimated by spherical mirror S, split into two beams by beam splitter BS and
recombined by combiner CB, bringing it to focus on detector D without any su-
perposition to avoid interference. Each chopper Ch1–Ch3 has five blade-mounted
attenuators for 125 possible combinations executed successively with dark-current
measurements at ±0.1% accuracy.

The experimental results for all double-aperture and supplemental-light methods
of photometric accuracy measurements confirm that by achieving high accuracy of
individual measurements, one can detect most linearity deviations by making
identified increments of light intensity from any point of the dynamic range of a
photometer or radiometer under test.

Fig 4.51 Automated beam
splitter-cojoiner linearity
study
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Part II
Measurements of Optical Losses

II.1. Features of Low-Loss Assessments

By definition, the notion of optical loss characterizes the amount of wasted power
or energy being transferred by the light beam under consideration and lost as a
result of a given interaction of the beam with the object studied. Independently of
the character of such an action, the transmission loss vs designating the ratio of the
flux incident on the object U0 to the lost flux Uv is (Eq. 1.93):

vs ¼
Uv

U0
¼ 1� Us

U0
¼ 1� sR ¼ U0 � Us

U0
: ðII:1Þ

Here, sR is the total transmittance of the object and Us is the transmitted flux.
Depending on the task to be performed, reflection vq, scattering vr, or absorption
va loss can be similarly recognized as an informative loss. With respect to reflected
Uq, scattered Ur, or absorbed Ua flux, the loss is:

vq ¼ 1� q ¼ U0 � Uq
� ��

U0; vr ¼ 1� r ¼ U0 � Urð Þ=U0 ;

va ¼ 1� a ¼ U0 � Uað Þ=U0 :
ðII:2Þ

If only one event: transmission, reflection, scattering, or absorption, is imperative,
every loss is:

vs ¼ qþ rþ a; vq ¼ sþ rþ a; vr ¼ sþ qþ a; va ¼ sþ qþ a:

ðII:3Þ

The relative sensitivity dv to optical loss v under indirect study of flux Ui can be
identified as:

dv ¼ Dv
v

¼ 2DU
U0 � Ui

� DU
U0

¼ DU
U0

� U0 þUi

U0 � Ui
; ðII:4Þ



where DU is the error of each ith measurement of the flux of radiation. From
expression (II.4) one obvious conclusion can be observed: the smaller is the loss
under study, i.e., the closer is flux Ui measured to the initial flux U0 incident on the
object, the bigger is the error of indirect measurement. At the Ui ! U0 limit, the
highest sensitivity to be achieved while indirectly determining any particular type of
loss tends to double the error of the flux measurements related not to the flux, but to
the loss itself:

Dv=v ¼
v!0

2DU=v; ðII:5Þ

while at any direct study: n = Un / U0, by measuring Un and U0 the error is Dn =
DUn / Un + DU0 / U0.

Analysis of attenuation of optical radiation by a given substance under inves-
tigation, until recently, was the natural prerogative of practical spectrophotometry.
However, exceptional attributes of optical instruments based on multiple interac-
tions of light – lasers, high resolution interferometers, long optical fibers, and planar
waveguides – have increased tremendously the sensitivity required to detect very
low variations of the optical properties of their elements. Specific limitations to
existing measurement devices and newly developed optical elements resulted in the
surfacing of vast novel and ultrasensitive methods of measurements, though
highlighting the need for establishing verifiable correlations among various mea-
surement concepts. For example, laser generation needs to be stipulated by the gain
coefficient b0 of the active medium, which exceeds the passive loss l of a resonator
enclosed by two mirrors with reflectance q1 and q2 for stable emission of laser light
to be sustained [II.1, II.5, II.8]:

q1 � q2ð Þ�1¼ exp ‘
ffiffiffiffiffiffiffiffiffiffiffi
b0 � l

p
� l

� �� �
; ðII:6Þ

where ‘ is the length of the laser resonator. For example, to support operation of a
compact diode-pumped laser with ‘ = 1 cm, b0 = 0.01 cm−1, and l � 0.05 cm−1, the
value of the q1 � q2 product must not be less than 0.99; thus each single mirror
reflectance must exceed 0.999. The necessity to reach such a high reflectance sub-
stantially limits the allowance for errors acceptable for a suitablemeasurementmethod
or equipment controlling cavitymirrors or transmission elements inside that resonator.

The optical element’s absorption, which may be negligible for conventional
applications, could for intensive laser radiation cause thermal deformation and fol-
lowing wavefront distortion, then overheating or even potential damage of the
absorbing element. Furthermore, even when studying a spatially integrated optical
property of any absorber, it may be essential to detect irregularities of the absorber’s
local properties concurrently with having a high spatial resolution. Even higher
resolution must be reached when studying optical fibers or planar waveguides. To
maintain low losses in a communication line below a few decibels per kilometer, the
linear attenuation coefficient in such a fiber line in most cases should be kept below
10−5 cm−1 (10−5 cm−1 = 4.343 dB/km). Such parity follows from the definition offiber
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or waveguide loss l, expressed in decibels per kilometer via output U and input U0

fluxes as:

l‘ dB=km � km½ � ! 10 log10 U=U0ð Þ ¼ 10 lg exp �l‘ cm�1 � cm½ �� �� 	
: ðII:7Þ

Another distinction defined by given applications of optical elements and often
overlooked necessitates the need for equivalency of operation of elements and
measurement conditions. As seen in Chaps. 2 and 4, apparent difficulties complicate
measurements of specular reflectance at normal incidence of light. In many actual
cases, these measurements may be realized not at normal incidence, but at
close-to-normal incidence, though with some exceptions. If light interacts with the
test surface by its normal, the surface specular or so-called coherent reflectance
[II.2] can be expressed as

q ¼ qp exp � 4pRa=kð Þ2
h i

; ðII:8Þ

where qp is the specular reflectance of a perfectly flat surface, Ra is the root mean
square height of surface roughness, simply, rms roughness, and k is the wavelength
of light irradiating the surface.

For the same light incident at oblique angle H, the surface reflectance qH
transforms into:

qH ¼ qpðHÞ exp � 4pRa cosH=kð Þ2
h i

: ðII:9Þ

With increase of the angle of incidence, the effective surface roughness:
Ra cosH=k, decreases and the component of coherent reflectance increases.
Therefore, a surface conforming to the reflectance test in the measurement with
oblique incidence of light can fail the test during irradiation at the normal,
particularly for some laser applications. Even at H = 4° and Ra = 0.03k, the
ratio qH=q is 1.0007 and becomes 1.002 at H = 6° and Ra= 0.03k or at H = 4° and
Ra = 0.05k. Accordingly, the measurements should not be made at oblique inci-
dence if the reflectance must be higher than 0.999.

One aspect of low-loss measurements is determined by the lack of choices for
prudent standards of reflection, transmission, scattering, or absorption with cus-
tomized optical properties. Practically, every metal in contact with air tends to
produce oxides and even sulfides. Glass surfaces undergo similar processes, and
even under a vacuum thin-film formations are realized very quickly. The exact
magnitude of the refractive index of a transformation layer on a glass substrate can
be defined by many factors: such as physical and chemical properties of the con-
tacting medium, patches of applied abrasive, and some local stresses produced in the
polishing process, as well as by the conceivable presence of light-absorbing films.
Problems of implementation and conservation of sufficient standards with postulated
optical properties denote another technical problem, which can be solved by
developing methods of absolute, but not standard-dependent measurements.
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Absolute methods do not rely on comparison samples and provide results with
respect to power or energy extents of light entering the measurement system and
interacting with the object being studied.

Developments of absolute and relative methods for optical measurements could
follow any reasonable trend of particular applications, such as the ones discussed in
Chaps. 2 and 4 of Part I. Prior to considering specific measurements procedures, let
us look at some restrictions, limiting practically all intensity measurements.
Figure II.1 shows straightforward results of implementation in a light-beam path of a
common plane-parallel plate of thickness ‘ and relative refractive index n. The plate,
if tilted by any angle w, changes by DX the initial position of the optical axis of that
beam and the diameter D of its cross section. Depending on the beam divergence,
given by angle 2u at the beam vertex, the transformation factor for a circular beam
becomes:

DD ¼ 2‘ðtanu� tanu0Þ ¼ 2‘ftanu� tan arcsinðsinu=nÞ½ �g: ðII:10Þ

The displacement of the optical axis of the beam is

DX ¼ ‘ sin w� w0ð Þ= cosw0; ðII:11Þ

where w' is the increase of the angle of refraction created by the inclination of the
plate. The beam transmitted via the plate becomes polarized with the ratio of
orthogonally polarized components:

I?
�
Ijj ¼ cos2 /� /0ð Þ: ðII:12Þ

Even a quite often-made approximation for a totality of internal losses of a trans-
mission sample such as a plane-parallel plate of a material under study defining
Bouguer’s law (Eq. 1.74):

U ¼ U0 exp �l‘ð Þ ¼ U0 exp � aþ rð Þ‘ð Þ; ðII:13Þ

when replacing it with only the first two terms of the Taylor series retained, is only
valid for the tending to zero internal attenuation coefficient of the sample l ! 0
which is not always the case:

Fig. II.1 Transformation of a
light beam
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U ffi
l!0

U0 1� l‘ð Þ; l‘ ffi
l!0

U0 � Uð Þ=U0: ðII:14Þ

Here l, a, and r are the linear attenuation, absorption, and scattering coefficients
(see Sect. 1.3).

Combining errors and taking into account every possible change of the initial
intensity of light entering a measurement system, as well as all factors that could
influence light transformation into a signal to be registered, the generalized optical
property f of a plane-parallel sample becomes:

1 ¼ N1
�
N0 ¼dN1dN0dCdLdS � I1

�
I0; ðII:15Þ

where Nf and N0 are the detection system readouts with and without the sample
under such a test, I0 and If are the intensities of the light beam before and after
interaction with a test sample, dC is the detector’s sensitivity change as a function of
the coordinates of incident beam, dL is the nonlinearity function of the detection
system in the Nf − N0 range, and dS is the unbalance of light source intensities or
detector sensitivity changes from either source or detector substitution. The total
relative error is:

D1=1 ¼ DN1=N1 þDN0=N0 ¼ DI1=I1 þDI0=I0 þDdI1=dI1 þDdI0=dI0
þDdC=dC þDdL=dL þDdS=dS:

ðII:16Þ

Since for low-loss measurements the light intensity before and after the inter-
action with the object under study does not change much, the combined relative
error of low-loss measurement could be estimated as [II.43–II.45]:

D1=1 ¼ 2DN=N ¼ 2DI=Iþ
Xm
i¼1

Ddi=di; ðII:17Þ

where DN=N and DI=I are the normalized fluctuations of the registered electric
signals and of the respective intensities of light, Ddi=di is the normalized compo-
nent of the ith error of measurement, and m is the number of uncorrected compo-
nents for the total error of the entire measurement series. From Eq. (II.17) it follows
that the highest possible sensitivity the low optical loss is limited, first, by the
twofold magnitude of the relative error of one measurement of radiation intensity.
Another essential limit is defined by the sum of remainders of not excluded
systematic errors of a given measurement method, being compensated for one or
another way.

Depending on the measurement task to be performed and the conditions for the
implementation of the measurement method chosen, likely systematic errors of
measurements could contain temporal, spatial, and spectral (wavelength-dependent)
components, or could be eliminated in their entirety. The accuracy of the following
conversion of measured radiation into an electrical or another signal to be registered
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is defined by the signal-to-noise ratio of specific detectors and electric circuits and is
identified by noises of different nature. Even in the absence of any added noise
components, thermal noise caused by accidental motions of charge carriers at the
detector’s thermal equilibrium with its surroundings always maintains some limit
for any measurement device of electric nature. Consequently, the rational selection
of a suitable measurement system with well-defined parameters for a specific
low-loss measurement task to be performed should lead to the optimal concept that
realizes the system sensitivity and accuracy to be as close to the fundamental limits
as possible while producing the highest signal-to-noise ratio. As a result, every
feasible task of measurement of a low optical loss under study should be considered
from the standpoint of achievable sensitivity, obtainable accuracy, and the absence
of systematic errors for the desired conditions of irradiation and observation of light
[II.1–II.45].
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Chapter 5
Conventional Loss-Measurement
Techniques

5.1 Internal Transmittance and Attenuation Coefficient

When measuring relative changes of the intensity of radiation transmitted by a layer
of a substance under study, one can identify, to a certain extent, practically any type
of optical loss: reflectance of the substance borders with the surroundings, scat-
tering and absorption factors of the entire irradiated object itself, etc. However,
there are only a limited number of practical ways for measuring an internal sub-
stance loss. Likely procedures include detection of the front and back surface
attenuation factors of the substance layer and subtracting these factors from the
entire layer transmittance or exclusion of surface losses by comparing several
samples of that substance presuming equal surface losses for the distinct samples
and identifying the total internal bulk attenuation of the substance via the length
difference of the samples measured.

Any conventional spectrophotometric technique (see Part I) for the measurement
of internal transmittance of a plane-parallel sample at two perfectly polished sur-
faces relies on preliminary knowledge of the sample’s relative refractive index with
the surroundings. Presuming that both boundary surfaces of the sample have equal
random deviations Dq from identical and ideally specular reflectance q, defined by
relative index n of refraction for the sample substance, and counting internal
multiple reflections by Eq. (1.106), the relative error Ds/s of the internal bulk
transmittance measurement (cf. Eq. (4.26)) is given by:

Ds
�
s ¼ �Dqð Þ= 1� qð Þ � Dqð Þ= 1þ qð Þ ¼ �2Dq

�
1� q2
� �

: ð5:1Þ

Here the minus sign defines opposite direction of changes. In turn, the error Dq=q
of the reflectance study for every surface is proportional to the quadruple magnitude
of the refraction uncertainty Dn:

Dq=q ¼ 4Dn
�

n2 � 1
� �

: ð5:2Þ

© Springer Nature Singapore Pte Ltd. 2019
M. Bukshtab, Photometry, Radiometry, and Measurements
of Optical Losses, Springer Series in Optical Sciences 209,
https://doi.org/10.1007/978-981-10-7745-6_5

285



As a result, the actual measurement error of internal transmittance of a given
sample under study is defined by the fourfold value of the uncertainty for a
single-surface reflectance either due to random changes of the sample surface
properties or inaccuracy of the surface-refraction measurements. Any small
refraction change Dn/n ¼ ±0.001 for n ¼ 1.5 leads to reflectance error Dq ¼
±1.3 � 10−4. This miscalculation causes the error of the internal attenuation factor
measured by a conventional spectrophotometer to be within uncertainty
Ds/s ¼ ±2.6 � 10−4. If the expected internal loss is lower, its actual magnitude
cannot be distinguished under these circumstances.

As seen in Chaps. 1 and 2, to determine the internal-bulk transmittance,
sint ¼ expð�l‘Þ, of a solid-state sample for a single light pass, either the angle of
light incidence onto the sample must sufficiently deviate from the sample’s surface
normal or sample surfaces should not be parallel (see Fig. 1.7). For normal inci-
dence of light on a sample made as a plane-parallel plate, when the beams internally
retroreflected by the plate cannot be separated from each other, a quadratic equation
as a function of sample’s bulk transmittance needs to be solved (see Eq. (1.104)):

sR;0 ¼ ð1� q0Þ2sint
1� q20s

2
int

: ð5:3aÞ

By resolving the equation via Napierian optical density: DN ¼ l‘, one obtains:

l‘ ¼ ln q� ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qð Þ4
4q2s2R;0

þ 1

s
� 1� qð Þ2

2qsR;0

( )
; ð5:3bÞ

where sR;0 is the sample transmittance at normal incidence of light. Differences
from true l‘ values and those calculated without multiple reflections:

l‘sngl ¼ ln 1� qð Þ2
.
sR;0

� �
, are seen in Table 5.1.

Table 5.1 Internal transmittance with and without disregarding internal multiple reflections

Index of refraction, n 1.5 1.5 2.0 2.0

Total transmittance, sR;0 0.9 0.92 0.8 0.782

Optical density, l‘ 0.0252 0.0033 0.00004 0.025

Single-pass density, l‘sngl 0.0237 0.0017 −0.01 0.025

l‘ − l‘sngl 0.0015 0.0016 0.01004 0.012
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Table 5.1 illustrates that by ignoring the effects of internal multiple reflections in
a sample, any low bulk optical losses to be studied can be artificially reduced,
resulting in incorrect results.

Equations (2.41)–(2.47) demonstrate that two comparison measurements of the
total bulk-plus-surface transmittance of two plane-parallel samples of the same
substance with difference D‘ between their lengths practically allow one in many
cases to dismiss influences of multiple reflections for a low internal attenuation to
be distinguished. However, the two-sample concept of measurement does not allow
complete disregard of the outcome of possible fluctuations for surface properties of
the two samples measured, which become higher owing to four instead of two
surfaces being involved. Depending on each particular circumstance, one or another
factor is more or less significant. Assuming four sample surfaces to have one
indistinguishable reflectance, the ratio of long and short sample transmittances is:

slg
ssh

¼ exp½�lð‘lg � ‘shÞ� 1� q2 expð�2l‘shÞ
1� q2 expð�2l‘lgÞ ¼ j � exp½�lð‘lg � ‘shÞ�; ð5:4Þ

where j is the multiple reflection factor. The magnitudes of j as functions of n and
l at D‘ ¼ 20 cm are as follows:

Since the relative effects of multiple reflections for two comparative samples of a
substance of relatively low refractive index are not that crucial, the linear attenu-
ation coefficient l of the substance may be effectively measured as for one test
sample of differential length D‘. If the calibration signal N0 of a photometer or
spectrophotometer is measured for light transmitted via the short sample and the
main signal N1 is taken with the long sample, the linear attenuation coefficient l is:

l ¼ ðlnN1 � lnN0Þ=ðD‘Þ: ð5:5Þ

The way of increasing the sensitivity of measurements of low bulk losses by
expanding the efficient optical length of light interaction with the object under study
follows from Eq. (5.5). It may not be necessarily a material length of the substrate
under study, but may be the distance of light’s interaction.

If the factual differences of the products of two sample-surface reflectances are
small enough, at not extensive bulk attenuation: l ‘lg � ‘sh

� �! 0, the measurement
comparison of two samples allows one to omit the negligibly low
multiple-reflection factor in relation (2.41):

j l = 0.01 l = 0.001 l = 0.0001

n = 1.45 1.0003 1.00005 1.000005

n = 2.0 1.004 1.0005 1.00005
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sdiff ffi
q1;lgq2;lg�q1;shq2;sh;lD‘!0

slg
ssh

¼ ð1� q1;lgÞð1� q2;lgÞ
ð1� q1;shÞð1� q2;shÞ

exp½�lð‘lg � ‘shÞ�: ð5:6Þ

Presuming all four surfaces to have low absorption and scattering at
Ds=s ¼ Dq= 1� qð Þ ¼ Dq=s, the relative change of differential transmittance for
these samples is Dsdiff

�
sdiff ¼ 4Dq=s. Thus, with measures ensuring the absence of

systematic inequalities and for normally distributed random fluctuations of the
optical properties of these surfaces, the error of bulk transmittance measurements
for two samples of unequal length depends on the mean uncertainty of the sample-
surface reflectance:

Dsdiff
�
sdiff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX4
i¼1

Dsi=sið Þ2
vuut ¼ 2D�q

�s
: ð5:7Þ

Equation (5.7) confirms that for all conditions being equal differential measure-
ments of internal transmittance of two samples have identical surface-fluctuation
errors as single-sample studies. Here �q;�s are mean reflectance and transmittance
values.

Figure 5.1 shows a schematic diagram of a single-beam precision spectropho-
tometer measuring exceptionally low optical losses in high-purity glass samples by
the differential-length method [5.1]. Tungsten-halogen lamp 1 via triplet lens 2 irra-
diates the entrance slit of dual monochromator 3, resolving 20-nm spectral intervals
and having low background scattering light within the 500–1000-nm spectral domain.
Differential samples 4 and 40 reaching up to 300 mm in length were positioned on one
sliding table and sequentially placed in two equivalent light paths. In an intermediate
position, both samples were removed from their respective beams to verify or control
the stability of all parameters of such a single-detector registering system. To diminish
spatial nonuniformity of photomultipliers 7 and 8, consequently used in the 500–800
and 800–1000-nm spectral domains, diffuser plate 5 was set in front of each detector
inside cylindrical tube 6 having a highly specular reflecting inner surface. Tuning the
distance from the plate to each detector allowed slight adjustments to be made
reaching acceptably low attenuation and high spatial uniformity of the detection
system. Alteration of the light-beam diameter from 2 to 6 mm, which corresponded to

4 69 4’ 5

3 

10 

2 
1 

8

7

Fig. 5.1 Single-beam spectrophotometer for low-loss measurement
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the change from the long to the short sample, produced tolerable enough ±0.1%
nonuniformity for that system.

The long and the short sample selected for low-loss measurements were both cut
out of a single rod of one low-loss glass specimen under study. Each end surface of
the short and the long sample was polished simultaneously to better than k/20 and
to parallelism with deviation of less than 10 arc seconds. Preceding every mea-
surement cycle, both samples were treated in a liquid detergent, then rinsed in
deionized water, dried, and placed for nearly 1 h into an acetone evaporator. An
added polarization ellipsometer was utilized to yield only samples which had all
surface refractive indices equivalent within ±0.001 magnitude. To exclude sys-
tematic errors created by multiple reflections between each sample and collimator
lens 9, neutral density filter 10 with transmittance s ¼ 0.2 was implemented at a
small angle to the system axis. That measure suppressed the transmission of the
main beams by 5 times, but the reflected beams were attenuated by 25 times owing
to their double propagation, and thus having the dual-pass transmittance
s2d:refl ¼ 0:22 ¼ 0:04. The random error of each measurement did not exceed
±2 � 10−4. Owing to high measurement accuracy, it was proven for the first time
that bulk losses in flint and fluoride crown glasses within the 750–1000-nm
wavelength band could be as low as (3–5) � 10−4 cm−1 [5.1].

The dual-beam balancing configurations are widely used in specialty spec-
trophotometers as well owing to the benefits of lock-in amplification of channel
signals therefore reducing low-frequency noise of the measurement system.
Following the concept in Fig. 4.23, two other dual-channel orientations – with
simultaneous and consecutive irradiation of samples – are shown in Fig. 5.2. In
Fig. 5.2a two reflecting modulators Md act out of phase, while detector D sequen-
tially measures light transmitted from source S via monochromator M through long
and short samples installed simultaneously in two diverse light paths. In Fig. 5.2b
similar modulator Md opens and closes the path for beams propagating, first, via the
reference channel with optical compensator C and then via the measurement channel
with the test samples installed sequentially. The second layout represents a typical
design for the IR spectral region, having spectral selector M placed after optical
elements that are irradiated to avoid direct thermal emission from every sample to the
detector.
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Fig. 5.2 Common schematics for conventional spectrophotometers: S - source; D - detector;
M - monochromator; Md - modulator; Mr - mirror; Sp - sample; Sc - comparison sample;
C - compensator(s); L - lens
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A common weakness of these optical structures consists in unequal path lengths
of optical channels, measuring samples of uneven lengths, thus having distinct
shapes of the beams reaching the detectors while not compensating for optical-path
reduction or magnification due to either test sample. Two specific schematics of
dual-beam and dual-channel spectrophotometers with lock-in amplifiers specifically
designed for accurate low-loss measurement are shown in Fig. 5.3. In the
dual-beam photometer in Fig. 5.3a, precise equalization of channel intensities due
to imperfect beam splitting by the modulator and other asymmetries was com-
pensated for in several steps: via selecting and tilting attenuator 7 and balancing the
lock-in amplifier gain or tuning photomultiplier resistors. Keeping the stability of
the tungsten-iodine filament lamp voltage and of the motor speed of the dual-blade
chopper at 1 � 10−4 and 2 � 10−4 allowed ±1 � 10−5 short-term stability of the
system balance to be achieved. Balancing measures, along with avoidance of
multiple reflections and clean-sample preparation and control identically to the
system in Fig. 5.1, including the spatial integrator and detector assembly, ensured
transmittance measurement repeatability of ±2 � 10−4, mainly due to sample dis-
placement and beam expansion from the long to the short sample. Since the setup
was expanded to accept a sample up to 25 cm long, with 20-cm two-sample dif-
ferential length, the overall system accuracy reached 1 � 10−5, permitting internal
losses down to 1 � 10−4 cm−1 in 10-nm spectral intervals to be measured [5.2].

In the dual-channel arrangement in Fig. 5.3b, the photomultipliers were replaced
with p-i-n photodiodes, increasing the signal-to-noise ratio to nearly 1: 5 � 10−6 in
the 500–1000-nm spectral domain. Alignment of the setup was made by a He–Ne
laser also utilized to control sample stress-induced birefringence. In the initial
version of the system, a pair of twin fused-silica plates 8 balanced the differences in
the densities of two light beams without changing the optical paths, eventually
allowing a sensitivity near 10 dB/km to be reached and approximately 100 dB/km

1 4 

5 

2 

2 2 5
7 

3 

4

4 

6 
8

9 10 

11

12 

1
3 6

10 

9 
7 2 4 2

4

4 

12

12

8

5 

(a) (b)

Fig. 5.3 Dual-beam (a) and dual-channel (b) spectral-selective photometers for low-loss
measurements: 1 - source; 2 - objectives; 3 - spectral filters; 4 - apertures (baffles); 5 - mirror
(a) and depolarizer (b); 6 - beam-splitter; 7 - reflecting-transmitting modulator; 8 - attenuator
(a) and variable-attenuator based equalizer (b); 9 and 10 - long and short samples; 11 - spatial
integrators; 12 - detectors
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losses in F2 and F7 glasses to be registered in the 750–805-nm region [5.3]. The
final version of the low-loss spectral photometer in Fig. 5.3b was assembled with a
halogen lamp, two p-i-n diodes having ±0.1° temperature stabilization, and with
depolarizer 6 diminishing birefringence effects. Tilting both detector surfaces was
reducing stray light from the beams retroreflected within the system. The reaction of
each detector changed by ±(0.02–0.05)% for expansion of the beam diameter from
3 to 4.5 cm. Minimized-signal fluctuations were nearly 1 � 10−4, corresponding at
D‘ ¼ 25 cm to approximately 2 dB/km optical-loss sensitivity. The lowest detected
linear attenuation coefficient of the sample bulk difference in the 0.75–0.85-lm
spectral domain was around 75 dB/km at nearly 50 dB/km of bulk scattering.
Calorimetrically verified internal linear absorption coefficients in the samples
studied at wavelength k ¼ 1.06 lm did not exceed *4 dB/km (see Chap. 9 for
details). The spectrophotometric measurements also detected changes of measured
attenuation for repolished sample surfaces of ±2.7 dB/km at k ¼ 0.9 lm and
±(4.6–6.3) dB/km at k ¼ 0.5–0.75 lm. All linear attenuation coefficients were
measured at a differential sample length of D‘ ¼ 25 cm [5.3].

One specific disadvantage of measurements of internal optical loss in trans-
mission, such as unknown surface factors even when making comparison mea-
surements, necessitates controlling the status of all sample surfaces by a
supplemental technique. Therefore, there is a time delay between measurement and
control procedures, limiting the attainable confidence of the low internal loss
studies. Potentially, the random portion of systematic error created by undetermined
surface conditions can be reduced in square-root proportion to the number of
samples measured. To reduce that number and to save the material under test, only
one sample may be made, for example, as an isosceles triangle prism [5.4]. Such a
prism needs to be irradiated in a direction parallel to its base, while the prism itself
is put in several positions along a bisectrix of its refraction angle u (Fig. 5.4). Any
round beam of light entering such a prism becomes elliptical; therefore the trans-
mittance s measured along the direction x, which coincides with the major semiaxis
a of the ellipse, is:

s ¼ 1� qð Þ2 2
pa2

Zþ a

�a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2

p
exp � 2

n tan u=2ð Þ
� 	8<

:
9=
; exp �l‘xð Þ: ð5:8Þ

Fig. 5.4 Light transmissions
through prismatic sample
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Here q is the averaged transmitted-surface reflectance. Since the angles of incidence
and refraction for the isosceles prism are equal, the factor in brackets in relation
Eq. (5.8) does not change for parallel beam displacements. With that constancy and
in the absence of dispersion in the prism’s material, the ratio of two sequential
prism transmittances should depend only on the difference in the path lengths.

There is no increase of sensitivity to low losses in the sample bulk in the prism
transmission technique since any increase of the number of light passes via the
sample surfaces reduces only the random portion of measurement error caused by
accidental changes of a prism-surface reflectance caused by uncontrollable pollu-
tion or stains on prism surfaces. The technique does not distinguish variations of
surface reflectances, but does average their variations. The sensitivity to the internal
loss of the prism method even decreases near the prism’s vertex where ‘ ! 0. For
the experimental verification of achievable measurement accuracy, one surface of a
fused-silica prism was spattered with magnesia to give about 4% spatial nonuni-
formity [5.4]. The dependence of observed transmittances in the function of ‘ ! 0
was linear only for light passes via remaining nonsprinkled surfaces. The trans-
mittance values obtained via the shattered surface approximately fit a straight line
only within ±(1–2) � 10−3 margins. Nevertheless, the measured average magnitude
for the bulk linear attenuation coefficients, evaluated via all three prism surfaces,
5.2 � 10−4, 37.9 � 10−4, and 20.5 � 10−4, was only different from the equivalently
detected average coefficient before the shattering by 1.2 � 10−5. The repeatability
limit for the measurement with multiple prism paths was near
±6 � 10−5 ¼ ±26 dB/km, being not better than that for all considered comparison
spectrophotometric measurements of two: long and short, samples of one material
under study.

One valuable alternative for elimination of a relatively large loss due to surface
reflectance of a glass sample when measuring its internal attenuation coefficient is
associated with incidence at the Brewster angle [5.23–5.28]. Ideally, a border of
two dialectics irradiated by light polarized in the plane of incidence reflects no light
at the Brewster angle uB Eq. (1.85). Equations (1.102) and (1.103) define the
transmittance and reflectance of a plane-parallel plate of thickness ‘ irradiated at
angle u when all the plate’s internal retroreflections can be collected by semispace
large detectors. In the case of irradiation near the Brewster angle, one can expect
very low residual reflectance and practically no multiple reflections. Hence,
Eqs. (1.102) and (1.103) can be efficiently approximated as:

qB;2 ¼ qB 1þð1� qBÞ2 exp �2l‘= cosuB;r

� �� �
; ð5:9Þ

sB;2 ¼ ð1� qBÞ2 exp �l‘= cosuB;r

� �
; ð5:10Þ

where qB2 and sB2 are the plate’s reflectance and transmittance at Brewster angle
uB, and uB,r ¼ 90° − uB is the angle of refraction. Owing to practical limitations –
surface nonparallelism and nonflatness, as well as nonzero divergence of irradiation
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– the whole-plate reflectivity at the Brewster angle is never zero, but it reaches the
feasible minimum, allowing pseudo-Brewster angle techniques to be used for
determination of refractive indices and extinction coefficients of absorbing materials
Eqs. (1.86)–(1.90).

From a practical standpoint, the process of determining the minimum intensity of
a beam of light while tuning the angle of incidence can be quite elaborate; it is more
practical to make relative intensity measurements – looking for the effective min-
imum of the ratio of the sample surface reflectances and simultaneously measuring
the ratio of same surface transmittances for two orthogonal states of polarization.
From Eqs. (1.26), (1.82), (1.83), and (1.85):

qjj=? ¼ qjj
q?

¼ cosu1 � cosu2 � sinu1 � sinu2

cosu1 � cosu2 þ sinu1 � sinu2


 �2

¼ n2 � cosu1 � cosu2 � n1 � sin2 u1

n2 � cosu1 � cosu2 þ n1 � sin2 u1


 �2

;

ð5:11Þ

sjj=? ¼ sjj
s?

¼ cos2 u1 � u2ð Þ ¼ cos2 � 90� � 2u1ð Þ½ �

¼ sin2 2u1ð Þ ¼ 2 tanu1

1þ tan2 u1


 �2

¼ 2n
1þ n2


 �2

:

ð5:12Þ

For a plain border of a conducting medium of complex dielectric constant: ê ¼
ðn � i � kÞ2 (Eq. 1.86), irradiated in a vacuum at angle u, the expressions for q||/⊥
and q⊥ can be converted to [5.23]:

qjj=? ¼ qjj
.
q? ¼ a� sinu tanuð Þ2 þ b2

� �.
aþ sinu tanuð Þ2 þ b2

� �
; ð5:13Þ

q? ¼ a� cosuð Þ2 þ b2
� �.

aþ cosuð Þ2 þ b2
� �

; ð5:14Þ

where ða � i � bÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðe� sin2uÞ

q
. Measuring ratios by Eqs. (5.12) and (5.13) at

two angles of incidence near the pseudo-Brewster angle resolves unknown con-
stants a and b, enabling calculation of q⊥, n, and k.

Another technique for study of dielectric constants n and k can be realized by
measuring only q||/⊥ and q||−⊥/||+⊥ reflectance ratios [5.25, 5.26]. Figure 5.5 illus-
trates the method for direct measurements in reflected radiation of difference-to-sum
ratios by detecting modulated AC and unmodulated DC intensity components of
reflected light, rotating the state of polarization of the incident light beam and
causing the light intensity modulation of the AC signal to be proportional to qk �
q? and that of the DC signal be proportional to qk þ q? [5.25]. An extra reference-
intensity measurement of Iq,0 is made for u = 180° with no sample present, while
with the sample it is Iq,u ¼ Iac/Idc, yielding the qjj�?=jj þ? ratio as [5.26]:

5.1 Internal Transmittance and Attenuation Coefficient 293



qjj�?=kþ? ¼ Iq;u � Iq;0
� ��

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iq;u
�
Iq;0

q
 �
: ð5:15Þ

A similar concept may be applied to measuring internal absorption and scattering
losses near the Brewster angle (Fig. 5.6) – the pseudo-Brewster angle itself is
identified by detecting the position of the minimum and then a transmission-loss
measurement is made at the angle determined [5.28]. The system zero-degree
reading is established from the first position of sample’s rotation for its reflection to
coincide with an incident laser beam propagating via an added half-wave plate
circulator preventing oscillations into the laser resonator. Then, the
pseudo-Brewster angle’s position is detected via the minimum of the reflectance in
Eq. (5.9), prompting calculation of the approximate value of the refractive index
n by Eq. (1.85). Finally, the internal sample-bulk loss l is measured at that angle uB

via the transmittance maximum per Eq. (5.10). The challenge is in detecting the
precise position of the Brewster angle, especially for small refractive indices. At
n ¼ 1.5 (see Fig. 5.7), it requires nearly 1° from the Brewster angle to reach 0.01%
of the surface reflectance. At the same time, measuring internal losses near the
Brewster angle does not require one to account for the multiple reflections due to
low surface reflectances (Fig. 5.8). With sufficient angular accuracy of rotation, the
pseudo-Brewster angle transmission loss measurements are sensitive enough to
resolve losses at 10−3–10−4 cm−1 level and lower: for example, 1.37 � 10−3
reflectivity, corresponding to refractive index n ¼ 1.444 versus expected value of
1.449, and 7.33 � 10−3 cm−1 internal loss, equivalent to 0.032 dB/cm, were
experimentally confirmed [5.28].
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light source
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Fig. 5.5 Rotational measurement of reflected components

rotating sample transmission
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reflection
detector
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half-wave plate

Fig. 5.6 Brewster angle
transmission-loss study
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5.2 Specular Reflectance

Since one obvious distinction of reflectance measurements compared with trans-
mittance ones consists in opposite irradiation and observation directions, most
difficulties in reflection studies arise at normal incidence of light onto specularly
reflecting objects for a reflected beam directed back into a light source. To cir-
cumvent the complexities, the angle of incidence is often maintained close to the
normal, nevertheless treating the respective result as being obtained at normal
irradiation. At a small angle of incidence u, for which the reflectivity does not
deviate beyond expectations, such a method can be acceptable. However, the limits
of the normal-incidence assumption should not be based on an unrelated-to-loss
study supposition: sin2u ! tan2u ! 0, if angle u tends to zero.

Let us consider the change of specular reflectance of a dielectric at small angle u
of incidence caused by discrepancies of the state of polarization for any incident
beam due to roughness of a single test surface. The relative differences of reflec-
tance q only due to the state of polarization are:

d? ¼ q?
q0

¼ tan2 u� arcsinðsinu=nÞ½ �
tan2 uþ arcsinðsinu=nÞ½ � �

nþ 1
n� 1


 �2

;

djj ¼
qk
q0

¼ sin2 u� arcsinðsinu=nÞ½ �
sin2 uþ arcsinðsinu=nÞ½ � �

nþ 1
n� 1


 �2

:

ð5:16Þ

The reflectance ratio d via incidence angle u due to surface roughness Ra Eqs.
([II.8], [II.9]) is:

d ¼ qsm;u
qsm;o

exp
4pRa

k


 �2

� 4pRa cosu
k


 �2
" #

: ð5:17aÞ

Here qsm,u and qsm,0 are the reflectances of an ideally smooth surface at angle u and
at normal incidence. If surface roughness is comparable to radiation wavelengths,
Eq. (5.17a) must be modified to include the root mean square slope m of the surface
profile and the deviation Du of surface irradiation angle u [II.3, II.4]:

d ¼ qsm;u
qsm;o

exp
4pRa

k


 �2

� 4pRa cosu
k


 �2
" #

þ 25p4

m2

R4
a

k4
cos3u � Du

( )
: ð5:17bÞ

Figure 5.9 illustrates changes of reflectance values at normal and
close-to-normal incidence. In view of actual changes of reflectance, but not trans-
mittance, the evident distinction within parts per thousand takes place even for
angle variations within a few degrees from normal incidence. Surface roughness of
k/100 or lower levels does not create much of a difference for small angles, though
larger surface imperfections, as k/50 roughness in Fig. 5.9, produce enough scat-
tering to increase the total reflectance by 0.74% at 20° incidence. Therefore, the
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actual surface properties and margins of desired accuracy both limit deviations from
normal incidence in reflectance studies.

Conventional specular reflectance measurements at near-normal incidence are in
general performed in reference to a fairly well known or presumed to be known
standard. The schematic of the characteristic reflectance-measurement attachment
for a two-beam spectrophotometer is depicted in Fig. 5.10 [5.5]. For any
single-beam spectrophotometer, one extra measurement step is required versus the
two-beam settings: one for the standard and another for the test sample. A common
three-point pin holder and an alignment system (not shown) can be used to perform
measurements on spherical mirrors with identical curvatures.

The concept of direct reflectance measurements at normal incidence via a
semitransparent beam splitter was analyzed in Chap. 2 (see Figs. 2.13 and 2.15).
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Fig. 5.10 Near-normal reflectance study
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Figure 5.11 illustrates a system for similar laser source-based reflectance studies
with the auxiliary plate P compensating for the displacement of the beam path and
for the transmittance of the splitter as well [5.6]. Two detectors D1 and D2 creating
reflection and transmission arms are used to evaluate multiple reflections occurring
between a test mirror and the laser resonator at normal incidence. For two readings
in Fig. 5.11a no multiple reflections occur between the output coupler of the laser
source and both detectors if the detectors are placed at slight angles:

N1;a ¼ jI0spqsp; ð5:18aÞ

N2;a ¼ jI0spssp; ð5:18bÞ

where ssp and qsp are the transmittance and reflectance of the beam splitter and sp is
the transmittance of compensating plate P. In Fig. 5.11b detector D1 is irradiated
via mirror M with plate P taken out:

N1;b ¼ jI0sspqqsp
1

1� qq2spqs
; ð5:19aÞ

N2;b ¼ jI0sspsp
1

1� qq2spqs
; ð5:19bÞ

where q is the reflectance of test mirror M and qs is the laser reflectance, whose
output coupler is resonant to mirror M, set for normal incidence of light. If trans-
mittances ssp and sp cannot be distinguished by the measurement system, then the
ratios a/b in Eqs. (5.18a, b) and (5.19a, b) give:

N1;a
�
N2;a ¼ qsp

�
ssp; N1;b

�
N2;b ¼ qqsp

�
sp; ð5:20Þ

q ¼
ssp�sp

N2;aN1;b

N2;bN1;a
: ð5:21Þ
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Fig. 5.11 Compensation measurements of specular reflectance: S - source, BS - beam splitter,
M - test mirror, P - plate, D - detector
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The availability of two detectors also simplifies the calibration process of the
measurement system. Differences in the reflectances and transmittances of two
plates in the beam splitter’s position can be evaluated by detector D2 in its main
position and when it substitutes mirror M. The sensitivities of the two detectors may
be verified by swapping beam splitter BS in the 90°-inverse position to the position
in Fig. 5.11a and checking the detectors’ responses in radiation reflected from the
beam splitter with detector D2 in place of mirror M.

Another system for measurements at normal incidence using the
splitter-combiner concept analyzed in Chap. 2 (see Fig. 2.14), is shown in
Fig. 5.12. The system utilizes the integrating sphere to overcome likely nonuni-
formity of a single detector to be irradiated from opposite directions. A polarizer PL
is used for system alignment with samples placed on a rotary table (dotted line).
First, thick fused-silica flats P1 and P2 are aligned at the same angles to the direction
of beam propagation by a He–Ne laser and the ratio R ¼ q?=qjj of sample
reflectance values for S and P states of polarization are measured via rotation of
polarizer PL, verifying that alignment:

R ¼ q?;S Duð Þ
qk;S Duð Þ

q?;P1
u1ð Þq?;P2

u2ð Þ
qk;P2

u2ð Þqk;P1
u1ð Þ ; ð5:22Þ

where qi is the reflectance of each respective element and Du is the angle of likely
deviation from normal incidence onto the sample. For small misalignment errors
(see the plots in Fig. 5.9), the sample’s reflectance should not change, and equality
R � 1.0 for normal incidence gives the exact positions of the plates. Measurements
were performed at near ±0.2% accuracy for specular reflectance values ranging
between 0.03 and 1.0, and the repeatability of the results obtained was maintained
within ±0.001 [5.7].

As is seen from the methods reviewed, the ability to perform a precise mea-
surement of specular reflectance at normal incidence of light on a test object
requires a lot of care to be taken for alignment and positioning errors and reduction
of multiple reflections, and use of multiple extra elements, whose properties must

detector

source

PL

sphere 

Sh1 Sh2

S1

S2 S3

P1 P2Fig. 5.12 Reflectometer for
normal incidence of light

5.2 Specular Reflectance 299



be known. For all splitter-based reflectance measurements, the intensities of the
reflected beams are reduced proportionally to the product of the splitter’s reflec-
tance and transmittance. If an increase of sensitivity at normal incidence needs to be
achieved, even more complicated structures with multiple reflections must be used
(see further chapters). Let us thus take another look at measurements of specular
reflectance at close-to-normal incidence.

Similarly to transmission studies of transparent and not excessively dense
objects, for low-loss measurements in reflected light the sensitivity to local inter-
actions of light with a smooth surface of a mirror can be increased by multiple
interactions with that mirror surface, providing all retroreflected light beams are
collected onto a single detector. Likewise, the increase D‘ of the effective optical
path length of the light beam via a transmitting object can be represented as:
D‘ ¼ ‘2=‘1 ¼ m � ‘, where m is the multiplicity factor of the effective length, and
m-interactive reflection action can therefore be given as:

Nm=N0 ¼ qm or q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nm=N0

m
p

; ð5:23Þ

where N0 and Nm are the signals of one detector reacting to an incident beam and to
a beam undergoing all m interactions. The potential inaccuracy of the
multiple-interactive measurement is:

Dq
q

¼ 	 1
m

DN0

N0
þ DNm

Nm


 �
: ð5:24Þ

Here the relative error Dq/q of the multipass reflectance study is inversely pro-
portional to the number of reflections, bouncing measured light from a test object.
This would not hold true if the reflectance is so low that interactions make any final
retroreflected components indistinguishable to the detector.

A classic procedure [0.6] for surface-averaged measurement of absolute specular
reflectance at constant angle H of incidence is seen in Fig. 5.13a [4.32] (see also
Figs. 2.11 and 4.29). During the initial reference cycle of 100%-line setting without
a test object, swapping mirror SW is on top of the system. When test mirror M is
inserted, swapping mirror SW is transposed down (dotted lines). All light inter-
actions are kept at the parallel transitions of the test mirror and at constant angle H
of incidence, but the procedure has not only the twofold increase of measurement
sensitivity to the reflectance changes, but also the matching decrease of spatial
resolution, since initiated beam interactions are dispersed over a larger area of the
test mirror. Thus, the reflectance is measured as a spatially averaged factor. The
additional disadvantage is associated with high sensitivity of the attachment’s
alignment to incorrect positioning of the mirror studied and the swapping mirror.
Placement of the detector inside the integrating sphere lessens its sensitivity to any
changes of the directions of reflected beams though significantly decreasing irra-
diance and thus the sensitivity of the detector.
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The expansion of that established methodology was seen in Fig. 4.20a for flat
test mirror M placed near the center of curvature of a spherical swaying-mirror
system. Such a position balances the intensity variations of the output beam due to
implied misalignments, although it does not maintain a strictly invariable angle of
incidence onto the mirror under study [4.32]. Figure 5.13b illustrates two actual
optical paths for the improving-technique reflectometer at approximately 5° average
angle of incidence, accomplished by rotating the sample holder 180° with mirrors
E1–E8 (see dotted cycle). Absolute reflectance readings are obtained for fourfold
reflectance of sample M. First, the 100% line is measured via mirror E7. With
sample mirror M in the first position, light goes via mirrors E2–E4. The second
mirror measurement is made via swayable mirrors E1 and E8 and mirrors E4 and
E5–E7. The equivalence of two reflectance values for mirrors E4 and E7 must be
maintained. Other variables may be detected during repeated 100% readings. The
random error of the entire measurement procedure was near ±0.02%.

Symmetrical dual-reflection measurements can be achieved by unwavering
propagation of radiation via the swaying-mirror measurement system with and
without a wide mirror under study (Fig. 5.14) [5.8]. Light emitted by source S and
reflected from flat mirror 1 emerges via an exit slit of dual monochromator M into
the double-reflection cavity. Spherical mirror 2 sends the monochromator’s exit-slit
image to flat mirrors 3 and 10 (Fig. 5.14a). Mirror 8 forms an irradiation zone of
6 � 10-mm2 cross section on test object O. The angle of incidence u for the axial
beam reaches 2° at aperture ratio 1:1.6. Spherical mirror 9 returns radiation reflected
by object O back to the object. After participating in sequential reflections by
mirrors 7, 11, and 12, light reaches detector D for signal N1. To measure reference
signal N2, the object’s carrier is elevated and light is reflected by mirror 6, similar to
mirror 9, having no interaction with mirror 9, and further propagates in the same
way, as being reflected from the object. The ratio of the measurement to the
reference signals becomes:
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Fig. 5.13 Double reflection attachments: S - source; DM - dual monochromator; M - mirror under
test; D - detector; SW, E - mirrors
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N1
�
N2 ¼ q2q6

�
q9 ¼

q6¼q9
q2; ð5:25Þ

where q; q6, and q9 are the reflectances of the test object and mirrors 6 and 9, which
in typical arrangements are presumed to be equal.

Instead of the presumption that the reflectances of mirrors 6 and 9 are equal, the
design allows one to reorient the system by 180°, having intermediate mirror 10 no
longer in the system (Fig. 5.14b). Then, incident light reaches object O after
reflection from mirror 5, and returns via mirrors 6, 5, and 4 onto swayable mirror
11, and finally to the detector. Reference mirror 9 is utilized when the second
reference signal is measured with no objects inside the dual-reflection cavity, for the
ratio of two measured signals to become: N3=N4 ¼ q2q9=q6. As a result, four
measured signals provide fourfold reflectance of studying object without added
assumptions:

N1=N2ð Þ � N3=N4ð Þ ¼ q4: ð5:26Þ

As a consequence of the fact that this determination of the fourfold magnitude of
specular reflectance requires four measurements, the sensitivity of such a low-loss
measurement is the same as for the double-reflection study when measuring only two
signals. Nevertheless, that procedure represents a truly absolute measurement of a
spatially averaged reflectance since no equality assumption for auxiliary mirror
reflectances needs to be made. Since the optical system is only made of mirrors,
measurements are performed without any chromatic aberration, and the desired
spectral domain of the study is solely identified by the sources and detectors applied.

Earlier analyzed methods presumed some fixed angle of incidence onto the
mirror under study. Figure 5.15 depicts an absolute specular reflectometer for
measuring specular reflectance from near normal to 90° incidence. Tracking mirrors
1 and 2 (cf. Fig. 2.12), as well as an integrating sphere, having an internal detector,
make two nearly even light paths. Without a sample, the tracking mirror–integrating
sphere assembly is turned to accept incident light via the sample path in position 2
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Fig. 5.14 Reflectometer for absolute double-reflection measurements at quisi-normal light
incidence
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and in position 1 for the specular sample installed [5.9]. In experiments the sphere
was coated with a fluorocarbon powder having the highest reflectivity for
250–2500 nm. Uncertainties for the specular reflectance measurements were
estimated to be near ±0.2% of measured values.

Figure 5.16 illustrates the absolute reflectometer realizing variable-angle mea-
surements of the twofold reflectance via normal incidence onto an auxiliary mirror
(similarly to that in Fig. 2.13). Auxiliary mirror M1 here is made spherical to
compensate for the light beam divergence Mirror M2 serves for the reflectance
reference via beam splitter BS, referring intensity deviations of the monochromator
or white-light source to detector D by opening or closing mirror M1 via chopper Ch.
When a polarization-dependent loss of sample M1 was detected via polarizer P at
angles of incidence from 6° to 70°, the measurement reproducibility was within
±0.2% [5.10].

Considering one more time the reflectance measurement at normal incidence
when sending and receiving radiation by one element, a somewhat unexpected
transceiver-type setting could be invoked in the terahertz time-domain spectrometry
[5.30]. A femtosecond pump and probe pulse using picosecond time separation
enables partition of incident and reflected light beams to be sent and received by a
single emitter–transmitter element as a birefringent organic 4-N,N-dimethylamino-
4-N-methylstilbazolium tosylate (DAST) crystal (Fig. 5.17). The beam from an
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erbium-doped fiber laser emitting 70-fs pulses at 100 MHz in the 1560-nm domain
is split into pump and probe beams, and excites a DAST crystal, generating tera-
hertz radiation. The terahertz-induced thermal lensing (see Chap. 9) in the same
crystal, triggered by reflection from a sample or a reference mirror, or reflected and
transmitted twice by the sample and reflected from spherical mirror SM, causes
deflection of the delayed probe beam and is selected by the pinhole to be detected
by the photodiode. An indium tin oxide splitter–combiner ITO transmits and
reflects pump and probe light, but reflects terahertz radiation. A germanium spectral
filter rejects further propagation of pump light to off-axis elliptical mirror EM,
allowing simultaneous measurement of sample terahertz reflection and dual-pass
transmission and obtaining the absorption-plus-scattering loss or the refractive
index and absorption coefficient [5.30].

Summarizing the reviewed methods of straightforward reflectance measure-
ments, let us make an extra note on the effects of multiple reflections for transparent
specularly reflecting samples. By analogy with transmission studies Eq. (5.4),
specular reflectance studies can be made by varying the number of light interactions
– in this case reflections – with the sample, but multiple reflections adversely affect
the measurement results if are not fully accounted for. For example, owing to aging
of sample surfaces, a series of measurements of reflectance q and transmittance s of
a given sample may identify the presence of absorption or scattering layers,
detecting difference D ¼ 1 − (s + q). Transparent optical coatings can serve as
practical standards of direct transmittance and specular reflectance for many mea-
surement tasks because of very low scattering and absorption, negligible thickness,
and the convenience of applications in both transmitted and reflected light [5.11]. If
the reflectance and the transmittance of any internally transparent sample with
different first and second surfaces are measured, each sample-surface transmittance
and reflectance needs to be resolved via complete Eqs. (1.102) and (1.103).
Considering the transmittance s and reflectance q of the first and of the second
surface: sf, qf and ss, qs, the total transmittance and the total reflectance of an
unequal-surface sample become:
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Fig. 5.17 Time-domain
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sR; f�s ¼
l¼0

sf ss
1� q0fq0s

¼
q0¼q

sf ss
1� qfqs

;

qR; f�s ¼
l¼0

qf þ
sfqssf

1� q0fq0s
¼

q0¼q
qf þ

s2f qs
1� qfqs

;

sR; s�f ¼
l¼0;q0¼q

sssf
1� qsqf

; qR; s�f ¼
l¼0;q0¼q

qs þ
s2sqf

1� qsqf
;

ð5:27Þ

where the primes indicate reflections from inside the sample. For nonabsorbing
surfaces: qi

0 ¼ qi, thus, unequal reflectances in inverted positions give an indication
of the presence of absorption layers on one or both surfaces. Expanding mea-
surements via Eq. (5.27), alongside with Eqs. (1.106) and (1.107) for ideally pol-
ished and not coated substrates of identical surface reflectances q0: sR,0 ¼ (1 − q0)/
(1þ q0), qR,0 ¼ 2q0/(1 þ q0), may allow to identify all unknown factors:

srel; f�0 ¼ sR; f�s

s0
¼ sf ss 1þ q0ð Þ

1� qfqs
� �

1� q0ð Þ ;

qrel; f�0 ¼
qR; f�s

q0
¼ qf þ

s2f qs
1� qfqs

 !
1þ q0ð Þ
2q0

;

srel; s�0 ¼ sR; s�f

s0
¼ sssf 1þ q0ð Þ

1� qsqf
� �

1� q0ð Þ ;

qrel; s�0 ¼
qR; f�s

q0
¼ qs þ

s2sqf
1� qsqf

 !
1þ q0ð Þ
2q0

;

ð5:28Þ

by assuming no absorption or scattering in the sample surfaces and its bulk sub-
strate, therefore permitting the substitutions: sf ¼ 1 − qf, ss ¼ 1 − qs. When one
of the plate surfaces is uncoated, for example qf ¼ q0, Eqs. (5.27) and (5.28) are
easier to resolve via only two variables if ss ¼ 1 − qs:

sR;0�s ¼
l¼0

s0ss
1� q0qs

¼
s0¼1�q0

1� qsð Þ 1� q0ð Þ
1� q0qs

; ð5:29aÞ

qR;0�s ¼
l¼0

q0 þ
s20qs

1� q0qs
¼

s0¼1�q0
q0 þ

1� q0ð Þ2qs
1� q0qs

; ð5:29bÞ

srel;0�s�0 ¼ sR;0�s

sR;0
¼

s0¼1�q0

1� qsð Þ 1þ q0ð Þ
1� q0qsð Þ ; ð5:29cÞ

qrel;0�s�0 ¼
qR;0�s

qR;0
¼

s0¼1�q0
1þ 1� q0ð Þ2

1� q0qs

qs
q0

 !
1þ q0ð Þ

2
: ð5:29dÞ
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If no unexpected absorption and/or scattering layers are present on either surface of
the sample, the law of conservation of energy allows to simplify the measurements
by invoking the balance: sR,i þ qR,i ¼ 1.

Attempts could be also made to identify a reflectance and transmittance of a
sample via certain known properties, such as using the spectral refractive index of a
transparent medium [5.31] or modeling [5.32], if these means seem trustworthy for
a task. When relying on refractive index n versus angle of incidence u, Fresnel
formulae for a given state of radiation polarization (1.34, 1.35, 1.82, 1.83) become:

qk ¼
n2 cosu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 u

p
n2 cosuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 u

p



2

; q? ¼ cosu�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 u

p
cosuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 u

p



2

; ð5:30; a; bÞ

sjj ¼ 2n cosu

n2 cosuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 u

p



2

; s? ¼ 2 cosu

cosuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � sin2 u

p



2

: ð5:30; c; dÞ

5.3 Scattering Factor

If a specific measurement task requires recognition of the optical loss only in
transmitted or in reflected radiation, the total amount of absorption-plus-scattering
loss for any object being studied can be evaluated as a single factor, since either
event leads to light being lost. Considering this specificity, the distinction from 1.0
for the sum of direct transmittance sd and specular reflectance qr represents the total
loss on absorption a, diffuse transmission sd, and diffuse reflection qd, as:

aþ sd þ qd ¼ aþ r � g ¼ 1� sr þ qrð Þ; ð5:31Þ

where r and η are the respective factors for 360° scattering and for total attenua-
tion. If the loss is identified via transmission and reflection, the relative sensitivity
Dη/η to attenuation factor η is:

Dg
g

¼ Dsr þDqr
1� sr þ qrð Þ ¼

Dsr þDqr
g

: ð5:32Þ

Inaccuracy of such an indirect determination summarizes the errors of transmittance
and reflectance measurements related to the low loss to be detected. In particular,
for sr þ qr ¼ 0:99 and Dsd ¼ Dqr ¼ ±0.5%, as well as for sr þ qr ¼ 0:999 and
Dsr ¼ Dqr ¼ ±0.05%, the uncertainty becomes Dη/η ¼ ±100%. Therefore, the
approach of measuring factors of total scattering and absorption via transmittance
and reflectance should be fairly informative. The loss estimation can be used to
sense measurement correctness for the sum of specular reflectance and direct
transmittance of any transparent object.
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A method for scattering-factor measurement based on detecting the amount of
radiation diverging from the directions of direct transmittance and specular
reflectance requires detailed identification of such spatial variables as radiation
direction u or solid angle X of observation, making the scattering factor r:

r u;Xð Þ ¼
Z
X

IudX
�
I0 ¼ s

Z
X

IudX
�
Is ¼ q

Z
X

IudX
�
Iq: ð5:33Þ

Light components scattered within directions of the direct transmission and
specular reflection can be evaluated by scanning the solid angle of observation
around every direction in sequence:

I1 ¼ IqðsÞ þ Ig1; I2 ¼ IqðsÞ þ Ig2;

DIr ¼ I1 � I2 ¼
Z
DX

IudX; gqðsÞ ¼ DIgXqðsÞ
�
DX: ð5:34Þ

Any scattering factor measurement can also be considered as one realization of a
specified reflection or indirect transmission at some particular angle ui of obser-
vation not coinciding with the direction of either direct transmission or specular
reflection (see Table 2.1). If there is a need to know the detailed distribution of the
measured scattering factor within the entire 360° or 4p space, the scattering analysis
can be performed with a goniophotometer scanning the radiation-scattering spectral
domain over a given space. The essential distinction of such a measurement is
defined by the extremely small angular density for uniformly scattered light. To
have high spatial resolution, the solid angle X of reception needs to be much
smaller than the spatial domain of scattering: accordingly, the spatial component of
scattering to be detected becomes a diminutive part of the total amount of scattered
light.

Typically, goniophotometers are intended to measure the relative distribution of
the scattering factor of an object to be studied with respect to some absolute
standard, presumed to perform as a perfect diffuser (see Chap. 1). However, if the
linear dynamic range of envisioned reception for scattered light is adequately
extended, the scattering factor can be determined as the light flux reflected or
transmitted into a direction u and a solid angle Xm related to the flux which directly
propagates from a source within solid angle X0 and is incident on the scattering
object. Such a procedure establishes the process for absolute measurement of the
scattering factor when for both intensity measurements the detector utilized is
steadily oriented to the normal to the receiving beam and when for a small deviation
from that normal incidence its sensitivity does not change.

In the setup in Fig. 5.18, integrating sphere 5 of internal detector 6 integrates
flux dU of radiation over solid angle dX scattered by object 2 to direction u in 2p
space [0.12]. Opaque baffle 7 screens detector 6 from direct irradiation by
nonuniformly scattered light. Objective 3 and iris aperture 4 identify a fairly small
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spot of an emitting zone of object 2, which is entirely irradiated by source 1. The
indicatrixes of radiance and of radiant intensity can also be determined, respec-
tively, at the smallest and largest openings of iris 4. Standard 20, presumed to serve
as the perfect diffuser, can substitute object 2 for verification of its scattering
indicatrix. Absolute reflectance measurements may be realized by taking object 2
out to position 20 and moving source 1 to position 10. If the dynamic range of the
system is not sufficient to measure the source intensity directly, an attenuator of
transmittance sa(k) can be placed instead of the sample being normal to the beam
axis. Rather than taking scattering measurements in reflected light, one can reset the
system for transmission studies by moving the source into position 100.

If the scattering factor needs to be measured at a fixed observation angle, the
goniometer is not necessarily required. Figure 5.19 illustrates a system for mea-
surements of the backscattering factor of a highly reflecting mirror of a ring laser in
which the appearance of any backscattered light is strictly prohibited. This tech-
nique compares the mirror backscattering factor r with the regular reflectance qr of
another mirror at normal incidence [5.12]. If the scattering factor is low: r 
 qr, at
qr ! 1, high accuracy of qr measurement is not required since:

Nr
�
Nq ¼ r=qr ffi r	 Drð Þ= qr þ qd þ að Þ ¼

qr!1
r	 Dr=qr: ð5:35Þ
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Here qd and a are the diffuse reflectance and absorptance of the high reflecting
mirror of comparison and Dr is the systematic error of scattering measurements.
For qr ¼ 0.99 and qd þ a ! Dr ¼ 0.01, the factual measurement systematic
error Dr/qr translated to low scattering r of the mirror studied is only 1%.

When measuring the backscattering factor using the apparatus described above, a
light beam emitted by laser source 1, passed by beam splitter 2, and scattered back at
180° to the direction of incidence is captured by objective 8 and detector 9 within
solid angleXb, defined by round aperture 7. The beam, specularly reflected by mirror
under study 3 and by other elements of the system, is attenuated to an insignificant
level by a set of absorbers 5 consisting of two superpolished neutral glass plates (see
Fig. 4.3). Calibration of the measurement scale is made via any high specularly
reflecting sample mirror 10 implemented at normal incidence in the beam path
instead of sample 3. Set 11 of precalibrated attenuators is used together with mirror
10, thus limiting the linear dynamic range needed to compare the contrasting signals,
as from these high reflecting and low scattering optical elements. The actual level of
background scattering noise, exposing detector 9 in the absence of mirrors 3 and 10
and being referred to specularly reflected radiation, defines the lowest backscattering
factor to be practically measured by such a system.

If the light-scattering features of a medium interacting with radiation are sub-
stantially smaller than a subset of wavelengths for a beam of that radiation, the angular
distribution of scattered light is uniformwith a constant radiance. Rayleigh scattering,
at the small features circumference, stillmuch larger than lightwavelengthk: 2prs�k,
average intensities of two orthogonally polarized waves of observation for spherical
polar coordinates of vector j~pj and scattering angles u;H are [1.1]:

�Ish ¼ Isjj cos
2 u; �Isu ¼ Is? sin2 u; ð5:36Þ

having the degree of polarization P of scattered light versus angle h of observation
for Rayleigh scattering phenomena:

P Hð Þ ¼ Is? � Isjj
� ��

Is? þ Isjj
� �  ¼ sin2 H

�
1þ cos2 H
� �

: ð5:37Þ

As a result, in direction H ¼ 90� the polarization is near complete and scattered
light is polarized perpendicularly to the plane of observation. For natural daylight,
light intensities averaged over all directions of observation and states of polariza-

tion, since sin2u ¼ sin2u ¼ 1=2 , respectively are:

�IsH;nat ¼ Isjj
�
2; �Isu;nat ¼ Is?

�
2: ð5:38Þ

Since measurements of the absolute scattering factor within small solid angle DX
for low losses are restricted by a quite diminutive intensity of measured radiation:
IX ¼ I0rDX=4p, measurements can be performed at a fixed observation directionH
in comparison with some reference standard. Providing only Rayleigh scattering
phenomena are of interest, demanding intensity versus scattering angle studies may
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be reduced to a single measurement of the relative intensity of radiation scattered
into 90° angle versus the intensity of the incident beam. For that stationary con-
dition, it is certainly easier to reach the highest possible sensitivity to the
low-scattering loss. From equations (5.36) it follows [1.1] that if a scattering object
is irradiated by polarized light in opposite states of polarization and the intensity of
scattered light is observed at 90°, the maximum and the minimum, respectively, of
the state of radiation polarization for scattering light would be achieved.
A simplified layout of a photometer for measurements of low uniform scattering
observed at 90° angle in directly irradiated samples is depicted in Fig. 5.20 [5.13].
The photometer allowed investigating density fluctuations in scattering mediums
along with deviations from the Rayleigh scattering phenomena.

As much as bulk optical properties of an object can be analyzed via scattering in
a certain direction, integrated scattering-factor measurements may be used to
identify rms roughness for irradiated optical surfaces (see relations [II.8], [II.9])
[II.2–II.4]. Since light scattering from any polished optical surface is fairly low, the
so-called Coblentz hemisphere may be used instead of the integrating sphere to
enhance the overall sensitivity, especially at IR wavelengths when sensitivity is at a
premium (Fig. 5.21). The apparatus shown consists of aluminized semisphere 1 of a
single aperture 2 for light incident on sample 3 and specularly reflected from the
semisphere. Scattered light is focused by semisphere 1 on detector 4. Specularly
reflected light is viewed by inclining sample 3, but light scattered at skewed angles
(dotted lines) is guided out of the semisphere and should be counted. The total
scattering factor of mirror 3 is defined and measured via ratio of the diffuse
reflectance to the specular plus diffuse reflectance [5.14].
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Substitution of the hemispherical mirror by a spheroid further increases the
signal-to-noise ratio for detection of total sample scattering. In the system shown in
Fig. 5.22, light scattered by object 1 placed near the first focus of spheroid mirror 2
is reflected into a relatively large solid angle of observation, defined by the surface
of the spheroid, and is focused to the second focal spot occupied by detector 3. For
absolute calibration of the system, auxiliary flat mirror 2′, with coating equivalent as
much as possible to that of spheroid mirror 2, is set instead of test sample 1 at
another angle allowing to directly irradiate detector 3 via light specularly reflected
by mirrors 2 and 2′. The same detector moved into position 5 can measure specular
reflectance of mirror 2′. For known reflectances of mirrors 2 and 2′ of low own
scattering and sufficient dynamic range of the detector, such a calibration process is
fairly accurate and allows estimation of the rms roughness Ra via the total scattering
factor rR [5.15]:

Ra ¼ k� rR=ð4p � cosHÞ: ð5:39Þ

Integration of hemisphere-distributed 2p scattering can also be done using a cavity-
shaped detector [5.16]. To serve as a collector of 2p-scattered light, the detector
should, first, be evenly sensitive within the full-hemispherical solid angle, and, sec-
ond, have its absorptance equal to unity over the entire wavelength range of mea-
surements. Otherwise, diverse corrective factors need to be implemented for its
sensitivity, also accounting for multiple reflections between sample and detector
surfaces. Figure 5.23 shows an assembled pyroelectric detector as the spatial inte-
grator of hemispherical scattering [5.16]. This angular form of the cavity-shaped
detector was merely chosen to simplify its fabrication. An outer electrode of a poly-
vinyl fluoride (PVF) pyroelectric filmwas formed by a brass shim. The inner detecting
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pyroelectric was made as a layer of gold black coating serving as the inner electrode
and its effective thickness optimized for scattering measurements in the 5–10-lm
spectral range was found to be near 40 lm at 30-Hz modulation frequency of the
incident beam. The sensitivity of the detector reached approximately 2 � 107 cm Hz1/2

W−1 with ±3% detection error for the 6–13-lm spectral region [5.16].
In some cases, such as in laser welding, the use of integrating spheres is pro-

hibitive owing to splashing of molten metal on pulsed laser exposure and
limited-angle goniophotometry at discrete angles allows light-scattering intensity to
be sensed in available directions for the following estimation of integrated scat-
tering [5.18]. Other obstacles to precise and sensitive goniophotometric studies on
laser irradiation are due to object inhomogeneity and speckle phenomena (see
[II.26] for details), besides respective limitations of the measurement and detection
systems. An example of a directional-reflectance characterization setup designed for
three laser wavelengths to accuracy of ±0.002 or less to be reached at the 1r
confidence interval having targeted 360°-detection capability, 0.001° resolution,
and repeatability is illustrated in Fig. 5.24.

The respective light sources in such a measurement facility [5.19] were three
lasers: 442-nm He–Cd laser, 632.8-nm He–Ne laser, and 859.9-nm GaAlAs
semiconductor laser, requiring enhanced collimation, plus circulation and spatial
filtering. All optical elements of the system were antireflection-coated to minimize
scattering and beam depolarization at every wavelength. A refracting telescope,
consisting of objectives O1 and O2 and pinhole A5, was used for filtration of
higher-order spatial frequencies for light diffracted by pinhole apertures A1–A8.
Similar telescopes, consisting of notch filter F, lens L, aperture stop AS, scattering
baffle SB, and field stop FS, were placed in front of imaging detector D2 and
reference detector D1 (Fig. 5.24b). Attenuation of the ambient background was
40 dB with a 10-nm-wide notch filter (see also Figs. 4.7 and 4.8). To minimize
speckle, spatial resolution for light reflected by sample S did not exceed 2° for 1-in.
irradiation diameter at angles of incidence of 30°, 45°, and 60° or a maximum
emittance angle of ±70°. The reference channel was formed by k/2 wave plate W
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Fig. 5.24 Bidirectional reflectance measurements (a) and detector assembly (b)
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and polarization beam splitter P at an extinction ratio of 500:1 or greater. Optical
signals were registered by 10 � 10 mm2 silicon photodiodes with a noise-equivalent
power of 1.8 �10�14 W=

ffiffiffiffiffiffi
Hz

p
. Further amplification and ratio measurements were

provided via transimpedance and phase-sensitive 5–100-kHz lock-in amplifiers for
synchronous detection of two channel signals with the ratio repeatability within
±0.2%, but ±0.4% over all disassemblies and several-day runs. The overall pre-
cision for the bidirectional reflectance measurements was ±0.002 at the 1r con-
fidence interval with angular repeatability being identical to the 0.001°-resolution
reached [5.19].

For any reflectance measurements in partially coherent laser radiation the high
resolution in angular scattering detection causes the occurrence of speckle phe-
nomena resulting from interference patterns due to interaction of beams reflected by
surface and volume irregularities larger than the wavelength k of radiation. The
interference pattern can be treated as due to an ensemble of secondary point sources
with random distribution profile, creating diffraction in the far field of observation
[II.22]. The resulting patterns consist of individual lobes of angular diameter w
defined by the diffraction limit, w ¼ 2k/D, for a test object of diameter D. Angular
movements of the observation detector over the lobe diameter cause various sets of
speckle lobes to be observed, while temperature and other drifts lead to similar
instabilities of a given beam intensity being detected. From the standpoint of
speckle averaging, the higher is the requirement for angular resolution, spreading
further apart the object and detector, the larger is the observation diameter required
for efficient speckle-pattern integration. For the measurement system in Fig. 5.24,
the speckle-lobe diameter at 30-cm separation of detector D1 for k ¼ 859.9 nm
was 0.042 mm, making a 10-mm clear aperture lens sufficient for averaging [5.19].

Although the overall sensitivity of a goniophotometric study can be lower than
that of integrated detection for hemispherically integrated scattering, spectral
goniophotometry permits plotting of the spatial distribution of scattered light
allowing to obtain the roughness spectrum of a micropolish of a test surface, thus
rewarding efforts to increase the sensitivity of spectrogoniophotometric studies.
Figure 5.25 shows an insert to a sensitive spectrogoniophotometer, detecting the
sample’s angular scattering via a bidirectional reflectance measurement [5.17].
Scattered light is measured at the state of polarization of an incident beam for angles
u andH of incidence and observation. Bidirectional reflectance q(H,u) is sensed as:

q H;u; jj=?ð Þ � cosHj j ¼ DUscat= U0DXð Þ; ð5:40Þ

where U0 and DUscat are the incident and the reflected or scattered flux/intensity of a
respective light beam and DX is the solid angle of observation. In an evaluation
experiment, irradiation of the sample was made by a He–Ne laser at u ¼ 1°30′
presuming its negligibly small divergence. Every beam intensity was measured by a
photomultiplier within solid angle DX ¼ 6.8 � 10−5 sr. The relative sensitivity of
each individual integrated scattering measurement limited by stray light reached
1 � 10−6 [5.17].
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In cases when integrating spheres are permissible, but relatively low loss mea-
surements are expected, straightforward dual-channel spectrophotometry can be
accomplished via an auxiliary sphere as a reference standard, following the concept
of coupled integrating spheres shown in Fig. 4.37. The initial realization of such a
sphere [5.20] was not intended for low-loss measurements, nevertheless the added
sphere attenuation implies using the detriment as an advantage. This second diffuse
reflecting integrating sphere (Fig. 5.26) placed into the reference port of a
dual-beam spectrophotometer establishes the much lower-level 100% line for
weakly reflecting samples. Instead of the common high reflecting comparison
sample as the sphere cap (see Chaps. 2 and 4) in the reference port of integrating
sphere 2, auxiliary sphere 3 and test sample 4 are in this case sequentially irradiated
by monochromator 1 and viewed by detector 5. Applying the law of conservation of
energy, the effective reflectivity qp of the common port for main and auxiliary
spheres of relative area Ap inserted into the sphere with wall reflectivity q0 and
spherical surface area A0 becomes:

qp ¼
Ap

A0 � Ap

q0
1� q0

: ð5:41Þ

Since the two-channel ratio for samples S and C, with other factors being equal, is
Q ¼ const�qs/qc, the attenuation factor of auxiliary sphere 3 versus a sphere-wall
spherical comparison sample of q0 becomes:
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Qa ¼ Ap

A0 � Ap
� �

1� q0ð Þ ¼
Ap
�
A0

1� Ap
�
A0

� �
1� q0ð Þ �

Ap=0

1� Ap=0
� �

1� q0ð Þ : ð5:42Þ

For reference port relative surface area Ap ¼ 0.01A0 and q0 ¼ 0.95, the ratio Qa �
0.01/0.05 ¼ 0.2 causes a 20% downshift of the 100% reference line or a 10%
downshift for q0 ¼ 0.9 and Ap/0 ¼ 0.01 or q0 ¼ 0.95 and Ap/0 ¼ 0.005.

Somewhat combined, to an extent, scattering measurements can be realized for a
fairly complex object such as biological tissue [5.29]. Figure 5.27 depicts the
system for step-scanning of forward light scattering by tissue from 3° to 23° in 100
steps via motorized iris aperture IA for direct irradiation by He–Ne laser 1 and
detection by integrating sphere 6. The setup also collects 0°-scattered light via the
45°-polished end of tilted optical fiber 5. The laser beam is expanded to 2.75 mm in
diameter and split into beams which go to reference detector 2 and irradiate sample
tissue 3. Light forward scattered by tissue is collected by achromatic lens 4 at
intermediate focus in the plane of iris IA, while 1.3-mm-diameter fiber 5 collects 0°
scattering, also blocking it from entering the sphere with main detector 7, which
detects the remainder of radiation scattering given by angle H of the iris-opening
step. The measured ratio of detector signals is averaged and normalized via the
system settings calibrated for incomplete light blocking and via objects of known
scattering properties – size-standardized polystyrene microspheres or other refer-
ence objects.

Let us also note that the dual lock-in amplification technique, as one example of
sensitive detection approach for weak scattering phenomena, can be deployed to
detect extremely low intensities of bidirectionally scattered light, along with even
lower levels of time-delayed luminescence, often accompanying common events of
minute laser scattering [5.21]. Figure 5.28a depicts two phase-locked choppers set
at 180° phase difference, which should completely block any stray light from the
light source. Consequently, when measuring fluorescence with a time delay greater
than the period of modulation, the intensity of the steady background radiation
should be blocked by several orders of magnitude from the signal. This technique
may be used with any pulse-modulated light source having pulse width 50% or less
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lower than the chopping frequency period. That way no light from the source will
directly reach the detector. A somewhat different arrangement is seen in Fig. 5.28b,
where diverse pump and probe sources of light are deployed, and the time delay
between the irradiating and the measuring light pulses establishes the essence of the
time-delay study.

A straightforward approach for sensing only specular reflectance but measuring
the sum of scattering and absorption losses n of opaque mirror M is depicted in
Fig. 5.29. The concept presumes one type of loss being negligible and another as
being of main interest, and involves swapping mirror M and detector D, which
uniformity defines the applicability of the technique [5.22]. In Fig. 5.29a, two
sequential measurements 1 and 2 (dotted line) are formed by beams, first, specularly
reflected by referencing coupler C and, second, directly transmitted by coupler C
and reflected by test mirror M. In Fig. 5.29b, measurements 3 and 4 are taken via
beams specularly reflected by coupler C and reflected by mirror M, and then
directly transmitted by coupler C only (dotted line). The incidence angles h and u
for all measurement positions are presumed to be unchanged and identical.
Intensities I1 and I2 for beams of radiation viewed by detector D in Fig. 5.29a are
obtained via single specular reflectance from coupler C and via its direct trans-
mittance plus specular reflectance of mirror M. Signals 3 and 4 relate to
coupler-plus-mirror specular reflectance and to the coupler transmittance. In the
factual system, coupler C was formed by a mirror modulator, which was opening
and closing each path, making the ratios:

I1=I2 ¼ qc= scqmð Þ; I3=I4 ¼ qcqm= scð Þ; ð5:43Þ
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where q and s are the specular reflectance and direct transmittance, and subscripts
c and m relate to the coupler and the mirror. Taking the ratio of the two relations
Eqs. (5.43) and then making mirror M serve as coupler C and vice versa gives the
following relations after four pairs of intensity measurement:

I1I3=I2I4ð Þc¼ qc=scð Þ2; I1I3=I2I4ð Þm¼ qm=smð Þ2: ð5:44Þ

The actually measured reflectance–transmittance ratios for the coupler and the
mirror can be verified by the law of conservation energy in transmitted and reflected
light: s ¼ 1 − q, with no absorption and thus n ! 0:

ðI1I3=I2I4Þc ��!s¼1�q
q2c=ð1� qcÞ2; ðI1I3=I2I4Þm ��!s¼1�q

q2m=ð1� qmÞ2: ð5:45Þ

The practical uncertainty of these measurements was identified by comparing the
total loss for every mirror measured with the combined loss experienced by mirror
pairs assembled as Fabry–Perot resonators. The results of two compared
measurement methods were within ±0.05% margins of the uncertainty for each
technique, with the repeatability of the loss measurements near ±0.005% [5.22].
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Chapter 6
Systems of Multiple Reflections

6.1 Flat-Mirror and Prism Reflector Cells

As seen in Chaps. 2 and 5, expanding the effective optical path length or the
number of light interactions with the object under study increases the sensitivity to
the optical properties of the object. Therefore, it is prevalent to desire as many
interactions as possible when looking for the highest sensitivity to optical losses.
However, if the object’s refractive index n is different from that of its surroundings
(see relations (1.102), (1.103)), the losses at two boundaries can overcome the loss
being measured by their uncertainty. For any transparent object of length ‘, linear
attenuation coefficient l, and relative refractive index n, the bulk-plus-surface
transmittance s for m light passes via the object is:

s ¼ 1� n� 1
nþ 1

� �2
" #2m

exp ð�lm‘nÞ ¼ 4n

ðnþ 1Þ2
" #2m

exp ð�lm‘nÞ: ð6:1Þ

The relative error Ds/s of that transmission study as a function of object’s surface
reflectance q is:

Ds
s

¼ � 2mDq
1� q

þDl‘nm
� �

¼ � 2m
Dn
n

þ 2Dn
nþ 1

� �
þDl‘nm

� �
: ð6:2Þ

Consequently, the uncertainty Dl of the resolved linear attenuation coefficient l of
the object’s bulk becomes:

Dl ¼ � 1
‘n

2Dq
1� q

þ Ds
ms

� �
¼ � 1

‘n
2Dn
n

þ 4Dn
nþ 1

þ Ds
ms

� �
: ð6:3Þ

Equation (6.3) confirms that increase of the number of light interactions with an
object whose refractive index is different from that of its surroundings increases the
measurement’s sensitivity only to the combined bulk-plus-surface optical losses.

© Springer Nature Singapore Pte Ltd. 2019
M. Bukshtab, Photometry, Radiometry, and Measurements
of Optical Losses, Springer Series in Optical Sciences 209,
https://doi.org/10.1007/978-981-10-7745-6_6

319



Uncertainties of the object’s surface properties manifest themselves to exactly the
same extent as in any single-pass study. At the same time, increase of the number of
passes creates a respective decrease of the intensity of light transmitted via the
object in proportion to double surface losses: ð1� qÞ2m, decreasing the overall
sensitivity of the measurement. As a result, the multipass reflection system is
efficient only for low-density substances, such as gases inside a multiple-reflection
cavity or for studies of optical properties of specularly reflecting mirrors either
inserted into a cavity in reflected light or shaping the cavity themselves. To increase
the effectiveness of the bulk transmission measurements of solid objects, surface
reflections must be eliminated by applying antireflection coatings, by immersing the
object’s boundaries within a multipass cell, or by utilizing linearly polarized light
propagating via the borders at the Brewster angle (see Chap. 10 for details).

Systems of multiple reflections can be created by parallel prolongation of the
double-reflection cavity analyzed earlier for reflectance measurements at oblique
incidence (see Fig. 5.13). The number of reflection pairs can be changed as a function
of the spacing between two parallel flat mirrors 1 and 2 [6.1], and via angle H of
incidence (Fig. 6.1). For opposite incidence and propagation directions (Fig. 6.1a) of
the input and the output beam given by 2H angle, the cross sections of the beams and
of the mirrors identify the number of reflections that can be obtained by altering the
distance ‘ between the mirrors without any beam overlap. If one only fixes the mirror
positions at which the direction of the beam emerging from the system is parallel to the
direction of the incident beam (see Fig. 6.1b), the total number m of reflections is a
multiple of 2: m = 2j, j = 1, 2, 3,… . At every intermediate position, the distance ‘
between mirrors of width L for m reflections becomes:

L=m6 ‘ tanH6 ‘=ðm� 1Þ: ð6:4Þ

2

L L

Θ

Θ

(a) (b)

Fig. 6.1 Creation of multiple reflections via translation of parallel mirrors
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If it is necessary to maintain angle 2H between the directions of the emerging
and incident beams (Fig. 6.1a), the number of reflections is m ¼ 2j − 1 and the
distance ‘ between cavity mirrors becomes:

L=ðmþ 1Þ6 ‘ tanH6 ‘=m: ð6:5Þ

The m times reduction of mirror separation distance ‘ for m ¼ 2j equivalently
increases the even number 2m� 1 of additional reflections, occurring within a
cavity created by these two mirrors, if the directions of the emerging and incident
beams remain parallel to each other.

The intensity I0 of a beam retroreflected in the cavity decreases after each
dual-reflection cycle as I2 ¼ I0q1q2, where q1 and q2 are actual reflectances for the
light spots on the first and the second mirror. After m reflection cycles, the
decrement of the incident beam intensity is proportional to the product of the
average reflectances of both mirrors and the number of cavity reflections:
I2 ¼ I0ð�q1�q2Þm. The mean reflectance of two cavity mirrors �q averaged over irra-
diated mirror surfaces inside the cavity is:

ffiffiffiffiffiffiffiffiffiffi
�q1�q2

p � �q ¼ Im=I0ð Þ1=2m ¼ Im=I0ð Þ1=i; ð6:6Þ

where i ¼ 2m is the total number of reflections inside the cavity, and I0 and Im are
the intensities of the beam entering the cavity and exiting it after participating in
m dual reflections. Consequently, the mean reflectance can be determined by
comparing the intensities for any intermediate states of the cavity:

�q ¼ Im=I1ð Þ1=2ðm�1Þ ¼ Im=Ikð Þ1=2ðm�kÞ; ð6:7Þ

where Im and Ik are the intensities of beams corresponding to the mth and kth

reflection cycles, respectively, starting from k ¼ 1. The parallel-prolongation
technique described presumes one is dealing with nondivergent beams if expecting
m ! ∞, whereas actual divergence increases beam spot sizes and limits the
numbers of reflections obtained [6.1].

The method of scaling reflections highlights two essential points of view for
low-loss measurements. The first one deals with the ability of a particular mea-
surement technique to provide multiple evaluations of a presumably unchanging
factor or coefficient, allowing one to distinguish systematic errors, such as varia-
tions of measured magnitude versus a coordinate, and nonlinearities of detectors or
other elements. The transformation of the distance ‘ between mirrors described
above gives a sequence of ratios: �q4=�q2; �q8=�q2 or �q8=�q4, etc., allowing one to
resolve the difference among the intermediate results, averaged by distinct zones of
both mirrors. The second vital point deals with the measurement resolution. When
measuring extremely low loss l! 0 at high reflectance �q ! 1 and fixed resolution,
only a sufficiently elevated difference of reflections between states m and k can
resolve Im and Ik signals.
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To distinguish optical properties of unequal, but reciprocal multireflection cavity
elements by detecting changes of the radiation intensity interacting with such a
cavity, at least three of these contrasting elements are required. In other words, to
resolve two unequal reflectances of similar mirrors q1 and q2 in addition to two
measurement cycles by Eq. (6.6), one related cycle must be made with a third
mirror combined with either of the first two, presuming its reflectance q3 is different
from that of the other two. Three measurement cycles give the equations for
reflectance products:

�q1�q2 ¼ I1;2=I0
� �1=2 � A; �q1�q3 ¼ I1;3=I0

� �1=2 � B; �q3�q2 ¼ I3;2=I0
� �1=2 � C:

ð6:8Þ

The solution is:

�q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
AB=C

p
; �q2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
AC=B

p
; �q3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
BC=A

p
: ð6:9Þ

Each individual reflectance error combines the total errors of all measurement
cycles: D�qi;ind ffi

ffiffiffi
3

p
D�q.

Illustrated by Fig. 6.1, the method for creating multiple reflection demonstrates
trade-offs between sensitivity and resolution for intracavity measurements. Any
method creating multiple reflections with the oblique incidence of light on a pair of
cavity mirrors increases its sensitivity by adding reflections, along with decreasing
its spatial resolution. Besides, the larger is the number m of intracavity reflections,
the higher are the requirements for parallelism of cavity mirrors and the lower is the
output beam intensity Im ¼ I0�q2m. If the light intensity decreases below the
detector’s sensitivity, there is no sense in making the increase. Figure 6.2 depicts a
similar concept of spreading multiple reflections by several separate and equiva-
lently manufactured optical elements of a test substance instead of dispersing
reflections over a large-surface cavity mirror. In this example, prisms I–IV with the
coating to be studied on their faces are installed at some fixed angle of incidence u.
Figure 6.2a shows the 100%-line setting. In Fig. 6.2b, sliding mirror M2 is moved
into position M0

2 for a reading on the sample test set. The ratio of readings gives the
fourfold prisms’ reflectance averaged over all four examined surface coatings
sputtered over prisms I–IV [6.2]. As in a parallel-mirror cavity, the alignment of

M1

M2

M3
M1 M3

M2’
I

II

III

IV(a) (b)

Fig. 6.2 Multiple interactions with a sample set: M – mirrors; I–IV – prisms
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each element is critical since the optical path-length variation with and without the
test objects creates additional error.

Figure 6.3 illustrates a similar technique for reflectance measurement with a
cavity-preset angle of incidence for two parallel mirrors concurrently irradiated by a
beam of light [6.3]. Top mirror 5 of a reflecting cavity and detector 8 are placed on
a sliding table. When mirror 5 is moved out of the beam path into position 5′,
detector 8 is relocated to position 8′ to be directly irradiated by laser source 1. Such
a rearrangement allows one to measure the initial intensity I0 of the incident beam
before its interaction with mirrors. Autocollimator 9 or He–Ne laser 3 are utilized to
align the cavity mirrors, maintain the number of reflections, and set the angle of
incidence. The cross sections of the incident and output beams can be adjusted by
the input and output apertures 4 and 7.

Any given number of internal reflections in a multiple reflection cavity can be
increased almost twice by placing the cavity not in transmitted but in reflected light
(Fig. 6.4). The concept is realized by changing the wedge angle u between cavity
mirrors. The initial angle of incidence H for the first mirror at the cavity entrance
can be tuned to the reverse beam propagation direction at the cavity’s exit [6.4].
Thus, the size of cavity mirrors needed for a desired number of reflections is
practically twice as small as for a parallel-mirror cavity in transmitted light.
However, the angle of incidence of such a cavity design does not remain constant,
changing from its maximum at the cavity entrance to close-to-normal incidence at
the cavity end, where beam direction is reversed. This concept of the returning
beam is very much identical to the ray tracing in the light pipe made as a hollow
cone with a coated circumference or as a glass one for the total internal reflectance
of light entering it and eventually coming back in its entirety at the right angle. Such
geometrical light pipes are widely used in illumination engineering [0.48, 0.49].

1
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3
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8

5'
7'

8'

9

Fig. 6.3 Measurements at a
fixed angle of incidence
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cavity mirrors

reference detector

splitter Θ

ϕ

Fig. 6.4 Averaging study of
flat mirrors in a wedged cavity
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The total number j of reflections inside that wedge cavity is given by the ratio of
incidence to wedge angles: j ¼ 2H=uþ 1, with the number of reflection cycles
m ¼ H=u. These numbers are high for H[[u. The total number j ¼ 2 m þ 1 of
reflections inside such a cavity is an odd number owing to one extra reflection at the
first cavity mirror. The intensity Iout of the output cavity beam versus the intensity I0
of the input beam averaged over surfaces of mirrors 1 and 2 represented by mean
reflectance values is:

Iout ¼ I1;2 ¼ I0�q
mþ 1
1 �qm2 : ð6:10Þ

To neutralize one additional interaction with the first mirror, a reference measurement
is made not versus the incident but versus the beam having a single reflection from
mirror 1. For that purpose mirror 1 is moved to position 1′, where the beam reflected
by it reaches the same primary detector as via multiple reflections. Since I1 ¼ I0q1,
the product of reflectances can be resolved by Eq. (6.6): �q1�q2ð Þm ¼ I1;2=I1. Using
third mirror 3 and making three measurement cycles in the combinations 1, 2, 1, 3,
and 2, 3, the surface-averaged reflectance of the first mirror is measured as:

�q1 ¼ I1;2=I1
� �

I1;3=I1
� �

I2;3=I2
� �	 
1=ðj�1Þ

: ð6:11Þ

Here the total number j of reflections in the cavity and the number m of reflection
cycles are related as j ¼ 2m þ 1.

An experimental verification of measurements using a wedge cavity made of
gold mirror coatings on plane-parallel substrates having surface roughness of k=10
was done in the 9.1–11.3-lm spectral region of CO2 laser emission [6.4].
Differential signals from the main and reference thermal detectors were registered
with about ±1% accuracy when using 0.65-Hz modulation frequency of the
external modulator (Fig. 6.4). At the maximum number j ¼ 39 of intracavity
reflections, the initial 1-mm beam diameter, set by factual system apertures, was
correspondingly increased from 1 to 8 mm. By respectively altering wedge angle u,
the lowest (11) and the highest (39) numbers of total cavity reflections were real-
ized. Figure 6.5 illustrates the relative distribution of the reflectance magnitudes
averaged over two surfaces of cavity mirrors. The graph shows the dependence of
the average reflectance on the angle of incidence, giving a conceptual indication of
the repeatability of the measurement performed. The mean-reflectance value
obtained averaged over all intermediate measurements was �qa ¼ 0.9889 with the
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Fig. 6.5 Reflectance distribution of a gold mirror surface at 10.6 µm
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root-mean-square deviation of the double-averaged reflectance being
2r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPg

i¼1 �qa � �qið Þ= gðg� 1Þ½ �p ¼ 0:0003:
Owing to the main distinction of the wedge-shaped cavity of returning incident

light via the entering optical path, that cavity was applied as a virtual mirror in a
displacement-sensing Michelson interferometer (Fig. 6.6) with one cavity mirror
attached to a piezoelectric transducer (PZT) [6.5]. Rewriting the wedge-cavity
equation for the total number m of reflection cycles or the same number of
reflections per mirror and considering that at an automatic fringe detector reacts to a
full-wavelength k path change:

kk ¼ 2nDd sin ðmuÞ=sinu; ð6:12Þ

enhanced by multiple reflections at wedge angle u and displacement Dd in a media
of refractive index n. Relating to the number k of full detector cycles, the sensitivity
of displacement becomes [6.5]:

Sdisp ¼ Dd=k ¼ ðk=2nÞ=sin ðmuÞ=sinu ffi
h;u!0

k=ð2nmÞ: ð6:13Þ

As a result, the displacement sensitivity of the original interferometer can be
increased by the number of reflection cycles in the wedge-shaped cavity, with
additional penalties concerning angular-displacement sensitivity and a loss of the
detector’s signal due to multiple reflections.

A more elaborate design of a two-element multipass cavity involves corner-cube
retroreflectors of unequal dimensions that are half-way enclosed by one right-angle
prism [6.7] in an arrangement similar to a four-element Fabry–Perot interferometer
consisting of two retroreflectors and beam splitters facing each other [6.6]. The
conceptual idea (see Fig. 6.7) for positioning the corner-cube reflectors, oppositely

Fig. 6.6 Wedge-cavity as
interferometer mirror

cube 1

cube 2

r-a prism

Fig. 6.7 Corner-cubes plus
right-angle prism cavity
(beam spots and passes are
drawn illustratively)

6.1 Flat-Mirror and Prism Reflector Cells 325



arranged with their optical axes parallel to each other, but corners shifted, is with
parallel propagating beams though not in the plane containing the axes. For both
corner cubes, having identical dihedral angles with the same angle error e, the
resulting deviation angle w of an entrance beam parallel to the cell axis after
n reflections with no beam overlap is:

w ¼ e
ffiffiffiffiffiffiffiffi
10n

p
; ð6:14Þ

defining – along with the beam-waist size and the respective diffraction of the beam
after each reflection – the actual limits for the system design. The modeled illus-
trative cell [6.7] based on dissimilar corner-cube retroreflectors and a supplemental
right-angle prism was capable of accommodating up to 24 total cell passes as the
light path reentering the cell via the prism after 12 reflections with parallel beam
propagation paths inside the cavity, fitting the space tightly and homogeneously
(see also Chap. 12 for applications of corner-cube reflectors).

6.2 Multipass Cavities

The dual-reflection attachments for conventional spectrophotometers reviewed
earlier (Figs. 5.13 and 5.14) highlighted ways to reduce the uncertainty of a test
sample alignment by substitution of a supplementary flat mirror by a spherical one.
By analogy, a multiple-reflection cavity of curved mirrors may simplify the align-
ment of the system and thus create a greater number of cavity reflections. Various
combinations of reflector arrangements and curvatures for a spherical-mirror cavity
may allow one to increase the spatial density of radiation, while concurrently
maintaining a steady direction of the light beam existing the cavity. This is greatly
important for analysis of weak optical phenomena, such as low-loss multiphoton
absorption and nonlinear scattering, especially in gaseous substances.

The confocal cavity (Fig. 6.8) consisting of three mirrors having equal radii of
curvature is the device of choice for weak-interaction studies [6.8]. The first two
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Fig. 6.8 Three-mirror confocal White cavity
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mirrors M1 and M3 form one side of the highly reflecting cavity, while the third
mirror M2 forms the opposite side of the cavity. The centers of curvature of mirrors
M1 and M3 coincide with the reflecting surface of mirror M2 at distances C1 and C3

from the median of both the cavity and mirror M2 (see the dash-dotted line).
Usually distances C1 and C2 are equidistant from the cavity median. The center of
curvature C2 for third mirror M2 coincides with the median of the protraction of
mirrors M1 and M3. The advantage of the horizontal arrangement of in–out images,
despite them being curved, is that any beam of radiation entering the cavity at
angle u to the median exits at opposite angle –u independently of the length of its
optical path. The number of cavity passes is a multiple of 4, and the closer centers
C1 and C3 are to the median, the more the number is increased. Since the cavity
consists of only concave mirrors, the largest conceivable number of reflections is
less limited by radiation divergence. The image of a light source filling the en-
trance aperture on the generatrix of surface M2 is reproduced after every reflection
on one of the mirror surfaces or at the exit aperture symmetrical with the entrance
aperture.

At the same time, any increase of the number of reflection cycles in such a
confocal White cavity, having convenient horizontal positions of the entrance and
exit apertures, likely causes relatively high astigmatism of the source image owing
to increases of the angles of incidence for all mirrors [6.9]. Even for a point source,
the meridional or the sagittal astigmatic elongation is:

Dh ffi 2h sinu tanu ¼ 2hb2

R2

N=2� 1
N

� �2

þ � � � þ 3
N

� �2

þ 1
N

� �2
" #

¼ hb2

12R2 N � N
4

� �
; ð6:15Þ

where h is the height or width of each mirror in the corresponding computation of
the meridional or sagittal lengthening, b is the distance between entrance and exit
apertures, R is the radius of all curvatures, and N is the total number of cavity
passes. For a combination of the cavity with a slit monochromator of vertical
entrance and exit slits, the least horizontal separation of slit images at h ! b has to
coincide with the smallest elongation. For the best result, the slits are grooved at the
opposite edges of mirrors and intermediate images are separated in a vertical plane,
doubling the number of cavity passes for a constant cavity size and without
increasing the angles of incidence.

To examine a flat mirror in a White cavity, the entire system is transformed into
its bent position by analogy with the double-reflection attachments seen in
Figs. 5.13 and 5.14. Mirror O under study is introduced into the cavity in its vertical
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plane (thick dotted lines in Fig. 6.8b) at angle H to the cavity axis of symmetry,
crossing center C2 and splitting centers C1 and C3 by the cavity median, and mirrors
M1 and M3 are turned around into new positions M1

0 and M3
0 (thin dotted lines in

Fig. 6.8b) corresponding to the specular reflection from test mirror O [6.10]. The
minimum and maximum angles of incidence in the meridional and sagittal planes
are defined by the cavity’s cross section, dependent on the exact locations of centers
C1 and C3 and slit heights.

The number of cavity reflections N is directly proportional to the distance
b between the entrance and exit apertures and is inversely proportional to the
separation of the centers of curvature: N ¼ b=ðC1 þC3Þ. The magnitudes of C1 and
C3 are determined by taking into account type-of-direction signs: plus sign when
the mirror and the curvature center are both situated on one side of the cavity’s
symmetry plane, and minus sign for the opposite position. If the sum C1 þC3 is
negative, the intermediate images are distributed over the surface of mirror M2

further away from the symmetry plane than the positions of the source images being
collimated into the entrance and exit apertures. When the sum C1 þC3 ¼ 0, the
beam of incident light is projected into the exit aperture directly after the first
reflection. For a large separation of the source images, the astigmatic elongation of
each image increases, hence, usually C1 þC3 [ 0.

Without an object under study, the intensity of a parallel beam of light entering
the triple-mirror White cavity through its entrance aperture and leaving the cavity
via the exit aperture is:

I ¼ I0 �q1�q
2
2�q3

� �m
=�q2; ð6:16Þ

where I0 is the intensity of light entering the cavity, �qi is the average reflectance of
the element marked by a given index, and m ¼ N/4 is the number of four-reflection
cycles. Denoting the average reflectance of the entire cavity as �q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�q1�q

2
2�q3

4
p

,
Eq. (6.10) for the intensity transforms to:

I ¼ I0�q
N=�q2; or log I ¼ log Ið�q;NÞ ¼ N log �qþ const: ð6:17Þ

If a test object of surface-averaged reflectance �qx is placed inside the bent cavity,
the intensity becomes:

Ix ¼ I0qx;1 q1;1 qx;2 q2;1 qx;3 q3;1 þ ::: ¼ I0 �qx �qð ÞN=�q2 ¼ I0�q
N
x : ð6:18Þ

Expressing all the results either on the direct or on the logarithmic scale, the
reflectance under study, averaged over the object’s surface or bulk and over the
variety of angles of incidence, is:
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�qx ¼
ffiffiffiffiffiffiffiffi
Ix=I

N
p

; or log �qx ¼ log Ix � log Ið Þ=N: ð6:19Þ

Extending the number of light interactions with a test object in a spherical-mirror
cell allows one to increase the measurement sensitivity to small losses resolved not
only for narrowly directed radiation, but also for strongly diverted light. In the
verification experiments [6.10, 6.11], the practically realized numbers of internal
reflections were varied from 4 to 16 and up to 32. When studying a mirror with
�qx � 0:995, the reproducibility of the observed readings was maintained at ±0.0003
with estimated random error D�qx ¼ �0:0005 [6.11].

Figure 6.9 illustrates the observed changes of surface-averaged specular reflec-
tance for a dielectric mirror coating versus the state of polarization (S or P) of
incident light and its angle of incidence (1 or 2). The high-reflecting mirror coating
tested was made by alternating 27 layers of silicon dioxide and tantalum pentaoxide,
deposited on a fused-silica superpolished substrate. The measured magnitudes and
fitted curves represent reflectance values at two angles of incidence in the meridional
plane for H ¼ 8° and H ¼ 30°, marked 1 and 2, respectively, and at two states of
polarization: one for each incidence angle – random and S polarization states at
H ¼ 8° (dotted lines), and random and P polarization states atH ¼ 30° (solid lines).
The resultant spectral narrowing for observed regions of high specular reflectance
corresponds to detected interchange of phase thicknesses of coating layers at a
greater average angle of light incidence (sagittal angles were not distinguished). The
highest mean reflectance, 0.9996 ± 0.0002, at k ¼ 520 nm, was registered for the
coating with 33 layers of Ta2O5/SiO2 at the smallest angleH ¼ 8° in the meridional
plane. The study in the confocal White cavity of Fig. 6.8 of direct transmittance for a
triple-layer antireflection coating on a glass slab provided the highest magnitude of
the acquired transmittance, near the 0.985–0.990 level [6.11].

6.2.1 Long-Path Matrix Cells

Owing to the focusing feature of the White cavity and its ability to tightly situate
intermediate confocal spots among adjacent retroreflections, vast variations of the
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Fig. 6.9 Averaged values of spectral reflectance q for a multilayer coated mirror versus the
wavelength in nm, state of polarization, and angle of incidence
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cavity design for long optical paths are found applications for detecting atmospheric
pollutants [6.12–6.25]. Simulating conditions of the upper atmosphere, cavities
often operate at cryogenic temperatures and involve Dewar assemblies maintaining
kilometer-long optical paths when needed [6.12, 6.13]. One example of prolonged
White cavity with a 2-km path is shown in Fig. 6.10 [6.13]. Compared with the
typical three-mirror design in Fig. 6.8, extra corner-mirror set M4 is added, being
formed from the plane lower and spherical upper mirrors, further forming an almost
vignetting-free image of the first half of all reflection series, doubling the number of
intracavity passes, and allowing one to form four rows of vertically displaced
images on intermediate mirror M2, suitable for matrix-detector arrays. The total
cavity path length [6.13] was adjustable in 80-m increments from 60 m to 2540 m,
but the maximum path length used was 1980 m, limited by vibration noise and
stray light of nearly 1%.

Another aspect of creating the long-optical-path cell relates to the ability to
discriminate among adjacent multiple reflections by setting focal points in hori-
zontal and vertical lines and allowing the use of matrix detectors. Figure 6.11
depicts one version of such a design, generating a square lattice of light-source
images while adding to the three-mirror version a focusing rooftop prism [6.15]
instead of the mirror assembly in Fig. 6.10. This matrix approach is versatile in
making a multireflection cavity function as a tapped delay line, with each tap setting
an equidistant increment between neighboring reflection spots, allowing one to use
measureable ratios of intensity among them for system calibration, determining the
average cell-mirror reflectance, and providing absolute measurements (see
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Fig. 6.10 Four-mirror
modified White cavity (beam
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Sect. 6.1). Figure 6.11 depicts focal light spots on the vertical projection of central
cavity mirror M2 and focal points c1 and c2 of mirrors M1 and M3 (see Fig. 6.8).
The first two rows of 2n points are seen with the third row starting from the point
2n þ 1 created after the 2nth reflection from lens-shaped rooftop prism P forming
one vertical line of points 2n − 1 and n, while the prism apex line is positioned in
the plane of mirror M2, all having the advantage of foci points not overlapping with
each other [6.15].

An alternative approach with the goal of doubling the total number of intracavity
reflections without the complexity of adding additional focusing mirrors while
using a tunable laser source for outside air pollution detection is shown in Fig. 6.12
[6.16]. Mirrors M1–M3 of a three-mirror White cavity have 10-m radius of cur-
vature and are made on quartz substrates dielectrically coated to 0.995 reflectivity in
two wavelength regions: 616 nm of an argon laser and at 308 nm as its doubled
frequency. Such a cavity design allowed up to 50 reflections in a laboratory
environment, but an appreciably lower number in open air owing to turbulence.
Corner mirror M4 is used here to strictly retrace an outgoing light beam for the same
cavity path to be measured via beam splitter BS, creating measurement and refer-
ence channels. A beam splitter of reduced size was used to limit beam wandering in
the atmosphere by vignetting beam offsets but inducing an extra 75% loss of power.
Nonuniformity of beams in the main and reference channels was further mitigated
by placing detectors D1 and D2 inside integrating spheres S1 and S2. The spheres
minimized the effects of interference noise due to multiple reflections in filters F1
and F2 placed in front of the respective detectors irradiated in each sphere by diffuse
light. Third detector D3 measured light transmitted by Reference Cell of the OH
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Fig. 6.12 Dual-path White multipass cell at light spot integration
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content via splitter B2, which with splitter B1 was used for beam-intensity stabi-
lization and concentration-sensitivity verifications. In the system’s internal cali-
bration, the differential signal between measurement and reference detectors, wired
at opposite polarity, was initially zeroed by aligning the position of each detector on
its sphere wall; therefore the specimen-induced signal was detected as the channels’
differential imbalance, further amplified and averaged. One channel of the signal
averager was used for the differential signal of detectors D1 and D2 and another was
used for the reference cell channel containing a vapor-calibrated concentration of
OH molecules. The detection sensitivity to OH absorption losses reached 3�10�6 in
a laboratory environment even with a 1-m-long absorption pass in the cavity, but
was reduced to near 6�10�5 for outside air for a multipass cavity absorption length
of about 1 km [6.16].

Fourier-transform spectrometer-based system with a three-mirror confocal cavity
having its measurement sensitivity enhanced by a scanning Michelson interfer-
ometer allowing time-multiplexing detection of all spectral components at a fixed
resolution is depicted in Fig. 6.13 [6.17]. It used either a 2.25 or an 8.7-m
base-cavity path, formed from four transverse passes each, with the small cavity
providing a path of up to 81 m for 36 total-cell passes and the large one providing a
path of 700 m for 80 cell passes. Each of the cells was sequentially used to measure
the cavity reference signal when the cavity was filled with clean air and the same
cavity signal for a pollution sample. The scanning IR Michelson interferometer
consisted of spherical mirror MS focusing light from source S onto stable mirror
MT in transmission, and onto scanning mirror SM in reflection from beam splitter
BS, all paired with a White cavity of mirrors M1–M3. During one scan of inter-
ferometer mirror SM, creating a sine-wave modulation in the kilohertz range, the
detected signal was digitized at the spectral resolution desired, with every scan
repeated until the best signal-to-noise ratio was reached for the averaged scan result,
providing the combined signal interferogram of the spectrum measured.
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Fig. 6.13 Interferometer-based IR scanning system
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Another expanded-cell version of a Fourier-transform interferometer-based
system with a large multipass cavity of eight mirrors is illustrated in Fig. 6.14 [6.14,
6.18]. In-focus side A of expanded cavity LC consisted of four rectangular mirrors
(all 6.4 cm wide – three 32-cm long, one 28-cm long), accommodating entrance
and exit beam apertures. The collecting side B of the cavity had four round mirrors
30 cm in diameter positioned 22.5 m from the mirrors on side A, which were
gold-coated for high IR reflectivity, yielding the total cavity light path in kilome-
ters. Such a large cell was used to detect reactive pollutants, allowing efficient
separation of interference spectrums from water vapor, while for detection of
nonreactive polluting species a 3-cm3 volume cavity with a 115-cm-long path was
deployed. Each cell was combined with a Michelson interferometer of 0.5-cm−1

spectral resolution and liquid-nitrogen-cooled detectors: InSb and HgCdTe for
2000–3900-cm−1 and 600–2000-cm−1 spectral regions, respectively. The effective
detection sensitivity to trace pollutants in air was approximately 2 � 10�11 [6.18].

Commonly in pollution-detection spectroscopy two identical cells are attached to
a dual-beam spectrophotometer – to be filled with a pollutant in the measurement
channel and with clean air in reference channel (see Chap. 4 for specific examples).
When a large multipass cavity is used, especially with its light path to be stabilized
and environmentally protected, it is practically beneficial to reuse a single cell in
various configurations, thus allowing to make comparison measurements. Instead of
referencing the pollutant-based reading to the clean-air one, referencing of the
multipass signal can be made to the signal of a single pass of the same cavity via a
tunable-mirror cavity for path-differencing [6.20]. Similarly to creating multiple
reflections between variably spaced mirrors (see Fig. 6.1), the White cell can be
tuned to have a single cavity path, consisting of four cavity steps among three
mirrors, and to other multiples of 4 (Fig. 6.15). For the single cavity path, mirror
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Fig. 6.14 Expanded-cavity interferometric IR scanning system
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Fig. 6.15 Path-differencing in the standard three-mirror White cavity
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M3 is tuned to forward the incoming beam on exiting the cavity right after the first
four passes in the three-mirror cavity space, making one focal spot on central mirror
M2 (Fig. 6.15a). Another position of mirror M3 is tuned for the N-spot optical path
for 2(N þ 1) single passes via a cavity of length L (Fig. 6.15b). The ratio of the
output beam intensity in the cavity of one and N light spots gives the total internal
attenuation for the species under study via the optical-path difference:
DL ¼ 2 ðN�1ÞL. Such a path-differencing technique utilizing a T-shape form of
center mirror M2 by cutting out the input and the output sections and also splitting
intracavity images into two rows, which was first proposed in earlier work [6.19],
was tested with a deuterium fluoride (DF) pulsed laser at 2631-cm−1 wavelength
and 0.3-Hz pulse-repetition rate via a 25-spot multipass cavity capable of being
repositioned into one-spot alignment with ±1-mm tolerance in 1-min intervals,
resulting in 1% repositioning error. For the empty three-mirror cavity, the 25:1 path
ratio provided 0.314 ± 0.003 average-reflectivity value for 24-path transversal of
the cavity, having 10% intensity fluctuations for the beam focused on mirror M2. To
avoid focusing on mirror surfaces, the cavity was readjusted for middle-space
collimation, reducing the outcome of intensity oscillations and respective system
noise to within ±1% [6.20].

Another alternative design for expanding a matrix-forming multipass cavity is
shown in Fig. 6.16, in which the cavity expansion is accomplished by combining
two three-mirror cavities via another three-mirror cell and having a common mirror
for all three cavities [6.21]. The first cell contains concave mirrors M1, M3 and M2,
the second cell contains similar mirrors M3, M5 and M4, the third cell contains
central mirror M3 and two diagonally placed ones –M6 and M7. Mirrors M6 and M7

have the combined focal length of the other mirrors. Reflectors M1 and M3 and M3

and M5, being double mirrors for the standard design, are offset against each other
to provide connectivity with diagonal mirrors M6 and M7 of the connecting cell. As
in the three-mirror White cavity, the images in the expanded cell are formed on the
surfaces of respective central mirrors M2 and M4, but after half of the total trans-
verse path via the cavity, diagonal mirrors M6 and M7 turn the light path to mirror
M3, which returns it back on the same path, but from the opposite direction. Similar
trajectories can be repeated by realigning the third-cavity set of mirrors [6.21].

M3 M5M1M4M2

M6

M7

1

N

Fig. 6.16 Three
interconnecting-cell based
multipass cavity

334 6 Systems of Multiple Reflections



The even number N of four-path cavity transversals depends on positioning of
the middle mirror M3 and diagonal mirrors M6 and M7, as well as on the ratio of the
cavity and light-beam diameters D/d:

N ¼ ðD=dÞ3=
ffiffiffi
2

p
�

ffiffiffi
2

p
=dþ 2: ð6:20Þ

The largest attainable number of total cavity reflections is limited by the astigmatic
elongation of intermediate images in every subcavity (Eq. (6.15)). To deal with
broadening, a further cavity expansion can be done by replacing each of the two
diagonal mirrors M6 and M7 by the set of three mirrors rotating the intermediate
image by 90° every time light passes them [6.21].

The multimirror and matrix-imaging upgrades of the White cavity, while
increasing the size and substantially lengthening the intracavity light path, lead to the
related decrease of output image stability and higher aberrations due to the astig-
matic image elongation. A compact approach [6.22] to advancing the multipass
cavity involving a few large-aperture concave mirrors densely packaged on adjus-
table stages is illustrated by Fig. 6.17. One corner or rooftop mirror (see Figs. 6.9
and 6.10) is replaced by individually aligned narrow-field mirror M4 of the same
radius of curvature as center field mirror M2, while another concave mirror objective
M5 is added to the opposite side of the cavity, along with dual mirror objectives M1

andM3. As in the confocal three-cavity White design, conjugated mirrors M1 andM3

are set at such an angle to each other that the separation distance between focal spots
on the surface of mirror M2 is half of the distance between adjacent images. The
initial formation of images in this expanded cavity (Fig. 6.17a) is also identical to
that in the original White cell, until the first two rows of the input spot images are
formed, and the light beam reaches additional mirror M4, from which it is redirected
to auxiliary mirror M5, reflected back to M4, and forwarded to mirror M1 as coming
from another inlet window forming a secondary pair of rows. One version of the
design adds two auxiliary mirror objectives M5 and M6 instead of one (Fig. 6.17b).
These objectives may not necessarily have identical dimensions or focal distances as
the main cavity mirrors and are conjugated in pairs, such as M1 and M6 and M3 and
M5, but commonly all mirrors have the same radii of curvature [6.22].

The design of a two-field and three-objective mirror system was intended to
improve the stability of images while keeping low image distortions with number
N3 ¼ 2(mk − 1) of transverse light passes, where m ¼ 1, 2, 3… is the number of
columns and k ¼ 2, 4, 6… is the number of row pairs in the image matrix. The
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Fig. 6.17 Matrix-imaging three- and four-objective multipass cells
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four-objective matrix system in Fig. 6.17b was designed to increase the energy
density in the cavity via image superposition for number of passes N4 ¼ (k − 1)
(4m − 2), with double superposition of images occurring for k � 4, m � 2 when
retracing the same matrix backward, assuming consequent interference noise can be
disregarded. The largest number of targeted passes depends on the accuracy of mirror
positioning, such as rotating and tilting the angles of mirror objectives (marked by
arrows in Fig. 6.17), and constancy of angular steps, as well as factual variations of
mirror curvatures and profiles. Other limitations for the number of sustainable passes
come from aberration tolerances. For the exemplary cell in Fig. 6.17a, having radius
of curvature of the mirrors r = 1000 mm, dimensions of field mirrors M2 and M4 of
100 	 100 mm2 and 90 	 10 mm2, respectively, and all three objectives M1, M3,
and M5 being 60 mm in diameter, the system tolerated nearly 100 passes for a
150 	 10 µm2 input image with estimated astigmatic elongation on the periphery of
the images not exceeding 0.8 mm for 218 passes analyzed [6.22].

One approach for tightening the internal multipass-cavity space utilizes flat field
mirrors instead of concave ones (Fig. 6.18). The design [6.23] precedes the White
cavity arrangement and uses four mirrors (concave M2 and plane M1, M3 and M4),
while the later set is placed at the center of curvature of mirror M2. Incident light
focused on input mirror M1 is reflected to mirrors M2, M3 and M4 and again to
mirrors M2, M3, and M4, forming a pipe, until exiting in between right-angle-
positioned mirrors M3 and M4. The cavity is aligned for the longest internal path
when the right angle is tuned under 90° for the light path from M3 to M4 being
parallel to horizontal positioning of mirror objective M2, accommodating a high
relative aperture, but with high losses due to vignetting by mirrors M3 and M4.

The concept of utilizing the V-shaped cavity approach with two concave and two
flat mirrors which are spaced at 1.5-focal distance versus the common 2f- or
so-called curvature-spacing is depicted in Fig. 6.19. The shorter spacing permits
one to convert a four-single-pass cavity transversal into a six-pass path from the

Fig. 6.18 V-shape
four-mirror multipass cavity
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Fig. 6.19 Three-mirror
V-shape six light-pass cavity
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entrance to the exit via central holes in mirrors M3 and M4, obtaining the largest
relative aperture reaching f/3.7 [6.24]. First three cavity passes via reflections from
mirrors M2 and M3 form a twofold magnified image of the entrance spot on concave
mirror objective M2. The next three cell passes and reflections from mirrors M1 and
M2 further direct the input light beam to exit via mirror M3. On this six-pass
trajectory, reflections from mirror M3 produce radiation losses via the exit hole,
requiring its relative area to be sufficiently small.

As the V-shaped cavity was designed to match high-resolution systems of large
f-numbers, the three-mirror White cavity (Fig. 6.20) could be fitted into the
parallel-beam compartment of a spectrometer [6.25]. The diverging light beam
exiting output aperture 1 of spectrometer S is coupled by mirror-pair A, B into the
cavity of mirrors M1, M2, M3. The matching mirror-pair C, D, retaining the
spectrometer throughput, forms the light beam emerging out of the cavity to
detector D via slit 2. Such a parallel-beam propagating cavity was tested in
eighteen-pass configuration with an FTIR spectrometer detecting air exhausts
respectively at 6-, 9-, 100- and 4-ppm sensitivity to NO, NO2, CO2, and CO traces.

A version of the White cavity, almost eliminating astigmatic elongation for a
single point of a chosen image with optimized settings of the image rows and columns
[6.26] is illustrated in Fig. 6.21. The round entrance beam comes atop of mirror M2
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Fig. 6.20 Parallel-beam coupling of White cell
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Fig. 6.21 Astigmatism-optimized setting of a White cell
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(0 spot) and leaves after N transits over the cavity space, allowing for separationW of
two image rows on the surface of mirror M2. For the center of output image N,
astigmatism should vanish for the optimized ratio of the row width W to height H:

W=H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþ 2Þ=3ðN � 2Þ

p
: ð6:21Þ

Balancing astigmatism for the inside and outside edges of the output image of
radius rim requires width W ¼ rim

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 52ð Þ=48p

, therefore converting the image
width-height ratio requirement to [6.26, 6.27]:

W=H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 52ð Þ=3 ðN � 2Þ2

q
; ð6:22Þ

where H ¼ 2rimðN� 2Þ=4 is the row height. With the astigmatism balanced to have
opposite signs at the inside and the outside edges of image N, the astigmatic
elongation of images with row separation W by Eq. (6.22) versus rows packed at
Wd ¼ 2rim was about 5 times less for 82 passes [6.26].
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Fig. 6.22 Prisms-enhanced
three-mirror cavity

To restrict image instabilities due to extended optical paths (see Figs. 6.10, 6.14
and 6.16), a White cavity may be enhanced by prism reflectors [6.28], similarly to
the corner-cube reflector-based cell shown in Fig. 6.7. The confocal three-mirror
(M1–M3) cavity is enhanced by three prism reflectors P1–P3 with light entering and
leaving the cell under prism P3 (Fig. 6.22a). Figure 6.22b depicts the positions of
images from 0 to N, showing the shift within prism P1 from point 7 to point 7′, for
56 focal spots on mirror M2 for a total of 112 cavity passes for a 672-m-long light
path for 6-m mirror spacing. An offset similar to that for prism P1 (point 7 to 7′) is
formed by prism P2 (point 14 to 14′) and prism P1 (point 21 to 21′), and switching
to prism P3 for points 28 to 28′, at which the beam returns parallel to the incoming
beam and the cycle repeats, until at N ¼ 56 the entered light leaves the cavity. Such
a stabilized cell allowed to reach a nearly 3 ppb trace-sensitivity level for
Fourier-transform IR spectroscopy [6.28]. The function of the prisms in such a
design is to compensate for an angular displacement caused by a mirror
misalignment, after which each progressive reflection deviates the beam further
from its optical path. In the conjugated points, such as 7-7′, the beam is reflected in
the same direction, but at the opposite angle, compensating for the angular offset in
the prism plane, and repeating it in other prisms.
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A drawback of angular-error compensation by prisms is associated with factual
divergence of a light beam entering the cavity, which can eventually lead to much
higher attenuation than predicted for the paraxial beam. An enhancement of the
prism-based design can be made using multiple-facet reflectors as schematically
illustrated in Fig. 6.23 for each of two reflectors behaving like four different prisms
[6.29]. Two reflectors could replace prisms P1 and P2 in Fig. 6.22, if they satisfy the
constraints for retaining the beam inside the cavity. Ultimately, introduction of
plane surfaces into any White cavity requires detailed ray tracing to be performed
for the entire cell not to have extreme throughput losses or aberration distortions.

Figure 6.24 depicts a modified and experimentally verified version of the
all-concave two-field mirror and three-objective mirror cavity, shown in Fig. 6.17
[6.31], upgraded to primarily separate input and output beams to opposite sides of
the narrow field mirror, instead of having them adjacent to each other [6.30]. One
radius of curvature set for all mirrors defines the cavity length, with the center of
curvature for main field mirror F1 located between main objective reflectors O1 and
O2 as in the three-mirror design (Fig. 6.8), while that for the added narrow field
mirror F2 is between O1 and O3 in the plane, bisecting them in the same way as does
the center of F1. In the setting illustrated in Fig. 6.24, the 36 images on field mirrors
correspond to 72 transverse passes of the cavity, identified as optimal from
signal-to-noise ratio considerations for a total light path of approximately 128.5 m
and average reflectivity of all five mirrors around the �q ¼ 0:9865 level, allowing for
that cavity, attached to a Fourier-transform IR spectrometer, to reach 20–30 ppb by
volume (ppbv) short-term sensitivity, and nearly 50–80 ppbv with the system fan
turned on [6.31].
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6.3 Mirror Waveguides

With the three-mirror cell approach, a beam of light enters and exits the multipass
cavity along its opening section and the lowest achieved angles of incidence are
limited by the cross section of the cavity and the beam. To reduce the angles of
incidence, the cavity entrance and exit are made on opposite sides of the single
mirror. To enhance handling of diverging light beams at the narrowest separation
possible, a system of multiple reflections can be constructed as an open resonator
formed by two concave mirrors. From the standpoint of transformation of radiation
energy, a coaxial pair of mirrors of the same radius of curvature R is similar to a
symmetrical lens waveguide [6.32]. For an off-axis point on one mirror of that
waveguide cavity with coordinates X0, Y0, any paraxial beam incident at such a
point in a direction making angles H,W to the cavity axis in meridional and sagittal
planes after N reflections has coordinates [6.32]:

XN ¼ X0 cosNuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
4 f � d

s
X0 þ 2 f tanHð Þ sinNu;

YN ¼ Y0 cosNuþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d
4 f � d

s
Y0 þ 2 f tanWð Þ sinNu; ð6:23Þ

where d is the period of the waveguide or the distance between its elements, f ¼ R/2
is the focal length of the cell mirrors, and u is the polar angle of an intermediate
source image: cosu ¼ 1� d=2f:

Any transitional image is located inside the cavity while the polar angle u
remains real and thus cosuj j6 1 and 0
 d
 2R. In the configuration illustrated by
Fig. 6.25, beam intersections with each of two mirrors form an ellipse of the
respective coordinates [6.32, 6.34]:

XN ¼ A sinðNuþ aÞ; YN ¼ B sinðNuþ bÞ: ð6:24Þ
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Fig. 6.25 Light path inside two-mirror waveguide (a) and transformation of image positions
versus waveguide length (b)
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Semiaxes A and B of each ellipse and ellipse orientation parameters a and b are
identified as [6.32]:

A2 ¼ 4 f =ð4 f � dÞ½ � X2
0 þ d X0 tanHþ d f tan2 H

� �
;

B2 ¼ 4 f =ð4 f � dÞ½ � Y2
0 þ d Y0 tanHþ d f tan2 W

� �
;

a ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 f =dð Þ � 1

p
1=ð1þ 2 f tanH=X0Þ½ �

n o
;

b ¼ arctan
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 f =dð Þ � 1

p
1= 1þ 2 f tanW=Y0ð Þ½ �

n o
: ð6:25Þ

A beam of light entering such a resonator through a penetrating aperture or an
unreflective zone E in one of the mirrors reaches the same entrance region after an
N/2 complete passes or after N single passes of the resonator at: 2Nu ¼ 2jp; where
j ¼ 1, 2, 3… The ellipse turns into a circle if both semiaxes A and B are equal for
the angular constants differing exactly by p/2: a ¼ b� p=2. The maximum realized
number of reflections on each mirror is then defined by the beam diameter D and by
its circumference: L ¼ 2pA. For example, at W ¼ 0, a circle of radius A is formed
at Y2

0 ¼ X2
0 ð4 f =dÞ � 1½ �; A2 ¼ X2

0 þ Y2
0 ¼ X2

04 f =d; tanH ¼ �2X0=d ¼ �A=
ffiffiffiffiffiffi
f d

p
.

After the first N reflections which are formed on the ellipse or circle, the spots
repeat the round. That causes interference of crossing light beams, restricting the
number of attainable reflections for most laser applications.

Alteration of the number of reflections within each closed cycle for light to leave
the cell via the entrance aperture can be realized by changing the distance d between
two mirrors. In the concentric configuration d ¼ f, u ¼ p=3; thus, there are six
waveguide passes before a light beam exits through the cell entrance opening
(Fig. 6.25). The displacement of one of two mirrors into confocal setting d ¼ 2f
ensures coincidence of entrance and output images after each four passes corre-
sponding to three mirror reflections. The total number of passes N and the azimuth
angle u between adjacent intersection points providing the beam closure condition:
Nu ¼ 2ip; are:

N ¼ 2ð2iþ 1Þ; u ¼ 2i p=N ¼ ðN � 2Þ=ð2NÞ½ �p; ð6:26Þ

where i ¼ 1, 2, 3…. Since cosu ¼ 1� d=ð2 f Þ, the distance dN related to any
closed-cycle (reentrant) optical path of N light passes in such a spherical mirror
waveguide becomes:

dN ¼ 2 f 1� cos
N � 2
2N

p

� �� �
: ð6:27Þ

Here the closed-path distance dN asymptotically tends to the mentioned confocal
configuration at the limit N ! 1. If d ¼ 2f, the ellipse is closed at N ¼ 4,
requiring one turn of the light spots.

The number of light passes via the cavity needed to reach a specific sensitivity of
the loss measurement is defined by the optical losses to be resolved. Assuming that
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every action of light entering or exiting via an opening is maintained with no addi-
tional losses, the total attenuation factor for the filled cavity becomes
c ¼ �qN ¼ ð1� �vÞN . Here �v is the average loss for a given wavelength for a single
reflection or for a single pass having the medium under study inside the waveguide.
Hence, the cavity’s relative sensitivity to the total optical loss studied is equivalent to:

D�v
1� �v

¼ 1
N
dc
c
;

D�v
�v

¼ �Dc
c

1
N

1
�v
� 1

� �
: ð6:28Þ

To reach attenuation Dc=c ¼ 10% at �v ¼ 1� �q ¼ 0:005, near 199 reflections are
required, leading to average cavity-reflection loss or inserted-loss sensitivity
D�v ¼ N�1Dc=c ¼ 0:1 � 0:005 ¼ 0:05%.

As for other cavities, the higher is the number of cavity passes, the greater is the
sensitivity not only to losses, but also to cavity misalignments. From Eqs. (6.23)
and (6.27), the relevant errors are:

DXN ¼ �N2

2
X0

2d f � f 2
ðDdÞ2; DYN ¼ NY0

2 f � d
Dd: ð6:29Þ

For working distances f
 d
 2f, the absolute magnitudes of errors are given by
[6.32–6.34]:

DXNj j6 N2X0

6 f 2
ðDdÞ2; DYNj j6 NY0

2 f
Ddj j: ð6:30Þ

If a light beam enters and leaves the cavity after the Nth pass via the opening, it can
be shown [6.33] that the positions of the images for the first and the (N − 1)th

transformation by cavity mirrors are independent of the number of passes. Thus,
x0N�1 ¼ x0=fþ x00 and y0N�1 ¼ y0=fþ y00. For the simplest confocal match: d ¼ 2f,
these two images are turned by p/2 in the x-y plane, the entering and exiting spots
on mirror 2 are symmetrical: x00 ¼ �x0=2f; y00 ¼ y0=2f; x0N�1 ¼ x0=2f; and y0N�1 ¼
x0=2f, and the spot displacement D‘ depends on the length ‘ of the optical part
inside such a cavity [6.34]:

‘ ¼ Ndþ X2
0

4 f � d

XN
m¼1

sin2 muþ
XN
m¼1

sin2ðm� 1Þu
" #

ffi
2 f � d;
u � p=2

Ndþ NX2
0

4 f � d
:

ð6:31Þ
Here the displacements are considered to be relatively small and are approximated
as D‘ ffi NDd.

Interference among consecutive reflection cycles can be prevented, while also
increasing the number of cavity passes, if after each loop the ellipse is displaced

342 6 Systems of Multiple Reflections



around the cavity axis. A purposely created astigmatism in one or both mirrors
[6.33] via unequal focal points: fx 6¼ fy, in x�y orthogonal planes causes inequality
for x-y spatial frequencies and precessing of the ellipses:

cosux ¼ 1� d=ð2 fxÞ; cosuy ¼ 1� d=ð2 fyÞ: ð6:32Þ

As a result, subsequent spots of light intersection with the mirrors precess across the
cavity’s cross section, not only preventing interference, but also significantly
increasing the path length, as long as each intermediate spot does not overlap with
the entrance and the exit ports of the cavity. Actual transformation of every light
beam projection onto the orthogonal x�y plane depends on the way the perturbing
mirror deviates the beam, as well as on the specific fx/fy ratio and parameters of the
beam and the waveguide. A similar effect can be achieved by inserting into the
waveguide an auxiliary mirror, deflecting the light beam and rotating the precessing
ellipse around the cavity axis [6.33]. Subsequent experiments in a cell made of
3-m-spaced, 7.5-cm-diameter, 10-m-radius mirrors on 1.25-cm-thick fused-silica
substrates initiated a 1000-pass folded line, traversing a 3-km path length with 10-
µs delay at 10-dB power loss in the entire waveguide [6.33]. Reflectance mea-
surements in the waveguide of two gold-coated 100-mm-diameter, 497-mm focal
length mirrors via a least-squares fit of logarithmically plotted pulse averages of a
grating-tuned deuterium-fluoride (DF) laser at k ¼ 3.9843 nm versus the number
of passes resulted in an average reflectance of 0.9839 for Ni,j ¼ 10, 50 and of
0.9844 for Ni,j ¼ 14, 154 [6.34]. Other versions of multipass cavity may include a
single toroid-mirror cell, which optical pathlength is given by its incidence angle
[6.86], a confocal [6.87] or aberrated cell [6.88].

Another advantage of either an astigmatic-mirror cavity or an auxiliary-mirror
cavity for rotating a precessing ellipse of images is in filling the cavity space more
tightly, with evenly and wider spaced images, and realizing a higher volume density
than in a regular three-mirror White cavity, though requiring extreme precision in
mirror manufacturing tolerances. One way of compensating for mirror tolerances is
in adjusting the cavity spacing and rotating one mirror versus the other [6.35, 6.36].
Errors in mirror radii for a given set of astigmatic mirrors may be compensated for
by a combination of rotation and separation of two mirrors reaching various
reentrant patterns identified by the light trajectories. A central-input 3.2-liter (l) cell
was made of astigmatic 7.6-cm-wide aluminum octagon mirrors as an 8.655 cm2

cylinder of 1.4-l illuminated volume for a 5-cm-wide beam and 100-m pass length
via 182 total passes. The cell was coupled to a tunable rapid-sweep diode laser,
operating in the 4.5- and 7.5-lm wavelength regions at 30-Hz data acquisition.
A visible-trace coaligned laser was utilized to realign the cell for reentrant patterns
at 90, 182, 274, 366, and 454 passes measuring the cell’s transmittance: the
182-pass transmittance was 20%, yielding 99.2% average mirror reflectivity [6.36].

In view of rather tight tolerances for astigmatic mirror cells, even with rotation
and variable-spacing capabilities, by limiting the number of the attainable reentrant
conditions for the central-input type cells, one can use somewhat less demanding
cylindrical mirror pairs [6.37] or cylindrical–spherical mirrors in the near reentrant
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cavity configurations [6.38]. Figure 6.26 depicts the design of a cylindrical-mirror
cavity in which each mirror principal axis is orthogonal to another at unequal focal
lengths f1 6¼ f2 � f. This way, the x and y cavity axes contain one curved and one
flat surface at fx 6¼ fy. Dense Lissajous patterns may be formed for small mirror
reflection spots, but for a limited number of reentrant solutions, which essentially
are not required for photoacoustic loss measurements (see Chap. 9) since light
intensity is not measured, thus allowing for more cavity passes [6.37]. Waveguides
of two 5-cm square cylindrical mirrors – a set having 64.8-mm focal length with
4.7-mm-diameter central hole in the input mirror – and either unequal cylinders of
f1 ¼ 64:8 and f2 ¼ 51:9mm or a cylindrical–spherical set with fc ¼ 64:8mm and
fs ¼ 100 mm were tested with a He–Ne laser at 632.8 nm [6.38]. For not rotated
mirrors, the 26-pass spot pattern was obtained at the mirror distance d=f ¼ 0:88,
and rotation of the input mirror by a � 9° led to N ¼ 122 passes.

For certain waveguide configurations, it is desired to convert the ellipses of
light spots into circles, allowing use of the cavity volume for adding tools, such
as cylindrical electrodes in Stark-modulation spectroscopy [6.39]. Rewriting
the reentrant conditions of Eqs. (6.26) and (6.27) in the form: Nu ¼ 2pM;
u ¼ 2pM=N; for M ¼ 1, 2, 3…, the reentrant number of passes becomes:
N ¼ 4 M ± K for K ¼ ±2, ±4…, where positive K corresponds to d < 2f and
negative K corresponds to 2f < d < 4f [6.37, 6.38]. Given that at confocal setting
d ¼ 2f and K ¼ 0, the input beam entering the cell at coordinates x0 ¼ 0, y0 ¼ 1
with slopes H ¼ W ¼ 45 makes the first spot at x0 ¼ 1, y0 ¼ 0 and leaves the cell
after four internal passes. Obviously, only sets of the lowest N numbers are of use
in various N, M configurations before light exists the waveguide. For relatively
large slopes, d < 2f configurations can lead to large beam spots and walk-offs on
mirror edges, but for small angular displacements and large focal lengths, high
values of N with small numbers of spot orbits may be reached. For f ¼ 5500 mm at
d ¼ 466.4 mm, a 32.5-mm-radius spot circle was realized at N ¼ 86 and M ¼ 4
by injecting light at H ¼ 1.13° and W ¼ −0.19° via a 4.5-mm hole, having
approximately 40-m total cavity light path at 4.6-mm spot separation [6.39].

Fig. 6.26 Near re-entrant
mirror waveguide cell
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deff

d
Fig. 6.27 Effective distance
in a cell

For waveguides assembled from highly curved spherical mirrors having light
reflection spots placed distantly from the optical axis as in Fig. 6.27, the paraxial
approximation of light propagation via the waveguide cell is invalid since the
effective distance deff between mirrors becomes shorter, owing to the circle of spots
being positioned on the effective radius: R2

eff ¼ R2 � R2
circle. Substituting for deff at

d/f ¼ deff/feff in Eq. (6.32) leads to [6.40]:

deff ¼ d � 2 R�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

circle

q� �
;

R ¼ 2f ¼
8dþ d=f � 4ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4d2 þR2

circled=f d=f � 8ð Þ� �q
d=f 8� d=fð Þ : ð6:33Þ

Equation (6.33) accounts for a finite spot-circle radius letting one to set the d/f ratio
via N, M, and Rcircle. For the cell allowing multiple concentric spots to coexist and
thus permitting studies of various species without readjustment of that radially
symmetric cell requires the cell mirrors to be elliptic with surface profile z(r) being a
function of the elliptical surface radius r satisfying the following equation [6.40]:

zðrÞ ¼ 0:5 d �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � d=fð Þr2

p� �
: ð6:34Þ

6.4 Raman Scattering: Enhancement of Sensitivity
and Mitigation of Fluorescence

The Raman and Brillouin phenomena of weak molecular scattering, caused by in-
teraction of light with molecules in quasi-transparent media – absorbed and reemitted
at Raman frequencies, elastically scattered by individual molecules, or inelastically
diffracted on ultrasonic oscillations due to acoustic perturbations of molecules as one
ensemble, by the nature of each effect dictates using a multiplication schematic to
measure the intensity of light scattered by each phenomenon. Laser irradiation is
practically always required to excite a detectable signal, Stocks-shifted to Raman or
Brillouin frequency of emission or diffraction along with the highest possible
wavelengths resolution, separating a minute spectral shift at the Stocks or anti-Stokes
frequency from Raleigh scattering at the excitation wavelength plus from
broad-spectrum fluorescence in Raman studies and from otherwise negligibly-low
amplified spontaneous emission of the laser used in Brillouin spectroscopy (see
paragraph 12.2).
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6.4.1 Multiplication Schemes

In Raman spectroscopy expanding a number of multiple passes of light in a mul-
tipass cavity allows to substantially enhance the sensitivity of measurements to such
intracavity losses as scattering and absorption, while sensing the intensity of the
light interacting with the cavity mirrors and its interior. In distinguishing the Raman
signal the enhancement needs to be made not only by multiplying the radiation
scattered in 4p space, which could be done via an integrating sphere, but also to
each single interaction of pumping laser radiation with Raman-scattering substance.
The two-mirror waveguide reviewed earlier, combined with a surrounding set of
multiple detectors for the radiation scattered into 2p angle, illustrates the approach
(Fig. 6.28). The total scattering factor is measured by interpolating adjacent
detected scattering signals to spatial regions not viewed by the detectors or via
adding a scanning capability [6.41]. Another enhancement when using the
waveguide cavity for Raman scattering is due to refocusing of the probe beam
helping to enhance the Raman gain [6.42, 6.43].

The symmetrical waveguide depicted in Fig. 6.28 was itself capable of changing
the cavity length d from f to near 2f, with the number of reflections successfully
maintained between six to 170 [6.34]. Sulfur dioxide in a gas mixture of SO2 at
37:1 � 103 Pa and of N2 at 96 � 103 Pa was studied in that cavity. A beam of light
from a DF excimer laser at k ¼ 3.9843 lm entered the cell via a 2-mm-diameter
entrance aperture, being displaced by X0 ¼ 42:5mm from the cavity axis. The
cavity consisted of gold-coated off-axis paraboloids with focal length f ¼ 0.5 m.
Each detector registered an average power of 20 laser pulses with nearly ±0.5%
random error. The average two-mirror reflectance q and linear absorption coeffi-
cient a of a gas mixture were determined via the slope of the logarithmic depen-
dence of the average reflectance �q upon a number of reflections (see Eqs. (6.16)–
(6.19)). That number changed between ten and 50 at corresponding distances ‘ of
10.99 m and 46.78 m. The measured magnitudes of q and a were, respectively,
�q ¼ 0.9844 ± 0.0002 and �a ¼ (0.0866± 0.0004) m−1. Displacement of light spots
did not exceed ±0.1 mm even for 102 reflections and ‘ ≅ 102 m. In the cavity
made with spherical mirrors having 100-mm radii of curvature, the number of
reflections reached 66 for images of diameter 1.5 mm and for D‘ ¼ ±0.2 mm
[6.34]. Multilayer dielectric ZnS–cryolite (NaALF6) mirrors having radii of

mirror 2

mirror 1

Fig. 6.28 Enhancement of
scattering signal
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curvature of 10 m and diameters of 75 cm were also measured in an astigmatic
waveguide [6.33]. An enforced fx − fy foci difference within a few k ¼ 633 nm
wavelengths of a He–Ne laser was sufficient to maintain 168 reflections inside that
waveguide with distance d ¼ 3 m between mirrors. The highest measured average
reflectance approached 0.998 ± 0.0005 [6.41].

Figure 6.29 illustrates a laser system for Raman-scattering detection which uses
spectrally resolved polarized laser light at orthogonal excitation–observation
directions, with Dove prism P2 rotating the Raman scattering plane out of the
excitation and Rayleigh scattering plane set by prism P1 [6.45]. The concept rep-
resents a straightforward approach of increasing the sensitivity to Raman scattering
by raising the incident power density of light excitation directly via a source inside a
resonator of a laser [6.45] or via a multireflection cell of mirrors M1, M2 directing a
focused retroreflected beam to pass by the observation region multiple times [6.46].

A version of Raman-scattered signal enhancement is depicted in Fig. 6.30,
having linearly polarized light passing via a cavity consisting of a two-concave-
mirror cell and a four-concave-mirror cell – with the excitation in one direction and
Raman scattering viewed in the transverse direction [6.45]. Crossing states of
polarization of incident laser light and the observed scattered light allow one to
minimize Rayleigh scattering, which along with stray light could be intense.

The laser excitation beam enters and exits the waveguide cell of mirrors 1 and 2
via Brewster-angle windows BW, experiencing several interactions with a gas
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Fig. 6.29 Intraresonator excitation for Raman scattering
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filling the cell. Another side of the cavity is formed by the cell of mirrors A, B, C,
and D, all of radius r, while mirrors C and D have a common center c,d forming one
spherical surface, but the centers of curvature a and b of mirrors A and B are
crossed, letting one reaching sufficient sensitivity to observe Raman scattering
excited by cw laser light. A more efficient concept of focusing excitation light and
collecting Raman scattering can be realized in multireflection cells using elliptical
mirrors [6.47]. First, a two-mirror cell, consisting of identical on-axis ellipsoids,
therefore letting a beam of exciting laser radiation enter the cavity at the maximum
divergence angle u and exit after a number of internal reflections sequentially
focused by cell mirrors with foci f1 and f2, is shown in Fig. 6.31a. A light beam
incident on mirror 2 via its focus f2 at radius r2 reaches mirror 1 via the second
focus f1 at radius r1 ¼ r2(1 − e)/(1 þ e), where e ¼ c/a is the ellipse’s eccentricity.
The maximum angular aperture u, as the difference of the maximum and minimum
angles u0 and u1, and f number F are related as 1/2 � tan(u/2) [6.47]:

tanu ¼ 2ar2e 1� e2
� �

= a2ð1� e2Þ2 � r22e
2

� �
; F ¼ a 1� e2

� �
=2r2e: ð6:35Þ

For the width of the first image of the incident beam focused at f2 defined by the
Airy diffraction circle of diameter d0 ¼ 2.44kF [1.1], the second image in focus f1
has diameter d1 ¼ d0M, where M is the ellipse’s magnification: M ¼ (1 þ e)/
(1 − e). Subsequently, the diameter of the Nth image is defined by a progression:

dN ¼ d0MN; N ¼ 0; 1; 2; . . .; ð6:36Þ
with the number N (integer) of internal passes experienced by a beam entering the
cell given as:

N ¼ INT ln dN=d0ð Þ= lnM½ �: ð6:37Þ
If the Nth image is larger than D ¼ 4c � tanu1, light escapes the cell as a cone at
half-base angle u0:

D ¼ 4c � tanu1 ¼ 4cr2= cþ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r22= a2 � c2ð Þ

q� �
: ð6:38Þ

(a) (b)

Fig. 6.31 Multiple reflection cell for Raman scattering
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Figure 6.31b illustrates a single-focus ellipsoid mirror-based system with a flat
second mirror imaging the second focus of the ellipsoid in reflection to coincide
with the first one. Owing to the relatively small image sizes of the retroreflected
light spots for eccentricity e below 0.1–0.2, the system allows reaching a suffi-
ciently high number of reflections – 32 in an experimentally confirmed cavity,
despite ellipsoid-mirror systems being susceptible to coma aberrations [6.47].
Figure 6.32 shows the dependencies of the image diameters and N and F versus
eccentricity e.

Specific difficulties of using the ellipsoid-mirror systems are defined by the very
low eccentricity e at which high numbers of intracavity reflections are achieved, and
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not necessarily high spatial resolution. Another design of the focusing light-trap
cell, giving higher resolution at a lower intensity gain, is shown in Fig. 6.33 [6.48].
The cell consists of two corner-cube mirror assemblies – one on-axis and another
slightly off-axis – combined with a pair of focusing lenses.

On-axis mirror pair 1 is assembled having one circular opening for the laser beam
to enter the cavity and experience multiple reflections, while exiting the cell over its
traverse side (dotted line). Mirror set 2 is assembled to be off-axis – focusing and
refocusing the beam after four reflections and the same number of transmissions via
each surface of two plano-convex lenses, reducing latent spherical aberrations. After
the series of reflections and transmissions the beam intensity I0 transforms to:

I ¼ I0 s2 þ s6q2 þ s10q4 þ :::
� � ¼ I0s

2 1� q2ms4m
� �

= 1� q2s4
� �

; ð6:39Þ

where s and q are the single surface transmittance and the single mirror reflectance
of each lens and mirror, respectively; m ¼ 1, 2,… is the number of intracavity
reflection–transmission cycles. In the derivation of Eq. (6.39), each lens is pre-
sumed to be thin with no scattering or absorption losses.

Figure 6.34 exemplifies the intensity gain to be achieved in the lens–mirror light
trap versus the cavity losses due to imperfect mean mirror reflectance q and lens
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surface transmittance s. An intensity gain near 20 was realized in a 1.1�0.3�0.3-mm3

focal volume utilizing continuous-wave (cw) light and high-reflectivity for mirrors
and antireflection coatings for lens surfaces with q � s � 0.998 at k ¼ 514.5 nm
[6.48]. Experimental verification with a pulsed cavity-damped argon-ion laser
provided a signal-to-noise ratio improvement of near 30, though the mirror–lens
cell intensity gain was limited to 15 [6.49].

One obvious disadvantage of the mirror–lens combinational cell designs seen in
Fig. 6.33 is in placing the lens surfaces inside the multiple reflection cavity, that can
cause uncontrollable losses, limiting the sensitivity to Raman scattering, as illus-
trated by Fig. 6.34, especially if the surface quality deteriorates, when there is
contact with gases inside the cell. Figures 6.35, 6.36, 6.37, 6.38, 6.39 and 6.40,
showing adaptations of a configurable and tunable multipass cavity design, reveal
other design versions for measurements of Raman scattering and absorption-plus-
scattering losses inside the cavity [6.50]. Every design version provides for recon-
figuration and resonant tuning, as well as for pulsed- or cw-light excitation during
Raman scattering measurements. The first version of the design in Fig. 6.35 com-
bines corner-cube like mirrors and confocal lenses with semitransparent mirror
coupler C and high-reflectance mirror M forming the cell, serving as a semitrans-
parent resonator in reflected light (see Sect. 8.4 for the functionality of such a
resonator). Coupler C and mirror M provide coupling of the beam and reconfigu-
ration for the entire cell by rotating the mirror positions around the axes (see the
dashed lines) the cell is uncoupled for background testing, coupled for Raman
scattering measurements, or recoupled for intra-absorption testing.

Configuration a in Fig. 6.35 has the coupler C and mirror M tuned for the laser
probe beam to make only one single pass via the cell, and for any background
radiation level to be detected (the beams are shown as the dashed lines).
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Fig. 6.35 Lens-fitting reconfigurable and tunable multipass scattering cell
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Configuration b in Fig. 6.35 has coupler C and mirror M tuned for the cell having a
focusing multipass propagation via the center region containing, for example, Raman
scattering species under study. Configuration Fig. 6.35c has coupler C and mirror M
tuned for the cell resonance in absorption measurements, and the confocal lenses for
focusing the probing laser beam into scattering species have been removed.

Figure 6.36 depicts an asymmetric-cell design, in which semitransparent coupler
C serves as a one-side mirror of the corner cube and the second corner-cube mirror
is the resonator mirror M. The beam enters the cell via coupler C, either coupled or
decoupled with mirror M, configuring the resonator into every configuration of
Fig. 6.35 and keeping the measurement concept intact.

Figure 6.37 illustrates another cell design with flat mirror coupler C replacing
one assembly of corner cube mirrors. Another corner cube serves as resonator
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Fig. 6.36 Asymmetric reconfigurable-tunable mirror multipass cell
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Fig. 6.37 Open-sided reconfigurable tunable mirror multipass cavity

352 6 Systems of Multiple Reflections



mirror M, making either resonant coupling or decoupling, with the remainder of the
system functionality unchanged.

Figure 6.38a illustrates one more version of the focusing-plus-detuning res-
onator, whereas Fig. 6.38b depicts the flat resonator of the mirror M and the par-
tially transparent coupler C for the main beam with focusing mirrors M1–M4

serving as the collection cell for Raman scattering.

The configuration of Fig. 6.38 could be made with spherical, parabolic, or
elliptical mirrors instead of the corner cube mirrors and confocal lenses of
Fig. 6.37, therefore decreasing intracell losses. Such a combinational-cell config-
uration is enhancing sensitivity to Raman scattering by setting simultaneous or
sequential measurements of the scattering itself and the inner-cell loss. In view (a),
coupler C (dotted lines) is taken out, and the cavity is configured for the maximum
number of inner-cell reflections. In view (b), the coupler and the flat
high-reflectance mirror are aligned and misaligned, allowing for resonant and ref-
erence measurements (see Sect. 8.4). This version of the design incorporates the
same coupling-decoupling setting for coupler C and for mirror M as in Fig. 6.37.
The design could be challenging owing to more elaborate profiles of the cell mirrors
M1–M4, which may be required to avoid astigmatism, coma, or other aberrations.

Other versions of multipass cells can provide added enhancements for Raman
spectroscopy via off-axis excitation of a windowless Herriott cavity [6.89], utilizing
a resonant Fabry-Perot cell, at a resonance continually tuned to a wavelength of
laser excitation by a piezo actuator mounted on one of its mirrors [6.90], using a
Fourier-transform imaging spectrometer (see Sect. 12.1 for details) and a Sagnac
interferometer at broad light-sheet illumination and high-acceptance angle of ob-
servation [6.91], and/or via the intense excitation by a probe pulse, forcing a deep
crater in a powdered substance under study, while using the crater created for a
multiple-reflection gain of subsequent Raman scattering observed for a weak probe
pulse of the same laser source [6.92].
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Fig. 6.38 Reconfigurable and tunable mirror multipass cell for measurements of Raman scattering
(a) and of inner-cell optical loss (b)
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Figure 6.39 shows a fully tunable design approach of the reconfigurable cell.
This approach has two sublevels of the cell configuration. The first one for tunable
mirrors 1–4 keeps laser-probe light retroreflected in the fashion similar to that of
Fig. 6.38. The second one is created by mirrors 5–8 being tuned separately from
mirrors 1–4 to recycle the beam of light back into the cavity. The configurations
seen in Fig. 6.39 match those in Figs. 6.37 and 6.38 for the measurement concept.

Figure 6.40 illustrates the most flexible version of the reconfigurable and tunable
multipass cell, in which each single 90° corner mirror is replaced by a double
independently aligned set of four self-adjustable mirrors tuning the angle between
the mirrors for the first pair to be exactly 90°, and for the second pair to be either
lower than 90° or higher than 90°. Every corner section consists of four mirrors – ach
pair is aligned at a given angle to a pair mate with two windows for mirror M and
coupler C. Other settings for a detection of Raman scattering remain intact while
providing both configurable and tunable measurement of the intra-cell absorption
and scattering loss (see [0.50] for more details).

Let us also note that simply maximizing the number of light passes via the
multipass cell may not necessarily increase the effectiveness of measurements, since
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Fig. 6.39 Sectional reconfigurable and tunable mirror multipass cell
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the level of noise may increase along with the signal gain. The signal-to-noise ratio
in a cw or a pulsed laser system for Raman versus Rayleigh scattering in a multipass
cavity reaches its maximum at some optimal number of passes improving the
single-pass efficiency, but overlapping of pulses might be nearly as effective for the
signal gain [6.51]. Such a cell (Fig. 6.41) capable of high-throughput efficiency
while enhancing path-length uniformity without beam overlapping and minimizing
off-axis lateral shift for input and output beams could be made by combining
two coupled off-axis paraboloid mirrors and two right-angle reflectors with
light source S and detector D placed at focal spots of paraboloids at the distance:
f ¼ 1/(2n � sinu) [6.52].
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Fig. 6.40 Sectional, focusing, configurable, and tunable mirror multipass cell
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6.4.2 Mitigation of Fluorescence and Background Emission

In Raman spectroscopy, the inelastic spontaneous scattering of light, caused by the
molecular disturbance in an electric field, exhibits a low vibrational cross-section,
defined by the molecular polarizability, is extremely difficult to separate from
accompanying Raleigh scattering, fluorescence, and interference of a background
emission. Various schemes that may be deployed to distinguish the Raman scat-
tering of interest from other phenomena resemble in many ways methods for dif-
ferentiating of low optical losses.

6.4.2.1 Polarization Discrimination

A polarization-discrimination scheme was naturally deployed for one of first
laser-bound Raman spectroscopy systems in Ar-ion laser resonator (see Fig. 6.29)
by rising the laser excitation power via multiple-path inner resonator reflections
and observing Raman spectrums in a plane of a state of polarization of the laser
beam. Presuming for purely rotational Raman lines the depolarization ratio to be
0.75, that polarization-observation scheme should have led to about 50% loss of
Raman intensity. Nonetheless, as a result of the extinction effort blocking
unpolarized light both the background stray light and fluorescence were almost
completely removed, although the level of scattering inside the resonator was
quite high [6.45].

Another way of polarization discrimination is in accomplishing a polarization
modulation [6.53]. A rotating polarizer selects predominantly polarized Raman
spectrum from unpolarized fluorescence or luminescence, while its rotation is
synchronized with a lock-in amplifier via an additional polarized light source
defining an initial position of the chopper polarizer (Fig. 6.42). A resulting spec-
trum of the synchronized detection for polarized Raman scattering is clear of
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Fig. 6.42 Polarization modulation scheme for suppression of fluorescence
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fluorescence light contained in the orthogonal to laser state of polarization. In an
experimental arrangement of the system illustrated by Fig. 6.42, the rotating po-
larizer was followed by a polarization scrambler added to compensate effects of
spurious extra polarization caused by spectrometer’s grating, although altering
relative intensities of the Raman lines [6.53].

A step further in measuring fluorescence-independent Raman spectra relies on
comparing Raman signals in the planes perpendicular and parallel to the polar-
ization state of the polarized laser excitation beam [6.54]. Presuming a fluorescence
to be unpolarized and spatially uniform, by subtracting two responses, the first
measured in the state of excitation with the Raman signal remained in the same
plane plus one half of fluorescence and the second in the orthogonal state containing
another half of uniformly distributed fluorescence, one could obtain only the Raman
signal, free of fluorescence or background light, but under presumption of uniform
distribution. In case of nonuniform fluorescence, respective measurement exposures
could also be correlated.

An additional advantage of applying the polarization subtraction technique is in
the ability to reduce other noise components of a detector, such as the
fixed-structure noise of a CCD array applied for the spectral differentiation of
Raman components versus excitation and background signals [6.55]. Since CCD
shot noise is reduced by minimizing the total amount of accumulated photons, a
recommendation for the Raman measurements is in providing the subtraction at the
maximum exposure time, not yet saturating the CCD by the accumulated fluores-
cence, and then repeating the measurement cycle multiple times to enhance the
signal-to-noise ratio, while only removing by subtraction a fixed-structure noise
component along with the fluorescence emission.

Experimental results seen in Fig. 6.43 illustrate the effectiveness of polarization
subtraction [6.56]. The graph of Fig. 6.43a, shows a mixed-fluid carbohydrate
specimen, measured without and with a polarizer in two orthogonal orientations at
diminishing levels of fluorescence, but at no clear distinction of the Raman peak. In
the experiments, the state of laser polarization and of the additionally deployed
polarizer were not aligned, because of exceedingly high fluorescence, masking
traces of the Raman peak and revealing only the water absorption band. The fol-
lowing view (Fig. 6.43b), clearly demonstrates the advantages not only of polar-
ization subtraction, but also of tuning the exposure time of CCD-detector array from
100 to 900 ms to enhance the signal-to-noise ratio, while keeping the same
mixed-fluid sample with added *40 millimolls of methane. That nine-fold
increase in CCD exposure in view b, helped maintaining the same, if not lower
level of fluorescence, while adding the polarizer in one the two orientations have
reduced inputs of fluorescence − compare the left side of blue line of the unpo-
larized signal, and also enhanced polarized inputs representing peaks of methane
and water − right side of the same blue line, and allowed to visualize the Raman
peak over the unmitigated fluorescence [6.56].
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6.4.2.2 Time Discrimination: Pulsed and Phase-Modulation
Techniques

A way to part out the Raman-scattering from a fluorescence relates to the time scale,
as Raman response is moderately instantaneous to its excitation versus prolonged
fluorescence [6.85]. One of first implementations of pulse-based discrimination
used Q-switched second-harmonic Nd:YAG laser, generating 100 ns pulses at
10 mW of average power at 532 nm, and a photon-counting detection via an
uncooled photomultiplier tube [6.57]. Such a pulse based system allowed
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discriminating 125-microsecond lifetime fluorescence reducing it by about 60-fold
while using 1-microsecond detection interval for Mn-doped ZnSe sample studied.

Similar means of fluorescence suppression may be accomplished using
intensity-modulated laser excitation followed by a phase-sensitive demodulation
correlated to the laser’s modulator. By registering two spectra at the phases u0 � u;
separated from laser-sampling phase u0, phase-uncorrelated fluorescence is sub-
tracted from the Raman signal that promptly follows the laser pulses [6.58]. In
experiments, the sinusoidal frequency modulation was provided by a Pockels-cell
with the second acousto-optic modulator operating at *15 MHz, making the laser
intensity modulation at a 30-MHz fundamental frequency. One extra pulse gener-
ator allowed tuning the phase delay to either 90 or 180°, making sure the
fluorescence suppression is maximized. Up to 150 MHz high-frequency sinusoidal
modulation was further deployed for phase-resolved spectroscopy of a weak Raman
scattering at intense fluorescence of rhodamine B in water [6.59].

An obvious approach of enhancing time-resolved spectroscopy is in using the
fastest tools, such as fast-gated intensified CCD cameras pushing the time resolu-
tion into picoseconds [6.60]. Using Ti:Sapphire laser excitation at 785 nm with
300 mW average power at a repetition rate of up to 110 MHz allowed fast-gated
detection of Raman light at the temporal resolution of about 150 ps. In the
experiments, two highly fluorescent samples were used − crystalline CaWO4 with
Nd3+ impurities and Hexobenzocoronane powder as a transparent and a heteroge-
neous sample, respectively. Obtaining the gated-camera signals at 100 ps time
intervals with 200 ps gate width allowed distinguishing Raman signals not only
from fluorescence (luminescence), but also from even stronger Rayleigh scattering
signals coinciding in time with laser’s excitation pulses [6.60].

Further advances of the time-gating could be made via blocking any arrival of
fluorescence by a Kerr modulator, placed in between two crossed polarizers and
functioning as a switchable k/4 waveplate, hence letting only a Raman pulse to go
through − at some expense of incomplete polarization rotation in a Kerr medium in
open and closed states [6.61]. Added losses accounted for about 15% and 0.005% in
the subsequent experiments with a mode-locked Ti-Sapphire laser. One-picosecond
gating time was realized in the system deploying collinear design utilizing low peak
power pulses operating at high repetition rates, instead of a high peak-power lasers at
low repetition rates as a potential nonthermal ablation is to be avoided for biological
samples [6.62]. Transform-limited 140 fs, 30 nJ pump pulses at 808 nm by a
mode-locked Ti:Sapphire laser at 80 MHz rate were used for second-harmonic
generation of Raman-excitation at 404 nm, along with polarization tuning and
spectral filtering of pump and excitation beams from Raman spectrum.

An implementation of time-resolved miniaturized Raman spectroscopy system,
suppressing interference of fluorescence via a single-photon avalanche diode array,
allowed achieving a sub-nanosecond time resolution with 532-nm pulsed
micro-chip laser and sub-ns pulse gating [6.84]. A passively Q-switched
diode-pumped solid state laser, generating *1.5 lJ, 600 ps, 0.1-nm wide spec-
tral pulses at 40-kHz repetition rate, was split into a main channel and a reference
triggering photodiode. A grating spectrometer operating in the 50–2200 cm−1

wavenumber range at 6 cm−1 of spectral resolution and a dichroic-edge 532-nm
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filter were used to process signals detected by the 1024	8 pixel single-photon
avalanche diode array operated at 1-ns gating. Experimental data confirmed 16 ns
as inadequate to gate out short-lifetime fluorescence versus the 1-ns gate [6.84].

6.4.2.3 Spectral Discrimination

One of the clearest advantages of Raman spectroscopy versus the spectral mea-
surement of absorption is in spectral separation of excitation and Raman-scattering
wavelengths, while the excitation could be made at a wavelength of choice, allowing
to position the Raman wavelength at the desired spectral region of optimal detector
sensitivity, such as of a CCD camera. However, this feature of Raman spectrometers
would not necessarily separate the measured signal from background fluorescence,
existing in the same spectral domain, although saturation phenomena for CCD-based
spectrometers should be significantly reduced, if Raman scattering measurements
are performed only in some narrow spectral intervals of interest [6.63]. The cited
implementation incorporated multiple Volume Bragg Grating-based spectral selec-
tors, used for (a) stabilizing the chosen emission-excitation wavelength from a diode
laser, (b) filtering out Rayleigh scattering/fluorescence, and (c) selecting only a
desired set of Raman wavelengths via incorporating several ultra-narrow notch
spectral filters – all in one 3-dimensional substrate.

Shifted Excitation: Wavelength (Frequency) Modulation

Conceptually, signal-modulation spectroscopy was first implemented for mitigation
of scattered light, then subsequently applied to fluorescence suppression in Raman
studies and other applications of derivative spectroscopy [6.64]. When vibrating a
scanning mirror in the Littrow-design spectrometer via a small angle in the plane
perpendicular to a plane of spectral selection, while synchronizing its movement via
a lock-in amplifier, the spectrometer spectral output continued to be proportional to
the intensity of optical radiation at the selected wavelength even as the intensity of
stray light, in that case of UV scattering, remained several times greater as it was
not modulated on amplifier’s frequency. Wavelength-modulation Raman spec-
troscopy measurements may be conducted similarly [6.65]. Under the presumption
that a small change of an excitation wavelength does not alter intensity or profile of
fluorescence, subtracting two spectra obtained at close excitation lines removes the
unchanged fluorescence, revealing the differential spectrum of Raman lines.
Experimentally, an emission wavelength of a cw dye laser, externally pumped by an
Argon laser, was wavelength-modulated within 0.5 nm inside its cavity by a
vibrating Fabry-Perot etalon, with its movement synchronized via a reference
output of a lock-in amplifier. The modulated dye-laser beam was transmitted by the
etalon to a reflective diffraction grating selecting the modulation wavelength within
a free spectral range of the etalon and to a test sample via a movable slit. The
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differential transmission spectrum processed by dual-monochromator spectrometer
contained pronounced Raman peaks above and beyond the unmodulated fluores-
cence background. Further integration that enhanced the signal to noise ratio added
known difficulties of finding a true measurement baseline as well as correcting for
baseline-drift distortions and temporal deviations, accordingly only three of the four
peaks obtained were fully resolved as not being excessively noisy [6.65].

The first wavelength-modulation experiments confirmed that, if a modulation
wavelength only changes within a small frequency or wavelength interval, the level
of intrinsic fluorescence emission remains mostly unchanged, enabling progression
of the technique to less-complicated differential shifted-excitation studies without
temporal modulation and or lock-in amplification reducing the process to obtaining
a combined spectrum at two adjacent, but spectrally resolved wavelengths [6.66], or
to recurrently changing an excitation wavelength via a tunable source or other
spectral means and measuring spectrums at various discrete points for better
background correction [6.67–6.73]. Presuming the fluorescence level to remain
unaltered at the shift among adjacent excitation frequencies, the difference of
measured spectra should provide a differential Raman spectrum with the detriment
of doubled system noise for twofold spectral measurements.

The resultant spectrum may be represented as the difference of Raman lines at
frequencies or wavenumbers m1 and m2 – which symmetric shift from the median
frequency m0 is negligibly small. Consequently, acquired two spectra S1(m1), S2(m2)
provide a differential Raman spectrum:

DS ¼ S1ðm1Þ � S2ðm2Þ ¼ S1 m0 þ m1 � m0ð Þ=2ð Þ � S2 m0 � m2 � m0ð Þ=2ð Þ
¼ S0 m0 þDm=2ð Þ � S0 m0 � Dm=2ð Þ ffi Dm @S0ðm0Þ½ � ¼ Dm @SRamanðm0Þ½ �: ð6:40Þ

Since noise signals of each of two measurement contributing to the differential
acquisition add up, the weakest Raman lines are buried in doubled signal noise of
the difference measurement:

DS ¼ Dm @SRamanðm0Þ½ � þ 2SNoise: ð6:41Þ

This shot noise associated with the intense fluorescence background photons can
not be simply removed by subtraction and demands implementation of other
approaches, such as quenching fluorescence, shifting excitation to wavelengths not
causing the high luminescence, or utilizing highly-efficient multi-channel detectors
allowing to accumulate a sufficient Raman signal, even in the presence of
fluorescence making sure the dominant noise source is contained [6.75–6.77].

To help extract a spectral profile of Raman lines from a differential spectrum, a
polynomial fitting of the differential curve is typically required via one of available
nonlinear least-squares algorithms to permit distinguishing Raman peaks from
combined noise. Combinations of multi polynomial methods, enhanced statistics,
Fast-Fourier Transform (FFT) filtering techniques are deployed for automated
removal of noise to enable the differential Raman studies [6.68–6.73].
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Since the noise removal essentially is the enabling tool in providing a differential
measurement, extensive efforts had been undertaken in validating algorithms of the
fluorescence suppression, seemingly identifying the Least Squares Fitting and
Principal Component Analysis to be among the best processing algorithms, and
Standard-Deviation or Fourier-Filtering as the worst, due to observed distortions of
reconstructed Raman lines, while having asymmetric Raman picks since the spectrum,
processed by latter methodologies, do not seem to maintain a constant ratio [6.80].

An extra enhancement of shifting-wavelength excitation scheme involves
quasi-continuous multi-frequency shift with a recurring sampling at a given time
interval or using multiple light sources utilizing the two-wavelengths technique –

presuming all wavelengths to be unchanged within the time interval of sampling for
a center wavelength, averaging a domain. Such a multi-wavelength technique treats
every spectral measurement in a series of excitation frequencies as independent
Poisson trials, analyzed via various iterative-analysis techniques to reconstruct the
most probable Raman and fluorescence spectrums [6.77–6.83]. As for other inverse
problems in spectroscopy utilizing probability methods for a restoration of the noisy
degraded images [6.75], in which a small spectral signal is hidden by increased
noise from another large signal, some noise components such as Poisson shot noise,
may be removed from the spectrum using a maximum-likelihood approach [6.76].
Using eight independent laser sources while correcting the obtained Raman spectra
via the shifting-excitation technique and obtaining one fluorescence spectrum by
averaging all measured ones permitted isolating the shift-variant Raman signals
from the broad fluorescent background via that multi-excitation algorithm. For 2, 4,
and 8 lasers, the RMS error of spectra estimation decreased from 0.12 to 0.08 while
progressing from 2 to 4 to 8 lasers [6.78].

Other versions of wavelength shifting [6.74, 6.81] deployed a continuous mod-
ulation of the excitation wavelength via multichannel lock-in detection of differential
signals, under the same presumption of unchanged fluorescence spectra at a wave-
length modulation. In the first system [6.74] the concept was studied via 2-mm
polystyrene beads suspended in a fluorescent dye with the signal-to-noise ratio of
Raman signals at 0.4-Hz modulation three times better than for two-wavelength
measurements. In another setting [6.81], the wavelength modulation was tested via
fiber-probe approach for biomedical studies of highly-scattering tissues, causing
Raman signals to experience multiple scattering or photon migration, leading to
high-fluorescence background superimposed by optical-fiber material luminescence,
especially in the fingerprint region of 400–2000 cm−1 wavenumbers. Using a tun-
able 785-nm diode laser with 1-W maximum power and tuning range of
Dm ¼ 160 GHz or Dk ¼ 0.32 nm of the wavelength shift, experiments comprised
of acquiring Raman spectra over 5-s time intervals in discrete steps varying each
wavelength at a symmetric trapezoidal pattern over 30 s, corresponding to 6 spectra
acquired. Every Raman spectrum was detected by an enhanced CCD-based spec-
trometer at a full vertical binning. A 200-lm diameter multimode fiber was deliv-
ering a laser excitation beam with seven matching fibers collecting Raman signals.
Adding twenty spectrums, at 30-s accumulation time each, has been sufficient for the
SNR enhancement to an order of magnitude in best cases [6.81].
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Chapter 7
Laser Spectroscopy

7.1 Active Intracavity Measurements

Practically every method of multiple interaction of light with a test object con-
sidered so far enhances the sensitivity to a given low optical loss via the enhanced
measured signal owing to an increased number of light interactions. Among other
phenomena, generation of laser light in any active medium with a low gain factor is
stipulated by the very same multiple reflections in an open laser resonator with a
high quality factor. Since the power and energy parameters of stimulated emission
are defined by correlations of laser gain and attenuation, corresponding to every
pass via that open laser resonator, one can expect high sensitivity of laser emission
to the presence in its resonant cavity of any embedded optical loss. Such excessive
sensitivity can be manifested via changes of the laser power or energy output in a
broad spectral domain of its active medium amplification or as spectrally selective
optical losses in narrow spectral intervals.

Placing into a laser cavity a substance which does not cause laser generation
suppression by its optical loss lx‘x makes the relative output intensity I/I0 of laser
radiation change as [II.1]:

I
I0

¼ la‘a
lx‘x

1� I
I0

� �
� la
b0 � la

: ð7:1Þ

Here I0 is the intensity of the initial output of the laser when the substance under
study is not in the resonator, la and ‘a are the linear attenuation coefficient and the
length of the active laser medium, and b0 is the unsaturated gain coefficient. Direct
resolution of resonator loss lx‘x by Eq. (7.1) is hindered by the presence of
unknown factors la and b0, which can be measured by implementing in the res-
onator a calibrated transmission specimen and by varying the laser gain parameters.

Because of these calibration requirements, intra-resonator laser measurements
are mainly performed as relative procedures providing extra compensation of
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implemented optical loss by diminishing another loss caused by a calibration ele-
ment or by forming an advanced calibration scale for the entire laser. The most
practical laser calibrator used is a relatively thick and transparent glass plate,
installed at near the Brewster angle uB for its material. Any deviation of the actual
angle of incidence uA from the Brewster angle defines changes for the plate
reflectance Dq and for the resultant output of laser intensity DI. The extra attenu-
ation Dq due to the plate’s presence is defined by:

Dq ¼ 2
tan2 uB þuAð Þ � uR½ �
tan2 uB þuAð ÞþuR½ � : ð7:2Þ

Here uR is the angle of refraction and uA is the increment of the angle of incidence,
counted from the Brewster angle direction. A sufficiently large plate thickness is
needed to prevent intersections and interference between beams reflected from
opposite surfaces of the plate. Similarly to the reflectance measurements at normal
incidence, the displacement of a beam transmitted through the Brewster compen-
sator can be attuned by the identical second plate placed at the opposite orientation
to the first one as revealed in Chap. 5 (see Fig. 5.11 and [7.2]).

In the initial calibration of straight-cell sensitivity to intracavity loss, mirror
object 5 (Fig. 7.1a) is outside the laser cavity to be calibrated. For the
high-reflecting rear mirror at position 3, the loss scale to be measured is verified by
tilting main calibration plate 4 from the Brewster angle. When measured mirror 5 is
brought to its position at angle of incidence H, the resonator is bent to mirror
position 3′ and calibrator 4 is again tuned in from the Brewster angle. The accuracy
of measurements is limited by factual inequality of diffraction losses at straight and
bent resonator settings and misalignment errors. The experimentally measured
reflectances only reached 0.998 with a repeatability ±0.2% [7.1, 7.2].

A similar resonator design (see Fig. 7.1b) was also used to experimentally
evaluate the sensitivity of different pulsed lasers: He–Ne and Nd:YAG, to intra-
cavity optical loss associated with a high-temperature plasma [7.3]. During the
initial plot for each laser pulse of 3–5 ms in duration, the uninterrupted intensity I0
level for the laser beam was recorded by main detector 7. At the moment when
plasma was burned in test capillary 5, which was registered by a signal of reference
detector 8 obtained via splitter 6, the second level of intensity Ix was measured. As
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Fig. 7.1 Laser intra-cavity loss measurements: 1, 3 – cavity mirrors, 2 – active element, 4 –
calibration plate; 5 – test capillary; 6 – splitter, 7 – main detector, 8 – reference detector
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in the mirror reflectance study, the actual sensitivity to transmission loss inside that
laser resonator was limited by competition of emitted modes and pumping or
generation instabilities. The lowest detected internal attenuation factor exp(�lx‘x)
was between 0.08 and 0.10 at a plasma temperature of 5800–6500 K and at a
concentration of the plasma electrons of 5 � 1016 cm−3 [7.3].

An auxiliary resonator can be used to separate the influence of a low loss to be
studied from the calibrated one [7.3]. For this purpose, laser active element 2 and
under test low-loss object 5 are situated in main cavity 1-3 with aperture 4, while
calibration element 6 is separated into its own adjacent resonator 3-6-7 (see
Fig. 7.2). The second resonator may be considered as a single composite mirror
3-6-7, set to the maximum of interference for laser light, having reflectance q:

qR ¼ ffiffiffiffiffi
qa

p þ sc
ffiffiffiffiffi
qb

p� �
= 1þ sc

ffiffiffiffiffiffiffiffiffiffi
qaqb

p� �� �2
: ð7:3Þ

Here qa, qb, and sc are the reflectances of left and right mirrors and the transmit-
tance of calibrator 6.

Application of the calibrating cavity of elements 3, 6, and 7 allows one to
compare of a variety of divergent losses via unequal weight factors. Therefore, even
the potential inaccuracy of imprecise estimation of the calibrator’s Fresnel surface
losses has a smaller influence on the results of such intracavity studies. Practical
measurements with the dual-cavity laser were provided by equalizing the output
laser energy with and without test objects and verifying internal losses in the
calibration resonator as K ¼ ln(qeff.0/qeff). Experimentally observed correlations
between the internal resonator loss of the laser to be resolved lx‘x and that
implemented in the calibration resonator were evaluated as:

lx‘x ¼ ln
ffiffiffiffiffi
qb

p þ sa
ffiffiffiffiffi
qa

p� �
1þ sasc

ffiffiffiffiffiffiffiffiffiffi
qaqb

p� �
1þ sa

ffiffiffiffiffiffiffiffiffiffi
qaqb

p� � ffiffiffiffiffi
qb

p þ sasc
ffiffiffiffiffi
qa

p� �" #
: ð7:4Þ

Here the indices for reflectance q and transmittance s are designated in Fig. 7.2 and
the transmittance sd of the active element having the Brewster-angle windows is
taken as unity. The actual sensitivity of measurements with a supplemental resonator
at qb ¼ 0.999 and qa ¼ 0.998, using calibrated solutions of CuSO4 applied at
various concentrations, was increased to ð2�4Þ � 10�4 cm−1 at k ¼ 632.8 nm [7.3].

1 2 34 75 6

d a c b

Fig. 7.2 Dual resonator
separating intra-cavity
calibration and testing
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More advanced prospects of increasing the accuracy and sensitivity of active
laser measurement are associated with sharp magnifications of all internal resonator
factors when the threshold of the laser generation is achieved [3.32, II.1]. The
threshold condition is reached for internal factors of attenuation and amplification
balancing each other on every dual pass of an open laser resonator:

q1q2 exp g� að Þ2‘a � lx2‘x½ � ¼ 1; ð7:5Þ

where a is the linear absorption coefficient, usually characterizing all of the dissi-
pative losses in the inverted laser medium per unit of its length ‘a, lx is the linear
attenuation coefficient, ‘x is the length of the object studied placed inside the laser
resonator, and q1 and q2 are the reflectances of the cavity mirrors. Seeking some
generation suppression by implementing in the resonator diverse calibration losses
with and without a test object, one can not only raise the sensitivity and accuracy of
measurements, but can also stabilize and exclude from the final results the influence
of the resonator’s instability factors, such as varying diffraction losses due to
placement of the object. That is especially valuable for nonlinearities of stimulated
emission of light and bares some analogy with the comparison measurements
analyzed in Chap. 5. Equation (7.5) demonstrates that when sensing a low loss
under the gain-saturation condition, the smaller is the gain coefficient, the lower is
the loss that may be sensed, taking advantage of having the added second resonator
with a higher loss.

A Brewster angle calibrator is generally used to detect intracavity losses by
capturing the instance of saturation of laser gain (Fig. 7.3a). In a resonator of mirror
M, active element AE, and output coupler OC, calibrator C is set at the Brewster
angle with and without the sample under study O. Gain saturation is measured by
detector D at two opposite orientations – uleft and uright – of calibrator C, inducing
equal reflectance losses q||,l-r for light polarized in the plane of incidence:

qjj;l ¼
tan2 uB þuleft

� �� arcsin sin uB þuleft

� �
=n

� �	 

tan2 uB þuleft

� �þ arcsin sin uB þuleft

� �
=n

� �	 

� tan2 uB þuright

� �� arcsin sin uB þuright

� �
=n

� �	 

tan2 uB þuright

� �þ arcsin sin uB þuright

� �
=n

� �	 
 ¼ qjj;r: ð7:6Þ

The larger is the calibrator deflection when lasing is terminated, the broader is the
separation of left and right calibrator position: Du ¼ uleft � uright. Therefore, this

B

OC AE M O
M’D

C

Fig. 7.3 Layout for
threshold-sensing intracavity
loss measurement
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higher deflection range relates to lower dependency of the sensed intracavity loss on
the discrepancy of left and right angular positions due to fluctuations of the refractive
index andBrewster angle of the calibratormaterial. Besides, as seen fromFig. 7.4, the
relationships between the calibrator rotation positions and its reflectance magnitudes
near the Brewster angle are not linear. Only by increasing the difference between uleft
and uright, can virtually linear increments of the reflection losses be concurrent with a
close-to-linear change of the calibrator’s position. Figure 7.4 reveals that with Du
increasing, unequal angles for left and right rotations relate to one reflectance, causing
changing diffraction losses and systematic errors. For intracavity experiments with a
stabilized He–Ne laser at k = 0.633 lm, theDu angle reached 22–25° at±17 min of
arc uncertainty of the calibrator’s position. Such a deviation, due to the system’s
response of around 0.17% per degree, corresponded to random error of the reflectance
measurement at about the ±0.0001 level [7.4].

Similarly to utilizing a Brewster-angle plate for quantitative calibration of in-
tracavity losses when the bigger is the dynamic range of the inclination, the higher
is the sensitivity to a small optical loss that can be realized, another apparent way
for loss calibration of a laser cavity is via polarization modulation of radiation
emission. According to the Malus law: I ¼ I0cos

2d, the intensity I0 of polarized
light propagating via an analyzer can be altered to any desired phase status d, and
thus attenuated to any magnitude with well-known and predictable behavior.
Realizations of this concept depend on the measurement tasks and may adopt a
rotatable phase retarder, turning around the direction of light propagation to obtain
the desired phase shift, or a magneto-optic or electro-optic modulator, whose optical
birefringence is induced by an external electromagnetic field, etc.
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Fig. 7.4 Relative change of reflectance of a plane-parallel glass plate in the vicinity of the Brewster
angle: the angle of the plate’s inclination is below (series 1) and above (series 2) the Brewester angle
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Figure 7.5 depicts an intracavity laser spectrometer with polarization modulation
of laser-light intensity inside the resonator for measuring low optical losses in liquids
or solids [7.5]. A crystal with a not quadratic but linear Pockels’ effect is used to
sense small changes of modifying phase angle d, realizing high sensitivity to in-
tracavity loss via detector 11. Phase angle d ¼ p U=Uk=2

� �
and thus the internal

resonator loss calibrated are defined by the ratio of applied U and semiwave Uk/2

voltage for that specific modulator [7.5]. In the experiments a dye laser with a set 7 of
interference filters was used as the wavelength-defining spectral selector. Stabilized
light of argon laser 1, modulated by chopper 2 at a low frequency, irradiated cuvette
5 with a lasing dye via mirror 3. Low-frequency beam modulation served to prevent
excited molecules from being accumulated in the triplet state, which increases active
medium absorption. To prevent thermal lens effects and excitation of axial modes
except the TEM00 mode, the dye was constantly cooled by distilled water near 4 °C,
maintaining as little turbulence as possible. All elements of the laser cavity between
mirrors 4, 6, and 10, including test cavity 9 containing the liquid under study, but
excluding modulator 8, were placed at the respective Brewster angle.

Attenuation v0 by a polarization modulator complexly depends on the state of
polarization of laser radiation and is affected by resonator elements on opposite
sides of the modulator [7.5]:

v0 ¼
2

1þPLð Þ 1þPRð Þ½ �2

�
PR 1þPLð Þ2 þPL 1þPRð Þ2 � 2PLPR 1þ cos dð Þþ sin2 d�
� cos dþPLPRð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
L þP2

R þ 2PLPR cos d� sin2 d
q24 35: ð7:7Þ

Here PL and PR are the polarization exchange factors for respective elements on the
left and the right side of the Pockels modulator. For v0 � 1, it may be assumed that
PL þ PR ≅ 1 and d2 � PL þ PR; thus, Eq. (7.7) can be simplified to
v0 ¼ d2= PL þPRð Þ. The measured attenuation factor v can be identified by relative
changes of modulator voltage U with and without the test object:

6

1

2

5
4

3

7
8

9 10
11

Fig. 7.5 Laser spectrometer
utilizing loss-calibration via
modulation of polarization
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v ¼ p2 U2
0 � U2

x

� �
2 � 2:303 � U2

j=2 PL þPRð Þ : ð7:8Þ

The polarization-exchange factor PR of the empty test cavity was determined as:

PR ¼ 1� sð Þ= 1þ sð Þ½ �2 at s ¼ 2n= 1þ n2ð Þ½ �2, giving for the fused silica cavity
windows at the Brewster angle PR ¼ 0.139. The phase shift caused by the cuvette,
interference filters, and the inverted dye molecules was not determined due to its
complexity and PL ¼ 0.781 was obtained via properties of standardized solutions
of CoSO4. The linear attenuation coefficient v in a mixture of rhodamine 6G,
computed by Eq. (7.8), differed from the exact magnitude obtained by relation (7.7)
by 1 � 10�5 cm−1. The intracavity measurements at voltage miscalculations
DU � 5% were characterized by random errors near 	2 � 10�5 cm−1 with about
	5 � 10�5 cm−1 reproducibility [7.5].

7.2 Comparison of Intracavity Methods

Considering any active laser intracavity measurement and comparing its relative
sensitivity with that of a conventional study using a spectrophotometer, one can
simplify Eq. (7.1) as in [7.6]:

Ix ¼ constðG� vx � vÞ v
vx þ v

: ð7:9Þ

Here G is the gain factor of the active laser medium, vx is the passive loss on the
beam’s way via internal propagation of the laser resonator, and v is the loss at an
exit mirror. Identifying the internal loss vx as a linear coefficient and looking for its
effect on the relative change dI/I of the output intensity of the laser gives:

dIx
Ix

¼ d G� vx � vð Þ
G� vx � v

þ dv
v

þ d vx þ vð Þ
vx þ vð Þ : ð7:10aÞ

Treating G and v as constants for finite increments of DI/I, expression (7.10a)
transforms to:

DIx
Ix

¼ Dvx
G� vx � v

þ Dvx
vx þ v

¼ Dvx
1� vx=G� v=Gð Þ vx þ vð Þ : ð7:10bÞ

Consequently, the lower are the losses to be measured, the smaller should be the
gain and loss factors of the resonator, confirming the concept of compensation
measurement discussed above.

Relations (7.9) and (7.10) allow one to compare changes of the laser output
intensity needed to sense a low optical loss to be implemented into the cavity.
Figure 7.6 illustrates results computed by expression (7.10b) and results obtained in
the experiments [7.7] at G ¼ 5%, vx ¼ 2.3%, and v ¼ 1%. The comparison was
made for a CO solution of a constant concentration in cells of 2- and 10-cm length
(respective lines 1 and 2 in Fig. 7.6b) using a cw He–Ne laser at k ¼ 632.8 nm and
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a spectrophotometer. The laser cavity windows were at the Brewster angle of the
effective length near 2.4 cm: 0.5% concentration change caused a 38.7% increase of
intensity viewed as 116 times gain of sensitivity per unit length.

For a laser medium of relatively high gain factor and quasi-homogeneous line
broadening of its stimulated transition, the output intensity I with the accuracy of a
constant can be defined as [7.8]:

I ¼ const b0 � ln q1q2ð Þ�1

‘0

" #
1� q2

1� q2ð Þþ 1� q1ð Þ ffiffiffiffiffiffiffiffiffiffiffiffi
q2=q1

p ; ð7:11Þ

where b0 and ‘0 are the linear gain coefficient and the length of the laser’s active
medium, and q1 and q2 are the reflectance values of the rear mirror and the output
coupler. Owing to the high laser amplification, stimulated emission can be initiated
even with a low quality factor of the laser resonator. In that case, the number of
intraresonator reflection cycles is low. Thus, active low loss measurements in a
high-gain medium become inadequately effective when the object in question is
placed in the resonator away from the active medium either to the rear mirror or the
output coupler. Comparing with loss measurements in transmitted light evaluated
as: I ¼ I0s ¼ I0 exp �l‘ð Þ ffi

l!0
I0 1� vð Þ; and substituting in Eq. (7.11) for the

effects of implemented losses: q2 � 1� vð Þ2q2; q1 � 1� vð Þ2q1, one obtains:

K1 � I0 � I1
vI0

¼ 1
b0‘0 þ ln

ffiffiffiffiffi
q2

p þ 1þ q2
1� q2

;

K2 � I0 � I2
vI0

¼ 1
b0‘0 þ ln

ffiffiffiffiffi
q2

p þ 2
ffiffiffiffiffi
q2

p
1� q2

: ð7:12Þ

Here, for simplification, the rear mirror reflectance is assumed to be that of a perfect
mirror q � 1.0. As expected from earlier analysis, with low gain factors: G ffi b0‘0,
any notable sensitivity increase can be realized independently of the relative posi-
tioning of the low-loss object, simultaneously with having a high quality factor of the
resonator: Q ¼ q1�q2 (Fig. 7.7, curves 1, 2). Within regions of q2 ffi exp �2b0‘0ð Þ,

(a) (b) 

Fig. 7.6 Layout for threshold-based intra-cavity measurements (a) and reflectance changes
around the Brewster angle (b)
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corresponding to near-threshold operation (lines 2, 4), a slight increase not very
dependent on the object’s location can also be achieved. If the laser’s gain is high, the
optimum loss-element placement is dependent on the quality factor of the laser
resonator. Results of computation also point out that intracavity active-laser studies
in certain situations instead of being more effective can be even less effective than
conventional direct measurements, since the likely nonlinear character of stimulated
transitions, leading to lasing near the gain saturation of such a laser, can easily
diminish the outcome of implementing the added loss under study.

Experimental arrangements leading to results illustrated in Fig. 7.7b were made
using a He–Ne laser at k ¼ 3.3922 lm. Owing to the high sensitivity of stimulated
emission near gain saturation to unexpected random factors and the low efficiency
of active studies, predicted by the calculations above, sufficient increase of relative
sensitivity was achieved only for a highly reflective resonator with q1q2 ≅ 0.9. The
actual sensitivity to the intracavity losses was about 10 times higher: *0.01 or less –
and nearly independent of the left or the right relative placement of calibrated mixtures
of methanol measured [7.9].

Since the relative increase in sensitivity to internal resonator losses in lasers with
high gain factors is not as great, it is reasonable to consider placing into a resonator
an extra multiple reflection cell, increasing the number of interactions only with a
test substance (Fig. 7.8a). For such a measurement, compared with the active study
without multiple interactions, Eq. (7.10) for the intensity of the stimulated light
emission with the multiple-reflection cell becomes:

I ¼ const � ðG0 � v0Þ= 1� q2s0ð Þþ 1� qNs0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q2=qN

ph i
; ð7:13Þ

where G0 ¼ b0‘0; v ¼ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qNq2s

2
0

p
is the optical loss for a single pass of the entire

laser cavity, s0 is the transmittance of the active element, and qN ¼ �qN�1ð1� vxÞN
is the effective reflectance of the multiple-reflection cell with internal loss vx of the
object to be studied on N light passes via the cell (see Chap. 6). Separating the
small loss under study vx for a single cavity pass from the total loss v and the
attenuation loss v0 for the entire resonator, and assuming all factors to be small,
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Fig. 7.7 Comparative sensitivity of a high-gain laser versus direct measurement – computed
(a) and factually realized (b) for a loss object at the output coupler (1–3) and at the rear mirror
(4–6): 1, 4 – G = 0.3; 2, 5 – G = 1.9, 3, 6 – G = 5.3
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Fig. 7.8 a Layout for internal and external (dotted line) placement of multiple-reflection cell for a
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detector; 7 – splitter. b Multiple reflections cell inside (Series 1–6) and outside (Series 7) of laser
cavity: Series 1, 2, 3 –G = 0.25; Series 4, 5, 6 –G = 2.5; Series 1, 4 –Q = 0.7; Series 2, 5 –Q = 0.8;
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thus: v� v0 ¼ Nvx=2 � v; v0, one can express the relative measurement sensitivity
by analogy with Eq. (7.12) in the form [7.10]:

K � I0 � I
vxI0

¼ N
1

2 G0 � v0ð Þ þ
1
2v0

� �
; ð7:14Þ

where 2v0 ¼ ð1� q2Þþ ðN � 1Þð1� q1Þþ 2ð1� s0Þ.
The sensitivity behavior of dual light interactions within that combined double

laser cavity, having low gain coefficients, can be seen from either Eq. (7.10a) or
Eq. (7.10b). The smaller is the difference between the laser gain amplification and
the total cavity loss, increasing as a function of the number of multiple reflections in
the additional cell, the sooner gain saturation occurs and the higher the loss sensi-
tivity becomes (curves 1–3 in Fig. 7.8b). With respect to the added cavity of multiple
reflections, the internal sensitivity increases as the cavity loss decreases, following
the gain amplification. For high laser gain factors, when generation suppression does
not occur, sensitivity to the intracavity loss is lower than that at the threshold
condition (curves 4–6 in Fig. 7.8b). It is actually elevated in comparison with
external multiple reflection studies only for the first few interaction cycles and does
not remain efficiently high when the number of reflections increases.

One alternative for active intracavity loss measurements is to observe the peak-
to-dip ratio for light transmitted and reflected by the laser resonator, consecutively
tuning the laser cavity to the resonance for either the generated or the inserted
wavelength [7.17]. Figure 7.9 illustrates two typical configurations: an open laser
resonator (Fig. 7.9a) and a ring-laser gyroscope cavity (Fig. 7.9b). The latter design
generally requires having concurrently a low resonator loss and a high gain-to-noise
ratio. In both configurations one resonator mirror is attached to a motion controller
so the light path length in the resonator can be periodically swapped around the
light wavelength resonance.

In each setting, the law of conservation of energy via detectors D1 and D2
detecting transmitted and reflected light for a cavity consisting of mirrors 1 and 2
irradiated by laser source S via beam splitter BS is:
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I0 ¼ IL þ ID1 þ ID2 ¼ IL þ Iq þ Is2; ð7:15aÞ

IL ¼ IC � v� IC � s1 � IC � s2: ð7:15bÞ
Here I0 and IC are the intensity of light incident on and inside the resonator and IL,
Iq, and Is are the intensity of lost, reflected, and transmitted light. Combining
Eqs. (7.15a, b) for Is ¼ ICs gives:

I0 ¼ Iq þ Is2 þ IC � v� Is1 � Is2 ¼ Iq þ IC � ðv� s1Þ; ð7:16Þ
where v and s1 and s2 are the attenuation factor of the internal resonator and the
transmittances of mirrors 1 and 2. When a piezoelectric drive of the motion con-
troller sweeps the resonator’s path length approaching the cavity resonance, the
signal transmitted via mirror 2, detected by detector D2, experiences a peak P, and
therefore the reflected signal detected by detector D1 sees a dip D:

P ¼ IC � s2; D ¼ I0 � Iq ¼ IC � ðv� s1Þ: ð7:17Þ
For detectors D1 and D2 synchronized by the motion controller, the measured
dip-to-peak ratio is:

D=P ¼ ðv� s1Þ=s2: ð7:18Þ

As a result, the internal resonator loss v can be determined from Eq. (7.18) as the
relation:

v ¼ s1 D=Pð Þþ s2: ð7:19Þ

For equivalent transmittance s1 ¼ s2 of resonator mirrors 1 and 2, the dip-to-peak
detection provides:

v ¼ s � D=Pð Þþ 1½ �; ð7:20Þ

which in addition to the dip-to-peak ratio requires measuring the transmittance of
every mirror of the resonator.

1 2

D1

D2

B

motion

S

D2

1

2
D1

motion

(a) (b)

Fig. 7.9 Peak-to-deep resonator loss measurements
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Owing to distinct path lengths of the resonator for s and p polarizations caused
by the phase shift experienced by each component of incident radiation at every
mirror reflection, measurements were made separately for s and p polarization
states. The observed dip-to-peak ratios for s-mode were much higher than those for
p-mode, having sharper s-mode resonances [7.17]. When the active element was
placed into the emitting laser resonator, the factual gain G was measured as the
difference of the effective and the actual loss: Leff ¼ L − G, with laser generation
being on and off.

7.3 Intracavity and Ringdown Spectroscopy

Correlations of the fundamentally linear structure of stimulated laser emission in the
presence of spectrally dependent losses in an open laser resonator identify the
prospects for detection of an ultimately small content of an object to be tested. As
first found for lasers with inhomogeneous line broadening [II.1, II.8, 7.11], insertion
into a laser cavity of a spectrally dependent transmission loss s:

1=s xð Þ ¼ 1=s0 � Dð1=sÞ � cos 2px=Dxð Þ; ð7:21Þ

causes spike suppression DI of a quasi-infinite laser spectrum at intensity I0:

DIðxÞ
I0

¼ Dð1=sÞ
1=s0

ps0
I0

þ I0
Us0

exp � 2pc
Dx

� �� ��1

: ð7:22Þ

Here s0 and s are the initial and interrupted spectral transmittance of the laser
cavity, p and U are the power of the spontaneous noise and the pumping light, and c
is the dispersion bandwidth for the homogeneous line broadening. In this case and
when the spectral bandwidth Dx of any loss inserted into the laser cavity is much
narrower than the dispersion bandwidth c, the second component in relation (7.22)
becomes much smaller than the first one. As a result, the measurement sensitivity to
a low absorption loss becomes defined by the ratio ps0=I0 of spontaneous to
stimulated emission of radiation. For a broad inhomogeneous transition, the
respectively expanded spectral ratio should result in extremely high sensitivity to
the absorption loss implemented in such a laser cavity.

Even in one of the first experiments conducted [7.11], the magnitudes of the
detected linear absorption coefficient a inside the open resonator of a Nd:glass laser
with spectral bandwidth c ¼ 20 cm−1 and ps0=I0 ¼ 10−4–10−6 were in the range
a ¼ 10−7−10−8 cm−1. To verify such high sensitivity, a Fabry–Perot interferometer
made as a glass cavity with Brewster-angle windows was implemented in an
indiscriminating open laser resonator. The reflectance q of the border between the
glass cavity and the filling-in liquid was changed by varying the benzol concen-
tration in a chlorine–benzol solution. While the remaining specimen reflectance
declined to 2 � 10�7, certain pulse modulations, having a relative depth of about
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10%, were still observed. However, such an internal laser spectrograph does not
react linearly to any changes of the inserted losses: the lower is the actual loss
D(1/s), the longer should be the time t of its conceivable action; therefore, one must
have: D(1/s) � t ! 1.

Occupancy of a laser cavity by an absorbing substance changes the correlation
between gain and loss factors during each individual generation act of laser stim-
ulated emission. Hence, the intensity of laser emission at angular frequency x as a
function of time t changes according to:

IðxÞ ¼ I0ðxÞ exp b0ðxÞ � lðxÞct½ �; ð7:23Þ

where b0(x) and l(x) are the gain and loss coefficients at angular frequency x and
ct is the optical path length of emitted light wave. Disregarding spontaneous noise
compared with stimulated emission for any steady-state transition, the laser gain is
almost equal to the entire internal loss averaged over the generated frequency scale,
and the intensity of forced spike suppression in a limited dynamic range can be
assumed to be dependent only on the additional diminutive absorption loss a(x)
under study:

IðxÞ ¼ I0ðxÞ exp �DaðxÞct½ �: ð7:24Þ

The ratio of the entire exposure of emission at the absorption frequency to that near
the absorption frequency:

Hðx0Þ=H0 ¼ 1� expða0ctÞ½ �= a0ctð Þ: ð7:25Þ

Relation (7.25) shows that the sensitivity of active intracavity laser spectroscopy
is proportional to the time interval of the steady-state phase of the laser’s stimulated
emission, though any increase of sensitivity along with a pulse-length increase of a
solid-state laser is limited by the negative effects of spontaneous emission and
deviations from the linear transition of intensity with the spectral coordinate of the
loss matching its intensity spike. In experiments with a pulse length of about 20 ms
in an indiscriminating open resonator of a Nd:glass laser, the sustained linear
measurement process was limited to times t � 10–12 ms by the small dynamic
range of the photographic registration applied [7.12], but not by the spontaneous
emission. In the approximation of nearly rectangular shape of all laser pulses,
being true at Y0ct < 10, the measured losses computed by Eq. (7.25) were near
ð7� 12Þ � 10�9 cm−1.

To maintain a constant gain factor of a laser with the inhomogeneous line
broadening required for any quantitative low-loss measurements, nonuniform sat-
uration behavior has to be realized over its broad frequency spectrum containing,
for example, 104 longitudinal modes. A dye laser exhibits homogeneous line
broadening with relatively wide amplification regions. That allows one to isolate the
relatively broad spectral bandwidth c of a nearly constant amplification factor, and
to consequently realize high sensitivity of spectral loss detection in a narrow
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frequency interval Dx, as it can be seen from Eq. (7.22). In experiments with a
pulsed rhodamine 6G dye laser with t ¼ 2 ls and c ¼ 578–582 nm, a
law-governed dip in the spectral intensity was observed via small changes of the
initial optical density of salt solutions with absorption line width of Dk ¼ 0.1 nm
[7.13]. With the spectral range of the laser’s spontaneous emission extended to
Dc ¼ 30 nm, the actual sensitivity to a low optical loss inserted in the cavity was
increased to 1 � 10�4. At the same time, any alteration of the Q factor of the laser
cavity from 0.9 to 0.6 as well as modulation of laser’s pumping power by ±20%
had practically no effect on the results obtained in these measurements.

The reproducibility of intracavity laser spectroscopy using a dye laser depends
on the stability of the laser gain factor and can be improved by reducing the spectral
range of laser emission with selective spectral transition of its population inversion
in the active medium, using mode beating, and by thermal effects or hidden
inclusions in the active dye. Likely uncertainties are restrained to some degree when
a thin dye is activated in a ring resonator. With use of a dye ring laser with a
0.2-mm-thick flat layer of a free-flowing solution of rhodamine 6G in ethylene
glycol at the Brewster angle, the reproducibility of the laser amplification factor at
Dc ¼ 100 nm was sustained near ±10−5 [7.14]. The dye was placed in the center
of a concentric cavity of highly reflecting mirrors on relatively thick wedged
substrates with q1,2 ¼ 0.996–0.990. For a registration time of the steady-state
emission maintained at t ffi 3 � 10�2 s, the sensitivity to intracavity absorption losses
was extended to 10−9 cm−1.

Any temporal dependence of laser exposure, computed by expression (7.25), has
to be linear with the slope defined by the linear absorption coefficient studied.
However, even for the steady-state phase status of stimulated emission, laser mode
competition, causing spectral line broadening and the successive high sensitivity
being sought, subsequently results in a nonlinear intensity profile. If relative depths
of actually observed absorption spikes are low, the intensity of laser emission
detected in experiments does not change and the nearly linear character of the
absorption peaks can be maintained in a small temporal domain, inversely pro-
portional to the intensity level over a lasing threshold. As seen from Fig. 7.10, even
for an approximately 5% increase of intensity [7.15], the deviations from linearity
started to appear at 1.5–1.7 ms. To maintain the highest temporal resolution pos-
sible avoiding feasible nonlinearities of photographic registration needed for the
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Fig. 7.10 Dependence of lasing intensity on time: 1� I0=I ¼ 1:05; 1� I0=I ¼ 1:075
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detection, a vidicon detector was used as the preferred choice for making mea-
surements of ultralow optical losses.

With use of a ring traveling-wave dye laser operating near the lasing threshold
(Fig. 7.11), the detection noise was reduced to 10−10 cm−1, allowing sensing of
optical losses as low as 10−9 cm−1. Intracavity 3-µm-thick glass etalon 7 selected
spectral width Dk � 10−9 nm of the absorption lines studied within spectral
domain of loss registration Dc ¼ 0.24 nm for a laser pulse duration near
t ¼ 1.15 ms [7.15]. All internal laser resonator elements were installed at Brewster
angles. Faraday rotator 8 and meticulous alignment of the laser mirrors produced
traveling-wave emission with the thermostabilized and filtered active dye.

Another intracavity laser spectrometer, functioning as a traditional spectrograph,
is shown in Fig. 7.12. Fabry–Perot interferometer 6 having a free spectral range of
200 GHz and a spectral resolution of 2.5 GHz was used as the main scanning
element in addition to wedged glass etalon 7 in a dispersing resonator of the dye
laser. No mode competition was noticed in the cavity; therefore, the sensitivity of
such a laser spectrometer was relatively low, but its practical dynamic range was
sufficiently large. A linear absorption coefficient as low as approximately 5 � 10�7

cm−1 for a registration time of 30 s was recorded [7.16].
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intra-cavity laser
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6 – scanning interferometer;
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7.3.1 Sensitivity Limitations of Intracavity Laser
Spectroscopy

The previously reviewed sensitivity gains of active intracavity laser spectroscopy to
optical losses were accomplished for laser spectrometers being not exactly mea-
surement devices, but mostly detection instruments. The main reason for that is
defined by either the complex or the fundamentally unknown dependency of the
measured intensity spike depth upon the relative laser intensity, also being a function
of other parameters, and changing with time. Consequently, any credible spec-
trophotometric scale for a specific intracavity spectroscopy measurement is only
reproducible in a relatively small dynamic range of an individual type of optical loss,
for the substance under study, and for the particular laser resonator involved.

In the analysis above the concept for increased sensitivity to the loss inserted
into an active laser resonator was primarily attributed to temporal competition
between the resonator modes and to quenching of the modes explicit for a relatively
narrow bandwidth of the absorber under study versus the spectral profile of the laser
gain. For the steady-state condition of laser generation or when very few modes
exist in a resonator, no sensitivity enhancement should be observed. On the basis of
that, a single-mode dye laser should exhibit no sensitivity gains to an intracavity
loss versus a broadband multimode laser. However, the time evolution of the entire
laser spectral profile was observed instead of narrow absorption lines due to res-
onator losses, and the sensitivity reached a limit long before the steady-state phase
[7.22]. Moreover, the factually observed sensitivity of intracavity spectroscopy was
a function of the laser’s pumping power and bandwidth [7.20–7.22].

Let us summarize the sensitivity limitations of intracavity laser spectroscopy in two
cases: for a relatively narrow spectral profile of laser generation compared with that of
the absorber, and for a broadband spectrum of spontaneous emission with Gaussian
distribution, being lased having a narrowband absorber inserted into that laser res-
onator. In the first case, intensity changes of a broadband argon-pumped dye laser can
be presumed to linearly depend on the ratio of unsaturated gain to intracavity loss:

dI=I ¼ ½ðg=cÞðg� cÞ�1�dc; ð7:26Þ
where the dye laser is generating single-mode radiation at gain g and intracavity loss c,
and its relative intensity dI=I is proportional to intracavity loss change dc [7.18, 7.21,
3.32]. Relation (7.26) approaches 1=c at g � c and the intensity enhancement is due
to multiple reflections in the laser resonator. The enhancement should be infinitely
large, dI=I! ∞ at g ! c, though this simplified supposition could not be confirmed
experimentally, and a high sensitivity gain is only achieved using broadband lasers
[7.21, 7.22]. The spectral and temporal intensity distribution of dye laser broadband
generation with nowavelength-dependent cavity absorption is given by [7.3, 7.20, 7.22]:

I j; tð Þ ¼ I0=Dj0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ccsg=p

q
exp � jg � j0

� �
=Dj0

� �2
ccsg

n o
; ð7:27Þ
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where I0 is the total intensity of laser generation, sg and jg are the generation time
to the observation instant and the spectral wave number, j0 and Dj0 are the central
wave number of the laser gain profile (cm−1) and the lasing bandwidth related to the
number of cavity modes generated, and cc is the total cavity loss. With no cavity
absorber, the laser-generation spectrum should have a Gaussian shape or some
superposition of Gaussian shapes for individual lasing modes, and its intensity
should increase and its bandwidth should decrease proportionally to

ffiffiffiffiffi
sg

p
, until

lasing reaches the single-mode state.
However, experimentally, the predictions of Eq. (7.27) for spectral width Dj0 of

laser generation decreasing over time sg and relative intensity I=I0 increasing, along
with the sensitivity of intracavity absorption, are confirmed only until the lasing
approaches the steady-state condition, while the sensitivity reaches its plateau, with
multiple modes present in laser generation [7.22]. A high spatial nonuniformity of the
optical path length in a dye laser cavity must be responsible for temporal fluctuations,
which destroy the time correlation for the mode structure in the laser cavity and the
predictions of Eq. (7.27), limiting the factual sensitivity of intracavity spectroscopy.

With a relatively narrowbandabsorber inside a dye laser cavity, Eq. (7.27) becomes:

I j; tð Þ ¼ I0=Dj0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ccsg=p

q
exp � jg � j0

� �
=Dj0

� �2
ccsg � v kð Þ ‘=Lð Þcsg

n o
:

ð7:28Þ

Here v(j) is the wavelength-dependent absorber loss (absorption plus scattering),
‘=L is the relative length of the absorber versus the cavity length, and c is the light
velocity. The lasing is presumed to be broadband compared with the absorption
spectrum for weak intracavity losses: v kð Þ ‘=Lð Þcsg � 1. Equation (7.28) was
experimentally confirmed for the central region of a laser spectrum [7.20–7.22],
with the sensitivity enhancement of intracavity spectroscopy being analogous to
that for the intracavity multiple-reflection measurement in a passive resonator. In
summary, the sensitivity enhancement of intracavity laser spectroscopy is mostly
effective via stabilizing laser generation parameters, controlling the stability of the
laser cavity path length, and operating near the lasing threshold.

7.3.2 Cavity Ringdown Spectroscopy

The highest sensitivity of intracavity absorption spectroscopy is reached at extremes
of time-dependent events in laser resonators. Even higher sensitivity can be reached
in a passive multipass cavity excited by pulsed laser light, inherently exhibiting
much shorter coherence lengths than identical cw radiation, therefore reducing
first-order etalon effects. Although pulsed methods are analyzed in the next chapter,
let us review the conceptual aspects of laser cavity ringdown spectroscopy mainly
targeting detection of very low concentrations of gaseous substances in resonant
multiple-reflection cavities and evaluation of high reflectance of mirrors them-
selves. Such a methodology, which in its diverse application aspects is reviewed in
Sect. 8.3, is based on creating a high-reflectivity Fabry–Perot cavity in transmitted
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radiation at resonances matching the light wavelength. Since that cavity becomes
transparent for the resonant wave, passing decaying light can be observed by an
outer detector with relatively high sensitivity to the intracavity loss [7.23]. An
example of decay-digitizing ringdown-rate spectrometer is illustrated in Fig. 7.13.
A wavelength-selective cavity (either empty or filled with a test substance) is
probed by short pulsed radiation (in comparison with the cavity round trip time) at
the tuning resonant wavelength, and the temporal behavior of such multiple-
reflection cell transmittance is registered. Maxima of transmittance occur for the cell
resonance modes tuned to multiples of the emitted wavelengths. The shorter is the
laser pulse, the wider is its spectral width, and the shorter is the coherence length for
multiple reflections to add stochastically, limiting interference noise (see Sects. 3.3
and 7.4) due to overlapping of partially coherent light beams.

Providing that even a short laser pulse is much longer than the round trip time
sc ¼ 2Lc/c in the open resonator, the light pulse amplitudes ai and frequencies mi
[7.23]:

EðmÞ ¼ 1
2p

Z1
�1

dt � EðtÞe�i2pmt ¼
X
i

ais m� mið Þ: ð7:29Þ

For a ringdown resonant cell, the Airy formulae in transmission (Eqs. (3.121),
(3.122)) can be rewritten for the cell acceptance function CðmÞ of frequency m as:

CðmÞ ¼ 1� qð Þ2ei2u
 �

= 2ieiu sinuþ 1� q2
� �� � ffiX

m

c m� mmð Þ; ð7:30Þ

where (1 − q) and q are the transmittance and reflectance of mirrors making a cavity of
length Lc, u ¼ 2pmLc=c, mm ¼ ic=2Lc, and mi ¼ ic=2Ls. The cavity-coupled pulse
energy W is proportional to the square product of the pulse amplitude E(m) and the
cavity acceptance function C(m) integrated over frequency:

W /
Z

E mð ÞC mð Þj j2dm

¼
Z

dm
X
i;j

aia

j s m� mið Þs m� mj

� �X
m;n

c m� mmð Þc m� mnð Þ:
ð7:31Þ

Presuming the cavity modes are well separated, disregarding terms with i 6¼ j and
m 6¼ n, and ignoring any variation of the laser spectrum across the cavity accep-
tance function C, one may approximate the mode function c2ðm� mmÞ, which is
much narrower than other frequency structures, as a delta function, thus:

mode-matching 
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tunable 
pulsed waveform
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Fig. 7.13 Cavity ring-down
waveform spectrometer
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aij j2 s mm � mið Þj j2 �
X
i;m

AiS mm � mið Þ: ð7:32Þ

When ringdown measurements are based on signal averaging and numerical
fitting of the loss rate, pulse-to-pulse fluctuation and in-pulse fluctuation of the
pulse energy in the detection time must be known. For Gaussian pulse form
S(mm � mi) * exp[−2p2sp

2(mm � mi)] and pulse width sp, the rms fluctuations of
relative energy in a ringdown cavity, creating noise and limiting the sensitivity of
measurement, become [7.23]:

Wrms=W � 1
. ffiffiffiffi

N
p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
p

=P� 1
q

ffi 1
. ffiffiffiffiffiffiffi

NP
p

; ð7:33Þ
where P ¼ 2Lc=csp � 1 is the number of cavity modes fitting within every laser
mode, total of N. Relation (7.33) underlines an intuitive averaging conclusion: the
coupled-energy instability due to etalon effects is inversely proportional to the
number of longitudinal modes in the ringdown cavity.

To narrow the cavity bandwidth and keep fluctuations low, the laser spec-
trometer in Fig. 7.13 had a 1-m ringdown cavity with a total loss per pass vp ¼
(1 − q2) ¼ 1.2 � 10−4 excited by 15-ns pulses with 0.05-nm bandwidth generated
in a 0.25-m-long dye laser resonator. Ringdown cavity modes viewed as one delta
function were 18 kHz wide, separated by 150 MHz. The source lased 62 longitu-
dinal modes 70 MHz wide, broadly separated by approximately 600 MHz.
Fluctuations of less than 15% were computed to occur, whereas the experimentally
observed fluctuations were approximately 10%. For cavity ringdown measurement,
decay-rate information with and without a test substance in the cavity was accu-
mulated via the end mirror and digitized, numerically fitting the loss rate obtained to
a single-exponential waveform:

FðtÞi ¼ Ai þBi exp � t � t0ð Þ=sc;empty
� �

;

FðtÞj ¼ Aj þBj exp � t � t0ð Þ=sc;test
� �

; ð7:34Þ
where Ai,j and Bi,j are measurement constants. The detected absorption peaks were
near the hundreds of parts per million level for a cavity round trip of 200 cm,
converting to absorption coefficients near or better than 1 ppm [7.23].

The prior analysis presumed certain spectrally uniform characteristics of ring-
down cavities themselves. The mean cavity mirror reflectance q and intracavity
absorption or scattering loss v define the ringdown time: s0 ¼ Lc=[c(|ln(q)|)];
sv ¼ Lc=[c(|ln(q − v)|)], becoming s0 � Lc=[c(1 − q)] at q ! 1.0. In the case of a
spectrally selective cavity with an absorbing and scattering substance, the intensity
I(t) of the coupled light decays exponentially in time, presuming that absorption
follows Beer’s law:

I tð Þ /
Z1
0

I kð Þ exp �1=s kð Þ½ � � t � dk: ð7:35Þ

7.3 Intracavity and Ringdown Spectroscopy 381



Here I(k) is the pulse spectral intensity distribution and s(k) is the integrated decay
time [7.24]:

s kð Þ ¼ Lc= c ln q kð Þj j þ
X
i

li kð Þ
ZLc
0

Ni xð Þdx
24 358<:

9=;; ð7:36Þ

where li(k) is the attenuation cross section, Ni(x) is the number density, and liNi(k, x)
is the total attenuation coefficient accounting for the absorption and scattering losses,
presumed to be time-independent, for a source spectral line width negligible in
comparison with absorption features.

To overcome the difficulties associated with a broad bandwidth, nonuniform
spectral-intensity distribution, and intensity fluctuations, when sensing short pulses
in ringdown measurements, a combination of a ringdown spectrometer and an
interferometer, concurrently sensing temporal and spectral characteristics of prob-
ing pulses, can be used [7.24]. Combining a cavity ringdown spectrometer and a
Michelson interferometer, thus increasing the spectral resolution, resulted in ring-
down time dependencies being found by Fourier-transforming the spectrally inte-
grated cell response versus the path-length difference of two interferometer arms.
The intensity I of radiation transmitted via such a resonant setting is a function of
the frequency m and the path-length difference D of the interferometer arms:

I Dð Þ ¼
Z1
0

I mð Þ cos2 pmDð Þdm or I mð Þ ¼
Z1
�1

I Dð Þ exp i2pmDð ÞdD: ð7:37Þ

Intensity changes could be observed in time as the ringdown transient per frequency
interval:

I m; tð Þ ¼ I m; 0ð Þ exp �t=s mð Þ½ �; ð7:38Þ
where I m; 0ð Þ is the normalized intensity of light entering the empty cavity. Thus,
the absorption-dependent intensity could be obtained by the product of two nor-
malized intensities, one at time t for all values of optical path difference D and
another for the start of time versus D:

IðD; tÞ ¼ InormðD; tÞIðD; 0Þ; ð7:39Þ

meaning that source’s spectral intensity distribution must be known and stable
during the test.

In the system in Fig. 7.14, a symmetric ringdown cavity was formed by two
25-mm-diameter plano-concave mirrors, having 25-cm radius of curvature and
placed 45 cm apart. Both mirrors were coated to effective reflectance 0.9992 near
the 763-nm wavelength of the experiments. Pulsed light from a dye laser was
coupled into the cavity via one mirror, and radiation leaking via another mirror was
focused onto a 200-µm core fiber and transferred into a Bruker IFS66v spec-
trometer; the measured pulses were digitized and fit to a single exponential
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waveform for the ringdown time to be determined. Light exiting the cell was also
split to a photomultiplier-tube reference detector for intensity calibration.
Measurements with broad (400-cm−1 wide) and narrow (1.1-cm−1 wide) pulses
were performed for intensity distributions analyzed during the first 100 ns, corre-
sponding to a 30-m path length of the cavity. The absorption losses were measured
at 2 ls, or approximately 600 m cell path length. The noise-equivalent detection
limit, estimated for normalized absolute absorption measurements, was estimated at
2:5 � 10�7 cm−1, or 40 km of 1=e absorption length [7.24].

An approach to increase the sensitivity of ring-down measurements by stacking
a train of short pulses and thus overcoming the limitations of narrow cavity
bandwidth is shown in Fig. 7.15 [8.18]. The technique presumes individual pulses
in the train to remain mode-matching and resonant with ringdown cavity transverse
and longitudinal modes, and the length of coherence of the pulse train to extend
over the time expected for the cavity to be filled by radiation with negligible
dispersion. The resultant combined pulse become spectrally broad, and may be
further resolved at lower sensitivity by adding Fourier-transform, as in Fig. 7.14, or
dispersing spectrometry for the stacked pulse. In Fig. 7.15, the train consists of 1-lJ
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picosecond pulses repeating at 11.818 MHz to up to several milliseconds with the
repetition rate having a 5% duty cycle. Radiation approached the respective
transform and diffraction limits at 30 lm and 2 lrad of rms positioning and
pointing stability with a pulse-train center wavelength stabilized to ±0.0001. A
three-mirror telescope was used for mode matching on beam steering and align-
ment, provided by visible He–Ne laser light via pinholes. A 2.115-m-long sym-
metric ringdown cell was assembled from two high-reflectivity plano-convex
multilayer mirrors on silica substrates and placed in a vacuum chamber. The cell’s
output was coupled to a monochromator having a grating with a 150 lines per
millimeter, blazed for 5-lm wavelength. Pulse stacking allowed the signal-to-noise
ratio to be improved from the single-pulse level and an increase of the decay
constant to 10.5 ls from 7.5 ls, related to the average-mirror loss of 940 ppm, thus
correcting the loss value to 650 ppm for 5.38-lm center wavelength. The noise-
level sensitivity, corresponding to ±20-ns variation of the measured 10.5-ls decay
time, was estimated to be nearly 2 � 10�9 cm−1 [8.18].

To a certain extent, the practical limits of sensitivity for ringdown measurements
are defined by the interference effects [7.23–7.32]. If there is no sample in a
ringdown cavity, the intensity I of cavity-coupled light decreases for each round trip
time tc by the squared mirror reflectance: I(t + tc) ¼ q2I(t). After n round trips,
respective signal S becomes:

S tþ ntcð Þ ¼ exp 2n ln qð ÞSðtÞ ffi exp �2n 1� qð Þ½ �SðtÞ: ð7:40Þ

In the cavity with a sample of frequency-dependent absorption coefficient a(m),
signal S is [7.25]:

S tþ ntc; að Þ ffi exp �n 2 1� qð Þþ a mð ÞLc½ �f gSðtÞ: ð7:41Þ

Since the ringdown time s is inversely proportional to the loss coefficient l
of the cavity: s0 ¼ tc=l0, s ¼ tc=l, where l0 ¼ 2(1 − q1q2), l0 ¼ 2[(1 − q1q2) +
aðmÞLc], loss a is given by the change Ds of the ringdown time:

a mð ÞLc ¼ 1� q1q2ð Þ s� s0ð Þ=s ¼ 1� q1q2ð Þ Ds=sð Þ: ð7:42Þ

Presuming q1,2 ¼ 0.9999 and Ds=s ¼ 0.001, the sensitivity of ringdown spec-
troscopy would be limited to near 2 � 10�7, though practical limitations could be even
tighter, since the reflectivity of a coated mirror has a tendency to degrade significantly
over time, particularly under exposure to laser or other radiation [II.20, 8.16].

Multibeam interference in a ringdown Fabry–Perot cavity excited by coherent light
in its fundamental mode is defined by Airy response functions (Eqs. (3.122)–(3.125)).
In view of the linear superposition principle of interference phenomena, occurring
independently for different frequency components (see Chaps. 1, 3, 6 and 8), the
complex optical-response function eHqmn xð Þ; expressing correlations among input

and output cavity fields [1.1, 7.26]: ~eqmn xð Þ ¼ eHqmn xð Þ~ei xqmn
� �

; at frequency xqmn
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for longitudinal q and transverse m, n modes versus laser angular frequency xc, is
identified by the sum of responses [7.27]:

eHmn xð Þ ¼
X
q

eHqmn xð Þ ¼ �2
ln 1� lmnð Þ 2� lmnð Þ

�
Xþ1

Dq¼�1
C2
mn

1� 1� lmnð Þ exp ix� xqmn � Dqxc
� �

tc
� �

C2
mn þ x� xqmn � Dqxc

� �2
( )

: ð7:43Þ

Here eigenfrequencies mqmn and function eHmn xð Þ of the empty and stable resonator

are [II.5, II.42]: mqmn ¼ xqmn

2p
¼ c

2‘
qþ 2

p
arctan

‘ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ 2r � ‘ð Þp !

mþ nþ 1ð Þ
" #

;

eHmn xð Þ ¼ lmn
1� 1� lmnð Þ � exp i x� xqmn

� �
tr

� � ; Cmn is the cavity linewidth; tc ¼
2‘=c; lmn is the cavity single-pass loss, counting diffraction loss rmn, and ‘ is the
cavity length. The linewidthCmn, loss lmn, and time decay constant smn for eachmode
relate as: Cmn ¼ 1= 2smnð Þ ¼ � ln 1� lmnð Þ=tc. For frequencies x� xqmn

� ��� ��tc � 1
near cavity resonance and small losses lmn � 1, Eq. (7.43) may be closely approx-
imated by the dispersion function:

eHqmn xð Þ � Cmn= Cmn � i x� xqmn
� �� �

: ð7:44Þ

If amplitude and phase variations of the excited spectrum are broader than the
relative width of the cavity modes, the intensity of light transmitted via a cavity
output mirror in the time domain is:

I tð Þ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffi
e0=l0

p X
qmn

X
q0m0n0

ai xqmn � xl
� �

ai xqmn � xl
� �

CqmnCq0m0n0

� exp �Cqmnt
� �

exp �Cq0m0n0 t
� �

cos xqmn � xl
� �

tþui xqmn � xl
� ��

� ui xq0m0n0 � xl
� ��CmnC


m0n0

ZZ
wmn x; y; Lc=2ð Þw

m0n0 x; y; Lc=2ð Þdxdy; ð7:45Þ

where e0 and l0 are the free space permittivity and permeability, x‘ is the laser’s
angular frequency, Yi(x − x‘) and ui(x − x‘) are field’s spectral amplitude and
phase, and Cmn is the spatial coupling coefficient of transverse cavity eigenmodes,
given by Gauss–Hermite polynomials wmn(x, y, z) as [7.27]:
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eE x; y; z;xð Þ ¼
X
q

X
mn

Cmnwmn x; y; zð Þ~eqmn xð Þ;

Cmn ¼
Z1
�1

Z1
�1

ui x; y; Lc=2ð Þw
mn x; y; Lc=2ð Þdxdy: ð7:46Þ

Excitation of cavity modes by a narrow Gaussian pulse with linear frequency
modulation b gives:
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ð7:47Þ

where reff is the effective half-width of the excitation spectrum for input field
ei(t) ¼ e0exp(�ct2 + ibt2). Integration via a cavity exit plane for all frequencies
defines its transmittance Tðx‘Þ ¼ Wðx‘Þ=Win:

T x‘ð Þ ¼ 1
Win

Z1
0

ffiffiffiffiffiffiffiffiffiffiffi
e0=l0

p
p

X
mn

Cmnj j2

� l 2
mn Yi x� x‘ð Þj j2

1þ 1� lmnð Þ2�2 1� lmnð Þ cos x� xqmn
� �

tc
� � dx: ð7:48Þ

Equation (7.48) confirms the cavity transmittance T is dependent on the ratio of
the source linewidth to the longitudinal mode spacing of the cavity, causing any
pulse chirp to modulate a decaying signal by longitudinal and transverse mode
beats. Equation (7.47) predicts the output cavity signal to be the sum of weighted
exponential decays modulated by sinusoidal beats at a cavity eigenfrequency
spacing as a linear frequency modulation of laser emission with chirp
b:xðtÞ ¼ x‘ � 2bt, with changes in the optical path length d‘ shifting the cavity
eigenfrequencies: dx ffi � d‘= k=2ð Þð Þxc. In experiments performed with relatively
long and short decay cavities pumped by either a pulsed Nd3+:YAG laser
at 840 nm, Dt ≅ 4.8 ns, and Dm ≅ 100 MHz, or a Ti:Al2O3 laser at 760 nm,
Dt ≅ 3.3 ns, and Dm ffi 135MHz, the measured ringdown signals, at a given laser
carrier frequency, were integrated up to five times over the ringdown time constant
e−1 of the cavity. From a 13.39-cm long to an 180-cm long empty cavity, the
excitation of only transverse modes and longitudinal and transverse modes with
deep modulation of the signal at maxima separated by the free spectral range of the
cavity was observed [7.27], confirming the predictions of Eqs. (7.47) and (7.48).
Mode beatings vanished for low-order transverse modes for a wide cross-section
cavity. The modeled and experiential evidence of longitudinal and transverse
spectral-mode beatings highlights the fact that without explicit time averaging,
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a ringdown cavity can be inherently spectrally selective, causing distortion of an
exponential decay due to mode-beating noise [7.26, 7.27].

Multimode Versus Single-Mode Studies

For short-pulse laser light irradiating a matching ringdown cavity, the light coupling
occurs for multiple longitudinal modes, as well as for some transverse modes. The
longitudinal mode beating leads to a recurring fast series of decay pulses matching
the cavity and to transverse mode beatings for cavity-mode mismatch. Any ring-
down signal should be electronically filtered, removing faster beatings from slower
decays; however, a decaying pulse envelope may become a multiexponential
function, since exited modes will have different cavity losses, leading to the
necessity to perform deconvolution of excited cavity modes, adding processing
noise and compromising the sensitivity of the ringdown study [7.25, 7.30].

For a cavity excitation pulse of a finite frequency bandwidth, the time-dependent
intensity I(t) of the cavity ringdown signal integrated over the entire bandwidth of
frequencies m is [7.28, 7.25]:

I tð Þ ¼ exp �t � c � 1� q1q2ð Þ=‘½ �
Z1
�1

I m� m‘ð Þ � exp �t � c � a m� m0ð Þ=‘½ � � dm:

ð7:49Þ

Here the measured absorptance aðm� m0Þ and the beam intensity Iðm� m0Þ are both
functions of frequency, while a is the integral-normalized absorption line shape
centered at m0 but I is the individual spectral intensity Im integrated over frequency
and centered at m‘. Each frequency in Eq. (7.49) decays with its time constant sm and
the integrated signal is the weighted summation of frequency components coupled
into the cavity of length ‘. When IðmÞ is a delta function and the aðmÞ value does not
significantly change over Dm, the ringdown signal decays as a single exponential, but
since the lased frequency components commonly fluctuate from one pulse to another,
the signal becomes the convoluted time function (see Sect. 3.2).

As common practice, the ringdown function is measured by digitizing the output
signal I(t) when fitting data to a single-exponential function while determining the
cavity absorption loss. The digitization is associated with time window Dt, over
which the data are fit. Hypothetically, the window should be as short as possible:
Dt ! 0, also starting at the beginning of the ringdown signal t ! 0. However, such
a sampling would lead to indistinguishable signal probes and increased fluctuations
owing to finite digitization rates and noise created by scattered and diffracted light.
A nearly fourfold variation of the time window led to 50% changes in experi-
mentally measured losses caused by a wider bandwidth of a dye laser versus an
absorber: 1.5 GHz versus 450 MHz [7.28]. Equation (7.49) points out that when
ringdown losses near and away from the absorption band center are dominated,
respectively, by the absorber and cavity mirrors, the ringdown time related to the
absorber can become relatively low, causing the single-exponential decay
approximation to vanish.
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For a pulsed laser generating multiple longitudinal modes of fluctuating wave-
lengths and amplitudes, radiation injected into and transmitted by a matching
ringdown cavity of length ‘, longer than the pulse length of duration s, will consist
of a series of pulses, separated by time tc ¼ 2‘=c with relative pulse-to-pulse
intensity variation dI/I ¼ (1 − q1q2)dt/tc. For an input pulse of amplitude A, having
k modes Ak(t) at phase wk ¼ 4p‘=kk; since diverse modes do not interfere, the total
intensity In is [7.29]:

In ¼ q2nð1� qÞ2
X
k

X1
m¼0

Ak t � mtcð Þqm exp imwkð Þ
" #2

: ð7:50Þ

Here only discrete instances of time t = n � tc are considered for t < mtc at identical
cavity mirrors, starting at t ≅ 0, when input light is turned off to initiate the ring-
down process. Equation (7.50) shows that a q2n-factored exponential decay is
common for all modes, and fluctuations affect only the intensity of light initially
stored in the cavity, but the decaying intensity can be affected if wk 6¼ const.

Interference effects due to cavity length changes DL can be modeled via the
cavity mirror oscillation in sinusoidal motions of period T longer than decay time
s for a uniform movement of velocity v ¼ 2pDL=T . For each mirror reflection,
light frequency xi is altered by the Doppler effect: xd ¼ xið1� v=cÞð1þ v=cÞ
� ð1� v=cÞxi � bxi, for cavity length ‘ concurrently modified by 1=b. The
Doppler shift and the cavity length changes affect the amplitude Fourier spectrum
A tð Þ ¼ R A xð Þ exp ixtð Þdx of the light pulse of the source frequency spectrum
A(x) at the cavity exit before it is switched off:

A tð Þ ¼
Z1
�1

exp ixtð Þ
X1
m¼0

bqð ÞmA bmxð Þ exp �ix‘=cð Þ 2mþ 1� 2m2v=c
� �� �

dx:

ð7:51Þ

The Gaussian-shape pulse A xð Þ ¼ exp
�� x� x0ð Þ=Dxð Þ2� at temporal resolution

higher than the wavelength period allowing one to replace time integration by
summation leads to intensity In [7.29]:

In ¼ bqð Þ2n
Z1
�1

X1
m¼0

bqð Þm exp � xb nþm � x0
� �2

=Dx2
 �

exp iwð Þ
" #2

dx

¼
b!1

q2nF nð Þ ¼ q2n
X
k

Fk nð Þ; ð7:52Þ

where w ¼ 2x‘=cð Þ m� m2 þ 2nmð Þv=cð Þ. At velocity: v � c, the time dependent
intensity In is a product of exponential decay q2n and time function F(n) of pulse
linewidth Dw, cavity mirror reflectivity q, and cavity length ‘, with F(n) fluctuating
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erratically at pulse-to-pulse instabilities, showing up as noise in the main expo-
nential decay q2n and changing the average decay time s. Therefore, a time aver-
aging among repetitive pulses is essential, but is only efficient for a large number of
modes [7.29].

Single-mode ringdown spectroscopy addresses the convolution problem of
Eq. (7.49), as well as interference effects of pulse frequency fluctuation among
various longitudinal modes, by sweep-tuning the ringdown cavity length and
scanning the loss spectrum under study [7.30, 7.31]. By choosing the ringdown
cavity length to have a free spectral range of c=2‘, a much larger spectrum than the
frequency-stabilized narrow spectrum of incident radiation allows one to excite a
single cavity mode and eliminates the need for spectral deconvolution with no
transverse-mode beating. The ringdown signal for a transform-limited Gaussian
light pulse tuned to a single-mode cavity is [7.27, 7.30]:

Iðt;xÞ� I0ðm; nÞ
� ffiffiffiffiffiffi

2p
p

=Dx
�ðcð1� qÞ=2‘Þ2 expð�t=sðxÞÞ

þ noiseþ straylight; ð7:53Þ

where I0(m, n) is the initial light intensity coupled into a given cavity transverse
mode m, n, and s(x) is the ringdown time constant, which varies along the
absorption line profile of the test substance:

s xð Þ ¼ ‘= c 1� qð Þþ a xð Þ‘½ �ð Þ: ð7:54aÞ

Making measurements with the empty and filled cavity, the absorption coefficient
a(x) is:

a xð Þ ¼ sempty � s xð Þ� �
= csemptys xð Þ� �

: ð7:54bÞ

The empty-cavity measurement can be substituted with the respective measurement
at the spectral coordinate corresponding to a(xi) � 0.

Noise-floor sensitivity, given as the relative standard deviation of ringdown time
uncertainty, can be limited by domination of either shot noise or technical noise,
being sampling-rate-dependent:

rs=s xð Þ ¼
shot
noise

½2‘=c 1� qð Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxhx=

� ffiffiffiffiffiffi
2p

p
I0 m; nð Þs xð Þ

q �
;

rs=s xð Þ ¼
tech
noise

½2rtech=I t ¼ 0;xð Þ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt=s xð Þp

:
ð7:55Þ

Here, for shot-noise domination, the relative standard deviation is proportional to
the reciprocal of the number of decaying cavity photons I0ðm; nÞ

�
hw and for sta-

tistically independent technical-noise domination it is proportional to the relative
uncertainty of the ringdown time Dt

�
sðxÞ [7.30].

For a pulse excitation casing essentially multiexponential decay via
multiple-mode excited cavity, the ringdown study can be accomplished by fitting to
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the monoexponential decay if effectively stabilized broadband laser radiation is
coupled to any mode-separating cell, such as White or waveguide cavity, when
multiexponential character is not distinguished or the cavity is set to have equal
losses for every transverse mode [7.31, 7.32]. Only for the monoexponential decay
character I ¼ Ioffset þ I0expð�t=sÞ, can the intracavity loss aR be appropriately
estimated from the aggregate decay rate b ¼ 1/sR:

aR ¼ b=c� ln qj j=‘ ¼ 1= csRð Þ � ln qj j=‘: ð7:56Þ

Alternatively to using Eqs. (7.35) and (7.36), relying on integration of the total
ringdown decay:

IRsR ¼
Z1
0

I0 exp �t=sRð Þdt; ð7:57Þ

one can analyze the should-be monoexponential decay as fitting to general form:
I(t) ¼ Ioffset + I0exp(−bt), while the decay is measured in successive time windows
of equivalent width tw at delay Dt > tw:

IA ¼
Z

tw Að Þ

I tð Þdt; IB ¼
Z

tw Bð Þ

I tð Þdt; IO ¼
Z

tw Oð Þ

Iintensity�offset tð Þdt: ð7:58Þ

For it to be eliminated, the intensity offset IO needs to be measured at the same time
interval tw as for two time windows A and B, converting the general decay equa-
tion: 1=sR ¼ lnðIA=IBÞ=ðDtÞ, to an offset-enhanced one:

1=sR ¼ 1=Dtð Þ ln IA � IOð Þ= IB � IOð Þ½ �: ð7:59Þ

In a pulsed single-mode experiments performed with a frequency-stabilized
parametric laser coupled into a 10-cm-long ringdown cavity, the noise-equivalent
intracavity-loss sensitivity level reached approximately 5 � 10�10cm�1Hz�0:5, with
0.3% standard deviation of individual measurement repeatability [7.30]. Multimode
measurements based on nonlinear least-squares analysis accounting for signal offset
when detecting ringdown decay rates experimentally confirmed the monoexpo-
nential decays effectively reached in a stable, steadily aligned resonant cavity under
multimode excitation [7.32]. The ringdown high-finesse fiber resonator studies
attained near 5 � 10�4 sensitivity to induced fiber losses [7.33].

Continuous-Wave Ringdown Spectrometers

Continuous-wave (cw) ringdown spectroscopy has tight requirements for matching
the narrow linewidth of a single-mode cw laser, such as about 1 MHz, with the
narrow bandwidth of a high-reflectivity cavity of finesse larger than 104.
Equations (7.50)–(7.52) confirm that small thermal drifts of the cavity length or
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vibrations easily cause the cavity to be out of resonance. Addressing the
cavity-matching issue, one can slowly scan the cavity length to achieve high-
efficiency coupling to a beam of incident light and then abruptly switch the beam
off, initiating its decay [7.34]. The high-finesse cavity can be stabilized by one
polarization component of radiation while creating a decay signal using the
orthogonal state of polarization [7.35]. Cavity finesse can be changed in a relatively
short wavelength range, permitting cavity stabilization, and some combination of
the above techniques may also be used [7.36–7.41].

Following Eqs. (7.49)–(7.52) for a high-finesse ringdown cavity, which length is
slowly changedwith velocity v, the intensity I(t) of a continuous monochromatic wave
at frequency x could be approximated by summing all multiply reflected wave
components inside the cavity: IM0 tð Þ ¼ 1� qð Þ2IM0

P
qm exp ijvtcmðj 2k � mð ÞÞj2 for

m ¼ kþ dðxÞ. For the Lorentzian line shape of a single-mode laser used for cavity
excitation, being spectrally broadened by Gaussian white noise and coupled into a
high-finesse ringdown cavity, the combined intensity IR of decaying modes could be
identified as a sum of all spectral component of the excitation line shape [7.36]:

IR tð Þ ¼ 1
p

Z1
0

ð1� q1;2Þ2q2 kþ d xð Þð Þ
1;2

X1
m¼� kþ d xð Þð Þ

qm1;2 exp �ixtc v=cð Þm2� �������
������
2

� I0 � Dx � dx
x� x0ð Þ2 þ Dx=2ð Þ2 : ð7:60Þ

Here discrete time instances are viewed in terms of cavity round-trip time t ¼ ki � tc
much smaller than decay time sc of that cavity, x0 and Dx are the line-center
frequency and full width at half-maximum of a Lorentzian spectral line, d(x) is the
frequency change, but is an integer for summation: dðxÞ ! ðc=2pÞðx� x0Þ=x0j j.

When detecting the absorption spectrum of the sample being studied bymeasuring
the ringdown cavity decay time and consecutively scanning the frequency mi, where
i ¼ 1, 2, 3,… of a cw source coupled to the resonant cavity, one can represent the
uncertainties of decay-time measurement of the sample absorption coefficient ai for
concentration Ci via the spectral line shape function gðmiÞ of emission [II.40, 7.37]:

ai ¼ CiSi Tð Þg mið Þ= ffiffiffi
p

p
; ð7:61Þ

where Si(T) is the strength of absorption line at temperature T and √p is the factor
normalizing g(mi). Summation over the entire frequency domain of measurement
leads to integrated absorption AR:

AR � CR

X
i

Si Tð Þ ¼ ffiffiffi
p

p X
i

ai=
X
i

g mið Þ: ð7:62Þ

The relative uncertainty in detecting the concentration of absorbing molecules
becomes [7.37]:
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u CRð Þ2=C2
R ¼ u ARð Þ2=A2

R þ u SR Tð Þð Þ2=SR Tð Þ2; ð7:63Þ

where the relative uncertainty u ARð Þ2=A2
R is determined by errors of fitting the

measured spectrum to a known function: Gaussian or Lorentzian, etc. If ai and gðmiÞ
are measured independently:

u ARð Þ2=A2
R ¼ p

X
i

u aið Þ2
. X

i

ai

 !2

þ ffiffiffi
p

p .X
i

g mið Þ
 !2

�
X
i

@g mið Þ=@mið Þ2u mið Þ2: ð7:64Þ

If uncertainties of the measured absorption coefficient u(ai)
2 and of the emitted laser

frequencies uðmiÞ2 are known for sufficiently large sampling data, Eq. (7.64) can be
evaluated for any given line function by replacing the summation with integration
over the total frequency range [7.37].

Figure 7.16 illustrates the intensity distribution of intracavity transmission for a
Fabry–Perot cavity consisting of two mirrors with reflectivity estimated as 0.9999
for 700-nm center wavelength resonant to cw laser emission. One cavity mirror is
assumed to be on a piezoelectric transducer sweeping the cavity length and
allowing radiation to be accumulated in a resonant mode until it is sharply switched
off to start the decay process, which corresponds to 105 ms, kitc ¼ 0, in Fig. 7.16.
Both the bandwidth of coupled laser modes and the scanning speed affect the
ringdown signal by increasing the bandwidth and superimposing several modula-
tion peaks for the decay signal, therefore complicating the fitting to a single ex-
ponential function. At the same time, the superposition of multiple frequency
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components and the randomness of the phases of light components multiply
reflected in the cavity flatten any high-frequency signal modulation.

Active laser-frequency stabilization via an added stable Fabry–Perot interferom-
eter during cw ringdown studies helps increase the sensitivity of decay-cell resonance
measurements using radio-frequency phase modulation with optical heterodyne
detection of modulation sidebands [7.42]. Concurrently, testing systems with
cavity-lock acquisition, which tune a cavity length to frequently pass via resonances,
led to the observation of oscillation transients seen even at low mirror velocities with
the transients being dependent on the cavity finesses and length and the mirror
velocity [7.42, 7.43]. These field transients, the rates of which always increase with
time, causing a chirplike behavior, are due to the accumulated Doppler shift with
relaxation time of the oscillations equal to the storage time of a high-finesse cavity
[7.44]. When the moving mirror passes a cavity resonance, damped oscillations
occur, amplifying the Doppler shift and causing modulation of the cavity field.

Cavity-Enhanced Broadband Spectroscopy

If spectral information about loss features is to be taken simultaneously over an
extended range of wavelengths while enhancing measurement sensitivity to optical
losses, the ringdown technique could utilize a broadband radiation source. Several
approaches are capable of accumulating an obviously low-intensity spectral signal
of the cavity transmission to be sufficient for registration [7.45–7.47]. One
straightforward way for the broadband ringdown spectroscopy is to couple white
light into the relatively high-finesse cavity and analyze its output by any spectro-
graph equipped with a detector array. The multitude of its detectors would simul-
taneously register time-integrated intensities over a range of wavelengths and fit
each of them to a single exponential function obtaining the specimen spectral
absorption function by comparing signals in the empty and the filled cavity.
Another way is to modulate an incoming beam of cw light or a string of pulses
registering an individual wavelength-dependent phase shift caused by each specific
time-decay in a given ringdown cavity. Certain combinations of the reviewed
techniques could also be used, as seen in Fig. 7.14 and shown in Fig. 7.17 [7.46].

An unstabilized short-arc xenon lamp is used as the main light source with an
added neon-lamp for the wavelength calibration of a monochromator. An inter-
ference filter narrowed white light source emission into centered at 628-nm spectral
region for the highest reflectivity of both cavity mirrors reaching q ¼ 0.9999. For
the 45-cm long cavity spacing and purposely incoherent light source, transmittance
s ¼ ð1� qÞ2=ð1� q2Þ of that optically stable resonator of two identical mirrors is
only 5 � 10�5 without a specimen, hence requiring to utilize a cooled intensified low
noise photodiode-array detector at its noise signal equivalent to having q � 10−5.

Performing measurements of a time integrated intensity of the empty versus one
filled by a specie: Is(t) ¼ I0ð1� qÞ=ð1þ qÞ, and by estimating its absorption co-
efficient as of a low-loss medium a � ‘�1 Is=I0 � 1ð Þ 1� qð Þ for a resonator of
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length ‘ (see Chap. 8 for more detail), the resolution capability of a particular
system is limited by the density of eigenmodes in a ringdown cavity of a given
length and the resolving power of a monochromator. Experimentally reached res-
olution 0.66 cm−1 or 0.026 nm around 628-nm region allowed to resolve weak
atmospheric transitions in molecular oxygen at 1 bar and gaseous azulene at its
vapor pressure at room temperature when averaging five spectra, taken at 5-s
exposure time each with 25 s of the total exposure time [7.46].

From the standpoint of increasing an attainable spectral range of the wavelengths
coupled into a chosen high-finesse cavity for ringdown studies, a total-internal-
reflection-based resonator could be realized (Fig. 7.18) via illumination of espe-
cially low divergence [7.48]. Seen Brewster-angle retroreflector prisms make the
broadband multiple-reflection resonator, being bandwidth limited by expected low
spectral losses of the prism material and its dispersion, which affects the efficiency
of radiation coupling into the cavity for a specifically defined prism spacing.
Application of that resonator design are associated with the supercontinuum light
sources [7.47] or mode-locked lasers [7.48].
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Another approach using a broadband, but not necessarily laser, source is shown
in Fig. 7.19 [7.49]. The concept is to couple light in and out of a resonant cavity not
via a cavity mirror, but via an acousto-optic modulator (AOM) deflecting broad-
band radiation from a superluminescent (SL) diode to an external spectrometer,
without a need of waiting for the cavity energy to reach the systems’ detection
threshold because of an extra AOM loss. A beam of radiation from SL light diode is
guided into the main resonator CM1–CM4 via mirrors M1, M2 and are damped
down by beam stop BS as AOM is switched off. The beam is coupled to the
resonant mode as AOM is turned on. The stored inside energy is coupled out by
mirrors M3,4 to spectrometer’s detector when AOM is switched off while fast
detection is not required, leaving the timing to system electronics. However, the
main advantage of ringdown measurement to be made within one pulse decay is no
longer valid, requiring controlling pulse intensity fluctuation, plus placement of
AOM inside the cavity causes an extra diffraction loss while it is switched on.

To increase the length of a ringdown cavity a V-shape configuration may
be deployed [7.63], enabling to reduce back-reflection feedback with a res-
onator of the excitation laser (Fig. 7.20). By modulating the cavity length
using 0.003 cm−1 minimal-scan step, 1 − r noise-equivalent absorption coefficient
of *2.6 � 10−8 cm−1 Hz−1/2 was reached at 0.003 cm−1 spectral resolution in
1.2 cm−1 spectral span for 2.8-km long absorption path length [7.63]. Differential
measurements could be utilized to reduce residual etalon effects (see the next
paragraph) via on-off testing for two laser beams at both scan frequencies, enabling
a difference spectrum [7.64]. Parallel studies of transmittance-reflectance of a
ringdown cavity, synchronized with simultaneous tuning of a cavity length and
laser frequency [7.65], plus measurements of a spectral width of a cavity mode
[7.66] via frequency-locking and stabilization of cavity’s length [7.67], and trans-
mission-reflection ratios or extinctions [7.68–7.72] can be made.
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7.4 Reduction of Interference Fringes in Multipass
and Derivative Spectroscopy

Nearly every multiple reflection scheme analyzed in this chapter enhances, in one
way or another, multiple interactions of radiation with highly reflecting mirrors, that
way initiating the basis for multipath interference, if not for specularly reflected
beam themselves, but at least for light scattered by mirrors for interference-fringe
spacing matching the free spectral range of the cell. Furthermore, any effort to
maximize the beam-path length by increasing the number of cell passes leads to
likely beam overlapping caused by tighter spacing of adjacent beams and increased
interference manifestation, exhibiting itself as intensity noise (see Chap. 3). The
appearance of cavity-length matching fringes is highly manifested in various
measurement techniques involving multipass cavities or other resonator derivatives
– frequency, wavelength, and modulation spectroscopy, wavelength tuning, or
spectral scanning (see Chaps. 8 and 10) – owing to changing the frequencies or
wavelengths of interfering beams. Since the use of high-finesse cavities is essential
for these methods, undesirable interference cannot be completely suppressed, but
can be reduced to an acceptable level by one or another form of integration – spatial
or temporal modulation, intensity or position dithering, pattern averaging, and
electronic filtering, except in “smart” designs guiding each beam to its own optical
path and thus avoiding the overlapping [7.50–7.61].

Interference fringes due to etalon effects in high-reflection cavities can especially
obscure the results of any multiwavelength measurements, particularly if a cavity is
spectrally scanned using a tunable source and the observed interference extremes
matching its free spectral range are confused with either the spectral features being
investigated or the harmonics of frequency and wavelength modulation in deriva-
tive spectroscopy [7.50, 7.51]. During a multipass cavity scan, the observed fringe
intensity characteristically goes to the maxima and the minima of interference,
corresponding to the cavity spacing, similarly to the interference changes shown in
Figs. 3.17 and 3.18, as the fringe amplitudes increase at maxima and decrease at
minima of either dual-path or multipath interference. Since cell-related fringes
inherently exist in high-finesse cells, to separate them from the spectral features
under observation one can ultimately use one or another form of added signal
modulation to integrate the fringe amplitudes over the free spectral range of the
cavity, averaging interference patterns in space or time, and accumulating the
measured signal. The modulation can be applied either to light itself or to the
optical-path-length difference responsible for interference fringes created by light
beams existing in the cell.

Considering changes of intensity in transmitted and reflected light caused by
the multipath interference, Eqs. (3.119) and (3.122) for the equal reflectances
q1 ¼ q2 ¼ q, sint ¼ 1 and s + q ¼ 1 become:
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Iq ¼ I0
4q sin2 d=2ð Þ

ð1� qÞ2 þ 4q sin2 d=2ð Þ � I0
F sin2 d=2ð Þ

1þF sin2 d=2ð Þ ; ð7:65Þ

Is ¼ I0
ð1� qÞ2

ð1� qÞ2 þ 4q sin2 d=2ð Þ � I0
1

1þF sin2 d=2ð Þ : ð7:66Þ

Here for absent internal losses: sint ¼ 1, the finesse parameter: F ¼ 4
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
=

ð1� ffiffiffiffiffiffiffiffiffiffi
q1q2

p Þ2 ¼ 4q=(1 − q)2 at q1 ¼ q2, identifies the intensity depth of fringes
seen in the cell. The fringe sharpness is measured by the fringe half-width e for the half
intensity, identified at half maximum: d ¼ 2mp	 e=2, thus:

Is
I0

¼ 1

1þF sin2 d=2ð Þ ¼
d¼e=2

1

1þF sin2 e=4ð Þ ¼
e!0

1

1þF e=4ð Þ2 ¼
1
2
;

e ! 4ffiffiffiffi
F

p ¼ 2 1� qð Þffiffiffi
q

p : ð7:67Þ

Defining finesse = as the fringe separation per 2p phase change [1.1] or as the free
spectral range of the cavity related to the half-intensity width e of the fringes
observed, the finesse equation is:

ð7:68Þ
For equal to 0.5% diffuse component of the mirror reflectivity caused by uniform
scattering, the peak-to-peak modulation of the transmission intensity has finesse
= ¼ 0.223, thus making such a fringe visibility quite noticeable even for a low
mirror-edge diffraction with no beam overlaps, if the radiation specularly reflected
by one high quality mirror at reflectance q1s ¼ 0.999975 interacts with diffuse
reflected light from another mirror at q2d ¼ 0.000025 for effective average
reflectance q1,2 ¼ 0.005. The latter interference pattern is imposed over the much
higher relative intensity of radiation and may become visible only if accumulated
on many transversals of a multipass cell.

Another aspect of a fringe structure superimposed over the intensity of radiation
used for the measurement in a multipass cavity is associated with thermally induced
drifts of the cavity mirror separation distance, limiting the sensitivity of the loss
measurement to be performed, especially since the fringe removal by integration
over time inherently relies on some stable fringe pattern. Besides the temperature
drifts, short-term fluctuations of cavity gas specimen pressure or particular gas-flow
process will cause similar limitations to the measurement sensitivity, particularly for
small optical densities corresponding to the lowest optical loss to be detected.
Potential fluctuations of the specimen’s refractive index at the long path lengths
attained in multipass cavities translate into tight requirements for stability of the
cavity, as well as phase variability of the laser radiation utilized for the sensitive
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measurement. For example, experiments with a 62.5-cm-long White cell main-
taining 30-mbar inner-gas pressure confirmed that 80-lbar pressure deviations were
limiting the measurement sensitivity to optical density of 7 � 10�7, with turbulence
limitations due to 1=f noise at integration times being above 30 s [7.52].

Similar sensitivity-limiting experiments [7.50, 7.51] demonstrated the validity of
time integration for the fringe-affected intensity of radiation observed in a 1-m-long
White cavity. Measurements were made in 1600-cm−1 spectral band via a tunable
diode laser referencing the optical sensitivity of the studies via a calibration
cell with the loss level equivalent to 80 ppb of NO2 in air. The cell was set to have
40-m total path length, and exhibited various fringes with relative intensities near
10−4–10−2 for spacing related to 0.0025-cm−1 free spectral range of a 1-m cavity,
being observed despite careful mirror alignment. The most pronounced fringe
spacing corresponded to interference between adjacent light spots on the White cell
field mirror (see Sect. 6.2), measured as 75.3 ± 2 MHz versus nominal 75 MHz or
0.0025 cm−1. Most intensity fluctuations due to fringes were averaged by imposing
a modulation jitter over the tuning laser-diode current at 300–500 Hz frequency
with a relatively small amplitude compared with the main signal modulation used
for spectral tuning and detection, sweeping a laser wavelength back and forth over
at least one fringe period. A measurement sensitivity of 0.1 ppb for trace detection
of NO2 in air was achieved [7.50]. For second and higher harmonic detection, the
jitter modulation frequency and phase optimization allowed minimization of fringe
noise, while maintaining a sufficiently high harmonic-absorption signal, which is
typically decreased owing to jitter [7.51].

Another way of averaging fringe-prone intensity modulation of radiation trans-
mitted via a multipass cavity is by modulating the cavity path length in such a manner
that the resonant length deviates between any adjacent maximum and minimum of
interference (see Chap. 3). Since transitions from maxima to minima require a phase
change ofDd ¼ p=2 or a wavelength change ofDk ¼ k0=4 for interfering waves, the
minimum path-length change inducing interference-fringe averaging is:

DLmin ¼ Dd
k0
2p

� �
¼ k0

4
: ð7:69Þ

Possibilities of inducing optical path-length changes in a multipass cell include one
or another path-length spoiler: a piezoelectric transducer changing the mirror’s
position, an oscillating Brewster-angle plate, and/or a cell-pressure modulator - all
varying the cell path length among interference extremes likely a few times over the
free spectral range of the cell for a given wavelength.

A Brewster-angle plate, as a common tool in laser spectroscopy (see Sect. 7.1)
broadly used for laser-generation suppression or intracavity loss calibration, may be
utilized as an interference-fringe spoiler, rotated about the Brewster angle to offset
the cavity path length over at least half of its free spectral range [7.53]. The
constraint for using a rotating Brewster plate is in the necessity to polarize light in
the plane of its incidence, otherwise interference for orthogonal components would
obscure the fringe-reduction effort. For unpolarized radiation, a normal-incidence
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plate with two-face antireflection coatings matching wavelength k0 should be
easier to implement. The plate also needs to be thick enough to induce larger
than k0=4 path-length changes when rotated 	u from either the Brewster angle or
normal incidence. In its experimental implementation, a Brewster-plate spoiler
(1-mm-thick, 25-mm-diameter Irtran window used in the 7.5-µm wavelength range)
was scanned over ±2° using a triangular-wave modulator providing about
equal-time oscillations over plate positions. An angle of 2° was sufficient for
fringe-pattern averaging, but it also changed 1.2-kHz laser-diode modulation
waveform and modulated a beam center position, thus producing residual noise at
turning points even at a low oscillation frequency of 47 Hz [7.53].

Compared with White cavities, mostly requiring careful mirror alignment not to
induce beam overlapping, Herriott waveguides (Sect. 6.3) are quite insensitive to
alignment, thus not being appreciably affected by perturbations of mirror move-
ments caused by a piezoelectric transducer modulating the cavity path length as
desired [7.54]. To prove such independence, a single mirror of a 22-pass cavity
having 950.7-cm optical path length was traversed over approximately 40 µm at
23-Hz frequency, with a respective ±20-lm excursion from the nominal cavity
length maintaining the 22-pass configuration. The second-harmonic measurements
of NO2 absorption traces were obtained via a 1-kHz laser-diode current modulation,
as in fringe-removing tests by jitter modulation described earlier in this section
[7.51]. From approximately 0.3% absorption-equivalent intensity of the multipath
fringes observed, the mirror-movement oscillation reduced the residual-fringe
amplitude to 0.1% with a sawtooth waveform of the transducer modulation;
multipath fringes were also absent for six-path cavity transversal [7.54].

A pressure-modulation technique for reducing interference fringes was tested in
a White cavity [7.55], in which transducer-based modulation of its field mirror was
not sufficient to remove all fringes observed, being seen as four-cell and two-cell
path interference, with the latter likely present due to the reflection–scattering in-
teraction reviewed above. Measurements of CO traces, corresponding to a
center-line absorptance of 1:3 � 10�5 in the 2000-cm−1 spectral range, were initially
masked by larger-intensity fringes, which were removed by applying pressure
modulation to CO gas from 15 to 35 or ±10 Torr corresponding to one-fringe
period. That pressure modulation changed the measured center-line frequency by
±0.0084 cm−1, and also decreased the intensity of the pressure-modulated signal
and decreased the reproducibility of measurements with random pressure variations.

As seen in Sect. 6.3, reentrant numbers of passes via two-mirror waveguide
N ¼ 4M ± K define families of N–M spot modes for such a waveguide. The
propagation properties of these modes can be explored to minimize interference
noise due to fringes associated with each propagation mode [7.56]. On the basis of
estimation of the path-length difference between beam spots adjacent to an
entrance–exit opening, the N ¼ 4M ± 4 spot family was found to have the longest
path differential, equal to N=2	 2, compared with just 4 and N–4 for the
N ¼ 4M ± 2 family or the evolved difference N=3	 4=3; 2N=3 	 4=3 for the
N ¼ 4M ± 6 family, thus creating the narrowest fringes for the highest-order free
spectral range. Experimental observations of the interference fringes associated
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with spot families were performed in a small-volume 42-cm3 cell consisting of
2.5-cm-diameter mirrors, both with 15-cm curvature radius, having 70 passes and
10-m optical path length. Owing to tight image-spot spacing and some beam
overlapping, the relative intensity of fringes approached approximately 5 � 10�3 of
the He–Ne laser power in the 3.39-µm wavelength region. Pressure modulation of
the air in the cell allowed interference fringes to be spectrally scanned for the spot
family N–M ¼ 62 − 16 with N ¼ 4M − 2 reflections and for the spot family
N–M ¼ 64 − 15 with N ¼ 4M + 4 reflections, with the observed fringe periods
corresponding to a four-pass and a 32-pass optical-path difference, respectively. In
the latter case, much narrower and much more closely spaced fringes with lower
amplitudes were seen, which should be easier to remove by electronic filtering and
signal averaging at suitable modulation frequencies [7.56].

In frequency-modulation spectroscopy (see Sect. 10.2), where the spectral
derivative of a measured absorption line is detected using high-frequency modu-
lated laser light, the frequency filtration of cavity-prone interference fringes can be
realized in the time domain as a Fourier expansion of the signal by applying a
secondary frequency modulation [7.57]. Relations (7.65) and (7.66) could be
rewritten by representing the phase difference d via the frequency ratio:

Iq ¼ I0
4q sin2 d=2ð Þ

ð1� qÞ2 þ 4q sin2 d=2ð Þ ¼ I0
4q sin2 m=mcð Þ

ð1� qÞ2 þ 4q sin2 m=mcð Þ ; ð7:70Þ

Is ¼ I0
ð1� qÞ2

ð1� qÞ2 þ 4q sin2 d=2ð Þ ¼ I0
ð1� qÞ2

ð1� qÞ2 þ 4q sin2 m=mcð Þ ; ð7:71Þ

where m is the frequency of radiation and mc is the free spectral range of the cell in
the frequency domain. For the frequency-scanned cell at q ! 0, the first derivative
of intensity of a light beam reflected by the cell becomes:

Iq=I0
� �0¼ A0 mð Þ �

q!0
4pq=mcð Þ sin 2pm=mcð Þ: ð7:72Þ

By symmetrical triangular-wave modulation at additional frequency x, the
derivative signal can be expressed via a Fourier nth-cosine series with further linear
mapping to Fourier integrals [7.57]:

Iq=I0
� �0!X

n

V 0
n mlasð ÞþA0

n mlasð ÞþRAM0
n mlasð Þ� �

cos nxtð Þ; ð7:73Þ

where mlas is the laser center frequency at which measurements are to be performed,
modulated by the triangular wave with frequency swing ms and amplitude T, giving:
m ¼ mlas þ msTðx; tÞ; V is the combined Gaussian and Lorentzian – or Voigt –
spectral profile of an absorption line to be measured and RAM is any residual
amplitude modulation due to the original and additional frequency modulations
applied. As a result of that dual modulation, both the absorption signal and the

400 7 Laser Spectroscopy



interference fringes are Fourier-transformed, with their respective functions having
relative peaks and falling to zero within finite pass bands, while only the fringe
function is periodic with reoccurring zeros, but the signal function is not, thus
allowing one to differentiate and optimize the signal-to-fringe noise ratio. The wider
the separation between the modulation and additional frequencies in these mea-
surements, the higher is the rejection of the fringes that should be achieved [7.57].

Examples of an electronic filtering of spatial frequency-modulated interference
fringes with no need for additional modulation due to the frequency separation of the
measured signal and fringes are found in frequency-modulation spectroscopy [7.58,
7.59]. Figure 7.21 illustrates the optical settings of the measurement system (see
Chap. 10 for details), filtering the interference-fringe-related signal from two-tone-
modulated radiation of a diode laser, guided by off-axis paraboloids P1 and P2 via a
Brewster-angled cavity having absorption species inside. The laser beam was
additionally chopped at 500 Hz by modulator M to facilitate lock-in detection. The
detection frequency-modulated signal was current-ramped at 1-kHz frequency,
having up to 10-kHz Fourier components in frequency space, and was filtered from
the interference fringe signal, which had spatial components at much higher fre-
quencies, by a 10-kHz low-pass filter. A noise-level sensitivity of approximately
1:5 � 10�5 averaged over 4096 frequency scans was achieved with nearly no fringes.

In applications where the means for averaging, integration, and/or separation of
etalon-induced interference fringes reviewed cannot be applied, either predetection
or postdetection techniques can provide some ways to identify the fringes before
spectral-loss measurements are made or to separate a loss contribution of Gaussian,
Lorentzian, or Voigt form from a sinusoidal fringe pattern. Nevertheless, many
cases remain – for example, weak-etalon effects in antireflection-coated elements in
high-power laser lines [7.61, 7.62] – when the need for removing interference
fringes necessitates finding some means for decreasing the visibility of interference
patterns themselves, as well as requiring implementation of specific practical ways
for spatial and/or temporal separation of the measured spectral data from the in-
terference pattern and, as a result, from interference fringes associated with that
pattern and caused by the modulation noise of the fringes (see Chap. 3 for more

Laser Detector

Brewster- angled cell
P1 P2

M

2-tone RF frequency

Fig. 7.21 Frequency-modulation optics
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details on the fringe visibility analysis in transmitted–reflected light and the com-
bined visibility).

One example of forthright separation of likely overlapping focusing spots and
reduction of mirror scattering or edge diffraction, likely causing weakly observable
background interference, is shown in Fig. 7.22 [7.60]. A Cassegrain-type telescope
consisting of mirrorsM1 andM2 was deployed to separate input and output beams for
the mirror waveguide M3 and M4, positioning the light source (in this case fiber end
F), andmain detectorMD by the side of waveguidemirrorM3. Reference detector RD
provided differential balanced detection of the signals compared (see Sect. 10.3). Two
tunable laser diodes were orthogonally coupled into the waveguide cell (Fig. 7.22b,
c). The cell-mirror spacing was chosen for a reentrant number of passes for this
two-mirror waveguide of N ¼ 4M ± 4 ¼ 56 with M ¼ 13 and distance Lc � 1 m
at Lt � 20 cm to ensure creation of the narrowest fringes for the highest-order
free-spectral range (see above and [7.56]). Both waveguide mirrors were of 100-mm
diameter with maximum 80-mm extension for each elliptical pattern of k1 and k2 with
an 8-mm input hole in mirror M3. Telecommunication InGaAsP laser diodes for
1.65-lm and 1.39-lm spectral regions were used as the spectral sources for methane
and water-vapor detection. Laser beams were collected by 20-mm diameter, 50-mm
focus lenses and sensed by 1-mm-diameter InGaAs photodiodes in titanium
mountings for the micron-level alignment. The lens surfaces were antireflection-
coated and the light beams were coupled into lens objectives via spliced optical fibers
to prevent accidental retroreflections with highly polished mirror substrates having
surface smoothness under 0.5-nm rms. As a result, in the targeted 1 � 10�5 dynamic
range of absorption detection, measurements in that experimentally tested system
confirmed no accidental fringing without any added effort [7.60].

M2

M3

M4

M1 BS

RD
MD

Lt

Lc

in 1 in 2

out 1out 2

1 2

45

F
(a)

(b) (c)

Fig. 7.22 Herriott-type waveguide with beam-separating Cassegrain telescope
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Chapter 8
Measurements in Passive Resonators

8.1 Pulse-Separation Techniques

The ability of any optical element to operate in a laser cavity is defined by a positive
balance of active and passive losses for the cavitywith that element. Reflective objects
create transmission, scattering, and absorption losses; transmission ones create
reflection, scattering, and absorption losses, etc. It is critical for the loss under study to
be measured at a specific spatial, spectral, and temporal condition of light emission
providing adequate measurement arrangements. Let us consider two methods for
passive intracavity measurements of a high specular reflectance: qr ! 1, of a mirror.
Such a reflectancemay bemeasured directly or by sensing the difference from unity of
the sum of its scattering loss, absorptance, and transmittance, considering a mirror
substrate as a vital part.

The relative errors of these opposing methods – one involving direct evaluation
of high reflectance qr, and the other involving measurements of losses, additive to
reflection loss vR ¼ s + r + a¼ 1 − qr – are correlated:

Dqr
qr

¼ � DvR
1� vR

¼ �DvR
qr

; ð8:1Þ

where the minus sign indicates opposite directions of increments. Equation (8.1)
points out that the higher is the reflectance qr studied, the higher is the accuracy of
the indirect measurement via loss v. If N multiple reflections accompany any direct
or indirect measurement, the relative error is:

Dqr
qr

� �
mul

¼ � 1
N
DvR
qr

: ð8:2Þ

Consequently, indirect measurement of a high specular reflectance is more
accurate than an indirect determination of low scattering or absorption, as made via
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a low-loss factor related to a high reflectance instead of the reverse ratio for a weak
scattering or absorption (Eq. (5.32)). Figure 8.1 illustrates a layout for indirect
measurements in a chain of highly reflecting mirrors [8.1]. The partially shown
waveguide is assembled from m identical mirrors under test, allocated at identical
distances L and irradiated at angle of incidence H. The light intensity Im transmitted
by the waveguide to the intensity I0 of laser source 1 is:

Im
I0

¼ 1� s1 � a1 � g1 � r1 �
Xm
i¼2

si þ ai þ gi þ rið Þ
Yi�1

j¼1

1� sj � aj � gj � rj
� �

;

ð8:3Þ

where i and j are the numbers of multiplication and summation, si and ai are the
transmittance and the absorptance of the ith mirror, and ηi and ri are the diffraction
and the scattering loss. In experiments [8.1], mirror scattering losses were the
subject of measurements, and the line diffraction loss ηi was computed via the
Fresnel number: NFi ¼ r2/Lk, as vi ¼ 10:9 � 10�4:94NFi [8.1, II.5]. The direct
transmittance measurement for each mirror, except any opaque metal mirrors, was
performed directly via the detector at position 3t, while every mirror absorptance
was detected by a thermocouple (see Sect. 10.1 for calorimetric loss measurement
techniques). Since no other factors, except those defined by Eq. (8.3), identify extra
optical losses in such a waveguide, the measurement procedure was based on
determination of all factors, excluding the scattering loss, which was the final target
of the measurements. That particular method is not especially accurate, but provides
a conceptual basis for practically sufficient methods of loss measurements.

The low-loss detection technique illustrated in Fig. 8.1, as well as the
multiple-reflection studies reviewed in Chap. 6, were developed to measure the
mean loss averaged over the number of samples or a large sample surface. To
evaluate the local attenuation factor or coefficient, the multiple-reflection cell needs
to be maintained at normal incidence of radiation on the surface or the bulk under
study (Fig. 8.2). For a resonator of output coupler 1 and highly reflecting mirror 2,
the transmitted flux U is:

Us ¼ U0s1s2 1þ q1q2 þ � � � þ qm1 q
m
2

� � ¼
m!1U0

s1s2
1� q1q2

: ð8:4Þ

3i
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2

3t

3r

2

2 L

Fig. 8.1 Detection of the
mean-mirror waveguide loss:
1 source; 2 mirror; 3 detector
at positions r, i, and t,
detecting reflectance, initial
intensity, and transmittance
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Here m is a tending-to-infinity number of reflections in a steady-state resonator, and
U0 and Us are the incident and transmitted fluxes. For the purpose of analyzing
measurement accuracy, the element’s absorptance and scattering may be presumed
to be negligible: s1 ¼ s2 ¼ s ¼ 1� q; therefore, as a result:

Us ¼ U0
1� q
1þ q

!
q!1

0;
DU
U

¼ DU0

U0
þ Dq

1� q
þ Dq

1þ q
!
q!1

1: ð8:5Þ

For a high Q-factor of the resonator for q1;2 ¼ q ! 1, continuous-wave (cw)
measurement via light transmitted by the resonator does not allow one to distin-
guish the optical properties of the resonator components.

Instead of spatial separation of retroreflected components, each internal reflection
cycle may be distinguished via its existence in the cavity. A pulse of radiation having
duration tp smaller than time interval tp\ 2‘=c needed for light having its vacuum
speed c to traverse a cavity of length ‘ twice allows one to separate each cycle of
the multiple interactions in such a cavity. Any single amplitude in a sequence of
pulses reflected or transmitted by the cavity with repetition period T ¼ 2‘=c
decreases as: Ai ¼ Ai�1q1q2 � Ai�1�q2. The highest number m of the intracavity
reflections which can be registered by a high-speed detector resolving every pulse in
this time sequence establishes the minimal flux Umin capable of being measured:

Umin ¼ U0s1s2 q1q2ð Þm � U0�s
2�q2m; ð8:6Þ

where the sign � denotes implementation of new designations for the mean factors:
�s ¼ s1s2; �q ¼ q1q2:

Illustrated by Fig. 8.2 pulsed-measurement technique is not complicated at all
and could be made even at routine temporal resolution settled by an accessible
space between cavity mirrors. Such a study was one of the first ever accomplished
for any highly reflecting mirror waveguide using a cw He–Ne laser and the confocal
resonator of spherical mirrors with a radii of curvature R1;2 ¼ ‘ ¼ 100m. The
incident sequence of light pulses: tp¼ 0.4 ls, was formed by a chopper via a
continuous beam at radiation wavelength k¼ 632.8 nm. The mirror reflectances,
estimated by a spectrophotometer, were equal to about 0.995. The total measured
‘pulsed’ loss accounted for 1% at each mirror. The Fresnel number: NFi ¼ 2, for the
cavity matched the mirror diffraction loss of 0.5%. The average scattering factor for
the single mirror was considered of another 0.5% [8.2].

Fig. 8.2 Propagation of
continuous or pulsed light via
a test-mirror cavity
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Any measurement of cavity-averaged reflectance for a set of two mirrors
forming the cavity may be done by measuring a ratio of amplitudes of two con-
secutive pulses in any time sequence:

Wiþm ¼ Wi�q
2m; �q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wiþm=Wi

2m
p

; ð8:7Þ

where m is now the number of cycles between two chosen pulses, being measured.
At the limit of the mean or average cavity reflectance �q ! 1, the optical loss
conversion can be written as follows:

lnð�qÞ ¼ 1
2m

ln Wiþm=Wið Þ ¼ ln 1� �vð Þ ffi
1��v¼�q!1

��v� �v2
�
2 ffi �q� 1ffiffiffi

�q
p ; ð8:8Þ

where �v is the mean loss factor at each reflection. By disregarding a difference of �q
from 1.0, i.e., assuming measurement error D�q ¼ ��v2

�
2, the mean optical loss �v

for the resonant mirror pair is:

�v ffi � lnðWiþm=WiÞ½ �= 2mð Þ; ð8:9Þ

and can be resolved via the slope of logarithmic dependence lnðWiþm=WiÞ ¼ f ðmÞ
on an oscilloscope.

To determine resonator losses more precisely, simultaneous measurements of
two variables of every pulse – the energy or power and the pulse number – need to
be made. Knowledge of the exact pulse number allows one to distinguish the loss as
a function of the number of reflections and to increase the sensitivity of measure-
ments. Figure 8.3 depicts one example of a measurement system [8.3]. An output
signal from main detector 6 is selected by discriminator 7 with upper level Wi,
which starts the summation of the transmitted pulses. The energy amplitude U0 of a
given pulse is measured by voltmeter 11 and stored by processor 12.
Simultaneously, U0 is detected by comparator 9 and counter 10, registering the first
measured pulse. That sequence is continued until the magnitude Umþ 1 of the
(mþ 1)th pulse energy (power) becomes smaller than a preset reference voltage,
defined by the detector’s energy or power sensitivity limit (see Eq. (8.6)).

3

1 7

6

11’

2 4
5

6’

8 9 10

11 12

Fig. 8.3 Pulsed measurement system detecting total optical losses in an open resonator: 1 source;
2 splitter; 3, 5 mirrors; 4 transmitting object; 6, 6′ detectors; 7 discriminator; 8 amplifier;
9 comparator; 10 counter; 11, 11′ voltmeters; 12 processor
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The ratio of the last Um to the first U0 pulse amplitudes, for which the scale of
the maximum to the minimum depends on the linear dynamic range of the detector,
establishes the maximum number m of computing reflections and therefore deter-
mines the highest achievable sensitivity to optical loss �vS under test:

lnð�qsÞ ¼ 1=2mð Þ ln Um=U0ð Þ ffi ��vS ffi �qs� 1ð Þ=�qs: ð8:10Þ

Here s is the transmittance of the cavity itself or object 4 inside it. By analogy with
the spatially averaging systems of multiple reflections (Sect. 6.1), studies using
similar ratios 1=2jð Þ ln Uj

�
U0

� �
, obtained for any intermediate number j of pulses,

can provide auxiliary sets of averaging results of the study. Such a test also verifies
the linearity of the entire procedure (see Chaps. 4 and 6).

The technique considered can be slightly simplified to evaluate only the highest
and the lowest pulse amplitudes [8.4] when the number of cavity pulses separating
these two extrema is also counted. For such a purpose, voltmeter 11 serves to
measure only the highest magnitude of the first pulse U0. The potential divergence
of energies of the other pulses is controlled by the second detector 60 and by
additional voltmeter 110 using beam splitter 2. Each pulse voltage is referred to the
voltage of the first pulse: U0

j=U0
0. The final number of pulses to be counted is

recognized by comparator 9, which detects the lowest magnitude corresponding to
its preset voltage Uc. If the last pulse signal Um ≅ Uc, the cavity loss is given by:

Wm=W0 ffi Uc=U0ð Þ U0
0

�
U0

m

� �
: ð8:11Þ

The range of the comparator uncertainty, DUc = Uc − Um, suggested by the
assumption Uc ≅ Um defines not only the actual error of measurement, but also the
limit of the lowest loss detectable by the method. If the difference of amplitudes
D ¼ Uj − Uj+1 for any two consecutive pulses is larger than DUc, i.e., the dual-pass
loss is higher than the measurement uncertainty of the discriminator, the existence
of every pulse should be detected. If D ¼ Uj � Ujþ 1\DUc, two or more pulses can
pass by the discriminator undistinguished, leading to computation error of the pulse
number. Therefore, the DUn � DUc assumption limits the sensitivity of such a
low-loss measurement.

Any of the reviewed methods of resonator-based measurements allow one to
determine a low mirror loss, which is averaged over both mirrors of the cavity. At
normal incidence of light on a flat mirror, alterations of its surface reflectance can
be detected by a transverse shift of the mirror across a light beam. To distinguish
absolute reflectance of one resonator element, a third mirror may be used (see
Eqs. (6.8) and (6.9)). Instead, two consecutive measurements via parallel sequences
of relatively short pulses in light transmitted and reflected by the resonator, con-
sisting of the elements under study, allows one to identify the loss contributed by a
single mirror in the cavity [8.5].

By keeping the pulse duration to resolve the intracavity space: tp 	 2‘n=v (where ‘,
n, and v are, respectively, the cavity length, its internal index of refraction, and the
speed of light for the light pulses within the cavity), one can make two series of
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measurements – one in transmission and another in reflection (Fig. 8.4), by adding a
transparent beam splitter 2 and a reflection detector 6 to light source 1, two cavity
mirrors 3 and 4, and transmission detector 5. Instead of parallel transmission and
reflection measurements, consecutive transmittance–reflectance study can be per-
formed by two detectors registering pulses in transmission and in reflection or by
moving one detector 5 into position 6. Considering Eqs. (8.7)–(8.9), if the cavity
mirror substrates have finite thickness: d 	 vnstp, each pulse in transmitted and
reflected sequences becomes a sum of reflections by two surfaces of a single cavity
component. For a larger substrate thickness, satellites of every pulse can appear, and,
for resonant cavity measurements, every substrate must be either wedged or
antireflection (AR)-coated. For back surfaces of wedged AR-coated substrates, one
may set qb ≅ 0.

The energy of every consecutive pulse in reflected light conforms to the
following sequence:

W0 ¼ s2q2q3;W1 ¼ s2q2 1� q3ð Þ2q4;W2 ¼ s2q2 1� q3ð Þ2q4q3q4;
Wm ¼ s2q2 1� q3ð Þ2qm�1

3 qm4 :

Hence, m-bound ratios of the energy Wm of the mth pulse to the energy W1 of the
first pulse or the (i + m)th to ith pulse energies and the ratio of mth to 0th pulse
energies in reflected light become:

Wm=W1ð Þq ¼ q3q4ð Þm�1 ; Wm=W0ð Þq ¼ 1� q3ð Þ2qm�2
3 qm4 : ð8:12Þ

Only the ratio of the pulse energy to that reflected from the cavity input mirror 3
unequally depends on the properties of each element forming the cavity.
Oppositely, the m-bound ratio for transmitted light is:

Wiþm=Wið Þs ¼ q3q4ð Þm: ð8:13Þ
The reflectance of each cavity mirror 3 and 4 can be resolved either in reflected or in
reflected and in transmitted light:

q4 ¼ ðWm=W1Þ1=m�1
q =q3; q4 ¼ ðWiþm=WiÞ1=ms =q3;

ð1� q3Þ2
�
q23 ¼ ðWm=W0Þq

�ðWm=W1Þm=m�1
q ; ð1� q3Þ2

�
q23 ¼ ðWm=W0Þq=ðWiþm=WiÞs:

ð8:14Þ
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Fig. 8.4 Measurements of
transmitted and reflected
pulses: 1 source, 2 splitter;
3, 4 wedged mirrors; 5, 6
detectors
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The overall sensitivity of such a method is reduced by the requirement to
implement additional beam splitter 2. Since the cavity transmittance scav ¼
1� q3ð Þ 1� q4ð Þ is given by the properties of output coupler 3 and high-reflectance
mirror 4, being very low, the beam splitter transmittance s2 should be as high as
possible. For s2 ¼ 0:995; s2q2 ¼ 0:005 and also for q3 ¼ 0:5; q4 ¼ 0:995, the
reflected and transmitted pulse intensities are identical from each pulse to the next,
preserving the sensitivity. Of course, the procedure of alternating or additive
transmittance and reflectance measurements in the arrangement described requires
solving quadratic or higher-order equations and may not be easily implemented,
though it could provide some conceptual insights for further methods for distin-
guishable measurements in asymmetric resonators (see Sects. 8.4, 10.4, and 10.5).

Concluding our analysis of straightforward pulsed low-loss measurement
methods (see also Sects. 8.3 and 8.4), let us note one common obstacle of the
reviewed techniques. Owing to very short time intervals between any two con-
secutive retroreflected pulses, for example, 10 ns for cavity length ‘ = 1.5 m, they
require a combination of high temporal resolution and a long optical path inside the
cavity. At a result, containing beam divergence could become the restricting factor
for a long resonator consisting of two flat mirrors. Hence, a certain compromise has
to be made between the spatial and the temporal resolution for a given measure-
ment. Use of concentric resonators for imaging of widened light spots (see Chap. 6)
allows one to correlate spatial and temporal properties of multiple reflections, since
their ability to keep a light beam focused permits the creation of additional internal
cycles of retroreflected radiation pulses to be measured. If every pulse escapes such
a resonator after N added internal reflections, the main time interval tN between
exiting pulses tN ¼ 2N‘=c becomes N times higher, and the temporal resolution or
the length of the cavity can be respectively lower.

A cell of concentric mirrors prolonging the intracavity reflection cycle is shown
in Fig. 8.5. A beam from source 1 is launched by mirror 2 into waveguide 3–4 and
back to detector 6 via window 5 with transmittance sw and reflectance qw. The
magnitudes of sw and qw define the intensity of the output pulses and the time
interval between pulses after a cycle of internal reflections, progressing in the
following sequence: Ii ¼ I0s2w�q

2N�1; Iiþ 2N ¼ I0s2wqw�q
2ð2N�1Þ: As a result, the

equation for the average mirror loss �v ¼ 1� �q in the cavity between two consec-
utive output pulses resolved by detector 6 becomes:

Iiþ 2N=Ii ¼ qw�q
2N�1 : ð8:15Þ
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Fig. 8.5 Delayed-pulse loss
measurements
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This delay-based technique not only increases the time interval between any two
consecutive pulses, but also expands the measurable difference for the pulse
amplitudes. As a result, the number of reflection cycles in the cavity does not need
to be highly enhanced to realize higher sensitivity, though it would help to do so if
needed. The elevated number of reflections for every successive pulse allows, for
example, periodic inquiries of test substances occupying the intracavity space, as
well as examination of time-dependent processes, such as absorption and saturation
[8.5].

A variation of the pulse-delay technique can also be used in modulated cw
radiation measurements, such as applying frequency modulation to provide a rel-
atively fast wavelength tuning and multiple-reflection delay in an off-axis optical
cavity [8.31, 8.32] (see Chap. 6). The designed system (Fig. 8.6) targeted
high-resolution real-time spectrally resolved measurements of ethane-gas absorp-
tion using a single, cryogenically cooled lead-salt laser diode, emitting cw radiation
near 3.4-µm wavelength. A pulse-modulated beam at 8 kHz from laser 1 irradiates
delay-line absorption cavity 2, whose output reaches main-channel detector 3.
Added detector 4 controls the reference channel with calibration cell 5 via beam
splitter 6. Two modes of operations are deployed. In the first, scanning mode, the
wavelength of laser emission is tuned within nearly 0.4-cm−1 bandwidth over the
ethane transition of approximately 0.05-cm−1 width at 2990.09-cm−1 frequency. In
line-locking mode, the system tracks the wavelength of the ethane transition by
first-derivative demodulation of the reference signal from detector 4. He–Ne laser 7
and computerized motion controllers keep the alignment of all system components.
In the scanning mode using curve-fitting calibration of the ethane-reference stan-
dard, this portable modulation spectroscopy system reached nearly 0.1-ppb sensi-
tivity with 1-s scan sampling rate and 0.2-ppb with 0.8-s frequency and line-locking
continuous performance [8.31].
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Fig. 8.6 Frequency
modulated cavity-delayed
measurements
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8.2 Interferometric Analysis

Similarly as short pulsing decomposes the continuity for multiple reflections of
radiation in a retroreflecting cavity, multiple-beam interference intensifies spatial
and temporal separation owing to coherent correlation of interacting beams. For
monochromatic light of wavelength k coupled into a resonant cavity of
high-reflecting mirrors at an angle H with a coherence length longer than the dual
optical path of the cavity, the intensity of radiation existing in the cavity depends on
the phase shift gained on the dual cavity path: d ¼ 4p‘n cosH=k. If a resonant
cavity is made of nonabsorbing and nonscattering dielectric mirrors of reflectances
q1 and q2 deposited on an intermediate substance with transmittance s, the total
intensity of light in transmission is:

Is;k ¼ I0;k
1� q1ð Þs 1� q2ð Þ

1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2 þ 4s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin2 dk=2ð Þ

; ð8:16Þ

where I0 is the initial intensity of radiation entering the cavity. Relating the output
intensity to the intensity of the first cavity transmission: (1 − q1)s(1 − q2), one can
rewrite the distribution as:

Is
�
Is;1

� �
k ¼ 1þ 4s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p .
1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2h i
sin2 dk=2ð Þ

� 	�1
: ð8:17Þ

Maintaining stable normal incidence of light onto both cavity mirrors at wave-
length k and varying the inter-mirror distance ‘ to measure the ratio of the maxi-
mum and the minimum intensities of the multipath interference pattern in
transmission reveals the product q1q2 of the two cavity mirror reflectances and of
the intra-cavity transmittance s via the intensity contrast:

Is;max

Is;min

� �
‘

¼ 1þ s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p

 �2

¼
q1¼q2

1þ sq
1� sq

� �2

: ð8:18Þ

This distributes the mean intensity �I of transmitted light along its path with fringe
visibility:

Vs ¼ Is;max � Is;min

Is;max þ Is;min
¼ 2s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
1þ s2q1q2

¼
q1¼q2

2sq
1þ s2q2

: ð8:19Þ

The finesse I of the interference fringes obtained, corresponding to a half-intensity
width (see Eq. (7.68)), is:

I ¼ p=2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
= 1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2q
� p=2ð Þ

ffiffiffiffiffi
R

p
¼

s¼1;q1¼q2¼q
p
ffiffiffi
q

p
= 1� qð Þ ¼ p=2ð Þ

ffiffiffiffi
F

p
;

ð8:20Þ
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for asymmetric-cavity finesse parameter R ¼ 4sðq1q2Þ1=2
�ð1� sðq1q2Þ1=2Þ2,

which becomes F ¼ 4sq
�ð1� sqÞ2 at q1¼q2 and defines the multiplication

strength of cavity multiple reflections (see Sects. 3.3 and 7.4).
The higher is the finesse I of multiple-beam interference fringes, the sharper are

the transmission maxima and the more sensitive is the light intensity distribution
to the resonator spacing. Thus, one measurement procedure can consist in measuring
the transmission maxima versus the distance between mirrors. Figure 8.7 schemat-
ically illustrates an oblique pathway in a Fabry–Perot interferometer and the layout
for a low-loss measurement system using the linear motion of an interferometer
mirror [8.6]. A linear vibration of the mirror’s position at frequency f with velocity
v ¼ Dd0=Dt 
 c within space region D‘ covering extremes of cavity transmission
causes coordinated modulation of the intensity of output radiation (Fig. 8.7b). For a
pulse detector coupled to an oscilloscope of angular sweep rate b ¼ 2p(Df/Dt), being
synchronized with that linear motion, its output senses the distributed-in-time in-
terference pattern for all axial modes of light emitted by the source and reaching the
detector. If the source emits quasi-monochromatic waves, the intensity distribution,
for the high finesse parameterR(F) of the cavity of not necessarily identical mirrors,
represents a pattern of narrow maxima and broad minima.

At steady mirror spacing d0, the time delay of the mth beam is sm ¼ 2md0/c, and the
cavity delay of the directly transmitted beam is s0 ¼ d0/c. For the frequency input
x ¼ x0 − bt, the mth output phase becomes:

dm ¼ x0t � bt2
�
2 ¼ x0 t � 2md0=c� d0=c½ � � b=2ð Þ t � 2md0=c� d0=c½ �2:

ð8:21Þ

The amplitude of the mth output component is: Em ¼ Eosresqres expð�jdmÞ, and the
total intensity of all retroreflected beams compared with the intensity of the directly
transmitted beam is [8.6]:

ER ¼
X1
m¼0

sresqres exp �j 2md0=cð Þ x0 � b t � d0=cð Þ½ � � j2bm2 d0=cð Þ2
n o

: ð8:22Þ
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Fig. 8.7 Separation of light pulses (a) and oscillating interferometer for low-loss measurements
(b): 1 laser source; 2 polarizer; 3 quarter-wave plate; 4, 5 spherical mirrors; 6 modulator; 7
bandpass filter; 8 detector; 9 oscilloscope
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The intensity of a beam having internal multiple reflections within time decay:
Ds ¼ sm − s0, obtained by processing of the slow motion of the interferometer
mirror, may be approximated as:

Is ffi s 1� q1ð Þ 1� q2ð Þ
X1
m¼0

s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �m
cos wmþum2� �" #28<

:
þ
X1
m¼0

s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �m
sin wmþum2� �" #29=

;;

ð8:23Þ

where u ¼ 4pvd0= kcð Þ and w ¼ �4pvt=k are the respective parameters of the slow
scanning with velocity v. The inaccuracy of that approach: D ffi 2 exp
�m 1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �� 
, is defined by the closeness of the number m for all detected

reflection components to infinity. For s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ 0:9975 and m ¼ 3040, the D value
is 0.1%. At the same time, the motion reduces the intensity of every maximum (see
expressions (3.123)) and changes the spatial orientation as a function of velocity
v and of the total loss 1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �
. The greater is the swiftness, the bigger is the

error, but the higher is the resonator loss, the lower is the cavity finesse parameter
F and the relative output intensity: Iout/I0; therefore, the wider is the extreme
bandwidth and the lower is the effect of the mirror motion. The first-order motion
effect of a single moving mirror is experimentally found [8.6] to be near:

DIout;max

I0;max
¼ Dtp

tp
ffi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 13:8

u2

1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �4
s

: ð8:24Þ

Here tp is the half-power output pulse width for the detector resolving the intensity
maximum.

As follows from Eq. (8.24), the lower is the total magnitude of the loss which needs
to be detected, the lower should be the velocity of the mirror motion (see Fig. 8.8). For

instance, the ratio u= 1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2 	 0.04 at u¼ 10−6 and s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ 0:995
leads to error Dtp/tp 	 1%, but at s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ 0:9975, the error Dtp/tp of
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of an interferometer affected
by a mirror motion
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maxima-position detection rises to 5%. Figure 8.8 depicts the relative intensity Is=I0
as a function of the ratio w= 1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2
given by Eq. (8.23) under the following

conditions – for series 1 : u ¼ 10�6 and s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ 0:9975, for series 2 : u ¼ 0,
s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ 0:9975, and for series 3 : u ¼ 10�6 and s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ 0:995. The
moving-mirror velocity being not equal to zero not only reduces the intensity of all
maxima, but also makes the output response of the cavity be asymmetrical, especially
for the low magnitudes of the optical losses studied.

By disregarding mirror movement, one can transform Eq. (8.22) into Eq. (8.16),
and since finesse parameter R at q1 ¼ q2 ¼ q ¼ 1� s equals F ¼ 4q=ð1� qÞ2,
Eq. (8.17) becomes:

Is;k ¼ I0
1� q1ð Þs 1� q2ð Þ
1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2 1

1þF sin2 dk=2ð Þ : ð8:25Þ

If finesse parameter F remains high, the finesse of the resultant cavity fringes is
enhanced, keeping the relative width t of all maxima for time-resolved oscillations
low: tmax 
 t2p (see Eq. (8.23)). Hence, factoring only the first-order terms, one
can resolve the optical loss in the resonator via the relative sharpness tp/t2p of
temporal fringes compared with the time constant of vibrations t2p:

s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ffi 1� ptp=t2p
� �þ 1=2ð Þ ptp=t2p

� �2 þ . . .: ð8:26Þ

Since Eq. (8.26) is directly obtained via the definition of finesse I (see
relation (7.68)):I ¼ dmax= 2pð Þ ¼ p=2ð Þ

ffiffiffiffiffi
R

p
¼

q1¼q2
p=2ð Þ ffiffiffiffi

F
p ¼ tp=t2p, and since time

instance t2p is fully determined by the phase status of the mirror oscillation, only one
parameter tp identified by Eq. (8.26) depends on the resonator properties. Thus,
contradiction for any of the assumptions made, for example, inequality of cavity
mirror reflectances, leads to a measurement error. Accordingly, the maxima to be
registered are shifted and decreased, but the time constant of a sequence does not
change.

To obtain low optical losses by measuring the light intensity profile of a
temporal interference pattern, an intensity detector needs to trace variations of the
function Is ffi Is;max=

�
1þ 4t2=t2p

�
, which in the associated frequency domain

becomes: f ðxÞ ¼ p=2ð ÞtpIs;max exp � tp=2
� �

xj j� �
. While having constant scanning

parameters at tP ¼ 30 µs and 1% total losses, the required frequency band f(x) for
maintaining measurement distortion error below 1% must be: f(x) � 50 kHz, but
at s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ 0.9975, it must be: f(x) � 200 kHz. Owing to a great number of
interactions in a resonator of highly reflecting mirrors, indirect measurements of the
product s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
, identifying the total resonator loss: vR ¼ 1 − s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
, are fairly

accurate (see Eqs. (8.1), (8.2)). Even the large number of assumptions made does
not significantly affect the result. As follows from Eq. (8.26), even 10% error of
tp=t2p measurement leads to inaccuracy Dðs ffiffiffiffiffiffiffiffiffiffi

q1q2
p Þ	 0:5% at s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p � 0.995,
and to D(s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
) 	 0.1% at s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p � 0.999. In experiments [8.6], each
measurement of the average reflectance �q of the cavity of either flat or spherical
mirrors with under 2-m radius of curvature at �q = 0.997 − 0.940 was characterized
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by ±0.1% reproducibility. When measuring individual reflectances via the
three-mirror substitution technique (see Eq. (6.9)), the error increased to ±0.2%.
A He–Ne laser and an interference filter having 20-nm half-bandwidth in the
vibration-isolated system shown in Fig. 8.3 were used for measurements. The
transmission loss of a polished blank fused-silica plate, inserted into the resonator at
the Brewster angle, was equivalent to 0.0025 for 7.5-mm thickness. This loss
corresponds to a bulk linear attenuation coefficient of 0.002 ± 0.0005 or to about
1 dB/m.

The mirror-oscillation method relies on making measurements of the relative
sharpness of interference maxima, which are sensitive to finesse parameterℜ or F of
a resonator. The same objective can be achieved by measuring changes of the light
intensity in interference extrema Imax and Imin, namely, the contrast of that pattern.
For quasi-monochromatic light, transmitted via any open resonator under study with
equivalent mirrors, having average reflectance �q ¼ q1 ¼ q2 and total transmittance
sint¼ 1 of internal space, Eq. (8.18) for the interference contrast becomes:

Ismax=Ismin ¼ 1� �qð Þ= 1þ �qð Þ½ �2: ð8:27Þ

Since Eqs. (8.18) and (8.27) are obtained with no restrictions, the mean mirror reflec-
tance �q, as well as the product s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
which substitutes �q for not identical mirrors

and s 6¼ 1, may be conceptually measured more accurately by Eq. (8.27) rather than
(8.24). However, the required for such a measurement linear dynamic range needs to
be doubled in comparison with the study via extrema, being either the maxima or the
minima, which are referred to the average intensity. For example, at s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
= 0.995

or 0.999, the range needs to be higher than 1:5�106 or 5�106. Nevertheless, the
requirements of distortion accuracy of the registration system for the comparison of
two intensities are less critical than when measuring the sharpness of fringes.

In fact, not only fluctuations of beam locality but also reduction of the magni-
tudes of extremes due to always-existing conditional vibrations are the main cause
of errors when measuring beam intensities (see Fig. 8.8). Mirror misalignment and
mismatch of the light beam propagation direction to the dominant resonance mode
of a cavity produce about equivalent inaccuracy. For example, an intensity change
Ismax=Ismin from 4�106 to 1�106 leads to 0.001 decrease of the magnitude measured
for �q. One-minute angular misalignment creates �2�104 error of the average
reflectance. During experimental verification, with use of several high-reflectivity
mirrors in intensity-discrimination measurements, respectively �1�10�4 sensitivity
and �5�10�4 repeatability levels were reached [8.7].

8.2.1 Elimination of Interference

Previously, slow oscillations of a single resonator mirror served to convert a spatial
profile of the interference pattern for a resonator into some intensity parameter
designating the resonator quality factor. A similar motion may serve to achieve such
a contrary task as elimination of any distinguishable interference pattern for beams
transmitted by a resonant cavity. For that purpose, instead of measuring intensity
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changes in transmission, a detector should integrate a flux transformed by the
resonator at a time interval considerably longer than the duration of oscillation
motion. That means the velocity of the specific longitudinal mirror motion is
expected to be so high that the durations of the maxima overlap the time period of
oscillations tp ffi t2p. Full destruction of the constant phase shift among interfering
beams allows the interaction of the coherent radiation components to become a
virtually additive transformation and to disregard the respective interference terms
in the superposition of multiply reflected beams.

To facilitate additive superposition of interacting light beams in a mirror
waveguide (see Sect. 6.3), the visibility of interference can be reduced to be
undetectable by displacing the incident light beam after each reflection on one of
the cavity mirrors [8.8]. Instead of the cavity opening as in Fig. 6.24, the
transmitting-plus-reflecting coupling window 7 having sc ¼ 1� qc is used
(Fig. 8.9). After N passes of the waveguide inner space or after 2N − 1 single
reflections, light leaves the waveguide via window 7 in the direction of specular
reflection from the first waveguide mirror. An internal beam reflected by the
window makes another N passes and leaves the cavity; the cycle repeats itself with
factors sc and qc. Integrating detector 5, with the prolonged time constant sd � s2p,
registers the totality of all components that emerge:

Iq ¼ I0 qc þ s2c�q
2N�1 þ s2c�q

2N�1qc�q
2N�1 þ � � �� � ¼ I0 qc þ

1� qcð Þ2�q2N�1

1� qc�q2N�1

" #
:

ð8:28Þ

The reflective and transmitting window transforms the loss-related sensitivity of
the waveguide in such a way that at qc ! 1 the system does not respond to any
exchange of internal parameters, but at qc ! 0, the intensity alteration Iq

�
I0 ¼

�q2N�1 depends only on the average reflectance or on the number of passes in the
single cycle, as with an open (fully transparent) opening. The maximum cavity
sensitivity to an internal optical loss in the waveguide is reached at sc ¼ qc ¼ 0.5,
when the window’s effect on the intensity ratio Iq

�
I0 reaches its minimum. Such a

minimum follows from the conversion:

Iq
I0

¼ f ðqcÞ ¼
qc þ 1� 2qcð Þ�q2N�1

1� qc�q2N�1


 �
!

qc¼0:5;�q!1

qc
1� qc

¼ 1: ð8:29Þ
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The relative intensity change, as a function of reflectance Dqc related variation, has
its minimum at qc = 0.5, since at that point the product qc(1 − qc) = 0.25 has its
maximum. The relative change is:

d
Iq
I0

� �
¼ D Iq=I0

� �
Iq=I0
� � ¼ Dqc

qc
þ Dqc

1� qc
¼ Dqc

qcð1� qcÞ
: ð8:30Þ

To reach maximum sensitivity to internal optical losses, the outcome of multiple
reflections may be seen as a relative increase of Iq above I0. Converting Eq. (8.28)
by the relative difference:

Iq � I0
I0

¼ ð1� qcÞ2
q2c

qc�q
2N�1

1� qc�q2N�1

" #
; ð8:31Þ

and substituting qc by its equal to 0.5 magnitude for the semitransparent window,
one obtains:

M � Iq � I0
� ��

I0 ¼ �q2N�1 2� �q2N�1� �
: ð8:32Þ

After differentiation, expression (8.32) is transformed to the sensitivity for the
optical difference:

DM
M

¼ 2N � 1ð ÞD�q
�q

þ 2N � 1ð ÞD�q
2� �q2N�1

¼
�q!1

2 2N � 1ð ÞD�q
�q

: ð8:33Þ

The number of reflections and the relative sensitivity of the measurement by ad-
ditive multiple reflections via a semitransparent window are twice as high as the
ones in the open waveguide in Fig. 6.24.

To perform measurements with unnoticeable interference effects, one of the
cavity mirrors can be placed onto a vibrating stand, similarly to one seen in
Fig. 8.7. In the experiment [8.8], the cavity alignment in Fig. 8.9 was maintained
by the sharpest interference fringes for He–Ne laser source 1 while turning off
piezoelectric modulator 8. Light specularly reflected from semitransparent window
7 in mirror 3 was sensed by detector 5 at inserted baffle 6. The mean reflectance of
paraboloids 3 and 4 reaching �q ¼ 0:9925, obtained at 2N� 1 ¼ 33; k ¼ 632:8 nm,
and window reflectance qc ¼ 0:711� 0:002, was characterized by random error
�5�10�4. At qc ¼ 0:35� 0:01 and k ¼ 3:51 lm of a Xe laser with higher power
fluctuations, the average magnitude �q ¼ 0:9905 was measured with �0:001 error.

An obvious way for minimizing interference relates to making measurements in
incoherent radiation. One widely used example is optical time-domain or
low-coherence reflectometry (see Chap. 11), utilizing limited coherence of isotrop-
ically scattered radiation [1.10] for millimeter-level resolution among scattering
centers [11.40]. Combining high-speed interferometer-mirror motion and the
wide-frequency spectrum Df of a light source, the system’s spatial resolution:
Dx ≅ v/2Df, in reflected light should be low enough not to resolve interference (see
Fig. 8.8). In other words, when the interferometer arm-length difference becomes
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larger than the coherence length of the source, and phase information for interfering
beams is intentionally uncontrolled, such an interferometer can be used as a reflec-
tometer [II.39]. Another version of the noninterfering arrangement relates to having
orthogonal states of polarization in two interferometer arms, which can also be sensed
separately, with a polarization-independent sum for polarization-insensitive reflec-
tometry [11.41].

Spectral reflectance and wavelength dispersion (see Sect. 8.5) of sharply wave-
length selective reflectors can be measured using low-coherence interferometry–
reflectometry [8.32]. By tracking the reference-arm length via a supplemental He–Ne
laser, a measured sample’s IR Fourier-transform interferogram as the convolution
product of the broadband source spectrum and the complex reflection coefficient of
the sample, such as a fiber Bragg grating, was measured. By normalizing the power
spectrum of the source itself, the measured square field amplitude yielded the fiber
Bragg grating’s reflectance, from which the spectral dispersion of the grating was
computed using zero-padded interferograms, reaching 1.5-ps birefringence resolution
and spatially resolving down to 25 pm in the wavelength detection for the grating
spectral-reflectance measurements performed [8.32]. The measurement results were
immune to errors due to temperature variations or instrumental drift.

8.3 Resonant Phase-Shift and Decay-Time Studies

Previously, space and time averaging of light in a resonator or linear vibration of its
cavity mirror served to integrate phase contrasts among retroreflected light com-
ponents during their interactions with a resonant cavity. On the other hand, in the
preceding section we saw how a frequency or a spatial modulation had a
law-governed impact on the phase of a registered signal needed to distinguish an
interference impression of multiple-beam interactions with the cavity studied.
Similarly, observation of an integrated phase shift for frequency-modulated and
apparently incoherent laser radiation transmitted via a high-finesse cavity allows
one to measure the intracavity loss when detecting the photon lifetime, or in other
words the decay rate for photon existence in the cavity.

Consider amplitude-modulated polarized quasi-monochromatic radiation enter-
ing a cavity formed by highly reflecting mirrors at distance ‘ (Fig. 8.10). If the light
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Fig. 8.10 Photon lifetime measurements of inner-resonator losses
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intensity is time-modulated at frequency f and initial phase u0 as sin2 2pft � u0ð Þ;
the phase shift d of light traversing the cavity is a function of the total time sR that
radiation exists inside the cavity: tan d ¼ 4pf sR [8.9]. The lifetime sR depends on
the number m of dual cavity passes at cavity round-trip time sc to attain p-phase:
p ¼ msc ¼ m2‘=c (see also Sect. 7.3). Defining the effective photon lifetime sR in
the cavity as the time sR = se needed for the photon energy of this radiation to be
dissipated to I0 exp(−1) ≅ 0.34I0, any change of the photon time constant sc after
the photon has propagated the resonator resolves the mean-squared reflectance �q2 of
its mirrors:

�q2 ¼ q3q4 ¼ exp �sc=sRð Þ ¼ exp �1=mð Þ: ð8:34Þ

Light transmitted by the resonator represents the sum of different phase com-
ponents, modulated at one frequency f, having their intensities declining propor-
tionally to the product of two cavity mirror reflectances: (q3q4)

m. Every component
can interfere unless the width of the spatial modulation exceeds the coherence
length of laser source 1. If the time constant of phase-sensitive detector 5 is larger
than the modulation period T = 1/f, its output is the additive sum of all terms of
interference for the seemingly incoherent radiation components being summarized.

The additive sum I of intensity terms (relation (8.23)) modulated as I tð Þ ¼
I0 cos 4pftþu0ð Þ is:

I ¼ I0 1� q3ð Þ 1� q4ð Þ
X1
m¼0

q3q4ð Þm sin x t � ms0ð Þþu0½ �; ð8:35Þ

where x ¼ 4pf and s0 ¼ 2‘=c. Since the mirror-reflectivity product q3q4 < 1,
Eq. (8.35) at u0¼ 0 becomes:

I ¼ I0 1� q3ð Þ 1� q4ð Þsin xtþuð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2q3q4 cos xs0ð Þþ q3q4ð Þ2
q

: ð8:36Þ
Here u ¼ arctanf½�q3q4 sinðxs0Þ�=½1� q3q4 cosðst0Þ�g. Maintaining the frequency
x and duration s0 under xs0 
 1, terms sin xs0 and cos xt0 can be replaced by xt0
and 1, and for a relatively small number of passes 1 <m < 100 phaseu becomes [8.9]:

tanu ¼ � q3q4
1� q3q4

sin xs0ð Þ ffi
1\m\100

�mst0; ð8:37Þ

where m ¼ q3q4=ð1� q3q4Þ is the effective number of reflections in the
high-reflectivity resonator under test. The reflectance product, or the mean-squared
reflectance, for large number of passes m � 1 at xs0 
 1 can be closely
approximated as:

q3q4 ¼ �q2 ffi m= mþ 1ð Þ: ð8:38Þ

In Fig. 8.10, polarized cw radiation from single-mode laser 1 is modulated by a
birefringence piezo-optic modulator or photoelastic modulator 2 before such a light
beam enters the steady resonator consisting of mirrors 3 and 4 under test. Every
retroreflected component, transmitted by the resonator formed by mirrors 3 and 4 and
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registered by detector 5, is converted by two-channel selective amplifier 6, syn-
chronized with the modulation signal at modulation frequency f, and is further
measured by ratio meter 7, connected to recorder 8. The initial phase status u0 is
determined by default settings of the modulator at position 2′ behind the resonator or
via bypassing the cavity using four extra mirrors 11. Since mirrors 11 do not change
the phase of light, the unknown total reflectance of these extra mirrors does not affect
the phase judgment. The choice of extra mirror reflectances is only limited by the
linear dynamic range of the detection system used. Additional lenses 9 and 9′ or field
stop 10 can also be used. When the initial status u0 is measured, the phase scale for
first channel A of amplifier 6 is set to zero, but the scale for channel B is set to 90°.
Therefore, the A/B ratio directly gives the magnitude of tanu. After the loss in the
resonator formed by mirrors 3 and 4 has been measured, a new element X for study
can be inserted into the cavity at any angle H, as seen in Fig. 8.11. Obviously, the
alignment of cavity mirrors 3 and 4 with third mirror X needs to be preserved for the
main cavity-mirror reflectance product to be unchanged. Nevertheless, the diffraction
loss in the bent resonator will be different (see Chap. 7 and Fig. 7.1a).

An additional advantage of internal resonator mirror loss measurements is
determined by the twofold increase of the sensitivity to the optical losses under
study. As it was set earlier by Eqs. (8.16)–(8.20), any attenuation, additionally
implemented by mirror X, has twice as high an influence on the output intensity of
light compared with the attenuation by a single resonator element. That effect is
created by the double pass between resonant mirrors at every cycle of multiple
reflections. Therefore, any change of reflectance of the bending mirror causes an
identical intensity exchange as for the entire resonator: DqX ¼ D

ffiffiffiffiffiffiffiffiffiffi
q3q4

p
: By having

q3q4 substituted via q3qH
2 q4, relation (8.37) for the phase angle u of a bent res-

onator is converted into:

tanu ¼ 4p f 2‘=cð Þq3q2Hq4= 1� q3q
2
Hq4

� �
: ð8:39Þ

The higher is the q2H magnitude, the stronger is the detector response to its possible
deviation.

Experimental high-reflectance studies by the photon-lifetime measurement tech-
nique, also called a phase-shift method, were made in the visible and near-to-mid IR
spectral regions [8.10, 8.11]. For a single measurement of a pair of highly reflecting
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mirrors having q3 ≅ q4 � 0.999, spaced at ‘ from 10 to 110 cm, and at f ¼ 50 kHz
and tanu from 0.3 to 3.0, the repeatability of readings ranged from �5�10�4 at
k ¼ 528.8 nm to �1�10�4 at k ¼ 632.8 nm. Additional comparison was made
between the active intracavity and the phase measurements. A ring resonator mirror,
valued by the system as having 0.9989 reflectance atH ¼ 0°, was first measured by
the setup depicted in Fig. 7.3, and its reflectance atH ¼ 45° was measured as being
0.9995. Then, the mirror was remeasured in the bent resonator shown in Fig. 8.11 at
H ¼ 45°. The acquired reflectance had exactly the same high 0.9995 value. The
highest magnitude of specular reflectance, 0.99975 ± 0.00005 at k ¼ 874.2 nm,
was reached for mirror made by the deposition of coating layers onto a superpolished
substrate [8.10]. Using a HF/DF laser at k ¼ 2.6–4.2 lm and 1-MHz modulation
frequency, the repeatability of phase-shift measurements in a dispersive cavity
declined to�1�10�3 owing to less stable sources and detectors in the IR region and to
thermal jitter of the cavity length, which was dynamically matched to lasing modes
on the microsecond timescale with 0.1-s averaged phase detection [8.11].

8.3.1 Interference Safeguards

As noted in the preceding section, the phase-shift measurement concept is based on
the presumption that light components retroreflected in the test resonator do not
interfere. The implementation of that was warranted by the level of spatial modu-
lation of light, exceeding the coherence length of the source used, with a large enough
time constant of the light detector, securing additive summation of intensities of
multireflected components. Probable limitations to these assumptions can be mea-
sured by comparing the actual time intervals of temporal averages with correlation
times of intensity fluctuations (see Chap. 3). If the amplitude of light entering
the resonant cavity is modulated at center frequency x0: Ain(t) ¼ Amodsin(xt) ¼
A0cos(x0 t + u0)sin(xt), and if its initial phase shift u0 can be disregarded, the
entire amplitude of the electromagnetic field in the cavity is given by the sum of
differential and supplementary radiation components [II.43]:

Aout tð Þ ¼

sa1sa2
A0

2

X1
m¼0

qa1qa2ð Þm sin xþx0ð Þ t � md0ð Þ½ � þ sin x� x0ð Þ t � md0ð Þ½ �f g;

ð8:40Þ

where sa1; sa2; qa1; and qa2 are the amplitude transmittances and reflectances of
cavity mirrors, x is the frequency of radiation, and d0 ¼ 2‘=c is the cavity
round-trip time. Instead of Eqs. (8.36) and (8.37), obtained by additive summation
of intensities, deriving the output versus the input intensity by totaling amplitudes
of component superposition gives [8.9, 7.26]:
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Iout ¼

I0
s1s2 cos 2x0t � uð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ q1q2 � 2
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
cos xþx0ð Þd0

� �
1þ q1q2 � 2

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
cos x� x0ð Þd0

� �q ;

ð8:41Þ

tanu ¼ 2
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sinxd0 cosx0d0 � q1q2 sin 2x0d0

1� 2
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
cosxd0 cosx0d0 þ q1q2 cos 2x0d0

; ð8:42Þ

where si; qi are the respective factors for light intensities; I0 is the intensity of
incoming light.

In view of optical phase uopt ¼ 2pm‘=c ¼ xd0=2 at q1q2 ¼ �q, Eqs. (8.41) and
(8.42) convert to Airy formulae (see expressions (3.119–3.123) and [7.26]):

Is ¼ I0

1� qð Þ2 1þ 4q
1�qð Þ2 sin

2 uopt

� 	 ; tanu ¼ 2x0d0q 1� q� 2 sin2 uopt

� �
1� qð Þ2 1þ 4q

1�qð Þ2 sin
2 uopt

� 	 :
ð8:43Þ

The conversion indicates that the phase shift is dependent not only on the optical
loss, but also on the phase product: x0d0. The lower are the modulation frequency
and the cavity length, the higher are the fluctuations and likely inaccuracy of the
measurement results. Hence, prevention measures could be made for phase-shift
studies as for other procedures affected by interference: by averaging of interfering
spatial and temporal spectral components at each measurement step.

Considering the weak-modulation effect at phase: x0d0 
 p, Eq. (8.41) trans-
forms to:

Iout tð Þ
I0�s2

¼ 1� 2�q cos 2uþ �q2ð Þ cos 2x0tþ 2x0d0�q cos 2u� �qð Þ sin 2x0t

1� 2�q cos 2uþ �q2ð Þ2 : ð8:44Þ

From the averaging standpoint, the output of a Fabry-Perot interferometer needs to
be measured over at least one free spectral range of that interferometer:
u1 ¼ j� 0:5ð Þp\u\ jþ 0:5ð Þp ¼ u2, where j is an integer. Accounting for
phase fluctuations between two neighboring maxima at u ¼ jp and considering
that the phase is uniformly distributed within one free spectral range
u1 ¼ pðj� 1=2Þ	u	 pðjþ 1=2Þ ¼ u2:

tanuh i ¼ 2x0d0�q
u2 � u1

Zu2

u1

cos 2u� �q
1� 2�q cos 2uþ �q2

du � 0 : ð8:45Þ

Relation (8.45) points out that to obtain correct results by measuring light signals
proportional to sinu or cosu, the averaging process needs to be done prior to the
computation of the phase function and obtaining as a result [7.25, 7.26]:
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I0 sinuh i ¼ 2x0d0�q
u2 � u1

Zu2

u1

cos 2u� �q
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sin 2u
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2�q
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I0 cosuh i ¼ 1
u2 � u1

Zu2

u1

du
1� 2�q cos 2uþ �q2

¼ 1
u2 � u1ð Þ 1� �q2ð Þ

 arctan
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ð8:46Þ

Integration over one free spectral range gives: d sin 2uð Þ � 0; and the ratio of
averaged terms becomes:

tanu ¼ I0 sinuh i
I0 cosuh i ¼

2 q1q2ð Þ2x0d0
1� q1q2ð Þ2 ; ð8:47Þ

being equivalent to Eq. (8.37), derived by assuming the additive summation of
intensities of incoherent components of interfering radiation at the infinitely
small-phase shift [8.9, 7.25, 7.26].

On the basis of the analysis above, certain measures needs to be taken as main
precautions for the phase-shift measurement: ensuring a uniform distribution of
phase shift u over one free spectral range of the resonator under study; individual
averaging of the sine and cosine signals; providing spatial and spectral stabilization
of the light emission of the laser source, as well as ensuring repeatable and stable
alignment of the resonant cavity (see Sect. 7.4 for details). The verification experi-
ments [8.13] detected very high fluctuations of both He–Ne and argon laser signals
with a relatively low modulation frequency of approximately 1 kHz. Relatively long
averaging times of a few tens of seconds were required to equalize otherwise
nonuniform distributions of the phase shift within ±10% error. The averaging per-
formed for the separate sine and cosine signal partitions via Eqs. (8.46) made several
times over the free spectral range of the cavity provided the results always yielding
lower losses than obtained by the averaging of tanu via Eq. (8.45).

The choice of the light source is also relevant for the phase-shift measurement
technique. Low-coherence thermal sources have a large spatial divergence, which is
highly efficient for the averaging. Indeed, the novel synchrotron radiation with
extremely low angular divergence, but a very broad spectral emission, has desirable
optical properties for the phase-shift studies – high directness and low coherence
length. The results of phase-shift measurements with cw lasers are very much
dependent on the average linewidths and fluctuations among longitudinal laser
modes in the cavity. Even integration over very long time terms may not limit
fluctuations to a desired level. Since thermal and acoustic sources add noise due to
cavity length variations, the overall variability of phase-shift measurements would
be improved by a reasonable increase of the integration time constant and by
making a significant and thus easy-to-measure phase shift.
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8.3.2 Decay-Time Measurements

Analyzing the prospects of pulsed measurements at the beginning of this chapter,
we saw how the intensity of a pulse entering a resonant cavity decreases in pro-
portion to the product of the reflectances of the cavity mirrors and the squared
transmittance of its internal space. It was also presumed that the duration of each
pulse is shorter than the resonator round-trip time, meaning that the short pulse is
distinguishable on every separate reflection and no interference among retro-
reflected pulses occurs. It is evident that a virtually similar effect can be achieved
while obtaining a decaying wave front via a quick turning off of a continuously
propagating beam [8.12, 8.13]. Any radiation energy accumulated in the cavity
would decline exactly as the energy of an inserted pulse, with the only difference
being that the effective length of a continuously formed pulse would be precisely
equal to the length of the cavity experiencing transitional process.

From Eqs. (3.108)–(3.111) it follows that to fill the internal space of a highly
reflecting optical cavity with light, the spectrum of emitted waves has to be in
resonance with the cavity. Consider monochromatic light at frequency x entering a
resonator of highly reflecting mirrors. The total output electric field transmitted by
the cavity can be represented as (see Sect. 3.1):

Eout;R tð Þ ¼ Eout exp �ixtð Þ
¼ Eins exp �ixtð ÞCmnq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1sints2

p �
1� sint

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
exp idð Þ� �

; ð8:48Þ

where Cmnq is the mode-matching factor for the coupling efficiency of the cavity
and the source emission at frequency x, d is the round-trip phase shift in the cavity:
d ¼ 2x‘

�
cþux þuy, and phases ux and uy specify the transverse mode geometry

in the cavity. Near the cavity resonance with phase d ffi 2p; the field amplitude can
be resolved via the frequency difference Dx = xmnq − x as [II.5]:

Eout ffi Eins
Cmnq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1sints2
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1� sint
ffiffiffiffiffiffiffiffiffiffi
q1q2
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c
2‘

s1sints2
1� sint
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� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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1� sint
ffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffi
q1q2

p þ iDx

� ��1

¼ EinsAmnq
c
2‘

cc þ iDxð Þ�1:

ð8:49Þ

For two conditions of the internal optical field near its resonance – steady-state
mode status: EinsðtÞ ¼ Es exp �ixstð Þ at t < 0, and transient status: EinsðtÞ ¼
Es exp � cs þ ixsð Þt½ �; when the source’s Es and xs are turned off at an instant t > 0 –
the Laplace transform in cavity-output space gives [8.12]:
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EinsðtÞ ¼
t\0

EsAmnq
c=2‘

cc þ iDx
exp �ixstð Þ; ð8:50Þ

EinsðtÞ ¼
t[ 0

EsAmnq
c=2‘

cc � cs þ iDx
exp � cs þ ixsð Þt½ �

�

þ c=2‘
1� cc=cs � iDx=csð Þ cc þ iDxð Þ exp � cc þ ixcð Þt½ �

�
: ð8:51Þ

Equation (8.51) for t > 0 distinguishes contrasting states of unequal complex fre-
quency responses cc and cs of the cavity and the source. For the source turned off
slowly and cc � cs, the first equation term dominates and the cavity properties do
not become apparent from the decay curve. But, if the light is switched off sharply:
cs � cc, the first term vanishes and at resonance cavity frequency xc:

EinsðtÞ ¼
cs�cc

EsAmnq
c=2‘

cc þ iDx
exp � cc þ ixcð Þt½ �: ð8:52Þ

The physical meaning of relation (8.52) is identical to the requirement for a
pulsed source to have its pulse duration shorter than the cavity round-trip time.
Otherwise, interference between declining and incident signals leads to error in
decay measurement. At decay rate cc, the subsequent characteristic decay time
tc ¼ 1/2cc defines the decline of beam intensity by an equation equivalent to (8.8):

I tð Þ ¼ I0 exp �t=tcð Þ ¼ I0 exp �2cctð Þ: ð8:53Þ
After substitution of variables from Eq. (8.49) and introducing decay length
‘decay ¼ ctc:

sint
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
1� sint

ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ ctc
‘

or sint
ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ �q ¼ ctc
lþ ctc

� ‘decay
‘þ ‘decay

: ð8:54Þ

Equation (8.54) confirms that the lower is the optical loss in the cavity, the higher is
the effective length ‘decay of propagation at wavelength k for its intensity expo-
nentially decreasing by e times.

As was seen when examining pulse and interferometric measurements, the rela-
tionships among intensities of the components of radiation existing in the cavity,
identifying the decay time constant, are factually determined by the effective number
of intracavity reflections. Accordingly, Eqs. (8.8) and (8.53) can be rewritten as:

lnð�qÞ ¼ 1
2n

ln Wiþ n=Wið Þ ¼ �q� 1ffiffiffi
�q

p ;

ln It=I0ð Þ ¼ � t0
tc
¼ ln �q2 ¼ �2

1� �q
�q

ffi
�q!1

�2�v:
ð8:55Þ

Here t0 ¼ 2‘=c is the cavity round-trip time and �v is the average loss over one
single cavity mirror for the cavity having identical or otherwise indistinguishable
mirrors. As a result:
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�q!1
‘= c�vð Þ: ð8:56aÞ

Since at �q ! 1 the magnitude of
ffiffiffi
�q

p
also tends to unity, the decay time can be

directly resolved by way of each cavity mirror average-loss measurement. On the
other hand, the decay time tc can be expressed via finesse of cavity resonances.
Substituting �q ¼ s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
in Eq. (8.20) at s ¼ 1.0 gives:
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�
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� �
p: ð8:56bÞ

A schematic of the mirror reflectometer for decay-timemeasurement [8.12] is seen
in Fig. 8.12. A light beam from a single-frequency argon-ion laser at k = 514.5 nm is
transmitted via crossed polarizers, a Pockels cell, a mode-matching lens, and either a
mirror ring or a Fabry–Perot cavity, respectively, consisting of four or two mirrors, to
finally reach a fast detector. The signal triggers electronic switches (not shown) and
the comparator. An internal clock sets up the threshold to compensate for the delay
between the action of the Pockels cell and the impact of the light-beam [8.12]. The
factually measured switch-off time due to the cavity reaction was near 25 ns. The
measured decay times for two unlike pairs of flat and curved mirrors in a 10-m-long
cell were, respectively, 185 ls ± 1.4% and 26.24 ls ± 0.2%, all averaged over 20
readings. The highest measured products of two-mirror reflectance were estimated as
reaching 0.999820 ± 3 ppm and 0.999820 ± 7 ppm, making nearly 60 ppm for the
total of the absorption and scattering losses for each separate mirror.

A typical setup for decay-time measurements performed in a relatively short
cavity, whose length is tuned on and off via a piezoelectric transducer (PZT) and
which is excited by cw-laser light coupled into such a cavity via an acousto-optic
modulator, is depicted in Fig. 8.13 [8.14].

3

8

2 4 5
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7

Fig. 8.12 Decay-time mirror interferometer: 1 laser source; 2 and 3 polarizers; Pockels cell; 5
mode matching lens; 6 decay cavity; 7 detector; 8 comparator

L1
M2AOD

S

D
M1 L2
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Fig. 8.13 Decay-time measurements of cavity loss and finesse
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Multilayer Ta2O5/SiO2 mirrors M1 and M2, deposited on superpolished substrates
mounted in a clean-room environment on a sealed Teflon spacer, formed a nearly
4-mm long cavity. The cavity was excited by a cw Ti: sapphire laser via
acousto-optic deflector (AOD) and mode matching lens L1. Small changes of the
cavity length of 4 ± 0.2 mm were caused by pushing on one of substrates by a PZT,
compressing slightly the Teflon spacer. Lens L2 imaged the beam traversing the
cavity to photomultiplier tube detector D via circular aperture A. To measure the
ringdown time, the cavity was slowly scanned until its resonance with the laser
wavelength. When the preset intensity threshold was achieved, the detector triggered
the acousto-optic deflector switch, which after a delay of about 300 ns turned off the
beam in 45 ns. Two sets of mirrors with radii of curvature of 173 mm and 1 m were
studied. The highest detected decay time was 8.2 ls. Based on Eq. (8.56a), the total
loss for the best mirror pair was measured to be about 1.6 ppm at k ¼ 850 nm with
the single mirror reflectivity near 0.999996 at 830–880 nm [8.14].

In spite of the relatively high sensitivity of decay-time loss measurements,
certain attention should be paid to the fact that experimental results are taken by a
great deal of averaging over many diverse readings. For example, Fig. 8.14
resembles an actual noisy decay curve averaged over 100 single decays [8.14]. One
reason for that noise was temporal instability of the source spectrum and thermal
cavity drifts (see Chap. 3), but it was also directly related to fractional errors of
fitting experimental data into a single exponential function (see ringdown spec-
troscopy considerations in Sect. 7.3). Since the fractional detection error is set by
the integer-defined decay time: �‘= 2cð Þ, regardless of the processing speed [8.12],
this leads at round-trip number k ¼ tcc=‘ to the fractional limit of the decay mea-
surement being � 1� sint

ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �
or to ±1=2k ¼ ‘= 2ctcð Þ ¼ Loss=2, which, in

turn, leads to indistinguishable reflectivity � �q� ffiffiffi
�q4

pð Þ�2 at �q2 ¼ q1q2. For
(q1q2)a ¼ 0:99 or (q1q2b)b ¼ 0:9999 and corresponding individual reflectances
�qa ¼ 0:995 or �qb ¼ 0:99995, the irresolvable fractional error is 1:25�10�3 or
1:25�10�5. To measure optical losses below 100 ppm, some extra stabilization of
the equilibrium temperature for the cavity, specimen, and cavity surroundings may
be needed (see Chap. 10).

Power (arbitrary units)

Time 

0 10 20 30 40

( )μs

Fig. 8.14 Illustration of an
averaged decay
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More efficient operations of a ringdown scanning spectrometer can be achieved
by slowly sweeping the cavity length via a PZT as in Fig. 8.13, coupling the cavity
modes to a tuning wavelength of a cw laser, and fast-triggering the cavity off when
the coupled-light intensity reaches a preset threshold [7.36]. In the system shown in
Fig. 8.15, photodiode D with trigger circuit T records the matching intensity of
cavity-coupled light and sets the cavity off its resonance within a few nanoseconds
after a transistor is triggered to decrease the signal to the PZT. The same PZT also
compensates for thermal drifts of the cavity, tracking the cavity length via the
laser-tuning wavelength. In the experiments, the cavity mirrors had 0.9999 reflec-
tivity and were set 30 cm apart while approximately 3 � 10�9-cm�1 noise-level
absorption coefficient sensitivity was obtained for measured ringdown acetylene
overtone signals with ±3% signal-baseline oscillations due to observed etalon ef-
fects in mirror substrates (see Sect. 7.4). By minimizing cw laser jitter on spectral
scanning and cavity tuning, and by stabilizing the temperature of the mirror cavity
or monitoring the drift of actual temperature, the relative ringdown detection sen-
sitivity ranged from 10−3 to 10−7, allowing up to 8:63�10�27 strength of the PQ(35)
transition line of oxygen to be sensed within ±0.4% uncertainty [7.36, 7.37].

Another approach to achieving high stability of a resonant cavity minimizing
sweep-induced oscillations of the cavity extrema or ringing effects [8.40] and
increasing the sensitivity of ringdown decay studies is in locking a single-frequency
laser wavelength to a resonance cavity mode [II.41, 8.29]. In Fig. 8.16, a
diode-pumped Nd:YAG continuous-wave laser tunable to 0.14 nm in the 1064-nm
range, is servo-locked to radiation transmitted by and reflected from the three-mirror
ringdown cavity via an added analog detection circuit, enabling 500 MHz/s laser
frequency scans at tens of kilohertz in signal acquisition mode. The frequency-
locking scheme is realized via electro-optic modulator EOM placing frequency-
modulation sidebands on light passing from the laser. Polarization-cube
beam-splitters PBS divide modulated radiation into s and p components and
recombine them on photodetectors PD1–PD3. Acousto-optic modulator AOM pro-
vides rapid switching of incoming light on and off the ringdown cavity, as well as

polarizer

Laser

ringdown cavityisolator spatial filter
aperture detectorPZT

lenssplitter

Wavemeter

Fig. 8.15 Wavelength-sweeping ringdown spectrometer
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frequency shifting the s-polarization component to the longitudinalmode of the cavity
being adjacent to one to which the p-component is locked in, allowing both com-
ponents to be resonant with the cavity. The three-mirror cell consists of two flat
mirrors, attached to one spacer, and a plano-concave mirror mounted on a PZT,
making a 42-cm-long cavity path and an empty cavity ringdown time of 2.8 ls.
Experimentally measured absorption spectrums were obtained in 10 s at 75-kHz
spectral resolution. The system’s long-term and short-term sensitivity was estimated
to be ð8:8�1:0Þ�10�12-cm�1 Hz�1=2 [8.29]. A similar scheme of cavity-locking, for
more precise control of the laser-emission wavelength [8.41], used an extra He–
Ne-laser-stabilized transfer resonant cell actively locking the CO2 laser frequency. An
alternative solution for repetitive cavity locking and unlocking is illustrated in
Fig. 8.17, which applies rapid reacquisition of cavity mode-locking state after
detection of each ringdown signal, thus reducing launching of high-order transverse
cavity modes by rejecting feedback to external-cavity diode laser ECDL utilized for
measurements [7.40]. Radiation from the external-cavity diode laser is coupled into

half-wave
plate

Nd:YAG

ringdown 
cavity

PD3

PZTwave 

PBS

AO

PBS

PD2

PD1locking s-polarization

EOM

locking s-polarization

laser

Fig. 8.16 Frequency-modulation locked laser ringdown spectrometer
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Fig. 8.17 Periodically locked continuous-wave laser ringdown spectrometer: ISO – optical
isolator; k/4 – quarter-wave plate, X – double-balanced RF mixer
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the ringdown cavity via acousto-opticmodulator AOMand is frequency-locked to the
TEM00 cavitymode via the polarization scheme shown in Fig. 8.16. The frequency of
the external-cavity diode laser does not drift when the acousto-optic modulator is
switched off, initiating the cavity ringdown signal, thus allowing the system to quickly
regain the cavity lock with the acousto-optic modulator being turned on again.
Mode-matching of the resonant cavity to laser light is done via single-mode
polarization-preserving fiber PPF and lens optics, suppressing below 3% high-order
transverse modes versus TEM00 mode intensity. High-speed amplified photodiodes
PDs and PDq, which signals were demodulated via a double balanced mixer X at
15 MHz, detected the decay of radiation being transmitted by the cavity and the error
signal caused by reflected light being reduced to zero on ringdown events, since
frequency-modulation sidebands are not initiated when light leaves the cavity, and
frequency stabilization is placed on hold with the acousto-optic modulator in the “off”
position. The noise level of absorption loss for single-shot sensitivity reached
7.5�10−8 cm−1 when 13,000 events were averaged within 2 h or 4.7�10−8 cm−9 for the
average of 256 ringdown events acquired at 1.5-Hz rate for each average having
±1.4�10−8 cm−1 standard-deviation noise for the residuals of the Voigt fit to the
absorption features being measured [7.40].

A system for rapid spectral ringdown detection of backward propagating light
[8.43] is seen in Fig. 8.18. External-cavity diode laser ECDL serving as a source of
coherent radiation for optical-heterodyne reception of a beam reflected from the
ringdown cavity is set at a fixed (slowly varying) frequency for a path-tuned cavity
or is frequency-swept itself. A three-port optical circulator separates light reflected
back by the cavity from light emitted by the external-cavity diode laser. Both
reflected- and transmitted-radiation detectors PDs and PDq sense ringdown signals,
with higher sensitivity in reflected light to intracavity interference, exhibiting
full-wave oscillations over the decaying ringdown signal envelope (see also
Sects. 3.3 and 7.4). In experiments [8.43], all system element surfaces were tilted to
prevent occurrence of multiple-reflection interference noise with cavity mirrors
made on wedged substrates, establishing the linear measurement dynamic range
from 0 to 2�10−5 cm−1. Comparable resonant pulse-stacking of ultrashort
high-repetition rate pulses [8.18] and rapidly swept and fast-tuning systems with

Fig. 8.18 Rapidly sweeping
reflecting ringdown
spectrometer
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reference cavities and/or off-axis injection of light into ringdown cavities and mirror
waveguides (see Chaps. 6 and 7) can be used [8.42–8.45].

If ringdown time measurements are applied to detection of optical losses in solid
or perhaps liquid substances, thermal and other changes of the cavity’s refractive
index also need to be evaluated. Rewriting Eq. (8.54) for an intracavity material of
length ‘ and refractive index nc, one would have:

tc ¼ ‘c
c

sint
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
1� sint

ffiffiffiffiffiffiffiffiffiffi
q1q2

p ¼ ‘nc
c

sint�q
1� sint�q

¼ ‘nc
c

1� lð Þ�q
1� 1� lð Þ�q ; ð8:57aÞ

where �q is the average reflectivity of cavity mirrors and l = 1 − sint is the intra-
cavity loss determined via transmittance sint 6¼ 1. Identifying the relative
decay-measurement sensitivity as change Dtc/tc:
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1� �q
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ð8:57bÞ

one could see that the higher is the reflectivity of each cavity mirror and the lower is
the cavity loss sensed, the higher the sensitivity becomes. Conversely, because of
the opposite-sign contributions, intracavity and mirror losses can compensate for
each other, reducing the overall sensitivity if every type of loss is not separately
resolved (see Sect. 8.4). Measurements in a fiber-based cavity [3.84], despite the
loss sensitivity reaching approximately 5 � 10−4 dB, confirmed the challenges for
the solid-state cavity ringdown studies, such as the uncertainties in reflection
locality on the fiber core-cladding interface leading to resonator leakages.

Figure 8.19 illustrates the schematic for a decay-time study of the scattering plus
absorption loss in a microphotonic whispering-gallery mode disk resonator [8.38].
Tunable laser S, emitting less than 300 kHz linewidth in the 1420–1498-nm
spectral region, was coupled to microdisk resonator C via polarization controller P
and two variable attenuators A1, A2, maintaining a constant signal on detector D.
The laser wavelength was tuned via double-dip mode-coupling resonances for
clockwise and counterclockwise propagation via the 10-lm-radius disk formed in
Si–SiO2 layers. To separate linear and nonlinear contributions of the disk absorp-
tion, the resonance wavelength and on-resonance transmittance values of the
microdisk modes were monitored as functions of input power, identifying a relative
amount of linear absorption and the scattering loss contribution within the res-
onator. A nearly 0.25 dB/cm linear absorption coefficient had been detected leading
to the measured decay rate cc = 0.57 ± 0.03.

S D P A1 A2CFig. 8.19 Micro-cavity
decay measurement
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As small-size microring resonators are useful for bio-sensing, the phase-shift
measurements of ringdown time in a microcavity (relation 8.37) via detecting a
ratio of in-phase to out-of-phase components make studies independent of
laser-light intensity fluctuations [8.54]. Part-per-billion levels of sensitivity could be
reached by measuring evanescent-field absorption in silicon nitride microring disks
coated with a functionalized sorbent to enable analysis of differential absorption
spectra by observing shapes of disk resonance lines [8.56]. The as low as
2.7 � 10−12 cm2 absorption cross-section detection sensitivity was reached for the
phase-shift ringdown studies of Rayleigh backscattering in a silica microsphere
resonator, measured simultaneously with the transmission of the microsphere via a
tapered fiber coupler [8.57]. Polarization-sensitive surface studies could be also
realized by enabling a phase-shift evanescent ringdown ellipsometric spectroscopy
[8.55].

8.4 Quality-Factor Transfer Method
and Asymmetric-Cavity Measurements

Every method of measurements in a resonant cavity needs to provide a temporal or
spatial modulation of some kind for radiation interacting with the resonator, and
then demodulate the resultant spectrum to resolve the optical loss exhibited by the
cavity. Consider the prospect of a measurement procedure which is capable of using
any waveform of optical radiation: pulsed or continuous and also time- or fre-
quency-modulated. Since pulsed laser light induce considerable power action, often
causing thermal and nonlinear effects, the data obtained with pulsed versus con-
tinuous irradiation may be essentially different. Accordingly, it is quite reasonable
to seek a procedure not related to an explicit type of light source to be used. That
task requires excluding side effects coincident with such uncertainties as irregular
temporal or spectral beam structure, intensity fluctuations and undesired interfer-
ence phenomena of light interacting with the cavity.

As we recall from Eqs. (8.4) and (8.5), any direct transmission measurements of
light intensity via a resonator of highly reflective elements does not provide highly
sensitive output to small losses in resonant elements. However, this fact holds true
only in comparison with the radiant flux U0 which is incident onto the resonator.
Consider that after some determination of transmitted intensity Us by Eq. (8.4), the
beam passing via two equivalent mirrors under test can be measured without
multiple reflections as Us,0 = U0s1s2. The ratio of the two fluxes is:

Us=Us;0 ¼ 1= 1� �q2
� �

: ð8:58Þ

Here the sensitivity is essentially increased in proportion to the average reflectance
�q2 or to the product of the reflectances of the two mirrors. Such a ratio rises to 10 at
�q2 = 0.949 and to 100 at �q2 = 0.995.
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Since Eq. (8.4) is obtained under the assumption of a near-infinite number m of
intra-resonator multiple reflections, being added incoherently as having a short
length of coherence:

Us;1 ¼ jU0s1s2
1� q1q2ð Þm
1� q1q2

¼
q1q2\1;m!1

jU0
s1s2

1� q1q2
; ð8:59Þ

for its validity, the totality of all components retroreflected in the cavity must be
integrated by a detector in space or time. The sum of remaining terms, exhibiting
more than m reflections, and contributions of residual interference should be lower
than the acceptable measurement error D:

Us � Us;1
� ��

Us

�� �� ¼ q1q2ð Þmj j 	D: ð8:60Þ

If a detector is capable of distinguishing a ±0.1% change of the signal to be
measured, no fewer than 687 reflections must reach the detector at q1q2 = 0.99 to
have D 	 0.001. The number of reflections is reduced to 135 and to 66 at
q1q2 = 0.95 and q1q2 = 0.9, respectively. Typically, three mirrors in pairs of two
are measured to resolve Eq. (8.58) via a single-mirror reflectance. Instead, obser-
vation of resonator properties in reflected light allows identifying reflectances of
cavity mirrors by swapping their positions while substantially suppressing residual
interference.

Figure 8.20 illustrates implementation of two virtually semitransparent elements
X and Y, forming the test cavity, in the path of a beam of incident light. Beam splitter
2 serves to irradiate reference detector 3 tracking the intensity of laser source 1.
Splitter 4 transfers light reflected by the wave normal from elements X and Y to main
detector 5, with field stop 6 reducing stray light. The ratio N5/N3 ¼ M of the
main-to-reference detector signals provides one reading of the measurement system.
The intensity M of light reflected from elements X and Y, considered at the moment
as having nonabsorbing and nonscattering substrates with respective reflectances
and transmittances sx¼ 1 − qx and sy¼ 1 − qy, is:

M ¼ jU0sis2s4q4 qx þ qy 1� qxð Þ2� 1� qxqy
� �h i

: ð8:61Þ
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resonator-tuning
measurements
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Here si is the transmittance of filter or isolator 7, serving to exclude any optical
feedback between the resonator formed from mirrors X and Y studied and laser
cavity 1. A few techniques can be used to distinguish radiation reflected from either
mirror X or mirror Y with and without the participation of multiple reflections. One
may even use the baffle depicted in Fig. 8.9 or replace mirror Y by any
nonreflecting absorber and/or completely remove mirror Y. The easiest way to
cause multiple reflections to vanish is by misalignment of mirror Y away from a
wave normal to the incident light beam, making even the first reflection component
miss detector 5 (dashed lines in Fig. 8.20). Since the intensity of radiation reflected
by the mirror X is: M0 ¼ jU0sis2s4q4qx, the combination of two detector readings
for two measurements of X–Y and X intensities gives:

K1 � M �M0

M0
¼ qy 1� qxð Þ2

qx 1� qxqy
� � : ð8:62Þ

The inverted ratio is measured with mirrors X and Y substituting each other while
repeating the two readings, in this case Y–X and Y:

K2 � M0 �M0
0

M0
0

¼ qx 1� qy
� �2

qy 1� qxqy
� � : ð8:63Þ

Multiplying and splitting Eqs. (8.62) and (8.63) into one another, after new
designations:

A � ffiffiffiffiffiffiffiffiffiffiffi
K1K2

p ¼ 1� qxð Þ 1� qy
� ��

1� qxqy
� �

;

B �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=K2

p
¼ qy 1� qxð Þ� qx 1� qxð Þð Þ; ð8:64Þ

we obtain the solution for the two measurement combinations performed via the qx
and qy pair:

qx ¼
h
1þABþ 1� Að Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þABþ 1� Að Þ2� 4 1þABð Þ 1� Að Þ

q i.
�
2 1þABð Þ; qy ¼ qxBð Þ=�1þ qx B� 1ð Þ: ð8:65Þ

The solution obtained corresponds to the plus sign before the square root; the minus
sign gives the trivial 0 and 1 pair of X–Y mirror reflectivities and, hence, such a
result is obviously omitted.

Owing to inevitability of interchanging mirrors X and Y for two initial mea-
surements, the reflectance of any opaque reflector Z can be obtained afterward by
replacing the second cavity mirror and using one of either mirror X or mirror Y at
position X, making only two normal-incidence measurements in the configuration
X–Z by tuning the cavity in and out to obtain the reflectance qz via Eq. (8.62).
A more effective measurement may be obtained by bending the initially assembled
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and already known X–Y mirror resonator, as seen earlier in Fig. 8.11. In the bent
cavity, the reflectance qz of highly reflecting mirror Z is measured at any fixed angle
of incidence, as noted in the previous section, with the reflectance sensitivity of the
bent-resonator measurements being twice as high. The bent-resonator settings also
allow the spatial examination to be performed over a relatively large mirror Y
surface, which may not be necessarily flat, when the added mirror Z is installed on
any rotary table (Fig. 8.21).

Measurement Eq. (8.62) with element Z installed inside the cavity is transferred to:

MR �M0

M0
¼ qyq

2
z 1� qxð Þ2

qx 1� q2zqxqy
� � : ð8:66Þ

Obviously relation (8.66) also holds true for any transparent component installed in
the cavity with already measured mirror reflectances. Despite the fact that the error
of the measurement increases with the number of tests required, the doubled sen-
sitivity to any low loss of the third mirror or a transparent object overcomes that
drawback. Another advantage of the method described is associated with the shift
of its photometric scale from the point corresponding to 100% reading to 50%
mid-scale point for reflectance qx. That effect increases the sensitivity of multiple
reflections not only for high reflectivities but also for low reflectivities of test
elements. For example, one may see that even at low qx = qy = 0.1, the 5�10−4
increase of the reflectivity of any one of these mirrors would extend the detector’s
photometric reaction by 5�10−3, i.e., by an order of higher magnitude.

Previous considerations for the applicability of this quality-factor transfer method
were based on the assumption of nonscattering and nonabsorbing substances, such as
any thin-film coating layers and substrates for the resonator forming the mirror pair.
Let us determine the conditions for accurate measurements of the reflectivity of
mirror Z, while allowing for some imperfections in the resonator mirror pair X–Y.
Representing the absorptance and scattering factors of mirrors X and Y by a total loss
factor a, both formed on substrates of near equal thicknesses, Eqs. (8.62) and (8.63)
may be transformed to the identities for new mirror reflectances qx

0 and qy
0:

K1 ¼
qy 1� qxð Þ2
qx 1� qxqy
� � � qy

0 1� qx
0 � að Þ2

qx0 1� qx0qy0
� � ; K2 ¼

qx 1� qy
� �2

qy 1� qxqy
� � � qx

0 1� qy
0 � a

� �2
qy0 1� qx0qy0
� � :

ð8:67Þ
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Let us determine the conditions to be maintained to have qx
0 ¼ qx − a and qy

0 ¼
qy − a. For qx, as for qy:

qx
0 ¼ qx

qy
0 1� qy
� �

qy 1� qy0 � a
� � 1� qx

0 � að Þ
1� qxð Þ ¼ qx

qy � a
� �

1� qy
� �

1� qx þ a� að Þ
qy 1� qy þ a� a
� �

1� qxð Þ
¼ qx �

qx
qy

a: ð8:68Þ

These conditions hold true at qx
0 ffi qy

0. Combining the semitransparent but par-
tially absorbing and scattering element X with the high reflector Z, we obtain at
qx

0 ffi qx � a; qz ! 1; and qx ≅ 0.5:

qz 1� qxð Þ2
qx 1� qxqz
� � � qz

0 1� qx
0 � að Þ2

qx0 1� qx0qz0
� � ;

qz
0 ¼ qz

qx 1� qxqz
0� �� qz

0a2
� 

qx 1� qxqz
� � ¼ qz 1� 2a2

� �
: ð8:69Þ

Consequently, application of two nearly semitransparent reflectors for the absolute
calibration of the initial resonator reduces the effects of absorption or scattering to
one lower order of negligibility.

Completing the analysis of low-loss measurements for the tuning resonator made
of highly transparent, semitransparent, or highly reflective objects, one can define
the sensitivity of the study as:

DK
K

¼ Dqx
qx

þ Dqz
qz

þ 2
Dqx

1� qx
þ DqxDqz

1� qxqz
: ð8:70Þ

The general Eq. (8.70) covers any combinations of optical properties for a semi-
transparent output coupler X or for highly-reflecting mirror Z measured. With
qx ! qz ! 1, it transforms to:

DKHR=KHR ¼ Dqx þDqz þ 2Dqx=sx þ DqxDqz
� �m

; ð8:71Þ

where m is the effective number of the resonator’s reflections. For the opposite case
of qx ! qz ! 0:

DKAR=KAR ¼ 2Dqx þDqxDqz þDqx=qx þDqz
�
qz: ð8:72Þ

Two extrema of the optical properties to be measured are characterized by the
highest sensitivity of the technique: in the first case due to a large number of
multiple reflections, and in the second due to relatively high intensity conversion
via rapid alteration of the reflected radiation emerging from the aligned and the
misaligned resonator. For the intermediate case of qx ≅ qy ! 0.5 and qz ¼ 1:0 ¼
const: DK=K ! 7Dqx. At qx ≅ 0.5 ¼ const and qz ! 0: DK=K ¼ 2Dqz, but at
qx ≅ 0.95 ¼ const, we have: DK=K ¼ 21Dqz. Although the rise of sensitivity to
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the low optical loss in the highly reflective cavity follows the increase of the
effective number of internal reflections, high accuracy of the measurements can be
achieved even with the twofold increase of sensitivity. At the same time, for any
sensitivity increase, all disturbing factors associated with such an increase which
may contribute to measurement noise must remain negligibly low.

As presumed in the analysis, certain measures are taken to prevent changes of the
intensity measured for the light components retroreflected inside the resonator due to
interference. An essential factor, coincident with the measurements in reflected light,
concerns the conceivable suppression of interference phenomena in reflection. As
revealed in Chap. 3, the decrease of residual fringe visibility in reflected radiation is
directly proportional to the difference of the reflectivities of irradiated resonant
mirrors. For a two-mirror resonator with no internal loss: sin = 1, Eq. (3.126):

Vq ¼
sin�1:0

2
ffiffiffiffiffiffiffiffiffi
qxqz

p ð1� qxÞð1� qzÞ
qxð1� qzÞ2 þ qzð1� qxÞ2

; ð8:73Þ

indicates that application of any single high reflector with reflectance qz = 1.0 in
reflected light diminishes the visibility Vq of the interference pattern in reflection to
zero, independently of the reflectance of another element. Correspondingly, by
observing the total intensity of a multiply reflected beam in reflected, instead of
transmitted light, one makes all interference phenomena being suppressed alto-
gether without any additional measures and being virtually independent on co-
herence properties of the source of radiation. As a result, at qx ≅ 0.5 and qz = 0.99
the fringe visibility is reduced to 0.01 and to 0.001 at qz = 0.999, even at qx ≅ 0.95
and qz = 0.999 the visibility is less than 0.04. Concurrently, Vs in all these cases
ranges from 0.94 to 0.9997 (see Eq. (3.127)).

8.4.1 Measurements in Tuning Resonators

To verify the capabilities of resonator-tuning method in providing accurate and
sensitive measurements not only for highly reflective, but also for semitransparent or
even low-reflectivity resonators in reflected light, a custom Nd:glass pulsed laser at
k ¼ 1:053 lm having an effectively mode-locking resonator was developed. To
reduce negative effects of polarization-related fluctuations of the measurement sys-
tem’s transmission (Fig. 8.22), the angles of incidence on beam splitters 2 and 4 as

3

X7 Z2 46

5
Main He- sphere

5’

Ratio meter

laserNe 

Fig. 8.22 Pulsed-measurement system in tuning resonator
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the only elements turned out of the normal to passing beams were less than 2.5–3°. To
provide the highest possible isolation of the laser and the resonator being analyzed,
both splitters transmitted 25% and reflected 75% of radiation intensity. The total
optical density for the two splitters and added optical isolator 7 was near 3.5
(Eq. (1.77)). Alignment of both resonators was made by an auxiliary coaxial He–Ne
laser and/or an autocollimator [2.55].

Any change of distance between the two resonator mirrors from 30 to 150 mm
did not change the ratio measured. The total energies of pulses reflected by beam
splitters 2 and 4 were registered by thermostabilized photodiodes 3 and 5.
A five-decade digital ratio meter processed the ratio of signals for main and ref-
erence detectors. The photometric accuracy of the entire double-channel measure-
ment system verified by a version of pulsed supplemental-light technique (see
Chap. 4) was indistinguishable from the noise-level sensitivity: ±0.05%, of such a
supplemental-light method [3.37].

Commonly, the pulse-to-pulse spectral distribution of a pulsed laser emission is
not highly reproducible even for steady-state averaged power or energy studies (see
Sects. 3.3 and 7.3). Thus, respective resonant measurements in fluctuating radiation
are very sensitive to temporal reproducibility of emitted light pulses. Stability in the
experiments was achieved by removing spectral-selective elements from the laser
resonator, making it mode-locking emission capable. The optimum laser cavity
consisted of paired 90 and 100% reflecting mirrors, deposited on plane substrates of
fused silica, having AR-coated second surfaces, additionally equipped with aper-
tures selecting the TEM00 longitudinal mode. The 2r repeatability of any single
reflectance measurement by that dual-channel system was 2r 	 ±0.05%.

Characteristic properties of two of the group of resonator mirrors are given in the
Table 8.1. The first and second sets of data belong to mirrors made, respectively, by
depositing zirconium dioxide and silicon, and titanium and silicon as the
quarter-wave layers formed on identical superpolished plane blanks of fused silica.
The first row gives reflectance magnitudes obtained by measurements of

Table 8.1 Measured
properties

Property Mirror 1 Mirror 2

q ¼ 1� ssph 0.995 0.995

slas 0.0005 0.0005

qr 0.9925 0.9990

r 0.0060 0.00005
slas þ qþ r 0.9990 0.9995
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transmittance: q¼ 1 − ssph using a spectrophotometer, and the second row gives
results of the direct transmittance measurements slas obtained by this system. Both
series did not distinguish any difference between the two mirrors. Measurements by
the quality-factor transfer method performed in X-Y cavity via beforehand-
measured mirror X with reflectance qx¼ qr¼ 0.5165 ± 0.0005 are given in the
third row. Studies of mirrors diffuse scattering r were made by inserting a
35-mm-diameter integrating sphere between mirrors X and Y of the cavity and
relocating detector 5 to the new position 50 in Fig. 8.22.

To increase the effectiveness of the integrating sphere, the dimensions of its
openings were minimized according to the considerations provided in Sects. 2.4
and 4.2. The entire sphere was made from two thin copper sheets, coated by several
layers of white BaSO4 diffuser. Since the effectiveness of integration for scattered
light by a sphere may be increased by raising the ratio of the area of its internal
detector to the area of the sphere itself (see relation (4.35)), the sphere detector and
entrance ports were 8-mm-diameter openings, ensuring unblocked propagation of
incident and reflected beams. To compensate for the systematic error of absolute
measurements for the diffuse reflectance and transmittance, the shifting baffle was
made with a commensurate compensating aperture (see Sect. 2.4) approximately
1.2 mm in diameter. The baffle was secured in its two swapping positions to protect
the internal sphere detector at position 5′ from light directly scattered by reflecting
and by transmitting samples, while detecting the diffuse reflectance or the diffuse
transmittance of mirrors X or Y.

All the results obtained in the variable-length tuning resonator were consistent
within ±(2–5) � 10−4 during the test time of several days. Despite that the initial
high reflectance of the second mirror in Table 8.1 above made by chemical
deposition degraded during the first few days, it eventually stabilized near
q2 ≅ 0.9940. Nevertheless, the first mirror in Table 8.1, chosen as being the best in
the thin-film coating run of several samples for its measured reflectance in the
0.9835–0.9925 range, performed very steadily during the entire time span, con-
sistently exhibiting position-tracking reflectance within ±0.0001. Moreover, only
with that mirror was consistent lasing of a custom diode-pumped Nd: YAG
microlaser experimentally accomplished. The transmittance properties for addi-
tionally measured samples made of plane-parallel fused-silica plates corresponded
to the magnitudes calculated by their refractive indices within absolute limits of
±(2–7) � 10−4 [8.15].

The sequence of measurement results in Table 8.1 demonstrates the continuance
of the latter intra-resonator approach to low-loss measurement. According to the
routine spectrophotometric study (row 1), the presumably equal transmittance and
undistinguishable losses on absorption and scattering were assigned to two selected
mirrors out of five in a coating run. A higher direct resolution for local transmittance
via a laser beam, increasing the repeatability of measurements to ±0.1%, barely
distinguished two better mirrors in row 2. The high sensitive resonator-tuning
quality-factor conversion method in reflection (row 3) positively identified the best
mirror of the study, which was further confirmed by a subsequent lasing experi-
ment. Supplementary studies of scattering factors (row 4) and observed closeness to

8.4 Quality-Factor Transfer Method and Asymmetric-Cavity Measurements 439



unity for every sum of optical properties (row 5) confirmed the high accuracy and
high sensitivity for the entire measurement procedure.

8.4.2 Quality-Factor Transition Between Two Resonator
Eigenstates

Expanding the method of quality-factor conversion for a spectrally broadband
resonant cavity, one can envision a few approaches to tuning the cavity on and off
its multiple-reflection path: modulating the path length in any desired way,
including polarization-sensitive degeneracy for two orthogonal eigenstates in the
resonator. Such a method could include a path-deflection modulator to guide cavity-
mirror reflection in and out of the normal-incidence path, as in Fig. 8.23, versus
tuning the mirror in Fig. 8.20. Otherwise, the resonator-tuning technique remains
unchanged for an X-Y mirror cavity or mirror Z. Since intracavity loss would
include a dual magnitude of modulator transmittance for modulator M being inside,
it could be straightforwardly counted off by cavity calibration prior to inserting
high-reflectance mirror Z.

For measurements in transmission, quality-factor transition may be accom-
plished between eigenstates of a cavity, containing a quarter-wave birefringence
plate, for studying the residual reflectivity of an AR coating (like in [8.16]).
A quarter-wave plate in reflection mitigates among maxima and minima of the
resonator’s eigenstates, making k=4þ k=4 phase shift via orthogonal birefringence
axes oriented at ±45° to the longitudinal cavity axis and the input state of polar-
ization. For the maxima and minima of cavity transmission, or in other words
resonance and antiresonance, Eqs. (3.123) for a quarter-wave plate as a Fabry–Perot
interferometer are:

Ismax

I0
¼ Tp�r ¼ ð1� q1Þsð1� q2Þ

1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �2 ¼
q1¼q2¼qp;

s¼ 1�vsð Þ

1� qp
� �2 1� vsð Þ
1� qp 1� vsð Þ� �2 ;

Ismin

I0
¼ Tp�a ¼

1� qp
� �2 1� vsð Þ
1þ qp 1� vsð Þ� �2 ; ð8:74Þ
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Fig. 8.23 Resonator-based
measurement by deflection
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where qp is the reflectivity of each plate’s surface, presumed identical and vs is the
plate’s substrate total scattering and absorption loss. For a transparent substrate:
v ! 0, and for plate’s surfaces being AR-coated with low residual reflectivity:
q2p ! 0; and Eqs. (8.74) for plate’s transmittance Tp−r and Tp−a become:

Tp�r ¼
1� qp
� �2

1� vsð Þ
1þ qp 1� vsð Þ� �2 1þ qp 1� vsð Þ� �2

1� qp 1� vsð Þ� �2 ffi
vs!0

Tp�a
1þ qp
1� qp

 !2

ffi
q2!0

Tp�a 1þ 4qp
� �

; Tp�a ¼
q2¼0;
vs¼0

Tp�r 1� 4qp
� �

: ð8:75Þ

If an AR-coated quarter-wave plate is inside the cavity and the plate’s rotations
allow the cavity state to be transferred into resonant and antiresonant modes, the
ratio K of respective resonator transmittances is:

K � Tc�r

Tc�a
¼ 1� qcð Þ2Tp�r

1� qcTp�r
� �2 � 1� qcTp�a

� �2
1� qcð Þ2Tp�a

¼ Tp�r

Tp�a
� 1� qcTp�a

1� qcTp�r

� �2

¼ 1þ 4qp
� �

1þ 4qcqp
1� qcTp�r

� �2

: ð8:76Þ

Considering Eq. (8.20) for the resonant cavity finesse, and assuming the quarter-wave
plate’s transmittance in the resonant state as unity, we can rewrite Eq. (8.76) via
cavity finesse parameter Fr (see Eqs. (3.119) to (3.125) and (7.65) to (7.68)):

K ¼ 1þ 4qp
� �

Tp�r
Tp�r þ

4 qcTp�r
� �

qp
1� qcTp�r

 !2

¼ 1þ 4qp
� �

Tp�r
Tp�r þ

4Frqp
p

� �2

ffi
Tp�r¼1

1þ 4qp
� �

1þ 4Frqp
p

� �2

: ð8:77Þ

Equation (8.77) encourages increasing the resonator’s finesse to improve the sen-
sitivity of measurements to residual surface reflectance qp, which, in turn, decreases
the resonator’s effectiveness when qp 6¼ 0. Owing to quadratic dependence of the
intensity ratio K on the residual reflectivity qp, a solution should be sought similarly
to Eqs. (8.62) and (8.63) via distinguishing the reflectivities of the first face and
second face of the plate and making two series of measurements swapping the
positions of the plate surfaces. On another hand, using the approximation offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4qp
� �q

! 1 allows one to obtain a linear solution with the systematic error

�2 ffiffiffiffiffiqpp simplifying the measurement procedure [8.16]:

qp ffi
2 ffiffiffiffiqpp !0

p= 4Frð Þð Þ
ffiffiffiffi
K

p
� 1

� 	
: ð8:78Þ
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Figure 8.24 shows an experimental system for two eigenstate-based measure-
ments in a high-finesse cavity [8.16]. Single-frequency He–Ne laser light is coupled
into a Fabry–Perot scanning interferometer via a polarizer–analyzer pair. One cavity
mirror placed on a PZT made a low-frequency scan with interferometer’s free
spectral range being set at c=2‘ but the quarter-wave plate added two nondegen-
erated orthogonal eigenstates frequency-spaced at c=4‘. Tilting of the wave plate to
the ordinary and extraordinary cavity axes positioned ±45° to the input-light state
of polarization caused the cavity to be switched on and off between resonant and
antiresonant states. To compensate for errors of ±45° orientation of the
wave-plate’s axes, two series of measurements were always performed by rotating
the plate twice around its crystalline axis and having K ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðK1 � K2Þ

p
. At a cavity

finesse of approximately 100, the measurement sensitivity was approximately
100 ppm [8.16], though owing to the systematic error ±2√q of obtaining the results
by inexact Eq. (8.78) being of the order of the measured residual reflectance,
making multiple averages may have not produced any sensitivity increase.

8.4.3 Nonresonant, Off-Axis Techniques

Similarly to suppressing the interference phenomena by making resonator mea-
surements in reflected light and removing superposition of radiation by spreading the
multiple reflections in space or time, both ring-down and cavity-decay studies
reviewed in Sects. 7.3 and 8.3 could benefit from setting the cavity off its sharpest
on-axis resonance [8.30, 8.44] into an expanded-length propagation pass any
off-axis irradiation system (Sect. 6.3). Off-axis irradiation provides spatial separa-
tions of multiple reflections on each consecutive path, until a reentrant coordinate is
reached (see Fig. 6.8), except for the entrance of radiation into the Fabry–Perot
cavity like one illustrated in Fig. 8.24. Each beam-spot rotation is defined by the
cavity geometry: cosu = 1 − d/R (see Eq. (6.17)), and on a number N of single
cavity passes: 2Nu = 2jp, j = 1, 2, 3… (Eq. (6.19)), the beam reenters its path. For
a spherical-mirror cavity of radiuses R1 and R2 and mirror spacing d, the cavity path
is stable at 0 < (1 − R1)(1 − R2) < 1. Depending on the polar angle u of entering
light, a reentrance may occur after many reflection cycles, effectively making the
cavity N times longer and thus decreasing its free spectral range (Dk), which defines
the separation Dk between the adjacent interference maxima: Dk = ki − kj.

As for other ring-down measurements (see Sects. 7.3 and 8.3), the time-rate
equation for the power decay of cw radiation coupled into a cavity of two identical

polarizer

isolator

PZT

mirror 1 mirror 2

analyzer

detector

quarter-
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Fig. 8.24 Resonant and anti-resonant cavity studies
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mirrors with reflectance q and transmittance s and travelling in each propagation
direction owing to intracavity multiple reflections is [7.26, 8.30, 8.31]:

dI=dt ¼ c=2‘ð Þ Cmnqs I0 � 2I 1� qð Þ� �
: ð8:79Þ

Here Cmnq is the coupling factor, I0 and I are the incident and the intracavity power
of radiation, and the factor of 2 accounts for radiation leaving the cavity via both
mirrors but entering via just one. For lossless cavity mirrors: s þ q = 1, and a
stable light source, the empty-cavity solution is:

Ie ¼ CmnqI0=2
� �

1� exp �t=tcð Þð Þ; ð8:80Þ

with a steady-state solution reached at Ileft = Iright = I0Cmnq/2. Here tc is the ring-up
or ringdown constant: tc;e ¼ ‘= c 1� qð Þð Þ: If the cavity is filled with a gaseous
substance of frequency-dependent absorptance a(m): tc;a ¼ ‘= c 1� qð Þþ a mð Þ‘ð Þð Þ;
the effective reflectance of each cavity mirror becomes: qa ¼ q exp �a mð Þ‘ð Þ; and
instead of using the decay ratio: a mð Þ ¼ 1

�
sc;a � 1

�
sc;e

� ��
c; one can express the

relative intensity changes: DI/I, for the steady-state cavity radiation output as [8.30]:

ðIa � IeÞ=Ie ¼ ð1� expð�aðmÞ‘ÞÞ � ðq=ð1� qÞÞ=ð1þð1� expð�aðmÞ‘ÞÞ
� ðq=ð1� qÞÞ � G � A=ð1þG � AÞÞ; ð8:81Þ

with new designations: A ¼ 1� exp �a mð Þ‘ð Þ and G ¼ q= 1� qð Þ; where factor
G � scc=‘ � F=p defines the cavity multiple-reflection gain.

Opposite to either single-mode or multimode ring-down study, multipath
propagation and subsequent reduction of the cavity free spectral range to be nar-
rower than the source bandwidth makes the fringe contrast ratio approach 1.0
independently of the wavelength of laser emission, not requiring single-mode
resonances to occur. Owing to multipath propagation, a 0.5-m-long cavity with
approximately 300 MHz free spectral range effectively becomes a 6-MHz cavity
via a path increased by 50 round trips (Fig. 8.25). Each cavity mirror may be also
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Fig. 8.25 Off-axis ringdown
cavity measurements
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astigmatized (see Sect. 6.3), forcing Lissajous patterns of precessing light spots on
every mirror, further increasing the cavity optical path [8.30]. In the experiments,
identical 6-m-radius, 1-in.-diameter mirrors were spaced 67-cm apart forming the
cavity and while astigmatized it held 400 passes with 500-kHz effective free
spectral range. An external-cavity 630-nm diode laser source tuned at 2 cm−1/s was
coupled into the cavity, scanning one free spectral range per cavity ring-down time,
suppressing resonant energy storage in the cavity and stabilizing cavity output. The
chopper at the focal point of two telescope lenses modulated incident light with
50% duty cycle and 3-kHz repetition rate, setting a 0.5-ls shut-off time for
ring-down measurements. Despite a relatively high cavity loss: m � (1 − q)/2, over
every m-reflection reentrance, the rms noise-level absorption sensitivity of ring-
down measurements averaged over 100 sweeps reached 1.5�10−9 cm−1 Hz−1/2 for
the cavity build-up time defined by the chopper 3 kHz frequency. Alternative
integrated-cavity output measurements were provided via laser tuning at over a
2-cm−1 frequency interval for the effective 200 MHz frequency resolution inte-
grating many times over the free spectral range with *1�10−7 per-pass noise and
reaching *2�10−10 cm−1 Hz−1/2 noise-level sensitivity at 100 sweeps [8.30].

8.4.4 Resonant Asymmetric-Cavity Techniques

The quality-factor transfer method, opening this paragraph, was developed to sup-
press interference in reflected light, allowing any mirror of the asymmetric
two-mirror cavity under test to be measured in nonresonant settings for broadband
radiation, such as pulsed laser light. In laser resonator applications of microresonant
cavities in which maxima for any resonant wavelength are definitively distinguished
in either transmitted or reflected light, a close-to-1.0 mirror reflectance must be
achieved for the laser generation [II.1, II.8, II.11, II.28]. If an asymmetric mirror
cavity is viewed in reflected light, a reflectance of each mirror in nonresonant settings
can be identified via Eqs. (8.61)–(8.66). In resonant settings, Eqs. (3.120) and (3.123)
define the maximum and the minimum intensities in reflection and transmission for a
resonant mirror cavity of reflectivities q1 and q2 separated by transmittance s.

If the mirrors of reflectance q1 and q2, transmittance s1 and s2, and scattering-
plus-absorption losses l1 and l2 are separated in clean air or a vacuum, the optical
properties of every mirror in the asymmetric two-mirror cavity can be identified via
opposite irradiation directions as illustrated in Fig. 8.26. Owing to asymmetry,
cavity reflectivity changes on left–right irradiation, but not transmission. Following
Eq. (3.119), the left Eq12 and right Eq21 wave amplitudes in reflection are:

1 2Fig. 8.26 Asymmetric cavity
left-right irradiation
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Eq12 ¼ E0
q1a þ q21aq

0
2ae

id þ s1as01aq
0
2ae

id

1� q01aq
0
2ae

id
¼ E0

q1a � q2aðq21a þ s21aÞeid
1� q1aq2aeid

¼ E0
q1a � q2að1� l1aÞeid

1� q1aq2aeid
; ð8:82aÞ

Eq21 ¼ E0
q2a þ q22aq

0
1ae

id þ s2as021aq01ae
id

1� q02aq
0
1ae

id
¼ E0

q2a � q1aðq22a þ s22aÞeid
1� q2aq1aeid

¼ E0
q2a � q1að1� l2aÞeid

1� q1aq2aeid
: ð8:82bÞ

Transformations invoke the law of conservation of energy for each mirror:
qi þ si þ li ¼ 1. When amplitudes are converged to intensities (see Sect. 3.3), and
since the cavity transmission is insensitive to the direction of irradiation,
Eqs. (8.82a, b) and (3.122) become, respectively:

Iq;ij ¼ EqEq
� ¼ I0

ð ffiffiffiffi
qi

p � 1� lið Þ ffiffiffiffiqjp Þ2 þ 4 ffiffiffiffiffiffiffiffiqiqj
p sin2 d=2ð Þ

ð1� ffiffiffiffiffiffiffiffiqiqj
p Þ2 þ 4 ffiffiffiffiffiffiffiffiqiqj

p sin2 d=2ð Þ ; ð8:83Þ

Is;ij ¼ EsEs
� ¼ I0ð1� qi � liÞð1� qj � ljÞ=

ð1� ffiffiffiffiffiffiffiffi
qiqi

p Þ2 þ 4
ffiffiffiffiffiffiffiffi
qiqi

p
sin2ðd=2Þ

� 	
: ð8:84Þ

When the asymmetric cavity is studied via stable irradiation, allowing for obser-
vation of the steady-state maxima and minima of interference, Eqs. (8.83) and
(8.84) are converted to:

Iqmax;ij ¼ I0

ffiffiffiffi
qi

p þ 1� lið Þ ffiffiffiffiqjp
1þ ffiffiffiffiffiffiffiffiqiqj

p
 !2

� Iqmin;ij ¼ I0

ffiffiffiffi
qi

p � 1� lið Þ ffiffiffiffiqjp
1� ffiffiffiffiffiffiffiffiqiqj

p
 !2

:

ð8:85Þ

Ismax;ij ¼ I0
1� qi � lið Þ 1� qj � lj

� �
1� ffiffiffiffiffiffiffiffiqiqj

p� 	2 � Ismin;ij ¼ I0
1� qi � lið Þ 1� qj � lj

� �
1þ ffiffiffiffiffiffiffiffiqiqj

p� 	2 :

ð8:86Þ

Figure 8.27 illustrates the tendencies of the maxima and minima for the two
complementary interference patterns in transmission and reflection: Iqmax corre-
sponding to Ismin, and vice versa. The intensity changes are plotted versus reflec-
tance rising from 0.01 to 1.00 in 0.01 steps. Since these interference patterns are
supplemental to each other owing to redistribution and losses of incident radiation:
I0 = Iq + Is + Il, ratios Iqmax/Ismin and Iqmin/Ismax can be measured simultaneously:
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Iqmax;ij

Ismin;ij
¼

ffiffiffiffi
qi

p þ 1� lið Þ ffiffiffiffiqjp� 	2
1� qi � lið Þ 1� qj � lj

� � : Iqmin;ij

Ismax;ij
¼

ffiffiffiffi
qi

p � 1� lið Þ ffiffiffiffiqjp� 	2
1� qi � lið Þ 1� qj � lj

� � :
ð8:87Þ

Ratios (Iqmax/Iqmin)12 and (Iqmax/Iqmin)21 can be measured by cavity retuning to the
maximum and the minimum:

Iqmax;12

Iqmin;12
¼

ffiffiffiffiffi
q1

p þ 1� l1ð Þ ffiffiffiffiffi
q2

pffiffiffiffiffi
q1

p � 1� l1ð Þ ffiffiffiffiffi
q2

p
� �2 1� ffiffiffiffiffiffiffiffiffiffi

q1q2
p

1þ ffiffiffiffiffiffiffiffiffiffi
q1q2

p
� �2

:

Iqmax;21

Iqmin;21
¼

ffiffiffiffiffi
q2

p þ 1� l2ð Þ ffiffiffiffiffi
q1

pffiffiffiffiffi
q2

p � 1� l2ð Þ ffiffiffiffiffi
q1

p
� �2 1� ffiffiffiffiffiffiffiffiffiffi

q1q2
p

1þ ffiffiffiffiffiffiffiffiffiffi
q1q2

p
� �2

: ð8:88Þ

Measurements in transmission of the Ismax/Ismin ratio from either direction allow
the reflectance product q1q2 to be determined:

Ismax;12
�
Ismin;12 ¼ 1þ ffiffiffiffiffiffiffiffiffiffi

q1q2
p� ��

1� ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �� �2
: ð8:89Þ

Figure 8.28 illustrates the dependencies of the ratios computed according to
Eqs. (8.87)–(8.89) for the settings of Fig. 8.27.

Equations (8.87) for the i, j sequence surely converge to the mirrored equations
for the j, i sequence. To determine all unknown mirror parameters of a cavity: q1, l1
and q2, l2 or q1, s1 and q2, s2, four independent measurement equations need to be
obtained. Such a measurement cycle can be performed via combination measure-
ments of reflected and transmitted intensity maxima and minima versus the input
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intensity of a mirror pair via opposite directions. Since for a cavity having at least
one highly reflective mirror either the reflection or the transmission minima are
practically indistinguishable from the incident radiation or measurement noise (see
curves 1r1r-min and 1t1t-min in Fig. 8.27), these measurements are the most dif-
ficult to perform versus the reflection minimum and the transmission maximum
(curves 1r1r-max and 1t1t-max or 1r2r-max and 1t2t-max):

Iqmax;12

Ismin;12
¼ q1 þ 2 1� l1ð Þ ffiffiffiffiffiffiffiffiffiffi

q1q2
p þ q2

1� q1 � l1ð Þ 1� q2 � l2ð Þ ; ð8:90Þ

Iqmin;12

Ismax;12
¼ q1 � 2 1� l1ð Þ ffiffiffiffiffiffiffiffiffiffi

q1q2
p þ q2

1� q1 � l1ð Þ 1� q2 � l2ð Þ ; ð8:91Þ

Iqmax;21

Ismin;21
¼ q2 þ 2 1� l2ð Þ ffiffiffiffiffiffiffiffiffiffi

q1q2
p þ q1

1� q1 � l1ð Þ 1� q2 � l2ð Þ ; ð8:92Þ

Iqmin;21

Ismax;21
¼ q2 � 2 1� l2ð Þ ffiffiffiffiffiffiffiffiffiffi

q1q2
p þ q1

1� q1 � l1ð Þ 1� q2 � l2ð Þ : ð8:93Þ

If only reflected or only transmitted light is accessible, the ratios of the intensity
maxima to the intensity minima in reflection resolve two mirror reflectivities via
Eqs. (8.88), but three pairs of mirrors: 12, 13, and 23, via Eqs. (8.89) need to be
measured in transmitted light:
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Ismax;12

Ismin;12
¼ 1þ ffiffiffiffiffiffiffiffiffiffi

q1q2
p

1� ffiffiffiffiffiffiffiffiffiffi
q1q2

p
� �2

;
Ismax;13

Ismin;13
¼ 1þ ffiffiffiffiffiffiffiffiffiffi

q1q3
p

1� ffiffiffiffiffiffiffiffiffiffi
q1q3

p
� �2

;

Ismax;23

Ismin;23
¼ 1þ ffiffiffiffiffiffiffiffiffiffi

q2q3
p

1� ffiffiffiffiffiffiffiffiffiffi
q2q3

p
� �2

: ð8:94Þ

Adding to the challenges of measurements via interference extrema, a single
TEM00 mode cavity coupling requires to remove all high-order modes, which could
make the cavity look “lossless” necessitating parallel cavity-finesse measurements to
confirm reaching the extrema [8.34–8.37]. Other techniques, such as a quantitative
assessment of the main cavity coupling to unavoidable etalons of the system com-
ponents, effectively enhancing the cavity finesse, or utilizing a differential
multiple-frequency shifting process [7.64] could also be deployed (see Sect. 7.4 for
more details).

Figure 8.29 depicts an asymmetric-cavity measurement setup for the reflection-
minima plus transmission-maxima studies in opposite directions [8.37]. Reflectance
and transmittance values for the resonant cavity were calculated while approxima-
ting full Eqs. (8.85)–(8.93) by truncated expressions for left and right propagation:
ð ffiffiffiffiffi

q1
p � ffiffiffiffiffi

q2
p þ s1

ffiffiffiffiffi
q2

p Þ= 1� ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �� �2
left; ð ffiffiffiffiffi

q2
p � ffiffiffiffiffi

q1
p þ s2

ffiffiffiffiffi
q1

p Þ= 1� ffiffiffiffiffiffiffiffiffiffi
q1q2

p� �� �2
right:

Coupling linearly polarized 852-nm light to a 43.9-lm-spaced 10-cm-radius
supermirror cavity was done via polarizing beam splitter 1, half-wave plate 2,
polarization rotator 3, and objective 4. By measuring mode matching aspects from
opposite directions of light propagation and converting the measured asymmetric
cavity losses while making corrections for ideal mode-matching of the cavity, the
estimated factors were q1 ¼ 0.9999619, s1 ¼ 5.0 ppm, l1 ¼ 33.2 ppm,
q2 ¼ 0.9999501, s2 ¼ 4.5 ppm, and l2 ¼ 45.4 ppm [8.37]. Similar cavity-decay
measurements in extremely small volumes at relatively long effective-absorption
pathlengths could be made in whispering-gallery mode microresonators tuned in
and out of resonance by stretching [8.39].

8.5 Evaluation of Loss Dichroism and Phase Dispersion

The already reviewed examples of sensitivity expansion for an intracavity study to
the phase status of multiply reflected light not only allows one to resolve the
reflectivity difference of resonant mirrors, but even to distinguish the phase
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2Fig. 8.29 Polarization
coupling for a resonant cavity
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dispersion and phase retardance of radiation in a cavity. Such a feature is
increasingly valuable for evaluation of homogeneity and spectral performance of
multilayer laser mirrors, since reflection of light even by a border of two perfect
dielectrics is an anisotropic process (see Eqs. (1.34), (1.35), (1.82) and (1.83)). If
radiation interacts with a mirror made as a stack of quarter-wave or other phase
layers of low and high refractive indices, the phase shift d between orthogonally
polarized components increases linearly with the light wavelength and its angle of
incidence. It also depends on the particular thickness of every layer.

If a linear full-wave or half-wave retarder such as a crystal/polymer wave plate is
inserted into a highly reflective resonator and is observed in reflection, its phase
retardance on the double pass is a multiple of p, thus not making a distinguishable
phase effect. The quarter-wave plate, introducing a k/4 and p/2 phase shift in
transmission and in reflection, produces a very noticeable phase change for design
wavelength k. A quarter-wave plate in a resonator aligned to the maximum in one
polarization eigenstate and the minimum in another becomes a low-reflectivity
Fabry–Perot interferometer or etalon of surface reflections qs � qp � q. For a
transparent plate with sint = 1, the absolute intensity maximum in reflected light and
the maximum to minimum relative intensity ratio in transmitted light are (due to
relations (3.124, 3.125)):

Iqmax=I0 ¼ 4q= 1þ qð Þ2; ð8:95aÞ

Ismax=Ismin ¼ 1þ qð Þ2= 1� qð Þ2: ð8:95bÞ

By making measurements of either the absolute maximum intensity in reflection
or the relative maximum-to-minimum intensity ratio in transmission, we can resolve
the residual surface reflectivity q (see preceding Sect. 8.4 for more details):

Iqmax
�
I0 ffi

q2!0
4q= 1þ 2qð Þ ffi

q!0
4q; ð8:96aÞ

Ismax=Ismin ffi
q2!0

1þ 2qð Þ= 1� 2qð Þ ffi
q!0

1þ 4q: ð8:96bÞ

From relations (3.125), the maximum–minimum intensity difference in transmitted
versus incident light is:

Ismax � Isminð Þ=I0 ¼ 1� 1� qð Þ2= 1þ qð Þ2 ¼ 4q= 1þ qð Þ2: ð8:97Þ

The relative maximum and minimum intensity difference in transmission defines
the indirect plate dichroism DT in two resonant states and for incident light intensity
I0 ¼ 1 can be approximated as:

DT ¼ Tr � Ta ¼ Imax � Imin

¼ I0 1� 1� qð Þ2� 1þ qð Þ2
� 	

¼
I0¼1:0

4q= 1þ qð Þ2 �
q!0

4q: ð8:98Þ
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Considering the interdependence of the quarter-wave plate’s dichroism on its
residual surface reflectivity, one can measure parameters of resonant-cavity decay
[8.27] using Eqs. (8.98) and (8.53) as:

Lossr ¼ 1� qcTrð Þ ffi ‘
�

csc;r
� �

; Lossa ¼ 1� qcTað Þ ffi ‘
�

csc;a
� �

; ð8:99Þ

where Tr and Ta are the wave-plate resonant and antiresonant transmittance (see
Sect. 8.4) and qc is the mirror reflectivity for the cavity decay. Making cavity
ringdown measurements of extreme decay times for a quarter-wave plate in the
cavity (see Sects. 7.3 and 8.3), the plate dichroism is:

DT � 4q ffi ‘= cð Þ½ � s�1
c;r � s�1

c;a

� 	
¼ ‘= cð Þ½ � s�1

c;S � s�1
c;P

� 	
: ð8:100Þ

The cavity layout for decay-time ringdown dichroism studies is similar to that
seen in Fig. 8.24, where resonant and antiresonant directions are aligned along
birefringent S and P axes of the quarter-wave plate in a ringdown cavity. In the
experimental arrangement [8.27], a 632.8-nm AR-coated quarter-wave multiple-
order plate was set in a Fox–Smith interferometer. Low-frequency 10-Hz scan was
used for acquisition of data with continuous control of the mode-matching status of
the cavity with a monomode He–Ne laser. The decay times measured by averages
of 30 readings were 0.83 and 0.36 ls, leading to 1.08% and 2.48% S-P cavity loss,
and to 1.40% dichroism. While nearly identical 1.39% dichroism was registered in
an active-laser cavity in atomic system studies [8.27], the measurement sensitivity
could have been limited by the approximations of converting the exact Eq. (8.97) to
lesser accurate expressions (8.88), (8.99).

By further advancing pulsed or decay-time approaches to the intracavity loss
measurement (see earlier paragraphs and Eqs. (8.8), (8.53)–(8.57)), a low loss in a
resonant cell of highly reflecting mirrors in two eigenstates, and respective
dichroism, can be detected via integrated output intensities of light at time delays ts
and tp after an incident polarized pulse has entered the resonator:

IðtÞ ¼ I0 q1q2q
2

� �t=d0 ffi I0 exp � v1 þ v2 þ 2vð Þ
d0

t


 �
: ð8:101Þ

Here d0 ¼ 2‘=c is the phase shift (phase retardance) for the round trip in the cavity of
length ‘ in a vacuum andq1,v1 andq2,v2 are the reflectances and losses of thefirst and
second cavity mirrors. The third mirror of reflectivity q and loss v is inserted at
incidence angle H as in Figs. 8.11 and 8.21. By making two sequential ringdown
measurements of se for s and p polarization in empty cavity: se ¼ d= v1 þ v2 þ 2vð Þ;
linear dichroism vR of the inserted third mirror is determined as: vR ¼ vs þ vp.

If incident-light polarization makes a 45° angle with the orthogonal directions of
a phase-birefringent resonator, this results in two equivalent projections, thus
providing a differential evaluation of the phase retardance examined. When ana-
lyzing an output beam via any linear polarizer placed at ±45° to s and p polar-
ization, its intermediate intensity I(t) after the delay time t is [8.17]:
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IðtÞ ¼ ðI0=4Þfexpð�t=spÞþ expð�t=spÞ
� 2 exp½�ð1=sp þ 1=ssÞt=2� cosðdt=d0Þg:

ð8:102Þ

Equation (8.102) emphasizes the output intensity oscillations between two
exponential decays of the orthogonal birefringent directions. The time interval of
oscillations is identified by the phase retardance of the internal cavity enclosure. If
there is no retardance, all oscillations should be completely restrained. The
threshold of observation for such a restrain is identified by at least a half period of
the oscillation that could be observed at retardance: dj j � pd0=si ¼ p v1 þ v2 þ 2vð Þ,
where si is the decay for the vibration direction with the lowest total loss, either vs
or vp. A loss of about 500 ppm corresponds to the detection limit of the retardance
being studied: dj j � 0:2�: The higher is the loss, the lower is the sensitivity of the
ringdown decay-time measurement (see Eq. (8.56)). In experiments with a tunable
pulsed dye laser pumped by a 10-ns nitrogen laser, oscillations were clearly absent,
allowing measurements of the linear phase retardance of the mirrors tested at
k ¼ 629.1 nm with a precision of ±0.05° with angular sensitivity limits for the
phase retardance better than 0.1° [8.17].

8.5.1 Recognition of Phase Dispersion

For all the measurements considered earlier, either the high reflectance or the high
transmittance of a single element or a pair of elements was considered from the
standpoint of the best performance in a resonant cavity made of these elements. At
the same time, when building an exceptionally short pulse laser, such as a fem-
tosecond or an attosecond one, a relevantly flattened wavelength dispersion of the
laser cavity is essential. Accordingly, a sensitive measurement of the phase dis-
persion created by a specific laser element serves as an increasingly valuable tool
for evaluation of any mutual compatibility of all individual resonant elements when
assembling a laser cavity.

Consider a quasi-monochromatic wave group having a medium frequency x0

transmitted via an optical element causing group delay sgðx0Þ. The phase shift
produced by that action is: exp½�ix0sgðx0Þ�. The wavelength dependence of the
optical group delay may be distinguished by any spectrally sensitive phase mea-
surement. An interferometer sensitive to the change of the optical path length can be
created from any reflective element and the element under test. The entire cavity to
be studied can also be used for the phase-sensitive arrangement. A Michelson
interferometer with an element inserted into its sample arm is an example of an
instrument for a test [8.19]. The Fourier transform of the electric field transmitted
by the sample and reference arms of the interferometer as a product of their
complex transmittances is: Ss xð Þ ¼ Ts xð Þ Ts;0 xð Þ T�

ref xð ÞU xð Þ [8.20]. Here
Ts xð Þ, Ts;0 xð Þ, and T�

ref xð Þ are complex transmittances of the sample arm, of the
empty sample arm, and of the reference arm for the dual pass via the cavity, and U
is the power spectrum. The phase of that transform: u xð Þ ¼ us xð Þþubias xð Þ �
xs0; is determined by the phase shift us xð Þ caused by the element, in contrast to a
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specific interferometer bias, ubias xð Þ, which causes an imbalance between Ts;0 xð Þ
and Tref xð Þ. The term s0 identifies, in this case, the uncertainty for the zero-delay
settings of the interferometer used. As a result, the entire group delay is:

sg xð Þ ¼ du xð Þ=dx� sbias xð Þþ s0: ð8:103Þ
Figure 8.30 depicts a simplified structure of the phase- and intensity-compen-

sating white-light Michelson interferometer [8.19]. A collimated beam with less
than 1° divergence from the white-light source S propagates via two beam splitters
(main beam splitter 1 and compensating beam splitter 2) into optically equalized
sample and reference arms. Interference filter IF tunable within 10–15-nm band-
width selects light in spectrally recombined sample and reference beams. To have
white-light fringes for a few desired femtoseconds of temporal resolution, splitters
were made as identical INCONEL-metal-coated glass plates step-coated in
optical-density gradations of 0.1. Each optical scan of the interferometer was made
via precise motion of the reference-arm mirror in 45-nm steps, providing 0.3-fs time
extension. The relative group delay for each frequency was defined via conversion
of the propagation time from an allocated center of the observed interference
pattern. That time center was identified as the 50% rise point of the wave packet.
The center of every pattern for the phase-compensated interferometer obtained
before measuring the group delays varied by ±1 fs over the 400–700-nm range
[8.19].

The method described above directly measures a phase variation of a cross-
correlated wave group as a function of the center wavelength of a quasi-
monochromatic band filtered by a spectral filter. It creates an obvious difficulty,
especially if the transmission bandwidth becomes narrower and its contour
becomes wider. An improved design for direct registration of the phase status via
Fourier components of an interferometric signal is shown in Fig. 8.31 [8.20].
A He–Ne laser beam traveling along a parallel trajectory to white light, whose
spatial coherence is improved via a single-mode fiber, is used for subwavelength
calibration of the optical path difference. Owing to dual propagation via a k/8 wave
plate in the interferometer’s reference channel, perpendicularly polarized compo-
nents for the main and reference channels are split via polarizing beam splitter PBS
to separate photodiodes. The trigger generator detects the direction and the mag-
nitude of the realized path difference stored in a designated wave memory.
White-light interference signal of the main detector is sampled by the quarter-wave
phase change at k ¼ 632.8 nm. A Fourier-transformed phase-correlation spectrum
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mirror

mirror
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reflector
modulator

Fig. 8.30 White-light
dispersion-sensing
interferometer

452 8 Measurements in Passive Resonators



is obtained by measuring an optically resonant cavity formed from two test mirrors,
positioned in the main arm, dividing the result by four. Owing to the
double-interferometric scheme applied, in which one of the two interferometers is
set to detect length changes in the test cavity, the cross-correlation signal was
measured free of fluctuations [8.20].

One alternative approach to white-light interferometry is spectrally resolving
frequency-dependent group-delay interferometry with a high-resolution CCD
camera as depicted in Fig. 8.32 [8.21]. Michelson interferometer arms are formed
by a gold mirror assumed to provide a constant group delay and the test mirror. One
of the two mirrors is tilted around its horizontal axis to make fringes of even
thickness for every spectral component of white light, further separated by the
entrance slit. A transmission diffraction grating with 200 grooves per millimeter and
an achromatic lens create the spectrally dispersed vertical-cut image of the super-
imposed white fringes on the CCD camera, with wavelength-dependent fringes
dispersed in the horizontal direction. The two-beam interference pattern changes
intensity along the exit slit with a phase term defined by the phase shift and tilt
angle u of each mirror. The measured intensity distribution at every wavelength
was fitted to a cosinusoidal function, while the inaccuracy of curve fitting and the
concealed optical path difference in the beam splitter limited the actual sensitivity,
although allowing resolution of a ±0.2-fs delay at k = 670–870 nm [8.21].
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Fig. 8.31 White-light Fourier transform interferometer
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8.5.2 In Situ Laser-Based Measurements

Measuring the dispersion spectrum of the laser cavity in its actual operating con-
dition in a laser can be done by using the laser concurrently as a light source and as
an interferometer. Since the laser mode-locking condition results in a group of
pulses at a repetition rate twice the cavity’s transition time [3.32], the output of the
laser as a function of its wave frequency evaluates the frequency-dependent time
delay of the laser cavity. A continuously pumped and widely tunable femtosecond
laser maintained at intensity-independent and therefore linear conditions is the clear
choice for the measurement procedure [8.22, 8.23].

Consider the resonant laser cavity under study with low susceptibility to non-
linear effects consisting of two high-reflectivity mirrors spaced in a vacuum by
distance ‘ and of a block of dispersive material of length ‘m placed between the
mirrors. The round-trip phase u gained by a quasi-monochromatic wave packet,
emitted by a laser source, propagating in such a cavity is:

u xð Þ ¼ 2x=cð Þ ‘þ n xð Þ � 1½ �‘mf g: ð8:104Þ

Differentiating over frequency, one can obtain a frequency-dependent cavity
round-trip time tc:

tc ¼ du
dx

¼ 2 ‘� ‘mð Þ
c

þ 2‘m
@

@x
n xð Þx

c

h i
¼ 2 ‘� ‘mð Þ

c
þ 2‘m

vg
; ð8:105Þ

where vg is the group velocity of the given quasi-monochromatic wave packet. If
any feedback of the cavity path-length variation on the laser’s spectral emission and
all intensity-dependent nonlinear phase effects are prevented, the wavelength
derivative of the cavity round-trip time is the cavity group-delay dispersion DR, as
the sum of the dispersions Di of its elements [8.23]:

otc
ok

¼ 2‘R
o
ok

1
vg

� �
¼ 2‘RDR ¼ 2

X
i

‘iDi: ð8:106Þ

The layout for an in situ frequency-domain measurement system of dispersion in
a tunable-laser cavity is depicted in Fig. 8.33. The pulse train from a mode-locked
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front mirror
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slitD

Δλ

Fig. 8.33 Operating
laser-based dispersion
measurement
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Ti: sapphire laser is observed by a low-noise digital frequency counter. Spectral
scans are made by computer-controlled motion of the slit placed between the rear
mirror of the cavity and two Brewster-angle prisms serving for dispersion com-
pensation. Alterations of the round-trip group delay being measured in the exper-
iments were made via transformation of small frequency changes converted to the
time domain: Dtc ¼ �Dm

�
m20, related to the ones for central frequency m0. The

observed stable mode-locking conditions were found to correspond to a negative
wavelength dispersion of approximately 1.5 and 10.5 fs/nm. All nonlinear contri-
butions to the measured dispersions were evaluated to be quite small since the
results were effectively independent of the laser pulse width, which was purposely
changed to 80 and 300 fs from the basic width of 100 fs [8.22].

One universal way to perform an in situ dispersion measurement is associated
with letting amplified spontaneous emission out of the active laser resonator under
study [8.24]. To test the concept while preventing the effects of temperature fluc-
tuations of the cavity round-trip time, especially noticeable for femtosecond
semiconductor lasers having relatively short resonators, the system in Fig. 8.31 is
replaced by two Michelson interferometers sharing a common beam splitter BS and
end mirror M attached to a PZT (Fig. 8.34a). Concluding the light path of the first
interferometer is steady-state mirror M1 deployed to monitor the cavity-length
change. The second cavity has a movable matching mirror M2, utilized to detect
derivative signals of phase correlations themselves. Measurements were provided
via the system’s femtosecond laser, with its birefringent filter removed with the
pumping power kept under a lasing threshold, therefore making the laser-amplified
spontaneous emission as broad as possible. The reverse wavelength group-delay
dispersion curves of the laser entire resonator and its laser rod only are illustrated by
curves 1 and 2 in Fig. 8.34b. The measurement accuracy for the group delay,
obtained as the standard deviation among forty eight individual spectrum scans,
was near ±(0.5–2.0) fs [8.24].
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Fig. 8.34 Dual Michelson-interferometer system (a) and an example of phase-dispersion curves
(b): SMF is the single-mode fiber (see Fig. 8.31)
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8.5.3 Spectrophotometric Study of Phase Dispersion

When considering detecting the wavelength dependence of the spectral transmit-
tance in correlation to the phase dispersion d of a resonant cavity, one can analyze
the propagation of a beam of polychromatic light via a resonant cavity consisting of
highly reflecting or transparent elements. There are two possibilities for concluding
such a study. First, the cross-correlated spectrum of the cavity transmission is
compared with the incident spectrum of the light source. Second, the resonant-cavity
spectrum is matched with the spectrum of a cavity set out of resonance, similarly to
the resonator-tuning technique reviewed in Sect. 8.4, but utilizing an identical
arrangement in transmitted instead of reflected light (see Fig. 8.20). For the first
approach, the relative intensity I for the multiple-beam interference in transmission
(see expression (3.122)) becomes:

Is=I0 ¼ 1� q1ð Þ 1� q2ð Þs
ð1� s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p Þ2 þ 4s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin2ðd=2Þ ; ð8:107Þ

where q1, q2, and s are the reflectances of the cavity mirrors and the transmittance
of the empty or filled cavity. In the second case, the multipath interference-bound
beam relates to the beam transmitted without retroreflections:

Ismult
�
Is sin g ¼ 1

ð1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p Þ2 þ 4s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin2ðd=2Þ : ð8:108Þ

The ratio in Eq. (8.107) depends on the cavity phase shift d and cannot exceed
1.0, but can be very low. Equation (8.108) predicts very high transmission maxima,
with minima reaching 0.25 for s, q ! 1 [8.25]. Both equations provide for
wavelength dependence of phase dispersion d(k) when functions q1(k), q2(k), and
s(k) are predetermined. The phase sensitivity for each of these two methods [8.26]
is:

@ Is=I0ð Þ
@k

¼ � 4 1� q1ð Þ 1� q2ð Þs ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin d

ð1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p Þ2 þ 4s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin2ðd=2Þ

h i2 @d@k ; ð8:109Þ

@ Ismult=Is sin g
� �

@k
¼ � 4s

ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin d

ð1� s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p Þ2 þ 4s
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
sin2ðd=2Þ

h i2 @d@k : ð8:110Þ

The only disadvantage of measurements in transmitted light is that to establish the
wavelength dependence of the phase dispersion for the total resonator, it becomes
necessary to determine independently two reflection spectrums: q1(k) and q2(k),
and one transmission spectrum: s(k), of both resonator mirrors even if the cavity is
empty, making sure their substrates are transparent.
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Dispersion measurements in reflected light can be performed in a straightforward
manner (Fig. 8.35). First, reflectance magnitudes q1(k) and q2(k) of an output
coupler and a rear mirror of the laser cavity under test are measured in reflected
light separately (Fig. 8.35, configuration a). For the measurement, the rear mirror
can be installed in its position with any active element in place for direct deter-
mination of the product of its squared transmittance and mirror reflectance s2q2.
Second, the reflection spectrum of the entire two-piece or three-piece laser resonator
is measured (Fig. 8.35, configurations b or c). Precautions must be taken not to
widen the retroreflected beams in the resonator and any optics between the source
and the detector and accumulate as many of the retroreflected light components as
possible. The error due to the limited number of terms in the summation of the
multiply-reflected light components is provided by Eqs. (8.59) and (8.60) (see
preceding Sect. 8.4). The relative intensity Iq of the beam reflected by the entire
resonator compared with the intensity I0 of the incident beam is given by (see
Eq. (3.119)):

Iq k; dð Þ
I0

¼̂ qR k; dð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
q1 kð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2q2 kð Þph i2
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 kð Þs2q2 kð Þp

sin2ðd=2Þ

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 kð Þs2q2 kð Þph i2

þ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1 kð Þs2q2 kð Þp

sin2ðd=2Þ
:

ð8:111Þ

Knowing the total qR k; dð Þ and single q1 kð Þ; s2q2 kð Þ reflectances, the phase
dispersion d becomes:

d kð Þ ¼ arccos 1� 2
qR kð Þ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q1 kð Þs2q2 kð Þph i2
� ffiffiffiffiffiffiffiffiffiffiffi

q1 kð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2q2 kð Þph i2

1� qR kð Þ

8><
>:

9>=
>;:

ð8:112Þ

By analogy to Eqs. (8.106) and (8.107), the relative sensitivity to phase dispersion
in reflected light is:
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Fig. 8.35 Reflection-based measurements for spectral distribution of phase dispersion transmitted
by the plane-parallel dielectric plate
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@ Iq;R=I0
� �
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¼

�
4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q1 kð Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q1 kð Þs2q2 kð Þp

sin2ðd=2Þ
� �2

@d
@k

:
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For identical mirror reflectances and no transmission losses, Eqs. (8.109) and
(8.113) become:

@ Iq;R=I0
� �
@k

¼ @ Is;R=I0
� �
@k

¼ � 4q kð Þ 1� q kð Þ½ �2sin d
1� q kð Þ½ �2 þ 4q kð Þ sin2 d=2ð Þ
h i2 @d@k : ð8:114Þ

Therefore, the unbounded sensitivity of the resonant technique in reflection is the
same as that of similar intracavity, interferometric, and/or Fourier-transform mea-
surement in transmission.

The most noticeable difference of phase measurements in reflected radiation is
associated with the considerably higher sensitivity to optical properties at low
reflectances of the elements forming the resonator. From Eqs. (8.109) and (8.113) it
follows that at q1 ¼ 0.05, q2 ¼ 0.9, s ¼ 1, and sin(d/2) ¼ 0, the relative sensitivity
to wavelength dispersion in transmitted radiation: @ Is=I0ð Þ=@k ffi �0:42@d=@k, is a
full order of magnitude lower than that in reflected radiation, @ Iq

�
I0

� ��
@k ¼

�5:05@d=@k. That is why phase dispersion even of a single cavity element may be
measured in reflected light by creating an open resonator consisting of that element
having low surface reflectivity and being also low dispersive, such as a polished glass
or fused silica. At the same time, wavelength dispersion in reflection of the single
silica surface or of an entire silica plate can be presumed to be unchanged over a
relatively wide spectral range. The only restriction for any reflected-light technique
relates to the inability to make any nonresonant measurements in the resonator of a
highly reflective output coupler, as practically no light will reflected back from inside
the resonator unless such a resonator is in its maximum of reflection. Furthermore, in
contrast to the Fabry–Perot cavity in transmitted light, every resonator viewed in reflected
light does not change any given spectral resolution of its primary spectral selector.

Figure 8.36 shows spectral dependencies of the phase sensitivity for the trans-
mission and reflection intensity measurements obtained by relations (8.109) and
(8.113). The data are for a nearly semitransparent resonator with q1 ¼ 0.5 and
q2 ¼ 0.99 and for a high-reflectivity resonator with q1 ¼ 0.95 and q2 ¼ 0.99. At
q1 ¼ 0.95 and q2 ¼ 0.9999, the sensitivity in reflection for the low-phase changes
near d ¼ 0°, 360° is close to its maximum and almost 100 times higher than the
respective spectral phase change @d=@k (see the insert in Fig. 8.36). At q1 � 0.99
and q2 ! 1.0, the integrated reflection sensitivity is lower than the transmitted one
since in that case light is coming out of the cavity only at the spectral maxima of
radiation interference. By rewriting Eq. (8.112) as: cos d ¼ 1 − A/B, the sensitivity
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to phase changes in reflected light becomes: dd ¼ cot d � ½dB=B� dðB� AÞ=
ðB� AÞ�, clarifying why measurements in reflected or transmitted light for phase:
d ¼ ±90°, ±270°, are not sensitive to spectral changes of the cavity optical-path
length.

Commensurate experiments were performed using a PerkinElmer 330 spec-
trophotometer and its reflection attachment, as illustrated in Fig. 8.37a, b. [8.26].
The experiments targeted examining the reflective measurement method and
evaluating, during the fabrication of optical coatings, the potential impacts of dis-
persive elements of the laser cavity under test, such as the output coupler, the rear
mirror, and the active element. Since at the time of the study no active element was
available, measurements were performed with a flat spacer (see Fig. 8.37). First, the
reflectance of each element was measured with its coating face up. Second, a
resonator was created by spacing the reflecting surfaces with a 9.5 mm-thick silica
spacer identical to a mirror single substrate. Thus, when any phase spectrum was
computed by relations (8.101) and (8.102), dual transmittance values of the first
substrate and of the spacer were automatically subtracted from the final result, and
every total spectrum was measured for the resonator, consisting of the particular
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Fig. 8.37 The layout for dispersion measurements (a, b) and a phase delay within a 19-mm thick
silica substrate (c)
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output coupler, the silica spacer, and the rear mirror. There was no need to align the
test resonator, because the spacer and substrates were made to 5-second parallelism.
The phase delay difference between any measured identical substrates made of
fused silica and sapphire, forming a silica-spaced resonator in the spectral range of
all measurements performed, did not exceed 1.2° out of a possible 360° phase
change being investigated [8.26] (see Fig. 8.37c).

Raw data for measured reflection spectrums of all components measured via
Eq. (8.112) are shown in Fig. 8.38. The spectrums of two output couplers and a
dielectric high-reflectivity multiple-layer mirror for the Ti:sapphire laser are in
Fig. 8.39. The spectrum of each element wasmeasured in reference to the spectrum of
the silica spacer, whose reflectance was unchanged within 4�10−6 from 500 to
1200 nm. The measured spectrums of the output couplers and the rear
high-reflectivity mirror are given in Fig. 8.40a–c. The spectrum in Fig. 8.40d was
obtained for a Fabry–Perot resonator formed from a “uniform” output coupler, a silica
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spacer, and a high-reflective mirror. Every phase delay was computed by averaging
the results offive to ten spectral points detected at 0.1-nm spectral resolution, reducing
the noise of each single phase measurement. The spectrum in Fig. 8.41 was obtained
via substituting the high-reflectivity mirror by a high-reflectivity aluminum coating,
assumed to have zero dispersion, closely matching the uniform middle section of the
spectrum in Fig. 8.40b.

The reflection experiment demonstrated high sensitivity to phase dispersion for
every resonant element, especially for a small phase change. The spectrums for the
low- and high-reflectivity cavities for the fused silica and the aluminum coating
confirmed the high repeatability of the reflection-based measurement and phase
accuracy, conforming to 3°–5° or less. Similarly to the phase-delay data obtained by
the frequency-domain and the cross-correlation measurements described above, the
reflection spectrums of wavelength phase dispersion of femtosecond laser cavities
give likely statistics averaged by all layers, elements, and substrates involved, and by
the spectral resolution of the spectrometers used. To prevent contacts between the
coatings and silica surfaces, the spacer can have a drilled hole having cross section
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larger than the beam size. Such a measure and possibly higher spectral resolution will
separate individual phase spectrums. The true normal incidence of the reflection
phase studies should also provide access to the longer cavities of actual lasers.
Likewise, high sensitivity of a spectrophotometric color measurement at normal
incidence in transmission enabled a refractive index study of uncoated wafers by
detecting interference fringes via an FTIR spectrometer [8.53].

8.5.4 Colorimetric Approach to Phase Recognition

As seen in Part I, quite sensitive optical measurements can be accomplished when
analyzing color coordinates and detecting spectral distributions of phase retardance
(see Sects. 2.3 and 3.3). A combination of the approaches can also be used for phase
evaluation during birefringence studies [8.28]. If a beam of polarized light is
transmitted via a birefringent plate positioned in between a polarizer and an ana-
lyzer, whose optical axes are crossed, while the plate optical axis is oriented at
±45° to the polarizer and analyzer axes (Fig. 3.15, Eq. (3.151)), transmittance T⊥

of the beam is a function of the optical phase difference d:

T? ¼ Is;?ðe; o; kÞ=I0 ¼ sin2ðdðe; o; kÞÞ=2 ¼ sin2ð2p‘ðe; o; kÞ=kÞ=2
¼ sin2ðp‘ðe; o; kÞ=kÞ; ð8:115Þ

where d ¼ 2p=kð Þ‘ is the phase difference for path difference ‘ via ordinary and
extraordinary axes o and e. Since tristimulus values for the radiation intensity at a
given point with assigned color coordinates (o, e) can be expressed according to
Eq. (2.101) for incident flux U0(o, e, k), reference stimuli X, Y, Z for normalized
tristimulus values �x kð Þ; �y kð Þ; �z kð Þ with monochromatic inputs 0	 ki 	1 are:

X o; eð Þ ¼ k
Z
k

U0 o; e; kð Þ � T? o; e; kð Þ � �x kð Þ dk;

Y o; eð Þ ¼ k
Z
k

U0 o; e; kð Þ � T? o; e; kð Þ � �y kð Þ dk;

Z o; eð Þ ¼ k
Z
k

U0 o; e; kð Þ � T? o; e; kð Þ � �z kð Þ dk; ð8:116Þ

while tristimulus coordinates x(o, e) and y(o, e) of radiation at the point (o, e) are
(z ¼ 1 – x – y):

x o; eð Þ ¼ X o; eð Þ= X o; eð Þþ Y o; eð Þþ Z o; eð Þð Þ;
y o; eð Þ ¼ Y o; eð Þ= X o; eð Þþ Y o; eð Þþ Z o; eð Þð Þ: ð8:117Þ
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The challenge in determining the color coordinates is in figuring out the optical
path-length dependence on wavelength: ‘ ¼ ‘0 þ ‘D o; e; kð Þ, where ‘0 and ‘D are
the constant initial and the gained path difference, with the later being dependent the
changes of color coordinates (o, e) and of wavelength k. In many cases path
difference ‘D may be represented as a quadratic function of wavelength k:
‘D o; e; kð Þ ¼ A o; eð ÞþB o; eð ÞkþC o; eð Þk2; with coefficients A, B, and C
depending on color coordinates. For small changes in the gained path difference
‘D 
 ‘0, relation (8.117) approximates to [8.28]:

sin2 p‘=kð Þ ¼ sin2 p ‘0 þ ‘Dð Þ=kð Þ �
‘D
‘0

sin2 p‘0=kð Þþ p‘D=kð Þ sin 2p‘0=kð Þ

þ p‘D=kð Þ2cos 2p‘0=kð Þ ¼ sin2 p‘0=kð Þ
þ p A=kþBþCkð Þ=kð Þ sin 2p‘0=kð Þ
þ p2 A=kþBþCkð Þ2cos 2p‘0=kð Þ ¼ T o; e; kð Þ: ð8:118Þ

To prevent dealing with nonlinear equations, when the quadratic term in the optical
path-length dependence onwavelength is disregarded by approximating transmission T
as a linear function: T o; e; kð Þ ffi sin2 p‘0=kð Þþ p A=kþBþCkð Þ=kð Þ sin 2p‘0=kð Þ,
the tristimulus values become:

X o; eð Þ ¼ k
Z
k

U0 o; ekð Þ

� sin2 p‘0=kð Þþ p A=kþBþCkð Þ=kð Þ sin 2p‘0=kð Þ� � � �x kð Þdk;
Y o; eð Þ ¼ k

Z
k

U0 o; ekð Þ

� sin2 p‘0=kð Þþ p A=kþBþCkð Þ=kð Þ sin 2p‘0=kð Þ� � � �y kð Þdk;
Z o; eð Þ ¼ k

Z
k

U0 o; ekð Þ

� sin2 p‘0=kð Þþ p A=kþBþCkð Þ=kð Þ sin 2p‘0=kð Þ� � � �z kð Þdk: ð8:119Þ

If the initial light path ‘0 and the spectral distribution U0(o, e, k) are known, a
solution of Eq. (8.119) with unknown path-difference coefficients A(o, e), B(o, e),
and C(o, e) can be sought as a matrix: Ha = b, of three equations, each with three
unknowns, in the form [8.28]:

H ¼
X1 X2 X3

Y1 Y2 Y3

Z1 Z2 Z3

2
4

3
5; a ¼

A
B
C

0
@

1
A; b ¼

X � X0

Y � Y0

Z � Z0

0
@

1
A: ð8:120Þ

All X, Y, and Z elements of matrices (8.120) can be determined similarly to only X
functions:
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X0 ¼ k
Z
k

U0 kð Þ � sin2 p‘0=kð Þ � �x kð Þdk;

X1 ¼ k
Z
k

U0 kð Þ � sin 2p‘0=kð Þð Þ=k � �x kð Þdk;

X2 ¼ k
Z
k

U0 kð Þ � sin 2p‘0=kð Þ � �x kð Þdk;

X3 ¼ k
Z
k

U0 kð Þ � sin2 2p‘0=kð Þ � k � �x kð Þdk; ð8:121Þ

with a solution sought via inverse matrix at a pre-set initial optical path length ‘0
[8.28] with a solution as a linear function of a pre-set optical path length being
sought via inverse matrix H−1: a = H−1b, for constants X0, Y0, and Z0 (a full
solution for the unaltered quadratic function via Eq. (8.118) could also be found
analytically and more likely solved numerically [8.28]).

8.5.5 Spatial-Spectral Interferometry

The previously reviewed phase- and dispersion-measurement techniques highlighted
the advantages of using reference radiation for verification of the phase status of light
pulses under test (see Figs. 8.31 and 8.34). From a general standpoint, one can consider
applying a reference-light pulse of sufficient energy, whose amplitude and phase
parameters are known and to which a measured pulse is referred, for any
linear-measurement method, where the frequency components of the reference and
measured pulse must overlap for stationary interference to occur [8.48]. In
time-stationary linear measurement, time-integrated detection is used, and the system’s
response is linearly proportional to the power of the sensing light field (see Eq. (1.10)).
In linear interferometry, such as Fourier-transform interferometry, the output is a
function of the time delay s between interferometer arms, and even the time-integrating
detector is sensitive to the power spectrum of the sum of interfering electromagnetic
fields, including the cross-correlated terms of two fields E0*(x)E(x), one of which: E
(x), is unknown and the other: E0(x), is the reference one. In this case, as in homodyne
and heterodyne detection (see Chaps. 9, 12), an unknown weak pulse can be detected
with enhanced sensitivity if it is referenced to a high-power (energy) reference pulse.

A generalized schematic of linear spectral interferometry recording the phase
difference uðxÞ of signal E(x) versus reference E0(x) in the total frequency domain
Rx defined by an extra spectrometer [8.48] is shown in Fig. 8.42. Reference and
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Fig. 8.42 Generalized
spectral interferometry
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affected-by-experiment pulses interfere, causing corresponding spectral fringes to
be recorded simultaneously by a multichannel detector, such as a CCD array (see
Fig. 8.32). One advantage of that system versus the time-domain scanning inter-
ferometer in Fig. 8.30 is that small fluctuations of the path-length difference affect
all frequencies and measured phase Du, thus reducing the fringe pattern’s contrast,
though effectively measuring only phase differences for maxima of interference at
discrete frequencies for Du ¼ 2p. To measure any pulse delay smaller than 2p and
to improve spectral resolution as a result, an extra time delay s is introduced for a
measured pulse versus the reference one, effectively adding xs linear phase to the
reference signal and yielding spectral phase difference: Du ¼ u(x) − u0(x) − xs
[8.46]. Since both reference and measured pulses are derived from the same source
as in Fig. 8.42, any spectral phase difference between the pulses should be attrib-
uted to the phase dispersion being studied.

To obtain the phase as a continuous function of frequency for every pulse
measured, spectrally and spatially resolved interferometry can be used as a
two-dimensional technique by detecting both states of radiation polarization or by
separating the spectral components of radiation in space either to simultaneously
determine cosine plus sine functions of the phase and to spectrally unwrap the cosine
term, removing its sign ambiguity, or invoke the sine term instead [8.46–8.51].
Figure 8.43 illustrates upgrading the concept shown in Fig. 8.42 by adding phase
sensitivity to each pulse measurement using polarization multiplexing [8.48].
Embedding crossed polarizers LP into the interferometer’s arms makes the polar-
ization of the reference field to be in quadrature with the measured field, allowing sine
and cosine quadratures to be registered at the same time. Linearly polarized light of
reference field E0(x) is circularly polarized by quarter-wave plate k/4, allowing two
perpendicular polarization components to be analyzed independently via Wollaston
prism WP, both being spectrally resolved into separate detector-array tracks of the
two-dimensional CCD.

An example of a spatially resolved spectral interference measurement system
[8.49] is shown in Fig. 8.44. Two-dimensional spatial and spectral interference
occurs between white-light reference and signal fields interacting at angle 2H to
each other, and the fringes that occur produce a sinusoidal pattern in one direction,
being shifted in the orthogonal direction by the spectral phase difference between
the two spectral components of the reference and signal fields at 2p fringe spacing.
Interfering frequency components are angularly dispersed by the prism and are
recombined at the focal plane of the cylindrical lens to be registered by the
two-dimensional CCD array. For a stationary spectral distortion of a test object, the
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difference between reference and test fields should remain constant, with delay s
functioning as the carrier frequency for the spectral encoding. The system in
Fig. 8.44 involves uneven propagation of white light via a 50:50 beam splitter made
as one broadband coating layer on BK7 substrate, with three substrate passes for the
signal and one for the reference beam, hence requiring one extra calibration mea-
surement compensating for the material dispersion. To obtain spectral phase dif-
ferences via measured spatial distributions, power spectrums of reference and signal
fields were subtracted from interference signals to account for nonuniformity of the
white source, with inverse Fourier transform to the time domain to filter negative
and zero-time terms, Fourier transforming the results back to the frequency domain,
to be multiplied by a linear phase exponent factor of delay s [8.49].

The spectrally and spatially resolved interferometer depicted in Fig. 8.45 [8.51]
measures the two-dimensional fringe pattern for a seeding reference field and a test
field leaking out of a high-finesse femtosecond laser enhancement cavity.
Measuring the two-dimensional pattern in combination with individual spectrums
of the interferometer arms is sufficient to identify the complex wave function of the

white
light

mirror

2D CCD

object
beam 

splitter

mirror

corner 
reflector

prism cylindrical lens

variable delay

2

fiber

Θ

Fig. 8.44 Spatially-resolved spectral interferometry

delay 

LM

locking loop

seeding laser PZT

imaging spectrometer

vacuum 

mode matching telescope 

length adjustment

diagnostics
BS

ϕ

Fig. 8.45 Resonant dispersion measurements via spatial-spectral interferometer

466 8 Measurements in Passive Resonators



intracavity field related to the seeding one. The enhanced cavity under study is an
eight-mirror ring resonator, whose round-trip time is tuned to the inverse of the
seeding laser repetition rate. The cavity is set in a vacuum chamber to minimize
losses and group-delay dispersion. The seeding laser resonator is locked to the
cavity via a PZT-mounted mirror, with transverse-mode matching by the telescope.
The interferometer’s reference arm is formed by 4% surface reflectance of beam
splitter BS via the delay line. The beam passing the splitter enters the cavity and a
part of it leaks via mirror LM with 1.65-ppm transmittance, forming the test arm of
the interferometer. The two beams are recombined in the imaging spectrometer at
separation angle u. The reference arm delay line serves to adjust the time delay s
between interferometer arms, being calibrated by taking the test cavity off reso-
nance. When the cavity reaches the steady state, single-pulse acquisition is suffi-
cient for determination of the cavity’s response function. Measurements of
single-round-trip group-delay dispersion of the tested resonant cavity were made
with 1-fs2 reproducibility [8.51].

Similar sensitivity to group-delay dispersion could be reached via a
one-dimensional linear measurement technique in a passive high-finesse cavity,
referenced by an equidistant frequency comb [8.33], enabling detection of the
spectrally resolved cavity dispersion simultaneously with measurements of the cavity
finesse and losses [8.52]. Each of two systems in Fig. 8.46 enabled a 1-2 fs2 accuracy
to group-delay dispersion in the respective passive cavity. Chromatic dispersion
testing of a birefringent hollow-core photonic crystal fiber deploying Fourier-
transform spectral interferometry (see Chap. 12) in Mach-Zehnder configuration at
0.2-nm resolution spectrometer revealed rather small dependencies of differential
group delay and polarization mode dispersion measured on the placement and the
length of a commercial up to 0.97-m long fiber studied [8.58].
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Chapter 9
Determination of Absorption Losses

9.1 Laser Calorimetry

As much as scattering of radiation propagating via a medium under study allows
one to evaluate internal inclusions and optical density fluctuations in such matter,
the internal absorption of that matter gives a sense of radiant transformation into
other forms of energy and essentially distinguishes any obscure regions absorbing
radiation in the otherwise transparent medium. Absorbed light can be directly
measured via the transformation of its radiant energy into heat when detecting a
respective increase of the temperature of the irradiated substrate. The attenuation of
radiation by the bulk of an irradiated substance is resolved by the Bouguer–
Lambert–Beer law (see Eqs. (1.71)–(1.79)). For radiation transmission through a
highly transparent substance, the exponential function of attenuation for flux U0 of
radiation incident onto that substance of refractive index n can be substituted by the
first two factoring terms as:

UY ¼ Uint � Us ¼ YU ¼ e�a‘U ffi
a‘!0

a‘U; ð9:1Þ

where UY is the radiant flux absorbed in a sample of length ‘; Uint is the flux entered
the sample’s bulk via its front surface and transmitted into the section from which
the temperature rise is determined: Uint ¼ U0

�
4n= nþ 1ð Þ2� (see Eqs. (1.84)); Y is

the absorption factor, a is the linear bulk absorption coefficient, and Us is the flux
transmitted by the sample bulk of length ‘.

The temperature rise DT identified by an increase of the internal energy of a
relatively thin and long sample in its isothermal condition creates a homogeneous
flow of heat to its surroundings. Thermal flux U0

Y can be defined via the
outer-surface heat transfer coefficient h for external area AR:
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U0
Y ¼ hARDT: ð9:2Þ

Since at thermal equilibrium: U0
Y ¼ UY, the sample’s linear absorption coefficient

a ¼ Y=‘ is:

a ¼ hARDT0= ‘U0ð Þ: ð9:3Þ

A steady-state rise DT0 of the sample’s temperature resolved by either a differential
thermocouple or a thermistor attached to its lateral surface defines the sample’s
absorptance or its absorption loss a.

At the instant termination of irradiation, the sample’s temperature T starts
declining as [9.1, 9.2]:

hARDT ¼ � @=@Tð Þ CVDTð Þ: ð9:4Þ

The resultant decrease of the measured sample’s surface temperature versus time t is
given by:

DT ¼ T0 exp � hAR= CVð Þ½ �tf g; ð9:5Þ

where V and C are the volume and the heat capacity of the sample and
hAR= CVð Þ½ ��1 ¼ t0 is the time constant of either the heating or the cooling curve for
e times decline of temperature T of the irradiated sample. Equations (9.3) and (9.5)
for any infinitely long, thin, and low-absorbing sample of area As of its entire
external surface allow one to distinguish the sample’s linear absorption coefficient a:

a ¼ CVDT0= t0‘U0ð Þ ¼ CAsDT0= t0U0ð Þ: ð9:6Þ

The linear absorption coefficient a can be analogously determined by an adia-
batic process, increasing the temperature of a sample at thermal equilibrium with its
surroundings inside a totally absorbing enclosure. If the sample is formed as a long
cylinder or a parallelepiped for the substance studied of negligible thermal con-
ductivity along its optical axis, at the beginning of irradiation of the sample the
temperature rise in the middle of the sample’s generatrix becomes a linear function
of time [9.3]:

@T=@t ¼ U‘= CVð Þ ¼ U
�

Aqpcp
� �

; ð9:7Þ

where qp and cp are the density and the specific heat of the substance. When the
temperature is substantially raised over that of the surroundings, the generated heat
overflows into the sample background. As a result, the differential equation (9.7) for
the total process of irradiation and heat transfer gives:
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T ¼ UY=Bþ T0ð Þ 1� exp �Bt
�

Aqpcp
� �� �� �

; ð9:8Þ

where B is the velocity of the radiative heat transfer and T0 is the temperature of the
initial equilibrium.

As it follows from Eq. (9.8), to determine the linear absorption coefficient a, the
radiant flux entering the absorbing region and all parameters of heat transfer must
be known. The heat transfer parameters could be velocity B and time constant t0,
both identified in the vicinities of the linear rise or the same linear decline of
temperature. Sample properties qp and cp also have to be known. Ordinarily, two
similar samples, one to be measured and the other acting as a reference, are placed
in a passive thermostat to achieve thermal equilibrium of the process and to exclude
any convective heat transfer. Since the temperature change DT for any
low-absorbing material cannot be high, the entire calorimeter should be in a rela-
tively high vacuum or filled with a pure gas of known thermal conductivity. Two
factors not yet considered could notably distort the reading of a heat detector, as a
differential thermocouple, and the linear dependence of temperature on time. The
first one is the light scattered by the bulk and surfaces of the irradiated sample that
could directly expose the thermocouple. The second factor is the likely nonzero
thermal conductivity of the sample, causing unpredictable effects on readings for
the heat absorbed by sample surfaces.

Some time partition of bulk and surface actions is a natural measure to distin-
guish between local and distributed absorptance and scattering for a light beam
incident on a sample made as a long rod. If the radius r of such a sample with the
thermocouple in the center of its periphery is much shorter than half of its length
‘=2, the time instants of the heat transfer from the sample bulk and its front and
back surfaces to the detector should be well separated. Besides, light scattered by
sample surfaces directly exposes the detector much earlier than the heat transferred
by the sample. That fact allows three terms of the heat-transfer equation [9.4] to be
resolved as follows:

T � T0 ¼ U0 j 2rð Þþ mcp
� ��1

a‘ t � r2qpcp
8kT

� �
þ 2Y t � r2qpcp

4kT
� ‘2

4

qpcp
6kT

� �	 
� �
;

ð9:9Þ

whereU0 is the incident flux, identified via the transmitted by the entire rod fluxUs;R,
measured accumulating all multiple reflections: Us;R ¼ U02n= n2 þ 1ð Þ; j is the
uniformity factor, depending on homogeneity of the detector’s sensitivity and the
sample’s indicatrix of scattering; r and a are the scattering and the absorptance
of sample surfaces; and m, n, and kT are the mass, the refractive index, and the
thermal diffusion length of the sample at its thermal conductivity KT ¼ kTqpcp.
When the distinguishing time interval t2 ¼ r2qpcp=ð8kTÞ is shorter than time

t3 ¼ ‘=2ð Þ2qpcp= 6kTð Þ and when the magnitude of r is lower than the magnitudes of
2Y and a‘, there are three separated in time temperature-transformation

9.1 Laser Calorimetry 471



processes. In the first short time interval t1, the initial rise of the temperature is
influenced only by the direct light scattering. For the second term t2, the linear
increase: DT ¼ T(t)� T0, discerning only the sample’s bulk absorption appears as
[9.5]:

T � T0 ¼ U at= Aqpcp
� �

at t1\ t\ t2: ð9:10Þ

Finally, the linear phase transforms to the joint time action t3 of bulk and surface
absorption:

T � T0 ¼ U
Vqpcp

a‘þ 2Yð Þ t � 2Y
a‘þ 2Y

� ‘
2

4
� qpcp
6kT

� �
at t[ t2: ð9:11Þ

As is seen from all equations, any separation of time intervals t1 and t2 is identified
not only by the sample geometry and its thermal diffusivity kT=qpcp, but also by the
ratio of bulk and surface losses a‘= 2Yð Þ (see Fig. 9.1). If the magnitudes of a‘ and
2Y are close enough, two time domains in relations (9.10) and (9.11) are practically
indistinguishable from each other, and the lower is the loss to be sensed, the higher
should be the temperature resolution of measurements, approaching 10−2–10−3 K.
If single-surface loss is considerably larger than the bulk loss, the linear temperature
interval (see Fig. 9.2) is drastically decreased and may even not be resolved. In a
corresponding experiment [9.4] at the characteristic time of about 50 s, which
definitively separated two regions of bulk and bulk-plus-surface absorption loss, the
observed ratio of the surface to bulk absorption was 1.1. The exact solution for the
three-dimensional heat-transfer equation without disregarding heat losses with
the temperature rise made ratio 2Y/a nearly 20% higher, approaching 1.3 [9.4].

Three-slope-type behavior can be evenly observed for samples with low losses
and low thermal diffusivity. For greater-absorbing silicate glasses or crystals such as
ZnSe of higher thermal diffusivity, the process is less clear and not well fitted to
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Fig. 9.1 Calculated thermal rise curves for a long KCl rod with bulk to surface absorptance ratios
of: 1:1 – 1; 1:0 – 2; 1:5 – 3; and 1:10 – 4
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difference or sum-slope equations. In such cases, better time resolution of optical
losses may be achieved by local-temperature control at various points of the sample
[9.5]. Since the center of a lateral sample surface and the transverse sides are the
opposite areas of the highest sensitivity to the bulk and surface loss, at these points
each characteristic time constant of the separate slopes becomes notably decreased
or increased.

For accurate separate evaluation of bulk and surface losses one must know the
heat-transfer equation describing the status of a test sample inside an actual mea-
surement system [9.6, 9.7]:

kTr2Tðr; tÞþ gðr; tÞ ¼ qpcpoTðr; tÞ=@t: ð9:12Þ

Its solution is obtained by setting the initial: T ðr; tÞ ¼ T0, and limiting:
kToTðr; tÞ=dnþ qrT ¼ 0, conditions. Here Tðr; tÞ is the temperature of an arbi-
trary point of the sample at coordinate r and at time instant t; gðr; tÞ is the density of
all heat sources inside the sample under study; q is the convective heat transfer
coefficient, considered for simplicity as being independent of time or coordinate;
and n is the vector of the outer normal in the direction r. Spatial variations of
absorptance can be obtained by solving the equation for different temperature
distributions across the sample and along its axis.

Apparent difficulties in obtaining a full-fledged solution can be simplified by
reducing the three-dimensional equation to a one-dimensional one. The simplest
realization having the ability to resolve absorption losses along the long sample axis
z can be achieved by establishing a steady-state temperature profile in a uniform
sample after the initial transitions have been completed. Three thermocouples
placed on a sample’s lateral surface near its center and at two end surfaces deter-
mine the primary heat profile (Fig. 9.3). The uniform temperature distribution Tc
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Fig. 9.2 Illustration of experimental temperature rise for KCL sample: size – 1.3 � 1.3 � 7.73 cm3;
weight – 26.43 g; laser power – 13.5 W [9.4]

Ts1(t) Tc(t) Ts2(t)

l

Φ0

z=1
0.5

z=0

Φ0 Φτ
S1 S2

Fig. 9.3 Bulk and surface
heat sources

9.1 Laser Calorimetry 473



conditioned by a generally uniform bulk absorption is broken by the temperature
increments caused by surface heat fluxes Q1 and Q2: DTl1 ¼ Tl1 � Tc;
DTl2 ¼ Tl2 � Tc. When there is no distortion by scattered light of any heating curve
obtained, the lateral heat flow and its transition in a well-isolated calorimeter can be
disregarded or assumed to be uniform, and the one-dimensional solution for a
sufficiently long sample pole, such as of length-to-width ratio 5 or greater, gives
[9.8]:

T1ðzÞ ¼ Tc þ Qs2‘

2kTA
1� 2zð Þþ U0a‘2

2kTA
0:25� z2
� �

; at 0\ z\ 0:5;

T1 zð Þ ¼ Tc þ Qs1‘

2kTA
1� 2zð Þþ U0a‘2

2kTA
0:25� z� 1ð Þ2
h i

; at 0:5\ z\ 1:

ð9:13Þ

For the ideal case in a vacuum of zero heat losses to the surroundings, two
measurements of the temperature differences (DTl1;DTl2) are adequate to determine
both surface heat sources as:

Qs1 ¼ 3DTl1 þDTl2ð Þ kTA=‘ð Þ; Qs2 ¼ DTl1 þ 3DTl2ð Þ kTA=‘ð Þ: ð9:14Þ

At the steady-state condition, when impermanent terms of the heat equation are
negligible, the temperature distribution along a sample pole should rise equivalently
according to the following equation:

dT
dt

¼ 1
Vqpcp

Qs1 þQs2 þ a‘Us
1þ n2

2n

� �
; ð9:15Þ

where n is the relative refractive index of the sample. The static parabolic tem-
perature profile is:

Tpar zð Þ ¼ Qs1 þQs2ð Þ‘
2kTA

z� q
1þ q

� �2

� q2 � qþ 1

3 1þ qð Þ2
" #

; ð9:16Þ

where q ¼ Qs2=Qs1 is the ratio of heat fluxes at front and back surfaces Qs1 and Qs2.
If the sample’s properties vary along its length as aðzÞ ¼ �aþ ~aðzÞ, the nonparabolic
term in the temperature-distribution profile becomes [9.8]:

~a zð Þ ¼ �kTA�Us

��
2n
�
1þ n2ð Þ��o2Tpar

�
oz2
�
:

The heat-transfer equations examined assume simultaneous measurements of the
temperature changes along with radiant fluxes incident on and transmitted by a test
sample. In studies of low bulk absorption losses, both end surfaces of the sample
should be left uncoated since additional layers could affect properties of the heat
distribution. To identify the internal flux of radiation Ua existing inside the test
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sample for which the bulk absorption loss is studied, multiple reflections on its
light-reflecting surfaces must be resolved for both adverse directions (see Fig. 9.3).
The bidirectional internal flux UR inside the plane-parallel sample with an equal
surface reflectance q is given by:

UR ¼ U0 1� q� Yð Þ 1þ a‘qþ a‘qð Þ2 þ � � � þ a‘qð Þi
 �

; ð9:17Þ

where i is the tending-to-infinity number of reflections. Since interference in that
case may only cause a spatial redistribution of the intensity profile, the bidirectional
integrated flux �U in the sample is:

�UR ¼ U0 1� q� Yð Þ 1� a‘qð Þi� �
1� a‘q

¼
i!1

U0 1� q� Yð Þ
1� a‘q

¼
a;a!0

U0: ð9:18Þ

Similarly to relation (2.10) for the total flux inside a negligibly low absorbing
translucent sphere, Eq. (9.18) does not contradict the law of conservation of energy.
The equality underscores the sum of the averaged flux of all incident radiation
redistributed inside such a nonabsorbing medium.

When measuring the flux Us transmitted by the test sample: Us ¼
U0 1� qð Þ= 1þ qð Þ (see Eq. (1.106)), the total radiant flow consolidated within the
bulk of the sample is:

�UY ¼ U0 ¼ Us 1þ qð Þ= 1� qð Þ ¼ Us 1þ n2
� �

= 2nð Þ: ð9:19Þ

The flux irradiating the first surface remains: U1 ¼ U0, but the flux localized via the
output surface is:

�U2 ¼ U0 1� qð ÞþU0 1� qð Þq2 þ � � � ¼ U0= 1þ qð Þ
¼ U0=2ð Þ nþ 1ð Þ2= n2 þ 1

� � ¼ Us 1þ nð Þ2= 4nð Þ: ð9:20Þ

As a result, considering only a nonresonant length of the sample and not counting
the interference redistribution of radiant intensity, the ratio of uneven energies of
light at opposite sample ends is [9.2]:

Qs1=Qs2 ¼ 2 1þ n2
� ��

1þ nð Þ2: ð9:21Þ

Interference of coherent waves inside the sample of a resonant length makes the
redistribution even sharper. Similarly to relation (3.122), the internal radiant flux for
equal surface reflectances is:

UR ¼ U0
1� qð Þ

1þ q2 � 2q cos d
¼ U0

1� qð Þ
1� qð Þ2 þ 4q sin2 d=2ð Þ : ð9:22Þ
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The maximum and minimum magnitudes related to the incident and transmitted
fluxes are:

UY;max ¼ U0
1

1� q
¼ U0

1þ nð Þ2
4n

¼ Us
1þ n2ð Þ 1þ nð Þ2

8n2
;

UY;min ¼ U0
1� q

1þ qð Þ2 ¼ U0
2n

1þ n2
¼ Us: ð9:23Þ

For typical refractive index n ¼ 1:5, the relationship between effective thermal
sources, created by uniform bulk absorptance for nonresonant waves at two
opposite sample surfaces, becomes: U1 ¼ U0 ¼ Us 6:5=6;U2 ¼ Us 6:25=6. In the
case when reflected waves are resonant, the maximum ratio for the glass sample
having two identical surfaces is: UY;max=Us ffi 9=8. Therefore, a static temperature
profile is always asymmetric around the center of an irradiated homogeneous
sample and all the techniques analyzed likely require certain curve fitting to the
entire transient process, predicted to be at the center of the sample rod, as well as
verification of the temperature distribution along its axis.

An advanced system for calorimetric measurements of low absorption losses is
depicted in Fig. 9.4. Three samples of the substance under test are placed in vac-
uum calorimeter 2 together [9.7]. The central sample is exposed by source 1, the
second serves as a reference sample, and the third has a certified wire inside for
calibration of all thermocouples: measurement couple 3 and reference couple 4.
Using calorimeter 2 adds some complexity but allows one to reduce heat losses,
while anticipating the presence of the surface absorption films. The time constants
for the scattering and for the bulk and surface-bulk absorption can be changed from
minutes to hours by the keeping camera observing the samples under a vacuum, or
by injecting a gas, for example, pure helium. Such an interchange helps identify the
best fit for the results obtained, making essential corrections for the thermal con-
stants, used for computations of low absorption losses being measured. Utilizing a
100-mW laser at k ¼ 647 nm with the temperature in the vacuum calorimeter
stabilized near ±5 mK, the noise-level sensitivity to absorption losses was

.
1

2 3

4
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.

Fig. 9.4 Absorption-measurement setting: 1 – laser; 2 – calorimeter; 3,4 – thermocouples;
5 – photodetector
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consistently maintained within ±2 dB/km. The measured absorption coefficients in
two similar fused-quartz and synthetic-quartz rods were near 55 and 16 dB/km with
approximately 10% error [9.7].

To achieve higher sensitivity to absorption losses, the sample under study can be
positioned inside a laser cavity with a high Q-factor, where the internally circulating
power could exceed the external one by a few orders of magnitude. If a sample with
uncoated plane-parallel surfaces is inserted into such an active laser resonator, the
correction factor for the internally absorbed power is still defined by Eq. (9.19), but
is now related to the power that circulates inside the resonator. The effective number
of reflections inside the entire laser cavitym ¼ 1=½1� 1� q� Yð Þ2q12a‘q2� cannot
be very high even for a close-to-unity product q1q2 of resonator mirror reflectances
and low absorption losses Y and 2a‘ owing to the not eliminated surface reflectivity
q ≅ 0.04 of an uncoated glass or silica sample. Nevertheless, in one of the first
calorimetric low-loss measurement experiments conducted inside a Nd:YAG laser
cavity at k ¼ 1:06 lm, the absorption-loss sensitivity was estimated as reaching
±0.5 dB/km [9.2]. The lowest linear absorption coefficient for a Suprasil W1 fused
silica sample, measured via the cooling curve (Eq. (9.6)) inside the laser resonator at
P ¼ 115 W, was nearly 2.3 ± 0.5 dB/km (see Fig. 9.5).

Another way to increase the power density for bulk exposure is to focus a laser
beam into a small region of the sample under test. The focusing decreases the
negative effects of absorption losses and of the scattering for the sample surfaces
situated in unfocused radiation, enabling the measurements to be performed in a
small region of the sample bulk and thus the absorption coefficient to be sensed
locally. When evaluating the initial thermal rise DT(t), the focusing reduces the
requirements to long-term stability of the calorimeter. For the short-term stability on
the level of ±0.001 K/min, the sensitivity to a low linear bulk absorption coefficient
may reach 10−5–10−6 cm−1 [9.7–9.9]. When the rising temperature slope illustrated
in Fig. 9.6 was measured, the mean absorption coefficient in NaCl samples was
resolved as being about 7�10�6 cm�1 [9.9].
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Owing to certain difficulty in partitioning the surface and bulk losses when
measuring absorption coefficients of low-loss materials, one may attempt to deci-
sively isolate the contrary heat fluxes of the surfaces and of the bulk of the sample
[9.10]. However, efforts such as thermal cooling of opposite sample surfaces,
intended to eliminate both surface thermal sources Qs1 and Qs2 (see Eq. (9.13)),
could cause unintended distortion of the measured temperature by creating a high
thermal flow along the sample axis. Using a metal foil or blackening the sample’s
lateral surface prevents the extra influence of scattering, but increases the contrast of
the measured and computed temperatures and complicates the measurement
process.

A combination of adiabatic and isothermal techniques can also be utilized to
provide the essential comparison between loss measurements in a relatively short
glass preform and in a considerably longer fiber being drawn from it [9.11]. The
adiabatic technique allows one to separate the bulk absorption from the surface
absorption by maintaining a high ratio between the sample length and its diameter:
usually c � 10:1. Since that ratio for any fiber is commonly much higher, such as
much more than 100:1, the heating process along this fiber axis becomes strongly
nonlinear, and the adiabatic technique will not be applicable. Indeed, the long
length of the fiber in the isothermal technique helps to isolate bulk and surface
losses. In confirming experiments, a preform of a silver halide crystal and fiber a
drawn from it were placed in a calorimeter as one shown in Fig. 9.4. Every sample
was irradiated by a continuous-wave (cw) CO2 laser beam focused into its central
point. The magnitude of the lowest detected bulk absorption coefficient for the
preform was affected by a given molar composition, reaching nearly
1�10�4 cm�1 at k ¼ 10:6 lm. The impact of the surface absorption was highly
influenced by the surface quality of a given sample. After chemical etching of
appropriately polished surfaces, the magnitude of the bulk absorptance for the same
preform decreased to about 5�10�5 cm�1. The values of the absorption coefficients
of the drawn fibers tested were significantly higher, owing to likely crystal lattice
defects and imperfections during the fiber extrusion process used [9.11].

A low-loss fiber designed for mid-IR radiation can be used by itself as a transfer
medium for noncontact calorimetry [9.18], as owing to Kirchhoff’s law at thermal
equilibrium the absorptance of a sample being measured equals its emissivity. One
difficulty is that the small temperature increase due to low absorptance results in
efficient emittance in the 8–12-lm wavelength range. In the conforming experi-
ments [9.18], one polished end face of a silver halide fiber of 0.45-mm diameter at
55° effective collection angle was placed 0.5 mm or less from a quartz rod, which
also had a calibrated thermocouple attached to its surface, all enclosed in a
calorimeter. The experimentally detected thermal rise–decay curves obtained via
the fiber and the thermocouple were quite similar with the measured absorption
factor being 4�10�3.
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9.1.1 Local Absorptance

The techniques for local absorptance measurements are virtually similar to those
used for detection of the linear absorption coefficient of a sample bulk. The only
exception consists in the contrasting thermal properties of the massive bulk and any
thin layer under study, as a purely unknown substance. Equations (9.9)–(9.13) are
also applicable to the notion of separation of losses from opposite sample surfaces
and a substrate in between. A schematic layout for space-resolving measurements for
the local absorption loss is shown in Fig. 9.7a. Three thermodetectors are attached to
the lateral surface of a sample – first, near its front surface with the thin film studied
at the middle of the surface, the second, to the center, and the third, to another
surface. When the absorptance of the bulk and two surfaces are not equivalent:
Y1 6¼ Y2 6¼ a‘, each measured temperature profile is different for each thermocouple.

Figure 9.7b exemplifies differentiation of typical time decays [9.12]. During an
initial time frame t, when the laser radiation heating is started and abruptly turned off:
t1 < t < t2 (Eqs. (9.10), (9.11)), the first thermocouple reacts only to the thermal
energy absorbed in the coating and in the front surface of the sample. The second
thermocouple separates the sequential thermal flows, respectively proportional to: a‘,
and then to: Y1 þ a‘þY2. The third thermodetector distinguishes three consecutive
terms: from the coating on the front surface, from the bulk, which in the instance
illustrated is lower than the thermal fluxes from surfaces, and from the back surface.
The temperature changes were measured for a 20 � 20 � 130 mm3 KCl sample, having
on its first surface a quarter-wave thick PbF2 film for test wavelength k ¼ 5:3 lm.
The bulk absorption coefficient determined was 5�10�6 cm�1, the absorptance factor
of the uncoated sample surface was 3�10�3 cm�1, and the absorptance of the coated
surface was 0:9�10�3 cm�1 [9.12].

In contrast, when determining the local absorptance of a thin dielectric film
deposited on a transparent substrate prepared as a large disk with a radius about
8–10 times greater than its thickness, the temperature distribution across that disk is
certainly nonuniform. The reaction of a thermocouple placed on the sample’s lateral
surface is proportional to the distance between the points of irradiation and mea-
surement. The nonidentity factor of the two absorptances: j ¼ Ytrue=Ycalk, as a ratio
of the true and the actually measured absorption factors, depends on the temperature
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Fig. 9.7 Longitudinal profile
of sample-temperature change
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conductivity of the substrate and of the surroundings, and on the distribution of
radiation energy in a cross section of the incident beam. When measuring a sub-
stance having low temperature conductivity, while withstanding an intensive heat
interchange with the surroundings, the true-to-measured difference can be quite
significant [9.13].

To reduce a potential nonidentity of the measured and true values of absorp-
tance, an increase of temperature conductivity between distant points of irradiation
and measurement may be required. A thin metal film deposited onto the coating to
be analyzed around its irradiation zone and used as a thermistor can serve the
purpose. A temperature gradient caused by absorption in the coating exposes a
high-conducting film and changes its conductivity R to DR ¼ DT �KT �R, where
KT is the temperature factor for the resistance. If the electric current is measured via
the resistor, making it concurrently a thermometer, the heat-flow equation for the
sample at thermal equilibrium is [9.14]:

C oT=otð ÞþGDT ¼ U0Yþ oP=otð ÞDT : ð9:24Þ

Here G is the effective thermal conductance of dielectric coating–metal film;
P ¼ J2R ¼ G(Te − T0) is the power dissipated by the electric current which heated
the film up from initial temperature T0 to final temperature Te, and Y is the local
absorptance of the sample to be determined. Taking into account the transition of
the thermal conductance: Ge ¼ G0 � ðoP=otÞ, one can transform Eq. (9.24) to:

DT ¼ U0Y=Geð Þ 1� exp �t�Ge=G0ð Þ½ �: ð9:25Þ

The measured temperature conductivity of the ZnS–ThF4 film system was pre-
determined as the half-period magnitude Ge ¼ C�lnð2=t0:5Þ of the temperature
changes from T0 to T0 þ DT by a known electric current [9.14]. The total ab-
sorptance of both layers studied was considered to be:

Y ¼ 2pn0
�
j1 þ j2

��
n21 � n22
� �

; ð9:26Þ

where n1 − ik1 and n2 − ik2 are the complex refractive indices of respective layers
(see Eqs. (1.86a,b)) and n0 is the refractive index of the substrate. The extinction
coefficient and absorptance in ZnS, measured in a vacuum by a thin gold resistor
assuming a negligible loss in ThF4, were nearly k ¼ 1�10�4 and Y ¼ 13 cm−1.

Applying a similar measurement technique and using a compensating ther-
mometer, one can make extra corrections for temperature fluctuations (Fig. 9.8). An
additional thermometer is deployed similarly to a regular resistance thermometer,
but is placed onto the test substrate without any metal electrode film. An extra
bridge circuit between thermal detectors minimizes temperature drifts and heating
effects of the bias current. The lowest recorded temperature rise of a fused-silica
substrate being measured at 0.001 °C temperature resolution in a 1�10�3-mbar
vacuum was 0.014 °C. That temperature rise corresponds to the absorption coef-
ficient near 0.032 cm−1 [9.15].
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Another way to reduce potential dissimilarity of the true and the measured
temperature is to use a compensation technique isolating a nonuniformly heated
sample from its environment [9.16]. For the isolation the sample in an isolated
camera was placed in a high vacuum. The temperature of the camera was regulated
via negative feedback to changing temperature of the sample substrate. Since the
temperature gradient with these measures was minimal, the influence of temperature
conductivity of the sample and substrate was eliminated without extra correction
factors. At DT � 2 mK detectable temperature difference and 6:7�10�5-Pa
pressure, the technique’s repeatability was about 10−4–10−5 [9.16]. The lowest
value of measured absorptance corresponding to traces of water in the substrate’s
surfaces and bulk reached ð1�4Þ�10�4.

For measurements of absorptance in metals, a uniform temperature distribution
across the irradiated sample is achieved much more quickly owing to the high
thermal conductivity of a metal. Thus, if an electrically calibrated resistor is used as
a matching thermal source inserted into or contacting the sample, calibration of the
calorimeter becomes quite simple (Fig. 9.9). The measurement process consists of
two steps. First, the sample is directly exposed to incident flux U0 and the mea-
surement of absorbed flux Ua by a thermocouple thermometer coupled to the
sample is made. Then, electrical dissipation of the same power: P ¼ Ua, is
accomplished via a calibrated resistor, matching the first thermometer reading. The
ratio of the two readings at a constant temperature: (P/U0)T=const, provides the
factual mirror absorptance [9.17].

Since metal mirrors are opaque, only reflected and scattered, but not transmitted
radiation can be measured simultaneously with the mirror temperature. For a
low-scattering mirror, the scattered fluxUr cannot be easily counted without specific
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scattering measurements. With the assumption of low scattering: Ur ! 0, deter-
mination of the total power U0 incident on the mirror can be made by registering the
reflectedUq and absorbedUa fluxes with the accuracy of omitted scattering factorUr.
When the reflected flux Uq is measured by a blackbody thermodetector of known
absorptance factor ab, the mirror absorptance a to be measured becomes:

a ¼ UY

Ub 1=Ybð ÞþUY
¼ P

UqY�1
b þP

; ð9:27Þ

where the factor 1=Yb relates to the actual absorptivity of the blackbody detector,
being Yb 6¼ 1.0. When any practical heat flow from the irradiated sample into its
surroundings is prevented by using a well-insulated vacuum chamber with near
±10−3 K temperature stability, the prospective sensitivity to the low absorptance of
some comparatively small metal mirror in such a chamber is very similar to the
sensitivity to the absorptance being measured for a linear bulk absorption coefficient
a‘ in a transparent crystal. The factual sensitivity to the local absorptance in the
experiments performed was approximately 1% of the laser power used, with the
minimum change of the detector signal being near 0.4% [9.17].

Finally, when measuring absorptance in tissues, none of calorimetric techniques
may be appropriate; therefore, reflection, rather than transmission, spectroscopy can
be used instead, such as low-coherence interferometry [9.112]. Similarly to the
scanning-mirror interferometry (Chap. 8) and optical coherence tomography sys-
tems (see Sect. 9.2), a combination of the scanning Michelson interferometer with a
supercontinuum light source having 455–680-nm bandwidth was utilized. A tissue
sample and a scanning interferometer mirror were on two motorized stages con-
trolling the penetration depth of sample irradiation: 0–2 mm, in 27-lm steps.
Absorption spectrums were derived from the measured scattering-plus-absorption
ones versus the spectrums of only scattering by polystyrene spheres with
±0.5-mm−1 accuracy [9.122]. Contributions of bulk-absorption and surface-
scattering losses can be resolved calorimetrically by measuring multiple samples of
varying length, presuming scattering losses not to change [9.123].

9.2 Thermal-Lensing, Photothermal, and Photoacoustic
Techniques

The analyzed calorimetric methods for measurements of absorption loss are based
on correlated long-term temperature changes of an irradiated sample under test.
Such methods cannot be equally applied to liquids and gases since their mobility
diminishes the characteristic time intervals of the temperature changes to very short
periods of time. That unstable predicament of liquids and gases also causes the
subsequent appearance of convectional heat fluxes and acoustic waves. To localize
phenomena of short-term energy transitions conditioned by absorption losses
observable within short periods of time, one may apply instantaneous optical
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methods for detection of fast phenomena, which should have much quicker
response times than the thermal techniques.

Any steady-state rise of temperature of a homogeneous object irradiated by radi-
ation which is absorbed should resemble the distribution profile for the intensity of
incident light. That profile modifies the refractive index of the object. As a result,
commensurate changes of refraction can be functionally linked to a linear absorption
coefficient of the substance of which the irradiated object is formed.
The light-distorted refraction can cause multiple effects: angular deflection of an
oblique beam from its propagation direction, phase shift for a beam of radiation
transmitted by the object by a wave normal owing to changes of its path length, and
even light-induced birefringence in the irradiated substrate. These effects may be
sensed by measuring the deflection of light beams and disregarding the subsequent,
but delayed heat transfer. However, in such cases the procedures for measurements of
absorption losses become indirect, since not the absorption coefficient but the alter-
ation of the object’s refraction, created by the absorbed energy and power, is regis-
tered. Consequently, for any quantitative measurements of the absorptance, some
reference substance with a definitively known linear absorption coefficient similar to
the substance under study is required. These secondary thermo-optic effects induced
by radiation can be primarily observed in solids or liquids, but the temperature
coefficient of the refractive index as the coefficient of expansion is higher in liquids
than in solids, and thus thermally induced effects are broadly used for liquid speci-
mens as well as for solid ones [9.19].

9.2.1 Thermal Lensing

If a laser beam with a Gaussian intensity distribution profile: IðrÞ ¼
I0 expð�r2=r20Þ; irradiates a sample of refractive index n0 and unequal-to-zero bulk
linear absorption coefficient a along its length ‘, the dissipation of the thermal
energy absorbed by the sample is (see Sect. 9.1):

Q rð Þdr ¼ 2a‘Uint

pr20
exp � 2r2

r20

� �
2prdr: ð9:28Þ

Here Uint is the flux incident on the sample and r0 is the effective radius of the
amplitude for the irradiating field decreasing e times from its maximum value
across the beam axis. For a liquid sample in a transparent cuvette, the physical path
length of light propagation does not change owing to heating since fluids expand
transversely; hence, the resultant temperature gradient DT for transverse coordinate
r of the sample bulk is [9.21]:

DT ffi const1 �a‘Uint

pkT
const2 � 2r2

r20

� �
; ð9:29Þ

causing near-parabolic distortion of refractive index n as a time function of the
temperature gradient:
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n r; tð Þ ¼ n0 þ @n=@Tð ÞDT r; tð Þ: ð9:30Þ

The density profile formed by incident radiation changes the direction of trans-
mitted light, acting as a divergent lens with focal length F. The optical power F−1 of
the lens at absorbed flux Ua ffi a‘Uint is inversely proportional to the thermal
conductivity kT of the liquid substance and to the effective cross section of the beam
[9.19]:

1=F ¼ Ua on=oTð Þ= pr20kTn0 1þ tc= 2tð Þ½ �� �
; ð9:31Þ

where tc ¼ r20qpcp= 4kTð Þ is the characteristic time interval for the liquid thermal
lens to appear.

At distances z 	 z0 in the far-field zone, the thermal lens converts the radius
r(z) of the effective cross section of the beam and the curvature R of its wave front
by dependencies [2.1]:

r0ðzÞ ¼ r2o;min 1þ z2=z20
� �

; R ¼ z 1þ z20=z
2� �
: ð9:32Þ

Both parameters are defined by the minimal radius r2o;min of the caustic region and

the distance z0 ¼ pr2o;minn=k to the caustic plane at the initial coordinate z ¼ 0. As
experimentally confirmed in [9.20], in the far-field zone a change of the beam
radius r0 ¼ kz= pr0minnð Þ is instantly correlated to its divergence H1=2 ffi
k= pr0minnð Þ and, thus, to the respective redistribution of the sample density:

Dr0=r0 ¼ �DH= 2 1þ tc= 2tð Þ½ �f g ¼ �Ua on=oTð Þ= kkTð Þ 2þ tc=tð Þ½ �: ð9:33Þ

The decrease or increase of the beam’s cross section due to thermal lensing
causes an inversely proportional change of the irradiance created by a divergent
astigmatic laser beam according to Eq. (3.71). At DH 
 p and r0 	 r0min, the
on-axis beam intensity becomes approximately:

I0 t ¼ 0ð Þ=I0 t ¼ 1ð Þ ¼ 1� DHþDH2�2: ð9:34Þ

As a result, the absorption coefficient of the liquid substance under study can be
identified as:

a ¼ � DI0=I0 t ¼ 1ð Þ½ � kkTð Þ= Uint‘ on=oTð Þ½ �; ð9:35Þ

where DI0 ¼ I0 t ¼ 0ð Þ � I0 t ¼ 1ð Þ is the maximum exchange of the beam inten-
sity from the start of laser action to full relaxation. The temporal dependence of the
beam intensity may be expressed as [9.20]:
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I0 tð Þ ¼ I0 t ¼ 0ð Þ
.

1�H
.

1þ tc= 2tð Þ½ � þ ðH2=2Þ
.

1þ tc= 2tð Þ½ �2
n o

: ð9:36Þ

The validity of Eqs. (9.34)–(9.36), derived specifically for liquids, is condi-
tioned, first, by the absence of heat transfer due to convection. That holds true at
a‘Uint 
 32K1k

2
T= K2gCr30
� �

, where K1, K2, and C are the viscosity, the thermal
expansion, and the heat capacity of the liquid and g is the free fall acceleration. If
Uint � 100 mW, the convection is prevented for magnitudes of a‘\10�1.
A stronger restriction is set by likely diffraction of radiation on density fluctuations
arising at the time of measurements. Therefore, all changes of DH should not
exceed the diffraction limit, identified by the minimal radius of a Gaussian laser
beam: DHmin ffi Ua on=oTð Þ= 1:6pkTr0ð Þ\k= pr0minð Þ. In other words, any change
of the optical path length caused by the center or the edge of the thermal lens:

D‘ ¼ Ua @n=@Tð Þ= 2pkTð Þ½ �
Z r0

0
1� exp �2r2=r20

� �� �
dr=rð Þ; ð9:37Þ

must be smaller than the diffraction limit: 0.22k, for wavelength k which evaluates
such a profile.

The typical layout of absorption measurement by this thermo-optic technique is
illustrated in Fig. 9.10. The test liquid in the cell of length ‘ 	 z0 and the lens are
placed at confocal distances z ¼ pr20;min=k around the caustic region of coordinate z0.
A detector behind a 0.1-mm pinhole is installed in the far-field zone. The system’s
sensitivity to absorption losses depends on the properties of the liquid and fluctua-
tions of the power of radiation: amin ffi DUkkT= ‘ on=oTð Þ½ �. The time functions
depicted in Fig. 9.11 are demonstrative of DH ¼ −0.01 for the solid line and
DH ¼ −0.3 for the dotted one, both for low-absorptivity carbon tetrachloride CCl4.
The latter line represents the measured absorptance aCCl4 ¼ 5:7�10�5 cm−1. The
lowest detected absorption coefficient for carbon tetrachloride liquid was
a ¼ 5:5�10�6 cm−1 at k ¼ 632.8 nm, U0 ¼ 0.01 W, and ‘ ¼ 0.1 m [9.20].

Similarly, a thermal lens can be induced inside an active laser resonator to
enhance the measurement sensitivity to intracavity absorption losses via multiple
light interactions. The loss sensitivity becomes proportional to the focal length of
the thermal lens at a given power sensed as spot diameters at two resonator mirrors
of the propagating beam whose divergence is caused by the lens [9.19, 9.22].
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A schematic for the active-resonator technique is shown in Fig. 9.12. The active
laser resonator with a test sample inside oscillates in its fundamental longitudinal
mode via irises I1 and I2 with the power in each spot section modified by thermal
lens TL on every resonator mirror being measured by power meter PM via scanning
system SS. On the initiation of a single thermal lens in the resonator, the thermal
phenomena that occur may be treated as a two-lens plus two-mirror set with a thin
thermal lens making a pair of two mirrors and lenses [9.22]. For the empty res-
onator of two spherical mirrors with finite apertures, the major resonator parame-
ters: diffraction losses, resonant frequencies, and mode diameters – are given by the
Fresnel number NFi and stability factors G1 and G2 [II.5]:

NFi ¼ a1a2ð Þ= kdð Þ; G1 ¼ 1� d=r1ð Þ a1=a2ð Þ; G2 ¼ 1� d=r2ð Þ a2=a1ð Þ: ð9:38Þ
For symmetrical lenses L1 and L2 of focal lengths f1 and f2 placed in the resonator,
as shown in Fig. 9.12:

NFi ¼ a1a2ð Þ= kd12ð Þ � a1a2ð Þ= kdð Þ;
G1 � 1� d=r1ð Þ 1þ r1=f1ð Þð Þ a1=a2ð Þ;
G2 � 1� d=r2ð Þ 1þ r2=f2ð Þð Þ a2=a1ð Þ; ð9:39Þ

the radii of waists x1 and x2 of the respective lasing beam spots on two mirrors of
diameters 2a1 and 2a2 become:

x1x2 ¼ dk=pð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� G1G2

p
; x1=x2 ¼ a1=a2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2=G1

p
: ð9:40Þ
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For a laser cavity having a thin thermal lens L3 in a liquid inside the resonator
between two lenses L1 and L2, located in the liquid cell walls, Eqs. (9.39) with the
thermal lens located near one of two existing lenses converge to [9.22]:

N ffi a1a2ð Þ= kdð Þ; G1 ffi 1� d=r1ð Þ 1þ r1=f12ð Þð Þ a1=a2ð Þ;
G2 ffi 1� d=r2ð Þ 1þ r2=f3ð Þð Þ a2=a1ð Þ; ð9:41Þ

where f3 is the focal length of thermal lens L3, and focal length f12 is given by:
ð1=f12Þ ¼ ð1=f1Þþ ð1=f2Þ � d12=ðf1f2Þ. Hence, for the lenses in cell windows the
measurements of spot sizes x1 and x2 need to be obtained at both resonator mirrors,
solving the system of Eqs. (9.41) and determining focal length f3. The procedure is
more convenient when the thermal lens is the only lens in the cavity, requiring
spot-size detection only on one mirror (Fig. 9.13). Lens power fTL�1 can be
acquired from the location of mirror image r10:

1=fTL � 1= dTL � r1ð Þþ 1= r 01 � dTL
� �

; ð9:42Þ

if curvature radius r10 is measured via minimal image size 2x0 at distance z1 from
the beam’s waist:

x0 ¼ x2

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðpx2

2

�
kr2Þ2

q
; z1 ¼ d � r2

.
1þ kr2

�
px2

2

� �� �
: ð9:43Þ

The measurement sensitivity for spot size x2 versus thermal lens power fTL�1 is
defined as [II.5, 9.22]:

x2
2 ¼ const �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G1 � r1=f1ð Þ=G2

p
; ox2

2

�
o 1=f1ð Þ� � ¼ const �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 G1 � r1=f1ð Þ

p
;

ð9:44Þ

with a tendency to become largest for the resonator confocal geometry at G2 ! 0
or G1 ! r1=f1. However, improving the sensitivity to thermal lensing enhances
other active cavity factors affecting measurement results, such as optical inhomo-
geneity in a laser gaseous discharge, thermal lenses in windows and walls of a
liquid cell, a laser tube guiding, and retroreflections of propagating radiation,
especially for higher-order modes and resonator apertures – which are all lower at a
far-from-confocal configuration. Furthermore, the approximation of the perfect
parabolic refractive-index distribution describes the thermal lens behavior, but is

2w2

r1 r2

d

r'1

2w0z1
dTL

Fig. 9.13 Thin thermal lens
detection
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not quantitatively accurate without counting the imperfect lens profile, as well as
the resulting aberrations and lens- and pinhole-induced diffraction [9.23–9.25].

A combined dual-beam sensing approach is based on near-field diffraction on a
thermal lens enforced by a pulsed pump beam creating a spatial phase modulation,
further detected as a dip in the radial intensity profile of an also pulsed probe beam
[9.26]. Figure 9.14 depicts the pumping and probing concept, and illustrates an
example of the resulting dip in the probe-intensity profile. In Fig. 9.14a, the pump
beam is tightly focused into a cell, filled with a liquid sample under study, initiating
the thermal lens, whose radial dimensions are near 1 order of magnitude smaller than
those of the probe beam. As a result, the probe beam is defocused while having a dip
(Fig. 9.14b) centered by the thermal lens with dip intensity I proportional to the
liquid’s absorptance a‘:

a‘ ! DI tð Þ=I tð Þ ¼ Ir¼0;t¼1 � Ir¼0;t
� ��

Ir¼0;t¼1: ð9:45Þ

Here a and ‘ are the linear absorption coefficient of the liquid sample and the length
of the cell (see Eq. (II.14)), r is the radial coordinate, and the time instance t ¼ 1
corresponds to the time when the thermal gradient has completely vanished after the
pulsed excitation when the focal length of the lens is equal to infinity. The maximal
thermal lens is obtained at the time instance t ¼ 0 right after the excitation, since the
dissipated thermal energy takes time to diffuse from the center spot. Such a pulsed
thermal lens detection technique is based on the transient intensity measurements
and does not require far-field observation, thus being less susceptible to alignment
instabilities or model imperfections [9.26].

9.2.2 Photothermal Deflection

When pumping-laser light is absorbed by a medium in the presence of
fast-quenching collisions, most of the light energy is converted to translational–
rotational modes of the medium’s molecules and the laser-irradiated region is
heated. This results in a change in the refractive index of that region, which can be

(a) (b)
y

x

r0

pump beam

probe beam

cell

waist detector
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ΔI

Fig. 9.14 Fresnel diffraction on a pulsed thermal lens
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monitored by weaker-intensity laser probe light. In fluids, when the medium’s
refractive index expands in one direction, having a nonzero curvature, the liquid
acts as a lens, changing the shape of the transmitted probe beam. As seen in the
previous section, that effect can be detected as a change of the intensity of a probe
beam passing via a thermal distortion. A resultant nonuniform refractive index for
pump-beam absorption may be detected by a photothermal deflection of a probe
beam interacting with the medium or its surroundings. A photothermal outcome can
also be sensed by placing the medium in an interferometer or a multiple-reflection
cavity. The refractive index change would cause a fringe shift to be sensed as an
intensity change of the central fringe, creating a photothermal phase-shift or phase
variation. A nonuniform sample expansion can also be detected via its thermally
induced birefringence.

Photothermal deflection spectroscopy can be also used as a collinear technique
when the refraction gradient is created and probed via the absorbing sample, and as
a transverse method when the probing is made via a thin layer adjacent to the
sample, also called mirage technique; the latter can be used for any opaque
materials or samples of pure optical quality [9.27, 9.28]. Figure 9.15 illustrates
excitation by a pump laser beam, causing a change of refractive index in the heated
region of an absorbing sample, and also depicts the collinear probe beam deflection,
as well as some relatively oblique deflection for the transverse probe beam, sensing
a gradient for modified index of refraction in the thin border-layer adjacent to the
sample surface.

Considering the absorbing sample being an infinitely wide in the radial direction
to irradiation with the probe beam focused in a smaller spot than the pump beam,
oscillating at frequency x in the absorbing medium, and while neglecting the
acoustic-wave effects and presuming thermal conductivity of the sample to be low,
the propagation-integrated temperature rise T above ambient for infinitely-wide
sample at distance r, separating the maxima intensity of the pump and probe beams,
becomes [9.28, 9.55]:Z‘

0

dzTsample ~r; tð Þ ¼ U0 1� exp �a‘ð Þð Þ
.

2p2r20ix qpcp
� �

sample

 � �

� exp �2r2
�
r20

� �
exp ixtð Þþ const:

ð9:46Þ
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Fig. 9.15 Photothermal
deflection
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For the thermal conductivity or the thermal diffusion length kT (see Sect. 9.1) being
much smaller than the probe-beam radius r0, the temperature distribution follows
the beam profile, as predicted by Eq. (9.46), owing to absent thermal diffusion. If
the thermal diffusion length kT is much greater than the beam’s waist 2r0, the
temperature gradient reduces to [9.28]:

Z‘
0

dzTsample ~r; tð Þ ¼ U0 1� exp �a‘ð Þð Þ� 2p2rkT ;sample
� �� �

1� exp �2r2
�
r20

� �� �
� exp ixtð Þþ const; ð9:47Þ

and that temperature distribution expands beyond the pump beam’s profile at low
modulation frequencies, since at high frequencies the on-axis temperature decreases
as 1/x. Equations (9.46) and (9.47) highlight the fact that a thermal deflection study
probes the gradient of temperature, opposite to conventional thermal lensing
techniques, which probe the gradient of curvatures.

As described by Eqs. (9.46) and (9.47), when a thin sample is irradiated by either
intensity-modulated or position-modulated pump light, time- or frequency-dependent
changes of the temperature of the sample’s medium, registered by a sensitive
synchronous spatial detector, can be distinguished at two limits: high-frequency
modulation in a low-thermal-conductivity medium and low-frequency modulation
in a high-thermal-conductivity medium. If the thermal diffusion length kT in the
medium is much smaller than the radius r0 of the cross section of a Gaussian pump
laser beam, the time-modulated deflection angle u of the probe beam at an angular
modulation frequency x of pumping light becomes [9.27]:

u ¼
kT
r0

dn=dTð Þ U
�
xqpcpp

2r20
� �

1� exp �a‘ð Þ½ � �2 xm
�
r20

� �
exp �x2m

�
r20

� �� �
:

ð9:48Þ

Here xm is the separation length of the intensity maxima for the pump and probe
beams and U is the pump-beam power. For a low sample absorptance: a‘� 2, the
deflection is proportional to the total loss a‘ and to pump power U, and is inversely
proportional to modulation frequency x. If the thermal diffusion length kT is much
larger than the beam radius r0 and if the modulation frequency x is relatively low,
the magnitude of the deflection angle u is virtually independent of x and is close to:

u ¼
kT	r0

dn=dTð Þ U
�
kTp

2xm
� �

1� exp �a‘ð Þ½ � 1� exp �x2m
�
r20

� �� �
: ð9:49Þ

One version of the collinear technique for probing of radial deflection of radiation
[9.29] is shown in Fig. 9.16. A pump beam from a tunable dye laser 1 is intensity-
modulated by acousto-optic modulator AOM and focused into thin layer 4 of a
low-absorbing coating stack made on a presumably nonabsorbing substrate.
The probe beam of He–Ne laser 2 is directly focused to an area of the maximum
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thermal gradient. Position sensor 5 and power meter 3 sense the power parameters of
polarized pump and probe beams. Depending on the lock-in correlation of the
thermal conductivities of the coating and the substrate as functions of the modulation
frequency x, one can optimize the area of the heated region to correlate with the
absorption coefficient of the sample being studied. The estimated highest noise-level
sensitivity of the system was near 2�10�7. Experimentally determined [9.28]
absorption coefficients with transverse probing for a 0.7% solution of benzene in
CCl4 were between 2:7�10�3 and 1:5�10�4 with a threshold of 1�10�5. For the
collinear probing depicted in Fig. 9.16, designed to increase sensitivity and simplify
alignment, the repeatability of measurements for the absorption coefficients studied
in various optical coatings and ranging from 6�10�3 to 10−1 was not better than±20%
at the estimated 1:10�10�6 noise level for 50 mW of pump power. Since every
photothermal deflection result was obtained by measuring the deflection angle u,
while presuming proportionality of angle to absorptance a ¼ const�u, which
depends on many factors (alignment and geometry of the beams, modulation fre-
quency, optical and thermal properties of the substrate and coating layers), every
substrate was calibrated by direct spectrophotometric measurements. With use of a
100-mW dye laser at k ¼ 570� 640 nm for a stable high-purity glass sample, the
repeatability of absorption mapping of a deeply polished glass surface reached
ð4� 6Þ�10�5 [9.29]. The technique is applicable for relative absorption mapping,
reaching nearly 1�10�6 sensitivity [9.29, 9.32].

As follows from Eqs. (9.46) and (9.47), enhancements in measurement sensi-
tivity can be gained by position-modulated pumping at relatively low frequency x
when the probe beam is deflected on density gradients created by frequency-
dependent changes of the temperature, and thus of the refractive index in the
absorbing substance. The aim of such an approach is to increase the sensitivity to
thermal deflection by synchronous detection of density modulations occurring in
the proximity of a small irradiated spot either in the sample of a low-absorbing
substance itself or in any adjacent layer. By observing alterations of the beam
location on a sensitive spatial detector, one can relate the beam deflection amplitude
to the sample’s linear absorption coefficient. Temperature and refractive index
gradients in coatings, gases, solids, and liquids are substantial enough to expect
high sensitivity to absorption losses.

2
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Fig. 9.16 Sensing transverse
photothermal deflection
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A nearly twofold improvement in sensitivity may be achieved by the position
modulation of the pump beam at a constant power versus the low-frequency am-
plitude modulation [9.33]. In the system of Fig. 9.17, a tilting periscope creates a
spatially modulated thermal strain in the sample, while any probe beam deflection
registers a nonuniform increase of temperature due to bulk absorption in the sample.
The lateral pump-beam displacement angle h driven by a piezo actuator on one of two
periscope mirrors is independent of the modulation frequency x given by beam’s
waist 2r0 and the focal length f of the input lens L1: h � 1.2r0/f. At a sufficiently high
angular frequency: x 	 kT=r02, and a small propagation length of heat waves in the

sample, d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2kT

�
qpcpxÞ

q

 2r0, the deflection angle u becomes proportional to

the displacement g(x) and separation x for the probe and pump beams:

u �
kT	2r0

�1=nð Þ dn=dTð Þ aU=kTð Þ 1= sin bð Þ kT=qpcpx
� �

g xð Þ: ð9:50Þ

The complex displacement function g(x) for the position-modulated (p-m) and the
amplitude-modulated (a-m) beam could be respectively characterized as [9.33]:

g xð Þp�m ¼ i
8
r30
exp

�2x2

r20

� �
exp

�x20
r20

� �X1
p¼0

�1ð Þp Ip
x20
r20

� �
� Ipþ 1

x20
r20

� �� �

� x0I2p
4x0x
r20

� �
� 2xI2pþ 1

4x0x
r20

� �
þ x0I2pþ 2

4x0x
r20

� �� �
;

g xð Þa�m ¼ i � 8x
r30

� �
exp

�2x2

r20

� �
; ð9:51Þ

where Iip are modified Bessel functions and x0 is the lateral displacement of the
pump beam. As seen from Eq. (9.50), the deflection angle u decreases at a fairly
high angular modulation frequency x, but beam-wander-induced turbulence also
decreases, defining limiting noise. An experimentally tuned 130-Hz optimal fre-
quency resulted in equivalent noise of approximately 0.1 ppm/cm, but uncertainties

Fig. 9.17 Position-modulated deflection
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of angles of incidence and beam waists, thermal conductivities and diffusivities of
the samples, and continuous stray light produced by the pump beam kept the
repeatability of measurements at approximately ±20% [9.33].

Several configurations may be applied to investigate optical coatings via thermal
deflection [9.30–9.32]. Figure 9.18 illustrates three main configurations – lateral (1),
collinear (2), and reflected light (3) for beam probing – at the pump-beam position
defining irradiated spot parameters for a total system of the optical coating under
study and the sample substrate, each contributing to the sample’s refractive index
gradient and thermal deformation. The near-field-diffraction pulsed thermal lensing
technique depicted in Fig. 9.14, with reflected-light detector configuration 3 in
Fig. 9.18 and forward excitation by a pump beam into a coating spot and wide-beam
probing, was used to detect the spatial dip in the center of the intensity profile [9.34].
The experiment revealed a time- and power-dependent absorption behavior of
coatings at damaged surface spots. A similar mode-mismatch, wide-probe pulsed
thermal lensing approach was sufficient to detect absorption levels for fluence
magnitudes far below the coating damage threshold, allowing detection of surface
displacements near 0.002 nm for single-coating layers and nonlinear
(power-dependent) absorption in a quartz substrate at ð2:8 0:5Þ�10�9 cm−1/W,
presuming the quartz linear absorption coefficient of a � 0.03 cm−1 at 193-nm
wavelength [9.35].

Another approach is to sense spectral detuning of a coating due to photothermal
deflection [9.36–9.40]. The approach is based on a dry–wet reversible spectral shift
in the transmission–reflection properties of multilayer coatings, initially detected for
a stack of TiO2=SiO2 or HfO2=SiO2 layers [9.36]. The spectral shift or photothermal
detuning is sensed in response to an absorption-induced temperature rise of the
coating exposed to a pumping laser and probed in transmitted or reflected light
[9.37, 9.40]. Each intensity change It�tðqÞ and It�tðsÞ is defined by the temperature
profile DT(q, s):

It�tðqÞ ¼ ðdq=dTÞð1=qÞDTðqÞ; It�tðsÞ ¼ ðds=dTÞð1=sÞDTðsÞ; ð9:52Þ

and is measured as the difference between a modulated thermally induced and a
constant signal. In the arrangement depicted in Fig. 9.19, the pump and probe
beams are focused into nearly one spot on a test coating, while their relative
positions are adjusted by transverse alignment of the pump lens. The experimentally
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Fig. 9.18 Deflection studies
of coatings
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detected temperature coefficient of reflectivity for a 99.8% high-reflectivity coating
designed for 0° incidence was near 1:27�10�3 K−1 at the normal incidence for the
pump beam and 27° incidence for the probe beam at kprobe

�
kpump ¼ 632:8/530 nm

[9.40]. The thermal-detuning technique is also sensitive to temperature variations
inside the coating and the heat-conduction properties of the coating stack, being
somewhat limited to coatings having a relatively large temperature coefficient of the
refractive index in reflection or transmission where the detector is placed, but a
relatively low thermal expansion coefficient.

One obvious deficiency of reviewed thermal-lensing deflection techniques for
determining absolute magnitudes of the linear absorption coefficient measured can
be to some extent addressed by combining photothermal and calorimetry studies
within a single laser pulse, providing determination of the absorption coefficient
itself and making absorption mapping [9.41]. Figure 9.20 shows a combined
calorimetric and near-field mode-mismatch thermal-lens system. A pulsed excimer
laser at 193 nm with homogenizing beam-steering optics was used to create a
uniform top-hat intensity profile for the pump beam [9.42], creating a
0.70-mm-diameter spot on a sample at 2 mJ per pulse and 520 mJ/cm2 sample
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Fig. 9.20 Simultaneous calorimetric and photothermal studies
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irradiance. The probe beam of a He–Ne laser operating in cw mode irradiated a
sample placed in a thermally isolated chamber at 5° angle via the side window.
A photodiode behind a 0.5-mm-diameter pinhole registered the central-dip thermal
deflection (see Fig. 9.14). Negative temperature-coefficient sensors TS attached to
the back surface of the sample detected irradiation-induced temperature changes
(see Sect. 9.1). The noise-limited levels of sensitivity were 6�10�5 for thermal
deflection and 3�10�5 for laser calorimetry, with the higher noise for deflection due
to strong electromagnetic emission of the excimer laser and system instabilities, and
the assessed value of 6:3�10�4 for the measured absolute absorptance [9.41]. One
also needs to be aware of the absorption-saturation effect in pulsed photothermal
studies, which makes this technique sensitive to a laser excitation pulse profile and
its broadening [9.43]. Occurrence of thermal lensing may also be sensed via
detection of second order eigenmodes in a resonant cavity [9.124].

9.2.3 Photothermal Interferometry

An interferometric-bound measurement should provide for higher sensitivity to
absorption losses, though with stronger requirements for both power and frequency
stability of the probing laser beam and for the dynamic range of registration [9.21].
Commonly, interferometric procedures are based not on deflection of a beam due to
absorption in a sample, but on the optical path length alteration caused by the
sample-density modification created by the absorbed energy (Fig. 9.21). A parallel
light beam of laser 1 propagates via plane-parallel plates 2 and 4 without any
notable attenuation. At a transmitted beam power: Us ¼ U0 1� qð Þ2, higher than
the thermo-optic threshold for liquid sample 3, the phase of propagating light is
altered in proportion to the optical path length:

Du ¼ 2p‘Dn=k ¼ 2p
on
oT

‘

k
DT ; ð9:53Þ

where ‘ is the constant length of the liquid being studied, defined by its cell. Since
each successive component of retroreflected light is attenuated by q2, detector 7
may only distinguish interference between first two beams – one transmitted and the
other reflected twice by surfaces of plates 2 and 4. The directly transmitted beam is
diverted by mirror 5 to auxiliary detector 6, serving to account for fluctuations of
radiant power.
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Fig. 9.21 Dual-beam interferometer sensing path-length alteration
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Under the condition of presumably equivalent optical properties of both inter-
ferometric plates 2 and 4 and of the front and back surfaces of the glass cell, total
transmitted flux UR at the two-beam interference of fluxes U1 and U2 becomes [1.1]:

UR ¼ U1 þU2 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
U1U2

p
cosu1;2

¼
U1¼U2¼U0

2U0 1� qð Þ6 exp �a‘ð Þ½ �q2 1þ cos u0 þDuð Þ½ �: ð9:54Þ

Since even the combined power of two dual-reflected beams is much lower than
that of the incident beam, a higher sensitivity of detector 7 is required to register
simultaneously the maximum and minimum of interference. At the maximum
sensitivity of the two-beam interferometer for u0 ¼ p=2, the registered flux is
UR,max ≅ 5�10�4 U0. Despite the restricted dynamic range of such interferometric
registration, internal system noise does not notably affect the results obtained, since
both interfering beams are passed by the same sample under study: the upper beam,
for example, traces the sample’s spot irradiated by the incident beam, affected by
the absorption, and the second one is passed by the unaffected spot, or vice versa.

For a liquid under study extending only in its transverse direction and being
irradiated by a Gaussian-shaped beam, the temperature distribution profile during
irradiation can be written as [9.21]:

DT r; tð Þ ffi a‘Us

4pkT
ln 1þ 8kT t

qpcpr
2
0

 !
� 1
qpcpr

2
0

�
8kT tþ 1

2r2

r20

" #
: ð9:55Þ

The integrated magnitude of changed temperature DT registered in a caustic region
designated by radius r ¼ r0 in a time interval shorter than the characteristic time
t 
 tc ¼ qpcpr

2
0

�
4 becomes:

DT r; tð Þ ffi a‘Us= 4pkTð Þ½ � 2t=tcð Þ: ð9:56aÞ

For t 	 tc and a cross-sectional temperature distribution not depending on r, this
changes to:

DT r; tð Þ ffi a‘Us= 4pkTð Þ½ � ln 2t=tcð Þ: ð9:56bÞ

Equation (9.53) for a sample such as carbon tetrachloride with
a ¼ 10−4 cm−1 predicts tc to be near 3.2 s atU0 ¼ 0.01 W and r0 ¼ 1 mm.At t ¼ tc
the temperature rise is DT ¼ 7�10�5 K, which at ‘ ¼ 12 cm, k ¼ 632.8 nm, and
on
�
oT ¼ �5�10�4 K�1 corresponds to Du ¼ 0:045 rad, and the power change (see

Eq. (9.54)) is DUR ¼ cos2 Du=2ð Þ ffi 1:5�10�3 U0;R ffi 7:5�10�7 U0 � 10�8 W. The
lowest linear absorption coefficient a detected by the system of Fig. 9.13 was limited
by the sensitivity of the detectors used and reached 2�10�5 cm−1 [9.21].

In a similar study of solid samples whose length expansion is not limited and
changes as a function of the temperature, Eq. (9.53) for the thermal deflection
transforms into one for the thermal expansion [9.21]:
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Du ¼ 2p
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n
@‘

@T
þ ‘

@n
@T

� �
DT ¼ 2p

k
‘

1
3
nklin þ @n

@T

� �
DT : ð9:57Þ

Here klin is the volume expansion coefficient. Since for the vast majority of optical
materials klin is near �@n=@Tj j, light-induced changes of the optical and actual
length of the irradiated sample should compensate each other, reducing the inter-
ferometric sensitivity to absorption-induced path-length changes in a solids. When a
solid sample is studied, the intensity of laser irradiation needs to be increased and
the temporal response of the detector must be faster, preventing extension to a
nonlinear deformation stage. With a He–Ne laser probe beam, thermal-bump and
high-coherence interferometry as well as absorption-induced polarimetry can be
used, even testing adhesion of the thin-film coatings during an intense laser beam
exposure [9.44–9.50].

Transverse changes of the refractive index of a long cylindrical sample in
direction r under uniform heating along its axis may be expressed as a function of
universal medium constants P and Q [II.11]:

njj;? rð Þ ¼ n0 þ P Qð Þ T rð Þ � T0½ �  Q Tmed rð Þ � T0½ �; ð9:58Þ

where

P ¼ on
oT

� klinE

2 1� rp
� � Cjj þ 3C?

� �
; Q ¼ klinE

2 1� rp
� � Cjj � C?

� �
: ð9:59Þ

Here njj; n?;Cjj; and C? are the refractive indices and photoelastic constants for
light components polarized in, respectively, parallel and perpendicular planes to the
plane of incidence; T0 and n0 are the sample steady-state temperature T and
refractive index corresponding to the T value; Tmed is the steady-state temperature
of the sample’s surroundings at the sample radius r, and E and rp are Young’s
modules and Poisson’s ratio. The first constant: P, designates changes of the mean
refractive index for the opposite states of polarization caused by the intensive probe
laser beam. The second constant: Q, is proportional to the difference of two pho-
toelastic constants for these states of polarization and characterizes the birefrin-
gence of the medium being induced by thermal expansion.

For solid-state optical materials such as glasses, the difference of these pho-
toelastic constants is not very high. Radiation-induced deformation can be reduced
to a flat deformation if the temperature change in the prolonged irradiated region is
orders of magnitude higher than the sample’s temperature, and if the cross section
of that region is small in comparison with its length. That happens when a beam is
focused by a long-focal-length lens. The change of the mean refractive index of a
heated cylindrical sample along its axis does not depend on the state of light
polarization; thus the mean refraction �n is:
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�n ¼ Dnjj ¼ Dn? ¼ PDT0: ð9:60Þ

The respective strain e arising from bulk absorption in an isotropic sample of
unlimited dimensions at distance r from the center of a Gaussian laser beam at
duration ta is [9.45]:

e ffi a‘Uintklint
2pqpcpr2

1þ rp
1� rp

� �
; ð9:61Þ

whereUint is the radiant flux (power) propagating within the sample’s bulk, cp and qp
are the specific heat and the sample density, and t is the observation time.

Equation (9.61) is valid for the balancing conditions: r2 	 r20 ; r
2 	 ffiffi

t
p

kT
�

qpcp
� �� �2

;

kT
� ffiffi

r
p

qpcp
� �� �2 	 vs, or t 	 ta, where vs is the sound velocity,

ffiffi
t

p
kT
�

qpcp
� �� �2

is
the characteristic length of thermal diffusion, and r0 is the radius of spot of the focused
beam – confirming the absence of transverse waves. Hence, solid-state absorption
measurements should be performed at a sufficient distance from the beam and later
than the instant action of radiation happens. As a result, it can be presumed that a
temperature gradient in the irradiated sample’s cross section produces only longitu-
dinal waves of deformation.

A typical structure for interferometric measurements of bulk absorption in solid
samples is depicted in Fig. 9.22. A beam from pump laser 1 at absorbing wave-
length k is modulated by chopper 2 with its half period equal to ta and is focused by
lens 3 into the bulk of sample 4. The sample surfaces are made flat and parallel, thus
making for the Fabry–Perot interferometer in reflected light [9.45]. The probe beam
emitted by high-coherence laser 5 with wavelength kref as retroreflected by sample
surfaces is registered by detector 7 via beam splitter 6. Owing to a dual pass of the
irradiated region, Eq. (9.57) converts to:

oUq=oT
Uq

Du
DT

¼ 4p
k

n
o‘
oT

þ ‘
on
oT

� �
: ð9:62Þ

Assuming that 10−7 sensitivity to reflected fluxes oUq=Uq can be reached and at
the DT � 10−7 K temperature sensitivity limit, bulk absorption coefficients close to
1�10�6 cm−1 can be essentially measured [9.26]. However, to obtain such elevated
sensitivity, the power stability of the probe beam must also be at that level.

6
5 

7 1 

2 

34
Fig. 9.22 Sensing of
radiation-induced sample
refraction
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Figure 9.23 depicts an interferometer providing the loss measurement, with the
sample substituted by its holographic image to study the sample’s bulk absorptance
at arbitrary configuration of its surfaces [9.46]. First, hologram 4 of sample 3 to be
irradiated by pump laser 1 is made via a probe beam of laser 2. Then, the hologram
is used to compare absorption-induced changes of irradiated sample 3 versus its
image 4. Detector 5 compares the reconstructed wave front with one thermally
distorted by sample absorption. The smallest bulk linear absorption coefficient
measured at k ¼ 10:6 lm reached ð1:0 0:2Þ�10�3 cm−1 at the same level of
estimated surface losses.

Owing to high sensitivity to optical path length changes, interferometric mea-
surements are more susceptible to acoustic noise. If the pump beam is modulated at
a relatively low frequency f\1=ta, the acoustic signal caused by sample defor-
mations under the intensive light action (see Eq. (9.59)) needs to be either isolated
or compensated. Compensation may be made using the interferometer with a sec-
ond reference arm, similarly to one in Fig. 9.21. For that purpose, sample irradi-
ation in Fig. 9.23 was done by a sequence of pulses with duration ta\r0=vs and
frequency fa\vs= 2rð Þ [9.46]. The reference signal of the not shown second detector
provided an auxiliary feedback compensating the initial phase status of the inter-
ferometer. An identical compensation may be made by using a piezoelectric
transducer, whose signal would preserve constancy of the optical path length in the
apparatus. For measurements obtained using a Jamin interferometer at k ¼ 1:06 lm
and at a surface density of irradiating pulses near 100 KJ/cm2, the lowest magnitude
of the linear bulk absorption coefficient measured in pure fused silica reached
approximately 3�10�6 cm−1 [9.46].

A realization of the Jamin interferometer for a loss measurement is shown in
Fig. 9.24. A pump laser beam induces a thermal reaction to absorption in the

1 2

34
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Fig. 9.23 Interferometry of a
holographic image
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Fig. 9.24 Jamin
interferometer for
photothermal detection

9.2 Thermal-Lensing, Photothermal, and Photoacoustic Techniques 499



refractive or beam-deflecting sample; the former is probed directly and the latter is
probed at distance z from sample’s front surface, making the mirage effect. Since
the interferometer detects any thermally induced beam deflection as a phase change
but not a refractive index change versus alteration of the temperature, in contrast to
thermal-deflection methods, its response to the same variation of the deflection
angle is more sensitive. The interferometer’s response is not a linear function of the
thermal gradient, which could be advantageous to deducing any sample-driven
signal from noise, but the signal is sensitive to the probe-beam displacement and
distance z from the sample’s surface [9.48].

Another version of the interferometric technique was used with a Michelson
interferometer (Fig. 9.25). The absorptance of the interferometer’s beam splitter
was detected by comparing readings at a low and a high power of radiation, with
the latter generating a thermal lens in the splitter [9.49]. The path difference D‘ that
occurred along the beam axis was measured at the 1/e2 level of intensity as:

D‘ ¼ 1:3 on=oTð Þ 4pkTð Þ�1 a‘ð ÞUk; ð9:63Þ

where kT is the thermal conductivity (thermal diffusion length), Uk is the radiation
power at wavelength k, a is the linear absorption coefficient, and ‘ is the thickness
of the beam splitter. For waist radius x at the beam splitter and a thermal lens with
focal length ftherm ¼ x2

�
2D‘, it converts to:

a ¼ 4p=2:6ð Þ x2kT
� �

= on=oTð ÞUk ftherm‘ð Þ: ð9:64Þ

Equation (9.64) assumes that the splitter’s expansion and absorption in its coating
have negligible effects in comparison with the bulk absorption of the splitter. The
derived magnitude of the linear absorption coefficient measured using this interfer-
ometric technique at k ¼ 1064 nm in the bulk of a Suprasil 311 SV fused-silica beam
splitter was estimated to be as low as 0.25 ± 0.10 ppm/cm [9.49] on the basis of the
tabulated ratio of the known temperature dependence of the index of refraction on=oT
and thermal conductivity kT of Suprasil: on=oTð Þ kTð Þ�1 ffi 10�5 m=W .

camera

laser

no thermal lens

beamsplitter lens

lens effect

Fig. 9.25 Thermal-lens
effect in an interferometer
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As an alternative, an absorption-induced thermal lens can be detected via the
spot size change on any CCD detector array for a light beam affected by such a lens
[9.50]. For certain sufficiently large beam spot size xin, the observed output beam
radius xout becomes a function of array-matrix parameters A and B and of beam
curvature R induced by the thermal lens:

xout �xin B=RþAð Þ: ð9:65Þ

For N cycles of beam propagation via the thermal lens: 1/R ¼ 1/Rcold þ N/ftherm,
the thermal lens can be detected via the spot size change for the respectively hot and
cold optical elements as:

ftherm ¼ BNxin= xhot � xcoldð Þ: ð9:66Þ

The measured thermal-lens-induced absorptance in Michelson interferometer mir-
rors, assuming lower absorption levels for other elements, was near 15–5.7 ppm
with approximately 1.3 ppm sensitivity [9.50].

The methods of interferometric measurements of linear absorption coefficients in
solid samples analyzed above were based on irradiation conditions imposed by Eqs.
(9.58) and (9.59), which require equality of the azimuth and radial temperature
gradients in the sample. That is why the beam of light must be shaped as a long thin
cylinder, creating a virtually planar deformation and isotropic changes of the
refractive index versus temperature @n=@T . Instead, focusing a beam of intensive
radiation as a wide cone into an absorbing specimen creates some uneven distri-
bution of its bulk temperature. Observable birefringence B for a transparent material
could appear in a zone of sharp temperature changes as noticeable inequality D‘ of
optical path lengths for light beams with opposite states of polarization propagating
in direction z along the sample length ‘:

B ¼ D‘jj;? ¼
Z‘
0

njj � n?
�� ��dz: ð9:67Þ

As a result, propagation of a polarized probe beam via a strained region in the
direction of the absorption-sampling beam allows one to correlate alterations for
the initial phase of the probe beam with the induced thermal birefringence in the
irradiated sample and, thus, its linear absorption. As follows from Eqs. (9.46) and
(9.47), the initial orientation of the main axes of such a stress birefringence depends
on the optical properties of the test substance and the wavelength and intensity
distribution of the intense pump beam. Therefore, a quantitative measurement
requires one to define not only amplitudes, but also effective positions of orthogonal
optical axes of the resulting ellipticity in the irradiated test sample. If one axis of the
induced birefringence is formed by the polarizer, determining the initial state of
polarization for the probe beam, and the second is formed by the crossed analyzer,
the irradiated sample performs as a common linear retarder with the thermally

9.2 Thermal-Lensing, Photothermal, and Photoacoustic Techniques 501



induced birefringence (see Sect. 3.3). If the surface reflections are disregarded for
that simplest case, the probe beam of radiation propagating along with an initial
intensity Iref distinguishes the light-induced phase shift Du as:

Imax � Iref 1þ cos2 Du
� �

; Imin � Iref 1� cos2 Du
� �

;

Du ¼ arccos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Imax � Iminð Þ= Imax þ Iminð Þ

p
: ð9:68Þ

If the preset orientation of radiation-induced birefringence is unchanged during
the entire process, the analyzer’s plane – perpendicular or parallel to the reference
polarization – defines the subsequent intensity transformation DI of probe beam for
the respective phase shift Du as:

DI� sin2 Du=2ð Þ ¼ I0 sin2 pD‘jj;?
�
k

� �
: ð9:69Þ

Within constraints of a relatively weak thermal action at a low bulk absorptance of
the sample studied: pD‘jj;?

�
k 
 1, the thermally induced birefringence is pro-

portional to the square power for the product of linear absorption coefficient a of the
sample bulk and energy W of the pump beam:

DIref � a‘irrWð Þ2; ð9:70Þ

where ‘irr is the length of the irradiated region in the weakly absorbing substance of
the test sample.

Figure 9.26 depicts the system for absorption measurements via laser-induced
birefringence [9.51]. While making the pump and probe beams of lasers 1 and 2
collinear, interference filter 6, beam splitter 4, and analyzer 7 select only the po-
larized probe beam to reach intensity detector 8. Spectrally selective beam splitter 4
has high transmittance for pump light and high reflectance for probe light. The
temporal resolution is set to skip a fast pump action and only react to slow bire-
fringence changes traced by the probe beam. Testing many similar samples of
various absorption properties at an unchanged beam geometry allows the correct-
ness for the above assumption of linear thermal behavior to be confirmed via the
proportionality of the absorption coefficients and the light pulse energies measured:
ai ¼ aj Wj;pump

�
Wi;pump

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ij;ref =Ii;ref

p
. Here Wi,j are the energies of pump pulses and
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Fig. 9.26 Evaluation of light induced birefringence
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Ii,j,ref are the corresponding signals for probe pulses on detector 8. Such a mea-
surement method was used to evaluate compound low-loss glasses of compatible
optical properties. In experiments using a Nd:glass pump laser at k ¼ 1.06 lm with
pulse duration tpulse ¼ 1−3 ms, the required quadratic dependence according to the
Malus’s law (see Eqs. (9.68) and (9.69)) for Ij;ref

�
Ii;ref was observed with pump

energies up to tens of joules [9.51]. The lowest detected absorption coefficients
were near 20–70 dB/km. The durations of birefringence-induced probe pulses
transmitted by the analyzer for the time–energy settings above were near 50 ms.

Regarding the analyzed interferometric absorption measurement techniques, let
us point to the apparent difficulty of detecting small changes in the interferometer’s
pass length for a slow thermal transition – susceptibility of a fridge pattern to
vibration noise. Particularly for differential-type studies, such as in Fig. 9.21, if two
interferometer arms are used for measuring a thermo-optic signal, implementation
of the vibration-compensation technique seems difficult. Using a folded Jamin
interferometer, owing to its low sensitivity to vibrations, allows one to stabilize the
mutual fringe pattern for differential measurements while separating arm signals
and nulling the occurring background fringe shifts via a reference fringe pattern
[9.52]. For that purpose (see Fig. 9.27) two He–Ne laser beams were used: one for
detecting the probe-beam-induced absorption and another for referencing the fringe
pattern, while the intensities of the beams were equalized by neutral-density filter N.
Dual-coating mirrors M1 and M2 for 515-nm pump and 632.8-nm probe wave-
lengths superimposed the beam pairs. The pump beam intensities were adjusted by
a thin reflecting glass plate P, while two wedges W were providing parallelism of
interfering beams, making sure the both beams, which recombined on the second
Jamin interferometer plate JP2, were collinear. Diffraction grating DG separated
pump and probe beams after sample cell S and reference cell C. The He–Ne beams
via plane mirrors PM1 and PM2 passed via galvanometer-driven compensator GC,
which was part of a closed-feedback loop stabilizing the fringe pattern and mod-
ulating it for phase-sensitive detection, and via manual compensator MC.
Photodiodes D1 and D2 behind pinhole screens sensed ±200/k fringe shifts due to
optical path length changes, allowing detection of CCl4-level for linear absorption

Fig. 9.27 Differential
interferometric measurements
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coefficients of 1:2�10�5 cm�1 or lower [9.52]. Beam-deflection studies may be
enhanced using a high-quality Hermite-Gaussian mode for the excitation beam
pattern to be preserved when propagating an increased field gradient [9.125].

9.2.4 Photoacoustic Spectroscopy

As assessed above, nonemissive transformation of radiation energy absorbed in a
solid sample irradiated by an intense pump pulse creates a temperature gradient
which induces sample’s thermal expansion. The subsequent elastic strain (see
Eq. (9.61)) not only changes the initial density, size, and refractive index of the
irradiated sample, but also creates a dynamic pressure and a corresponding acoustic
wave. The resultant acoustic signal can be registered directly on the surface of the
solid sample or via a gaseous substance, since, if the gas is nonabsorbing for pump
light, its properties are not affected by the sample’s density and dimensional changes
when placed in contact with the irradiated solid. As a result, the detection sensitivity
of such a photoacoustic study of bulk absorption of light in solids is as high as for
other absorption-induced techniques, except those performed at low irradiances.

The exposure of a solid sample of absorptance Y by continuous, synchronously
modulated, or pulsed radiation with pulse duration tp, frequency m, and intensity:
I tð Þ ¼ I 1� exp �t

�
tp

� �� �
, leads to a corresponding periodic modulation of the

sample temperature T via the dependence [9.44, 9.53–9.56]:

r2T þY
2I tð Þ
pr2

exp � 2r2

r20

� �
¼ qpcp

kT

oT
ot

: ð9:71Þ

Such modulation creates the radial er ¼ o2P
�
ot2 and the azimuth ea ¼ ðrÞ�1ðoP=otÞ

strain, both defined by constant P (see Eqs. (9.58), (9.59)), known as the replacement
potential:

r2P� 1
m2

o2P
ot2

¼ 1þ rP
1� rP

klinT : ð9:72Þ

As referred to earlier, if the sample is irradiated by a thin cylindrical beam with a
narrow cross section of radius r0 and the observation is made at time t 	 tp in the
r 	 r0 region, the thermal strain in the sample is planar, and is defined by
Eq. (9.61). Then, the acoustic signal is proportional to the total absorptance Y ¼ a‘
of the sample bulk of length ‘ and to the pump energy: Wp ¼

R
Up tð Þdt, where Up

is the time dependent power of the pulse.
One exception needs to be made for highly absorbing substances. A high initial

attenuation of the pump power by the front section of a highly absorbing sample
reduces the light energy absorbed per unit length toward the sample’s end, and thus
the created elastic strain. To count the total absorptance a‘ for the full sample
length, the totality of unequal signals needs to be integrated using a transducer for
the length of the sample. If a cw beam modulated at chopping frequency x is used,
the absorbed flux DU in a sample of length ‘ with surface reflectance q may be
expressed as [9.54]:
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DU ¼
a‘� 1

Us=2 1� qð Þð Þx exp a‘ð Þ � 1� qð Þ � q expð�a‘Þ½ �; ð9:73Þ

where Us is the transmitted radiant power. At a low absorption loss: a‘ 
 1, it
becomes:

DU ¼
a‘
1

Us

2
1þ qð Þ
1� qð Þf a‘ 1þ 1

2
a‘

1þ qð Þ
1� qð Þ

� �
: ð9:74Þ

A photoacoustic measurement layout is illustrated in Fig. 9.28. Either pulsed or
modulated cw light from laser 1 via chopper 2 irradiates solid sample 3 with
attached upper 4 and lower 5 piezoelectric transducers. Power meter 6 and lock-in-
amplified detector 7 measure the beam power and the induced acoustic signal,
respectively. Similarly to thermocouple calorimetry (see Sect. 9.1), two transducers
separate the surface and bulk absorption signals, allowing one to detect the sample
scattering coefficient. One transducer is directly attached to the sample surface and
the other one is set symmetrically to the first but without any acoustic contact – to
register only radiation directly scattered to the transducer. Each sample calibration
is made by relevant spectrophotometric measurement at the wavelengths of the
highest absorptance to determine the optimal transverse location of the sample in
reference to the incident laser beam. With use of Ar, CO2, and CO lasers, near
1�10�4 cm�1 absorption coefficients were measured, maintaining scattering light
below levels corresponding to losses of about 1�10�5 cm�1 [9.54].

Applications of relatively short light pulses allow one to separate bulk losses
from surface ones using only one transducer on the sample’s surface [9.58]. The
concept of loss separation is based on the fact that the efficiency of acoustic-wave
generation reaches its maximum when the time interval of the sound propagation
across the sample is greater than the duration tp of the exiting light pulse itself.
Under that condition, the acoustic wave does not exit the sample bulk during the
entire time interval of the pump light action, and its amplitude is formed by the
entire radiant energy of the optical pulse. For sound velocity 5�10�5 cm=s in the
medium studied and the beam transverse dimensions of 1 � 1 mm2, the speed
assumption above holds true for tp � 2�10�7 s pulses. If the sample’s elastic strain
is kept to be planar by focusing light as a long thin cylinder (expression (9.61)), the
photoacoustic signal still oscillates at frequency m, depending on the system reso-
nance, but the intensity of the first pulse is directly identified by the absorption loss
of the bulk portion of the sample under study. At tp ¼ 10−8 s and modulation
frequency f ¼ 2 MHz for k ¼ 1.06 µm and k ¼ 0.532 lm, the resolved
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2
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5
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7

Fig. 9.28 Photoacoustic
absorption measurements
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magnitudes of the absorption coefficient in 50 � 10 � 1 mm3 potassium titanyl
phosphate (KTP) crystals were nearly ð1� 5Þ�10�3 cm�1 [9.58].

Another way of separating the acoustic signals from a solid sample bulk and its
two surfaces is by keeping a transducer in the far-field of the acoustic reception
zone: rf 	 t � vs; here vs is the sound velocity. If light scattering by sample surfaces
is sufficiently reduced by a matching fluid or a thin baffle between the sample and
the transducer, the far-field acoustic signal is resolved as [9.59]:

U � const� klinvs
�
cp

� �
YW0; ð9:75Þ

where W0 is the pump energy and Y ¼ a‘ is the total sample absorptance.
Therefore, the signal power for a Gaussian intensity distribution does not depend on
the pulse duration: tp 
 rf=vs, or the geometry of the narrow pump beam. At pulse
energies W0 � 60–70 mJ of laser light focused as narrow cylindrical beams of
1-mm diameter, every change of the acoustic signals was observed only as a linear
function of pulse energy variations for the smallest absorption coefficient near
1:5�10�4 cm�1 [9.59].

More conventional absorptance measurements in photoacoustic spectroscopy are
based on analysis of the acoustic oscillations in a resonant cavity having a sample –
irradiated by a beam of modulated light – being inside the resonant cell with a
nonabsorbing gas, filling in the cavity space between one of sample surfaces and a
single or multiple transducers [9.55, 9.56]. The acoustic wave is detected via the
internal pressure gradient in the cell as a function of the varying temperature of the gas
contacting the sample while the amplitude of the acoustic signal, being related only to
the absorptance in sample’s boundary layer ‘T, is identified by the sample thermal
diffusion length kT:

‘T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT= qpcpx

� �q
: ð9:76Þ

The boundary layer expansion depends on the characteristic absorption length
‘a ¼ 1=Y of the sample – here reassigning the surface absorptance as a, the bulk
length ‘, linear absorption coefficient Y, thermal conductivity kT (see Sect. 9.1), and
on the angular modulation frequency x of the incident light beam.

The acoustic-cell signal as a time function of the pressure gradient DP(t),
proportional to the respective temperature modulation DT(t) of the sample surface,
directly contacting the cell gas, is defined by [9.53]:

DPðtÞ ¼
�
cp
�
cv
�
Pg;0kTDTffiffiffi

2
p

‘gTg;0
exp½iðxt� p=4Þ�; ð9:77Þ

where Pg,0 and Tg,0 are the ambient pressure and temperature of the gas, cp and cv
are the specific heat of the gas at the constant pressure P or volume V, ‘g is the gas
cell length, and ‘T ;g; kT;g are the full- and the effective thermal-diffusion length of a
gas layer in contact with the sample being exposed to temperature changes.
Presuming e‘g 
 1 and Y, a 
 1 for the low strain and low-loss bulk plus low
surface losses of the sample, the amplitude DP and the phase Du of modulated
acoustic signal, could be converted to [9.60]:
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DP ¼
�
cp
�
cv
�
Pg;0kT;gU0Y‘Tffiffiffi

2
p

‘gTg;0f4kT
�
1þ kT;g‘T

��
kT‘T ;g

��g
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 þ 2aY‘T þðY‘TÞ2

q
;

Du ¼ p
4
� arctanð1þY‘T=aÞ:

ð9:78Þ

The last two equations demonstrate that both the amplitude and the phase of the
acoustic signal are identified not only by the surface and bulk absorption of the
sample, but also by internal properties of the cell. Thus, absolute calibrations and
referencing of resonant cells are always required for quantitative measurements of
absorptance in photoacoustic spectroscopy, while combined measurements of the
amplitude and phase can provide useful references [9.57].

Another concept for distinguishing bulk and surface absorption losses in pho-
toacoustic spectroscopy is associated with the dependence of the length ‘T of the
effective absorbing layer on the radiation-modulation frequency x. If only surface
absorption exists, the relative acoustic signal is approximately proportional to the
inverse frequency x−1, but is proportional to x−3/2 for the bulk loss only. In these
opposite cases, the phase changes are 90° and 45°, respectively (9.61). Utilizing the
system in Fig. 9.28 and identifying each particular dependency as x−0.9 for surface
absorptance and x−1.7 for bulk absorptance in the 10–100-Hz frequency range
resulted in the experimentally measured bulk-to-surface: Y‘T=a, ratio in a KCl
crystal at k ¼ 10.6 lm being 1:1.5. When the holographic interferometer in
Fig. 9.23 was used, the surface and the bulk absorption losses detected for the same
test sample were reversed to a ¼ 1.1�10−3 cm−1 and Y‘T ¼ 5�10�3 cm−1 [9.61].

To increase the sensitivity of photoacoustic spectroscopy only for the surface
under study, a pump beam can be surface-focused as a pattern of thin lines gen-
erating a firm surface acoustic wave [9.62]. Accordingly, a matching pressure
transducer can be made as a narrow-bandwidth interdigitated detector, with its
structure resembling an irradiating pattern to enhance sensitivity. In a confirming
experiment, a respective intense signal produced by scattered light was filtered in
the time domain by setting up a matching delay corresponding to the acoustic transit
time from an absorbing sample region to the detector. The absolute referencing of
the entire measurement structure was made by inserting a thin aluminum film on the
edge of each sample, which absorbed nearly 10%. The linear absorption coefficients
of two thin-film coatings measured were 3 �10−4 and 6 �10−4 cm−1, with the surface
absorptance of one not even antireflection-coated fused-silica sample as low as
3 �10−7 cm−1, varying from 10−6 to 10−7 cm−1 for various samples.

9.2.5 In Situ and Remote Photoacoustic Spectroscopies

Applications of nonresonant and resonant photoacoustic cells for in situ or remote
pollution detection may enhance the loss-measurement sensitivity to the absorption
loss in various test specimen irradiated by intensity- or frequency-modulated radiation
[9.63–9.66]. Ether an intensity-modulated or a frequency-modulated beam of potent
laser light at wavelength k of interest (Fig. 9.29) irradiates, via a window or a focusing
lens, a cavity filled with a gaseous test substance whose absorption is measured. The

9.2 Thermal-Lensing, Photothermal, and Photoacoustic Techniques 507



inlet microphone

outlet

input
light
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rms value of the pressure variation occurring in such an acoustically resonant or a
nonresonant cavity is detected by a pressure transducer (microphone) and compared
with the average power U of radiation, which for single-cell propagation is:

�U ¼ Uin 1� exp � aN þ rð Þ‘ð Þð Þ= aNþ rð Þ‘ð Þ: ð9:79Þ
Here Uin is the flux of incident light, N is the mean density of homogeneously
distributed absorbing gas molecules, and a and r are the linear absorption coeffi-
cient and the scattering loss of the gaseous substance under study filling the cavity
of length ‘ [9.65].

Even in one of the first experiments with a pulsed ruby laser and a cw CO2 laser
via 45.5-cm-long and 20-cm-long single-path acoustic cells, the measurement
sensitivity to spectral absorption reached 3 � 10−6 for air saturated by water vapor
and 1.2 � 10−7 cm−1 for a CO2–NO2 mixture at 694.3-nm and 9.6-lm wavelengths,
respectively [9.63]. Radiation energy absorbed at room temperature in the respec-
tive cell and transferred to thermal motion of gas molecules of the test composition
was registered by a low-frequency differential-pressure transducer owing to the gas
pressure rise. For the pulsed laser, the pressure observation time was limited by the
heat diffusion length of the cell walls and for the cw laser its intensity modulation
rate was slow enough for heat conduction to establish a steady temperature dis-
tribution. The response time for the differential pressure of the cell, measured by a
capacitance manometer, was less than 10 µs, while the minimum pressure rise of
the gas exceeded thermal agitation noise levels of the air mixture by many decibels
[9.63]. Gas absorption measurements in a high-pressure acoustic cell can be masked
by

ffiffiffiffiffi
po

p
noise, where po is the intracavity cell pressure, due to diffusion processes in

the gas mixture or the presence of thin absorption layers on the cell windows, even
when the gas itself does not absorb light [9.64].

Similar measurements in a gas-filled acoustic cell can be performed on condensed
samples [9.66]. A solid, powder, or liquid sample can be placed vertically in a
cylindrical quartz cup, resting on an output cavity window, coaxial to the cell for
irradiation by focused-downward and modulated light (Fig. 9.30). In this case, a

light beam 

microphone

input window

output window

Fig. 9.30 Condensed-sample
cell
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nonresonant cell is made as a small-volume vertical cylinder, enhancing the
amplitudes of the pressure oscillations measured via a radial-port microphone
membrane of that sealed cell by a lock-in amplifier. The heat from the sample flows
into a surrounding transparent gas, causing synchronous modulation of its pressure,
the magnitude of which is calibrated via a blackbody absorber, allowing spectral
features of the cell to be removed and enabling quantitative detection of the ab-
sorption coefficient of the sample. To provide measurements that are relatively free
of systematic errors, the actual cell response needs to be calibrated versus the
dependence of its signal on the chopper frequency, which is usually inversely
proportional to it. In addition, it must be calibrated for the system’s noise at low
absorptivity of the sample, when the cell window and walls’ absorption and scattered
light, which are dependent on the sample reflectivity and its surface morphology,
contribute to establishing the noise-dependent limits to the measurement’s
sensitivity.

A gated-pulse measurement technique may be used for absorption studies of
liquids [9.67], when not amplitude-modulated or phase-modulated, but rather a
time-resolved transient ultrasonic signal is detected, allowing one to discriminate
ballistic sound propagation from an irradiated liquid versus the sound from cell
windows or walls (Fig. 9.31). If that acoustic cell, filled with a low-absorbing
expanding liquid forming a narrow cylindrical volume of length ‘ and radius r, is
irradiated by a pulse of radiation of energy E0 and duration td, its
energy-transformation equation becomes:

E0 1� exp a‘ð Þð Þ �
a!0

E0a‘ ¼ cpqpVDT : ð9:80Þ

Equation (9.80) is justified under the assumption of isobaric adiabatic liquid
expansion, where qp and cp are the density and the specific heat of the liquid at
constant pressure; V ¼ pr2‘ is the irradiated volume, and DT is the temperature rise
within pulse period tp. Heating causes thermal expansion of the liquid with ex-
pansion coefficient b for radius r of its column to increase by small fraction
r′ 
 r and:

p rþ r0ð Þ2‘� pr2‘ ffi
r0
r

2prr0‘ ¼ bVDT: ð9:81Þ
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As a result, the linear absorption coefficient a measured by gated-pulse photoa-
coustic spectroscopy is [9.67]:

a ¼ 2prr0cpqpVDT=bE0: ð9:82Þ

The use of a submersed piezoelectric transducer as in Fig. 9.31 allows narrowband
acoustic impedance matching with fast rise time and reduced ambient mechanical
and electrical noises. With a boxcar integrator measuring the compression pulse
amplitude of duration td (approximately 1 µs in the experiments provided), the
absorption coefficients of the light and the heavy water were from 1.77 � 10−4 to
52.6 � 10−4 cm−1 at wavelengths from 446.3 to 694.2 nm [9.67].

An even higher signal-to-noise ratio may be achieved when registering the
second and higher acoustic harmonics, owing to further isolation of the signal due
to background noise by the cell windows and walls. If the intensity of the light
beam irradiating an absorbing gas in an acoustic cell (Fig. 9.32) is sufficient for the
absorbed energy to generate high harmonics of cw (continuous-wave) modulation
or pulse rate, the sensitivity of the absorption measurement at the acoustic har-
monics is enhanced since the background acoustic response due to cell windows
and walls remains linear [9.68]. For example, in an experiment with a tunable
pulsed dye laser at 30-Hz repetition rate, the highest signal-to-noise ratio was
reached for the fifth harmonic using 150-Hz detection frequency [9.69].

In each acoustically nonresonant cell reviewed, a relatively high sensitivity was
maintained by keeping a small volume and especially a small cross section of the
acoustic detector. When a sample gas must be flowed in and out of an acoustic cell, a
larger volume is needed, diminishing the detector’s efficiency. By making the cell
acoustically resonant to a modulation frequency, one can compensate for the loss of
detector sensitivity at a high Q-factor of the resonant cell [9.70]. An advantage of an
acoustically resonant cell is in no need to keep a constant cell pressure, thus allowing
continuous monitoring of flowing-in gasses and also saturating absorption of cell
walls, while positioning the outer gas inlet and outlet in areas where a standing
acoustic wave has a node. The enhanced selectivity of the resonant cell allows
detection of gas mixtures using multiwavelength or tunable lasers [9.71, 9.72].
The drawbacks of acoustically resonant detectors are their slow reaction to
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absorption cell
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absorption changes in large cell volumes, dependency of the resonant frequency on
temperature and gas composition in the cell, and the rapidly changing phase of the
acoustic-pressure signal near the resonance [9.65]. The sensitivity of photoacoustic
techniques – whether resonant or nonresonant, modulated cw or pulse, in situ or
remote measurement – approaches parts-per-billion and nearly 10−8-cm−1 linear
absorption coefficients [9.73–9.75].

9.2.6 Trace-Gas Photoacoustic Analysis

From the standpoint of low-loss measurements for trace gas detection in a resonant
acoustic cell, only a single-frequency resonance is needed, permitting one to narrow
down the acoustic resonance profile by increasing the cell’s Q-factor, which for
cw-based techniques may lead to difficulties in synchronizing the resonance and
modulation frequencies versus temporal drifts of temperature, composition, and
pressure, slowing the system down for in situ or remote monitoring. Pulsed laser
measurements in a cell with a high Q-factor allow one to obtain the entire excited
acoustic-mode resonance spectrum by Fourier transformation of the time-resolved
signal for the cell’s response to just a single light pulse, reducing susceptibility to
slow drifts of the resonant frequency [9.76]. The time evolution of a single-pulse
microphone signal can be detected by a boxcar integrator or transient detector and
averaged over a series of pulses to suppress noises originating from the environ-
ment. To enhance cell sensitivity, even windowless cells may be fitted with acoustic
filters restraining cell-wall resonances caused by reflected or scattered light [9.77].

Figure 9.33 schematically illustrates a high-Q resonant photoacoustic cell setting
with either closed or open windows [9.78]. In this case, the resonator itself is a
stainless steel cylinder with polished inside surfaces, enhancing its Q-factor, which
for the 10.3-cm long and equal-diameter cylinder was measured being near 820 in
N2. The transverse beam placement versus the on-cell axis was varied to access
multiple nodal points of its acoustic modes with a sensitive condenser microphone
connected to a selective low-noise preamplifier attached halfway on cylinder’s
surface. Acoustic filters and buffer volumes, tuned to suppress outside noise, were
positioned at each end of the cell. To obtain 2-Hz spectral resolution, a Fourier
transform of a 0.5-s time signal at 16.67-kHz sampling rate for each 100-pulse train
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Fig. 9.33 High-Q resonant
photoacoustic cell
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was averaged over 8192 points, curve-fitted via Lorentzian series. The estimated
absorption coefficient detection limits were (6–9) � 10−8 cm−1 [9.78].

A long Brewster-window cell configuration for pulsed photoacoustic measure-
ment is shown in Fig. 9.34. The small-radius cell is irradiated by a tightly focused,
long-cylinder-shaped laser beam, enhancing the sensitivity by close positioning a
microphone to the beam; it has stretched-out windows, positioned at the Brewster
angle for time separation of retroreflections and of the pressure pulse itself. Spectral
absorption studies in the cell were made via 9–11-lm radiation at 0.2-Hz repetition
rate from a high-pressure CO2 laser which was continuously tunable within the
76-cm−1 band, being practically a single-pulse technique [9.79]. The measurements
were performed assuming direct proportionality for absorbed versus incident energy
for narrow-beam irradiation (Eq. (9.80)). For slow relaxation processes in test gas
compositions, for which all perturbations of gas thermal equilibrium due to
absorbed energy of the incident pulse are relaxed via collision-induced
vibrational-to-translational energy transfers, inducing pressure-pulse responses,
the pressure-pulse temporal evolution becomes [9.65, 9.79]:

PðtÞ� 1� exp �t=tn�rð Þð Þ�exp �t=ttð Þ: ð9:83Þ

Here tt is the conduction decay time due to thermal diffusivity: kT/qpcp (see
Sect. 9.1), of the test gas and tn−r is the nonradiative relaxation time, which is
inversely proportional to the pressure built up by the light pulse focused into the test
gas. The tn−r value characterizes the simultaneous local increase of the temperature
and pressure. In turn, the pressure wave is defined by the acoustic relaxation time
constant: ta−p ¼ x/vs, which determines the dissipation of the thermal diffusion
wave: ta�p ¼ x2qpcp

�
8kT. Here x is the radius of the Gaussian-beam waist and vs

is the sound velocity. The actual time of vibrational-to-translational energy transfer
separates regions of slow: tn−r * ta−p, and fast: tn−r 	 ta−p, processes.

Figure 9.35 illustrates the temporal evolution of a pressure-driven photoacoustic
pulse versus time constants tn–r and tt. The evolution consists of the exponential rise
due to the energy relaxation with time constant tn−r and the exponential decay due
to thermal conduction with time constant tt. Decay curves 1 and 2 correspond to
relatively fast vibrational-to-translational energy transfers under 100 ls; decays 3
and 4 relate to slow transfers above 100 ls. In the experiments conducted [9.79],
the sensitivity to low absorption coefficients reached nearly 10−6 cm−1. Despite
there being 4 orders of magnitude in linearity for photoacoustic signals versus the

inlet outletmicrophone
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Fig. 9.34 Long
Brewster-window-based cell
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concentration of absorbing species, some noticeable nonlinearities due to either
saturation of pulse energy or energy-dependent absorption loss were also observed.

One more sensitivity enhancement for pulsed photoacoustic measurements is the
Helmholtz configuration of an acoustic cell: two resonant cavities connected by a
duct, initially adopted for cw-modulated techniques, taking advantage of narrow-
band resonances of two coupled volumes – one for the sample, the other for a
microphone, which can be connected via a differential scheme [9.80]. Applications
of Helmholtz resonators in combination with cryogenic temperatures can increase
the photoacoustic signal amplitude in chopper-modulated measurements up to
T−2.75 [9.81]. Pulsed measurements using a Helmholtz cell configuration in the
arrangement shown in Fig. 9.33, made at CO2 laser wavelengths, reached near 10%
absolute-value match for 3.25 cm−1 absorption coefficient, measured within
0.3 cm−1 versus the published 2.98 cm−1 value obtained via cw-based measure-
ments [9.82]. The result by itself confirms a good agreement of distinctive ab-
sorption data points, though not fulfilling the high expectations for the factual
accuracy and the sensitivity of indirect linear absorption coefficient measurements.

A dual-resonator cell designed for relatively fast – 10 s or less response time –

pulsed photoacoustic detection is shown in Fig. 9.36 [9.83]. The cell is symmetric
and contains acoustic resonators 1 and 2 sandwiched between acoustic filters as in
Fig. 9.34, with identical microphones 1 and 2 positioned near the center of each
resonator (out of the irradiation plane), having their signals collected via the
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differential output to reduce the system’s gas-flow noise. In the experiments, the
repetition rate of a 1064-nm laser was tuned to match the 4100-Hz acoustic resonant
frequency of the cell for the low Q-factor (Q ¼ 17), making the full width at
half-maximum of every resonance be near 235 Hz. The resonator tube and
filter-to-inlet volumes were near 2 and 17 cm3 for a design-limited response time of
approximately 4 s, with the actually measured time being near 10 s. The smallest
evaluated methane concentration was estimated as 1.2 ppbv, leading to the expected
minimum detectable absorption coefficient a � 3:3�10�8 cm�1 [9.83].

A dual nonresonant differential arrangement of a photoacoustic cell is illustrated
in Fig. 9.37 [9.84]. Two small-volume acoustic cells of near 1 cm3 having
approximately 5 cm2 surface area with an electret microphone coupled to a
field-effect transistor preamplifier were used for photoacoustic measurements with a
single-mode, single-spectral-line CO2 laser in the 10.6-lm band, tunable over
±200 MHz, at 800-Hz pulse repetition rate generating 10-µs-long pulses at 25-W
peak power. The actual sensitivity for 50-ppm concentration of NH3 in N2 was
estimated to be 1.3 � 10−8 (W � cm−1)=Hz1/2, versus the lowest resonant-cell sensi-
tivity: 1.6 � 10−8 (W � cm−1)=Hz1/2, obtained using the detection system shown in
Fig. 9.33 [9.78]. These estimates were made for less than 2:1 signal-to-nose ratio,
based on the registered rms noise fluctuations of the differential-output acoustic
signal for active cells with no NH3, assuming the absence of acoustic noise owing
to absorption–desorption processes on cell surfaces [9.85, 9.86].

Some enhancement in the power density of incoming radiation and, as a result,
in the sensitivity of photoacoustic measurements was achieved by combining a
tunable diode laser operating at near 1530 nm and an erbium-doped fiber amplifier
(EDFA) [9.87]. A directly modulated tunable diode laser (Fig. 9.38), providing
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flow in flow out
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Fig. 9.37 Differential
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20 mW of power in cw mode, was slowly scanned at 1–10 MHz in wavelength,
equal to half the resonant frequency of the photoacoustic cell, saturating the coupled
erbium-doped fiber amplifier, and thus ensuring a constant 500 mW of output light
power, was collimated into the cell with dual propagation via a mirror. The 1r
based, noise-limited sensitivity for detection of NH3 in N2 was estimated as being
near 6 ppb, making the calculated level of the absorption density limit:
amin‘ ¼ 1:8�10�8 at path length ‘ of 18.4 cm, and the minimum absorption coef-
ficient amin ¼ 1:5�10�9 ðW�cm�1Þ=Hz1=2, normalized by the power-to-bandwidth
ratio at 19 mm for the dual cell path [9.87].

In addition to gas-filled resonators, accumulating the energy of absorbed radi-
ation detected by microphones as acoustic sensors, a quartz tuning fork made of
piezoelectric crystal quartz can be used to both accumulate and sense the energy of
absorbed light [9.113]. The advantage of this approach is in lower susceptibility to
environmental acoustic noise for analyzing small volumes in nonresonant cells.
Figure 9.39 depicts the schematics for the direct irradiation of the fork along its
prongs (Fig. 9.39a) and for the combined fork and acoustic resonator settings with a
shorter in-fork optical path, being enhanced by two resonant tubes (Fig. 5.39b). For
the quartz fork in a cell, as in any acoustic cavity (see Eqs. (9.80)–(9.82)), the
pressure-induced resonant signal Sa due to the energy absorbed in the gas-filled cell
via the loss factor a‘ is directly proportional to the light power P and the resonator
quality factor Q, but is inversely affected by the resonant frequency f0 and the
resonant volume V: Sa � a‘P=f0V . Quartz forks are available in small sizes with
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high Q factors: nearly 20,000 if the fork is encapsulated in a vacuum and 8000 at
normal atmospheric pressure, both at standardized resonant frequency f0 ¼ 215 Hz.
Combinations of the resonant fork and the resonance-enhanced acoustic cells (see
Fig. 9.39b) allow reaching 10−9–10−10 cm−1 W=

ffiffiffiffiffiffi
Hz

p
noise-level sensitivity

[9.114–9.118]. Interferometric cantilevers and compact electromechanical acoustic
cavities with differential resonators for noise removal allow similar sensitivity
levels to be realized [9.119, 9.120].

In terms of the absolute sensitivity, photoacoustic detection is not inevitably better
than other low-loss detection techniques. For example, a comparative study of
photoacoustic and direct absorption measurement methods revealed quite similar
sub-parts-per-million levels of minimal detectable concentrations for NH3 in N2

[9.88]. The study employed two measurement cells: a multipass waveguide ab-
sorption cell as in Fig. 6.24 and a photoacoustic cell similar to that in Fig. 9.33, each
excited by a fiber-coupled distributed feedback laser and each emitting at 1.53-lm
wavelength −15 mW for calorimetric and temperature-stabilized sensing and 5 mW
for photoacoustic sensing (Fig. 9.40). The Herriott cell had a 36-m-long effective
optical path and 0.27-l volume, and was heated to 40°C; the photoacoustic stainless
steel cell had a volume near 50 cm3 and a 40-mm-long and 4-mm-diameter central
resonator excited at 4-kHz modulation frequency to match the resonance of the
acoustic cavity. The estimated minimal-detectable concentrations of NH3 in N2 were
0.7 and 0.6 ppm [9.88] for the multipass absorption and the photoacoustic
measurement techniques for 1 and 3-min response times, respectively.

9.2.7 Optical Spectroscopy of Ultrasonic Waves

An extremely sensitive detection of wavefront distortions due to low absorption
losses can be accomplished by probing acoustic deformations via an interferometer,
while using either a Hartmann–Shack or a similar wavefront-deformation sensor
[9.121, 9.122]. Figure 9.41 illustrates the concept of spatial separation for the
irradiation and observation directions to split the bulk from surface absorption loss
contributions. A collimated ArF excimer laser beam with a flat-top circular profile
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collinearly propagates through a test sample and the expanded beam of a
fiber-coupled red diode laser crosses it perpendicularly. The laser-induced wave-
front deformation is sensed by a two-dimensional 1280 � 1024 pixel sensor array
via a CCD camera, reaching quite overwhelming k/10,000 rms sensitivity at
k ¼ 193 nm. Camera readings and two optical power-meter signals – split via
beam splitter BS with one meter measuring the power of light beam propagating via
the sample and another referencing the input laser power – are managed by a PC,
controlling the excimer laser shutter for variable sample heating and cooling
intervals and respective pressure monitoring.

Another approach for remote interferometric sensing of the photoacoustic waves
generated by mid-IR radiation of a quantum cascade laser, absorbed in a sample
[9.126] and registered via a fiber-based Mach-Zehnder interferometer, is depicted in
Fig. 9.42. Quantum cascade laser QCL was tunable from 8.12 to 9.71 lm focusing a
40-ns light pulse on Sample, another side of which was probed by fiber laser FL at
1549.9 nm via respective fiber collimators FC1, FC2. Fiber circulator CR with
erbium-doped fiber amplifier EDFA and balanced photodetectors PD1, PD2

concluded the interferometer, stabilized via a piezo-electric phase shifter. The
measurement scan taking 7.3 s within the range of QCL tunability showed nearly
1 � 103 m−1 absorption sensitivity [9.126]. Pairs of orthogonally mounted Fabry-Perot
interferometers may be used as sensors of ultrasonic vibrations for photoacoustic
imaging of tissue [9.127]. A relative comparison of the achievable sensitivity for
the photothermal and photoacoustic absorption measurements on three distinct
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systems: photoacoustic and photothermal common-path spectrometers, plus a
whispering-gallery resonator interferometer – revealed reasonable agreements in
390–3800 nm spectral range at absorption coefficients ranging from *10–4 cm–1

to 2 cm−1 complementing results obtained by a standard-grating spectrometer and an
FTIR (see Sect. 12.1) instrument [9.128].

9.3 Emissive Spectroscopy

Each technique reviewed in this chapter – diffraction, interferometric, photoacoustic –
is sensitive, though indirectly, in detecting the absorption factor and linear absorption
coefficient, since sensing absorbed energy or power without calibration and with no
quantitative means of knowing the absorptance itself does not provide quantization.
Emission spectroscopy gives the advantage of absolute determination of absorbed or
emitted power according to Kirchhoff’s law and Planck’s law. The spectral emissivity
ek of the ideal blackbody, kept at thermal equilibrium, is exactly equal to the spectral
absorptance Yk : ek � Yk ¼ 1: At the same equilibrium, graybody emissivity:
ek � Yk ¼ 1� qk;R, is affected by its reflectivity qkR at wavelength k. For a trans-
parent object the balance includes the specular-plus-diffuse and the direct-plus-diffuse
components of light emission or absorption: ek � Yk ¼ 1� qk;R � sk;R, where qkR
and skR are the total reflectance and the total transmittance, respectively (see Chap. 1).

An intuitive transformation of Kirchhoff’s law for reflective and transmissive
objects can be seen via the illustration in Fig. 9.43 [9.89]. If in a plane-parallel
transparent slab of thickness d, an inner layer dx emits radiation into 4p space with
spectral emittance M(k,T) at wavelength k + dk and equilibrium temperature T,
then from unit surface area A in small solid angle dX the light intensity is:
dI ¼ (1/4p)M(k,T)dxdX. After propagation via the slab with linear attenuation
coefficient l, the intensity at either slab surface (see Eq. (1.87)) becomes:
dIsurf ¼ (1/4p)M(k,T)e−l(k,T)xdxdX. Since exp(−l(k,T)x) ¼ s(k,T) is the internal
slab transmittance, its integrated normal emittance E is:

E k; Tð Þ ¼ 1=4pð ÞM k; Tð ÞdX
Zd
0

exp �l k; Tð Þð Þdx

¼ M k; Tð Þ
4pl k; Tð Þ 1� s k; Tð Þð ÞdX: ð9:84Þ

The total amount of internally emitted radiation leaving the slab surface of
reflectivity q(k,T) is:

x
ddx

Fig. 9.43 Light emission by
transparent layer
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E k; Tð Þexternal ¼ 1� q k; Tð Þð Þ M k; Tð Þ
4pl k; Tð Þ 1� s k; Tð Þð ÞdX: ð9:85Þ

Considering the slab’s emission only into 2p space as for a blackbody with full
absorption [9.89]:

E k; Tð Þexternal ¼ 1� q k; Tð Þð ÞMb k; Tð Þ
2p

1� s k; Tð Þð ÞdX; ð9:86Þ

one obtains counting multiple reflections for a plane-parallel transparent plate
(Eq. (1.104)):

M k; Tð Þ ¼ 1� q k; Tð Þð Þ 1� s k; Tð Þð Þ
1� q k; Tð Þs k;Tð Þ Mb k; Tð Þ; ð9:87Þ

where Mb(k,T) is the emittance of the ideal blackbody, fully absorbing radiation
with factors: l(k,T) ¼ a(k,T) ¼ 1.

Following Eq. (9.87) and the specifics of the emissivity of transparent objects, the
measurement concept for absorptance-via-emittance measurement, maintaining the
thermal equilibrium, may look straightforward (Fig. 9.44), though it could require
certain finesse at the low optical losses [9.91]. Conceptually, the frequency- or
wavelength-dependency Le;m or Le;m for spectral radiance obeys Planck’s law inside
an isothermal enclosure as an ideal blackbody at temperature T:

Le;m ¼ 2hm3=c2
� ��

ehm=kT � 1
� �

; Le;k ¼ 2hc2=k5
� �.

ehc=kkT � 1
 �

; ð9:88Þ

for light wavelength k and frequency m, where h and k are the Planck and
Boltzmann constants, and where the blackbody enclosure emits radiation by
Eq. (1.46) as an ideally Lambertian object. That enclosure should be large to
accommodate the specimen and maintain blackbody properties.

When sample 1 for absorption study at temperature Ts is inside enclosure 2 at
temperature Tc, emitting radiation via chopper 3 to monochromator 4 and detector
5, the detector’s signal becomes an aggregate of the sample emittance via internal
reflections of cavity walls minus the emittance of the chopper blades, presuming the
cavity walls and the chopper blades are at the same temperature Tc as the entire

2 3 4
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Fig. 9.44 Measurements of
emittance
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isothermal enclosure, except the sample. The total energy of light transmitted via
monochromator 4 makes the combined signal E of detector 5 [9.90, 9.91]:

Es ¼ const � ekW0 þ qkWc þ skWc �Wcð Þ: ð9:89Þ

Here W0 and Wc are the spectral energy densities, emitted by the test sample and
the cavity. Sample emittance e, in view of its absorptance via reflectance and
transmittance: ek ¼ Yk ¼ 1� qk � sk, is:

Es ¼ const � ekW0 � ekWc þ ek þ qk þ skð ÞWc �Wcð Þ
¼

ek þ qk þ sk¼1
const �ek W0 �Wcð Þ: ð9:90Þ

To make an absolute calibration of the system, blackbody radiator BB at the same
temperature T0 is installed instead of sample 1. Since for a blackbody
ebb ¼ 1; qbb ¼ 0 , the respective signal is [9.91]:

Ebb ¼ const � ebbW0 þ qbbWc þ sbbWc �Wcð Þ ¼ const � W0 �Wcð Þ; Es=Ebb ¼ ek:

ð9:91Þ

The combination measurement with the blackbody behind the sample of trans-
mittance s gives:

Esþ bb ¼ const� ekW0 þ qkWc þ skW0 �Wcð Þ ¼ const � ek þ skð Þ W0 �Wcð Þ;
Esþ bb=Ebb ¼ ek þ sk: ð9:92Þ

Equations (9.90)–(9.92) confirm that to increase the measurement sensitivity for
low absorption losses and consequently for low emissivity of a test object, the
temperature contrast between temperatures of the object and the background must
be increased as much as possible. Fluctuations of the temperature contrast between
the sample and the cavity, as well as the temperature of the chopper blades, directly
affect the accuracy of such a measurement. For example, at room temperature near
20 °C, a potential 0.5 °C change of Tb displaces the apparent position of the
maximum-emitting spectral line in the mid-IR region by nearly 5 lm [9.90].
Applying the revealed emission measurement technique, while keeping samples at
liquid-nitrogen temperatures, and also utilizing a Fourier spectrometer, providing
the highest possible throughput in the IR spectral range, enabled an absorption
coefficient in the 10−5-cm−1 range to be measured with a spectral resolution of
approximately 1 cm−1 [9.44].

In the emissivity measurement, as well as in other procedures involving
uncoated surfaces, protective measures may need to be taken to avoid the internal
multiple reflections in all plane-parallel plates. Transformation to the effective
coefficients ek0;Yk

0; q0k, and s0k counting multiple reflections could be done via
following relations (see Chap. 1):
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ek ¼ Yk ¼ ð1� qkÞ
�
1� exp �a‘ð Þ���1� qk exp �a‘ð Þ�;

sk ¼ ð1� qkÞ2exp �a‘ð Þ� 1� q2k exp �2a‘ð Þ� �
;

qk ¼ qk
�
1þ exp �2a‘ð Þð1� 2qkÞ

��
1� q2k exp �2a‘ð Þ� �

: ð9:93Þ

As a result, the effective linear absorption coefficient a0 of the internal bulk of a
substance under study is being defined not only by the measured emissivity, but
also by the surface reflectance qk from the following relationships [9.91]:

Yk ¼ ek ¼
�
1� q2k

�
1� exp

��a0‘
�� ��

1� q2k exp
��a0‘

�� �
;

a0‘ ¼ ln
�
1� q2kek � q2k

��
1� q2k � ek
� �� �

: ð9:94Þ
Consequently, any linear absorption coefficient measurement for a reflecting sub-
stance requires having at least two test samples with the correspondingly distin-
guished lengths to be compared.

Applying Kirchhoff’s law, one can obtain the emittance and the absorptance of
an expected blackbody via bidirectional: w, h, spectral reflectance measurements of
the blackbody’s cavity:

qk w; hð Þ ¼ Uq;k hð Þ=U0;k wð Þ;
Yk w; hð Þ ¼ 1� qk w; hð Þ ¼ U0;k wð Þ � Uq;k hð Þ� �

=U0;k wð Þ;
ek w; hð Þ ¼

ek¼ak
1� qk w; hð Þ;

ð9:95Þ

where U0 and Uq are the incident and the reflected flux of radiation at the angle of
incidence w and the angle of observation h (see Fig. 9.45). Owing to low residual
reflectivity for a close-to-ideal blackbody cavity, the emissivity errors made while
expecting close-to-zero reflectivity can be low: Dek ¼ Dqk ¼ qkDqk=qk. At
qk ¼ 0.0005 and 10% reflectivity measurement error, the emittance e and
absorptance q are ek ¼ qk ¼ 0.9995 ± 0.00005.

Emittance measurements, performed via bidirectional reflectance detection by
equations (9.95), have distinguished a particular off-axis cavity at u ¼ 10°,
D ¼ 1 cm, and length-to-aperture ratio L/D ¼ 12.45 (Fig. 9.45a) as having the
highest emittance [9.93]: ek ¼ 0.99999 at k ¼ 10.6-µm wavelength of a CO2 laser,
among various cavities tested while all of them were coated with same diffusing
black paint. Measurements were made via an integrating hemiellipsoid as the
blackbody cavity (Fig. 9.45b) having the sample and a light detector at two focal
points of the ellipsoid with the incident laser beam entering the test cavity along its

(a) (b)

Fig. 9.45 Off-axis blackbody cavity (a) and hemi-ellipsoid collection of radiation emission (b)
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axis A (Fig. 9.45a). The laser beam was chopped at 5–35-Hz frequency, delivering
99.975% of laser light to the cavity in an evaporated-aluminum hemiellipsoid,
focusing the cavity emittance to a thermopile detector connected to a lock-in am-
plifier [9.92]. The comparison of the emittance and calorimetric studies revealed
reasonable matches of absorption values near 10−4 cm−1 for polished KCl samples
[9.93]. Calibrations of blackbodies for emissivity measurements are often made via
a Fourier-transform spectrometer (see Sect. 12.1), especially at IR wavelengths and
low temperatures [9.125–9.127].

9.4 Integrating Spheres as Multiple-Reflection Cavities

9.4.1 Integrating-Cavity Absorption Measurements

Utilization of integrating spheres, as seen in Chap. 2 (Eqs. (2.5), (2.6)), enables
accurate and sensitive measurements of diffuse and direct reflectance or transmit-
tance at thermal equilibrium of radiation in a sphere [0.2–0.7, 0.12]. Following the
law of conservation of energy for detection of attenuation coefficients in reflected
and transmitted radiation, any internal sphere absorptance completes the total
sphere internal loss to unity. Thus, for perfect geometry of the integrating sphere
and infinitely small apertures for light beams entering and exiting such a sphere for
irradiation and detection of irradiance of the inner sphere surface, the wall ab-
sorptance Y can be determined by measuring two sphere irradiances: one irradiated
only by the sphere’s internal reflections E0, and the other irradiated by the sphere
reflections E0 and direct input Ed, accomplished via selective baffling or viewing:

E0= E0 þEdð Þ ¼ q;! 1� q ¼ 1� E0= E0 þEdð Þ;! Y ¼ 1� q ¼ Ed= E0 þEdð Þ:
ð9:96Þ

Equation (9.96) resembles relation (2.131) for the absolute reflectance measure-
ments [2.46–2.48].

Another way of detecting the integrating cavity absorptance is by comparing the
irradiance while altering its inner-surface area [9.94, 9.95]. For flux U0 entering the
sphere via an infinitely small aperture, the sphere equilibrium is maintained via light
reflected and absorbed by sphere walls:

U0 ¼ U0 1� qð ÞþU0q 1� qð ÞþU0q
2 1� qð Þþ � � �

¼ U0 1� qð ÞþU0q 1� qð Þ= 1� qð Þ ¼ U0 1� qð ÞþU0q: ð9:97Þ

If an infinitely small detector senses internal irradiance E0 of the sphere, Eq. (9.97)
becomes:

U0 ¼ U0 1� qð ÞþU0A0q 1� qð Þ= A 1� qð Þð Þ ¼ U0 1� qð ÞþE0A0q 1� qð Þ:
ð9:98Þ
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Here A0 is the internal sphere surface. When an auxiliary aperture of area A is
opened into the sphere, its internal irradiance is reduced to EA and the sphere
equilibrium for flux U0 equals to:

U0 ¼ U0 1� qð ÞþEA A0 � Að Þq 1� qð ÞþEAA: ð9:99Þ

Via Eqs. (9.98) and (9.99) for known areas A0 and A and irradiances E0 and EA, the
sphere absorptance Y is:

Y ¼ 1� qð Þ ¼ EAA= E0A0=A� EA A0=A� 1ð Þð Þ: ð9:100Þ

As a result, one can use an integrating sphere for direct absorptance measure-
ments: since radiation scattered inside such a sphere is completely recycled via
multiple sphere reflections, the true spatially integrated absorption coefficient Y of
the entire sphere surface is determined as Y ¼ 1� q, as long as the internal surface
of the sphere is a uniform diffuser with unchanging diffuse reflectance q ¼ qd and
the infinitely small inclusions (see Chap. 2). First, let us recall Eqs. (1.71–1.73)
leading to the Bouguer–Beer–Lambert law. If an incident beam of light with energy
E0 is transmitted via a homogeneous plane-parallel sample of linear absorption
coefficient a, the energy Ea absorbed by the sample material is:

dEa ¼ �E�a�dx ¼ �E�a�dðt�vÞ ¼ �E�a�dðt�c=nÞ; ð9:101Þ

where E is the energy of incident light traveling at speed v via such a sample of
thickness x and refractive index n. Converting to absorbed power P via the volume
density Ev of incident light:

P ¼ dEa=dt ¼ E�a�v ¼ Ev �V�a�c=n; ð9:102Þ

one can express the light flux Ua absorbed by volume V of a spherically irradiated
or, another words, 4p-irradiated sample (9.96) as:

Ua ¼ EvVð Þac=n: ð9:103Þ

Relation (9.103) can be obtained via irradiance vector ~N representing the
spherical energy density Ev of spectral irradiation at a given point in volume
dV [0.5, 1.1] (see Chaps. 1 and 2):

Ev c=nð Þ ¼
Z
X
LdX; where ~N ¼

Z
X

~L ~r;~sð ÞdX; ð9:104Þ

and where r and s are the unit vectors of the irradiance and direction. From the
equation of radiative transfer [1.1, II.24], integrating the divergence of irradiance
vector ~N over volume V gives [9.97]:
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�r�~N ¼ ac=nð ÞEv ! �
Z
~s

~N�~S ¼ ac=nð Þ
Z
V

EvdV : ð9:105Þ

Presuming the integral in Eq. (9.105) accounts for the light energy, entering the
spherical sample and being lost due to absorption only, the power of radiation
absorbed in volume V is:

Pa ¼ EvVð Þac=n: ð9:106Þ

For any uniform diffuse irradiation of the spherical surface, the normal com-
ponent of the inner vector irradiance Nn can be expressed via outward radiance L
(Eq. (1.47)): Nn ¼ pL; thus:

Ev ¼ 4pnL=c ¼ 4nNn=c: ð9:107Þ

From Eqs. (9.106) and (9.107), the outward normal irradiance Nn defines the
absorbed power Pa (9.97):

Pa ¼ 4aVNn: ð9:108Þ

Concisely, detection of the linear absorption coefficient in the uniformly integrating
sphere can be reduced to determination of the power of incident uniform light
absorbed by the sample and the normal irradiance created in that spherical sample
under study occupying a known volume.

Multiplication-factor alteration of the reflective surface of the integrating sphere
via Eq. (9.100) may not be an effective measurement technique. Enlarging the
openings modifies the sphere’s reflectivity by impeding its ability to uniformly
integrate light (see Sect. 2.4). An alternative approach via openings relies on
changing the internal sphere reflectivity by adding an object of spherical geometry
but unknown reflectivity for reference-measurement series to be made. The refer-
ence technique is illustrated in Figs. 2.5 and 2.35 and is described by Eqs. (2.20)–
(2.27) and (2.167)–(2.169) – insertion of a translucent sphere inside an integrating
sphere allows keeping uniform irradiation inside either sphere [2.8]. Exactly the
same approach can be used to measure the absorptivity of any sample, which
requires enabling the uniform-diffuse irradiation for Eq. (9.108) to be applicable for
such a measurement.

One example of the reflectivity-alteration technique described above is illus-
trated in Fig. 9.46 [9.97]. Opaque integrating sphere 1 has the thickest wall for the
highest diffuse reflectivity q1. Internal translucent sphere 2 with diffuse reflectivity
q2 and transmissivity s2 creates volumes 0 and 3 in sphere 1. Radiation from the
light source or sources S-a and S-b is transmitted via optical fibers to volume 3 and
then guided out to detectors D-0 and D-4 for irradiance measurements inside
intermediate spherical cavities 0 and 3 and the walls of spheres 1 and 2 with the use
of the fiber, minimizing openings in both spheres. Translucent sphere 2 serves a
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twofold purpose – it calibrates irradiance in sphere 1 and holds a gaseous or liquid
test medium.

When sphere 2 is absent, the balance of energy in sphere 1 measured via irra-
diance N3 of light exposing the sphere wall and irradiance N3 of light leaving the
sphere wall (see Fig. 9.46) is:

N1A1ð1 � q1Þ ¼ N3A3ð1� q1ÞþN3Ain þN3Aout þ 4a1V3N3; ð9:109Þ

where a1 is the inner sphere absorptance; q1 and A1 are the reflectance and the
internal area of sphere 1 minus its inclusions; Ain and Aout are the areas occupied by
the input and output ports, respectively. The sphere balance equation makes the law
of conservation of energy – the total power entering the cavity is equal to the power
absorbed by its walls and inclusions plus the power leaving the cavity. With sphere
2 having inner sphere absorptance a2 being inside sphere 1, altered irradiance N0

3
provides a calibration reading of detector D3 via output area Aout:

N1A1ð1� q1Þ ¼ N0
3A3ð1� q1ÞþN0

3Ain þN0
3Aout þ 4ða1 þ a2ÞV3N

0
3: ð9:110Þ

Similar balance equations can be written for translucent sphere 2 via irradiance
values N2 and N0 when the enclosure of sphere 2 is empty and when it is filled with
the specimen under study.

Under the presumption of a negligible spectral absorptance inside each sphere:
a1 ! 0, a2 ! 0, Eq. (9.110) for a sample of absorptance ak filling the enclosure of
sphere 2 becomes:

N2A0ð1� q2Þ ¼ N0A0ð1� q0ÞþN0AD-0 þ 4akV0N0: ð9:111Þ

1
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Fig. 9.46 Integrating-sphere
sandwich
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Equation (9.111) accounts for the internal reflectivity q0 of sphere 2 being filled by
any liquid sample under study with refractive index nk 6¼ 1.0 and is therefore
different from the outer-wall reflectivity q2. The difference of course vanished for a
gaseous sample. For irradiance values N2 and N0 proportional to the readings of
detectors D-2 and D-0, the sample absorptance ak may be determined via known
spectral reflectivities q2 and q0 of the inner and outer sphere surfaces:

ak kð Þ ¼ A0 1� q2ð Þ=4V0ð Þ N2=N0ð Þ � AD-0 þA0 1� q0ð Þð Þ=4V0ð Þ: ð9:112Þ

Whereas q2 ¼ q0 for the gaseous sample or presuming that spectral reflectivities q2
and q0 can be predetermined as components of calibration factors K of spheres 1
and 2 with the liquid sample:

ak kð Þ ¼ K1 N2=N0ð Þ � K2; ð9:113Þ

which involves measurement of spectral refractive indices nik of the sphere and the
sample, affecting values of irradiance N0 and of absorptance akðkÞ being measured,
one can generally measure the calibration parameters using two samples of known
properties [9.98]. Equation (9.111) can also be resolved via the irradiance ratio
N2/N0 to be measured or calibrated:

N2=N0ð Þ ¼ 1� q0ð Þ= 1� q2ð Þ � 4rak kð Þ= 3 1� q2ð Þð Þð Þ
¼ 1þ 4rak kð Þ=3ð Þ= 1� q2ð Þ � q0= 1� q2ð Þð Þ; ð9:114Þ

where r is the radius of internal translucent sphere 2 with a negligible area AD

versus A0¼3V=4r.
Practical realizations of absorption measurement in liquids or gases (see below

for specifics of integrating sphere studies with gaseous substances) filling the
translucent integrating sphere implies spectral calibration of an empty and a filled
sphere, determining factors K1 and K2. For liquid solutions or water pollutants, a
pure water sample and a calibration solvent of known absorption coefficients aw
and as can be consequently measured for Eq. (9.113) to become, respectively:

aw kð Þþ as kð Þ ¼ K1;k N2;k
�
N0;k

� �� K2;k;

as kð Þ ¼ K1;k N2;k
�
N0;k

� �� K2;k þ aw kð Þ� �
: ð9:115Þ

Here subscript k designates wavelength-specific parameters to be determined by
the calibration process. In addition to having spectral dependencies, sphere calibration
factors are perturbed by leakage of radiation via entrance and exit apertures and by the
refractive index differences of an empty and filled, especially partially filled, sphere
for the volume-dependent calibration to be made [9.98]. Besides, the irradiance of the
filled-by-sample sphere is affected by the sample’s absorption to be determined.

Furthermore, even if spectral calibrations are made to determine the absorption
coefficient of an internal medium, the average number of collisions and path lengths
of light in the cavity must be known [9.99]. As radiation enters any integrating

526 9 Determination of Absorption Losses



sphere (see Chap. 2), it bounces off the sphere walls with reflection coefficient q,
and multiple diffuse reflections make the sphere irradiance N (equation (2.5)) for an
effective number of internal reflections (1 − q)−1 ¼ Le, being the empty-sphere
photon lifetime:

Nin ¼ ðUin=AinÞ=ð1� qÞ ¼ ðNinVin=AinÞ=ð1� qÞ ¼ U0s 4r=3ð ÞLe; ð9:116Þ

where U0 is the flux uniformly distributed in 4p space entering the sphere via
translucent walls of transmittance s, and Nsp, Vsp, and Asp are the spherical irra-
diance, sphere volume, and surface area of the sphere of radius r. Equation (9.116)
can be rigorously derived via the probabilities of the photon distribution in a sphere,
which defines the average path length �‘ in the sphere per entering photon [9.99]
that is also valid independently of a shape of the integrating cavity [9.110]:

‘empty ¼ 4Vsp=Asp 1� qð Þ ¼ 4r=3 1� qð Þ; ð9:117Þ

where the probability of a photon to survive a wall reflection is q and the proba-
bility of it being lost is 1 − q.

Similarly, the respective probabilities Pa and Ps of a photon being absorbed and
surviving a transit across the internal sphere volume filled by a test medium are
related as Pa ¼ 1 − Ps. Since the path length of a photon emitted or incident at
angle u is: ‘ uð Þ ¼ 2r cosu (see Fig. 2.28), Eq. (1.73) respectively becomes:

Qa=Q0 ¼ Ps ¼ exp �a‘ uð Þð Þ ¼ exp �2ar cosuð Þ: ð9:118Þ

Conversion to light emitted at angle u versus the total flux U0 follows via
subsequent relations (see Chap. 1): IðuÞ ¼ I0 cosu, dUðuÞ ¼ IðuÞ2p sinudu ¼
I02p sinu cosudu, and U2p ¼ pI0. Considering the probability P of the photon not
being absorbed in the medium while propagating at angle u: PðuÞ ¼ PsUðuÞ=U2p,
the integration over all angles of incidence for photon flights from the wall leads to
the following probabilities for the photon to survive or be absorbed [9.99]:

Ps ¼ 2
Zp=2
0

sinu cosu exp �2ar cosuð Þdu ¼ 1� exp �2arð Þ 2arþ 1ð Þ
2a2r2

;

Pa ¼ 1� 1� exp �2arð Þ 2arþ 1ð Þ
2a2r2

: ð9:119Þ

In addition to any straight-line propagation described by Eqs. (9.118) and
(9.119), in absorbing and in scattering mediums the sphere photon trajectories may
not be straight lines owing to scattering. Since the probability of a photon surviving
a wall reflection is q and the probability of it surviving intracavity flight is Ps, the
combined probability for the first reflection and flight is qPs, and is (qPs)

n−1 for
n − 1 reflection collisions plus flights. Combining the direct photon flight with
survival probability Ps with sphere-wall reflection probability qPs, the average
photon lifetime Lf in an integrating sphere filled by an absorbing medium becomes:
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Lf ¼ Ps þ PsqPs þ Psq2P2s þ � � � ¼ Ps

1� qPs
: ð9:120Þ

The average path length ‘a of photons absorbed in the sphere can be expressed
via the linear absorption coefficient as: ‘a ¼ 1/a. The proportions of surviving and
being absorbed photons are exp(−a‘i) and 1 − exp(−a‘i), respectively, making the
total proportion of photons absorbed before reaching the sphere wall be Pa=a. The
path length ‘f of surviving photons and the path length ‘a of photons absorbed in
the filled cavity are:

‘a;i ¼ 1� exp �a‘ið Þð Þ; ‘a ¼
X
i

‘i ¼ Pa

a
;

‘f ¼ 1
a

1� Psð Þ
1� qPsð Þ ¼

1
a

1� qPs � Ps 1� qð Þð Þ
1� qPsð Þ ¼ 1

a
1� Lf

Le

� �
: ð9:121Þ

As Ps ¼ 1 − Pa and (1 − q) ¼ 1/Le, the probability Pa of a photon being absorbed
on reflection plus passage is 1 − qPs. By comparing the flow of photons in and out
of the inner translucent sphere: Nin ¼ N2A0(1 − q2), N0 ¼ LfN2A0(1 − q2)=A0

(see Fig. 9.46, Eqs. (9.111)–(9.114)), one can express the ratio of inward to out-
ward irradiance as:

Nin=Nout ¼ 1=ðLfð1� q2ÞÞ ¼ ð1� q0PsÞ=ðPsð1� q2ÞÞ: ð9:122Þ

Equations (9.121) and (9.122) can be rearranged, emphasizing each factor for
cavity-path length �‘:

‘f
�‘
¼ 1

a�‘
1� Lf

Le

� �
;
Nin

Nout
¼ 1

Ps

1
1� q2

� �
� q

1� q2

� �
; ð9:123Þ

and be converted to Eq. (9.114) with the Ps value by Eq. (9.119): 1/Ps ≅ 1 + 4ar/3,
for ar 
 1 [9.99]. Similar irradiance measurements as those done by Eq. (9.114) in
the empty and filled sphere for empty-sphere and filled-sphere photon lifetimes of
Le ¼ (1 − q)−1 and Lf ¼ Ps=(1 − qPs), respectively, are made by the ratio:

N0
e=N0

f ¼ Le=Lf ¼ ð1� qPsÞ=ðPsð1� qÞÞ: ð9:124Þ

Instead of Eq. (9.115) measurements of water samples versus pure water can be
made as:

N0
w=N0

s ¼ Lf
w=Lf

s ¼ ðPswð1� qPsÞÞ=ðPsð1� qPswÞÞ: ð9:125Þ
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Analysis of the integrating cavity “sandwich” may be extended to a cylindrical
cavity with inner path length �‘ being the mean-chord length or the distance
between opposite surfaces [9.100].

Instead of two integrating spheres combined into a sandwich, making radiation
interchange dependent on the parameters of both spheres, a single integrating
sphere enables measurements of absorption in a filling-in liquid or gas sample in a
similar manner if the spherical irradiation is delivered via a sphere-centered uniform
diffuse emitting source [9.101]. The survival probability Pc of emitted photons
propagating from the center of a sphere with radius r to the outer wall is expð�arÞ,
and for reflected photons is q expð�arÞ. Then, the postreflection photon-survival
process is derived by Eq. (9.120); as a result:

Lf ¼ exp �arð Þþ q exp �arð Þ Ps

1� qPs
¼ exp �arð Þ 1þ qPs

1� qPs

� �

¼ exp �arð Þ
1� qPs

¼ Pc

1� qPs
: ð9:126Þ

For absorption probability Pa ¼ 1� Ps = (1 − exp(−ar)) the average path length of
absorption becomes ‘f ¼ 1=að Þ 1� exp �arð Þ arþ 1ð Þð Þ, making the average path
length for the whole population of photons that are absorbed in the first flight, on
reflection as a function of (1 − q), and after the wall reflection, already given by
Eq. (9.121) for an inner sphere in a cavity sandwich, be [9.101]:

Lf ;R ¼ 1=að Þ 1� exp �arð Þ 2� q 1� Psð Þ= 1� qPsð Þð Þð Þþ exp �2arð Þ arþ 1ð Þð Þ:
ð9:127Þ

Despite simplification versus a dual-sphere cavity, the central uniform diffuse
emitting source-based cavity absorption study is quite involved if the absolute value
of the absorption coefficient of a liquid needs to be determined. Instead, comparison
measurements versus pure water can be performed via Eq. (9.126) for Lw and Ls:

Ts=w ¼ Lf ;s
Lf ;w

¼ exp �asrð Þ 1� qPwð Þ
exp �awrð Þ 1� qPsð Þ ¼ exp � as � awð Þrð Þ 1� qPw

1� qPs
; ð9:128Þ

where Ts/w is the relative transmission coefficient of a liquid sample versus pure
water. In cases of unknown sphere reflectivity, which happens every time when the
sample’s refractive index is not unity, additional measurements of known liquids
are needed to identify spectral reflectivity values of the sphere itself. Furthermore,
additional scattering in the sample affects the effective path length of radiation
propagation by decreasing the exp(−(a + l)r) factor proportionally to scattering
coefficient l, and also changing the average path length for photons reflected from
the sphere wall. Therefore, unknown sample scattering sets limits on the applica-
bility of measurement by relation (9.128), as well as practical uniformity deviations
of the presumably uniform diffuse emittance for the centrally located source, which
requires verification [9.102].
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In any practical consideration, Eq. (9.128) needs to be solved via spectrally
dependent parameters of the sphere with the sample and the independently verified
pure-water specimen. Expanding the probabilities of photon survival versus ab-
sorption coefficients of the pure water and sample via Eq. (9.119), relation (9.128)
provides straight absorption–reflection dependence:

Ts=w ¼ exp �asrð Þ
exp �awrð Þ

a2w
a2s

� �
2 asrð Þ2 � q 1� 2asr þ 1ð Þ exp �2asrð Þð Þ
2 awrð Þ2 � q 1� 2awr þ 1ð Þ exp �2awrð Þð Þ : ð9:129Þ

Owing to quadratic terms for the contrasting absorption coefficients, the relative
sphere measurements by Eq. (9.129) are especially sensitive to absorption or
scattering properties, but are indifferent to relative variation of sphere-wall reflec-
tivity. Figures 9.47, 9.48 and 9.49 depict changes in spectral transmission for ab-
sorption measurements of emulated water samples by numerical simulation of the
published absorption measurement data (such as in [9.103]) versus equivalently
diverging sphere wall reflectivity numbers. The relatively high sensitivity for the
reference comparison measurement imposes strict requirements on the accuracy of
reference data and the absence of scattering, as illustrated by Figs. 9.47, 9.48, and
9.49, when a very small absorption coefficient increment of 0.001 cm−1 was added
to the tabulated spectral values of pure water, changing transmission values nearly
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10% for samples referenced to pure water with a bit smaller in magnitudes, but
more spectrally divergent changes for reflectance values. Thus, most considerations
on designing the flow-through and central-source integrating absorption meters
require detailed analytical or numerically modeling and thorough experimental
confirmations [2.85, 9.104–9.106, 9.111].

9.4.2 Integrating Spheres as Absorption Cells for Gaseous
Substances

Since it is fairly convenient to fill a sphere with a gas having the attenuation, or
scattering, or absorption coefficient in question, low-loss measurements can be
obtained by comparing readings of the empty and filled sphere. Considering the
high reflectivity of the sphere wall in low-loss measurements, assuring an
approaching infinity number of cavity-volume passes by the radiation of interest,
the average cavity length �‘ per path is defined by the ratio of the perfect-sphere
volume to its surface – being 4r/3 for radius r – multiplied by the wall magnification
factor (1 − q)−1 accounting for the totality of all multiple reflections, where q is the
sphere wall reflectivity.

For element dA1 receiving radiation at angle h from an elementary sector dA2 of
the sphere wall with emittance L and the flux d2U ¼ LdA1dA2(cosh/r1,2)

2 is
(Fig. 9.50, Eqs. (1.25)–(1.60) and (2.154)):

d2U ¼ 2pL cosH sinHdHdA1 ; ð9:130Þ

leading the combined flux d2U0, irradiating the elementary platform dA1 by the
entire-sphere uniform diffuse emitting surface of the equivalent solid angle p
Eq. (1.31), to be:

d2U0 ¼ pLdA1: ð9:131Þ

If the sphere is filled with an attenuating substance with attenuation – absorption a
plus scattering r – coefficient l(k), the flux becomes:

Fig. 9.50 Irradiation of a
sphere wall
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d2U lð Þ ¼ d2U exp �l kð Þ�‘� � ¼ 2pL exp �l kð Þ�‘� �
cosH sinHdHdA: ð9:132Þ

The flux U reaching surface dA1 integrated over the full sphere nonlinearly depends
on l(a) [9.107]:

d2U lð Þ ¼ 2pLdA
Zp=2
0

exp �2rl kð Þ cosHð Þ cosH sinHdHdh

¼ 2pLdA

2rl kð Þð Þ2 1� 1þ 2rl kð Þ exp �2rl kð Þð Þð Þð Þ: ð9:133Þ

Approximating the exponent by the first two terms for a low-loss substance,
Eq. (9.133) becomes:

d2U lð Þ ¼ pLdA 1� 4l kð Þr1;2=3
� �

; ð9:134Þ

per the Bouguer–Lambert–Beer’s law for a sphere filled with a low-loss gas versus
an empty sphere: Ul ¼ U0exp(−l(k)r1,2), which may also be expressed via the
fractional flux DU ¼ U0 − Ul attenuated by the inner sphere volume:

U0 � Ul
� �

=U0 ¼ DU=U0 ¼ l kð Þ�‘ ¼ 4l kð Þr=3: ð9:135Þ

Further extending the not attenuated flux U0 magnified by the internal sphere
reflections for effective wall reflectance q0

0 (Eq. (2.108)) versus the uniformly
diffused flux U0(d) entering the sphere:

U0 dð Þ � U0ð Þ
U0 dð Þ ¼ DUent

U0 dð Þ ¼ l kð Þ�‘mult ¼ 4l kð Þr=3ð Þ
1� q00

¼ ln q
ln q� l kð Þ�‘mult

!
q00!q0

ln q
ln q� 4l kð Þr=3 ; ð9:136Þ

which shows the absorption of the gas-filled sphere to be enhanced by effective path
length �‘mult ¼ 4r= 3 1� q00ð Þð Þ.

An alternative method for path-length identification of radiation in the integrating
sphere is to estimate the completed sphere transits and their variance using the
geometric probability distribution of completed sphere transits [2.49, 9.108]. Since in
the sphere of a Lambertian diffuser (see Fig. 2.28, Eq. (2.103)) its irradiance E0 is
constant, the flux U0 emitted by element dA into the sphere is defined by the full
sphere surface: U0 ¼ 4pr02 E0, and the flux Upt leaving a port becomes U0 ¼ AptE0,
where Apt is the spherical surface removed by the port (Fig. 9.51). For a circular port
of radius r: Apt ¼ 2pr0h ¼ 2pr0(r0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr02 � r2Þp
. As a result, the fraction f of the

fluxU0 leaving the sphere via port i of radius r: fi ¼ 0:5�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25� r2=4r20

p
; is simply

defined by the sphere geometry. On the basis of geometry, the effective sphere
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reflectance can be identified via the summation of specific port reflectivities and
geometrical fractions of these ports taken out of the complete spherical surface A0

[2.49]. The average reflectance qR of the sphere wall with n openings, each of
reflectance qi and fraction fi, is:

qR ¼
Xn
1

qi fi þ q0 1�
Xn
1

fi

 !
; ð9:137Þ

where q0 is the reflectance of thewall unaffected by inclusions. IffluxU0 is incident on
the unaffected wall, the reflected flux isU0q0, with flux RfiU0q0 leaving via openings
and (1 − Rfi)U0q0 remaining. As a result, with the second sphere-wall reflection the
flux remaining in the sphere becomes qRU0q0, and with the n

th sphere-wall reflection
the flux remaining is qRn�1U0q0. Similarly, the sphere efficiency factor changes from
q0=ð1� q0Þ to q0=ð1� q00Þ (see Sect. 2.4) for the efficiency F:

Uq ¼ U0q0= 1� qRð Þ � U0FR;

FR ¼ Uq
�
U0 ¼ q0

,
1� q0 1�

Xn
1

fi

 !
�
Xn
1

qi fi

 !
: ð9:138Þ

Likewise, the efficiency Fi identifies the fraction of radiation exiting the ith port:
Fi ¼ fiFR ¼ fiq0=(1 − qR) [2.49].

Following the geometrical-series approach above, one may identify internal
sphere losses via mean and mean-square single-reflection path lengths of an average
photon in the sphere [9.108]. For a sphere filled with a low-loss substance of
attenuation (absorption) coefficient ak, the incoming flux U0 is first attenuated on
propagating the mean path length lh i : U0 lh iak, and is then attenuated with the first
unaffected-by-inclusions wall reflectance: U1 ¼ U0ð1 � lh iakÞð1 � qkÞ. After the
first wall reflection: U1q ¼ U0ð1� lh iakÞqk, and after the ith reflection:
Uqi ¼ Ui�1qkð1� lh iakÞð1� RfiÞ � Ui�1qkR. Summing all retroreflections as a
geometric series similarly to Eqs. (9.137) and (9.138) with denominator:
ð1 � qkRÞ ¼ ð1� qRkð1� lh iakÞð1� RfiÞÞ, one may obtain the total sphere flux
and partial attenuation ratios Ai ¼ Ui=U0 for any sphere substance As, wall Aw, and
openings Ao [9.108]:

(a) (b)Fig. 9.51 The open port of
an integrating sphere (a) and
the meaning of a protected
first-sphere irradiation (b)
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URq ¼
X1
1

Uiq ¼ qk 1� lh iakð Þ
1� qRk 1�P fið Þ 1� lh iakð Þ ; ð9:139Þ

As ¼ lh iak U0 þURq
� � ¼ lh iak 1� qRk

P
fi 1� lh iakð Þð Þ

1� qRk 1�P fið Þ 1� lh iakð Þ ; ð9:140Þ

Aw ¼ URq 1� qRkð Þ=qRk ¼ 1� qRkð Þ 1� lh iakð Þ
1� qRk 1�P fið Þ 1� lh iakð Þ ; ð9:141Þ

Ao ¼ URq 1� lh iakð Þ
X

fi ¼ qRk
P

fi 1� lh iakð Þ2
1� qRk 1�P fið Þ 1� lh iakð Þ : ð9:142Þ

For the Lambertian scattering distribution defined by Eq. (1.46) I ¼ I0 cosH, the
mean optical path length lh i (see Fig. 9.51a, b), being integrated and weighted via
the intensity I, becomes:

lh i ¼
Zp=2
0

2r0 cosHI cosH2p sinHdH

,Zp=2
0

I cosH2p sinHdH ¼ 4r0
3

¼ �‘;

ð9:143Þ

as in relations (9.130)–(9.135). The mean-square single-reflection path length is:

l2
� � ¼ Z

p=2

0

2r0 cosHð Þ2I cosH2p sinHdH

,Zp=2
0

I cosH2p sinHdH ¼ 2r20 ;

ð9:144Þ

with variance [II.43, II.44]: r12 ¼ l2
� �� lh i2 ¼ 2r02=9, and the probabilities of

photon disappearance, being absorbed in internal sphere substance: pa ¼ lh iak, in
its wall: pw ¼ ð1� lh iakÞð1� qRkÞ, or lost in openings: po ¼ ð1 � lh iakÞRfi, and
of the photon surviving: psrv ¼ ð1 � lh iakÞð1� qRkÞð1� RfiÞ. Partial transits of
light not completing a full-sphere path and vanishing must also be evaluated, fairly
complicating the analysis [9.108].

One aspect of integrating-sphere absorption-cell functionality relates to the
temporal response, for which the time constant tdecay of a diffusely reflecting cavity
needs to be assessed [9.109–9.111]. Ranging from 0 to 2r, the average path length �‘

leads to the average time for successive reflection cycles: �t ¼ �‘
�
v ¼ �‘

�
ncð Þ. Since

radiation that entered the sphere makes the internal irradiance N0 decay exponen-
tially with time, the sphere irradiance after the input and first wall reflection
becomes:
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Nent: ¼ N0 exp �t
�
tdecay

� �
; Nrefl: ¼ qN0 exp �t

�
tdecay

� �
: ð9:145Þ

Counting the time for the decay at the first reflection t = tdecay and after the mth and
(m + 1)th reflections:

Nrefl;0 ¼ qN0e
�1; Nrefl;m ¼ qmþ 1Nrefl;0; m ! �1= ln q;

tdecay ¼ �1= ln qð Þ �‘
�
ncð Þ� �

:
ð9:146Þ

As the average-time assumption in relations (9.146) estimates various arrival
times for diffuse internal sphere reflections, Monte Carlo analysis of radiation
decays in various scenarios can be performed to estimate the temporal versus the cw
response of the spherical cavity [2.86, 9.110, 9.111]. Another way is to analyze the
probability density function W ‘ð Þ of the path length, which defines the proportion
of path lengths that lie within the interval ‘þ d‘ by normalizing the integralR1
0 W ‘ð Þd‘ � 1 to the total sphere irradiance seen by the internal detector in
absence of an absorber. Considering the Bouguer–Lambert–Beer’s law (Eq. (1.73)),
the attenuated flux U(l) in the absorber-filled sphere is:

U lð Þ ¼ U0

Z 1

0
W ‘ð Þ exp �l kð Þ‘ð Þd‘: ð9:147Þ

Applying Eqs. (9.145) and (9.146) for irradiance as a function of time for the mean
path length �‘ ¼ 4r=3 at the decay time tdecay ¼ �1=ln qð Þ �‘

�
ncð Þ� �

in the sphere
and transforming to distance ‘ ¼ ct; the sphere irradiance becomes:
E(‘) ¼ E0 �expð�t=tdecayÞ ¼ E0 � exp(−ln q�‘��‘). For simplicity, one can view the
normalized probability density function W ‘ð Þ of the sphere’s light attenuation as
complying with the Bouguer–Lambert–Beer’s law [9.111]:

W xð Þ ¼ W0 expð�lnq�‘/�‘Þ: ð9:148Þ

Here W0 is the normalization constant obtained for a nonattenuating sphere.
Transforming the probabilities from Eqs. (9.147) to (9.148) to proportionality
relations for attenuated and nonattenuated fluxes:

U0 ‘ð Þ ¼ const
Z 1

0
exp ln q�‘=�‘� �

d‘;

U0 lð Þ ¼ const
Z 1

0
exp ln q�‘=�‘� l kð Þ‘� �

d‘: ð9:149Þ

Following relations (9.149) and normalizing the attenuating sphere to an empty one
[9.111], while applying Eq. (9.136), the attenuating-sphere irradiance versus the
empty-sphere irradiance becomes:
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E lð Þ
E0

¼ exp �l kð Þ�‘� � ln q
ln q� l kð Þ�‘mult

!
q00!q0

exp �l kð Þ�‘� � ln q

ln q� l kð Þ‘ : ð9:150Þ

For experimental verification of absorption measurement capabilities in a
high-reflectivity integrating sphere cavity [9.111], the analytical expressions were
compared with the numerical models accounting for the specific sphere design,
such as a direction of the first irradiation and a restricted field of view of a detector
utilized, including the discrepancies between the models used, analytical approxi-
mations applied, and particular species studied. The designed 50-mm-diameter
sphere was calibrated by changing the concentrations of a known specimen and
fitting the correction factors obtained, allowing the absorption of gaseous methane
to be measured for 1561-nm wavelength in 0–2.5 vol% concentration range, cor-
responding to the absorptance from 0 to 0.01 cm−1, with the random component of
measurement error in the experiments being below 1%.

The ringdown cavity technique (see Chaps. 7 and 8) could also be used for
integrating-sphere based absorption studies [9.132]. Figure 9.52a shows the system
with a cylindrical integrator (view b) made of a fumed silica as layers of air–glass
interfaces of a quartz powder, having 20–40 nm diameter particles and at 12,000
layers or 2.5-cm thickness approaching *0.999 diffuse reflectance.

An input pulse from 532-nm Laser at 10–15 ns duration and 10-Hz repetition
rate coupled by collimator CL via glass filters F1, F2 and fiber collimators FC1, FC2

to multimode fibers were measured in Cavity and referenced by photo-multipliers
PMT1, PMT2. The ringdown time measured included a wall-time addition due to
light penetration to the stack of layers, identified as 3.5 ± 2.6 ps for an average
cavity reflectivity of 0.99904 ± 0.00003 [9.132]. A multiple path input–output
could be used to preserve integrating-cavity walls from impacts of contamination
[9.133].

(a)

(b)

Fig. 9.52 Integrating-cavity
ringdown system (a); cavity
insert (b)
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Chapter 10
Direct Attenuation Measurements

10.1 Differential, Ratio, and Single-Channel Systems

The actual means to increase the sensitivity of a given method for optical loss
measurement are not necessarily restrained by limitations to the maximum number
of light interactions with the object. For example, the ratio of the highest optical
power not inducing damage or optical nonlinearity in the given object to the lowest
optical signal definitively distinguished from noise without the need to count
photons reaches at least ten or more decades of optical density when applied to
optical measurements. If using any feasible method, one converts the high sensi-
tivity to the power or energy of light into high susceptibility to small changes of that
power or energy by observing a low optical loss, doing it concurrently with assuring
an adequate linear dynamic range of measurements, spatial stability, and temporal
stability, the low-loss measurement task would be instantly solved.

A well-known way for increasing the relative sensitivity to a measured loss for a
limited dynamic range involves implementing a differential registration of two
optical beams: one interacting with an object and the other beam serving as a
reference. A common dual-beam spectrophotometer is designed with this concept in
mind. It normally has measurement and reference channels and optical or electronic
compensation of the difference between channel signals [0.6, 10.1] (see Fig. 4.23).
Considering spatial separation of two channels in transmitted and reflected light by
way of a beam splitter with transmittance ss and reflectance qs, the differential-signal
channel reaction is:

MD;identical ¼ jrqsI0 � jmssI0s ¼
kr¼km¼k1
qs¼ss¼k2

j1j2I0 1� sð Þ

� const1 � I0 1� sð Þ !
s!1

0: ð10:1Þ
Here I0 is the intensity of the light source used, and jm and jr are the transformation
factors of the measurement and reference channels, accounting for distinctive
optical properties of two channel elements or unequal detector sensitivities. Since
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the purpose of implementing such a differential technique is to compensate for
every potential fluctuation of light emission and for variations of the properties of
individual channel elements, let us evaluate the spectrophotometer reaction MD,d to
fluctuation DI of the source intensity I0 at distinct channels and not approaching
unity sample transmittance s. The difference for the new signals affected by
intensity fluctuations becomes:

MD;d ¼ krqs I0 � DIð Þ � kmss I0 � DIð Þs ¼ I0 � DIð Þ krqs � kmsssð Þ;
M¼

D;d ¼¼¼¼¼)krqs¼kmss
I0 � DIð Þ 1� sð Þ; M 6¼

D;d ¼¼¼¼¼)krqs 6¼kmss
I0 � DIð Þ ka � kbsð Þ: ð10:2Þ

As a result, the signal fluctuations are not fully compensated by controlling only the
difference of two comparing signals, if the sample is not totally transparent and the
channels are not identical: jmss ¼ kb 6¼ ka ¼ jrqs:

The latter obstacle in compensating for intensity or sensitivity fluctuations could
be the key in understanding the practical reasons why differentiation-compensating
techniques do not better the designs of most-precise spectrophotometers [10.2,
10.3]. Besides, to maintain beam compensation in differential photometers, spectral
attenuation at each wavelength must be provided equally in two channels. Any
deviation of the optical transmission factor or the electronic gain of a single element
in one channel needs to be equivalent to that in the other channel. That is why a
100%-line calibration is a must procedure for every differential measurement, and
even if it is successfully achieved, changes of a single parameter while the mea-
surement is performed, such as variations of the light-propagation direction in one
of the channels, would lead to the realized high sensitivity not being necessarily
transformed to high accuracy of optical-loss measurement.

One fundamental solution to the differential-measurement task is to make
measurements of ratios of signals in the main and reference channels. At either
constant transmittance and/or reflectance within any single channel, not necessarily
equal to that of another one, the ratio of channel signals correctly distinguishes and
compensates for any single-channel fluctuation, providing the reference signal
remains stable, as:

M ¼ Mm

Mr
¼ jmss I0 � DIð Þs

jrqs I0 � DIð Þ ¼ jmss
jrqs

s � const � s: ð10:3Þ

Following from Eq. (II.15), the optical sensitivity of a direct loss measurement via
ratio (10.3) is limited by the twofold magnitude of the inverse signal-to-noise ratio
in every single channel. When all systematic errors are eliminated and noise in each
channel is equally random, limiting errors of ratio measurements can be expressed
by double magnitudes of equivalent noise-to-signal ratios in the measurement and
reference channels:

dlim ¼ � D Im=Im þD Ir=Irð Þ ¼
D Im�D Ir ;Im�Ir

�2D I=I: ð10:4Þ
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One can see that when having a photodiode with a linear dynamic range of 105–106

decades, 10−9–10−10 A dark current, and 0.1–0.5 A/W sensitivity, being connected to
a transimpedance preamplifier linearly converting a current to voltage within 5 to 6
decades of dynamic range [10.4], the actual sensitivity of the optical-loss measure-
ment may reach ±1 ppm or higher; nonetheless specific realizations of such a direct
approach may prove difficult.

One example of a difference-to-sum system, designed to increase the sensitivity of
the transmittance and reflectance measurements, was shown in Fig. 2.12 [2.10].
A light beam from an exit slit of a spectrometer is sent via modulator M onto toroidal
mirrorsM1,M2, andM3 and plain mirrorsM4 andM5 to detector D. A rotating sample
holder takes sample S in and out of the beam at a modulation frequency of 25 Hz
sensing the difference of the 100% signal and the sample’s transmittance s or
reflectance q signal, related to the sum of two signals: ð1� sÞ=ð1þ sÞ or ð1� qÞ=
ð1þ qÞ, and the ratio for both s and q evaluating the total sample loss
v ¼ 1� s� q as: ð1� s� qÞ=ð1þ sþ qÞ ¼ v=ð2� vÞ. Such a system doubles its
sensitivity to the sample’s optical properties at the expense of certain alignment
difficulties, even if optical path differences are correctly compensated (see Fig. 4.20).

A split-pulse laser system with two samples of differential length ‘1�2 in the
sample and reference arms of an uneven-leg Michelson interferometer arrangement
in reflection, can sense the difference of reflected by each arm signals being mea-
sured by a sufficiently fast detector, resolving arrivals of two 10-ns long pulse
signals in the time domain. Owing to measurements in reflected light, the loss
sensitivity to the difference in sample length’s attenuation is doubled:
v ¼ ln A=Bð Þ= 2‘1�2ð Þ, where A and B are the magnitudes of arm’s signals in
reflection. Similarly to the two-beam spectrometer system, the experimental loss
difference study of diverse samples in pulsed laser light of short coherence length
were made at *8–13% absolute-scale accuracy [10.5].

If differential-bound detection is of essence, it needs to be enhanced by ratio
measurements of registering signals to achieve high sensitivity. The differential-
division system layout applied for the low-loss measurement is illustrated in
Fig. 10.1 [10.6]. Pulse generator 1 produces a desired sequence of radiation pulses
from light-emitting diode 2 at a low frequency near 1 Hz or higher. Lens 3 forms
two correlating signals via semitransparent beam splitter 4. Each channel incor-
porates similar adjustable diffuse-glass attenuators 5 and 6, photodiodes 7 and 8,
preamplifiers 9 and 10, and digital voltmeters 11 and 12. The measurement results
are obtained via intensity difference M between the reference and measurement

1 2 3 4
5

6

7

8

9

10

11

12

13

Fig. 10.1 Difference-ratio
measurements of low optical
losses
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signals in radiation reflected and transmitted by the splitter divided by the reference
signal. Without a sample:

M1 ¼ U2 � U1ð Þ=U2 ¼ j2I0qs � j1I0ssð Þ=j2I0qs ¼ 1� j1ss=j2qs: ð10:5Þ

If a test sample is inserted in the measurement channel in transmitted light, M1

changes to M2:

M2 ¼ U0
2 � U0

1

U0
2

¼ j2I 00qs � j1I 00sss
j2I 00qs

¼ 1� s
j1ss
j2qs

: ð10:6Þ

As a result, the transmittance s of the transparent sample is determined by a dif-
ferential ratio [10.6]:

s ¼ 1�M2ð Þ= 1�M1ð Þ: ð10:7Þ

As seen from Eqs. (10.5)–(10.7), the differential-division procedure does not
produce extra systematic errors, as could happen in unbalanced differential studies.
However, noise limitation is higher with differential-ratio registration, since at least
three signals instead of two as in equivalent direct two-channel division studies are
utilized at every measurement point. Thus, the total noise signal

ffiffiffi
2

p
DInoise is

slightly higher:
ffiffiffi
3

p
DInoise, where DInoise is the equivalent noise power in each

channel. For radiation wavelength of 0.9 lm and 50-ms duration of light-emitting
diode pulses, even with the almost tripled noise the differential-division system
shown maintained a �2 � 10�4 noise limit of differential-ratio measurement in 1 h
and a �4 � 10�5 limit in 10 min.

One obvious disadvantage of the differential measurement is higher noise
compared to the single-channel and direct-ratio systems. A compromise attaining
high sensitivity of differential studies and higher accuracy of ratio measurements
may be achieved by using an added, but stable calibrated signal of an auxiliary
source [10.7]. To confirm such a concept, the system in Fig. 10.1 was upgraded to
maintain the electric signal in the measurement channel, which was subtracted from
a stabilized power of calibrated electric source 13. During each measurement only a
small variable part of the measurement signal, defined by the low loss to be studied,
was recorded by a sensitive scale of voltmeter 11. The signal measured in the
reference channel was used as the negative feedback to the current of pulse gen-
erator 1 stabilizing light output of light-emitting diode 2 (dotted lines in Fig. 10.1).
The drift for the reference differential measurement signal at wavelengths of
emission was reduced to �1 � 10�4 within 1 h and to �2 � 10�5 within 10 min.

Attenuation-difference measurements of various sorts find applicability for re-
mote sensing and trace detection, such as differential absorption spectroscopy
[10.8–10.22]. The main concept of the technique is in sensing returns of lidar-like
signals for two or more collinear waves – one of which is a resonant line for
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absorption by a species and the other is not [10.9] – via a relatively long incre-
mental remote path length sufficient for the detectable sensitivity to a differential
loss. If the wavelengths to be compared are spectrally close for similar scattering
losses and a nonresonant wavelength is not absorbed by a species, the differential
(sum) loss equation becomes:

Isum ¼ kRI0;R exp �Y kRð ÞND‘ð Þþ kNRI0;NR exp �Y kRð ÞND‘ð Þ
¼

Y kNRð Þ!0
kR¼kNR

I0;R exp �Y kRð ÞND‘ð Þþ I0;NR; ð10:8Þ

where Y and N are the absorption cross section and the concentration of the species
to be detected, while indices R and NR relate to the resonant and nonresonant
wavelengths at respective initial light intensities I0,R and I0,NR propagating along
differential path length D‘. Unvarying intensity I0,NR gives:

Y kRð ÞND‘ ¼ �ln Isum=I0;R � I0;NR=I0;R
� �

: ð10:9Þ

Here factors kR and kNR, describing additional influences for the broadband radi-
ation in the atmosphere at resonant and nonresonant wavelengths, including
reflections from the ground, are presumed to be equal.

Differential-spectroscopy measurements are performed by fast scanning in rela-
tively broad spectral domains exceeding the spectral features of the absorption
spectrums to be detected [10.11]. Multichannel detection techniques with pixel
arrays or spectrally dedicated channels are used [10.12] to reduce reference signal
fluctuations due to atmospheric turbulence and increase the signal-to-noise ratio.
Similarly as fluorescence and scattering provide added measurement signals [10.10],
the differential-wavelength technique can be used for multichannel scattering at
various angles of observation [10.13]. Narrowband spectral referencing to a known
atmospheric water vapor wavelength helps establish rapid transition from the reso-
nant to nonresonant waves, which can also be combined via polarization modulation
in a single detector for difference-ratio measurements (Eqs. (10.5)–(10.7)) at various
signal and reference wavelengths [10.14].

Likewise, differential-absorption measurements can be applied to split-channel
detection via test and reference optical paths to balance the channel noise contri-
bution (see also Sect. 10.2) and stabilize the initial differential-beam intensity
[10.15]. An example of a differential setup for two-channel, two-wavelength,
polarization-multiplexed absorption measurements [10.16] is shown in Fig. 10.2.
Two laser sources, generating light at resonant and nonresonant wavelengths,
ac-modulated out of phase with each other and multiplexed into one combined
beam via mirror 1 and wedge plate 2 to maximize the intensity of the highly
absorbed resonant wave and make the nonresonant wave intensity sufficient for
detection, maintained collinear propagation of beam components. Lenses 3 and
single-mode fiber 4 delivered two multiplexed wavelengths to a hole in parabolic
mirror 5 and rotating mirror 6 on step-height retroreflector 7, which was immersed
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in the liquid under study. Light back-reflected by each step was imaged by mirror 5
onto detector 8 and a lock-in amplifier sensing beam oscillations at a chosen
modulation frequency, which was proportional to the intensity difference between
resonant and nonresonant waves and nullified at equal intensities. The system in
Fig. 10.2 measured down to 1% difference in concentrations of liquid oxygen with
3-ls time constant [10.16]; similarly, the split-channel balanced system reached
35-ppm sensitivity [10.15].

Figure 10.3 illustrates the differential-absorption detection setting for NO2 or
NO3 concentration studies in the atmosphere based on light-emitting diodes.
Temperature-stabilized light-emitting diode 1 for NO2 or for NO3 remote mea-
surement at the 450 or 630 nm wavelength band is placed in the focus of a
Newtonian telescope, whose main mirror 3 formed a 20-mm-diameter parallel beam
onto retroreflectors 4, returning a beam of nearly 30-cm diameter. Beam-forming
mirrors 2 and 5 and stepper motors direct the returning beam into mode-mixing
multimode fiber 8, further irradiating Czerny–Turner spectrograph 6 and detector
array 7. The total light path was 6090 m allowing up to parts-per-billion or
parts-per-trillion atmosphere concentration of NO2 and NO3 to be traced, respec-
tively, in the 450- and 630-nm spectral domains [10.18].

Considering to obtain any quantitative data from remote differential-absorption
spectroscopy studies, one needs to keep inmind extensive efforts necessary to analyze
measurement results at variouswavelengths and account for concentration-dependent
extinction, solar radiation scattering, stray light, etc., as a result necessitating specific
computation formalisms to be used in avoiding systematic errors [10.19, 10.20].
The added efforts are required when applying the polarization-based differential
techniques to measure absorbing and scattering characteristics of dense biological
aerosols and of human tissue [10.21, 10.22]. All-wavelength single-pulse spectral
measurements could be utilized with supercontinuum sources reaching near 1 ppm�m
mid-IR absorption sensitivity equivalent to *0.5–0.2% absorptance [10.83].
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Fig. 10.2 Differential
optical-loss balancing study
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Fig. 10.3 Long-path
differential absorption setting
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Analyzing rational challenges of later techniques, one may expect the lowest
measurement noise and the highest accuracy to be rather obtained by direct
single-channel light detection with independent stabilization of radiation emitters
and detectors or by tracking fluctuations of the radiation emission by some added
feedback to the light emitter or detector. Simultaneous stabilization of both the
source and the detector, satisfying a specific limit required for any given low-loss
measurement process, eliminates the need for other improvements. Such advanced
measures for the Beckman DU-8B spectrophotometer allowed a noise-to-signal
ratio of �5 � 10�5 to be reached within 0.5-Hz frequency bandwidth and 0.5-nm
spectral resolution at k ¼ 0:19�0:9 lm. Photometric accuracy of �3 � 10�5 was
realized in transmission studies of highly transparent objects [10.3]. Equally high
photometric accuracy at the �4 � 10�5 level was realized for transmittance mea-
surements in a single-beam research spectrophotometer optimized by the National
Institute of Standards and Technology (NIST) [4.44]. A notably higher dynamic
range of measurements – reaching 3400:1 with ð1� 3Þ � 10�4 absolute accuracy –

was carried out with a National Research Council of Canada single-beam spec-
trophotometer additionally detecting deviations from linearity [4.45].

The accuracy and sensitivity of optical loss measurements discussed above were
related to total attenuation factors for radiation interacting with test objects. If, as in
most actual cases, the task consists in detecting an internal sample loss, measured
intensity changes due to bulk properties must be distinguished from those induced
by surfaces or surface losses must be fully eliminated. Since for monochromatic
polarized light incident on the border of two dielectrics at the Brewster angle the
border reflection vanishes [1.1], Brewster-angle measurements can be used to nearly
eliminate or partition the bulk and surface losses. Since no real light beam is fully
polarized or monochromatic, the degree of polarization and the angle of incidence
accounting for the beam divergence need to be optimized for the Brewster-angle
procedure. The intensity I⊥ of the not fully nullified orthogonal light component
polarized perpendicularly to the plane of incidence and the extinction ratio
d ¼ ðIk� I?Þ=ðIk þ I?Þ of the polarized beam components must be related as:

2q?I? ffi
Ik!1

2q?I?=Ik ¼ 2q? 1� dð Þ= 1þ dð Þ � exp �l‘ð Þ; ð10:10Þ

where q⊥ is the reflectance of a single sample surface for perpendicularly polarized
light and l is the linear attenuation coefficient of the substance under study. If loss
as low as 10−5 must be evaluated for residual reflectivity q⊥ ¼ 0.15 near the
Brewster angle, the extinction ratio d of the beam polarized in the plane of inci-
dence must not exceed 0.00007 or must be below the 0.0007 level to detect loss
l‘ ¼ 10�4.

The main advantage of performing direct bulk-loss measurements at the Brewster
angle consists in the much lower sensitivity of two-surface reflected light to fluctu-
ations of the refractive index of each single reflective surface [10.23]. For example,
the transmittance of a material at n ¼ 1.5 at normal incidence s0 ¼ 0.923 (see
Eq. (1.106)) changes within �3 � 10�3 with Dn ¼ ±0.01. For measurements at the
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Brewster angle: uB;n¼1;5 ¼ 56:3	, light incident at the given angle upon a surface of
n ¼ 1.51 and at a different angle of uB;n¼1;51 ¼ 56:49	 would create reflectance
qk ¼ 4 � 10�6. This corresponds to transmittance changes that are 3 orders of mag-
nitude lower than at normal incidence. However, the requirement to maintain inci-
dence of radiation at the Brewster angle is much stronger. When targeting 10−6

sensitivity to internal bulk losses, the deviations from the correct angle at n � 1.5
must be less than±0.1° for both surfaces to give Ds,|| ¼ 1 − (1 − q||)

2 
 10−6, and
must be less than ±0.2° for Ds,|| ffi 10−5.

The actual transmission spectrum of a plane-parallel fused-silica plate is illus-
trated in Fig. 10.4, which shows the measurement error per unaccounted surface
reflectance for a perfectly aligned parallel beam of light, fully polarized in the plane
of incidence. Figure 10.5 schematically depicts a low-loss apparatus for bulk
transmission measurements at the Brewster angle. The beam intensity and plate
transmittance are sensed by detector 5 (5') while both-surfaces reflectance detector 6
controls the residual reflectivity from the plate’s surfaces and also helps to evaluate
nonparallelism of the plate surfaces. Third detector 7 attached to a more sensitive
radiometer than the first two detects scattering of radiation by two surfaces.
Spontaneous light emitted by halogen lamp 1 with its current stabilized to the
±10−5 level was formed by objectives 2 via pinhole 9 to make a parallel light beam
of at least 2 times smaller diameter than plate 4, keeping the plate edges away from
the beam not to create any stray light. Glan–Thompson polarizer 8 has provided
better than 10−6 extinction ratio. Transmission measurements were made in the
633–850-nm wavelength spectral domain, selected by set 3 of interference filters:
each with 10 nm spectral half-width. All three silicon p-i-n detectors used had
6-cm2 sensitive area with very low spatial nonuniformity and equivalent noise of
approximately 10−12 W: two decades lower than the 10−10 W level needed for 105
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resolution at an incident beam power of approximately 10−5 W. The system was
enclosed in thermostat 10 at ±0.1 K with 1 h temperature stability. The signals
detected in the channels were registered at 7 � 10�6 amplitude resolution. As a result
of all measures, the thermal drift of the measured signals did not exceed 1 � 10�5

during the 1-min time interval needed to move the sample in and out of a beam. The
minimal detected level of internal losses in 3-cm-thick fused Suprasil W1 samples
was 12–13 dB/km ð3 � 10�5 cm�1Þ for sensed surface-scattering loss of freshly
cleaned quartz surface equivalent to 0.3 dB/km [10.23].

Another distinct prospect of excluding a surface loss is associated with im-
mersing the entire test sample in a refractive-index-matching fluid filling a trans-
parent cuvette made of material similar to the sample. The method of internal-loss
measurement for a plane-parallel sample immersed in a matching liquid, and
therefore not substantially changing the light-propagation direction, is illustrated in
Fig. 10.6 [10.24]. A test sample of length ‘ having internal attenuation coefficient l
is steadily situated inside the matching-material cell of length ‘c filled with a fluid
with attenuation coefficient lfl. In the cell, the sample could be moved in and out of
the parallel light beam, with radiant flux U0, created by a lamp–two objectives–
pinhole system similar to that in Fig. 10.5. In Fig. 10.6a, the total flux Ua trans-
mitted by the fluid-filled cell with windows of total surface reflectance q, counting
the border with the fluid, is:

Ua ¼ U0 1� qð Þ exp �lfl‘c
� �� �

1� qð Þ: ð10:11Þ

In Fig. 10.6b, the transmitted flux via the new cell path now including the sample is
reduced to:

Ub ¼ U0 1� qð Þ exp �lfl ‘c � ‘ð Þ� �� �
exp �l‘ð Þ½ � 1� qð Þ: ð10:12Þ

As a result of the assumption made that the sample–fluid border reflectivity is
negligibly low:

exp �l‘ð Þ ¼ Ub=Uað Þ exp �lfl‘
� �

or l ¼ lfl � lnUb � lnUað Þ=‘: ð10:13Þ

The suppositions and the accuracy of the index-matching technique for the
sample–fluid border being nonreflective are based on several factors: reflection
losses at sample–liquid borders being zero, stability of fluid properties for the entire

(a) (b)cFig. 10.6 Study of internal
losses in immersion fluid
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measurement cycle, and closeness of liquid losses to the sample losses being
measured, since even temperature fluctuations of any large liquid loss could screen
out a smaller loss under study. To have the total reflectance of a plane-parallel
sample:

qR ¼ 1� sR ¼ 1� 1� qs�fl

� �
= 1þ qs�fl

� � ¼ 2qs�fl= 1þ qs�fl

� �
; ð10:14Þ

lower than 10−5, the actual reflectance of each sample–liquid surface should be less
than 5 � 10�6. For a sample of refractive index n ¼ 1:46, the latter requirement
corresponds to Dn 
 0.006. One fluid with properties matching immersed fused-
silica samples is carbon tetrachloride (CCl4), whose refractive index is less than
0.001 different from that of fused silica in the spectral domain of 0:5�1:1 lm at
T ¼ 21:8 	C, with an attenuation coefficient as low as 2 � 10�5 cm�1 at k ¼ 633 nm.

For fluid-matching measurements in CCl4 of 3-cm-thick Suprasil W1–Suprasil 1
fused-silica samples, as studied at Brewster-angle incidence and with registration
equipment as in Fig. 10.5, the actual intensity fluctuations of a parallel light beam
transmitted by the cell did not exceed �3 � 10�5 with short-term temperature sta-
bility of ±0.3 K. The bulk losses in the fused-silica samples measured were about
50–5 dB/km in the respective wavelength range of k ¼ 400�750 nm [10.24], with
the values of lowest bulk losses detected at 9.0 and 6.0 dB/km while having
±0.5 dB/km reproducibility and ±1.0 dB/km estimated overall accuracy.
Subsequent immersion-fluid attachments to commercial spectrophotometers
(see Chap. 4, Fig. 4.28) allowed the realization of down to 10−4 sensitivity for
transmission and reflection factors with corresponding refractive index measure-
ments for the samples [4.54], and detection of the particle size distribution and
concentration for particles suspended in water via nonlinearly inverted spectral
transmission measurements by adding a pinhole spatial filter to shield low-angle
scattered radiation from reaching the detector [10.25].

10.2 Derivative Frequency Spectroscopy

Equally as frequency modulation is advantageous relative to amplitude modulation
in terms of noise reduction, though requiring a substantially higher bandwidth for
its implementation, wavelength- and frequency-modulation techniques may be
beneficial versus amplitude-modulation schemes in noisy environments, especially
with fast-varying parameters of the measurements to be performed. The main
notion for wavelength- or frequency-modulation is to detect a change of the
transmission or reflection spectrum being measured that is enhanced by modulation,
and to distinguish the change versus stable and potentially intense background
emission, which is responsible for overwhelming stray light in conventional mea-
surements. These techniques are primarily useful for enhancing weak spectral
features, mainly in overlapping conditions requiring improvements in spectral
resolution [II.19].
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Figure 10.7 illustrates the concept for wavelength-modulation spectroscopy
[10.26]. A beam of radiation from source 1 via a dispersing element of a
monochromator is modulated by vibrating chopper mirror 2 altering the output
wavelength k in the modulation range Dk. The beam is divided by reflective splitter
3, sending the not attenuated portion to reference detector 6, while the main beam
passes through sample 4 to be studied, reaching main detector 5. Owing to the
wavelength modulation, the spectrum of the sample contains the modulation profile
of depth proportional to the derivative of its attenuation versus wavelength.
Continuous monitoring of the logarithmic ratio of consecutive detector readings
removes spectral dependency of the source intensity, monochromator transmission,
and two detector responses, but the sample attenuation spectrum contains wave-
length derivatives, and noise subtraction takes place only for frequencies lower than
the chopping frequencies, leaving high-frequency components intact.

The respective errors of wavelength and temporal distortion due to
two-detector-matching and the slow-moving mirror can be eliminated by using a
tunable-wavelength source, dividing its beam into two channels and recombining
the beams on one detector [10.27]. Figure 10.8 illustrates a setting for differential
wavelength-modulation spectroscopy [10.28]. Tunable-wavelength light k0 of laser
1 modulated at carrier frequency xm is split into sample and reference channels by
splitters 3 and mirrors 4, chopped at higher frequency xc out of phase with each
other for in-phase and quadrature components, and recombined on detector 6
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connected to lock-in amplifier 7 of bandwidth xc ± xm, synchronized by modu-
lator driver 2. The output contains in-phase and quadrature components displaced
by ±90° out of phase and separated into the sample and reference channels by the
phase settings of the lock-in amplifier. Owing to wavelength modulation, the
respective channel signals become:

SS ¼ I0sRd þ dI0
dk

sRd þ I0s
dRd

dk
þ I0

ds
dk

Rd

	 

Dk tð Þ;

SR ¼ I0Rd þ dI0
dk

Rd þ I0
dRd

dk

	 

Dk tð Þ; ð10:15Þ

where s is the sample transmittance, I0 and Rd are the source intensity and the
detector responsivity, SS and SR are the sample and reference signals, and Dk is the
wavelength modulation depth at carrier frequency xc caused by relatively large
index modulation: xm < xc=2. The first components in relations (10.15) represent dc
contributions, which are to be normalized for differential registration to take place:

SS
I0sRd

¼ 1þ 1
I0

dI0
dk

þ 1
Rd

dRd

dk
þ 1

s
ds
dk

	 

Dk tð Þ;

SR
I0Rd

¼ 1þ 1
I0

dI0
dk

þ 1
Rd

dRd

dk

	 

Dk tð Þ: ð10:16Þ

Measuring the difference of normalized signals in Eqs. (10.16) at modulation fre-
quency xm subtracts dc noise for frequency components: x < xc/2, making the
differential signal proportional to the normalized derivative of attenuation. The
attenuation or absorption coefficient itself can be roughly determined by integrating
the derivative measured. Performing spectral summation and correcting for an
unbalanced wavelength-dependent zero-level deviation, which scaled linearly with
the modulation depth, allowed sensing of the attenuation coefficient of benzene of
approximately 7 � 10�4 cm�1 [10.28].

Another detection approach is associated with high-frequency, but low-index
modulation interference between reference and sample waves, forming the basis for
frequency-modulation spectroscopy [10.36–10.53]. In the wavelength-modulation
technique, the aim is to modulate a single-wavelength laser (see Fig. 10.7) at low
chopping xc and modulation xm frequencies, also within a low detector bandwidth
xc ± xm, lower than the spectral width of the attenuation (absorption) band to be
measured. The frequency-modulation technique uses high-frequency phase modu-
lation of a beam of a single-frequency laser, exceeding the bandwidth of a measured
absorption line and thus spreading its high and low radio-frequency modulation
sidebands of sinusoidal phase modulation, but letting only one of the two weak
sidebands of a strong carrier signal interact with an absorption feature of interest,
being reduced inversely proportional to frequency to become inevitably below the
laser technical noise and detector’s shot noise. Accordingly, to distinguish that
weak frequency-modulation signal from noise in such a broadband radio-frequency
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detection approach either optical heterodyning or homodyning of the beam to be
split and recombined on a signal detector – one beam interacting with a test sample
and another providing a reference signal – is required [10.29–10.35, 10.52].

Owing to the necessity for a relatively broadband reception and, respectively, the
higher noise of frequency-modulation spectroscopy, making direct detection unre-
alistic, coherent detection techniques are essential for accomplishing measurements
with near quantum-limited sensitivity, providing the interfering sample and refer-
ence fields are perfectly matched [10.30–10.34]. The advantage of coherent optical
detection is that the detectability of the measured signal is independent of either the
presence of thermal radiation or the noise background with an adequately strong
reference signal [10.30, 10.32]. The sufficiently strong reference field makes radi-
ation power and its shot noise dominate the system noise, leading to the
approachable limit of the time-averaged signal-to-noise ratio at equal time-varying
intermediate frequency of interfering signal and reference fields:

SNRi:f : ¼ gPsignal= hmBð Þ; ð10:17Þ

where Psig is the radiation signal power, η and B are the quantum efficiency and
noise bandwidth of the detector, and h and m are the Plank constant and the radiation
frequency [10.31]. Imperfect matching of signal and reference fields, which for
laser radiation likely have a Gaussian and not a plane profile as assumed in
Eq. (10.17), lowers the theoretical signal-to noise ratio limit given above, but can be
compensated in part by increasing the beam size for the reference field [10.33].
Quantum fluctuations as well as access noise of the reference signal field further
decrease the actual signal-to noise ratio from its limit [10.34].

Figure 10.9 depicts a coherent-subtraction technique, which is similar to the
differential spectroscopy systems described earlier, widely used for a differential-
absorption lidar sensor to distinguish low signals from noisy background [10.35].
Input and reference signals are combined via a 50:50 beam splitter capable of
compensating for both quantum and access noise of the reference signal [10.34] and
directing measured and reference laser beams equally to two detectors, substanti-
ating coherent interference beats on both. Another splitter separates the coherent
laser light into signal and reference beams in the proportion desired. For a suffi-
ciently strong reference input, only sample-signal quadrature fluctuations remain
unaltered, but reference-signal noise terms can be abolished by coherent subtraction
of inputs phase-shifted against each other to equivalent light detectors, making only
sample-signal fluctuations limit coherent-receiver sensitivity [10.34].
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Frequency-modulation spectroscopy, as a high-rate expansion of the wave-
length-modulation technique, applies high-frequency modulation to coherent
single-frequency light, which spreads two mirrored modulation side lobes wider
than the test spectral feature, thus allowing it to be probed by one of the side lobes
(Fig. 10.10). An external phase modulator modulates an optical carrier signal at
frequency xc by high frequency xm passing via a sample under test to a fast
photodetector [10.36]. Owing to the sinusoidal modulation, the initial field of laser
radiation: E ¼ 0.5E0exp(ixct), further carries the frequency spectrum:

Ef ¼ 0:5E0

X1
k¼�1

Jk Mð Þ exp i xc þ kxmð Þtð Þþ const:; ð10:18Þ

where M is the modulation index, being deliberately low, and Jk are the Bessel
functions of order k. For M � 1, only two first functions remain: J0 � 1 and
J±1 ¼ ±M/2, and other terms vanish, thus the spectrum includes a strong central
frequency and weak side lobes at frequencies xc ± xm. For frequency-dependent
absorptance a(x) and refractive index n(x), the transmitted amplitude E is:

ET ¼ E0=2ð Þ exp �A0 � iu0ð Þeixct þ exp �Aþ 1 � iuþ 1ð Þ M=2ð Þei xc þxmð Þt
�

� exp �A�1 � iu�1ð Þ M=2ð Þei xc�xmð Þt
�
: ð10:19Þ

Here Ak ¼ exp �ak xð Þ‘ð Þ is the attenuation and /k ¼ i‘ xc þ kxmð Þnk xð Þ=c is the
phase shift for a sample of length ‘ for k ¼ 0, 1, −1. The slowly varying pho-
todetector intensity envelope, if M2 terms are disregarded:

Ix tð Þ� cE2
0=8p

� �
e�2A0

1þ eA0�A1 cos u1 � u0ð Þ � eA0�A�1 cos u0 � u�1ð Þð ÞM cos xmtð Þþ
þ eA0�A1 sin u1 � u0ð Þ � eA0�A�1 sin u0 � u�1ð Þð ÞM sin xmtð Þ

 !
;

ð10:20Þ

contains distinguished-from-zero bit signal at frequency xm if either Ak or uk terms
are different.

If the absorption loss and the phase difference induced by the sample at the side
lobes are larger than at the central frequency xc: |A0 – A1|, |A0 – A−1|, |u0 − u1|,
|u0 − u−1| ! 0, the beat-signal quadrature component (cos xmt) is proportional to
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Fig. 10.10 Frequency-modulation technique
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the loss difference between upper and lower sidebands, while the in-phase beat
component (sin xmt) is proportional to the phase-shift difference encountered by the
carrier and the average phase shift encountered by the sidebands:

IxðtÞ ¼ I0ðc=8pÞe�2A0ð1þðA1 � A�1ÞM cosðxmtÞþ ðu1 þu�1 � 2u0ÞM sinðxmtÞÞ:
ð10:21Þ

When xm ¼ 2pmm is high enough to separate upper and lower sidebands wider than
the spectral feature to be tested but the feature itself is wider than one sideband,
fine-tuning of either the carrier xc or the modulation xm frequency allows the feature
to be scanned by one of the sidebands. If the carrier-frequency signal is also narrow
enough not to overlap with both sidebands, and the loss AB and phase uB due to the
background can be considered constant, measurements of relative sample loss:
DA1 ¼ A1 − AB, DA−1 ¼ A−1 – AB, and phase: Du1 ¼ u1 � uB; Du�1 ¼ u�1�
uB, simplify Eq. (10.21) to:

DIx tð Þ ¼ I0e
�2�A0 1þD�A1;�1M cos xmtð Þþ D�u1;�1 � 2u0

� �
M sin xmtð Þ� �

: ð10:22Þ

Factual realizations of frequency-modulation spectroscopy are done by the
heterodyning of both modulation sidebands and the carrier frequency, which can-
cels the beatings against the carrier signal when no sample is present, inducing
signals proportional to sample loss and phase shift as results of disturbance of the
cancellation. Ideally, the absolute value of the loss and phase shift can be deter-
mined by comparing ac and dc portions of the heterodyne signal intensity, while
practical measurements are rather limited by fluctuations of background signal
intensity [10.36]. Since the heterodyne signal intensity is proportional to the geo-
metrical product of the carrier and sideband intensities, the natural tendency is to
increase the modulation index M, though in this case higher-order harmonics of
modulation could disturb the validity of the equations derived. Another limiting
factor for high sensitivity of frequency-modulation spectroscopy is the residual
amplitude modulation, requiring compensation for the intensity changes induced
[10.46].

More precise calculations of radiation intensity in frequency-modulation spec-
troscopy deal with beatings at higher than first order sidebands, still presuming a
small difference of absorption and dispersion at adjacent sidebands:
|An − An+1|, |un − un+1| � 1, and weak interaction of the sample with radiation:
|A0 − An|, |u0 − un| � 1 [10.46]. As a result, Eq. (10.20) transforms to:

Ix tð Þ ¼ I20 exp �2A0ð Þ
1þ 2 cosxmt

P1
k¼0

JkJkþ 1 A�k � Ak þA�k�1 � Akþ 1ð Þ

þ 2 sinxmt
P1
k¼0

JkJkþ 1 u�k � uk þu�k�1 � ukþ 1

� �
0
BBB@

1
CCCA;

ð10:23Þ
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where Jk ¼ Jk(M). For the limiting case of weak modulation index M � 1, Jk(M)
becomes negligibly low at k > 1, giving: Jk(M) ! Mk/2kk!, and as a result
Eq. (10.23) simplifies to relation (10.22).

Other versions of frequency-modulation spectroscopy use tone-burst and
double-frequency [10.41, 10.43] as well as two-tone [10.42] modulation tech-
niques, with higher sensitivity being realized for the latter owing to the much
narrower detector bandwidth of the measurements required versus single-tone
schemes, such as one shown in Fig. 10.10. Two-tone modulation remodulates the
x1 signal at angular frequency x2:

E1 tð Þ ¼ E0 exp ix0tð Þ
X1

k1¼�1
Jk1 M1ð Þ exp ik1x1tð Þ;

E2 tð Þ ¼ E1 tð Þ
X1

k2¼�1
Jk2 M2ð Þ exp ik2x2tð Þ; ð10:24Þ

where E0 and x0 are the optical beam amplitude and angular frequency (carrier
frequency, Eq. (10.18)). Consequently, the amplitude of the two-tone modulated
single-frequency beam is [10.44]:

E2 tð Þ ¼ E0 exp ix0tð Þ
X
k1;k2

Jk1 M1ð ÞJk2 M2ð Þ exp i k1x1 þ k2x2ð Þtð Þ: ð10:25Þ

Equation (10.25) simplifies for both modulations realized with equal small modu-
lation index M ¼ M1 ¼ M2 � 1, allowing one to consider only the central:
J0(M) * 1, and sideband: J±1(M) * ±M/2, signals:

E2ðtÞ � E0 expðix0tÞð1þ 0:5M expðix1tÞ
� 0:5M expðix1tÞÞð1þ 0:5M expðix2tÞ � 0:5M expðix2tÞÞ: ð10:26Þ

The specificity of the two-tone method is in modulating at two frequencies
separated by a small shift X: x1 ¼ xm + X/2; x2 ¼ xm − X/2. Extracting the beat
signal at the narrow frequency X at a photodetector gives the output intensity IX
proportional to the product of cðEiE

i Þ=8p:

IX tð Þ ¼ I0 cM216p� �
exp �2A1ð Þþ exp �2A�1ð Þð

�2 exp �2A0ð ÞÞ cos Xtð Þþ const: ð10:27aÞ

If each frequency-dependent loss is low: Ai ! 0, the two-tone frequency signal of
a low-loss sample could be approximated as:

IX tð Þ� I0 c=8ð ÞM2 2A0 � Aþ1 � A�1ð Þ cos Xtð Þ: ð10:27bÞ

As a result of two-tone frequency modulation and signal detection with a narrow
difference frequency X, the tuning of a single-frequency laser make signals at
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frequencies x1, x0, and x−1 consequently becoming nonzero, thus making the
sample attenuation (absorption) spectrum consisting of the central peak and the
doubled at two tones negative and positive symmetrical side lobes with no more
than half of the central intensity [10.44].

Most applications for single-tone and two-tone frequency modulation techniques
utilize widely tunable diode lasers, whose current can be directly modulated at
various modulation indices, being especially suitable for IR molecular spectroscopy
[10.45–10.50]. However, junction current modulation causes simultaneous fre-
quency and amplitude (power) modulation of a diode laser, while amplitude mod-
ulation, during frequency-modulation measurements, imposes sideband beat noise
even in the absence of a test sample, removing the advantage of relative detection
versus zero baseline. If an amplitude modulation is imposed over frequency-
modulated field EF(t), its amplitude becomes: EA-FðtÞ ¼ [1 + MAsin(xmt)]EF(t),
where MA is the amplitude-modulation index.

Only if both modulation indices MF and MA are small (MA is likely be at least an
order of magnitude smaller than MF), Eq. (10.21) for the detector signal intensity
becomes [10.47]:

IA�F tð Þ� I0 c=8pð Þ
1þMF A1 � A�1ð Þ cos xmtð ÞþMA u1 þu�1ð Þ cos xmtþwð Þþ
MF u1 þu�1 � 2u0ð Þ sin xmtð ÞþMA 2� A1 þA�1 � 2A0ð Þ sin xmtþwð Þ

 !
:

ð10:28Þ

Pure frequency modulation converts Eq. (10.28) to (10.21) removing the back-
ground signal:

IFM tð Þ ¼ I0 xmð ÞMFM A1 � A�1ð Þ cos xmtð Þþ u1 þu�1 � 2u0ð Þ sin xmtð Þð Þ;
ð10:29Þ

while pure amplitude modulation at MFM ¼ 0, similarly to wavelength-modulation
spectroscopy, returns a no-zero background even for the time-varying portion at
xm, changing Eq. (10.28) to:

IAMðtÞ ¼ I0ðxmÞMAMðð2� 2A0 � A1 � A�1Þ sinðxmtþwÞ
þ ðu1 þu�1Þ cosðxmtþwÞÞ: ð10:30Þ

The presence of dual frequency modulation-amplitude modulation modifies the
two-tone signal amplitude to [10.48]:

Et�t
F�A tð Þ� eix0t 1þMA1 exp x1tþw1ð Þð Þ 1þMA2 exp x2tþw2ð Þð Þ

� exp iMF1 sin x1tð Þð Þ exp iMF2 sin x2tð Þð Þ: ð10:31aÞ

If the difference Dx of two modulation frequencies x1 and x2 is much lower than
the full width at half-maximum CFWHM of the measured spectral feature:
Dx � CFWHM, and also if the frequency-modulation and amplitude-modulation
indices are small: MA � MF � 1, the two-tone signal intensity of the detector is
[10.46]:
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IX tð Þ� I0 c=8pð Þ 2M2 þ 2A0 M2
F �M2
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� �� A1 M2
F þ 2MAMF sinwþM2

A

� �
�A�1 M2

F � 2MAMF sinwþM2
A

� �
" #

cos Xtð Þ;

ð10:31bÞ

which converts to Eq. (10.27) at MA ! 0, where w is a not remaining constant
phase difference between frequency and amplitude modulation, also depending on
wavelength. The obvious goal of frequency-modulation measurements is in
removing any residual amplitude modulation that leads to nonzero background
signal and accompanied beat noise, ultimately reducing sensitivity, which can be
especially severe for directly modulated diode lasers having the full-noise spectrum.

Possible residual amplitude modulation for a frequency-modulated heterodyne
signal, which exists even when the sample under test is not present, can be assessed
by setting the differential sample loss: DA ¼ A1 � A�1, and the phase shift:
Du ¼ u1 � u�1, induced by the sample to zero: DA ¼ Du ¼ 0. From Eqs. (10.28)
and (10.31), the intensities of residual amplitude-modulation are [10.49]:

IS�T
RAM tð Þ ¼ I0 c=8pð Þ2M sinw cos xmtð Þþ cosw sin xmtð Þð Þ; ð10:32Þ

IT�T
RAM tð Þ ¼ I0 c=8pð Þ2M2 cos Xtð Þ: ð10:33Þ

If the modulation index M is low: M � 1, any nonzero residual amplitude mod-
ulation should produce lower background noise in two-tone modulation schemes,
not being affected by the phase difference w between frequency and amplitude
modulations, although being not in a linear but in the M2 dependence. This is in
contrast to the single-tone background signal, which is dependent on the
not-constant w shift and is proportional to 2M.

In a technique-demonstrating experiment (see Fig. 10.10) for single-mode,
single-frequency radiation of a ring dye laser tunable from 530 to 630 nm, mod-
ulated by a LiTaO3 electro-optic modulator at up to 1.5-GHz frequency, the
background-level sensitivity verified by a Fabry–Perot resonator (5-GHz free
spectral range and 16.8 finesse) in reflection was approximately 6 � 10�4 at 25%
peak for measuring spectral-line absorption with an estimated 5 � 10�5 limit if the
background remained constant on a single line scan [10.36]. Figure 10.11 depicts
experimental arrangements for pulsed measurements (Fig. 10.11a) allowing down
to microsecond spectral changes to be observed [10.37] and for the two-tone
technique (Fig. 10.11b) offering higher sensitivity at a high (gigahertz) modulation
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frequency with relatively narrow bandwidth detectors [10.44]. The pulsed scheme
used two modulators: acousto-optic modulator AOM as a pulse gate, trimming
1-ls-long low-duty pulses from a continuous-wave (cw) tunable ring dye laser with
1–2-MHz spectral width, and a LiTaO3 phase modulator, further modulating the
laser pulses at 50–100-MHz radio frequencies. The two-tone scheme provided sum
and difference frequencies of 16 GHz ± 6 MHz via one LiTaO3 frequency mod-
ulator applied to a multimode dye laser beam. Light transmitted by the sample was
detected by a fast photodiode and filtered out at 12-MHz differential dual-
modulation frequency, with the laser modulation bandwidth reaching approxi-
mately 10 GHz for 50 mW of rhodamine 6G lasing power. The respective
sensitivity limits to differential absorption versus the background for the pulsed
single-tone system and between two side lobes in the two-tone system were esti-
mated as 2 � 10�4 and 1 � 10�5, respectively [10.37, 10.44].

In practical implementations another limiting factor for frequency-modulation
spectroscopy is the accompanying optical noise of any high-sensitivity hetero-
dyning owing to etalon effects among reflecting surfaces of transmitting elements,
causing fluctuating background signals and distorting line shapes of the spectrums
measured [10.49–10.53]. Since even 0.1% antireflection (AR)-coated surface
reflections create equivalent-absorption signals above 10−5 levels with spectral
widths similar to the linewidths measured, active fringe-suppressing measures are
needed for quantum-noise-limited sensitivity (see Sects. 3.3 and 7.4 for interfer-
ence-relieving approaches). In highly reflecting mirror cavities or waveguides, in-
terference fringes can appear as a slowly varying baseline in a given cell
transmission being studied, owing to superposition of images retroreflected in the
cavity, as well as image walk-offs on mirror edges or cell misalignments. When
intermediate images cannot be completely separated, any desired reduction of
dual-path or multipath interference fringes requires some signal integration and
averaging, which can be provided in space and time by combining high-frequency
and low-frequency filtering, supplemental signal dithering, and single-tone and
two-tone modulation – all leading to added averaging of the interference pattern
(see Sect. 7.4 for details). While analyzing the derivatives of measured spectra,
various algorithms and signal-processing optimization and multiplicative correc-
tions, as well as small-window differentiation techniques along with highest spectral
resolution of original spectra help enhancing measurement accuracy [10.84, 10.85].

10.3 Wavelength Tuning and Balanced Detection

Sensitive optical measurements in laser radiation do not necessarily require high-power
lasers to be used even for remote monitoring of trace species. In contrast, eye-safe
environments require the laser power to be contained under safe-exposure limits. In
such cases, high sensitivity of measurements can be attained by other means, such as
deploying remote reflectors aligned to tunable diode lasers for atmosphere-pollution
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monitoring and/or utilizing multipass cavities sensing gaseous species to be detected in
controlled volumes via extended optical path lengths. Alternatively, high-sensitivity
detection techniques allow long-distance heterodyne, homodyne, or balanced mea-
surements of trace amounts of species at extremely low concentrations.

10.3.1 Tunable Diode Systems

The direct-transmission measurement method, detecting resonant absorption by
spectrally scanning a wavelength or frequency of interest, remains a technique of
choice often owing to broad availability of current-tuned diode lasers (see preceding
sections). If a turbulent medium containing a polluting species is directly scanned in
transmission, and radiation sent is returned via a remote retroreflector of ideal
reflectivity qr = 1.0, the return-signal intensity is:

Ir ¼ I0 exp �a mð ÞN‘Rð Þ exp �b tð Þð Þ: ð10:34Þ

Here b is the time-dependent extinction and scattering coefficient for turbulent
atmosphere over the extended optical path length ‘R (see Eq. (10.8) for other
designations). If the laser frequency m is tuned over the spectral range of interest and
if the intensity change of received light is sensed as its frequency derivative, the
equation becomes [10.54]:

dIr=dm ¼ �I0N‘R exp �a mð ÞN‘Rð Þ exp �b tð Þð Þda mð Þ=dm: ð10:35Þ

Referring the derivative signal DI/Dm to the initial intensity Ir, and considering a most

likely Lorentzian (natural) broadening in the form: a mð Þ ¼ a0
.

1þ Dm=cð Þ2
� �

,

where a0 is the attenuation (absorption) coefficient in the center and c is the half width
at half-maximum of the line measured, the ratio of signals is:

dIr=dmð Þ=Ir ¼ 2a0N‘Rð Þ m� m0ð Þ
�

c2 1þ m� m0ð Þ2=c2
� �2	 


; ð10:36Þ

making such a derivative ratio insensitive to turbulence or scattering fluctuation of
the received signal intensity via length ‘R being sufficient for detection with an
appropriate confidence level.

Figure 10.12 illustrates the long-range direct monitoring concept via a remote
retroreflector [10.54]. In one realization, a tunable PbS0.82Se0.18 semiconductor
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diode laser generating eye-safe radiation near 1-mW power within the 4.7-µm
spectral band of the fundamental absorption line for CO traces was used for current
tuning around 2145-cm−1 wavelength. A closed-cycle cryogenic cooler maintained
10 K operating temperature of the laser chip. Off-axis aluminum-coated parabolic
mirror M and matching corner-cube remote retroreflector R provided 610-m of total
cell length being monitored. Extra calibration cell CC via germanium beam splitter
S in conjunction with nitrogen-cooled InSb detector D was used for absorption
coefficient calibration, using reference gas mixtures of known concentrations.
Derivatives of optical absorption spectrums were obtained by modulating the laser
current at 10 kHz with 20-mA peak-to-peak depth from the nominal current of
400 mA. A lock-in amplifier tuned to 170-Hz frequency of beam chopper C directly
measured the transmittance–reflectance of the cell, whose signal Ir (Eq. (10.36))
referenced the derivative spectrum. Noise-level CO-contaminant sensitivity
approached approximately 5 ppb with 1-s integration time [10.54].

The approach based on a multipass cell is depicted in Fig. 10.13 [10.55, 10.56]. In
that system, two White cells were concurrently utilized – a 5-m-long one, adjustable
from 20 to 500-m path length, and a 0.5-m cell for up to 30-m path length.
A Pb1-xSxSe tunable diode laser for SO2 trace detection at atmospheric concentra-
tions was used at cryogenic-helium temperatures, maintaining single-mode operation
at low powers of 100–200 lW. Both cells 1 and 2 were attached to vacuum pumps
for low-pressure studies and were used for sample-concentration calibrations, as well
as for verification of the measurement accuracy and fringe-related noise, since tun-
able diode laser spectroscopy lacks absolute means of verifying the tuning wave-
length, except by referencing to known absorption lines – in this setup NO2 was used.
In the operating range of 1050–1150 cm−1 the diode laser wavelength was tuned over
1 cm−1 via current modulation and temperature control, traceable to approximately
0.01 cm−1 by calibration to NO2 wavenumbers. Initially, diode laser light was
mechanically chopped at 150 Hz to be synchronously detected by a HgCdTe detector
via a lock-in amplifier, which proved too noisy for low-loss measurements and was
replaced by adding low-current diode modulation at 1 kHz provided by wavelength-
tuning laser modulation. A series of interference fringes, identified as primarily due
to AR-coated lens surfaces or cell mirrors, accompanied the spectral scans at an
effective reflectivity of approximately 1 � 10�3 especially with a long-path cell;
nevertheless, near 2 � 10�5 absorption sensitivity was attained [10.56].

During testing, the system in Fig. 10.13 was found to have the lowest noise for
second harmonic detection, since not only the transmitted signal but even the first
harmonic signal was susceptible to laser-power fluctuation, which allowed
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detection of the weakest absorption lines with the smallest DC offset. An improved
system is shown in Fig. 10.14. It used a smaller main White cell with sevenfold
path length reduction, but led to only 2 times lower sensitivity of near 3 � 10�8 m�1

or about 1–0.1 ppb of noise-level concentration detection limit with added short
cell C1 for locking laser wavelengths [10.57]. Second cell C2 was used via beam
splitter BS and contained ammonia, to the absorption line of which the laser
wavelength was locked. A slow dc offset was also introduced to ramp the feedback
loop by slowly scanning an absorption line from one edge to the other. That extra
cell C2 allowed air references to be made versus the absorption lines tested in the
main cell and in C1, avoiding species interferences.

One major difficulty of tunable diode laser spectroscopy is associated with the
reproducibility of tuning wavelengths, since current modulation leads to fluctua-
tions of the laser junction temperature and instabilities of recorded spectrums,
especially if they are integrated over time to improve sensitivity. When a wave-
length scale is calibrated by a Fabry–Perot etalon, its high path-length sensitivity,
leading to temperature-induced free spectral range changes and transit-angle errors,
affects the accuracy of calibration [10.58, 10.59]. The design in Fig. 10.15 incor-
porates dual-beam measurement, places the etalon before any dispersive elements
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preventing deviations in free spectral range due to path-angle changes, and adds a
grating monochromator as a spectral selector [10.60]. IR radiation in the 1202–
1263-cm−1 wavenumber range is imaged via reflective optics: plane M and off-axis
paraboloid PM mirrors, into the dual-beam monochromator, a 20-m White cell,
HgCdTe detectors, and a dual-channel averager. The design places the sample and
reference beams entering the monochromator atop of each other, hence avoiding
50% loss of a combining beam splitter. The signal averager provides concurrent
two-beam integration over the laser 20-Hz frequency sweep, which is phase-locked
to the averager, allowing it to integrate all measured spectral points simultaneously
and to average multiple scans over time for sufficient noise reduction. Such inte-
gration over 2 min for 2660 sweeps decreased the average level of accumulated
noise to near 2:5 � 10�4 of the laser beam intensity [10.60].

The extension of the sweep-integration approach illustrated in Fig. 10.16 is
made by increasing the sweep frequency to 200 Hz, using a 1024-point averager
with 5-ls integration time per point [10.61]. To control the steep intensity modu-
lation of the diode laser due to the relatively fast sweep, the system also incorpo-
rates an amplifier plus a phase shifter to null laser-power changes by compensating
the detector signal via a differential amplifier. A band-pass filter is used to cut out
low-frequency laser noise, processing the detecting spectrum with relatively small
distortions, which along with sinusoidal instead of sawtooth modulation sufficient
to make a relatively linear sweep allowed detection of absorption features
approaching 1 � 10�5 for a 200-m-long path length in the 0.2–0.4-cm−1

wavenumber region [10.61]. Since the second-derivative signal is affected by
intensity changes due to laser modulation, the ratio measurements of sample and
reference channels were performed to correct for changes [10.62].

A tunable diode laser source, sine-wave-modulated at an optimal frequency of
5 kHz, allowed the system design to be simplified using high-power single-mode
light [10.63]. In Fig. 10.17, a 1.5-lm-wavelength beam from a distributed-feedback
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laser mounted on a Peltier cooler was regulated via a commercial controller and
split in 90:10 ratio into sample and reference cells, 100 and 30 cm long, respec-
tively, containing the pollutant to be detected and a control species.
Second-derivative detection was applied to the measurement of absorption, but the
third derivative was applied for laser-wavelength locking, owing to the strong
dependence of laser power on current changes making first-derivative detection
inadequate. The minimal detectable concentration of ammonia measured at the
noise-equivalent level was near 2 � 10�6 [10.63].

Taking advantage of single-mode tunable sources, one can use diode laser
spectroscopy for direct-absorption measurement, such as depicted in Fig. 10.18. The
system implements the wavelength-modulation approach instead of frequency
modulation, which requires mathematically heavy conversion or knowledge of the
spectral line shape to be detected; thus, it is mostly applicable for central-line de-
tection of trace species [10.64]. To provide direct-attenuation measurement, the
differential-ratio technique (see Sect. 10.1) via Eq. (10.3) but not (10.2) is deployed
for quantitative detection of water vapor by tuning the wavelength of a single-mode
laser across the spectral lines to be detected and measuring the direct absorption
spectrums expressed as the (I2 − I1)/I2 ratio; here I1 and I2 are the signal intensities
reaching detectors D1 and D2. In the implemented system, a InGaAsP laser emitting
5 mW at nominal 1384-nm wavelength was modulated at low 80-Hz frequency –

hence not to decrease its tuning range and maintain it sufficiently large to resolve
spectral lines measured in a single wavelength sweep. The signals of detectors D1
and D2 were optically balanced via the angles of two-channel beam splitters BS.
Third detector D3 detected changes in the relative emission wavelength during each
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tuning sweep via a low-finesse etalon, the reflections from which back to the laser
were attenuated by neutral filter N. The absorption coefficients for measured spectral
lines of water vapor were near 3:8 � 10�3 cm�1 for a 1-cm−1 tuning range [10.64].
A similar technique with 5–10-kHz modulation frequency with a fourth channel
added for Doppler-shit tracing in high-speed gas flows was capable of trace detection
of water vapor in flight [10.65]; the 80-nm tuning range, with 5 � 10�6 sensitivity at
the 95% confidence level, was reached using a multiple quantum-well asymmetric
InGaAsP laser in an external cavity for CO2-line spectroscopy [10.66].

Diode and other tunable lasers can be utilized in multipass cavity-enhanced
wavelength-modulation or frequency-modulation spectroscopy, such as shown in
Fig. 6.11 (see Chap. 6). An analogous approach, developed for fast-scanning OH
laser spectroscopy [10.67], is depicted in Fig. 10.19. A modified dual-path White
cell, following those in Figs. 6.11 and 6.12 with beam splitter BS to separate the
beam entering the cell from the beam exiting the cell, increasing the beam’s size
4 times and reducing its shift, was used with a total multipath length reaching 1.2 km
for a 6-m-long cell. A free-running cw ring dye laser, modified for fast-scanning
capability and stabilized output power, generated the main 616-nm wavelength
radiation frequency, doubled to 308-nm light via second-harmonic-generating crystal
SHG. A near 10-cm−1 wide spectrum was scanned at 5-kHz repetition rate in just
100 ls. Four-crystal electro-optic modulator EOM compensated for its piezoelectric
effect and its own birefringence, was used for power stabilization via polarizer P and a
feedback loop – for comparing a reference photodiode signal with a stabilized voltage
in the error amplifier. Fast scanning of dye laser wavelengths was realized via
angle-tuning of a 0.5-mm-thick etalon by a galvanometer drive. The spectral locking
of the laser was obtained via the absorption line of the OH, using a bypass beam and
another etalon via the first-derivative signal to a delaying master trigger. The resultant
peak-to-peak noise of the stabilized system was near 8 � 10�4 for a single scan with
noise-level sensitivity of 1 � 10�5 in the UV–visible spectrum with 1-min integration
time [10.67].
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Figure 10.20 illustrates a waveguide-cavity-enhanced system using a continu-
ously tunable laser based on fiber-coupled pump lasers, frequency-converted to
3.3–4.4 lm via a periodically polled lithium niobate crystal [10.68]. The first pump
laser was an external-cavity tunable diode laser at 814–870 nm, while the second
one was an Yb-fiber-amplified diode laser generating 1083-nm wavelength: both
lasers were fiber-coupled, delivering, respectively, 8 and 15 mW of power via two
polarization controllers PC to wavelength-division-multiplexer WDM, of which 2%
tap was used for power monitoring and its main leg led into fiber-pigtailed
achromatic objective FO. The wavelength conversion was accomplished in
19-mm-long temperature-controlled periodically polled niobate crystal PPLN with
AR coatings mounted on a step-motor-controlled stage for differential quasi-phase-
matching. The output 2.9-lW beam tunable between 3.37 and 3.70 lm with
40-MHz spectral resolution was focused by CaF2 lens L via a germanium filter,
blocking unconverted pump radiation into the main waveguide cavity W, also
passing through a supplemental set of reference cavities R. The multipass 30-cm
cell with 18- or 36-m total length was similar to that in Fig. 6.25, with cell-mirror
astigmatism compensated via adjusted cell spacing and mutual mirror rotation
[6.36] (see Sect. 6.3). The overall system sensitivity was limited to 2 � 10�4 relative
to the output power because of occurrence of interference fringes due to optical
element retroreflections while reaching 0.5-ppm noise-limited sensitivity for the
18-m optical path in the cavity [10.68].

A less elaborate system based on a fiber-pigtailed tunable distributed-feedback
laser for overtone absorption spectroscopy in the 1530-nm wavelength domain is
illustrated in Fig. 10.21 [10.69]. The same waveguide as in Fig. 10.20 set for 36-m
configuration was irradiated by the named current-tuned, temperature-controlled
laser via objective O1 and output light was detected via parabolic mirror M by one
of two autobalanced two-channel detectors. Another fiber channel was split for
objective O2 and the second detector via variable optical attenuator VOA balancing
the channel for attenuation in waveguide W. The fiber laser, delivering 15 mW of
power at 1531.7 nm with less than 10-MHz linewidth, was spliced to the splitter
and variable optical attenuator VOA and after 182 cell passes approximately 17 lW
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remained with 0.17% throughput efficiency, corresponding to 0.967 average
cell-mirror reflectivity – degraded from the original 0.980 value. The attenuation
level of variable optical attenuator VOA was set to below 25 dB for reference
power Preference ¼ 2.2 � Psignal, owing to the occurrence of interference fringes
likely caused by fiber-to-fiber etalon effects in the attenuator, which affected the
signals registered at higher powers. Within less than 30 s of the processing time, the
sensitivity of this system to ammonia reached 0.7 ppm at 3:1 signal-to-noise ratio,
with simultaneous CO2 detection capability within a single diode laser scan of
0.3 cm−1 [10.69]. For every concentration measurement cycle, either the autobal-
ance mode or the linear mode of the dual-beam balanced InGaAs detectors was
used with, respectively, 500 and 1000 spectral scans, recorded and averaged for the
signal-to-noise performance stated (see below for more details).

10.3.2 Balanced Detection

As much as the differential, as well as homodyning and heterodyning techniques
allow compensation of dominated noise components of detected optical signals for
the measurement techniques reviewed in Sects. 10.1 and 10.2 earlier, balanced-
detection methods apply the same principals by matching the properties of identical
photodetectors receiving at least two signals to be compared. One experimental-
demonstration setting for noise reduction due to balanced detection is illustrated in
Fig. 10.22 and was realized in heterodyne-radiometry experiments with a tunable
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diode laser as a local oscillator [10.70]. A blackbody emitter at 900 °C and a 10-lm
tunable PbSnSe diode laser kept in a cryogenic cooler at 12–30 K, with 920–
980-cm−1 tuning, were heterodyned via a 50% germanium beam splitter. HgCdTe
photodiodes with 1.5-GHz bandwidth and 0.45 effective heterodyne quantum effi-
ciency photomixed two beams, providing radio-frequency signals amplified by
low-noise amplifiers, square-law detected, and lock-in-amplified with a wide-band
transformer adding signals together. The signal-to-noise ratio attained via double-
balanced detection was 1.85 times better compared with single-detector heterodyning
of the laser versus blackbody light filtered by notch filter NF and gas cell GC.

Figure 10.23 shows the balanced-homodyning system for frequency-modulation
loss measurements, aimed at improving sensitivity and suppressing residual
amplitude modulation and supplemental laser-excess and interference-fringe noises
[10.71]. Radiation from a tunable diode laser is equally split into sample and
reference channels by 50:50 nonpolarizing beam splitter BS. Low-aberration
aspheric lenses L were deployed to maintain equivalency of light power within 1%.
Optical isolator OI and AR coatings of all optical surfaces, as well as electronic
filtering, maintained low interference-fringe noise. With use of such a dual-beam
balanced-homodyne detection scheme with different lasers having 5.4- and 1.3-lm
wavelengths, the differential-absorption magnitudes measured were 1 � 10�6 and
7 � 10�7, respectively, with noise-level sensitivity values estimated as 1 � 10�7 and
2 � 10�7 at each wavelength [10.71].

When high sensitivity to an optical loss under study needs to be achieved only
for threshold detection, such as the occurrence of nonlinear phenomena as a result
of an abrupt transition from very low loss to a detectable loss, the direct differential
measurement settings described in Sect. 10.1 may be used for balanced detection
attempting to improve the sensitivity to just-above-threshold loss [10.72].
Figure 10.24 illustrates the differential-balanced technique utilized for detection of
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nonlinear pump–probe transmission loss in a highly transparent sample irradiated
by pulsed laser light. The pumping and probing was accomplished by two dye
lasers with 3-ns pulse width for 435-nm pump and 470–520-nm probe wavelengths
separated by color filter CF. The system was to sense 0.1% transmittance changes
by nulling the difference signal between main and reference detectors D1 and D2. In
addition to equalizing channel paths and matching the properties of the detectors to
synchronize the maximal amplitudes of the pump and the probe light pulses within
0.1%, channel path lengths were controlled to 14 mm or less for under 3-ns time
delay. Pulse timing was synchronized by adjusting the distance between prism P
and mirrors M4 and M1–M3; the power of each channel was matched via variable
neutral-density filters VND.

Owing to differential measurements, any imbalance of photodetector currents
will produce a constant offset in both measured and reference channels; this can be
subtracted, but that offset could limit small-loss sensitivity and should not saturate
the detectors and balance circuits. A boxcar integrator was utilized to reduce
shot-to-shot noise variations by averaging the difference signal over many laser
pulses to within �5 � 10�4. Unavoidable noise was due to spatial-sensitivity devi-
ations of the two photodiodes affected by fluctuations of the spatial intensity dis-
tribution for probe laser pulses, which was partially compensated by neutral-density
filters equalizing the average fluence in each laser beam. During experiments the
pump beam was focused to a 400-lm-diameter spot and the probe beam was
focused to a 200-lm-diameter spot within the pumped region on a sample with
above 99% transmittance. Transmission nonlinearities with 1 � 10�3 sensitivity were
observed with 10-ns time resolution [10.72].

To improve optical-channel balancing, a continuously adjusted matching of the
photodiode currents via negative feedback outside the main-signal path can be used
[10.73, 10.80]. The matching requires an electronically variable current splitter, not
degrading an existing proportionality for main and reference signals in making the
balance be preset in the electronic circuitry. Another requirement is to make the
reference signal stronger than the measured signal, splitting its current via two paths
to a pair of bipolar junction transistors linearly processing either signal or noise as
dc, while not affecting noise cancellation as reference-signal excess is dumped to
ground. The signal difference is further processed by a transresistance amplifier,
electronically balanced via adjusting the base-emitter voltage of the transistor pair.
By zeroing the transresistance amplifier current, the circuit provides excess noise
cancellation, since it is handled as a dc component, while zero balance is main-
tained by an additional integrating amplifier, whose output voltage Vout [10.73]:

Vout ¼ G � ln Iref=Isignal�1
� �

; ð10:37Þ

is defined by the logarithmic ratio of reference to signal current Iref/Isignal and by
amplifier gain G. The approach can be seen as ratio balancing for ideal zero bal-
ance, reached at derivative output DV=V:
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DV=V ! Iref=Isignal�1
� �! 0 at Iref ! Isignal; ð10:38Þ

not making an absolute signal measurement, but establishing equilibrium with the
reference.

An advantage of the ratio-balancing over the direct-division technique by the
two-channel ratio is the likely wider noise-suppression bandwidth, since dividers
can be relatively slow, although the optical ratio divider method remains a direct,
absolute, sensitive low-loss technique that cancels drift, modulation noise, and
excess noise, but extracts the signal and shot noise for the majority of measurement
task having the main goal of reaching the highest assessable accuracy.

Experimental free-space and fiber-optic setups for the noise-cancelling balance
detection reviewed are shown in Fig. 10.25 [10.74]. In the experimental verification,
the signal-balancing method was applied via frequency-modulation spectroscopy by
scanning single-mode laser light across a spectral absorption line of interest (see
Sect. 10.2). A balance signal during each scan experienced certain monotonic vari-
ations which appeared as stable, and therefore were counted out via precalibration.
The free-space and fiber-coupled versions of the system were compared to establish
sensitivity limits of the measurements, since the fiber-based setup seemed prone to
interference-fringe noise (see Sect. 7.4), with wavelength-dependent reflectivity
changes of the fiber components and space-to-fiber coupling elements (Fig. 10.25b).
For the free-space setup (Fig. 10.25a), a single-modeAlGaAs diode laser emitting the
763-nm wavelength band was tuned over approximately 3 cm−1 in 100 ms.
Collimated laser radiation was split via AR-coated beam splitter BS and gold-coated
mirror M into measurement and reference beams detected by similar detectors D1 and
D2 of the balancing system. Absorption-path difference AP for two channels in air
was set by varying the distance between mirror M and splitter BS. The balanced
output was amplified, band-pass-filtered within 0.1–1000 Hz, and digitized, making
100 sweep averages of each scan. The open-air measured peak absorptance and noise-
level sensitivity limits were 5 � 10�5 and approximately 5 � 10�7 – both calculated
using simulated Voigt line profiles and approximating a linear laser current tuning
rate. Further measurements were performed via a 25-cm absorption cell in path AP
filled with pure O2 at 1-Torr pressure. Not analyzing noise sources of measurements,
partially due to wavelength-dependent properties of polarizing beam splitter BS or
added fringe noise caused by cell windows, the low-loss absorption pick and
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Fig. 10.25 Noise-canceling balanced detection: free-space (a), fiber (b)
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background noise detected were at 2 � 10�4 and 6 � 10�6 levels, respectively. The
same cell was used for measurements in a fiber-coupled system, deploying angled
connectors utilizing an index-matching gel, and comparing several tunable InGaAsP
lasers with 1.31-lm wavelength. The observed 50-cm spacing of interference-
fringe noise corresponded to the dual path of the absorption cell. Averaged over
100 scans, the water vapor line peak absorptance and background noise were at
2 � 10�3 and 2 � 10�5 levels, while the lowest peak, measured using a 1.39-lm laser,
was near 8 � 10�4 at 5 � 10�5 noise level. Small laser gains were also measured,
reaching 2 � 10�5 cm�1 in a 3-cm dye cell [10.74].

Similar balanced measurements were conducted for trace detection of NO2 ab-
sorption in a 0.5-m-long absorption cell with 2°-angled and AR-coated fused-silica
windows (Fig. 10.26) using two single-mode AlGaInP diode lasers in 640- and
670-nm wavelength bands [10.75].

Nonpolarizing beam splitter BS directed light onto main D1 and reference D2

photodiodes via the cell and mirror M. The sampling rate of data acquisition was
25 kHz at 40 ls per data point with 1375 points for 20 Hz of spectrum-processing
rate, providing 2:5 � 10�4 cm�1 per point of spectral resolution, sufficient for at least
100 points for a 2:5 � 10�2-cm�1 wide line. The minimal detected absorptance peak
was ð7� 2Þ � 10�7 at 640-nm wavelength for 200 averaged scans in 10 s at 20-Hz
frequency, 1-m optical path, and 7 � 10�8 noise-level sensitivity [10.75].

Another extension of the balanced-detection technique was made utilizing
distributed-feedback pulsed quantum-cascade lasers operating in the 5.4-lm spec-
tral band. The lasers were temperature- and current-tuned at 0.13 cm−1=K with
injection currents of 10−2 cm−1=mA, mostly operating at 1-MHz pulse-train fre-
quency and 10-ns pulse width. The scheme in Fig. 10.26 with angled and
AR-coated germanium cell windows was used for measurements with the reference
light path shortened, removing mirror M, and purging the air between the ab-
sorption cell and detector D1 and also between beam splitter BS and detector D2.
The best balanced-detection two-channel sensitivity was reached for monitoring
NO, nearly two times better than for NO2, with 50-ns pulse width and 5-kHz
repetition rate, detecting 0.0385 peak of absorption at noise-level sensitivity cor-
responding to 9 � 10�4 background absorptance [10.76]; near 12-dB signal-to-noise
ratio for a DC/AC-coupled detector at 0–54-MHz frequencies was also reached
[10.82]. Further advantages for differential and autobalanced detection schemes
could be provided via continuous monitoring the ratio of signal and reference
beams, added RF-current perturbations and reducing mode structure of cavity
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enhanced studies, plus absolute-frequency referencing of molecular transitions to an
extra frequency comb of laser pump and signal beams [10.86–10.88].

10.4 Separation of Bulk and Surface Losses

Uncertainties in the actual conditions of sample surfaces exposed to radiation
transmission and reflection may severely restrict the sensitivity of any internal
optical-loss detection, when measuring the bulk properties of a given sample. The
Brewster-angle and surface-immersing techniques are intended to fully eliminate
reflections at sample surfaces, when distinguishing its bulk properties. Let us
consider a somewhat opposing concept for independent detection of each surface
loss, realized for every single optical measurement of the internal bulk loss to be
determined. As already reviewed in Sect. 8.4, resonator-based arrangements in
reflected light allow one to distinguish every surface loss by interchanging the
relative positions of two mirrors creating the resonator. Similar measurements in
light reflected from a cavity formed by two elements of a low-loss and
low-reflectivity substance can also help identifying the bulk property.

10.4.1 Distinction of Surface Losses

One can separate specular reflections from two surfaces, keeping normal incidence
of light at one of them, by making a small wedge between these surfaces. That wedge
angle needed for the spatial separation of the beam reflected by the surface is defined
by a particular configuration of the optical system. Internal attenuation experienced
by radiation propagating in a given substance can be evaluated in reflected light by
comparing similarly wedged substance samples of a distinguished length using a
technique equivalent to transmission-based studies analyzed in Sect. 5.1, except for
broader choices. This wedge angle of the samples being compared should not
notably obscure normal incidence at all borders involved and the internal optical
path lengths (see Sect. 8.1, Fig. 8.4). If such prospective measurements are made by
detecting the intensities of reflected beams, the sample substance acts twice,
increasing the sensitivity to detection of internal bulk loss twofold [10.77].

Let us first consider a method for the absolute measurement of every single surface
reflectance of a long and a short sample of a given substance under study. A layout of
such a technique in reflected light is depicted in Fig. 10.27. Instead of conventional
transmission measurements, two samples are studied by measuring the intensities of
the beams reflected from every single surface and from a low-reflectivity resonator
formed by any two parallel surfaces of these samples. To measure the reflectance at
normal incidence, semitransparent beam splitter BS is used. Light passed by that
splitter irradiates short and long samples of one substance at the normal to either its
first or second surface. Light reflected from a surface and the splitter reaches pho-
todetector D. Every optical path and all sample wedges should be configured to
prevent interference, except for resonant faces.
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Evidently, the relative reflectance of a single surface versus another surface can
be directly measured by substituting two surfaces into one position, aligned by the
normal to incident light. If these surfaces belong to one sample, the sample has to
be turned around by 180°. If the surfaces belong to different samples, the normal
surface should be irradiated first, thus not to uneven bulk thicknesses in the beam
path. The next step is to distinguish unequal reflectances and double single-beam
sensitivity to the internal optical loss. For that, the short sample in configuration
(a) in Fig. 10.27 is turned in such a way that not its first but its second surface 2 is
normal to the beam (see the round arrows in Fig. 10.27). The response N1 for
detector D of sensitivity k becomes:

N1 ¼ kU0ss 1� q1ð Þ2 exp �2l‘shð Þ½ �q2qs; ð10:39Þ

where U0 is the flux of incoming source radiation, ss and qs are the transmittance
and the reflectance of splitter BS, and si and qi are the properties of the i

th surface.
For a following measurement, the long sample (see the dotted lines in Fig. 10.27) is
placed in the light path at the normal to first surface 3. Since surfaces 2 and 3
resonate, any measures reviewed in Chaps. 3, 6 and 8 using essential temporal and
spatial integration and diminishing the visibility of interference in reflected and
transmitted light could be used to prevent disturbing interference effects in a given
system. Hence, the total additive flux retroreflected by two now-resonating surfaces
and reaching the detector becomes:

NR ¼ kU0ssqsfð1� q1Þ2½expð�2l‘shÞ�q2 þð1� q1Þ2½expð�2l‘shÞ��
� 1� q2ð Þ2q3 þ 1� q1ð Þ2½expð�2l‘shÞ��
� ð1� q2Þ2q3q2q3 þ � � �g ¼ kU0ssqsð1� q1Þ2½expð�2l‘shÞ��
� ½q2 þð1� q2Þ2q3=ð1� q2q3Þ�: ð10:40Þ
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Fig. 10.27 Internal loss measurements via separating surface reflections
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By comparing last two equations, one can see that the first term in relation
(10.40) equals the total flux by Eq. (10.39). To eliminate any uninformative part of
the second flux and to exclude such an undetermined factor as the detector’s
sensitivity, let us express the result as the difference of Eqs. (10.40) and (10.39),
related to (10.39). Designating NR − N1 as N2, we obtain:

N2=N1 ¼ 1� q2ð Þ2q3= q2 1� q2q3ð Þ½ �: ð10:41Þ
If all sample surfaces are fabricated in one manufacturing cycle and kept at the same
condition, and if the measurement task is to determine the average surface reflec-
tance q, Eq. (10.41) transforms to:

N2=N1 ¼ 1� qð Þ2= 1� q2
� � ¼ 1� qð Þ= 1þ qð Þ: ð10:42Þ

That form reminds us of well-known Eq. (1.106) for normal transmittance of any
transparent sample, assuming the absence of its bulk attenuation. From Fig. 10.27 it
can be seen that this method is designed for measurements of air-sample trans-
mittance with surface reflectances q2 and q3.

The relative sensitivity of such a measurement method to a change d in the
average reflectance q is:

@ N2=N1ð Þ= N2=N1ð Þ ¼ �@q= 1� qð Þ � @q= 1þ qð Þ: ð10:43Þ

For a substance with low surface reflections: q � 1, conceivable fluctuations Dq of
the measured reflectance are twice as small as the fluctuations DN of two registered
detector signals:

Dq ¼ �0:5D N2=N1ð Þ= N2=N1ð Þ: ð10:44Þ

As a result, even doubling individual error of a single intensity reading at two
measurements taken to 0.02%, for example, versus 0.01%, the resultant actual
sensitivity to every reflectance loss will be twice as low, approaching 1 � 10�4

magnitude.
Another factor that could affect the results obtained is the instability Dqi, within

a time of a measurement, of each specific reflectance of a surface exposed to
radiation further transmitted into the sample bulk and then leaving the sample.
Writing Eq. (10.40) in the form:

NR ¼ const � �qþ 1� �qð Þ2�q= 1� �q2
� �h i

; ð10:45Þ

and substituting: ð1� �qÞ ¼ �s, while omitting terms of the second power for �q � 1,
one obtains:

D�q ¼ DNR=2þ 2D�q=�s: ð10:46Þ
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Equation (10.46) demonstrates that any unresolved changes of surface reflec-
tances affect the results of the resonator reflection measurement analogously to
transmission ones (see Sect. 5.1, Eq. (5.7)), being related not to the low reflectance,
but to the high transmittance. At the same time, these resonator reflection mea-
surements are 2 times less affected by the noise of the detection system. For example,
if every reflectance fluctuation is equal to DN � Dq � ±1 � 10−4, the total error of
the measured reflectance for a substance of refractive index n ffi 1:5 is:
D�q ¼� 0:00005þ 2 � D0:0001 � 0:4=0:96ð Þ ¼ �5:8 � 10�5. As a result, the accuracy
of measurements of low reflectance in reflected light is limited by the signal-to-noise
ratio of the detectors used, and to a lower degree by the stability of sample surfaces,
since it is well known that the short-term instability of the refractive index of deeply
polished glass or a silica surface does not exceed a few parts per million.

The reflected-light measurement technique implemented as an internal-
transmittance study of the air sample has the advantage of distinguishing abso-
lute reflectance values of sample surfaces, for which the long and short samples are
swapped (Fig. 10.27, configuration b). The opposite sample surfaces 2 and 3 swap
their positions. After an identical measurement cycle giving a new set of measured
intensities M1, MR, and M2 registered by the same detector, Eq. (10.42) converts to:

M2=M1 ¼ 1� q3ð Þ2q2= q3 1� q3q2ð Þ½ �: ð10:47Þ

Equations (10.42) and (10.47) define a single solution for reflectances q2 and q3
(compare with the quality-factor transfer measurement method analyzed in Sect. 8.4).
If one intends to identify reflectances of opposite surfaces 1 and 4, the samples are
turned around by 180° (configuration c in Fig. 10.27), and an equal measurement
cycle concludes, distinguishing the remaining optical properties of the samples
studied.

10.4.2 Resolving Internal Properties

When all four surface reflections of the short and long samples of a substance under
study are measured, the linear attenuation coefficient of the internal bulk can be directly
resolved. Figure 10.28 depicts the complete optical system for resonator-reflection
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Fig. 10.28 Measurement of
internal bulk loss in reflected
light

10.4 Separation of Bulk and Surface Losses 573



studies, only a part of which was shown in Fig. 10.27. In addition to main beam splitter
BS and detector D, it has additional reference detector RD tracking intensity changes
for the beam reflected by auxiliary beam splitter SBS. As a result, intensity fluctuations
and instabilities are accounted for by measuring the ratio of the main and reference
detector signals (see Sect. 10.1). Respectively, let us further consider every signal of
main detector D as being related to the signal of reference detector RD, and, therefore,
the incident flux U0 to be a constant of the measurement system.

First, a short sample of the substance studied, with the surface reflectances
predetermined by the measurement procedure illustrated in Fig. 10.27, is placed
into the optical path shown in Fig. 10.28 for its front surface having reflectance q1
to be normal to incident light. The ratio-bound detector reading of the system is:

N1 ¼ kU0sSBSsBSqBSq1 ¼ const � q1: ð10:48Þ

For the second measurement the sample being measured is turned around the
optical axis into a wedge-angle tilted position making its second surface 2 per-
pendicular to the direction of propagating light; thus:

N2 ¼ const � 1� q1ð Þ2 exp ð�2l‘shÞ½ �q2: ð10:49Þ

Here l and ‘sh are the sample-bulk attenuation coefficient and length. The ratio of
these equations gives:

exp �2l‘shð Þ ¼ N2=N1ð Þ q1=q2ð Þ 1� q1ð Þ�2: ð10:50Þ

Since the preceding measurements revealed the reflectance magnitude of every
surface, let us for now omit ratio q1=q2 from Eq. (1.23) as an already-identified
constant. This condition is equivalent to considering the sample surfaces as equal to
each other within the accuracy of detected signals N1 and N2. Hence, in view of
known or equal reflectances, Eq. (10.50) transforms to:

exp �2l‘shð Þ ¼ N2=N1ð Þ 1� q1ð Þ�2 ffi
l!0

ð1� 2l‘shÞ: ð10:51Þ

Two equivalent measurements of one long sample, oriented similarly, create signals
N3 and N4, and provide analogous expressions for the dual-length attenuation 2l‘lg
of the long sample:

exp �2l‘lg
� � ¼ N4=N3ð Þ q3=q4ð Þ 1� q3ð Þ�2: ð10:52Þ

Finally, complete expressions (10.50) and (10.52), accounting for every surface
reflectance, provide:

exp �2l ‘lg � ‘sh
� �� � ¼ N4=N3ð Þ N1=N2ð Þ q3=q4ð Þ q2=q1ð Þ 1� q1ð Þ= 1� q3ð Þ½ �2:

ð10:53Þ
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Assuming every surface reflectance qi and transmittance si ¼ 1 − qi to be already
determined, and substituting each factor q1$4 ¼ q and s1 ¼ s3 ¼ s, the attenua-
tion on dual-difference of the sample lengths is:

exp �2l ‘lg � ‘sh
� �� � ¼

q1$4¼q
N4=N3ð Þ N1=N2ð Þ 1� q1ð Þ= 1� q3ð Þ½ �2

¼
s1¼s3

N4=N3ð Þ N1=N2ð Þ:
ð10:54Þ

In deriving Eqs. (10.49)–(10.54), we supposed that propagation of light via all
surfaces and every bulk was made via a beam normal. For a wedged sample this
means that its internal transmittance should not be a function of wedge angle u. As
follows from Fresnel’s formulae (see expressions (1.82), (1.83)), in order to have the
squared transmittance for any state of polarization: (1 − q⊥)

2 or (1 − q||)
2, be less

than 1 � 10�4 different from that at normal incidence, the angle of light incidence onto
the sample with n ¼ 1:5 in air needs to be u 
 0.5°. This requirement corresponds
to the maximum wedge angle of the sample in refraction: u0 
 200 [10.79].

When compared with equally performed length-differential studies of samples in
transmission (see Chap. 5), the method discussed should have 2 times higher
sensitivity to internal bulk loss for equivalent twofold propagation of one entrance
surface instead of the single propagation of every, front and back, surface. The only
difference is in adding a single reflection from two mostly unequal back surfaces of
long and short samples. By establishing the described ability to distinguish actual
differences for these surface reflectances or by neutralizing the difference by pro-
viding an additional treatment of unequally reflecting surfaces, one can account for
any surface inequality or reduce it to the appropriate level when both reflectances
are measured as equal.

Similarly to studies in transmission, reflection-based analysis can be done under
conditions eliminating surface reflectances (see Sect. 10.1). As depicted in
Fig. 10.29, the test sample can be fabricated as a half length of a common
twin-Brewster-cut element used in transmission with one normal-to-surface cut and

another surface to be formed at the angle u0 ¼ arccos 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ n2k

q� �
. Owing to

such an angle, at a specific wavelength k corresponding to a given index of
refraction nk, light incident on the front face at angle u propagates inside by the

.

.
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Fig. 10.29 Loss studies in
reflected light at the Brewster
angle
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normal to the back surface (Fig. 10.29a). After second-surface reflection, the
entered light goes back the same way, and signal N1 of the system identical to that
in Fig. 10.28 becomes:

N1 ¼ k � U0;jj exp �l‘ð Þq2 exp �l‘ð Þ: ð10:55Þ

The second measurement is made with the sample surfaces reversed and keeping
surface 2 at the normal to radiation, giving: N2 ¼ k � U0;jjq2. Since both times light
is reflected from one surface, the internal bulk attenuation on the doubled in
reflection length ‘ of the sample is:

exp �2l‘ð Þ ¼ N1=N2: ð10:56Þ

Because all measurements are performed in reflected light, the full bulk loss is
measured as the loss of a sample twice as long as the actual sample. At the same
time, all other measurement conditions remain the same as in the relevant trans-
mission study. For example, the inaccuracy of confirming the precise Brewster
angle of light incidence on the front surface has the same effect as was seen in
Fig. 10.4, due to dual pass of radiation via that front surface. Any error in forming
angle u is in that case converted into a deviation from normal incidence at the back
surface of the sample. The related error of surface-reflectance measurement for
out-of-normal versus normal incidence can be seen in Fig. 5.7, keeping Snell’s law
in mind when converting errors from the incidence to the refraction angles.

The procedure for measurements of internal sample loss shown in Fig. 10.29 can
be further simplified if the reflectances of all surfaces of the compared samples are
identified to be equivalent within acceptable error of these measurements. In that
case the measurement process consists of just two steps (see Fig. 10.30). Light from
source 1 via beam splitter 2 directing a portion of that light onto reference detector 3
is incident on the front surface of long wedge sample 4 at small angle w, which
could be greater than sample wedge angle u. For the first reading, radiation
reflected from front surface M of long wedge sample 4 propagates via short wedge
sample 5 of the same substance under study at the same angle of incidence w and in
the second step, short sample 5 is taken out of the optical path by sliding table 7 and
long sample 4 is rotated over its wedge angle u, guiding the beam reflected by back
surface N of sample 4 to reach detector 6. The ratio of main-to-reference detector
signals is:
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Fig. 10.30 Reflectance–
transmittance study of bulk
attenuation

576 10 Direct Attenuation Measurements



Nmain=Nref
� �

1 ¼ const � q 1� qð Þ exp �l‘shð Þ½ � 1� qð Þ; ð10:57Þ

Nmain=Nref
� �

2 ¼ const � 1� qð Þ exp �l‘lg
� �� �

q exp �l‘lg
� �� �

1� qð Þ: ð10:58Þ

Since in each case light is reflected once, also adding the dual transmission, the
intensity ratio is:

exp
�� l 2‘lg � ‘sh

� �� ¼ Nmain=Nref
� �

2 Nmain=Nref
� �

1: ð10:59Þ

In this case the slightly oblique incidence serves a few purposes. First, it eliminates
the need for beam splitter BS as in Fig. 10.28. Second, it provides for dual prop-
agation of reflected light via the long sample and only a single pass of transmitted
light via the short one. Therefore, the dual optical path via the substance under test
is in effect increased by the added length of the short sample.

Prior to describing any experimental confirmation of the method discussed, let us
pay attention to the added difficulty of internal-loss measurement in reflected light.
A challenge is due to the approximately 20 times lower power of light reflected
from a single glass surface in comparison with light incident from the light source.
In most cases that circumstance leads to the necessity of using a powerful source,
such as a laser. From any application standpoint, this is quite reasonable, since most
objects having low optical losses are anyway designed for one or another laser
application. However, the use of lasers during measurements is also allied with a
somewhat higher level of intensity fluctuations. Even the two-channel
ratio-measurement system requires additional synchronization measures for eval-
uating long-term and short-term fluctuation terms.

Figure 10.31 illustrates a layout of the internal loss measurement system in
reflected light utilizing radiometers 4 and 5. Synchronization of registration cycles
for identical radiometers was provided by relay 6. High-resolution digital ratio
meter 7 measured the ratios of output voltages [10.79, 0.21]. A cw He–Ne or a
pulsed Nd:YAG laser was used as light source 1. Long 3 and short 3′ fused-silica
samples were irradiated at a fixed angle of incidence from 4.5° to 45°. Photometers
[4.10] (see Chap. 4) with ±0.1% standard deviation were applied as meters 4 and 5.
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Fig. 10.31 Simplified schematic of a loss measurement system in reflected light
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Coexisting readings of signals in two channels were synchronized by relay 6 within
±5 ms. That synchronization reduced the standard deviation of every measurement
by ratio meter 7 to ±(0.02–0.03)%. Samples 3 and 30 of a fused-silica glass were
sequentially installed in one identical position. Small changes of the angle of
incidence, since it was a constant for each sample, did not alter the magnitude of
bulk loss. The initially measured linear attenuation coefficient was approximately
5 � 10�4 for each 10–15 mm of the dual-length difference of the long sample and
short sample [10.79]. When the sample temperature was stabilized to 0.1 °C, the
attenuation declined to ð1:2�2:5Þ � 10�4 cm�1 [0.21].

10.5 Reflection Spectrophotometry

As conventionally established, the standard spectrophotometric practice for deter-
mination of an internal optical loss in a sample bulk is based on measurement of the
total attenuation by a plane-parallel sample, from which the dual magnitude of the
average surface loss of the sample is subtracted, being either estimated or measured
by a supplemental method. The sensitivity of such a transmission measurement can
be increased by multiplying the number of light interactions with the entire sample,
but the number of interactions at border surfaces is multiplied also, increasing the
uncertainty of surface losses. As seen in the previous section, the surface loss can be
resolved concurrently with the bulk loss, doubling the sensitivity to the internal
attenuation of sample’s bulk.

Let us conceptually analyze the options for spectrophotometric study of each
optical loss under investigation: surface and bulk, by further extending the
reflection-based procedure, having no need to create an optical resonator, which
increases the measurement sensitivity and complicates the realization of measure-
ment. Consider a beam of radiation from a laser or other source 1 (Fig. 10.32)
incident at a relatively small angle u on a plane-parallel sample 2, having two
equally fabricated surfaces of the substance under study with a linear attenuation
coefficient l and index of refraction n. In the position illustrated in Fig. 10.32a,
detector 3 measures the intensity of light that is entered the sample via the first
surface, transmitted by its bulk over length ‘, reflected internally from the second
surface at angle u0 ¼ arcsin sinu=nð Þ, transmitted back via the bulk and again the
same length ‘, and is exited through the first surface. The detector’s reaction N1 can
be represented as:

(a) (b)

Fig. 10.32 Dual transmission via a single entrance–exit surface and sample bulk in reflected light
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N1 ¼ jð1� qÞ expð�l‘Þq expð�l‘Þð1� qÞ: ð10:60Þ

Here j is the proportionality factor and q � qu is the reflectance of likewise-
fabricated surfaces for angle u.

For the second configuration (Fig. 10.32b), the incident beam, at angle u cor-
responding to u0 for outside incidence of light, is directly reflected from precisely
the same spot as light was internally reflected in Fig. 10.32a. The second signal
becomes: N2 ¼ jq, and therefore:

N1=N2 ¼ j 1� qð Þ2expð�2l‘Þ: ð10:61Þ

Accordingly, such a reflection-type measurement procedure is equivalent to a
similar transmission study, but for a dual-length test sample. No additional sample
is required for the reflection measurement. This way, the reflection-type measure-
ment becomes a twofold sensitive technique, having one surface of the sample
studied functioning as an effective surface mirror (Fig. 10.33).

This particular reflection-based measurement method, while increasing the
sensitivity in comparison with the traditional transmission studies for the internal
optical attenuation of a studied sample, illustrates the measurement approach, which
also carries apparent disadvantages. The primary one consists in the necessity to
interchange the positions of all sources and detectors, which is not always conve-
nient. It is certainly easier, from the standpoint of unchanged arrangement of optical
elements, to slightly tilt the sample under study and maintain the propagation
conditions of the beam virtually unchanged. Let us reexamine one more time certain
conceptual advantages and drawbacks of optical-loss measurements in transmitted
and reflected radiation.

Following Chap. 2, comparison-based measurements of internal transmittance at
normal incidence of light on two identical samples of contrasting lengths is less
sensitive to the influence of multiple reflections than single-sample study. A similar
concept can be realized in reflected radiation. For that purpose, either additional
mirrors or the back surfaces of two samples being compared may be used
(Fig. 10.34). If additional mirrors are placed behind each sample, the transmittance
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Fig. 10.33 Dual-transmission and single-reflection measurement
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of each face can be considered equal as in other transmission measurements. If the
back surfaces of the long and short samples are used to retroreflect the beam, the
potential relative difference of surface reflectances needs to be evaluated. The ratio
of these two surface reflectances will directly influence the results of the internal
loss determination. If the ratio of the surface reflectances is accurately measured, the
sensitivity of the measurement becomes twofold higher than in a direct transmission
study, owing to the double pass of each sample bulk.

A similar concept of providing consecutive measurements of each single surface
reflectance for one sample and its internal transmittance with doubled sensitivity is
depicted in Fig. 10.35. The layout shows an absolute internal-loss measurement
technique for radiation reflected from slightly wedged short and long samples of
one material being studied at the practically normal incidence of light.

The method provides an experimentally proven technique of comparing long and
short samples, having different path lengths: ‘lg � ‘sh ¼ D‘, and made of one
material under study. To separate light beams reflected from the front and back
surfaces, the samples are fabricated with an equal small wedge angle c. To elim-
inate extra losses introduced by a beam splitter, the incidence of light is made
slightly away from the normal to each surface. Source 1 of collimated radiation, in
which capacity a laser is most effective, and detector 3 are located at such distances
along light paths of the incident and the reflected beams that the angles of incidence
u and u0 on both surfaces of the sample do not change the transmittance and

Source

Detector

Long Sample

Short Sample

MirrorSplitterFig. 10.34 Comparison
study in reflected light at
normal incidence
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1800

. .

Fig. 10.35 Absolute loss-measurement technique in reflected light (only the long sample is
shown)
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reflectance values of the sample surfaces under any variations of these angles. One
approach to identify sufficiently small angles involves separation of beams reflected
by the first and second surfaces of the sample across an entrance aperture of the
detector in such a way that when one reflected beam is detected, another one misses
the aperture.

In configuration I in Fig. 10.35, only the beam reflected by the first surface of
long sample 2 is sensed by detector 3. Reading N1 of the measurement system
having sensitivity factor j is:

N1;lg ¼ jU0qa;lg: ð10:62Þ

Here U0 is the flux irradiated by source 1 and qa;lg is the reflectance of surface a of
the long sample. In configuration II in Fig. 10.35 sample 2 is turned over its wedge
angle c for incident light to pass its first surface and bulk, be internally reflected at
angle u0 by face b, and reach detector 3 via the second pass. Thus:

N2;lg ¼ jU0 1� qa;lg
� �2expð�2l‘lgÞqb;lg; ð10:63Þ

where l is the linear attenuation coefficient of long sample 2, representing a uni-
form substance under study from which both long and short samples are made, and
qb;lg is the reflectance of surface b of sample 2.

In configuration III in Fig. 10.35, sample 2 is rotated around 180°, converting
the measurement system to identical irradiation settings, but from the opposite side
(after the center line in Fig. 10.35). In this configuration the measurements are
made at two sample positions identical to the configuration II, while faces a and
b are substituting each other:

M1;lg ¼ jU0qb;lg; ð10:64Þ

M2;lg ¼ jU0 1� qb;lg
� �2

expð�2l‘lgÞqa;lg: ð10:65Þ

After this four-measurement cycle, long sample 2 is substituted by short sample 1
with a distinct length ‘sh, the same wedge angle c, and being made from same
material with linear attenuation coefficient l to be determined. The identical second
four-measurement cycle provides respective readings:

N1;sh ¼ jU0qa;sh; ð10:66Þ

N2;sh ¼ jU0 1� qa;sh
� �2

expð�2l‘shÞqb;sh; ð10:67Þ

M1;sh ¼ jU0qb;sh; ð10:68Þ
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M2;sh ¼ jU0 1� qb;sh
� �2expð�2l‘shÞqa;sh: ð10:69Þ

Before solving the system of equations obtained, let us consider surface instabil-
ities among four surfaces of each sample. As seen from Eq. (2.44), relative changes in
transmittance of a nonabsorbing surface of a transparent sample are due to uncertainty
of the refractive index of that surface: Ds=s ¼ Dn=nð Þ ðn� 1Þ=ðnþ 1Þ½ �. The
equivalent uncertainty of the reflectance magnitude of the same surface at defined
quasi-normal incidence of radiation follows from the Fresnel formulae:

Dq=q ¼ 4Dnð Þ= n2 � 1
� �

: ð10:70Þ

Consequently, fluctuations of refraction induce higher perturbations on the surface
reflectance than on the transmittance for the surface of the transparent sample. The
ratio of these factors is given by:

Dq=qð Þ= Ds=sð Þ ¼ s=q ¼ 4n= n� 1ð Þ2: ð10:71Þ

Even for one surface transmitted twice in an equivalent transmittance measurement,
the surface-bound sensitivity in reflected light remains much higher. Therefore, if
the change of relative reflectance: Dq=q, for a given surface is constant or slightly
deviates during a given measurement cycle, the corresponding changes of Ds=s
ratio for that surface can be considered negligible, proving the surface transmittance
is unchanged within the measurement uncertainty.

The differences between all four surface reflectances can be identified by the
following relationships:

qa;lg=qa;sh ¼ N1;lg=N1;sh; qa;lg=qb;sh ¼ N1;lg=M1;sh;

qb;lg=qa;sh ¼ M1;lg=N1;sh; qb;lg=qb;sh ¼ M1;lg=M1;sh: ð10:72Þ

If after all measurements have been performed, Eqs. (10.72) confirm that the actual
differences between the reflectances of any four surfaces of both samples are below
the sensitivity limit of the particular measurement apparatus to changes of incident
radiant flux U0, then the differences between the square transmittances of these
surfaces are lower than the sensitivity of the particular detection system and can
certainly be disregarded. Consequently, in that case one would obtain a system of
four equations for the magnitudes of the linear attenuation coefficient l of both
samples in two orientations:

exp �2l ‘lg � ‘sh
� �� � ¼ N2;lg=N2;sh

� �
qb;sh=qb;lg
� �

;

exp �2l ‘lg � ‘sh
� �� � ¼ N2;lg=M2;sh

� �
qa;sh=qb;lg
� �

;

exp �2l ‘lg � ‘sh
� �� � ¼ M2;lg=N2;sh

� �
qb;sh=qa;lg
� �

;

exp �2l ‘lg � ‘sh
� �� � ¼ M2;lg=M2;sh

� �
qa;sh=qab;lg
� �

: ð10:73Þ
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The magnitude of the linear attenuation coefficient l of the substance studied may
be resolved as the arithmetic average of all magnitudes: �l ¼ l1 þ l2 þ l3 þ l4ð Þ=4.
Each consequent magnitude is:

l1 ¼ lnN2;sh þ lnM1;lg � lnN2;lg � lnM1;sh
� �

= 2ð‘lg � ‘shÞ
� �

;

l2 ¼ lnM2;sh þ lnM1;lg � lnN2;lg � lnN1;sh
� �

= 2ð‘lg � ‘shÞ
� �

;

l3 ¼ lnN2;sh þ lnN1;lg � lnM2;lg � lnM1;sh
� �

= 2ð‘lg � ‘shÞ
� �

;

l4 ¼ lnM2;sh þ lnN1;lg � lnM2;lg � lnN1;sh
� �

= 2ð‘lg � ‘shÞ
� �

: ð10:74Þ

As can be seen from Eq. (10.74), three quarters of all actions of rotating and
swapping samples can be omitted, since only two measurements of each sample
transmittance in reflected light are needed to distinguish the internal loss of the
sample material by dual differential length. Two other measurements are needed to
distinguish the difference in back-face reflectances of short and long samples.
Nevertheless, for the examined measurement method, all eight readouts give four
values of the same linear attenuation coefficient under study. Considering potential
additional errors to the final outcome, these four results via eight readouts are
equivalent to four pairs of independent studies of one sample transmittance. Thus,
this technique does not increase the errors of measurements for the average �l value.
The mean magnitude �l identifies the linear attenuation coefficient of the substance
under study more precisely taking into account any deviations of bulk optical
properties from one sample to another and from one slice of the sample to the other,
etc. Even if the surface reflectances of opposite sides of the samples being com-
pared are very different from each other, the particular surfaces can be refabricated
to satisfy the given measurement requirements.

Since the measurement method is realized by transmission of light via every
sample in two opposite directions, it permits one to evaluate the appearance on the
sample surfaces of such formations as uncontrollable absorption layers, unaccept-
able roughness, or scattering centers. Let us represent one irradiating surface as a
complex structure, having some absorbing and/or scattering layers with a com-
pletely unknown individual transmittance si (Fig. 10.36). Let us presume that the
layers do not affect the reflectance of a single surface, since no changes were noted
in comparison with other surface reflectances. Hence, the opposite-direction pairs of
Eqs. (10.62)–(10.69) for either of two samples under study are:

μ
τ

ρ ρ

τi,left i,right

1 2
Fig. 10.36 Layers on both
sample surfaces
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N1;i ¼ jU0s1;i
2q1;

N2;i ¼ jU0s1;i
2ð1� q1Þ2expð�2l‘Þq2;

M1;i ¼ jU0s2;i
2q2;

M2;i ¼ jU0s2;i
2ð1� q2Þ2expð�2l‘Þq1: ð10:75Þ

From which:

N2;i

M1;i
¼ s1;i2

s2;i2
ð1� q1Þ2 expð�2l‘Þ � sleft;

M2;i

N1;i
¼ s2;i2

s1;i2
ð1� q2Þ2 expð�2l‘Þ � sright: ð10:76Þ

Equations (10.76) validate that if these films that are invisible in reflected light
on two surfaces of a single sample are dissimilar, they must be accounted for by
Eqs. (10.74) as the difference in the values of two linear attenuation coefficients li,j
obtained from opposite sides of the sample. Consequently, any factual inequality of
surface-plus-internal bulk transmittance magnitudes lleft and lright of a single
sample with surface reflectances that are measured to be equal, and as a result
having the equivalent Fresnel surface transmittances, points to the necessary
presence of absorbing and scattering layers on the surfaces. Therefore, any changes
of environmental conditions or additional repolishing of these surfaces, which could
lead to perception of the measured internal factor as being changed, demonstrate
factual surface-bound uncertainties that can be eliminated. When Dlleft;right is
smaller than the random error of the particular measurement procedure, it may be
presumed that no uncontrollable substances contaminating the sample surfaces
exist, and therefore the averaged magnitude �l ¼ 0:5ðlleft þ lrightÞ provides truthful
optical characterization of the substance under study.

If for any reason the actual dimensions of the measurement system depicted in
Fig. 10.35 cannot be extended as required to maintain quasi-normal incidence on
each sample surface, the technique can be performed at normal incidence of light.
Two common layouts can be implemented. The first one, with two beam splitters 2
and 4, is depicted in Fig. 10.37a. The second layout, having only one beam splitter 7,

(a)

(b)
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Fig. 10.37 Reflection
spectrophotometry at normal
incidence of radiation
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is shown in Fig. 10.37b. The optimum ratio for splitting the beam into main detector
6 is 50:50 – by a semitransparent splitter, matching the highest s�q product and
maximum-intensity output (see Chap. 2). Splitting to reference detector 3 only serves
to compensate for power fluctuations of source 1 – the same as for the method shown
in Fig. 10.35.

If a solid sample high-transmittance measurement is to be made concurrently
with a similar reflectance one, that measurement system could be likewise rear-
ranged as illustrated in Fig. 10.38, with a previously measured sample of known
bulk-surface properties serving as output coupler 3.

The reflectance q4 of mirror 4 can be measured via output coupler 3, sequentially
placed in two positions inverted by 180° (see the dotted lines in Fig. 10.38), with
surface reflectances q4 and q3,a–b, and transmittances s3,a–b, and bulk attenuation
ll of coupler 3:

R1 ¼ jU0s2Rs3;a expð�l‘Þs3;bq4q3;b;
R2 ¼ jU0s2Rs3;b expð�l‘Þs3;aq4q3;a: ð10:77Þ

Using previously performed measurements of output coupler surface reflectances
by Eqs. (10.72) and (10.74) or (10.75) and (10.76) from inside the bulk or pro-
viding them once more, one obtains:

T1 ¼ jU0s2Rs3;a expð�l‘Þq3;b expð�l‘Þs3;a;
T2 ¼ jU0s2Rs3;b expð�l‘Þq3;a expð�l‘Þs3;b: ð10:78Þ

The ratio of the respective products of the first and second equations of the system
(10.77) and (10.78) is:

R1 � R2

T1 � T2 ¼ q24
expð�2l‘Þ : ð10:79Þ
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Fig. 10.38 Reflection–transmission based measurements, 1 source; 2 splitter; 3 output coupler;
4 mirror; 5, 6 detectors; 7 digital readout
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From which:

q4 ¼ expð�l‘Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1 � R2

T1 � T2

r
: ð10:80Þ

Obviously disregarding any negative square-root value, the positive value of mirror
reflectance q4 is obtained using the known internal transmittance l‘ of intermediate
sample 3, serving as a low-reflective output coupler of the system with mirror 4
under study. The squared mirror reflectance is determined using four measurements,
with measurement error the same as that of two single-reflectance tests.

10.5.1 Reflected-Light Measurements

The measurement arrangements reviewed above for evaluations of sample bulk and
surface losses include a stable and narrowly directed light source, in other words a
laser. The laser source should exhibit small relative changes of spectral intensity
DI0=I0 of light within a measurement cycle, allowing the detection system to resolve
any impact of attenuation by the sample’s bulk from both reflections of its first and
second surfaces or to resolve the difference of two bulk-transmittance values when
switching from the long to the short sample. The stability of laser radiation measured
is affected by both amplitude and phase noise, with the latter primarily via inter-
ference terms, which if eliminated may not dramatically affect the measurement
results. Either a cw or a stabilized-pulse laser is applicable for providing accurate
measurements.

Dual-channel measurement intensity-stabilization techniques, compensating for
variations of power or energy derivatives of laser light, were discussed in Chap. 3
and previous paragraphs. The system described below was optimized for
two-channel synchronized measurements of cw laser power. One primary reason for
the necessity and expediency of having the second channel synchronized with the
main one for power-based studies is conditioned by specific thermal laser noise at
close-to-zero frequencies. Low-frequency noise inevitably causes a drift of the
measured extents of radiation and sets limits on the true sensitivity of a measurement
system to the optical losses to be detected. Synchronization of measurement
moments in two channels within a mismatch time Ds, being much smaller than the
thermal drift time td, stabilizes the ratio of signals in channels even for any residual
drift that is mostly suppressed by a band-pass filter of the detection system.

Figure 10.39 depicts a flexible two-channel system for evaluation of low optical
losses at a given laser wavelength for synchronized-channel measurements [10.80].
The particular spectral domain for the study is provided by chosen sources and
detectors, while the specific measurement structure is defined by the optical
property to be studied. For measurements of losses of the internal bulk and each
surface of a transparent substance, the layouts in Figs. 10.36 and 10.37 are appli-
cable. For high-reflectance measurements, the arrangement in Fig. 10.38 is suitable.
To detect bulk or surface scattering factors, an integrating sphere may be added to
the light path before, after, or around a test sample.
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In every orientation of such a measurement system, the incident flux U0 from
source 1 is transmitted and reflected by wedge-shaped beam splitter 2 with very low
vertex angle c ffi 10�20 arc minutes. Light reflected from its first surface is sep-
arated by input aperture 14 into diffuse opal-glass attenuator 4, irradiating detector 6
of the reference channel. Radiation reflected from each surface of sample 3 under
study is separately measured via identical components 15, 5, and 7 in the mea-
surement channel. The signals from both detectors are transformed by tran-
simpedance preamplifiers 8, low frequency filters 9, and pulsed amplifiers 10 to
digital voltmeters 12. Time synchronization of every simultaneous measurement
moment is performed by generator 11. All measurement-to-reference signal ratios
are stored in computerized ratio meter 13. When measurements of a high reflectance
are to be performed, the optical arrangement is converted into the layout depicted in
Fig. 10.38. The beam of radiation reflected by mirror 4 under study is guided into
main detector 5 by the wedged surface of any previously characterized transparent
sample 3, serving here as the reflection output coupler for mirror 4. Thus, the
system’s dynamic range is not traded off when converting from the transmission to
the reflection layout [10.79].

In a series of reflection-based measurement experiments [10.80], dark currents in
each separately temperature-stabilized channel were maintained at near �2 � 10�5

level during any consecutive hour. The random error of each ratio measurement
averaged over seven to ten readouts did not exceed �3 � 10�5. The reflectance
magnitudes of all superpolished and temperature-stabilized single surfaces of short
and long fused-silica samples measured were maintained within �5 � 10�5 within
several hours. As a result, the overall sensitivity of the described measurement
system to low internal optical loss of a sample was �2:5 � 10�6 cm�1 or ±1 dB/km
for the length difference of the two samples equal to or exceeding 10 cm. The highest
reflectance under study could have potentially reached 0.99995, though such a high
value was not observed during these studies. The lowest linear attenuation coefficient
actually measured at He–Ne laser wavelength k ¼ 632:8 nm in a vapor-deposited
fused-silica sample with numerical aperture 0.006 was 16 ± 0.6 dB/km. The mag-
nitude of such a loss in fused silica represents aggregate attenuation, concurrently
created by combination of both absorption and scattering losses within a nearly not
divergent laser beam if compare with a fiber. Respective linear attenuation
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Fig. 10.39 Layout of a low-loss bulk attenuation measurement setting in reflected light
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coefficients measured in silica-core and silica-cladding fibers at much higher
numerical apertures (0.1–0.2), actually drawn from some of fused-silica samples
studied by the measurement system, were on an order of magnitude lower apparently
owing to the impact of scattering modes guided by the fiber [10.80].

10.5.2 Sensitivity Comparison

Considering the factual sensitivity for any absolute measurement of the total at-
tenuation of a low-loss sample, several ratio-based and differential-ratio-based
systems, such as those described in Sect. 10.1 and this section, seem capable of
identifying �ð1�2Þ � 10�5 level of intensity changes with sufficient confidence to
distinguish these changes from random noise. Typically, balanced-detection-based
techniques are designed to sense absorption or other losses under study, without
necessarily absolute determination of the magnitude of the loss, but referenced via
one or another method of absolute calibration versus the specimen identified by
other means of measurement. Therefore, providing direct comparison of sensitivi-
ties is difficult, if not impossible, but the reference described below may help
establish one standpoint of comparison.

The comparison of unbalanced-detection versus balanced-detection techniques,
provided by the optical-coherence tomography system illustrated in Fig. 10.40,
establishes a certain reference due to the high sensitivity required for detection of
scattered radiation and a similar two-channel layout as for loss-loss measurement
[10.81]. The retina of the human eye serves as multilayer object 1 under study
illuminated by superluminescent diode or mode-locked laser source 2 via a
fiber-delivery system involving main 3 and secondary 4 couplers, connected to
main 5 and balancing 6 detectors with translation mirror 7 or mirror cube 8 and
focusing lenses La and Lb in the unbalanced configuration and with additional lens
Lc in the balanced configuration. Both cases were analyzed to obtain the conditions
for the maximum signal-to-noise ratio depending on fiber-end and object reflec-
tivities qf and qob, coupling fiber loss s, system bandwidth B, radiation linewidth
Dk, and degree of polarization P for 50:50 couplers in the systems. The results
obtained for balanced and unbalanced configurations are [10.81]:
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Fig. 10.40 Unbalanced (a) and balanced (b) coherence-tomography system
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S
N

	 

unb;max

¼ qob
B

Dk
1þP2ð Þ

2s

sþ qf
� �2 ; S

N

	 

bal;max

¼ qob
qf B

Dk
1þP2ð Þ : ð10:81Þ

Setting for symmetrical comparison s ¼ qf , the maximums of balanced and un-
balanced efficiency are:

S=Nð Þunb;max ¼ qob=2qf
� �

Dk=Bð Þ 1þP2� ��1
;

S=Nð Þbal;max ¼ qob=qf
� �

Dk=Bð Þ 1þP2� ��1
: ð10:82Þ

Corresponding Eqs. (10.81) and (10.82) for the maximal-achievable sensitivity in
the balanced versus the unbalanced setting show the balanced arrangement is better
only by a factor of 2, which could be easily affected by adding the extra coupler and
by actual asymmetry of the balanced receiver. This confirms that signal-to-noise
ratios in the direct and either ratio-based unbalanced or electronically balanced
noise-compensating systems with no need for fast detection are quite compatible to
those in balanced settings without the complexities of added components, unless
making a fast measurement is of essence [10.81, 10.82].
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Chapter 11
Propagation Losses in Fibers
and Waveguides

11.1 Measurements of Internal Optical Attenuation
for Guided Light

In view of the very small propagation losses for light guided via high-purity optical
fibers drawn from highly transparent glasses with linear attenuation coefficients
below 10−4–10−5 cm−1, one could think of the necessity to develop extremely
sensitive measurement procedures detecting internal losses in such fibers.
Nevertheless, especially high sensitivity is not be required since customary lengths
of low-loss fibers, particularly for high-speed optical communication, are sub-
stantially longer than the corresponding lengths of the glass preforms from which
these fibers are drawn. Even if at any specific propagation wavelength such a fiber
has a linear attenuation coefficient l ¼ 1 dB/km¼ 2:3�10�6 cm�1, at a length of
‘ ¼ 1 km the total fiber attenuation l‘ becomes low: 1 dB, but it is equivalent to
light attenuation by nearly 26%. In a respective case of l‘ ¼ 0:1 dB or l‘ ¼ 0:01,
the entire attenuation factor correspondingly drops to 2 and 0.2%. Only when an
attempt is made to evaluate the amount of optical radiation absorbed or scattered by
a short section of such a fiber should the sensitivity of that detection be substantially
increased. This situation is essentially identical to any comparable detection method
for similar extension of the measurement locality (see, e.g., Chaps. 8 and 9).

Particular methods of measurement for linear attenuation factors in optical fibers
differ from those in bulk objects mainly by the irradiation and observation
conditions, since the fiber core and cladding diameters are normally in range of
5–500 lm. Thus, to apply any earlier-described method of attenuation measure-
ment for two identical fibers of different length, light has to be launched consis-
tently into and out of a specific numerical aperture, matching the particular guiding
modes of the fiber (see [II.33]). The fiber alignment becomes critical, since unre-
peatable light launching causes excitations of different fiber modes and respective
changes of measured attenuation as functions of the fiber’s length and refractive
index, which may diverge along distorted fiber paths [11.1]. Specific alignment
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uncertainty in a fiber measurement can be resolved only if all guided fiber modes
corresponding to the steady-state mode distribution in the fiber or the fiber-preferred
modes can be consistently selected for launching. Only under such a condition will
the measurement be performed invariably.

The most common technique of fiber transmission measurement, called the cut-
back method, is based on the matching comparison of two samples of different
lengths as for any other transmission measurement, except that both the short and the
long sample are made from the same fiber being studied (Fig. 11.1). Almost the entire
fiber tested represents the long sample, but the short sample is formed from the
beginning portion of that fiber, representing a so-called idle fiber, in which the
steady-state mode distribution needs to be achieved for the light-launching conditions
to be identical for both fiber sections compared. Radiation from a source is launched
into an idle fiber or an idle part of the fiber being studied. The idle section serves for
establishing the steady-state (static) radiation distribution for all guided fiber modes.
Within such a fiber section, all potentially leaking light modes must be already guided
out of that fiber. A so-called scrambling device or a matching liquid makes this
process happen faster. If the mode distribution is steady, the intensity of a beam
guided by the fiber virtually does not change for short distance variations. The
characteristic length for the steady-state mode distribution to occur naturally depends
on the fiber type, providingmodes are not intentionally forced to leak. Such a length is
ordinarily very long for a gradient fiber and short for a single-mode fiber [11.1, 11.2].

In the layout of Fig. 11.1, the source-idle fiber assembly functions as a stand
alone light source designed to match the geometry of a fiber to be studied. If that
test fiber is correctly aligned and coupled to the idle one, the loss measurement
procedure consists in obtaining two transmission readings N0 and Ncut, respectively,
with the entire length of the fiber and with its short cut, establishing steady-state
mode distribution (see the dotted lines in Fig. 11.1). If the optical properties along
the fiber are uniform, the fiber linear attenuation coefficient l is:

l ¼ 4:343� log10N0 � log10Ncutð Þ= ‘0 � ‘cutð Þ
¼ 4:343� log10N0 � log10Ncutð Þ=D‘; ð11:1Þ

where l and the lengths ‘0 � ‘cut ¼ D‘ of the fiber sections are in decibels per
kilometer and in kilometers, respectively. The error of measurements is defined by

Source Lens

Mode mathching
liquid Idle fiber Test fiber

Connector
Cut

Detector

Fig. 11.1 Cutback technique for measurement of total internal-fiber loss
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twofold inaccuracy of a single reading, instabilities and nonlinearities of the source
and the detector, and the conditions of all the cleaved ends of the test fiber and its
section, but even for ±5% single error and D‘ ¼ 1 km, the sensitivity to the internal
loss is±0.1 dB. The conversion from decibels per kilometer to inverse centimeters in
relation (11.1) is based on the Bouguer–Lambert–Beer law (Eqs. (1.73) and (1.78)).

The concept of using the idle launching fiber, executing a steady-state mode
distribution for the fiber to be studied, is extremely effective in fiber-attenuation
measurements. Since factual losses in a short idle launching fiber are remarkably
low, providing no leaking modes exist beyond the idle fiber, other optical losses,
such as fiber nonuniformity, connection, and splice losses, can be confidently
determined. For example, if the length of the fiber to be connected or spliced to an
idle fiber is negligible, two transmission measurements of radiation exiting the idle
fiber before the connection is made and with the connected short fiber of the same
as idle type determine the connection loss. In certain fibers, such as ones designed
for mid-IR wavelengths, it may take a long length of the fiber for the steady-state
mode distribution to be established, plus a core refractive index becomes high
enough to require accounting of multiple reflections [11.108].

Since cutting every fiber to be measured is not always convenient, the idle fiber,
establishing the desired steady-state mode distribution in the given fiber type,
allows an internal loss measurement even for a fiber connectorized at both ends. If
the physical connections of the long and short fibers are repeatable within a margin
of allowed connector loss, the process remains identical to that in Fig. 11.1 and the
measuring loss relates to the differential length of the two fibers. If the fiber under
study may not be taken out of a specific transmission system, the two-point pro-
cedure can be realized via light scattered out of a fiber cladding (Fig. 11.2). A short
section of the fiber, having no jacket, can be surrounded by some immersion liquid,
letting as much guided light out as possible. Any leaking radiation can be sensed by
an integrating sphere or be directly side-measured by sensitive detector D, con-
sistently detecting leaking of light by the section d‘ for the measurement to be made
at two points of the fiber of distances ‘1 and ‘2 [11.3]. Since detector D has no
sensitivity to the direction of propagation, but light reflected by an open fiber end is
inversely attenuated on its return, reflection of light from the far end of the fiber
must be eliminated. Keeping the constant length d‘ of the leaking section, irradi-
ating one detector D used at both points, fluxes U1 and U2 to be registered at
distances ‘1;2 ! ‘2 � ‘1 ¼ D‘ are:

Φ
δ

0

2 1−D D

Fig. 11.2 Two-point
measurement of inner-fiber
loss
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U1 ¼
r!0;Y!0

const�U0 ðrd‘Þ exp � Yþ rð Þ‘1½ �;
U2 ¼ const�U0 ðrd‘Þ exp � Yþ rð Þ ‘1 þ ‘2 � ‘1ð Þð Þ½ �; ð11:2Þ

where Y and r are the linear absorption and scattering coefficients of the fiber
making its linear attenuation coefficient l ¼ Yþ r. At a constant rd‘, the ratio of
fluxes obtained equals the total loss: ld‘ ¼ ðYþ rÞd‘, obtained in this case at
differential length ‘2 of the fiber:

U2=U1 ¼ exp � Yþ rð Þ‘2½ � or l‘2 ¼ lnU1 � lnU2

¼ power1½dB� � power2½dB�: ð11:3Þ

Although such a procedure requires having a highly sensitive detector, its sensi-
tivity to the internal attenuation is only limited by factual inaccuracy of the flux
measurements and length separation D‘ ! ‘2.

If the amount of scattered light leaking out by the fiber cladding is low, such as
in the case of single-mode fibers, it becomes difficult to perform a measurement
with a flat detector. By implementing a light-leaking fiber coil in a highly reflecting
integrating sphere, one can increase the measurement capability. The longer is the
coil of the emitting fiber fitted into the sphere, and the smaller is the sphere versus
its internal detector, the more power of radiation will be captured [2.5]. Another
way of collecting scattered light is linked with using an aggregated detector made of
sectional detectors enclosing the leaking-light zone. Figure 11.3 depicts a
cube-detector layout, in which detectors form an integrating cube around the fiber
section studied [11.4]. Two detectors have small apertures letting the fiber through
such an assembly. Entire scattered light is measured simultaneously by all six
detectors forming the integrating cube. To reduce dissimilarity of individual
detectors, resistors in the detection circuits can be individually adjusted. By forming
parallel registration circuits of six silicon detectors of 1�1-cm2 cross section and
8–11-kX resistors, the sensitivity to scattered light reached 10−10 W at k ffi 0:9-lm
light wavelength [11.4]. For the light power or its radiant flux of U0 � 1mW,
D‘ ¼ 1-cm length of light-leaking section, and fiber scattering coefficient
r ffi 10�5, scattering losses were resolved at 1% accuracy at identical within ±5%
sensitivity of the detectors.

Light scattered or leaked via the lateral surface of an optical fiber can also be
successfully utilized to identify local inclusions or inhomogeneities of the fiber.
When leaking light is identically measured before and after a point of inclusion or

Φ0

Φscat
Fig. 11.3 Integrating-cube
detector
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internal degradation, as well as a splicing or connecting joint, the sensed intensity
change equates the implemented loss [11.5]. Figure 11.4 illustrates a procedure for
the measurement of any back-and-forth splicing loss for virtually all types of fibers.
Two pairs of identical sources and detectors of light are used to measure attenuation
in opposite directions of light propagation for fibers A and B. In the calibration step,
radiation is launched into fibers placed into mode-stripping devices of two scat-
tering detectors 1 and 2 (seen as curves); thus the first detector 1 reads the power
launched by source 1, but detector 2 measures the power of source 2.
Mode-stripping devices must leak as much light as possible for accurate readings
and alignments of joined fibers. In the second step, fibers A and B are coupled or
spliced without disconnecting them from their sources of light, while the detectors
measure the respective changes of power transmitted into both sides of the joint.

The cutback and two-point attenuation measurement techniques considered
above rely on having equivalent access to fiber ends and to fiber cladding. If the
loss measurement is to be performed on a transmission system consisting of a
number of interconnected but cabled fibers equipped with fiber connectors at both
ends, any loss at each connector plug is added to the total attenuation of the entire
transmission system. Since realistic lengths of communication fibers are rather
large, each connector loss adds up and needs to either be evaluated via a short fiber,
not attenuating by itself, or directly measured by other methods. One method of
measurements of inserted losses while eliminating the extra attenuation at every
connection point is depicted in Fig. 11.5 [11.6]. First, internal attenuation factors la
and lb of two launching fibers are measured via the direct and reverse path
(Fig. 11.5a, b). Then, the device I under study, causing the local losses lI and lI′ in
the opposite directions, is connected by a test connector C1 (Fig. 11.5c). In the
positions in Fig. 11.5d, e, the system’s loss is measured from opposite directions
via similar connectors C1 and C2. Finally, measurement is made for the configu-
ration in Fig. 11.5f. If losses lC1 and lC2 of connectors C1 and C2 are unchanged
during the entire procedure and are also independent of the direction of light
propagation, the detector readings become:

Source 1
Detector 2Fiber

A
Source 2

Detector 1 Fiber
B

Source 1
Detector 2Fiber

A

Source 2
Detector 1

Fiber
B

Scattering Scattering

Joint

(a)

(b)

Fig. 11.4 Bidirectional measurements of splice or joint losses
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Nc � Na ¼ lC1 þ lI ; Nf � Nb ¼ lC2 þ lI
0;

Nd � Na ¼ lC1 þ lI þ lC2; Nd � Nc ¼ lC2;

Ne � Nb ¼ lC2 þ lI
0 þ lC1; Ne � Nf ¼ lC1: ð11:4aÞ

As a result, internal losses lI and lI
0, occurring in each direction by any local

discontinuity, are:

lI ¼ Nc � Na þNf � Ne; ð11:4bÞ

lI
0 ¼ Nf � Nb þNc � Nd: ð11:4cÞ

Owing to multiple steps required, repeatability of that measurement technique is not
superior. It needs to resolve every local connection and each fiber loss as a function
of propagation direction for the steady-state mode distribution in launching fibers.
The measurement error averaged over ten trials for the mean local loss ðlI þ l0IÞ=2
was reduced to ±0.032 dB [11.6]. Under the steady state mode condition for single
mode fibers the methodology may be used without connectors [11.106].

Source DetectorFiber

Fiber
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B
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D

D

D
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I

I

I
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C1 C2

C1 C2

C2

(a)

(c)

(d)

(e)

(f)

(b)

Fig. 11.5 Evaluation of local transmission-system losses
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11.1.1 Integrated Waveguides

Studies of transmission losses in integrated planar waveguides, which are nonde-
structive, are usually provided via light-coupling techniques, approached similarly
to cutback or steady-state mode distribution methods trying to maintain a constant
coupling efficiency for launching light into and out of the waveguide. The most
common is sliding-prism technique [11.96], in which the prism slides along the
waveguide under test, measuring its loss dependence via the length of propagation
(Fig. 11.6, configuration a).

Owing to difficulties in maintaining a constant coupling efficiency, several cou-
pling prisms may be used or the loss-per-length dependence can be sensed via
scattered light (see below). Other coupling approaches can be deployed: a glass-rod
probe [11.97] or a prism [11.98] in reflection (Fig. 11.6, configuration b), which both
frustrate the total internal reflection process on the upper boundary of the waveguide
owing to coupling. Even a photographic-based technique could be considered [11.99].

Another approach is to study a waveguide as a whole, comparing its losses in
transmission and reflection and the maxima and minima of reflectance and trans-
mittance (see Sects. 3.3, 8.4). Figure 11.7 depicts a reflection–transmission
arrangement for resonant waveguide-loss measurements via temperature-tuning the
waveguide [11.101]. Light from source S is focused in and out by objectives O1 and
O2 and measured by detectors Dt and Dr via beam splitter BS in transmitted and
reflected radiation, respectively, while waveguide W is tuned by heater H to any

(a)

(b)

Fig. 11.6 Waveguide study
via prism-coupling

BSS

W

Dr

Dt

O1 O2

H

Fig. 11.7 Reflection-transmission waveguide study
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extrema. Figure 11.8 illustrates a reflection–transmission setup for waveguide
measurements via two identical couplers C1 and C2 [11.102]. Radiation from source
S at ports 1 and 2 is sensed by detector(s) D at ports 3 and 4 in opposite directions.
The waveguide’s reflectance qw and transmittance sw as a Fabry–Perot resonator with
mirror reflectivity q and transmittance sint, defined by Eqs. (3.124c) and (3.125c), is
measured by launching light via fiber couplers C1 and C2:

Uq;S1�D3 ¼ Uin

4
sc�w 1� qð Þqw 1� qð Þsw�c; Us;S1�D4 ¼ Uin

4
sc�w 1� qð Þ

� sw 1� qð Þsw�c;
Uq

Us
¼ qw

sw
:

At perfect 50:50 coupling ratio of couplers C1 and C2, for a resonating waveguide
cavity of reflectance q, the waveguide reflectivity qw and transmissivity sw at its
finesse F are (see Eqs. (3.119c) and (3.122c)):

Iq
I0

¼ q 1� sintð Þ2 þ 4qsint sin2ðd=2Þ
1� sintqð Þ2 þ 4qsint sin2ðd=2Þ

;
Is
I0

¼ sint 1� qð Þ2
1� sintqð Þ2 þ 4qsint sin2ðd=2Þ

;

Iq
Is
¼ q 1� sintð Þ2 þ 4qsint sin2ðd=2Þ

sint 1� qð Þ2 ¼ q 1� sintð Þ2= 1� sintqð Þ2 þF sin2ðd=2Þ
sint 1� qð Þ2= 1� sintqð Þ2 :

ð11:5aÞ

Tuning the incident-light wavelength to the waveguide maxima–minima in
transmission–reflection and measuring the ratios of reflectance–transmittance
extrema, one obtains from Eqs. (3.124c) and (3.125c):

1þ sintð Þ
1� sintð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iq;max

Is;min

Is;max

Iq;min

s
�

ffiffiffiffi
K

p
; sint ¼ exp ð�l‘Þ ¼

ffiffiffiffi
K

p � 1ffiffiffiffi
K

p þ 1
: ð11:5bÞ

If only transmitted radiation (similarly for reflected radiation) is assessable, the
measurement ratios become:

Is;max

I0
¼ sint 1� qð Þ2

1� sintqð Þ2 ;
Is;min

I0
¼ sint 1� qð Þ2

1þ sintqð Þ2 ;
Is;max

Is;min
¼ 1þ sintqð Þ2

1� sintqð Þ2 ;

sint ¼ 1
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Is;max=Is;min

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Is;max=Is;min

p þ 1
: ð11:5cÞ
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WFig. 11.8 Waveguide-cavity
loss measurement
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Maxima and minima ratio measurements only in reflected light lead to another
solution via ratio R:

Iq;max

I0
¼ q 1þ sintð Þ2

1þ sintqð Þ2 ;
Iq;min

I0
¼ q 1� sintð Þ2

1� sintqð Þ2 ;
Iq;max

Iq;min
¼ 1� sintqð Þ2

1þ sintqð Þ2
1þ sintð Þ2
1� sintð Þ2 ;

R � Iq;max=Iq;min; sint ¼
�
1þ sintqð Þ

ffiffiffi
R

p
� 1� sintqð Þ���

1þ sintqð Þ
ffiffiffi
R

p
þ 1� sintqð Þ�: ð11:5dÞ

Here one sint solution, at known q, is from the quadratic equation:
s2intqð1�

ffiffiffiffi
R

p Þþ sintð1� qÞð1þ ffiffiffiffi
R

p Þþ ð1� ffiffiffiffi
R

p Þ ¼ 0.
Any of Eqs. (11.5a)–(11.5d) allow one to determine the waveguide loss,

avoiding the need to measure the input flux I0 at known waveguide-surface
reflectivity q. Measurements via the maximum and minimum of transmission or
reflection minimize the uncertainty of the radiation phase status d and its deviations.
If the radiation wavelength is tuned to the maximum and to the minimum in
transmission and the ratio: Is;max=Is;min ¼ Tk, is measured, the total internal loss l of
the waveguide studied is determined via Eq. (11.5c):

exp ð�l‘Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Is;max=Is;min

p
� 1

�.�
q
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Is;max=Is;min

p
þ 1

��
;

�l‘ ¼ ln
�� ffiffiffiffiffi

Tk
p � 1

�.� ffiffiffiffiffi
Tk

p þ 1
��þ lnð1=qÞ:

The results of experimental studies via Eqs. (11.5b) for a series of waveguide
samples of different lengths matched the results of cutback- and other resonator-
based measurements to ±1 dB for about 10 dB/cm loss [11.101]. Measurements
using Eqs. (11.5a), which could have been difficult owing to unsettled d settings,
found average waveguide propagation losses from opposite directions at the
0.55 dB/cm level [11.102]. Similar transmission measurements via relation (11.5a)
obtained using polarization coupling and wavelength tuning provided the wave-
guide spectral-loss function via spectral-curve fitting [11.103]. Nanophotonic
waveguides allow studies to be made via nanocavities embedded along waveguides
[11.107]. Backscattering waveguide measurements [11.104] could be performed
similarly (see the following paragraphs).

11.1.2 Absorption and Scattering Losses

The presence of an internal absorption loss in an optical fiber or a waveguide
changes the temperature the same way it does if radiation is propagating via
equivalently transparent glass and/or a crystal (see Chap. 9 for specific details). One
major difference consists in the contrasting border conditions for the two respective
heat-flow equations. Owing to the considerably smaller thickness and the much
greater length of a low-loss optical fiber, it is easier to separate fiber absorption and
scattering losses during a calorimetric study, but it is surely harder to attach any
thermodetector to the end or surface of the fiber in order to match the measured and
the true temperature.
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To perform calorimetric measurements of absorption losses in a fiber, the
calorimeter design may be changed to accommodate a long fiber, deploying a set of
individual thermodetectors to increase the calorimeter’s sensitivity to a respectively
small heat flow [9.10]. Large extensions of the distance from the thermal source
may decrease the individual reaction of each detector, but could allow the time
constants related to the scattering and absorption losses to be better distinguished.
When the heat transfer is characterized by Eqs. (9.9)–(9.11), the characteristic time
interval t1 of the scattering action is longer than the time constant for an array of
slow thermodetectors, and such a calorimeter would distinguish the scattering and
absorption factors. Figure 11.9 depicts the characteristic intervals as a function of
pressure [11.7]. A 20-s-long light pulse from a continuous-wave (cw) He–Ne laser
was launched into a multimode fiber. The pulse’s end matched the peak of thermal
energy Qr due to scattered light. At atmospheric pressure (Fig. 11.9, signal a) and
therefore at low thermal resistance of the fiber surroundings, the slow detectors
did not divide the absorbed energy Qa. In a deep vacuum (Fig. 11.9, signal b), only
scattered light was sensed, but at the transitional pressure P ≅ 13 kPa two
sequential pulses of the radiation scattered and absorbed by the fiber were fully
separated along time t1 (Fig. 11.9, signal c) [11.7].

An alternative way to separate absorption and scattering phenomena instantly
follows from Eqs. (9.9) and (9.11), considering that a radiometric reaction is
inversely proportional to the distance ‘ between a point source and a detector (see
Chaps. 1 and 2). Hence, a decrease of distance ‘ extends the thermal reaction, but
reduces the characteristic time interval t2 (see Sect. 9.1). That determines the actual
sensitivity DT=t to the absorption portion of the loss in the fiber according to the
following relation [9.7]:

DT=t ¼ ð4=pÞUa= p‘2qpcp
� �

; ð11:6Þ

where the factor 4=p denotes the finite dimension of the fiber sample. During
exposure of a thin glass rod at ‘ ¼ 0:66mm and 4=p‘2qpcp ¼ 211 K�cm=J by a laser
pulse, the thermal-detection limit reached 2�10�9 W/cm at DT ¼ 1:8�10�4 K and
t ¼ 400 s. In a calorimeter filled with pure helium, the actual absorbed level of power
equivalent to noise was near ðU0 �aÞmin ¼ 4�10�9 W=cm at DT ¼ 6�10�5 K and
t ¼ 100 s [11.7].

20 s

(a) (b) (c)voltage

timet t1σ

Fig. 11.9 Pressure-bound separation of thermal signals due to scattering and absorption
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1 2 3
4

Thermopiles (or thermistors)Fig. 11.10 Partition of
absorption and scattering

Another contrasting way for separating absorption and scattering loss in a thin
fiber guide is shown in Fig. 11.10. First, fiber 1 is placed into a hollow glass tube of
a larger diameter than that of the fiber. Actual thermal separation of fiber losses is
achieved via two collinear tubes 2 and 3 for the fiber and another tube 4 as the
reference tube. Tube 2 is transparent to measure fiber absorption only, but tube 3 is
blackened to detect fiber scattering. To prevent retroreflections of light scattered at
low angles tube 2 is also filled with a transparent immersion liquid. The integrated
absorbed and scattered fluxes, respectively, are [11.8]:

Ua ¼
Z‘þD‘

‘

@Ua ð‘Þ ¼ U0 1þGð Þa=l½ � 1� expð�lD‘Þ½ �; ð11:7Þ

Ur ¼
Z‘þD‘

‘

@Ur ð‘Þ ¼ U0 1� Gð Þr=l½ � 1� exp �lD‘ð Þ½ �; ð11:8Þ

where G ¼ n20 � n2
� �

= 4n20
� � ffi n20 � n2

� �
= 2n0ð Þ is the fiber geometric extent,

denoting the guided part of scattered light, and n0 and n are the refractive indices of
the fiber core and cladding. Any rise DT2 of the temperature of tube 3 is charac-
terized by the action of the total flux: UR ¼ Uabs þUscat, and is given by:

UR ¼ U0 ð1þGÞaþð1� GÞr½ �=lf g 1� exp �lD‘ð Þ½ �: ð11:9Þ

Accordingly, the ratio of temperature rises in tubes 2 and 3 referred to that in tube 4
gives the loss quotient:

DTblack:tube=DTtransp:tube ¼ 1þ 1� Gð Þr= 1 þGð Þa½ �; ð11:10Þ
where a and r are the linear absorption and scattering coefficients of the fiber. Since
for any silica fiber n0 – n	 0.02 and 1� Gð Þ� 1þGð Þ
 0.985, the plus–minus
G factors can be omitted with approximately 1.5% error.

An additional possibility for increasing calorimetric sensitivity to the fiber loss
relates to the fiber geometry. Owing to the virtual absence of the endface loss for a
long single optical fiber, thin thermopiles (Fig. 11.10) may be replaced by a set of
thermistors of larger surfaces. To compensate for the increase of direct radiation
scattering caused by extra lateral surfaces [11.8], transparent tube 2 in Fig. 11.10
was sandblasted and blackened. For the system of fiber and thin tubes to behave as
one system, tubes 2 and 3 were filled with an immersion liquid matching the
thermal diffusivity of the tube glass. Since the amount of light emitted by any
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heated body at thermal equilibrium is proportional to its lateral area and to the
fourth power of its temperature T, the flux is U�A T4 � T4

0

� � ffi AT3 T � T0ð Þ.
Presuming absence of the longitudinal flow and of the convection of heat in a deep
vacuum, the radial thermal flux H becomes:

Htherm ¼ 4ekkT3
0 2prD‘DT : ð11:11Þ

Here T0 is the averaged ambient temperature, ek is the spectral emissivity of the entire
system of the fiber and tube, k is the Stefan–Boltzmann constant, DT is the difference
of temperatures of heated and reference tubes, and r is the radius of the tube.
A temperature rise creates imbalance voltage DU of the thermistor bridge:

DU ¼ U0bTDT �RheatRref

.
Rheat þRref
� �2

; ð11:12Þ

where U0 is the bridge balance voltage, bT is the thermal coefficient of resis-
tance, and Rheat and Rref are the resistance of heated and reference thermistors.
For a platinum thermistor with bT ¼ 3:9�10�3 K−1, T0 ¼ 295 K, r ¼ 0:75 mm,
U0 ¼ 0:5 V, Rheat ¼ Rref, ek ffi 1, and 1 ¼ 5:67�10�12 W=ðcm2 �K4Þ, the ratio
DU=D‘ is 2:3�10�6 mV=cm. For U0 ¼ 1 mW, a ¼ 1 dB=km, and D‘ ¼ 20 cm,
imbalance DU ffi 4:1 nV=ðmW�dB=kmÞ.

During experiments with a 50-mW He–Ne laser at k ¼ 633 nm irradiating a
fiber for about 1 min with a sequential 1-min delay, the level of equivalent-to-noise
sensitivity was 0.1 dB=km. Absolute calibration was performed by substitution
of the fiber by an electric wire. The imbalance of the bridge was DU ¼ 4:0
nV=ðmW�dB=kmÞ for a transparent silica tube with ek ffi 0:8, and was DU ¼ 4:0
nV=ðmW�dB=kmÞ in the black-painted tube with ek ffi 0:9. The linear absorption
coefficient a measured at k ¼ 633 nm was near 1.4 dB=km, but the scattering
coefficient r reached 11.8 dB=km. Further measurements by the cube detector
[11.8, 11.9] verified the scattering coefficient r was 0.7 dB=km.

Similarly to the measurement of bulk absorptance (see Chap. 9), radiation
absorbed inside a fiber situated inside a sound resonator filled with a resonating gas
can be detected by a sensitive microphone [11.10]. Since 125-lm diameter of the
silica fiber cladding practically equals the thermal diffusion length kT at low
modulation frequency f (Eq. (9.60)), while the fiber’s core and cladding thermal
conductivities are practically identical, the temperature distribution in the fiber cross
section A can be considered uniform. As a result, the thermal flux H from that
low-absorbing fiber becomes:

Htherm ¼ aU=2Að Þ expðiftÞ: ð11:13Þ

Besides, the thin optical fiber can be substituted by a calibrating wire, heated by any
alternating electric current of equivalent angular frequency f =2, more accurately
than a bulk sample. Therefore, complex expressions (9.61) and (9.62) can be sin-
gled out as for only terms of the temperature distribution at frequency f. In a
resonant cavity of much larger dimensions than kT, and, thus, with distant walls
with negligible thermal influence, the radial temperature shift Tf, which makes air
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pressure and acoustic waves, is proportional to the wave amplitude
Um: Tf �UmkT=f. When the fiber is irradiated, amplitude Ufiber is:

Ufiber � aU=ð2AkT;fiberÞ: ð11:14Þ

When the alternating current Ia flows through a wire of conductance 1=R and of the
size of the fiber, Uwire is:

Uwire � I2aR
�

2A2kT ;wire
� �

: ð11:15Þ

At low modulation frequency f, the other factors in relations (9.61) and (9.62) are
similar and [11.10]:

aU ¼ I2RðqpcpÞfiber
�½ðqpcpÞwire A�: ð11:16Þ

The experimentally evaluated absorption coefficient a at k = 514.5 lm was (9.3–
9.2) ± 0.6 dB=km at U0 ≅ 240 and 150 mW. The dependence of the signal
amplitudes on frequency f−1.6 was slightly different from that calculated for pure
SiO2 as f

−1.7, correcting the recalculated effect of aluminum cavity walls to ±1%.
The mirage-effect measurement (see Sect. 9.3) estimated a fiber-absorption loss of
9–9.7 dB=km [11.10].

11.1.3 Analysis of Scattering Losses

One common assumption for most conventional light-scattering measurements in
low-absorbing fibers presumes Rayleigh phenomenon for back-and-forward elastic
scattering on small particles, being inversely proportional to the fourth power of the
light wavelength: rRayleigh ¼ const=k4 ([II.20]). When this assumption holds true, it
facilitates a scattering measurement by detecting light intensity at 90° to the inci-
dent beam [5.13]:

rRayleigh ¼ I90�

I0

‘2

V
8p
3
1þ 2IjjðHÞ=I?ðHÞ
1þ IjjðHÞ=I?ðHÞ ¼ 16p

3
I90�

I0

‘2

V
; ð11:17Þ

where I0 and I90° are the intensities of incident radiation and radiation scattered
at 90°, which is not polarized at isotropic Rayleigh scattering. However, if
any impurity particles in the scattering fiber are not small in comparison with
the radiation wavelength of interest, two other phenomena of light scattering
could occur, such as a wavelength-independent effect and Mie scattering:
rMie ¼ const=k2 [1.1]. The scattering loss in optical fibers can also be caused
by large defects, such as fiber diameter fluctuations, leading to wavelength-
independent scattering, as well as by crystallization or by other inhomogeneities or
particle impurities. To identify plausible outcomes of these or other phenomena,
developing absolute methods for scattering measurements may become essential if
sensitivity versus bulk-loss studies can be improved, not to cause fiber nonlinear-
ities at high power densities.
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To measure complete 4p scattering, a fiber can be fitted, as any other object, into
a highly reflecting integrating sphere. To distinguish scattering loss when inte-
grating any long fiber length, high resolution to scattered light may not be required,
since the entire fiber-length spool can be coiled into the sphere. Decreasing the
sphere diameter would increase the sensitivity, since the internal sphere irradiance
expands inversely to its squared radius as a straight fiber length reduces linearly.
Since a cube detector limits the enclosed scattering zone of a fiber [11.4] (see
Fig. 11.3), likewise the measurement of the sum of the absorption and scattering
loss by Eqs. (11.2) and (11.3), the absolute measurement of the scattering loss r
can be made via the fiber transmittance as seen in Fig. 11.11:

Ur ¼ U0r
0d‘ exp �l‘ið Þ; Us ¼ U0 exp �l‘totalð Þ;

r0 ¼ Ur=Usd‘ð Þ exp �l ‘total � ‘ið Þð Þ: ð11:18Þ

Here r0 stands for the effective fiber scattering coefficient, which excludes scattered
light guided by the fiber at low propagation angles, d‘ is the length of the scattering
section, equal to the cube-detector length or to the diameter of the integrating sphere,
in which the fiber fits straight, and ‘i and ‘total ¼ ‘i þ d‘ are, respectively, the distance
to the scattering section and the total length of the fiber, which owing to low fiber
losses are presumed to be virtually equivalent. Comparison of the complete and 90°
scattering distinguishes low-angle and wavelength-independent phenomena. If
relation (11.18) is converted to logarithmic form, the total internal loss can be evaluated
via the slope of its linear conversion by repositioning (dashed lines in Fig. 11.11)
the cube detector or integrating sphere along the fiber [11.11]. Similarly [11.100],
scattering and absorption losses may be deduced by simultaneous transmittance and
scattering measurements.

By contrast to the integrating-sphere placement, in which internal spherical 4p
irradiance does not depend on the direction of first irradiation of its wall, cube
detectors do not uniformly respond to oblique components of scattered light. The
magnitudes of cube irradiance decrease proportionally to the cosine of the incidence
angle. Therefore, cube detectors effectively estimate only Rayleigh but not
low-angle components of scattering. To measure effectively the 4p scattering, cube
readings must be corrected by the factor

R
ni cosuidA=n, where ni and n are the

local and the average sensitivity for each detector surface of area A and ui is the
angle of incidence. The quasi-sphere, made, for instance, of pentagonal detectors
and proposed long ago [1.5], can more effectively evaluate fiber scattering. Other
types of light concentrators can be used, as compound parabolic ones commonly
utilized for light-emitting diodes [11.12].
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Cube Cube
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Direct light

Φ τ

Fig. 11.11 Absolute measurement of fiber-propagation scattering loss
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A schematic representation of 4p scattering loss measurement in the integrating
sphere is shown in Fig. 11.12 [11.13, 11.14]. The fiber jacket must be stripped from
the fiber section inside the sphere. The steady-state distribution offiber modes should
prevent sensing of any leaking light modes. The fiber end can be put into the sphere
to calibrate its internal detector 1. Detector 2 establishes the loss-calibration level by
measuring the fiber transmission and is used to stabilize the source power output. As
low as 0.025 dB/km scattering-loss level at k ¼ 2:55 lm was sensed [11.14].

Obvious difficulties for the absolute measurements of low scattering losses in
optical fibers are defined by 10−5–10−6 lower intensity levels of scattering than of
light transmitted via a low-loss fiber. It is not easy to achieve simultaneously high
sensitivity and a high dynamic range of a detector, or to apply supplementary
attenuators of known optical properties, especially in a broad spectral region. As
noted in Chap. 2, an integrating sphere made of any low-absorbing translucent
material can be utilized as a spectrally unselective attenuator, as well as a space
integrator of diffusely reflected radiation [0.21, 2.8], providing the scattering
indicatrix of the material chosen could be closely approximated by the cosine-law
function (see also Chaps. 1, 2). Considering the applicability of such a sphere to
measure the 4p scattering, Eqs. (2.12) and (2.13) confirm the uniform distribution
of radiation incident upon the sphere inside and outside the sphere enclosure with
the accuracy of approximation that there are no identifiable absorption losses in the
sphere walls at qwall þ swall ! 1. The layout for a measurement procedure is
schematically illustrated in Fig. 11.13 [2.5].
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Fig. 11.12 Measurements of
total fiber scattering
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Fig. 11.13 Absolute measurements of ultralow fiber scattering
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In the main integrating sphere 1 of a diffuse, highly reflecting material and
optimized to be small dimensions for the low-scattering measurements, only four
entrance–exit ports are made. The two smallest ports 2 hold a test fiber, third port of
area Ad has detector 3, and fourth port 4 of area Ac couples translucent sphere 5.

When the flux U0 of radiation is launched into a fiber of linear attenuation l,
combining respective scattering and absorption losses r and a, the light flux Usc is
scattered into sphere 1:

Usc ¼ U0ð1� qfÞg expð�l‘Þ; ð11:19Þ

where qf is the reflectance of the fiber endface or connector and g ¼ rD‘ is the
scattering factor of the fiber section of length D‘ inside integrating sphere 1. The
reading of detector 3 in main sphere 1 is:

N0 ¼ const �U0 1� qf
� �

exp �l‘ð Þ rD‘
1� q10

Ad

A1
; ð11:20Þ

where q1
0 and A1 are the effective internal reflectance (see Sect. 2.4) and the inner

surface area of sphere 1.
When the far end of the fiber of expanding length ‘aux is turned to irradiate the

translucent sphere 5 (dotted line in Fig. 11.13) and since reflectance q and trans-
mittance s of that translucent sphere walls are: qþ s ¼ 1, reading NR of detector 3
in response to flux Usc plus flux Us of sphere 5 is:

NR ¼ const �U0 1� qf
� �

exp �l‘ð ÞrD‘þ exp �l ‘þ ‘auxð Þ½ � Ac=A5ð Þf g
� 1� q1

0ð Þ�1 Ad=A1ð Þ: ð11:21Þ

Here A5 is the area of the inner surface of sphere 5. At the negligibly small loss of
the fiber far-end section: l‘aux, we have:

rD‘ ¼ N0= NR � N0ð Þð Þ Ac=A5ð Þ: ð11:22Þ

Such a technique does not require extra baffles in either sphere, since in that
structure any seemingly low-leaking modes of the fiber cannot directly irradiate
detector 3, while radiation, added from the translucent sphere, is uniformly scat-
tered. Consequently, there are no systematic errors when making the absolute
measurement of fiber scattering coefficients. The dynamic range for this measure-
ment is reduced in proportion to the relative area Ac=A5 of the coupling aperture
between spheres. If the translucent sphere wall has a specular component of scat-
tered radiation, the sphere irradiance E5 should be evaluated by Eq. (2.161), which
governs coupling of flux U5 = AcE5 into sphere 1.
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For experimental arrangements [2.5], translucent sphere 5 was machined from a
low-density opal glass with opening to inner sphere surface area of ratio
Ac=A5 = 26.46 dB. That ratio of direct radiation fluxes to radiation fluxes transmitted
via sphere 3, measured with ±0.2 dB accuracy, was 26.6–26.8 dB at 0.9- and
1.06-lm wavelengths. A change within ±30° of the irradiation direction by the far
end of the fiber for translucent sphere 5 did not alter detector readings. The test fiber
designed for k = 1.3 lm had total attenuation of 6.2 dB=km at k ffi 0:9 lm. The
measured scattering-loss component at k ffi 0:9 lm was 6.5 dB for multiple coils of
fiber, giving a linear-scattering coefficient of 1.8 dB=km for the coiled fiber length
D‘ ¼ 280mm.

11.1.4 Polarization Dependent Losses

Polarization-dependent loss (PDL) of a fiber is defined by the maximal transmission
loss variation while the state of the input light polarization changes over 360°:
PDL ¼ Tmax=Tmin. Any loss measurement method can be applied to obtain PDL
using a source of linearly polarized light scanning over all states of polarization.
A combination of half- and quarter-wave plates rotating around the optical axis may
also transform a fixed state of polarization for any specific wavelength into any
desirable state. A common setup for the measurement is depicted in Fig. 11.14.
A light beam from source 1 propagates by the idle fiber via spectral selector 2 and
linear polarizer 3 to half-wave plate 4 and quarter-wave plate 5 rotating 360°,
respectively, in 1.8° and 3.6° steps [11.15]. Light transmitted by fiber 6 under test
via depolarizer 7 is measured by detector 8.

For an 8°-beveled fiber, experimental PDL values matched the theoretical ones
with ±0.002 dB accuracy. Also, instead of using a full 360° scan, one can measure
PDL via a Jones matrices algorithm for only three input states of polarization
[11.16]. For that purpose, the Jones matrix T

"
of the device under test can be

identified by the transmission responses of the test device to a linear stimulus
parallel to a given axis (k1), perpendicular to the axis (k2), and parallel to bisector of
the first two axes (k3). The Jones matrix is:

T
" ¼ b

k1k4 k2
k4 1

� 	
; ð11:23Þ

where b is a complex constant and k4 ¼ ðk3 � k2Þ=ðk1 � k3Þ. The maximum to the
minimum polarization–transmission ratio, representing PDL, is given by a ratio of
the squared Jones matrices [11.17]:

1 2
5

6
3 4

7 8

Fig. 11.14 Studies of polarization-dependent losses via rotating waveplates
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PDL ¼ T
"
max

�
T
"
min ¼ s2maxðAÞ

�
s2minðAÞ: ð11:24Þ

Here smax(A) and smin(A) are the single magnitudes of the respective Jones matrix
of device A studied.

Figure 11.15 depicts the system for three-polarizer Jones matrix-based PDL
testing [11.18]. Solenoid-mounted bulk polarizers P, positioned between objectives 2,
define the state of polarization for the parallel beam of light from source 1 further
coupled into the fiber under test 4 with its input and output connectors being the
polarization transformers 3, whose losses do not depend on the state of polarization.
Under the loss-independence assumption, the measured Jones matrix value is not
changed by fiber connectors. Via random resets of the connectors’ orientation, the
single PDL readings were repeatable with±0.05 dB consistency versus an averaged
value [11.18].

For a long line of optical fibers or a network of fibers, connectors, isolators, etc.,
the total (global) PDL is the statistical sum of PDLs of concatenated elements as a
function of the orientation for all optical elements’ axes. Since the actual optical
axis of a fiber, especially a single-mode one, fluctuates in time, a statistical
description for the global PDL is required. Designating the fiber transmission at the
depolarized input as: Tdepol = ðTmax þTminÞ=2, and representing PDL as a
three-dimensional vector C of length: C = ðTmax � TminÞ=ðTmax þTminÞ, the
transmission factor T of a single polarization state Min becomes [11.19]:

T ¼ Tdepolð1þM
"

in �C
"Þ: ð11:25Þ

When two concatenated elements, with PDL C1 and C2, respectively, follow one
another, the global PDL C1,2 is:

C
"
1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C

"2
2

q
1þC

"
1C
"
2

C
"
1 þ

1þ C
"
1C
"
2



1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C

"2
2

q ��
C
"2

2

1þC
"
1C
"

2

C
"
2: ð11:26Þ

From Eq. (11.26), statistical data for C1,2, as the mean PDL or either as C1,2

minimum or maximum versus C1,2 or C1,2 can be obtained [11.20]. For more
fiber-line polarization elements, the total PDL would likely be measured as depicted
in Fig. 11.16. The orientation of each optical axis for a given fiber is simulated by
polarization controllers 4. For up to five concatenated pieces, the agreements

1 4 3 52PP P2 3

Fig. 11.15 Alternative polarization-dependent loss setup with rotating waveplates: 1—source;
2—lens; P-polarizer; 3—polarization transformer; 4—DUT; 5—polarimeter
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between the experimental and the theoretical mean and standard deviation for the
PDL were repeatable within 0.01–0.005 dB [11.20].

A fiber transmission system with potential refractive index discontinuities can be
degraded by phase-induced intensity noise caused by polarization interference,
similarly to a system of bulk elements [11.65]. Certain specifics of phase-to-
intensity noise conversion due to interference in fiber transmission systems are
further reviewed in Sect. 11.4. Let us for now consider certain optimum propaga-
tion settings of a fiber-based system to have low interference noise via analyzing
phase retardance of that fiber line, considering the performance of such a line as the
noise filter [11.22].

For a substance of distributed birefringence, as a single-mode fiber, with random
orientation of its optical axis, the contribution of interference noise can be computed
by summing the interference patterns by fiber sections of equal and different numbers
of reflections along each birefringent axis and then within a polarization direction. As
seen in Sect. 3.3, multiple-path interference in birefringent substances can be repre-
sented via two processes for waves with equal and dissimilar numbers of reflections:
the comparative and the cross-reference events (see Eq. (3.154)), while only light
modes that contribute to the comparative interference have identical amplitudes
[3.43]. Presuming arbitrary orientation of optical axisui of a single fiber element i for
randomly oriented birefringence axes, and since residual reflections for states of
polarization qo and qe on two potential discontinuities in fiber networks are low, let us
disregard the interference of waves separated bymore than one dual-reflection pass in
multiplicity m of all birefringent fiber elements. This means that the products of two
squared reflection factors along ordinary and extraordinary axes are negligible in
comparison with 1.0: ðqo1qo2Þ2  1; ðqe1qe2Þ2  1. As a result, relation (3.154) for
the summarized phase shifts d, do, and de becomes:

Is;R;m ¼ I0
1� qoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� qoð Þ2 þ 4qo sin
2 do

q Xm
i¼1

cosui cos ui � cð Þþ 1� qeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ2 þ 4qe sin

2 de

q Xm
i¼1

sinui sin ui � cð Þ

2
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3
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2

� I0sose

sin2
d
2


 �
þqoqe sin

2 3d
2


 �
þqo sin

2 do þ d
2


 �
þ qe sin

2 de þ d
2


 �
þ

þq2oqe sin
2 2do þ d

2


 �
þqoq

2
e sin

2 2de þ d
2


 �
8>>>><
>>>>:

9>>>>=
>>>>;

Xm
i¼1

sin 2ui sin 2 ui � cð Þ½ �:

ð11:27Þ
Expression (11.27) counts many multiple reflections for birefringent elements

within a given fiber-communication line. Let us, only for simplicity, substitute these
multiple fiber sections by one effective birefringent element of axis-angle uR. When

1 53 32 4 23 654

Fig. 11.16 Experimental setup for analysis of total polarization-dependent loss in a fiber network:
1—source; 2—idle fiber; 3—connector; 4—polarization controller; 5—DUT; 6—power meter
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boundary reflectances are low, the number of accepting terms can be reduced via
approximation of qo1qo2  1; qe1qe2  1 or qo2  1; qe2  1:

Is;R;s ¼ I0
1� qoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� qoð Þ2 þ 4qo sin
2 do

q cosuR cos uR � cð Þþ 1� qeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ2 þ 4qe sin

2 de

q sinuR sin uR � cð Þ

2
64

3
75
2

� I0sose sin2
d
2


 �
þ qoqe sin

2 3d
2


 �
þ qo sin

2 do þ d
2


 �
þ qe sin

2 de þ d
2


 � �
sin 2uR sin 2 uR � cð Þ½ �:

ð11:28Þ

For a limited coherence length of radiation for multiple wave components of
orthogonal phase shifts do and de not to be interfering after some relatively distant
propagation, we have:

Is;R;sgl;uncoher ¼ I0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qo
1þ qo

s
cosuR cos uR � cð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qe
1þ qe

s
sinuR sin uR � cð Þ

" #2

� I0 1� qoð Þ 1� qeð Þ sin2
d
2


 �
þ qoqe sin

2 3d
2


 � �
sin 2uR sin 2 uR � cð Þ½ �:

ð11:29Þ

Figure 11.17 illustrates the spectral transmittance of a quarter-wave retarder for
the k = 1555 nm with properties similar to those of fused silica, and whose optical
axis is oriented at 30° to unchanging input–output polarization directions, making
c = 0° and u ¼ 30�. Computation is based on the presumption of 6% reflections for
diamond polished single-mode fiber endfaces. The effects are computed by
Eqs. (11.27)–(11.29) versus an ideal case of no reflections (Fig. 11.17, series 4).
Although the characteristics of the curves are similar, the equations predict diverse
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Fig. 11.17 Transmission curves of the quarter-wave retarder for 1555 nm placed between two air
gaps: series 1—all effects are counted; series 2—only the first two dual-reflection cycles are
included (the curves for series 1 and 2 coincide); series 3—only two-beam interference is
computed; series 4—ideal case of no air-gap reflections
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intensity noise seen as oscillations of mean intensities. At low reflectances,
Eqs. (11.27) and (11.28) give similar results: the curves in Fig. 11.17 for series 1
and 2, with no need to consider all multiple reflections. Reduced Eq. (11.29) clearly
gives incorrect transmission (Fig. 11.17, series 3). It is also seen that interference
noise is elevated at high and low intensity of the radiation transmitted, being related
to the phase retardance in multiples of p. It is different near the 50% intensity
points, matching the ideally optimal dopt ¼ p=2. Counting all multiple reflections,
the optimal phase shift dopt changes again, since the dual-path phase shift for each
optical axis is not a multiple of p/2 anymore.

Let us consider identifying the optimal phase shift dopt, which be required to
obtain the minimum stimulus for any spectral changes in radiation propagating via
the fiber and the lowest interference noise in fiber transmission. Prospective spectral
points matching the lowest interference changes of the observe intensity of light,
and therefore likely minimal interference noise, correspond to zero magnitudes of
second derivatives in transmission. These second derivatives are:

@2 Is;R;dual=I0
� �

@2d
¼

� sose
2

cos dþ 9qoqe cos 3dþ qo cos 2do þ dð Þþ qe cos 2de þ dð Þþ
þ q2oqe cos 4do þ dð Þþ qoq

2
e cos 4de þ dð Þ

 �
sin 2uR sin 2 uR � cð Þ½ �:

ð11:30Þ

@2 Is;R;sgl=I0
� �

@2d
¼ � sose

2
cos dþ 9qoqe cos 3dþ qo cos 2do þ dð Þf

þ qe cos 2de þ dð Þg sin 2uR sin 2 uR � cð Þ½ �: ð11:31Þ

@2 Is;R;sgl;uncoher=I0
� �

@2d
¼ � 1� qoð Þ 1� qeð Þ

2
cos dþ 9qoqe cos 3df g

�sin 2uR sin 2 uR � cð Þ½ �: ð11:32Þ

The second derivatives of the transmission factors in Eqs. (11.30)–(11.32) are
shown in Fig. 11.18.
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Fig. 11.18 Tuning the optimal wavelength, matching the optimal phase retardance and the point
of lowest excessive noise: curves 1–3 were computed by Eqs. (11.30)–(11.32)
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The analyzed reduction of birefringence-induced multiple-path interference
noise can likely expand the options for designing the transmission and the mea-
surement systems by incorporating fibers with an optimal birefringence for
system-specific sections tuned to the optimal spectral transmission. For example,
for actual fiber birefringence: b = 2pDn=k, as the inverse linear function of a local
fiber beat length: Lb = k=Dn, Eqs. (11.27)–(11.29) and (11.30)–(11.32) would be
supportive in suppressing interference beat noise for a particular wavelength k or a
set of wavelengths propagating the fiber.

11.2 Analysis of Return Losses via Backscattered
Radiation

Predominantly, the scattering of light identifies useless dissipation of energy.
Although, in addition to making the sky blue, scattering may serve a very useful
purpose, since capturing of uniformly scattered radiation by the core of a fiber allows
analyzing a longitudinal distribution of internal loss for such a fiber [11.23–11.25].
The amount of light guided by a given fiber depends on numerical aperture NA (view
c) in Fig. 11.19 below), matching themaximum acceptance angleHm supporting total
internal reflection at that fiber cladding with Hc ¼ sin�1ðnc=n0Þ since angle
H0

c ¼ 90�. HereH0; n0 andHc; nc are the respective angles and refractive indices for
core and cladding interfaces. Replacing refracted angleH0

m ¼ H0 via incidence angle
Hc at core-cladding interface: sinH0

m ¼ sinð90� �HcÞ ¼ cosHc, and rewriting
Snell’s law for light entering the fiber: ðn2=n20Þ sin2 Hm ¼ cos2 Hc ¼ 1� sin2 Hc ¼
1� n2c=n

2
0, while presuming the uniform Rayleigh scattering, one obtains [11.25]:

NA ¼ n sinHm ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� sin2 Hc

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
n20=n

2
c

p
. Consequently, the fraction of scat-

tered light guided back and forth by such a fiber is: G ¼ X=4p ffi pðn sinH=n20Þ2=
4p ffi ðn20 � n2cÞ=4n20.

The flux of radiation U carried out from a fiber by scattered light in two opposite
directions of propagation initiated by incident light and light transmitted via a fiber
section of length D‘ is:

U ¼ U0 1� q0ð Þ2exp �l‘1ð Þ�rD‘G�exp �l‘2ð Þ; ð11:33Þ
where l and r are the attenuation and the scattering coefficients of the fixed
backscattering fiber section D‘, and ‘1 and ‘2 are the distances to the points of
launching light in and out of the fiber. Following Eq. (11.33), for evaluation of the
total internal loss over fiber length ‘2 � ‘1, it is sufficient to localize the effective
source of radiation scattered by the fiber within its section D‘; which must be
certainly smaller than the distance difference ‘2 � ‘1. A few methods of localization
are applicable. The most obvious one is done by launching a light pulse of duration
Dt ¼ D‘�n0ð Þ=c  ‘R �n0ð Þ=c into such a fiber. Here n0 and ‘R are the effective
index of refraction of the fiber core and the fiber length. The pulse time interval
defines the effective length of the scattering source. As a result, the task for the
detector is to resolve the pulse temporarily and to sense the scattering, additionally
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attenuated by the length ‘R. The second method implies a frequency-modulation
approach (see Chaps. 8–10). Launching into a fiber cw frequency-modulated light
with its coherence length long enough to resolve the fiber’s space or time interval
provides frequency-dependent information. Consequently, such a frequency scan
evaluates the interference pattern distributed along the fiber for reference and
scattered radiation. The first procedure is optical time domain reflectometry
[11.23–11.25], the second is optical frequency domain reflectometry [11.26–11.28].

For a length of the resolved space interval D‘ ¼ ðc=n0;gÞDt, where
n0;g ¼ n0 1� k=n0ð Þ@n0=@k½ � is the fiber-core group refractive index, the power P
of guided backscattered light [11.23, 11.29–11.31] is:

Pscat ¼ 0:5P0rv0;gDt exp �lv0;gDt
� �

S: ð11:34Þ

Here P0 is the power launched into the fiber, v0;g is the light group velocity:
Dt ¼ D‘=v0;g, denoting a temporal pulse width, and S is the scattering factor
identified by the fiber type:

Ssingle-mode ffi 3=2

a0=að Þ2V2

n20 � n2c
n20

; Sstep-index;mult: ffi 3
8
n20 � n2c

n20
;

Ssquare-law;mult: ffi 1
4
n20 � n2c

n20
; ð11:35Þ

where n0 and nc are the refractive indices of the fiber core and cladding:
V ¼ 2pa=kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � n2c

p
is the fiber normalized frequency, a0 is the spot size (mode

field diameter) of guided light, and a is the fiber core radius. In view of transient
Eq. (11.33), backscattered-light loss l in a homogenous fiber can be estimated in
decibel (dB) via the shortened designation “lg” for log10 as:

Dbackscat ¼ �10 lg
Pscat

P0
¼ 20 lg

2n0
sinH

þ 10 lg
n0;g
cDtr

þ 2l‘�10 lg e: ð11:36Þ

Expressions (11.33)–(11.36) identify the backscattering signal as directly dependent
on the geometry and the specific scattering factor of every scanned zone of the fiber
under study. Hence, the accuracy of a backscattering measurement of the fiber loss
is strongly dependent on the stability of these factors.

Since the light-scattering intensity guided via any fiber is very low, especially for
a single-mode fiber, measurements of internal fiber loss via fiber-backscattering
signal require exceptionally high detection sensitivity and are mainly based on
extensive time integration of individual signals. The principal schematics for
implementing the optical time domain reflectometry (OTDR) and optical frequency
domain reflectometry (OFDR) techniques are shown in Fig. 11.19. In both systems,
a light beam is launched into a test fiber using a mode-matching technique with any
idle fiber or some lens objective matching the numerical aperture of the fiber under
test. The optical time domain reflectometry technique utilizes a relatively short
pulse source, a fast detector, and a boxcar integrator accumulating as many light
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pulses as are required to reach the desired loss-measurement sensitivity for a not
endlessly long time interval for the signal detection. Optical frequency domain
reflectometry uses frequency-modulated cw radiation, a relatively slow, but espe-
cially low noise detector, and a spectrum analyzer synchronized to the modulation
frequency of the optical frequency domain reflectometer, distinguishing two-beam
interference of backscattered light with light, reflected from either a reference
element or a reference channel and is inherently polarization-sensitive.

By comparing the pulse energy or the maximum power of the pulse for two
wave envelopes scattered by equal spatial sections of the test fiber at distances ‘1
and ‘2, and thus setting the reflectometer to detect scattering signals recognizing a
difference between them, the averaged loss �l for length ‘1 � ‘2 becomes:

I1=I2 ¼ exp �2l‘1ð Þ�exp �2l‘2ð Þ ¼ exp �2�lD‘ð Þ: ð11:37Þ

If the fiber length is measured in kilometers, the average attenuation �l is computed
in decibels per kilometer as the slope of the logarithmic display of an oscilloscope
(OTDR) or spectrum analyzer (OFDR) for the reflectometer:
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Fig. 11.19 The optical time domain (a) plus frequency domain (b) reflectometers and the full NA
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�Dfiber ¼ �l�10 lg e ¼ ½5 lg I1=I2ð Þ�= ‘2 � ‘1ð Þ: ð11:38Þ

When the linear attenuation coefficient l of the fiber under study and its geometric
extent G or the scattering factor S (see expressions (11.33), (11.35)) are not constant
along the fiber length, it is necessary to account for the auxiliary terms:
10 lg r1D‘1= r2D‘2ð Þ½ � or 10 lg ðrv0;gDtSÞ1=ðrv0;gDtSÞ2

� �
. Independently of the

means of mode excitation via the idle fiber or another device, if light is launched
into a test fiber with a steady-state mode distribution, a specific dead zone for
backscattering measurements always exists, since scattering excites all fiber modes,
some of which leak.

Similarly to studying the loss between two points of any fiber, the backscattering
measurement can be used to assess the confined fiber loss. An abrupt fault of
specular reflectance q sets loss Dq:

Dq ¼ �10 lg Pq=P0
� � ¼ �10 lg q exp �2�l‘q

� �� � ¼ �10 lg qþ 2�l‘q10 lg e;

ð11:39Þ

where Pq and P0 are the reflected and launched power and ‘q is the distance to the
fault of reflection q. The reflected signal may be compared with scattering from the
nearest scattering point to the fault:

Dq;r ¼ �10 lg Pq=Pr
� � ¼ �10 lg q=rD‘Gð Þ exp �2�l ‘q � ‘r

� �� �� � ffi �10 lg q

þ 10 lg rD‘Gð Þ; ð11:40Þ

where distances ‘q and ‘r to the fault and to the scattering points are assumed to be
equal. The likely nonreflecting fault, such as any splicing joint of unequal fibers,
changes the fiber transmission with unequal factors sf and sb in forward and
backward directions. Figure 11.20 depicts fault J in a fiber line seen via
backscattered light between scattering signals from points A and B:

PA ¼ P0G1r1D‘ expð�2l1‘AÞ;
PB ¼ P0s1s2G2r2D‘ exp �2ðl1‘J þ l2 ‘2 � ‘Jð ÞÞ½ �;

Fig. 11.20 Illustrative
OTDR trace via an imperfect
splice of two joined fibers
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where the first and second fibers are defined by respective scattering and total losses
r1, r2, l1, and l1. The average optical density DJ of the joint is:

DJ ¼ 5 lg
1

sf sb


 �
¼ Df þDb

2
¼ 5 lg

PA

PB
þ 5 lg

r2G2

r1G1
� DA;B; ð11:41Þ

where DA;B ¼ 10ðlg eÞ½l1ð‘J � ‘AÞþ l2ð‘B � ‘JÞ� is the total fiber-line loss in
between points A and B. If the splicing fibers have similar geometry and scattering
coefficients, relation (11.41) becomes:

DJ ¼ 0:5 Df þDb
� � ¼ 5 lg PA=PBð Þ � 10 ðlg eÞ l1ð‘J � ‘AÞþ l2ð‘B � ‘JÞ½ �:

ð11:42Þ

Owing to the limited resolutions of optical time domain reflectometers and
changes of the power distribution of radiation passed by imperfect fiber joints, local
faults often look like longitudinal joints of loss decays (see Fig. 11.21). Thus, most
reflectometers use curve-fitting techniques to evaluate linear attenuation coefficients
l1 and l2 in two joined fibers, and the loss lJ in a fiber joint is estimated as the
difference of two logarithmic decays ‘2 � ‘1 and ‘4 � ‘3, extended to the middle
point ‘J of such a fiber joint (see Fig. 11.21). Another way of approximating for
actual splice loss lJ can be made by an auxiliary detection of the average fiber-line
loss l̂ between any two distant points ‘1 � ‘4 [11.32]. By measuring the losses l1,
l2, l̂ ¼ 0:5ðl1 þ l2Þ, and lJ from alike zones ‘2 � ‘1 ¼ ‘4 � ‘3 ¼ D‘ and
‘J � ‘2 ¼ ‘3 � ‘J ¼ DJ, the splice loss l̂J averaged over all points is:

l̂J ¼ lJ þ ½0:5ðl1 þ l2Þ � l̂�ðD‘þDJÞ: ð11:43Þ

Owing to uneven mode excitation, backscattering measurements of optical losses in
the fiber joints are more accurate if they are performed in two opposite directions of
light propagation via one connecting fiber.

To advance the capabilities of time- and frequency-domain reflectometry, feasible
development efforts primarily expand the dynamic range and spatial resolution of
reflectometers. For conventional pulsed-echo OTDR this means increasing the peak
power of the pulse limited by nonlinear effects, shortening the pulse width, and

Fig. 11.21 Continuous trace
of a fiber splice or joint
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applying single-photon and multiphoton counting techniques [11.33–11.38].
Another way of advancing the measurement capabilities is by automating the scat-
tering-trace analysis, while presuming constancy of derivatives for the logarithmic
scattering trace in a fiber not containing any discontinuities [11.39]. Setting up a
meaningful threshold level for fluctuations of the fiber scattering losses, the dis-
continuity can be measured via the highest absolute value of the derivative
(Fig. 11.22). The respective return of the derivative trace to the preset threshold
characterizes the end of intermission within the limit of the OTDR pulse width. Any
reflective faults initiate two opposite extremes (see the traces in Fig. 11.22).
Therefore, a fiber end can be estimated by notable noise following fiber-end reflection
[11.39]. Some practical realizations of automated reflectometers reached nearly
10−15-W in sensitivity with the spatial resolution of a few nanometers [11.35, 11.36].

Further progress in improving the sensitivity of OFDR measurements was made
via low-coherence white-light interferometry [11.40–11.47]. The technique makes
the frequency-domain reflectometer perform as an interferometer, spatially sepa-
rating interfering scattered and modulated reference radiation, keeping the desired
limits of the coherence length for any light source applied as low as possible [11.40,
11.41]. Two common structures for white-light low-coherence interferometers are
illustrated in Fig. 11.23. In Fig. 11.23a the reflectometer functions as a Michelson
interferometer, but is arranged with two unequally reflective arms [11.40], realizing
the interference via a bidirectional coupler as:

PðtÞ ¼ P0Kð1� KÞ 1þ S2i Ri þ 2Si
ffiffiffiffiffi
Ri

p
c1;2ðtÞ
�� �� cosH� �

: ð11:44Þ

Here P0 is the incident radiant power, K is the coupler splitting ratio; Si
2 and Ri are,

respectively, the powers of radiation scattered back and forth and of radiation
reflected from the mirror’s ith component of light; H ¼ 2pftþu0 is the phase

lgP

d(lgP)/
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fault
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d
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Fig. 11.22 Expanded OTDR
loss trace (a) and
loss-derivative trace (b)
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difference, cj j is the modulus of the normalized correlation function of radiation in
each arm of the interferometer, and f is the modulation frequency. The intensity
envelope of radiation registered by the interferogram is defined by a complex degree
of spatial coherence of a quasi-monochromatic light source used via function cj j (see
Sect. 3.3), with its width Dt inversely proportional to the spectral width Df of the
source. The visibility of the pattern is determined by the intensities of two interfering
beams [11.40]:

ViðtÞ ¼ 2Si
ffiffiffiffiffi
Ri

p
1þ S2i Ri

c1;2ðtÞ
�� �� at Dt ¼ 4 ln 2

pDf
; D‘ ffi vg

2Df
: ð11:45Þ

Here the spectral distribution of radiation is presumed to be a Gaussian function, D‘
is the final linear resolution of the interferometer, and vg;0 is the group velocity of
radiation in the fiber. The resolution of the system is not directly affected by
coupling ratio K, since it only redistributes light into two arms.

The reflectometer shown in Fig. 11.23a operated using a cw light-emitting diode
having Dk ffi 130 nm spectral bandwidth, centered at 1300 nm, injecting about
50 nW into the interferometer arms, made of two 1.5-m-long single-mode fibers. The
reference arm mirror scanned over a 7.5-cm span at about 90-lm resolution. The
interference signal modulated by translation was measured by an InGaAs detector in
photovoltaic mode with a 1-Hz-wide passband, sufficient for less than 13 lm of
spatial resolution of that system. Such a level of resolution allowed even tiny changes
in the length of the test objects to be distinguished, such as the removal of material
during polishing of a fiber end, in the test arm via the interference fringe shift:
D‘ ¼ mk=2n, where n is the refractive index of the fiber core and m is the number of
shifted fringes. Themeasured derivative of the interferometer’s propagation time over
the stress applied to the fiber: dt=dr ¼ 1=c ðnd‘=drþ ‘dn=drÞ (cf. Eq. (9.46)),
confirmed the stress sensitivity reaching 60 ps=km=MPa. The overall sensitivity to
the group index offiber refraction, as the ratio offiber’s optical length to its length in
air n ¼ ‘air=‘optical, was estimated to be 5�10�4 [11.40]. Such a high spatial resolution
also permits sensing of local-loss distributions in waveguides [11.79].
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Figure 11.23b depicts the scheme of a twofold interferometric reflectometer for
spatial profile analysis via the auxiliary time delay in the reciprocally connected
Michelson interferometer. Polarized light from source S via polarizer P and the
polarization-maintaining PANDA coupler enters the main fiber-based Mach–
Zehnder interferometer. The scattered-light profile in the measured fiber is com-
pared with radiation in the reference arm, reflected by mirror M0 and further
selected by the PANDA coupler to free-space Michelson interferometer MI.
Piezoelectric transducer PZT modulates radiation scattered by the fiber at frequency
f to be registered by a lock-in amplifier. Two sections of a test fiber separated by the
least distance D‘ could be resolved, if signals scattered by them do not produce any
resolvable interference pattern because of insufficiently-small coherence length of
the light source over a too short of a distance.

A typical interferogram resolved by a single interferometer, as one in
Fig. 11.23a, is illustrated in Fig. 11.24 (interferogram a), representing the entire test
fiber line. An adjustable additional delay, executed by the reference arm of the
second interferometer via scanning mirror M2, allowed allocation of sequential
wave packets of backscattered radiation in a given vicinity and also avoidance of
signals from needless sections of the fiber line studied (Fig. 11.24, interferogram b).

For verification of the spatial resolution attained by the twofold interferometric
reflectometer in Fig. 11.23b, a calibrated 1.18-cm-long section of a single-mode
fiber was used [11.41]. By utilizing a superluminescent light-emitting diode emit-
ting k = 830-nm center line with a coherence length ‘ ffi 50 lm modulated at fre-
quency f = 6 kHz, the first limit of the spatial resolution was reached:
‘=nf ¼ 17 lm, where nf is the refractive index of the fiber. In further experiments
[11.43–11.45], the lowest resolution limit was improved to 14 lm when using
separate output couplers for the reference and measuring arms of the interferometer.
To exclude the observed coherent jagging of light backscattered by the fiber, the
measured signal was also guided in and out of each fiber by a polarization-
insensitive coupler. Further improvement of optical resolution, including dead-zone
removal, can be achieved via single-photon counting of spontaneous Stokes Raman
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envelopes for radiation
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emission instead of Raleigh scattering [11.80–11.82]. Analogously, Brillouin
scattering-distribution analysis along the fiber are used for OTDR/OFDR reflec-
tometry [11.111–11.113], as well as the digital-range gating and other versions of
time-gating techniques are applicable for enhancements of spatial and spectral
resolution or sensitivity [11.109, 11.110].

11.3 Partition of Distributed Losses and Attenuation
Factors in Reflected Light

The reviewed techniques of backscattering measurements of intrinsic fiber losses
are intended to detect inherently low levels of radiation internally scattered by a
fiber, guided backward toward a collocated source and a detector of radiation via
one beam splitter. Owing to the capabilities for analyzing losses from one end of the
fiber and the applicability of the techniques to virtually any distributed fiber sec-
tions, when various coupling losses are being sensed, backscattering reflectometers
are irreplaceable for a variety of fiber-network testing. At the same time, reflection
from the fiber endface due to Fresnel reflectance on a glass–air or silica–air inter-
face is orders of magnitude more intense than that caused by Rayleigh scattering.
Therefore, many efforts have been made to use Fresnel reflectance as a reference for
absolute backscattering measurements via already available OTDRs and OFDRs
[11.1, 11.48–11.57]. A mirror coupled to the far end of a fiber may presumably be a
better reflectance standard than the silica–air fiber interface of an open connector,
but its reflectance is 2 orders of magnitude higher. A high-reflection signal versus
uniform scattering could affect the reflectometer’s performance and make detection
of the scattering itself impossible in fiber zones adjacent to the high reflectance. To
prevent the occurrence of dead zones, most reflectometers have masking features,
suppressing any Fresnel-reflectance regions which highly contradict fiber scattering
from being captured [11.49].

An absolute calibration of return-loss scale can be provided via a close-to-unity
reflectance of any mirror being measured similarly to a line fault by detecting
back-propagation transmission loss [11.50]. Radiation reflected by a mirror prop-
agates back, initiating corresponding scattering, which, in turn, travels in the for-
ward direction to be finally reflected from the mirror one more time and considered
by the reflectometer as propagating the existing fiber line. Hence, if the scattering
loss is measured before and after the image of the mirror, any supplemental loss l
present in such a prolonged line is equal on logarithmic scale to a twofold mirror
reflectance 2q, plus a dual loss on connection of that mirror to the fiber endface: 2v.
Consequently, a high reflectance of the mirror itself could be masked, adding
intermediate reference points. If such a mirror reflectance is known, the absolute
error of calibration is only doubled owing to dual propagation via the mirror:
Dlabs ¼ 2ðDqþ vÞ.
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Another calibration scheme provides artificial 100% reflectance via a fiber loop
[11.52]. First, an OTDR, connected to a loop coupler, summarizes two conversely
transmitted light streams:

P$ ¼ 2P0s2cpl$expð�llp‘lpÞ$; ð11:46Þ

where scpl$ is the back plus the forward coupler transmittance, and llp and ‘lp are
the attenuation factor and the length of the loop (Fig. 11.25). In the second step, the
loop is cut in the middle, and the two scattering signals from the symmetrical
halves, functioning as a dual-scattering source, are measured together:

Ptwo ¼ P0s2spl;leftrv0;gDtS½expð�llp‘lpÞleft þ s2spl;right expð�llp‘lpÞright�
¼ P0s2spl;$rv0;gDtS expð�llp‘lpÞ$: ð11:47Þ

Assuming llp;left ¼ llp;right, one can determine the fiber scattering factor r at a given
spatial resolution as:

Fscat ¼ rv0;gDtS ¼ Ptwo=P$: ð11:48Þ

An attenuator can also be placed in the loop, reducing power Pat = P$sat by its
attenuation: sat.

Practically every backscattering procedure, except for the two calibration tech-
niques just discussed, struggles to extend its dynamic range and spatial resolution
when applied to loss measurement, which is required to have some absolute loss
scale. The ability to verify the absolute magnitude of a loss can only partially
improve each procedure. At the same time, a correctly cleaved or polished fiber end
which is easily accessible in any fiber line can be a reliable specular mirror with
orders of magnitude higher reflectance than that of the scattering guided by a fiber.
Under appropriate conditions [10.77–10.80] (see Sect. 10.5), any glass–air border
reflectance is proven not to change within �ð1� 2Þ�10�4 or less for stable border
surroundings. Since the level of fiber-end reflectance is much higher than the in-
tensity of Rayleigh scattering guided by a fiber, the accuracy and spatial resolution
of OTDRs or OFDRs could be accordingly improved by registering fiber-return loss
using reflected light, keeping in mind that the backscattering method by itself has
many useful advantages, which should be maintained – such as not requiring access
to cleaved fiber ends. A joint backscattering plus reflection technique would be
effective in providing sensitive and persistent measurements of return losses in
fibers.
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Fig. 11.25 Absolute
calibration of fiber scattering
losses
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Prior to reviewing the techniques for backscattering and backreflection
return-loss measurements, let us examine a method of optical cw reflectometry
(OCWR) detection of loss [11.51]. That technique involves multiple steps, five to
be exact, allowing a straightforward cw light source and power meter to be used
(Fig. 11.26). If the intensity output I0 of source S and the sensitivity K of detector D
are unchanged for all five steps, the respective equations are:

Ia ¼ kI0s12sC; Ib ¼ kI0 s13 þ s12s13s
2
CqX þ s12s13s

2
C 1� qXð Þ2qT1 þ s14s43qT2

� �
;

Ic ¼ kI0 s13 þ s12s23s
2
CqT3 þ s14s43qT2

� �
; Id ¼ kI0sCs23; Ie ¼ kI0: ð11:49Þ

Here sij is the transmittance of four-port coupler O between two chosen ports i and j,
and qX, qC, qT1, qT2, and qT3 are the measured, connecting, and terminating
reflectance magnitudes, respectively. Providing that intensity I0 and sensitivity K
remain constant, and terminations qT1 and qT3 are equal, one can subtract intensity
reading Ic from Ib, under the presumption of low reflectivity qX ! 0, and therefore
ð1 � qxÞ2 ! 1:0:

Ib � Ic ¼ k I0 s12s13s
2
CqX þ s12s13s

2
C 1� qXð Þ2qT1 � s12s13s

2
CqT1

� �
¼

qX!0
kI0 s12s13s

2
CqX

� �
: ð11:50Þ
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Finally, the measured reflectivity qX of low-reflectivity connector X under the
presumption of stability is:

qX ¼ Ib � Icð Þ�Ie= Ia �Idð Þ: ð11:51Þ

Considering the number of assumptions involved, the OCWR technique is more a
performance verification for fiber–connector interfaces rather than a reflectance test.
As a reflectance and transmittance measurement method for local discontinuities,
one can rather sense loss-induced fiber or waveguide perturbations in an arm of a
Michelson interferometer-reflectometer [11.103].

Instead of performing multiple OCWR reflectometry steps, not yet ensuring high
accuracy for a reflectivity loss to be measured, owing to multitude of assumptions
even if a fiber cutback method is used between steps b and c in Fig. 11.26, one can
attempt to differentiate the contributions of distributed Raleigh backscattering and
point-bounded reflectivity of a connector or a splice [11.51–11.53]. A concept for
such separation is based on several assumptions which are quite difficult to quan-
tify, such as the stability of the backscattering coefficient of the fiber at each
reflection discontinuity, or a known form factor of a light pulse injected into the
fiber and then backscattered and backreflected without any distortion, especially
considering the extremely low magnitudes of Raleigh backscattering in fibers.

When performing measurements of diverse fiber losses by scattered and reflected
light, it is valuable to separate the impact of every attenuation factor. Several
conceivable concepts for measuring a reflectivity spike can be invoked via graphs
shown in Fig. 11.27. If a joint of two fibers reflects incident light, the joint’s
scattering characteristics are masked by the impact of an intense broadened
reflection. By detecting the average backscattering loss l1 and l2 for each joined
fiber and approximating the length of loss lines to joint point J (Fig. 11.27a), one
can roughly identify misalignment loss lJ in the connection as lJ = (l1 − l2)J.
Reflection loss lR in the joint becomes: lR ¼ ðlR � l1ÞJ, where lR corresponds to
the sum of backreflection and backscattering. Another approach is based on
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Fig. 11.27 Separation of end-reflection and scattering phenomena via substitution (a) and
integration (b) of inner-fiber losses
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approximating and identifying fiber discontinuities in reflection by rectangular
pulses [11.51]. Substituting the energies of the backscattered and reflected pulses by
rectangular areas under and above a continuation of Raleigh scattering, one may
approximate the reflectivity at the detriment of ambiguity for a given pulse form
and its duration (dotted area in Fig. 11.27a).

One more approach for partition of reflection and scattering joint losses is
associated with step-by-step integration of the impact of a pulsed reflection
(Fig. 11.27b) and subtraction of the scattering pulse S(t) portion from the total
magnitude estimated from the properties of a given fiber [11.53]. Since time inte-
gration of a power stroke provides a scaled power measurement of the energy,
integration of the entire impact gives the reflectance q as the difference: qðt1; t2Þ ¼
const� R Rðt1; t2Þ dt�

R
Sðt1; t2Þ dt

� �
between total and scattered energies.

Precautions must be taken when detecting time instances t1 and t2 for the beginning
and the end of the impact of reflection. Since commonly an OTDR pulse response is
not rectangular, the start and the end of integration can be gauged by symmetrical
energy partition of each pulse into rise and decline zones. Either time pitch or time
windowing of the reflected and backscattered light signals should permit one to
detect and then extract additive noise added to the signal [11.53]. The iterative
search may be also performed to locate the maximum of the reflectance-
plus-scattering trace [11.83].

The analyzed measures for accurate examinations of the impacts of reflection of
fiber ends and joints can be used to establish other measurement procedures,
detecting internal fiber loss via only fiber-end reflection. That should be beneficial
in a zone when light scattered by remote portions of a long fiber is not distin-
guishable from noise, but fiber-end reflectance produces the only accessible signal,
or if the fiber under test is shorter than the effective pulse width of the OTDR used.
Let us consider the possibility of obtaining absolute measurements of internal losses
in a fiber by observing the intensities of pulses reflected from fiber endfaces. Let us
initially set each endface to be either perfectly cleaved or included in a fiber
connector, verified by other means as of sufficient surface quality [11.54].

One quite contrasting measurement method is similar to detection of internal
bulk losses in reflected light (Sects. 10.4, 10.5). The main difference when applied
to fibers (Fig. 11.28) is defined by the lack of options for using wedged samples to
split two interfering sample-end reflection signals. Either pulsed or spatially mod-
ulated radiation will provide a separation of end reflections. A four-port instead of a
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three-port directional coupler is utilized to compensate for fluctuations of either
power or energy emitted by the source by way of low-loss coupling: 0.3 dB in the
reference path and 3 dB of attenuation in the main return path, equivalently splitting
light propagating back and forth. Since a reference path detector follows power or
energy fluctuations of the source, any fluctuations will be further considered as
absent within the margins of inaccuracy of the chosen ratio-based registering
system.

For the first step of the measurement procedure, only a sufficiently long idle fiber
exists in the measurement system as an integral part of it. Two main functions of the
idle fiber are to provide the consistent reference reflectance from its output end and
to retain the steady-state mode distribution on its double length for back-and-forth
transmission of radiation which entered the fiber under study. Thus, during that first
step, the reflectometer measures the signal reflected from the output end of the idle
fiber:

Ni ¼ const �exp �2li‘ið Þ�qi ¼ const �exp �2li‘ið Þ� ni � 1ð Þ= ni þ 1ð Þ½ �2: ð11:52Þ

Here const stands the source power or energy, the main detector sensitivity, and the
properties of the four-port coupler combined, and li; ‘i; qi; and ni are the linear
attenuation coefficient, length, reflectance, and group refractive index of the idle
fiber. On the logarithmic scale counting the dual light path, the signal is:

Pi ¼ const � 10li‘i �lg eþ 5 lg qi ¼ const � 10li‘i �lg e
þ 10 lg ni � 1ð Þ � 10 lg ni þ 1ð Þ: ð11:53Þ

This first step serves only for calibration of the measurement system and can be
periodically repeated to verify its actual stability. In the second step, the fiber under
study, similar to the idle fiber from the mode-coupling standpoint, is placed into the
transmission–reflection path of the reflectometer. Let us first consider the fiber
connection via an air gap, whose length D‘air, intensified by multiple reflections, is
much smaller than the reflectometer resolution: D‘air=ð1� �q2Þ  D‘fiber�n0;g. Here
�q and �n0;g are the mean reflectance and the group refractive index for the idle and
test fibers. If both the output end of the idle fiber and the input end of the test fiber
are similarly cleaved to be aligned perpendicularly to both fiber axes and they are
aligned concentrically to each other, the new signal, for radiation multiply reflected
from the entire gap on a linear and on a logarithmic scale, respectively, is:

Ngap ¼ const �exp �2li‘ið Þ�
�
qi þ

1� qið Þ 1� qf
� �

1� qiqf
qf

	
¼ const�exp �2li‘ið Þ�

� 1þ 1� q
1þ q

� 	
q ¼ const�exp �2li‘ið Þ� 2q

1þ q
; ð11:54Þ
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Pgap ¼ const � 10li‘i �lg eþ 5 lg 2q=ð1þ qÞ½ � ¼ const � 10li‘i �lg e
þ 10 lgðn� 1Þ � 5 lgðn2 þ 1Þ: ð11:55Þ

Here qf is each fiber reflectance, and q and n are the average reflectance and
refractive index of the idle and main fibers for the steady-state mode distribution.
As the third, final step, light transmitted along the entire line and reflected from the
far end of the test fiber is measured, keeping the alignment of the air gap:

Nf ¼ const �exp �2li‘ið Þ� 1� qið Þ 1� qf
� �

1� qiqf

" #2

�exp �2lf ‘f
� ��qf

¼ const �exp �2li‘ið Þ� 1� q
1þ q


 �2

�exp �2lf ‘f
� ��q; ð11:56Þ

Pf ¼ const � li‘i þ lf ‘f
� �

10 lg eþ 10 lgð2nÞ � 10 lgðn2 þ 1Þ
þ 10 lgðn� 1Þ � 10 lgðnþ 1Þ: ð11:57Þ

One can see that the difference of gap Ngap to idle Ni reflectivities related to Ni or
2�ðPgap � PiÞ is:

ðNgap � NiÞ=Ni ¼ ð1� qÞ=ð1þ qÞ or 2ðPgap � PiÞ
¼ 10 lg½1þð1� qÞ=ð1þ qÞ�: ð11:58Þ

As a result, comparing three signals – reflected from the end of the idle fiber, air
gap, and end of the test fiber – gives:

NfNi

ðNgap � NiÞ2
¼ exp �2lf ‘f

� �
or lf ‘f ½dB� ¼ 0:23fPi � Pf

þ 10 lg½100:2ðPgap�PiÞ � 1�g: ð11:59Þ

As can be seen from relations (11.52)–(11.59), this technique of evaluating internal
loss in a fiber is equivalent in its sensitivity to the internal bulk loss measurement in
reflected light (Eq. (10.44)):

N1=N2 ¼ ð1� qÞ2 expð�2l‘Þ; ð11:60Þ

where the first factor represents the double surface transmission. In such a fiber loss
measurement, the air gap serves as an air-based plate, secured by endfaces of idle
and test fibers. Fluctuations of the internal fiber loss evaluated in reflected light can
be derived from Eqs. (11.59) and (11.60):

Dlf ‘f ¼ Dq=ð1� qÞþDPf þDPi þDðPgap � DPiÞ or

Dlf ¼ Dq=½ð1� qÞ‘f � þ 3DP=‘f ; ð11:61Þ
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where DP is the mean error of a single power or energy measurement by the
reflectometer. Accordingly, even the increased number of measurements by the
procedure discussed does not significantly affect the measurement accuracy, since
even at Dq=q = ±5% (0.21 dB), DP = 0.03 dB, and Dq=ð1 � qÞ = ±0.01 dB, the
error is Dl = ±0.1 dB for 1-km fiber length and is ±0.02 dB for 5 km. For shorter
fiber lengths, the accuracy of signal detection by the reflectometer needs to be
higher, or the procedure should be less complicated.

As seen from Eqs. (11.40)–(11.42), the air-gap reflection signal is almost 2 times
higher than that for the single endface. Even such a small reflection signal can affect
the performance of an OTDR, especially for an idle fiber that is long enough
although highly transparent, not to noticeably reduce the dynamic range of the
reflectivity study. The necessity to measure the intensities of signals reflected by air
gaps is mainly dictated by a likely misalignment of joint fiber ends and potential
imperfection of their reflectances. Also, a high air-gap reflection signal does not
provide assurance for concentricity of two connected fibers, since the magnitude of
reflectance does not change with tiny transverse misalignments of fiber cores for
fiber ends parallel to each other. Therefore, even when measuring the reflectance of
an air gap, one must maintain the alignments of the test fibers by reaching the
relative maximum of reflectance from the farther endface of the fiber being aligned.
The idle and test fiber alignment can also be simplified by evaluation of the surface
quality of the endfaces of both fibers and their junctions.

Let us, once more, pay attention to the high sensitivity of reflection-based
measurements to the optical status of fiber endfaces in reflected light. As was
demonstrated by Eqs. (2.40) and (2.45), the relative sensitivity of any reflection
versus transmission measurement of the optical status for a single glass–air border
is orders of magnitude higher. As follows from Eqs. (11.41) and (11.42), for a
measurement of the combined reflectance for two joined fiber endfaces forming an
air gap, the actual sensitivity due to the 2q=ð1þ qÞ factor is nearly 2 times higher
(compare the low-reflectivity resonators in Chaps. 8 and 10). Accordingly, the
relatively high sensitivity of the reflection-based measurement method to changes in
the optical properties of the joined fiber endfaces and their mutual alignment – even
when the changes are realized far from the measuring device and are viewed
remotely within the dynamic range of this system – can be utilized to evaluate the
surface conditions of fiber endfaces, cleaved for any connection or a splice [11.55].
Conceivable measurement techniques consist of two sequential steps: measuring the
face reflectance of the output end of an idle fiber, serving as a relative reflection
standard, and measuring the reflectance of its gap with the endface under study
(Fig. 11.29). Any likely procedure could measure the average group index of
refraction �n of joined fibers as:

Nidle=Ngap ¼ 2=ð1þ �qÞ ¼ �nþ 1ð Þ2= �n2 þ 1
� �

or Pidle � Pgap

¼ 10 lg �nþ 1ð Þ � 5 lg ð�n2 þ 1Þ; ð11:62Þ
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or could serve to compare the reflectance qx of the studied fiber versus the known
reflectance qi of the idle fiber. In that case, transformation of Eqs. (11.49) and
(11.51), in view of similar Eq. (8.61) for two unequal surfaces of reflective bulk
samples, gives a quotient to be further resolved to obtain qx:

ðNidle=NgapÞ ¼ 1þ qx=qið Þ 1� qxð Þ2= 1� qiqxð Þ; at qx 6¼ qi: ð11:63Þ

An identical attempt can be made to evaluate splicing or connecting losses for
two fibers, the first of which serves as the idle fiber for such a measurement method
[11.56]. Three successive steps of reflectance measurements – from the output end
of the first fiber, from the air gap of the joint for first and second fibers, and from the
far end of the second fiber with the joint left unchanged – provide the loss mea-
surement in the second fiber by relations (11.59). After the splice has been made,
the only one measurement of reflection Nspl from the far end of the fiber has to be
repeated. Its ratio with Nidle gives:

ðNspl=NidleÞ ¼ sspl;left �sspl;right �expð�2l‘Þsec: fiber ¼ �s2spl expð�2l‘Þsec: fiber; ð11:64Þ

10 lg�s ¼ Pspl � Pidle þ 10 lg e�ðl‘Þsec: fiber; ð11:65Þ

where �s is the transmittance of the splice, averaged for the forward and backward
propagation of the light guided by fibers. As a result, the total splice loss:
vspl ¼ 1� sspl, is obtained by the equation:

�vspl ¼ 1� Ngap � Nidle

Nidle

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nspl

Nfar end

s
¼ 1� exp �l‘ð Þsec:fiber

ffiffiffiffiffiffiffiffiffi
Nspl

Nidle

r
: ð11:66Þ

Despite the relatively high sensitivity of these reflection measurements, the reg-
istration of the comparatively high air-gap reflection by a commercial reflectometer
may not be suitable, particularly if the idle fiber is very short and even a single
reflection from its output end may exceed the highest signal measured by the OTDR.
To exclude the necessity of recording an air-gap reflectance, the technique could be
simply based on the ability of OTDRs to measure fault losses [11.57]. Another factor
allowing the intermediate measurement to be dropped is based on the low sensitivity
in transmission (see Chap. 5) to optical conditions of a transparent glass surface,

Mode stripper Idle fiber Test fiberAlignment table

OTDR

Fig. 11.29 Evaluation of fiber endface and connection losses
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which is affected by unknown formations: evaporated films, defects, or scattering
centers. The main requirement is to upgrade an OTDR with an idle fiber and with a
device for direct monitoring offiber alignment andwith high quality offiber endfaces,
which is required for further connection or splicing (see Fig. 11.30). The first step in
obtaining a reflection from the output end of the idle fiber remains as identified by Eqs.
(11.52) and (11.53). Second, the idle and test fibers are spliced or connected to each
other withmisalignment errorD�scnt, averaged for both directions of light propagation.
If the idle fiber and the monitoring tool belong to one reflectometer, the value ofD�scnt
is just a fraction of the reflectometer’s total measurement error. If the idle and test
fibers have identical geometry, but altered refractive indices ni and nf, the extra loss in
a faultless joint of fibers without any noticeable air gap is defined by the inequality
ni 6¼ nf , and the equivalent signal reflected from the far end of the test fiber within
�D�scnt error limit is:

Nf ¼ const �exp �2li‘ið Þ� 1� qi;f
� �2�exp �2lf ‘f

� ��qf
¼ const �exp �2li‘ið Þ� 4ninf

ni þ nf
� �2 �exp �2lf ‘f

� ��qf ; ð11:67Þ

Pf ¼ const � 10 li‘i þ lf ‘f
� �

lg eþ 5 lg ð2niÞþ 5 lg ð2nf Þ � 10 lg ni þ nf
� �

þ 10 lg nf � 1
� �� 10 lg nf þ 1

� �
: ð11:68Þ

Here the reflectance q of the fiber joint is approached as qi;f ¼ ni � nfð Þ= ni þ nfð Þ½ �2.
Relating these equations to Eqs. (11.52) and (11.53) for the reflection from the idle
fiber with reflectance ðni � 1=ðni þ 1Þ½ �2, one gets:

exp �2lf ‘f
� � ¼ Nf

Ni

ni þ nf
� �2
4ninf

ni � 1
nf � 1


 �2 nf þ 1
ni þ 1


 �2

; ð11:69Þ

lf ‘f ¼ 0:23
h
Pi � Pf
� �� 10 lg ni � 1ð Þ + 10 lg ni þ 1ð Þþ 5 lg 4ninf

� �
� 10 lg ni þ nf

� �
+ 10 lg nf � 1

� �� 10 lg nf þ 1
� �i

: ð11:70Þ

Idle fiber Test fiber

OTDR

Fusion splice 
or connector

Monitor

Fig. 11.30 Measurements of internal fiber loss via two endface reflections
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For fine fusion splices and junctions indirectly controlled the geometry error D�scnt is
near (0.01–0.1) dB.

A similar procedure can be carried out for a joint with an air gap. In that case,
Eqs. (11.67) and (11.68) are simply substituted by (11.59) and (11.60). By trans-
posing different refractive indices, one has:

Nf ¼ const �exp �2li‘ið Þ� 4ninf
�

ni þ nf
� �

ninf þ 1
� �� �2

�exp �2lf ‘f
� �� nf � 1

� ��
nf þ 1
� �� �2

; ð11:71Þ

Pf ¼ const � 10 li‘i þ lf ‘f
� �

lg eþ 10 lg 4ninf
� �� 10 lg ni þ nf

� �
� 10 lg ninf þ 1

� �þ 10 lg nf � 1
� �� 10 lg nf þ 1

� �
; ð11:72Þ

exp �2lf ‘f
� � ¼ Nf =Ni ni þ nf

� �
ninf þ 1
� ��

4ninf
� �2

� nf þ 1
� ��

nf � 1
� �� �2

ni � 1ð Þ� ni þ 1ð Þ� �2
; ð11:73Þ

lf ‘f ¼ 0:23 Pi � Pf
� �� 10 lg ni � 1ð Þ� ni þ 1ð Þ� �þ 10 lg 4ninf

� ��
�10 lg ni þ nf

� �
ninf þ 1
� �� �

+ 10 lg nf � 1
� ��

nf þ 1
� �� ��

: ð11:74Þ

Furthermore, if the fibers are carefully aligned and test-fiber loss is measured via an
air gap, and the fibers are either further spliced or connected via an immersion
liquid, the resultant loss in the joint is:

�sspl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nspl=Nf

q
1þ �qendð Þ= 1� �qendð Þ;

�ljoint ¼ Pspl � Pf þ 10 lg 1� �qendð Þ= 1þ �qendð Þ½ � ¼ Pspl � Pf þ �lgap: ð11:75Þ

Here �lgap represents the average air-gap loss. For mean refraction �n ¼ 1:46, the loss
s of the joint is 0.3 dB.

Finally, if there is any doubt that the actual misalignment error D�scnt is higher
than expected, the procedure can be performed by measuring the entire joint loss in
scattered light by Eqs. (11.39)–(11.43). Since the idle fiber cannot be infinitely
long, the time resolution of the OTDR utilized (see Fig. 11.31) can be increased to

Fig. 11.31 Illustration of
reflectance-plus-scattering
fiber-loss contributions
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resolve the joint with minimal prolongation (cf. Fig. 11.21). The directly measured
total loss �ljoint averaged by the dual pass is:

�ljoint ¼
P1 � P2

‘2 � ‘1
‘J � ‘1ð Þ � P3 � P4

‘4 � ‘3
‘4 � ‘Jð Þ: ð11:76Þ

Here powers P1–P4 are on the logarithmic scale for all particular points marked in
Fig. 11.31. On the linear measurement scale, the entire joint loss matches the squared
average transmittance �s2joint. Rewriting reflection Eqs. (11.52)–(11.57) for identical
end reflectances of idle and test fibers:

Ni ¼ const �exp �2li‘ið Þ��qend;
Nf ¼ const �exp �2li‘ið Þ��s2joint �exp �2lf ‘f

� ���qend; ð11:77Þ

Pi ¼ const � 10li‘i �lg eþ 5 lg �qend;

Pf ¼ const � li‘i þ lf ‘f
� �

10 lg e� �ljoint10 lg eþ 5 lg �qend; ð11:78Þ

the total loss in the test fiber described by relations (11.73) and (11.74) in each
respective scale becomes:

expð�2lf ‘f Þ ¼ ðNf =NiÞð1=sjoint;forward sjoint;backwardÞ;
expðlf ‘f Þ ¼ �sjoint

ffiffiffiffiffiffiffiffiffiffiffiffi
Ni=Nf

q
; ð11:79Þ

lf ‘f ¼ ðPi � Pf Þ=10 lg e� �ljoint: ð11:80Þ

Several backscattering reflectometers were tested for experimental confirmation
of all the methods reviewed above for the direct measurements of fiber losses
applicable to end-reflected and backscattered light [11.55–11.57]. One experimental
reflectometer for the 900-lm spectral range was upgraded with 125-m-long idle
fiber. The repeatability of the loss measurements in reflected light reached 0.5–
0.7 dB with 12 dB of added dynamic range versus backscattering radiation. The
fiber end-reflection technique at k ≅ 1.3 lm, verified using an ANDO AQ 1720
reflectometer via the air gap of equivalent fibers having �n ¼ 1:46, measured
1.25-dB loss in a 2.36-km-long fiber line. The absolute-loss error in comparison
with cutback measurement for these fibers (see Sect. 11.1) did not exceed
±0.15 dB. Reflectance testing of splice losses using an Anritsu-MW98A reflec-
tometer gave the same results as the backscattering test within 0.05–0.1 dB.
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11.4 Interference Noise and Crosstalk in Fiber
Transmission Systems

Similarly as surface reflections stimulate interference-induced measurement noise
in free-space optical elements, multiple refractive index discontinuities in
fiber-optic transmission systems induce resembling effects. Air gaps in fiber con-
nections make weak interferometers with fiber lengths matching air-gap pairs, thus
contributing to system noise due to phase fluctuations inherent to the generating
wavelength and actual-length stability of the light source and of each particular
interferometer made, respectively (see Chap. 3, Fig. 3.5). In laser-based fiber
communication, interferometric conversion of laser-phase noise to the respective
signal-intensity noise can take place even if optical isolators are present [11.58,
11.65]. Interference effects caused by phase-to-intensity noise conversion were
analyzed in Sects. 3.3 and 7.4 (see also [11.21, 11.95]). The following discussion
considers certain quantitative aspects for detecting potential noise-induced power
penalties in fiber-based optical communication systems and networks inflated by
multiple reflections at fiber line discontinuities and via connectors and splices.

Commonly, any splice failures and improperly mated connectors are largely
responsible for the refractive index discontinuities in optical-fiber transmission
lines. If a physical contact between two spliced or connected fibers collapses, both
backreflection and insertion-loss penalties can occur. A three-layer composition –

silica–air–silica – created by the contact collapse is shown in Fig. 11.32.
When radiation of wavelength k traverses an air gap of phase thickness
b = ð2p=kÞn2hcosH2 between two fiber endfaces, the reflectance q and transmit-
tance s of the entire composition can be computed using the following equations [1.1]:

q ¼ q
02

�� �� ¼ q
02
12 þ q

02
23 þ 2q

02
12q

02
23 cos 2b

1þ q02
12q

02
23 þ 2q02

12q
02
23 cos 2b

; ð11:81Þ

s ¼ s
02

�� �� ¼ n3 cosH3

n1 cosH1

s
02
12 s

02
23

1þ q02
12q

02
23 þ 2q02

12q
02
23 cos 2b

; ð11:82Þ

θ 2
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n1

n2

n3
θ3

Fig. 11.32 Air-gap in fiber
contact
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where q′ and s′ are the amplitude reflectance and amplitude transmittance, being
q0 ¼ ðn1 cos h1 � n2 cos h2Þ=ðn1 cos h1 þ n2 cos h2Þ and s0 ¼ 2n1 cos h1=ðn1 cos h1
þ n2 cos h2Þ; n1, n2, and n3 are the respective refractive indices of the layers, and h is
the physical thickness of the air gap (see also Sect. 3.3). Figure 11.33 illustrates
changes of the total reflectance and the total transmittance versus air-gap thickness.

The graph reveals that the magnitude of back-reflectance due to an air gap
between connecting fibers ranges from −100 dB at the half-wave gap, to −50 dB at
nearly 2-nm gap, and to about −9 dB at the quarter-wave opening. These numbers
indicate the probability of high back-reflectance of the joint occurring. For example,
a scratch on a fiber surface does not lead to more than a 2-nm separation of the two
fiber surfaces, and cannot create a noticeable reflectance spike. The potential
grinding residue on connectorized fiber faces needs to be deeper than k=250 to
develop a higher than −40 dB back-reflectance or higher than 0.004 dB
insertion-loss penalty, which is caused by the occurrence of the air gap.

To evaluate the inherent system penalties due to potential phase-to-intensity
noise conversion, let us consider a dual concatenation of two-beam and
multiple-beam interferometers being either a part of a fiber communication system
or occurring as a result of connecting fiber-end mismatches. On its way, light
propagates short- and long-length interferometers within one contact failure and
among multiple contact combinations (Fig. 11.34). We will mainly consider only
two-beam interference on adjacent discontinuities, since even for an erbium-doped
fiber its core refractive index is not high enough to make noticeable multiple-beam
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Fig. 11.33 Back reflection (1) and insertion loss (2) of two unmatted fiber ends versus thickness
of the created air gap at 1550 nm (2-nm of air gap corresponds to −50 dB of gap’s back reflection)
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interference. However, the relatively high transmittance of every discontinuity
allows each interfering beam to effectively propagate and, respectively, interact via
break points of an entire fiber line. Depending on the particular optical lengths of
interferometers made by discontinuities and the coherence length of the light
source, certain interference effects may occur and contribute to coherent and
incoherent summation.

In practice, interference effects responsible for the phase-to-intensity noise
conversion of laser radiation are more easily modeled via the two-beam Mach–
Zehnder interferometer broadly used for external modulation in fiber
light-transmission systems (Fig. 11.35). Such an interferometer can be easily
configured for any differential length for equal intensities of two interfering beams,
and hence is a very practical tool in interference analysis.

For an air-based Mach–Zehnder interferometer of length ‘ providing time
delay s ¼ 2‘=c, the two-beam interference output I(t) for input amplitude
A ¼ A0 cos x0tþuðtÞ½ � of monochromatic light is [1.1]:

IðtÞ ¼ 2A2
o 1þ cos uðtÞ � uðt � sÞ½ �f g: ð11:83Þ

If the phase term Du ¼ uðtÞ � uðt� sÞ remains constant, the optical-intensity
output of the interferometer does not change. However, if Du randomly changes
during time s, the relative output intensity: iðtÞ ¼ IðtÞ=ð2A2

0Þ, follows the trend of
such a change. To predict any law-governing change, one needs to know the
probability-density function Pi for integer i in small interval di around i. The
spectral width Dm of emission spectrums for any narrow-width semiconductor laser
as a function of its phase noise un can be defined by frequency fluctuation dm:
un ¼ 2p DL=cð Þdm [11.61, 11.76]. Thus, for such a semiconductor laser, the

Fig. 11.34 Formation of two coupled-fiber interferometers
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Detector

Splitter

Splitter

Mirrors
Fig. 11.35 Propagation of
radiation via a Mach–Zehnder
interferometer
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mean-square phase error r2
u accumulated over time t depends on linewidth Dm and

vice versa:

ru
2 ¼ 2p�Dm�t: ð11:84Þ

A phase change of that laser exhibits a random-walk-type deviation with a Gaussian
probability-density function. For time delay s induced by a two-beam interferom-
eter, Pi can be expressed as:

PiðDuÞ ¼
exp �ðDuÞ2=2r2ðsÞ

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pr2ðsÞp : ð11:85Þ

At the same time, the output-intensity distribution function of a two-beam
interferometer even in the incoherent regime exhibits a non-Gaussian behavior,
since its amplitude is limited to �2A2

0 (see Eq. (11.80)) in interference extremes
[11.63]. Two-beam interferometer noise statistics can be acquired in a two-stage
process [11.64]. First, Gaussian noise from a single-mode laser can be seen as:

EðtÞ ¼ E0 þ aðtÞ½ � exp ix0tþ iuðtÞ½ �: ð11:86Þ

Then, the interferometer intensity I(t) as a function of the phase difference u
between its arms becomes:

IðtÞ ¼ 0:5E2
0 1þ cos x0sþuðtÞ � uðt � sÞ½ �f g

þ 0:5E0 aðtÞ � aðt � sÞ½ � 1þ cos x0sð Þ½ �: ð11:87Þ

Here Eo and ao are the mean field amplitude and instantaneous deviation from its
value, xo is the mean angular frequency, s is the differential delay in the interfer-
ometer, and u(t) is the instantaneous laser phase. In Eq. (11.87), the first term
represents the source phase-induced intensity noise input and the second one gives
the contribution of the intensity noise of that source. Disregarding the intensity-
noise contribution [11.64], one can describe fluctuations by term Yn, representing
the normalized output-intensity phase noise of such an interferometer:

Yn ¼ cos x0sþuðtÞ � uðt � sÞ½ �: ð11:88Þ

Statistics for the interferometer phase difference can be quite accurately modeled,
since it is a zero-mean and Gaussian random-walk process [11.61]. Presuming
insignificant intensity noise of a laser under consideration, a Gaussian distribution
of the phase differences of interfering beams, and infinite detection bandwidth, the
probability-density function P(i) of the interferometer’s normalized output-intensity
noise is [11.64]:

11.4 Interference Noise and Crosstalk in Fiber Transmission Systems 635



PðiÞ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDuðsÞ 1� Y2

n

� �q X1
n¼�1

exp � arccos Yn � x0sþ 2pn½ �2
2DuðsÞ

( )(

þ exp � � arccos Yn � x0sþ 2pn½ �2
2DuðsÞ

( ))
while �1\ Yn \ 1;

0 otherwise:

8>>>>>>>><
>>>>>>>>:

ð11:89Þ

Computed values of the probability-density function P(i) for the normalized signal
of the Mach–Zehnder interferometer irradiated by incoherent and partially coherent
radiation are shown in Fig. 11.36. Curve 1 depicts the intermediate state when
Du(s) = p and the interferometer beams are interfering in quadrature. Curves 2, 3,
and 4 relate to incoherent interference for DuðsÞ ¼ 10p, when the interferometer is
aligned to minimum, quadrature, and maximum, respectively. In the totally coherent
regime P(i), all magnitudes (too low to be visible) are much more dependent on the
x0s product, with a local peak near Yn ¼ cos x0sð Þ. The interferometer’s output
intensity in quadrature is proportional touðtÞ � uðt � sÞ, and the probability-density
function of its intensity fluctuations is nearly Gaussian. Near the maximum and
minimum settings in the coherent regime, the fluctuations become highly
non-Gaussian. Further away from the coherence state, the effects of optical path
variations are obscured by time-integrated phase variations, while the probability-
density function P(i) of phase-induced intensity noise approaches nearly Gaussian
behavior. In practice, all models and representations are masked by noise contribu-
tions due to thermal fluctuations of light source intensity and detector sensitivity.

The effects of the interferometric-noise probability density function P(i) may be
seen via mean-squared fluctuation K ¼ �

i2
� �� ih i2�. ih i2 of the interferometer’s

intensity ih i2 owing to phase noise i2
� �

. Function Kd of a two-beam interferometer
can be set via optical path length 2L to source coherence length ‘ ratio ds [11.60]:

Kd ¼ 1
2
1þ expð�4dsÞ � 2 expð�2dsÞ
1þ 2 expð�dsÞþ expð�2dsÞ : ð11:90Þ

At small ds, the two-beam interference function approaches Kd � 0:5ðdsÞ2. For
multibeam interference, function Km defines the statistical relative-intensity fluc-
tuations of multibeam interferometers [11.60]:
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Km ¼ 2q2

1þ q exp �dsð Þ½ �2

1� q exp �dsð Þ
1þ q2ð Þ 1� q3 exp �dsð Þð Þ

�
1þ 1� q2ð Þ exp4 �dsð Þ
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� 	
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þ 4 q exp �dsð Þð Þ2

8><
>:
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>;

�2 exp2 �dsð Þ
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1
CCCCCCCCCA
:

ð11:91Þ

At extrema of ds, Km becomes 0 at ds = 0, Km ¼ 2q2=ð1 þ q2Þ at ds ! 1, and

Km � 1þ q2ð Þ=3ð1� qÞ2
� �

ds at ds  1, where q is the reflectance of both inter-

ferometer mirrors. Equations (11.90) and (11.91) presume the lengths of the inter-
ferometer arms to set for the maximum transmission at every wavelength. At the
ds = 0 limit, the interferometer is short compared with wavelength k, and fluctua-
tions disappear. For a long interferometer at ds ! 1, fluctuations approach random
Gaussian noise at q ! 1, but remain statistically non-Gaussian as long as q 6¼ 1,
since phase change Du forces the probability-density function P(i) to spread out and
be perceived as that of interfering beams with uniformly distributed phases [11.59].

Figure 11.37 illustrates Kd and Km as functions of ds and two-mirror reflectance
for two-beam and multibeam interferometers. The two-beam solution counts
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interference of equal-amplitude beams; the multiple-beam solution identifies beams
with changing amplitudes for consecutive interactions, but presumes equal reflec-
tance of the interferometer mirrors accounting for reflected-light interference.

Signal fluctuations in fiber transmission lines result in concurrent photocurrent
noise in a system’s detector. Fourier transform of the autocorrelation function for
the detector’s photocurrent provides a power spectrum of photocurrent fluctuations
due to signal phase noise [11.62]. With the designations of Eq. (11.80), the com-
bined electrical field E(t) for the interferometer’s output intensity can be written as:

EðtÞ / 0:5Eo ei xtþuðtÞ½ � þ ei xðtþ sÞþuðtþ sÞ½ �
n o

: ð11:92Þ

The magnitude of the resultant photocurrent i(t) versus the initial photocurrent i0,
which would have been observed without interference, relates as the square power
of the respective electric field amplitude:

iðtÞ / i0=4ð Þ 1þ ei xsþuðtþ sÞ�uðtÞ½ �
n o

: ð11:93Þ

For a Gaussian probability-density function of the two-beam interferometer
described by Eq. (11.82) and a random phase variable for radiation power, defined
by radiant flux UðsÞ ¼ uðtþ sÞ � uðtÞ, the autocorrelation function of the detec-
tor’s photocurrent at time intervals t can be expressed as [11.62]:

�ðtÞ ¼ i20X
8

e�r2 tj jð Þ 1þ cos 2xsð Þe�2r2 s� tj jð Þ
h i

; tj j\s

e�r2 sð Þ 1þ cos 2xsð Þ½ �; tj j[ s

8<
:

9=
;: ð11:94Þ

The power spectrum P(f) of photocurrent fluctuations versus radio frequency f,
a conjugate variable to time t, can be obtained via Fourier transform of Eq. (11.94),
assuming a Lorentzian line shape of the light source (see Eq. (11.84)). For the
interferometer in quadrature and cosð2xsÞ ¼ �1, the power spectrum becomes
[11.62]:

Pqðf Þ ¼ i2oX
8p

Dm
f 2 þDm2

1þ e�4pDms � 2e�2pDms cosð2pf sÞ� �
: ð11:95Þ

Here X is the load resistance. When the interferometer path length corresponds to
either maximum or minimum for an optical frequency x, the interference term is
cosð2xsÞ ¼ þ1, and Eq. (11.95) transforms to:

Pmðf Þ ¼ i2oX
8p

Dm
f 2 þDm2

1� e�4pDms � 2e�2pDms Dm
f
sinð2pf sÞ

� 	
: ð11:96Þ

If the interferometer’s time delay s becomes zero, both power spectrums vanish:
Pq = Pm = 0. At the other extreme of s ! 1, both spectrums are homodyne with
the full width of each being the double of the laser linewidth.

638 11 Propagation Losses in Fibers and Waveguides



When propagating via a two-beam Mach–Zehnder interferometer, the equally
divided interfering beams should have identical amplitudes, creating the strongest
interference term among two-beam interference patterns. For fiber systems, the
multiple-beam Fabry–Perot interferometer is the likeliest to occur on any adjacent
inner fiber discontinuities. Either an air gap in a connector or a splice would
contribute to making such an interferometer (see Fig. 11.38). Two versions of the
interferometer can be created: an air-based interferometer of length ‘ as the air gap
itself and a fiber-based interferometer of fiber length L. The fiber-based interfer-
ometer can be made by any internal coupling of refractive index discontinuities.

Owing to the relatively low refractive index of an optical fiber core, the intensity
of radiation reflected twice in either the fiber-based or the air-fiber Fabry-Perot
interferometer is nearly 2 orders of magnitude lower than the intensity of light
propagating straight through. Therefore, for such an interferometer, another cate-
gory of two-beam interference needs to be considered, which involves beams of
very dissimilar amplitudes. In this case, the light intensity of the interferometer’s
optical output can be written in the form:

IðtÞ ¼ const �I0 1þ 2
ffiffiffiffiffiffiffiffiffiffi
q1q2

p
cos x0sþuðtÞ � uðt � sÞ½ �� �

: ð11:97Þ
Here the delayed and direct beams are presumed to interfere in quadrature:
x0s ¼ ðnþ 0:5Þp, I0 is the incident intensity, and q1 and q2 are the reflectivities of
two discontinuities creating the interferometer. Relative intensity noise (RIN) for
radiation propagating a fiber with sharp discontinuities creating the interferometer
can be obtained via the normalized Fourier transform of Eq. (11.97) [11.62]:

RINðf Þ ¼ 4q1q2
p

Dm
f 2 þDm2

1þ e�4pDms � 2e�2pDms cosð2pf sÞ� �
: ð11:98Þ

For a more general case of a wavelength-mismatched interferometer, the RIN
equation becomes [11.65]:

RINðf Þ ¼ 4q1q2
p

Dm
f 2 þDm2

sin2 x0sð Þ 1þ e�4pDms � 2e�2pDms cosð2pf sÞ� �
þ cos2 x0sð Þ 1� e�4pDms � 2e�2pDms Dm

f
sinð2pf sÞ

� 	
8><
>:

9>=
>;:

ð11:99Þ
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Fig. 11.38 Fiber-based Fabry–Perot interferometers
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Analysis of Eq. (11.99) points to the maximum conversion of phase to intensity
noise for the interferometer in quadrature (Eq. (11.98)). If the delay s is short and
the spectral width m is narrow: 2pDms  1, RIN approaches the small-phase
fluctuation limit, which is proportional to the source’s spectral width:

RINðf Þshort ¼
16
p
q1q2Dms

2sinc2ðftÞ: ð11:100Þ

If the interferometer created by two fiber discontinuities is much longer than the
coherence length of the light source at 2pDms � 1, the two interference terms
combine incoherently and RIN(f) approaches:

RINðf Þlong ffi
4q1q2
p

Dm
f 2 þDm2

: ð11:101Þ

In the latter case, RIN(f) is independent of phase x0s. The results of numerical
simulations by Eqs. (11.94)–(11.98) for k = 1.55 nm and two open connectors each
with 6% reflectance coupled by a 2-m fiber jumper are shown in Fig. 11.39.

Figure 11.40 provides an example of a RIN-versus-wavelength dependence at a
radio frequency, clearly demonstrating the nonresonant character of wave extremes.

Since spectral function RIN(f) describes the radio-frequency dependence of
system noise, a simpler way of determining system noise over the receiver’s
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bandwidth is by integrating RIN(f) as a frequency function over the receiver’s
bandwidth. For a low-bit-rate system with a wide linewidth light source such as a
light-emitting diode, the integral should remain inevitably small (see, e.g., relation
(11.98)). For a high-bit-rate transport system with bandwidth B � Dm, the total
RIN can be approximated as [11.65]:

RINR ¼ 2q1q2
1� e�4pDms; x0s ¼ ðnþ 0:5Þ p
1þ e�4pDms � 2e�2pDms; x0s ¼ np

( )
: ð11:102Þ

If the number of reflections increases to more than two, and the interference terms
combine incoherently (long interferometers), Eq. (11.99) for the reflectance prod-
ucts of all discontinuities involved gives:

RINðf Þlong ffi
4
p

Dm
f 2 þDm2

XN
i¼2

Xi�2

j¼1

�qi;j: ð11:103Þ

Here �qi;j is the effective reflectance of discontinuities i and j incorporating
inner-fiber transmittance s:

�qi;j ¼ qiqjðsi;jÞ2
D E

: ð11:104Þ
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In relatively long fiber transmission lines, especially if optical amplifiers are
deployed, multiple reflection noise can be generated not only at fiber discontinu-
ities, but also owing to double Rayleigh backscattering in a fiber line. The effective
reflection coefficient qi,j of a fiber line having an optical amplifier of gain G can be
treated as a reflection product of the ith and jth scattering centers [11.66]:

qi;j ¼ G�S�as �D‘�exp �a‘i � a‘j
� �

~pðtÞ �~pi;j t � si;j
� �� �

; ð11:105Þ
where as and a are the linear scattering and the absorption factors, S is the fraction
of scattering power coupled into the fiber in the backward direction, D‘ is the mean
interval of the fiber length over which the scattering occurs, and ~p and ~pi;j are the
unit polarization vectors related to the transmitted and double-reflected optical
fields. For a non-polarization-maintaining fiber with randomly aligned polarization
elements, the average polarization factor is

��
~p �~pi;j

�2� ¼ 0:5. Integration of
individual scattering center contributions by Eq. (11.105) gives backscattering
reflectance qbs from two fiber sides [11.66]:

qbs ¼ S�as=2að Þ 1� expð�2aLÞ½ �; ð11:106Þ
where L is the fiber length. For long fiber spans: qbs ! S�as=2að Þ, and Eq. (11.103)
results in:

RINðf Þ ffi 2G2q2bs
p

Dm
f 2 þDm2

: ð11:107Þ

Let us also consider the effect of residual birefringence of a fiber line connecting
discontinuities. Keeping in Eq. (11.28) only first-order terms for low ordinary and
extraordinary reflectances qo and qe and counting the total birefringence dR built up,
the relative intensity I=I0 of the two-beam pattern is:

I2beam
I0

¼ 1� qoffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qoð Þ2 þ 4qo sin

2 do

q cosuR cos uR � cð Þ

2
64

þ 1� qeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� qeð Þ2 þ 4qe sin

2 de

q sinuR sin uR � cð Þ

3
75
2

� I0sose sin2
d
2


 �
þ qoqe sin

2 3d
2


 � �
sin 2uR sin 2 uR � cð Þ½ �: ð11:108Þ

Since the task is to identify interference effects of light retroreflected on fiber
discontinuities, we may consider fiber birefringence to be a constant of fiber
transmission, and only identify it for a reflected path. Equations (11.99)–(11.101)
for a birefringent fiber interferometer on two discontinuities become:
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RINðf Þ ¼ 4q1q2
p

1� sin2
3d
2


 �� 	
Dm

f 2 þDm2

�
sin2 x0sð Þ 1þ e�4pDms � 2e�2pDms cosð2pf sÞ� �
þ cos2 x0sð Þ 1� e�4pDms � 2e�2pDms Dm

f
sinð2pf sÞ

� 	
8><
>:

9>=
>;; ð11:109Þ

RINðf Þshort ¼
16
p
q1q2 1� sin2

3d
2


 �� 	
Dms2sinc2ðftÞ; ð11:110Þ

RINðf Þlong ffi
4q1q2
p

1� sin2
3d
2


 �� 	
Dm

f 2 þDm2
: ð11:111Þ

The effect of 1/18th of light-wave birefringence in a fiber-based interferometer is
shown in Fig. 11.41. It is evident, that intensity shifts of RIN (relative-intensity
noise) correspond to extremes of birefringence, exhibited by fiber sections of
propagation and can be decreased by appropriate fiber-phase matching.
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11.4.1 Crosstalk and Systems with Multiple Interferers

Most previously analyzed interference effects were caused by optical radiation from
a single quasi-monochromatic source, while the wave components were retro-
reflected and imposed over each other via different propagation paths. In a multi-
wave and multisource optical system, spectral superpositions, such as coherent and
incoherent interference or any combination of the two, can contribute to similar
interference noise, called crosstalk noise or crosstalk. Crosstalk can be caused by
imposing or by leaking diversely originated light components of close wavelengths
into an optical path. Crosstalk penalty occurs not as a result of one-wavelength
retroreflections, but as a consequence of interference of dissimilar wave compo-
nents escaping from respective spectral filters via imperfect wavelength-separation
elements. The effects of the latter interference noise on fiber transmission systems
depend on any particular spectral contribution of various wavelength sources
contributing to crosstalk within the receiver’s bandwidth. Mainly, the number of
wave modes emitted, their individual shapes, linewidths, and the spectral separation
significantly contribute to crosstalk.

Consider two signals P1(t) and P2(t) modulated by intensity carrying messages
m1(t) and m2(t) at frequencies f1(t) and f2(t) from optical carriers independently
exciting electromagnetic waves E1(t) and E2(t). Each single field Nj(t) of modulated
radiation is NjðtÞ ¼

ffiffiffiffiffiffiffiffiffiffi
PjðtÞ

p
EjðtÞ, where PjðtÞ ¼ 1þmjðtÞ cos 2pfjt

� �
. If both signals

are combined on a photodetector reacting to intensity I(t) of combined electro-
magnetic field NR(t), the detector’s signal is defined by the low-frequency com-
ponent of the squared modulus of the total field:

IðtÞ / NRðtÞj j2
n o

¼
ffiffiffiffiffiffiffiffiffiffi
P1ðtÞ

p
E1ðtÞþ

ffiffiffiffiffiffiffiffiffiffi
P2ðtÞ

p
E2ðtÞ

��� ���2 �

¼ P1ðtÞþP2ðtÞþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ðtÞP2ðtÞ

p
E1ðtÞE2ðtÞ

n o
; ð11:112Þ

where curly brackets define the low-frequency component. The interference term in
brackets in Eq. (11.112) represents undesirable noise, originating from the mixture
process of two combining signals, when its outcome fits into the frequency band-
width of the signals received. Noise is given by convolution of two mixing fre-
quency spectrums, and the interference spectrum is centered at frequency df given by
the frequency difference of optical sources, presuming the bandwidth of messages
E1(t) and E2(t) defined by the detection process is much smaller than the linewidth
Dkj of optical source. Thus, the intensity of interference noise is proportional to the
linewidths of the combined optical sources and their spectral separation df.

Not accounting for broadening or reflections of two interfering signals, the signal
to interference noise ratio (SNRI) can be defined as the ratio of the signal intensity
or the average power spectrum 0:5

�
m1;2ðtÞ2

�
for messages m1 and m2 to the av-

erage power spectrum for interference noise N(df) in the receiver’s bandwidth B:

644 11 Propagation Losses in Fibers and Waveguides



SNRI ¼ 10 log10
0:5 m1;2ðtÞ2

D E
Nðdf ÞB

2
4

3
5: ð11:113Þ

Typically, a single-mode distributed-feedback laser emits a narrow spectrum with a
linewidth resembling a Lorentzian function. Presuming no direct modulation of the
source lasers at wavelengths k1 and k2, interference noise remains just about Lorentzian
with spectral width DfL as a sum of bandwidths of the two sources at one center fre-
quency: df ¼ cðk1 � k2Þ=k1k2, and the interference noise power spectrum is [11.67]:

Nðdf ÞL ¼
8
pdf

1þ 2df
DfL


 �2
" #�1

: ð11:114Þ

Direct modulation of a distributed-feedback laser creates frequency chirp and
excessive spectral broadening of a virtually Gaussian emission profile. The inter-
ference-noise spectrum resulting from mixing broadened sources at frequencies f1
and f2 approaches Gaussian behavior at the spectral linewidth: Df ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Df 21 þDf 22

p
:

Since the linewidth of a message is much smaller than the carrier-modulation
bandwidth and thus does not alter the carrier’s spectral profile, the noise power
spectrum for two interfering Gaussian sources is [11.67]:

Nðdf ÞG ¼ 13:33
2Df

ffiffiffi
p

p exp � 2df
1:2Df


 �2
" #

: ð11:115Þ

From Eqs. (11.111) and (11.112) it follows (see Fig. 11.42) that the half width at
half-maximum function of a detected electrical power spectrum equals the full
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width at half-maximum function of the optical power spectrum of a Lorentzian
source, with an extra 1=

ffiffiffi
2

p
factor for a Gaussian source [11.68].

Consider two interferers of wavelengths k1 and k2, propagating to one detector
via diverse optical paths coupled by one directional wave coupler, losslessly
transmitting the wavelength of each path with isolation factor x for respectively
crossing wavelengths. Equation (11.109) for receiving the intensity of the combined
signal can be rewritten in the well-known two-beam interference form [1.1, 11.70]:

IR k1; k2ð Þ ¼ I1ð1� xÞþ I2xþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1I2xð1� xÞ

p
cos�1;2 p

"
1�p"2: ð11:116Þ

Here I1 and I2 and p1 and p2 are the intensities and polarizations of the two interfering
signals, respectively, and the wave coupler’s transmittance for every passing wave-
length is presumed to be s ¼ 1� x; � is the phase of interfering waves. The three
terms in Eq. (11.116) represent the signal, the crosstalk, and intensity noise caused by
interference. The following classification may be used [11.70]: (a) coherent crosstalk;
(b) incoherent noise-free crosstalk; and (c) incoherent beat-noise crosstalk.
If the signal and crosstalk are coherent: �a ¼ p=2� Du; where Du is the phase
difference of the signal and of coupled crosstalk. Any incoherent waves of
frequencies x1 and x2 and phases u1 and u2 couple independently in time:
�b ¼ x1 � x2ð Þtþu1ðtÞþu2ðtÞ, but the beat frequencyx1 − x2 can be filtered out
if it exceeds the receiver’s bandwidth. For incoherent beat-noise crosstalk, interfering
signals originate either from closely wavelength matching sources if the beat fre-
quency x1 − x2 falls into the receiver’s bandwidth and phase noise u is not filtered
out to change phase �b, or from one source with differential delay s:
�c ¼ xsþuðsÞþuðt � sÞ.

In optical communication networks signal-leakage crosstalk may be accumulated
if signals are transferred via imperfect wavelength-division and time-division ele-
ments such as multiplexers and demultiplexers. Defining the leakage factor n of an
optical element as the ratio of leakage crosstalk to the power of the signal transferred
by the element, the element’s added power penalty to the communication-system
penalty, presuming addition of the power of the crosstalk to the signal powers,
becomes: p ¼ �10 log10ð1� nÞ ðdBÞ. The additive law for summation of power
holds true if the signal-to-crosstalk difference Dm in frequency is much larger than
the receiver’s bandwidth (thus the frequency difference is filtered out) or if the signal
and crosstalk states of polarization are orthogonal and no interference can occur. In
any other case, signal-to-crosstalk interference does take place, but the signal and
crosstalk powers do not combine additively. Considering the signal and the crosstalk
as respective autonomous random binary functions ds and dc of either 0 or 1 mag-
nitude, the electrical field transmitted by any leaking optical element becomes:

ERðtÞ ¼ EdsðtÞ cos x0tþwsðtÞ½ � þE
ffiffiffi
n

p
dcðtÞ cos x0tþwcðtÞ½ �: ð11:117Þ

Here E is the normalized signal-field amplitude, and ws and wc are the phases of the
signal and the crosstalk.
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For a receiver response I as a convolution of the signal and receiver
impulse-response functions and a signal as a combination of the signal itself,
crosstalk, and receiver thermal noise, I(t) is [11.65]:

IðtÞ ¼
n
const �jEj2

h
BðtÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðtÞnBðt � sÞ

p
cosðwsðtÞ � wcðtÞÞ

i
þ NðtÞ

o
� HðtÞ: ð11:118Þ

Here B(t), B(t − s), N(t), and H(t) are respective functions of the digital signal
received, crosstalk, thermal noise, and receiver impulse response; B(t) = 1 for
0 < t < T, if T is the bit duration, and B(t) = 0 otherwise. Denoting the expectation
values as l1 and l0 and noise variances as r1 and r0 of signal I(t) for ones and
zeroes, respectively, for Gaussian-distributed noise the probability of making a
decision error becomes [11.65]:

Pe ¼ 1
2
Q

l1 � D
r1

� 	
þ 1

2
Q

D� l0
r0

� 	
; where QðxÞ ¼

Z1
x

1ffiffiffiffiffiffi
2p

p e�x2=2dx: ð11:119Þ

For p-i-n receivers, signal-related noise is usually absent and noise
variances for ones and zeroes can be assumed to be the same, thus presuming
there is no intersymbol interference: l0 ¼ 0; l1 ¼ const Ej j2, D ¼ l1=2, Pe is:

Pe;p�i�n ¼ 1
2Q

l1
2r0

h i
þ 1

2Q
l1
2r1

h i
, where as defined in (11.114):

r1 ¼ I2
� �� Ih i2 ¼ r20 þ l21

ffiffiffi
n

p� �2
� �

: ð11:120Þ

As a result, the power penalty P in decibels due to crosstalk-interference noise for
zero shot noise is determined by analogy with noise due to reflectance
(Eq. (11.104)) [11.65, 11.72]:

Pq ¼ �5 log10 1� 4q2 �q2
� �� �

; Pn ¼ �5 log10 1� 4q210ðn;dB=10Þ
h i

; ð11:121Þ

Where q � 5.9 for the noise power P = 10−9, leading to 0.5Q(q) = 10−9. For
low-leaking optical elements: n  1, the transmitted total power may be approxi-
mated as [11.71]:

PRðtÞ ¼ 0:5E2 dsðtÞþ 2dsðtÞ
ffiffiffi
n

p
dcðtÞ cos wsðtÞ � wcðtÞ½ � þ ndsðtÞ

n o
ffi
n!0

0:5E2 dsðtÞþ 2dsðtÞ
ffiffiffi
n

p
dcðtÞ cos wsðtÞ � wcðtÞ½ �

n o
; ð11:122Þ

where 0.5E2 is the normalized field power on the receiver. Equation (11.122)
allows one to consider the crosstalk interference term versus the transmitted signal
power in the small-crosstalk approximation. In this approximation, the receiver’s
power due to phase fluctuations of interfering waves is bounded as:
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0:5E2 1� 2
ffiffiffi
n

p� �
	PRðtÞn!0 	 0:5E2 1þ 2

ffiffiffi
n

p� �
: ð11:123Þ

If the receiver’s decision threshold is set in the middle between 1 and 0 of the
power received: PðtÞ ¼ 0:5 P1h iþ P0h i½ �, where P1h i and P0h i are the average
power values corresponding to 1 and to 0, from relation (11.123) the resulting
decision threshold D is in the E2=4ð Þ 1� 2

ffiffiffi
n

p� �	D	 E2=4ð Þ 1þ 2
ffiffiffi
n

p� �� �
range.

Considering DC- and AC-coupled receivers with decision threshold D ¼ E2=4 for
DC-coupling, and assuming cos wsðtÞ � wcðtÞ½ �h i dependence for the worst and the
best case for AC coupling, the associated crosstalk-induced optical power penalties
of the digital communication system are [11.71]:

PDC ¼ �10 log10 1� 4�10ðn;dB=20Þ
� �

; PAC�best ¼ �10 log10 1� 2�10ðn;dB=20Þ
� �

;

PAC�worst ¼ �10 log10 1� 6�10ðn;dB=20Þ
� �

: ð11:124Þ
Figure 11.43 illustrates the dependencies of the system’s power penalty versus its
crosstalk component in decibels.

Further impediments of crosstalk-induced penalties can occur if optical ampli-
fication is used, owing to beatings between crosstalk and amplified spontaneous
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emission (ASE) or owing to degradation of the extinction ratio [11.72–11.75,
11.93]. Considering arcsine statistics for the probability-density function of inter-
ferometric noise (Eq. (11.86)) and accounting for ASE generated in optical
preamplifiers for p-i-n and avalanche photodiode receivers, one may compute the
bit-error rate (BER) for combinations of interfering receiver bits [11.73]:

BER1;1 ¼ 1
2p

Zp

0

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2


 �
P2
1R

2
DG2

r21 þ 1þ nð Þr2sg�sp

s
1þ n� Dþ 2

ffiffiffi
n

p
cosðHÞ

h i( )
dH;

BER0;1 ¼ 1
2p

Zp

0

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2


 �
P2
1R

2
DG2

r21 þ 1þ rnð Þr2sg�sp

s
1þ rn� Dþ 2

ffiffiffiffiffi
rn

p
cosðHÞ

h i( )
dH;

BER1;0 ¼ 1
2p

Zp

0

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2


 �
P2
1R

2
DG2

r20 þ rþ nð Þr2sg�sp

s
D� n� rþ 2

ffiffiffiffiffi
rn

p
cosðHÞ

h i( )
dH;

BER0;0 ¼ 1
2p

Zp

0

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2


 �
P2
1R

2
DG2

r20 þ r 1þ nð Þr2sg�sp

s
D� r 1þ nð Þþ 2r

ffiffiffi
n

p
cosðHÞ

h i( )
dH;

ð11:125Þ
where: erfcðzÞ � 2ffiffi

p
p

R1
z
e�x2dx; erf ðzÞ � 2

p

Rz
0
e�x2dx; P1 is the power of a bit entering

the amplifier; RD is the responsivity of the receiver, G is the gain of the amplifier, r1

and r0 are the variances of one and of zero due to effects of thermal noise, ASE shot
noise, and spontaneous-spontaneous bit noise, rsg-sp is the variance due to
signal-spontaneous bit noise with no crosstalk, and r is the extinction ratio: 0	 r\1.

Finally, let us consider crosstalk interference in a birefringent communication fiber
line, having ordinary refractive index no and extraordinary index ne. Schematically,
the occurrence of crosstalk can be represented as shown in Fig. 11.44. Two multi-
plexed wavelengths kA and kB with intensities IA,0 and IB,0 enter demultiplexer DM
converting the two to transmitting wave A and leaking wave B, and reflecting wave B
and leaking wave A. For simplicity, let us presume the initial intensity of every
polarized signal IA,0 and IB,0 entering such a birefringent fiber to be equally split into
orthogonal components along the ordinary and extraordinary axes of propagation;
hence, they have intensities IA,o = IA,e = 0.5IA,0 and IB,o = IB,e = 0.5IB,0. As a result,
in either the transmitting or the reflecting channel created by demultiplexer DM, two
components of the main signal and two components of the leaking signal interfere

Wavelengths A+B Wave A+leakage of wave B

Wave B + leakage of wave A

DM

Fig. 11.44 Schematic representation of crosstalk interference
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along each line of the birefringent fiber if any two selected waves of the four present
are localized in one axis. The orthogonal waves have phase difference
d ¼ 2p ne � noð Þ D‘=kð Þ, while in-line-polarized waves have phase shift de ¼
2pne D‘=kð Þ or do ¼ 2pno D‘=kð Þ, whereD‘ is the length-path divergence between the
pair of any two interfering waves in the fiber transmission.

Figure 11.45 depicts two waves A and B entering a birefringent medium, such
as a fiber line, if all four ordinary and extraordinary polarization components A,o;
A,e; B,o; and B,e experience respective phase shifts do and de, and all eventually
interfere with each other while passing via the birefringent fiber. The total intensity
IR of transmitted optical signal A and leaking crosstalk B resulting from four-wave
crosstalk-induced interference can be described as:

IR;a ¼ IA;oð1� nÞþ IA;eð1� nÞþ IB;onþ IB;enþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IA;oIA;e 1� nð Þ2

q
cos d

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IB;oIB;en

2
q

cos d;

IR;b ¼ IA;oð1� nÞþ IA;eð1� nÞþ IB;onþ IB;enþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IA;oIB;on 1� nð Þ

q
cos do

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IA;eIB;en 1� nð Þ

q
cos de;

IR;c ¼ IA;oð1� nÞþ IA;eð1� nÞþ IB;onþ IB;en

þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IA;oIB;en 1� nð Þ

q
cos dþ deð Þþ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IA;eIB;on 1� nð Þ

q
cos dþ doð Þ:

ð11:126Þ
For equal orthogonal intensities IA,o = IA,e = 0.5IA,0 � 0.5IA and IB,o =

IB,e = 0.5IB,0 � 0.5IB, Eq. (11.126) becomes:

IR;a;Io¼Ie � IAð1� nÞþ IBnþ IAð1� nÞ cos dþ IBn cos d ¼ IAð1� nÞ
þ IAð1� nÞþ IBn½ � cos dþ IBn;

IR;b;Io¼Ie � IAð1� nÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IAIBnð1� nÞ

p
cos do þ cos deð Þþ IBn;

IR;c;Io¼Ie � IAð1� nÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IAIBnð1� nÞ

p
cos dþ deð Þþ cos dþ doð Þ½ � þ IBn:

ð11:127Þ

Here every total intensity IRa, IRb, and IRc describes the result of interference for
orthogonal, for in-plane, and for cross-plane radiation components as being singled

Wave A + Wave B
Interfering ordinary and

extraordinary components

Birefringent medium

A,o
A,e

B,o
B,e

Fig. 11.45 Schematic conception of two-wave birefringence-induced interference
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out for a given observation. Equations (11.126) and (11.127) define interactions for
pairs of orthogonal or in-plane terms hypothetically presuming the wave separation
into ordinary and extraordinary axes is made with no optical loss.

Figures 11.46–11.48 provide examples of interference patterns computed
using Eq. (11.127). The numerical simulation is based on setting the fiber
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Fig. 11.46 Four-wave crosstalk-induced interference in a highly birefringent photonic crystal
fiber: fiber length 1 m, leakage factor 0.01, orthogonal components of the signal and crosstalk are
interfering
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Fig. 11.47 Four-wave crosstalk-induced interference in a highly birefringent photonic crystal
fiber: fiber length 1 m, leakage factor is 0.01, in-plane components of the signal and crosstalk are
interfering
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birefringence as D = ne − no, linearly changing from 1:25�10�4 at 950 nm to
1:55�10�4 at 1550 nm, loosely accommodating the properties of the photonic crystal
fibers measured in [11.77]; the difference in the optical path lengths of the main and
leaking signals via the demultiplexer is respectively set to 1 mm for the ordinary axis
and to 2 mm for the extraordinary one.

If there is no birefringence, d ¼ 0; de � do, Eqs. (11.127) transform into an
equation for the two-wave interference:

IR;d¼0;de¼do ¼ IAð1� nÞþ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
IAIBnð1� nÞ

p
cos do þ IBn: ð11:128Þ

The case of two-beam crosstalk-induced interference in a nonbirefringent fiber is
seen in Fig. 11.49.

The actual beat-length properties of birefringent fibers can be obtained via
modal-birefringence measurements either in radiation returned – backscattered or
backreflected – or transmitted by the fiber utilizing polarization OTDRs, OFDRs, or
any spectral-scan techniques (see Chaps. 3 and 10) [11.84–11.91]. Birefringence-
dispersion measurement by wavelength-scanning via dual-beam interferometers
(see also Chap. 8) allows for relatively high sensitivity, largely limited only by the
spectral resolution of a given spectrometer [11.89–11.91]. Polarization-based
measurements via backscattered radiation are inherently noisy owing to fiber
inhomogeneities, especially due to the evolution of the state of polarization when
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Fig. 11.48 Four-wave crosstalk-induced interference in a highly birefringent photonic crystal
fiber: fiber length 1 m, leakage factor 0.01, cross-plane components of the signal and crosstalk are
interfering
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light propagates via a non-polarization-maintaining fiber, and therefore are limited
in sensitivity and in spatial resolution, although they are capable of distinguishing
mode-coupling characteristics: down to centimeters of polarization mode-beating
lengths or degrees/meters in birefringence [11.85–11.88].
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Fig. 11.49 Two-wave crosstalk-induced interference in a non-birefringent fiber: fiber length 1 m,
leakage factor 0.01, ordinary refractive index as in Figs. 11.46–11.48
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Chapter 12
Spectroscopic Interferometry
and Laser-Excitation Spectroscopy

12.1 Fourier-Transform Spectroscopic Interferometry

The underlying Michelson-Morley experiment [12.1] was made possible in an
interferometer designed by Michelson for atomic spectroscopy in his attempt to
establish a new meter standard using a suitably narrow spectral line, the red-line
singlet not doublet of cadmium, via measuring visibility of a resultant two-beam
interference pattern (see Chap. 3): V ¼ Imax�Iminð Þ= Imax þ Iminð Þ. As pointed out
by Rayleigh [12.2] that interferometer was not able to measure a unique spectral
distribution from the visibility without a knowledge of the phase of its wavelength-
modulating function [12.3]. Although, as concepts of Fourier transformation, of
throughput advantage [12.4], and of multiplex gain [12.5] of the interferometer
versus a scanning spectrometer were analyzed and developed, Fourier-Transform
Infrared (FTIR) Spectroscopy emerged as an essential tool in overcoming relatively
low spectral outputs of sources and high noise of detectors in the infrared.

12.1.1 Advantages of Fourier Transform Spectroscopy

Despite the renowned presence of Michelson interferometer, its widespread use for
spectroscopic purposes had been on hold until theoretical rewards of the Fourier
transform spectroscopy were understood and the advanced computation techniques,
such as the Fast Fourier Transform (FFT), were fully developed. The throughput or
Jacquinot advantage is the understanding that slit spectrophotometers limit the
amounts of flux of radiation transmitted via its spectral-selection element by a width
Δk of a resolution-defining slit [12.4]. Since the maximum transmission of the
spectrometer at the resolving power Rk, given by the widest of its two slits, is reached
at the equal slit width, and thus presuming them both to be Dk ¼ u=Dk for a given
dispersion Dk (see Fig. 4.26), the equation for the spectrometer’s power could be
written similarly to Eqs. (4.4) and (4.5) in the form of the flux-selecting geometry:
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Us ¼ sLkSX ¼ sLkSbu ¼ sLkSbDkDk ¼ sLkSbkDk=Rk; ð12:1Þ

where Rk ¼ k=Dk is the spectrometer resolution; b, u are the angular height and
width of its slit; S is the normal area of the output beam; X is the solid angle
subtended by the output slit and Lk is the input source brightness at wavelength k
(see also Eqs. (1.31), (1.59) and Figs. 1.2, 1.4).

Equation (12.1), derived under a presumption of photometric interpretation and
diffraction-limited slit widths (see Chap. 3 for more detail), prescribes the spec-
trometer throughput to be proportional to dimensions of its dispersive element,
whether a prism or diffraction grating, and inversely proportional to its resolving
power. The SDk product in Eq. (12.1) is given by the area of the base and dispersion
for a prism and by the surface area and blaze angle for a grating in Littrow con-
figuration, presuming the angular height and width of slits being identical [12.4].

In case of an interferometer, such as a Fabry-Perot etalon, being a relatively
straightforward to consider the throughput for either transmitted or reflected light, is
identified by the totality of wavelengths, existed within an input beam, satisfying its
conditions of constructive interference (Eqs. (3.119), (3.122), (3.119c), (3.122c),
and (8.16–8.20)). The resolving power of the etalon defines an angular width and
separation of Airy fringes distinguishing neighboring rings [12.4]:

@ cos dð Þ= cos d ¼ @ jð Þ=j ¼ @ 1=kð Þ= 1=kð Þ ¼ 1=Rk; ð12:2Þ

where j ¼ 1=k is the wavenumber of a monochromatic component of incident light
as the angular width of each ring observed @ cos dð Þ is defined by the finesse of the
etalon (Eqs. (7.68) and (8.20)). Identifying the throughput as the flux transmitted by
the etalon into a fringe ring selected by an annular aperture of its size at solid angle
X subtended by it, from relations (3.122c), (7.66), (8.17):

Is
I0

¼ 1þ F sin2 dk=2ð Þ� ��1

¼ 1þ 4sq
.

1� sqð Þ2
h i

sin2 dk=2ð Þ
� ��1

¼
s¼1

1

1þ ½4q
.

1� qð Þ2� sin2 dk=2ð Þ
;

ð12:3Þ

where F ¼ 4q=ð1� qÞ2 is the finesse parameter and s is the inner transmittance of
the etalon space.

Equation (12.2) leads to angle X, defined by a circular fringe ring of angular
width @ cos dð Þ, being:

X ¼ 2p@ cos dð Þ ¼ 2p cos d=Rk ffi 2p=Rk: ð12:4Þ

Since the transmittance of the etalon within an individual fringe varies, therefore
averaging cos d out as p/4, the throughput of a Fabry-Perot etalon for a beam of
radiance L and area S becomes:
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UF�P ¼ sLkSX ¼ 2sLkSp cos d=Rk ¼ sLkSp2= 2Rkð Þ: ð12:5Þ

When comparing Eqs. (12.1), (12.5) for typical values of dispersion and
resolving power of spectrometers and interferometers, the throughput advantage
can reach tens or hundreds [12.4].

The multiplexing or Fellgett advantage [12.5] refers to the respective gain of the
optical signal in spectroscopic interferometry, in which Fourier Transform performs
the function of a dispersing system allowing the signal of all wavelengths to be
collected simultaneously against single noise of detection—not being added up for
every individually-registered wavelength. Essentially, the multiplex advantage
comes from the absence of the exit slit, enabling the selection of individual
wavelengths in dispersive spectrometry [12.42], thus resulting in N0.5-less contri-
bution of photon noise which adds up as a square root of combined signal noises:
NR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðS1 þ Si þ :::þ SNÞ

p ¼ ffiffiffiffi
N

p � ffiffiffi
S

p
.

Less-pronounced or rather provisional Connes’ wavelength advantage relates to a
common practice of using a He–Ne laser and its visible 632.8-nm wavelength for
calibration of FTIR wave-number scale [12.7], since the very custom is routinely
deployed in the dispersive spectroscopy. Although, the distance between two
Michelson-interferometer mirrors in FTIR is more likely to remain stable and more
reproducible when is continually calibrated by He–Ne laser wavelength versus a
rotating grating in a dispersive spectrometer, especially for the infrared spectral region.

The emergence of corner-cube reflectors replacing flat mirrors in Michelson
interferometer [12.8] became another vital development, enabling the quick spread of
FTIR systems for spectroscopy. Let us note, these notional advantages of Fourier
Transform Spectroscopy (FTS) relate to the direct comparison with the
spectrum-scanning spectroscopy and mainly to simultaneous versus sequential mea-
surements. There is no multiplexing or throughput gain versus any spectrometer with
an instantaneous recording of spectrum via the same size opening, such as a spec-
trograph with a CCD array, if its pixel size could be considered infinitively small with
no sensitivity gaps between two neighboring pixels. For example, the Hadamard
spectrometer provides equivalent multiplexing of spectrums via multiple-slit
Hadamard transform [12.11]. Moreover, considering the essence of
Michelson-interferometer design (see Figs. 12.1 and 12.2), a half of its source

S

BS

D

M2

MS

MD

M1Fig. 12.1 Schematic of the
Michelson interferometer
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radiation is lost on the beamsplitter, a half of the remainder is modulated, and only one
half of the overall efficiency is retained in the sinusoidal modulation versus a square
wave, consequently reducing the theoretical

ffiffiffiffi
N

p
advantage to

ffiffiffiffiffiffiffiffiffiffiffi
N=23

p ¼ ffiffiffiffiffiffiffiffiffi
N=8

p
[12.12].

12.1.2 Conceptual FTIR Interferometers

A common reflective layout of Michelson interferometer-based FTIR is pictured in
Fig. 12.1. A parallel beam from point source S of infrared (IR) radiation, projected by
off-axis parabolic mirror MS to mirrors M1, M2 via semitransparent beamsplitter BS,
is collimated by identical to MS mirror MD into detector D [12.10]. A relatively fast
movement of mirror M1 serves to first equalize a path-length difference of two arms
of the interferometer and then discriminate the movable arm length within the co-
herence length of source S, as the spectrum is measured. The actual arm length
difference is often calibrated via a 632.8-nm wavelength of a frequency stabilized
He–Ne laser (not shown in Fig. 12.1). A physical source of IR light is never a point
source, it becomes virtual one via its uniform radiance and a limited-size detector to
also reduce noise and enhance sensitivity. Michelson interferometer fringes are
observable as its arms difference does not exceed the coherence length of a source,
but the path-length inequality of interferometer arms reduces the maximum visibility
of interference fringes. When the source is of a finite size and interferometer’s beam
splitter is precisely positioned, while mirrors remain ideally parallel, concentric in-
terference fringes (Haidinger rings) [12.13] are observed at infinity, plus linear
fringes localized on mirror surfaces could become observable for cross-tilted mirrors.

Several solutions [12.3, 12.6] are available to keep a precisely equal path-length
of two arms of Michelson interferometer, such as adding an extra compensator plate
with its optical thickness equivalent to one of the beamsplitter, or deploying a
beamsplitter cube, equalizing path lengths in glass. The corner-cube reflectors are
used to prevent any misalignment associated with tilted mirrors, especially the
moving one [12.8]. In practical applications, Michelson interferometer of Fig. 12.1
is enhanced to form equal path lengths in both arms (Fig. 12.2) where dotted arrows

LBS

S

BS

D

C2

MS

MD

Co

C1

LCo

Fig. 12.2 Path-equalized
FTIR spectrometer
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show stray light coming back to source S via beamsplitter BS. The path length L in
BS is equalized in extra compensator Co of the matching-bulk thickness. Identical
corner cubes C1,2 are formed by three metal mirrors, preserving one constant path
difference over beam’s cross-section during cube movements in one arm and
keeping it independent of assembly rotations, if each mirror tilt is small and occurs
near corner-cube center.

In essence, the movement of one of interferometer mirrors serves as a converter of
detected unmodulated broadband radiation of aDC source into amodulatedAC signal
at frequency f of the mirror movement, also reducing detector noise caused by fluc-
tuations of source intensity as the amplitude of white noise declines inversely to f. The
resulting detector signal at frequency f becomes a function of path-lengths difference
providing the Fourier transform of the intensity of the light source [0.46]. For a
monochromatic oscillation at wavelength k, the amplitude of a sum of two waves
recombined by the interferometer arms at its detector is (see Chap. 3 and Fig. 3.9):

ID ¼ EqE�
q

��� ��� ¼ I0 1þ cos dð Þ ¼ I0 1þ cos 2p=kð ÞD‘ð Þð Þ
¼ I0 1þ cos 2pjD‘ð Þð Þ;

ð12:6Þ

where D‘ ¼ 2 ‘1 � ‘2ð Þ is the normal path-length difference of interferometer arms,
d is the phase difference for two interfering waves at the angle of incidence u, and
j ¼ 1=k is the spectroscopic wavenumber (vs. j0 ¼ 2p=kÞ. The sum of
monochromatic components of radiation becomes:

ID jð Þ ¼
Z1
0

Is;q jð Þ 1þ cos 2pjD‘ð Þð Þ@j; ð12:7Þ

being constant-modified cosine form of Fourier transform for the spectral intensity
of radiation, emitted by system’s source, versus the path-length difference of
Michelson interferometer arms. The constant term Is,q ¼ I0s(j)q(j) denotes the
background radiation reflected and transmitted by the beamsplitter with reflectance
q and transmittance s, presuming ideal interferometer mirrors. Since the integral in
relation (12.7) does not extend to infinity, but to path-length difference D‘, its
Fourier transform over a finite length becomes an unapodized scanning function
S D‘ð Þ [12.3]:

I D‘ð Þ ¼ backgroundþ
ZD‘
0

I ‘ð Þ cos 2pjD‘ð Þ@‘; S D‘ð Þ ¼ D‘ sinc 2pjD‘ð Þ :

ð12:8Þ

The longer is the path difference, the sharper the scanning function becomes,
enhancing the resolution of FTIR spectrometer but increasing requirements to
mirror parallelism during scans.
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Equations (12.7, 12.8) need further modifications to represent actual interfered
light, collected by system’s detector, as it receives only one half of it, recombined
on beamsplitter BS by Michelson interferometer arms, while another half is
returned back to source S (dashed arrows in Fig. 12.2). Recycled light scattered
back to the system from source S, as well as from detector D, is nothing but noise
and dealing with it represents a challenge to FTIR, especially for internally mod-
ulated Michelson interferometer [12.14]. Because of imperfections, including
nonequivalent dispersions of interferometer arms, a measured phase component for
a spectral intensity of the source could be obstructed by anomalous phase contri-
butions for the intensity of the instrument itself [12.15].

Converting from source radiation to the spectral intensity of interferogram,
received by the detector and summing-up varied phase contributions in FTIR
spectrum, Eq. (12.7) turns to:

ID;D jð Þ ¼
ZD‘
0

gBS jð Þg0 jð ÞIS jð Þ@jþ
ZD‘
0

gBS jð Þg0 jð Þgm jð ÞIS jð Þ cos 2pjD‘ð Þ@j;

ð12:9Þ

where IS(j) is the spectral intensity of the source; ηBS(j) ¼ 0.5(4qs) is the efficiency
of beamsplitter in the ideal case of q(j) ¼ s(j) ¼ 0.5 reaching 0.5; ηm(j) is the
modulation efficiency, affecting only AC term and representing a zero delay modu-
lation amplitude of balanced-arms input versus the interferogram baseline; and η0(j)
is the dispersion efficiency, which is 1.0 for perfectly optically-equal interferometer
arms. Assigning effective spectrum’s intensity Iη(j) ¼ IS(j)ηBS(j)ηm(j)η0(j), op-
tical path ‘o ¼ n jð Þ‘ and phase shiftuj ¼ jD‘o, the interferogram equation becomes
[12.15]:

ID ‘oð Þ ¼
ZD‘
0

Ig jð Þ cos 2pj‘o � uð Þ@j

¼
ZD‘
0

Ig jð Þ cosu cos 2pj‘oð Þ@jþ
ZD‘
0

Ig jð Þ sinu sin 2pj‘oð Þ@j; ð12:10Þ

defining spectral path-difference and dispersion-delay contributions, with the latter
making the interferogram asymmetric, leading to a complex spectrum, and
requiring a complex description. Furthermore, to extract a true spectrum from such
a complex interferogram, a relevant complex calibration needs to be performed,
removing erroneous contributions of the instrument, such as emissions of the
beamsplitter, apertures, optics, and detector, which could produce a DC offset of the
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signal or its modulation in a spectral domain of measurement. Assuming a super-
position of all contributions to be linear, Fourier transform of a complex interfer-
ogram turns into [12.15]:

SR jð Þ ¼
ZD‘
0

I ‘oð Þ exp 2pij‘oð Þd‘o ¼ Rdet jð Þ Strue jð Þþ Serron jð Þ½ �; ð12:11Þ

where Strue, Serron are the true and erroneous spectrums, and Rdet is the detector
spectral response as the wavenumber function. By independently measuring com-
binations of spectrally verifiable sources, such as a hot and cold blackbody, the
complexity of FTIR spectrum should be resolved.

12.1.3 Enhanced FTIR Instruments

Since early developments of FTIR spectroscopy [12.9], a need to compensate for
background emission of system’s components led to various double-beaming
schematics, one of which is seen in Fig. 12.3a [12.16]. The concept of double beam-
ing is to have two beams out of phase with each other by making optical paths of the
arms complimentary thus subtracting any background from the measured FTIR signal.
In view (a) second beamsplitter BS2 allows source’s emission to pass via Cell con-
taining an absorbing specimen and directly via the Michelson interferometer, which
signal contains only modulation due to specimen’s absorption. Connes-type interfer-
ometer [12.6] of view (b) demonstrates the double beaming at two detectors receiving
reflected and transmitted via beamsplitter beams of equal intensity at 180°-phase shift.

Keeping Michelson interferometer mirrors parallel for every scan while
extending its length proved difficult and various schemes were deployed to over-
come the problem (see Fig. 12.3b, c). The corner-cube reflectors are most effective
in narrow beams and the cat’s eye ones are efficient in wide beams such as for
stellar FTIR spectroscopy, since both schemes maintain independence of the
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Fig. 12.3 Double background offsetting interferometers a, b, and uses of corner cube c and cat’s
eye retro reflectors b
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direction of returning beam on a tilt of the mirror. Another approach is to com-
pensate for mirror alignment imperfections via a two-arm balancing interferometer
when a displacement in the one interferometer arm becomes complementary to that
in another [12.17]. Such a concept is realized via double-sided mirror with each side
participating in the first or second interferometer arm. As a result, the mirror tilt
causes the same change as the succeeding rotation of one of the corner mirrors,
using which it is compensated. In illustrated by Fig. 12.4 scheme, to uphold the 45°
incidence mirrors M1 and M3 rotate a beam into vertical plane and M2, M4 provide
the compensation for the tilt of DSM mirror [12.17].

BS

M1

M2

Co

M3

M4

DSM

D

S

Fig. 12.4 Schematic of
double-sided mirror balancing
FTIR
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One step further is provided by the design of Mobius band interferometer
[12.18], which not only compensates for a tilt of the moving mirror but also for
likely unequal rotations of the state of polarization. Although, Mobius interfer-
ometer requires adding mirrors enabling the identical polarization shift in every arm
(Fig. 12.5). Figure 12.6 demonstrates dual-compensation concept for tilt error and
lateral-movement distortion via pendulum mounting of the corner cube making its
movement confined to one single plane during scanning [12.19]. The layout of
Fig. 12.7 deploys identical corner cubes in symmetric interferometer arms, com-
pensating for two-axis shearing error via integrated platform [12.20]. Combining
double-sided mirror, the beamsplitter and added parallel mirror [12.20] in one arm
with a corner cube in another arm (Fig. 12.8) makes an evident intensity imbalance
in Michelson interferometer, thus while corner-cube movements quadruple the
differential optical path, the corner-cube arm has one extra reflection versus the arm
with the flat mirror similar to Fig. 12.6 reducing the modulation efficiency of
two-beam interference. Any intensity deterioration ΔI in one arm in effect leads to a
double drop in pattern visibility ΔV � 2ΔI (see Chap. 3 for detail).
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One parameter limiting wider deployments of a moving corner cube is its relative
bulkiness, especially when a fast scanning is required thus the moving mirror remains
appealing for rapid-scan devices. Moreover, since tilt error of a moving element is
measured via a wavenumber of a distorted fringe [12.22], it is highly pronounced at
near infrared and visible wavelengths in FTIR utilized for biotech studies and, since a
reciprocating motion of double-sided mirror generates four times the displacement in
interferometer’s differential path, it quadruples an uncompensated tilt error leading to
ellipsoidal beam profile edged by displacements of mirror assembly in a moving
articulator [12.23]. For near IR and visible radiation and white-light interferometry
another error comes from the optical thickness of beamsplitter and compensator or
halves of beamsplitter cube not precisely equal to each other, even for a matched pair
and wedge-angle alignment [12.24, 12.25]. Since He–Ne laser tracking of each
optical path length in FTIR interferometer is commonly done via especially designed
optical paths for 632.8-nm beam, precise tracking of arm paths for an IR wavelength
is best realized by known IR absorption lines or a copropagating optical path [12.26].

12.1.4 Comparison of FTIR Instrumentation

Following Eqs. (12.7), (12.8), the longer is the path length difference of interfer-
ometer arms the higher spectral resolution Δj can be obtained in a given FTIR
instrument. Depending on instrument’s apodization function, the instrumental
resolution Djinst distorts theoretical limit Δjtheor by spectral function dFWHM of a
peak observed [0.48]:

Djinst ¼ Djtheor=dFWHM ¼ D‘dFWHMð Þ�1; ð12:12Þ
where dFWHM is the full-width-half-max function of the spectrum resolved by the
interferometer. As FTIR instruments are compared, the theoretical limit being the
inverse difference of the arms lengths is perceived as the highest attainable reso-
lution assuming the sampling and apodization define an ideal instrument while the
instrumental line shape of each spectrometer is equivalent. The theoretical limit
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could also be seen phenomenologically from Rayleigh criterion of spectral reso-
lution [1.1], as a path-length change between the principal maximum of interference
and its first minimum. This straightforwardly translates to Dj ¼ 1=2D‘max, if the
concluding optical-path length 2D‘max is not dispersive. When the path becomes
dispersive (see Eqs. (12.9)–(12.11)), the wavenumber resolution Δj ¼ (dj/dm)Δm
converts to frequency Δm ¼ Δk/k2 with wavelength terms:

Dm ¼ 0:5= D‘max þ @D‘max=@mð Þmð Þ;
Dk ¼ 0:5k2= D‘max � @D‘max=@kð Þkð Þ; ð12:13Þ

where 0.5 factor increases to 0.603 for FWHM criterion or 0.886 at triangular
apodization [12.27].

One obvious comparison of FTIR capabilities is versus a grating spectrometer,
suitable for a measurement in the same spectral interval as FTIR’s Michelson
interferometer. Another one can be done via a lamellar-grating system, which
concept relies on providing the path difference for two interferometer arms using a
lamellar grating [12.28]. The lamellar-grating interferometer is based on substi-
tuting the articulator with a movable mirror in Michelson interferometer by one
steady lamellar grating, being a version of surface-relief grating (see paragraph 3.4),
and laying out the first interferometer arm via its steps, but second via its grooves in
reflected light [12.29].

Figure 12.9 schematically depicts three types of IR spectrometers—one as
diffraction-grating based monochromator and other two as lamellar-grating and
Michelson interferometers, all built with the same source, detector, and identically
accommodating collimating optics for a controlled test of relative merits in spectral
resolution at frequencies (wavenumbers) from 10 to 150 cm−l [12.30].
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Fig. 12.9 Comparison of diffraction-grating monochromator a with lamellar-grating b and
Michelson c interferometers: M1, M2 – paraboloid mirrors, M3–M5 – flat mirrors, S – source
(not shown in views a, b), D – detector, Md – light modulator
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All compared systems used the main beam of near 1.1-cm diameter with f =1:5
NA optics to have equal 0.5 steradian-cm2 products of irradiated area and solid
angle of irradiation, sufficient for small solid samples studied at cryogenic tem-
peratures via a cooled detector and a metal light pipe. Other measures were also
taken, such as matching the size of diffraction gratings with the interferometer
mirrors and utilizing an absorber to prevent direct irradiation of the light pipe by the
beam reflected from gratings to the center of mirror M1 and to the pipe. The
monochromator was equipped by two main 28 � 35-cm diffraction gratings with a
5 � 10-cm hole cut in their centers. The monochromator slits were fully open in
interferometer configuration at two 30-cm2 lamellar gratings, making its efficiency
close to 100% for a limited frequency range below 100 cm−1 [12.29, 12.30].
Michelson interferometer was assembled with 1-mil Mylar beamsplitter for
wavenumber-dependent modulation efficiency approaching 100% threshold in
spectral intervals of reflectance-transmittance product near 0.25. That interferometer
path length difference was variable from −0.5 to 20 cm. Three-way deep IR testing
confirmed higher resolving power of interferometers versus the grating spectrom-
eter: up to 0.1 cm−1 spectral resolution in 3–80 cm−1 frequency range [12.30].

To boost performance, Michelson interferometer can be build as a dual-beam
spectrometer, splitting an incoming beam of IR radiation into sampling and reference
paths – with Hi-Ne laser light propagating in between into a hole in one mirror. That
design allowed to improve spectral resolution to 0.025 cm−1 in 10 cm−1

– 450 cm−1

wavenumber range and reach 0.0001 cm−1 frequency accuracy, at 7.2-cm maximum
path difference [12.31]. In a conceptually similar design replacing flat mirrors with
large corner-cube reflectors the highest resolution approached 0.001 cm−1 at 6.2-m
of maximum optical-path difference of two interferometer arms [12.32]. Other means
for enhancement involve time-resolved spectrum acquisition via step-scan or con-
tinuous recording – with the later transient spectrum synchronized by the interfer-
ogram sampling at an added phase correction of distortions in a changing optical path
length for time-evolving events [12.33, 12.34], and combining a moving arm with a
multiple reflection optical-path expanding cell [12.33–12.38].

Figure 12.10 provides examples of a resonant cavity embedded in an FTIR (see
also Sect. 7.3 and Fig. 7.14). View (a) shows a step-scan interferometer with its
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Fig. 12.10 Intracavity FTIR system embedding multiple reflection cell having step scan a and
continuous b data acquisition
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light source initially excited at a zero path-length difference and then moved to the
next step for the subsequent time component of the interferogram to be sampled at
its second excitation, etc. Each time component represents all path-difference steps
of source emission and sample absorption [12.35]. The ringdown cavity is added to
the moving arm of Michelson interferometer, for which an optically pumped
VCSEL serves as a pulsed source with its output mirror M9 and mirror M7 defining
standing-wave’s cell with a gas sample under study. The system gathered 64–512
time components – each of 10,000 samples obtained at 32-ms acquisition time with
the ringdown cavity adding 960-m optical path to every spectrum recorded,
allowing to grow the path-length difference up to 130 km for *10−10 cm−1 Hz−1/2

sensitivity at near 1-s averaging time and 30 min for all-points acquisition [12.36].
View (b) depicts a Fabry-Perot ringdown resonator coupled with a commercial

FTIR (IFS 125 HR) via 3-m long 0.5-mmdiameter multimode fiber having numerical
aperture NA ¼ 0.37 [12.38]. The system combines (a) the broadband-ringdown
approach [7.46] (see Sect. 7.3.5), in which a ringdown resonator selects waves
matching its stable longitudinal modes, and (b) the phase-shift cavity technique [8.12]
(see Sect. 8.3), in which the wavelength dependent cavity delay shifts a phase of
transmitted waves but *100% efficiency coupling occurs for resonant eigenmodes.
Here instead of measuring the ratio of in- to out-of-phase component it detects a
spectrally diversified transmission of broadband light via a long unstabilized ring-
down cavity by FTIR interferometer replacing the monochromator (compare
Fig. 7.17). Since at non-resonant frequencies the signal intensities tend to be extre-
mely low, 10-h long integration times were required to obtain 0.05 cm−1

linewidth-limited resolution for measured H2O absorption in the vicinity of
13,850 cm−1 (722 nm) at no apodization [12.38]. When applying the phase shift-
technique detecting sinu and cosu terms leading to tangent dependence of phase
angle versus wavenumber (Eqs. (8.37, 8.47)) the 0.5 cm−1 resolution of IFS 66 FTIR
spectrometer at 765 nm was reached in 15-min time [12.37].

12.1.5 Spatial Heterodyne Spectrometry

During initial phases, development of FTIR spectroscopy was progressing in varied
directions partly due to Michelson interferometer unavoidable loss of light on a
beamsplitter and stringent requirements for precisionmirror movements restricting its
wide-spread applicability. The lamellar-grating interferometer illustrated by
Fig. 12.9b could be seen as the very first attempt to build a stationary Michelson
interferometer using spatial Fourier transformation via interferometricmodulations of
diffracting by the lamellar grating wavefronts [12.29]. It can also be made, if inter-
ference fringes combined at an angle u are holographically or photo-recorded
orthogonally to a wavefront bisector [12.39], even for an incoherent light source per
monochromatic wavelengths superpositions via Fourier-transform setting of coherent
virtual sources. Another concept relates to substituting the beamsplitter with a
diffraction grating [12.40], particularly with reflective one, suitable for a range of
wavelengths from UV to VIS to IR [12.41].
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Two schematics of reflective FTIR systems are seen in Fig. 12.11. In view
(a) single diffraction grating 1 bi-directs the incident beam of light, coinciding with
the grating normal, to symmetrical paths of equal diffraction orders comprising
interfering beams via normally placed mirrors 2, 3 returning both beams back to
vertically tilted grating 1, to mirror 4, and detector D placed out of plane with
source S. Mirror 2 is translated to change the optical path of its arm. However, such
an interferometer is capable of resolving only narrow spectral lines of width
Δk ¼ k/d defined by wavelength resolution d of the grating, thus for broad-band
interferometry not one, but three symmetric gratings are needed (view b) [12.41].

Even with three gratings, positions of diffracted beams change and the optical
path difference is a nonlinear function of wavenumber, leading the beams to
walk-off their nominal optical paths, limiting the interferometer passband and
reducing its modulation efficiency. To overcome such limitations the spatial-
heterodyne [12.6] and common-path [12.44] interferometers are deployed.
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G1(a) (b)Fig. 12.11 Reflective FTIR
with a diffraction grating
replacing beam splitter and
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Fig. 12.12 Stationary spatial heterodyne a and triangular common path b FTIR interferometers

The concept of stationary heterodyne interferometry replacing arm’s mirrors with
diffraction gratings in a Littrow mode is depicted in Fig. 12.12a. As a result of the
two-beam diffraction on gratings G1 and G2 the interference pattern on mirror M3 or
detector array D could be seen via an identical to diffraction-gratings equation with
diffracting beams, merging at angle 4H in plane M2:
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2j0 sinH ¼ m=p ¼ j sinHþ sin H� dð Þ½ �; ð12:14Þ

where jn, j are the wavenumbers of wavefronts at grating’s normal and angle d,
p is the grating period, m is the diffraction order, and d is the angle for the diffracted
wavefront with the optical axis, while each grating normal is set at angle H to make
angle 4H [12.43] (see paragraph 3.4 for detail). In selective-modulation common
path Sagnac instrument seen in Fig. 12.12b interfering beams are formed via
radiation propagating interferometer’s arms in opposite directions, having the
dotted line indicating the position of mirror M1 for equal arm’s distance. Offset d of
two arms makes the beams collimated by mirror Ms tilt, interfering on photodiode
array D via mirror Md. The final spectral resolution for the first system is defined by
a product of the order of diffraction by a total number of the grating lines, and by
the maximum offset √2d of two arms path length for the second—each doubled for
the dual pass [12.43, 12.45].

The conversion of an image formed by tilted diffracting wavefronts into spatial
frequencies in Fourier space comes from Huygens-Fresnel principle, defining the
physics for transformation of image coordinates to spatial frequencies at a coherent
summation of wave amplitudes [12.46]. Likewise, the division of radiation of a
source for the common path interferometer to two virtual emitters could be seen as a
version of the Young’s two-pinhole experiment (see [1.1]), permitting to use a
selective-modulation system with a spatial light modulator (not seen in Fig. 12.12b)
and synchronous detection for the high throughput, without needs of Fourier
transformation [12.47].

To compare the wavenumber resolution of a Michelson interferometer, a spatial-
heterodyne and a common-path spectrometer, let us rewrite Eqs. (12.7), (12.8) for
an equal arms’ length:

ID jð Þ ¼ I0=2þ
Z1
0

Is;q jð Þ cos 2pjD‘ð Þ@j; ð12:15Þ

where I0 is the output at D‘ ¼ 0: The Fourier transform for the even function IΔ(j)
gives [12.30]:

S D‘ð Þ ¼ 4
Z1
0

ID jð Þ � I0=2½ � cos 2pjD‘ð Þ@j

¼ 4
Z1
0

ID jð Þ � I02½ � cos 2p2j ‘1 � ‘2ð Þð Þ@j; ð12:16Þ

where S(j) is the frequency spectrum measured as a function of path-length
difference. The intensity spectrum of spatial-heterodyne system (Fig. 12.12a) for
diffracted beams at angle d becomes:
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ID jð Þ ¼ I0=2þ
Z1
0

Is;q jð Þcos 2p2j sin dð ÞDxð Þ@j: ð12:17Þ

Replacing 2j � sin(d) ¼ 4(j − j0)tan(H) from Eq. (12.14) for the small angle d
and image size Δx:

ID j� j0ð Þ ¼ Id¼0=2þ
Z1
0

Is;q jð Þ cos 2p4 j� j0ð Þ tan Hð ÞDxð Þ@j; ð12:18Þ

the intensity spectrum of heterodyne spectrometer is similar to one of Michelson
interferometer:

S Dxð Þ ¼ 4
Z1
0

ID j� k0ð Þ � Id¼0=2½ � cos 2p4 j� j0ð Þ tan Hð ÞDxð Þ@j; ð12:19Þ

at the reduced spatial frequency 4(j − j0)tanH and as a function of interference-
image size [12.43].

The theoretical resolving power of Michelson interferometer is the number of
waves, fitting the path length difference RM ¼ 2j ‘1 � ‘2ð Þ ¼ 2DL=k; its spatial
frequency fM. Comparing Eqs. (12.16), (12.19) for the same criteria, the resolving
power of a spatial-heterodyne spectrometer is RH ¼ 4WjsinH or the total number
of grooves imaged on a detector; here W is the grating’s width and H is the
Littrow angle. The optical path difference of triangular common-path spectrometer
is set by the normal shift of mirror M1 (see Fig. 12.12b) resulting in arms-length
offset √2d, thus:

ID jð Þ ¼ I0=2þ
Z1
0

Is;q jð Þ cos 2p2j sin c
ffiffiffi
2

p
d

� �
@j; ð12:20Þ

where angle 2c defines the total length of the interference pattern, providing the
resolving power RC ¼ 2j√2dsinc with spatial frequency fC ¼ √8jdsinc versus
fH ¼ 2jsind � 4(j − j0)tanH [12.42–12.50]. Nonetheless, the actual resolving
power of every FTIR spectrometer is a combination of the theoretical resolving
power and its instrument-response function [12.10], obscured by system’s noise or
in other words its ability to accurately measure the interferogram function I0/2
[12.48]. Plus, if the optical path length is wavelength dependent, since it almost
always is, the resolving power RM ¼ fM ¼ 2ΔL/k should account for wavelength
dispersion of its path RM ¼ 2 DLþ @L=@kð Þ=k: If apodization is used for side-lob
suppression, a wavenumber/wavelength resolution becomes:
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Dj ¼ 0:5
DLþ @DL=@jð Þj ;Dk ¼ 0:5k2

DL� @DL=@kð Þk!Dkfwhm

¼ 0:603k2

DL� @DL=@kð Þk!Dktrga ¼ 0:886k2

DL� @DL=@kð Þk : ð12:21Þ

Here Δk, Δkfwhm, Δktrga are the theoretical resolution of Fourier-transform
spectrometer, resolution measured at full-width-half-max of k peak, and with the
triangular-window apodization [12.51].

Another practical restraint is caused by Michelson interferometer’s use of a
collimated light source, which finite size causes off-axis distortions limiting its
maximum path-length difference [12.45, 12.52]. Practical deviations from the point
source concept lead to added blurring noise of the interferogram and translate to
resolution limitations, alike the instrument function. Further, spatial-heterodyne
spectrometers essentially could operate in uncollimated radiation, tolerating off-axis
expansions of its source. Although, a so-called flat-fielding problem, associated
with the expansion of detector across system’s axis and the interferogram recording
by such a detector of beams propagating via changing optical paths, necessitates a
need for flat-fielding correction that is normally accomplished via verification
measurements and wavefront-error corrections [12.53].

12.1.6 Polarization FTIR Interferometry

A major inefficiency of Michelson interferometer is due to its use of semitransparent
beamsplitter, which creates equal-intensity beams to be interfering in its arms leading
at even perfectly identical optical-arm paths to the loss of one half of light on every
interaction with the beamsplitter. That eventually leads to

ffiffiffiffiffi
23

p
¼ ffiffiffi

8
p

reduction in
system and modulation inefficiencies prior to interfering as noted in Advantages’
section above [12.54]. However, the need for splitting the incoming beam into two
interfering parts can be accomplished by other means, such as by deploying a
polarizing beamsplitter, which besides having some beneficial reflection and trans-
mission properties in a broad spectral domain, could provide the ability for 100%
beam-splitting efficiency while using polarized light [12.55–12.65].

The beam-splitting inefficiency of Michelson interferometer FTIR exhibits itself
by reducing signal-to-noise ratio both ways: limiting the intensity of signal and
boosting background, which creates a random modulation of spectra measured. The
notion of background-elimination concept led to inception of so-called
Martin-Puplett architecture for the polarization FTIR interferometry [12.55]. Three
conceptual versions based on wire-grid beamsplitter dividing light into two states of
polarization and adding benefits of broad-band spectral transparency are shown in
Fig. 12.13.
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Figure 12.13a visualize the idea of polarization interferometry. A collimated
beam of intensity I0 is polarized by polarizer P1, set at 45° to wire-grid polarizing
beamsplitter GP1, and evenly split into parallel and orthogonal states of polarization
in reflection and transmission, then identically recombined by wire grid GP2
becoming elliptically polarized—function of optical path difference ‘, with intensity
I2 of beam transmitted by polarizer P2 dependent on the path at wavenumber j:

I2;jj ¼ 0:5 � I0 1þ cos 2pjD‘ð Þ½ �; I2;? ¼ 0:5 � I0 1� cos 2pjD‘ð Þ½ �: ð12:22Þ

This concept itself does not eliminate losses of light from an unpolarized source,
as one half of it is cut by polarizer P1 at added complexity and cost, but that half of
unpolarized light may not be inevitably missing and could be used [12.58, 12.60].
Views b, c of Fig. 12.13 reveal more enhanced ways of implementation via mirrors
as reflectors or corner cubes as polarization rotators [12.55].

Since a wire-grid beamsplitter reflects one state of polarization and transmits
another, there would be more natural to use it addressing two optical ports
(Fig. 12.14). The instrument [12.56] deploys second beamsplitter GPD connecting
auxiliary detectors D1, D2 to cover the adjacent spectral regions with the inevitable
dc-background noise subtraction, using the main polarizing beamsplitter, having
third GPin connecting diverse specimen and the blackbody. Inputs 1, 2 are operated
for comparative atmospheric studies versus reference radiation from the blackbody
BB, for which entry wire grid polarizer GPin is rotated 90°. This instrument
alignment is verified via a relative 180° phase shift for the reflected against
transmitted beam by central grid polarizer GP at zero path-length difference of two
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Fig. 12.13 Conceptual schematics of Martin-Puplett polarization FTIR

GP

GPin

CC1CC2D1

GPD

D2

Input 1

Input 2

BB

Fig. 12.14 Triple input, dual
output polarization FTIR

672 12 Spectroscopic Interferometry and Laser-Excitation Spectroscopy



arms—nevertheless, it is not always straightforward to align such a polarization
interferometer while balancing varying lateral shears in its arms [12.57].

The next step of enhancing polarization FTIR is in enabling dual input-output
capability of the polarizing beamsplitter [12.58], which is partially fulfilled for the
twin-path interferometer of Fig. 12.15. That layout is realized using two identical
inputs with switchable calibration sources CS1–2, four wire-grid polarizers
CC1–CC4 plus corner-cube reflectors GP1–GP4, utterly recovering the optical
power lost on the input polarizer, as well as doubling the path length and enabling
two synchronous interferometers running concurrently as a differential FTIR
spectrometer, distinguishing low-level signals embedded in a background.

An ultimate enhancement would be to enable a doubled input-output setting
analogously to a differential non-polarizing FTIR [12.60], adding a second detector via
the unused optical port in Fig. 12.15 (dotted absent mirror identical to M3). The
concept of fully symmetric dual input-output polarization FTIR spectrometer-
interferometer is shown in Fig. 12.16. The pairing of beamsplitters and mirrors of
view (a) gives two channels for comparing either emission specimen as unpolarized
light sources or absorption ones, embedded into the channels. A full version of view
(b) quadruples optical paths similarly to Fig. 12.15 [12.61] enabling the full capability
of two light sources and two specimen, being studied comparatively.
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Fig. 12.15 Double optical path polarization FTIR interferometer
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12.1.7 Comparison of Some Experimental Results

Starting from 0.2 cm−1
–0.03 cm−1 for an apodized resolution at early stages of

development [12.3, 12.30] and reaching 10−10 cm−1 Hz1/2 sensitivity of measurement
nowadays [12.36], Fourier transform infrared spectroscopy progressed in multiple
forms and implementations: cw and pulsed, stationary, miniature, integrated, mul-
tichannel, etc. One of first realizations of enhanced FTIR interferometer design
deploying double-beaming and lamellar-grating approaches (Figs. 12.3 and 12.9)
resolved ±0.008 cm−1 for strongly absorbing spectral lines at theoretical spectral
resolution Δk/k ¼ 0.063 cm−1 and at 16 cm of double-path difference on 8-cm
lamellar step [12.66]. By embedding a He–Ne laser and tracking interferometer’s arm
length difference of only 7.2 cm (Δk/k � 0.1 cm−1) the actual resolution reached
*0.025 cm−1 at a frequency accuracy of about 0.001 cm−1 [12.31]. An extension of
FTIR techniques into visible and ultraviolet regions allowed reaching ±0.001 cm−1

in wavenumber accuracy at signal-to-noise ratio *15 while recording a broad
spectrum of 10,000 cm−1 in one sweep at the resolving power of 10−5–10−6 [12.67].

For a time resolved spectral observation, not restricted by a speed of the moving
mirror, the step-scan technique is commonly used [12.68], displacing the mirror in
sequential steps for time-related phenomena recorded at each path-length difference
[12.69]. When using a setup similar to one of Fig. 12.10a but with the argon ion
laser, *5-ls of temporal resolution was obtained at 0.5 cm−1 of spectral resolution
[12.33]. Although, simultaneous spectral and temporal measurements may require a
precise wavelength calibration of the interferometer and vast frequency sampling,
otherwise leading to phase distortions of such pulsed measurements [12.70, 12.71].
Conceptually the step scan technique was instigated in a Michelson interferometer
equipped by 450-W Xe arc lamp to generate enough power for a nonresonant
photoacoustic cell (see Chap. 9) deploying a TiO2-coated fused silica beam splitter
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Fig. 12.16 Symmetric polarization FTIR interferometers deploying simplified dual beam (a) and
quadruple path (b) architectures
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to prevent its overheating and avoid wavefront distortions, though only 16 cm−1

resolution was achieved at a time in broad 0.36–3 lm spectral region [12.68].
Since Connes interferometer was created with the background compensating

idea in mind at two-port output (see Fig. 12.3b), combining its scheme and
step-scan notion limits requirements to detectors linearity along with background
noise subtraction, enabling 0.001 cm−1 wavenumber resolution in a triple-pass
system and 106 spectral elements spectrum collected in 5 h [12.72].

Nonetheless, stable and prolonged movement of FTIR-interferometer reflector
permits reaching high spectral resolutions via traditional spectroscopic means, for
example, enhancing sensitivity of its detector and increasing optical path-length
from 7.2 cm to 6.2 m improved the unapodized resolution of double-beam inter-
ferometer (Fig. 12.3a) from 0.1 to nearly 0.001 cm−1 [12.31, 12.32].

Incorporating a multireflection cavity into one interferometer arms expands its
optical path, which in combination with the step-scan technique enables substantial
resolution benefits [12.33, 12.35]. As a result, intracavity FTIR spectroscopy per-
mits reaching similar levels of wavenumber resolution for ultrashort optical pulses,
concurrently probing the spectral and temporal domains. Using continuous-scan
technique (see previous sections) substantiated by 1-ls pulse interleaving from an
FTIR spectrometer IFS 120HR FT, irradiated by broad-spectrum 80-ls pulses of
Ar+ laser pumped Ti-Sapphire laser repeated with 60-ls delay and transmitted via
100-cm long absorption cavity, 0.05 cm−1 resolution at *2 � 10�9 absorption level
was reached by averaging 200 scans [12.34].

Even with interleaving the continuous-scan approach is limited to narrow
spectral intervals, such as 12,450–12,700 cm−1 in the previous experiment. The
step-scan format in a stepping mode equipped Connes interferometer resolved
spectra in 5500–11,000 cm−1 range with an unapodized spectral resolution
14 � 10−3 cm−1 and 1.6 ls time resolution [12.35]. Further upgrade [12.36] reached
sensitivity of 1 � 10−10 cm−1 Hz1/2 with 104 simultaneously acquired spectral ele-
ments for absorption path-lengths near 130 km via an optically pumped vertical
cavity surface-emitting laser (VCSEL) lasing 1050-nm wavelength. Alike, an
intracavity heterodyned polarization interferometer setup [12.63] approached
4 pm/Hz1/2 sensitivity for 5-kHz modulation frequency at 60 cavity reflections.

Figure 12.17a reveals a schematic of the preceding heterodyned polarization
setting, made by adding the autocollimation multiple-reflection cavity of Fig. 6.4
(see Chap. 6 or [6.4] for detail). In this case [12.63] a heterodyne interferometer
[12.39–12.45] is realized on polarizing beamsplitter cube PBS, splitting two
orthogonally polarized beams into a reference and a variable-length path to
recombine and generate a bit signal, proportional to the phase difference gained.
A frequency stabilized He–Ne laser L is deployed to generate orthogonally po-
larized beams at 80 MHz frequency shift. A reference beat signal is created by light
reflected from beamsplitter BS to detector D1. In transmission, polarization
beamsplitter PBS reflects one state of polarization to quarter waveplate WP and to
mirror M transmitting another to a multiple reflection cavity of mirrors M1, M2.
Depending on the mirrors tilt and separation, tuned by a piezo translator on a rotary
stage, light experiences the total of Nþ 1 reflections in the cavity (paragraph 6.1,
Eq. (6.10)) recombining with the orthogonal state on detector D1, being reflected by
PBS for the second beat signal of a phase difference Du1�2 �D‘.
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(a) (b)

Fig. 12.17 Polarization heterodyne (a) and single pulse heterodyne (b) FTIR

Designs of spatial heterodyne interferometers target throughput and integration
capabilities with the instantaneity of spectrally resolved single-exposure measure-
ments and expect stepping up the wavelength resolution afterward. Figure 12.17b
depicts a spatial heterodyne interferometer deploying a Wollaston prism as its
heterodyning element [12.73]. On an optical axis of the prism a birefringence
introduced by its first wedge to light transmitted by polarizer P1 is compensated by
the second, but for a lateral beam separated by distance d from the axis, the
orthogonal states incur path difference Δ ¼ 2d(n0 − ne) tanu (see paragraph 3.3).
In proof-of-principle experiment at u ¼ 3	 the maximum path difference reached
near 100 lm enabling spectral resolution of precisely 100 cm−1 (4 nm at
632.8 nm) for triangular apodization of interferogram recorded by 1024-element
detector array [12.73]. A realization of lamellar grating via MEMs-actuated grating
steps on static trenches led to a compact 100-mm2 surface area design, having 15–
20 cm−1 spectral resolution at 325-lm mechanical displacement and 5–100 ms
measurement time, depending on averaging, in 625–4000 cm−1 wavenumber range
[12.74]. An integrated FTIR without any beamsplitter for deep-UV applications
from 140 nm down to 58 nm achieved 0.33 cm−1 of the measured spectral reso-
lution at 29-nm optical path difference via the modified Fresnel-bimirror design
created by tilting flat mirrors [12.75]. Another approach utilized the wavelength
dependence of the optical arm length for LiNbO3 waveguide Mach–Zehnder
modulator, modulating two-path difference via the dispersion of its half-wave
voltage [12.76]. Identifying a linear function for the nonlinear dependence of
varying output intensity versus voltage to find the input power spectrum for the
Fourier transform processing of interferograms presented a challenge. Using a
halogen-tungsten lamp the system was capable of absorption measurements at low
spectral resolution Δk � 100 nm.
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Replacing a regular beamsplitter with polarization one in Fig. 12.12b and adding a
polarizer creates heterodyne interference fringes of orthogonal polarizations [12.77],
interfering in a plane of polarizer P (Fig. 12.18a). That Sagnac interferometer is highly
stable per counter-propagating waves in both directions, plus making measurements
at two 90° spaced orientations of polarizer P allows full determination of polarization
coordinates and intensities of orthogonal waves (see Chap. 3). A dispersive polar-
ization interferometer at spatial-heterodyne offset originated via a polarization grating
[12.78] is seen in Fig. 12.18b. Its design [12.79] aims sub-nanometer spectral reso-
lution with broad-band source S and diffuser D for spatially incoherent irradiation of
Wollaston prismWP that splits light in two linear polarization states and has an offset
thickness t. Quarter-wave plate QWP converts these states to circular ones matching
þ1 st and�1 st diffraction orders of polarization gratingPG irradiated by afocal relay
AR1. Second afocal array AR2 focuses resulting heterodyned interference pattern
selected by the plane of analyzer A into focal plane array FPA.

Figure 12.18c shows a dispersive interferometer deploying the multipass cavity
of two parallel mirrors at oblique incidence with a number of inner reflections
depending on mirrors separation or the angle of incidence (see Figs. 6.1–6.3). The
setup [12.80] used tip size limited scattering near-field microscopy of nanoscale
spatial resolution and continuous heterodyne spectroscopy. Broad spectrum
coherent pulses of 9–12 lm spectral band at 5 lW cw power from difference-
frequency generation in 200-lm thick GaSe crystal irradiated by 10-fs Ti:Sapphire
laser at 125 MHz, 500 mW were initiating Fourier-transform spectrums of tip’s
Rayleigh scattering. To reach 6 cm−1 spectral resolution in 2-s recording time at
off-line resampling, frequent frequency calibrations of 1.7 mm long interferograms
were made by 10.6-lm CO2 laser and a step attenuator. Interferometer’s 25-cm arm
length was sufficiently short for hours-long stable phase calibration. Compressive
sensing could help minimizing the number of sampling points for sparse signals or
restore missing ones [12.152].
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Fig. 12.18 Polarization Sagnac heterodyne interferometers: dispersive (a) spatial heterodyne (b),
and dispersive near field (c)
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12.2 High-Dispersion Interferometers for Brillouin
Spectroscopy

When a beam of coherent optical radiation interacts with an isotropic substance of a
strong coupling bond among adjacent molecules, an absorbed fraction of the incident
light beam causes initiation of the thermally excited acoustic waves. The interaction
of incident light and coherently induced longitudinal sound waves activates inelastic
Brillouin scattering, exhibiting itself in two satellite light components adjacent to a
central intensity peak—due to elastic Rayleigh scattering on same molecules of
studied substance, with the wavelength shifts according to Doppler effect:

DB ¼ 
2nmed Vmed=k0ð Þ sin b=2ð Þ; ð12:23Þ

where ΔB is the Brillouin wavelength shift; nmed is the refractive index of a studying
media; Vmed is the media acoustic velocity; k0 is the wavelength of incident light,
and b is the observation angle, firstly predicted [12.81] and observed afterwards
[12.82]. Intensities of Rayleigh-scattering peak and the sum of Stokes and
anti-Stokes terms of Brillouin scattering relates by the Landau–Placzek ratio [12.83]:

IR= IBþ þ IB�ð Þ ¼ IR= 2IBð Þ ¼ cP � cvð Þ=cv ¼ fT � fSð Þ=fS ¼ c� 1; ð12:24Þ

where cP and cv are the specific heats at the constant pressure and constant volume;
fT, fS are the isothermal and adiabatic compressibilities, and c ¼ cP/cv. Equation
(12.24) should also account for the media dispersion and distinguish static Rayleigh
versus dynamic Brillouin terms [II.21, 12.84].

12.2.1 Studies with Tunable, Single, and Multistage
Fabry-Perot Etalons

Following from Eq. (12.23), the spectral separation of Brillouin satellite frequencies
from the central Rayleigh peak is counted in sound waves and even for ultrasonic
oscillations of high-viscosity molecules its scale is measured in low-nanometer and
high-picometer wavelengths. Thus, searching for the highest spectral resolution a
number of stabilizing and compounding schemes for the Fabry-Perot etalon were
developed [12.85–12.100] as it enables one of highest resolution–throughput
combinations in a limited free-spectral range, which is mostly anticipated in
Brillouin-scattering spectroscopy.

A high resolution spectroscopic study necessitate a sufficiently stable interfer-
ometer to begin with and, since observing weak spectral lines takes a substantial
amount of time for registration, its optical path lengths requires staying unchanged
for a range of wavelengths to be observed or needs either passive or active dynamic
stabilization, unless the etalon is stable by design or keeps tuning the resonant
wavelength (see Chaps. 6–8). Considering the etalon as one plane-parallel plate of
identical highly reflecting surfaces, transmitted light resonances occur for wave-
length k:
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mk ¼ 2ne‘ cosue ¼ 2ne‘ cos arcsin n0 sinu0=neð Þð Þ; ð12:25Þ

where m is the order of interference; n0, ne are the refractive indices of a sur-
rounding and of the etalon, respectively; u0; ue are the angles of incidence and of
etalon refraction, and ‘ is the etalon thickness (see Eqs. (1.100), (3.115) and
explanations thereof for detail). Interference maxima occur for wavelengths ki of a
dual-path phase change: d ¼ 2p 2ne‘=kið Þ cosue ¼

u¼0
2p 2ne‘=kið Þ ¼ 2mp, while

any individual etalon could be made as a single plate or two plates of surface
reflectance q.

Similarly to a ringdown cavity and following Eqs. (7.65–7.68), the spectral
resolution of a Fabry-Perot interferometer is defined by spectral linewidth Δk of its
transmittance, which for an ideal interferometer at normal incidence is the instru-
mental linewidth. From Eq. (7.68), the etalon’s resolving power k/Δk or full-fringe
phase difference related to half-intensity width:

k=Dk ¼ d=e ¼ 2mpð Þ= 2p==ð Þ ¼ m=; ð12:26Þ

is defined by its finesse =, as the free spectral range ratio related to the half-intensity
width 2p/e, and the order of interferencem [12.85]. Rewriting relation (12.26) via the
finesse parameter F and substituting e ¼ 4/√F from Eq. (7.67), it becomes k/Δk ¼
(p/2)m√F. If radiation is not strictly monochromatic covering a small range of
wavelength Δk represented by its mean wavelength �k, and, if the phase spread Δd of
quasi-monochromatic light is much smaller than the half-width e of a monochromatic
fringe: m= � �k=k, the resultant intensity distribution remains the same [1.1].

Additional factors identifying applicability of an interferometer for a spectro-
scopic need are the maximum intensity of spectrally resolved light, being the
maximum transmission for Fabry-Perot etalon, and the contrast factor C, defined as
the ratio of maximum to minimum intensities. Following Eq. (7.66), the ratios via
intensity I0 of incident light and finesse parameter F are:

Is=I0ð Þmax¼ 1; Is=I0ð Þmin¼ 1þ Fð Þ�1; Ismax=Ismin ¼ 1þ F: ð12:27Þ

Converting to finesse = or mirror reflectivity q by Eq. (7.68), still neglecting any
absorption:

C ¼ Ismax=Ismin ¼ 1þ 4=2=p2 ¼ 1þ qð Þ2= 1� qð Þ2; ð12:28Þ

etalon contrast C is identified by two mirrors reflectance q, as follows from
Eqs. (3.125a, b).

Typical applications of a single etalon or a combination of multiple etalons use one
of direct schematics seen in Figs. 1.8 and 1.9 (Chap. 1). A scanning Fabry-Perot
interferometric spectrometer was first made of a two-plate tight enclosed-air etalon by
continuously changing an air pressure and registering intensity changes in transmission
for a central part of Haidinger-ring pattern via a photomultiplier tube [12.86]. Another
approach, like a spherical etalon of Fig. 8.7, had one etalon mirror sweeping over k/2
distancewhile synchronizing output of on-axis detector with amirror oscillator [12.87].
The most stable two-plate etalon design utilizes a fixed spacer, such as two matching
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quartz tubes sandwiched in between two mirrors. Using this concept, a tuning etalon
can be made with a piezoelectric expandable ceramic spacer of the thickness varying
versus a voltage applied to spacer electrodes [12.88]. A spherical-mirror etalon at a
smaller axial-mode diameter may be made as well [12.89].

When the measurements entail an active stabilization of mirrors alignment and
positioning, an output feedback system linked with a mostly-piezoelectric mirror
drive is used [12.90, 12.91]. The former one involves scanning a mirror, while
simultaneously stabilizing the parallelism via observing maxima of etalon fringes
additionally created by several extra light sources. An example of the latter one
deployed 1024-channel scaling of a piezoelectrically scanned Fabry-Perot inter-
ferometer via observing the maxima of Rayleigh scattering and correcting the
spectral profile being observed.

The stability and parallelism of the first instrument versus a reference wave-
length was *k/1000, with an actual etalon parallelism limited by surface defects of
flat mirrors [12.90]. Using analog-to-digital converter reduced a long term drift and
nonlinearity of the second setup to 0.1% [12.91].

More advanced stabilization systems expected at high-resolution Brillouin
scattering studies involve controlling spacing and alignment of etalon mirrors by
observing not only the widths of maxima for elastic Rayleigh scattering,
unavoidably accompanying inelastic one, but controlling the absolute peak intensity
[12.92–12.94]. An actual measurement technique may consist of only tracking the
maximum intensity of elastically scattered line versus the intensity of incident light
[12.92], or observing the position and calculating the centroid of Rayleigh peak
with continuous feedback until they match on the highest-resolution scale [12.93],
or combining both processes by identifying positions of Rayleigh lines and
frequency-correcting each individual spectrum [12.94].

While looking for an outmost contrast in high-resolution Brillouin scattering
measurements even having any advanced single stage Fabry-Perot etalon could not
be sufficient enough due to excessive Rayleigh scattering, overwhelming the
Brillouin peaks by several orders of magnitude. Combining two etalons, one of a
larger free spectral range and another of a high resolution, may provide a more
powerful alternative, if the detection system has sufficient sensitivity to register
much lower intensity minima, associated with incident light transmitting the tandem
of etalons, as the combined set of Haidinger rings becomes very weak. If in this
tandem, the extrema of the etalons at spacing L1, L2 are k1m1 ¼ 2L1 and
k2m2 ¼ 2L2, the only wavelength to be transmitted has to satisfy both conditions,
namely k1 ¼ k2. The other extrema wavelengths for one etalon become suppressed
by another, but ghosts of remaining orders contribute to overall noise of the tandem.

When two etalons are combined [12.95–12.100], there are potentially four sets
of ghost rings besides even the suppressed maxima being caused by the surface
reflections of two plates. If the supporting surfaces have anti-reflection coatings or
the plane parallel plates are replaced by two wedges, retro-reflection ghosts may
become weak or be moved away from the spectral region of interest. Moreover,
crossed faint etalons of active surfaces S1–S3, S1–S4 and S2–S3, S2–S4, add more
fringes that can be superimposed to the main interference pattern but only for the
plane parallel plates, at the parallelism meeting geometric constraints for both
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etalons of �1-arc second [12.95], while one of the etalons provides for a higher
dispersion, another for a wider free spectral range.

The alternative way of doubling the etalon is in recycling transmitted light back
either at a diverse angle via prisms or collinearly by polarization splitting, being
straight and efficient as seen in Fig. 12.19 [12.96]. Polarizer P1 selects the state of
polarization for radiation from source S, reflected by polarizing beamsplitter PBS to
the wedged-substrate etalon of mirrors M1, M2, becoming orthogonally polarized
after retroreflection from mirror M while passing twice quarter-wave plate QP, to be
further transmitted via PBS and polarizer P2 to objective O2 and collected on
detector D. The initial setting used the nonpolarizing beamsplitter noting an
increased contrast and enhanced resolution for the tandem versus one etalon but
weaker fringes.

A matching realization of two etalons in sequence for each scanned syn-
chronously with the spacing as Δd1/Δd2 ¼ d1/d2, permits removing ghosts while
maintaining correlated scans [12.97, 12.98]. By making a sequential propagation of
incident light in a sidewise-expanded etalon (Fig. 12.20) supplemented either by
mirrors or corner cube prisms P1, P2 at pendulum mounting of the assembly (see
Sect. 12.1), a triple-pass setting at 93% mirror reflectance and k/100 flatness
reached 70 in finesse at near 40% peak transmission with *108 contract [12.99].

Added benefits could be realized at tandem operation in the bending double-pass
schematic of Fig. 12.21 [12.100]. By keeping constant spacing d2 ¼ d1cos u, the
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scan is made via translation stage T at angle u unchanged, thus accomplishing a
single-movement scan for the tandem of Fabry-Perot etalons. For the actual
vernier-based spectrometer an added corner-cube prism and one extra return mirror
were used to accomplish three passes via each single etalon [12.100].

12.2.2 Properties of Virtual Imaging Phase Arrays (VIPA)

Despite the extremely high contrast an interferometer of doubled or tripled
Fabry-Perot etalon could provide, the challenge of detecting minima of interference
leads to equally long recoding times even for photon counting. Attempts were
always made to improve the etalon, such as by making a narrow window for light to
enter the inner space without attenuation [12.101]. Only with emerging needs for
wavelength division multiplexing in optical communications (see Chap. 11) these
attempts materialized in the so-called Virtual Imaging Phase Array. The most
common VIPA design is illustrated in Fig. 12.22 [12.102].

Its VIPA view shows the back face of the etalon with the transparent window at
the bottom, which in the original design is irradiated by semi-Cylinder lens to fill the
VIPA window at maximum power efficiency. Tilting of the etalon at a small angle u
allows an incident beam to enter and be retroreflected forward by high-reflectance
coating of the front face not being stripped by the window to follow the multiple
reflection path until bouncing off etalon’s upper edge, for refracted resonant orders
mki ¼ 2‘i ¼ 2d cosu0

i transmitting the back face and projected by Objective lens to
Detector array. Dotted arrows illustrate light from virtual sources 1, 2,… N, marked

Window

Etalon

Cylinder 

Edge stop

t

1

N

2

DetectorVIPA

Objective

I0

ϕ

ϕ’

θi

hθi

Fig. 12.22 Virtual imaging
phase array interferometer

M1

M3

M2

M4

ϕ

T

Fig. 12.21 Angled tandem of
etalons

682 12 Spectroscopic Interferometry and Laser-Excitation Spectroscopy



as green dots, creating multi-path interference equally to ones of Fabry-Perot etalon
at intensities from I0(1 − q)q2 to I0(1 − q)q2N.

Since VIPA was originated for wavelength division multiplexing and the concept
of virtual sources coupling into individual fibers [12.102], the incident beam passing
the window and front-face coating at intensity I0(1 − q), considering perfectly
anti-reflection coated window, was useful. When using VIPA as an interferometer
this first beam, passing length ‘ and not participating in constructive interference,
creates background noise and is blocked by Edge stop in Fig. 12.22. The other
source of noise can be created by the beam bouncing back from the etalon upper
edge (the dotted line). Nonetheless, that returning back beam could be perfectly
matching the rest of multiply reflected and resonating beams, if the edge meets same
geometric tolerances as etalon faces with equivalent high-reflective coating [12.103].
Furthermore, as revealed in the following section, the needs for those measures
could be completely eliminated by system design [12.104], with the benefit of
realizing the highest resolution of a given VIPA at u ! 0 (see Eq. (12.25)).

The particular distinction of VIPA versus Fabry-Perot etalon is due to its phase
matching at angleu, oru0 for a solid-state etalon, for wavelength ki being observed at
added angle hi [12.106]. Considering high dispersion applications away from normal
incidence of a VIPA versus a Fabry-Perot etalon and despite the two being identical
atu ¼ 0;with the spectral resolution per Eq. (12.26), efforts were made to derive and
verify an explicitly-VIPA dispersion law [12.105, 12.106]. The dispersion law for
air-spaced VIPA and Fresnel paraxial approximation (see [1.1]) is [12.105]:

mk ¼ 2t cosui � 2t sinuið Þhi � t cosuið Þh2i ; ð12:29Þ

which for the solid-state VIPA of relative refractive index n translates at sin u ¼
nksin u0 to [12.105]:

mk ¼ 2nkt cosu0
i � 2t tanu0

i cosui

� �
hi � t cosu0

i

� �
h2i =nk; ð12:30Þ

where u0
i is the angle of incidence for light wavelength ki inside the etalon; hi is the

viewing angle for ki. Equation (12.29) was derived applying Fresnel diffraction to
the plurality of virtual sources via Objective to Fourier transform plane of detector
array (Fig. 12.22). The result was later verified transforming cosue in Eq. (12.25)
by adding angle hi to etalon resonance at angle ui [12.106].

As for Fabry-Perot etalon, VIPA free spectral range (FSR) follows Eqs. (12.29),
(12.30) [12.105]:

FSRn¼0 ¼ c

2t cosui � 2t hi sinui � t h2i cosui

;

FSR ¼ c

2nkt cosu0
i � 2t tanu0

i cosui

� �
hi � t cosu0

i

� �
h2i =nk

:
ð12:31Þ

For a particular wavelength ki at resonant condition mk0 ¼ 2t cos hi seen at
observation angle hi, the VIPA angular dispersion factor Δh/(Δk/k0), with Δk ¼
ki − k0, for air and solid-state etalons become:
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Dh= Dk=k0ð Þn¼0 ¼ �1= tanui þ hið Þ;
Dh= Dk=k0ð Þ ¼ sin 2uið Þ= 2 n2k � sin2 ui

� �� �þ hi=n2k
� 	

:
ð12:32Þ

Height h in Fig. 12.22 highlights another distinction of VIPA, causing a spatial
separation of axes for outgoing versus incoming optical beams. Plus, since the
images are formed by Cylinder and Objective lenses, a ratio of their foci define the
resulting interference-pattern spacing. Finally, the cylinder lens is not a necessity,
but an obstacle, and replacing it only benefits the system [12.107], as high-quality
input objective is a better alternative, similarly to a tilted Fabry-Perot etalon [12.4].

Likewise for other interferometers and spectrometers, various cascading schemes
for VIPA etalons can be used, with traditional spectroscopic instruments offering
competitive throughput and resolution [12.108–12.115]. The Ebert grating
monochromator [12.108] in the dual and triple pass schematics via vertically sep-
arated aberration-free curved circular slits due to its cylindrical symmetry, allowed
reaching 5 � 105 resolving power at 7500-line/inch echelle gratings for the 11th

order of diffraction in 100-nm of covered wavelength range. The concept of a
dual-pitch grating, adopted for lateral-shear interferometer creating the shear in
orthogonal directions [12.109], may be seen as a prototype of the spatial heterodyne
interferometer with crossed diffraction gratings.

For an enhanced double pass Fastie-Ebert spectrometer [12.110] its resolving
power reached 7.5 � 105 having 0.024 cm−1 spectral resolution at 514.5 nm
wavelength and resolution-independent spectral range of 2000 cm−1 at effective
finesse of *7 � 104. A multiple-grating spectrometer upgrade [12.111] doubled the
spectral resolution up to 1 GHz with *1 � 10−10 contrast in the visible and UV
range of spectrum. In a multiplexing application [12.112] the Fabry-Perot etalon
was performing as a multi-pass Michelson interferometer (see paragraph 12.1),
similarly to VIPA as in Fig. 12.23. By collimating an entirety of etalon interference
fringes onto a spot-size detector each beam pass was acting as a single interfer-
ometer arm and its inner space was tuned from the lowest one at a maximum free
spectral range to the highest at utmost resolution. At up to 20-cm long scan of the
etalon spacing the actual spectral resolution obtained in an experiment was better
than 0.003 cm−1.
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Fig. 12.23 Tandem VIPA spectrometers: VIPA with diffraction grating (a) and two cross
cascaded VIPAs via Dove prism (b)
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Figure 12.23 illustrates two schematics of spectral cross cascading-of a VIPA
and a diffraction grating [12.113] and two VIPA as the diffraction gratings [12.114].
In Fig. 12.23a, the fiber source of 30-nm broad amplified spontaneous emission
(ASE) was projected to a solid-state VIPA at 4.2° angle of incidence reaching
Grating at 70° incidence with 50° diffraction angle, then collimated to single mode
Fiber, being coupled to optical spectrum analyzer (OSA). The concept of dispersing
light in a 2-D space adopted here used VIPA to separate resonant wavelengths in
one dimension and diffraction Grating in another, enabling optical wavelength
division multiplexing for 5 GHz (0.04 nm) channel spacing at 3-dB bandwidth of
1.75 GHz at channel isolations of 20 dB [12.113].

In Fig. 12.23b, instead of 90°-separation for two planes of dispersion, 45°-tilted
Dove prism is deployed in between either two gratings or VIPAs enabling the
diagonal rotation of a resulting pattern [12.114, 12.115]. Seemingly, that tilted
dispersion could partition spatially dispersed and stray light beams, which are
anyway spectrally dispersed for Brillouin shifts of intended studies. Further addi-
tions of a Dove prism and grating or a VIPA combination would enhance resolution
of such an assembly with number N of spectral elements to

ffiffiffiffi
N

p
, while decreasing

its throughput.
Experimental results with VIPA spectrometers [12.115–12.125] demonstrated

improvements in spectral resolution at relative compactness of Brillouin spec-
troscopy instrumentation. Adding spatial aperture masks for three-stage VIPA
spectrometer with spherical lenses in between stages allowed a sub-GHz resolution
at 80-dB extinction of Rayleigh peak at 33-GHz free spectral range, improving from
55 dB for two- and 30 dB for single-stage VIPA [12.115]. Nonetheless, the multi-
stage Fabry-Perot etalons and single VIPA instruments reveal compatible spectral
resolutions of GHz and sub-GHz levels. Such a triple-pass plane Fabry-Perot etalon
based system resolved 0.05–0.3 GHz wide spectral lines of Brillouin scattering in
optical glasses [12.116]. The Brillouin shift at 0.55-cm−1 level was observed for
toluene at the spectral resolution below 0.1 cm−1 [12.117] while using Ebert system
of [12.110] (see above). With the triple-pass tandem Fabry-Perot etalon setting
(Fig. 12.21) 8°-incidence Brillouin spectra of a 10-lm AlGaAs epitaxial layer were
resolved [12.118].

If the Fabry-Perot etalon is deployed in a nonscanning angular-dispersion system
for all the dispersed by etalon beams projected to a sensitive CCD at no scanning with
an extra requirement for the light source to be uniform and thus to produce even
angular rings, the spectral resolution and sensitivity remain, as confirmed by origi-
nating experiments preceding VIPA developments [12.119]. For example, using a
frequency-narrowed to 10 MHz argon-ion laser at 514 nm for 90°-scattering
geometry, irradiating 20-mm diameter air-gap etalon with its 99%-reflectivity mir-
rors spaced at 4.99 mm with k/150 flatness, the experimentally measured finesse
reached 37.6 ± 1.5 at a contrast of up to 575 while approaching 1 GHz in spectral
resolution at 1-s exposure time [12.120]. When using the same etalon paired with
532-nm Nd:YAG laser enabling 2-lm spatial resolution a deeper 0.05-GHz level of
spectral resolution was reached, being equivalent to 10-m/s sound velocity [12.121].
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Figure 12.24 illustrates the concept of angle-dispersive Fabry-Perot etalon spec-
troscopy [12.119–12.122] for 180°-backscattering geometry, which is of the highest
intensity (see Eq. (12.23)). In the depicted system [12.121], Slit provided spatial
filtering of Rayleigh scattering and of stray light in a confocal-microscope configu-
ration, having Cylinder linearly dispersing backscattered by Sample distinct beams in
air-spaced Fabry-Perot etalon. Interference filter IF was rejecting Raman scattering
from Sample.

In the similar setting [12.122], with the solid-state etalon at 0.995-reflectivity
mirror coatings and 90° scattering geometry, an area reducing aperture in front of the
etalon helped enhancing the finesse via its flattest center section. The finesse level was
improved from 100 at 10-mm aperture to 140 at 2 mm, with the contrast above 105

and a GHz-level of resolution at k/100 mirror flatness. Another approach for back-
ground cleanup was realized using an Id-absorption cell as the notch filter in
fiber-coupled system of similar to Fig. 12.24 backscattering setting with solid-state
VIPA etalon, but replacing the cylinder lens with 2-inch diameter spherical optics to
reduce scattering [12.123]. For 532 nm applications the iodine cell heated above
100 °C provided 50-dB suppression of elastic Rayleigh scattering for sub-GHz
sensitivity either with a single etalon or VIPA tandem.

Alternatively, power-enhancing stimulated Brillouin scattering rises intensity of
anti-Stokes shift in Rayleigh scattering-free zone of enhanced sensitivity [12.124]
adding complexities of nonlinear phenomena. To another extent, diverging axes of
incidence and observation to spatially separate Rayleigh and Brillouin scattering
could be of help, such as viewing at *170° versus 180° [12.125].

12.2.3 Measurements of Brillouin Scattering in Biological
Objects

A common distinction of most biological objects relates to a much lower trans-
parency compared to optical elements as crystals, glasses, and liquids, for which the
Brillouin scattering techniques reviewed prior were matured. Essentials of biological
systems, attributing to specific fragility and short lab life of bio specimen, caused
increased attention to faster concepts and methodologies for higher extinctions of
elastic Rayleigh scattering and stray light, without complexities leading to
retroreflections of a probing beam. Developments of Brillouin scattering measure-
ment techniques for biological objects were progressing in parallel to other optical
systems and with a similar trend of interferometers used, while extra care being taken
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Fig. 12.24 Angle dispersion
setting for Fabry-Perot etalon
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to preserve the natural state of high molecular mass substances like proteins and
nuclear acids, which are almost always bathed and measured in an aqueous buffer.

From the standpoint of high extinction ratio – the peak of instrument transmission
function to its transmission background, the multi-pass Fabry-Perot etalons seen in
Figs. 12.19, 12.20 and 12.21 are among themost efficient instruments broadly deployed
for biological purposes [12.126–12.128]. In one of the first distinguishing experiments
maintaining a sample under study in surroundings resemblingones of a livingorganism,
a triple-pass Fabry-Perot of *5 � 106 extinction with a finesse of about 45 continu-
ously piezoelectrically tuned at 2 Hz frequency was utilized [12.128]. A single mode
argon ion laser of up to 40 mW power at 488 nm was used as a light source at two
spacing gaps of the etalon for spectral comparison: 6.19 mm at 24.25 GHz free
spectral range and 7.90 mm at 19.00 GHz. Tested specimen were held as 50–100 lm
thin films between microscope slides with quasi-index matching liquids, at Brillouin
scattering measurements made for 90 ± 1° observation angle b (Eq. (12.23)).
Measured Brillouin shift ranged from 4.26 GHz for water, 6.36 GHz for polypeptide
(caprylic acid), to 6.30–7.87 GHz for wet collagen at changing orientations of its axis.

Even a tandem VIPA setting can benefit from fine selectivity of a Fabry-Perot
etalon [12.129]. Figure 12.25 shows one implementation of triple pass etalon as a
tilt-tunable spectral filter in front of a cascaded VIPA spectrometer. That system had
a side-mirror design of Fig. 12.20 with a low-finesse solid state etalon at
60%-mirrors reflectivity, 3 dB bandwidth, and 40% insertion loss per extra resonant
cavities formed by mirrors.
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Fig. 12.25 Fiber coupled spectrometer: triple-pass Fabry-Perot and two-VIPA etalons

Following the proof of concept for Brillouin scattering in enabling reliable
means to identify objects of biological significance, most sensitive measurements
were performed for eye’s cornea and lens, which strengths and dynamic elastic
moduli remain unidentifiable by other techniques [12.130, 12.131]. Since cornea
and crystalline-lens tissues are aqueous solutions of a high protein content, if these
tissue specimen are placed in a cuvette or in between the microscope slides, the
phase of light passing through is altered by an optical path-length change according
to Eq. (9.53) as Du ¼ 2p‘Dn=k, only due to refractive index changes since the
length ‘ remains constant.

For a solid state sample intentionally focusing light as a wide cone instead of a
long thin cylinder leads to an uneven temperature distribution, causing observable
birefringence (Eq. (9.67)). Measuring stress-induced birefringence due to absorp-
tion in a non-uniformly irradiated sample such as via high-NA objective, at two

12.2 High-Dispersion Interferometers for Brillouin Spectroscopy 687



opposite states of polarization, or using crossed polarizers permits detection of low
optical losses in transparent glasses as seen in Chap. 9. Furthermore, changes of
refractive index of a transparent substance, such as a cornea or crystalline lens,
could be observed via reflected light (see Chap. 10) at the time of Brillouin scat-
tering measurements.

Given that the cornea and lens primarily consist of water and water-soluble
proteins, at high frequencies of optical excitation eye’s viscoelastic properties are
caused by a volume elasticity or bulk (storage) modulus, a real part of complex
longitudinal modulus M [12.126, 12.130–12.133] is:

M ¼ k0DB=2nmed sin b=2ð Þð Þ2rþ irm2meddB=DB ¼ M0 þ iM00; ð12:33Þ

where all designations are per Eq. (12.23) and dB is the line width of the Brillouin
peak that is the reciprocal of lifetime of acoustic phonons, characterizing the sound
attenuation coefficient asound in the medium; r is the density of a medium where the
excited longitudinal acoustic wave propagates. For a weakly attenuating medium
dB ¼ asoundmmed=p and the bulk modulus M0 is [12.131]:

M0 ¼ m2medr ¼ k0DB=2nmed sin b=2ð Þð Þ2r; ð12:34Þ

defining the measured volume elasticity versus loss modulus M00, which identifies
the lost energy.

The optical density of cornea or eye’s lens could be determined by measuring the
refractive index neye via reflectance q of light interacting with the eye on a border of
two adjacent elements, while presuming the ratio of density r and of refractive
index neye being eye’s element constant:

M0 ¼ k0DB=2nmed sin b=2ð Þð Þ2=neye r=neye
� �

¼ consteye k0DB=2nmed sin b=2ð Þð Þ2=neye:
ð12:35Þ

Two sets of optical measurements could be performed to detect viscoelastic
properties of an eye element by Eq. (12.35), one of Brillouin shift ΔB and another
of relative refractive index neye, while expecting the ratio r/neye but not r/neye

2 to be
element’s constant known as the Gladstone and Dale relationship (n − 1)/r that has
been proven to be valid for most common liquids [12.134].

For the earliest accurate measurements of Brillouin shifts of eye’s lens and cornea
specimen [12.130] the extinction of triple-pass Fabry-Perot etalon was enhanced to
2 � 107 with a finesse of *42 at k ¼ 488 nm of a single-mode argon laser, keeping
its power below 25 mW to record a Brillouin shift as low as 4.5 GHz for a corneal
material of the normal human eye available for experiments. The measurements were
made at 90°-observation angle with an uncooled photomultiplier taking 10 min for
each peak using 0.2-nm wide interference filter centered at 488 nm to eliminate
broad-band and fluorescent light scattering. The excised pieces of eye lens specimen
studied were held airtight in vacuum between two microscope slides. Depending on
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specimen and a section measured, Brillouin shifts in a human and mammal cornea
and lens ranged from 4.54 to 8.40 GHz having a width from 0.51 to 1.22 GHz with
the lowest Brillouin shift of *4.50 GHz observed for a human cornea [12.131].

With the first implementation of a VIPA based Brillouin spectrometer
(Fig. 12.26) the finesse was increased up to 56 at near 80% throughput and
33.3 GHz of VIPA free spectral range [12.132].Dual-axis confocal microscope
[12.135] at 6° beam crossing angle was used to couple light from a single-frequency
532-nm Nd-YAG frequency-doubled polarized laser via achromatic objective Ob
having 30-mm focal length and NA ¼ 0.03. Horizontal cylinder HC and spherical
lens S of 200-mm focal distance were deployed to match their transmission with
VIPA free spectral range, focusing the specimen spectral image onto
electron-magnified CCD in a narrow line via vertical cylinder VC of 38-mm focal
distance. The Brillouin shifts and linewidths of 15.6 GHz and 0.26 GHz were
measured for acrylic glass, 7.46 and 0.79 GHz for water, and 5.57 and 0.46 GHz
for methanol, as the reference values. Studied in vivo properties of crystalline lens
of a mouse eye exhibited Brillouin shifts from *11–15 GHz and from *7 to
10.5 GHz depending on the axis being scanned [12.132].

Transitioning to in vivo testing of a human eye [12.136] the setup of Fig. 12.26
was upgraded with cross-axis dual VIPA spectrometer of Fig. 12.23b at eye-safe
780 nmwavelength and in the direct confocal setting via 10/90% beamsplitter seen in
Fig. 12.24. Identical silica-substrate VIPA etalons with 99.9 and 95% front-,
back-surface reflectivity cascaded for 45° axis tilt, 1.68° beam-entrance angle enabled
*55 dB extinction of Rayleigh scattering. The axial eye scanning was done moving
an objective at up to 80 lm/s recoding Brillouin spectra by EM-CCD camera at its
frame integration time of 0.2–1 s and the fiber-coupled cw laser power at a specimen
from 0.7 to 3 mW. Using axial scans of *60-lm resolution, Brillouin-scattering
measurements resolved the anterior cortex of eye’s lens at the shift varying from 5.25
to 5.85 GHz for an outer 300-lm layer. The Brillouin shifts of the corneal stroma
tested from 100 to 400 lm in depths changed from 5.6 to 5.5 GHz and for the
posterior region the shift declined from 5.5 to 5.25 GHz in over 200 lm [12.136].

For absolute-frequency calibration of the etalon, positions of spectrally-verifiable
absorption lines of atomic vapor in a heated cell are often used [12.125, 12.133].
Likewise, strong absorption lines of alkali-metal and molecular-iodine vapors his-
torically serve for a fine spectral filtering in dispersive spectroscopy and rejection of
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Fig. 12.26 Parallel dispersive 3-D Brillouin imaging VIPA spectrometer
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laser light [12.137–12.139]. At modest cell temperatures a purified isotope vapor is
near ideally-transparent filter for all wavelengths except its electronic transitions
where high densities could be reached at centimeter lengths and Doppler-broadened
linewidths. Depending on a wavelength of interest, I2 for 514.5 to 532 nm and
Rubidium D2 lines for 720 to 780 nm of 87Rb and 85Rb isotopes or of their natural
mixture, are useful. In addition, the least-square fitting algorithms can enhance
absolute accuracy of Brillouin-frequency scale [12.140].

A variety of techniques could be deployed for spectral as well as spatial filtering
of Brillouin scattering, such as inserting a knife edge or a slit as one or another
spatial mask [12.101–12.140]. In particular, a range of wide to narrow slits could be
tested to identify the most efficient spatial filter for a given angle of observation in a
pattern [12.141]. The stray light destructive interference can also be applied for
cleaning up the Rayleigh scattering background [12.142]. Figure 12.27 shows a
Michelson-interferometer schematic for cancelling out the propagation of elastically
scattered or retroreflected light from cuvette C filled with a liquid sample. A beam
of linearly polarized light from single longitudinal mode laser L splits 50/50% by
beamsplitter BS into the upper sample arm and lower reference one with
continuously-varying neutral density filter CND and mirror M mounted on piezo-
electric transducer PZT. The back scattered from the sample light is collected by
fiber coupler FC and delivered to dual VIPA spectrometer Spr via single-mode
Fiber. Controlling the position of PZT-mounted mirror within 50 nm allows precise
tuning of the reference arm for stray-light destructing interference [12.142].

Following the spatial filtering notion for separating directions of the highest
reflectivity and scattering from the observation direction (see previous section and
[12.125]), the annular beam-shaping [12.143] for the laser excitation of Brillouin
scattering alternatively reduces background stray light due to residual specular
reflections and elastic Rayleigh scattering [12.144]. Using the double cavity resonator
in a single longitudinal mode laser enables creation of the annular beam irradiating a
sample of interest off-axis while Brillouin scattering is collected via on-axis aperture.

From a standpoint of spectrally resolving the Stokes and anti-Stokes peaks of
Brillouin scattering over well extinct Rayleigh maxima, multi-pass Fabry-Perot
etalons offer a compatible resolution for extended exposure times. Using an
off-shelf tandem etalon with 1 GHz of minimal frequency shift, detected at 50-lm
lateral, 100-lm axial spot size and 5-s exposure, 514-nm measurements of Brillouin
shifts performed on healthy human crystalline lenses in a 0.9% saline solution
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destructive interference
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revealed shifts from 7.8 GHz at the cortex outer to 9.0 GHz at 2.2 mm deep to
anterior lens surface [12.145].

One missing yet factor of laser-based Brillouin scattering spectroscopy could be
attributed to amplified spontaneous emission (ASE) of a laser source, which emission
excites Brillouin-shifted peaks, since ASE of a single frequency laser is assumed
negligibly low at 60–70 dB of extinction. Nonetheless, a total amount of integrated
spectrally-distributed ASE over the free spectral range of an etalon even at 20 to
30 GHz spectral width is overwhelmingly noticeable versus orders-of-magnitude
lower Brillouin peaks [12.133, 12.107]. Figure 12.28 depicts one example of the
relative-intensity spectrum of Rayleigh scattering, brightest lines, and leaking ‘white’
ASE for 780 nm single-frequency laser.

Similarly to the technique in Raman spectroscopy making a Rayleigh scattering
peak extinct by a narrow notch filter, such as of a volume holographic grating
[12.146–12.149], ASE emission as well as stray-light background, which often
includes the unnoticed ASE, may be dramatically suppressed via an ASE-suppression
filter essentially removing needs for other spectral elements [12.107]. A conceptual
schematic of single VIPA confocal microscope-interferometer is illustrated by
Fig. 12.29. This approach unifies a confocal microscope and a VIPA spectrometer
into a single unit connected with a single-frequency, atomic-transition stabilized
laser via a single-mode fiber.

Fig. 12.28 Unfiltered ASE spectrum directly dispersed by VIPA without an ASE suppression
filter (reprinted with permission of SPIE)
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Such a confocal-microscope-spectrometer is enabled while replacing a cylin-
drical lens at the VIPA input with a more superior achromatic microscope objective
focusing light directly to VIPA. Instead of linear virtual light sources of Fig. 12.22,
such a confocal spectrometer converts a multitude of point sources at its input, to
become focused as resonant-wave circles of the outbound diffraction orders and
sliced into the array of spherical segments by a rectangular sensor of EM-CCD
camera (“CCD image” insert). Since a detector in a confocal microscope for
Brillouin spectroscopy needs collecting light with the highest efficiency, while
targeting the sample-depth discrimination via axial scanning, a relatively large
pinhole or a single-mode fiber coupling can be safely used keeping the high lateral
selectivity [12.150]. Plus, the axial confocality could be preserved at a small depth
of focus of collecting high-NA objective.

In the system of Fig. 12.29, a fiber-coupled 780-nm diode laser was frequency
locked to Rb-85 D2 atomic line via Rubidium-vapor cell RLC and feedback coupler
C. A single-frequency, single-longitudinal mode light beam was focused in and
collimated out of polarization-maintaining fiber PM-SMF for k ¼ 780 nm via fiber
collimators FC1, FC2. Volume Bragg grating ASE-suppression filter VBG was
reflecting exiting the fiber beam into dichroic filter DF combining 780-nm light in
reflection with 633-nm He–Ne laser beam in transmission, which served as the
alignment axis for the entire system. A high-extinction ratio polarization beam-
splitter PBS selected main polarization components of the beams at better than
200:1 extinction, experimentally verified via a 10,000:1 polarizer. A quarter-wave
plate (780-nm, multiple order, quartz) established 180°-observation polarization-
extinction scheme via k/2 rotation on its double path for a Brillouin scattering
object Eye, as which porcine eye specimen at epithelium stripped were used.
Backward scattered light from Eye, passing PBS and 25-mm long trapezoidal
Rb-85 D2 absorption cell RAC heated to 100–175 °C, was centered by mirrors M1,
M2 and short-focus objective AOin on VIPA entrance window for the dispersed
array being imaged by long-focus achromatic objective AOout onto EMCCD of
200 � 1600 pixels, 16 � 16 micron each. Due to high-quality optics and precision
system alignment, VIPA’s incidence angle verified by a following frequency cali-
bration was minimized to 10 arc minutes, enabling linear dispersion Δk/k0 and
angular dispersion factor Δh/(Δk/k0) (Eq. (12.32)) to reach 0.6 � 10−4 and
127.55 rad in the first order of diffraction, maintaining pixel resolution of
67–194 MHz/pixel from 1st to 5th order at 22.92-GHz free spectral range of 4.5 mm
thick VIPA at 99.5 back- and 95% front-mirror reflectivity.

The insert in Fig. 12.29 schematically depicts spherical segments of spectral
lines (b) on CCD screen (a) of centrally located green remainders of highly-extinct
Rayleigh scattering, red Stokes, and blue anti-Stokes peaks (color on line). Since
only positive diffraction orders are visible, the line sequence is always the
anti-Stokes, Rayleigh, and Stokes of a given order – with a Rayleigh peak looking
like a doublet as its central section is being extinct by Rb-85 D2 line leaving two
remaining satellites, broadened after propagation through a heated vapor cell
[12.107]. The 0th order created by the incident beam is blocked by Edge Stop as in
Fig. 12.22 with additional light trap LT right after PBS of Fig. 12.29.
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Reaching as low as 10 arc-min incidence angle for VIPA was an enabling step in
establishing single-etalon absolute frequency measurements of Brillouin-scattering.
Calibrating the etalon in-situ confirmed to be the main step. The laser wavelength
locked to Rb-85 D2 absorption line at 780.241368271 nm [12.151] became a fre-
quency comb of VIPA diffraction orders (Fig. 12.30). Such a CMS-VIPA wave-
length-frequency scale was reproducible within ±30–50 MHz, re-established for
each sample measured.

For example, initially measured Brillouin shifts for water and methanol samples:
5.023 GHz and 3.795 GHz, changed only to 5.054 and 3.834 GHz remeasured
another day for each test performed at a new calibration setting. Spectrums of
calibration samples establishing references to published data at two exposure times
are seen in Figs. 12.31 and 12.32. The statistically sound Brillouin shifts at 2r
standard deviation for CMS-VIPA measurements were 5.00 ± 0.10 GHz for water,
3.80 ± 0.08 GHz for methanol, and 10.50 ± 0.12 GHz for poly-methyl
methacrylate (PMMA).

Fig. 12.30 Spectral grid of 780-nm Rb-D2 line Rayleigh scattering for SMC-VIPA diffraction
orders (reprinted with permission of SPIE)

 A1  R1  S1     A2   S2  …

Fig. 12.31 Spectral orders 1, 2, … of Brillouin + Rayleigh scattering lines, 1-second exposure:
up to bottom-water; methanol; PMMA; A1/S1 anti Stokes/Stokes Brillouin components of 1st
order; R1—Rayleigh scattering 1st order, … (reprinted with permission of SPIE)
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The fact of seeing Brillouin-scattering peaks even at as fast exposure as the 10
microseconds points to sufficient sensitivity, resolution, and background extinction
even with one single etalon when combined with other enhanced spectroscopic
means as ASE suppression filter, atomic line absorption filter, and high-quality
collimating optics. Even collecting Brillouin scattering with a relatively high
NA ¼ 0.45 objective didn’t seem to broaden the Brillouin scattering lines observed.

Figure 12.33 shows spectrums of several cross-sections of porcine eye cornea
obtained via axial scanning with 5–10 lm spatial resolution. At first, a specimen
was moved into the focal point of objective NA-O by a motorized stage (not seen in
Fig. 12.29) and its specular reflection spectrum was recorded verifying a frequency
calibration via Rayleigh scattering lines prior to depth scans.

 A1  R1  S1     A2   S2  …

Fig. 12.32 Brillouin and Rayleigh scattering lines recorded at 10 microsecond single pixel
exposure (reprinted with permission of SPIE)

A1 R1 S1     A2   S2  …

Fig. 12.33 Cross linked/untreated corneas: outer face 450-lm, untreated 50-lm deep (reprinted
with permission of SPIE)

694 12 Spectroscopic Interferometry and Laser-Excitation Spectroscopy



Despite an intense Rayleigh scattering from the outer cornea surface and
temperature-enhanced broadening of Rayleigh lines expanding beyond the
absorption line of Rb-85 D2 vapor, Brillouin-shifted lines were highly visible
starting right at the cornea surface. Figure 12.33 illustrates Brillouin scattering for
riboflavin-treated versus untreated eye specimen. Measurements of untreated eyes
at 22 °C compared to 37 °C did not seem to affect the shift measured, only
dependent on a depth with 100–200 MHz higher Brillouin shifts in a middle of the
cornea versus the anterior chamber. UV light-exposed and riboflavin-treated cornea
specimen revealed steady 0.7–0.9 GHz increase of Brillouin shift to *400 micron
of depth penetration, matching its theoretical prediction [12.107].

12.3 Spectral Measurements with Frequency Combs

Numerous optical measurement techniques involving laser light rely on a precise
reference to a frequency of laser excitation. For loss dichroism or dispersion studies
(see Sect. 8.5) or for wavelength calibration of VIPA etalon in Brillouin scattering
(Figs. 12.29 and 12.30), a frequency comb of recurring intensity peaks spanning
over a broad spectrum turns into a resolute absolute scale, versus which the accurate
measurements are made. Nowadays, wideband laser frequency combs expand from
the ultraviolet and visible wavelengths into the deep infrared and terahertz regions
of frequency spectrum establishing unparalleled levels of measurement precision for
the scales of time and dimension and extending to a variety of laser measurements
[12.153–12.155].

12.3.1 Frequency-Comb Scale

Separation of spectral modes of a frequency comb is identified by a repetition
frequency fR, being the inverse of period T of the sequence of pulses in the comb’s
time domain. Over time, a sequence of comb pulses is slipped by phase shift Δu
caused by dispersion in a laser cavity. As a result, the entire frequency comb is
shifted by offset frequency f0 ¼ Δu/2pT:

fFC ¼ m � fR þ f0; wherem ¼ large integer: ð12:36Þ

When the frequency comb described by Eq. (12.36) is compared to two
distantly-separated frequencies being multiples or fractions of a known frequency f,
the comb repetition frequency fR could be itself measured. Plus, a beat signal
between frequency f and a nearest comb line gives f0.

As it was recognized early using lasers [12.156], beating laser frequencies
against each other gives straightforward means to the optical frequency scale
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(Fig. 12.34). In the performed experiment, resonators of He–Ne lasers 1, 2 were
identical, at the length of one being slightly larger than another—with each of them
tuned to a standing wave operation at k ¼ 1.153 lm, only for the first resonator
having 148-MHz and the second 145-MHz modes spacing. Optically combining
two laser beams on a photomultiplier tube PMT produced a clear beat signal at a
frequency of *5 MHz for the case of aligned states of polarization for both lasers
and with the signal vanishing for the orthogonal orientation [12.156].

Following the frequency-beat concept via various laser types, while comparing
wavelengths of their emission to the Kr86 6057-angstrom meter standard at a time,
the factual speed of light was measured directly using methane stabilized He–Ne
laser emitting at 3.39 lm as the product of its 88.376181627(50) THz frequency and
3.392231376(12) lm wavelength, yielding the speed of light c ¼ 299792456.2(1.1)
m/s [12.157] versus the standardized1 constant c0 ¼ 299,792,458. Further
expanding the notion of combining laser frequencies [12.158], a direct comparison
was made via a phase locking of an arithmetic average of two laser frequencies
f1, f2 to the second harmonic 2f3 of the third laser, measuring f3 ¼ (f1 + f2)/2 as a
result.

In the settings of Fig. 12.35, extended-cavity temperature stabilized 847-nm
diode lasers were combined for second-harmonic generation in the phase-matched
KNbO3 crystal. Confocal cavities of each laser at 1.5-GHz free spectral range
were tuned with a week feedback narrowing emission linewidths to � 10 MHz of
the frequency doubled lines. Beams were superimposed via beamsplitter BS at
*5-mW power, passing 35-dB Faraday isolator to be collinearly focused in 5-mm
long KNbO3 at the matching 5 mm confocal parameter. Keeping two frequencies
within f1 − f2 � 5 THz enabled conversion of both harmonics f1, f2 and the
f1 + f2 sum in a single KNbO3 crystal. Blue filter BF and added 60° prism enabled
phase-locking of each 10 nW, 424-nm blue beam for up to 50 nW of the sum
[12.158].

Laser 1

BS 
Laser 2

Collimator

Spectrum 
analyzer

BS 

PMT

Fig. 12.34 Laser-beat
frequency scale

1Resolution 1 of the 17th Conférence Générale des Poids et Mesures (CGPM), 1983.
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As the next step, uniformity and stability of femtosecond laser frequency combs
were tested via two widely frequency-spaced diode lasers, phase-locked to fre-
quency peaks of a commercial Ti-Sapphire laser [12.160]. Extended cavity diode
lasers as shown in Fig. 12.35 were phase-locked to distinct modes of mode-locked
femtosecond laser, while stabilizing the frequency beat signals to a reference
radio-frequency of a local oscillator [12.159]. In addition, diffraction-grating based
stabilization was deployed in extended cavities of both diode lasers, preventing a
possible cycle-slipping event in each cavity via a phase-locked loop, referring the
in-lock frequency to the local oscillator [12.160]. In a verification experiment,
emissions at 822.8-nm and 870.9-nm of two laser diodes were phase-locked to two
separated by 20 THz modes of the Ti:Sapphire laser. At the local oscillator fre-
quencies ±20 MHz and opposite offsets for two lasers, the third laser was locked
20-MHz below the center mode of Ti:Sapphire laser, if a number of modes between
two frequencies was an odd number, or locked to the center mode for an even
number. The uniform distribution of that 20-THz wide frequency comb modes was
confirmed to be within 3 � 10�17; that also verified the mode separation of the comb,
being equal to the pulse repetition rate within 6:0 � 10�16 [12.160].

The notion of sum- and difference-frequency generation with a frequency-
interval bisection enables linking of optical and radio frequencies such as the sum
of frequencies in visible and the difference in infrared and creating THz optical
combs by inserting a radio frequency electro-optic modulator inside a low-loss
optical cavity [12.159]. The later approach sharpens the modulation efficiency of a
given carrier frequency of the modulator inside the resonant cavity (see Chap. 8 for
detail) and effectiveness of consequently generated frequency sidebands, facilitating
multiple-terahertz frequency combs to be created [12.161]. Effectively, a
comb-feeding single-frequency cw laser is being locked to the resonance mode of
the modulator cavity, having a free spectral range a multiple of the locking mod-
ulation frequency of laser radiation generating the frequency comb, which intensity
profile Ik declines exponentially with order k of a generated side band as [12.159]:
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Laser 2

Laser 1

BF Mixer
Photodiode

Amplifier
Fig. 12.35 Laser frequency
conversion and
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Ik � I0 expð�jkjp=b=Þ; ð12:37Þ
where b is the modulator frequency-modulation index and ℑ is the finesse of the
inserted cavity.

An example of a cw laser comb generator with inserted into a low-loss cavity
electro-optic modulator EOM is shown in Fig. 12.36 [12.162]. A prototype Mg:
Li-NbO3 crystal modulator was embedded into a microwave-resonant cavity with
10.5 GHz resonance, 0.3 GHz bandwidth and the Q factor of 230, enabling 0.8
modulation index at 0.6 W microwave power. The main compound cavity con-
sisted of lens substrate mirrors M1–M3 having HR-AR coatings on the flat-curved
surfaces with M1, M2 forming a resonant cell at a 680 finesse and 20% transmit-
tance of each mirror and M2, M3 making a filter cavity at a 400 finesse and 0.2 THz
free spectral range for 30% efficiency. The first cavity lock was provided with M1

on a piezoelectric transducer PZT at *1/10 dither amplitude of the cavity line-
width. The PZT on mirror M3 was tuning the filter-cavity bandpass frequency,
enabling near 150 lW of polarization-stabilized He–Ne laser power to reach the
comb generator, which created 1-THz spanning frequency comb at filter’s cavity
5-GHz full-width half-max transmission, being sufficient enough to resolve the
10.5-GHz spaced individual sidebands. An external-cavity diode laser was used for
the heterodyne detection and characterization of the frequency comb [12.162].

Broadening the multi-terahertz frequency comb and expanding it from UV-VIS to
IR regions of optical spectrum takes a nonlinear medium, such as a telecom
single-mode or microstructured fiber with a small-size core and large refractive-index
difference, capable of guiding even tightly focused high intensity beams and readily
reaching a nonlinearity threshold [12.163–12.165]. An accordingly designed
microstructured fiber, as one of 1.7-mm diameter silica core surrounded by an array
of 1.3 mm diameter air holes with the negative contribution of waveguide dispersion
to group-velocity dispersion, could overcome dispersion limitations of standard
single-mode fibers via anomalously-low total dispersion allowing to generate
ultra-broadband continuums [12.164]. Such an octave spanning comb—expanding
from at least 532 to 1064 nm, enables calibration of both frequencies as integer
multiples of comb spacing Δf plus small frequency offsets f1, f2 being measured, and
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Fig. 12.36 CW laser frequency comb generator with embedded cavity EOM modulator
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verifying other frequencies in the octave, as 633-nm or 778-nm, via comb spacing
Δf [12.165]. Locking comb’s repetition rate to 10-MHz radio frequency reference
while tuning pulse-to-pulse phase shift Δu to zero allowed stabilizing the Ti:
Sapphire femtosecond comb to 5.1 � 10−16 [12.166].

12.3.2 Frequency Comb Fourier-Transform Spectroscopy

Equally as coherent infrared time-domain technique is enacted by optical rectification
of a femtosecond pulse (see Sect. 12.4), generating a Cherenkov cone of terahertz
radiation in an electro-optic material – being collided with another femtosecond pulse
synchronized and delayed to the first one [12.167], combining two frequency combs
instigates static Fourier-domain spectroscopy of optical collision [12.168–12.170].
Enabling the trains of slightly delayed synchronized pulses could be facilitated by
splitting one beam of a single comb or colliding independent frequency combs of
unequal pulse repetition rates [12.168]. Figure 12.37 shows a system for splitting a
comb into two beams generating difference frequencies at single and double fre-
quencies of an octave spanning comb and eliminating frequency offset f0.

Since two beams are originated from one comb, a sum- and difference-frequency
generation in a single nonlinear crystal are creating two groups of difference fre-
quencies (see Eq. 12.35):

fFC1�fFC2 ¼ ðm1 � fR þ f0Þ�ðm2 � fR þ f0Þ ¼ m1�m2ð ÞfR: ð12:38Þ

In the depicted setup, focusing 600-mW Ti:Sapphire laser beam of
25-femtosecond pulses at 750 MHz repetition rate to 5–30-cm long photonic crystal
fiber PCF at 1.6-lm core diameter allowed generating frequency comb spanning
from infrared 1049 nm wavelength to blue 439 nm light within 20-dB range of
intensities. The center wavelengths for difference and sum frequencies were chosen
at 946 and 473 nm with both processes in 5-mm long KNbO3 crystal concurrently
generating an offset-free comb near 946 nm.

The sum- and the difference-frequency generation processes were phase mat-
ched, with the sum comb having doubled offset frequency but the difference one at
a zero offset. Both generated combs created beat nodes with the initial comb at
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frequency offset f0. The minimal power for the difference frequency signal per
mode was estimated to be near 100 nW [12.169].

The concept of generating frequency-difference harmonics, enabling to cancel
the frequency offset in a series of originating pulses, equally works for combining
independent combs [12.168]. In two-channel schematic, similar to the laser beat
frequency experiment of Fig. 12.34, by adding an optical rectification element to
each channel the Fourier-transform spectrometer was realized statically via inde-
pendent mode-locked lasers, emitting trains of 12- and 20-femtosecond pulses. The
Ti:Sapphire lasers were generating 800-nm wavelength pulses with 78-MHz rep-
etition rates being*2-Hz apart. Optical rectification was accomplished by focusing
laser beams to 0.5- and 1-mm thick GaSe crystal plates having mid-infrared second
harmonics further collimated on GaSe combiner, thus forming coherent
Fourier-transform spectrometer with no moving parts [12.170].

To advance the frequency-beating technique, enabling the multiheterodyne
spectroscopy of frequency combs difference via essentially indistinguishable sepa-
ration in repetition rates of the combined combs, both combs should be highly stable.
As one of them serves as a local oscillator LO with the beat creating a
radio-frequency (rf) comb: ΔfR ¼ fR,LO − fR at f0,LO − f0 ! 0 (see Eq. (12.38)),
linewidths and the state of mutual coherence of two combs define the narrowness of
each individual tooth in the resulting rf comb and signal-to-noise ratio versus rf noise
of an individual beat. By combining emissions of fiber-based mode-locked lasers at
relative linewidths below 1 Hz the phase and amplitude of 155,000 comb modes at
100-MHz spacing expanding over 15.5 THz from 1495 to 1620 nm were resolved
and applied for broadband molecular spectroscopy [12.171].

A direct approach to Fourier transform spectroscopy with frequency combs
relates to using high repetition rates of femtosecond lasers to radically reduce
1/f noise of an FTIR spectrometer performing at conventional 50–100 kHz mod-
ulation frequencies [12.172]. Synchronous detection of FTIR interferometer signals
permits simultaneous in-phase and in-quadrature measurements (see Chaps. 8–10)
for parallel absorption and dispersion studies as illustrated by Fig. 12.38. A mod-
ified Connes-type interferometer similar to one of Fig. 12.3b was combined with
fast InGaAs detectors to sense 40-fs, 50 mW pulses of 140-MHz frequency comb in
1.5-lm fingerprint region.

Fig. 12.38 Frequency comb
synchronous FTIR
spectrometer
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In addition to main detectors D1, D2, reference detector DR was used via *10%
extra beamsplitter for synchronization. M-L laser cavity contained a Cr4+:YAG
crystal pumped by 1064-nm Nd:YVO4 laser with saturable-absorber mirror for
mode locking and chirped resonator mirrors for dispersion compensation. Spectral
resolution for acetylene in a 70-cm long single-path absorption cell reached
1.5 GHz at a 500:1 signal to noise ratio spanning 7200 resolved spectral elements
with 280-s recording time [12.172].

12.3.3 Cavity-Enhanced Spectroscopy With Frequency
Combs

As seen previously (Chap. 8 and Fig. 12.10), coupling a frequency comb into a
multipass cavity could be advantageous for enhancing sensitivity of intracavity loss
and dispersion measurements. It also assists characterizing optical parameters of the
cavity [12.174], as well as enhancing comb stability [12.175] when concurrently
controlling repetition frequency fR of a pulse train and comb offset frequency f0
(Eq. (12.38)). Subsequently, the frequency stabilized comb may be coherently
coupled to the ringdown cavity to be resonant over an assembly of comb compo-
nents enabling broadband spectroscopy [12.173].

Synchronous coupling of the entire comb train facilitates constructive interfer-
ence of pulses in the ring-down cavity [12.172], thus improving overall sensitivity of
intracavity measurements. To realize simultaneous coupling of comb components to
a given set of ringdown-cavity modes, the repetition rate and offset frequency of a
femtosecond comb generated by a Ti:Sapphire laser were independently controlled
via a set of piezo motors and controllers adjusting the length and dispersion of a laser
cavity [12.176]. Adopting 0.999 reflectivity mirrors for the entire 790–850 nm comb
spectrum to maintain � 10 fs2 intracavity dispersion when tuning fR to 4 MHz and
setting f0 by rotating one cavity mirror having ±2 � 10−4° selectivity, 125,000
components of 10-fs comb at fR ¼ 380 MHz were coupled into the ringdown cavity
with 10−8 integrated absorption sensitivity at 1-s long measurement in 100-nm band
or with 0.8 cm−1 spectral resolution at 1.4-ms acquisition in 15 nm.

Similarly to efforts of broadening the frequency comb using a highly nonlinear
crystal fiber, while a femtosecond comb is created by a mode locked fiber laser with
a chirped pulse amplifier, the spectral domain of intra-cavity measurement could be
expanded further [12.177]. Stretching femtosecond pulses in a linearly-chirped fiber
amplifier due to fiber’s group-velocity dispersion plus self-phase modulation avoids
the self-focusing effect prior to pulses being compressed back by a double-grating
compressor, if needed [12.178]. Figure 12.39 depicts a broad-bandwidth system for
intra-cavity absorption measurements in 1.45–1.65 lm wavelength domain utilizing
erbium-doped fiber amplifier generating 175-fs string at 40-mW average power and
100-MHz frequency.
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The mode-locked Fiber Laser operating in a normal dispersion mode was coupled
to 15-m of anomalous dispersion fiber SMF-28, serving for pre-stretching pulses to
7 ps, followed by two 2-m long chirped-pulse highly doped erbium fiber amplifiers
CPFA for 350 mW of output power of 6.7-ps stretched pulses. The highly nonlinear
40-cm long HNLF fiber broadened the pulse span to several hundred nanometers,
while EOM switch enabled the cavity ringdown measurements. At 100-lW/nm of
spectral power reaching the ringdown cavity, absorption studies of overtone spectra
for CO, C2H2, and NH3 were provided with nearly 2 � 10�8 cm−1 Hz−1/2 sensitivity
[12.177].

By resolving individual modes of a frequency comb via high-resolution VIPA
spectroscopy (Sect. 12.2) further enhancement of resolution for broadband ring-
down absorption studies can be enabled [12.179]. The approach of Fig. 12.23 for
the VIPA etalon cross-coupled to a diffraction grating [12.113] provides x-y spatial
and spectral separation of comb peaks into two-dimensional array localized in the
imaging plane of VIPA spectrometer. Depending on a given arrangement, each
spectral element disperses the comb modes into x or y axis, such as VIPA
diffraction orders in one and diffraction grating ones in another, that is tilted from
90° by orientation of the grating. By limiting measurement bandwidth to 10-nm
region centered at 633 nm and filtering frequency comb modes from 3fR to 14fR via
spherical Fabry-Perot cavity matching VIPA spectrometer, near 1.2-GHz resolution
was reached for up to 75 � 109 resolvable peaks at 1-s integration time [12.179]. The
detectable limit of 8 � 10�8 cm�1 was reached for linear absorption coefficients in
human-breath ringdown testing in 1.5–1.7 lm region with 800 MHz resolution at
200-nm spectral band [12.180]. A 2000-channel detection capability was demon-
strated from 1.75 to 1.95 lm with single-channel sensitivity of 4 � 10�8 cm�1 Hz−1/2

in nitrogen and 4 � 10�7 cm�1 Hz−1/2 for water tracing in arsine [12.181].
Cross coupling of a VIPA etalon and a diffraction grating when adding a 2-D array

detector enables lessening individual detector requirements of extended dynamic
range and high signal-to-noise ratio for broadband frequency-comb measurements
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[12.182]. Frequency-scanning of the resolved comb modes allows high-dispersion
spectroscopy with resolution defined by the comb linewidth rather than by VIPA and
with the enhanced sensitivity to multipath-cavity absorption.

Other special developments use heterodyne techniques via colliding
power-leveled frequency combs initiated in continuous-wave (cw) lasers by
dual-drive optical modulators [12.183–12.186].

Figure 12.40 visualizes the notion of utilizing the dual-drive Mach-Zehnder
modulators MZT generating 24-KHz shifted frequency combs from one
external-cavity cw diode laser. The first comb was used as a probe and another as
local oscillator LO. The probe beam was split to 100-MHz shifted channels and to a
multipass cavity. The dual modulator at 6-DB attenuation in the probe drive
enabled the power leveling in the comb with spacings from near-dc frequencies up
to 18 GHz while reaching noise-equivalent absorption 2 � 10�5 cm�1 Hz−1=2 per
square root of a number of spectral elements [12.183].

Further progress could be reached by eliminating ringing effects in static
Fourier-transform spectroscopy with frequency combs, due to each comb line
oscillating m times within c/fR delay (Eq. (12.36)). The elimination is achieved in a
comb-based Fourier-transform spectrometer, if instrument’s path-length difference
is exactly matched to c/fR of the comb, ultimately overcoming the
instrumental-resolution limit [12.185]. Modulating the frequency comb, being
coupled into a multipass cavity, to a multiple of the cavity free spectral range
for phase-sensitive demodulation of its transmission enabled eradicating noise
of frequency-to-amplitude conversion and reaching absorption sensitivity of
4:3 � 10�10 cm−1 Hz−1=2 per spectral element at 1575 nm [12.184]. With both
techniques a tight cavity lock maintaining constant-power transmission is needed
(see paragraph 7.3 and [7.42]) for implementing the Fourier-transform comb
spectrometer, because of signal-line shape changing due to Doppler effect on a
moving spectrometer mirror in one arm versus another while beating the comb lines
with its sidebands, depending on the ratio of modulation frequency to molecular
linewidth and requiring analytical modeling of likely ratios to be measured
[12.186].
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12.4 Time- and Frequency-Domain Terahertz
Spectroscopy

A widespread availability of FTIR spectroscopy and an expansion of ultrafast lasers
enabled progress of terahertz time-domain techniques for identifying molecular spectra
[12.187–12.192]. A broad spectral content of a pico- or femto-second laser pulse
enables frequency conversion into far infrared light due to coherent collisions of the
pulse frequency components via one or another nonlinear process or via a photocon-
ductive antenna [12.190]. Transmission, reflection, or imaging methodologies, per-
formed in the frequency domain in conjunction with Fast Fourier orWavelet Transform,
are often used for either free-space or beam-confining vibrational fingerprint studies.

12.4.1 Time-Series Analysis of Transmittance
and Reflectance

Frequency-bound measurements of optical properties of dispersive media necessi-
tate shifting from conceptual interpretations of interaction of light and matter via
transmittance or reflectance for weakly absorbing objects to dealing with polariz-
ability and conductivity for objects of likely conductive properties. Vectors of
electric P and of magnetic M polarization are commonly introduced to describe
interactions of electromagnetic waves and matter (see paragraph 1.1), transforming
material relations D ¼ eE, B ¼ lH to additive form [1.1]:

D ¼ Eþ 4pP; B ¼ Hþ 4pM: ð12:39Þ
Defining electric and magnetic polarization via material relations: P ¼ ηE,

M ¼ vH, with η and v as the dielectric and magnetic susceptibilities, dielectric
permittivity and magnetic permeability:

e ¼ 1þ 4pg; l ¼ 1þ 4pv: ð12:40Þ

become also expressed additively. The connectivity of multiplicative and additive
relations helps establishing correlations among optical properties of objects and
vectors of electromagnetic fields.

Considering phenomenologically matter as a multitude of physical objects, such
as molecules that become polarized by an applied electromagnetic field and gain
electric and magnetic moments being linear functions of the field, the electric
moment may be written as p ¼ fE, where f is the mean volume polarizability of each
individual molecule averaged over all orientations. The total electric moment for N
molecules per unit volume is P ¼ NfE and, presuming a molecule inside an imag-
inary sphere isotropically inducing (4p/3)P polarization input, the Lorentz-Lorenz
formulae follow [1.1]:
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g ¼ Nf
1� 4p=3ð ÞNf ; e ¼ 1þ 8p=3ð ÞNf

1� 4p=3ð ÞNf ;

f ¼ 3
4pN

e� 1
eþ 2

¼ 3
4pN

n2 � 1
n2 þ 2

:

ð12:41Þ

Since a medium refractive index n ¼ ffiffiffiffiffi
el

p
changes with frequency x of elec-

tromagnetic waves interacting with it due to dispersion, relations (12.41) should
account for dependence of dielectric permittivity e ¼ n2(x) on frequency.
Assuming only one effective electron being polarized by the field in a medium
molecule at resonance frequency x0, the mean medium polarizability becomes:

Nf ¼ N
e2

m x2
0 � x2

� � : ð12:42Þ

The resultant frequency interdependency of dielectric permittivity e(x) and
refractive index n(x):

e� 1
eþ 2

¼ n2 � 1
n2 þ 2

¼ 4p
3

Ne2

m x2
0 � x2

� � ; ð12:43Þ

is not generally linear. Plus, as a molecular response to an electromagnetic field
involves resisting forces, leading to damping of oscillations and extinction, medium
polarizability f similarly to the refractive index of a conductor is the complex
function of frequency with a multitude of resonant frequencies, resulting in a
complex solution [12.193], and therefore transforming relations (12.42, 12.43) to:

Nf ¼ N
e2

m x2
0 � x2

� �� ixg
;

4p
3
Nfk ¼

n2 � 1
n2 þ 2

¼ 4p
3
Ne2

m

X
k

fk
x2

0 � x2
k

� �� ixgk
;

ð12:44Þ

where gk and Nfk are the damping factor and the number of electrons for resonant
frequency xk.

As radiation interacts with conductive mater, factors and coefficients of inter-
action become complex functions of frequency, including the dielectric constant,
phase velocity, refractive index:

ê ¼ eþ i4pr=x; v̂ ¼ c=
ffiffiffiffiffi
lbep

; n̂ ¼ c=v̂ ¼
ffiffiffiffiffi
lbep

¼ c=xð Þk̂;
k̂ ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eþ i4pr=xð Þ

p
=c;

ð12:45Þ
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where k̂ is the complex wave number and r is the specific conductivity. The
refractive index n̂, the complex function of real index n and extinction coefficient j,
is dependent on frequency x as:

n̂ ¼ n 1þ ijð Þ; n̂2 ¼ n2 1þ 2ij� j2
� �

; n̂2 ¼ lê ¼ l eþ i4pr=xð Þ: ð12:46Þ

Equating real and imaginary parts of n̂2: n2 1� j2ð Þ ¼ le; n2j ¼ lr=v, leads to
the solution [1.1]:

2n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2e2 þ 4l2r2=v2

p
þ le;

2n2j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2e2 þ 4l2r2=v2

p
� le:

ð12:47Þ

Despite n or k not being directly resolved, identifying n2 1� j2ð Þ and n2j for
optical frequencies where l ! 1 directly gives the dielectric constant e and the
ratio of conductivity to frequency r=v.

In time, unobstructed movements of a free electron in a conductor may be
described as [1.1]:

r ¼ r0 � 1=bð Þv0exp �btð Þ: ð12:48Þ

Here the damping constant b characterizes the decay time sd ¼ 1/b from the
initial velocity v0 to v. If a time-harmonic field E ¼ E0exp(−ixt) is applied,
N electrons create a current of density j ¼ rE at:

r ¼ Ne2= m b� ixð Þð Þ: ð12:49Þ

The frequency dependence of complex refractive index n̂ and dielectric constant
ê is caused by free and bound electrons, but for small bound contributions and
nonmagnetic media it turns to:

ê ¼ n̂2 ¼ 1� 4pNe2

mx x� ibð Þ ; n2 1� j2
� � ¼ 1� 4pNe2

m x2 þ b2
� � ;

2n2j ¼ 4pNe2=b

mx x2 þ b2
� � : ð12:50Þ

Here the last two relations define real and imaginary parts of n̂2 (see Eq. (12.46) and
[1.1]).

Subsequently to the introduction of complex material constants, the law of
refraction for a metal bordering a dielectric could be expressed via its complex
relative index n̂, as in Snell’s law:
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sinurf ¼
sinuin

n̂
¼ sinuin

n 1þ ijð Þ ¼
1� ij

n 1þ j2ð Þ sinuin: ð12:51Þ

Here indices in and rf assign the incidence and refraction. Since per Eq. (12.51)
the angle urf becomes complex, the meaning of refraction angle changes, plus
relations for the reflectance and transmittance even of boundaries of thin metal and
dielectric films tend to be elaborate [1.1, 1.3, 12.193], but at normal incidence the
reflectance is polarization independent (see Eq. (1.91)), with the absorption a and
extinction j coefficients and 1/e distance d due to relations (1.87), (1.88).

Fresnel formulae for reflectance or transmittance of a border of a dielectric and a
conductor remain intact for the real dielectric constant and refractive index changed
to complex ones. The amplitude reflectance rðxÞ and transmittance tðxÞ of light
incident on a border of dielectric d and conductor c remain:

r̂ xð Þ ¼ n̂c � n̂dj j= n̂c þ n̂dj j; t̂ xð Þ ¼ 1� q̂ xð Þj j ¼ 2n̂dj j= n̂c þ n̂dj j; ð12:52Þ

under the presumption of no border absorption or scattering at n̂d ; n̂c being fre-
quency dependent.

Equation (1.91) define complex reflectivity q0 for a boundary of a conductor in
air at normal incidence. While dealing with an actual sample in coherent light its
multiple reflections and bulk attenuation of a likely used plane-parallel plate need to
be taken into account (see Chaps. 3, 6, and 8). Consider a transparent slab of either
a conductive or a dispersive medium of frequency-dependent refractive index n̂c
surrounded by a dielectric of index n̂d irradiated as in Fig. 3.9, but at normal
incidence. Following Eqs. (3.116, 3.119, 3.121, 3.122) let us express the slab total
and surface reflectance and transmittance at equal front and back surfaces and the
bulk extinction a as:

r ¼ Eq

E0
¼ qsa þ

qsas
2
ss

2
ae

id

1� q2sas
2
ae

id


 �
;

R̂ ¼ Iq
I0

¼ q̂
1þ sð Þ2�2s 1þ cos dð Þ

1þ sq̂ð Þ2�2sq̂ 1þ cos dð Þ ;
ð12:53Þ

t ¼ Es

E0
¼ sas2s

1� q̂2ss
2
ae

id ;

T̂ ¼ Is
I0

¼ 1� q̂ð Þ2s
1þ s2q̂2 � 2sq̂ cos d

¼ 1� q̂ð Þ2s=q̂
1=q̂þ s2q̂� 2s cos d

;

ð12:54Þ

where R̂, T̂ , qs, ss are the slab total and surface reflectance and transmittance; d is
the phase angle for the slab of thickness ‘ and bulk transmittance sa. For surface
reflectance q̂ ¼ n̂c � n̂dj j2= n̂c þ n̂dj j2 the relations turn to:
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R̂ ¼ 1þ sð Þ2�2s 1þ cos dð Þ
n̂c þ n̂dj j2 þ s n̂c � n̂dj j2

n̂c þ n̂dj j n̂c � n̂dj j

 !2

�2s 1þ cos dð Þ

¼ 1þ s2 � 2s cos d

n̂c þ n̂d
n̂c � n̂d

���� ����2 þ s2
n̂c � n̂d
n̂c þ n̂d

���� ����2�2s cos d

;

ð12:55Þ

T̂ ¼

4n̂cn̂d
n̂c þ n̂dj j2
�����

�����
2

0@ 1As
n̂c þ n̂d
n̂c � n̂d

���� ����2
n̂c þ n̂d
n̂c � n̂d

���� ����þ s
n̂c � n̂d
n̂c þ n̂d

���� ����� 2

�2s 1þ cos dð Þ

¼
s

4n̂cn̂d
n̂2c � n̂2d

���� ����2
n̂c þ n̂d
n̂c � n̂d

���� ����2 þ s2
n̂c � n̂d
n̂c þ n̂d

���� ����2�2s cos d

:

ð12:56Þ

At not transparent bulk, s ¼ 0, derived equations convert to T̂ ¼ 0 and R̂ ¼ q̂,
being the formula (1.91). Let us further assume the bulk transparency,
s ¼ exp �a‘ð Þ ¼ 1:0, and zero extinction a ¼ 4pj/k ¼ 0. For the phase angle
d ¼ ±p/2 the functions interference terms cosd ¼ 0 vanish, thus we could consider
the reflectance and transmittance of a plane-parallel slab as mean, not integrated
(compare Eqs. (1.106, 1.107, 3.129, and 3.130)), for the expressions (12.55), (12.56)
to become:

R̂mean ¼ 2
1=q̂þ q̂

¼ 2q̂
1þ q̂2

¼ 2 n̂c þ n̂dj j2 n̂c þ n̂dj j2
n̂c þ n̂dj j4 þ n̂c � n̂dj j4 ; ð12:57Þ

T̂mean ¼ q̂ 1� q̂ð Þ2
1þ q̂2

¼ 4n̂cn̂dj j2
n̂2c � n̂2d
�� ��2 n̂c � n̂dj j2 n̂c þ n̂dj j2

n̂c þ n̂dj j4 þ n̂c � n̂dj j4

¼ 16n̂2c n̂
2
d

n̂c þ n̂dj j4 þ n̂c � n̂dj j4 :
ð12:58Þ

The functions extrema come at cos d ¼ 
1, with complementary maxima and
minima of T̂ ; R̂ being:

T̂max ¼ 4n̂cn̂d
n̂c þ n̂dj j2 � n̂c � n̂dj j2
�����

�����
2

; R̂min ¼ 1þ 1� 2
1=q̂þ q̂� 2

¼ 0; ð12:59Þ
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T̂min ¼ 4n̂cn̂d
n̂c þ n̂dj j2 þ n̂c � n̂dj j2
�����

�����
2

; R̂max ¼ n̂2c � n̂2d
n̂2c � n̂2d

���� ����2: ð12:60Þ

Figure 12.41 illustrates the dependencies of reflectance and transmittance of the
slab versus angle d for two sets of refractive indices n̂c ¼ 1:5; n̂d ¼ 1 and n̂c ¼
2:85; n̂d ¼ 1:25: Four R̂, T̂ curves and lines are due to Eqs. (12.55), (12.56), and
(12.57), (12.58). For studies in the air at nd ¼ 1, the extrema for relative refractive
index n̂ ¼ n 1þ ijð Þ turn to:

R̂min ¼ 0; R̂max ¼
n̂2 � 1
�� ��2
n̂2 þ 1j j2 ¼ n2 1þ j2ð Þ � 1

n2 1þ j2ð Þþ 1

� 2

; ð12:61Þ

T̂max ¼ 4n̂

n̂þ 1j j2� n̂� 1j j2
�����

�����
2

¼ 1þ j2;

T̂min ¼ 4n̂

n̂þ 1j j2 þ n̂� 1j j2
�����

�����
2

¼ 4n2 1þ j2ð Þ
n2 1þ j2ð Þþ 1ð Þ2 :

ð12:62Þ

Considerately, complementary extrema of T̂max ¼ 1þ j2 and R̂min ¼ 0 reveal the
way to directly measure the 1 þ k2 factor of extinction coefficient j for a likely
dispersive or conductivemedium. For non-conductingmedia at no absorption: j! 0,
nc ! n, nd ¼ 1, the equations convert to formulae:

Fig. 12.41 Complex reflectance and transmittance versus phase angle
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Rmean ¼ n2 � 1ð Þ2
n2 þ 1ð Þ2 þ 4n2

; Rmax ¼ n2 � 1
n2 þ 1

� 2

; Rmin ¼ 0; ð12:63Þ

Tmean ¼ 8n2

n2 þ 1ð Þ2 þ 4n2
; Tmin ¼ 4n2

n2 þ 1ð Þ2 : Tmax ¼ 1; ð12:64Þ

Given complexities of determining properties of highly absorbing media, even via
available Eqs. (12.55)–(12.62) for normal light incidence, the majority of prevailing
techniques rely on scanning of object properties by varying frequencies or incidence
angles to resolve Fresnel equations for a complex refraction and extinction. The fre-
quency scanning studies use the Kramers-Kronig dispersion relations [12.194–12.197]
quantitatively estimating the amplitude reflectivity r̂ðxÞ and phase angle H(x):

r̂ðxÞ ¼ rðxÞexp iHð Þ ¼ 1� n̂ xð Þ
1þ n̂ xð Þ ;

H xrð Þ ¼ 2xr

p

Z1
0

lnq xð Þ
x2 � x2

r
dx;

n̂ xrð Þ ¼ 1þ c
p

lim
x!0þ

Z1
0

a xð Þdx
x2 � xr þ ixð Þ2 :

ð12:65Þ

Here xr is the factual scan frequency while the angle H(x) in reflection is a
function of reflectance at all frequencies from 0 to ∞. The angle-scan technique
uses at least two distinct incidence angles u to resolve a refraction index and
absorption coefficient of the complex reflectance [12.198, 1.1]. The first technique
is limited by a range of frequencies over which the practical integration could be
accomplished, mainly for the upper range of frequencies, while both require
numerical fitting.

Following Eqs. (12.52–12.54) for the frequency deconvolution analysis of
time-domain spectra, the amplitude reflectance and transmittance of a plane-parallel
slab at normal incidence having the complex relative refractive index n̂ in air under
the presumption of n̂air ¼ 1 become:

r̂slab xð Þ ¼ n̂� 1
n̂þ 1

���� ����þ 4n̂ n̂� 1j j= n̂þ 1ð Þ3
h i

exp �i2n̂x‘=c½ �
1� n̂� 1ð Þ= n̂þ 1ð Þ½ �2exp �i2n̂x‘=c½ � ; ð12:66Þ

t̂slab xð Þ ¼
4n̂= n̂þ 1ð Þ2
h i

exp �i n̂� 1ð Þx‘=c½ �
1� n̂� 1ð Þ= n̂þ 1ð Þ½ �2exp �i2n̂x‘=c½ � ; ð12:67Þ

with a conversion: ss1ass1a ¼ 1� qsa1ð Þ 1� qsa2ð Þ ¼ 2n12n2= n1 þ n2ð Þ n2 þ n1ð Þ:
Here the pulse waveform measurements are presumed to be made versus a reference
sample in reflection and air in transmission, aiding the index n and extinction j plus
absorption coefficients a(x) ¼ 2jxx/v ¼ 2njxx/c.
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12.4.2 Coherent Time-Domain Measurements Via Pulse
Delays

Time-domain spectroscopy of far-infrared spectra has been originated using fre-
quency conversion and optical rectification of pico- and femto-second coherent
laser pulses [12.187–12.189]. The optical beating method, leading to a frequency
conversion into a terahertz spectrum, utilizes FTIR measurements (see Sect. 12.1)
via a Michelson or Fabry-Perot interferometer [12.188]. The coherent time-delay
methodology relies on interlacing of two light pulses, one interacting with an object
of interest and another delayed, while measuring object dispersive properties as
distortions and broadening of an original pulse. Reflectance spectrum q̂ xð Þ could
be obtained via a reference object of the known properties q̂0 and ê0[12.189]:

q̂ xð Þ ¼ q̂ 0 xð Þ
Zþ1

�1
I tð Þ=I 0 tð Þ½ �exp ixtð Þdt;

q̂ 0ðxÞ ¼
cosui �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê02 xð Þ=e1 � sin2 ui

q
cosui þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ê02 xð Þ=e1 � sin2 ui

q ;

ð12:68Þ

where q̂0 xð Þ is the reference reflectance, uiis the angle of incidence, and indices 1,
2 relate to the propagating and reflecting media with complex dielectric constant ê
computed by the inversion:

ê2 xð Þ
e1

¼ sin2 ui þ cos2 ui
1� q̂ xð Þ
1þ q̂ xð Þ
���� ����2: ð12:69Þ

With a multi-quantum-well superlattice slab of thickness ‘, at front and back
surface interfaces of reflectance q̂12; q̂23, numerical fitting was used to obtain index
n̂2 from reflectivity q̂s xð Þ [12.189]:

q̂s xð Þ ¼ q̂12 þ q̂23exp i2‘
ffiffiffiffi
e2

p
cosu2

� �
1þ q̂12q̂23exp i2‘

ffiffiffiffi
e2

p
cosu2

� � : ð12:70Þ

Another approach to generating terahertz radiation by optical excitation relies on
a Hertzian dipole being a fast dipole with dimensions much smaller than the
radiating wavelengths [12.190]. A common setting for emission and delay-line
detection of terahertz radiation is seen in Fig. 12.42 [12.191, 12.192]. A short
femto- or picosecond pulse irradiates a silicon-on-sapphire dipole-emitting bipolar
antenna, which excites a fast transient resulting in terahertz light source 1. Similar
assembly 2 serves as the detector of a terahertz beam collimated to interact with
Sample by Parabolic mirrors. The laser detection pulse is delayed via the excitation
one to enable the time-domain spectroscopy at terahertz frequencies.
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In a variation of Fig. 12.42 system at two extra grating beamsplitters for
pump-probe studies of samples in reflected light the relative phase angle H in
reflection was measured at a 1-THz frequency with a 10-mrad sensitivity [12.200].
For these measurements a Drude-Lorentz model of conductivity [12.199], identi-
fying complex dielectric permittivity ê as a sum of intra-band and inter-band
functions was used:

r̂ðxÞ ¼ jrjexpði xtÞ ¼ nðxÞþ ijðxÞ � 1
nðxÞþ ijðxÞþ 1

;

ê ¼ ecore þ 4pi
x

Ne2sd
m 1� ixsdð Þ ¼ e1 þ ie2 ¼ n̂1 þ iĵ2ð Þ2; ð12:71Þ

ê ¼ eþ i 4pr=x ¼ 4pi=xð Þr̂;
r̂ ¼ rþ ex=4pi; e1 ¼ n̂2 � ĵ2; e2 ¼ 2n̂ĵ;

ð12:72Þ

where ecore relates to sample core (inter-band) carriers and Ne2 to its intra-band free
electron carriers (see Eqs. (12.45)–(12.50)) for designations). These equations may
also be applied to testing conducting wafers and dopants [12.200].

In the systems like one of Fig. 5.17 (see Chap. 5) designed for simultaneous
reflectance and transmittance studies at normal incidence while omitting beam-
splitters, measuring the amplitude reflectance versus an ideal reference sample as of
pure gold permits inverting Eq. (12.71) to:

nðxÞ ¼ 1� r2ðxÞ
1þ r2ðxÞ � 2 rj jðxÞ cosHðxÞ ; ð12:73Þ

aðxÞ ¼ 2x
c

2rðxÞ sinHðxÞ
1þ r2ðxÞ � 2 rj jðxÞ cosHðxÞ ; ð12:74Þ

for refractive index n(x) and absorption coefficient a(x) ¼ j(x)2x/v versus fre-
quency, assuming nair ≅ 1.0. In that normal-reflectance time-of-flight setting the
system is sensitive to a longitudinal sample displacements Δy, causing a phase error
ΔH ¼ 2nxxΔy/c and likely n(x), a(x) errors [5.30]. At r(x)!1, H(x)!0, mea-
surements of a(x) could reach a few decades in dynamic range [12.201].
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Fig. 12.42 Laser excitation
and detection of terahertz
radiation
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At strictly transmission studies of conductive materials having notably high
reflectivity, multiple reflections result in exponentially declining echoes in
time-domain spectra, overlapping for thin while separating for sufficiently thick
samples. From a standpoint of amplitude transmission the propagation process for a
slab of thickness ‘ sandwiched between windows in air can be seen as:

EsðxÞ� t1�sðxÞtsðxÞts�2ðxÞMRðxÞEðxÞ;
Eref ðxÞ� t1�sðxÞtsðxÞts�2ðxÞEðxÞ:

ð12:75Þ

Here MR is the multiple reflection factor; indices s, ref, 1, 2 are for the sample, the
reference, front, and back window [12.202]. The complex relative amplitude
transmittance tsðxÞ ¼ Es=Eref (see Eq. (12.67)) becomes:

t̂s xð Þ ¼ 2n̂s n̂1 þ n̂2ð Þ
n̂1 þ n̂sð Þ n̂s þ n̂2ð Þ

exp �i n̂s � n̂airð Þx‘=c½ �
1� n̂s � n̂1

n̂s þ n̂1

���� ���� n̂s � n̂2
n̂s þ n̂2

���� ����exp �i2n̂sx‘=c½ �
: ð12:76Þ

Finding a solution to Eq. (12.76) which presumes no multiple reflections in two
windows is challenging, but for thick samples at separated echoes it could be
closely approximated if taking measurements of terahertz pulses transmitted
directly plus at least of two echoes [12.202, 12.203].

If multiple reflections are neglected, while sample amplitude transmittance is
approximated as proportional to 4n̂cn̂d= n̂c þ n̂dj j2 (Eqs. (12.56, 12.67)) multiplied
by the complex response of the slab material and functions of an actual measure-
ment system, various approximation errors affect the results depending not only on
a physical model of propagation, the angle of incidence and multiple reflections, but
also on data extraction, time-frequency deconvolution, etc. [12.204]. When per-
forming the Fourier deconvolution of spectra to extract material parameters mea-
sured, the sample thickness is expected to be precisely known, validating the
exponential dependencies for the absorption coefficient and the phase delay. Since
the accuracy of thickness determination directly contributes to errors of parameter
measurements, a way to perform the analysis without knowledge of thickness is to
rely on multiple-reflection echoes being measured in series [12.205].

A way of resolving ambiguity of identifying a unique n(x), j(x) set via a
numeric trials is in adding samples, and not varying angles of incidence or using
bidirectional tests [12.206–12.210]. The measurement complexity multiplies, as
various pairs of multiple reflectors add up for every extra sample (see Sect. 3.3.3 for
polarization-interference contribution), but enables singularity.

At even more intricacy of adding a collinear difference-frequency generation
converter based on a tunable parametric oscillator concurrent studies of n(x) and
a(x) could be enabled [12.211]. Due to its high nonlinearity, 4-dimethil-tosulate
(DUST) crystal was used to generate wide-band THz light via two pump wave-
lengths k1, k2 for a shape of THz spectrum from the difference-frequency process
revealing the frequency spectrums of n(x) and a(x), while knowing k1, k2 and
Δk ¼ k1 − k2.
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The system of Fig. 12.43 illustrates a concept of direct simultaneous terahertz
measurements of transmittance and reflectance while using, instead of a transceiver
in Fig. 5.30, a beamsplitter and a second detector, letting 50% of terahertz emission
to be lost while gaining confidence [12.212]. The added reflection-path silicon
wafer beamsplitter BS2 redirects terahertz radiation from Sample to detector 1 and
detector 2 sees the transmitted part. The rest of the system is conceptually alike one
of Fig. 12.42, with extra elements supporting the generation and detection of ter-
ahertz light. An alternative dual reflection-transmission study relates to sequential
insertions of beamsplitter and/or mirror pairs guiding either a transmitted or
reflected by sample beam onto one detector [12.214], while deploying broadband
THz radiation from laser-induced filaments in air [12.213].

A time-domain terahertz measurement is effectively an optically-gated process
with a pump pulse serving as an opening gate for the emitter and a delayed pulse
becoming the detector gate, enabling many applications including terahertz imaging
[12.115]. A similar pump-probe process with electro-optic sampling permits
coherent studies at high frequencies via femtosecond probes [12.116]. A thin, such
as 30-lm-thick ZnTe sensor serves as a detector of the pump and terahertz probe
pulses for the electro-optic modulation creating Pockels effect sensed with a
quarter-wave plate and Wollaston polarizer by two balanced photodetectors, as the
terahertz beam modulates the copropagating pump one. The concept provides an
alternative to photoconductive antennas enhancing the resolution at compatible
sensitivity, especially toward higher frequencies [12.117].

While electro-optic sampling relies on rotation of polarization vector of a pump
pulse, being modulated by a terahertz probe in ZnTe sensor and necessitating
polarization-sensitive detection, quasi-phase matched crystals with nonlinear opti-
cal susceptibility can create THz-induced phase and amplitude changes, enabling
direct energy measurements [12.118]. The probe-phase method retains the sensi-
tivity advantage and probe-energy one gains its sensitivity at higher frequencies.
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Fig. 12.43 Beamsplitter based setting for reflection-transmission terahertz studies
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Adding spectral filtering of an electro-optic probe decreases shot noise of terahertz
detection and its spectral depletion, while also extending the detection bandwidth
into IR frequencies [12.119].

12.4.3 Frequency-Domain Photomixing Terahertz
Spectroscopy

As time-domain techniques offer advantages of instantaneous spectrally-broad
measurements in a single pulse, continuous-wave narrow linewidth lasers enable
optical heterodyne conversion or photomixing for both coherent detection as well as
generation of terahertz radiation [12.221–12.226]. The generation is enabled via
electron-hole pairs instigated by difference-frequency radiation absorbed in
low-temperature grown epitaxial layers of GaAs or InGaAs for photomixed
cw-pump lasers. Two lasers irradiate a short gap between GaAs surface electrodes
stimulating the difference frequency bound current that enables terahertz emission
in a complimentary antenna [12.221]. The faster the process, the shorter the pho-
toconductive lifetime in GaAs, the broader spectrum of a GHz or THz emission is
accomplished [12.223]. Using distributed-Bragg-reflector (DBR) diode lasers with
resonant optical feedback allows stabilizing laser center frequencies and narrowing
the heterodyning linewidths.

Figure 12.44 depicts the concept of resonant frequency-difference generation for
terahertz light. The diode lasers 1, 2 are paired with confocal external resonators
Rz1, Rz2 for resonant-wavelength feedback via piezoelectric transducers PZT1,
tuning each inter-mirror distance to a desired wavelength, being phase optimized by
transducers PZT2 while reflected beams are blocked by apertures A1, A2 [12.225].
The external resonators permit to narrow the diode-laser linewidths and stabilize the
outputs. Both outbound beams focused by objectives O1, O2 are merged by
beamsplitters BS1-2 and mirror-splitter pair M-BS via optical isolator ISO on THz
photomixer – a low-temperature grown GaAs wafer, enabling coherent difference-
frequency generation of terahertz radiation. The subsequent measurements of
absorption spectrum at a 313-GHz conversion frequency made for acetonitrile
(CH3CN) in gas Cell by InSb bolometer D and spectrum analyzer SA were at
*1 � 10−4 Hz1/2 detection limit [12.223].
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For the difference-frequency mixing, as for two single-frequency laser beams
with intensities I1, I2 at close frequencies m1, m2 – overlapping each other onto a
photoconductive antenna such as of a low-temperature grown GaAs, the instant
power IR on the photomixer is modulated as [12.221]:

IR ¼ I1;2 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
mI1I2

p
cos 2p m2 � m1ð Þtþ cos2p m1 þ m2ð Þt½ �

� I1;2 þ 2
ffiffiffiffiffiffiffiffiffiffiffi
mI1I2

p
cos 2p m2 � m1j jt; ð12:77Þ

where I1,2 is the combined optical power of two beams. The approximation in
Eq. (12.77) is taken at close to each other frequencies for the difference generating
terahertz emission but sum to be high enough to make a negligible modulation
contribution. If a bias voltage is applied, the time-dependent mixer conductance
creates current JR, modulated at the difference frequency [12.222]:

JR ¼ J0 1þ 2
ffiffiffiffiffiffiffiffiffiffiffi
mI1I2

p
sin xtþuð Þ= I1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þx2s2

p� �h i
; ð12:78Þ

where J0 is the dc current; s, u is the carrier photoconductive lifetime and added
phase shift, and x ¼ 2p m2 � m1j j; enabling modulated radiation at microwave or
terahertz frequency x as a result. If two photomixers are coupled together as a
terahertz transceiver, photoconductive sampling in frequency domain enables
narrow-linewidth homodyne detection to enhance resolution [12.224].

The frequency-domain coherent terahertz measurements are performed similarly
to ones in time-domain (Fig. 12.45) by adding photomixing and synchronous-
detection capabilities [12.225]. In the setting shown, a sufficiently broad emission
of diode laser DL is enabled using its closely spaced wavelengths k1–2 tuned via
two resonators combining diffraction grating DG with mirrors M1, M2 [12.226].
Both selected wavelengths were focused on log-periodic terahertz antenna while
monitoring the selections via optical spectrum analyzer SA with 0.5 nm resolution,
supported by interferometer FP at 10 GHz free-spectral range and 50 MHz reso-
lution. Modulator MD and silicon bolometer B cooled to 4 K with Lock-in
Amplifier were used for studies of Sample terahertz transmission [12.226].
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Fig. 12.45 Photomixing terahertz spectroscopy via dual-frequency laser
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Multifrequency-heterodyning [12.170, 12.127] can be attained via terahertz
frequency combs, one for terahertz light generated by a femtosecond laser inducing
the photoconductive antenna, being time gated with a second comb lightly detuned
from the original or both inducing optically rectified IR-THz beams enabling
Fourier-transform spectroscopy of no moving parts (paragraph 12.1). Figure 12.46
schematically depicts the concept of multifrequency-comb heterodyning [12.228].
Two quantum-cascade lasers (QCL) integrated into low-dispersion cavities gener-
ating terahertz frequency combs via cavities-engineered nonlinearities were lens
coupled and kept in enclosure 1 at 36K temperature. Each comb spectrum extended
from *250 GHz to 2.8 THz. Mirror M and beamsplitters BS were used to create
Sample and Reference paths for balanced detectors 2, 3 – superconducting
hot-electron bolometer and Schottky-mixer in signal and reference channels,
respectively, with the latter being deployed to account for nonlinearities of the
former. Since QCL lasers were operating in pulsed biasing modes to limit thermal
constraints, phase and timing corrections were used to recover multiheterodyne
lines from chirping instabilities [12.228].

Unifying the time- and frequency-domain approaches, a single pulse
electro-optic sampling can provide an instant alternative via terahertz frequency
modulation of the probe pulse [12.229, 12.230]. When using a linearly-chirped
optical probe a temporal waveform of the copropagating terahertz beam is encoded
into the frequency spectrum of probe pulse and could be decoded by a spectrometer.
A cross-coupled pair of diffraction gratings imaged by cylindrical lenses enabled
frequency chirping of a probe beam to 20 ps and spatially resolving terahertz
radiation in a CCD spectrometer with a 2100 lines/mm holographic grating while
merging pump-probe pulses by a time-variable delay line [12.229]. For the
single-pulse technique via a reflective stair-step echelon grating of 30-lm wide,
5-lm tall gold-coated steps, at 33-fs time delay between pulses and 17-ps time
window, a 100-fs time resolution limited by 100-lm spatial resolution was reached
[12.230].

Sample path

1

2

Reference path

3

M

BS

BS

BS

Fig. 12.46 Multifrequency-comb terahertz heterodyning

12.4 Time- and Frequency-Domain Terahertz Spectroscopy 717



References

Preface

0.1. P. Bouger, Traité d’Optique sur la Gradation de la Lumière, Académie Royale des
Sciences, A. Paris, MDCCLX (1760)—see also: P. Bouger, Optical tractat on grading
light, with commentaries by A.A. Gershun, translated from French to Russian by M.A.
Tosltoy and P.P. Pheophilov under editorship of A.A. Gershun (Academy of Sciences
of USSR, Leningrad, 1950)

0.2. J.H. Lambert, Photometria sive de mensura et gradibus luminus, colorum et umbrae
(Klett, Augsburg, 1760)

0.3. A.J. Fresnel, Oevres Complètes, vol. 10 (Paris, 1866), pp. 640–648
0.4. C. Fabry, Introduction Générale à la Photométrie, Editions de la revue d’optique

théoretique et instrumentale (Paris, 1927)
0.5. A.A. Gersun, Svetovoe Pole (GTTI, Moscow, 1936) (The Light Field, translated by

P. Moon, G. Timoshenko, J. Math. Phys. 19, 51, 1939)
0.6. J. Strong, Procedures in Experimental Physics (Prentice-Hall, Englewood Cliffs, 1942)
0.7. J.W.T. Walsh, Photometry, 3rd edn. (Constable, London, 1958; Dover, New York,

1965)
0.8. G. Bauer, Strahlungsmessung im optichen Spektralbereich (Vieeweg, Braunschweig,

1962) (Measurements of Optical Radiation, translated by K.S. Ankersmit, Focal Press,
New York, 1965)

0.9. P.M. Tikhodeev, Light Measurements (Photometria) (Gosenergoizdat, Moscow, 1962)
0.10. A.A. Wolkenstein, Visual Photometry of Low Luminance (Energia, Moscow, 1965)
0.11. R.A. Sapoznikov, Theoretical Photometry (Energia, Moscow, 1967)
0.12. M.M. Gurevich, Introduction to Photometry (Energia, Leningrad, 1968; 2nd edn.,

1983)
0.13. R.A. Smith, F.E. Jones, R.P. Chasmar, The Detection and Measurement of Infrared

Radiation, 2nd edn. (Clarendon Press, Oxford, 1968)
0.14. H.A.A. Keitz, Light Calculations and Measurements, 2nd edn. (St. Martins Press,

New York, 1971)
0.15. A. Stimson, Photometry and Radiometry for Engineers (Wiley, New York, 1974)
0.16. A.A. Wolkenstein, E.V. Kuvaldin, Photoelectric Pulsed Photometry: Theory, Methods,

and Instruments (Mashinostroenie, Leningrad, 1975)
0.17. C.L. Wyatt, Radiometric Calibration: Theory and Methods (Academic Press, Orlando,

1978)
0.18. F. Grum, R.J. Becherer,Optical Radiation Measurements, Radiometry, vol. 1 (Academic

Press, New York, 1979)

© Springer Nature Singapore Pte Ltd. 2019
M. Bukshtab, Photometry, Radiometry, and Measurements
of Optical Losses, Springer Series in Optical Sciences 209,
https://doi.org/10.1007/978-981-10-7745-6

719



0.19. A.F. Kotyuk (ed.), Measurements of Energy Extents of Laser Radiation (Radio-Sviaz,
Moscow, 1981); A.F. Kotyuk, B.M. Stepanov (eds.), Measurements of Spectral-
Frequency and Correlation Parameters of Laser Radiation (Radio-Sviaz, Moscow,
1982)

0.20. R.W. Boyd, Radiometry and the Detection of Optical Radiation (Wiley, New York,
1983)

0.21. M.A. Bukhshtab, Measurements of Low Optical Losses (Energoatomizdat, Leningrad,
1988)

0.22. F. Hengsberger (ed.), Absolute Radiometry: Electrically Calibrated Thermal Detectors
of Optical Radiation (Academic Press, New York, 1989)

0.23. W.J. Smith, Modern Optical Engineering, 2nd edn. (McGraw-Hill, New York, 1990)
0.24. R. Frieden, Probability, Statistical Optics and Data Testing: a Problem Solving

Approach (Springer, New York, 1991)
0.25. Impulsnaya Photometria: Publications of Conferences for Pulsed Photometry and

Radiometry, vols. 1–9 (Mashinostroenie, Leningrad, 1969–1986)
0.26. A.T. Friberg (ed.), Selected Papers on Coherence and Radiometry (SPIE Optical

Engineering Press, vol. MS 69, Bellingham, 1993)
0.27. H.P. Baltes (ed.), Inverse Source Problems in Optics (Springer, Berlin, New York,

1978)
0.28. Commission International de l’Éclairage, The Basis of Physical Photometry, 2nd edn.,

Publication No. 18.2 (Central Bureau of the CIE, Vienna, 1983)
0.29. C.L. Wyatt, Radiometric System Design (Macmillan, New York, 1987)
0.30. D.P. DeWitt, G.D. Nutter, Theory and Practice of Radiation Thermometry (Wiley,

New York, 1988)
0.31. L.B. Wolff, S.A. Shafer, G.E. Healey (eds.), Physics-Based Vision: Principles and

Practice, Radiometry (Jones and Bartlett, Boston, 1992)
0.32. W.R. McCluney, Introduction to Radiometry and Photometry (Artech House,

Norwood, 1994)
0.33. M. Bass (ed.), Handbook of Optics, Volume I: Fundamentals, Techniques, and Design;

Volume II: Devices, Measurements, and Properties, 22nd edn. (McGraw-Hill, New
York, 1995)

0.34. E. Wolf (ed.), Progress in Optics, vol. XXXVI (Elsevier, Amsterdam, 1996)
0.35. E.L. Dereniak, G.D. Boreman, Infrared Detectors and Systems (Wiley, New York,

1996)
0.36. C. DeCusatis (ed.), Handbook of Applied Photometry (AIP Press, Woodbury, 1997)
0.37. W. L. Wolfe, Introduction to Radiometry, Tutorials in Optical Engineering, vol. TT29

(SPIE, 1998)
0.38. K.J. Gasvic, Optical Metrology, 3rd edn. (Wiley, New York, 2002)
0.39. G.H. Rieke, Detection of Light: From the Ultraviolet to the Submillimeter (Cambridge

University Press, Cambridge, 1994; 2nd edn., 2003)
0.40. A.C. Parr, R.U. Datla, J.L. Gardner (eds.), Optical Radiometry: Experimental Methods

in the Physical Sciences (Academic Press, San Diego, 2005)
0.41. A. Valberg, Light Vision Color (Wiley, Chichester, 2005)
0.42. R.G.W. Brown, J.P. Dakin (eds.), Handbook of Optoelectronics (Taylor & Francis,

Abingdon, 2006)
0.43. H. Gross (ed.), Handbook of Optical Systems, Volume 1, Fundamentals of Technical

Optics (Wiley, New York, 2005); H. Gross, F. Blechinger, B. Achtner (ed.), Handbook
of Optical Systems, Volume 4, Survey of Optical Instruments (Wiley, New York, 2008)

0.44. J. Laane (ed.), Frontiers of Molecular Spectroscopy (Amsterdam, 2008)
0.45. J.M. Palmer, B.G. Grant, The Art of Radiometry (SPIE Press, Bellingham, 2009)
0.46. E. Hecht, Optics, 5th edn. (Pearson, London, 2016)
0.47. W. Demtröder, Laser Spectroscopy 1, Basic Principles, 4th edn. (Springer, Berlin,

Heidelberg, 2014)

720 References



0.48. W.J. Smith, Modern Optical Engineering, The Design of Optical Systems
(McGraw-Hill, New York, 2000)

0.49. A.V. Arecchi, T. Messadi, R.J. Koshel, Field Guide to Illumination (SPIE Press,
Bellingham, 2007)

0.50. M. Bukshtab, Applied Photometry, Radiometry, and Measurements of Optical Losses,
1st edn. (Springer, Dordrecht, 2012)

Chapter 1

1.1. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation,
Interference and Diffraction of Light, 6th edn. (Pergamon, Oxford, 1984; 7th edn.,
Cambridge University Press, Cambridge, 2003)

1.2. G.V. Rosenberg, The light ray: contribution to the theory of the light field. Sov. Phys.
Usp. 20(1), 55–79 (1977)

1.3. A. Sommerfeld, Optics (Academic Press, New York, 1954)
1.4. A.A. Gershun, Publications on Photometry and Light Measurements: Selected Papers

on Photometry and Illumination Engineering (Gostekhizdat, Moscow, 1958)
1.5. Principles of Light Measurements, CIE Publication No. 18, 1970; International Lighting

Vocabulary, CIE Publication No. 17, 1970; International Electrotechnical Vocabulary,
Chapter 845, Lightning, 1982

1.6. R.W. Ditchburn, Light (Wiley, New York, 1963)
1.7. F.A. Jenkins, H.E. White, Fundamentals of Optics, 4th edn. (McGraw-Hill, New York,

1976)
1.8. G.S. Landsberg, Optics (Nauka, Moscow, 1976)
1.9. G.G. Stokes, On the intensity of the light reflected from and transmitted through a pile

of plates. Proc. R. Soc. Lond. 11, 545–556 (1862)
1.10. Lord Rayleigh, On the reflection of light from regularly stratified medium. Proc. R. Soc.

A. 93, 565–577 (1917)
1.11. T. Smith, The treatment of reflection as a special case of refraction. Trans. Opt. Soc. 27,

312–323 (1925)
1.12. M. Gurevich, Über eine Rationelle Klassifikation der Lichtenstreuenden Medien. Phys.

Z 31, 753 (1930)
1.13. F. Benford, Radiation in a diffusing medium. J. Opt. Soc. Am. 36(9), 524–554 (1946)
1.14. L.B. Tuckerman, On the intensity of the light reflected from or transmitted through a

pile of plates. J. Opt. Soc. Am. 37(10), 818–825 (1947)
1.15. P. Kubelka, New contributions to the optics of intensely light scattering materials. Part

1, J. Opt. Soc. Am. 38(5), 448–457 (1948); errata 38, 1067
1.16. F. Abelés, Recherches sur la propagation des ondes électromagn’etiques sinuso€ıdales

dans les milieux stratifiés. Applications aux couches minces, Ann. Phys. (Paris) 5,
596–640 (1950)

1.17. A.F. Huxley, A theoretical treatment of the reflexion of light by multilayer structures.
J. Exp. Biol. 48, 227–245 (1968)

1.18. H.G. Olf, Stokes’s pile of plates revisited. J. Opt. Soc. Am. A 5(10), 1620–1625 (1988)
1.19. A. Perot, C. Fabry, Méthode interfirentielle pour la mesure des longeurs d’onde dans le

spectre solaire. C. R. Acad. Sci. 131, 700 (1900)
1.20. A. Kastler, Atomes a I’Interieur d’un Interferometre Perot-Fabry. Appl. Opt. 1(1),

17–24 (1962)
1.21. F. Gires, P. Tournois, Interféromètre utilisable pour la compression d’impulsions

lumineuses modulées en fréquence. C. R. Acad. Sci. 258(6), 6112–6115 (1964)

References 721



1.22. F.E. Nicodemus, Directional reflectance and emissivity of an opaque surface. Appl.
Opt. 4(7), 767–773 (1965)

1.23. R.C. Jones, Terminology in photometry and radiometry. J. Opt. Soc. Am. 53(11),
1314–1315 (1963)

1.24. D.B. Judd, Terms, definitions, and symbols in reflectometry. J. Opt. Soc. Am. 57(4),
445–452 (1967)

1.25. W.H. Steel, Luminosity, throughput, or etendue? Appl. Opt. 13(4), 704–705 (1974)

Chapter 2

2.1. H.G. Heard, Laser Parameter Measurements Handbook (Wiley, New York, 1968)
2.2. S.R. Gunn, Calorimetric measurements of laser energy and power. J. Phys. E 6(2),

105–113 (1973)
2.3. R. Ulbricht, Die Bestimmung der mittleren räumlichen Lichtintensität durch nur eine

Messung. Electrotech. Z. 21, 595–597 (1900)
2.4. A.C. Hardy, O.W. Pineo, The errors due to the finite size of holes and sample in

integrating spheres. J. Opt. Soc. Am. 21(8), 504–506 (1931)
2.5. F. Rotter, View into the integrating sphere through the observation window. Appl. Opt.

10(12), 2629–2638 (1971)
2.6. Y. Ohno, Integrating sphere simulation: application to total flux scale realization. Appl.

Opt. 33(13), 2637–2647 (1994)
2.7. Y. Ohno, Realization of NIST luminous flux scale using an integrating sphere with an

external source, in Proceedings of the 23nd Session of CIE (Commission Internationale
de l’Éclairage), vol. 1, No. 1, Division 2, 1995, pp. 87–90

2.8. M.A. Bukhshtab, Method of determination of small scattering coefficients. J. Appl.
Spectrosc. 46(5), 523–528 (1987)

2.9. A.A. Wolkenstein, D.I. Andreev, B.I. Isaenko, Optical method of determining the light
intensity, radiance and luminous flux. J. Tech. Phys. 22(12), 2026–2037 (1952)

2.10. D. Beaglehole, A sensitive single beam device for continuous reflectance or
transmittance measurements. Appl. Opt. 7(11), 2218–2220 (1968)

2.11. G.E. Pride, A reflectance measuring attachment for the Beckman spectrophotometer.
J. Opt. Soc. Am. 36(9), 510–512 (1946)

2.12. R.F. Weeks, Simple wide range specular reflectometer. J. Opt. Soc. Am. 48(11),
775–777 (1958)

2.13. J.E. Shaw, W.R. Blevin, Instrument for the absolute measurement of direct spectral
reflectances at normal incidence. J. Opt. Soc. Am. 54(3), 334–336 (1964)

2.14. J.T. Gier, R.V. Dunkle, J.T. Bevans, Measurement of absolute spectral reflectivity from
1.0 to 15 microns. J. Opt. Soc. Am. 44(7), 558–562 (1954)

2.15. J.S. Preston, G.W. Gordon-Smith, A new determination of luminance factor of
magnesium oxide. Proc. Phys. Soc. B 65, 76 (1952)

2.16. J.C. Maxwell, On the theory of compound colours, and the relations of the colours of
the spectrum. Proc. R. Soc. Lond. 10, 404–409 (1859–1860)

2.17. H.E. Eves, A proposed standard method of colorimetry. J. Opt. Soc. Am. 5(6), 469–478
(1921)

2.18. L.T. Troland, Report of committee on colorimetry for 1920–1921. J. Opt. Soc. Am.
6(8), 527–596 (1922)

2.19. I.G. Priest, The computation of colorimetric purity. Part I, J. Opt. Soc. Am. 9(5),
503–520 (1924); Part II, J. Opt. Soc. Am. 13(2), 123–132 (1926)

2.20. D.B. Judd, A general formula for the computation of colorimetric purity. J. Opt. Soc.
Am. 21(11), 729–750 (1931)

722 References



2.21. D.B. Judd, Chromaticity sensitivity to stimulus differences. J. Opt. Soc. Am. 22(2),
72–108 (1932)

2.22. D.B. Judd, The 1931 I. C. I. Standard observer and coordinate system for colorimetry.
J. Opt. Soc. Am. 23(10), 359–374 (1933)

2.23. A.C. Hardy, Method of and apparatus for comparing and recording of radian energy.
U.S. Patent 1,806,198; 19 May 1931

2.24. E.Q. Adams, X-Z planes in the 1931 I. C. I. System of colorimetry. J. Opt. Soc. Am.
32(3), 168–173 (1942)

2.25. R.S. Hunter, Photoelectric tristimulus colorimetry with three filters. J. Opt. Soc. Am.
32(9), 509–538 (1942)

2.26. Committee on colorimetry: quantitative data and methods for colorimetry. J. Opt. Soc.
Am. 44(11), 633–688 (1944)

2.27. T. Young, Lectures on Natural Philosophy, vol. 2 (Johnson, London, 1807)
2.28. V.C. Smith, J. Pokorny, Spectral sensitivity of the foveal cone photopigments between

400 and 500 nm. Vis. Res. 15, 161–171 (1975)
2.29. R.M. Boynton, Theory of color vision. J. Opt. Soc. Am. 50(10), 929–944 (1960)
2.30. R.M. Boynton, Human Color Vision, Holt (Rinehart & Winston, New York, 1979)
2.31. R.M. Boynton, History and current status of a physiologically based system of

photometry and colorimetry. J. Opt. Soc. Am. A 13(8), 1609–1621 (1996)
2.32. G. Golz, D.I.A. MacLeod, Colorimetry for CRT displays. J. Opt. Soc. Am. A 20(5),

769–781 (2003)
2.33. CIE Technical Report 15:2004, Colorimetry, 3rd edn. (Vienna, 2004)
2.34. D.B. Judd, G. Wyszecki, Color in Business, Science, and Industry, 3rd edn. (Wiley,

New York, 1975)
2.35. G. Wyszecki, W. Stiles, Color Science: Concepts and Methods, Quantitative Data and

Formulae, 2nd edn. (Wiley, New York, 2000)
2.36. D. Malacara, Color Vision and Colorimetry: Theory and Applications (SPIE, 2004)
2.37. A.R. Robertson, W.D. Wright, International comparison of working standards for

colorimetry. J. Opt. Soc. Am. 55(6), 694–706 (1965)
2.38. J.S. Christie, G. McConnell, A new flexible spectrophotometer for color measurements,

in “Color 77”, the Third Congress of the International Colour Association, ed. by
F.W. Billmeyer, G. Wyszecki (1978); paper A38, p. 309

2.39. J. Campos, A. Pons, A. Corrons, Description of a precision colorimeter. J. Phys. E. 20,
882–884 (1987)

2.40. I. Nimeroff, Propagation of errors in spectrophotometric colorimetry. J. Opt. Soc. Am.
43(6), 531–533 (1953); Propagation of errors in tristimulus colorimetry. J. Opt. Soc.
Am. 47(8), 697–702 (1957)

2.41. L.D. Taylor, D. Slocum, Method and spectrophotometer for exchanging color
measurement and diagnostic information over a network, US Patent Appl.
No. 2004/0233429 A1, 25 Nov 2004

2.42. Y. Ohno, J. Hardis, Four-color matrix method for correction of tristimulus colorimeters,
Parts 1, 2, in Proceedings of 5th, 6th IS&T Color Imaging Conferences (1997),
pp. 301–305; (1998), pp. 65–68

2.43. G. Eppeldauer, Spectral response based calibration method of tristimulus colorimeters.
J. Res. Natl. Inst. Stand. Technol. 103(6), 615–619 (1998)

2.44. Y. Ohno, CIE fundamentals for color measurements, in IS&T NIP16 Conference,
Vancouver, 2000

2.45. M.A. Bukshtab, Concept of absolute color measurements and absolute color
spectrophotometry, 2007

2.46. A.H. Taylor, The measurement of the diffuse reflection factors and a new absolute
reflectometer. J. Opt. Soc. Am. 4(1), 9–23 (1920)

2.47. C.H. Sharp, W.F. Little, Measurements of reflection factors. Trans. Illum. Eng. Soc.
15(9), 802 (1920)

References 723



2.48. E. Karrer, The use of the Ulbricht sphere in measuring reflection and transmission.
J. Opt. Soc. Am. 5(1), 96–120 (1921)

2.49. J.A. Jacquez, H.F. Kuppenheim, Theory of integrating sphere. J. Opt. Soc. Am. 45(6),
460–470 (1955)

2.50. B.J. Hisdal, Reflectance of perfect diffuse and specular samples in the integrating
sphere. J. Opt. Soc. Am. 55(9), 1122–1128 (1965); Reflectance of nonperfect surfaces
in the integrating sphere. J. Opt. Soc. Am. 55(10), 1155–1160 (1965)

2.51. D.G. Goebel, Generalized integrating-sphere theory. Appl. Opt. 6(1), 125–128 (1967)
2.52. M.W. Finkel, Integrating sphere theory. Opt. Commun. 2(2), 25–28 (1970)
2.53. H.L. Tardy, Flat-sample and limited-field effects in integrating sphere measurements.

J. Opt. Soc. Am. A 5(2), 241–245 (1988)
2.54. H.L. Tardy, Matrix method for integrating-sphere calculations. J. Opt. Soc. Am. A 8(9),

1411–1418 (1991)
2.55. M.A. Bukshtab, Measurement techniques for high reflectance and low scattering of

laser mirrors, Ph.D. Dissertation, The Vavilov’ State Optical Institute, Leningrad, 1983
2.56. Absolute methods for reflection measurements, CIE Publication TC-2.3, 1979, No. 44
2.57. D.K. Edwards, J.T. Gier, K.E. Nelson, B.D. Roddick, Integrating sphere for imperfectly

diffuse samples. J. Opt. Soc. Am. 51(11), 1279–1285 (1961)
2.58. V.P. Rvachev, M.Yu. Sakhnovskii, Theory and application of an integrating photometer

for the study of objects with arbitrary scattering functions. Opt. Spectrosc. 18(3),
274–278 (1965)

2.59. P.F. O’Brien, Network representation of the integrating sphere. J. Opt. Soc. Am. 45(5),
343–345 (1956)

2.60. M.A. Bukhshtab, Improving the accuracy of absolute measurements in photometric
sphere. Opt. Spectrosc. 54(1), 90–93 (1983)

2.61. M.A. Bukshtab, Spectrally-nonselective method of absolute reflectance measurements,
in Impulsnaya Photometria, vol. 7 (Mashinostroenie, Leningrad, 1981), pp. 22–24

2.62. M.A. Bukhshtab, G.M. Gorodinskii, Photometric sphere having constant ray paths.
J. Opt. Technol. 49(6), 396–397 (1982)

2.63. J.G. Symons, E.A. Christie, M.K. Peck, Integrating sphere for solar transmittance
measurement of planar and nonplanar samples. Appl. Opt. 21(15), 2827–2832 (1982)

2.64. J. Kessel, Transmittance measurements in the integrating sphere. Appl. Opt. 25(16),
2752–2756 (1986)

2.65. A. Roos, C.G. Ribbing, Interpretation of integrating sphere signal output for non-Lambertian
samples. Appl. Opt. 27(18), 3833–3837 (1988)

2.66. A. Roos, Interpretation of integrating sphere signal output for nonideal transmitting
samples. Appl. Opt. 30(4), 468–474 (1991)

2.67. K. Grandin, A. Roos, Evaluation of correction factors for transmittance measurements
in single beam integrating spheres. Appl. Opt. 33(25), 6098–6104 (1994)

2.68. J.W. Pickering, C.J.M. Moes, H.J.C. Sterenborg, S.A. Prahl, M.J.C. van Gemert, Two
integrating spheres with an intervening scattering sample. J. Opt. Soc. Am. A 9(4),
621–631 (1992)

2.69. J.W. Pickering, S.A. Prahl, N. van Wieringen, J.F. Beek, H.J.C.M. Sterenborg, M.J.C.
van Gemert, Double-integrating-sphere system for measuring of optical properties of
tissue. Appl. Opt. 32(4), 399–410 (1993)

2.70. A.H. Taylor, Errors in reflectometry. J. Opt. Soc. Am. 25(2), 51–52 (1935)
2.71. H. Olson, D.A. Pontarelli, Asymmetry of an integrating sphere. Appl. Opt. 3(6),

631–633 (1963)
2.72. W. Budde, Integrating sphere for the photometry of the sky. Appl. Opt. 3(8), 939–941

(1964)
2.73. F.J.J. Clarke, J.A. Compton, Correction methods for integrating sphere measurement of

hemispherical reflectance. Color Res. Appl. 11(4), 253–262 (1986)

724 References



2.74. A. Roos, C.G. Ribbing, M. Bergkvist, Anomalies in integrating sphere measurements
on structured samples. Appl. Opt. 27(18), 3828–3832 (1988)

2.75. C.C. Habeger, Angular radiance variation in an integrating sphere. J. Opt. Soc. Am.
A 11(7), 2130–2136 (1994)

2.76. L. Levi, A screenless integrating sphere. Appl. Opt. 6(6), 1138 (1967)
2.77. H.L. Tardy, Flux concentrators in integrating sphere experiments: potential for

increased detector signal. Appl. Opt. 24(22), 3914–3916 (1985)
2.78. K.A. Snail, L.M. Hanssen, Integrating sphere designs with isotropic throughput. Appl.

Opt. 28(10), 1793–1799 (1989)
2.79. D.B. Chenault, K.A. Snail, L.M. Hanssen, Improved integrating-sphere throughput with

a lens and nonimaging concentrator. Appl. Opt. 34(34), 7959–7964 (1995)
2.80. L.M. Hanssen, Effects of restricting the detector field of view when using integrating

spheres. Appl. Opt. 28(11), 2097–2103 (1989)
2.81. L.M. Hanssen, Effects of non-Lambertian surfaces on integrating sphere measurements.

Appl. Opt. 35(19), 3597–3606 (1996)
2.82. J.E. Clare, Comparison of four analytic methods for the calculation of irradiance in

integrating spheres. J. Opt. Soc. Am. A 15(12), 3086–3096 (1998)
2.83. B.G. Crowther, Computer modeling of integrating spheres. Appl. Opt. 35(30),

5880–5886 (1996)
2.84. M. Szylowski, M. Mossman, D. Barclay, L. Whitehead, Novel fiber-based integrating

sphere for luminous flux measurements. Rev. Sci. Instrum. 77, Article 063102 (2006)
2.85. B. Rizk, Private life of an integrating sphere: the radiant homogeneity of the descent

imager-spectral radiometer calibration sphere. Appl. Opt. 45(13), 2095–2101 (2001)
2.86. A.V. Prokhorov, S.N. Mekhontsev, L. Hanssen, Monte Carlo modeling of an

integrating sphere reflectometer. Appl. Opt. 42(19), 3832–3842 (2003)
2.87. D. Hidović-Rowe, J.E. Rowe, M. Lualdi, Markov models of integrating spheres for

hyperspectral imaging. Appl. Opt. 45(21), 5248–5256 (2006)
2.88. C.K. Gatebe, J.J. Butler, J.W. Cooper, M. Kowalewski, M.D. King, Characterization of

errors in the use of integrating-sphere systems in the calibration of scanning
radiometers. Appl. Opt. 46(31), 7640–7651 (2007)

2.89. R.L. Lucke, Lambertian radiance and transmission of an integrating sphere. Appl. Opt.
46(28), 6966–6970 (2007)

2.90. S. Potvin, J. Genest, Reducing the effect of integrating sphere speckle when
characterizing the instrument line shape of a Fourier-transform hyperspectral imager.
Appl. Opt. 48(30), 5849–5852 (2009)

2.91. R.L. Lucke, J. Grun, C. Manka, S. Nikitin, Specular integrating tube for scattered-light
spectroscopy. Appl. Opt. 49(21), 4063–4066 (2010)

2.92. S. Park, S.-N. Park, D.-H. Lee, Correction of self-screening effect in integrating
sphere-based measurement of total luminous flux of large-area surface-emitting light
sources. Appl. Opt. 49(20), 3831–3839 (2010)

2.93. R. Daniel, R. Almog, Y. Sverdlov, S. Yagurkroll, S. Belkin, Y. Shacham-Diamand,
Development of a quantitative optical biochip based on a double integrating sphere
system that determines absolute photon number in bioluminescent solution: application
to quantum yield scale realization. Appl. Opt. 48(17), 3216–3224 (2009)

2.94. A.M. Nilsson, A. Jonsson, J.C. Jonsson, A. Roos, Method for more accurate
transmittance measurements of low-angle scattering samples using an integrating
sphere with an entry port beam diffuser. Appl. Opt. 50(7), 999–1006 (2011)

2.95. P. Lemaillet, J.-P. Bouchard, D.W. Allen, Development of traceable measurement of
the diffuse optical properties of solid reference standards for biomedical optics at
National Institute of Standards and Technology. Appl. Opt. 54(19), 6118–6127 (2015)

2.96. K. Agatsuma, D. Friedrich, S. Ballmer, G. DeSalvo, S. Sakata, E. Nishida,
S. Kawamura, Precise measurement of laser power using an optomechanical system.
Opt. Express 22(2), 2013–2030 (2014)

References 725



2.97. S.K. Yang, J. Lee, S.-W. Kim, H.-Y. Lee, J.-A. Jeon, I.H. Park, J.-R. Yoon, Y.-S. Baek,
Precision measurement of the photon detection efficiency of silicon photomultipliers
using two integrating spheres. Opt. Express 22(1), 716–726 (2014)

2.98. S. Bellini, R. Bendoula, E. Latrille, J.-M. Rogera, Potential of a spectroscopic
measurement method using adding–doubling to retrieve the bulk optical properties of
dense microalgal media. Appl. Spectrosc. 68(10), 1154–1167 (2014)

2.99. N.P. Belov, V.N. Grisimov, P.V. Odnovorchenko, A.S. Sherstobitova, A.D. Yas’kov,
Irradiance distribution in an integrating sphere with an internal screen. J. Opt. Technol.
83(10), 610–612 (2016)

Chapter 3

3.1. E. Wolf, Coherence and radiometry. J. Opt. Soc. Am. 68(1), 7–17 (1978)
3.2. E. Wolf, Introduction to the theory of coherence and polarization of light (Cambridge

University Press, Cambridge, 2007)
3.3. M.J. Beran, G.B. Parrent Jr., Theory of Partial Coherence (Society of Photo-Optical

Instrumentation Engineers, Bellingham, 1974)
3.4. L. Mandel, E. Wolf, Spectral coherence and the concept of cross-spectral purity. J. Opt.

Soc. Am. 66(6), 529–535 (1976)
3.5. E. Collett, E. Wolf, Is complete spatial coherence necessary for the generation of highly

directional light beams? Opt. Lett. 2(2), 27–29 (1978)
3.6. A. Walther, Radiometry and coherence. J. Opt. Soc. Am. part 1 57(9), 1256–1259

(1967); part 2 63(12), 1622–1623 (1973)
3.7. M.J. Bastiaans, Transport equation for the Wigner distribution function in an

inhomogeneous dispersive medium. Opt. Acta 26(11), 1333–1344 (1979)
3.8. L.A. Apresyan, Yu.A. Kravtsov, Photometry and coherence: wave aspects of the theory

of radiation transport. Sov. Phys. Usp. 27(4), 301–313 (1984)
3.9. L. Mandel, E. Wolf, Coherence properties of fields. Rev. Mod. Opt. 37(4), 231–287

(1965)
3.10. E. Wolf, New theory of radiative energy transfer in free electromagnetic fields. Phys.

Rev. D 13(4), 869–886 (1976)
3.11. E.W. Marchand, E. Wolf, Radiometry with sources of any state of coherence. J. Opt.

Soc. Am. 64(9), 1219–1226 (1974)
3.12. A.T. Friberg, Effects of coherence in radiometry. Opt. Eng. 21(6), 927–936 (1982);

A.T. Friberg, T. Setala, Electromagnetic theory of optical coherence. J. Opt. Soc. Am.
A 33(12), 2431–2442 (2016)

3.13. E. Wolf, New theory of partial coherence in the space-frequency domain. Part I: spectra
and cross spectra of steady-state sources. J. Opt. Soc. Am. 72(3), 343–344 (1982); Part
II: Steady-state fields and higher-order correlations. J. Opt. Soc. Am. A 3(1), 76–85
(1986)

3.14. W.H. Carter, E. Wolf, Coherence properties of Lambertian and non-Lambertian
sources. J. Opt. Soc. Am. 65(9), 1067–1071 (1975)

3.15. W.H. Carter, E. Wolf, Coherence and radiometry with quasi-homogeneous planar
sources. J. Opt. Soc. Am. 67(6), 785–796 (1977)

3.16. R.G. Littlejohn, R. Winston, Correction to classical radiometry. J. Opt. Soc. Am.
A 10(9), 2024–2037 (1993)

3.17. E. Wolf, Radiometric model for propagation of coherence. Opt. Lett. 19(23),
2024–2026 (1994)

3.18. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University
Press, New York, 1995)

3.19. K. Yoshimori, K. Itoh, Interferometry and radiometry. J. Opt. Soc. Am. A 14(12),
3379–3387 (1997)

726 References



3.20. K. Yoshimori, K. Itoh, On the generalized radiance function for a polychromatic field.
J. Opt. Soc. Am. A 15(10), 2786–2787 (1998)

3.21. K. Yoshimori, Radiometry and coherence in a nonstationary optical field. J. Opt. Soc.
Am. A 15(10), 2730–2734 (1998)

3.22. M.A. Alonso, Radiometry and wide-angle wave fields. J. Opt. Soc. Am. A: I. Coherent
fields in two dimensions 18(4), 902–909 (2001); II. Coherent fields in three dimensions
18(4), 910–918 (2001); III. Partial coherence 18(10), 2502–2511 (2001)

3.23. J. Turunen, Space-time coherence of polychromatic propagation-invariant fields. Opt.
Express 16(25), 20283–20294 (2008)

3.24. O.V. Angelsky, S.B. Yermolenko, C.Yu. Zenkova, A.O. Angelskaya, Polarization
manifestations of correlation (intrinsic coherence) of optical fields. Appl. Opt. 47(29),
5492–5499 (2008)

3.25. D.G. Fischer, S.A. Prahl, D.D. Duncan, Monte Carlo modeling of spatial coherence:
free-space diffraction. J. Opt. Soc. Am. A 25(10), 2571–2581 (2008)

3.26. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York,
1965)

3.27. D.C. O’Shea, W.R. Callen, W.T. Rhodes, Introduction to Lasers and their Application
(Addison-Wesley, London, 1976)

3.28. J. Perina, Coherence of Light, 2nd edn. (Reidel Publishing Co., Dordrecht, 1985)
3.29. A.A. Sychev, Study of spectral emittance of solid-state lasers, in Proceedings FIAN,

Nauka, Moscow, 1975, vol. 84, pp. 3–61
3.30. S.W. Director, R.A. Rohrer, Introduction to Systems Theory (McGraw-Hill, New York,

1971)
3.31. I.S. Marshak (ed.), Pulsed Sources of Light (Energia, Moscow, 1978)
3.32. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)
3.33. M.I. Gryaznov, Generalized parameters of pulsed radiation, in Impulsnaya Photometria,

vol. 6 (Mashinostroenie, Leningrad, 1979), pp. 35–41
3.34. J.W. Goodman, Statistical Optics (Wiley, New York, 1985)
3.35. M.A. Bukhshtab, Restricting the interference noise in optical measuring systems. J. Opt.

Technol. 49(11), 677–678 (1982)
3.36. V.K. Nikolaev, Yu.V. Khimichev, About Interference Losses in Transparent Dielectric

Plates, vol. 10 (Electronic Techniques (UKS), Moscow, 1972), pp. 78–82
3.37. M.A. Bukshtab, A.A. Wolkenstein, Interference errors of measurements using laser and

pulsed quasi-monochromatic radiation and methods of their limitation, in Impulsnaya
Photometria, vol. 8 (Mashinostroenie, Leningrad, 1984), pp. 5–15

3.38. D.R. Hall, P.E. Jackson (eds.), The physics and technology of laser resonators
(IOP Publishing (Adam Hilger), Bristol, New York, 1989)

3.39. M.A. Bukshtab, Effects of spectral irregularities of radiation emitted by pulsed lamps in
high-speed spectroradiometry, in Impulsnaya Photometria, vol. 9 (Mashinostroenie,
Leningrad, 1986), pp. 77–84

3.40. J.G. Edwards, Some factors affecting the pumping efficiency of optically pumped lasers.
Appl. Opt. 6(5), 837–843 (1967)

3.41. A. Holmes, Exact theory of retardation plates. J. Opt. Soc. Am. 54(9), 1115–1120
(1964)

3.42. N.G. Theofanous, A.T. Arapoyianni, Effect of multiple reflections on retardation-based
electro-optic measurements. J. Opt. Soc. Am. A 8(11), 1746–1754 (1991)

3.43. M. Bukhshtab, The influence of surface reflections on computation and measurement of
retardance. Meas. Sci. Technol. 6(7), 910–920 (1995); erratum: 7, 1093 (1996)

3.44. E.D. Palik (ed.), Handbook of Optical Constants of Solids, vol. 1 (Academic Press,
New York, 1985)

3.45. M.A. Bukhshtab, G.J. Mizell, Phase retardance and optical extinction symmetry
measurements for some birefringent materials, in Proceedings of SPIE, vol. 1994, paper
No. 12, 1993

References 727



3.46. E. Lommel, Die Beugungserscheinungen einer kreisrunden Oeffnung und eines
kreisrunden Schirmschens theoretisch und experimentell Bearbeitet. Abh. Bayer.
Akad. 15, 233–328 (1885)

3.47. E. Wolf, Light distribution near focus in an error-free diffraction image, in Proceedings
of the Royal Society of London. Series A, vol. 204, pp. 533–548, 1951

3.48. J. Focke, Total illumination in an aberration-free diffraction image. Opt. Acta 3,
161–163 (1956)

3.49. E.W. Marchand, E. Wolf, Boundary diffraction wave in the domain of the
Rayleigh-Kirchoff diffraction theory. J. Opt. Soc. Am. 52(7), 761–767 (1962)

3.50. W.R. Blevin, Diffraction losses in radiometry and photometry. Metrologia 6(4), 39–44
(1970)

3.51. W.H. Steel, M. De, J.A. Bell, Diffraction corrections in radiometry. J. Opt. Soc. Am.
62(9), 1099–1103 (1972)

3.52. L.P. Boivin, Diffraction corrections in radiometry: comparison of two different methods
of calculation. Appl. Opt. 14(8), 2002–2009 (1975)

3.53. L.P. Boivin, Diffraction corrections in the radiometry of extended sources. Appl. Opt.
15(5), 1204–1209 (1976)

3.54. L.P. Boivin, Radiometric errors caused by diffraction from circular apertures: edge
effects. Appl. Opt. 16(2), 377–384 (1976)

3.55. L.P. Boivin, Reduction of diffraction errors in radiometry by means of toothed
apertures. Appl. Opt. 17(20), 3323–3328 (1978)

3.56. E.L. Shirley, R.U. Datla, Optimally toothed apertures for reduced diffraction. J. Res.
Natl. Inst. Stand. Technol. 101(6), 745–753 (1996)

3.57. T. Gravelsaeter, J.J. Stamnes, Diffraction by circular apertures. 1: method of linear
phase and amplitude approximation. Appl. Opt. 21(20), 3644–3651 (1982)

3.58. D.J. Butler, R. Kohler, G.W. Forbes, Diffraction effects in the radiometry of coherent
beams. Appl. Opt. 35(13), 2162–2166 (1996)

3.59. E.L. Shirley, Revised formulas for diffraction effects with point and extended sources.
Appl. Opt. 37(28), 6581–6590 (1998)

3.60. P. Edwards, M. McCall, Diffraction loss in radiometry. Appl. Opt. 42(25), 5024–5032
(2003)

3.61. E.L. Shirley, Diffraction effects on broadband radiation: formulation for computing total
irradiance. Appl. Opt. 43(13), 2609–2620 (2004)

3.62. E.L. Shirley, Diffraction corrections in radiometry: spectral and total power and
asymptotic properties. J. Opt. Soc. Am. A 21(10), 1895–1906 (2004)

3.63. S. Engman, P. Lindblom, Blaze characteristics of echelle gratings. Appl. Opt. 21(23),
4356–4362 (1982)

3.64. J. Harvey, E. Nevis, Angular grating anomalies: effects of finite beam size on
wide-angle diffraction phenomena. Appl. Opt. 31(31), 6783–6788 (1992)

3.65. M. Rousseau, J. Mathieu, Problems in Optics, translated by J. Blaker (Pergamon Press,
New York, 1973) pp. 178–183

3.66. M.G. Moharam, T.K. Gaylord, Diffraction analysis of dielectric surface-relief gratings.
J. Opt. Soc. Am. 72(10), 1385–1392 (1982); T.K Gaylord, M.G. Moharam, Analysis
and applications of optical diffraction by gratings. Proc. IEEE. 73(5), 894–937 (1985)

3.67. S.M. Al-Marzoug, R.J.W. Hodgson, Optimization of multilayer mirrors at 13.4-nm with
more than two materials. Appl. Opt. 47(12), 2155–2160 (2008)

3.68. D.M. Pai, K.A. Awada, Analysis of dielectric gratings of arbitrary profiles and
thicknesses. Opt. Soc. Am. A 8(5), 755–762 (1991)

3.69. T. Delort, D. Maystre, Finite-element method for gratings. J. Opt. Soc. Am. A 10(12),
2592–2601 (1993)

3.70. M.A. Alonso, Exact description of free electromagnetic wave fields in terms of rays.
Opt. Express 11(23), 3128–3135 (2003)

728 References



References 729

3.71. J.-F. Lepage, N. McCarthy, Analysis of the diffractional properties of dual-period
apodizing gratings: theoretical and experimental results. Appl. Opt. 43(17), 3504–3512
(2004)

3.72. O. Mata-Mendez, J. Avendaño, F. Chavez-Rivas, Rigorous theory of the diffraction of
Gaussian beams by finite gratings: TM polarization. J. Opt. Soc. Am. A 23(8),
1889–1896 (2006)

3.73. D.C. Skigin, R.A. Depine, Diffraction by dual-period gratings. Appl. Opt. 46(9),
1385–1391 (2007)

3.74. R. Tharaldsen, Rigorous Coupled-Wave Analysis (2008)
3.75. M.A. Bukshtab, Maxima-shifting anomaly for step-function diffraction gratings in

reflected light (2008)
3.76. H. Kogelnick, Coupled wave theory for thick hologram gratings. Bell. Syst. Tech. J. 48,

2909–2947 (1969)
3.77. C.B. Burcardt, Diffraction of a plane wave at a sinusoidally stratified dielectric grating.

J. Opt. Soc. Am. 56(11), 1502–1509 (1966)
3.78. C.B. Burcardt, Efficiency of a dielectric grating. J. Opt. Soc. Am. 57(5), 601–603 (1967)
3.79. F.G. Kaspar, Diffraction by thick, periodically stratified gratings with complex

dielectric constant. J. Opt. Soc. Am. 63(1), 37–45 (1973)
3.80. K. Knop, Rigorous diffraction theory for transmission phase gratings with deep

rectangular grooves. J. Opt. Soc. Am. 68(9), 1206–1210 (1978)
3.81. K. Knop, Diffraction gratings for color filtering in the zero diffraction order. Appl. Opt.

17(22), 3598–3603 (1978)
3.82. D.-K. Woo, K. Hane, S.-K. Lee, High order diffraction grating using v-shaped groove

with refractive and reflective surfaces. Opt. Express 16(25), 21004–21011 (2008)
3.83. T. von Lerber, M.W. Sigrist, Cavity-ring-down principle for fiber-optic resonators:

experimental realization of bending loss and evanescent-field sensing. Appl. Opt.
41(18), 3567–3575 (2002)

3.84. T. von Lerber, H. Ludvigsen, A. Romann, Resonator based measurement technique for
quantification of minute birefringence. Opt. Express 12(7), 1363–1371 (2004)

3.85. P. Hlubina, D. Ciprian, Spectral-domain measurement of phase modal birefringence in
polarization-maintaining fiber. Opt. Express 15(25), 17019–17024 (2007)

3.86. J.M. Miller, N. de Beaucoudrey, P. Chavel, J. Turunen, E. Cambril, Design and
fabrication of slanted binary surface relief gratings for a planar optical interconnection.
Appl. Opt. 36(3), 5717–5727 (1997)

3.87. M. Burkhardt, K.G. Heinze, P. Schwille, Four-color fluorescence correlation spec-
troscopy realized in a grating-based detection platform. Opt. Lett. 360(17), 2266–2268
(2005)

3.88. T. Levola, P. Laakkonen, Replicated slanted gratings with a high refractive index
material for in and outcoupling of light. Opt. Express 15(5), 2067–2074 (2007)

3.89. G.J.C. van der Horst, Fourier analysis and color discrimination. J. Opt. Soc. Am.
59(12), 1670–1676 (1969)

3.90. S. Peterhansel, H. Laamanen, J. Lehtolahti, M. Kuittinen, W. Osten, J. Tervo, Human
color vision provides nanoscale accuracy in thin-film thickness characterization. Optica
2(7), 627–630 (2015)

3.91 M.A. Bukshtab, Cross-coupled transmission diffraction-gratings based color combiner
(2017)

Chapter 4

4.1. S.R. Gunn, Volume-absorbing calorimeters for high-power laser pulses. Rev. Sci.
Instrum. 45(7), 936–943 (1974)

4.2. D.L. Franzen, L.B. Schmidt, Absolute reference calorimeter for measuring high power
laser pulses. Appl. Opt. 15(2), 3115–3122 (1976)



4.3. W.H. Reichelt, E.E. Stark Jr., T.E. Stratton, A gas calorimeter for use at 10.6 lm. Opt.
Commun. 11(3), 305–308 (1974)

4.4. V.N. Matweev, V.A. Rubsov, N.D. Ustinov, Improving accuracy of measurements by
volume-absorbing calorimeters, in Impulsnaya Photometria, vol. 6 (Mashinostroenie,
Leningrad, 1979), pp. 88–91

4.5. A.A. Wolkenstein, New commercial pulsed photometers; B.V. Byvshev,
A.A. Wolkenstein, E.V. Kuvaldin, V.I. Popkov, New industrial pulsed photometers,
in Impulsnaya Photometria, (Mashinostroenie, Leningrad, 1969), vol. 1, pp. 71–79;
(1975), vol. 4, pp. 59–65

4.6. G.L. Voronkov, Attenuators of Optical Radiation (Mashinostroenie, Leningrad, 1980)
4.7. W. Leeb, Variable beam attenuator for the infrared. Appl. Opt. 13(1), 17–19 (1974)
4.8. R.C.C. Leite, S.R.S. Porto, A simple method for calibration of ruby laser output. Proc.

IEEE 51(4), 606–607 (1963)
4.9. E.N. Anuchin, G.I. Kadaner, E.V. Kuvaldin, A study of elements of a pico-second

pulsed photometer, in Impulsnaya Photometria, vol. 6 (Mashinostroenie, Leningrad,
1979), pp. 120–122

4.10. M.A. Bukhshtab, V.N. Maksimov, V.N. Rezchikov, A convenient radiometer for
expanded cw and pulsed laser and light-diode power and energy measurement
applications: UPM, in Impulsnaya Photometria, vol. 7 (Mashinostroenie, Leningrad,
1981), pp. 95–99

4.11. A.G. Biryukov, B.A. Maslov, B.I. Medvedev, V.G. Tyutyunnik, Digital and direct-
reading pulsed radiometer for low-energy pulses making automatic dynamic range
selection, in Impulsnaya Photometria, vol. 7 (Mashinostroenie, Leningrad, 1981),
pp. 92–95

4.12. A.A. Wolkenstein, O.M. Mikhailov, Photometric studying of opal glasses.
Svetotekhnika (2), 3–5 (1971)

4.13. A. Starke, A. Bernhardt, Laser damage threshold measurement according to ISO 11254:
experimental realization at 1064 nm, in Proceedings of SPIE, vol. 2114, 1993

4.14. A.C. Doynikov, Photometer, in Big Russian Encyclopedia, 3rd edn. vol. 27 (Soviet
Encyclopedia, Moscow, 1977), p. 585

4.15. Yu.P. Baranov, M.A. Bukhshtab, A.I. Glazov, S.V. Tikhomirov, A method of calibration
of low-energy laser radiometers, in Impulsnaya Photometria, vol. 7 (Mashinostroenie,
Leningrad, 1981), pp. 88–91

4.16. R.J. Phelan, A.R. Cook, Electrically calibrated pyroelectric optical-radiation detector.
Appl. Opt. 12(10), 2494–2500 (1973)

4.17. J. Geist, W.R. Blevin, Chopper-stabilized null radiometer based upon an electrically
calibrated pyroelectric detector. Appl. Opt. 12(11), 2532–2535 (1973)

4.18. J. Geist, Waveform-independent lock-in detections. Rev. Sci. Instrum. 43(11),
1704–1705 (1972)

4.19. E.P. Zalewski, J. Geist, Silicone photodiode absolute response self-calibration. Appl.
Opt. 19(8), 1214–1216 (1980)

4.20. C. Carreras, A. Corrons, Absolute spectroradiometric and photometric scales based on
an electrically calibrated pyroelectric radiometer. Appl. Opt. 20(7), 1174–1177 (1981)

4.21. Methods of characterizing the performance of radiometers and photometers
(CIE Publication 53, Paris, 1982)

4.22. C.L. Cromer, G. Eppeldauer, J.E. Harris, T.C. Larason, A.C. Parr, National Institute of
Standards and Technology detector-based photometric scale. Appl. Opt. 32(16),
2936–2948 (1993)

4.23. E.F. Zalewski, C.R. Duda, Silicon photodiode device with 100% external quantum
efficiency. Appl. Opt. 22(18), 2867–2873 (1983)

4.24. P.V. Foukal, C. Hoyt, H. Kochling, P. Miller, Cryogenic absolute radiometers as
laboratory irradiance standards, remote sensing detectors, and pyroheliometers. Appl.
Opt. 29(7), 988–993 (1990)

730 References



4.25. R.U. Datla, K. Stock, A.C. Parr, C.C. Hoyt, P.J. Miller, P.V. Foukal, Characterization
of an absolute cryogenic radiometer as a standard detector for radiant-power
measurements. Appl. Opt. 31(34), 7219–7225 (1992)

4.26. T.R. Gentile, J.M. Houston, J.E. Hardis, C.L. Cromer, A.C. Parr, National Institute of
Standards and Technology high-accuracy cryogenic radiometer. Appl. Opt. 35(7),
1056–1068 (1996)

4.27. T.C. Larason, S.S. Bruce, C.L. Cromer, The NIST high accuracy scale for absolute
spectral response from 406 nm to 920 nm. J. Res. Natl. Inst. Stand. Technol. 101(2),
133–140 (1996)

4.28. H.W. Yoon, C.E. Gibson, P.Y. Barnes, Realization of the National Institute of
Standards and Technology detector-based spectral irradiance scale. Appl. Opt. 41(28),
5879–5890 (2002)

4.29. T.J. Quinn, J.E. Martin, A radiometric determination of the Stefan-Boltzmann constant
and thermodynamic temperatures between 240 °C and 1100 °C. Philos. Trans. R. Soc.
Lond. Ser. A 316, 85–189 (1985)

4.30. C.L. Cromer, G. Eppeldauer, J.E. Hardis, T.C. Larason, Y. Ohno, A.C. Parr, The NIST
detector-based luminous intensity scale. J. Res. Natl. Inst. Stand. Technol. 101(2),
109–132 (1996)

4.31. F.E. Nicodemus, Radiometry with spectrally selective sensors. Appl. Opt. 7(8),
1649–1652 (1968)

4.32. H.E. Bennett, W.F. Koehler, Precision measurement of absolute specular reflectance
with minimized systematic errors. J. Opt. Soc. Am. 50(1), 1–6 (1960)

4.33. A.A. Wolkenstein, A.F. Kirillov, E.V. Kuvaldin, Spectrophotometry utilizing a pulsed
light source, in Impulsnaya Photometria, vol. 1 (Mashinostroenie, Leningrad, 1969),
pp. 102–109

4.34. G.M. Gorodinskii, M.A. Protsenko, O.M. Mikhailov, Measurement of reflection factors
utilizing photometer UM-89. Meas. Tech. 21(3), 30–32 (1978)

4.35. V.A. Soloviev, N.K. Kutliev, V.K. Volunschikov, V.P. Shabalov, A repeatability study
of a spectral distribution of energy of pulses emitted by pulsed lamp ISK-25 activated in
a sequence of pulses, in Impulsnaya Photometria, vol. 9 (Mashinostroenie, Leningrad,
1986), pp. 84–87

4.36. A.C. Hardy, A new recording spectrophotometer. J. Opt. Soc. Am. 25(9), 305–311
(1935); J.L. Michadson, Construction of the general electric recording spectropho-
tometer. J. Opt. Soc. Am. 28(10), 365–371 (1938)

4.37. P. Wu, P. Gu, J. Tang, Spectrophotometer for measuring spectral reflectance and
transmittance. Appl. Opt. 33(10), 1975–1979 (1994)

4.38. S.Yu. Gerasimov, O.N. Gusev, A.I. Koliadin, T.A. Krovko, A photometer for precision
evaluation of spectral attenuation coefficients of highly transparent optical glasses.
J. Opt. Technol. 51(9), 18–19 (1983)

4.39. G.P. Semenova, V.G. Vorob’ev, Yu.D. Pushkin, Reflection attachment to spectropho-
tometer for measurement of high absolute reflections. J. Opt. Technol. 43(4), 78–79
(1976)

4.40. E.A. Evans, S. Lowenthal, Moment generator: new role for the integrating sphere.
J. Opt. Soc. Am. 62(3), 411–415 (1972)

4.41. A.S. Toporets, An integrating sphere attachment to spectrophotometer SU-8 for
measurements of diffuse reflectance and transmittance. Opt. Spectrosc. 10(4), 528–532
(1961)

4.42. V.L. Shipunov, T.N. Chernova, N.B. Berdnikov, N.I. Potapov, Photometer FO-1.
J. Opt. Technol. 49(5), 57–58 (1982)

4.43. D. Rönnow, A. Roos, Stray-light corrections in integrating-sphere measurements on
low-scattering samples. Appl. Opt. 33(25), 6092–6097 (1994)

4.44. K.D. Mielenz, K.L. Eckerle, R.P. Madden, J. Reader, New reference spectrophotome-
ter. Appl. Opt. 12(7), 1630–1641 (1973)

References 731



4.45. J.C. Zwinkels, D.S. Gignac, Design and testing of a new high-accuracy
ultraviolet-visible-near-infrared spectrophotometer. Appl. Opt. 31(10), 1557–1567
(1992)

4.46. Y. Ohno, C.L. Gromer, J.E. Harris, G. Eppeldauer, The detector-based candela scale
and related photometric calibration procedures at NIST. J. IES 23(1), 89–98 (1994)

4.47. M.L. Rastello, E. Miraldi, P. Pisoni, Luminous-flux measurements by an absolute
integrating sphere. Appl. Opt. 35(22), 4385–4391 (1996)

4.48. J. Bastie, B. Andasse, R. Foucart, Luminous flux measurements with a goniophotome-
ter: study of time effects on data collection, in Proceedings of the 22nd Session of CIE
(Commission Internationale de l’Éclairage), vol. 1, No. 1, pp. 45–47, 1991

4.49. D. Sheffer, U.P. Oppenheim, A.D. Devir, Absolute reflectometer for the mid infrared
region. Appl. Opt. 29(1), 129–132 (1990); Absolute measurements of diffuse
reflectance in the a°/d configuration. Appl. Opt. 30(22), 3181–3183 (1991)

4.50. L. Hanssen, Integrating sphere system and method for absolute measurement of
transmittance, reflectance, and absorptance of specular samples. Appl. Opt. 40(19),
3196–3204 (2001)

4.51. C.G. Venkatesh, R.S. Eng, A.W. Mantz, Tunable diode laser-integrating sphere
systems: a study of their output intensity characteristics. Appl. Opt. 19(10), 1704–1710
(1980)

4.52. L. Abel-Tiberini, F. Lemarquis, M. Lequime, Dedicated spectrophotometer for localized
transmittance and reflectance measurements. Appl. Opt. 45(7), 1386–1391 (2006)

4.53. A. Carrasco-Sanz, S. Martín-López, P. Corredera, M. González-Herráez, M.L. Hernanz,
High-power and high-accuracy integrating sphere radiometer: design, characterization,
and calibration. Appl. Opt. 45(3), 511–518 (2006)

4.54. I. Niskanen, J. Räty, K.-E. Peiponen, Measurement of refractive index of isotropic
particles by incorporating a multifunction spectrophotometer and immersion liquid
method. Appl. Opt. 46(22), 5404–5407 (2007); Complex refractive index of turbid
liquids. Opt. Lett. 32(7), 862–864 (2007)

4.55. T. Niwa, Sintered silicon nitride member and ceramic ball. U.S. Patent 6,472,075; 29
Oct 2002

4.56. L.N. Aksuitov, G.K. Kholopov, Methods of photometric accuracy measurements of
radiation detectors. J. Opt. Technol. 46(10), 42–47 (1979)

4.57. J. Elster, H. Geitel, Wied. Ann. 48, 625 (1893); Phys. Z. 14, 741 (1913)
4.58. C.L. Sanders, A photocell linearity tester. Appl. Opt. 1(3), 207–211 (1962); Accurate

measurements of and corrections for nonlinearities in radiometers. J. Res. Natl. Bur.
Stand. Sect. A 76, 437–453 (1972)

4.59. F. Rotter, Die Prüfung der Linearitet von Strahlungsempfänger. Z. Instrumentekd, B
73(3), S. 66–71 (1965)

4.60. A. Reule, Testing spectrophotometer linearity. Appl. Opt. 7(6), 1023–1028 (1968)
4.61. R.C. Hawes, Technique for measuring photometric accuracy. Appl. Opt. 10(6),

1246–1253 (1971)
4.62. K.D. Mielenz, K.L. Eckerle, Spectrophotometer linearity testing using the

double-aperture method. Appl. Opt. 11(10), 2294–2303 (1972)
4.63. W. Budde, Multidecade linearity measurements on Si photodiodes. Appl. Opt. 18(10),

1555–1558 (1979); Large-flux-ratio linearity measurements on Si photodiodes. Appl.
Opt. 21(20), 3699–3701 (1982)

4.64. A.R. Schaefer, E.F. Zalewski, J. Geist, Silicon detector nonlinearity and related effects.
Appl. Opt. 22(8), 1232–1236 (1983)

4.65. E.V. Kuvaldin, V.I. Popkov, Evaluation of photometric accuracy of photodetectors in a
broad dynamic range, in Impulsnaya Photometria, vol. 4 (Mashinostroenie, Leningrad,
1975), pp. 169–170

4.66. L. Coslovi, F. Righini, Fast determination of the nonlinearity of photodetectors. Appl.
Opt. 19(18), 3200–3203 (1980)

732 References



4.67. R.D. Saunders, J.B. Shumaker, Automated radiometric linearity tester. Appl. Opt.
23(20), 3504–3506 (1984)

4.68. J.C. Zwinkels, D.S. Gignak, Automated high precision variable aperture for spectro-
photometer linearity testing. Appl. Opt. 30(13), 1678–1687 (1991)

4.69. R.G. Frehlich, Estimation of the nonlinearity of a photodetector. Appl. Opt. 31(28),
5926–5929 (1992)

4.70. E. Theocharous, J. Ishii, N.P. Fox, Absolute linearity measurements on HgCdTe
detectors in the infrared. Appl. Opt. 43(21), 4182–4188 (2004)

4.71. M. Naftaly, R. Dudley, Linearity calibration of amplitude and power measurements in
terahertz systems and detectors. Opt. Lett. 34(5), 674–676 (2009)

4.72. M. Francon, S. Mallick, Polarization Interferometers: Applications in Microscopy and
Macroscopy (Wiley-Interscience, New York, 1971)

4.73. D. Malacara, Optical Shop Testing, 2nd edn. (Wiley, New York, 1992)
4.74. M. Francon, Optical Interferometry (Academic Press, New York, 1966)
4.75. M.A. Bukshtab, Nondestructive evaluation of silicon nitride rolling elements for

bearings (2008)
4.76. B.B.C. Kyotoku, L. Chen, M. Lipson, Sub-nm resolution cavity enhanced microspec-

trometer. Opt. Express 18(1), 102–107 (2009)
4.77. Z. Xia, A.A. Eftekhar, M. Soltani, B. Momeni, Q. Li, M. Chamanzar,

S. Yegnanarayanan, A. Adibi, High resolution on-chip spectroscopy based on
miniaturized microdonut resonators. Opt. Express 19(13), 12356–12364 (2011)

4.78. T. Ozeki, E.H. Hara, Measurement of nonlinear distortion in photodiodes. Electron.
Lett. 12(3), 80–81 (1976)

4.79. M.N. Draa, A.S. Hastings, K.J. Williams, Comparison of photodiode nonlinearity
measurement systems. Opt. Express 19(13), 12635–12645 (2011)

4.80. ASTM E 313-00: Standard practice for calculating yellowness and whiteness indices
from instrumentally measured color coordinates (2001)

4.81. T.J. Johnson, B.E. Bernacki, R.L. Redding, Y.-F. Su, C.S. Brauer, T.L. Myers,
E.G. Stephan, Intensity-value corrections for integrating sphere measurements of solid
samples measured behind glass. Appl. Spectrosc. 68(11), 1224–1234 (2014)

4.82. S.D. Noble, T.G. Crowe, Sample holder and methodology for measuring the reflectance
and transmittance of narrow-leaf samples. Appl. Opt. 46(22), 4968–4976 (2007)

4.83. K.D. Jersnoj, S. Hassing, Analysis of reflectance and transmittance measurements on
absorbing and scattering small samples using a modified integrating sphere setup. Appl.
Spectrosc. 63(8), 879–888 (2009)

4.84. W.B. Rogers, M. Corbett, S. Magkiriadou, P. Guarillof, V.N. Manoharan, Breaking
trade-offs between translucency and diffusion in particle-doped films. Opt. Mat. Express
4(12), 2621–12631 (2014)

4.85. D.F. Heath, G. Georgiev, Characteristics of a new type of Mie scattering volume
diffuser and its use as a spectral albedo calibration standard for the solar reflective
wavelength region, in Proceedings of SPIE, vol. 8153, Article 81530V-1 (2011)

4.86. C.P. Ball, A.P. Levick, E.R. Woolliams, P.D. Green, M.R. Dury, R. Winkler,
A.J. Deadman, N.P. Fox, M.D. King, Effect of polytetrafluoroethylene (PTFE) phase
transition at 19 °C on the use of Spectralon as a reference standard for reflectance. Appl.
Opt. 52(20), 4806–4812 (2013)

4.87. H. Zhang, Y. Yang, W. Jin, C. Liu, W. Hsu, Effects of Spectralon absorption on
reflectance spectra of typical planetary surface analog materials. Opt. Express 22(18),
21280–21291 (2014)

4.88. J.-H. Jung, K. Kim, H.-S. Yu, K.-R. Lee, S.-E. Lee, S.-H. Nahm, H.-J. Park, Y.-K. Park,
Biomedical applications of holographic microspectroscopy. Appl. Opt. 53(27),
G111–G122 (2014)

4.89. N.A. Tomlin, J.H. Lehman, S. Nam, Towards a fiber-coupled picowatt cryogenic
radiometer. Opt. Lett. 37(12), 2346–2348 (2012)

References 733



Part II

II.1. B.I. Stepanov (ed.), Method of Design Calculations for Optical Quantum Generators,
vol. 1 (Nauka & Technika, Minsk, 1966)

II.2. H.E. Bennett, J.M. Bennett, in Physics of Thin Films, ed. by G. Xass, R.E. Thun,
vol. 4 (Academic, New York, 1967), pp. 41–57

II.3. H.E. Bennett, J.O. Porteus, Relation between surface roughness and specular reflectance
at normal incidence. J. Opt. Soc. Am. 51(2), 123–129 (1961)

II.4. C.A. Depew, R.D. Weir, Surface roughness determination by the measurement of
reflectance. Appl. Opt. 10(4), 969–970 (1971)

II.5. H.W. Kogelnik, T. Li, Laser beams and resonators. Appl. Opt. 5(10), 1550–1567 (1966)
II.6. C.R. Locke, D. Stuart, E.N. Ivanov, A.N. Luiten, A simple technique for accurate and

complete characterisation of a Fabry-Perot cavity. Opt. Express 17(24), 21935–21943
(2009)

II.7. G. Kortum, Reflectance Spectroscopy (Springer, Berlin, Heidelberg, 1969)
II.8. A.E. Siegman, Lasers (University Science, Mill Valley, 1986)
II.9. J.F. Ready, Effects of High-Power Laser Radiation (Academic, New York, 1971)

II.10. Y. Pao (ed.), Optoacoustic Spectroscopy and Detection (Academic, New York, 1977)
II.11. Yu.A. Ananiev, Optical Resonators and Divergence of Laser Radiation (Nauka,

Moscow, 1979)
II.12. D. Kliger, Ultrasensitive Laser Spectroscopy (Academic, New York, 1983)
II.13. V.A. Shutilov, Fundamental Physics of Ultrasound (Gordon and Breach, New York,

1988)
II.14. J.A. Sell (ed.), Photothermal Investigations of Solids and Fluids (Academic, New York,

1989)
II.15. P. Hess (ed.), Photoacoustic, Photothermal and Photochemical Processes in Gases

(Springer, New York, 1989)
II.16. F.V. Bunkin, A.A. Kolomensky, V.G. Mikhalevich, Lasers in Acoustics (Harwood,

New York, 1991)
II.17. A. Mandelis (ed.), Progress in Photothermal and Photoacoustic Science and

Technology, vol. 1 (Elsevier, New York, 1992)
II.18. V.E. Gusev, A.A. Karabutov, Laser Optoacoustics (Institute of Physics, New York,

1993)
II.19. M.W. Sigrist (ed.), Air Monitoring by Spectroscopic Techniques, Chemical Analysis

Series, vol. 127 (Wiley, New York, 1994)
II.20. H.A. Macleod, Thin-Film Optical Filters, 3rd edn. (Institute of Physics Publishing,

Tucson, 2001)
II.21. I.L. Fabelinskii, Molecular Scattering of Light (Plenum, New York, 1968; Nauka,

Moscow, 1965)
II.22. H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981)
II.23. R.M.A. Azzam, N.M. Bashara, Ellipsometry and Polarized Light (Elsevier,

Amsterdam, 1996)
II.24. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960)
II.25. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer (Hemisphere, New York,

1981)
II.26. M. Francon, Laser Speckle and Applications in Optics (Academic Press, New York,

1979)
II.27. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation, 2nd edn.

(Springer, Berlin, 1996)
II.28. K. Petermann, Laser Diode Modulation and Noise (Kluwer, Dordrecht, 1988)
II.29. D.V. O’Connor, D. Phillips, Time-Correlated Single Photon Counting (Academic,

New York, London, 1984)

734 References



II.30. P.R. Griffiths, J.A. De Haseth, J.D. Winefordner (eds.), Fourier Transform Infrared
Spectrometry, 2nd edn. (Wiley, New York, 2007)

II.31. W. Koechner, Solid-State Laser Engineering, 3rd edn. (Springer, Heidelberg, 1992)
II.32. J. Ye, T.W. Lynn, Applications of optical cavities in modern atomic, molecular, and

optical physics, in Advances in Atomic Molecular and Optical Physics, vol. 49, ed. by
B. Bederson, H. Walther (Elsevier, 2003), pp. 1–83

II.33. A.W. Snyder, J.D. Love, Optical waveguide theory (Chapman & Hall, London, 1983,
1996)

II.34. R. März, Integrated Optics: Design and Modeling (Artech House, Norwood, 1995)
II.35. N. Kashima, Passive Optical Components for Optical Fiber Transmission (Artech

House, Boston, 1995)
II.36. S.B. Alexander, Optical Communication receiver design, Tutorials in Optical

Engineering, vol. TT22 (SPIE, 1997)
II.37. G.P. Agrawal, Fiber-Optic Communication Systems, 2nd edn. (Wiley, New York,

1997)
II.38. D. Derickson (ed.), Fiber Optic Test and Measurement (Prentice Hall, Englewood

Cliffs, 1998)
II.39. U. Wiedmann, P. Gallion, G.-H. Duan, A generalized approach to optical

low-coherence reflectometry including spectral filtering effects. J. Lightwave Technol.
16(7), 1343–1347 (1998)

II.40. F. Mayinger, Optical Measurement Techniques (Springer, Berlin, 1994); O. Feldmann,
F. Mayinger, Optical Measurements: Techniques and Applications (Springer, Berlin,
2001)

II.41. R.D. van Zee, J.P. Looney (eds.), Cavity-Enhanced Spectroscopies, Experimental
Methods in the Physical Sciences, vol. 40 (Elsevier, New York, 2002)

II.42. A. Yariv, P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser
Radiation (Wiley, New York, 2002); Photonics: Optical Electronics in Modern
Communication, 6th edn. (Oxford University Press, Oxford, 2006)

II.43. C.R. Wylie, Advances in Engineering Mathematics (McGraw-Hill, New York, 1960)
II.44. A. Papoulis, Probability and Statistics (Prentice-Hall, Englewood Cliffs, 1990)
II.45. G.B. Arfken, H.J. Weber, Mathematical Methods for Physicists, 4th edn. (Academic

Press, San Diego, London, 1995)

Chapter 5

5.1. K.C. Kao, T.V. Davis, Spectrophotometric studies of ultra low loss optical glasses I:
single beam method. J. Sci. Instrum. Ser. 2, 1(11), 1063–1068 (1968)

5.2. M.W. Jones, K.C. Kao, Spectrophotometric studies of ultra low loss optical glasses II:
double beam method. J. Sci. Instrum. Ser. 2, 2(4), 331–335 (1969)

5.3. P.J.R. Laybourn, W.A. Gambling, D.T. Jones, Measurement of attenuation in low-loss
optical glasses. Optoelectronics 3(8), 137–144 (1971); J.P. Dakin, W.A. Gambling,
Transmission measurements in optical glass with an improved twin-beam spectropho-
tometer. Opto-Electronics 5(4), 335–344 (1973)

5.4. A.I. Kolyadin, A.A. Malygina, Use of least-square method for determining the
extinction coefficient of high-transmission glass. J. Opt. Technol. 44(11), 656–658
(1977)

5.5. S. Bosch, J. Roca, A method for the measurement of reflectances of spherical surfaces.
Meas. Sci. Technol. 4, 190–192 (1993)

5.6. G. Boivin, J.-M. Theriault, Reflectometer for precise measurement of absolute specular
reflectance at normal incidence. Rev. Sci. Instrum. 52(7), 1001–1002 (1981)

5.7. A. Bittar, J.D. Hamlin, High-accuracy true normal-incidence absolute reflectometer.
Appl. Opt. 23(22), 4054–4057 (1984)

References 735



5.8. K. Al-Marzouk, M. Jacobson, R. Parcs, M. Rodgers, New absolute reflectometer. Opt.
Eng. 21(6), 976–978 (1982)

5.9. V.R. Weidner, J.J. Hsia, NBS specular reflectometer-spectrophotometer. Appl. Opt.
19(8), 1268–1273 (1980)

5.10. C. Castelini, G. Emiliani, E. Masetti, P. Poggi, P.P. Polato, Characterization and
calibration of a variable angle absolute reflectometer. Appl. Opt. 29(4), 538–543 (1990)

5.11. J.M. Bennett, E.J. Ashley, Calibration of instruments measuring reflectance and
transmittance. Appl. Opt. 11(8), 1749–1755 (1972)

5.12. A.Ya. Hairullina, L.Ch. Neverovich, A setup for measurements of back-scattering from
laser mirrors (Institute of Physics AN BSSR, Minsk, 1974) Selected Reprint

5.13. P.J. Laybourn, J.P. Dakin, W.A. Gambling, A photometer to measure light scattering in
optical glass. Optoelectronics 2(1), 36–42 (1970)

5.14. J.M. Elson, J.P. Rahn, J.M. Bennett, Relationship of the total integrated scattering from
multilayer coated optics to angle of incidence, polarization, correlation length, and
roughness cross-correlation properties. Appl. Opt. 22(20), 3207–3220 (1983)

5.15. A.C. Toporets, Light reflection by rough surface. J. Opt. Technol. 46(1), 35–48 (1979)
5.16. W.R. Blevin, J. Geist, Infrared reflectometry with a cavity-shaped pyroelectric detector.

Appl. Opt. 13(10), 2212–2217 (1974)
5.17. P. Roche, E. Pelletier, Characterization of optical surfaces by measurement of scattering

distribution. Appl. Opt. 23(20), 3561–3566 (1984)
5.18. B.A. Mehmetli, K. Takahashi, S. Sato, Direct measurement of reflectance from

aluminum alloys during CO2 laser welding. Appl. Opt. 35(18), 3237–3242 (1996)
5.19. B.T. McGuckin, D.A. Haner, R.T. Menzies, C. Esproles, A.M. Brothers, Directional

reflectance characterization facility and measurement methodology. Appl. Opt. 35(24),
4827–4834 (1996)

5.20. D.G. Goebel, B.P. Caldwell, H.K. Hammond III, Use of an auxiliary sphere with a
spectroreflectometer to obtain absolute reflectance. J. Opt. Soc. Am. 56(6), 783–788
(1966)

5.21. S.M. Jaffe, W.M. Yen, Phase-locked optical choppers. Rev. Sci. Instrum. 64(2),
342–345 (1993)

5.22. W. Smith, Reflectometer for laser mirrors with accuracy better than 10−4. Appl. Opt.
17(16), 2476–2477 (1978)

5.23. R.E. Lindquist, A.W. Ewald, Optical constants from reflectance ratios by a geometric
construction. J. Opt. Soc. Am. 53(2), 247–249 (1963)

5.24. W.R. Hunter, Optical constants of metals in the extreme ultraviolet. I. A modified
critical-angle technique for measuring the index of refraction of metals in the extreme
ultraviolet. J. Opt. Soc. Am. 54(1), 15–19 (1964)

5.25. R.F. Potter, Analytical determination of optical constants based on the polarized
reflectance at a dielectric-conductor interface. J. Opt. Soc. Am. 54(7), 904–906 (1964)

5.26. E. Schmidt, Simple method for the determination of optical constants of absorbing
materials. Appl. Opt. 8(9), 1905–1908 (1969)

5.27. T.E. Darcie, M.S. Whalen, Determination of optical constants using pseudo-Brewster
angle and normal incidence reflectance measurements. Appl. Opt. 23(8), 1130–1131
(1984)

5.28. K. Ogusu, K. Suzuki, H. Nishio, Simple and accurate measurement of the absorption
coefficient of an absorbing plate by use of the Brewster angle. Opt. Lett. 31(7), 909–911
(2006)

5.29. D. Roßkamp, F. Truffer, S. Bolay, M. Geiser, Forward scattering measurement device
with a high angular resolution. Opt. Express 15(5), 2683–2690 (2007)

5.30. F.D.J. Brunner, A. Schneider, P. Günter, A terahertz time-domain spectrometer for
simultaneous transmission and reflection measurements at normal incidence. Opt.
Express 17(23), 20684–20693 (2009)

736 References



5.31. S.L. Berets, M. Milosevic, Extracting infrared absolute reflectance from relative
reflectance measurements. Appl. Spectrosc. 66(6), 680–684 (2012)

5.32. X. Liang, M. Li, J.Q. Lu, C. Huang, Y. Feng, Y. Sa, J. Ding, X.-H. Hu,
Spectrophotometric determination of turbid optical parameters without using an
integrating sphere. Appl. Opt. 55(8), 2079–2085 (2016)

Chapter 6

6.1. D.M. Gates, C.C. Shaw, D. Beaumont, Infrared reflectance of evaporated metal films.
J. Opt. Soc. Am. 48(2), 88–89 (1958)

6.2. L.G. Schultz, F.R. Tangherlini, Optical constants of silver, gold, copper, and aluminum. II.
The index of refraction n. J. Opt. Soc. Am. 44(5), 362–368 (1954)

6.3. V.I. Kuprenuk, V.E. Sherstobitov, A simple method of reflectance measurements for
metal mirrors at wavelength k = 10.6 lm. J. Appl. Spectrosc. 25(5), 926–928 (1974)

6.4. D. Kelsall, Absolute specular reflectance measurements of highly reflecting optical
coatings at 10.6 lm. Appl. Opt. 9(1), 85–90 (1970)

6.5. S. Chandra, R.S. Rohde, Ultrasensitive multiple-reflections interferometer. Appl. Opt.
21(9), 1533–1535 (1982)

6.6. H. Hanada, Characteristics of a Fabry-Perot interferometer with two retroreflectors and
two beam splitters. J. Opt. Soc. Am. A 9(12), 2167–2172 (1992)

6.7. A.L. Vitushkin, L.F. Vitushkin, Design of a multipass optical cell based on the use of
shifted corner cubes and right-angle prisms. Appl. Opt. 37(9), 162–166 (1998)

6.8. J.U. White, Long optical path of large aperture. J. Opt. Soc. Am. 32(5), 285–288 (1942)
6.9. T.H. Edwards, Multiple-traverse absorption cell design. J. Opt. Soc. Am. 51(1), 98–102

(1961)
6.10. G.P. Semenova, V.G. Vorob’ev, Yu.D. Pushkin, Spectrophotometric attachment for

absolute measurements of high specular reflectances. J. Opt. Technol. 43(4), 78–79
(1976)

6.11. O. Arnon, P. Baumeister, Versatile high-precision multiple-pass reflectometer. Appl.
Opt. 17(18), 2913–2916 (1978)

6.12. R.P. Blickensderfer, G.E. Ewing, R. Leonard, A long path, low temperature cell. Appl.
Opt. 7(11), 2214–2217 (1968)

6.13. D. Horn, G.C. Pimentel, 2.5-km low-temperature multiple-reflection cell. Appl. Opt.
10(8), 1892–1898 (1971)

6.14. P.L. Hanst, Spectroscopic methods for air pollution measurement, in Advances in
Environmental Science and Technology ed. by J.N. Pitts, R.L. Metcalf (Wiley,
New York, 1971), p. 91

6.15. E.O. Schulz-DuBois, Generation of square lattice of focal points by a modified white
cell. Appl. Opt. 12(7), 1391–1393 (1973)

6.16. D.M. Bakalyar, J.V. James, C.C. Wang, Absorption technique for OH measurements
and calibration. Appl. Opt. 21(16), 2901–2905 (1982)

6.17. P.L. Hanst, A.S. Lefohn, B.W. Gay Jr., Detection of atmospheric pollutants at
parts-per-billion levels by infrared spectroscopy. Appl. Spectrosc. 27(3), 188–198
(1973)

6.18. P.L. Hanst, Air pollution measurement by Fourier transform spectroscopy. Appl. Opt.
17(9), 1360–1366 (1978)

6.19. H.J. Bernstein, J. Herzberg, Rotation-vibration spectra of diatomic and simple
polyatomic molecules with long absorbing paths. J. Chem. Phys. 16(1), 30–39 (1948)

6.20. W.R. Watkins, Path differencing: an improvement to multipass absorption cell
measurements. Appl. Opt. 15(1), 16–19 (1976)

6.21. J.U. White, Very long optical paths in air. J. Opt. Soc. Am. 66(5), 411–416 (1976)

References 737



6.22. S.M. Chernin, E.G. Barskaya, Optical multipass matrix systems. Appl. Opt. 30(1),
51–58 (1991)

6.23. H.D. Smith, J.K. Marshall, Method for obtaining long optical paths. J. Opt. Soc. Am.
30(8), 338–342 (1940)

6.24. S.M. Chernin, Multipass V-shaped system with a large relative aperture: stages of
development. Appl. Opt. 34(34), 7857–7863 (1995)

6.25. K. Schäfer, K. Brockmann, J. Heland, P. Wiesen, C. Jahn, O. Legras, Multipass
open-path Fourier-transform infrared measurements for nonintrusive monitoring of gas
turbine exhaust composition. Appl. Opt. 44(11), 2189–2201 (2005)

6.26. D.C. Tobin, L.L. Strow, W.J. Lafferty, W.B. Olson, Experimental investigation of the
self- and N2-broadened continuum within the m2 band of water vapor. Appl. Opt.
35(24), 4724–4734 (1996)

6.27. P. Hannan, White cell design considerations. Opt. Eng. 28(11), 1180–1184 (1989)
6.28. J.-F. Doussin, D. Ritz, P. Carlier, Multiple-pass cell for very-long-path infrared

spectrometry. Appl. Opt. 38(19), 4145–4150 (1999)
6.29. L. Grassi, R. Guzzi, Theoretical and practical consideration of the construction of a

zero-geometric-loss multiple-pass cell based on the use of monolithic multiple-face
retroreflectors. Appl. Opt. 40(33), 6062–6071 (2001)

6.30. S.M. Chernin, Promising version of the three-objective multipass matrix system. Opt.
Express 10(2), 104–107 (2002)

6.31. D.R. Glowacki, A. Goddard, P.W. Seakins, Design and performance of a
throughput-matched, zero-geometric-loss, modified three objective multipass matrix
system for FTIR spectrometry. Appl. Opt. 46(32), 7872–7883 (2007)

6.32. D. Herriott, H. Kogelnik, R. Kompfner, Off-axis parts in spherical mirror interferom-
eters. Appl. Opt. 3(4), 523–526 (1964)

6.33. D.R. Herriott, H.J. Schulte, Folded optical delay lines. Appl. Opt. 4(8), 883–889 (1965)
6.34. J. Altman, R. Baumgart, C. Weitkamp, Two-mirror multipass absorption cell. Appl.

Opt. 20(6), 995–999 (1981)
6.35. P.L. Kebabian, Off-axis cavity absorption cell. U.S. Patent Number 5,291,265; 1 Mar

1994
6.36. J.B. McManus, P.L. Kebabian, M.S. Zahniser, Astigmatic mirror multipass absorption

cells for long-path-length spectroscopy. Appl. Opt. 34(18), 3336–3348 (1995)
6.37. L.-Y. Hao, S. Qiang, G.-R. Wu, L. Qi, D. Feng, Q.-S. Zhu, Cylindrical mirror multipass

Lissajous system for laser photoacoustic spectroscopy. Rev. Sci. Instrum. 73(5),
2079–2085 (2002); D. Das, A.C. Wilson, Very long optical path-length from a compact
multi-pass cell. Appl. Phys. B 103(3), 749–754 (2011)

6.38. J.A. Silver, Simple dense-pattern optical multipass cells. Appl. Opt. 44(31), 6545–6556;
Near re-entrant dense pattern optical multipass cell. U.S. Patent 7,307,716; 11 Dec 2007

6.39. C. Dyroff, A. Zahn, W. Freude, B. Jänker, P. Werle, Multipass cell design for
Stark-modulation spectroscopy. Appl. Opt. 46(19), 4000–4007 (2007)

6.40. G.S. Engel, E.J. Moyer, Precise multipass Herriott cell design: derivation of controlling
design equations. Opt. Lett. 32(6), 704–706 (2007)

6.41. G. Müller, E. Weimer, Multipass-Systeme für die Raman-Spectroscopie. Optic 56(1),
1–19 (1980)

6.42. J.J. Barrett, N.I. Adams III, Laser-excited rotation-vibration Raman scattering in
ultra-small gas samples. J. Opt. Soc. Am. 58(3), 311–319 (1968)

6.43. W.R. Trutna, R.L. Byer, Multiple-pass Raman gain cell. Appl. Opt. 19(2), 301–312
(1980)

6.44. H.L. Welsh, E.J. Stansbury, J. Romanko, T. Feldman, Raman spectroscopy of gases.
J. Opt. Soc. Am. 45(5), 338–343 (1955)

6.45. A. Weber, S.P.S. Porto, L.E. Cheesman, J.J. Barrett, High-resolution Raman
spectroscopy of gases with cw-laser excitation. J. Opt. Soc. Am. 57(1), 19–28 (1967)

738 References



6.46. J.J. Barrett, N.I. Adams, Laser-excited rotation-vibration Raman scattering in
ultra-small gas samples. J. Opt. Soc. Am. 58(3), 311–319 (1968)

6.47. R.A. Hill, D.L. Hartley, Focused, multiple-pass cell for Raman scattering. Appl. Opt.
13(1), 186–192 (1974)

6.48. R.A. Hill, A.J. Mulac, C.E. Hackett, Retroreflecting multipass cell for Raman
scattering. Appl. Opt. 16(7), 2004–2006 (1977)

6.49. A.J. Mulac, W.L. Flower, R.A. Hill, D.P. Aeschliman, Pulsed spontaneous Raman
scattering technique for luminous environments. Appl. Opt. 17(17), 2695–2699 (1978)

6.50. M.A. Bukshtab, Configurable tunable resonant multipass cell for scattering and
absorption measurements, 2007

6.51. G.A. Waldherr, H. Lin, Gain analysis of an optical multipass cell for spectroscopic
measurements in luminous environments. Appl. Opt. 47(7), 901–907 (2008)

6.52. R. Viola, High-luminosity multipass cell for infrared imaging spectroscopy. Appl. Opt.
45(12), 2805–2809 (2006)

6.53. C.A. Arguello, G.F. Mendes, R.C.C. Leite, Simple technique to suppress spurious
luminescence in Raman spectroscopy. Appl. Opt. 13(8), 1731–1732 (1974)

6.54. D.A. Hatzenbuhler, Raman spectroscopy in the presence of fluorescence. U.S. Patent
Number 3,807,862, 30 Apr 1974

6.55. E.C. Le Ru, L.C. Schroeter, P.G. Etchegoin, Direct measurement of resonance Raman
spectra and cross sections by a polarization difference technique. Anal. Chem. 84(5),
5074–5079 (2012)

6.56. M.A. Bukshtab, Fluorescence rejection techniques in Raman spectroscopy of carbo-
hydrates (2013)

6.57. E.P. Yaney, Reduction of fluorescence background in Raman spectra by the pulsed
Raman technique. JOSA 62(11), 1297–1303 (1972)

6.58. A.Z. Genack, B.N. Perry, Phase resolved modulation Raman spectrometer. U.S. Patent
Number 4,619,528, 28 Oct 1986

6.59. F.V. Bright, Multicomponent suppression of fluorescent interferents using phase-
resolved Raman spectroscopy. Anal. Chem. 60(15), 1622–1623 (1988)

6.60. D.V. Martyshkin, R.C. Ahuja, A. Kudriavtsev, S.B. Mirov, Effective suppression of
fluorescence light in Raman measurements using ultrafast time gated charge coupled
device camera. Rev. Sci. Instrum. 75(3), 630–635 (2004)

6.61. P. Matousek, M. Towrie, A. Stanley, A.W. Parker, Efficient rejection of fluorescence
from Raman spectra using picosecond Kerr gating. Appl. Spectrosc. 53(12), 1485–1489
(1999)

6.62. F. Knorr, Z.J. Smith, S. Wachsmann-Hogiu, Development of a time-gated system for
Raman spectroscopy of biological samples. Opt. Express 18(19), 20049–20058 (2010)

6.63. V.S. Ban, B.L. Volodin, N.R. Stoker, Compact, low cost Raman monitor for single
substances. US Patent 8,125,635, 28 Feb 2012

6.64. V.J. Hammond, W.C. Price, A new system for the elimination of scattered light effects
in spectrophotometers. J. Opt. Soc. Am. 43(10), 924 (1953)

6.65. J. Funfschilling, D.F. Williams, CW laser wavelength modulation in Raman and site
selection fluorescence spectroscopy. Appl. Spectrosc. 30(4), 443–446 (1976)

6.66. A.P. Shreve, N.J. Cherepy, R.A. Mathies, Effective rejection of fluorescence
interference in Raman spectroscopy using a shifted excitation difference technique.
Appl. Spectrosc. 46(4), 707–711 (1992)

6.67. J.J. Baraga, M.S. Feld, R.P. Rava, Rapid near-infrared Raman spectroscopy of human
tissue with a spectrograph and CCD detector. Appl. Spectrosc. 46(2), 187–190 (1992)

6.68. P.A. Mosier-Boss, S.H. Lieberman, R. Newbery, Fluorescence rejection in Raman
spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques. Appl.
Spectrosc. 49(5), 630–7638 (1995)

References 739



6.69. G. Schulze, A. Jirasek, M.L. Yu, A. Lim, R.F.B. Turner, M.W. Blades, Investigation of
selected baseline removal techniques as candidates for automated implementation.
Appl. Spectrosc. 59(5), 545–574 (2005)

6.70. J. Zhao, H. Lui, D.I. McLean, H. Zeng, Automated autofluorescence background
subtraction algorithm for biomedical Raman spectroscopy. Appl. Spectrosc. 61(11),
1225–1232 (2007)

6.71. Z.-M. Zhang, S. Chen, Y.-Z. Liang, Z.-X. Liu, Q.-M. Zhang, L.-X. Ding, F. Yec,
H. Zhouc, An intelligent background-correction algorithm for highly fluorescent
samples in Raman spectroscopy. J. Raman Spectrosc. 41(6), 659–669 (2010)

6.72. J. Zhao, M.M. Carrabba, F.S. Allen, Automated fluorescence rejection using shifted
excitation Raman difference spectroscopy. Appl. Spectrosc. 56(7), 834–845 (2002)

6.73. P. Matousek, M. Towrie, A.W. Parker, Simple reconstruction algorithm for shifted
excitation Raman difference spectroscopy. Appl. Spectrosc. 59(6), 848–851 (2005)

6.74. A.C. De Luca, M. Mazilu, A. Riches, C.S. Herrington, K. Dholakia, Online
fluorescence suppression in modulated Raman spectroscopy. Anal. Chem. 82(2),
738–745 (2010)

6.75. J.A. Decker, Experimental realization of the multiplex advantage with a Hadamard-
transform spectrometer. Appl. Opt. 10(3), 510–514 (1971); W.H. Richardson,
Bayesian-based iterative method of image restoration. J. Opt. Soc. Am. 62(1), 55–59
(1972)

6.76. E. Voigtman, J.D. Winefordner, The multiplex disadvantage and excess low-frequency
noise. Appl. Spectrosc. 41(7), 1182–1184 (1987); S.E. Bialkowski, Overcoming the
multiplex disadvantage by using maximum-likelihood inversion. Appl. Spectrosc.
52(4), 591–598 (1998)

6.77. S.E.J. Bell, E.S.O. Bourguignon, A. Dennis, Analysis of luminescent samples using
subtracted shifted Raman spectroscopy. Analyst 123(8), 1729–1734 (1998)

6.78. S.T. McCain, R.M. Willett, D.J. Brady, Multi-excitation Raman spectroscopy technique
for fluorescence rejection. Opt. Express 16(15), 10975–10991 (2008)

6.79. M.A. da Silva Martins, D.G. Ribeiro, E.A. Pereira dos Santos, A.A. Martin, A. Fontes,
H. da Silva Martinho, Shifted-excitation Raman difference spectroscopy for in vitro and
in vivo biological samples analysis. Biomed. Opt. Express 1(2), 617–626 (2010)

6.80. M. Mazilu, A.C. De Luca, A. Riches, C.S. Herrington, K. Dholakia, Optimal algorithm
for fluorescence suppression of modulated Raman spectroscopy. Opt. Express 18(11),
11382–11395 (2010)

6.81. B.B. Praveen, P.C. Ashok, M. Mazilu, A. Riches, S. Herrington, K. Dholakiaa,
Fluorescence suppression using wavelength modulated Raman spectroscopy in
fiber-probe-based tissue analysis. J. Biomed. Opt. 17(7), Article 077006 (2012)

6.82. P.J. Cadusch, M.M. Hlaing, S.A. Wade, S.L. McArthur, P.R. Stoddart, Improved
methods for fluorescence background subtraction from Raman spectra. J. Raman
Spectrosc. 44(11), 1587–1595 (2013)

6.83. S. Marshall, J.B. Cooper, Quantitative Raman spectroscopy when the signal-to-noise is
below the limit of quantitation due to fluorescence interference: advantages of a moving
window sequentially. Appl. Spectrosc. 70(9), 1489–1501 (2016)

6.84. J. Blacksberg, E. Alerstam, Y. Maruama, C.J. Cochrane, G.R. Rossman, Miniaturized
time-resolved Raman spectrometer for planetary science based on a fast single photon
avalanche diode detector array. Appl. Opt. 55(4), 739–748 (2016)

6.85. Y. Engelborghs, A.J.W.G. Visser, Fluorescence Spectroscopy and Microscopy:
Methods and Protocols (Humana Press, Springer, New York, 2014)

6.86. B. Tuzson, M. Mangold, H. Looser, A. Manninen, L. Emmenegger, Compact multipass
optical cell for laser spectroscopy. Opt. Lett. 38(3), 257–259 (2013)

6.87. T. Mohamed, F. Zhu, S. Chen, J. Strohaber, A.A. Kolomenskii, A.A. Bengali,
H.A. Schuessler, Multipass cell based on confocal mirrors for sensitive broadband laser
spectroscopy in the near infrared. Appl. Opt. 52(29), 7145–7151 (2013)

740 References



6.88. K. Krzempek, M. Jahjah, R. Lewicki, P. Stefanski, S. So, D. Thomazy, F.K. Tittel,
CW DFB RT diode laser-based sensor for trace-gas detection of ethane using a novel
compact multipass gas absorption cell. Appl. Phys. B 112(4), 461–465 (2013)

6.89. D. Kaur, A.M. de Souza, J. Wanna, S.A. Hammad, L. Mercorelli, D.S. Perry, Multipass
cell for molecular beam absorption spectroscopy. Appl. Opt. 29(1), 119–124 (1990);
K.C. Utsav, J.A. Silver, D.C. Hovde, P.L. Varghese, Improved multiple-pass Raman
spectrometer. Appl. Opt. 50(24), 4805–4816 (2011)

6.90. J. Thorstensen, K.H. Haugholt, A. Ferber, K.A.H. Bakke, J. Tschudi, Low-cost resonant
cavity Raman gas probe for multi-gas detection. J. Eur. Opt. Soc. Rap. Public. 9, Article
14054 (2014)

6.91. W. Muller, M. Kielhorn, M. Schmitt, J. Popp, R. Heintzmann, Light sheet Raman
micro-spectroscopy. Optica 3(4), 452–457 (2016)

6.92. V.N. Lednev, P.A. Sdvizhenskii, M.YA. Grishin, M.N. Filippov, A.N. Shchegolikhin,
S.M. Pershin, Laser crater enhanced Raman spectroscopy. Opt. Lett. 42(3), 607–610
(2017)

Chapter 7

7.1. A.B. Melnikov, Determination of transmittance of low-dense plasma by the intracavity
method. J. Appl. Spectrosc. 6(6), 821–823 (1967)

7.2. H.P. Brandli, Method for measuring of small optical losses using a He–Ne laser. Rev.
Sci. Instrum. 39(4), 583–587 (1968)

7.3. V.S. Burakov, V.V. Djukovsky, A.A. Stavrov, An increase of the dynamic range of the
intra-cavity measurements of optical densities. Quantum Electron. 5(1), 13–19 (1978)

7.4. V. Sanders, High-precision reflectivity measurement technique for low-loss laser
mirrors. Appl. Opt. 16(1), 19–20 (1977)

7.5. J.S. Shirk, T.D. Harris, J.W. Mitchell, Laser intracavity spectrophotometer. Anal.
Chem. 52(11), 1701–1705 (1980)

7.6. A.L. Bloom, Gas Lasers (Wiley, New York, 1968)
7.7. N. Konjevic, M. Kokovic, He–Ne laser for intra-cavity enhanced absorption

measurement. Spectrosc. Lett. 7(12), 615–620 (1974)
7.8. V.I. Makhorin, A.I. Popov, E.D. Protsenko, Influence of intra-resonator losses on power

of a He–Ne laser at 3.39 lm region. J. Appl. Spectrosc. 27(3), 418–422 (1977)
7.9. A.S. Burmistrov, A.I. Popov, Study of a sensitivity of the intra-cavity method of

determination of low optical losses in a cw gas laser. J. Appl. Spectrosc. 37(2), 205–209
(1982)

7.10. A.V. Lebedev, A.I. Popov, Computation of a sensitivity of method of low optical
absorption study in a cw laser with internal cavity and narrow spectrum. J. Appl.
Spectrosc. 44(2), 219–225 (1986)

7.11. L.A. Pakhomyucheva, E.A. Sviridenkov, A.F. Sychkov, L.V. Titova, S.S. Kurilov, The
linear structure of spectrums generated by solid-state lasers. Lett. JETF 12(2), 60–63
(1970)

7.12. B.M. Baev, V.P. Dyubov, E.A. Sviridenkov, Increasing of sensitivity of the intra-cavity
laser spectroscopy using Nd: glass laser. Quantum Electron. 12(12), 2490–2491 (1985)

7.13. N.C. Peterson, M.J. Kurylo, W. Braun, A.M. Bass, R.A. Keller, Enhancement of
absorption spectra by dye-laser quenching. J. Opt. Soc. Am. 61(6), 746–750 (1971);
R.A. Keller, E.F. Zalewski, N.C. Peterson, Enhancement of absorption spectra by
die-laser quenching, II. J. Opt. Soc. Am. 62(3), 319–326 (1972)

7.14. V.I. Baev, T.P. Belikova, E.A. Sviridenkov, A.F. Sychkov, Intra-cavity spectroscopy
with cw and quasi-cw lasers. JTF 74(1), 43–56 (1978)

7.15. A.A. Kachanov, T.V. Plakhotnik, Intracavity spectrometer with a ring traveling-wave
dye laser: reduction of detection limit. Opt. Commun. 47(4), 257–261 (1983)

References 741



7.16. A.V. Adamushko, M.V. Belokon, A.I. Rubinov, Intracavity spectrometer based on cw
dye lasers. J. Appl. Spectrosc. 28(3), 417–420 (1978)

7.17. D.A. Smith, D.I. Shernoff, Simple measurement of gain and loss in ultralow loss optical
resonators. Appl. Opt. 24(12), 1722–1723 (1985)

7.18. N. Dutta, R.T. Warner, G.J. Wolga, Sensitivity enhancement of a spin-flip Raman laser
absorption spectrometer through use of an intracavity absorption cell. Opt. Lett. 1(5),
155–157 (1977)

7.19. G.O. Brink, An alternate model of CW dye laser intracavity absorption. Opt. Commun.
32(1), 123–128 (1980)

7.20. E.N. Antonov, A.A. Kachanov, V.R. Mironenko, T.V. Plakhotnik, Dependence of the
sensitivity of intracavity laser spectroscopy on generation parameters. Opt. Commun.
46(2), 126–130 (1983)

7.21. S.J. Harris, Intracavity laser spectroscopy: an old field with new prospects for
combustion diagnostics. Appl. Opt. 23(9), 1311–1318 (1984)

7.22. F. Stoeckel, G.H. Atkinson, Time evolution of a broadband quasi-cw dye laser:
limitations of sensitivity in intracavity laser spectroscopy. Appl. Opt. 24(21),
3591–3597 (1985)

7.23. A. O’Keefe, D.A.G. Deacon, Cavity ring-down optical spectrometer for absorption
measurements using pulsed laser sources. Rev. Sci. Instrum. 59(12), 2544–2551 (1988)

7.24. R. Engeln, G. Meijer, A Fourier transform cavity ring down spectrometer. Rev. Sci.
Instrum. 67(8), 2708–2714 (1996)

7.25. P. Zalicki, R.N. Zare, Cavity ring-down spectroscopy for quantitative absorption
measurements. J. Chem. Phys. 102(7), 2708–2717 (1995)

7.26. K.K. Lehman, D. Romanini, The superposition principle and cavity ring-down
spectroscopy. J. Chem. Phys. 105(23), 10263–10277 (1996)

7.27. J.T. Hodges, J.P. Looney, R.D. van Zee, Response of a ring-down cavity to an arbitrary
excitation. J. Chem. Phys. 105(23), 10278–10288 (1996)

7.28. J.T. Hodges, J.P. Looney, R.D. van Zee, Laser bandwidth effects in quantitative cavity
ring-down spectroscopy. Appl. Opt. 35(21), 4112–4116 (1996)

7.29. M. Billardon, M.E. Couprie, J.M. Ortega, M. Velghe, Fabry-Perot effects in the
exponential decay and phase shift reflectivity measurement methods. Appl. Opt. 30(3),
344–351 (1991)

7.30. R.D. van Zee, J.T. Hodges, J.P. Looney, Pulsed, single-mode cavity ringdown
spectroscopy. Appl. Opt. 38(18), 3951–3960 (1999)

7.31. J.L. Remo, Reflection losses for symmetrically perturbed curved reflectors in open
resonators. Appl. Opt. 20(17), 2997–3002 (1981)

7.32. H. Naus, I.H.M. van Stokkum, W. Hogervorst, W. Ubachs, Quantitative analysis of
decay transients applied to a multimode pulsed cavity ringdown experiment. Appl. Opt.
40(24), 4416–4426 (2001)

7.33. T. von Lerber, M.W. Sigrist, Cavity-ring-down principle for fiber-optic resonators:
experimental realization of bending loss and evanescent-field sensing. Appl. Opt.
41(18), 3567–3575 (2002)

7.34. K.K. Lehmann, Ring-down cavity spectroscopy cell using continuous wave excitation
for trace species detection. U.S. Patent Number 5,528,040, 18 June 1996

7.35. B.A. Paldus, C.C. Harb, T.G. Spence, B. Wilke, J. Xie, J.S. Harris, R.N. Zare,
Cavity-locked ringdown spectroscopy. J. Appl. Phys. 83(8), 3991–3997 (1998)

7.36. J.W. Hahn, Y.S. Yoo, J.Y. Lee, J.W. Kim, H.-W. Lee, Cavity ringdown spectroscopy
with a continuous-wave laser: calculation of coupling efficiency and a new spectrometer
design. Appl. Opt. 38(9), 1859–1866 (1999)

7.37. J.W. Kim, Y.S. Yoo, J.Y. Lee, J.B. Lee, J.W. Hahn, Uncertainty analysis of absolute
concentration measurement with continuous-wave cavity ringdown spectroscopy. Appl.
Opt. 40(30), 5509–5516 (2001)

742 References



7.38. J.Y. Lee, H.-W. Lee, J.W. Kim, Y.S. Yoo, J.W. Hahn, Measurement of ultralow
supermirror birefringence by use of the polarimetric differential cavity ringdown
technique. Appl. Opt. 39(12), 1941–1945 (2000)

7.39. G. Totschnig, D.S. Baer, J. Wang, F. Winter, H. Hofbauer, R.K. Hanson, Multiplexed
continuous-wave diode-laser cavity ringdown measurements of multiple species. Appl.
Opt. 39(12), 2009–2016 (2000)

7.40. N.J. van Leeuwen, J.C. Diettrich, A.C. Wilson, Periodically locked continuous-wave
cavity ringdown spectroscopy. Appl. Opt. 42(18), 3670–3677 (2003)

7.41. A. Schocker, K. Kohse-Höinghaus, A. Brockhinke, Quantitative determination of
combustion intermediates with cavity ring-down spectroscopy: systematic study in
propene flames near the soot-formation limit. Appl. Opt. 44(31), 6660–6672 (2005)

7.42. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward,
Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31(2),
97–105 (1983)

7.43. K. An, C. Yang, R.R. Dasari, M.S. Feld, Cavity ring-down technique and its application
to the measurement of ultraslow velocities. Opt. Lett. 20(9), 1068–1070 (1995)

7.44. M. Rakhmanov, Doppler-induced dynamics of fields in Fabry-Perot cavities with
suspended mirrors. Appl. Opt. 40(12), 1942–1949 (2001)

7.45. S.M. Ball, R.L. Jones, Broad-band cavity ring-down spectroscopy. Chem. Rev. 103(12),
5239–5262 (2003)

7.46. S.E. Fiedler, A. Hese, A.A. Ruth, Incoherent broad-band cavity-enhanced absorption
spectroscopy. Chem. Phys. Lett. 371(3–4), 284–294 (2003)

7.47. J.M. Langridge, T. Laurila, R.S. Watt, R.L. Jones, C.F. Kaminski, J. Hult, Cavity
enhanced absorption spectroscopy of multiple trace gas species using a supercontinuum
radiation source. Opt. Express 16(14), 10178–10188 (2007)

7.48. K.K. Lehmann, P.S. Johnston, P. Rabinowitz, Brewster angle prism retroreflectors for
cavity enhanced spectroscopy. Appl. Opt. 48(16), 2967–2978 (2009)

7.49. C. Petermann, P. Fischer, Actively coupled cavity ringdown spectroscopy with
low-power broadband sources. Opt. Express 19(11), 10164–10173 (2011)

7.50. J. Reid, M. El-Sherbiny, B.K. Garside, E.A. Ballik, Sensitivity limits of a tunable diode
laser spectrometer, with application to the detection of NO2 at the 100-ppt level. Appl.
Opt. 19(19), 3349–3354 (1980)

7.51. D.T. Cassidy, J. Reid, Harmonic detection with tunable diode lasers: two-tone
modulation. Appl. Phys. B 29(4), 279–285 (1982)

7.52. P. Werle, B. Jänker, High-frequency-modulation spectroscopy: phase noise and
refractive index fluctuations in optical multipass cells. Opt. Eng. 35(7), 2051–2057
(1996)

7.53. C.R. Webster, Brewster-plate spoiler: a novel method for reducing the amplitude of
interference fringes that limit tunable-laser absorption sensitivities. J. Opt. Soc. Am.
B 2(9), 1464–1470 (1985)

7.54. J.A. Silver, A.C. Stanton, Optical interference fringe reduction in laser absorption
experiments. Appl. Opt. 27(10), 1914–1916 (1988)

7.55. A. Fried, J.R. Drummond, B. Henry, J. Fox, Reduction of interference fringes in small
multipass absorption cells by pressure modulation. Appl. Opt. 29(7), 900–902 (1990)

7.56. J.B. McManus, P.L. Kebabian, Narrow optical interference fringes for certain setup
conditions in multipass absorption cells of the Herriott type. Appl. Opt. 29(7), 898–900
(1990)

7.57. H.C. Sun, E.A. Whittaker, Novel etalon fringe rejection technique for laser absorption
spectroscopy. Appl. Opt. 31(24), 4998–5002 (1992)

7.58. D.E. Cooper, J.P. Watjen, Two-tone optical heterodyne spectroscopy with a tunable
lead-salt diode laser. Opt. Lett. 11(10), 606–608 (1986)

7.59. D.E. Cooper, C.B. Carlisle, High-sensitivity FM spectroscopy with a lead-salt diode
laser. Opt. Lett. 13(9), 719–721 (1988)

References 743



7.60. G. Durry, T. Danguy, I. Pouchet, Open multipass absorption cell for in situ monitoring
of stratospheric trace gas with telecommunication laser diodes. Appl. Opt. 41(3),
424–433 (2002)

7.61. S. Hocquet, D. Penninckx, E. Bordenave, C. Gouedard, Y. Jaouen, FM-to-AM
conversion in high-power lasers. Appl. Opt. 47(18), 3338–3349 (2008)

7.62. X. Dangpeng, W. Jianjun, L. Mingzhong, L. Honghuan, Z. Rui, D. Ying, D. Qinghua,
H. Xiaodong, W. Mingzhe, D. Lei, T. Jun, Weak etalon effect in wave plates can
introduce significant FM-to-AM modulations in complex laser systems. Opt. Express
18(7), 6621–6627 (2010)

7.63. D. Romanini, A.A. Kachanov, J. Morville, M. Chenevier, Measurement of trace gases
by diode laser cavity ringdown spectroscopy, in Proceedings of SPIE, vol. 3821,
pp. 94–104, 1999; Z. Tan, X. Long, A developed optical-feedback cavity ring-down
spectrometer and its application. Appl. Spectrosc. 66(5), 492–495 (2012)

7.64. J. Courtois, J.T. Hodges, Coupled-cavity ring-down spectroscopy technique. Opt. Lett.
37(16), 3354–3356 (2012); J. Courtois, K. Bielska, J.T. Hodges, Differential cavity
ring-down spectroscopy. J. Opt. Soc. Am. B 30(6), 1486–1495 (2013)

7.65. Z. Li, W. Ma, X. Fu, W. Tan, G. Zhao, L. Dong, L. Zhang, W. Yin, S. Jia,
Continuous-wave cavity ringdown spectroscopy based on the control of cavity
reflection. Opt. Express 21(15), 17961–17971 (2013)

7.66. A. Cygan, D. Lisak, P. Morzynski, M. Bober, M. Zawada, E. Pazderski, R. Ciuryło,
Cavity mode-width spectroscopy with widely tunable ultra narrow laser. Opt. Express
21(24), 29744–29754 (2013)

7.67. J. Burkart, D. Romanini, S. Kassi, Optical feedback frequency stabilized cavity
ring-down spectroscopy. Opt. Lett. 39(16), 4695–4698 (2014)

7.68. B. Li, H. Cui, Y. Han, L. Gao, C. Guo, C. Gao, Y. Wang, Simultaneous determination
of optical loss, residual reflectance and transmittance of highly anti-reflective coatings
with cavity ring down technique. Opt. Express 22(23), 29135–29142 (2014)

7.69. L.E. McHale, A. Hecobian, A.P. Yalin, Open-path cavity ring-down spectroscopy for
trace gas measurements in ambient air. Opt. Express 24(5), 5523–5535 (2016)

7.70. H. Cui, B. Li, Y. Han, J. Wang, C. Gao, Y. Wang, Extinction measurement with
open-path cavity ring-down technique of variable cavity length. Opt. Express 24(12),
13343–13350 (2016)

7.71. A. Karpf, G.N. Rao, Real-time trace gas sensor using a multimode diode laser and
multiple-line integrated cavity enhanced absorption spectroscopy. Appl. Opt. 54(19),
6085–6092 (2015)

7.72. G. Zhao, T. Hausmaninger, W. Ma, O. Axner, Whispering-gallery-mode laser-based
noiseimmune cavity-enhanced optical heterodyne molecular spectrometry. Opt. Lett.
42(16), 3109–3112 (2017)

Chapter 8

8.1. V.V. Appolonov, A.I. Barchukov, V.K. Konukhov, Measurements of scattering of laser
mirrors reflecting main CO2 laser beams. Quantum Electron. 4(16), 103–105 (1973)

8.2. O. De-Lange, Long-distance directional transmission of light signals. Proc. IEEE 1(10),
1350 (1963)

8.3. L.S. Kornienko, B.G. Skuibin, About a possibility of measurements of selective optical
losses. Opt. Spectrosc. 40(3), 571–573 (1976)

8.4. E.S. Voropai, A.M. Sarzhevskii, P.A. Torpachev, Procedure for measuring small optical
losses. J. Appl. Spectrosc. 34(1), 115–119 (1981)

8.5. J. Brochard, Ph. Cahuzac, Application des techniques d’absorption saturée á l’értitude
de la relaxion des vitesses d’atomes me’tastables sous l’effet des choes e’lastiques.
J. Phys. B: Atom. Mol. Phys. 9(12), 2027–2034 (1976)

744 References



8.6. A.J. Rock, M.R. Biazzo, A technique for measuring small optical loss using an
oscillating spherical interferometer. Bell Syst. Tech. J. 43(4), 1563–1579 (1964)

8.7. N.K. Berger, E.N. Bondarchuk, V.V. Dembovetskiy,Method of Laser-Mirror Reflectance
Measurements (Avtometria, Moscow, 1977), No. 1, pp. 109–111

8.8. Ph Cahuzac, G. Golman, Mesure des pouvoirs re’flecteurs e’leve’s a l’aide d’une cavité
optique a réflexion multiples. Nouv. Rev. Optique 7(6), 363–367 (1976)

8.9. J.M. Herbelin, J.A. McKay, M.A. Kwok, R.H. Ueunten, D.S. Ureving, D.J. Spencer,
D.J. Benard, Sensitive measurement of photon lifetime and true reflectances in an
optical cavity by a phase-shift method. Appl. Opt. 19(1), 144–147 (1980)

8.10. J.M. Herbelin, J.A. McKay, Development of laser mirrors of very high reflectivity using
the cavity attenuated phase-shift method. Appl. Opt. 20(19), 3341–3344 (1980)

8.11. M.A. Kwok, J.M. Herbelin, R.H. Ueunten, Cavity phase-shift method for high reflectance
measurements at mid-infrared wavelength. Opt. Eng. 21(6), 979–982 (1982)

8.12. D.Z. Anderson, J.C. Frisch, C.S. Masser, Mirror reflectometer based on optical cavity
decay time. Appl. Opt. 23(8), 1238–1245 (1984)

8.13. R. Engeln, G. von Helden, G. Berden, G. Meijer, Phase shift cavity ring down absorption
spectroscopy. Chem. Phys. Lett. 262(1–2), 105–109 (1996)

8.14. G. Rempe, R.J. Thompson, H.J. Kimble, R. Lalezari, Measurement of ultralow losses in
an optical interferometer. Opt. Lett. 17(5), 363–365 (1992)

8.15. M.A. Bukhshtab, Resonator technique for absolute reflection and transmission measure-
ments. J. Appl. Spectrosc. 37(5), 1330–1335 (1982)

8.16. Y. LeGrand, A. Le Floch,Measurement of residual reflectivities using the two eigenstates
of a passive cavity. Appl. Opt. 27(23), 4925–4930 (1988)

8.17. D. Jacob, F. Bretenaker, P. Pourcelot, Ph. Rio, M. Dumont, A. Dore, Pulsed measurement
of high-reflectivity mirror phase retardance. Appl. Opt. 33(15), 3175–3178 (1994)

8.18. E.R. Crosson, P. Haar, G.A. Marcus, H.A. Schwettman, B.A. Paldus, T.G. Spence, R.N.
Zare, Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum. 70(1), 4–10 (1999)

8.19. W.H. Knox, N.M. Pearson, K.D. Li, Ch.A. Hirlimann, Interferometric measurements of
femtosecond group delay in optical components. Opt. Lett. 13(7), 574–576 (1988)

8.20. K. Naganuma, K. Mogi, H. Yamada, Group-delay measurement using the Fourier
transform of an interferometric cross correlation generated by white light. Opt. Lett.
15(7), 393–395 (1990)

8.21. A.P. Kovàcs, K. Osvay, Zs Bor, R. Szipöcs, Group-delay measurement on laser mirrors
by spectrally resolved white light interferometry. Opt. Lett. 20(7), 788–790 (1995)

8.22. W.H. Knox, In situ measurement of complete intracavity dispersion in an operating
Ti: sapphire femtosecond laser. Opt. Lett. 17(7), 514–516 (1992)

8.23. W.H. Knox, Dispersion measurements for femtosecond-pulse generation and applica-
tions. Appl. Phys. B 58, 225–235 (1994)

8.24. K. Naganuma, Y. Sakai, Interferometric measurement of wavelength dispersion of
femtosecond laser cavities. Opt. Lett. 19(7), 487–489 (1994)

8.25. M.A. Bukhshtab, Low phase dispersion measurements of laser cavity components by
spectro-photometric resonating technique, in OSA Annual Meeting—ILS-X Conference,
Dallas, p. 145 (1994)

8.26. M.A. Bukhshtab, Spectrophotometric resonant measurement of wavelength phase disper-
sion on femtosecond laser cavities and single elements during their fabrication. Opt.
Commun. 123(4–6), 430–436 (1996)

8.27. Y. Le Grand, A. Le Froch, Sensitive dichroism measurement using eigenstate decay
times. Appl. Opt. 29(9), 1244–1246 (1990)

8.28. A. Miks, J. Novak, P. Novak, Colorimetric method for phase evaluation. J. Opt. Soc.
Am. A 23(4), 894–901 (2006)

References 745



8.29. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Willke, R.L. Byer, A laser-locked
cavity ring-down spectrometer employing an analog detection scheme. Rev. Sci.
Instrum. 71(2), 347–353 (2000)

8.30. J.B. Paul, L. Lapson, J.G. Anderson, Ultrasensitive absorption spectroscopy with a
high-finesse optical cavity and off-axis alignment. Appl. Opt. 40(27), 4904–4910
(2001)

8.31. K.D. Skeldon, G.M. Gibson, C.A. Wyse, L.C. McMillan, S.D. Monk, C. Longbottom,
M.J. Padgett, Development of high-resolution real-time sub-ppb ethane spectroscopy
and some pilot studies in life science. Appl. Opt. 44(22), 4712–4721 (2005)

8.32. S.D. Dyer, K.B. Rochford, A.H. Rose, Fast and accurate low-coherence interferometric
measurements of fiber Bragg grating dispersion and reflectance. Opt. Express 5(11),
262–266 (1999)

8.33. M.J. Thorpe, R.J. Jones, K.D. Moll, J. Ye, R. Lalezari, Precise measurements of optical
cavity dispersion and mirror coating properties via femtosecond combs. Opt. Express
13(3), 882–888 (2005)

8.34. N. Uehara, A. Ueda, K. Ueda, H. Sekiguchi, T. Mitake, K. Nakamura, N. Kitajima, I.
Kataoka, Ultralow-loss mirror of parts-in-106 level at 1064 nm. Opt. Lett. 20(6),
530–532 (1995)

8.35. K. An, B.A. Sones, C. Fang-Yen, R.R. Dasari, M.S. Feld, Optical bistability induced by
mirror absorption: measurement of absorption coefficients at the sub-ppm level. Opt.
Lett. 22(18), 1433–1435 (1997)

8.36. C.J. Hood, H.J. Kimble, J. Ye, Characterization of high-finesse mirrors: loss, phase
shifts, and mode structure in an optical cavity. Phys. Rev. A 64, Article 033804 (2001)

8.37. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, T. Zhang, Precision measurement
of ultralow losses of an asymmetric optical microcavity. Appl. Opt. 45(29), 7628–7631
(2006)

8.38. M. Borselli, T.J. Johnson, O. Painter, Accurate measurement of scattering and
absorption loss in microphotonic devices. Opt. Lett. 32(20), 2954–2956 (2007)

8.39. G. Farca, S.I. Shopova, A.T. Rosenberger, Cavity-enhanced laser absorption spec-
troscopy using microresonator whispering-gallery modes. Opt. Express 15(25),
17443–17448 (2007)

8.40. J. Poirson, F. Bretenaker, M. Vallet, A. Le Floch, Analytical and experimental study of
ringing effects in a Fabry-Perot cavity. Application to the measurement of high finesses.
JOSA B 14(11), 2811–2817 (1997)

8.41. C.R. Bucher, K.K. Lehmann, D.F. Plusquellic, G.T. Fraser, Doppler-free nonlinear
absorption in ethylene by use of continuous-wave cavity ringdown spectroscopy. Appl.
Opt. 39(18), 3154–3164 (2000)

8.42. I. Debecker, A.K. Mohamed, D. Romanini, High-speed cavity ringdown spectroscopy
with increased spectral resolution by simultaneous laser and cavity tuning. Opt. Express
13(8), 2906–2915 (2005)

8.43. Y. He, B.J. Orr, Continuous-wave cavity ringdown absorption spectroscopy with a
swept-frequency laser: rapid spectral sensing of gas-phase molecules. Appl. Opt.
44(31), 6752–6761 (2005)

8.44. J. Courtois, A.K. Mohamed, D. Romanini, High-speed off-axis cavity ring-down
spectroscopy with a re-entrant configuration for spectral resolution enhancement. Opt.
Express 18(5), 4845–4858 (2010)

8.45. M.C. Kuoa, Y.R. Lina, W.A.A. Syeda, J.T. Shya, Precision continuous wave cavity
ringdown spectroscopy of CO2 at 1064 nm. Opt. Spectrosc. 108(1), 29–36 (2010)

8.46. C. Froehly, A. Lacourt, J.C. Viénot, Time impulse response and time frequency
response of optical pupils: experimental confirmations and applications. Nouv. Rev.
Opt. 4(4), 183–196 (1973)

8.47. A.M. Weiner, D.E. Leaird, D.H. Reitze, E.G. Paek, Femtosecond spectral holography.
IEEE J. Quantum Electron. 28(10), 2251–2261 (1992)

746 References



8.48. L. Lepetit, G. Chériaux, M. Joffre, Linear techniques of phase measurement by
femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am.
B 12(12), 2467–2474 (1995)

8.49. D. Meshulach, D. Yelin, Y. Silberberg, White light dispersion measurements by one-
and two-dimensional spectral interference. IEEE J. Quantum Electron. 33(11),
1969–1974 (1997)

8.50. A. Börzsönyia, A.P. Kovácsa, M. Görbea, K. Osvaya, Advances and limitations of
phase dispersion measurement by spectrally and spatially resolved interferometry. Opt.
Commun. 281(11), 3051–3061 (2008)

8.51. I. Pupeza, X. Gu, E. Fill, T. Eidam, J. Limpert, A. T¨unnermann, F. Krausz, T. Udem,
Highly sensitive dispersion measurement of a high-power passive optical resonator
using spatial-spectral interferometry. Opt. Express 18(25), 26184–26195 (2010)

8.52. A. Schliesser, C. Gohle, T. Udem, T.W. Hänsch, Complete characterization of a
broadband high-finesse cavity using an optical frequency comb. Opt. Express 14(13),
5975–5983 (2006)

8.53. M. Milosevic, S.W. King, Spectroscopic method for measuring refractive index. Appl.
Opt. 52(19), 4477–4482 (2013)

8.54. M.I. Cheema, S. Mehrabani, A.A. Hayat, Y.-A. Peter, A.M. Armani, A.G. Kirk,
Simultaneous measurement of quality factor and wavelength shift by phase shift
microcavity ring down spectroscopy. Opt. Express 20(8), 9090–9098 (2012)

8.55. K. Stamataki, V. Papadakis, M.A. Everest, S. Tzortzakis, B. Loppinet, T.P. Rakitzis,
Monitoring adsorption and sedimentation using evanescent-wave cavity ringdown
ellipsometry. Appl. Opt. 52(5), 1086–1093 (2013)

8.56. T.H. Stievater, M.W. Pruessner, D. Park, W.S. Rabinovich, R.A. McGill, D.A. Kozak,
R. Furstenberg, S.A. Holmstrom, J.B. Khurgin, Trace gas absorption spectroscopy
using functionalized microring resonators. Opt. Lett. 39(4), 969–972 (2014)

8.57. J.A. Barnes, G. Gagliardi, H.-P. Loock, Absolute absorption cross-section measurement
of a submonolayer film on a silica microresonator. Optica 1(2), 75–83 (2014)

8.58. T. Grosz, A.P. Kovacs, K. Varju, Chromatic dispersion measurement along both
polarization directions of a birefringent hollow-core photonic crystal fiber using spectral
interferometry. Appl. Opt. 56(19), 5369–5376 (2017)

Chapter 9

9.1. H. Daglish, C. North, Watching light waves decline. New Sci. 48(721), 14–15 (1970)
9.2. D.A. Pinnow, T.C. Rich, Development of a calorimetric method for making precision

optical absorption measurements. Appl. Opt. 12(5), 984–992 (1973)
9.3. L.H. Scolnic, A review of techniques for measuring small optical losses in infrared

transmitting materials, in Optical Properties of Highly Transparent Solids, ed. by
S.S. Mitra, B. Bendow (Plenum, New York, 1975), pp. 405–434

9.4. H.B. Rosenstock, M. Hass, D.A. Gregory, J.A. Harrington, Analysis of laser
calorimetric data. Appl. Opt. 16(11), 2837–2842 (1977)

9.5. H.B. Rosenstock, D.A. Gregory, J.A. Harrington, Infrared bulk and surface absorption
by nearly transparent crystals. Appl. Opt. 15(9), 2075–2079 (1976)

9.6. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press,
London, 1969)

9.7. P.J. Severin, Calorimetric measurements of weakly absorbing materials: theory. Appl.
Opt. 18(10), 1546–1554 (1976); P.J. Severin, H. van Esveld, Calorimetric measure-
ments of the absorption coefficient of fiber quality glass: experiment. Appl. Opt. 20(10),
1833–1839 (1981)

9.8. P.A. Miles, Static profile calorimetry of laser materials. Appl. Opt. 16(11), 2897–2901
(1977)

References 747



9.9. M. Hass, J.W. Davidson, H.B. Rosenstock, J. Babiskin, Measurement of very low
absorption coefficient by laser calorimetry. Appl. Opt. 14(5), 1128–1129 (1975)

9.10. J.E. Midwinter, Optical Fibers for Transmission (Wiley, New York, 1979)
9.11. D. Bunimovich, L. Nagli, A. Katzir, Absorption measurements of mixed silver halide

crystals and fibers by laser calorimetry. Appl. Opt. 33(1), 117–119 (1994)
9.12. J.A. Harrington, M. Braunstein, J.E. Rudisill, Measuring the infrared absorption in

thin-film coatings. Appl. Opt. 16(11), 2843–2846 (1977)
9.13. E.G. Bernal, Heat flow analysis of laser absorption calorimetry. Appl. Opt. 14(2),

314–321 (1975)
9.14. H. Ahrens, H. Welling, H.E. Scheel, Measurement of optical absorption in dielectric

reflectors. Appl. Phys. 1, 69–71 (1973)
9.15. N.K. Sahoo, K.V.S.R. Apparao, Laser calorimeter for UV absorption measurement of

dielectric thin films. Appl. Opt. 31(28), 6111–6116 (1992)
9.16. P.A. Temple, Experimental and theoretical considerations in thin film laser calorimetry.

Opt. Eng. 23(3), 326–330 (1984)
9.17. R.A. Hoffman, Apparatus for the measurement of optical absorptivity in laser mirrors.

Appl. Opt. 13(6), 1405–1410 (1974)
9.18. D. Bunimovich, E. Belotserkovsky, L. Nagli, A. Katzir, Measurements of absorption

coefficients using noncontact fiber-optic laser calorimetry. Appl. Opt. 34(4), 743–745
(1995)

9.19. R.C.C. Leite, R.S. Moore, J.R. Whinnery, Low absorption measurements using an
He–Ne laser. Appl. Phys. Lett. 5(7), 141–14 (1964); J.P. Gordon, R.C.C. Leite, R.S.
Moore, S.P.S. Porto, J.R. Whinnery, Long-transient effects in lasers with inserted liquid
samples. J. Appl. Phys. 36(1), 3–8 (1965)

9.20. Ch. Hu, J.R. Whinnery, New thermooptical measurement method and a comparison
with other methods. Appl. Opt. 12(1), 72–79 (1973)

9.21. J. Stone, Measurement of the absorption of light in low-loss liquids. J. Opt. Soc. Am.
62(3), 327–333 (1972); Thermooptical technique for the measurement of absorption
loss spectrum in liquids. Appl. Opt. 12(8), 1828–1830 (1973)

9.22. D. Solimini, Accuracy and sensitivity of the thermal lens method for measuring
absorption. Appl. Opt. 5(12), 1931–1939 (1966)

9.23. S.J. Sheldon, L.V. Knight, J.M. Thorne, Laser-induced thermal lens effect: a new
theoretical model. Appl. Opt. 21(9), 1663–1669 (1982)

9.24. C.A. Carter, J.M. Harris, Comparison of models describing the thermal lens effect.
Appl. Opt. 23(3), 476–481 (1984)

9.25. S.E. Bialkowski, A. Chartier, Diffraction effects in single- and two-laser photothermal
lens spectroscopy. Appl. Opt. 36(27), 6711–6721 (1997)

9.26. J.F. Power, E.D. Salin, Mode-mismatched laser induced thermal lens effect detection
via spatial fourier analysis of beam profiles. Anal. Chem. 60(9), 838–842 (1988);
J.F. Power, Pulsed mode thermal lens effect detection in the near field via thermally
induced probe beam spatial phase modulation: a theory. Appl. Opt. 29(1), 52–63 (1990)

9.27. A.C. Boccara, D. Fournier, W. Jackson, N.M. Amer, Sensitive photothermal deflection
technique for measuring absorption in optically thin media. Opt. Lett. 5(9), 377–379
(1980)

9.28. W.B. Jackson, N.M. Amer, A.C. Boccara, D. Fournier, Photothermal deflection
spectroscopy and detection. Appl. Opt. 20(8), 1333–1344 (1981)

9.29. M. Commandré, P. Roche, J.-P. Borgogno, G. Albrand, Absorption mapping for
characterization of glass surfaces. Appl. Opt. 34(13), 2372–2379 (1995)

9.30. M. Commandré, E. Pelletier, Measurements of absorption losses in TiO2 films by a
collinear photothermal deflection technique. Appl. Opt. 29(28), 4276–4280 (1990)

9.31. M. Commandré, P. Roche, Characterization of optical coatings by photothermal
deflection. Appl. Opt. 35(25), 5021–5034 (1996)

748 References



9.32. A. Gatto, M. Commandré, Multiscale mapping technique for the simultaneous
estimation of absorption and partial scattering in optical coatings. Appl. Opt. 41(1),
225–234 (2002)

9.33. V. Loriette, C. Boccara, Absorption of low-loss optical materials measured at 1064 nm
by a position-modulated collinear photothermal detection technique. Appl. Opt. 42(4),
649–656 (2003)

9.34. R. Chow, J.R. Taylor, Z.L. Wu, Absorptance behavior of optical coatings for high-
average-power laser applications. Appl. Opt. 39(4), 650–658 (2000)

9.35. B. Li, S. Martin, E. Welsch, In situ measurement on ultraviolet dielectric components
by a pulsed top-hat beam thermal lens. Appl. Opt. 39(25), 4690–4697 (2000)

9.36. S.F. Pellicori, H.L. Hettich, Reversible spectral shift in coatings. Appl. Opt. 27(15),
3061–3062 (1988)

9.37. H. Takashashi, Temperature stability of thin-film narrowbandpass filters produced by
ion-assisted deposition. Appl. Opt. 34(4), 667–675 (1995)

9.38. E. Welsch, D. Ristau, Photothermal measurements on optical thin films. Appl. Opt.
34(31), 7239–7253 (1995)

9.39. L. Gallaisand, M. Commandré, Photothermal deflection in multilayer coatings:
modeling and experiment. Appl. Opt. 44(25), 5230–5238 (2005)

9.40. H. Hao, B. Li, Photothermal detuning for absorption measurement of optical coatings.
Appl. Opt. 47(2), 188–194 (2008)

9.41. B. Li, H. Blaschke, D. Ristau, Combined laser calorimetry and photothermal technique
for absorption measurement of optical coatings. Appl. Opt. 45(23), 5827–5831 (2006)

9.42. B. Li, S. Martin, E. Welsch, Pulsed top-hat beam thermal-lens measurement for
ultraviolet dielectric coatings. Opt. Lett. 24(20), 1398–1400 (1999)

9.43. S.E. Bialkowski, Accounting for absorption saturation effects in pulsed infrared
laser-excited photothermal spectroscopy. Appl. Opt. 32(18), 3177–3189 (1993)

9.44. A. Hordvic, Measurement techniques for small absorption coefficients: recent advances.
Appl. Opt. 16(11), 2827–2833 (1977)

9.45. M. Itoh, I. Ogura, Absorption measurements of laser optical materials by interferometric
calorimetry. J. Appl. Phys. 53(7), 5140–5145 (1982)

9.46. A.A. Gilionis, P.Yu. Krauialis, A.K. Maldutis, Yu.I. Reksnis, S.B. Sakalauskas,
Evaluation of optical characteristics of solid materials by thermooptical method using
pulsed laser radiation, in Theses of the IVth Conference on Nonresonance Light
Interactions with Mediums, Leningrad, GOI, 1978, pp. 183–184

9.47. P.-K. Kuo, M. Munidasa, Single-beam interferometry of a thermal bump. Appl. Opt.
29(36), 5326–5331 (1990)

9.48. A. Cournoyer, P. Baulaigue, E. Lazarides, H. Blancher, L. Bertrand, R. Occelli,
Photothermal measurements with a Jamin interferometer. Appl. Opt. 36(21),
5252–5261 (1997)

9.49. S. Hild, H. Lück, W. Winkler, K. Strain, H. Grote, J. Smith, M. Malec, M. Hewitson,
B. Willke, J. Hough, K. Danzmann, Measurement of a low-absorption sample of
OH-reduced fused silica. Appl. Opt. 45(28), 7269–7272 (2006)

9.50. D. Ottaway, J. Betzwieser, S. Ballmer, S. Waldman, W. Kells, In situ measurement of
absorption in high-power interferometers by using beam diameter measurements. Opt.
Lett. 31(4), 450–452 (2006)

9.51. L.B. Glebov, V.G. Dokuchaev, Measurements of low absorption extents by a
polarization calorimetric method. J. Opt. Technol. 51(2), 52–54 (1984)

9.52. D.A. Cremers, R.A. Keller, Thermooptic-based differential measurements of weak
solute absorptions with an interferometer. Appl. Opt. 21(9), 1654–1662 (1982)

9.53. A. Rosencwaig, A. Gersho, Theory of the photoacoustic effect with solids. J. Appl.
Phys. 47(1), 64–69 (1976)

9.54. A. Hordvic, H. Schlossberg, Photoacoustic technique for determining optical absorption
coefficients in solids. Appl. Opt. 16(1), 101–107 (1977)

References 749



9.55. A. Rosencwaig, Photoacoustics and Photoacoustic Spectroscopy (Wiley, New York,
1980)

9.56. V.P. Zharov, V.S. Letokhov, in Laser Optoacoustic Spectroscopy, ed. by
A.M. Bonch-Bruevich (Moscow, Nauka, 1984; Springer, Berlin, 1986)

9.57. Y.C. Teng, B.S.H. Royce, Absolute optical absorption coefficient measurements using
photoacoustic spectroscopy amplitude and phase information. J. Opt. Soc. Am. 70(5),
557–560 (1980)

9.58. V.P. Novikov, M.A. Novikov, Pulsed photoacoustic method for measurement of bulk
absorption in crystals. J. Appl. Spectrosc. 40(3), 499–502 (1984)

9.59. A.A. Betin, O.V. Mitropolskii, V.P. Novikov, M.A. Novikov, Study of optical losses
in IR optical materials by laser photoacoustic method. Quantum Electron. 12(9),
1856–1862 (1985)

9.60. S.A. Vinokurov, Surface and bulk absorption at photoacoustic measurements. J. Opt.
Technol. 50(10), 14–16 (1983)

9.61. M. Itoh, H. Saito, Pulsed photoacoustic technique to measure the absorption coefficients
of the highly transparent optical materials. Opt. Commun. 44(4), 229–231 (1983)

9.62. M.Y. Raja, D.W. Reicher, S.R.J. Brueck, J.R. McNeil, D.E. Oates, High-sensitivity
surface-photoacoustic spectroscopy. Opt. Lett. 15(1), 66–68 (1990)

9.63. E.L. Kerr, J.G. Atwood, The laser illuminated absorptivity spectrophone: a method for
measurement of weak absorptivity in gases at laser wavelengths. Appl. Opt. 7(5),
915–921 (1968)

9.64. J.G. Parker, Optical absorption in glass: investigation using an acoustic technique.
Appl. Opt. 12(12), 2974–2977 (1973)

9.65. L.-G. Rosengren, Optimal optoacoustic detector design. Appl. Opt. 14(8), 1960–1976
(1975)

9.66. J.F. McClelland, R.N. Kniseley, Photoacoustic spectroscopy with condensed samples.
Appl. Opt. 15(11), 2658–2663 (1976)

9.67. A.C. Tam, C.K.N. Patel, Optical absorptions of light and heavy water by laser
optoacoustic spectroscopy. Appl. Opt. 18(19), 3348–3358 (1979)

9.68. L.B. Kreuzer, Ultralow gas concentration infrared absorption spectroscopy. J. Appl.
Phys. 42(7), 2934–2943 (1971)

9.69. P.C. Claspy, C. Ha, Y.-H. Pao, Optoacoustic detection of NO2 using a pulsed dye laser.
Appl. Opt. 16(11), 2972–2973 (1977)

9.70. C.F. Dewey Jr., R.D. Kamm, C.E. Hackett, Acoustic amplifier for detection of
atmospheric pollutants. Appl. Phys. Lett. 23(11), 633–635 (1973)

9.71. M.W. Sigrist, Laser generation of acoustic waves in liquids and gases. J. Appl. Phys.
60(7), R83 (1986)

9.72. P.L. Meyer, M.W. Sigrist, Atmospheric pollution monitoring using CO2-laser
photoacoustic spectroscopy and other techniques. Rev. Sci. Instrum. 61(7),
1779–1807 (1990)

9.73. R.P. Fiegel, P.B. Hays, W.M. Wright, Photoacoustic technique for the measurement of
absorption line profiles. Appl. Opt. 28(7), 1401–1408 (1989)

9.74. M.A. Gondal, Laser photoacoustic spectrometer for remote monitoring of atmospheric
pollutants. Appl. Opt. 36(15), 3195–3201 (1997)

9.75. M. Harris, G.N. Pearson, D.V. Willetts, K. Ridley, P.R. Tapster, B. Perrett, Pulsed
indirect photoacoustic spectroscopy: application to remote detection of condensed
phases. Appl. Opt. 39(6), 1032–1040 (2000)

9.76. M. Fiedler, P. Hess, Frequency domain analysis of acoustic resonances excitedwith single
laser pulses, in Photoacoustic and Photothermal Phenomena, ed. by J.C. Murphy,
J.W. Maclachlan-Spicer, L.C. Aamodt, B.S.H. Royce. Springer Series in Optical
Sciences, vol. 62 (Springer, Berlin, 1990), pp. 344–346

750 References



9.77. A. Miklós, C. Brand, A. Winkler, P. Hess, Effective noise reduction on pulsed laser
excitation of modes in a high-Q photoacoustic resonator. J. Phys. IV 4(7), 781–784
(1994)

9.78. C. Brand, A. Winkler, P. Hess, A. Miklós, Z. Bozoki, J. Sneider, Pulsed-laser excitation
of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring:
results for C2H4. Appl. Opt. 34(18), 3257–3266 (1995)

9.79. P. Repond, M.W. Sigrist, Photoacoustic spectroscopy on trace gases with continuously
tunable CO2 laser. Appl. Opt. 35(21), 4065–4085 (1996)

9.80. G. Busse, D. Herboeck, Differential Helmholtz resonator as an optoacoustic detector.
Appl. Opt. 18(23), 3959–3961 (1979)

9.81. J. Peizi, K. Klein, O. Nordhaus, Extended Helmholtz resonator in low-temperature
photoacoustic spectroscopy. Appl. Opt. 21(1), 94–99 (1982)

9.82. S. Schafer, A. Miklós, P. Hess, Quantitative signal analysis in pulsed resonant
photoacoustics. Appl. Opt. 36(15), 3202–3211 (1997)

9.83. A. Miklós, C.-H. Lim, W.-W. Hsiang, G.-C. Liang, A.H. Kung, A. Schmohl, P. Hess,
Photoacoustic measurement of methane concentrations with a compact pulsed optical
parametric oscillator. Appl. Opt. 41(15), 2985–2993 (2002)

9.84. J. Henningsen, N. Melander, Sensitive measurement of adsorption dynamics with
nonresonant gas phase photoacoustics. Appl. Opt. 36(27), 7037–7045 (1997)

9.85. A. Schmohl, A. Miklós, P. Hess, Effects of adsorption–desorption processes on the
response time and accuracy of photoacoustic detection of ammonia. Appl. Opt. 40(15),
2571–2578 (2001)

9.86. A. Miklos, P. Hess, Z. Bozoki, Application of acoustic resonators in photoacoustic trace
gas analysis and metrology. Rev. Sci. Instrum. 72(4), 1937–1955 (2001)

9.87. M.E. Webber, M. Pushkarsky, C.N. Patel, Fiber-amplifier-enhanced photoacoustic
spectroscopy with near-infrared tunable diode lasers. Appl. Opt. 42(12), 2119–2126
(2003)

9.88. Z. Bozóki, A. Mohácsi, G. Szabó, Z. Bor, M. Erdélyi, W. Chen, F.K. Tittel, Near-
infrared diode laser based spectroscopic detection of ammonia: a comparative study of
photoacoustic and direct optical absorption methods. Appl. Spectrosc. 56(6), 715–719
(2002)

9.89. H.O. McMahon, Thermal radiation from partially transparent reflecting bodies. J. Opt.
Soc. Am. 40(6), 376–380 (1950)

9.90. D. Weber, Low-temperature, directional, spectral emissivity of translucent solids.
J. Opt. Soc. Am. 50(8), 808–810 (1960)

9.91. D.L. Stierwalt, Infrared spectral emittance measurements of optical materials. Appl.
Opt. 5(12), 1911–1915 (1966)

9.92. R.P. Heinisch, R.N. Schmidt, Development and application of an instrument for the
measurement of directional emittance of blackbody cavities. Appl. Opt. 9(8),
1920–1925 (1970)

9.93. E.M. Sparrow, P.D. Kruger, R.P. Heinisch, Cavity methods for determining the
emittance of solids. Appl. Opt. 12(10), 2466–2471 (1973)

9.94. F.A. Benford, An absolute method for determining coefficients of diffuse reflection.
Gen. Electr. Rev. 23, 72–75 (1920)

9.95. F. Benford, The integrating factor of the photometric sphere. J. Opt. Soc. Am. 25(10),
332–339 (1935)

9.96. P. Elterman, Integrating cavity spectroscopy. Appl. Opt. 9(9), 2140–2142 (1970)
9.97. E.S. Fry, G.W. Kattawar, R.M. Pope, Integrating cavity absorption meter. Appl. Opt.

31(12), 2055–2065 (1992)

References 751



9.98. R.M. Pope, E.S. Fry, Absorption spectrum 380–700 nm of pure water. II. Integrating
cavity measurements. Appl. Opt. 36(33), 8710–8722 (1997); see also: T.I. Quickenden,
C.G. Freeman, R.A.J. Litjens, Some comments on the paper by E.S. Fry on the visible
and near-ultraviolet absorption spectrum of liquid water. Appl. Opt. 39(16), 2740–2742
(2000)

9.99. J.T.O. Kirk, Modeling the performance of an integrating-cavity absorption meter:
theory and calculations for a spherical cavity. Appl. Opt. 34(21), 4397–4408 (1995)

9.100. D.M. Hobbs, N.J. McCormick, Design of an integrating cavity absorption meter. Appl.
Opt. 38(3), 456–461 (1999)

9.101. J.T.O. Kirk, Point-source integrating-cavity absorption meter: theoretical principles and
numerical modeling. Appl. Opt. 36(24), 6123–6128 (1997)

9.102. R.A. Leathers, T.V. Downes, C.O. Davis, Analysis of a point-source integrating-cavity
absorption meter. Appl. Opt. 39(33), 6118–6127 (2000)

9.103. G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-Mm
wavelength region. Appl. Opt. 12(3), 555–563 (1973)

9.104. R. Röttgers, W. Schönfeld, P.-R. Kipp, R. Doerffer, Practical test of a point-source
integrating cavity absorption meter: the performance of different collector assemblies.
Appl. Opt. 44(26), 5549–5560 (2005)

9.105. D.J. Gray, G.W. Kattawar, E.S. Fry, Design and analysis of a flow-through integrating
cavity absorption meter. Appl. Opt. 45(35), 8990–8998 (2006)

9.106. J.A. Musser, E.S. Fry, D.J. Gray, Flow-through integrating cavity absorption meter:
experimental results. Appl. Opt. 48(19), 3596–3602 (2009)

9.107. S. Tranchart, I. Hadj Bachir, J.-L. Destombes, Sensitive trace gas detection with
near-infrared laser diodes and an integrating sphere. Appl. Opt. 36(35), 7070–7074
(1996)

9.108. J.L. Keef, J.F. Clare, K.J. Thome, Analytical solution for integrating sphere spectral
efficiency inclusive of atmospheric attenuation. Appl. Opt. 47(2), 253–262 (2008)

9.109. A.D. Clarke, Integrating sandwich: a new method of measurement of the light
absorption coefficient for atmospheric particles. Appl. Opt. 21(16), 3011–3020 (1982);
R.M. Abdullin, A.V. Lebedev, Use of an integrating sphere as a multipass optical cell.
J. Opt. Technol. 55(3), 139–141 (1988)

9.110. E.S. Fry, J. Musser, G.W. Kattawar, P.-W. Zhai, Integrating cavities: temporal
response. Appl. Opt. 45(36), 9053–9065 (2006)

9.111. J. Hodgkinson, D. Masiyano, R.P. Tatam, Using integrating spheres as absorption cells:
path-length distribution and application of Beer’s law. Appl. Opt. 48(30), 5748–5758
(2009)

9.112. N. Bosschaart, M.C.G. Aalders, D.J. Faber, J.J.A. Weda, M.J.C. van Gemert, T.G. van
Leeuwen, Quantitative measurements of absorption spectra in scattering media by
low-coherence spectroscopy. Opt. Lett. 34(23), 3746–3748 (2009)

9.113. A.A. Kosterev, Yu.A. Bakhirkin, R.F. Curl, F.K. Tittel, Quartz-enhanced photoacoustic
spectroscopy. Opt. Lett. 27(21), 1902–1904 (2002)

9.114. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov,
Applications of quartz tuning forks in spectroscopic gas sensing. Rev. Sci. Instrum. 76,
Article 063102 (2005)

9.115. K. Liu, J. Li, L. Wang, T. Tan, W. Zhang, X. Gao, W. Chen, F.K. Tittel, Trace gas
sensor based on quartz tuning fork enhanced laser photoacoustic spectroscopy. Appl.
Phys. B 94(3), 527–533 (2009)

9.116. V. Spagnolo, A.A. Kosterev, L. Dong, R. Lewicki, F.K. Tittel, NO trace gas sensor
based on quartz-enhanced photoacoustic spectroscopy and external cavity quantum
cascade laser. Appl. Phys. B 100(1), 125–130 (2010)

752 References



9.117. J.H. Doty, A.A. Kosterev, F.K. Tittel, Recent advances in resonant optothermalacoustic
detection, in Quantum Sensing and Nanophotonic Devices VIII, ed. by M. Razeghi, R.
Sudharsanan, G.J. Brown, Proceedings of SPIE, 2011, vol. 7945, Article 79450Q

9.118. N. Petra, J. Zweck, A.A. Kosterev, S.E. Minkoff, D. Thomazy, Theoretical analysis of a
quartz-enhanced photoacoustic spectroscopy sensor. Appl. Phys. B 94(4), 673–680
(2009)

9.119. T. Laurila, H. Cattaneo, V. Koskinen, J. Kauppinen, R. Hernberg, Diode laser-based
photoacoustic spectroscopy with interferometrically-enhanced cantilever detection. Opt.
Express 13(7), 2453–2458 (2005)

9.120. E.L. Holthoff, D.A. Heaps, P.M. Pellegrino, Development of a MEMS-scale
photoacoustic chemical sensor using a quantum cascade laser. IEEE Sens. J. 10(3),
572–577 (2010); R.G. Polcawich, P.M. Pellegrino, Microelectromechanical resonant
photoacoustic Cell. U.S. Patent Number 7 304 732, 4 Dec 2003

9.121. B. Schäfer, J. Gloger, U. Leinhos, K. Mann, Photo-thermal measurement of absorptance
losses, temperature induced wavefront deformation and compaction in DUV-optics.
Opt. Express 17(25), 23025–23036 (2009)

9.122. B. Schäfer, M. Schöneck, A. Bayer, K. Mann, Absolute measurement of surface and
bulk absorption in DUV optics from temperature induced wavefront deformation. Opt.
Express 18(21), 21534–21539 (2010)

9.123. Y. Chen, S. Webster, B. Wickham, A. Bennett, M. Bass, Surface losses in the visible
governed by Rayleigh scattering in synthetic diamonds. Opt. Mat. Express 5(11),
2443–2447 (2015)

9.124. C. Bogan, P. Kwee, S. Hild, S.H. Huttner, B. Willke, Novel technique for thermal lens
measurement in commonly used optical components. Opt. Express 23(12),
15380–15389 (2015)

9.125. N. Shiokawa, E. Tokunaga, Quasi first-order Hermite Gaussian beam for enhanced
sensitivity in Sagnac interferometer photothermal deflection spectroscopy. Opt. Express
24(11), 11961–11974 (2016)

9.126. T. Berer, M. Brandstetter, A. Hochreiner, G. Langer, W. Märginger, P. Burgholzer,
B. Lendl, Remote mid-infrared photoacoustic spectroscopy with a quantum cascade
laser. Opt. Lett. 40(15), 3476–3479 (2015)

9.127. R. Ellwood, O. Ogunlade, E. Zhang, P. Beard, B. Cox, Photoacoustic tomography using
orthogonal Fabry–Pérot sensors. J. Biomed. Opt. 22(4), Article 041009 (2017)

9.128. M. Leidinger, S. Fieberg, N. Waasem, F. Kuhnemann, K. Buse, I. Breunig,
Comparative study on three highly sensitive absorption measurement techniques
characterizing lithium niobate over its entire transparent spectral range. Opt. Express
23(17), 21690–121705 (2015)

9.129. P.C. Dufour, N.L. Rowell, A.G. Steele, Fourier-transform radiation thermometry:
measurements and uncertainties. Appl. Opt. 37(25), 5923–5931 (1998)

9.130. L. González-Fernández, R.B. Pérez-Sáez, L. del Campo, M.J. Tello, Analysis of
calibration methods for direct emissivity measurements. Appl. Opt. 49(14), 2728–2735
(2010)

9.131. M. Honner, P. Honnerová, Survey of emissivity measurement by radiometric methods.
Appl. Opt. 54(4), 669–683 (2015)

9.132. M.T. Cone, J.A. Musser, E. Figueroa, J.D. Mason, E.S. Fry, Diffuse reflecting material
for integrating cavity spectroscopy, including ring-down spectroscopy. Appl. Opt.
54(2), 334–346 (2015)

9.133. S. Bergin, J. Hodgkinson, D. Francis, R.P. Tatam, Integrating cavity based gas cells: a
multibeam compensation scheme for pathlength variation. Opt. Express 24(12),
13647–13664 (2016)

References 753



Chapter 10

10.1. K.I. Tarasov, Spectrophotometers (Mashinostroenie, Leningrad, 1976)
10.2. V.G. Vorob’ev, Sources of photometric scale nonlinearity in optical-null spectropho-

tometers. J. Opt. Technol. 46(9), 512–515 (1979)
10.3. Beckman Coulter Inc., DU® 800 UV/Vis Spectrophotometer Specifications (2010);

H.H. Cary, A.O. Beckman, A quartz photoelectric spectrophotometer. J. Opt. Soc. Am.
31(11), 682–689 (1941)

10.4. W. Swindell, Electronic circuits of visual radiation detectors, in Applied Optics and
Optical Engineering, ed. by R.R. Shannon, J.C. Wyant (Academic Press, New York,
1980)

10.5. M.R. Querry, P.G. Cary, R.C. Waring, Split-pulse laser method for measuring
attenuation coefficients of transparent liquids: application to deionized filtered water in
the visible region. Appl. Opt. 17(22), 3587–3592 (1978)

10.6. E.S. Voropay, V.I. Karas, P.A. Torpachev, Measurements of optical losses using two
pairs of photodiode-transimpedance amplifiers. Meas. Tech. 26(2), 33–35 (1984)

10.7. E.S. Voropay, V.I. Karas, P.A. Torpachev, Study of the possibility of measurements of
the light flux with an amplitude resolution of 105. Metrologia, Moscow, 1985, No. 9,
pp. 31–38

10.8. R.T.H. Collis, Lidar. Appl. Opt. 9(8), 1782–1788 (1970)
10.9. S.A. Ahmed, Molecular air pollution monitoring by dye laser measurement of

differential absorption of atmospheric elastic backscatter. Appl. Opt. 12(4), 901–903
(1973)

10.10. J. Gelbwachs, NO2 lidar comparison: fluorescence vs backscattered differential
absorption. Appl. Opt. 12(12), 2812–2813 (1973)

10.11. U. Platt, J. Stutz, Differential Optical Absorption Spectroscopy – Principles and
Applications (Springer, Heidelberg, 2005)

10.12. T. Brauers, M. Hausmann, U. Brandenburger, H.-P. Dorn, Improvement of differential
optical absorption spectroscopy with a multichannel scanning technique. Appl. Opt.
34(21), 4472–4479 (1995)

10.13. M. Bartholdi, G.C. Salzman, R.D. Hiebert, M. Kerker, Differential light scattering
photometer for rapid analysis of single particles in flow. Appl. Opt. 19(10), 1573–1581
(1980)

10.14. G. Laufer, A. Ben-David, Optimized differential absorption radiometer for remote
sensing of chemical effluents. Appl. Opt. 41(12), 2263–2273 (2002)

10.15. V. Ebert, P. Vogel, Near shot noise detection of oxygen in the A-band with
vertical-cavity surface-emitting lasers. Appl. Phys. B 72(1), 127–135 (2001)

10.16. J.R. Schmidt, S.T. Sanders, Differential absorption sensor applied for liquid oxygen
measurements. Appl. Opt. 44(28), 6058–6066 (2005)

10.17. I. Pundt, K.U. Mettendorf, Multibeam long-path differential optical absorption
spectroscopy instrument: a device for simultaneous measurements along multiple light
paths. Appl. Opt. 44(23), 4985–4994 (2005)

10.18. C. Kern, S. Trick, B. Rippel, U. Platt, Applicability of light-emitting diodes as light
sources for active differential optical absorption spectroscopy measurements. Appl. Opt.
45(9), 2077–2088 (2006)

10.19. J. Stutz, U. Platt, Numerical analysis and estimation of the statistical error of differential
optical absorption spectroscopy measurements with least-squares methods. Appl. Opt.
35(30), 6041–6053 (1996)

10.20. M. Wenig, B. Jähne, U. Platt, Operator representation as a new differential optical
absorption spectroscopy formalism. Appl. Opt. 44(16), 3246–3253 (2005)

10.21. C. Billet, R. Sablong, Differential optical spectroscopy for absorption characterization
of scattering media. Opt. Lett. 32(22), 3251–3253 (2007)

754 References



10.22. A.H. Carrieri, J. Copper, D.J. Owens, E.S. Roese, J.R. Bottiger, R.D. Everly, K.C.
Hung, Infrared differential-absorption Mueller matrix spectroscopy and neural
network-based data fusion for biological aerosol standoff detection. Appl. Opt. 49(3),
382–393 (2010)

10.23. W. Heitmann, Attenuation measurement in low-loss optical glass by polarized radiation.
Appl. Opt. 14(12), 3047–3052 (1975)

10.24. W. Heitmann, Attenuation measurement in glass for optical communications: an
immersion method. Appl. Opt. 15(1), 256–260 (1976)

10.25. F. Ferri, A. Bassini, E. Paganini, Commercial spectrophotometer for particle sizing.
Appl. Opt. 36(4), 884–891 (1997)

10.26. G. Bonfiglioli, P. Brovetto, Principles of self-modulating derivative optical spec-
troscopy. Appl. Opt. 3(12), 1417–1424 (1964)

10.27. G. Bonfiglioli, J. Trench, Signal recovering in wavelength modulated spectrometers.
Opt. Commun. 10(2), 207–210 (1974)

10.28. E.I. Moses, C.L. Tang, High-sensitivity laser wavelength-modulation spectroscopy.
Opt. Lett. 1(4), 115–117 (1977)

10.29. A.T. Forrester, Photoelectric mixing as a spectroscopic tool. J. Opt. Soc. Am. 51(3),
253–259 (1961)

10.30. A.E. Siegman, The antenna properties of optical heterodyne receivers. Appl. Opt. 5(10),
1588–1594 (1966)

10.31. D. Fink, Coherent detection signal-to-noise. Appl. Opt. 14(3), 689–690 (1975)
10.32. L. Mandel, E. Wolf, Optimum conditions for heterodyne detection of light. J. Opt. Soc.

Am. 65(4), 413–420 (1975)
10.33. T. Takenaka, K. Tanaka, O. Fukumitsu, Signal-to-noise ratio in optical heterodyne

detection for Gaussian fields. Appl. Opt. 17(21), 3466–3470 (1978)
10.34. H.P. Yuen, V.W.S. Chan, Noise in homodyne and heterodyne detection. Opt. Lett. 8(3),

177–179 (1983)
10.35. B.J. Rye, Differential absorption lidar system sensitivity with heterodyne reception.

Appl. Opt. 17(24), 3862–3864 (1978)
10.36. G.C. Bjorklund, Frequency-modulation spectroscopy: a new method for measuring

weak absorptions and dispersions. Opt. Lett. 5(1), 15–17 (1980)
10.37. W. Lenth, C. Ortiz, G.C. Bjorklund, Pulsed frequency-modulation spectroscopy as a

means for fast absorption measurements. Opt. Lett. 6(7), 351–353 (1981)
10.38. T.F. Gallagher, R. Kachru, F. Gounand, G.C. Bjorklund, W. Lenth, Frequency-

modulation spectroscopy with a pulsed dye laser. Opt. Lett. 7(1), 28–30 (1982)
10.39. M. Romagnoli, M.D. Levenson, G.C. Bjorklund, Frequency-modulation-polarization

spectroscopy. Opt. Lett. 8(12), 635–637 (1983)
10.40. N.H. Tran, R. Kachru, P. Pillet, H.V.L van den Heuvell, T.F. Gallagher, J.P. Watjen,

Frequency-modulation spectroscopy with a pulsed dye laser: experimental investiga-
tions of sensitivity and useful features. Appl. Opt. 23(9), 1353–1360 (1984)

10.41. C.S. Gudeman, M.H. Begemann, J. Pfaff, R.J. Saykally, Tone-burst modulated
color-center-laser spectroscopy. Opt. Lett. 8(6), 310–312 (1983)

10.42. H. Lotem, Extension of the spectral coverage range of frequency modulation
spectroscopy by double frequency modulation. J. Appl. Phys. 54(10), 6033–6035
(1983)

10.43. D.E. Cooper, T.F. Gallagher, Double frequency modulation spectroscopy: high
modulation frequency with low-bandwidth detectors. Appl. Opt. 24(9), 1327–1334
(1985)

10.44. G.R. Janik, C.B. Carlisle, T.F. Gallagher, Two-tone frequency-modulation spec-
troscopy. J. Opt. Soc. Am. B 3(8), 1070–1074 (1986)

10.45. D.E. Cooper, J.P. Watjen, Two-tone optical heterodyne spectroscopy with a tunable
lead-salt diode laser. Opt. Lett. 11(10), 606–608 (1986)

References 755



10.46. D.E. Cooper, R.E. Warren, Two-tone optical heterodyne spectroscopy with diode
lasers: theory of line shapes and experimental results. J. Opt. Soc. Am. B 4(4), 470–480
(1987)

10.47. M. Gehrtz, W. Lenth, A.T. Young, H.S. Johnston, High-frequency-modulation
spectroscopy with a lead-salt diode laser. Opt. Lett. 11(3), 132–134 (1986)

10.48. N.-Y. Chou, G.W. Sachse, Single-tone and two-tone AM-FM spectral calculations for
tunable diode laser absorption spectroscopy. Appl. Opt. 26(17), 3584–3587 (1987)

10.49. L. Wang, H. Riris, C.B. Carlisle, T.F. Gallagher, Comparison of approaches to
modulation spectroscopy with GaAIAs semiconductor lasers: application to water
vapor. Appl. Opt. 27(10), 2071–2077 (1988)

10.50. C.B. Carlisle, D.E. Cooper, H. Preier, Quantum noise-limited FM spectroscopy with a
lead-salt diode laser. Appl. Opt. 28(13), 2567–2576 (1989)

10.51. J.A. Silver, Frequency-modulation spectroscopy for trace species detection: theory and
comparison among experimental methods. Appl. Opt. 31(6), 707–717 (1992); D.S.
Bomse, A.C. Stanton, J.A. Silver, Frequency modulation and wavelength modulation
spectroscopies: comparison of experimental methods using a lead-salt diode laser. Appl.
Opt. 31(6), 718–731 (1992)

10.52. J.M. Supplee, E.A. Whittaker, W. Lenth, Theoretical description of frequency
modulation and wavelength modulation spectroscopy. Appl. Opt. 33(27), 6294–6302
(1994)

10.53. P. Kluczynski, O. Axner, Theoretical description based on Fourier analysis of
wavelength-modulation spectrometry in terms of analytical and background signals.
Appl. Opt. 38(27), 5803–5815 (1999)

10.54. R.T. Ku, E.D. Hinkley, J.O. Sample, Long-path monitoring of atmospheric carbon
monoxide with a tunable diode laser system. Appl. Opt. 14(4), 854–861 (1975)

10.55. J. Shewchun, B.K. Garside, E.A. Ballik, C.C.Y. Kwan, M.M. Elsherbiny,
G. Hogenkamp, A. Kazandjian, Pollution monitoring systems based on resonance
absorption measurements of ozone with a “tunable” CO2 laser: some criteria. Appl. Opt.
15(2), 340–346 (1976)

10.56. J. Reid, J. Shewchun, B.K. Garside, E.A. Ballik, High sensitivity pollution detection
employing tunable diode lasers. Appl. Opt. 17(2), 300–307 (1978)

10.57. J. Reid, B.K. Garside, J. Shewchun, M. El-Sherbiny, E.A. Ballik, High sensitivity point
monitoring of atmospheric gases employing tunable diode lasers. Appl. Opt. 17(11),
1806–1810 (1978)

10.58. H. Flicker, J.P. Aldridge, H. Filip, N.G. Nereson, M.J. Reisfeld, W.H. Weber,
WaveNumber calibration of tunable diode lasers using etalons. Appl. Opt. 17(6),
851–852 (1978)

10.59. A.R. Chraplyvy, Diode laser spectra with simultaneous frequency calibration. Appl.
Opt. 17(17), 2674–2675 (1978)

10.60. D.E. Jennings, Absolute line strengths in v4,
12CH4: a dual-beam diode laser

spectrometer with sweep integration. Appl. Opt. 19(16), 2695–2700 (1980)
10.61. D.T. Cassidy, J. Reid, High-sensitivity detection of trace gases using sweep integration

and tunable diode lasers. Appl. Opt. 21(14), 2527–2530 (1982)
10.62. R.D. Schaeffer, J.C. Sproul, J. O’Connell, C. van Vloten, A.W. Mantz, Multipass

absorption cell designed for high temperature UHV operation. Appl. Opt. 28(9),
1710–1713 (1989)

10.63. M. Fehér, P.A. Martin, A. Rohrbacher, A.M. Soliva, J.P. Maier, Inexpensive near-
infrared diode-laser-based detection system for ammonia. Appl. Opt. 32(12), 2028–2030
(1993)

10.64. M.P. Arroyo, R.K. Hanson, Absorption measurements of water-vapor concentration,
temperature, and line-shape parameters using a tunable InGaAsP diode laser. Appl. Opt.
32(30), 6104–6116 (1993)

756 References



10.65. M.P. Arroyo, S. Langlois, R.K. Hanson, Diode-laser absorption technique for
simultaneous measurements of multiple gasdynamic parameters in high-speed flows
containing water vapor. Appl. Opt. 33(15), 3296–3307 (1994)

10.66. S.C. Woodworth, D.T. Cassidy, M.J. Hamp, Sensitive absorption spectroscopy by use
of an asymmetric multiple-quantum-well diode laser in an external cavity. Appl. Opt.
40(36), 6719–6724 (2001)

10.67. W. Armerding, M. Spiekermann, J. Walter, F.J. Comes, Multipass optical absorption
spectroscopy: a fast-scanning laser spectrometer for the in situ determination of
atmospheric trace-gas components, in particular OH. Appl. Opt. 35(21), 4206–4219
(1996)

10.68. D. Richter, D.G. Lancaster, F.K. Tittel, Development of an automated diode-laser-based
multicomponent gas sensor. Appl. Opt. 39(24), 4444–4450 (2000)

10.69. R. Claps, F.V. Englich, D.P. Leleux, D. Richter, F.K. Tittel, R.F. Curl, Ammonia
detection by use of near-infrared diode-laser-based overtone spectroscopy. Appl. Opt.
40(24), 4387–4394 (2001)

10.70. R.T. Ku, D.L. Spears, High-sensitivity infrared heterodyne radiometer using a
tunable-diode-laser local oscillator. Opt. Lett. 1(3), 84–86 (1977)

10.71. C.B. Carlisle, D.E. Cooper, Tunable-diode-laser frequency-modulation spectroscopy
using balanced homodyne detection. Opt. Lett. 14(23), 1306–1308 (1989)

10.72. G.D. Houser, E. Garmire, Balanced detection technique to measure small changes in
transmission. Appl. Opt. 33(6), 1059–1062 (1994)

10.73. P.C.D. Hobbs, Ultrasensitive laser measurements without tears. Appl. Opt. 36(4),
903–920 (1997); Noise cancelling circuitry for optical systems with signal dividing and
combining means. U.S. Patent 5,134,276; 28 July 1992

10.74. M.G. Allen, K.L. Carleton, S.J. Davis, W.J. Kessler, C.E. Otis, D.A. Palombo, D.M.
Sonnenfroh, Ultrasensitive dual-beam absorption and gain spectroscopy: applications
for near-infrared and visible diode laser sensors. Appl. Opt. 34(18), 3240–3248 (1995)

10.75. D.M. Sonnenfroh, M.G. Allen, Ultrasensitive, visible tunable diode laser detection of
NO2. Appl. Opt. 35(21), 4053–4058 (1996)

10.76. D.M. Sonnenfroh, W.T. Rawlins, M.G. Allen, C. Gmachl, F. Capasso,
A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Application of balanced
detection to absorption measurements of trace gases with room-temperature, quasi-cw
quantum-cascade lasers. Appl. Opt. 40(6), 812–820 (2001)

10.77. M.A. Bukhshtab, Absolute measurements of small specular reflection coefficients.
Meas. Tech. 30(3), 218–220 (1987)

10.78. M.A. Bukshtab, Regarding Correlations Among Measurements of Low Optical Losses
(Central Institute “Information,” Moscow, 1987)

10.79. M.A. Bukhshtab, Measurements of Low Optical Loss in Reflected Radiation.
Svetotekhnika (6), 5–6 (1987)

10.80. M.A. Bukhshtab, V.N. Koromislichenko, A.Y. Kirillov, Two-channel system for
determination of small optical losses of laser radiation with an amplitude resolution of
more than 10,000. Instrum. Exp. Tech. 31(2), 443–446 (1988)

10.81. A.Gh. Podoleanu, Unbalanced versus balanced operation in an optical coherence
tomography system. Appl. Opt. 39(1), 173–182 (2000)

10.82. O. Haderka, V. Michálek, V. Urbášek, M. Ježek, Fast time-domain balanced homodyne
detection of light. Appl. Opt. 48(15), 2884–2889 (2009)

10.83. S. Lambert-Girard, M. Allard, M. Piché, F. Babin, Differential optical absorption
spectroscopy lidar for mid-infrared gaseous measurements. Appl. Opt. 54(7),
1647–1656 (2015)

10.84. B. Zimmermann, A. Kohlerb, Optimizing Savitzky-Golay parameters for improving
spectral resolution and quantification in infrared spectroscopy. Appl. Spectrosc. 67(8),
892–902 (2013)

References 757



10.85. M.A. Czarnecki, Resolution enhancement in second-derivative spectra. Appl.
Spectrosc. 69(1), 67–74 (2015)

10.86. M. Vainio, M. Merimaa, L. Halonen, Frequency-comb-referenced molecular spec-
troscopy in the mid-infrared region. Opt. Lett. 36(21), 4122–4124 (2011)

10.87. K.M. Manfred, J.M.R. Kirkbride, L. Ciaffoni, R. Peverall, G.A.D. Ritchie, Enhancing
the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption
spectroscopy using RF current perturbation. Opt. Lett. 39(24), 6811–6814 (2014)

10.88. C.-Y. Chang, J.-T. Shy, Optimal power split ratio for autobalanced photodetection.
Appl. Opt. 53(3), 347–350 (2014)

Chapter 11

11.1. D. Marcuse, Principles of Optical Fiber Measurements (Academic Press, New York,
1981)

11.2. M.K. Barnoski, S.D. Personick, Measurements in fiber optics. Proc. IEEE 66(4),
429–441 (1978)

11.3. D.B. Keck, P.C. Shultz, F. Zimar, Attenuation of multimode glass optical waveguides.
Appl. Phys. Lett. 21(5), 215–217 (1972)

11.4. A.R. Tynes, Integrating cube scattering detector. Appl. Opt. 9(12), 2706–2710 (1970)
11.5. D. Marcuse, Loss analysis of single-mode fiber splices. Bell. Syst. Tech. J. 56, 703–718

(1977)
11.6. M. Tachikura, Internal loss measurement technique for optical devices equipped with

fiber connectors at both ends. Appl. Opt. 34(34), 8056–8057 (1995)
11.7. A. Zaganiaris, Simultaneous measurement of absorption and scattering losses in bulk

glasses and optical fibers by a microcalorimetric method. Appl. Phys. Lett. 25(6),
345–347 (1974)

11.8. E.T. Stone, W.B. Gardner, C.R. Lovelace, Calorimetric measurement of absorption and
scattering losses in optical fibers. Opt. Lett. 2(2), 48–50 (1978)

11.9. A.R. Tynes, A.D. Pearson, D.L. Bisbee, Loss mechanisms and measurements in clad
glass fibers and bulk glass. J. Opt. Soc. Am. 61(2), 143–153 (1971)

11.10. S. Huard, D. Chardon, Measure de l’absorption d’une fibre optique par effet
phot-acoustique. Opt. Commun. 39(1–2), 59–63 (1981)

11.11. G. Ghosh, S. Kachi, Y. Sasaki, M. Kimura, New method to measure scattering and total
losses of optical fibres. Electron. Lett. 21(16), 670–671 (1985)

11.12. X. Zhou, S. Zhu, H. Shen, M. Liu, A new spatial integration method for luminous flux
determination of light-emitting diodes. Meas. Sci. Technol. 21, Article 105303 (2010)

11.13. R. Olshansky, S.M. Oaks, Differential mode attenuation measurements in graded-index
fibers. Appl. Opt. 17(11), 1830–1835 (1978)

11.14. L.E. Busse, G.H. McCabe, I.D. Aggarwal, Wavelength dependence of the scattering
loss in fluoride optical fibers. Opt. Lett. 15(8), 423–424 (1990)

11.15. N. Mekada, A. Al-Hamdan, T. Murakami, M. Miyoshi, New direct measurement
technique of polarization dependent loss with high resolution and repeatability, in
Symposium on Optical Fiber Measurements, Technical Digest, 1994, NIST Special
Publication 864, pp. 189–192

11.16. R.C. Jones, A new calculus for the treatment of optical systems. VI. Experimental
determination of the matrix. J. Opt. Soc. Am. 37(2), 110–112 (1947)

11.17. B.L. Heffner, Deterministic, analytically complete measurement of polarization-dependent
transmission through optical devices. IEEE Photon Technol. Lett. 4(9), 451–454 (1992)

758 References



11.18. B.L. Heffner, Recent progress in polarization measurement techniques, in Symposium
on Optical Fiber Measurements, Technical Digest, 1992, NIST Special Publication
839, pp. 131–136

11.19. N. Gisin, Statistics of polarization dependent losses. Opt. Commun. 114(8), 399–405
(1995)

11.20. A. Elamari, N. Gisin, B. Perny, H. Zbinden, C. Zimmer, Polarization dependent loss of
concatenated passive optical components, in Symposium on Optical Fiber
Measurements, Technical Digest, 1996, NIST Special Publication 905, pp. 163–166

11.21. I. Molina-Fernández, J. de-Oliva-Rubio, Effects of phase noise in an optical six-port
measurement technique. Opt. Express 13(7), 2475–2486 (2005)

11.22. M. Bukhshtab, Interferometric noise in fiber transmission systems incorporating
birefringent substances, in Symposium on Optical Fiber Measurements, Technical
Digest, 1996, NIST Special Publication 905, pp. 211–214

11.23. D. Schicketanz, Method and apparatus for measuring the distance of a discontinuity of
glass fiber from one end of the fiber. U.S. Patent 4,021,121; 3 May 1977; Deutche
Auslegungsschrift No. 2451654 from 30 October 1974

11.24. M.K. Barnoski, S.M. Jensen, Fiber waveguides: a novel technique for investigating
attenuation characteristics. Appl. Opt. 15(9), 2112–2115 (1976)

11.25. S.D. Personick, Photon probe—an optical fiber time-domain reflectometer. Bell Syst.
Tech. J. 56(3), 355–366 (1977)

11.26. R.I. MacDonald, Frequency domain optical reflectometer. Appl. Opt. 20(10),
1840–1844 (1981)

11.27. W. Eickhoff, R. Ulrich, Optical frequency reflectometry in single-mode fiber. Appl.
Phys. Lett. 39(9), 693–695 (1981)

11.28. D. Uttam, B. Culshaw, Precision time domain reflectometry in optical fiber systems
using a frequency modulated continuous wave ranging technique. J. Lightwave
Technol. LT-3(5), 971–977 (1985)

11.29. F.P. Kapron, R.D. Maurer, M.P. Teter, Theory of backscattering effects in waveguides.
Appl. Opt. 11(6), 1352–1356 (1972)

11.30. E. Brinkmeyer, Analysis of the backscattering method for single-mode optical fibers.
J. Opt. Soc. Am. 70(8), 1010–1012 (1980)

11.31. A.H. Hartog, M.P. Gold, On the theory of backscattering in single-mode optical fibers.
J. Lightwave Technol. LT-2(2), 76–82 (1984)

11.32. F. Caviglia, P. Ricaldone, Noise error in OTDR splice loss measurement, in Symposium
on Optical Fiber Measurements: Technical Digest, 1994, NIST Special Publication
864, pp. 49–52

11.33. M.P. Gold, A.H. Harotg, Improved-dynamic-range single-mode OTDR at 1.3 lm.
Electron. Lett. 20(7), 285–287 (1984)

11.34. H. Izumita, Y. Koyamada, S. Furukawa, I. Sankawa, Performance limits of coherent
OTDR due to optical nonlinear effects, in Symposium on Optical Fiber Measurements,
Technical Digest, 1994, NIST Special Publication 864, pp. 39–44

11.35. M. Ghioni, G. Ripamonti, S.V. Vanoli, S. Pitassi, Multiphoton pulse approach in
photon-timing OTDR yields enhanced dynamic range and shorter measurement time, in
Symposium on Optical Fiber Measurements, Technical Digest, 1990, NIST Special
Publication 792, pp. 31–34

11.36. G. Pipamonti, S. Cova, Optical time-domain reflectometry with centimetre resolution at
10–15 W sensitivity. Electron. Lett. 22(15), 818–819 (1986)

11.37. D. Dolfi, M. Nazarathy, S.A. Newton, 5-mm-resolution optical-frequency-domain
reflectometry using a coded phase-reversal modulator. Opt. Lett. 13(8), 678–680 (1988)

11.38. D. Dolfi, M. Nazarathy, Optical frequency domain reflectometry with high sensitivity
and resolution using optical synchronous detection with coded modulators. Electron.
Lett. 25(2), 160–162 (1989)

References 759



11.39. V.C.Y. So, J.W. Jiang, J.A. Cargill, P.J. Vella, Automation of an optical time domain
reflectometer to measure loss and return loss. J. Lightwave Technol. 8(7), 1078–1082
(1990)

11.40. B.L. Danielson, C.D. Whittenberg, Guide-wave reflectometry with micrometer
resolution. Appl. Opt. 26(14), 2836–2842 (1987)

11.41. K. Takada, I. Yokohama, K. Chida, J. Noda, New measurement system for fault
location in optical waveguide devices based on an interferometric technique. Appl. Opt.
26(9), 1603–1606 (1987)

11.42. W.V. Sorin, D.K. Donald, Long and short range measurements using coherent FMCW
reflectometry, in Symposium on Optical Fiber Measurements, Technical Digest, 1990,
NIST Special Publication 792, pp. 27–30

11.43. K. Takada, A. Himeno, K. Yukimatsu, High sensitivity and submillimeter resolution
optical-time domain reflectometry based on low-coherence interference. J. Lightwave
Technol. 9(11), 1534–1539 (1991)

11.44. K. Takada, K. Yukimatsu, M. Kobayashi, J. Noda, Rayleigh backscattering measure-
ment of single-mode fibers by low coherence optical domain reflectometer with 14 lm
spatial resolution. Appl. Phys. Lett. 59(2), 143–145 (1991)

11.45. K. Takada, A. Himeno, K. Yukimatsu, Resolution-controllable optical time domain
reflectometry based on low coherence interference. J. Lightwave Technol. 10(12),
1998–2005 (1992)

11.46. E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, C.A. Puliafito,
High-speed optical coherence domain reflectometry. Opt. Lett. 17(2), 151–153 (1992)

11.47. L.-T. Wang, K. Iiyama, F. Tsukada, N. Yoshida, K. Hayashi, Loss measurement in
optical waveguide devices by coherent frequency-modulated continuous-wave reflec-
tometry. Opt. Lett. 18(13), 1095–1097 (1993)

11.48. S.K. Das, A.F. Judy, G.M. Alameel, R.M. Jopson, T.F. Adda, Reflectance measurement
in lightwave systems: a comparison of various techniques, in Symposium on Optical
Fiber Measurements, Technical Digest, 1988, NIST Special Publication 748, pp. 25–30

11.49. E.L. Buckland, M. Nishimura, Bidirectional OTDR measurements utilizing an
improved folded-path technique, in Symposium on Optical Fiber Measurements,
Technical Digest, 1988, NIST Special Publication 748, pp. 15–18

11.50. A.F. Judy, An OTDR based combined end-reflection and backscatter measurement, in
Symposium on Optical Fiber Measurements, Technical Digest, 1992, NIST Special
Publication 839, pp. 19–22

11.51. F.P. Kapron, B.P. Adams, E.A. Thomas, J.W. Peters, Fiber-optic reflection measure-
ments using OCWR and OTDR techniques. J. Lightwave Technol. 7(8), 1234–1241
(1989)

11.52. P. Blanchard, P.-H. Zongo, P. Facq, Accurate reflectance and optical fibre backscatter
parameter measurements using an OTDR. Electron. Lett. 26(25), 2060–2062 (1991)

11.53. L. Ducos, P. Facq, Windowing technique for accurate measurement of low reflectances
by OTDR, in Symposium on Optical Fiber Measurements, Technical Digest, 1994,
NIST Special Publication 864, pp. 45–48

11.54. D. Marcuse, Reflection losses from imperfectly broken fiber ends. Appl. Opt. 14(12),
3016–3020 (1975)

11.55. M.A. Bukhshtab, V.N. Koromislichenko, A.A. Ovsiannikov, Method of determining
optical losses at the ends and end joints of fiber light guides. U.S. Patent Number
5,037,197, 6 Aug 1991

11.56. M.A. Bukhshtab, V.N. Koromislichenko, Light reflection method for transmission-loss
measurements in optical fiber lightguides. U.S. Patent 5,226,102, 6 July 1993

11.57. M.A. Bukhshtab, Method of determining the optical loss in a fiber-optic light guide in
reflected radiation. U.S. Patent 5,331,391, 19 July 1994

760 References



11.58. M.M. Choy, J.M. Gimlett, R. Welter, L.G. Kasovsky, N.K. Cheung, Interferometric
conversion of laser phase noise to intensity noise by single mode fiber optic
components. Electron. Lett. 23(21), 1151–1152 (1987)

11.59. L. Mandel, Phenomenological theory of laser beam fluctuations and beam mixing.
Phys. Rev. 138(3B), B753–B 762 (1965)

11.60. J.A. Armstrong, Theory of interferometric analysis of laser phase noise. J. Opt. Soc.
Am. 56(8), 1024–1031 (1966)

11.61. C.H. Henry, Theory of the linewidth of semiconductor lasers. IEEE J. Quantum
Electron. QE-18(2), 259–264 (1982)

11.62. R.W. Tkach, A.R. Chraplyvy, Phase noise and linewidth in an InGaAsP DFB laser.
J. Lightwave Technol. 4(11), 1711–1716 (1986)

11.63. M. Tur, E.L. Goldstein, Dependence of error rate on signal-to-noise ratio in fiber-optic
communication systems with phase-induced intensity noise. J. Lightwave Technol.
7(12), 2055–2058 (1989)

11.64. A. Arie, M. Tur, E.L. Goldstein, Probability-density function of noise at the output of a
two-beam interferometer. J. Opt. Soc. Am. A 8(12), 1936–1942 (1991)

11.65. J.L. Gimlett, N.K. Cheung, Effects of phase-to-intensity noise conversion by multiple
reflections on gigabit-per-second DFB laser transmission systems. J. Lightwave
Technol. 7(6), 888–895 (1989)

11.66. J.L. Gimlett, M.Z. Iqobal, N.K. Cheung, A. Righetti, F. Fontana, G. Grasso,
Observation of equivalent Rayleigh scattering mirrors in lightwave systems with
optical amplifiers. IEEE Photon. Technol. Lett. 2(3), 211–213 (1990)

11.67. C. Desem, Optical Interference in subscriber multiplexed systems with multiple optical
carriers. IEEE J. Sel. Areas Commun. 8(7), 1290–1295 (1990)

11.68. M. Nazarathy, W. Sorin, D. Baney, S. Newton, Spectral analysis of optical mixing
measurements. J. Lightwave Technol. 7(7), 1083–1096 (1989)

11.69. M. Tur, E.L. Goldstein, Probability distribution of phase-induced intensity noise
generated by distributed-feedback, lasers. Opt. Lett. 15(1), 1–3 (1990)

11.70. P.J. Legg, D.K. Hunter, I. Andonovic, P.E. Barnsley, Inter-channel crosstalk
phenomena in optical time division multiplexed switching networks. IEEE Photon.
Technol. Lett. 6(5), 661–663 (1994)

11.71. E.L. Goldstein, L. Eskildsen, A.F. Elrefaie, Performance implications of component
crosstalk in transparent lightwave networks. IEEE Photon. Technol. Lett. 6(5), 657–659
(1994)

11.72. E.L. Goldstein, L. Eskildsen, Scaling limitations in transparent optical networks due to
low-level crosstalk. IEEE Photon. Technol. Lett. 7(1), 93–94 (1995)

11.73. L. Eskildsen, P.B. Hunsen, Interferometric noise in lightwave systems with optical
preamplifiers. IEEE Photon. Technol. Lett. 9(11), 1538–1540 (1997)

11.74. H.J.S. Dorren, H. de Waardt, I.T. Monroy, Statistical analysis of crosstalk accumulation
in WDM networks. J. Lightwave Technol. 17(12), 2425–2430 (1999)

11.75. L. Gilner, Scalability of optical multiwavelength switching networks: crosstalk analysis.
J. Lightwave Technol. 17(1), 58–67 (1999)

11.76. Z. Meng, Y. Hu, S. Xiong, G. Stewart, G. Whitenett, B. Culshaw, Phase noise
characteristics of a diode-pumped ND:YAG laser in an unbalanced fiber-optic
interferometer. Appl. Opt. 44(17), 3425–3428 (2005)

11.77. J.R. Folkenberg, M.D. Nielsen, N.A. Mortensen, C. Jakobsen, H.R. Simonsen,
Polarization maintaining large mode area photonic crystal fiber. Opt. Express 12(5),
956–960 (2004)

11.78. I. Fatadin, S.J. Savory, Impact of phase to amplitude noise conversion in coherent
optical systems with digital dispersion compensation. Opt. Express 18(15),
16273–16278 (2010)

References 761



11.79. I. Salinas, I. Garcés, R. Alonso, J. Pelayo, F. Villuendas, Experimental study on the
origin of optical waveguide losses by means of Rayleigh backscattering measurement.
Opt. Express 13(2), 564–972 (2005)

11.80. P. Healy, P. Hensel, Optical time domain reflectometry by photon counting. Electron.
Lett. 16(16), 631–633 (1980)

11.81. R. Feced, M. Farhadiroushan, V.A. Handerek, Zero dead-zone OTDR with high-spatial
resolution for short haul applications. IEEE Photon. Technol. Lett. 9(5), 1140–1142
(1997)

11.82. M. Legré, R. Thew, H. Zbinden, N. Gisin, High resolution optical time domain
reflectometer based on 1.55 lm up-conversion photon-counting module. Opt. Express
15(13), 8237–8242 (2007)

11.83. P. Blanchard, J. Dubard, L. Ducos, R. Thauvin, Simulation method of reflectance
measurement error using the OTDR. IEEE Photon. Technol. Lett. 10(5), 705–706
(1998)

11.84. Y.-J. Rao, D.A. Jackson, Recent progress in fiber optic low-coherence interferometry.
Meas. Sci. Technol. 7(7), 910–999 (1996)

11.85. A.J. Rogers, Polarization-optical time domain reflectometry: a technique for the
measurement of field distributions. Appl. Opt. 20, 1060–1074 (1981)

11.86. J.G. Ellison, A.S. Siddiqui, A fully polarimetric optical time-domain reflectometer.
IEEE Photon. Technol. Lett. 10(2), 246–248 (1998)

11.87. B. Huttner, J. Reecht, N. Gizin, R. Passy, J.P. von der Weid, Local birefringence
measurements in single-mode fibers with coherent optical frequency-domain reflec-
tometry. IEEE Photon. Technol. Lett. 10(10), 1458–1460 (1998)

11.88. M. Han, Y. Wang, A. Wang, Grating-assisted polarization optical time-domain
reflectometry for distributed fiber-optic sensing. Opt. Lett. 32(14), 2028–2030 (2007)

11.89. M.G. Shlyagin, A.V. Khomenko, D. Tentori, Birefringence dispersion measurement in
optical fibers by wavelength scanning. Opt. Lett. 20(8), 869–871 (1995)

11.90. V.V. Spirin, F.J. Mendieta, S.V. Miridonov, M.G. Shlyagin, A.A. Chtcherbakov, P.L.
Swart, Localization of a loss-inducing perturbation with variable accuracy along a test
fiber using transmission-reflection analysis. IEEE Photon. Technol. Lett. 16(2),
569–571 (2004)

11.91. P. Hlubina, D. Ciprian, Spectral-domain measurement of phase modal birefringence in
polarization-maintaining fiber. Opt. Express 15(25), 17019–17024 (2007)

11.92. N.H. Zhu, J.H. Ke, H.G. Zhang, W. Chen, J.G. Liu, L.J. Zhao, W. Wang, Wavelength
coded optical time-domain reflectometry. J. Lightwave Technol. 28(6), 972–977 (2010)

11.93. V. Kalavally, I.D. Rukhlenko, M. Premaratne, T. Win, Multipath interference in
pulse-pumped fiber Raman amplifiers: analytical approach. J. Lightwave Technol.
28(18), 2701–2707 (2010)

11.94. B. Szafraniec, R. Mästle, B. Nebendahl, E. Thrush, D.M. Baney, Fast
polarization-dependent loss measurement based on continuous polarization modulation.
Appl. Opt. 48(3), 573–578 (2009)

11.95. T. Geng, G. Li, Y. Zhang, J. Wang, T. Zhang, Phase noise of diode laser in self-mixing
interference. Opt. Express 13(16), 5904–5912 (2005)

11.96. P.K. Tien, Light waves in thin films and integrated optics. Appl. Opt. 10(11),
2395–2413 (1971)

11.97. I. Awai, H. Onodera, Y.-K. Choi, M. Nakajima, J.-I. Ikenoue, Improved method of loss
measurement for optical waveguides by use of a rectangular glass probe. Appl. Opt.
31(12), 2078–2084 (1992)

11.98. J. Cardin, D. Leduc, Determination of refractive index, thickness, and the optical losses
of thin films from prism–film coupling measurements. Appl. Opt. 47(7), 894–900
(2008)

11.99. T.A. Strasser, M.C. Gupta, Optical loss measurement of low-loss thin-film waveguides
by photographic analysis. Appl. Opt. 31(12), 2041–2046 (1992)

762 References



11.100. S. Satoh, K. Susa, I. Matsuyama, Simple method of measuring scattering losses in
optical fibers. Appl. Opt. 38(34), 7080–7084 (1999)

11.101. D.F. Clark, M.S. Iqbal, Simple extension to the Fabry-Perot technique for accurate
measurement of losses in semiconductor waveguides. Opt. Lett. 15(22), 1291–1293
(1990)

11.102. R. Fazludeen, S. Barai, P.K. Pattnaik, T. Srinivas, A. Selvarajan, A novel technique to
measure the propagation loss of integrated optical waveguides. IEEE Photon. Technol.
Lett. 17(2), 360–362 (2005)

11.103. Y.-P. Wang, J.-P. Chen, X.-W. Li, X.-H. Zhang, J.-X. Hong, A.-L. Ye, Simultaneous
measurement of various optical parameters in a multilayer optical waveguide by a
Michelson precision reflectometer. Opt. Lett. 30(9), 979–981 (2005)

11.104. S. Taebi, M. Khorasaninejad, S.S. Saini, Modified Fabry-Perot interferometric method
for waveguide loss measurement. Appl. Opt. 47(35), 6625–6630 (2008)

11.105. H.L. Rogers, S. Ambran, C. Holmes, P.G.R. Smith, J.C. Gates, In situ loss
measurement of direct UV-written waveguides using integrated Bragg gratings. Opt.
Lett. 35(17), 2849–2851 (2010)

11.106. T.-N. Nguyen, K. Lengle, M. Thual, P. Rochard, M. Gay, L. Bramerie, S. Malaguti, G.
Bellanca, S.D. Le, T. Chartier, Nondestructive method to measure coupling and
propagation losses in optical guided structures. J. Opt. Soc. Am. B 29(12), 3393–3397
(2012)

11.107. S. Jeon, H. Kim, B.-S. Song, Y. Yamaguchi, T. Asano, S. Noda, Measurement of
optical loss in nanophotonic waveguides using integrated cavities. Opt. Lett. 41(23),
5486–5489 (2016)

11.108. V.G. Plotnichenko, V.O. Sokolov, E.B. Kryukova, G.E. Snopatin, I.V. Skripachev,
M.F. Churbanov, Specifics of spectral loss measurement in infrared fibers. Appl. Opt.
56(8), 2112–2118 (2017)

11.109. N. Riesen, T.T.-Y. Lam, J.H. Chow, Bandwidth-division in digitally enhanced optical
frequency domain reflectometry. Opt. Express 21(4), 4017–4026 (2013)

11.110. Q. Liu, X. Fan, Z. He, Time-gated digital optical frequency domain reflectometry with
1.6-m spatial resolution over entire 110-km range. Opt. Express 23(20), 25988–25995
(2015)

11.111. A. Minardo, R. Bernini, R. Ruiz-Lombera, J. Mirapeix, J.M. Lopez-Higuera, L. Zeni,
Proposal of Brillouin optical frequency domain reflectometry (BOFDR). Opt. Express
24(26), 29994–30001 (2016)

11.112. F. Ito, T. Manabe, Recent developments of fiber diagnosis technologies in optical
communication. J. Lightwave Technol. 35(16), 3473–3482 (2017)

11.113. H. Li, J. Zhang, L. Wang, H. Ma, Z. Jin, Measurement of the reflection and loss of the
hybrid air-core photonic-bandgap fiber ring resonator. Appl. Opt. 55(32), 9329–9333
(2016)

Chapter 12

12.1. A.A. Michelson, The relative motion of the Earth and the luminiferous ether. Am.
J. Sci. 22, 120–129 (1881); A. Michelson, E. Morley, On the relative motion of the
Earth and the luminiferous ether. Am. J. Sci. 34, 333–345 (1887)

12.2. Lord Rayleigh, On the interference bands of approximately homogeneous light: in a
letter to prof. A. Michelson, Philos. Mag. 34, 407 (1892)

12.3. E.V. Loewenstein, The history and current status of Fourier transform spectroscopy.
Appl. Opt. 5(5), 845–852 (1966)

12.4. P. Jacquinot, The luminosity of spectrometers with prisms, gratings, or Fabry-Perot
etalons. J. Opt. Soc. Am. 44(10), 761–765 (1954)

References 763



12.5. P.B. Fellgett, Dynamic impedance and sensitivity of radiation thermocouples. Proc.
Phys. Soc. B 62(6), 351–359 (1949); On the ultimate sensitivity and practical
performance of radiation detectors. J. Opt. Soc. Am. 39(11), 970–976 (1949)

12.6. P. Connes, Spectromètre interférentiel à sélection par l’amplitude de modulation.
J. Phys. Radium 19(3), 215–222 (1958)

12.7. J. Connes, Spectroscopic studies using Fourier transformation. Nouv. Rev. Opt. 40,
45–72, 116–140, 171–190, 231–265 (1961); J. Connes, P. Connes, Near-infrared
planetary spectra by Fourier spectroscopy. I. Instruments and results. J. Opt. Soc. Am.
56(7), 896–910 (1966)

12.8. E.R. Peck, A new principle in interferometer design. J. Opt. Soc. Am. 38(1), 66 (1948);
Theory of the corner-cube interferometer. J. Opt. Soc. Am. 38(12), 1015–1024 (1948)

12.9. P.B. Fellgett, A contribution to the theory of the multiplex interferometric spectrometer.
J. Phys. Radium 19(3), 187–191 (1958)

12.10. J. Strong, G.A. Vanasse, Interferometric spectroscopy in the far infrared. J. Opt. Soc.
Am. 49(9), 844–850 (1959)

12.11. R.N. Ibbett, D. Aspinall, J.F. Grainger, Real-time multiplexing of dispersed spectra in
any wavelength region. Appl. Opt. 7(6), 1089–1093 (1968); J.A. Decker, Jr.,
Experimental realization of the multiplex advantage with a Hadamard-transform
spectrometer. Appl. Opt. 10(3), 510–514 (1971)

12.12. M.H. Tai, M. Harwit, Fourier and Hadamard transform spectrometers: a limited
comparison. Appl. Opt. 15(11), 2664–2666 (1976); R.R. Treffers, Signal-to-noise ratio
in Fourier spectroscopy. Appl. Opt. 16(12), 3103–3106 (1977); T. Hirschfeld,
Conventions and values for the multiplex advantage in Fourier transform spectroscopy.
Appl. Opt. 16(12), 3070–3071 (1977)

12.13. Lord Rayleigh, On the interference-rings, described by Haidinger, observable by means
of plates whose surfaces are absolutely parallel. Philos. Mag. 12(71), 489–493 (1906)

12.14. D.B. Tanner, R.P. McCall, Source of a problem with Fourier transform spectroscopy.
Appl. Opt. 23(14), 2363–2368 (1984)

12.15. H.E. Revercomb, H. Buijs, H.B. Howell, D.D. LaPorte, W.L. Smith, L.A. Sromovsky,
Radiometric calibration of IR Fourier transform spectrometers: solution to a problem
with the high-resolution interferometer sounder. Appl. Opt. 27(15), 3210–3218 (1988);
L.A. Sromovsky, Radiometric errors in complex Fourier transform spectrometry. Appl.
Opt. 42(10), 1779–1787 (2003)

12.16. G.A. Vanasse, R.E. Murphy, F.H. Cook, Double-beaming technique in Fourier
spectroscopy. Appl. Opt. 15(2), 290–291 (1976)

12.17. L.B. Scott, Interferometer. US Patent 2,841,049, 1 July 1958
12.18. J. Pritchard, H. Sakai, W. Steel, G. Vanasse, Mobius band interferometer and its

application to Fourier spectroscopy. J. de Physique Colloques 28(C2), 91–96 (1967)
12.19. P. Burkert, Two beam interferometer for Fourier spectroscopy with rigid pendulum.

US Patent 4,383,762, 17 May 1983
12.20. W.M. Doyle, High resolution spectrometer interferometer having an integrated

alignment unit. US Patent 4,773,757, 27 Sept 1988
12.21. P.R. Solomon, System including unified beamsplitter and parallel reflecting element,

and retroreflecting component. US Patent 5,675,412, 7 Oct 1997
12.22. G.W. Stroke, Photoelectric fringe signal information and range in interferometers with

moving mirrors. J. Opt. Soc. Am. 47(12), 1097–1103 (1957)
12.23. Q. Yang, B. Zhao, D. Wen, Principle and analysis of a moving double-sided mirror

interferometer. Opt. Laser Technol. 44(5), 1256–1260 (2012)
12.24. J. Kauppinen, T. Karkkainen, E. Kyro, Correcting errors in the optical path difference in

Fourier spectroscopy: a new accurate method. Appl. Opt. 17(10), 1587–1594 (1978)
12.25. P. Hlubina, J. Lunacek, D. Ciprian, R. Chlebus, Dispersion error of a beam splitter cube

in white-light spectral interferometry. Opto-Electron. Rev. 16(4), 439–443 (2008)

764 References



12.26. K.F. Lee, A. Bonvalet, P. Nuernberger, M. Joffre, Unobtrusive interferometer tracking
by path length oscillation for multidimensional spectroscopy. Opt. Express 17(15),
12379–12384 (2009)

12.27. J. Li, D. Lu, Z. Qi, A modified equation for the spectral resolution of Fourier transform
spectrometers. J. Lightwave Technol. 33(1), 19–24 (2015)

12.28. J. Strong, Interferometry for the far infrared. J. Opt. Soc. Am. 47(5), 354–357 (1957)
12.29. J. Strong, G.A. Vanasse, Lamellar grating far-infrared interferometer. J. Opt. Soc. Am.

50(2), 113–118 (1960)
12.30. P.L. Richards, High-resolution Fourier transform spectroscopy in the far-infrared.

J. Opt. Soc. Am. 54(12), 1474–1484 (1964)
12.31. J. Kauppinen, Double-beam high resolution Fourier spectrometer for the far infrared.

Appl. Opt. 14(8), 1987–1992 (1975)
12.32. J. Kauppinen, V.-M. Horneman, Large aperture cube corner interferometer with a

resolution of 0.001 cm−1. Appl. Opt. 30(18), 2575–2578 (1991)
12.33. K. Strong, T.J. Johnson, G.W. Harris, Visible intracavity laser spectroscopy with a

step-scan Fourier-transform interferometer. Appl. Opt. 36(33), 8533–8540 (1997)
12.34. J. Cheng, H. Lin, S. Hu, S. He, Q. Zhu, A. Kachanov, Infrared intracavity laser

absorption spectroscopy with a continuous-scan Fourier-transform interferometer. Appl.
Opt. 39(13), 2221–2229 (2000)

12.35. N. Picqué, G. Guelachvili, High-information time-resolved Fourier transform spec-
troscopy at work. Appl. Opt. 39(22), 3984–3990 (2000)

12.36. N. Picqué, G. Guelachvili, A.A. Kachanov, High-sensitivity time-resolved intracavity
laser Fourier transform spectroscopy with vertical-cavity surface-emitting
multiple-quantum-well lasers. Opt. Lett. 28(5), 313–315 (2003)

12.37. E. Hamers, D. Schram, R. Engeln, Fourier transform phase shift cavity ring down
spectroscopy. Chem. Phys. Lett. 365(3–4), 237–243 (2002)

12.38. A.A. Ruth, J. Orphal, S.E. Fiedler, Fourier-transform cavity-enhanced absorption
spectroscopy using an incoherent broadband light source. Appl. Opt. 46(17),
3611–3616 (2007)

12.39. G.W. Stroke, A.T. Funkhouser, Fourier-transform spectroscopy using holographic
imaging without computing and with stationary interferometers. Phys. Lett. 16(3),
272–274 (1965)

12.40. R.A. Kruger, L.W. Anderson, F.L. Roesler, All-reflection interferometer for use as a
Fourier-transform spectrometer. J. Opt. Soc. Am. 62(8), 938–945 (1972)

12.41. R.A. Kruger, L.W. Anderson, F.L. Roesler, New Fourier transform all-reflection
interferometer. Appl. Opt. 12(3), 533–540 (1973)

12.42. R.G. Sellar, G.D. Boreman, Comparison of relative signal-to-noise ratios of different
classes of imaging spectrometer. Appl. Opt. 44(9), 1614–1624 (2005)

12.43. T. Dohi, T. Suzuki, Attainment of high resolution holographic Fourier transform
spectroscopy. Appl. Opt. 10(5), 1137–1140 (1971)

12.44. G. Fortunato, A. Maréchal, Spectromètre interférentiel à modulation sélective.
C. R. Acad. Sci. Ser. B 274, 931–934 (1972)

12.45. T. Okamoto, S. Kawata, S. Minami, Fourier transform spectrometer with a
self-scanning photodiode array. Appl. Opt. 23(2), 269–273 (1984)

12.46. A. Maréchal, Theory and practice of image formation. J. Opt. Soc. Am. 56(12),
1645–1648 (1966)

12.47. G.A. Vanasse, R.W. Esplin, R.J. Huppi, Selective modulation interferometric
spectrometer (SIMS) technique applied to background suppression. Opt. Eng. 18(4),
403–408 (1979)

12.48. R.A. Williams, W.S.C. Chang, Resolution and noise in Fourier-transform spectroscopy.
J. Opt. Soc. Am. 56(2), 167–170 (1966)

References 765



766 References

12.49. J.M. Harlander, F.L. Roesler, J.G. Cardon, C.R. Englert, R.R. Conway, SHIMMER: a
spatial heterodyne spectrometer for remote sensing of Earth’s middle atmosphere. Appl.
Opt. 41(7), 1343–1352 (2002)

12.50. I. Powell, P. Cheben, Modeling of the generic spatial heterodyne spectrometer and
comparison with conventional spectrometer. Appl. Opt. 45(36), 9079–9086 (2006)

12.51. J. Li, D. Lu, Z. Qi, A modified equation for the spectral resolution of Fourier transform
spectrometers. J. Lightwave Technol. 33(1), 19–24 (2015)

12.52. M.-L. Junttila, J. Kauppinen, E. Ikonen, Performance limits of stationary Fourier
spectrometers. J. Opt. Soc. Am. A 8(9), 1457–1462 (1991)

12.53. C.R. Englert, J.M. Harlander, Flatfielding in spatial heterodyne spectroscopy. Appl.
Opt. 45(19), 4583–4590 (2006)

12.54. B. Carli, V. Natale, Efficiency of spectrometers. Appl. Opt. 18(23), 3954–3958 (1979)
12.55. D. Martin, E. Puplett, Polarised interferometric spectrometry for the millimetre and

submillimetre spectrum. Infrared Phys. 10, 105–109 (1970)
12.56. B. Carli, D.H. Martin, E.F. Puplett, J.E. Harries, Very-high-resolution far-infrared

measurements of atmospheric emission from aircraft. J. Opt. Soc. Am. 67(7), 917–921
(1977); B. Carli, F. Mencaraglia, A. Bonetti, Submillimeter high-resolution FT
spectrometer for atmospheric studies. Appl. Opt. 23(15), 2594–2603 (1984)

12.57. D.K. Lambert, P.L. Richards, Martin-Puplett interferometer: an analysis. Appl. Opt.
17(10), 1595–1602 (1978)

12.58. B. Carli, F. Mencaraglia, Signal doubling in the Martin-Puplett interferometer. Int.
J. Infrared Millim. Waves 2(5), 1045–1051 (1981)

12.59. D.E. Jennings, Folded-beam design for a Martin-Puplett interferometer with substrate
polarizers. Appl. Opt. 35(16), 2910–2912 (1996)

12.60. P.A.R. Ade, P.A. Hamilton, D.A. Naylor, An absolute dual beam emission spectrometer
– Fourier Transform Spectroscopy: New Methods and Applications, OSA Technical
Digest, 1999, paper FWE3; L.D. Spencer, D.A. Naylor, P.A.R. Ade, J. Zhang,
Beam-splitter effects in dual-input Fourier transform spectroscopy. J. Opt. Soc. Am.
A 28(9), 1805–1811 (2011)

12.61. M.A. Bukshtab, Lossless polarization double-pass dual cell FTIR (2015)
12.62. D.T. Chuss, E.J. Wollack, S.H. Moseley, G. Novak, Interferometric polarization

control. Appl. Opt. 45(21), 5107–5117 (2006)
12.63. S. Chandra, R.S. Rohde, Ultrasensitive multiple-reflections interferometer. Appl. Opt.

21(9), 1533–1535 (1982); M. Pisani, Multiple reflection Michelson interferometer with
picometer resolution. Opt. Express 16(26), 21558–21563 (2008)

12.64. S. Amarie, T. Ganz, F. Keilmann, Mid-infrared near-field spectroscopy. Opt. Express
17(24), 21794–21801 (2009)

12.65. G. D’Alessandro, P. de Bernardis, S. Masi, A. Schillaci, Common-mode rejection in
Martin-Puplett spectrometers for astronomical observations at mm-wavelengths. Appl.
Opt. 54(31), 9269–9276 (2015)

12.66. R.T. Hall, D. Vrabec, J.M. Dowling, A high-resolution, far infrared double-beam lamellar
grating interferometer. Appl. Opt. 5(7), 1147–1158 (1966)

12.67. P. Luc, S. Gerstenkorn, Fourier transform spectroscopy in the visible and ultraviolet
range. Appl. Opt. 17(9), 1327–1331 (1978)

12.68. D. Debarre, A.C. Boccara, D. Fournier, High-luminosity visible and near-IR
Fourier-transform photoacoustic spectrometer. Appl. Opt. 20(24), 4281–4286 (1981)

12.69. C. Dorrer, N. Belabas, J.-P. Likforman, M. Joffre, Spectral resolution and sampling
issues in Fourier-transform spectral interferometry. J. Opt. Soc. Am. B 17(10),
1795–1802 (2000)

12.70. R.A. Palmer, C.J. Manning, J.A. Rzepiela, J.M. Widder, J.L. Chao, Time-resolved
spectroscopy using step-scan Fourier transform interferometry. Appl. Spectrosc. 43(2),
193–194 (1989)

12.71. C. Dorrer, Influence of the calibration of the detector on spectral interferometry. J. Opt.
Soc. Am. B 16(7), 1160–1168 (1999)



12.72. G. Guelachvili, High-accuracy Doppler-limited 106 samples Fourier transform spec-
troscopy. Appl. Opt. 17(9), 1322–1326 (1978); Distortion free interferograms in Fourier
transform spectroscopy with nonlinear detectors. Appl. Opt. 25(24), 4644–4648 (1986)

12.73. M.J. Padgett, A.R. Harvey, A.J. Duncan, W. Sibbett, Single-pulse, Fourier-transform
spectrometer having no moving parts. Appl. Opt. 33(25), 6035–6040 (1994)

12.74. N.P. Ayerden, U. Aygun, S.T.S. Holmstrom, S. Olcer, B. Can, J.-L. Stehle, H. Urey,
High-speed broadband FTIR system using MEMS. Appl. Opt. 53(31), 7267–7272
(2014)

12.75. N. de Oliveira, D. Joyeux, D. Phalippou, J.C. Rodier, F. Polack, M. Vervloet, L. Nahon,
A Fourier transform spectrometer without a beam splitter for the vacuum ultraviolet
range: from the optical design to the first UV spectrum. Rev. Sci. Instrum. 80, Article
043101 (2009)

12.76. J. Li, D.-F. Lu, Z.-M. Qi, Miniature Fourier transform spectrometer based on
wavelength dependence of half-wave voltage of a LiNbO3 waveguide interferometer.
Opt. Lett. 39(13), 3923–3926 (2014)

12.77. M. Mujat, E. Baleine, A. Dogariu, Interferometric imaging polarimeter. J. Opt. Soc.
Am. A 21(11), 2244–2249 (2004)

12.78. C. Oh, M.J. Escuti, Achromatic diffraction from polarization gratings with high
efficiency. Opt. Lett. 33(20), 2287–2289 (2008)

12.79. M.W. Kudenov, M.N. Miskiewicz, M.J. Escuti, E.L. Dereniak, Spatial heterodyne
interferometry with polarization gratings. Opt. Lett. 37(21), 4413–4415 (2012)

12.80. S. Amarie, T. Ganz, F. Keilmann, Mid-infrared near-field spectroscopy. Opt. Express
17(24), 21794–21801 (2009)

12.81. L. Brillouin, Diffusion de la lumière et des rayons X par un corps transparent
homogène: influence de l’agitation thermique. Ann. Phys. (Paris) 17(1), 88–122 (1922)

12.82. L.I. Mandelstam, Light scattering by inhomogeneous media. Zh. Russ. Fiz-Khim. Ova.
58, 381–385 (1926)

12.83. L. Landau, G. Placzek, Z. Phys. Sowjetunion 5, 172 (1934); L.D. Landau,
E.M. Lifshitz, Statistical Physics (Pergamon Press, New York, 1958)

12.84. H.Z. Cummins, R.W. Gammon, Rayleigh and Brillouin scattering in liquids: the
Landau—Placzek ratio. J. Chem. Phys. 44(7), 2785–2796 (1966)

12.85. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and
Applications (Taylor & Fransis, New York, 1989)

12.86. P. Jacquinot, C. Dufour, Condition optique d’emploi des cellules photo-électriques dans
les spectrographes et les interférometrès. J. Recherche du Centre Natl. Recherche Sci.
Lab. Bellevue, Paris 6, 91–103 (1948)

12.87. S. Tolansky, D.J. Bradley, Interferometry: N.P.L. Symposium No. 11, pp. 375–386
(1960)

12.88. K.D. Mielenz, R.B. Stephens, K. Nefflen, A Fabry-Perot spectrometer for
high-resolution spectroscopy and laser work. J. Res. Natl. Bur. Stand. 68C(1), 1–6
(1964)

12.89. D.R. Herriott, Spherical-mirror oscillating interferometer. Appl. Opt. 2(8), 865–866
(1963)

12.90. G. Hernandez, O.A. Mills, Feedback stabilized Fabry-Perot interferometer. Appl. Opt.
12(1), 126–130 (1973)

12.91. R.A. McLaren, G.I.A. Stegeman, Technique for recording spectra in Fabry-Perot
interferometry. Appl. Opt. 12(7), 1396–1398 (1973)

12.92. J.R. Sandercock, Simple stabilization scheme for maintenance of alignment in a
scanning Fabry-Perot interferometer. J. Phys. E 9, 566–569 (1976)

12.93. R.A.D. Hewko, B.H. Torriea, Computer stabilization of Brillouin spectrograms. Appl.
Spectrosc. 30(2), 216–219 (1976)

12.94. A. Asenbaum, Computer-controlled Fabry-Perot interferometer for Brillouin spec-
troscopy. Appl. Opt. 18(4), 540–544 (1979)

References 767



12.95. D.H. Rank, R.P. Ruth, K.L. Vander Sluis, The compound Fabry-Perot interferometer.
J. Opt. Soc. Am. 41(5), 351–353 (1951)

12.96. P. Hariharana, D. Sen, Double-passed Fabry-Perot interferometer. J. Opt. Soc. Am.
51(4), 398–399 (1961)

12.97. J.R. Sandercock, Brillouin scattering study of SbSI using a double-passed, stabilized
scanning interferometer. Opt. Commun. 2(2), 73–76 (1970)

12.98. J.M. Vaughan, Brillouin scattering in nematic and isotropic phases of a liquid crystal.
Phys. Lett. A 58(5), 325–328 (1976)

12.99. C. Roychoudhuri, M. Hercher, Stable multipass Fabry-Perot interferometer: design and
analysis. Appl. Opt. 16(9), 2514–2520 (1977)

12.100. J.R. Sandercock, Fabry-Perot interferometer. US Patent 4,225,236, 30 Sept 1980;
Trends in Brillouin scattering, in Light Scattering in Solids III, ed. by M. Cardona,
G. Güntherodt (Springer, Berlin, 1982), pp. 173–206

12.101. I.M. Nagibina, A.N. Korolev, A study of some of the properties of a Fabry-Perot etalon
with a small transparent window. Opt. Spectrosc. 15, 225–226 (1963)

12.102. M. Shirasaki, Large angular dispersion by a virtually imaged phased array and its
application to a wavelength demultiplexer. Opt. Lett. 21(5), 366–368 (1996)

12.103. M. Bukshtab, M. Friedman, Multipass virtually imaged phased array etalon. US Patent
Application 14/941214, 13 Nov 2015; Pub. No. 2016/0139390; Pub. Date: 19 May
2016

12.104. M. Bukshtab, Confocal virtual imaging phase array microscope spectrometer and
method of calibration CMS-VIPA. US Patent Application 62/447,607, 18 Jan 2017

12.105. S. Xiao, A.M. Weiner, C. Lin, A dispersion law for virtually imaged phased-array
spectral dispersers based on paraxial wave theory. IEEE J. Quantum Electron. 40(4),
420–426 (2004)

12.106. D.J. Gauthier, Comment on “Generalized grating equation for virtually imaged
phased-array spectral dispersers”. Appl. Opt. 51(34), 8184–8185 (2012)

12.107. M. Bukshtab, A. Paranjape, M. Friedman, D. Muller, Fast low-noise Brillouin
spectroscopy measurements of elasticity for corneal cross-linking, in Proceedings of
SPIE, vol. 9327, Article 932718 (2015)

12.108. W.G. Fastie, H.M. Crosswhite, P. Gloersen, Vacuum Ebert grating spectrometer. J. Opt.
Soc. Am. 48(2), 106–111 (1958)

12.109. J.C. Wyant, Double frequency grating lateral shear interferometer. Appl. Opt. 12(9),
2057–2059 (1973)

12.110. V. Mazzacurati, P. Benassi, G. Ruocco, A new class of multiple dispersion grating
spectrometers. J. Phys. E: Sci. Instrum. 21, 798–804 (1988)

12.111. P. Benassi, R. Eramo, A. Giugni, M. Nardone, M. Sampoli, A spectrometer for
high-resolution and high-contrast Brillouin spectroscopy in the ultraviolet. Rev. Sci.
Instrum. 76, Article 013904 (2005)

12.112. P.B. Hays, H.E. Snell, Multiplex Fabry-Perot interferometer. Appl. Opt. 30(22),
3108–3113 (1991)

12.113. S. Xiao, A.M. Weiner, 2-D wavelength demultiplexer with potential for � 1000
channels in the C-band. Opt. Express 12(13), 2895–2902 (2004)

12.114. G. Scarcelli, P. Kim, S.H. Yun, Cross-axis cascading of spectral dispersion. Opt. Lett.
33(24), 2979–2981 (2008)

12.115. G. Scarcelli, S.H. Yun, Multistage VIPA etalons for high-extinction parallel Brillouin
spectroscopy. Opt. Express 19(11), 10913–10922 (2011)

12.116. D. Heiman, D.S. Hamilton, R.W. Hellwarth, Brillouin scattering measurements on
optical glasses. Phys. Rev. B 19(12), 6583–6592 (1979)

12.117. P. Benassi, V. Mazzacurati, G. Monaco, G. Ruocco, G. Signorelli, Brillouin and Raman
cross-sections in silicate glasses. Phys. Rev. B 52(2), 976–981 (1995)

768 References



12.118. S. Gehrsitz, H. Sigg, H. Siegwart, M. Krieger, C. Heine, R. Morf, F.K. Reinhart,
W. Martin, H. Rudigier, Tandem triple-pass Fabry-Perot interferometer for applications
in the near infrared. Appl. Opt. 36(22), 5355–5361 (1997)

12.119. D. Walton, J.J. Vanderwal, P. Zhao, The use of CCDs in Fabry-Perot spectrometers.
Appl. Spectrosc. 46(2), 373–375 (1992)

12.120. K.J. Koski, J. Muller, H.D. Hochheimer, J.L. Yargera, High pressure angle-dispersive
Brillouin spectroscopy: a technique for determining acoustic velocities and attenuations
in liquids and solids. Rev. Sci. Instrum. 73(3), 1235–1241 (2002)

12.121. K.J. Koski, J.L. Yarger, Brillouin imaging. Appl. Phys. Lett. 87, Article 061903 (2005)
12.122. Y. Ike, S. Tsukada, S. Kojima, High-resolution Brillouin spectroscopy with angular

dispersion-type Fabry-Perot interferometer and its application to a quartz crystal. Rev.
Sci. Instrum. 78, Article 076104 (2007)

12.123. Z. Meng, A.J. Traverso, V.V. Yakovlev, Background clean-up in Brillouin microspec-
troscopy of scattering medium. Opt. Express 22(5), 5410–5415 (2014)

12.124. I. Remer, A. Bilenca, Background-free Brillouin spectroscopy in scattering media at
780 nm via stimulated Brillouin scattering. Opt. Lett. 41(5), 926–929 (2016)

12.125. J. Xu, X. Ren, W. Gong, R. Dai, D. Liu, Measurement of the bulk viscosity of liquid by
Brillouin scattering. Appl. Opt. 42(33), 6704–6709 (2003)

12.126. T.A. Litovitz, C.M. Davis, Structural and shear relaxation in liquids, in Physical
Acoustics, ed. by W.P. Mason (Academic, New York, 1965), pp. 281–349; D.A.
Pinnow, S.J. Candau, J.T. LaMacchia, T.A. Litovitz, Brillouin scattering: viscoelastic
measurements in liquids. J. Acoust. Soc. Am. 43(1), 131–142 (1968)

12.127. R. Harley, D. James, A. Miller, J.W. White, Phonons and the elastic moduli of collagen
and muscle. Nature 267(5), 285–287 (1977)

12.128. J. Randall, J.M. Vaughan, Brillouin scattering in systems of biological significance.
Phil. Trans. R. Soc. Lond. 293, 341–348 (1979)

12.129. A. Fiore, J. Zhang, P. Shao, S.H. Yun, G. Scarcelli, High-extinction virtually imaged
phased array-based Brillouin spectroscopy of turbid biological media. Appl. Phys. Lett.
108, Article 203701 (2016)

12.130. J.M. Vaughan, J.T. Randall, Brillouin scattering, density, and elastic properties of the
lens and cornea of the eye. Nature 284(3), 489–491 (1980)

12.131. J. Randall, J.M. Vaughan, The measurement and interpretation of Brillouin scattering in
the lens of the eye. Proc. R. Soc. Lond. B 214, 449–470 (1982)

12.132. G. Scarcelli, S.H. Yun, Confocal Brillouin microscopy for three-dimensional mechan-
ical imaging. Nature Photon. 2(1), 39–43 (2008)

12.133. S. Reiß, G. Burau, O. Stachs, R. Guthoff, H. Stolz, Spatially resolved Brillouin
spectroscopy to determine the rheological properties of the eye lens. Biomed. Opt.
Express 2(8), 2144–2159 (2011)

12.134. R. Barer, S. Joseph, Refractometry of living cells, 1: basic principles. Q. J. Microsc. Sci.
95(4), 399–423 (1954)

12.135. T.D. Wang, M.J. Mandella, C.H. Contag, G.S. Kino, Dual-axis confocal microscope for
high-resolution in vivo imaging. Opt. Lett. 28(6), 414–416 (2003)

12.136. G. Scarcelli, S.H. Yun, In vivo Brillouin optical microscopy of the human eye. Opt.
Express 20(8), 9197–9202 (2012)

12.137. F. Rasetti, Sopra lo spettro raman dell’ossido nitrico. Nuovo Cimento 7(2), 261–269
(1930)

12.138. G.E. Devlin, J.L. Davis, L. Chase, S. Geschwind, Absorption of unshifted scattered
light by a molecular I2 filter in Brillouin and Raman scattering. Appl. Phys. Lett. 19(5),
138–140 (1971)

12.139. P.J. Horoyski, M.L.W. Thewalt, Fourier transform Raman and Brillouin spectroscopy
using atomic vapor filters. Appl. Spectrosc. 48(7), 843–847 (1994)

References 769



12.140. Z. Meng, V.V. Yakovlev, Precise determination of Brillouin scattering spectrum using a
virtually imaged phase array (VIPA) spectrometer and charge-coupled device
(CCD) camera. Appl. Spectrosc. 70(8), 1356–1363 (2016)

12.141. A. Battistoni, F. Bencivenga, D. Fioretto, C. Masciovecchio, Practical way to avoid
spurious geometrical contributions in Brillouin light scattering experiments at variable
scattering angles. Opt. Lett. 39(20), 5858–5861 (2014)

12.142. G. Antonacci, G. Lepert, C. Paterson, P. Torok, Elastic suppression in Brillouin
imaging by destructive interference. Appl. Phys. Lett. 107, Article 061102 (2015)

12.143. D.G. Hall, Vector-beam solutions of Maxwell’s wave equation. Opt. Lett. 21(1), 9–11
(1996); D.P. Biss, K.S. Youngworth, T.G. Brown, Dark-field imaging with
cylindrical-vector beams. Appl. Opt. 45(3), 470–479 (2006); M. Duocastella,
C.B. Arnold, Bessel and annular beams for materials processing. Laser Photon. Rev.
6(5), 607–621 (2012)

12.144. G. Antonacci, Dark-field Brillouin microscopy. Opt. Lett. 42(7), 1432–1435 (2017)
12.145. S.T. Bailey, M.D. Twa, J.C. Gump, M. Venkiteshwar, M.A. Bullimore,

R. Sooryakumar, Light-scattering study of the normal human eye lens: elastic
properties and age dependence. IEEE Trans. Biomed. Eng. 57(12), 2910–2917 (2010)

12.146. H. Kogelnik, Bragg diffraction in hologram gratings with multiple internal reflections.
J. Opt. Soc. Am. 57(3), 431–433 (1967); G.A. Rakuljic, V. Leyva, Volume holographic
narrow-band optical filter. Opt. Lett. 18(6), 459–461 (1993)

12.147. O.M. Efimov, L.B. Glebov, L.N. Glebova, K.C. Richardson, V.I. Smirnov,
High-efficiency Bragg gratings in photothermorefractive glass. Appl. Opt. 38(4),
619–627 (1999)

12.148. C. Moser, B. Schupp, D. Psaltis, Localized holographic recording in doubly doped
lithium niobate. Opt. Lett. 25(3), 162–164 (2000)

12.149. S. Lebedkin, C. Blum, N. Stürzl, F. Hennrich, M.M. Kappes, A
low-wavenumber-extended confocal Raman microscope with very high laser excitation
line discrimination. Rev. Sci. Instrum. 82, Article 013705 (2011)

12.150. T. Wilson, A.R. Carlini, Size of the detector in confocal imaging systems. Opt. Lett.
12(4), 227–229 (1987); S. Kimura, T. Wilson, Confocal scanning optical microscope
using single-mode fiber for signal detection. Appl. Opt. 30(16), 2143–2150 (1991)

12.151. D.A. Steck, Rubidium 85 D Line Data, http://steck.us/alkalidata. Revision 0.1.1,
02 May 2008

12.152. L.P. Yaroslavsky, G. Shabat, B.G. Salomon, I.A. Ideses, B. Fishbain, Nonuniform
sampling, image recovery from sparse data and the discrete sampling theorem. J. Opt.
Soc. Am. A 26(3), 566–575 (2009)

12.153. J. Ye, S.T. Cundiff (eds.), Femtosecond Optical Frequency Comb: Principle,
Operation, and Applications (Springer, Norwell, 2005)

12.154. J.L. Hall, Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys.
78(4), 1279–1295 (2006)

12.155. T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78(4), 1297–1309
(2006)

12.156. A. Javan, E.A. Ballik, W.L. Bond, Frequency characteristics of a continuous-wave
He–Ne optical maser. J. Opt. Soc. Am. 52(1), 96–98 (1962)

12.157. K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielson, G.W. Day, R.L. Barger,
J.L. Hall, Speed of light from direct frequency and wavelength measurements of the
methane-stabilized laser. Phys. Rev. Lett. 29(19), 1346–1349 (1972)

12.158. H.R. Telle, D. Meschede, T.W. Hänsch, Realization of a new concept for visible
frequency division: phase locking of harmonic and sum frequencies. Opt. Lett. 15(10),
532–534 (1990)

12.159. M. Kourogi, K. Nakagawa, M. Ohtsu, Wide-span optical frequency comb generator for
accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29(10),
2693–2701 (1993)

770 References

http://steck.us/alkalidata


12.160. Th. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Accurate measurement of large
optical frequency differences with a mode-locked laser. Opt. Lett. 24(13), 881–883
(1999)

12.161. S.T. Cundiff, J. Ye, J.L. Hall, Optical frequency synthesis based on mode-locked lasers.
Rev. Sci. Instrum. 72(10), 3749–3771 (2001)

12.162. J. Ye, L.-S. Ma, T. Daly, J.L. Hall, Highly selective terahertz optical frequency comb
generator. Opt. Lett. 22(5), 301–303 (1997)

12.163. K. Imai, M. Kourogi, M. Ohtsu, 30-THz span optical frequency comb generation by
self-phase modulation in an optical fiber. IEEE J. Quantum Electron. 34(1), 54–60
(1998)

12.164. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air–silica
microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1),
25–27 (2000)

12.165. S.A. Diddams, D.J. Jones, J. Ye, S.T. Cundiff, J.L. Hall, J.K. Ranka, R.S. Windeler, R.
Holzwarth, Th. Udem, T.W. Hänsch, Direct link between microwave and optical
frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84(22), 5102–
5105 (2000)

12.166. R. Holzwarth, Th. Udem, T.W. Hänsch, J.C. Knight, W.J. Wadsworth, P.S.J. Russell,
Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85(11),
2264–2267 (2000)

12.167. D.H. Auston, K.P. Cheung, Coherent time-domain far-infrared spectroscopy. J. Opt.
Soc. Am. B 2(4), 606–612 (1985)

12.168. S. Schiller, Spectrometry with frequency combs. Opt. Lett. 27(9), 766–768 (2002)
12.169. M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, T.W. Hänsch, Optical clockwork

with an offset-free difference-frequency comb: accuracy of sum- and difference-
frequency generation. Opt. Lett. 29(3), 310–312 (2004)

12.170. F. Keilmann, C. Gohle, R. Holzwarth, Time-domain mid-infrared frequency-comb
spectrometer. Opt. Lett. 29(33), 1542–1544 (2004)

12.171. I. Coddington, W.C. Swann, N.R. Newbury, Coherent multiheterodyne spectroscopy
using stabilized optical frequency combs. Phys. Rev. Lett. 100, Article 013902 (2008)

12.172. J. Mandon, G. Guelachvili, N. Picqué, Fourier transform spectroscopy with a laser
frequency comb. Nature Photon. 3(2), 99–102 (2009)

12.173. R.J. Jones, J. Ye, Femtosecond pulse amplification by coherent addition in a passive
optical cavity. Opt. Lett. 27(20), 1848–1850 (2002)

12.174. M.J. Thorpe, R.J. Jones, K.D. Moll, J. Ye, Precise measurements of optical cavity
dispersion and mirror coating properties via femtosecond combs. Opt. Express 13(3),
882–888 (2005)

12.175. R.J. Jones, I. Thomann, J. Ye, Precision stabilization of femtosecond lasers to
high-finesse optical cavities. Phys. Rev. A 69, Article 051803(R) (2004)

12.176. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Broadband cavity ringdown
spectroscopy for sensitive and rapid molecular detection. Science 311(3), 1595–1599
(2006)

12.177. M.J. Thorpe, D.D. Hudson, K.D. Moll, J. Lasri, J. Ye, Cavity-ringdown molecular
spectroscopy based on an optical frequency comb at 1.45–1.65 lm. Opt. Lett. 32(3),
307–309 (2007)

12.178. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt.
Commun. 56(3), 219–221 (1985)

12.179. S.A. Diddams, L.W. Hollberg, V. Mbele, Molecular fingerprinting with
spectrally-resolved modes of a femtosecond laser frequency comb. Nature 445(2),
627–630 (2007)

12.180. M.J. Thorpe, D. Balslev-Clausen, M.S. Kirchner, J. Ye, Cavity-enhanced optical
frequency comb spectroscopy: application to human breath analysis. Opt. Express
16(4), 2387–2397 (2008)

References 771



12.181. K.C. Cossel, F. Adler, K.A. Bertness, M.J. Thorpe, J. Feng, M.W. Raynor, J. Ye,
Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency
comb spectroscopy. Appl. Phys. B 100, 917–924 (2010)

12.182. L. Nugent-Glandorf, T. Neely, F. Adler, A.J. Fleisher, K.C. Cossel, B. Bjork,
T. Dinneen, J. Ye, S.A. Diddams, Mid-infrared virtually imaged phased array
spectrometer for rapid and broadband trace gas detection. Opt. Lett. 37(15), 3285–3287
(2012)

12.183. D.A. Long, A.J. Fleisher, K.O. Douglass, S.E. Maxwell, K. Bielska, J.T. Hodges,
D.F. Plusquellic, Multiheterodyne spectroscopy with optical frequency combs gener-
ated from a continuous-wave laser. Opt. Lett. 39(9), 2688–2690 (2014)

12.184. A. Khodabakhsh, C.A. Alrahman, A. Foltynowicz, Noise-immune cavity-enhanced
optical frequency comb spectroscopy. Opt. Lett. 39(17), 5034–5037 (2014)

12.185. P. Maslowski, K.F. Lee, A.C. Johansson, A. Khodabakhsh, G. Kowzan, L. Rutkowski,
A.A. Mills, C. Mohr, J. Jiang, M.E. Fermann, A. Foltynowicz, Surpassing the
path-limited resolution of Fourier-transform spectrometry with frequency combs. Phys.
Rev. A. 93, Article 021802(R) (2016)

12.186. A.C. Johansson, L. Rutkowski, A. Khodabakhsh, A. Foltynowicz, Signal line shapes of
Fourier-transform cavity-enhanced frequency modulation spectroscopy with optical
frequency combs. J. Opt. Soc. Am. B 34(2), 358–365 (2017)

12.187. F. Zernike, P.R. Berman, Generation of far infrared as a difference frequency. Phys.
Rev. Lett. 15(12), 999 (1965); Erratum 16(1), 117 (1966)

12.188. K.H. Yang, P.L. Richards, Y.R. Shen, Generation of far-infrared radiation by
picosecond light pulses in LiNb03. Appl. Phys. Lett. 19(9), 320–323 (1971)

12.189. D.H. Auston, K.P. Cheung, Coherent time-domain far-infrared spectroscopy. J. Opt.
Soc. Am. B 2(4), 606–612 (1985)

12.190. Ch. Fattinger, D. Grischkowsky, Point source terahertz optics. Appl. Phys. Lett. 53(16),
1480–1482 (1988)

12.191. S. Keiding, D. Grischkowsky, Measurements of the phase shift and reshaping of
terahertz pulses due to total internal reflection. Opt. Lett. 15(1), 48–50 (1990)

12.192. D. Grischkowsky, S. Keiding, M. van Exter, Ch. Fattinger, Far-infrared time-domain
spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am.
B 7(10), 2006–2015 (1990)

12.193. M. Born, Optik (Springer, Berlin, 1933)
12.194. H.A. Kramers, The quantum theory of dispersion. Nature 114, 310–311 (1924); R. de

L. Kronig, On the theory of dispersion of x-rays. J. Opt. Soc. Am. 12(5), 547–557
(1926)

12.195. V. Lucarini, J.J. Saarinen, K.-E. Peiponen, E.M. Vartiainen, Kramers-Kronig Relations
in Optical Materials Research (Springer, Berlin, Heidelberg, 2005)

12.196. J.S. Toll, Casualty and the dispersion relation: logical foundations. Phys. Rev. 104(6),
1760–1770 (1956)

12.197. G. Andermann, A. Caron, D.A. Dows, Kramers-Kronig dispersion analysis of infrared
reflectance bands. J. Opt. Soc. Am. 55(10), 1210–1216 (1965)

12.198. I. Simon, Spectroscopy in infrared by reflection and its use for highly absorbing
substances. J. Opt. Soc. Am. 41(5), 336–345 (1951)

12.199. F. Wooten, Optical Properties of Solids (Academic Press, New York, 1972)
12.200. S. Nashima, O. Morikawa, K. Takata, M. Hangyo, Measurement of optical properties of

highly doped silicon by terahertz time domain reflection spectroscopy. Appl. Phys. Lett.
79(24), 3923–3925 (2001)

12.201. P.U. Jepsen, B.M. Fischer, Dynamic range in terahertz time-domain transmission and
reflection spectroscopy. Opt. Lett. 30(1), 29–31 (2005)

12.202. L. Duvillaret, F. Garet, J.-L. Coutaz, A reliable method for extraction of material
parameters in terahertz time-domain spectroscopy. IEEE J. Sel. Top. Quantum Electron.
2(3), 739–746 (1996)

772 References



12.203. L. Duvillaret, F. Garet, J.-L. Coutaz, Highly precise determination of optical constants
and sample thickness in terahertz time-domain spectroscopy. Appl. Opt. 38(2), 409–615
(1999)

12.204. W. Withayachumnankul, B.M. Fischer, H. Lin, D. Abbott, Uncertainty in terahertz
time-domain spectroscopy measurement. J. Opt. Soc. Am. B 25(6), 1059–1072 (2008)

12.205. T.D. Dorney, R.G. Baraniuk, D.M. Mittleman, Material parameter estimation with
terahertz time-domain spectroscopy. J. Opt. Soc. Am. A 18(7), 1562–1571 (2008)

12.206. R.C. McPhedran, L.C. Botten, D.R. McKenzie, R.P. Netterfield, Unambiguous
determination of optical constants of absorbing films by reflectance and transmittance
measurements. Appl. Opt. 23(6), 1197–1205 (1984)

12.207. K. Lamprecht, W. Papousek, G. Leising, Problem of ambiguity in the determination of
optical constants of thin absorbing films from spectroscopic reflectance and transmit-
tance measurements. Appl. Opt. 36(25), 6364–6371 (1997)

12.208. X.C. Li, J.M. Zhao, L.H. Liu, J.Y. Tan, Optical properties of edible oils within spectral
range from 300 to 2500 nm determined by double optical pathlength transmission
method. Appl. Opt. 54(13), 3886–3893 (2015)

12.209. X. Li, C. Wang, J. Zhao, L. Liu, A new method for determining the optical constants of
highly transparent solids. Appl. Spectrosc. 71(1), 70–77 (2017)

12.210. I. Pupeza, R. Wilk, M. Koch, Highly accurate optical material parameter determination
with THz time-domain spectroscopy. Opt. Express 15(7), 4335–4350 (2007)

12.211. S. Ohno, K. Miyamoto, H. Minamide, H. Ito, New method to determine the refractive
index and the absorption coefficient of organic nonlinear crystals in the ultra-wideband
THz region. Opt. Express 18(16), 17306–17312 (2010)

12.212. B.S.-Y. Ung, J. Li, H. Lin, B.M. Fischer, W. Withayachumnankul, D. Abbott,
Dual-mode terahertz time-domain spectroscopy system. IEEE Trans. Terahertz. Sci.
Technol. 3(2), 216–220 (2013)

12.213. C. D’Amico, A. Houard, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon,
V.T. Tikhonchuk, Conical forward THz emission from femtosecond-laser-beam
filamentation in air. Phys. Rev. Lett. 98, Article 235002 (2007)

12.214. T. Wang, E.A. Romanova, N. Abdel-Moneim, D. Furniss, A. Loth, Z. Tang, A. Seddon,
T. Benson, A. Lavrinenko, P.U. Jepsen, Time-resolved terahertz spectroscopy of charge
carrier dynamics in the chalcogenide glass. Photon. Res. 4(3), A22–A28 (2016)

12.215. B.B. Hu, M.C. Nuss, Imaging with terahertz waves. Opt. Lett. 20(16), 1716–1718
(1995)

12.216. Q. Wu, X.-C. Zhang, Free-space electro-optics sampling of mid-infrared pulses. Appl.
Phys. Lett. 71(10), 1285–1286 (1997)

12.217. Y. Cai, I. Brener, J. Lopata, J. Wynn, L. Pfeiffer, J.B. Stark, Q. Wu, X.C. Zhang,
J.F. Federici, Coherent terahertz radiation detection: direct comparison between
free-space electro-optic sampling and antenna detection. Appl. Phys. Lett. 73(4),
444–446 (1998)

12.218. S.P. Kovalev, G.Kh. Kitaeva, Terahertz electro-optical detection: optical phase or
energy measurements. J. Opt. Soc. Am. B 30(10), 2650–2656 (2013)

12.219. S. Keiber, S. Sederberg, A. Schwarz,M. Trubetskov, V. Pervak, F. Krausz, N. Karpowicz,
Electro-optic sampling of near-infrared waveforms. Nature Photon. 10(3), 159–163
(2016)

12.220. B. Dahmani, L. Hollberg, R. Drullinger, Frequency stabilization of semiconductor
lasers by resonant optical feedback. Opt. Lett. 12(11), 876–878 (1987)

12.221. E.R. Brown, F.W. Smith, K.A. McIntosh, Coherent millimeter-wave generation by
heterodyne conversion in low-temperature-grown GaAs photoconductors. J. Appl.
Phys. 73(3), 1480–1484 (1993)

12.222. A.S. Pine, R.D. Suenram, E.R. Brown, K.A. McIntosh, A terahertz photomixing
spectrometer: application to SO2 self broadening. J. Mol. Spectrosc. 175, 37–47 (1996)

References 773



12.223. P. Chena, G.A. Blake, M.C. Gaidis, E.R. Brown, K.A. McIntosh, S.Y. Chou,
M.I. Nathan, F. Williamson, Spectroscopic applications and frequency locking of THz
photomixing with distributed-Bragg-reflector diode lasers in low-temperature-grown
GaAs. Appl. Phys. Lett. 71(12), 1601–1603 (1997)

12.224. S. Verghese, K.A. McIntosh, S. Calawa, W.F. Dinatale, E.K. Duerr, K.A. Molvar,
Generation and detection of coherent terahertz waves using two photomixers. Appl.
Phys. Lett. 73(26), 3824–3826 (1998)

12.225. R. Mendis, C. Sydlo, J. Sigmund, M. Feiginov, P. Meissner, H.L. Hartnagel, Spectral
characterization of broadband THz antennas by photoconductive mixing: toward
optimal antenna design. IEEE Antennas Wirel. Propag. Lett. 4, 85–88 (2005)

12.226. I. Park, C. Sydlo, I. Fischer, W. Elsäßer, and H.L. Hartnagel, Generation and
spectroscopic application of tunable continuous-wave terahertz radiation using a
dual-mode semiconductor laser. Meas. Sci. Technol. 19, Article 065305 (2008)

12.227. T. Yasuia, Y. Kabetani, E. Saneyoshi, S. Yokoyama, T. Araki, Terahertz frequency
comb by multifrequency heterodyning photoconductive detection for high-accuracy,
high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, Article 241104 (2006)

12.228. Y. Yang, D. Burghoff, D.J. Hayton, J.-R. Gao, J.L. Reno, Q. Hu, Terahertz
multiheterodyne spectroscopy using laser frequency combs. Optica 3(5), 499–502
(2016)

12.229. Z. Jiang, X.C. Zhang, Single-shot spatiotemporal terahertz field imaging. Opt. Lett.
23(14), 1114–1116 (1998)

12.230. B.K. Russell, B.K. Ofori-Okai, Z. Chen, M.C. Hoffmann, Y.Y. Tsui, S.H. Glenzer,
Self-referenced single-shot THz detection. Opt. Express 25(14), 16140–16150 (2017)

774 References



Index

A
Absolute calibration, 126, 213, 225, 228, 231,

232, 257, 311, 436, 520, 588, 602, 620
Absolute color measurement, 88
Absolute measurement(s), 67, 68, 71, 87, 88,

99–101, 103, 104, 106, 107, 112, 250,
252, 253, 255, 260, 263, 302, 307, 330,
439, 570, 588, 604–606, 624

Absolute reflectivity, 228
Absolute spectral response, 230, 231
Absorptance, 19, 20, 26, 29, 50, 51, 57, 110,

112, 114, 169, 213–215, 232, 233,
257–259, 263, 309, 311, 387, 399,
403–405, 435, 443, 470, 471, 473, 476,
478–483, 485, 488, 490, 491, 495,
499–502, 504–507, 518–523, 525, 526,
537, 544, 552, 568, 569, 602

Absorption
coefficient, 27, 29, 31, 57, 155, 157, 291,

304, 366, 374, 376, 377, 382, 384, 389,
391–393, 395, 428, 431, 469–471,
477–480, 482–485, 488, 491, 493–497,
499, 500, 502, 505, 506, 508–510,
512–515, 518, 520, 521, 523, 524,
526–530, 532, 534, 550, 558, 559, 587,
594, 602–604, 710, 712, 713

features, 382, 393, 430, 509, 543, 561
induced, 290, 304, 332, 483, 485, 489, 493,

495, 497, 499, 501–505, 512, 517, 552, 687
change, 488, 489, 493, 501
polarimetry, 497
thermal lens, 485, 501

loss, 29, 46, 69, 214, 273, 285, 291, 294,
304, 306, 316, 326, 354, 366, 368,
374–381, 387, 393, 398, 403, 404, 430,
431, 439, 441, 444, 470, 472, 475,
477–479, 482, 485, 499, 503, 505, 507,
508, 513, 516, 522, 532, 534, 543, 552,

553, 559, 568, 587, 588, 594, 599–601,
603–605

path difference, 568, 676
peak, 214, 357, 555, 556, 559, 563, 568,

569
sensitivity, 110, 225, 258, 290, 291, 332,

346, 351, 360, 366, 374–380, 393, 398,
401, 410, 428–430, 432, 440, 444, 471,
476, 477, 482, 485, 491, 495–499, 501,
503, 504, 507–513, 515–517, 520, 530,
543, 544, 556, 557, 559, 560, 563, 565,
566, 568, 569, 587, 588, 600, 602, 604,
605, 667, 675, 686, 694, 701–703

spectrum, 262, 375, 379, 391, 555, 559,
561, 563, 667, 675, 676, 701, 715

Absorptivity, 482, 485, 509, 524
Acceptance function, 380
Accumulation time, 362
Accuracy, 7, 25, 53, 55, 59, 64–67, 98, 107,

112, 143, 158, 164, 186, 189, 199, 225,
231, 233, 239, 241–243, 250, 257,
262–267, 269, 271, 272, 274, 277, 289,
290, 292, 294, 297, 299, 308, 312, 324,
336, 364, 366, 370, 403, 405, 415, 437,
438, 440, 455, 461, 467, 482, 513, 520,
530, 540–542, 545, 547, 557, 559, 560,
568, 573, 574, 594, 605, 607, 613, 621,
623, 627, 666, 674, 690, 713

Acoustic
relaxation, 512
resonant frequency, 511, 514–516
sensor, 516, 517
transit time, 507
wave, 504, 505, 507, 510, 512, 603, 688

Acoustically resonant, 508, 510
Acousto-Optic Deflector (AOD), 427
Acousto-Optic Modulator (AOM), 395, 428,

430, 490, 557

© Springer Nature Singapore Pte Ltd. 2019
M. Bukshtab, Photometry, Radiometry, and Measurements
of Optical Losses, Springer Series in Optical Sciences 209,
https://doi.org/10.1007/978-981-10-7745-6

775



Active, 27, 97, 181, 363, 365, 366, 368–372,
374–378, 393, 403, 421, 450, 455, 457,
459, 477, 485–487, 514, 557, 678, 680

Active intracavity loss measurement, 372,
450

Added length, 577
Addition, 166, 170, 199, 247, 266–269, 272,

274, 322, 373, 377, 509, 515, 526, 527,
537, 567, 574, 646, 690, 697, 701

Additive
interactions, 7, 704
multiple reflections, 417
summation, 35, 37, 148, 163, 421, 423, 646
superposition, 130, 144, 147, 163, 416, 421
transmittance and reflectance measurement,

409
Adiabatic, 470, 478, 678
Aggregate decay rate, 390
Air-based interferometer, 639
Air gap

in fiber contact, 632
reflection, 217, 273, 625, 627, 628, 631

Air reference, 560
Air-sample transmittance, 572
Airy formulae, 161, 380, 422
Alignment, 183, 217, 244, 290, 297, 299, 300,

322, 326, 334, 377, 384, 398, 399, 402,
410, 417, 420, 423, 438, 488, 491, 493,
541, 591, 626, 627, 629, 662, 664, 672,
680, 692

Amplified Spontaneous Emission (ASE)/ASE
suppression, 649, 685, 691, 692, 694

Amplitude modulation, 400, 492, 548, 553,
555, 556, 566

Amplitude reflectance, 160, 633, 707, 710, 712
Amplitude transmittance, 159, 633, 713
Analyzer, 170–175, 177, 183, 244, 263, 367,

442, 462, 501–503, 614, 677, 685, 715,
716

Angular frequency, 31, 133, 375, 385, 492,
554, 602, 635

Angular intensity, 7, 14, 20
Angular scattering, 313
Anomaly (anomalies), 103, 191, 192, 194–196,

199, 201–204, 207, 209, 210
Anti-resonant, 442
Aperture-defined geometry, 186
Astigmatic elongation, 327, 328, 335–338
Astigmatic mirror cell, 343
Asymmetric cavity, 445, 448
Attenuation

cross-section, 27, 382

difference, 68, 69, 216, 240, 246, 267, 285,
287, 291, 334, 541, 542, 550, 554, 575,
578, 583, 584, 586, 587, 612, 616

factor, 27, 28, 32, 36, 42, 62–64, 216, 217,
219–222, 247–250, 257, 286, 287, 306,
314, 342, 363, 365, 368, 369, 373, 404,
532, 540, 575, 584, 591, 615, 621, 623

measurement, 62, 63, 159, 180, 214, 216,
217, 219, 225, 236, 240, 241, 247–250,
257, 265–268, 286, 287, 292, 312, 333,
341, 366, 372, 414, 540, 562, 565, 574,
576–579, 581–584, 586–588, 591, 592,
595

spectrum, 549, 555, 614
Attenuator, 216–218, 220, 225, 248, 265–267,

290, 308, 565, 587, 605, 621, 677
Auto-balanced, 564
Autocorrelation function, 188, 638
Auxiliary resonator, 365
Average

attenuation, 33, 35, 63, 214, 218, 247, 292,
342, 404, 415, 532, 534, 564, 565, 578,
583, 584, 587, 614, 623

backscattering loss, 623
cell-mirror reflectance, 330
fiber-line loss, 616
fluence, 567
group index of refraction, 627
number of collisions, 526
optical density, 247, 616
path length, 343, 375, 398, 527–529,

534–536, 561
polarization factor, 642
power, 4, 7, 9, 11, 12, 49, 50, 53, 129, 149,

151, 153, 154, 157, 158, 214, 224, 226,
227, 247, 271, 343, 346, 358, 359, 417,
438, 508, 551, 561, 564, 565, 614, 642,
644, 648, 701

power spectrum, 644
reflectance, 35, 63, 68, 158, 163, 175, 177, 185,

247, 248, 292, 300–302, 321, 322, 324,
325, 328–330, 343, 346, 347, 397, 406,
407, 409, 414–417, 420, 421, 426, 432,
438, 442, 534, 572, 587, 626–628, 642

scattering, 9, 124, 248, 309, 315, 358, 359,
397, 405, 426, 527, 529, 532, 584, 587,
588, 604, 614, 616, 623, 624, 629, 642

transmittance, 42, 164, 177, 409, 631
Averaged

power, 4, 7, 9, 11, 12, 49, 50, 53, 129, 149, 151,
157, 247, 271, 438, 551, 564, 565, 614

Averaging integrating sphere, 244
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B
Back and forward scattering, 603
Background

emission, 356, 357, 360, 361, 520, 548,
661, 691

interference, 356, 402, 557, 568, 569, 683,
690

level sensitivity, 556, 568, 569
noise, 219, 309, 313, 357, 361, 362, 503,

510, 548, 551, 556, 557, 568, 569, 671,
672, 675, 683

radiation, 218, 309, 315, 351, 551, 556,
568, 659, 672

scattering, 288, 309, 312, 351, 352, 356,
360, 362, 402, 686, 687, 690, 691, 694

Backreflected, 623, 652
Backscattering

factor, 308, 309, 613, 615, 623, 642
plus reflection, 620, 621, 623, 624, 631,

642
Baffling aperture, 187, 189
Baffling method, 100, 107
Balanced

detection, 402, 557, 558, 562, 563, 565,
566, 569, 588, 589

Balancing FTIR, 673
Bandwidth, 182, 233, 260, 273, 374, 378, 379,

381–383, 387, 390, 392, 394, 410, 413,
415, 443, 452, 482, 507, 515, 545, 548,
550, 551, 554, 557, 566, 568, 588, 635,
641, 644–646, 685, 687, 698, 701, 702,
715

Beam cross-section, 247
Beam of rays, 8
Beam splitter, 69–71, 120, 148–150, 158, 159,

165, 167, 169, 181, 182, 225–227, 237,
238, 247, 248, 255, 256, 270, 277,
297–299, 303, 309, 313, 331, 332, 372,
407–410, 433, 452, 453, 455, 466, 467,
498, 500, 502, 517, 539, 541, 551,
559–561, 563, 566, 568–570, 574, 576,
577, 580, 584, 587, 597, 620, 658, 674

Beam-steering, 494
Beat-length, 652
Beer’s law, 381, 533, 536
Bent resonator

measurement, 420
Bidirectional

reflectance, 44, 313, 475, 521
reflectance distribution function, 44

Birefringence, 169, 170, 186, 233, 290, 291,
367, 418, 419, 440, 462, 483, 489, 497,
501–503, 563, 609, 612, 642, 643, 652,
653, 676, 687

Birefringent
fiber, 467, 609, 642, 649, 650, 652, 653
fiber interferometer, 642
plate, 170, 175, 183, 290, 440, 450, 462

Bit-error rate, 649
Blackbody radiation, 234, 235
Blackbody radiator, 11, 223, 227, 520
Bouguer-Lambert-Beer’s law, 28, 31, 469, 523,

533, 536, 593
Boxcar integrator, 510, 511, 567, 613
Brewster angle

calibrator, 364, 366, 367
Brillouin scattering, 620, 678, 680, 685–688,

690–692, 694, 695
Brillouin spectroscopy, 345, 678, 685, 692
Broadband

intracavity detection, 378, 701
Bulk absorption, 166, 469, 472, 474–479, 482,

492, 498–500, 504, 505, 507
Bulk and surface absorption, 472, 507
Bulk linear attenuation coefficient, 292, 415
Bulk loss, 35, 294, 472, 507, 570, 575, 576,

578, 626
Bulk scattering, 291
Bulk transmittance, 159, 166, 168, 169, 239,

240, 285, 286, 288, 584

C
Calibrating cavity, 365
Calibrating wire, 602
Calibration

resonator, 365, 366, 436
Calorimetric, 214, 404, 476–478, 477, 482,

494, 516, 522, 599–601
Candela, 11–14, 50, 228, 234
Carrier frequency, 386, 466, 549, 550, 553,

554, 697
Cavity

coupled, 337, 343, 351, 380–382, 384, 387,
389–392, 394, 395, 411, 412, 426, 428,
429, 442, 444, 537, 569, 667, 701–703

enhanced, 393, 410, 414, 467, 563, 564,
701

length matching fringes, 396
lock acquisition, 393
matching, 380, 383, 384, 387, 391, 396,

427, 428, 448, 455, 467, 667, 702
mode mismatch, 387
prone interference fringes, 400
resonance, 372, 373, 380, 385, 391, 393,

415, 424–426, 428, 456, 467, 698
ringdown spectroscopy, 379
shaped detector, 311

Cell-related fringes, 396
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Center wavelength, 362, 384, 392, 452
Characteristic time interval, 484, 600
Coblentz hemisphere, 310
Coefficient

of thermal expansion, 494, 496, 509
Coherence

length, 130, 136, 147, 148, 177, 179, 185,
380, 383, 411, 418, 419, 421, 433, 541,
610, 613, 617, 619, 634, 636, 640, 658

time, 129–131, 133, 135, 142, 147, 148,
223, 379, 380, 383, 421, 423, 613

Coherent crosstalk, 646
Coherent reflectance, 281
Coherent-subtraction, 551
Coherent time-domain measurements, 711
Collinear propagation, 543
Collinear waves, 542
Color

coordinate, 75, 77–83, 86, 88, 89, 260, 262,
263, 462, 463

filtering, 210
Colorimetry, 75, 76, 85
Color scale, 83, 222, 230
Color sensitivity, 260
Combined

action, 37, 270
irradiance, 53, 218, 270
scattering, 220, 315, 346, 527, 543, 694

Common-path interferometers, 668–670
Comparative interference, 172, 177, 609
Comparison method, 95, 97, 98, 100, 115
Compensation, 66, 105, 180, 202, 204, 217,

237, 240, 253, 263, 264, 290, 298, 338,
339, 343, 363, 369, 439, 452, 455, 466,
480, 481, 499, 503, 539, 540, 551, 553,
561, 565, 586, 589, 662, 663, 675, 701

Complementary attenuation factor, 242
Complex degree of spectral coherence, 133,

137, 140, 143
Complex reflectance/complex reflectivity, 707,

710
Complex transmittance, 451
Concentration-dependent extinction, 544
Concentric resonator, 409
Connection

loss, 593, 595, 596, 620, 623
point, 595, 623

Connector
loss, 568, 593, 595, 596, 606, 608, 623, 624

Constant
attenuation coefficient, 27, 216, 221, 578,

594

flux, 18, 23, 24, 47, 54, 151, 188, 257, 266,
267, 272, 471, 481, 533, 574, 594

intensity, 16, 21, 22, 24, 39, 43, 59, 182,
216, 369, 370, 376, 387, 389, 414, 493,
544, 555, 574, 622, 659

irradiance, 24, 52, 59, 92, 98, 100, 230, 533
radiance, 20–23, 39, 44, 47, 61, 95, 99, 112,

188, 309
transmittance, 43, 59, 230, 540, 582, 707

Continuously-tunable, 512, 564, 567
Continuous radiation, 10, 154–156
Continuous-wave (cw)

reflectometry, 351
Contrast, 5, 92, 97, 102, 130, 144, 185, 237,

246, 256, 266, 272, 411, 415, 443, 451,
458, 465, 478, 479, 500, 520, 556, 557,
604, 679–682, 684–686

Convectional heat, 482
Conventional, 7, 135, 136, 151, 163, 169, 177,

228, 237, 239, 256, 262, 285, 286, 297,
326, 369, 371, 490, 548, 570, 616, 700

Corner-cube reflector, 338
Correlative interference pattern, 168
Coupled-fiber interferometers, 634
Coupling

efficiency, 220, 391, 394, 424, 597, 667,
692

Cross-axis spectrometer, 689
Cross-correlation, 452, 453, 456, 461, 464
Cross-plane radiation components, 650
Cross-reference interference, 172, 173,

175–177, 184, 185
Cross-spectral density function, 132–137,

141–143
Crosstalk

induced interference, 650, 652
induced penalties, 648

Cube detector, 602, 604
Cutback

method, 597, 623
Cylindrically-shaped cavity, 215, 232, 325,

336, 337
Cylindrical-mirror cavity, 344
Cylindrical-spherical mirrors, 297, 343, 345,

346, 405, 414, 486

D
Damage threshold, 214, 216, 217, 220, 222,

225, 493
Dc-contribution, 550
Dead-zone

removal, 619
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Decay digitizing ringdown-rate spectrometer,
380

Decaying
mode, 386–388
pulse envelope, 430

Decay-time dichroism, 391, 418, 424, 426,
427, 431, 450, 451

Decimal coefficient of attenuation, 28
Deconvolution, 387, 389, 710, 713
Derivative

spectroscopy, 360, 396, 400, 548
Destructive interference, 185, 690
Detector responsivity, 128, 550
Dichroism, 448–450, 695
Difference, 64, 65, 68, 69, 83, 84, 87, 92, 95,

102, 107, 110–113, 115, 130, 134, 141,
142, 160–164, 166, 168, 169, 172,
174–177, 179, 192–194, 197, 202, 209,
211, 214, 216, 240, 242, 246, 250, 260,
262–264, 267, 269, 285, 287, 291–293,
296, 304, 315, 321, 334, 347, 348, 361,
367, 372, 374, 382, 395, 396, 399, 400,
403, 406, 407, 410, 417, 424, 437, 439,
448, 449, 452, 458, 460, 462–466, 473,
480, 481, 493, 497, 500, 526, 539–544,
550, 552–557, 567, 568, 572, 575, 578,
580, 583, 584, 586, 587, 599, 602, 612,
614, 616, 618, 624, 626, 635, 644, 646,
650, 652, 658–660, 664–667, 669–672,
674–677, 679, 697–700, 703, 713, 715,
716

Difference signal, 567
Difference-to-sum system, 541
Differential

absorption, 288, 291, 332, 395, 432, 470,
503, 508, 543, 544, 557, 566, 594

absorption spectroscopy, 564
balanced detection, 569
balanced technique, 361, 503, 513, 540,

551
bound, 541
division, 541, 542, 564
imbalance, 332, 567, 663
length, 290, 291, 395, 503, 508, 541–543,

575, 594, 634
loss, 539, 540, 543, 556, 566, 583
measurement, 288, 291, 332, 361, 362, 395,

503, 539, 540, 542–544, 565–567, 583
ratio, 362, 395, 514, 540, 542, 543, 569,

588
registration, 539, 542, 550
sample length, 287, 288, 290, 291, 513,

542, 557, 575, 583

signal, 324, 332, 362, 539–543, 550, 565,
569, 646

spectroscopy, 543, 544, 551
thermocouple, 470, 471
transmittance, 288, 290, 542
wavelength, 291, 360–362, 542, 543, 562,

566, 567, 664
Differential path, 543, 664
Differentiation, 357, 417, 479, 540, 557
Diffraction

effects, 54, 189, 191, 192, 217, 243, 244
grating equation, 191, 192, 196, 209
order, 54, 146, 192–194, 200, 201, 203,

209, 210, 668, 669, 677, 684, 692, 693,
702

phenomena, 9, 130, 186, 191, 192, 245,
268, 486

Diffuse emitting, 220
Diffuse radiating, 220
Diffuse reflectance, 31, 32, 40, 43, 44, 47, 52,

72, 73, 75, 92–95, 97, 99, 100, 104, 106,
107, 109–112, 116, 118, 120, 121, 125,
219, 220, 229, 238, 256, 309, 310, 439,
523, 537

Diffuse scattering, 113, 439
Diffuse transmittance, 31, 32, 41–43, 57, 105,

106, 108, 110–117, 119, 220, 238, 252,
253, 276, 439

Digitization rate, 387
Direct-absorption, 562
Direct-attenuation, 562
Direct-division, 568
Direct measurement, 50, 66, 213
Direct transmission, 307, 432
Direct transmittance, 30, 33, 66, 68, 71, 118,

120, 236, 250, 304, 306, 307, 316, 317,
329, 404, 439

Discriminator, 406, 407
Dispersion

bandwidth, 374, 394
Dispersive imaging spectrometer, 657
Displacement, 3, 34, 51, 69, 71, 149, 236, 237,

290, 298, 325, 338, 341, 342, 346, 364,
492, 500, 662, 664, 676

Displacement-sensing interferometer, 51, 65,
218, 230, 262, 263, 316, 325, 346, 366,
377, 382, 403, 432, 464, 488, 489,
516–518, 541, 542, 544, 550, 558, 605,
618, 677

Distinguishable interference pattern, 415
Distributed absorptance, 471
Distributed feedback, 516
Distributed scattering, 311
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Doppler effect, 388, 678, 703
Doppler shift, 388, 393
Double-balanced detection, 566
Double-beam, 116, 675
Double-reflection, 301, 302, 320, 327
Dual-aperture, 269, 276
Dual difference, 575, 578
Dual-interaction, 246
Dual monochromator, 288, 301
Dual-pass, 246, 247, 289, 304, 407
Dual-reflection, 173, 301, 302, 321, 326, 609
Dual-resonator, 513
Dual-transmission, 246
Duration of light pulse, 11, 36, 152, 154, 271,

273, 364, 388, 405, 407, 416, 424, 425,
498, 499, 503–506, 509, 510, 537, 542,
612, 624, 647, 702

Dynamic range, 51, 67, 180, 219–222, 248,
256, 264, 265, 267, 268, 271, 273, 275,
277, 308, 311, 367, 375, 377, 378, 402,
430, 495, 496, 539, 545, 587, 605, 606,
616, 621, 627, 631, 702, 712

E
Effective diffuse reflectance, 109, 121, 215
Effective heterodyne quantum efficiency, 566
Effective internal reflectance, 606
Effective path-length, 529, 533
Effective point source, 146
Effective reflectance, 93, 101–103, 107, 108,

113, 215, 218, 219, 249, 252, 255, 256,
371, 382, 443, 641

Effective spectral reflectance, 219
Efficiency

factor, 75, 110, 220, 371, 424, 534
Eigenstate, 442, 449
Eikonal equation, 5–7, 15
Elastic strain, 504, 505
Electronically balanced, 567, 589
Electronic filtering, 396, 400, 401, 566
Electro-Optic Modulator (EOM), 367, 428,

556, 563, 697, 698, 702
Elimination of interference, 415
Ellipsoid mirror, 349
Embedded optical loss, 363
Emission

factor, 45, 50, 375, 424, 539, 691
Emissive spectroscopy, 518
Emissivity

measurement, 51, 71, 520, 522
Emittance, 11, 19–22, 45, 51, 66, 102, 107,

113, 121, 135, 138, 144, 221, 238, 271,
312, 478, 518–522, 529, 532

Emitter, 21, 71, 72, 218, 220, 226, 303, 545,
566, 567, 714

Empty-sphere
photon lifetime, 527, 528

Energy scale, 224–227
Entrance aperture, 105, 108, 112, 114, 213,

215, 220, 224, 225, 249, 252, 253, 327,
328, 341, 346, 581

Equalizer, 263
Equal-time interval, 182, 399, 551
Equilibrium, 11, 20, 22, 72, 80, 123, 125, 130,

225, 427, 471, 518, 522, 523, 568
Equivalent noise power, 542
Equivalent solid angle, 22, 94, 104, 108, 532
Equivalent width, 390
Erbium-Doped Fiber Amplifier (EDFA), 514,

517
Error(s), 51, 57–59, 67, 71, 86, 87, 89, 97, 99,

102, 103, 105–107, 111, 113, 121, 123,
164, 184, 186, 204, 209, 214, 217, 225,
231, 233, 240, 244, 249, 250, 253, 254,
256, 263–265, 268, 274–276, 285, 286,
288, 289, 292, 299, 306, 312, 321–323,
326, 334, 339, 342, 343, 362, 364, 367,
369, 392, 403, 406, 407, 413–415, 417,
418, 423, 425, 427, 430, 433, 435, 442,
457, 477, 509, 521, 537, 540, 542, 544,
546, 549, 560, 563, 572, 573, 576, 583,
586, 592, 593, 596, 601, 606, 620, 627,
629–631, 635, 647, 663, 664, 671, 712,
713

Etalon
effect, 379, 381, 395, 396, 401, 428, 565
induced interference fringes, 401

Euler’s law, 22
EUV. See Extreme UV
Excess noise

cancellation, 567
Excitation pulse, 387, 495
Expanded cavity, 333, 335
Expanded cell, 334
Expanding length, 606
Expansion coefficient, 497, 509
Exponential attenuation, 214
Exponential decay, 28, 387–389, 512
Exponential function, 42, 387, 392, 393, 427,

469
Exponential waveform, 381, 383
Extent, 7, 14, 17, 20, 25, 29, 32, 49, 62, 154,

157, 158, 180, 194, 213, 223, 238, 244,
263, 285, 315, 320, 384, 494, 686

External-cavity, 429, 430, 444, 564, 698, 703
Extinction coefficient, 31, 32, 480, 706, 709
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Extraordinary axis, 171
Extreme, 43, 131, 175, 177, 207, 339, 343,

413, 450, 638
Extreme UV (EUV), 207

F
Fabry-Perot cavity, 379, 384, 392, 426, 442,

458
Fabry-Perot etalon, 360, 560, 656, 678–680,

682–688
Fabry-Perot interferometer, 325, 374, 377, 393,

412, 440, 449, 498
Fabry-Perot resonator, 460, 556, 598
Fabry-Perot scanning interferometer, 442
Factor(s), 10, 18–20, 22–27, 29–31, 33, 36, 37,

39, 42, 43, 45–47, 50–53, 62, 64, 71,
73–76, 83, 85, 87, 91, 92, 94, 96–98,
100, 110–121, 123, 126, 133, 136–138,
143, 147, 155, 157, 159, 160, 172, 174,
177, 180, 213, 215, 217, 218, 220, 225,
230, 242, 248–251, 254–258, 268, 271,
306, 307, 309–311, 314, 321, 346, 363,
365, 366, 368–372, 375, 376, 391,
404–406, 409, 415, 416, 422, 424, 432,
435, 437, 439, 440, 443, 444, 448, 466,
469, 471, 477–482, 486, 487, 491, 515,
516, 518, 519, 526, 528, 529, 534, 537,
539, 543, 545, 547, 548, 553, 557, 572,
581, 582, 586, 589, 591, 595, 600, 601,
603, 604, 606, 608, 609, 611, 613, 615,
620, 621, 626–628, 642, 646, 665, 679,
683, 691, 692, 698, 705, 709, 713

Feedback, 158, 233, 395, 429, 434, 454, 481,
499, 503, 542, 545, 560, 561, 563, 564,
567, 569, 645, 680, 692, 696, 715

Fellgett advantage, 657
Fiber-based interferometer, 639, 643
Fiber-coupled, 225, 516, 517, 564, 568, 569,

686, 689, 692
Fiber end, 402, 593, 605, 617, 618, 621, 631
Fiber-line loss, 616
Fiber loss, 588, 596, 601, 613, 615, 624, 626,

630
Fiber-pigtailed, 564
Fiber-to-fiber etalon effect, 565
Field of optical radiation, 4, 6, 12, 130, 140
Field of optical vector, 4
Finesse

parameter, 397, 412–415, 656, 679
Fine-tuning, 553
Finite frequency bandwidth, 387
First-order, 54, 121, 122, 173, 175, 178, 191,

192, 201, 203, 204, 209, 379, 413, 414,
642

Fixed attenuation, 264
Fluctuation, 288, 381, 389, 395, 540, 558, 559,

573, 577, 634, 636
Fluence, 14, 155, 493, 567
Flux

of radiation, 7, 11–13, 15, 16, 20, 24, 62,
67, 68, 73, 113, 121, 151, 248, 254,
307, 469, 474, 571, 606, 612, 655

Forward
direction, 137, 620
excitation, 347, 493
scattered, 31, 315

Foucault grating, 193
Fourier Transform Infrared (FTIR)

spectroscopy, 337, 462, 655, 657–661,
664–668, 670, 671, 673–676, 700, 704,
711

Fourier-transform interferometer, 333
Fourier-transform spectrometer, 332, 522, 671,

700, 703
Fourier-transform spectroscopic interferometry,

655
Fourier Transform Spectroscopy, 655, 657, 700
Four-measurement cycle, 581
Four-wave crosstalk-induced interference, 650
Fox–Smith interferometer, 450
Free spectral range, 360, 377, 386, 389,

396–400, 422, 423, 442–444, 556, 560,
561, 679–681, 683–685, 687, 689, 691,
692, 696–698, 703

Frequency
comb, 467, 570, 695, 697–703
component, 147, 384, 387, 393, 401, 429,

465, 549, 550, 644, 701, 704
dependent, 384, 387, 443, 453, 454, 490,

491, 552, 554, 558, 613, 706, 707, 716
absorption coefficient, 155, 157, 493,

508, 510
filtration, 400
fluctuation, 126, 129, 140, 149, 157, 638,

659
modulation, 126, 225, 226, 228, 266, 312,

324, 359, 361, 386, 393, 398–401, 410,
421–423, 430, 490–492, 505, 507, 510,
516, 541, 544, 548, 550–557, 562, 563,
566, 568, 602, 603, 613, 614, 618, 645,
675, 697, 698, 703, 717
spectroscopy, 410, 553, 554, 563

spectrum, 147, 157, 388, 389, 417, 552,
644, 669, 694, 695, 713, 717

stabilized, 389, 390, 658, 691
Frequency beating, 700
Frequency comb, 467, 570, 693, 695, 697–703
Frequency-comb scale, 695
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Frequency-domain photomixing, 715
Frequency-domain spectroscopy, 613, 614
Fresnel number, 404, 405, 486
Fringe noise, 398, 401, 566, 568, 569
Fringe pattern

averaging, 401
Fringe-related noise, 559
Fringe sharpness, 397
Fringe suppressing, 557
Fringe visibility, 131, 159, 162, 165–169, 180,

397, 402, 411, 437
Frustrated total internal reflection, 217
Full-width half-max, 698
Fully isotropic irradiation, 112
Function of largest fringe visibility, 167

G
Gain and loss coefficients, 369, 375
Gain saturation, 366, 371, 372
Gas absorption, 410, 508
Gaseous, 247, 326, 379, 394, 443, 487, 504,

507, 508, 525, 526, 532, 537, 558
Gated-pulse measurement, 509
Gaussian

beam waist, 512
noise, 391, 551, 635, 636, 645, 647
pulse, 381, 386, 388, 389, 506
shape pulse, 388

Generalized quantity, 156
Generalized radiance, 134, 135, 140–142
Generation suppression, 366, 372, 398
Geometrical vignetting, 265
Geometric extent, 13, 16–18, 23, 47, 61, 601,

615
Gershun’s invariant, 17
Goniometer, 73, 308
Goniophotometer, 307
Grating efficiency, 199, 207
Grating period, 194, 196, 199, 202, 204, 209,

669
Group delay, 451–453, 455, 467
Guiding mode, 591

H
Half-intensity width, 397, 411, 679
Half-wave plate, 294, 448, 607
Heat capacity, 50, 225, 228, 470, 485
Heat transfer

coefficient, 469, 473, 483
equation, 485, 600

Helmholtz resonator, 513
Hemispherical irradiation, 72, 114, 115, 119,

254
Herriott waveguide, 399

Heterodyne, 393, 430, 464, 553, 556–558, 565,
566, 668–671, 675–677, 684, 698, 703,
715, 717

High-dispersion interferometers, 678
High efficiency, 209, 313, 333, 361, 391, 681,

687
High finesse, 412
High-frequency modulation, 490, 552
High loss, 336
High reflectance, 169, 185, 252, 321, 379, 403,

404, 439, 451, 502, 587, 620
High-reflecting, 181, 329, 364, 411
High-reflective Fabry–Perot cavity, 461, 683
High resolution, 313, 604, 678, 680
High specular reflectance, 329, 403
High throughput, 669
High transmittance, 252, 451, 502,

573, 634
Holographic

interferometer, 499, 507
Homodyne, 464, 558, 565, 566, 638, 716
Homogeneous

line broadening, 370, 374, 375

I
Ideally smooth surface, 296
Ideal mirror, 44–46
Idle

fiber, 592, 593, 607, 613, 615, 625–631
Illuminance, 13, 14, 24–27, 45, 52–56, 59–62,

92, 93, 98, 99, 109, 121, 230, 234, 235,
264

Illumination–observation geometry, 91
Immersing, 268, 320, 547, 570
Inaccuracy, 228, 258, 286, 300, 306, 365,

413–415, 422, 453, 576, 593, 594, 625
Inclination, 24, 54, 61, 216, 237, 367
Incoherent beat-noise crosstalk, 646
Incoherent noise-free crosstalk, 646
Incoherent radiation, 417, 419
Increment, 330, 364, 530
Index-matching, 547, 569
Index of refraction, 7, 40, 63, 67, 80, 246, 268,

286, 407, 489, 500, 575, 578, 612, 627
Indicatrix, 21–23, 73, 74, 94, 104, 108,

110–113, 116–118, 218, 250, 308, 471
Indirect measurement, 403
Indiscriminating, 374, 375
Induced change, 228
Infinite number, 35, 81, 172, 174, 433
Inhomogeneity, 264, 312, 487
Inhomogeneous transition, 8, 374
Inner reflectivity, 677
Inner-sample loss, 35
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Inner-sphere
flux, 533, 607
irradiance, 108, 522
reflections, 102, 108
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