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Preface

In standard quantum mechanics, the collapse of the wave function resulting of the
interaction of a given system with a measuring apparatus is a clear unsatisfactory
assumption. As is well known, this assumption, due to von Neumann, was estab-
lished around 1932 by means of the so-called reduction (or collapse or projection)
postulate. A unitary Schrödinger evolution can never lead to such a collapse and,
therefore, at some point, the time evolution of a quantum system undergoing a
measurement has to be suspended and replaced by a discontinuous, noncausal,
nonlineal, nonunitary (but norm-preserving) and stochastic one. The collapse is
postulated to happen in accordance with the well-known Born probability rule, with
no dynamical theory behind such a mechanism. It is also very well known that the
absence of macroscopic superpositions is at the heart of the measurement problem
in quantum mechanics. Another aspect worth mentioning is the emergence of the
classical features from the quantum world; in other words, the conversion of a
coherent superposition into a mixture. The resulting decoherence process leads to
the selection of one of the components of this mixture. This selection of one out of
many alternatives still remains obscure. Thus, we still do not understand why the
measurement process destroys the linear superposition of the initial states and why
macroscopic objects are not found in superposed states. Even more, as asked by
Bell, where is the quantum-classical dividing line? Mesoscopic systems are also
ideal to address this fundamental question. In brief, too many open questions are
even today waiting for some sort of satisfactory response.

Many physicists believe that there is a measurement problem in quantum
mechanics. Even more, measurement definitely and unavoidably affects the
dynamics of the measured system. In the Copenhagen interpretation of quantum
theory, the world is divided into system and apparatus. In the simplest case, the
system, which is quantum mechanical, is characterized by a wave function. This
interpretation implies that the apparatus that performs and records measurements on
the system must be classical. In practice, experimenters are always on the classical
side of the line. As pointed out by Bell, the lack of clarity in regard to where the
transition between the classical and quantum worlds is located is one aspect of the
measurement problem. This problem represents one of the most important
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conceptual difficulties in quantum mechanics. The presence of a classical apparatus
considerably affects the behavior of the observed quantum system and measure-
ments typically fail to have outcomes of the sort the theory was created to explain.
Another conceptual difficulty is that in a system under observation there are many
degrees of freedom such that information can be lost in the couplings which may
account for dissipation and decoherence. It appears that the measurement problem
before alluded is becoming slowly a critical or singular quantum process (converted
to a dynamical problem) rather than a conceptual issue. In other words, it is no
longer considered as a conceptual or philosophical problem but a typical
many-body problem (with all the computational issues involved in its resolution).

A measurement can be seen as a physical process by which the state of a
quantum system influences somehow a classical variable of a macroscopic appa-
ratus. This influence is usually described by an interaction between the system of
interest (S) and the apparatus (A). Then, the combined quantum system SA has
properties that S and A alone do not have and it is said that S and A are entangled
by means of quantum correlations due to the quantum nonlocality. It is widely
accepted that A can also be considered as an environment. In 1970, Zeh proposed to
analyze the measuring process within the context of the theory of open quantum
systems and see it as a typical many-body interaction problem. In 1984, Gisin
carried out a theoretical connection between them. Furthermore, almost any inter-
action with an environment produces localization (or reduction) in position space. It
is very often alluded that the system can not have a state on its own when inter-
acting with its environment and, therefore, the only description in the standard
quantum formalism is by means of the density matrix. The measurement process
then implies the conversion of a coherent superposition into a mixture together with
the selection of one of the components (or alternatives) of the mixture leading to a
definite measurement readout. Thus, this decoherence process leads to the emer-
gence of the classical world (classicality). Decoherence, which is ubiquitous in
nature, is extremely effective and virtually impossible to escape (only irreversible
when the environment is macroscopic). It is a pure quantum process and has no
classical counterpart. Furthermore, entanglement is the key process underlying
decoherence. This fundamental process has been and is still being studied from
many, many points of view emphasizing its very different aspects and subtleties.
The number of articles and books devoted to such an important and fundamental
issue is extremely huge; to cite only some of them, we have the Ghirardi–Rimini–
Weber model of continuous spontaneous collapse, the entropic-dynamic approach
to quantum evolution and the Fisher information based derivation of the funda-
mental Lagrangians leading to relativistic wave equations. Several stochastic
approaches are being used nowadays within the quantum theory which could be
classified according to the following scheme: group or semigroup algebra, the
influence functional, the restricted path integral, consistent histories, effective wave
equations and quantum state diffusion equations. They are mathematically con-
nected. Continuous quantum measurement theory is playing a fundamental role in
this context since it provides new aspects and ingredients to the global quantum
theory. For example, quantum transitions can be monitored as well as perturbed,
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altering the dynamics of the measured system. However, very few studies within
the Bohmian framework can be found in literature. This approach should also be
considered in the measuring process since the outcome of an experiment is very
often the position of a particle. In Bohmian mechanics, particles are assumed to
have well-defined positions in configuration space. Moreover, the description
provided by this mechanics to the measurement process is entirely compatible with
Born’s rule in standard quantum mechanics.

Bohmian mechanics, which is also called the de Broglie–Bohm theory, the
pilot-wave model, and the causal interpretation of quantum mechanics, was origi-
nated in the 1920s by Louis de Broglie, re-discovered and developed in 1952 by
David Bohm. Its roots are also in the pioneering works of Madelung’s hydrody-
namic formulation of quantum mechanics. No one more eloquently than John Bell
has championed this theory in recent decades. It should be remembered that Bell’s
inequalities were inspired by his reaction to the work by Bohm. Bell and Bernstein
also argued convincingly that the de Broglie–Bohm interpretation of quantum
mechanics should be part of any college curriculum on the subject. Tegmark and
Wheeler also considered this theory as one of the most significant elements in the
history of quantum mechanics. Comprehensive discussions of Bohmian mechanics
can be found everywhere in the literature. This mechanics mainly arose as a result
of the unsatisfactory interpretation of standard quantum mechanics, which claimed
that the wave function provides the most general and complete physical information
about a quantum system. This led to a very exciting, never-ending debate focussed
on the completeness of the wave function and the quantum theory of measurement.
Within Bohmian mechanics, a quantum system has a well-defined (in space and
time) trajectory, namely a quantum or Bohmian trajectory; the evolution of this
trajectory is determined by the wave function associated with the system. Quite
recently, a revival of the debate about the role played by this mechanics in quantum
physics can be found in the specialized literature. There are several groups for
whom this theory constitutes the natural framework of quantum mechanics,
whereas other groups consider it as an alternative and exact formulation able to
characterize, interpret and predict quantum processes, standing on equal footing
with the standard theory. In fact, it can also be considered as a picture of quantum
mechanics at the same level as those due to Schrödinger, Heisenberg, Dirac
(Interaction) and Feynman. As Aharanov says, this theory provides the same
experimental predictions than quantum mechanics and it contains additional hidden
variables which are nonlocal in time that account for the results of every mea-
surement. In this sense, there is no way to decide from experiment which picture is
prevalent. This formulation has also received an important impulse over the last 20
years from different communities, which translates into an impressive and fruitful
theoretical development. Furthermore, from our own longstanding experience in the
field, Bohmian mechanics can tackle any quantum problem as standard quantum
mechanics can do it. Obviously, the amount of time and effort invested by many
researchers in standard quantum mechanics completely outweigh that invested in
Bohmian mechanics. However, we think that this situation will be corrected in the
near future owing to the fact that this theory appears in more and more modern
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quantum mechanics books at the introductory level. We are going to deal with
quantum or causal trajectories but they must not be confused with the same concept
introduced by several authors in optics and quantum state diffusion which can be
seen as the realizations of the wave function or state vector considered as an
underlying stochastic process in Hilbert space. Unfortunately, the concept of
quantum trajectory (stochastic or deterministic) is not unique and there is an
important proliferation of quantum stochastic trajectories in different fields of
research within the theory of open quantum systems as well as the Bohmian
mechanics.

The scope of the book is to tackle such conceptual difficulties mentioned above.
In particular, when certain conditions are met, an answer to the alluded challenge
posed by Bell on the dividing line between the quantum and classical regimes in a
measurement problem is also discussed and proposed. In Bell’s opinion, the most
important element in quantum theory was that the subjectivity of the orthodox
version, the necessary reference to the observer, could be eliminated. The theo-
retical procedure followed here it is inspired from Mensky’s theory about restricted
path integrals, combined with the so-called Langevin–Schrödinger equation or
Kostin equation (which can be seen as an effective wave equation) within the
Bohmian framework. This new approach presents several advantages. First, it
provides a causal aspect to the dynamics of the measuring process. Second, the
proposed stochastic nonlinear approach is an alternative and complementary view
of the continuous quantum measurement. Furthermore, in this context, it is put on
equal footing the stochastic character coming from the presence of the environment
and the phenomenological contribution coming from the measuring process. Third,
the information due to the readout of the measurement is governing the equations of
motion of Bohm through the quantum potential which is the nonlocal agent of this
theory. Fourth, the correspondence principle, established in terms of the smallness
of the quantum potential (that is, when it is approaching a zero value), provides a
natural way to the emergence of the classical world. Fifth, the gradual decoherence
process due to the interaction with the measuring device is introduced and described
in terms of quantum stochastic trajectories; that is, in a continuos way with no
collapse of the wave function. And sixth, following a dressing scheme, the quantum
(stochastic) trajectory is always split into a classical trajectory plus a quantum or
nonlocal term.

With this goal, and in order to be as self-contained as possible, although a
minimal background on stochastic processes is assumed, this monograph is divided
into four chapters. In Chap. 1, a brief historical description and short and updated
account of Bohmian mechanics is provided for closed and open quantum systems;
in particular, how open quantum systems and the measurement problem are typi-
cally considered in this formalism. This introductory chapter aims at providing the
essential tools and background to better understand the rest of the monograph. It is
clear that this mechanics is not the only one describing quantum mechanics in terms
of trajectories but maybe it is becoming more and more known and widely used.

In Chap. 2, our purpose is to simply show that Bohmian mechanics is a powerful
route to bring about new solutions to problems discussed by conventional quantum
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mechanical approaches, apart from allowing some striking correspondence between
both frameworks. This is not carried out by means of a systematic exposition of
conservative quantum processes but following some illustrations of solutions to
some key quantum mechanical problems such as, for example, the so-called
Ermakov–Bohm invariants, boundary conditions and uncertainty principle in tun-
neling, the quantum traversal time, Airy wave packets and Airy slits, the detection
of inertial and gravitational masses with Airy wave packets, the geometric phase
analyzing the Aharonov–Bohm effect and quantum vortices, the reformulation
of the Gross–Pitaevskii equation within the hydrodynamical framework and ending
with the well-known Caldirola–Kanai Hamiltonian for dissipative processes. In this
dissipative scenario, the motion of a free particle, the quantum interference of two
wave packets and the dynamics in a linear potential as well as the corresponding of
a damped harmonic oscillator (within the underdamped, critically damped and
overdamped regimes) are finally analyzed for ulterior references.

In the last decades, many nonlinear extensions of the Schrödinger equation have
been proposed in literature either to explore the fundamental aspects of quantum
mechanics, with the usual linear theory representing only a limiting case, or to
describe open quantum systems. In Chap. 3, one of those nonlinear quantum
equations is introduced and widely developed. For the description of nonconser-
vative quantum systems, Kostin formulated in an heuristic way the so-called
Schrödinger–Langevin (SL) equation or Kostin equation for the Brownian motion.
This equation has been subsequently rederived, improved and extended for its use
in numerous applications, mainly without including the noise term. Numerous
features of this SL equation can be better revealed within the framework of de
Broglie–Bohm (quantum hydrodynamical trajectory formulation) of quantum
mechanics resulting the Schrödinger–Langevin–Bohm (SLB) equation. Within this
formalism, several dissipative problems are presented and discussed: the
Ramsauer–Townsend effect, the tunneling dynamics through a barrier, the plasma
fluid formulation and the Lorentz–Abraham (extended electron) equation for a
point-charge electron. These two last examples are also discussed in order to see the
correspondence between classical and quantum dynamics. Very few applications of
this SL equation are devoted to stochastic problems in the literature where the noise
term needs to be included. The so-called Bohmian–Brownian motion is introduced
in the context of surface diffusion with single adsorbates. An extension to inter-
acting adsorbates is discussed within a simple, phenomenological model.
Interestingly enough, this study leads us to quantum anomalous diffusion. Finally, a
generalization of the SL equation is proposed for nonlinear dissipation.

Chapter 4 is devoted to the study of continuous or repeated (prolonged in time)
measurements on a quantum system. This is a very active field since it is directly
connected to the foundations of quantum mechanics, the theory of quantum mea-
surements being one of its main topics. Following a phenomenological approach, a
general theory for decoherence in the framework of restricted path integrals
(RPI) has been proposed by Mensky. The corresponding propagator is modified
according to the information provided by the measurement through the so-called
quantum corridors, which correspond to different readouts of the measurement. The
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action uncertainty principle is then ruling the corresponding measurement process.
The measured system is also considered in this theory as an open system since the
back reaction of the environment, considered as a measuring apparatus, is taken into
account implicitly. In this Chapter, the RPI formulation is briefly presented and
discussed since our approach is inspired from Mensky’s procedure. The linear
time-dependent Schrödinger equation derived from this formulation is reached for a
non-Hermitian (complex) effective Hamiltonian which takes into account the
measurement readout. The RPI formulation is equivalent to a master equation, a
special case of the Linblad equation, and to a stochastic Schrödinger equation.
A nonlinear equation is proposed and discussed, within the Kostin framework, by
extending Mensky’s approach to be analyzed in terms of Bohmian trajectories, the
so-called SLB equation for continuous measurement. When a time-dependent
Gaussian shape is assumed for the probability density, soliton-like solutions are first
analyzed in order to establish the dividing line between the quantum and classical
trajectories, leading to the concept of Bohmian time. Afterwards, the solutions
of the SLB equation for continuous measurement are analyzed in terms of math-
ematical stability for three simple cases, that is, the free particle and the linear and
harmonic potentials. In particular, the continuous position measurement is seen that
it is no longer governed by a standard continuity equation. The sign of the extra
source/sink term appearing in this new equation is critical for the stability of the
solutions. Two types of general solutions are found: (i) the stationary wave packet
considered becomes unstable (that is, this solution is not a physically acceptable
solution for that process since, as time evolves, the width of the corresponding wave
packet becomes more delocalized) and (ii) the probability density becomes more
and more localized at asymptotic times (the stationary wave packet is then an
attractor of the corresponding width dynamics); in terms of trajectories, this analysis
indicates that the Bohmian trajectories are not approaching the corresponding
classical ones. These conclusions are also corroborated by carrying out an analysis
of the entropy. Finally, it is also briefly discussed the question of coupling classical
variables (apparatus) to quantum ones (system) in terms of Lyapunov exponents.

In the epilogue of this monograph some concluding remarks and future per-
spectives towards the establishment of a complete theory of continuous quantum
measurement, within the Bohmian mechanics, are briefly presented and discussed.

This monograph is the result of more than 30 years working on trajectory-based
formalisms; in particular, on Bohmian mechanics. Concerning citations, we have
tried to furnish a historical development of the different topics presented here.
However, to provide a selection of the very last references in a very active field is
really difficult. We apologize to those who think they should be cited and are not.
During this long but exciting time, we have benefitted from discussions with
many colleagues from all over the world. In particular, we would like to
acknowledge fruitful discussions and collaborations with P.T.S. Alencar,
P. Bargueño, J.M.F. Bassalo, I. Besieris, M.S.D. Cattani, H. Peñate-Rodríguez,
J. Margalef-Roig, R. Martínez-Casado, G. Rojas-Lorenzo, A.S. Sanz, E. Outerelo,
E. Pollak and O. Roncero. ABN would like to thank all members of the
Harvard-Westlake Science Department, the UCLA Extension Science Department
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and the College of the Canyons for the constant support and encouragement
throughout the process of writing this monograph. Analogously, SMA would also
like to thank all members (past and present) of the Departamento de Fίsica
Atómica, Molecular y de Agregados of the Instituto de Fίsica Fundamental
belonging to the Centro de Fίsica Miguel A. Catalán (Consejo Superior de
Investigaciones Científicas, CSIC) in Madrid. This work has been partially sup-
ported by the project FIS2014-52172-C2-1-P from the Ministerio de Economia y
Competitividad (Spain).

Finally, we thank our Editor A. Lahee for her interest when we proposed this
monograph as well as her patience when extending several times the deadline for
finishing this project.

Los Angeles, USA Antonio B. Nassar
Madrid, Spain Salvador Miret-Artés
December 2016
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Chapter 1
Historical and Introductory Account
of Bohmian Mechanics

Abstract Bohmian mechanics, which is also called the de Broglie-Bohm theory,
the pilot-wave model, and the causal interpretation of quantummechanics, was orig-
inated in the 1920s by Louis de Broglie, re-discovered and developed in 1952 by
David Bohm. No one more eloquently than John Bell has championed this theory in
recent decades. Bell and Bernstein also argue convincingly that the de Broglie-Bohm
interpretation of quantummechanics should be part of any college curriculum on the
subject. Comprehensive discussions ofBohmianmechanics can be found everywhere
in the literature. In this introductory chapter, a brief historical description and short
and updated account of this mechanics is provided for closed and open quantum
systems; in particular, how the measurement problem is typically considered in this
formalism. This chapter aims at providing the essential tools and background to bet-
ter understand the rest of the monograph. It is clear that this mechanics is not the only
one describing quantum mechanics in terms of trajectories but maybe it is becoming
more and more known.

1.1 Introduction

John Bell was a theoretical physicist famous for his results in the field of founda-
tions of quantum mechanics [1]. The famous Bell inequalities and similar results
provide strict constraints on any future theory of quantum phenomena. His work is
as monumental as the work of Kurt Gödel [2] on the Incompleteness Theorems in
mathematics. Bell was a highly cultured and thoughtful thinker. His writings are still
sending shock waves in the field of quantum mechanics. Bell presented his theory
with extraordinary lucidity coupled with a vividness of expression. Tegmark and
Wheeler have written an excellent and basic review about the 100 years of quantum
mechanics [3].

Bell championed the theory put forth by deBroglie in 1927 and advanced byDavid
Bohm in 1952 [4, 5], the so-called de Broglie-Bohm quantum theory, the pilot-wave
model, the causal interpretation of quantum mechanics and Bohmian mechanics [6–
14]. In fact, due to initial criticism of his theory, de Broglie abandoned his guiding
waves project and so it lay abandoned until Bohm revived it. The particle motion
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dependens thus on the wave evolution with time, giving rise to quantum or Bohmian
trajectories. The uncertainty principle in Bohmian mechanics is then understood
from the initial conditions determining the trajectory, which are subject to the usual
quantum mechanical uncertainties. The motions of the particles on their trajectories
are deterministic, but which trajectory the particle is on is subject to probability.
Bell was convinced that the de Broglie-Bohm interpretation of quantum mechanics
should be part of any college curriculum on the subject. Bohmian mechanics stands
out by being both historically influential and highly developed. Its position is further
strengthened not only by Bell’s theorem, which showed that all such theories have
to be nonlocal as well as the experimental confirmation in 1981 due to Aspect et al.
[15–17] and by recent experiments [18–20].

In the simplest pilot-wave theory, Bohmian mechanics, paradoxes of quantum
mechanics can be resolved in a simple way – while the particles have positions, they
move according to Schrödinger’s equation. For example, one of the most famous
paradoxes (in the standard interpretation) at the heart of quantum mechanics is the
double-slit experiment. By using the concept of weak-value measurements intro-
duced originally by Aharanov et al. [21],1 recent experiments with single photons
in a double-slit interferometer have revealed that single-particle trajectories can be
processed in a indirect way and plotted. Weak measurements have then shown that
it is possible to operationally define a set of trajectories for an ensemble of quantum
particles. In this fashion, these results have reproduced those predicted by Bohmian
mechanics (non-crossing trajectories) [19, 20, 22] in spite of the fact that thismechan-
ics is developed for particles with mass. However, what qualifies some physical
systems to play the role of a “meter”? After all, there is no reference to a measur-
ing process in Schrödinger’s equation. Besides, quantum mechanics should explain
some aspects of macroscopic measurements. Bohm’s ideas were applied to different
prototypical models of quantum mechanics [7] during the late 1970s and partic-
ularly the 1980s and early 1990s. However, in the last 20 years or so, Bohmian
mechanics has passed from being a mere way to formulate a quantum mechanics
“without observers” [8, 9] to become a well-known (and increasingly accepted)
theoretical framework used as a source for new quantum computational methods
as well as quantum interpretations [12, 23, 24]. These two aspects of Bohmian
mechanics are what Wyatt [12] has termed the synthetic and analytic approaches of
this theory. The first approach essentially starts with the former numerical schemes
developed to obtain quantum information without solving Schrödinger’s equation,
but its equivalent Bohmian counterparts [12, 25–27]. Since then, this computational
branch of Bohmianmechanics has diversified into amyriad of numerical approaches,
which can be summarized by the type of answer they try to give. For example, for
wave packet propagation, different Lagrangian, Eulerian and combined Eulerian-
Lagrangian algorithms have been developed [12]. Semiclassical initial value repre-
sentation schemes based on Bohmian mechanics have been implemented [28–32].

1Following these authors, in principle it would be possible to measure transition probabilities in
such away that theywould allow us to determine “any physical variable to a certain (even forbidden)
value”, e.g., canonically conjugate variables.
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The purpose of avoiding and, therefore, solving the so-called nodal problem has led
to schemes such as, for example, the bipolar ansatz [33–36]. The starting point for
the second approach, on the other hand, based on obtaining the quantum trajectories
from the wave function as a tool to interpret and simulate realistic experiments, can
be established in the former studies of rare gas atom diffraction by metal surfaces
[13, 14].

Bohmian mechanics allows us to understand and explain quantum systems in
terms of the motion displayed (in configuration space) by a swarm of quantum tra-
jectories. Each one of these trajectories represents the evolution in time of a particular
initial state specified by a point on the configuration space associatedwith the system.
Thus, unlike standard quantum mechanics, where the wave function determines the
state of the system on thewhole available configuration space, in Bohmianmechanics
it is possible to follow one particular point of such a space. The time-evolution of this
point is given according to some prescribed quantum laws of motion. The evolution
of the trajectory ensemble is equivalent to the evolution of a quantum flow —this
is precisely the viewpoint of quantum hydrodynamics. The Bohmian view does not
invalidate at all other ways of understanding quantum systems; it only allows us
to think of them on similar grounds as classical ones, i.e., using a similar intuitive
scheme, which differs from a purely classical one precisely in the types of motion
one can observe. However, unlike any classical approach to quantum mechanics,
Bohmian mechanics is not an approximated theory, but an exact one. Furthermore,
by looking at one of those diffraction experiments carried out with electrons [37]
or atoms [38], one notices that a single measurement or detection is meaningless,
many of them being necessary in order to visualize the diffraction pattern and then
obtain information either about the diffracted particle or the diffracting object. In
other words, individual particles behave like individual point-like particles, though
their distribution displays a wave-like behavior, in accordance with Schrödinger’s
equation. It is therefore clear that ensemble properties need of an ensemble descrip-
tion, i.e., a density distribution function, whose role is played in quantum mechanics
by the probability density or, at a more elementary level, the wave function. This
is in agreement with Born’s statistical interpretation of quantum mechanics. How-
ever, if (individual) particles are regarded as moving along single trajectories, are
these trajectories the ones obtained from the guiding condition? Bohmian trajec-
tories reproduce all the features of quantum mechanics and, therefore, one would
be tempted to think that this is so. However, Bohmian equations are regarded as
hydrodynamic equations, the corresponding trajectories obtained from the guiding
condition should not be regarded as the trajectories pursued by real electrons, but
rather as streamlines associated with the corresponding quantum fluid or paths along
which quantum probability flows. Very interesting work is being addressed to several
problems in quantum optics and atom interferometry by Sanz and coworkers [39–41]
under this approach. Electrons may move or not like that, basically depending on
the laminar or turbulent regimen displayed by the fluid, but surely not exactly as
Bohmian trajectories. This description allows us to infer dynamical properties of the
quantum fluid, which are usually hidden when studied by means of the wave func-
tion formalism. Therefore, Bohmian particles can be seen as the quantum equivalent
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of classical tracer particles in a fluid, so that they can help us to visualize its flow
dynamics by moving along streamlines, i.e., lines along which the fluid current goes
or energy is transported. For example, if the fluid is gaseous, one can use smoke; if it
is a liquid, one can make use of tinny floating particles, e.g., pollen or charcoal dust,
or another liquid, e.g., ink. In the case of the hydrodynamical approaches utilized
to the universe dynamics in cosmology, the tracer particles can be stars, galaxies or
clusters [13, 14].

The problem of many-body interactions —or, equivalently, many degrees of
freedom— can be tackled from different points of view, since it appears in many
different physical, chemical and biological contexts. For example, quantum chem-
istry constitutes nowadays one major field in importance and interest. In order to
carry out the large-scale calculations and simulations, an increasing computational
capacity of modern computers is critical. The corresponding theoretical analysis
relies on considering the so-called Born-Oppenheimer approximation, which allows
us to simplify the study of any molecular system (simple molecules, solid surfaces,
polymeric chains, clusters, crystalline structures, etc.) by splitting it into its electronic
and nuclear parts. By solving the Schrödinger equation associated with the electronic
Hamiltonian, which is the ultimate goal of electronic structure methods, one deter-
mines electronic configuration of a (multi-electron) system, i.e., the way how elec-
trons distribute throughout such a system. This knowledge will essentially determine
its chemical properties, e.g., chemical bonding, intermolecular interactions, elec-
tronic charge distributions, dipole and multipole moments, or vibrational/rotational
frequencies. Non–adiabatic problems have also been tackled within the Bohmian
complex formalism [42, 43].

When the dimensionality of the problem considered increases, as happens with
many systems of quantum chemistry and solid state physics, computational problems
increase and start becoming unaffordable. To overcome this drawback, a series of
approaches based on the density matrix theory [44] were also developed; for exam-
ple, the independent electron approximation or Thomas-Fermimodel [45, 46]. These
models can be considered direct predecessors of the so-called density functional
theory (DFT) [47], based on the principles established by Hohenberg, Kohn and
Sham [48, 49]. Here we go from the Thomas-Fermi model [45, 46], where the elec-
tron kinetic energy of an atom is expressed as a functional of the atom electronic
distribution, to the modern DFT [47], where the fundamental physical information
about the molecular system is obtained from a single-particle density in a three-
dimensional space, derived variationally eitherwithin a time-independent framework
[47] (ground state) or a time-dependent one [50, 51] (excited states). The density
functional theory is a very popular calculation method nowadays, not only in quan-
tum chemistry, but also in solid state physics or condensed matter physics; in par-
ticular, due to its computational simplicity combined with its (numerical) accuracy.
Accordingly, the relevant physical information about the ground state of amany-body
system is obtained from single-particle densities in a three-dimensional space, which
are determined variationally within a time-independent framework. Nonetheless, all
practical applications of DFT rely on essentially uncontrolled approximations [52]



1.1 Introduction 5

and therefore the validity of this approach is conditioned to its ability to provide
results sufficiently close to the experimental data.

StandardDFT is commonly applied to determineground states in time-independent
problems. However, its time-dependent generalization, the so-called time-dependent
DFT (TD-DFT), are needed when processes and phenomena are intrinsically time-
dependent [51]. This is the case, for example, of reactive and non-reactive scattering
processes, or of atoms and molecules in laser fields, where the calculation of excited
states is important. This approachwas formerly started byBartolotti [53–55] andDeb
and Ghosh [56, 57], although the proofs of the fundamental theorems involved were
later on provided by Runge and Gross [58]. One of these theorems corresponds to a
version of the Hohenberg–Kohn theorem for time-dependent Schrödinger equation.
Thus, as happens with standard DFT, TD-DFT can be started directly from themany-
body time-dependent Schrödinger equation, the density being then determined from
solving a set of time-dependent Schrödinger equations for single, non-interacting par-
ticles. A slightly extended version is based on Madelung’s quantum hydrodynamic
picture of wave mechanics [59] which has been widely exploited in the chemical
physics community, giving rise to the so-called quantum hydrodynamic or quantum
fluid DFT. According to Hirschfelder [60–62], quantum hydrodynamics facilitates
the study of problems involving external electric and magnetic fields in molecular
systems, since it contains in a natural way the concept of equation of change for any
arbitrary quantum properties in configuration space. For instance, these equations
can be used to study the energy flow from one part of a molecule to another, the
nature of molecular collisions, or the magnetic properties of molecules. We would
also like to notice an interesting relationship between this formulation and the weak
measurement or weak value [21], proposed about twelve years after Hirschfelder’s
work. As mentioned above, experiments carried out by Kocsis et al. [19, 20] are
not only in accordance to Bohmian mechanics but also to Bayesianism proposed by
Wiseman [63]. As pointed out by Hiley [64], these weak measurements are not other
thing that standard transition probabilities within the Bohmian scenario, i.e., just a
particular type of equation of change, according to Hirschfelder.

On the other hand, strictly speaking, real physical systems do not exist in complete
isolation in nature. All physical systems are open systems in the sense that the
interactionwith their environments can never be totally neglected. From its inception,
the motion of particles in quantum mechanics was thought to happen in the presence
of an environment and could be understood in terms of a stochastic process. In fact,
a formal analogy between the Brownian motion and the Schrödinger equation was
noticed byFürth [65] in 1933.Afterwards, Fényes [66] andWeizel [67–69] developed
this approach with more mathematical detail. The search for a stochastic support for
quantum mechanics has taken place since the early 1950s. In particular, the first
attempt in the Bohmian mechanics due to Bohm and Vigier [70] was reported in
1954. These authors assumed that the electron is a particle suspended in a Madelung
fluid [59] (the hydrodynamical model of quantum mechanics was lately developed
by Takabayasi [71, 72]) whose general motion is determined by the resolution of the
Schrödinger equation, providing the probability density from the amplitude of the
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wave function and the deterministic contribution to the local velocity from its phase.
The stochastic contribution to the local velocity is due to the random fluctuations
arising from the presence of the fluid. In general, the aim was to show how close
it is to classical theory of Brownian motion and Newtonan mechanics, and how
the Schrödinger equation might have been discovered from this point of view. The
theorywas neatly established byNelson [73] starting from a different point of view of
those proposed by Fényes, Weizel, Kershaw [74], Comisar [75] and de la Peña [76].
After Nelson, every particle of a given mass,m, is subject to a Brownian motion with
diffusion coefficient�/2m andno friction in order to preserveGalilean covariance.He
explicitly wrote that his theory is not a causal theory and the physical interpretation
is entirely classical. Olavo [77] also followed previous works but starting from a
more axiomatic formulation. The main advantage of implementing this stochastic
mechanics was to exploit the well developed mathematical methods of probability
theory and stochastic processes. In a review written by Guerra [78] in 1981, one still
can read “there is no stochastic interpretation of quantum mechanics different to the
standard one... stochastic mechanics can be seen simply as a reformulation of it in
terms of the language of stochastic processes”. Grabert, Hänggi and Talkner analyzed
the connection between both mechanics and concluded that quantum mechanics is
not equivalent to aMarkovian diffusion process [79].Most of the work in this domain
ignored Bohm’s view of standard and stochastic quantum trajectories. In this respect,
we can claim that the depart of Bohm and collaborators is again a breakthrough.
Bohm and Hiley [10, 80] make clear that there is no way to avoid non-locality in
the stochastic interpretation of quantum mechanics. After Vink [81], the causal and
stochastic interpretations are two known examples of what is denominated beable
interpretations as developed by Bell [1]. Lorenzen et al. [82] have recently extended
Bell’s beables to encompass dissipation, decoherence and the quantum-to-classical
transition through quantum trajectories.

Concurrently, Nelson and de la Peña opened up an alternative route for deriving
generalized nonlinear Schrödinger equations. Within the quantum hydrodynamical
framework, Nassar [83, 84] proposed a generalized nonlinear equation containing
some of the most well-known equations due to Kostin [85], Süssmann and Hasse
[86], Bialynicki-Birula–Mycielski [87], Stocker-Albrecht [88] and Schuch–Chung–
Hartmann [89, 90]. More recently, Olavo et al. [91] have provided an alternative way
of combining Bohmian equations and the Langeving and Fokker–Planck equations
and the Feynman propagator was analyzed for eight nonlinear Schrödinger equa-
tions [92] within this formalism. Garashchuk et al. [93] and Chou [94] applied the
so-called Kostin equation to the symmetric and asymmetric double well potential for
ground states. In the same framework, Nassar [95] also studied the linear Schrödinger
equation within the Caldirola-Kanai model [96, 97]. A detailed analysis of quantum
trajectories in the Caldirola-Kanai model has also been carried out by Sanz et al.
[98].

The theory of open quantum systems has also been developed by different routes
from the very beginning leading to different stochastic derivations of the Schrödinger
equation. Traditionally, the so-called system-plus-reservoirmethods are being largely
used in this context, working either in the Schrödinger picture (density matrix
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formalism) or the Heisenberg picture of quantum mechanics (quantum Langevin
equation). The reader interested in these different alternatives can look at, for exam-
ple, Refs. [13, 14, 99–105]. In this context, the terminology of quantum trajectory is
also used but it should not be confused with the corresponding Bohmian trajectory.
When dealing with open quantum systems within the Bohmian formalism in the
following chapters, these trajectories will be handled with care.

Dealing with measurements, the physical system to be measured together with
the apparatus can also be considered as an open system [106]. In classical physics,
measurements on a physical system are carried out without appreciably disturbing
it. Positions and momenta can be empirically determined with arbitrary precision at
the same time. In classical ontology terms, one assumes the existence of particles
and fields to be essentially independent of the human observer. Moreover, following
Holland [7], two successive observations of an apple, in a tree and then on the ground
are connected to one another. In fact, they are causally connected. Non-disturbing
measurements which simply reveal a preexisting reality cannot be sustained when
we approach the quantum realm [10]. After Bohr, one cannot separate the behavior
of the quantum objects from their interaction with the instruments. However, the key
concept in this mechanics is the concept of a quantum state along the lines initiated
by Dirac and von Neumann. After Dirac, each physical quantity is represented by an
Hermitian operator which is called an observable. When this property is measured
by an apparatus, the system is left with a wave function corresponding to an eigen-
function of this observable. Afterwards, we can measure the same observable again
and again with the same result that the wave function does not change significantly
(except for a phase factor). After von Neumann, the wave function provides the most
complete possible description of what he called quantum reality (no further concepts,
e.g., involving hidden variable could be introduced that would make possible a more
detailed description of the state of the system than is afforded by the wave function).
In 1955, von Neumann proposed to divide the world into two parts: an observed
system and a system that may “observe”, say a meter or a pointer. In other words,
he was led to make a distinction between the quantum and classical levels. Between
them, he said there was a cut or a dividing line. The location of the cut is to a large
extent arbitrary. The apparatus must combine quantum and classical properties. The
Schrödinger equation can not map a pure state into a mixture, or better said, a proper
mixture killing the interference terms. Von Neumann also proposed a different evo-
lution, discontinuous, noncausal and nonunitary, the so-called projection postulate
or the hypothesis of wave function collapse or reduction which is an irreversible
process and takes place instantaneously. Thus, the many-body Schrödinger theory
is no longer applicable in the measuring process and this implies a massive incom-
pleteness in the quantum mechanical treatment. No one knows when the collapse is
supposed to occur, how long it takes or what brings it about. This process of reduction
or collapse of the wave function is the simplest example of decoherence or conver-
sion of a superposition state into one of the eigenstates of the observable measured
with probability given by the squared modulus of the corresponding coefficient. The
emergence of the classical world implies the phenomenon of decoherence, that is, the
conversion of a coherent superposition of states into a mixture since superposition
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states are not observable. One of the components of the mixture has to be somehow
selected to lead to a definite measurement readout. In other words, the measuring
process is the selection of one out of many alternatives. Irreversibility is then settled.

Recently, Nassar [107] has proposed a different starting point within the Bohmian
formalism when considering the measuring process as an open quantum dynamics.
Following the phenomenological approach to continuous measurement by Mensky
[108] which uses restricted path integrals, a new logarithmic nonlinear Schrödinger
equation has been derived and analyzed in terms of quantum trajectories. A close con-
nection between stochastic mechanics and the path integral formulation of quantum
mechanics due to Feymann is noticeable. Furthermore, as an extension, the stochas-
tic weak measurement is also introduced in this context following Hiley arguments
[64]. As a further extension of this work, Nassar and Miret-Artés [109] and Bar-
gueño and Miret-Artés [110] have derived new generalized Schrödinger-Langevin
equations by considering continuous measurement for a dissipative and stochastic
dynamics, respectively. Furthermore, Zander, Plastino and Díaz-Alonso [111] have
investigated time-dependent solutions for the nonlinear equation proposed by Nassar
and Miret-Artés.

This chapter is organized as follows. In Sect. 1.2, the main concepts and devel-
opments derived for closed or isolated quantum systems are briefly reviewed. In
Sect. 1.3, the same is done but now for open quantum systems. Finally, in Sect. 1.4
some dynamical aspects of the measuring process are presented. This introductory
chapter aims at providing the essential tools and background to better understand the
rest of the monograph.

1.2 Closed Quantum Systems. Quantum Trajectories

1.2.1 Quantum Hydrodynamics Framework

In 1926, Madelung [59] provided an alternative interpretation to quantum mechan-
ics which is known nowadays as quantum hydrodynamics. This interpretation is, for
example, directly connected to some relevant phenomena in quantum mechanics,
such as superconductivity [112] or Bose–Einstein condensation [113]. Furthermore,
in chemical physics, it provides an ideal framework to understand and interpret quan-
tum processes, going from chemical reactivity in collinear reactions [62, 114] to the
understanding of molecular magnetic properties within a framework encompassing
both electronic structure and topology [115–117].

In this framework, one starts by considering the wave function of a particle in the
configuration space and in polar form such as
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Ψ (r, t) = φ(r, t)ei S(r,t)/� (1.1a)

ρ(r, t) = φ(r, t)2 = Ψ ∗(r, t)Ψ (r, t), (1.1b)

J(r, t) = ρ(r, t)v(r, t) = φ2(r, t)
∇rS(r, t)

m
, (1.1c)

where ρ(r, t) is the probability density, J(r, t) is the quantum probability density
current and v(r, t) is the velocity field, which describes the flow of the latter. In
order to simplify the notation of equations, the arguments of the fields will be very
often omitted and ∇r will be replaced simply by ∇ (for one or N particles). By
substituting Eq. (1.1a) in the time dependent Schrödinger equation

i�
∂Ψ (r, t)

∂t
= HΨ (r, t) (1.2)

where H is the Hamiltonian operator of a particle expressed as

H = K + V = − �
2

2m
∇2 + V (r) (1.3)

K being the kinetic energy operator and V the interaction potential, the following
two coupled equations are easily obtained

∂ρ

∂t
+ ∇ · J = 0, (1.4a)

dv
dt

= ∂v
∂t

+ (v · ∇)v = − 1

m
∇(V + Q). (1.4b)

The first equation is the so-called continuity equation and the second one is a
Newtonian like equation in the quantum domain, or quantum Newton equation (or
quantum Euler equation). In this last equation, the effective interaction potential
consists of V and the so-called quantum potential Q expressed in terms of ρ as

Q = − �
2

2m

∇2ρ1/2

ρ1/2
. (1.5)

Equations (1.4a) and (1.4b) constitute the formal basis of quantum hydrodynamics
and have a direct correspondence with those of classical fluid mechanics, when m is
identified with the mass of a piece of fluid separated from the rest by a closed surface,
mρ is the fluid density and v is the velocity field of the flow (ideal classical fluid, that
is, incomprenssible and nonviscous and thermal effects are not taken into account)
[118]. The streamlines of the flow are lines along which the fluid current goes or
energy is transported. Typically, some tracer particles are usually deposited on the
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fluid in order to visualize such streamlines. The tangents to the streamlines give the
directions of the velocities of fluid particles at various points in space at a given
instant and are perpendicular to the constant phase (or S(r, t) = constant) lines.
These streamlines are defined by the solution of the coupled differential equations

dx

vx (r, t)
= dy

vy(r, t)
= dz

vz(r, t)
. (1.6)

However, unlike classical fluids, quantum fluids correspond to probability flows
with no material structure [119]. That is, they only characterize statistical events at
each point in space and time, in spite of the fact that the time evolution of these
events can be better understood when compared with the motion of ordinary fluids.
Moreover, whereas the classical concept of fluid can be applied to describe the
statistical behavior of a macroscopic ensemble of particles, in quantum mechanics it
is applied to single particles.

When this formal similarity with the evolution of classical hydrodynamical flows
is established, one is faced to two types of theoretical schemes: the Eulerian and
Lagrangian schemes [120]. In the first scheme, the importance relies on the full
quantum fluid rather than in the particular trajectory dynamics. Equations (1.4a) and
(1.4b) are then integrated directly with the aid of the velocity field, ∇S/m, but with
no need to obtain any particular trajectory. Alternatively, one can alsowork following
a Lagrangian scheme, i.e., considering a framework co-moving with the quantum
fluid along trajectories. This is the typical scheme considered in order to benefit from
the computational advantages of quantum trajectories. Thus, the first step is to pass
from the Eulerian scheme to the Lagrangian one by means of the well-known time
derivative or Lagrangian operator,

d

dt
= ∂

∂t
+ v · ∇. (1.7)

On the other hand, the classical Euler equation for the component vi of v [121]

ρ
[∂vi

∂t
+ (v · ∇)vi

]
= ρ fi + ∂

∂x j
(−pδi j ), (1.8)

where fi is the external force acting on the fluid along the i–direction and p the fluid
pressure, shows how the flow dynamics is determined by the influence of both, an
external force and other internal one, given by ρ−1∂(−pδi j )/∂x j and that depends
on the fluid properties. Equation (1.4b) can then be rewritten in the form of Eq. (1.8)
as

ρ
[∂vi

∂t
+ (v · ∇)vi

]
= ρ fi + ∂Ti j

∂x j
, (1.9)

by defining the quantum stress tensor as
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Ti j = �
2

4m2
ρ

∂ ln ρ

∂xi j
, (1.10)

which is the quantum counterpart of the classical stress tensor −pδi j , and whose
explicit dependence on ρ can be easily obtained by expressing Q as

Q = − �
2

2m

[
1

2
(∇ ln ρ)2 + ∇2 ln ρ

]
. (1.11)

In classical fluid dynamics, the Navier–Stokes equation [118] expresses the rate of
change in the momentum density, which is defined as the linear momentum times the
fluid density. In the quantum version, apart from the classical contributions, quantum
contributions are clearly identified and are related to quantum stress and pressure.

As also happens with classical fluids, in quantum hydrodynamics one can also
observe the presence of vortices and the corresponding associated (vortical) dynam-
ics. The first theory on quantum vortices was first formulated by Dirac [122] in con-
nection with the existence of magnetic monopoles. This theory has been described
in detail in the literature [61, 123], finding some interesting applications [124]. More
recent and explicit developments of the quantum theory of magnetic monopoles
had led to a generalization of the concept of quantum vortex [125], the well-known
Aharonov–Bohm effect [126] (see Chap.2) being related to this generalization.

The conditions leading to the formation of quantum vortices can be obtained from
the fact that the complex character of the wave function implies the multivaluedness
of its phase

S′(r, t) = S(r, t) + 2πn� , n = 0, ±1, ±2, . . . (1.12)

Thismultivaluedness can only take place at those points where ρ = 0 (nodal points or
nodes, Ψ = 0), where the smoothness of the wave function disappears and the value
of S may undergo discrete jumps. According to Eq. (1.12), under these conditions, J
vanishes but not the velocity field v. By inspecting the circulation of v along a closed
path, C, one finds that this magnitude is quantized,

∮

C
dl·v =

∮

C
dl· ∇S

m
= 1

m

∮

C
dS = 2πn�

m
, (1.13)

n being an integer number. Applying Stoke’s theorem to this result, it can be alter-
natively expressed as ∫

Σ

dr · (∇ × v) = 2πn�

m
, (1.14)

where Σ is the region enclosed by C. This result indicates the appearance of vortices
when n �= 0, which happens only at those points where the wave function presents
nodes. At these points, the streamlines will be closed paths around the nodes, which
is consistent with the fact that the quantum density current vanishes at those points

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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and the impossibility of passing through the regions where ρ = 0. Conversely, the
velocity field v will be irrotational in those regions free of quantum vortices.

1.2.2 The Equations of Motion for One Particle

In 1952, Bohm [4, 5] proposed a different interpretation of quantum mechanics in
terms of “hidden” (trajectories) variables and based on the quantum hydrodynamics
ofMadelung and de Broglie’s ideas of a pilot wave. In configuration space, the funda-
mental Bohmian equations of motion for a particle are usually derived from the stan-
dard version of quantum mechanics through the transformation (Ψ,Ψ ∗) → (ρ, S),
where Ψ and Ψ ∗ are generally complex-valued functions or fields of the position
(r) and time (t), and ρ and S are also real-valued functions or fields of the same
variables. More explicitly, in analogy to previous section, the same transformation
relation between both types of fields for a particle of mass m is given by Eqs. (1.1a)
and (1.1b) After introducing Eq. (1.1a) into the time-dependent Schrödinger equation
(1.2), two real, coupled partial differential equations are obtained,

∂ρ

∂t
+ 1

m
∇(ρ∇S) = 0, (1.15a)

∂S

∂t
+ (∇S)2

2m
+ Veff = 0, (1.15b)

which come from the imaginary and real parts, respectively, of the resulting equation.
The former is again the continuity equation, which accounts for the probability
conservation, while the latter is the so-called quantum Hamilton–Jacobi equation,
with

Veff(r, t) = V (r) + Q(r, t) (1.16)

being an effective potential (notice the different way of expressing the same equations
previously, Eqs. (1.4a) and (1.4b)). The last term in the right–hand side of Eq. (1.16)
is again the quantum potential explicitly written now as

Q = �
2

4m

[
1

2

(∇ρ

ρ

)2

− ∇2ρ

ρ

]
, (1.17)

which, as well as ρ, depends on both r and t . This term is regarded as a potential
because, like V , also rules the quantum particle dynamics. However, unlike V , it is
not a preassigned function. Moreover, its nature is fully quantum-mechanical due
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to its dependence on the quantum state via the evolution of ρ (state dependence).
The quantum potential is not changed when the wave function is multiplied by an
arbitrary constant, only its form (related to the curvature of the wave function) is
important in the dynamics. Even more, again unlike V , this interaction does not
necessarily fall off with the distance. Due to the fact that ρ describes statistically
the evolution of a swarm of identical, non interacting particles, the dependence of
Q on ρ means that the dynamics of a single particle from the swarm is going to
be influenced by the behavior of the others. In other words, the quantum particle
dynamics is nonlocal. Rather than being a particular feature of Bohmian mechanics,
this property is inherent to quantum mechanics in general, which manifests through
the kinetic energy operator, K = −(�2/2m)∇2. Note that Q also arises from the
action of this operator on Ψ after considering Eq. (1.1a)

KΨ = − �
2

2m
∇2Ψ = (∇S)2

2m
− �

2

2m

∇2ρ1/2

ρ1/2
, (1.18)

and, therefore, it could also be associated with a sort of nonlocal kinetic energy [7].
Under the presence of an external potential, the de Broglie wavelength of the

particle has to be modified due to the presence of the quantum potential. Thus, this
variable is also state dependent,

λQ(r, t) = h

|∇S(r, t)| = h

[2m(− ∂S(r,t)
∂t − Q − V )]1/2 . (1.19)

In particular, when one is interested in calculating the turning points of a given
problem, the quantum potential plays a very important role. In a certain sense, we
have to differentiate the “classical” turning points (which are obtained from V ) from
the “quantum” turning points [127] (obtained from V + Q).

Paths along which quantum particles travel may be defined according to the so-
called guidance condition

v = ∇S

m
= J

ρ
= �

2im

[∇Ψ

Ψ
− ∇Ψ ∗

Ψ ∗

]
, (1.20)

with v(r, t) = ṙ being the local velocity field. The initial velocity of the particle
is then determined by the initial field Ψ (r, 0). However, the resulting trajectories
are of quantum nature and termed quantum or Bohmian trajectories This expression
reminds us the so-called method of characteristics in the partial differential equa-
tions [128]. The integration of the guiding condition generates the corresponding
characteristics perpendicular to the S-surface of constant phase (streamlines). Note
that in standard quantum mechanics the system dynamics is only described by Ψ .
However, in Bohmian mechanics, one focusses on the particular evolution in time of
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a given initial system configuration (initial condition), which gives rise to the corre-
sponding Bohmian trajectories. This evolution is strongly determined by the wave
function which acts like a field, apart from any other external field described by the
potential V . The particle is then always accompanied by its quantum field or wave
function, this combined system being causally determined. However, the converse is
not always true. Imagine the wave is split up into a set of parts with no appreciable
spatial overlap (nodal regions in-between). The particle can only follow one of them,
the remaining waves being called empty waves [7].

After the quantum Newton equation given by Eq. (1.4b), one can find asymptotic
regions where the external potential V is zero or negligible but the quantum potential
is still active. In other words, the quantum force or the acceleration of the particle
can still be important in a classical free particle regime. Furthermore, we can also
imagine a situation where the classical force cancels out the quantum force. This
only occurs in a stationary state (the wave function can be taken to be real) and,
therefore, the particle is at rest (zero momentum) in a fixed position. Similarly, the
tunneling effect can also be easily explained in terms of the quantum potential since
it lowers the barrier height given by V , thus permitting particles to enter it.

Due to the linearity of the Schrödinger equation, the superposition principle holds.
Thus, if ψ1 and ψ2 are solutions of that equation, its superposition

Ψ (r, t) = c1ψ1(r, t) + c2ψ2(r, t) = c1
[
ψ1(r, t) + √

αψ2(r, t)
]

(1.21)

is also a solution, with α = (c2/c1)2. There should also be an additional phase factor
eiδ multiplying ψ2, but we will consider δ = 0 here, for simplicity; the consideration
of this phase is, on the contrary, important for some problems; in particular, as
will be discussed in the next chapter, for the so-called Aharonov-Bohm effect. The
particular interest in solutions like (1.21) relies on the fact that they express ratherwell
the character of quantum interference [129], more apparent through the associated
probability density,

ρ = |Ψ |2 = c21
[
ρ1 + αρ2 + 2

√
α
√

ρ1ρ2 cosϕ
]
, (1.22)

where both ψ1 and ψ2 are expressed in polar form (ψ j = ρ
1/2
j ei S j /�, j = 1, 2) and

ϕ = (S2 − S1)/� with Ψ = ρ1/2ei S/�. The presence of the oscillatory term in (1.22)
constitutes an observable evidence of interference, since ψ1 and ψ2 form a coherent
superposition. As can be noticed, ρ does not satisfy the superposition principle, as
also happens with the associated probability density current,

J = 1

m
Re

[
Ψ ∗pΨ

] = − i�

2m

[
Ψ ∗∇Ψ − Ψ ∇Ψ ∗] , (1.23)

where p = −i�∇ is the momentum (vector) operator. Substituting Eq. (1.21) into
(1.23), with again ψ1 and ψ2 expressed in polar form, yields
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J = c21
m

[
ρ1∇S1 + αρ2∇S2 + √

α
√

ρ1ρ2∇(S1 + S2) cosϕ

+ �
√

α(ρ
1/2
1 ∇ρ

1/2
2 − ρ

1/2
2 ∇ρ

1/2
1 ) sinϕ

]
. (1.24)

One can further proceed and determine probability streamlines (lines along which
the probability flows), as in classical hydrodynamics. Now, from the guiding con-
dition (1.20), well-defined (in space and time) quantum trajectories are obtained by
integrating the equation of motion

ṙ = J
ρ

= ∇S

m
= − i�

2m

Ψ ∗∇Ψ − Ψ ∇Ψ ∗

Ψ ∗Ψ

= 1

m

ρ1∇S1 + αρ2∇S2 + √
α
√

ρ1ρ2∇(S1 + S2) cosϕ

ρ1 + αρ2 + 2
√

α
√

ρ1ρ2 cosϕ

+√
α

�

m

(ρ
1/2
1 ∇ρ

1/2
2 − ρ

1/2
2 ∇ρ

1/2
1 ) sinϕ

ρ1 + αρ2 + 2
√

α
√

ρ1ρ2 cosϕ
, (1.25)

and where the initial momentum of particles is predetermined by the choice of the
initial wave function and, therefore, by ρ0(r).

Gaussian wave packets are very helpful and easy to manipulate in theoretical
treatments. Let us consider a free one-dimensional, spinless quantum system of mass
m with its initial state being described (in configuration space) by

Ψ0(x) =
(

1

2πσ2
0

)1/4

e−(x−x0)2/4σ2
0+i p0(x−x0)/�, (1.26)

where x0 and p0 are the position and (translational or propagation) momentum of
its center (in brief, the centroidal position and momentum), respectively, and σ0 its
initial spatial spreading. The exact time-dependent form of this wave function in free
space [V (x) = 0] can be readily obtained

Ψt (x) =
(

1

2πσ̃2
t

)1/4

e−(x−xt )2/4σ0σ̃t+i p0(x−xt )/�+i E0t/�, (1.27)

where the centroidal position and momentum are given by xt = x0 + (p0/m)t
and pt = p0, respectively, and correspond to a classical trajectory describing a
rectilinear uniform motion. This means that the wave packet travels with a speed or
group velocity v0 = p0/m and has a total mechanical energy E0 = p20/2m. On the
other hand, taking into account that
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σ̃t = σ0

(
1 + i�t

2mσ2
0

)
, (1.28)

the spreading of the wave packet at a time t is given by

σt = |σ̃t | = σ0

√
1 +

(
�t

2mσ2
0

)2

. (1.29)

Therefore, the evolution of a wave packet is characterized by two types of motion:
translational or extrinsic, and spreading or intrinsic [14].

By considering the wave packet as a whole rather than a superposition of plane
waves, one can associate its spreading along time with a type of internal or intrinsic
kinetic energy [129]. This can be seen when computing the expectation or average
value of the total energy,

Ē = 〈Ĥ〉 = p20
2m

+ p2s
2m

. (1.30)

Here we observe a second contribution to the energy, which comes from averaging
the quantum potential [129] and is directly connected with the spreading of the wave
packet. Hence, we can we can define an effective spreading momentum,

ps = �

2σ0
. (1.31)

It is interesting that thismomentum also appearswhen one computes thewave-packet
energy dispersion (variance),

ΔE ≡
√

〈Ĥ 2〉 − 〈Ĥ〉2 =
√
2p2s
m

√
p20
2m

+ p2s
4m

. (1.32)

The relationship between ps and the wave-packet spreading becomes more apparent
when (1.31) is analyzed in the light ofHeisenberg’s uncertainty principle: a spreading
of the size of σ0 gives rise to a spreading in momenta of the order of ps . Actually,
one could be tempted to think that classical-like regimes correspond to conditions
where spreading momenta vanish.

Given these two types of motions governing the time-evolution of a wave packet,
it is clear that the ratio between the corresponding velocities, vt (= pt/m) and vs
(= �/2mσ0), will play an important role in many physical processes such as, for
example, interference and tunneling. From Eq. (1.29), one can always define the
following time scale

τ = 2mσ2
0

�
= σ0

vs
, (1.33)
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which is associated with the relative spreading of the wave packet. Depending on the
relationship between t and τ , we can identify three dynamical regimes [130]:

1. The very-short-time orEhrenfest-Huygens regime, t �< τ , where thewave packet
remains almost spreadless: σt ≈ σ0.

2. The short-time or Fresnel regime, t � τ , where the spreading increases nearly
quadratically with time: σt ≈ σ0 + (�2/8m2σ3

0)t
2.

3. The long-time or Fraunhofer regime, t  τ , where the Gaussian wave packet
spreads linearly with time: σt ≈ (�/2mσ0)t .

This scheme results very useful in order to determine a way to elucidate which
process, translational motion or spreading, is going to dominate the future evolution
of the wave packet. Let us recast (1.29) in terms of vs and consider that t is the time
required for the centroidal position to cover a distance d = v0t ≈ σ0. Substituting
the latter expression into (1.29), we have that

σt = σ0

√
1 +

(
vs

v0

)2

. (1.34)

Accordingly, using only information about the initial preparation of the wave packet,
some information can be extracted about its subsequent dynamical behavior. More
specifically, if vs � v0, the wave-packet spreading will be relatively slow, this being
equivalent to the condition in time t � τ . Furthermore, if vs  v0, the wave packet
will spread very rapidly compared to its propagation along x , which corresponds to
the time condition t  τ .

From this brief wave packet analysis, and within the Bohmian formalism, the
superposition principle in one dimension can be easily analyzed. Let us consider the
interference between two identical Gaussian wave packets propagating in opposite
directions at the same speed (by assuming α = 1) [129]. In Fig. 1.1, the correspond-
ing dynamics is illustrated showing quantum or Bohmian trajectories ((a) panel) for
the coherent superposition of the two counter-propagating Gaussian wave packets
with an initial velocity v0 = 10 (in arbitrary units) and spreading motion with veloc-
ity vs = 1 (also in arbitrary units). The (b)–(f) panels and transversal dashed lines
correspond to different times in this coherent evolution. For simplicity in the discus-
sion, we will refer to the two non-overlapping regions where ψ1 and ψ2 are initially
placed as I (red plot) and II (black plot), respectively. If t intmax denotes the time at
which interference is maximum (see Fig. 1.1d), then for t  t intmax ψ1 will continue
its evolution in II. Now, the wave packets (or, to be more precise, their probability
densities) can be interpreted statistically as describing a swarm of identical, noninter-
acting quantum particles distributed accordingly. As also seen in Fig. 1.1a, Bohmian
trajectories avoid crossing the line x = 0 at any time, this leading us to interpret
the superposition principle in a different way. Quantum statistics retains the essence
of (quantum) coherence and transmits it to the corresponding dynamics, leading to
a zero velocity field at x = 0. Thus, a net flux of probability (or particles) cross-
ing between regions I and II is not possible. In other words, trajectories starting in
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Fig. 1.1 a Bohmian trajectories associated with the coherent superposition of two counter-
propagating Gaussian wave packets with v0 = 10 and vs = 1. Panels b–f represent snapshots
illustrating the time-evolution of the superposition at the times indicated by the transversal dashed
lines in panel (a)

region I, for example, will always keep moving inside this region. Correspondingly,
the outgoing wave packet in region I (see Fig. 1.1f) accounts for the same swarm of
trajectories associated with ψ1 in Fig. 1.1b. This whole process can then be under-
stood as a sort of bouncing motion of the wave packets once they have reached the
intermediate position between them.

In spite of the fact that the two swarms of trajectories do not cross each other,
the swarm associated initially with one of the wave packets behaves asymptotically
as associated with the other one. Thus, from the standard picture provided by quan-
tum mechanics for the superposition principle, the wave packets cross each other.
However, from the Bohmian picture, the process should be understood as a transfer
or interchange of probabilities from region I to region II, and vice versa, with the
velocity field also changing its sign. Similarly to a particle-particle elastic scatter-
ing process, where particles exchange their momenta, here the swarms of particles
exchange their probability distributions elastically.

On the other hand, nonlocality only disappears when Q ≡ 0, that is, when the par-
ticle dynamics becomes fully classical. In this case, the classical Hamilton–Jacobi
equation is recovered and one has then to replace S by Sc. According to the cor-
respondence principle stated by Bohr, quantum systems may behave classical-like
under certain conditions, thus being describable bymeans of the classical mechanical
laws. This is usually regarded as the classical limit of quantum mechanics. Usually,
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this limit relies on assuming that the value of a certain magnitude of interest becomes
meaningless (e.g., �) or, on the contrary, very large (e.g., the principal quantum num-
ber) —though not always different classicality criteria lead to the same limit [131,
132]. This limit can also be satisfied in Bohmian mechanics, for example, by increas-
ing the mass m of the particles under consideration. However, though this may seem
the correct way to operate, what one really observes is that this condition does not
ensure the appearance of classical trajectories, as reported in atom–surface scattering
[133]. Similarly, the quantum trajectories do not behave at all as their classical coun-
terparts, for they still contain some nonlocal information (i.e., coherence) through
ρ. Remember that regarding dynamical effects the “shape” of ρ is more relevant
than its intensity. Thus, very small variations and tinny values of ρ may lead to very
dramatic dynamical effects. This is in sharp contrast with other limits in physics,
like the passage from relativistic to Newtonian mechanics, where a gradual, smooth
transition is observed as particle velocities become much smaller than the speed of
light. Ehrenfest’s theorem helps us to establish certain criteria of classicality, e.g.,
obtaining the conditions for the center of a wave packet to move like a classical
particle [134]. Such a wave packet can be interpreted as a swarm of non-interacting
particles moving according to the motion given by

d〈r〉
dt

= 〈p〉
m

, (1.35a)

d〈p〉
dt

= −〈∇Veff〉 = −〈∇V 〉. (1.35b)

where 〈Q〉 = 0 at any time. This does not mean necessarily that Bohmian particles
move like classical ones, but only on average (i.e., their distribution). A good example
illustrating this fact is the onementioned above on atom–surface scattering,where the
mass of the incident particles is gradually increased [133]: the average distributions
reproduce classical-like results, but quantum trajectories behave very differentlywith
respect to their classical counterparts.

It is interesting to show very briefly that quantum trajectories can be interpreted
as classical trajectories but “dressed” with a series of terms coming from quantum
interference [135]. Ehrenfest’s theorem may constitute a first step when trying to
render some light on the transition to the classical limit. However, the WKB approx-
imation results more insightful when dealing with Bohmian mechanics. Due to the
expansion in series in terms of �—though not always this is a good criterion— of the
wave function, it yields a more direct correspondence between Bohmian and clas-
sical mechanics, i.e., to establish a closer connection between two trajectory-based
formulations. Thus, as in optics [136], here one also proceeds with the ansatz

Ψ (r, t) = eiS̄(r,t)/�, (1.36)

with S̄ being a complex function that varies slowly in space. When (1.36) is substi-
tuted into the time-dependent Schrödinger equation, one obtains
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∂ S̄

∂t
+

(∇ S̄
)2

2m
+ V + �

2mi
∇2 S̄ = 0. (1.37)

In the classical limit � → 0, it can be assumed that S̄ can be expanded as a series of
�/ i ,

S̄ =
∞∑
n=0

(
�

i

)n

S̄(n), (1.38)

where the functions S̄(n) are real. Inserting this series into (1.37), the following
equation is reached

∞∑
n=0

(
�

i

)n ∂ S̄(n)

∂t
+ 1

2m

∞∑
n=0

(
�

i

)n n∑
k=0

∇ S̄(k) · ∇ S̄(n−k)

+ V + 1

2m

∞∑
n=0

(
�

i

)n+1

∇2 S̄(n) = 0. (1.39)

The WKB approximation consists of solving order by order, in powers of �/ i , the
coupled equations involved in (1.39). Thus, at zero order,

∂ S̄(0)

∂t
+

(∇ S̄(0)
)2

2m
+ V = 0, (1.40)

which is the classical Hamilton–Jacobi equation, with S̄(0)(r, t) being the classical
action, Scl. Note that although S̄ is not a real function in general, S̄(0) is real because
(1.40) is real.

Regarding the remaining terms of Eq. (1.39), they lead us to a hierarchy of equa-
tions which couple the different higher orders of S̄. These equations can be expressed
in a general form as

∂ S̄(n)

∂t
+ 1

2m

n∑
k=0

∇ S̄(k) · ∇ S̄(n−k) + 1

2m
∇2 S̄(n−1) = 0, (1.41)

which couple the nth order with the remaining lower ones. Here, it is interesting to
note that, since (1.41) is real as well as S̄(0), all the remaining n orders will also be
real.

If the wave function (1.36) is expressed in polar form, taking (1.38) into account,
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φ = exp

[ ∞∑
n=0

(−1)n�2n S̄(2n+1)

]
, (1.42a)

S =
∞∑
n=0

(−1)n�2n S̄(2n). (1.42b)

Substituting Eq. (1.42b) into the guiding condition (1.20), one obtains the expression
of the quantum trajectories within the WKB approach, i.e., in terms of �,

ṙ = 1

m

∞∑
n=0

(−1)n�2n∇ S̄(2n) = ṙcl + 1

m

∞∑
n=1

(−1)n�2n∇ S̄(2n), (1.43)

where ṙcl = ∇ S̄(0)
t /m is the classical law of motion. Therefore, from (1.43) one

can interpret quantum trajectories as classical trajectories “dressed” with a series of
terms coming from quantum interference, showing the capital difference between
both types of trajectories. This type of dressing scheme is going to be recurrent
along this monograph. Moreover, also from (1.43) it is very apparent how classical
mechanics underlies quantum mechanics and, therefore, how quantum phenomena
will keep a reminiscence of a classical-like feature —which will be stronger as the
classical limit is approached.

As we have previously mentioned, the phase function or field S(r, t) is multival-
ued. However, its gradient is a single-valued function of position; in other words, at
each point in configuration space and at each instant of time, there is a unique tan-
gent vector associated with the corresponding gradient. Thus, quantum trajectories
can not cross each other or even touch (noncrossing property). A given space point
may have more than one trajectory pass through it at different times. A single-valued
trajectory field is called a congruence [7]. In classical mechanics, something similar
can be found when dealing with the phase space although the evolution of the system
is only determined by external fields or preassigned functions.

On the other hand, particles can not pass at all through nodal regions (nodes or
points where Ψ = 0). This fact is closely related to the emergence of vortices or
vortical dynamics. For example, within the field of surface physics, the presence of
this vortical motion has been theoretically observed in the atom–surface scattering
process with presence of impurities, where atoms may undergo a series of loops
before they scape from the surface [137, 138].

Equations (1.15) form a closed set of coupled partial differential equations. Dif-
ferent numerical techniques have been suggested to solve this set of equations [12],
which is analogous to those describing the evolution of classical hydrodynamical
flows (see Sect. 1.2.1). Within the Lagrangian scheme, the trajectories are calculated
one by one, obtaining ρ and S and, therefore, Ψ can be synthesized. Hence, from
a computational point of view, this can be regarded as a “local” calculation. How-
ever, it is important to stress that this locality has nothing to do with the nonlocal
dynamical behavior mentioned above. Note that the information related to the whole
ensemble (though evaluated along one particular path) appears in a very precise and
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unambiguous manner in Veff , as seen in Eq. (1.16), and influences the field S. Thus,
it is always very important to distinguish between the locality of the calculations and
the nonlocality inherent to the dynamical behavior of quantum particles [135].

By using the Lagrangian operator, Eq. (1.15b) becomes

dS

dt
= 1

2
mv2 − Veff , (1.44)

where, as in classical mechanics, the time–derivative of the quantum action S is equal
to a generalized quantum Lagrangian,

S[r(t)] − S[r(0)] =
∫ t

0
LQ[r(t ′)]dt ′, (1.45)

with LQ ≡ mv2/2−Veff . As is known, the wave formulation of quantum mechanics
can also be derived from the (quantum) Lagrangian density [7, 139],

Lq = i�

2

(
Ψ ∗ ∂Ψ

∂t
− ∂Ψ ∗

∂t
Ψ

)
− �

2

2
∇Ψ · ∇Ψ ∗ − V |Ψ |2, (1.46)

when the corresponding integral is required to be stationary with respect to variations
in the complex-valued field variablesΨ andΨ ∗. Then, when variations are takenwith
respect to Ψ ∗, the Euler–Lagrange equations yield the time-dependent Schrödinger
equation (as well as its complex conjugate when variations are considered with
respect to Ψ ). Similarly, one can also proceed taking into account the polar form,
Eq. (1.1a), which gives rise to the Lagrangian density [71, 72]

Lq = −
[
∂S

∂t
+ 1

2
(∇S)2 + V

]
ρ − �

2

8

(∇ρ

ρ

)2

ρ

= −
[
∂S

∂t
+ 1

2
(∇S)2 + 1

2
(∇K)2 + V

]
ρ, (1.47)

where

K ≡ �

2
ln ρ (1.48)

is a term, as we know, fromwhich the quantum potential emerges. In this regard, note
that it would be more appropriate to associate this term (and therefore the quantum
potential) with a sort of inner kinetic energy, since Q does not appear explicitly in the
Lagrangian density as the external potential V does. This is in correspondence with
the previous analysis on the evolution of a wave packet which is ruled by two types
of motions, one associated with its translation (and, therefore, with ∇S) and another
one with its spreading (i.e., with ∇K). Furthermore, it is the presence of this term
what makes quantum motion so different from the classical one, as can be readily
seen when Eq. (1.47) is compared with its classical counterpart.
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Finally, it isworthmentioning the so-called thewave equation of classicalmechan-
ics [140–144]. From the Lagrangian given by Eq. (1.46) and varying with respect to
the complex fieldsΨ ∗ andΨ , the following nonlinear, time-dependent wave equation
is reached

i�
∂Ψ

∂t
= − �

2

2m
∇2Ψ + VΨ + �

2

2m

∇2|Ψ |
|Ψ | Ψ. (1.49)

The term which is responsible for the nonlinearity is proportional to the quantum
potential (the last term on the right hand side of Eq. (1.49)); as mentioned by Holland
[7], a nonlinear differential equation may be a limiting case of a linear equation, the
time-dependent Schrödinger equation). Furthermore, a nonlinear quantum-classical
transition equation has been proposed by introducing a degree of quantumness by
Richardson et al. [145] which is governed by a simple parameter ε with ε ∈ [0, 1].
The corresponding transition equation can then be written as

i�
∂Ψε

∂t
= − �

2

2m
∇2Ψε + VΨε + (1 − ε)

�
2

2m

∇2|Ψε|
|Ψε| Ψε. (1.50)

This transition is thus seen as a gradual process starting from ε = 0 (classical
regime) and going up to ε = 1 (quantum regime). Several interesting applications
with Gaussian wave packets dealing with this transition equation can be found in
the literature [146–149]. However, no decoherence dynamics is established since we
are dealing with closed quantum systems. The decoherence process emerges when
interaction with an environment or an apparatus (open quantum systems) is present.
This is the subject of the last two chapters of this monograph.

1.2.3 Restricted Probability and Tubes

As it can be inferred from Eq. (1.44), in the Lagrangian scheme it is also necessary
the evaluation of the quantum potential along the trajectory. However, instead of
integrating the continuity equation to obtain ρ(t), one can alternatively proceed as
in semiclassical mechanics [150] assuming that the solution of Eq. (1.15a) along the
Bohmian trajectory r(t) is given by

ρ[r(t)] =
⏐⏐⏐⏐

∂r(0)
∂r(t)

⏐⏐⏐⏐ ρ[r(0)]. (1.51)
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This procedure has been used with practical computational purposes in the literature
(see, for example, Refs. [28–31]), with the idea of applying Bohmian mechanics
as a sort of quantum initial value representation numerical approach. Substituting
Eq. (1.51) into (1.17), one finds

Q[r(t)] = �
2

4m

[
∂r(0)
∂r(t)

]2
{
1

2

[∇r(0)ρ[r(0)]
ρ[r(0)]

]2

− ∇2
r(0)ρ[r(0)]
ρ[r(0)]

}
, (1.52)

where ∇r(0) ≡ ∂/∂r(0) is the action of the ∇–operator evaluated at r(0). In this
way, ρ[r(t)] and Q[r(0)] can be both determined from ρ[r(0)]. On the other hand,
ρ(r, t) can be obtained by sampling the initial probability density with a sufficient
number of initial conditions (trajectories). Of course, the numerical evaluation of the
derivatives of ρ within this Lagrangian framework can lead to instabilities, as also
happens in classical hydrodynamics, due to the approaching of the particle to nodal
regions. Some alternative methods have been proposed in the literature to solve these
drawbacks [151, 152].

When dealing with trajectories, a causal connection between the initial and the
final states is readily established. Making use of the noncrossing property in con-
figuration space, a kind of probability tubes can be defined [153]. The interest of
these particular tubes arises from the fact that Bohmian mechanics is the only for-
mulation of quantum mechanics that allows to specify such a connection in a unique
and unambiguous way. Once the initial region Ω0 is defined, one has also a clear
and unambiguous prescription to follow its causal evolution throughout configura-
tion space and a mapping Ωt = ΦQ(Ω0) (‘Q’ here for ‘quantum map’) can also be
established. Thus, trajectories distributed along the boundary ∂Σ0 of Ω0 will subse-
quently form the boundary ∂Σt of Ωt . These are called separatrix trajectories [10].
Furthermore, the deformation of the tubes with time is not completely arbitrary since
the noncrossing rule of trajectories has to be always preserved.

A direct consequence of dealing with quantum probability tubes is the following:
if we define a partial or restricted probability [154–156] as the fraction of the total
probability that has ended up inside a region or domainD of the system configuration
space,

PD(∞) ≡ lim
t→∞PD(t) = lim

t→∞

∫

D
ρ(r, t)dr, (1.53)

it will remain constant in time whenever D corresponds to a probability tube. This
means that, in principle, asymptotic probabilities like (1.53) can be specified from
the initial state without any further calculation if we know: (i) the analytical form for
the separatrix defining the initial boundary ∂Σ0, and (ii) any bifurcation or branching
process undergone by the probability tubes between t0 and t → ∞. The presence
of branchings is actually a very important issue: any region Ωt (including Ω0) may
consist of more than one separate subregions, which emerge or disappear along time.

Let PΩt (t) be a quantity describing the time-evolution of a certain probability of
interest (e.g., a reaction probability, a transmittance, a cross-section, etc.) inside a
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region Ωt of the corresponding configuration space. This quantity can be expressed
in terms of the restricted probability as

PΩt (t) ≡
∫

Ωt

ρ(r, t)dr. (1.54)

The variation of PΩt (t) with time inside Ωt is

dPΩt

dt
=

∫

Ωt

∂ρ

∂t
dr, (1.55)

although it can also be written as

dPΩt

dt
= −

∫

Ωt

(∇ · J) dr = −
∫

∂Σt

J · dS. (1.56)

In the second equality of Eq. (1.56), which is a straightforward application of the
divergence or Gauss-Ostrogradsky theorem, dS denotes a vector normal to a surface
element d(∂Σt ) of Ωt and pointing outwards. By combining Eqs. (1.55) and (1.56),
we find that the losses or gains of PΩt (t) inside Ωt are described, respectively, by
the outgoing or ingoing probability flux J through ∂Σt . This is a well-known result,
which translates into the continuity equation when generalizing to the whole config-
uration space and making the flux to be independent of Ωt . However, an additional
interesting result which is worthmentioning is when the time-evolution of this region
follows some particular rule, then one could keep the value ofPΩt (t) constant all the
way through.

From the above statements, an interesting consequence is easily deduced: any
restricted probability can be determined directly from the initial state if the end points
of the associated separatrix trajectories as well as any intermediate branching process
are known. That is, in principle, one could determine or estimate final probabilities
without carrying out the full calculation, only from the particular region covered
by the initial wave function causally connected with the feature of interest [157].
Let us consider that in the restricted probability (1.53), the domain D corresponds
to the region Ω∞ which is the asymptotic extreme of a probability tube starting
in Ω0 at t = 0. By integrating back in time (i.e., considering the inverse mapping
transformation Ω0 = Φ−1

Q (Ω∞)), we find that

PΩ∞ =
∫

Ω∞
ρ(r,∞)dr = lim

t→∞

∫

Ωt

ρ(r, t)dr = lim
t→∞PΩt (t). (1.57)

The difference of this expression with respect to the guiding condition is that now
we can keep track of the amount of probability going into D = Ω∞ by means of
an unambiguous time-dependent relationship. But, since the probability inside the
corresponding tube remains constant, we can just write down (1.57) as



26 1 Historical and Introductory Account …

PΩ∞ =
∫

Ω0

ρ(r, 0)dr = PΩ0(0). (1.58)

The initial restricted probability PΩ0 can be computed from an appropriate sam-
pling of (Bohmian) initial conditions (according to ρ(r, 0) inside Ω0), as in classical
mechanics. By proceeding in this way, the physical meaning of Eq. (1.58) becomes
more apparent (and almost trivial): given a certain set of initial conditions enclosed
in some region of the configuration space, their total number is conserved regardless
of how the ensemble evolves. This is a result of general validity, which goes again
beyond standard quantummechanics, for it states that the probability within a certain
region of the configuration space can be conveyed to another one causally connected,
i.e., in an unambiguous way when following probability tubes.

The previous results lead us straightforwardly to establish a connection with the
so-called Born rule [158–163]. This is readily seen as follows. If two arbitrary times,
t and t ′ (we will assume t ′ > t), are considered, it follows from Eq. (1.58) that

∫

r(t ′)
ρ[r(t ′)]dr(t ′) =

∫

r(t)
ρ[r(t)]dr(t). (1.59)

On the other hand, because of the causal connection or mapping between r(t) and
r(t ′) in Bohmian mechanics, one can also define a Jacobian

J [r(t)] = ∂r(t ′)
∂r(t)

. (1.60)

This relation is equivalent to the one found in classical mechanics when solving the
(classical) continuity equation [150, 164, 165], although in that case it includes the
corresponding momenta, since it is defined in phase space. Thus, taking into account
Eq. (1.59) and the connection between the layers defined by dr(t) and dr(t ′) enabled
by the Jacobian

dr(t ′) = |J [r(t)]|dr(t), (1.61)

the probability density evaluated along a quantum trajectory at a time t ′ is related
through the inverse Jacobian transformation with its value at an earlier time t , as

ρ[r(t ′)] = |J [r(t ′)]|ρ[r(t)], (1.62)

with |J [r(t ′)]| = |J [r(t)]|−1. That is, Born’s rule is preserved along time whenever
the evolution of the probability ρ[r(t)] is monitored within the probability tube
defined by the swarms of quantum trajectories r(t) and r′(t) = [r + dr](t),

ρ[r(t ′)]dr(t ′) = ρ[r(t)]dr(t). (1.63)

In order to illustrate the notion of tubes, the scattering of a wave function off a
rectangular barrier is a convenient example [153]. Let the initial wave function be
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an arbitrary coherent superposition of three Gaussian wave packets,

Ψ0(x) = A0

3∑
i=1

ciψi (x), (1.64)

where each ψi is described by

ψ0(x) =
(

1

2πσ2
0

)−1/4

e−(x−x0)2/4σ2
0+i p0(x−x0)/�, (1.65)

with x0 and p0 being respectively the (initial) position and momentum of the wave-
packet centroid (i.e., 〈x̂〉 = x0 and 〈 p̂〉 = p0), and σ0 its initial spreading. With-
out loss of generality, the parameters chosen are: (c1, c2, c3) = (1.0, 0.75, 0.5),
(x0,1, x0,2, x0,3)=(−10,−12,−9), (p0,1, p0,2, p0,3) = (10, 20, 15), (σ0,1,σ0,2,σ0,3)

= (0.2, 1.6, 0.8), andm = � = 1. The initial wave function Ψ0 is hence normalized,
this being denoted by the constant prefactor A0 in Eq. (1.64). The square barrier is
assumed to consist of a sum of two hyperbolic tangents,

V (x) = V0

2

{
tanh

[
α(x − x−)

] − tanh
[
α(x − x+)

]}
, (1.66)

with V0 = 150, α = 10, and x± = ±2. The quantum dynamics is carried out by
means of a standard wave-packet propagation method, while the associated Bohmian
trajectories are computed “on-the-fly”, substituting the wave function resulting at
each iteration into the guiding condition (1.20) and then integrating this equation of
motion.

The initial and final probability densities are displayed in Fig. 1.2a (black and red
solid lines, respectively); the barrier being plotted in the blue shadowed region. The
system wave function is evolved until the probability within the intra-barrier region
is negligible (our asymptotic time). In panel (b), the transmission (green dashed line),
reflection (blue dash-dotted line) and intra-barrier (red dotted line) probabilities are
displayed along time. In the calculation of these restricted probabilities, it is assumed
that: DT is the region beyond the right-most barrier edge, DI is the region confined
between the two barrier edges, and DR is the region to the left-most edge. As seen
in the figure, after t ≈ 1.15, we find that PR ≈ 0 and PT reaches its maximum
(asymptotic) value, which already remains constant with time.

The initial wave function is then splitted up into reflected and transmitted, with
Ω0 encompassing the portion associated with the latter. The upper bound for this
region can be the initial position, x(0), of any trajectory on the right-most border
of the initial probability density, for which ρ(x(0)) ≈ 0. For the lower boundary, a
search has to be done [157], so that it is ensured that the chosen trajectory is the last
(or nearly the last) one in crossing the right-most barrier edge and not exhibiting a
backwards motion. Determining this trajectory constitutes a major drawback, since
Bohmian trajectories are not analytical in general, neither there is a simple, general
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(a) (b)

(c) (d)

Fig. 1.2 a Initial (black line) and final (red line) probability densities in the problem of scattering
off a nearly square barrier (blue shadowed region). b Time-dependence of the transmission (green
dashed line), reflection (blue dash-dotted line) and intra-barrier (red dotted line) probabilities. The
probability enclosed in Ωt and obtained with the aid of the Bohmian calculation is displayed with
black solid line. c Bohmian trajectories illustrating the process dynamics; the separatrix is denoted
with red thicker line. d Splitting of the initial probability density according to the separatrix initial
position. Only the green shadowed region (Ω0) contributes to transmission

way to make an estimate [157]. This initial condition has to be then determined either
from a series of sampling runs or just fixing the asymptotic value of the trajectory
and running backwards in time the dynamics until t = 0.

A sampling set of Bohmian trajectories is shown in Fig. 1.2c, with their initial
positions evenly distributed along the extension covered by the initial probability
density. The red thicker line denotes the separatrix splitting the initial swarm into
two groups of trajectories: those that will surmount the barrier (transmitted) and
those that will bounce backwards (reflected). Accordingly, at any time t , the region
Ωt (i.e., the time-evolved ofΩ0) always confines trajectories that eventually become
transmitted; ∂Σt is determined by the positions at t of two trajectories, namely the
separatrix and the rightmost one considered. The evolution of these two trajecto-
ries defines the corresponding transmission probability tube, along which all the
transmitted probability density flows. Bearing this scheme in mind, it is now rather
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simple and straightforward to determine which part of the initial probability density
contributes to tunneling transmission, denoted by the green shadowed area in panel
(d). The integral over this area readily provides the value otherwise found from the
asymptoticPT (see panel (b)). Actually, the evaluation ofPΩt (t) at each time renders
a constant value (see black solid line in panel (b)), thus proving the conservation of
the probability inside Ωt . Furthermore, this also proves our previous assertion that
final probabilities can be, in principle, directly and unambiguously obtained from
the initial state by means of Bohmian trajectories.

1.2.4 Local and Expectation Values

ThoughBohmianmechanics allowsus to describe the evolution of quantumprocesses
and phenomena in terms of individual trajectories, it is clear that any observable will
be extracted from a statistical treatment of the corresponding quantum trajectories. In
other words, any observable will arise as a consequence of the counting of trajectory
arrivals at a certain region, which is much connected with the way how experiments
occur. For example, in a typical diffraction experiment, the diffraction pattern arises
by counting (detecting) individual arrivals [37, 38, 166–168]. Similarly, when using
Bohmian mechanics one can reproduce the experiment by counting the arrivals of
quantum trajectories [121, 127]. Thus, taking this into account, the statistical nature
of quantum mechanics arises in a very natural way, where expectation values are
directly associated with average (ensemble) values.

In order to understand the relationship between the expectation value of a quantum
operator and the statistical Bohmian description, suppose A is a Hermitian operator,
which can be a function of the position and momentum operators, r and p = −i�∇,
i.e., A = A(r,−i�∇). The expectation value of this operator is defined as

〈A〉 = 〈Ψ |A|Ψ 〉 =
∫

Ψ ∗(AΨ )dr∫
Ψ ∗Ψ dr

, (1.67)

where Ψ (r, t) = 〈r|Ψ (t)〉 is the wave function in the system configuration space
and

AΨ (r, t) ≡ 〈r|A
(∫

|r′〉〈r′|dr′
)

|Ψ (t)〉 =
∫

A(r, r′)Ψ (r′, t)dr′, (1.68)

with A(r, r′) ≡ 〈r|A|r′〉. Moreover, one can also consider the quantity

A ≡ Re {Ψ ∗AΨ }
Ψ ∗Ψ

(1.69)

to represent the local value of the operator A, given in terms of the associated field
function A(r, t) [7]. For example, the local field functions
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r(r, t) = Re {Ψ ∗rΨ }
Ψ ∗Ψ

= r(t), (1.70a)

p(r, t) = Re {Ψ ∗(−i�∇)Ψ }
Ψ ∗Ψ

= ∇S (1.70b)

E(r, t) =
Re

{
Ψ ∗

(
− �

2

2m
∇2 + V

)
Ψ

}

Ψ ∗Ψ
= (∇S)2

2m
+ Veff , (1.70c)

provide us the position, momentum and energy of a Bohmian particle when they are
evaluated along its trajectory.

If instead of a particle there is a statistical ensemble of them (or, equivalently,
some set of initial conditions has to be sampled) distributed according to ρ(r, t), the
average value of A can be computed as

Ā(t) =
∫

ρ(r, t) A(r, t) dr. (1.71)

In particular, we have

r̄ =
∫

ρrdr =
∫

Ψ ∗rΨ dr = 〈r〉, (1.72a)

p̄ =
∫

ρ∇Sdr =
∫

Ψ ∗(−i�∇)Ψ dr = 〈p〉, (1.72b)

Ē =
∫

ρ

[
(∇S)2

2m
+ Veff

]
dr =

∫
Ψ ∗

[
− �

2

2m
∇2 + V

]
Ψ dr = 〈H〉, (1.72c)

which coincide with the corresponding expectation values obtained from standard
quantum mechanics, this showing the equivalence at a predictive level of both
approaches. Obviously, from a trajectory viewpoint, i.e., when the associated local
field functions are evaluated along trajectories, Eqs. (1.72) read as

r̄B = 1

N

N∑
i=1

wiri (t), (1.73a)

p̄B = 1

N

N∑
i=1

wi∇S(ri (t)), (1.73b)

ĒB = 1

N

N∑
i=1

wi

{ [∇S(ri (t))]2
2m

+ Veff(ri (t))
}

, (1.73c)
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where N is the total number of trajectories considered, wi is the associated weight
—if the trajectories are initially sampled according to ρ0, then wi = 1 for all tra-
jectories, otherwise wi ≈ ρ(r(t0))— and the subscript B means that these average
values are computed from a sampling of Bohmian trajectories. As in classical statis-
tical treatments, provided the sampling of initial conditions is properly carried out
according to some initial distribution function (this role is played here by ρ(0)), in
the limit N → ∞, the quantities issued from Eqs. (1.73) will correspond with their
quantumhomologous equations (1.72), respectively.One readily notes that the uncer-
tainty principle can be directly related to a statistical result instead of to an inherent
impossibility to measure positions or momenta —the source for this impossibility
would be rather associated with the way how things happen (interact) at quantum
scales. In this sense, the inequality

ΔriΔpi ≥ �

2
(1.74)

expresses the relationship between two statistical quantities (in this case, position
and momentum) in quantum mechanics, where

(Δri )
2 = r2i − ri

2 ≈ r2B,i − rB,i
2, (1.75a)

(Δpi )
2 = p2i − pi

2 ≈ p2B,i − pB,i
2, (1.75b)

and i = 1, 2, 3.
It is clear from the above discussion that the role played by time in Bohmian

mechanics and in quantum mechanics differs. Time in the quantum theory is not an
observable, but a parameter, i.e., there is no time operator such that its eigenvalues
provide us with some information (for example, about the time a particle needs to
cross a barrier by tunnel effect, the time of a scattering process or the lifetime of a
resonance phenomenon). Actually, when the time calculated through a given expres-
sion is compared to some experimental data value, things becomemore troublesome.
This important issue has been considered in length in the literature [169–171], where
several definitions of time can be found, such as dwell time, tunneling time, inter-
action time, arrival time, etc. This situation changes within the context of Bohmian
mechanics, where the concept of arrival time is unambiguously defined because it
is based on the concept of well-defined trajectories. Indeed, from the guidance con-
dition or the trajectory, just by integration or by inspecting a graph [7], information
about arrival times can be readily obtained with no need for a time operator.

1.2.5 Complex Quantum Trajectories

Bohmianmechanics arises when a transformation from the complex fields (Ψ,Ψ ∗) to
the real fields (ρ, S) is carried out. Alternatively, the wave function can be expressed
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in terms of a complex phase as in Eq. (1.36) and therefore there will be a one–to–one
correspondence between Ψ and S̄ —except for a constant 2πn�, as in Eq. (1.12). Of
course, in the particular case

S̄(r, t) = S(r, t) − i� ln φ(r, t) = S(r, t) − i�

2
ln ρ(r, t), (1.76)

standard Bohmian mechanics is recovered. After substitution of Eq. (1.36) into the
time-dependent Schrödinger equation, one obtains

∂ S̄

∂t
+ (∇ S̄)2

2m
+ V̄eff = 0, (1.77)

which is a complex quantum Hamilton–Jacobi equation that can be regarded as the
time-dependent Schrödinger equation associated with a logarithmic wave function.
In this equation,

V̄eff ≡ V − i�

2m
∇2 S̄ (1.78)

is now an effective complex potential, whose second component is a complex quan-
tum potential,

Q̄ = − i�

2m
∇2 S̄ = i�

2

[(∇Ψ

Ψ

)2

− ∇2Ψ

Ψ

]
. (1.79)

This (complex) quantumpotential can also be referred to a sort of (complex) quantum
kinetic energy, since

KΨ = (∇ S̄)2

2m
− i�

2m
∇2 S̄. (1.80)

Actually, if Eq. (1.76) is substituted into the right–hand side of (1.80),

KΨ = 1

2m

{[
(∇S)2 − �

2

4

(∇ρ

ρ

)2

− i�

ρ
∇ρ∇S

]

−i�

[
∇2S − i�

2

∇2ρ

ρ
+ i�

2

(∇ρ

ρ

)2
]}

= (∇S)2

2m
+ Q − i�

2mρ
∇(ρ∇S). (1.81)

From the second equality it is very apparent that the real part of the complex kinetic
energy contains the real quantum potential. Furthermore, its imaginary part provides
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us with information about the quantum flux conservation (in terms of the rate of
change ∂ρ/∂t).

In analogy to standard Bohmian mechanics, complex quantum trajectories can
also be defined by analytic continuation of Eq. (1.77) to the complex plane, which is
necessary for the corresponding equation of motion

v̄ = ∇̄ S̄

m
= �

im

∇̄Ψ̄

Ψ̄
, (1.82)

to be self-consistent. If S̄ is complex, v̄ has also to be complex-valued and, therefore,
the integrated trajectory. This also implies that S̄ (and eventuallyΨ ) will be evaluated
along a complex trajectory z(t) rather than along a real coordinate r (this is the reason
why Ψ̄ and ∇̄ are used in Eq. (1.82), instead of Ψ and ∇), though its value will be
(physically) meaningful only along the real axis. The relationship between the real
Bohmian velocity and its complex counterpart,

v̄ = v − i�

2m

∇ρ

ρ
, (1.83)

can be followed from Eq. (1.76). Formerly, Rosen [143, 144, 172] considered this
expression a sort of total quantum mechanical momentum (or velocity) field which
explains why it is possible to observe non vanishing momenta in cases where the
momentum ∇S vanishes. This effect would arise from the second term on the right–
hand side of Eq. (1.83), which is assumed to be a “local” momentum assigned to the
quantum mechanical field with which the particle interacts. In this way, Eq. (1.83)
becomes the momentum that matches the momentum distributions provided by stan-
dard quantum mechanics, rather than the momentum ∇S from Bohmian mechanics,
which is quite different [173–175]. This is consistent with the fact that Bohmian
trajectories only carry information about the dynamics of the quantum flow, while
complex quantum trajectories will also include information about the probability (as
inferred from the analytic continuation of S̄ from Eq. (1.76)). The dynamics in the
complex configuration space thus explains in a natural way how to obtain the cor-
rect momentum distribution. This also explains why algorithms based on complex
trajectories are quite stable and accurate.

In one dimension, it is clear that if v̄ is assumed to be complex, depending on
the z–variable, while v and ρ depend on the real variable x , then (1.83) becomes
an inequality. In the literature [176–179], (1.83) has been considered as an identity,
particularly within the so-called stochastic Bohmian mechanics (see Sect. 1.3.1),2

where the second term on the right–hand side is interpreted as a stochastic diffusive
term.However, not only this is notmathematical consistent, but the inequality forbids
to associate the real part of the complex quantum trajectories with the (real, standard)
Bohmian trajectories, as assumed in the literature [176–181]. That is, assuming

2This terminology is again somehow confusing when alluding to open quantum systems within the
Bohmian framework in the rest of this monograph.
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z(t) = zr (t) + i zi (t) describes the complex trajectory, with zr and zi being its real
and imaginary parts, respectively, both being real functions, the equality zr (t) = x(t),
where x(t) would represent the standard Bohmian trajectory, does not hold as t goes
on even if z0 = x0 at t = 0. Note that, from a strict Bohmian viewpoint, the equality
zr (t) = x(t) means that the same (projected) zr may present different (quantum)
velocities, something contrary to what happens in standard Bohmian mechanics,
where only one velocity can be associated with a space coordinate. Of course, only
when one moves to the complex plane realizes that, effectively, that univaluedness
still continues, except in those cases where a node of the wave function appears.

Once it is assumed that both terms in Eq. (1.83) depend on the complex z–variable,
and then v and ρ are some generalized complex Bohmian functions (ṽ and ρ̃, respec-
tively) depending on this variable instead of r, it is instructive to apply ∇̄ on both
sides, which yields

∇̄v̄ = ∇̄ṽ + i�

2m

[( ∇̄ρ̃

ρ̃

)2

− ∇̄2ρ̃

ρ̃

]
. (1.84)

As seen, the second term in the right–hand side reminds the functional dependence
of Q on ρ in Eq. (1.17), except for a 1/2 factor inside the square bracket. In this sense,
the effects of the (real) quantum potential (i.e., the nonlocality) are still present in the
complex dynamics although the corresponding complex quantum potential, which
is proportional to ∇̄v̄, might be relatively small (or even zero).

Equation (1.77) was formerly derived by Pauli during his studies on the quantum
WKB approximation [182, 183]. However, the formalism based on the complex ver-
sion of Bohmian mechanics is relatively recent, receiving much attention in these
last years. The work developed here can also be placed within the framework of the
analytic versus synthetic approaches previously mentioned. From the analytic view-
point, with interpretative purposes, one of the trends followed is the one aimed at
studying stationary states. As can be easily shown, the velocity field v vanishes when
the wave function is described by energy eigenfunctions associated with zero angular
momentum states (i.e., s–waves) and, therefore, the correspondingBohmian particles
will remain standing at their initial positions at any time. In order to overcome this
problem, different time-independent quantum Hamilton–Jacobi formulations have
been formulated in the literature. For example, Floyd [184–187] and Faraggi and
Matone [188, 189] developed time-independent quantum Hamilton–Jacobi-like for-
mulations starting from real bipolar ansatz, though not fully equivalence to standard
quantummechanics at a predictive level. However, later on, John [180, 181] proposed
a time-dependent complex quantum trajectory formalism, namely the “modified de
Broglie–Bohm approach to quantum mechanics”, which has also been used and
further developed by other authors [176–179, 190] to understand the problem of
Bohmian stationarity in other kind of problems. On the other hand, also with inter-
pretative purposes, Eq. (1.77) was found [121, 135, 150] when trying to discriminate
the amount of “quantumness” implicit in Bohmian trajectories (i.e., how different
they are with respect to their classical counterparts) within the framework of the
semiclassical WKB approximation. Finally, a series of fundamental works can also
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be found in the literature dealing with the dynamics of problems in the continuum,
such as interference [191–193], entanglement [177] or stochastic complex Bohmian
mechanics [176, 179].

On the other hand, from the analytic viewpoint, Leacock and Padgett used [194,
195] the connection formula (1.36)—the same considered later by John—as an alter-
native way to tackle the problem of the calculation of stationary or bound states. This
is formally equivalent to the more recent “Bohmian mechanics with complex action”
developed by Tannor and coworkers [196–201] and the methodology developed by
Wyatt and coworkers [202–205] for computational purposeswithout the need to solve
the time-dependent Schrödinger equation. In principle, using analytical continuation
it is possible to implement numerical codes that benefit from working in a complex
configuration space—these advantages are similar to those that in electromagnetism,
for example, lead to consider complex fields instead of real ones. More specifically,
the main idea behind the development of computational tools based on the complex
trajectory methodology is that the wave function on the whole real axis can be syn-
thesized using the information transported by those particles crossing the real axis
simultaneously. This allows us to define a curve, namely the isochrone [198, 205],
which joins the specific initial positions of trajectories such that their crossing with
the real axis occurs at the same time. Computationally, the main problem in dealing
with the complex dynamics is locating isochrones, which is a problem similar to
the root search problem in semiclassical mechanics [165]. In this regard, methods
introduced in the latter may prove useful for the isochrone problem [205]. Actually,
within this picture, three points are worth stressing. First, all the complex trajectories
associated with an isochrone will reach the real axis simultaneously [204]. Second,
the uniqueness in complex Bohmian mechanics arises from the bonds established by
the initial real wave function, which is in the end the observable magnitude (through
ρ). Therefore, though there might be many initial conditions leading to the same
point on the real axis, only the isochrones connect the complex problem with the real
one, thus establishing the same uniqueness observed in standard Bohmian mechan-
ics. Third, a Bohmian trajectory does not correspond to a given complex trajectory
or to the family of complex trajectories associated with a given isochrone, but to a
family of complex trajectories such that their crossings with the real axes take place
consecutively, one after the other. In other words, a Bohmian trajectory itself defines
a family or set of complex quantum trajectories [191].

1.2.6 Many Particle Systems

Let us consider now two isolated quantum systems regardless of their size or prop-
erties where the total wave function describing them is a product state (factoriz-
able) of the wave functions associated with each system. As already mentioned by
Schrödinger [206, 207], as soon as these objects interact, the total wave function
becomes non longer factorizable and they cannot be described as independent enti-
ties. The new quantum state becomes entangled, with the property that any quantum
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operation performed on one of the objects will have important implications on the
other one independently of how far apart they are [15–17, 208]. This property has
led to the well-known quantum information theory [209] as well as mechanisms,
such as decoherence, which are used to explain the emergence of the classical world
from quantum mechanics [104, 210, 211].

Before going to the implications of entanglement, we focus on a set of N inde-
pendent particles of mass m, each one represented at a given time by a solution of
the corresponding separated Schrödinger equation. The total N–body wave function
in the configuration space can be expressed as a product of N single wave functions,

Ψ (r1, r2, . . . , rN , t) = ψ1(r1, t)ψ2(r2, t) · · · ψN (rN , t)

= Π N
i=1ρ

1/2
i (ri , t) ei Si (ri ,t)/�. (1.85)

In this case, it is easy to show that from this total wave function, individual solutions
of the Bohmian equations of motion are obtained according to

vi = ṙi = ∇ri Si (ri , t)
m

, (1.86)

since the quantum potential is also separable as a sum of partial quantum potentials,

Q =
N∑
i=1

Qi = − �
2

2m

N∑
i=1

∇2ρ
1/2
i

ρ
1/2
i

. (1.87)

This implies that the Bohmian trajectories described by the different particles are
independent and no information is transmitted among them. Of course, this also hap-
pens if instead of N different particles, N different degrees of freedomare considered.
Typically, factorizability is closely connected to distinguishability. For example, this
is the case of particles describable by means of a Maxwell–Boltzmann statistics. For
two particles, their total wave function can be expressed as

Ψ (r1, r2, t) = ΦA(r1, t)ΦB(r2, t). (1.88)

Usually, the particles constituting this kind of ensembles are non-interacting and
they can be accounted for by only taking into account how they distribute. When
the particles forming an ensemble do interact among themselves and become indis-
tinguishable (i.e., truly quantum-mechanical), apart from their distribution it is also
very important to know how they interact. In this case, even if they are very far apart,
their quantum state cannot be described in a simple manner since it is an entangled
state. This is the case of the Fermi–Dirac or Bose–Einstein statistics, which describe
fermions or bosons, respectively. That is, if two of these particles are considered,
their total wave function will be
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Ψ (r1, r2, t) = N± [ΦA(r1, t)ΦB(r2, t) ± ΦA(r2, t)ΦB(r1, t)] , (1.89)

where N± is the normalization factor and the minus sign stands for fermions (wave
function with odd parity under exchange of the positions of the particles) and the
plus sign for bosons (even parity).

As is known in quantum statistical physics, spatial correlation exist even if the
particles are supposedly noninteracting. This is due to the symmetry properties of
the corresponding wave function. This correlation is significant if the interparticle
distances in the whole system are comparable with the so-called mean thermal wave-
length of the particles [212]

λT = h

(2πmkBT )1/2
, (1.90)

where kB and T are the Boltzmann constant and the temperature, respectively. A
positive and negative spatial correlations are displayed by bosons and fermions,
respectively. Many times, an alternative way to express such correlations is by means
of the so-called statistical potential which is defined as

Vs(r) = −kBT ln[1 ± exp(−2πr2/λ2
T ] (1.91)

where r is the interparticle distance. For bosons (plus sign), the statistical potential is
attractivewhereas for fermions (minus sign), the corresponding potential is repulsive;
decaying in both cases rapidly to zero when r becomes larger than λT .

In general, given an entangled state described by the global wave function

Ψ (r1, r2, . . . , rN , t) = φ(r1, r2, . . . , rN , t) ei S(r1,r2,...,rN ,t)/�, (1.92)

the corresponding quantum trajectories will be obtained by integrating the equations
of motion

vi = ∇i S

m
. (1.93)

This scheme gives rise to a set of N equations coupled through the total phase S,
where the evolution of a particle will be strongly nonlocally influenced by the other
(apart from other classical like interactions through V ). This entanglement [206,
207] becomes more apparent through the quantum potential,

Q = − �
2

2m

N∑
i=1

∇2
i φ

φ
, (1.94)

where Q = Q(r1, r2, . . . , rN , t), which is nonseparable and, therefore, strongly non-
local. In other words, the usual hydrodynamical magnitudes described above become
nowmany-body functions. Thus, for example, in order to calculate any trajectory of a
given particle, the initial positions of all particles have to be specified. Instantaneous
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motion of any particle depends on the coordinates of all other particles at the same
time. Disturbing a part of the system in a localized region, the configuration space
of the whole system will respond instantaneously. The quantum force defined by
the gradient of the quantum potential does not, in general, fall off with distance and
interaction among particles can be rather strong even though thewave function ampli-
tude is small. Different works in the literature have analyzed the trajectory correlation
among entangled particles [213–217]. As Holland [7] mentioned, in this mechanics,
the whole system is prior to its constituent particles displaying a radical, different
behavior to the classical dynamics where the whole is the sum of the parts and their
interacions. Furthermore, the symmetry properties of the wave function associated
with a set of particles (bosons or fermions) implies clearly the introduction of forces
between the particles making up the system. The correlations in their motions lead to
quantum potentials distinct for each set of particles. Although identical particles are
not distinguishable, they are distinguished by the continuity of their trajectories. In
this sense, the separation or distance between two particles following two different
trajectories has a precise meaning, at any instant of time. Furthermore, depending if
we are dealing with a set of fermions or bosons the corresponding distance behaves
with time differently.

Recently, the Bohmian formalism has been used to derive the ro-vibrational spec-
trum of diatomic molecules [218]. The same formalismwas also used to devise some
hybridmethodswhen systems ofmany degrees of freedomare considered [219, 220].

1.3 Open Quantum Systems. Quantum Stochastic
Trajectories

1.3.1 The Causal Stochastic Approach

As has been alreadymentioned in the first section, Bohm andVigier [10, 70] assumed
that a particle could be thought to be suspended in a Madelung fluid. Their basic
assumption was to express the velocity of a given particle in configuration space as

dv = −∇(V + Q)dt + dW(t) (1.95)

where dW(t) is the increment vector (along the three directions) of the so-called
Wiener stochastic process at time t which gives the random fluctuations (noise) of
the velocity due to the presence of the environment.

This equation can provide us some sort of quantum (Bohmian) stochastic trajec-
tories. In this approach, we are dealing with a statistical ensemble of particles with
a probability distribution given by P(r, t). It is usually assumed that this probability
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distribution has nothing to do with the wave function. Only after the evolution in a
long interval of time of the corresponding dynamics, P(r, t) → ρ(r, t) = |Ψ (r, t)|2.
One could suppose that the stochastic process could be come from some sort of vac-
uum fluctuations represented by a simple diffusion process [80]. The analysis of
a Brownian particle in a gravitational field is simple and illustrative of some new
concepts which should be introduced. If P is the probability density of particles, the
probability current or flux and the conservation equation are given by

J = −D∇P
∂P

∂t
= −D∇

(
mg

kBT
zP + ∇P

)
, (1.96)

respectively, where D is the diffusion coefficient and kB is the Boltzmann constant.
The so-called osmotic velocity which gives us the drift component (due to the grav-
itational field) is written as

u = D
mg

kBT
(1.97)

and was introduced by Einstein. At equilibrium, ∂P/∂t = 0, the well-known Boltz-
man factor is obtained,

P = Ae−mgz/kBT (1.98)

where A is a constant. In other words, the particle is drifting downward in the grav-
itational field and the net upward diffusive movement is balanced to produce equi-
librium.

In the quantum domain, we would like to have that the equilibrium state of the
diffusion process corresponds to a probability density P = |ψ|2 = ρ and to a mean
current j = ρv̄ = ρ∇S/m. Such a state is a consistent possibility if thewave function
of the particle, written in polar form as ψ = √

ρ exp(i S/�), satisfies the Schrödinger
equation because this implies the continuity equation

∂ρ

∂t
+ ∇.j = 0. (1.99)

This could be accomplished with a suitable choice of the osmotic velocity. The origin
of this osmotic velocity is not coming from a force field but from different causes. It
could be postulated a field such as

u = D
∇ρ

ρ
. (1.100)

The total current is thus written as

j = P

m
∇S + DP

∇ρ

ρ
− D∇P (1.101)
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and the continuity equation as

∂P

∂t
+ ∇.

(
P

∇S

m
+ DP

∇ρ

ρ
− D∇P

)
= 0. (1.102)

Then, the systematic velocity is given by

v = ∇S

m
+ D

∇ρ

ρ
(1.103)

where the mean velocity arises from the guidance condition and the osmotic velocity
is derivable from the potential

Vo = D lnρ (1.104)

ρ being a solution of
∂ρ

∂t
+ ∇.

(
ρ
∇S

m

)
= 0. (1.105)

The equilibrium position implies that P = ρ, that is, it means that the osmotic
velocity is balanced by the diffusion current so that the mean velocity is ∇S/m.
The next important question is, any arbitrary probability distribution P will always
approach ρ? Bohm andVigier [70] have shown that for the general case P approaches
ρ. The osmotic velocity is then constantly pushing the particle to the regions of
highest |ψ|2 and this explains why most particles are found near the maxima of the
wave function. Moreover, as previously stated, for stationary states, S = const and
therefore p = ∇S = 0. When considering the stochastic contribution, the sistematic
velocity is no longer zero.

As a last remark, notice that Eq. (1.83) issued from the complexBohmianmechan-
ics is reminiscent of Eq. (1.103) when speaking about stochastic Bohmianmechanics
with an imaginary diffusion coefficient D.

1.3.2 Diffusion. Quantum Brownian Motion

One of the simplest integrable dissipative quantum systems that we may devise is the
diffusion of a wave packet on a flat surface. This is also a very instructive problem
regarding the effects of stochastic dynamics on wave packets as well as an alternative
way to also introduce quantum stochastic trajectories in this framework [13, 14].
Obviously, some of the results derived in this Section go beyond this particular
context. In particular, the decoherence process which will be widely analyzed in
Chap.4.

The quantum Langevin equations for the Heisenberg position operators (for con-
venience in the notation, the operators will not be denoted with the usual ‘hat’) read
for Ohmic friction, γ, or linear spectral density as [13, 14, 100, 221, 222]

http://dx.doi.org/10.1007/978-3-319-53653-8_4
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ẍ(t) = −γ ẋ(t) + δFx (t),
ÿ(t) = −γ ẏ(t) + δFy(t).

(1.106)

Here, x and y denote the position operators accounting for the motion of a single
adsorbate across a flat surface, V (x, y) = 0. Lattice vibrational effects due to the
surface temperature are assumed to be well described by a Gaussian white noise
(per mass unit), which interacts and affects importantly the wave packet dynamics
representing the adsorbate. Accordingly, the noise fluctuations acting on each degree
of freedom are given by δFi (t) = Fi (t) − 〈Fi 〉, where i = x, y. At high (surface)
temperatures, we have β−1  �γ or, equivalently, γ−1  tc ∼ �β, where β =
(kBT )−1 and the coherence time, tc, is commonly known as thermal time and gives
us an idea of the time scales at which thermal effects start playing a role. Under these
conditions, the noise can be assumed to be classical and, hence, its autocorrelation
function at two different times is well described by a Dirac δ-function.

Consider an adparticle of mass m initially placed at a given position on the flat
surface. This particle is represented initially by a Gaussian wave packet,

ψ(x, y, 0) = 1√
2πσ2

0

e−x2/4σ2
0−y2/4σ2

0 , (1.107)

with initialwidth,σ0, alongboth directions. The adparticle is assumed to be initially in
equilibrium with the reservoir or heat bath (surface) at a temperature T , but weakly
coupled to the environment, so that dissipation can be neglected. The role of the
initial conditions has been very often discussed in the literature (see, for example,
Refs. [223, 224]). After a time t , the probability distribution to find the particle at a
given position (x, y) is given by

P(x, y, t) = |〈ψ(x, y, t)〉|2 = 1

2πwx (t)wy(t)
e−x2/2w2

x (t)−y2/2w2
y(t), (1.108)

which arises after averaging the survival probability over a thermal (Maxwell-
Boltzmann) distribution [225] and ψ is solution of the free particle time dependent
Schrödinger equation (see previous Section). Note here that the interaction with the
environment makes the quantum state describing the system to pass from pure to
a statistical mixture. According to Ford et al. [226–228], this normal distribution
is also associated with two measurements at two different times. For each degree
of freedom, the overall time-dependent spreading of the distribution (1.108) can be
recast as

w2
i (t) = σ2

0 + σ2
i (t) + si (t), (1.109)

with i = x, y. The quantum contribution to this spreading is given by
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σ2
x (t) = −[x(0), x(t)]2

4σ2
0

,

σ2
y(t) = −[y(0), y(t)]2

4σ2
0

,

(1.110)

while si (t) is the mean-squared displacement (MSD) along the i-th direction, i.e.,

sx (t) = 〈{x(t) − x(0)}2〉,
sy(t) = 〈{y(t) − y(0)}2〉. (1.111)

The quantum spreading depends on the commutator of the position operators at two
different times, from which

σ2
i (t) = �

2

4m2σ2
0γ

2
Φ2(γt), (1.112)

with Φ(γt) = 1 − exp(−γt). For each degree of freedom, one obtains the same
spreading because the initial width and the noise fluctuations are assumed to be the
same in both directions (isotropic surface). The same happens with the MSD along
each direction, which acquires the form

si (t) = 2�γ

πm
t2G(γt; T ), (1.113)

with

G(γt; T ) =
∫ ∞

0

1 − cos z

z(z2 + γ2t2)
coth

(
�z

2tkBT

)
dz. (1.114)

In our particular case, this G-function has an analytical solution, allowing us to
express (1.113) as

si (t) = 2kBT

mγ

[
t − 1

γ
Φ(γt)

]
. (1.115)

In the long-time or diffusion regime, γt  1, the quantum spreading becomes
time-independent,

σ2(t → ∞) ≈ �
2

4m2σ2
0γ

2
, (1.116)

while the MSD is linear with time,

s(t) ≈ 2kBT

mγ
t. (1.117)

Thus, Einstein’s diffusion law is satisfied, with the diffusion constant given by
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D = kBT

mγ
(1.118)

in both directions. Accordingly, the overall time-dependent spreading can be
expressed as

w2(t) ≈ σ2
0 + �

2

4m2σ2
0γ

2
+ 2kBT

mγ
t. (1.119)

In the short-time regime, γt � 1, the quantum spreading (1.112) goes like t2,
according to

σ2(t) ≈ �
2

4m2σ2
0

t2, (1.120)

which corresponds to the wave packet spreading in the absence of dissipation. Anal-
ogously, the MSD also goes like t2 according to

s(t) ≈ kBT

m
t2, (1.121)

where the prefactor is the thermal velocity in two dimensions. Thus, the overall
time-dependent spreading can be expressed in a more compact form as

w2(t) ≈ σ2
0 + 〈v2〉t2, (1.122)

with

〈v2〉 = kBT

m
+ �

2

4m2σ2
0

. (1.123)

In this short-time regime (friction-free motion or ballistic regime), we have usually
that 〈v2〉t2 � σ2

0, that is, the wave packet has not spread too much compared to its
initial spreading which can be assumed to be arbitrary large.

At low surface temperatures, we have γ−1 � tc ∼ �β. In this case, the noise
autocorrelation function is complex [229] and depends on the ratio between the
interval of the two times and tc (colored noise). In general, this noise function will act
like a driving force and the surface dynamics is better describedwithin the generalized
Langevin framework as

ẍ(t) +
∫ t

−∞
dt ′γx (t − t ′)ẋ(t ′) = δFx(t),

ÿ(t) +
∫ t

−∞
dt ′γy(t − t ′)ẏ(t) = δFy(t),

(1.124)

where γx (t) and γy(t) now represent the time-dependent frictions or memory func-
tions along each direction —a one-dimensional expression for the noise function
can be found in the literature [222, 230]. If we assume again an isotropic surface
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and Ohmic friction, Eq. (1.124) reduce to (1.106). Thus, the corresponding quantum
mechanical process is not a Markovian process in the customary sense of the term
[222, 230]. The quantum spreading is then the same as before, i.e., given by (1.112),
since it is independent of the surface temperature. However, the MSD along each
direction, given by (1.113), now reads as

si (t) = 2kBT

mγ

[
t − 1

γ
Φ(γt)

]
+ 4

βm

∞∑
n=1

γ − νn − γe−νn t + νne−γt

νn(γ2 − ν2
n )

, (1.125)

with

νn = 2πn

�β
(1.126)

being the so-called Matsubara frequencies, which come from the Taylor series
expansion of the coth-function in the integrand of (1.114). At high surface tem-
peratures, Eq. (1.125) reduces to (1.115), while the sum over n plays an important
role only at very low, but non-vanishing surface temperatures. Notice that in the limit
of zero surface temperature, the sum vanishes —in this limit, the coth-function in
(1.114) becomes unity and G(γt; 0) displays a different time-dependence. In this
case (T = 0), the corresponding MSD expression reads as

si (t) = 2�

πmγ

{
γE + ln γt − 1

2

[
eγt Ē i(−γt) + e−γt Ei(γt)

]}
, (1.127)

where γE = 0.577 is Euler’s constant, and Ēi(−γt) and Ei(γt) are the exponential
integrals [231]. The environment no longer transfers energy to the adparticle due to
the zero-point motion of the surface oscillators.

A similar dynamical analysis can also be carried out in terms of the short- and
long-time regimes. The quantum spreading in both dimensions remains the same and
is given by (1.112). However, theMSD is different due to its temperature dependence.
Thus, in the short-time regime, γt � 1, we find

s(t) ≈ kBT

m
t2 + �γ

πm
t2, (1.128)

which depends linearly on γ. Analogously, at zero surface temperature, we have

s(t) ≈ �γ

πm
t2

(
3

2
− γE − ln γt

)
, (1.129)

where we observe essentially the same friction and time dependence, since the pres-
ence of the friction in the log-function is much weaker. On the other hand, in the
long-time regime, it can be shown that
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s(t) ≈ 2kBT

mγ
t + 2�

πm

1

γ + ν1
, (1.130)

which becomes

s(t) ≈ 2�

πmγ
(γE + ln γt) (1.131)

at zero surface temperature.
From this behavior, at equilibrium or diffusive regime [80], it is possible to deter-

mine the corresponding quantum potential and then to derive the corresponding
quantum stochastic trajectories issued from the quantum Newton-like equation of
motion

ma = −∇(V + Q), (1.132)

where a is the acceleration, V is the interaction potential between the adsorbate and
the surface (in the free wave-packet problem, V = 0), and the quantum potential is
given by Eq. (1.17). According to Eq. (1.108), P(x, y, t) is identified with the prob-
ability density ρ(x, y, t) displaying the total spreading of the wave packet with time.
Only the spreading due toMSD depends explicitly on the surface temperature. How-
ever, the friction coefficient describing the interaction with the environment or bath
is present in both the quantum and MSD spreadings. At very short times, in the bal-
listic regime, the stochastic dynamics is frictionless, but temperature dependent, as
previously shown.On the contrary, in the diffusion regime, the corresponding dynam-
ics depends on both, friction and temperature. Direct time integration of Newton’s
equation of motion gives the corresponding quantum stochastic trajectories. Very
important implications such as the decoherence process and the violation of the

Fig. 1.3 Quantum potential for a friction γ = 0.2 and two surface temperatures: T = 50 K (left)
and T = 300 K (right). The associated Gaussian wave packet describes a particle characterized by
m = 1 and σ0 = 2 (� = 1)
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noncrossing rule are worth mentioning. These points will be analyzed and discussed
under a different perspective in the following chapters.

As an illustration, in Fig. 1.3 the quantum potential associated with a Gaussian
wave packet with m = 1 and σ0 = 2 (� = 1) is displayed for a friction γ = 0.2 and
two surface temperatures: T = 50 K (left) and T = 300 K (right). For simplicity,
only the x-direction is plotted. The stronger variations of the quantum potential takes
place at short times and large distances. The MSD is linear with the temperature as
well as the total spreading of the Gaussian distribution.

This simple analysis can be extended to a many particle system. The non-local
effects are nownot only due to the quantumpotential but also due to the osmotic veloc-
ity. This point is crucial to the stochastic methods derived from Nelson’s approach.

It should be taken into account that when speaking about quantum stochastic tra-
jectories in the Bohmian framework, there are several routes as the one followed in
this Section. After Bohm and Vigier, the more formal approach is when one is start-
ing with a Langevin-like equation such as Eq. (1.95). In any case, the osmotic and
systematic velocities, given by Eqs. (1.100) and (1.103) respectively, can straightfor-
wardly be obtained for the Brownian motion in the diffusive regime. In Chap. 3, a
different approach is proposed and developed.

1.3.3 Stochastic Weak Values

As pointed out by Aharonov [232] the initial state of a closed system does not
determine its final state, complete initial and final boundary conditions must be
imposed. Thus, for an initial boundary condition (before the measurement) we are
pre-selecting an incident wave function while for a final boundary condition we are
post-selecting a final wave function. Both boundary conditions define what is called
a pre- and post-selected ensemble, both wave functions being non-orthogonal. In this
sense, the weak value of an operator A, is defined as

〈A〉w = 〈ψ f inal |A|ψini tial〉
〈ψ f inal |ψini tial〉 . (1.133)

Thus, weak values reduce to expectation values when both wave functions coincide.
A measurement of the observable A yielding 〈A〉w is a weak measurement.

Weak measurements are playing a very important role in measuring very tiny, but
important effects [19, 233]. Most people think that this type of measurements will
be important to shed some light to fundamental problems in quantum mechanics. As
shown by Hiley [64], weak values which can be seen as complex, transition probabil-
ity amplitudes are related to Bohm momentum, the Bohm energy, and the quantum
potential. In one dimension, for example, the expectation value of the momentum

http://dx.doi.org/10.1007/978-3-319-53653-8_3
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operator is given by

〈ψ(t)|p|ψ(t)〉 =
∫

ρ(x, t)
〈x |p|ψ(t)〉
〈x |ψ(t)〉 dx (1.134)

where in atomic units

〈x |p|ψ(t)〉 =
∫

〈x |p|x ′〉〈x ′|ψ(t)〉dx ′ = −i∇xψ(x, t). (1.135)

By writting as usual the wave function in polar form, the weak value obtained from
measuring the position (post-selection) after the momentum is pre-selected leads to

< x |p|ψ(t) >

< x |ψ(t) >
= ∇x S(x, t) − i

∇xρ(x, t)

2ρ(x, t)
(1.136)

where it is a complex quantity where the real part is the Bohm momentum and the
imaginary part is identical to the so-called osmotic velocity.

As we have also seen in open quantum systems, the osmotic velocity comes
directly from an underlying diffusion motion (as introduced by Nelson in his
stochastic theory [73]). This osmotic velocity is related to the probability density.
Thus, when we are dealing with quantum stochastic trajectories, the weak values
are also depending on the friction coefficient and the surface temperature. Further
investigation along these lines are crucial to better understand future experiments.

1.3.4 The Density Matrix

When one has an ensemble of particles at different positions but the same state or
wave function, we talk about a pure state, or better said a pure ensemble. On the
contrary, if the states or wave function are different, a mixed state or ensemble is
often used.

Concerning statistical properties of the quantum systems, two types of averaging
is usually considered [10]. The first one is over the particle positions and the second
one, over the distribution of wave functions. If the wave function is represented in
terms of an orthonormal basis set, for example, eigenfunctions of the energy, we can
always write

Ψ (r) =
∑
E, j

cE jψE, j (r) (1.137)

where E runs over the energy eigenvalues and the index j over all the remaining
quantum numbers. The complex coefficients c can also be expressed in polar form,
cE j = RE jexp[iφE j ]. Considering an ensemble of wave functions also means to
have a probability distribution of amplitudes and phases. Thus, a given point in the
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space of wave functions is given by all cE j ’s or all RE j s and φE j ’s. The element of
volume of this space can then be written as

dΩ =
∏
E, j

dpE jdφE j (1.138)

where pE j = R2
E j . The mean number, dZ , of systems in this element of volume is

given by
dZ = P(...RE j ...; ...φE j ...)dΩ (1.139)

P being the probability density of systems in this wave function space. The first
averaging is then, for a given wave function ψ and physical operator O ,

〈O〉 =
∫ ∑

E, j

∑
E ′, j ′

c∗
E j cE ′ j ′ψ

∗
E, j (r)OψE ′ j ′(r)dr (1.140)

and the second averaging can be expressed as

〈〈O〉〉 =
∫ ∫ ∑

E, j

∑
E ′, j ′

P(...RE j ...RE ′ j ′ ...; ...φE j ...φE ′ j ′ ...)

. RE j RE ′ j ′e
−iφE j eiφE ′ j ′ ψ∗

E, j (r)OψE ′ j ′(r)drdΩ

= Tr(ρO) (1.141)

where the usual density matrix is defined as

ρE j E ′ j ′ =
∫

P(...RE j ...RE ′ j ′ ...; ...φE j ...φE ′ j ′ ...)

. RE j RE ′ j ′e
−iφE j eiφE ′ j ′ dΩ. (1.142)

It is clear that the densitymatrix determines the statistical results of all measurements
in standard quantum mechanics [104, 105].

The density matrix does not determine the probability distribution P unambigu-
ously. In other words, physical averages are extremely insensitive to the detail of the
P-distribution. In fact, for a given densitymatrix, a verywide range of P-distributions
is possible. A good illustration of this fact is the following. Let us consider a general
wave function expressed as

Ψ (r) =
∑
j

R j e
iφ j ψ j (r) (1.143)

then the density matrix in the configuration space is given by
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ρ(r, r′) =
∫ ∑

j, j ′
P(...R j ...R j ′ ...; ...φ j ...φ j ′ ...)

. R j R j ′e
i(φ j−φ j ′ )ψ∗

j (r)ψ j ′(r′)dΩ. (1.144)

Now, if we assume that the P-distribution is independent on the phases and these are
random (random phase approximation),

ρ(r, r′) =
∫ ∑

j

P(...R j ...R j ′ ...)R
2
jψ

∗
j (r)ψ j (r′)dΩ

=
∑
j

〈R2
j 〉ψ∗

j (r)ψ j (r′). (1.145)

If we further assume that the P-distribution is a symmetric function of the R j ’s,
〈R2

j 〉 = 〈R2〉 and then

ρ(r, r′) =
∑
j

〈R2〉ψ∗
j (r)ψ j (r′) (1.146)

where a very wide range of P-functions can lead to the above density matrix.
Finally, in order to also extract some useful information about the system of

interest, one usually computes its associated reduced density matrix by tracing out
over the total density matrix, ρ̂t , over the environment degrees of freedom. In the
configuration representation and for an environment constituted by N particles, the
system reduced density matrix is obtained after integrating ρ̂t ≡ |Ψ 〉t t 〈Ψ | over the
3N environment degrees of freedom, {ri }Ni=1,

ρ̃(r, r′, t) =
∫

〈r, r1, r2, . . . rn|Ψ (t)〉〈Ψ (t)|r′, r1, r2, . . . rn〉 dr1dr2 · · · drn .
(1.147)

The system (reduced) quantum density current can be derived from the following
expression

J̃(r, t) ≡ �

m
Im[∇rρ̃(r, r′, t)]

⏐⏐⏐
r′=r

, (1.148)

which satisfies the continuity equation

˙̃ρ + ∇J̃ = 0. (1.149)

In (1.149), ρ̃ is the diagonal element (i.e., ρ̃ ≡ ρ̃(r, r, t)) of the reduced density
matrix and gives the measured intensity [234].

Taking into account (1.148) and (1.149), it is possible to define the velocity field,
ṙ, associated with the (reduced) system dynamics as



50 1 Historical and Introductory Account …

J̃ = ρ̃ṙ, (1.150)

which is analogous to the Bohmian velocity field. Now, from (1.150), a new class of
quantum trajectories is define, which are the solutions to the equation of motion

ṙ ≡ �

m

Im[∇rρ̃(r, r′, t)]
Re[ρ̃(r, r′, t)]

⏐⏐⏐⏐
r′=r

. (1.151)

These new trajectories are the so-called reduced quantum trajectories [235, 236],
which are only related to the system reduced density matrix. As shown in [235], the
dynamics described by (1.151) leads to the correct intensity (whose time-evolution is
described by (1.149)) when the statistics of a large number of particles is considered.
Moreover, it is also straightforward to show that (1.151) reduces to the well-known
expression for the velocity field in Bohmian mechanics when there is no interaction
with the environment.

The formalism of the density matrix (or reduced density matrix) is widely used in
open quantum systems dynamics through master equations or, in general, when the
decoherence process is also taken into account due to the presence of an apparatus
[104, 105].

1.4 Dynamical Aspects of the Measuring Process

The idea behind the measuring process is to deal with devices to be considered as
quantum systems. This view entails an arbitrary division of the world into classical
and quantum parts. As mentioned at the beginning of this chapter, the issue of a
dividing line is critical in this context. The equation of motion of Heisenberg is very
advantageous because both the classical and quantum equations ofmotion for a given
observable coincide, leading to a better understanding due to the analogy with the
classical evolution in time [232]. Here, on the contrary, we are going to briefly discuss
the measuring process from a dynamical perspective in the Schrödinger picture of
quantummechanics,more adequate for theBohmian formalism. In any case, quantum
measurements preserve the Heisenberg uncertainty relations (see Chap.4).

Following von Neumann, let A be the Hermitian operator that is going to be mea-
sured and An andψn(x) its eigenvalues and eigenfunctions in the configuration space,
respectively (for simplicity, a discrete and non-degenerate spectrum is assumed). The
wave function of the pointer or apparatus with a large number of coordinates, repre-
sented globally by y, is assumed to be described by a wave packet χ(y). The initial
wave function of the composite system is then written as (the state preparation)
[7, 10]

Ψi (x, y) = χ(y)
∑
n

cnψn(x). (1.152)

http://dx.doi.org/10.1007/978-3-319-53653-8_4
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If the interaction between the observed system and the pointer is very short, say
T (impulsive measurement), and so strong that throughout that time the total
Hamiltonian is onlygovernedby the interaction term, the time-dependentSchrödinger
equation can be written as

i�
∂Ψ (x, y, t)

∂t
= HIΨ (x, y, t) = i�κA

∂Ψ (x, y, t)
∂y

(1.153)

which can be easily solved for the period of the interaction to give

Ψ (x, y, t) =
∑
n

cnψn(x)χ(y − κt An) (1.154)

where κ is the strength of the coupling. During this period of time, the various com-
ponents of the total wave function will overlap and interfere being non-factorizable.
The total wave function at the end of the impulse is written as

Ψ f (x, y, T ) =
∑
n

cnψn(x)χ(y − κT An) (1.155)

consisting of wave packets with centers given by κT An . Under the condition

κTΔAn  1 (1.156)

where ΔAn is the change of An for the different values of n, which means that the
interaction is strong enough, the wave packets multiplying the different eigenstates
of A will be distinct and non-overlapping (in order to prevent any influence on the
observed system and extract unambiguous information) and evolve freely lately. In
otherwords, to eachwave packet of the pointer therewill correspond an eigenfunction
and eigenvalue of the system since both are correlated; the corresponding widths
being much less than the separation between eigenvalues (complete measurement).
Thus, when the wave packets cease to overlap, the interference terms are negligible
and

|Ψ f (x, y, T )|2 ≈
∑
n

|cn|2|ψn(x)|2|χ(y − κT An)|2 (1.157)

If the apparatus registers the value y (the registration step), according to Born’s
postulate, the total wave function will collapse to one of the many components or
products ψn(x)χ(y − κT An), |cn|2 being the probability of the measurement An .
A typical example of this type of measurements is given by the well-known Stern–
Gerlach experimentwhere hydrogen atomspass throughan inhomogeneousmagnetic
field in the z-direction.The interactionHamiltonian is thengivenby thegradient of the
magnetic field times the z-component of the angular momentum operator. After the
interaction, the three wave packets will eventually separate allowing their detection
in a screen.
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FromaBohmianperspective [7, 10], during the interaction time, the differentwave
packets strongly interfere and the quantum potential develops a quite complicated
and rapidly varying space-time structure. When the interaction is over, the different
wave packets or channels start to be well defined and the system will enter one of
them, remaining from then on, since the probability of being between wave packets
is zero. The rest of the wave packets will not contribute to the quantum potential
(or to the guiding condition) acting on the the system and can therefore be ignored.
They can be regarded as constituting inactive or physically ineffective information
(the so-called empty waves). This fact is behind the possibility of a set of clearly
distinct results of a quantum measurement and no mention to the collapse of the
wave function is needed. Themeasuring process can be also considered as a quantum
transition, from Ψi to one of the final states (or channels) explicitly written in Ψ f

with probability |cn|2. Therefore, in principle, there is no need to place any arbitrary
cut between the quantum and classical worlds. In Chap.4, this dividing line in the
Bohmian formalism will be widely developed.

In Bohmian mechanics, the position of the system plays a key role since it is
an intrinsic property. It is intrinsic in a double sense. First, it is defined in a way
that is conceptually independent on the wave function or, in other words, it is not
inherently dependent on the overall context, unlike the actualmomentumof the sytem
which depends on the total wave function (in particular, on the gradient of the wave
function phase). And second, the position can be measured without being altered.
Let us analyze the particular case of A ≡ x when the interaction Hamiltonian is
given by

HI = κxpy . (1.158)

Due to the fact that x is a continuous variable, the initial wave function can be written
as

Ψi (x, y) =
∫

dx ′c(x ′)δ(x − x ′)χ0(y) (1.159)

and the final wave function as

Ψ f (x, y, T ) =
∫

dx ′c(x ′)δ(x − x ′)χ0(y − κx ′T ). (1.160)

If δy is the width of the wave packet χ0, the corresponding impulsive measurement
will make possible an observable distinction between values of x ′ differing by δx =
δy/κT , the only change being the shifting of the argument of χ0 (the x position is
not altered and the corresponding momentum is also unchanged if χ0 is assumed to
be real). However, other properties are changed due to the fact that the total wave
function has been modified.

On the other hand, for measuring properties other than position, the situation
is quite different. Let us assume that we want to measure the momentum, that is,
A ≡ px . Following the same procedure as before, the interaction Hamiltonian is
written as

http://dx.doi.org/10.1007/978-3-319-53653-8_4
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HI = κpx py, (1.161)

the initial wave function can be written as

Ψi (x, y) =
∫

dpxc(px )e
ipx xχ0(y), (1.162)

and the final wave function as

Ψ f (x, y, T ) =
∫

dpxc(px )e
ipx xχ0(y − κpT ). (1.163)

Again, the corresponding measurement will make possible an observable distinction
between values of px differing by δ px = δy/κT in momentum space and, in position
space, δx = 1/δ px . The wave packets do not interfere because they correspond to
non-overlapping states of the apparatus variable. The initial and final true momenta
may have different values. The final value depends not only of the total wave function
but also on the details of the initial conditions of both the particle and the apparatus.
After the standard interpretation of quantum mechanics, this fact can be considered
contradictory because [HI , px ] = 0, so that one would have expected it to be a
constant of motion. In Bohmin mechanics, the momentum operator is related to the
particle momentum only when the wave function is an eigenfunction (a plane wave)
of this operator. As mentioned before, this also means that the momentum is not an
intrinsic property unlike the position. It is inherently context dependent so that it
involves the participation of the measuring apparatus and the quantum system as a
whole. This fact implies that the mean value of p2, for example, has an extra term
with respect to the standard result of quantum mechanics [7, 10]. The same is true
for higher moments of the momentum.

The next straightforward question is what happens when trying to measure posi-
tion and momentum together. The interaction Hamiltonian is now written as

HI = κ(xpy + px pz), (1.164)

where y and z are the coordinates of two independent meters corresponding to
commuting operators. After the impulsive interaction, the three interacting systems
become evidently correlated. As may be expected, the outcome of the joint mea-
surement does not allow one to infer values for the particle position or momentum
[7].

This theoretical treatment should be changedwhen noncanonical physical observ-
ables are considered such as velocity and other time derivatives of canonical observ-
ables [232].

In Chap.4, the measurement problem is studied under a different and new point of
view. The so-called continuous quantummeasurement on a given system surrounded
by an environment is tackled from a nonlinear wave equation.

http://dx.doi.org/10.1007/978-3-319-53653-8_4
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Chapter 2
Some Selected Applications of Bohmian
Mechanics

Abstract In this chapter, our purpose is to simply show that Bohmian mechanics is
a powerful route to bring about new solutions to problems discussed by conventional
quantummechanical approaches, apart from allowing some striking correspondence
between both frameworks. This goal is carried out by choosing some key quantum
mechanical problems in the framework of Bohmian mechanics such as, for exam-
ple, the so-called Ermakov–Bohm invariants, boundary conditions and uncertainty
principle in tunneling, the quantum traversal time, Airy wave packets and Airy slits,
the detection of inertial and gravitationalmasseswithAirywave packets, the geomet-
ric phase analyzing the Aharonov–Bohm effect and quantum vortices, the reformu-
lation of the Gross–Pitaevskii equation within the hydrodynamical framework and,
finally, the study of simple dissipative dynamics by using the well-known Caldirola-
Kanai Hamiltonian. In this dissipative scenario, the motion of a free particle, the
quantum interference of two wave packets and the dynamics in a linear potential as
well as the corresponding of a damped harmonic oscillator (within the underdamped,
critically damped and overdamped regimes) are finally analyzed for ulterior refer-
ences.

2.1 Introduction

Recently, Bernstein has presented a pedagogically clear and historically brilliant
review of the Bohmian theory [1] showing that it is sharp where the usual one is fuzzy
and general where the usual one is special. Bell and Bernstein argued convincingly
that the de Broglie-Bohm interpretation of quantum mechanics should be known
from the very beginning and part of any college curriculum on the subject.

In this theory, the wave function provides only a partial description of the system.
The description is completed by the specification of the actual positions of the parti-
cles which evolve according to the so-called guidance condition or guiding equation,
Eq. (1.20). This equation provides the velocity of the particles in terms of the wave
function. However, the trajectory of a particle is not at all classical; it is instead
determined by the structure of the associated quantum wave which guides or pilots
the particle along its path.
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Comprehensive discussions of Bohmian mechanics can be found everywhere in
the literature [2–6]. In this Chapter, we want to show that Bohmian mechanics is
a powerful route to bring about new solutions to problems discussed by conven-
tional quantum mechanical approaches, apart from allowing some striking corre-
spondence between both frameworks. This goal is carried out by choosing some key
quantum mechanical problems in the framework of Bohmian mechanics such as,
for example, the so-called Ermakov–Bohm invariants, Airy wave packets and Airy
slits, the geometric phase analyzing the Aharonov–Bohm effect and quantum vor-
tices, reformulating theGross–Pitaevskii equationwithin the hydrodynamical frame-
work and, finally, the study of simple dissipative dynamics by using the well-known
Caldirola-Kanai Hamiltonian. In this dissipative scenario, the motion of a free par-
ticle, the quantum interference of two wave packets and the dynamics in a linear
potential as well as the corresponding of a damped harmonic oscillator (within the
underdamped, critically damped and overdamped regimes) are finally analyzed for
ulterior references.

2.2 Ermakov–Bohm Invariants for the Time-Dependent
Harmonic Oscillator

A paradigmatic problem in classical and quantum mechanics is the one-dimensional
harmonic oscillator. After Schrödinger developed wave mechanics, he tried very
hard to make it into a classical theory. The wave packets describing the simple har-
monic oscillator with constant frequency seemed like a good candidate. It is well
known that the ground state of the oscillator has the minimum possible uncertainty,
which suggests that wave packets associated with this state might show some clas-
sical behavior. A quite interesting extension of this problem is within the theory of
invariants (constant of motion) for the time-dependent harmonic oscillator (TDHO)
discovered by Ermakov [7–9]: it consists of demonstrating that for the corresponding
equation of motion

q̈(t) + ω2(t)q(t) = 0 (2.1)

there exists a time-dependent invariant

I = 1

2

[(
q̇(t)δ(t) − δ̇(t)q(t)

)2 +
(

q(t)

δ(t)

)2
]

(2.2)
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provided that

δ̈(t) + ω2(t)δ(t) = �
2

4m2δ3(t)
, (2.3)

where q(t), δ(t) and ω(t) represent the wave packet center of mass, width and fre-
quency of the TDHO, respectively. Interestingly enough, this time-dependent invari-
ant emerges naturally within Bohmian mechanics. It constitutes a natural connection
between the classical to the quantum regime.

To demonstrate such an invariant, the associated Schrödinger equation can be
written as

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂x2
+ 1

2
mω2(t)x2ψ(x, t), (2.4)

wherem is themass of the TDHO. Equation (2.4) can now be solved via the Bohmian
formalism. To this end, the wave function is again expressed in polar form as

ψ(x, t) = φ(x, t) exp(i S(x, t)/�). (2.5)

Now, after substitution of Eq. (2.5) into (2.4), we obtain the following differential
equation in partial derivatives

i�

[
∂φ

∂t
+ i

�

∂S

∂t
φ

]
=

= − �
2

2m

{[
∂2φ

∂x2
− φ

�2

(
∂S

∂x

)2
]

+ i

�

[
2
∂S

∂x

∂φ

∂x
+ ∂2S

∂x2

]}
+ 1

2
mω2x2φ.

The equation above can be as usual separated into real and imaginary parts to give

∂v

∂t
+ v

∂v

∂x
= − 1

m

∂

∂x
(Q + V ) , (2.6)

and

∂ρ

∂t
+ ∂

∂x
(ρv) = 0, (2.7)

with the following definitions for the quantum hydrodynamical density

ρ(x, t) = φ2(x, t), (2.8)
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the velocity

v = 1

m

∂S

∂x
, (2.9)

the quantum potential

Q = − �
2

2mφ

∂2φ

∂x2
, (2.10)

and the interaction potential

V = 1

2
mω2(t)x2. (2.11)

Equation (2.6) is an Euler-type equation describing trajectories of a fluid particle,
with momentum p = mv, whereas Eq. (2.7) describes the evolution of the quantum
fluid density ρ. This density is interpreted as the probability density of a particle being
actually present within a specific region. Such a particle follows a definite space-time
trajectory that is determined by its wave function through an equation of motion in
accordance with the initial position, formulated in a way that is consistent with the
Schrödinger time evolution. An essential and unique feature of the quantum potential
is that the force arising from it is unlike a mechanical force of a wave pushing on a
particle with a pressure proportional to the wave intensity.

By assuming now that the wave packet is initially centered at x = 0 and given by
a Gaussian function, ρ(x, 0) = [

2πδ2(0)
]−1/2

exp
[−x2/2δ2(0)

]
then ρ vanishes for

|x | → ∞ at any time and we may rewrite

ρ(x, t) = |ψ(x, t)|2 = [
2πδ2(t)

]−1/2
exp

(
−[x − q(t)]2

2δ2(t)

)
, (2.12)

δ(t) being the total width of the Gaussian wave packet and q(t) a classical trajectory.
Equation (2.12) can be readily used to demonstrate that

+∞∫

−∞

(
[x − q(t)]2

)
ρ(x, t)dx = δ2(t). (2.13)

Substitution of Eq. (2.12) into (2.7) yields

∂ρ

∂t
=
[
− δ̇

δ
+ (x − q)

δ2
q̇ + 1

δ3
(x − q)2δ̇

]
ρ, (2.14)

and
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∂(ρv)

∂x
=
(

δ̇

δ

)
ρ +

[(
δ̇

δ

)
(x − q) + q̇

](
− (x − q)

δ2

)
ρ, (2.15)

which implies that

v(x, t) =
(

δ̇

δ

)
(x − q) + ·

q . (2.16)

Analogously, substitution of Eq. (2.16) into (2.6) yields

(
δ̈(t) + ω2(t)δ − �

2

4m2δ3(t)

)
(x − q)1 + (q̈ + ω2(t)q)(x − q)0 = 0,

(2.17)

leading to Eqs. (2.1) and (2.3).
In 1880, Ermakov [10] was the first to describe a relationship between nonlinear

differential equations of second order such as Eq. (2.3) and a particular type of
the linear equation (2.1). At the beginning of the thirties, Milne [11] developed a
method quite similar to the WKB technique where the same nonlinear equation
found by Ermakov occurred, and applied it successfully to several model problems
in quantum mechanics. Further, in 1950, the solution to this nonlinear differential
equation was given by Pinney [12]. It is worth pointing out that the term on the right
side of Eq. (2.3) depends on � in contrast to a similar nonlinear equation studied
by Ermakov, Milne and Pinney which contains an arbitrary constant. This �-term
emerges naturally from the presence of the quantum potential Q given by Eq. (2.10).

By eliminating ω2(t) between the two equations above, one obtains the invariant
in Eq. (2.2). Inasmuch as this invariant connects the classical and quantum regimes,
we call it an Ermakov–Bohm invariant. Further, from Eqs. (2.6) and (2.7), we can
construct the relations for the energy density U , energy density flux Q, momentum
J and momentum flux P , respectively

∂U

∂t
+ ∂Q

∂x
= 0, (2.18)

∂ J

∂t
+ ∂P

∂x
+ ρ

m

∂V

∂x
= 0, (2.19)

where

U = ρ

(
1

2
mv2 + V + Q

)
, (2.20)
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Q = vU + �
2

2m2

[√
ρ
∂2√ρ

∂x∂t
− ∂

√
ρ

∂t

∂
√

ρ

∂x

]
, (2.21)

J = ρv (2.22)

and

P = ρv2 − �
2

4m2

[
∂2ρ

∂x2
− 1

ρ

(
∂ρ

∂x

)2
]

. (2.23)

Next, the wave packet dynamics will be completely determined by the solutions to
Eqs. (2.3) and (2.1), which describe the time evolution of the width and center of the
packet.

Integration of Eqs. (2.3) and (2.1) are subject to the general initial conditions [13]

δ(0) = δ0 , δ̇(0) = d0, (2.24)

and

q(0) = q0 , q̇(0) = V0. (2.25)

In the following, we show that the general solution to the quantum Eq. (2.3) can be
obtained with the help of just one particular solution to the classical Eq. (2.1). To
this end, let us now substitute

δ(t) = r(θ) α(t) (2.26)

where we define [13]

dθ = dt/α2(t) (2.27)

and substitute into Eq. (2.26) to obtain the first Ermakov–Bohm invariant of motion

I1 = [r (θ)]2 + �
2

4m2

(
1

r(θ)

)2

, (2.28)

provided that

α̈ + ω2(t)α = 0 . (2.29)

Upon a second integration Eq. (2.28) can be recast with the help of Eq. (2.26) as

δ2(t) =
(

�
2

4m2 I1
+ I1 I 22

)
α2
1(t) + I1α

2
2(t) + 2I1 I2α1(t)α2(t) (2.30)
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where α1 and α2 are two independent solutions to the classical Eq. (2.29). The
two constants I1 and I2 represent two Ermakov–Bohm invariants of motion of the
problem. In addition, the two independent solutions to Eq. (2.29) can be obtained in
general from just one particular solution to the same equation, namely,

α1(t) ≡ α(t) (2.31)

and

α2(t) ≡ α(t)
∫ t dt

α2(t)
. (2.32)

If initial conditions are imposed as follows

α(0) = 1 and α̇(0) = 0 (2.33)

we are led to

α1(0) = 1, α2(0) = 0, α̇1(0) = 0, and α̇2(0) = 1. (2.34)

These initial conditions allow us to find that the two Ermakov–Bohm invariants of
motion are given by:

I1 = d2
0 + (δ20/τ

2), (2.35)

and

I2 = δ0d0/[d2
0 + (δ20/τ

2)]. (2.36)

Thus, the complete dynamics of the TDHO can be found with the help of Eqs. (2.31),
(2.32), (2.35) and (2.36): the generalized squeezed states for the TDHOwave packet
is finally written as

δ(t) = δ0 α(t)

{
1 +

(
2ς

τ

)[∫ t dt

α2(t)

]
+
(

(1 + ς2)

τ 2

)[∫ t dt

α2(t)

]2}1/2

(2.37)

where τ = 2m δ20/�, and ς = 2m δ0d0/�. In turn, the packet center of gravity evolves
according to

q(t) = α(t)

{
q0 + V0

∫ t dt

α2(t)

}
. (2.38)
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Now, the full wave packet can be written in its final, general form as

ψ(x, t) = (
2πδ2(t)

)−1/4
exp

[
−[x − q(t)]2

4δ2(t)
+ i

�
[S1(x, t) + S0(t)]

]
(2.39)

where

S1(x, t) = mδ̇(t)

2δ(t)
[x − q(t)]2 + m Ẋ(t)[x − q(t)] (2.40)

and

S0(t) =
t∫

0

dt ′
(
1

2
mq̇2(t ′) − 1

2
mΩ2q2(t ′) − �

2

4mδ2(t ′)

)
. (2.41)

The wave packet surrounds the position of the classical particle and the center of
gravity of the packet follows the classical trajectory: its time evolution is completely
determined by the quantum and classical solutions (2.37) and (2.38), respectively.

At the moment of observation, the packet is moving with an initial velocity V0 and
spreading with an initial rate d0. The associated variance of x [squared uncertainty]
can be written as [Δx (t)]2 = δ2 (t), which exhibits generalized squeezed states for
the TDHO. Above all, our method gives a general solution to the quantum TDHO
from just one particular solutionα(t) to the classical time-dependent oscillator (2.29)
in terms of two Ermakov–Bohm invariants of motion [13].

Finally, the associated Bohmian trajectories of an evolving ith particle of the
ensemble with an initial position xoi can be calculated via Eq. (2.16)

ẋi (t) = q̇(t) + [x(t) − q(t)]
δ̇(t)

δ(t)
(2.42)

or

t∫

0

d

dt ′
(
ln[xi (t

′) − q(t ′)]) dt ′ =
t∫

0

d

dt ′ [ln δ(t ′)]dt ′ (2.43)

leading to

xi (t) = q(t) + (x0i − q0)
δ(t)

δ0
, (2.44)

where δ(t) and q(t) are given by (2.37) and (2.38), respectively. Furthermore,
Eqs. (2.16) and (2.44) also reproduce the dressing scheme of the quantum trajec-
tory (velocity and position, respectively) mentioned in Chap.1. In this scheme, the

http://dx.doi.org/10.1007/978-3-319-53653-8_1
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quantum or nonlocal contribution is governed by the time evolution of the Gaussian
wave packet width. This pattern is going to be also reproduced along this chapter as
well as in the remaining chapters dealing with open quantum systems.

2.3 Boundary Conditions in Tunneling

A commonly used assumption in quantum mechanics [14–17] is that the boundary
conditions at a surface where the potential undergoes a finite jump reduce to the
requirement that both the wave function ψ and its derivative (∂ψ/∂x) be continuous
at the surface. It is illustrative to show throughBohmianmechanics howmore general
boundary conditions follow from the continuity of mass, momentum and energy
densities. With this new boundary conditions, a novel approach to tunneling through
sharp-edged potential barriers is presented.

Let us consider the dynamics of a quantum particle described by the coupled
hydrodynamical equations (2.6) and (2.7), as previously defined. The momentum
density ρv appearing in the hydrodynamical equations can be the real part of a more
general quantum mechanical local momentum field P defined from the momentum-
density operator as

P = �

i
ψ∗ ∂ψ

∂x
= mρ (v + iu) , (2.45)

where u = −(�/2mρ)(∂ρ/∂x). So, it follows that the boundary conditions for the
continuity of mass, momentum and energy are [18]

ρ, ρv, ρu, ρ

(
1

2
mv2 + V + Q

)
. (2.46)

In terms of the wave function, these boundary conditions become (ψ∗ψ),
[ψ∗(∂ψ/∂x)] and ∂S/∂t = −( 12mv2 + V + Q).

Next, let us apply these boundaries conditions to the following quantum tunneling
problem. Consider a particle with incident energy E striking a potential barrier of
height V and width L: V (x) = V for 0 < x < L and zero elsewhere. In what
follows a, b, c, d,α,β and δ are constants to be determined and k2 = 2m E/�

2 and
q̄2 = 2m(V − E)/�

2. In a polar form, the wave function for x < 0 (incident region
1) is

ψ1(x, t) = √
ρ1 exp(i S1/�), (2.47)

where – detailed calculations can be found in Ref. [19] and Sect. 2.5,

ρ1 = 1 + a2 + 2a cos(2kx − α) (2.48)
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and

S1/� = −ωt + α

2
+ tan−1

[
1 − a

1 + a
tan
(

kx − α

2

)]
. (2.49)

For 0 < x < L (tunneling region 2), the wave function reads

ψ2(x, t) = √
ρ2 exp(i S2/�) (2.50)

where

ρ2 = 1

q̄

[
c2e2q̄x + d2e−2q̄x + 2dc cos(β − δ)

]
(2.51)

and

S2/� = −ωt + β + δ

2
+ tan−1

[
ceq̄x − de−q̄x

ceq̄x + de−q̄x
tan

(
β − δ

2

)]
. (2.52)

For x > L (transmission region 3), the wave function is given by

ψ3(x, t) = √
ρ3 exp(i S3/�), (2.53)

where

ρ3 = b (2.54)

and

S3/� = −ωt + kx + β, (2.55)

The boundary conditions from Eq. (2.46) where the potential undergoes a finite
jump read

ρ1(0) = ρ2(0), (2.56)

ρ2(L) = ρ3(L), (2.57)

ρ1
′(0) = ρ2

′(0), (2.58)

ρ2
′(L) = ρ3

′(L), (2.59)
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ρ1(0)v1(0) = ρ2(0)v2(0), (2.60)

ρ2(L)v2(L) = ρ3(L)v3(L), (2.61)

(
∂S1
∂t

)

0

=
(

∂S2
∂t

)

0

, (2.62)

(
∂S2
∂t

)

L

=
(

∂S3
∂t

)

L

. (2.63)

By applying the above boundary conditions on the wave functions (2.47), (2.50) and
(2.53), we then obtain

1 + a2 + 2a cosα = c2 + d2 + 2cd cos(β − δ)

q̄
, (2.64)

c2e2q̄ L + d2e−2q̄ L + 2cd cos(β − δ)

q̄
= b2, (2.65)

2ak sinα = (c2 − b2), (2.66)

c = de−2q̄ L , (2.67)

1 − a2 = 2d2e−2q̄ L sin(β − α)

k
, (2.68)

2d2e−2q̄ L sin(β − α)

k
= b2. (2.69)

From Eqs. (2.65) and (2.67), we have

b2 = 2d2e−2q̄ L [1 + cos(β − α)]
q̄

, (2.70)

which combined to Eq. (2.69) yields

tan

(
β − δ

2

)
= k

q̄
, (2.71)

sin(β − δ) = 2kq̄

q̄2 + k2
, (2.72)
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cos(β − δ) = q̄2 − k2

q̄2 + k2
. (2.73)

Equations (2.69) and (2.73) allow us to write Eq. (2.70) as

b2 =
(

4q̄

q̄2 + k2

)
d2e−2q̄ L , (2.74)

which, in turn, combined with Eqs. (2.67) and (2.73), reduces Eq. (2.64) to

1 + a2 + 2a cosα = b2

(
q̄2 − k2

2q̄2

)(
1 + q̄2 + k2

q̄2 − k2
cosh 2q̄ L

)
. (2.75)

Equations (2.68) and (2.69) imply that

a2 = 1 − b2 (2.76)

which inserted into Eq. (2.75) gives

a cosα = b2

(
1 +

[
q̄2 + k2

2q̄2

]
sinh2q̄ L

)
− 1. (2.77)

By the same procedure above, Eq. (2.66) can be rewritten as

a sinα = −
[

q̄2 + k2

4kq̄

]
b2 sinh 2q̄ L . (2.78)

Combination of Eqs. (2.76), (2.77) and (2.78) leads to

b−2 =
[
1 +

(
q̄2+k2

2q̄2

)
sinh2q̄ L

]2 +
(

q̄2+k2

4kq̄

)
sinh 2q̄ L

[
1 +

(
q̄2+k2

2q̄2

)
sinh2q̄ L

] . (2.79)

Using the identity sinh22q̄2L = 4(sinh2q̄ L +sinh4q̄ L) and after dividing the numer-
ator by the denominator of Eq. (2.79), we arrive at the known result

b−2 = 1 +
(

q̄2 + k2

2kq̄

)2

sinh2q̄ L . (2.80)
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2.4 Quantum Potential and Uncertainty Principle
in Tunneling

Quantum tunneling is an important effect in many physical phenomena, such as the
rate of nuclear fusion, many chemical reactions, and a lot of technology, for example,
scanning tunneling microscopy. The basic physics of fusion has been known for
some time, and a key element of understanding it is quantum tunneling. Nuclei have
a positive electric charge, and since like charges repel, there is an energy barrier to
be overcome. Once the barrier is overcome, the strong nuclear force takes over. One
way of overcoming the barrier is quantum tunnelling. There is even a possibility
that the universe itself might at some point tunnel through to a lower energy state,
depending on what the mass of the Higgs boson is exactly.

The role of the quantum potential on the tunneling of a Gaussian wave packet
through a rectangular potential barrier is studied here by solvingnumerically the time-
dependent Schrödinger equation via a computer simulation [20–23]. The algorithm
used was originally developed by Goldberg et al. [21] and further developed by
Koonin [20]. It is assumed that the barrier was confined in a finite region of a one-
dimensional space (0, L). At x = 0 and L, the wave function is set equal to zero,
corresponding to a rigid barrier. The initial wave packet is established in the region to
the left of the barrier, just far enough so that initially it does not interact or overlap the
barrier. The time-dependent Schrödinger equation is solved numerically to determine
the wave function at each time step, with small time increments and parameters used
are the same as in Koonin’s work [20]. As the time evolves, the wave packet travels
to the right, and interacts with the barrier; part of the packet is reflected and part
tunnels through, and then emerges from the other side of the barrier.

The familiar picture of a Gaussian wave packet prior to tunneling through a rec-
tangular potential barrier is depicted in Fig. 2.1. The factors δi , L , V0. represent the
initial width of the packet, the width of the barrier and the barrier potential energy,
respectively.

By analyzing the role of the quantum potential, we demonstrate an unfamiliar
aspect of the tunneling rate as the initial wave packet width increases. We begin by
recalling that the total energy of the quantum particle is given by: ET = 1

2mv2+V +
Q, where m, v, V = V0 and Q are the mass, velocity, potential-barrier height and

Fig. 2.1 Gaussian wave packet prior to the tunneling through a rectangular potential barrier



76 2 Some Selected Applications of Bohmian Mechanics

Fig. 2.2 Tunneling versus initial wave packet width

the quantum potential, respectively. In the tunneling case of an initially free-particle
wave packet through a potential barrier, the wave packet width before the packet
strikes the barrier must have a minimum initial value so that the energy uncertainty
1
2mv2

i + Qi < V0 needs to be fulfilled in order to guarantee tunneling through and
not hopping over the barrier. The quantum potential, for a free particle, decreases as
δi increases. This fact can be verified for a free-particle where

Qi = �
2

4mδ2i [1 + (t/τ )2]

[
1 − [x − x0 − vi t]2

2δ2i [1 + (t/τ )2]

]
(2.81)

with τ ≡ 2mδ2i /�. Choosing � = m = 1, Ei/V0 = 0.8, (2mV0/�)1/2L = 3.1 and
δi/L = 1, Fig. 2.2 above indicates that initially the tunneling rate decreases as the
incident wave packet width increases until it reaches a plateau (at δi/L � 13)– due
to the uncertainty principle, for a minimum (or greater) value of the incident wave
packet width the tunneling remains the same, i.e., the quantum potential is reduced
to a minimum (since it depends inversely on the width of the packet). Consequently,
above a critical initial wave packet width the tunneling rate is no longer dependent of
the width of the wave packet. This point has been overlooked in the literature in light
of another issue: the tunneling time. Many authors have advocated that the tunneling
time through an opaque barrier is independent of the thickness of the barrier (the
Hartman effect) [22, 24]. The quantum potential and the uncertainty principle then
demand that the spatial extent of the packet be much greater than the barrier width.
As a result, the duration of the tunneling event will be the temporal extent of the
wave packet, assumed propagating at its initial velocity [25].
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2.5 Scattering via Invariants of Bohmian Mechanics

We present here a new application of the theory of invariants to the problem of scat-
tering within Bohmian mechanics. Within this formalism [26], we derive a formula
for the transmission coefficient of a steady flux of fluid particles scattered by an
arbitrary shaped potential well, and discuss the possibility of exact and approximate
solutions for some particular cases.

The quantum potential is a responsible, crucial determining factor for the unbro-
ken transition from microscopic to macroscopic levels. Quantum-wave phenomena,
such as diffraction and interference, are precluded from a scattering process in the
semiclassical regime [14] and therefore it becomesnecessary to improve such approx-
imations if the de Broglie wavelength is comparable with the potential dimensions.
In the framework of Bohmian mechanics, this implies that the quantum potential can
still be significant and its complete neglect is not desirable. So, let us consider again
the dynamics of a quantum-fluid particle described previously by the pair of coupled
hydrodynamical equations (2.6) and (2.7).

The stationary solution to the coupled Eqs. (2.6) and (2.7) (ρ̇ = v̇ = 0) can be
found by expressing

ψ(x, t) = φ(x) exp (i [S(x) − Et] /�) (2.82)

which substituted into Eqs. (2.6) and (2.7) gives

φ′(x)S′(x) + S′′(x)φ(x) = 0, (2.83)

φ′′(x) + λ2(x)φ(x) =
[

S′(x)

�

]2
φ(x) (2.84)

where for an arbitrarily shaped potential well V (x), we have

λ2(x) = 2m[E + V (x)]/�
2. (2.85)

Integration of Eq. (2.83) implies that

ρ(x)S′(x) = I1, (2.86)

which is the first invariant: the fluid-particle density current (J (x) = ρ(x)v(x))
is spatially conserved. Then, by inserting Eq. (2.86) into (2.84), and defining the
dimensionless quantity

φ̃(x) =
√

k

I1
φ(x), (2.87)
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we have

φ̃′′(x) + λ2(x)φ̃(x) = �
2k2

φ̃3(x)
, (2.88)

which is of the form of the so-called Ermakov-Pinney equation [10–12]. Noticeably,
the termon the right side of Eq. (2.88) depends on� in contrast to the similar nonlinear
equation studied by Ermakov,Milne and Pinney which contains an arbitrary constant
and analyzed previously. This �-term emerges naturally from the presence of the
quantum potential. A complete solution to this equation can be found by successive
transformations. By following Reid and Ray [27], we express φ̃(x) = r(θ)α(x) and
dθ = dx/α2(x), yielding r̈(θ) = k2

�
2/r3(θ) and the second invariant

I2 = [ṙ(θ)]2 + k2
�
2

r2
(2.89)

or

I2 =
[
φ̃α′ − φ̃′α

]2 + k2
�
2

(
α/φ̃

)2 , (2.90)

provided that α obeys

α′′(x) + λ2(x)α(x) = 0. (2.91)

The overdot denotes differentiation with respect to θ. Upon integration, Eq. (2.90)
leads to

ρ̃(x) =
(

k2
�
2

I2
+ I2 I 23

)
α2
1(x) + I2α

2
2(x) + 2I2 I3α1(x)α2(x) (2.92)

where

α1(x) ≡ α(x) (2.93)

and

α2(x) ≡ α(x)

x∫
dx

α2(x)
. (2.94)

Because α1 and α2 are linearly independent functions and, therefore, cannot be
zero simultaneously, ρ̃(x) can never be zero. As justified in Lutzky’s work [28],
Eqs. (2.93) and (2.94) can be expressed as
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α1(x) = φ̃P(x)cosβ(x) (2.95)

and

α2(x) = [φ̃p(x)/k]sinβ(x), (2.96)

where φ̃P(x) is any particular solution to (2.88) and

β(x) = k

x∫
dx

ρ̃P(x)
, (2.97)

such that we obtain after some manipulations

ρ̃(x) = ρ̃P(x)
{

a +
√

a2 − 1 cos[2(β(x) − b)]
}

, (2.98)

where a and b are two (redefined) constants, which will be determined below. An
advantage of having α1 (and α2) expressed in terms of ρ̃P is that while α1 may
vary rapidly (through cosβ), ρ̃P can be a slowly varying function, and therefore its
corresponding equation is more suitable for approximations: ρ̃P can also be seen as
a modulation of the total amplitude ρ̃.

Moreover, it is worth noting that a complete solution to (2.88) can be obtained
from any (just one) particular solution to another equation of the same form as that of
(2.88). This is the central point towards an exact and/or approximate solution without
having to neglect its quantum potential term.

For a bound-state energy case, after some manipulations, we find that condition

∮
mv(x, t)dx = 2πn� (2.99)

is sufficiently satisfied if Δβ = nπ,
Now, consider the scattering of a steady flux of particles with energy E (k2 =

2m E/�
2) by an arbitrarily shaped potential well V (x) = V for 0 ≤ x ≤ L and 0

elsewhere. For an incident flux of particles from the left (x < 0), with wave function
given by

ψL(x) = eikx + Ae−ikx , (2.100)

and a transmitted flux to the right (x > L), with wave function

ψR(x) = Beikx , (2.101)
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the boundary conditions are now matched as follows at x = 0

1 + A = φ(0)ei S(0)/�, (2.102)

ik(1 − A) =
(

φ′(0) + i
S′(0)φ(0)

�

)
ei S(0)/�; (2.103)

at x = L

φ(L)ei S(L)/� = BeikL , (2.104)

(
φ′(L) + i

S′(L)φ(L)

�

)
ei S(L)/� = ik BeikL . (2.105)

Eliminating A between Eqs. (2.102) and (2.103), the real and imaginary parts of the
resulting expression are

2k sin

(
S(0)

�

)
= φ′(0), (2.106)

2k cos

(
S(0)

�

)
= φ(0)

(
k + S(0)

�

)
. (2.107)

Likewise, elimination of B between Eqs. (2.104) and (2.105) leads to

S′(L)

�
= k ⇒ ρ̃(L) = 1, (2.108)

ρ̃′(L) = 0. (2.109)

Now, with the help of Eq. (2.108), the scattering transmission coefficient stems from
Eq. (2.105)

T = |B|2 = ρ(L) = I1/k. (2.110)

Squaring Eqs. (2.106) and (2.107) and adding, one finds

4k2 = [φ′(0)]2 + φ2(0)

(
k + S′(0)

�

)2

. (2.111)

With the help of Eqs. (2.86) and (2.87), we recast Eq. (2.111) as

T = 4k2(C1 + C2 + C3)
−1 (2.112)
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where

C1 = 2k2 − k
√

a2 − 1
ρ̃

′
P(0)

ρ̃P(0)
sin(2[β(0) − b]), (2.113)

C2 = k2

ρ̃P(0)

1 + (a2 − 1)sin2(2[β(0) − b])
a + √

a2 − 1 cos(2[β(0) − b]) , (2.114)

C3 = ρ̃P(0)

(
k2 + [ρ̃′

P(0)]2
4ρ̃2P(0)

)(
a +

√
a2 − 1 cos(2[β(0) − b])

)
, (2.115)

where the constants a and b can be determined through the boundary conditions
(2.108) and (2.109), namely,

a = ρ̃P(L)

2

(
1 + 1

ρ̃2P(L)
+ [ρ̃P(L)]2

4k2ρ̃2P(L)

)
, (2.116)

b = β(L) − 1

2
sin−1

(
ρ̃

′
P(L)

2k
√

a2 − 1ρ̃P(L)

)
, (2.117)

and β(x) is given by Eq. (2.97). All quantities above are given in terms of ρ̃P(x),
and, therefore, any (just one!) particular solution for ρ̃P completes the problem. A
large class of analytic, closed-form solutions for ρ̃P , for different choices of λ(x),
can be found in the literature [26].

2.5.1 Quantum Traversal Time

The question of the duration of a tunneling process of a particle through a potential
barrier has been debated considerably in the literature [19]. Let us consider the
dynamics of a quantum particle described by the coupled hydrodynamical equations
(2.6) and (2.7) recast in the form [19]

∂u

∂t
= − ∂

∂x
(vu) − �

2m

∂2v

∂x2
(2.118)

and

∂v

∂t
= − 1

m

∂V

∂x
− v

∂v

∂x
+ u

∂u

∂x
+ �

2m

∂2u

∂x2
(2.119)

such that for each quantum state with the wave function given by Eq. (2.5) we
associate the velocity (2.9) and
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u = (�/2m)(∂ ln ρ/∂x). (2.120)

We consider a particle with energy E scattering (tunneling) by a static potential
well of depth Vo (or barrier) for 0 ≤ x ≤ L and 0 elsewhere [19]. The particle’s
forward (backward) drift velocity v+(v−) can be written as the sum of (difference)
of the current velocity v and the osmotic velocity u: v± = v ± u. Both the forward
and backward velocities of the particle contribute to the traversal kinetic energy

K E = (m/2)(v2 + u2) = (m/2)[(v2
+ + v2

−)/2] (2.121)

where

v±(x) = �

m

[
2k(q/k)2 ± q[1 − (q/k)2] sin 2q(x − L)

]
[[1 + (q/k)2] − [1 − (q/k)2] cos 2q(x − L)

] . (2.122)

For tunneling (E < Vo),we replaceq =√
2m(Vo + E)/�by i q̄ = i

√
2m(Vo − E)/�

and k = √
2m E/�. We define for the stationary regime the quantum traversal time

across a square barrier of width L as

τ =
L∫

0

dx√
(2/m)K E

. (2.123)

With the help of Sect. 2.5, we find that for the thin-barrier tunneling problem, the
traversal time is given by τ = (m/�k)L , whereas for the opaque-barrier case, τ =
(m/�q̄)L [19].

In contrast, for an opaque rectangular barrier, the stationary-phase method [24]
yields a traversal time that is independent of the barrier width. This result depends
strongly on the form of the wave packet, and is sound only if the wave packet is
characterized by a narrow momentum distribution. If a wave packet with a wide
momentum distribution strikes a barrier, the transmitted wave packet will exhibit a
distribution displaced to higher momenta since the high-energy components of the
wave packet tunnel more easily. Thus, the transmitted wave packet moves faster
and the reflected wave packet moves slower than the incident one. In contrast, our
traversal time definition is that, while working in the configuration space, we avoid
the restricted condition on the initial momentum distribution width. As remarked
by Büttiker [29], the stationary-phase method does not distinguish between particle
which at the end stay in the interaction region and are subsequently reflected and
those that are transmitted. This yields the average dwell time of a particle in the
barrier and not the traversal time, if most particles are reflected.



2.6 Wave Propagator for the Guiding Wave Function 83

2.6 Wave Propagator for the Guiding Wave Function

Via the de Broglie-Bohm approach to quantum mechanics, we develop here a
protocol to obtain a propagator for the guiding wave function as defined by the
integral equation

ψ(x, t) =
+∞∫

−∞
dx0K (x, x0, t)ψ(x0, 0). (2.124)

The primary concept is introduced that a particle has a definite path which is deter-
mined by a suitable equation of motion and that this path is fundamentally affected
by a guiding wave function [30]. Accordingly, the connection between the particle
and wave properties can be obtained by writing the wave function in the polar form
as in Eq. (2.5), and from Eqs. (2.6) and (2.7), the paths of a particle with velocity is
given by

dx

dt
= v(x, t)|x=x(t) = 1

m

∂S

∂x

∣∣∣∣
x=x(t)

(2.125)

as in Eq. (2.9) and subject to an arbitrary external potential V and the quantum
potential Q. With the help of Eq. (2.125), we can readily obtain

∂S

∂t
+ 1

2m

(
∂S

∂x

)2

+ V + Q = 0, (2.126)

where

d

dt
= ∂

∂t
+ v

∂

∂x
(2.127)

is the hydrodynamical derivative. Equation (2.126) has the form of Newton’s second
law, in which the particle is subject to a quantum potential Q in addition to the classi-
cal potential V . A set of paths is obtained by considering the case when the amplitude
of the wave function is a slowly varying function of position. In what follows, we
develop a protocol to obtain a propagator for thewave function by retaining explicitly
some of the features of the quantum potential. This procedure attempts to generalize
that developed by Feynman and Hibbs [31], since their procedure is viewed as a
method for obtaining the wave function from the set of classical paths, for which
Q = 0.

We investigate the quantum hydrodynamical evolution of the Gaussian guiding
wave packet given by Eq. (2.12). We now expand S(x, t), V (x, t) and Q around q(t)
up to second order
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S(x, t) = S[q(t)] + S′[q(t), t][x − q(t)] + S′′[q(t)]
2

[x − q(t)]2,
(2.128)

V (x, t) = V [q(t)] + V ′[q(t), t][x − q(t)] + V ′′[q(t)]
2

[x − q(t)]2,
(2.129)

Q(x, t) = Q[q(t)] + Q
′ [q(t), t][x − q(t)] + Q

′′ [q(t)]
2

[x − q(t)]2.
(2.130)

Next, substituting Eq. (2.12) into (2.7), we find again Eq. (2.16). Now, a connection
to Eqs. (2.16) and (2.125) can be established by collecting terms in [x − q(t)]0 and
[x − q(t)]1

S′[x(t), t] = mq̇(t), (2.131)

S′′[x(t), t] = m
δ̇(t)

δ(t)
. (2.132)

Then, by substituting Eq. (2.12) and the previous Taylor expansions into Eq. (2.126)
and again collecting terms in [x − q(t)]0 and [x − q(t)]1, we have

Ṡ0 = 1

2
mq̇2(t) − V [q(t), t] − �

2

4mδ2(t)
, (2.133)

q̈(t) = − 1

m
V ′[q(t), t], (2.134)

δ̈(t) + 1

m
V ′′[q(t), t]δ(t) = �

2

4m2δ3(t)
, (2.135)

where have denoted Ṡ0 ≡ S[q(t), t]. It is worth noticing the presence of the quantum
potential in the last terms of Eqs. (2.133) and (2.135). These equations have the initial
conditions

q(0) = x0, q̇(0) = v0, (2.136)

δ(0) = δ0, δ̇(0) = 0, (2.137)

and

S0(0) = mv0x0. (2.138)
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Now, the wave packet can be fully written as

ψ(x, t) = [2πδ2(t)]−1/4
exp

[(
imδ̇(t)

2�δ(t)
− 1

4δ2(t)

)
[x − q(t)]2

]

× exp

[
imq̇(t)

�
[x − q(t)] + imv0x0

]

× exp

⎡
⎣ i

�

t∫

0

dt ′
(
1

2
mq̇2(t) − V [q(t)] − �

2

4mδ2(t)

)⎤
⎦ . (2.139)

Next, we turn to finding the propagator K (x, x0, t) as defined by the integral
Eq. (2.124). Let us first define the normalized quantity

Φ(v0, x, t) = (2πδ20)
1/4

ψ(v0, x, t), (2.140)

which satisfies the completeness relation

+∞∫

−∞
dv0Φ

∗(v0, x, t)Φ(v0, x ′, t) = 2π�

m
δ(x − x ′) (2.141)

where δ(x − x ′) denotes the well-known delta function. From Eq. (2.7), it follows
that

∂(Φ∗ψ)

∂t
+ ∂(Φ∗ψv)

∂x
= 0 (2.142)

which after integration yields

∂

∂t

+∞∫

−∞
dxΦ∗ψ = 0, (2.143)

whence

+∞∫

−∞
dx ′Φ∗(v0, x ′, t)ψ(x ′, t) =

+∞∫

−∞
dx0Φ

∗(v0, x0, t)ψ(x0, t). (2.144)
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Multiplying Eq. (2.144) by Φ∗(v0, x, t), integrating with respect to v0, and using
Eq. (2.141), we have

ψ(x, t) = (m/2π�)

+∞∫

−∞
dv0Φ(v0, x, t)

+∞∫

−∞
dx0Φ

∗(v0, x0, 0)ψ(x0, 0), (2.145)

whence the propagator reads

K (x, x0, t) = (m/2π�)

+∞∫

−∞
dv0Φ(v0, x, t)Φ∗(v0, x0, 0). (2.146)

With the help of Eqs. (2.136)–(2.140), we have explicitly

K (x, x0, t) = m

2π�

+∞∫

−∞
dv0

(
δ(t)

δ0

)−1/2

exp

[(
imδ̇(t)

2�δ(t)
− 1

4δ2(t)

)
[x − q(t)]2

]

× exp
i

�

⎡
⎣mq̇(t)[x − q(t)] +

t∫

0

dt ′
(
1

2
mq̇2(t ′) − V [q(t ′), t ′] − �

2

4mδ2(t ′)

)⎤
⎦ .

(2.147)

Equation (2.147) shows that the quantum-mechanical information given by the prop-
agator can be found in the guiding wave function. Besides, the quantum propagator
can be viewed as an expansion of the guiding wave function over the v0-space (and
not in just over the ordinary position space). It is a merit of the formalism of the
de Broglie-Bohm quantum theory to bring this out so explicitly that it cannot be
ignored.

2.7 Bohmian Trajectories of Airy Packets

The discovery of Berry and Balazs in 1979 [32] that the Schrödinger equation for a
free particle of mass m allows a non-dispersive and accelerating Airy wave packet
solution has taken the folklore of quantum mechanics by surprise. They have shown
that for the Schrödinger equation

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂x2
, (2.148)
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a unique solution is given by

ψ(x, t) = Ai2
[

B

�2/3

(
x − B3t2

4m2

)]
exp

[
i

(
B3t

2m�

)(
x − B3t2

6m2

)]
. (2.149)

This is easily verified by direct substitution and use of the Airy function’s differ-
ential equation [33]. Here Ai is the Airy function and B is an arbitrary constant. Airy
packets continue to propagate without spreading even when a spatially uniform and
time-varying force F(t) acts. Over the years, this intriguing class of wave packets
has sparked a considerable resurgence on research on diffraction theory and exper-
iments on a classical analogue in optics of nondiffracting beams [34–42]. Despite
its numerous applications in electrodynamics, optical theory, solid state physics,
radiative transfer, semiconductors in electric fields, Airy functions have found to be
a distinctive solution in quantum mechanics but only for force-free and for linear
potentials [42–44].

Within the Bohmian mechanics framework, new features of Airy wave packet
solutions to Schrödinger equation with time-dependent quadratic potentials can be
introduced. In particular, we provide some insights to the problem by calculating its
Bohmian trajectories. It is shown that by using general space-time transformations,
these trajectories can display a variety of cases depending upon the initial posi-
tion of the individual particle in the Airy wave packet. These results suggest some
mathematical similarities between Schr̈odinger equation and the paraxial equation of
diffraction and pave the way toward the discovery of new experimental observations
notwithstanding the fact that the paraxial equation has solutions in terms of Airy
functions with complex arguments. Numerous experimental configurations of optics
and atom physics have shown that the dynamics of Airy beams depends significantly
on initial parameters and configurations of the experimental set-up.

The simplest problem is defined by two evolution equations: the Schrödinger
equation with time-dependent quadratic and linear potentials for the wave function
ψ(x, t)

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂x2
+
(
1

2
mω2(t)x2 − F(t)x

)
ψ(x, t) (2.150)

and the first-order guiding equation for x(t)

ẋi (t) = �

m
I m

(
∂

∂x
logψ(x, t)

)∣∣∣∣
x=xi (t)

(2.151)

which constitutes the simplest first-order evolution equation for the position of the
particle that is compatible with the Galilean and time-reversal covariance of the
Schrödinger evolution. In Eq. (2.150), ω(t) and F(t) represent the time-dependent
harmonic-oscillator frequency and linear force, respectively. Thus, themain objective
is to solve Eq. (2.151) for the Bohmian trajectories of an evolving ith particle of the
Airy wave packet ensemble with an initial position x0i .
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A general solution to Eq. (2.150) can be found through a proper time rescaling of
the space variables and introducing new times [45–47]. This new group of transfor-
mations reduce Eq. (2.150) to the case of the problem of a free-particle type motion.
Although different techniques have been used, the scale and phase transformations
presented here yield a simpler physical meaning to the mathematical protocol [48].
To this end, the extended space-time transformations is introduced as

ψ(x, t) = 1√
δ(t)

exp

(
iφ1(x, t)

�

)
ψ1(x, t), (2.152)

x ′ = 1

δ(t)
(x − q(t)) , (2.153)

and

t ′ =
t∫

0

dτ

δ2(τ )
. (2.154)

These transformations represent a scale and phase transformation on the wave func-
tion and a scale transformation on space and time along with a space translation. In
particular, Eq. (2.153) is a Galilean-type transformation. After lengthy but straight-
forward calculations is found that Eq. (2.150) reduces to

i�
∂ψ1(x ′, t ′)

∂t ′ = − �
2

2m

∂2ψ1(x ′, t ′)
∂x ′2 + f1(t

′)ψ1(x ′, t ′) (2.155)

where

f1(t
′) = m

2
[δ̇2q2 + δ2q̇2 − 2qq̇δδ̇]. (2.156)

By performing the phase change

ψ1(x ′, t ′) = ψ2(x ′, t ′) exp

⎛
⎝− i

�

t ′∫

0

f1(t
′′)dt ′′

⎞
⎠ , (2.157)

Equation (2.155) reduces further to

i�
∂ψ2(x ′, t ′)

∂t ′ = − �
2

2m

∂2ψ2(x ′, t ′)
∂x ′2 . (2.158)
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Thus, the general solution to Eq. (2.150) then reads

ψ(x, t) = 1√
δ(t)

Ai

⎧
⎪⎨
⎪⎩

B

�2/3

⎡
⎢⎣ [x − q(t)]

δ(t)
− B3

4m2

⎛
⎝

t∫

0

dτ

δ2(τ )

⎞
⎠
2
⎤
⎥⎦

⎫
⎪⎬
⎪⎭
exp

i

�
φtotal (x, t),

(2.159)

where

φtotal = φ1(x, t) + φ2(x, t) + φ3(x, t) (2.160)

and

φ1 = −
t ′∫

0

f1(τ )dτ , (2.161)

φ2 = mx2δ̇(t)

2δ
−
[

mq(t)δ̇(t)

δ(t)
− mq̇(t)

]
x, (2.162)

φ3 = B3

2m

⎛
⎝

t∫

0

dt ′

δ2(t ′)

⎞
⎠
⎡
⎢⎣ x − q(t)

δ(t)
− B3

6m

⎛
⎝

t∫

0

dt ′

δ2(t ′)

⎞
⎠

2
⎤
⎥⎦ , (2.163)

f1 = 1

2
m
[
δ̇2q2 + δ2q̇2 − 2qq̇δδ̇

]
. (2.164)

In turn, the auxiliary functions q(t) and δ(t) obey

q̈(t) + ω2(t)q(t) = F(t)

m
(2.165)

and

δ̈(t) + ω2(t)δ(t) = 0. (2.166)

Now, with the help of Eqs. (2.160), (2.151) yields

ẋi (t) = 1

m

(
∂φtotal(x, t)

∂x

)∣∣∣∣
x=xi (t)

= q̇(t) + [xi (t) − q(t)]
δ̇(t)

δ(t)
+ B3

2m2δ(t)

t∫

0

dt ′

δ2(t ′)
.

(2.167)
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Equation (2.167) can be integrated as follows. First, we recast it as

[ẋi (t) − q̇(t)] δ(t) − [xi (t) − q(t)] δ̇(t)

δ2(t)
= B3

2m2δ2(t)

t∫

0

dt ′

δ2(t ′)
(2.168)

or

d

dt

[
xi (t) − q(t)

δ(t)

]
= B3

2m2δ2(t)

t∫

0

dt ′

δ2(t ′)
(2.169)

which upon integration becomes

xi (t) = q(t) + (x0i − q0)
δ(t)

δ0
+ B3

2m2
δ(t)

t∫

0

dt ′

δ2(t ′)

t ′∫

0

dτ

δ2(τ )
, (2.170)

where q0 = q(0) and δ0 = δ(0). Thus, Eq. (2.170) gives the associated Bohmian
trajectories of theAirywave packet that satisfiesEq. (2.150). In particular, if δ(t) = 1,
ω(t) = 0, Eq. (2.159) yields the result found by Berry and Balazs in Eq. (2.148) [32].
Furthermore, Eq. (2.170) displays still amyriad of nontrivial Airy packet trajectories.
For example, if x0i is positive, then the particles distributed in the right half of the
initial ensemble are accelerated whereas the particles distributed in the left half of
the initial ensemble are decelerated. Besides, Eq. (2.170) implies that deviations
from classical trajectories Δxi (t) = xi (t) − X (t) are entirely dependent on the
solution of Eq. (2.166) (which is a generalization of the Mathieu and Hill-Poschl-
Teller equations) [13, 49, 50]. Two independent solutions to Eq. (2.166) can be
obtained in general from just one particular solution to the same equation, namely,

δ1(t) ≡ δ(t) (2.171)

and

δ2(t) ≡ δ(t)

t∫
dt ′

δ2(t ′)
. (2.172)

If initial conditions are imposed as follows: δ(0) = 1 and δ̇(0) = 0 we are led to
the orthogonal conditions δ1(0) = 1, δ2(0) = 0, δ̇1(0) = 0 and δ̇2(0) = 1. This
constitutes a large set of general, nontrivial Bohmian trajectories associated to the
Airy wave packet subject to time-dependent quadratic potentials.
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These new features are worth introducing to the subject’s theoretical folklore
in light of the fact that the evolution of a quantum mechanical Airy wave packet,
governed by the Schrödinger equation, is analogous to the propagation of a finite
energy Airy beam satisfying the paraxial equation notwithstanding the fact that the
paraxial equation has solutions in terms of Airy functions with complex arguments.
As previously mentioned, numerous experimental configurations of optics and atom
physics have shown that the dynamics of Airy beams depends significantly on initial
parameters and configurations of the experimental set-up. The use of Airy beams
for particle manipulation in nonlinear media remains a topic of intense theoretical
and experimental research [33, 34]. The results discussed here could be extended in
order to be applicable to physically realizable situations.

2.8 Airy and Gaussian Slits. Quantum Focal Point

It is well known that the Schrödinger equation describing a free particle can exhibit
a remarkable, nonspreading wave packet solution in terms of an Airy function [32].
A remarkable feature of Airy packets is their ability to remain diffraction-free over
long distances while they tend to freely accelerate during propagation in the absence
of any external potential. They constitute nontrivial, unusual solutions to Schrödinger
equation describing a free particle that remains invariant with time.

Another remarkable feature of Airy packets is worth discussing. We show that
Young’s two-slit quantum interference of two initially separated Airy wave packets
(or Airy slits) yields a prominent focal point in the interference pattern. This point of
maximum intensity resembles Fresnel’s focal point in optics. We also show that Airy
slits display a more robust interference pattern when compared to the case of two
Gaussian slits. The results discussed here could be tested experimentally since Airy
beams have been realized in both one- and two-dimensional configurations [34].

For comparison, let us recall that it is well-known that the solution for the free-
particle Schrödinger equation [14–17]

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂x2
, (2.173)

can be described by a Gaussian wave packet

ψGauss(x, t) = A(t) exp

[
−[x − q(t)]2

4δ̃(t)δ(0)
+ i

mv[x − q(t)]
�

+ i
Et

�

]
(2.174)

where

A(t) = [2πδ̃2(t)]−1/4
, (2.175)
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the complex time dependent spreading is

δ̃(t) = δ(0)

(
1 + i�t

2mδ2(0)

)
, (2.176)

where

δ(t) = δ(0)

√
1 +

(
�t

2mδ2(0)

)2

, (2.177)

q(t) = q(0) + vt (2.178)

and

E = 1

2
mv2. (2.179)

On the other hand, as seen in the previous Section, Berry and Balazs [32] showed
that for the free-particle Schrödinger equation (2.173) a unique solution is given by
Eq. (2.149). Now the initial total wave function can be written as

ψ(x, 0) = N

[
ψ1

(
x − d

2
, 0

)
+ ψ2

(
x + d

2
, 0

)]
(2.180)

where N is a normalization constant. The functions ψ1,2 correspond to two widely
separated wave packets (Gaussian or Airy slits), each located x = ±d/2 so that the
wavepackets are separated by a distance d. The general solution to Eq. (2.173) is
given by [16]

ψ(x, t) =
√

m

2πi�t

∞∫

−∞
dx ′ exp

{
−m(x − x ′)2

2i�t

}
ψ(x ′, 0). (2.181)

For comparison, the absolute squared value of expression above is plotted in Figs. 2.3,
2.4, 2.5 and 2.6 for the Young’s two-slit quantum interference of two initially sepa-
rated wave packets (Airy and Gaussian wave packets, respectively). It is clear seen
a focal point in the corresponding interference patterns. This point of maximum
intensity is analogous to Fresnel focal point in optics.

It is clearly observed that Airy slits display a more robust interference pattern and
exhibit a unique point of maximum intensity in the preceding part of the pattern.
These results could be easily tested experimentally in light of the successful experi-
mental realization of finite energy Airy beams (one and two-dimensional) obtained
by Siviloglou et al. in 2007 [34]. These new features are worth introducing to the
subject’s theoretical folklore in light of the fact that the evolution of a quantum
mechanical Airy wave packet governed by the Schrödinger equation is analogous
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Fig. 2.3 Interference of two initially, widely separated Airy wave packets

to the propagation of a finite energy Airy beam satisfying the paraxial equation.
Numerous experimental configurations of optics and atom physics have shown that
the dynamics of Airy beams depends significantly on initial parameters and config-
urations of the experimental set-up.

2.9 Detection of Inertial and Gravitational Masses
with Airy Wave Packets

The problem of how the inertial and gravitational mass enter in classical and quantum
mechanics is of utmost interest. The first investigations on the equivalence of inertial
and gravitational mass relied on pendulum experiments and can be traced back to
Newton and Bessel [51]. Tests of higher accuracies were realized by the classical
torsion balance experiments of Eötvös [52] and Roll et al. [53].

In quantum mechanics, tests of the universality of free fall have recently been
carried out with atom interferometry in the context of the coherence of an atom laser
or in connection with the so-called atom trampoline, or also known as the quantum
bouncer. Matter wave interferometry with freely falling 85Rb and 87Rb isotopes has
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Fig. 2.4 Density plot of the interference of two initially, widely separated Airy wave packets:
Quantum focal point

already been performed, and several other experiments worldwide using different
species of atoms are in preparation [54–67].

In particular, the universality of the free fall problem has been reviewed and
addressed for a quantummechanical particle in a linear gravitational potential within
the Wigner phase space formulation by Kajari et al. [54]. Their conclusion is three-
fold: (i) The quantum dynamics reduces to classical dynamics and therefore can only
involve the ratio of the inertial mass mi and the (passive) gravitational mass mg, (ii)
the spatial modulation of the energy eigenfunctions depends on the third root of the
product of the two masses, and (iii) the energy eigenvalues of the gravitational atom
trampoline are proportional to (m2

g/mi )
1/3.

Here we show that the dynamics of a quantum particle in a linear gravitational
potential can be readily described using Airy wave packets within the framework
of Bohmian mechanics. It is clearly shown that the dynamics of a particle in a lin-
ear gravitational potential involves the gravitational mass (mg) and the inertial mass
(mi ) by the third root of the product of the two masses. This noteworthy feature may
offer another avenue in quantum tests of the universality of free fall and experiments
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Fig. 2.5 Interference of two initially, widely separated Gaussian wave packets

capable ofmeasuring theAiry-function shaped probability density would yield infor-
mation about 3

√
mi mg. Over the years, this intriguing class of Airy wave packets has

sparked a considerable resurgence on research on diffraction theory and experiments
on a classical analogue in optics of nondiffracting beams [33–38, 40]. Despite its
numerous applications in electrodynamics, optical theory, solid state physics, radia-
tive transfer, semiconductors in electric fields, Airy functions have found to be a
distinctive solution in quantummechanics not only for force-free and for linear poten-
tials but for a large class of time-dependent quadratic potentials (see Sect. 2.7). The
solution to the problem is sought in terms of Airy wave packets within the framework
of Bohmian mechanics. Also, we show that the wave packet remains nonspreading
and nonaccelerating if the well-known Berry-Balazs constant B is given specifically
by B = (

2mi mgg
)1/3

. Therefore, B is not devoid of any physical meaning – a fact
overlooked in the literature.

Our problem is defined by two evolution equations: the Schrödinger equationwith
a linear gravitational potential for the wave function ψ(x, t)

i�
∂ψ(x, t)

∂t
= − �

2

2mi

∂2ψ(x, t)

∂x2
− (mggx)ψ(x, t) (2.182)
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Fig. 2.6 Density plot of the interference of two initially, widely separated Gaussian wave packets:
Quantum focal point

and the first-order de Broglie guiding equation for x(t)

ẋi (t) = �

mi
I m

(
∂

∂x
logψ(x, t)

)∣∣∣∣
x=xi (t)

(2.183)

which constitutes the simplest first-order evolution equation for the position of the
particle that is compatible with the Galilean and time-reversal covariance of the
Schrödinger evolution.We now solve Eqs. (2.182) and (2.183). To this end, a solution
to Eq. (2.182) can be again found by introducing the space-time transformation

ψ(x, t) = exp

(
iφ1(x ′, t)

�

)
ψ1(x ′, t), (2.184)

x ′ = x − q(t), (2.185)

and
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t ′ = t. (2.186)

These transformations represent a scale and phase transformation on the wave func-
tion and a scale transformation on space and time along with a space translation.
Experiments have verified the validity of these transformation laws for noninertial
frames also in the quantum limit. Equation (2.185) is a Galilean-type transformation
which reduces Eq. (2.182) to

i�
∂ψ1(x ′, t ′)

∂t ′ = − �
2

2mi

∂2ψ1(x ′, t ′)
∂x ′2 + f1(t

′)ψ1(x ′, t ′) (2.187)

where

f1(t
′) = 1

2
mi q̇

2. (2.188)

By performing the phase change

ψ1(x ′, t ′) = ψ2(x ′, t ′) exp

⎛
⎝− i

�

t ′∫

0

f1(t
′′)dt ′′

⎞
⎠ , (2.189)

Equation (2.187) reduces further to

i�
∂ψ2(x ′, t ′)

∂t ′ = − �
2

2mi

∂2ψ2(x ′, t ′)
∂x ′2 . (2.190)

Thus, the wave packet solution to Eq. (2.182) then reads

|ψ2(x, t)| = Ai

{
B

�2/3

[
[x − q(t)] − B3t2

4mi
2

]}
, (2.191)

with

f1(t) = 1

2

m2
g

mi
g2t2, (2.192)

and

mi q̈(t) = −mgg. (2.193)

Now, the Bohmian trajectories are found to be

xi (t) = q(t) + (xoi − qo) + B3t2

2m2
i

. (2.194)
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Thus, we can summarize our main results as follows

|ψ(x, t)|2 = Ai2
[

B

�2/3

(
x − 1

2

mg

mi
gt2 + B3t2

4m2
i

)]
(2.195)

and

xi (t) = −1

2

mg

mi
gt2 + (xoi − qo) + B3t2

4mi
2
. (2.196)

Further, we find that if B is given by the third root of the product of the inertial and
gravitational mass, namely

B = 3
√
2mi mgg, (2.197)

the non-spreading Airy wave packet is also stationary [xi (t) = (xoi − qo)] in the
uniform gravitational field.

The transformation to the free fall system changes the argument of the wave
function by introducing a phase factor. This means that the laws of quantum physics
are the same in a frame with gravitational potential −mggx as in a corresponding
frame lacking this potential but having acceleration −g instead. Experiments have
verified the validity of these classical transformation laws for noninertial frames also
in the quantum limit [57, 63].

It has been assumed so far in the literature that B is a completely arbitrary constant
devoid of any special physical meaning. Classically, when the inertial mass mi and
the gravitational mass mg are equated, the mass drops out of Newton’s equations
of motion, implying that particles of different mass with the same initial conditions
follow the same trajectories. However, in Schrödinger’s equation (2.182) the masses
do not cancel. Now, Eq. (2.183) defines the Bohmian trajectories of an evolving
ith particle of the wave packet ensemble with an initial position x0i . In general, the
Bohmian trajectories imply mass-dependent differences in motion, except when the
well-known Berry-Balazs constant B is given by B = (

2mi mgg
)1/3

. For atoms from
a condensate 87Rb [62, 63] this quantity can be related to an inverse scale related to
the wave number k ≈ 3.3 × 106 m−1 (k has the same physical units as the familiar
wave vector of a plane wave) [54–61, 63–67].

B = h2/3k ≈ 7.34 × 10−17(mkg/s)1/3. (2.198)

This result might offer another avenue in quantum tests of the universality of free
fall. The use of Airy beams for particle manipulation in nonlinear media remains
a topic of intense theoretical and experimental research [33, 34]. Above all, exper-
iments capable of measuring the Airy-function shaped probability density would
yield information about 3

√
mi mg .
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2.10 The Geometric Phase

The time evolution of a quantum system is governed by differential equations, namely
the Schrödinger equation, the Heisenberg or interaction picture equation of motion
in the standard approach of quantum mechanics. The Hamiltonian operator plays
an important role in this dynamics. Usually, this Hermitian linear operator is con-
sidered to be time-independent. However, there are many physical situations where
the corresponding Hamiltonians are time-dependent due to the fact that some para-
meters are determined by external or environmental factors varying with time. The
so-called geometric phase is a very important aspect of this type of dynamics [68–
71]. The classical counterpart of the phase of the wave function is the phase of the
quasi-periodic motion and is called Hannay’s angle.

Around thirty years ago, Berry [72] noticed that the standard description of adi-
abatic processes in quantum mechanics missed something important. We should
remember that the notion of adiabaticity lies on the border of statics and dynamics;
in other words, dynamical effects are taken into account but in the limit of infinitely
slow changes. If a set of parameters are varied adiabatically during the time evolu-
tion, a cyclic variation (or periodical evolution in time) of such parameters leads to a
change of the wave function by an additional phase factor, being completely ignored
more than half a century. This phase factor, apart from the usual dynamical phase,
contains a purely geometric part independent on the duration of such an evolution.
Berry’s phase was derived in the adiabatic formalism and, therefore, this phase could
only be an approximation of the true quantum phase. The latter was introduced for
general unitary cyclic evolution by Aharonov and Anandan [73] and subsequently
generalized to arbitrary, not necessarily unitary or cyclic, evolutions by Samuel and
Bhandari [74]. In 1928, Fock [75] showed that such a phase could be redefined in
non-cyclic evolutions and thought to be unimportant. Bortolotti [76] and Rytov [77]
papers ignored by the optical communitywere pioneers in the rotation of the polarized
vector of light travelling along the coiled ray. It turns out to be that the corresponding
rotation can be simply interpreted in terms of the geometric phase. In 1956, Pan-
charatnam discovered an analog to the geometric phase when using polarized light
[78] by defining the relative phase between two light beams in different polariza-
tion states. The same phase was reported in molecular physics when dealing with
the Jahn-Teller effect by Longuet-Higgins et al. [79]. Aharonov and Bohm showed
the importance of the electromagnetic vector potential in the interference pattern of
electrons and the shift observed with respect to a normal interference pattern was
coined the Aharonov–Bohm effect [80]. The first derivation of a geometric phase
and the corresponding gauge potential is due to Mead and Truhlar when studying
the well-known chemical reaction H + H2 → H2 + H [81]. Nowadays, geometric
phases are been observed in many different fields going from magnetic resonance
to condensed matter systems such as, for example, the anomalous Hall effect. The
dynamics of quantized vortices is also a field where such a phase is relevant.

Soon after Berry reported his adiabatic geometric phase, Simon [82] realized that
it could be interpreted as the holonomy of a fiber bundle and the corresponding
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gauge potential played the role of a connection in this fiber bundle. It seems like
this mathematical theory was waiting for nice and important application in quantum
phase factors susceptible to be measured in interference experiments. Mukunda and
Simon [83] proposed a new approach consisting of deriving the geometric phase from
the so-called quantum kinematic approach instead of the Schrödinger equation.

The geometric phase has also been considered within the Bohmian formalism
[84–86] and quantum vortices can be regarded as a manifestation of it.

2.10.1 The Aharonov–Bohm Effect

As is well known [2, 87], the Schrödinger equation is form invariant with respect
to a gauge transformation, where the wave function undergoes a suitable unitary
transformation. Unlike classical physics, the electromagnetic potentials (scalar, A0,
and vector, A, potentials) play a fundamental role in quantum processes involving
charge interactions. In fact, both potentials enter in that equation instead of the electric
and magnetic field strengths themselves.

The wave function of a particle with mass m and charge e in the presence of an
electromagnetic field is governed by the Schrödinger equation

i�
∂Ψ

∂t
=
{

− �
2

2m

[
∇ − ie

�c
A
]2

+ eA0 + V

}
Ψ (2.199)

where c is the speed of light. Under the gauge transformation in the configuration
space

Ψ ′(r, t) = eieϕ(r,t)/�Ψ (r, t) (2.200)

ϕ being an arbitrary single-valued function of x and t , the particle is governed by
the same Schrödinger equation by replacing Ψ → Ψ ′, A → A′ = A − ∇ϕ and
A0 → A′

0 = A0 + (1/c)∂ϕ/∂t .
Analogously, in the Bohmian formalism, it is a quite straightforward exercise to

show that the probability density, the velocity field and the quantum potential are
gauge invariant quantities (as well as the quantum trajectories) unlike the total energy
[2]. The particle momentum field is given by

p(r, t) = ∇S − e

c
A (2.201)

and the quantum Newton equation (or quantum Lorentz equation) can be expressed
as

m
dv
dt

= e

c
v × (∇ × A) − ∇Q (2.202)
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when no electric field is present. Again, there is a quantum force even when the
magneticfield is zero.Thepaths are no longer orthogonal to the surface S = constant

∮

C
d S =

∮

C
p.dr + e

c

∮

C
A.dr = n� (2.203)

where n is an integer number and the electromagnetic flux is expressed as

Φ =
∫

S
B.dS =

∮

C
A.dr (2.204)

along the circuit or closed path C encircling the surface S. The magnetic and electric
fields are given by B = ∇ × A and E = −∇ A0 − (1/c)∂A/∂t , respectively.

The so-called Aharonov–Bohm (AB) effect consists of the influence of the vec-
tor potential on charged particles in interference patterns. In particular, consider a
collimated electron beam from a source reaching a beam splitter. The two resulting
beams go round a line of flux and are recombined again to meet in a screen. When
the flux is zero, a certain interference pattern is observed. However, when the flux is
not zero, the corresponding interference pattern is shifted with respect to the original
one. This line of flux can be seen as an infinite cylindrical solenoid. A steady current
in the solenoid generates a flux given by Eq. (2.204), the magnetic field vanishes
outside but the vector potential is not zero. Following Holland [2], the total wave
function when the field is switched on is given by

Ψ = N [ΨA + ΨBeieΦ/�c]e(ie/�c)
∫

A A.dr (2.205)

since each wave is multiplied by a phase factor due to the open path going from the
beam splitter to the screen. The closed path C is formed by the sum of path A and
path B and the total flux,Φ, is expressed by Eq. (2.203). The normalization factor N
is chosen depending on the type of slit assumed (Gaussian, etc.). The total intensity
is then given by

|Ψ |2 = N 2{|ΨA|2 + |ΨB |2 + 2|ΨA||ΨB |cos[(SA − SB)/� − (eΦ/c�)]} (2.206)

where, as usual, the total wave function as well as the partial waves have been
expressed in polar form. The observable AB shift is given by eΦ/c�, the total flux
being a gauge invariant quantity. The AB phase is a particular example of Berry’s
geometric phase; namely, a topological phase. This phase is independent of the details
of the dynamics and is even insensitive to the shape of the close path C . The latter
argument is precisely the main feature distinguishing topological phases from the
more general geometric phases.

The so-called bound-state Aharonov–Bohm effect [88] has also been studied in
terms of Bohmian trajectories [86]. In this problem, a particle with a given mass is
confined to a motion on a ring of a finite radius around a magnetic flux. This flux is
concentrated in a line through the origin perpendicular to the plane of the ring.
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Twenty five years after the prediction of the AB effect, Aharonov and Casher [89]
predicted a dual effect, the so-called Aharonov-Casher effect, the particle is neutral
but has a magnetic moment, and the tube contains a line of charge. Experiments in
neutron [90], vortex [91], atom [92], and electron [93] interferometry bear out the
prediction of Aharonov and Casher.

2.10.2 Quantum Vortices

Consider a wave function in the three-dimensional configuration space and an arbi-
trary open or closed path r(t) on this space. The variation of the wave function along
this path as time evolves originates a one-dimensional curve labelled by t . The inner
product of this funtion at two different times is a complex number and the total phase,
measuring the relative phase of the final point with respect to the initial point of the
curve, is given by its argument. This total phase,ϕtot = arg[(ψ(t1),ψ(t2)], is defined
modulo 2π and, after Aharonov and Anandan [73], is expressed as the sum of the
so-called dynamical phase and the geometric phase. The dynamical phase measures
the phase change locally accumulated along the path and is defined in Bohmian
mechanics as [86]

ϕdyn = 1

�

∫ t2

t1

d S(r(t), t)

dt
. (2.207)

Therefore, the geometric phase is then written as

ϕg = 1

�
[S(r(t2), t2) − S(r(t1), t1)] − ϕdyn (2.208)

where the total phase is now expressed in terms of the difference of the wave function
phases. The single valuedness of the wave function implies that the phase difference
at the final position of the path must be zero or 2πn, n being an integer number. Thus,
ϕg = 2πn along an arbitrary path (closed or open). Even more, for stationary states,
this phase along a closed path is proportional to the circulation integral

ϕg = 1

�

∮

C
p.dr. (2.209)

This integral is quantized to be an integer multiple of �. Thus, quantum vortices can
be regarded as a manifestation of the geometric phase [86].
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2.11 Bohmian Formulation of the Gross–Pitaevskii
Equation

The so-called Gross–Pitaevskii Equation has been successfully used to discuss the
behavior of Bose-Einstein condensates up to first order at zero temperature [94–97]

i �
∂Ψ (x, t)

∂t
= − �

2

2 m

∂2Ψ (x, t)

∂x2
+ V Ψ (x, t) − G | Ψ (x, t) |2 Ψ (x, t).

(2.210)

This equation is effectively amean-field approximation for the interparticle attractive
interactions where m is an effective mass of the system, V is a constant potential
and G a parameter that regulates the strength of the nonlinearity. It has a well-known
solution in terms of a soliton

Ψ (x, t) =
(

k

2

)1/2

sech [k (x − xo − v t)] × (2.211)

× exp

[
i m v

�
(x − xo − v′ t)

]
. (2.212)

where

k = m G

2 �2
(2.213)

and

v′ = Vε + m v2/2 − �
2 k2/2

m v
. (2.214)

An additional, attractive characteristic of this equation can be demonstratedwithin
the framework of Bohmian mechanics. In particular, we find a most remarkable
solution: existence of exact soliton-like solutions of Gaussian form (gausson). To
this end, from the polar form of the wave function given by Eq. (2.5), we have that

∂ρ

∂t
+ ∂

∂x
(ρv) = 0, (2.215)

and

∂v

∂t
+ v

∂v

∂x
= − 1

m

∂

∂x
(Q + Vg p), (2.216)

where ρ, v, Q are defined as usual and Vg p = −Gφ2(x, t) is the so-called Gross–
Pitaevskii potential. With the help of Eq. (2.216), it is readily obtained that
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∂S

∂t
+ 1

2m

(
∂S

∂x

)2

+ V + Q + Vg p = 0. (2.217)

A semiclassical solution to theGross–Pitaevskii equation in terms of aGaussianwave
packet is easily reached. Thus, if we start again from Eq. (2.12), S(x, t), Vg p and
Q can be again expanded around q(t) up to second order according to Eqs. (2.128),
(2.129) and (2.130).

Next, substituting Eq. (2.12) into (2.215), we again find Eq. (2.16) for the velocity.
Now, as previously carried out in Sect. 2.6, by collecting terms in [x − q(t)]0 and
[x − q(t)]1, we have

S′[x(t), t] = mq̇(t), (2.218)

S′′[x(t), t] = m
δ̇(t)

δ(t)
. (2.219)

Then, by substituting Eq. (2.12) and the previous Taylor expansions (2.128), (2.129)
and (2.130) into (2.217) and again collecting terms in [x − q(t)]0 and [x − q(t)]1,
it is reached that

Ṡ0 = 1

2
mq̇2(t) − �

2

4mδ2(t)
+ G√

2πδ(t)
, (2.220)

q̈(t) = 0, (2.221)

δ̈(t) = �
2

4m2δ3(t)
− G√

2πmδ2(t)
, (2.222)

where have denoted Ṡ0 ≡ Ṡ[q(t), t]. It is worth noticing the presence of the quantum
and Gross–Pitaevskii potentials in the last terms of Eqs. (2.220) and (2.222). For
linear and quadratic potentials, we note a remarkable feature: the existence of exact
soliton-like solutions of Gaussian form (gaussons). We find a non-spreading width
if

δ0 =
√
2π�

2

4mG
. (2.223)

2.12 Dissipation in the Caldirola-Kanai Model

Aneffective descriptionof dissipation canbe achieved fromexplicitly time-dependent
Lagrangians and/orHamiltonians, thus avoiding to dealwith the environment degrees
of freedom. This approach allows one to preserve the canonical formalism, which
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can be a good starting point to find out the quantum analogue of the correspond-
ing dissipative dynamics [98, 99]. The so-called Caldirola-Kanai model [100, 101]
can be considered a Hamiltonian formulation of the Langevin equation with zero
fluctuations, that is, the Brownian-like thermal fluctuations due to the environment
are neglected and the system undergoes a gradual decay until its total energy is
completely and irreversibly lost by dissipation (leading to the stopping of the corre-
sponding dynamics). This model can provide us a nice illustration of the dynamics
of a particle on a quantum viscid media.

Consider first the classical equation of motion for a damped particle of mass m
under the action of a one-dimensional external potential V (x) and a mean friction γ.
The corresponding Langevin equation can be written as

mẍ + mγ ẋ + V ′(x) = 0, (2.224)

where overdots on the position variable indicate the order of the total time derivatives,
and primes for different orders of derivation of the external potential with respect to
the position variable. Now, by multiplying this equation by eγt , we have

d

dt

(
meγt ẋ

)+ V ′(x)eγt = 0. (2.225)

If we consider the change of variable X = x and

P ≡ meγt ẋ = peγt , (2.226)

where p = mẋ is the physical momentum, we readily notice that (2.225) is just the
Lagrange equation satisfied by the time-dependent Lagrangian function

L = P2

2m
e−γt − V (X)eγt , (2.227)

where P plays the role of a canonical momentum with P = ∂L/∂ Ẋ . This equation
allows us to obtain straightforwardly the corresponding Hamiltonian function

H = Ẋ P − L = P2

2m
e−γt + V (X)eγt , (2.228)

which is a function of the canonical variables X and P satisfying the Hamilton
equations

Ẋ = ∂H

∂P
, Ṗ = −∂H

∂X
. (2.229)

Thus, the energy of the classical system can be expressed as

E = p2

2m
+ V (x) = He−γt . (2.230)
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which exhibits the typical exponential decay due to the dissipative dynamics.
The quantum analog of (2.228) can be now obtained by considering the (canon-

ical) momentum operator P = −i�∂/∂X (= −i�∂/∂x) leading to the standard
commutation rule, [X, P] = i�. Notice that the same commutation relation for the
physical operators of position and momentum is written as [x, p] = i� e−γt . The
quantum Hamiltonian operator reads as

H = − �
2

2m
e−γt ∇2

X + V (X)eγt , (2.231)

leading to the generalized, dissipative Schrödinger equation

i�
∂Ψ

∂t
= − �

2

2m
e−γt∇2

x Ψ + V (x)eγtΨ (2.232)

in terms of the physical coordinate. Thus, as long as the momentum operator is not
acting, the use of the wave equation in the physical coordinate is formally correct.

In the Bohmian formalism [102], the polar form of the wave function is again
used, Ψ (x, t) = ρ1/2(x, t)ei S(x,t)/�. When substituting into (2.232), the following
coupled partial differential equations are reached

∂ρ

∂t
+ ∇x J = 0, (2.233)

∂S

∂t
+ 1

2m
∇2

x S e−γt + Veff(x, t) = 0, (2.234)

where J = (1/m)ρ∇x Se−γt is the associated probability density current and
Veff(x, t) = V (x)eγt + Q(x, t) is an effective potential, which includes the quantum
potential

Q = − �
2

2m

∇2
x ρ

1/2

ρ1/2
e−γt = − �

2

4m

[
∇2

x ρ

ρ
− 1

2

(∇xρ

ρ

)2
]

e−γt . (2.235)

The time-dependent decaying factor, e−γt , also manifests in the corresponding dis-
sipative Bohmian trajectories, which are derived from the equation of motion

ẋ = J

ρ
= ∇x S

m
e−γt = �

2miρ

(
Ψ ∗∇xΨ − Ψ ∇xΨ

∗) e−γt . (2.236)

In this expression, the Bohmian momentum also holds a similar relationship to
(2.226), i.e., PB = ∇x S = meγt Ẋ , with X (t) = x(t) being the corresponding
Bohmian trajectory.
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For simple problems such as, for example, free propagation, interference dynam-
ics, linear potentials or the harmonic oscillator, analytical solutions are available.
Usually, the initial wave function is described by a Gaussian wave packet written
as [102]

Ψ (X, t) = e(i/�)[αt (X−Xt )
2+Pt (X−Xt )+ ft], (2.237)

where the subscript t is used to denote explicit time-dependence of the parameters
characterizing the wave function (the subscript 0 is found when t = 0). If the wave
function (2.237) is normalized, then

f0 = i�

4
ln

[
π�

2Im{α0}
]

, (2.238)

with Im{α0} = 0. In such a case, the position andmomentum expectation values (and
therefore the wave-packet centroid) follow a classical trajectory, i.e., 〈X̂〉(t) = Xt

and 〈P̂〉(t) = Pt , with (Xt , Pt ) being obtained by integrating the Hamilton equations
of motion (2.229), i.e.,

Ẋt = Pt

m
e−γt , (2.239)

Ṗt = − ∂

∂Xt
V (Xt )e

γt . (2.240)

Moreover, the physical dispersion of the wave packet is found to be

Δx(t) = ΔX (t) =
√

〈X2〉(t) − [〈X〉(t)]2 =
√

�

4Im{αt } = σt , (2.241)

where σt is the instantaneous wave-packet spreading. The expectation value of its
(also physical) energy,

Ē = 〈Ĥ〉e−γt = P2
t

2m
e−2γt + Vt + �

2m

|αt |2
Im{αt } e−2γt + �V ′′

t

8Im{αt } , (2.242)

where the primes mean derivation with respect to X . Clearly, two contributions are
present: one coming from the translational motion along the classical centroidal
trajectory (Et ) and another one related to the wave-packet spreading. This second
contribution contains information about the spatial variations of both thewave packet
and the potential.

Concerning the shape parameters αt and ft , their equations of motion can be
readily obtained as follows. Let us recast V (X) as a Taylor series expansion around
the centroidal position Xt up to the second order, i.e.,

V (X) = Vt + V ′
t (X − Xt ) + 1

2
V ′′

t (X − Xt )
2. (2.243)
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By substitutingEq. (2.237) and the expansion (2.243) into the dissipative Schrödinger
equation (2.232), and then collecting the coefficients associated with the same power
of (X − Xt ), it is easily found that

α̇t = −2α2
t

m
e−γt − 1

2
V ′′

t eγt , (2.244)

ḟt = i�αt

m
e−γt + Lt , (2.245)

with Lt given by (2.227) evaluated along the classical trajectory (Xt , Pt ) —since
this term is only time-dependent and does not have any space dependance, it will
not influence the Bohmian dynamics and therefore we will not consider its explicit
functional form. Thus, integrating the set of coupled ordinary differential equations
(2.239), (2.240), (2.244) and (2.245), the wave function (2.237) is completely spec-
ified at any time. By substituting this wave function into the Bohmian equation of
motion (2.236), the following expression for the velocity is reached

Ẋ =
[

Pt

m
+ 2Re{αt }

m
(X − Xt )

]
e−γt , (2.246)

which after integration renders the corresponding dissipative Bohmian trajectory
x(t) = X (t). From Eq. (2.246), it is clearly seen that if the second term vanishes,
the Bohmian trajectory exactly coincides with the classical one given by (2.240).
Accordingly, the condition to recover the classical equations does not require neces-
sarily of the limiting procedure of � → 0, but that the wave packet remains relatively
localized (i.e., 1/Re{αt } → 0), in agreement with the hypothesis of Ehrenfest’s the-
orem. Furthermore, if Im{αt } → 0 and the wave function becomes a pure phase
factor (except for some time-dependent norm coming from ft ), quantum motion is
still present through both Pt and Re{αt }.

2.12.1 Free Gaussian Wave Packet

If the initial wave function is considered to be a Gaussian wave packet [102]

Ψ (x, 0) =
(

1

2πσ2
0

)1/4

e−(x−x0)2/4σ2
0+i p0(x−x0)/�, (2.247)

then the initial conditions for the above Gaussian parameters and variables are X0 =
x0, P0 = p0, α0 = i�/4σ2

0, and f0 = (i�/4) ln(2πσ2
0). The corresponding initial

probability distribution is given by
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ρ(x, 0) = 1√
2πσ2

0

e−(x−x0)2/2σ2
0 , (2.248)

which provides us the spatial region for the initial conditions of the Bohmian trajec-
tories.

After integration of the aforementioned equations of motion, we have that

xt = x0 + p0

mγ
(1 − e−γt ), (2.249)

pt = p0e−γt , (2.250)

αt = α0

1 + (2α0/mγ)(1 − e−γt )
(2.251)

ft = i�

4
ln

[
π�

2Im{α0}
]

+ i�

2
ln

[
1 + 2α0

m

(
1 − e−γt

γ

)]
+ Scl,t , (2.252)

where

Scl,t =
∫ t

0
Lt ′dt ′ (2.253)

is the associated classical action. This term only adds a time-dependent phase fac-
tor, which does not play any role in the Bohmian dynamics (its gradient vanishes).
Equation (2.251) can be alternatively expressed in terms of an effective time-
dependent spreading

σ̃t = σ0

[
1 + i�

2mσ2
0

(
1 − e−γt

γ

)]
, (2.254)

which is connected to αt by the simple relationship αt = i�/4σ0σ̃t . Accordingly,
Eq. (2.252) can be recast in a simpler form,

ft = i�

4
ln(2πσ̃2

t ) + Scl,t . (2.255)

It is worth mentioning that, in terms of the canonical variables, the functional
form of this wave packet is the same as that displayed by a standard free wave packet
if t is replaced by

τ = 1 − e−γt

γ
(2.256)

in the former; in other words, a time contraction coming from the dissipative process
and associated with an eventual freezing displayed by the wave packet.

In the free dispersion limit, it is straightforward to show that (2.237) approaches
the well-known solution for the free Gaussian wave packet
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Ψ (x, t) =
[

1

2π(σ̃0
t )

2

]1/4
e−(x−xt )

2/4σ0σ̃
0
t +i p0(x−xt )/�+i Et/�, (2.257)

where xt = x0+(p0/m)t provides the instantaneous centroidal position, E = p2
0/2m

is its total mechanical energy, and

σ0
t = |σ̃0

t | = σ0

√
1 +

(
�t

2mσ2
0

)2

(2.258)

is its spreading along time, with σ̃0
t = σ0

[
1 + (i�t/2mσ2

0)
]
. However, with friction,

the wave packet undergoes asymptotically (i.e., for t → ∞) a damping in its prop-
agation (according to Eq. (2.249), stopping at the position x∞ = x0 + (p0/mγ)) as
well as in its spreading, described by

σt = |σ̃t | = σ0

√
1 +

(
�

2mσ2
0

)2 (1 − e−γt

γ

)2

. (2.259)

Notice that asymptotically, σ∞ = σ0

√
1 + (�/2mγσ2

0)
2.

The corresponding Bohmian trajectories, which are obtained after integration of
the equation of motion (2.246), are given by

x(t) = xt + σt

σ0
[x(0) − x0], (2.260)

which is formally equivalent to the expression that one obtains for the free, frictionless
case (see Chap.1). In the case with friction, Eq. (2.260) reaches the asymptotic limit

x(t → ∞) = x0 + p0

mγ
+
√
1 +

(
�

2mγσ2
0

)2

[x(0) − x0]. (2.261)

Thus, the wave packet becomes localized: motionless and with the spreading being
frozen. For strong friction, it becomes essentially parallel to the classical or cen-
troidal trajectory, since the time-dependence vanishes very quickly and, therefore,
σt becomes a constant value very rapidly. To some extent, this is a step towards the
classicality of the quantum system without appealing to the more standard limiting
procedure of � → 0.

In Fig. 2.7 a series of wave-packet properties and Bohmian trajectories are shown
for different values of the friction coefficient: γ = 0.025 (black solid line), γ = 0.1
(blue dashed line), and γ = 0.5 (red dash-dotted line). The numerical simulations
have been carried out with the following initial conditions: σ0 = 1, x0 = 0 and
p0 = 2.5 (atomic units). In the upper row, we show the average position (a), (spatial)
dispersion (b), and energy (c) as a function of time. To compare with, we have
also included the frictionless values, denoted with the gray dotted line. The energy

http://dx.doi.org/10.1007/978-3-319-53653-8_1
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(a) (b) (c)

(d) (e) (f)

Fig. 2.7 Top Average position (a), dispersion (b), and energy (c) for a Gaussian wave packet in
free space affected by friction. Different values for the friction coefficient have been considered:
γ = 0.025 (black solid line), γ = 0.1 (blue dashed line), and γ = 0.5 (red dash-dotted line).
To compare with, the frictionless case (γ = 0) has also been included and is denoted with the
gray dotted line. The value of the other parameters considered in these simulations were: x0 = 0,
p0 = 2.5 (E0 = 3.25), σ0 = 1, m = 1, and � = 1. Bottom Bohmian trajectories associated
with the three dissipative cases considered atop: d γ = 0.025, e γ = 0.1, and f γ = 0.5. Again,
to compare with, the trajectories for the frictionless case (with the same initial conditions) have
also been included in each panel (gray dashed lines). The initial positions have been distributed
according to the initial Gaussian probability density

expectation value is given by

Ē =
(

p2
0

2m
+ �

2

8mσ2
0

)
e−2γt , (2.262)

i.e., it is suppressed at twice the rate γ. Bohmian trajectories illustrating these dissi-
pative cases are displayed in the three lower panels, from left to right: (d) γ = 0.025,
(e) γ = 0.1, and (f) γ = 0.5. The trajectories for the frictionless case have also
been included in each panel (gray dashed lines). To better appreciate the differ-
ent effect of the wave-packet spreading and how it is suppressed as γ increases,
15 trajectories are chosen with initial positions distributed according the initial
Gaussian probability density. Thus, for small frictions, it is observed that trajec-
tories starting in the “wings” of the wave packet will increase faster their distance
with respect to the centroid than those closer to the latter. Moreover, this distance
will be faster for trajectories starting behind the centroid than in front of it due to the
larger relative difference between their associated velocities. This effect is, however,
damped as the friction coefficient increases, thus producing a smaller separation
among trajectories and eventually a freezing of their position for times larger than
γ−1. These frozen positions are given by Eq. (2.261).
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2.12.2 Interference of Two Gaussian Wave Packets

Let us consider now the interference problem of two free wave packets. As is known,
a general solution to this problem can be expressed as a coherent superposition,

Ψ = N (Ψ1 + Ψ2), (2.263)

withN being the overall norm factor (it is assumed that each Gaussian wave packet,
given by Eq. (2.257), is normalized). As it can be shown, the associated Bohmian
equation of motion reads as [102]

ẋ = ρ1
ρ

ẋ1 + ρ2
ρ

ẋ2 + �

2miρ

(
Ψ ∗
1 ∂xΨ2 − Ψ2∂xΨ ∗

1
)

e−γt

+ �e−γt

2miρ

(
Ψ ∗
2 ∂xΨ1 − Ψ1∂xΨ ∗

2
)

e−γt

= ρ1
ρ

[
pt,1

m
+ 2Re{αt,1}

m
(x − xt,1) e−γt

]

+ ρ2
ρ

[
pt,2

m
+ 2Re{αt,2}

m
(x − xt,2) e−γt

]

+ 2 cos ξ12

√
ρ1ρ2

ρ

[
pt,1 + pt,2

2m
+
[
Re{αt,1}(x − xt,1) + Re{αt,2}(x − xt,2)

m

]
e−γt

]

− 2 sin ξ12

√
ρ1ρ2

ρ

[
Im{αt,1}(x − xt,1) − Im{αt,2}(x − xt,2)

m

]
e−γt , (2.264)

where ẋi refers to the equation of motion for the i th wave packet and ξ12 = (S1 −
S2)/�, being ρi and Si the probability density and real phase associated with the i th
wave packet when it is expressed in polar form. As it can be seen, this expression
simply reflects the sum of two separate fluxes, each one associated with one wave
packet, plus another one coming from their interference.

Depending on the value given to the parameters of each wave packet, one can
generate different dynamics. For example, if they have the samewidth (αt,1 = αt,2 =
αt ) and are located at symmetric positions with respect to x = 0 (xt,1 = x0 = −xt,2),
then (2.264) simplifies to

ẋ = ρ1

ρ

[
pt,1

m
+ 2Re{αt }

m
(x − x0)e

−γt

]
+ ρ2

ρ

[
pt,2

m
+ 2Re{αt }

m
(x + x0)e

−γt

]

+ 2 cos ξ12

√
ρ1ρ2

ρ

[
pt,1 + pt,2

2m
+ 2Re{αt }

m
xe−γt

]

+ 2 sin ξ12

√
ρ1ρ2

ρ

[
2Im{αt }

m
x0e−γt

]
. (2.265)

This situation can simulate the two slit experiment when each wave packet is asso-
ciated with one of the diffracted beams in a viscid medium. In such a case, if the
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longitudinal propagation (parallel to the diffractive screen) is slower than the perpen-
dicular one (in the direction of the diffracted beam), both motions can be decoupled
and treated as two independent one-dimensional propagations, one longitudinal and
the other translational, the latter being well accounted for by a plane wave. Now, if
one assumes that p0,1 = p0,2 = 0, i.e., there is no translational motion along the
longitudinal direction, but only spreading of the two wave packets [103], the above
expression (2.265) will read as

ẋ = ρ1

ρ

[
2Re{αt }

m
(x − x0) e−γt

]
+ ρ2

ρ

[
2Re{αt }

m
(x + x0) e−γt

]

+ 2 cos ξ12

√
ρ1ρ2

ρ

[
2Re{αt }

m
xe−γt

]

+ 2 sin ξ12

√
ρ1ρ2

ρ

[
2Im{αt }

m
x0e−γt

]
. (2.266)

Results after integration of this equation of motion for different values of γ (the
same values as in the case of the free wave packet treated above) can be seen in
Fig. 2.8. As it can be seen through the sets of trajectories selected, the friction of the
medium leads to the localization of the two wave packets by gradually “freezing”
them rather than by annihilating the coherence between them due to the interaction
with an environment. In other words, the reason why interference is not observed in
a quantum viscid medium is because the wave packets cannot be seen each other,
rather than because the destruction (over time) of their mutual coherence.

Several types of interference dynamics can be devised by changing the initial
values of the parameters involved in this superposition problem [102].

2.12.3 Linear Potential

For a linear interaction potential like a gravitational or an electric field, the classical
solutions are also readily obtained [102, 104]. Thus, if V (x) = −max (a being a
positive parameter), we have that

xt = x0 + p0

m

(
1 − e−γt

γ

)
+ a

(
γt − 1 + e−γt

γ2

)
, (2.267)

pt = p0e−γt + ma

(
1 − e−γt

γ

)
, (2.268)

and αt and γt keep the same functional form as in the free damped case (although
Lt varies for the latter due to the presence of a nonzero potential function), because
only second-order derivatives influence the evolution of those parameters (through
V ′′

t , as seen in Eq. (2.244)).
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(a) (b) (c)

(d) (e) (f)

Fig. 2.8 Top Final probability density (at t = 20) for a coherent superposition of two Gaussian
wave packets in free space affected by friction. The same friction values as in Fig. 2.7 have been
considered: a γ = 0.025 (black solid line), b γ = 0.1 (blue solid line), and c γ = 0.5 (red solid line).
To compare with, the frictionless case (γ = 0) has also been included in each panel (gray dashed
line). The value of the other parameters considered in these simulations were: x0,1 = 5 = −x0,2,
p0,1 = p0,2 = 0 (E0 = 3.25), σ0,1 = σ0,2 = 1, m = 1, and � = 1. Bottom Bohmian trajectories
associated with the three dissipative cases considered atop: d γ = 0.025, e γ = 0.1, and f γ = 0.5.
Again, to compare with, the trajectories for the frictionless case (with the same initial conditions)
have also been included in each panel (gray dashed lines). The initial positions have been distributed
according to the initial Gaussian probability density

The frictionless limit γ → 0 leads us to the well-known expressions for uniform
accelerated motion, with xt = x0 + (p0/m)t + (a/2)t2 and pt = p0 + mat . The
wave packet also approaches the expression corresponding to the solution to ramp-
like potentials [104], equal to (2.257), except for the different functional form of Et

(Et = p2
0/2m−max0) and an extra term coming from the classical action. Regarding

the long-time limit for finite friction (i.e., for t � γ−1), we find that while the wave
packet freezes its spreading, as in the previous example, it still keeps moving due
to the constant limit momentum, p∞ = ma/γ. Accordingly, the centroid of the
wave-packet displays a uniform motion described by

xt→∞ = x0 + p0

mγ
− a

γ2
+ a

γ
t. (2.269)

With γ, the transition from a uniformly accelerated motion, displayed by the wave-
packet centroid, to a uniform rectilinear one, as a consequence of the damping,
becomes more apparent. The expression for the average energy is given by
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Ē = p2
0

2m
e−2γt − max0 − p0aγ

(
1 − e−γt

γ

)2

+ ma2

2

(
3 − 2γt − 4e−γt + e−2γt

γ2

)
+ �

2

8mσ2
0

e−2γt . (2.270)

In the limit γt � 1, this expression approaches

Ē = −max0 − p0a

γ
+ ma2

2γ2
(3 − 2γt) . (2.271)

Unlike the example of the free wave packet, here the energy does not approach
zero asymptotically, but it continues decreasing below it as the wave packet slides
downhill (unless some additional constraint is imposed in the dynamics to avoiding
this situation). Nevertheless, although there is no suppression of the motion, spatial
localization is still present.

On the other hand, due to the fact thatαt does not depend on the potential function,
the functional form displayed by the Bohmian trajectories is exactly the same as in
the free case, except for the fact that these trajectories contain information about the
acceleration undergone by the centroid (this information is transmitted through xt ).
Now, once the exponentials have vanished, all these trajectories evolve parallel one
another, just like classical trajectories under similar circumstances.

2.12.4 Damped Harmonic Oscillator

In a frictionless situation, the wave functions for a harmonic potential given by
V (x) = mω2

0x2/2 are expressed as

Φn(x, t) = Nne−(mω0/2�)x2−i(n+1/2)ω0t Hn(
√

mω0/�x), (2.272)

with energies En = (n + 1/2)�ω0, and where Hn is the Hermite polynomial of
degree n and Nn = (1/

√
2nn!)(π�/mω0)

−1/4 is the normalization constant. These
energy values can be obtained by employing the same method used above to derive
the analytical expression of the time-evolved wave packets [105]. Analogously, it
can also be used to determine the dissipative counterpart of Eq. (2.272) [102],

Φn(x, t) = Nne−(mΩ/2�)(1+iγ/2Ω)eγt x2−i(n+1/2)Ωt+γt/4Hn(
√

mΩ/�eγt/2x)

= Nne−(mΩ/2�)eγt x2−i(n+1/2)Ωt−i(mγ/4�)eγt x2+γt/4Hn(
√

mΩ/�eγt/2x).

(2.273)

However, contrary to Eqs. (2.272), (2.273) describes a quasi-stationary state. As
formerly shown by Vandyck [106], these states, at each time, are eigenstates of the
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dissipative Schrödinger equation and eventually collapse to zero. Of course, these
states are only defined for ω0 > γ/2.

Concerning the associated Bohmian trajectories, from Eq. (2.273), we have that

ẋ = −γ

2
x, (2.274)

which after integration renders

x(t) = x(0)e−γt/2. (2.275)

That is, regardless of the eigenstate considered, any trajectory falls down to the
bottom of the potential at the same rate, γ/2, and therefore merging asymptotically
at x = 0. The reason for such a behavior is that themodel is fully dissipative and there
is no possibility for a feedback with an environment, as happens when a Brownian-
like motion is assumed. In this latter case, the stochastic fluctuations accounting for
the feedback with a surrounding medium would be enough to sustain a dynamical
regime (even if stationary) and avoid its full collapse.

We are going to consider here the case of a coherent (or minimum uncertainty)
Gaussian wave packet initially centered around the turning point x = x0 (p0 = 0).
At any subsequent time, this wave packet is described by

Ψ (x, t) =
(

1

2πσ2
0

)1/4

e−(x−xt )
2/4σ2

0+i pt (x−xt )/�−iω0t/2+i pt xt /�, (2.276)

with xt = x0 cosω0t and pt = −mω0x0 sinω0t . The corresponding probability
density reads as

|Ψ (x, t)| = 1√
2πσ2

0

e−[x−x0 cos(ω0t)]2/2σ2
0 , (2.277)

where σ2
0 = �/(2mω0) for the wave packet (2.276) to be coherent (otherwise, the

wave packet will keep its Gaussian shape and will display an oscillating variation of
its width or “breathing” as it moves back and forth between the two turning points).
The corresponding quantum action is

S(x, t) = −1

2
�ω0t − mω0

4

[
4xx0 sin(ω0t) − x2

0 sin(2ω0t)
]
, (2.278)

which leads to Bohmian trajectories oscillating with the same frequency as xt , but
around their initial position

x(t) = [x(0) − x0] + x0 cos(ω0t). (2.279)
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As also happens in classicalmechanics, in order to proceed analytically in the dissipa-
tive case, it is important to distinguish three cases depending on whether ω0 is larger
than, equal to or smaller than γ/2, i.e., if we have underdamped oscillatory motion,
critically damped motion, or overdamped motion, respectively. These situations lead
to the following solutions for the centroidal trajectory:

ω0 > γ/2 =⇒

⎧⎪⎨
⎪⎩

xt =
(ω0

Ω

)
x0e−γt/2 cos(Ωt − ϕ)

pt = −m

(
ω2
0

Ω

)
x0e−γt/2 sinΩt

, (2.280)

ω0 = γ/2 =⇒
⎧⎨
⎩

xt = x0
(
1 + γ

2
t
)

e−γt/2

pt = −mx0
(γ

2

)2
e−γt/2

, (2.281)

ω0 < γ/2 =⇒

⎧⎪⎨
⎪⎩

xt =
(ω0

Γ

)
x0e−γt/2 cosh(Γ t + φ)

pt = −m

(
ω2
0

Γ

)
x0e−γt/2 sinhΓ t

, (2.282)

where Ω =
√

ω2
0 − (γ/2)2, ϕ = (tan)−1(γ/2Ω), Γ = iΩ , and φ = (tanh)−1

(γ/2Γ ). The relationship between ω0 and γ also influences the calculation of αt and
ft . In the case of αt , the equation of motion to be solved is

α̇t = −2α2
t

m
e−γt − 1

2
mω2

0eγt , (2.283)

which can be conveniently rearranged by introducing the change αt = gt eγt . This
leads to the equation of motion

ġt = − 2

m

[
g2t + mγ

2
gt +

(mω0

2

)2] = − 2

m
(gt − g+)(gt − g−), (2.284)

which does not contain exponential terms, and where

g± = m

2

[
−γ

2
±
√(γ

2

)2 − ω2
0

]
. (2.285)

From the latter expression, it is now clear how the three cases of damped motion
also rule the behavior of αt , although there are some physical subtleties to take into
account. If ω0 = γ/2, the general solution for gt reads as

gt = g+(g0 − g−)eβt − g−(g0 − g+)e−βt

(g0 − g−)eβt − (g0 − g+)e−βt
, (2.286)
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where β =
√

(γ/2)2 − ω2
0 and g0 is the initial condition. Otherwise, if ω0 = γ/2

(critically damped motion), we have g+ = g− and Eq. (2.284) becomes

ġt = − 2

m
(gt − gs)

2, (2.287)

with gs = −mγ/4. The integration over time of this equation of motion yields

gt = gs + g0 − gs

1 + (g0 − gs)(2t/m)
. (2.288)

If we now assume that our initial wave packet is (2.276) and consider the initial
condition g0 = α0 = αt = imω0/2, then gt becomes an oscillatory function of time
for ω0 > γ/2, since β = iΩ . Otherwise, it becomes a monotonically decreasing
function of time, with the asymptotic limits g∞ = gs if ω0 = γ/2, or g∞ = g+ (with
β = Γ ) if ω0 < γ/2.

Notice in Eq. (2.286) that gt remains constant with time if we assume that g0
is equal to either g+ or g−, which can be inferred either from Eq. (2.286) or also
directly from Eq. (2.284) by setting ġt = 0. This means αt = g+eγt , if g0 = g+, or
αt = g−eγt , if g0 = g−. In order to choose the appropriate solution, we consider the
fact that in the limit γ → 0 the chosen solution has to approach the non-dissipative
value, i.e., αt → imω0/2, which only happens if g0 = g+. Therefore, we have that

αt = imΩ

2

(
1 + iγ

2Ω

)
eγt . (2.289)

It should also be stressed that in the limit of vanishing friction, this value approaches
the frictionless one mentioned above. More importantly, αt has a real and an imagi-
nary part, and therefore the wave function will be properly normalized. This can be
readily seen by integrating the equation of motion for ft , which leads to

ft = i�

4
ln

(
π�

mΩ

)
− �Ω

2

(
1 + iγ

2Ω

)
t + Scl,t . (2.290)

Substituting all these parameters in the expression for the wave function, it reads as

Ψ (x, t) =
(

1

2πσ2
t

)1/4

e−(x−xt )
2/4σ2

t +i pt (x−xt )/�−iΩt/2−(imγ/4�)eγt (x−xt )
2+i Scl,t /�,

(2.291)

with the width being σt = e−γt/2√
�/2mΩ . As can be noticed, the first three argu-

ments in the exponential of Eq. (2.291) are identical to those in Eq. (2.276), but
replacingω0 byΩ . The wave function is properly normalized, but its width decreases
exponentially with time according to
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Δx = σt e
−2γt . (2.292)

Thus, it eventually collapses over the center of the harmonic well as the whole wave
packet follows the motion of a damped harmonic oscillator. Along this transit, the
system energy is also exponentially lost according to

Ē = 1

2
mω2

0x2
0

(ω0

Ω

)2 [
1 − γ

2ω0
sin(2Ωt − ϕ)

]
e−γt + 1

2
ω0�

(ω0

Ω

)
e−γt . (2.293)

It is worth stressing that under underdamped conditions, αt , given by Eq. (2.289),
is a complex function, which makes the wave function (2.291) to display a vanishing
Gaussian shape plus a phase factor as the system oscillates, as seen in Eq. (2.291).
Critically damped and overdamped conditions imply that the motion amplitude of
the system exhibits a monotonic decrease to zero, with no oscillations. In the present
context, where we are seeking for solutions such that ġt = 0, this now translates
into a rather puzzling quantum behavior. In order to analyze it, let us start from the
overdamped condition, ω0 < γ/2. Equation (2.286) is still valid, although we have
g± = ±(mΓ/2)(1∓ γ/2Γ ). Between these two solutions, we choose g+, because it
is consistent with Eq. (2.289) and also because it corresponds to the long-time limit
of gt in this case (i.e., for β = Γ ). Accordingly, the spreading factor will read as

αt = mΓ

2

(
1 − γ

2Γ

)
eγt , (2.294)

which is a pure real function. Thus,

ft = f0 + i�Γ

2

(
1 − γ

2Γ

)
t + Scl,t , (2.295)

where f0 is now left as a free parameter, although its imaginary part has to be such that
the initial plane wave is still normalized. Notice that in this case the corresponding
wave function is written now as

Ψ (x, t) = e−(imΓ/2�)(1+γ/2Γ )eγt (x−xt )
2+i pt (x−xt )/�+Γ t (1+γ/2Γ )/2+i f0+iScl,t /�, (2.296)

which is a pure phase factor multiplied by a diverging time-dependent exponential.
It is interesting to emphasize that, although the wave function itself diverges, the
associated Bohmian trajectories are well-defined and approach asymptotically the
classical overdamped centroid, xt (see below).

Regarding the critically damped motion, if we consider here the initial value
g0 = gs , the stationary solution is gt = gs = −mγ/4, and therefore

αt = −mγ

4
eγt . (2.297)
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As it can be seen, this value of αt allows us to connect smoothly those two previ-
ously obtained in underdamped and overdamped cases as the friction γ is gradually
increased.

In spite of the type of motion displayed in each one of the regimes discussed
above, the Bohmian equation of motion for the trajectories can be recast in the same
form for all of them,

d(x − xt )

x − xt
= − γ̄

2
dt, (2.298)

where γ̄ = γ for underdamped and critically damped motions, and γ̄ = γ − 2Γ for
overdamped motions. As it can be noticed, this equation looks exactly the same as
Eq. (2.274) for the eigenstates, although replacing x by x − xt . Thus, the solutions,

x(t) = xt + [x(0) − x0]e−γ̄t/2, (2.299)

are also very similar. In the case of Eq. (2.275), since the associated wave function
is a quasi-eigenstate, the trajectory approaches asymptotically the origin or, in other
words, it falls down to the bottom of the well. In the case of Eq. (2.299), and dif-
ferently to what we have seen before, any trajectory will eventually coalesce with
the centroidal one. This is an interesting case where the Bohmian non-crossing rule
seems to be violated. Actually, the evolution of the trajectories is in compliance
with the shrinking undergone by the wave function in the damped oscillatory regime
and its evanescent nature in the overdamped regime. These trajectories, described
generically by Eq. (2.299), have the following analytical form

x(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
[x(0) − x0] + x0

(ω0

Ω

)
cos(Ωt − ϕ)

}
e−γt/2, ω0 > γ/2{

[x(0) − x0] + x0

(
1 + γt

2

)}
e−γt/2, ω0 = γ/2

{
[x(0) − x0]eΓ t + x0

(ω0

Γ

)
cosh(Γ t + φ)

}
e−(γ−2Γ )t/2, ω0 < γ/2

,

(2.300)

where the first expression looks very similar to that for the unperturbed harmonic
oscillator, with the exception of the overall exponentially decaying factor and the
dephasing in the cosine function.
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Chapter 3
Bohmian Stochastic Trajectories

Abstract In the last decades, many nonlinear extensions of the Schrödinger
equation have been proposed in literature either to explore the fundamental aspects of
quantummechanics, with the usual linear theory representing only a limiting case, or
to describe open quantum systems. For the description of nonconservative quantum
systems, Kostin formulated in an heuristic way the so-called Schrödinger–Langevin
(SL) equation or Kostin equation, for the Brownian motion. This equation has been
subsequently rederived, improved and extended for its use in numerous applications,
mainly without including the noise term. Numerous features of this SL equation
can be better revealed within the framework of de Broglie–Bohm (quantum hydro-
dynamical trajectory formulation) of quantum mechanics. Within this formalism,
several dissipative problems are presented and discussed: the Ramsauer–Townsend
effect, the tunneling dynamics through a barrier, the plasma fluid formulation and the
Lorentz–Abraham (extended electron) equation for a point-charge electron. These
two last examples are also discussed in order to see the correspondence between clas-
sical and quantum dynamics. Very few applications of this SL equation are devoted
to stochastic problems in the literature where the noise term needs to be included.
The so-called Bohmian–Brownian motion is introduced in the context of surface
diffusion with single adsorbates. An extension to interacting adsorbates is discussed
within a simple, phenomenological model. Interestingly enough, this study leads us
to quantum anomalous diffusion. The harmonic motion is also briefly considered
in order to compare with the same open dynamics under the presence of a continu-
ous quantum measurement (Chap. 4). Finally, a generalization of the SL equation is
proposed for nonlinear dissipation.

3.1 Introduction

The study of open quantum systems constitutes a very broad and active field of
research within quantum mechanics. As it is well known, strictly speaking, real
physical systems do not exist in complete isolation in Nature. All physical systems
are open systems since the interaction with their environment can never be totally
neglected. The energy transfer from the system to the environment is termed quantum
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relaxation or damping. If there is no chance for the energy to move backwards into
the system, the unidirectional energy flow into the reservoir is then called quantum
dissipation. On short timescales, the distinction between quantum relaxation and
dissipation is obviously unclear. Only when the environment has a small number of
degrees of freedom, the energymoves backwards into the system; this phenomenon is
called a recurrence This interaction also gives rise to a strong quantum correlation or
entanglement between the systemand environmentwhich eventually leads the former
to become a statistical mixture (decoherence). The so-called theory of open quantum
systems [1–5] encompasses a series of formalisms and approaches developed to deal
with the corresponding quantum dynamics. This line of research can be considered
as an interdisciplinary field, where very broad branches of physics, chemistry and
biology meet together to describe processes that are ubiquitous in nature [1–3, 6–
8]. Nevertheless, finding good quantum analogues of classical dissipative systems
constitutes a very difficult task and it still remains an important topic because of some
problems such as, for example, commutation rules, time ordering and symmetrization
can not be neglected in the quantum world.

Irreversible quantum processes take place when dealing with extended systems
as environments or, more precisely, with systems displaying an infinite number of
degrees of freedom (photon or phonon fields, for example). Quantum noise has its
origin in our inability to specify each of all the infinite modes of a given field when
considering an environment around a system; noise appears when the reaction of the
field back on the system is not neglected. Under certain conditions the duration of
the reservoir correlations is very short compared to the dynamical evolution of the
system. This leads to a total memory loss of the bath dynamics that gives rise to a
subsequent irreversible loss of coherence and energy (or population) relaxation in
the system. This is called aMarkovian regime. Within this regime, the time-evolution
of the system does only depend on the present state of the system; this is called a
Markovian process. As will be seen, when this happens, the system dynamics can
be characterized by (relatively) simple Markovian master equations, where one does
not need to take into account the reservoir dynamics and its effects on the system
are described by means of certain operators. Quantum stochastic methods in the
Markovian and non-Markovian regimes have been widely developed in quantum
optics [7]. In particular, the non-Markovian dynamics of open quantum systems is
being developed very fast in the last years. It has been finally established that there
is no quantum Onsager regression theorem and the correct generalization of the
Onsager hypothesis is the fluctuation-dissipation theorem [9].

In analogy to open classical systems, three main different approaches to deal with
quantum dissipative/stochastic dynamics can also be considered here. First, effective

Fig. 3.1 Schematic view of
the coupling of a system
surrounded by its
environment
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time-dependent Hamiltonians. The Caldirola–Kanai model is a good example which
has been developed shortly in Chap.2. Second, the system–plus–environment model
Hamiltonian where a schematic view is displayed in Fig. 3.1. The whole system
(physical system and environment or thermal bath) is considered as an isolated sys-
tem [2, 3]. Both system and reservoir are in continuous interaction and the effects
—quantum coherence loss or decoherence, population transfer, and/or (system–
environment) energy exchange—arising from that interactionwill depend to a greater
or a lesser extent on the coupling strength and its intrinsic nature. Under these con-
ditions, one speaks about the environment induced decoherence. An interesting and
very important process is vibrational dephasing of small molecules immersed in a
rare gas in liquid phase [10–15]. Fluctuations occur because of random collision
events. Due to its interaction with the environment, the system usually behaves quite
different with respect to its behavior in isolation. Its time-evolution is not unitary and
therefore cannot be described in terms of the Schrödinger equation. However, the
powerful standard quantum-mechanical theoretical formalisms developed are at our
complete disposal. Dissipation can be described following one of the three standard
pictures of quantum mechanics: Schrödinger, Heisenberg, Dirac (interaction). In the
first and third pictures, one always tries to find master equations that account for the
time-evolution of the so-called reduced system, where the bath degrees of freedom
have been traced out. As has been mentioned previously, among this type of equa-
tions of motion, the simplest class is that of Markovian character where one assumes
that the bath has no memory and the time-evolution of the reduced density matrix
depends only on its present time. The Lindblad equation plays a fundamental role in
this context. On the contrary, non-Markovian approaches lead to a loss of analytical
and conceptual simplicity as well as larger computational times. An alternative way
to the density matrix formalism also comes from the path integral formulation of
quantum mechanics (fourth picture of quantum mechanics). Many efforts are being
addressed along this way with also great success. If the Heisenberg picture is fol-
lowed, the quantum (generalized or standard) Langevin equation is reached (needless
to say that all formulations are equivalent). Essentially, this procedure consists of
replacing the reservoir by damping terms in the Heisenberg equations of motion
of a conservative system and then adding random forces as driving terms that give
rise to fluctuations over the system. These stochastic quantum formalisms are being
addressed to more and more complex systems. Finally, if the wave function or vec-
tor state is considered as a stochastic process in Hilbert space, the corresponding
formulation is given in terms of a time-dependent density functional, the dynamics
being described no longer by a master equation but by the Itô stochastic differential
equation. The realizations of the underlying stochastic processes are also called quan-
tum trajectories, which have not to be confused with the same denomination used
in Bohmian mechanics [4, 5]. And third, nonlinear Hamiltonians. Nonlinear wave
mechanics has been sought since the inception of the original linear Schrödinger
equation. It constitutes one among the most investigated topics in quantum mechan-
ics. These generalizations emerge from the study of important phenomena occurring
in condensed matter physics, for instance, in the propagation of light pulse in an
optical fiber and propagation in a nonlinear birefringent medium. Among the many

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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nonlinear variants of Schrödinger equations proposed in literature [16–25], some of
them are applied in order to save the superposition principle of the linear quantum
mechanics, or propose the introduction of homogeneous nonlinear terms in order to
save, only partially, the superposition principle. The problem of experimental veri-
fication has also been studied [26, 27] – and the parameter that defines the coupling
constant for nonlinear perturbations of the Schrödinger equation has been estimated.
The main problem in applications of results obtained for evaluating the coupling
constant is that research in the conventional nonlinear wave mechanics has been
mainly concentrated on the equation with log-nonlinearity. As we show in what fol-
lows, the conceptual understanding of these equations can be better suited in the
framework of Bohmian mechanics and some correspondence between classical and
quantum quantities can be carried out [21–24]. The Feynman propagator for eight
nonlinear Schrödinger equationswithin this context have recently been analyzed [28].
Many nonlinear equations have soliton solutions characterized by widths which do
not spread in time; in particular, as has been mentioned in Chap.2, when dealing
with the Gross–Pitaevskii equation (see Sect. 2.11). Optical solitons are thought to
be very important in optical transmission systems since the soliton pulse can main-
tain its wave form over long distances. Finally, we should also mention that when
considering the measuring process (see Chap.4), nonlinear equations also play an
important role. In any case, without and with the presence of a measurement, the per-
spective of an open dynamics has to be kept in mind. However, the causal stochastic
approach described in Chap.1, Sect. 1.3.1, is not going to be followed from now on.

In this Chapter, dissipation and stochasticity are discussed within the fifth picture
of quantum mechanics due to de Broglie and Bohm (as mentioned in the Preface).
Section3.2 is devoted to the introduction of the so-called nonlinear Schrödinger–
Langevin (SL) or Kostin equation for a Brownian particle. This equation has been
subsequently rederived, improved and extended for its use in numerous applications,
mainly without including the noise term. In Sect. 3.3, this SL equation is derived
within the Bohmian formalism, the SLB equation. In this hydrodynamical frame-
work, a Gaussian probability density is considered for potentials up to second order
in a Taylor expansion. In particular, for a harmonic potential, the so-called Pinney
equation but with an additional friction term is finally obtained for its time spreading.
In Sect. 3.4, the Ramsauer–Townsend effect in a dissipative medium is studied and
analyzed in very detail by means of the SL and SLB equations. This effect tells us
that under certain incident conditions for energy and a given width of the well depth,
the reflection coefficient is totally suppressed. Section3.5 presents the tunneling
dynamics through a dissipative barrier. In the next two sections, Sects. 3.6 and 3.7,
the plasma fluid formulation and the Lorentz–Abraham equation for a point-charge
electron within Bohmian mechanics are also discussed in order see the correspon-
dence between classical and quantum dynamics. Very few applications of this SL
equation are devoted to stochastic problems in the literature where the noise term
needs to be included. In Sect. 3.8, the so-called Bohmian–Brownian motion is intro-
duced in the context of surface diffusion with single adsorbates. An extension to

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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interacting adsorbates is discussed within a simple, phenomenological model. Inter-
estingly enough, this study leads us to quantum anomalous diffusion. The harmonic
motion is also considered in order to compare with the same open dynamics under
the presence of a continuous quantum measurement (Chap. 4). Finally, Sect. 3.9 is
devoted to present and discuss a generalization of the SL equation for nonlinear
dissipation.

3.2 The Schrödinger–Langevin Equation

In the sixties, Senitzky [29] and Ford et al. [30] showed that a system of coupled
harmonic oscillators could model a heat bath. The corresponding Brownian motion
was then studied both classically and quantum-mechanically. The corresponding
Langevin equation was obtained as a result of reducing the dimensionality of the
full problem by tracing out over the bath variables. The heat bath was thus only
described by two parameters: the friction coefficient and the temperature through a
random force. This random force was shown to be a Gaussian stochastic process. The
variables in the quantum Langevin equation were assumed to be operators with order
preserved according to theHeisenberg picture. Different orderings are available, such
as the symmetric rule, Weyl’s rule, etc., in order to construct Hermitian operators.
The normal product of the random force was shown to be a Gaussian process, but
not Markovian. This point is critical when compared to the classical counterpart.
For an Ohmic or constant friction coefficient, the classical Gaussian process is also
Markovian. The denomination of Ohmic friction comes from the fact that for a
constant field of force F , the average value of the momentum reads like Ohm’s law
from the Langevin equation, i.e., 〈p〉 = λ−1F , where the current described by 〈p〉
is proportional to the field applied, F , and proportionally inverse to the resistance or
friction coefficient.

Kostin [16, 17] derived heuristically the so-called Schrödinger–Langevin (SL)
equation for a Brownian particle of mass m subject to an external potential V and
interacting with a thermal bath from the corresponding quantum Langevin equation
written as

mr̈ = −γṙ + Fr (t) + ∇V (r) (3.1)

where the time random force Fr is assumed to arise from a random potential linearly
dependent on the particle position, Vr . In three dimensions, this equation reads as

i�
∂Ψ (r, t)

∂t
= − �

2

2m
∇2Ψ (r, t)

+ [V (r) + Vr (r, t) + VD(r, t) + G(t)]Ψ (r, t), (3.2)

where γ is the friction coefficient. The random potential is given by

http://dx.doi.org/10.1007/978-3-319-53653-8_4


130 3 Bohmian Stochastic Trajectories

Vr (r, t) = −r.Fr (t), (3.3)

the so-called damping potential by

VD(r, t) = − i�γ

2
ln

(
Ψ (r, t)
Ψ ∗(r, t)

)
(3.4)

and

G(t) = i�γ

2

∫
Ψ ∗(r, t) ln

(
Ψ (r, t)
Ψ ∗(r, t)

)
Ψ (r, t)dr (3.5)

is a time dependent function resulting from the average value of VD by integration
with respect to the position variable. It is easy to show that the norm of the corre-
sponding wave function is conserved and the expectation value of the corresponding
nonlinear Hamiltonian is, as usual, the sum of the kinetic and potential energies at
any time. The rate of change in energy along time is given by −γ〈p2〉/m. This G(t)
function can be removed from Eq. (3.2) by introducing the transformation

Ψ (r, t) = ei f (t)φ(r, t) (3.6)

leading to

i�
∂φ(r, t)

∂t
= − �

2

2m
∇2φ(r, t)

+
[
V (r) + Vr (r, t) + i�γ

2
ln

(
φ(r, t)
φ∗(r, t)

)]
φ(r, t), (3.7)

the f (t) function being given by

f (t) = −�
−1e−γt

∫ t

0
eγsG(s)ds. (3.8)

The motion of a Brownian particle is strictly described by the nonlinear equation
(3.7) when V = 0. It is easy to show that with the new transformation

φ(r, t) = ei S(r,t)/� (3.9)

and looking for solutions of the type given by

S(r, t) = r.p(t) + c(t) (3.10)

the corresponding quantum Langevin equation is again obtained, the solution being
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p(t) = p(0)e−γt + e−γt
∫ t

0
Fr (s)e

γsds. (3.11)

where the time-dependent function c(t) is given by

c(t) = c(0)e−γt − 1

2m
e−γt

∫ t

0
|p(s)|2eγsds. (3.12)

We should emphasize that because of the nonlinearity of the SL equation, the
superposition principle does not hold. Even more, the general solution of the cor-
responding equation can not be found and the uniqueness of the solution obtained
can not be ascertained. The nonlinear SL wave equation has been received special
attention and applied to several problems such as, for example, the damped harmonic
oscillator and the motion of a charged particle in the presence of damping while it
is moving in an external electromagnetic field [8]. It is also true that some draw-
backs are also present when dealing with this equation. For example, the solutions
for a damped harmonic oscillator contain the undamped frequency instead of the
reduced or renormalized frequency (see below). The analysis of the solutions of the
SL equation has been carried out usually without considering the stochastic term,
analytically and numerically [8, 31]. For a free particle represented by a plane wave,
the SL equation and the corresponding quantum Langevin equation lead to the same
solution. However, Messer [32] has studied the evolution of a Gaussian wave func-
tion in the free and harmonic potentials and shown that both equations are not strictly
equivalent. Very recently, the thermal relaxation given by the SL has been analyzed
with white and colored noises (see also Ref. [33]) for an harmonic oscillator [31].

Another heuristic derivation of the equation governing the probability density
evolution for the Brownian motion is due to Tsekov [34–36]. In terms of the proba-
bility density, the theory becomes nonlinear. Furthermore, the corresponding equa-
tions were completed by taking into account thermodynamical functions. A similar
Kostin frictional term is found. This procedure is quite similar to that developed in
the next section within the Bohmian formalism.

On the other hand, Hasse [37] showed that Kostin’s Hamiltonian is a special case
of a more general nonlinear Hamiltonian,

H = T + V + γW, (3.13)

whereT andV are the usual kinetic andpotential energyoperators, andW satisfies the
requirements: (i) 〈W 〉 = 0 and (ii) 〈p〉 = ∂W/∂q according to Ehrenfest’s theorem.
The second requirement can also be fulfilled for a number of different W operators.
For example, Süssmann’s Hamiltonian [4] is a special case, originally found by this
author in a completely empirical way when studying the force-free motion of wave
packets traveling along classical damped paths. W can also be expressed as

W =
∫ q

0
q̇ndq, (3.14)
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which, with the usual quantization rule for the momentum, becomes a differential
operator of order n. The corresponding Hamiltonian is, in general, complex and
non-Hermitian. For linear damping (n = 1), the interaction potential becomes com-
plex. This potential, called the optical potential, is in general nonlocal and has been
widely used in atomic and nuclear physics (for example, in Feshbach’s theory).
Velocity dependent interactions have also been introduced in nuclear scattering and
band theory of solids.

Several alternatives routes to derive the SL or Kostin equation can also be found
in the literature (see, for example, Ref. [38]). For nonrandom potentials, the method
of Pauli can be used to find the damping potential of the Schrödinger equation which
makes the quantum analog of the corresponding classical equations. One can also
follow the so-called Schrödinger’s procedure to generate a nonlinear wave equation.
Without loss of generality, for one dimension, the Hamilton–Jacobi equation for the
action S and momentum p = ∂S/∂x is

∂S

∂t
+ H(x, ∂S/∂x, t) = 0. (3.15)

By introducing the wave function Ψ through the relation

S(x, t) = −i� lnΨ (x, t), (3.16)

the continuity equation for ρ = Ψ ∗Ψ reads as

∂ρ

∂t
+ 1

m
∇ (ρ Re{p}) = 0, (3.17)

where Re{p} stands for the real part of p, which is in general a complex quantity if
Ψ is complex, such that

Re{p} = − i�

2m

∂ ln (Ψ/Ψ ∗)
∂x

,

Im{p} = − i�

2m

∂ ln ρ

∂x
,

(3.18a)

with the mean value of the imaginary part always vanishing. Thus, the expression
for p does again fulfill Hasse’s second requirement. The so-called Kostin energy
dissipation operator can then be expressed as

W = − i�γ

2

[
ln

(
Ψ

Ψ ∗

)
−
〈
ln

(
Ψ

Ψ ∗

)〉]
. (3.19)

The density ρ verifies the reversible continuity equation for a system displaying
damping which follows an irreversible dynamics. This contradiction was avoided
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by Schuch et al. [39–41] by introducing a diffusion term in the continuity equation
arriving at the Fokker–Planck equation,

∂ρ

∂t
+ 1

m
∇(ρ Re{p}) − D

∂2ρ

∂x2
= 0, (3.20)

D being the diffusion coefficient and with the additional condition

− D

ρ

∂2ρ

∂x2
= γ(ln ρ − 〈ln ρ〉) (3.21)

to be satisfied in order to achieve separation of the two equations for the amplitudes
Ψ and Ψ ∗. The mean value on the right–hand side guarantees the normalization.
Equations (3.20) and (3.21) can also be seen as a continuity equation with a source
term. The so-called logarithmic nonlinear Schrödinger equation is now written as

i�
∂Ψ

∂t
= [H − i�γ(ln ρ − 〈ln ρ〉)]Ψ, (3.22)

where Hasse’s second requirement comes from considering the irreversible diffusion
term.As iswell known, the dampingmotiondescribedby theFokker–Planck equation
can always be expressed in terms of its corresponding Langevin equation [42]. This
equation will be again discussed in Chap. 4 but in a different context, the continuous
quantum measurement.

Interestingly enough, for the dissipative time dependent harmonic oscillator,
Schuch, Chung andHartmann [40, 41] proposed the following nonlinear Schrödinger
equation

i�
∂Ψ

∂t
=
[
− �

2

2m

∂2

∂x2
− i�γ(lnΨ − 〈lnΨ 〉) + 1

2
mω2(t)x2

]
Ψ, (3.23)

ω(t) being the time-dependent harmonic oscillator frequency. This equation gives
the correct reduced frequency of this dissipative motion. It could also be used for a
Brownian particle (ω = 0) as an alternative nonlinear equation to theKostin equation.
In passing, it is worth noticing that Eq. (3.23) can be shown to be a special case of
Eq. (4.96) from Chap.4 if one sets κ = γ/2 (where κ characterizes the resolution
of the continuous measurement and γ represents the friction coefficient). Chou has
studied Eq. (3.23) in the complex plane [43]. In the following chapter, a quantum
trajectory analysis of this equation will be carried out.

An extension to the nonlinear Schrödinger equation can be obtained by
writing [44]

http://dx.doi.org/10.1007/978-3-319-53653-8_4
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i�
∂Ψ

∂t
= HΨ + i�DG(Ψ ), (3.24)

where H = T + V and the nonlinear term is given by

G(Ψ ) = ∇2Ψ + |∇Ψ |2
|Ψ |2 Ψ. (3.25)

The continuity equation is then modified to a Fokker–Planck equation according to

∂ρ

∂t
+ ∇ · J = D∇2ρ, (3.26)

where J is the usual quantum probability density current.
A phenomenological nonlinear wave equation with complex interaction was also

proposed by Gisin [19, 20] to account for decaying states. This wave equation is

i�
∂Ψ

∂t
=
(
1 − iκ

2

)
HΨ + iκ

2
〈Ψ |H |Ψ 〉Ψ, (3.27)

where H is the usual Hamiltonian for the undamped system and κ is a dimensionless
positive and real damping constant. This wave equation presents some advantages,
such as: the norm is independent of time, it reduces to Schrödinger’s equation when
Ψ is an eigenstate of H , the rate of change of the energy expectation value is negative
definite and the equation of motion for the damped harmonic oscillator is obtained
in terms of 〈x〉.

Finally, it is worth mentioning that Razavy [8, 45], Wagner [46] and Schuch [47]
have shown a connection between the Caldirola–Kanai Hamiltonian (see Chap.2)
and the log–nonlinear Schrödinger equation following Schrödinger’s quantization
procedure. This equation has also been derived by Skagerstam [48] and Yasue [49]
and has found extensive use in many applications. The Kostin nonlinear logarithmic
term has recently been suggested as an appropriate, practical bath functional in
time-dependent density functional theory for open quantum systems with unitary
propagation [50, 51].

3.3 The Schrödinger–Langevin–Bohm Equation

The purpose of this Section is simply to analyze Eq. (3.2) from a different theoretical
(and conceptual) framework, the Bohmian mechanics [23, 52–55]. For the sake of
simplicity, let us consider the dynamics of one particle in one dimension. If the wave
function is written in polar form as usual

Ψ (x, t) = φ(x, t)ei S(x,t)/� (3.28)

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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whereφ(x, t) and S(x, t) are real valued functions and then is substituted in Eq. (3.2),
the resulting Schrödinger–Langevin-Bohm (SLB) equation reads as

i�

[
∂φ

∂t
+ i

�

∂S

∂t
φ

]
= − �

2

2m

{[
∂2φ

∂x2
− φ

�2

(
∂S

∂x

)2
]

+ i

�

[
2
∂S

∂x

∂φ

∂x
+ φ

∂2S

∂x2

]}

+ [V (x) + Vr (x, t) + γ(S − 〈S〉)]φ. (3.29)

The quantum fluid dynamics description is better illustrated by expressing Eq. (3.29)
in a different way, that is, by writing the real and imaginary parts separately. Thus,
we have the continuity equation

∂ρ

∂t
+ ∂ρv

∂x
= 0 (3.30)

where ρ = φ2 and the velocity is defined by v = (�/m)(∂S/∂x). The equivalent to
the quantum Hamilton–Jacobi equation is now given by

∂v

∂t
+ v

∂v

∂x
+ γv = − 1

m

∂(V + Vr + Q)

∂x
, (3.31)

Q being the quantum potential defined in terms of ρ,

Q ≡ − �
2

2m

∇2ρ1/2

ρ1/2
= �

2

4m

[
1

2

(∇ρ

ρ

)2

− ∇2ρ

ρ

]
. (3.32)

In the following, some simple examples are analyzed under this hydrodynamical
formulation when the random potential is neglected (dissipative case). Let us start
by writing the probability density as a Gaussian function

ρ(x, t) = 1√
2πδ(t)2

e−(x−q(t))2/2δ(t)2 (3.33)

where δ(t) and q(t) are the width and the center of mass of the wave packet, respec-
tively. From Eq. (3.30), the velocity field turns out to be

v(x, t) =
˙δ(t)

δ(t)
(x − q(t)) + q̇(t) (3.34)



136 3 Bohmian Stochastic Trajectories

where dots on the variables mean the different orders in time derivation. The time
integration of this velocity field is straightforward leading to the equation for the
quantum trajectories

x(t) = q(t) + (x(0) − q(0))
δ(t)

δ(0)
(3.35)

where the friction dependence of these trajectories is through the spreading of the
Gaussian wave function in its time evolution and the velocity can be reexpressed as

v = δ̇

δ(0)
(x(0) − q(0)) + q̇. (3.36)

Equations (3.35) and (3.36) have the same dressing scheme than previously men-
tioned in Chaps. 1 and 2: a classical and quantum (nonlocal) contribution.

Consider now the interaction potential expanded in a Taylor series around q as

V (x, t) ≈ V (q, t) + V ′(q, t)(x − q) + 1

2
V ′′(q, t)(x − q)2 + · · · (3.37)

where primes denote derivatives with respect to position and evaluated at x = q. By
retaining up to quadratic terms in the interaction potential, substituting into Eq. (3.31)
and separating terms proportional to (x − q)0 and (x − q) we have that

q̈ + γq̇ = − 1

m
V ′(q, t) (3.38)

and

δ̈ + γδ̇ + ω2(t)δ = �
2

4m2δ3
(3.39)

where ω2(t) = V ′′(q, t)/m is the frequency of the motion. Thus, the motion of
q can be identified with that of the classical particle under the potential V and a
linear friction. It should be noticed that Eq. (3.38) is just Ehrenfest’s theorem for
the potential (3.37) and distribution (3.33). On the other hand, the time evolution
of the width is governed by the so-called damped (nonlinear) Pinney equation. This
equation is well known to be solvable in terms of the linear time-dependent harmonic
oscillator equation for the conservative case, but it only admits approximate solutions
for weak damping and slowly varying non-vanishing frequencies ω(t) [52, 56]. In
Chap.2, Sect. 2.12, the differential equation governing the time evolution of the
corresponding Gaussian width is simpler than here because we are in the linear
regime of quantum mechanics.

For a free particle, V = 0, the dissipative motion given by Eq. (3.38) has a trivial
classical solution

q(t) = q(0) + q̇(0)

γ
[1 − e−γt ]. (3.40)

http://dx.doi.org/10.1007/978-3-319-53653-8_1
http://dx.doi.org/10.1007/978-3-319-53653-8_2
http://dx.doi.org/10.1007/978-3-319-53653-8_2
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On the contrary, Eq. (3.39) which is written now as

δ̈ + γδ̇ = �
2

4m2δ3
(3.41)

or, alternatively,
d

dt

(
δ̇2

2
+ �

2

8m2δ2

)
= −γδ̇2 ≤ 0 (3.42)

has apparently no analytical solution. Indeed, for the conservative case, γ = 0,

δ2(t) = (δ(0) + δ̇(0)t)2 + �
2t2

4m2δ(0)2
(3.43)

which tells us that the width grows without bound with time (see Chap.1). This
is a problem if we want to use the unperturbed solution (for γ = 0) to obtain an
approximate value of Eq. (3.41). In the overdamped regime, the second derivative or
acceleration of the width can be neglected and by integrating the resulting first-order
ordinary differential equation, the solution is given by

δ(t) 

(

�
2t

m2γ

)1/4

(3.44)

at long times which is consistent with results found from nonlinear theories of quan-
tum Brownian motion [34, 35]. Moreover, it is straightforward to show that

δ̈

γδ̇

 − 3

4γt
(3.45)

clearly justifying the omission of the acceleration term as long as γt >> 1. In Ref.
[52], a first order perturbative solution has been provided to be

δ(t) = (t + c41)
1/4 + c2 + (3/16) ln(t + c41)

(t + c41)
3/4

(3.46)

where c1 > 0 and c2 are integrations constants, which are determined from the initial
conditions

δ(0) = c1 + c2
c31

+ 3 ln c1
4c31

(3.47)

and

δ̇(0) = 3 − 12c2 + 4c41 − 9 ln c1
16c71

(3.48)

http://dx.doi.org/10.1007/978-3-319-53653-8_1
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to be numerically solved only. A direct numerical integration of this equation should
obviously be carried out for an exact evaluation of the time evolution of the width
[36]. In any case, a more detail discussion below, when dealing the surface diffusion
problem, is presented.

For the time-dependent harmonic oscillator case, V = (1/2)mω2(t)x2, the clas-
sical equation is

q̈ + γq̇ + ω2(t)q = 0 (3.49)

and the differential equation (3.39) for thewidth is also valid for this case. In nonlinear
dynamics, it is known that the integration of the damped Pinney equation is a real
challenge. In fact, several methods have been proposed in the literature to look for
approximate solutions within perturbation theory [56]. The perturbation procedure
could be carried out to higher orders but the zero order solution is very often sufficient
for most purposes. In any case, a direct numerical solution is also easy to be obtained.

On the other hand, by eliminating the frequency ω2(t) between Eqs. (3.49) and
(3.39), and after some manipulations, the quantity

I = 1

2
e2γt [(αq̇ − qα̇)2 + (q/α)2] (3.50)

is no longer an invariant (except in the trivial case γ = 0) with δ = (�/m)α2. Thus,
Eqs. (3.49) and (3.39) constitute a non-Ermakov system (see Chap.2).

Once the velocity is known after solving Eq. (3.30) for the probability density
given by Eq. (3.33), the phase of the wave function is easily obtained by integrating
over the position variable. The wave function is then written as

Ψ (x, t) = 1

(2πδ2)1/4
e−(x−q)2/4δ2e

im
�

[ δ̇
2δ (x−q)2+q̇(x−q)]. (3.51)

An extra arbitrary function of time could have been added to S, but it has been
disregarded since it has no effect on the probability density and the probability
current. The Wigner function for a pure state defined by

f (x, p, t) = 1

2π�

∫
dy eipy/� Ψ ∗(x + y

2
, t)Ψ (x − y

2
, t) (3.52)

has also a Gaussian shape and is positive defined when Eq. (3.51) is used

f (x, q, p, t) = 1

�π
e−(x−q)2/2δ2e− 2δ2

�2 [p− mδ̇
δ (x−q)−mq̇]2

. (3.53)

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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3.4 The Ramsauer–Townsend Effect
in a Dissipative Medium

The Ramsauer–Townsend (RT) effect is a quantum phenomenon involving the scat-
tering of low-energy electrons by atoms of a noble gas such as Argon, Krypton, or
Xenon [57–59]. The probability of collision between the electrons and gas atoms
has a minimum value for electrons with a certain amount of kinetic energy (about
1eV for Xenon gas). It was shown that when the incident electron wavelength is two
times larger than the well width L, there is no reflection and the transmission is com-
plete. In a certain sense, this behavior is just the opposite of the so-called quantum
reflection [60, 61] where at very low collisional energies, the transmission can be
totally suppressed. Quantum theory predicts the existence of the RT minimum by
considering the atom as a finite square potential well [62–66]. Via the de Broglie–
Bohm formalism, the RT effect is first analyzed when in the collisional process there
is no energy dissipation. Subsequently, the dissipative dynamics of the RT effect is
after studied by means of the Kostin equation for small dissipation �γ << (V + E)

where γ, V and E are the coefficient of friction, the height of the potential and the
energy of the particle, respectively.

Let us consider a stationary electronic flux with incident energy E, colliding with
a potential well with height V and width L such as

V (x) =
{
0 , x �= 0, L
−V , 0 < x < L

(3.54)

which define the following regions

I ncidence Region (1) : x < 0, (3.55)

Scattering Region (2) : 0 < x < L , (3.56)

Transmission Region (3) : x > L . (3.57)

Since E > 0, the solution of Schrödinger’s equation

i �
∂ψ(x, t)

∂t
= − �

2

2 m

∂2 ψ(x, t)

∂x2
+ V (x) ψ(x, t) . (3.58)

for these three mentioned above regions is given by

ψ1(x, t) = (ei k x + A e− i k x ) e− i ω t , (3.59)

ψ2(x, t) = (C ei q x + D e− i q x ) e− i ω t , (3.60)

ψ3(x, t) = (B ei k x ) e− i ω t , (3.61)
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where

k2 = 2 m E

�2
, q2 = 2 m (E + V )

�2
. (3.62)

Thus, the reflection | R |2 = A A∗ and the transmission | T |2 = B B∗ coeffi-
cients are given by

| R |2 =
(

k2 − q2

2 k q

)2
sin2 (q L)

1 +
(

k2 − q2

2 k q

)2
sin2 (q L)

, (3.63)

| T |2 = 1

1 +
(

k2 − q2

2 k q

)2
sin2 (q L)

. (3.64)

Using Eqs. (3.63) and (3.64), a particular case can be considered, that is, when

q L = π . (3.65)

Substitution of Eqs. (3.65) into (3.63) and (3.64) results

| T |2 = 1, | R |2 = 0, (3.66)

which leads to the suppression of the reflection probability.
Let us now turn to the study of the RT effect when in the collision process there

is an energy dissipation governed by the Kostin equation [62, 66]

i �
∂ψ(x, t)

∂t
= − �

2

2 m

∂2ψ(x, t)

∂x2
+
[
V (x, t) + � γ

2 i
�n

ψ(x, t)

ψ∗(x, t)

]
ψ(x, t),

(3.67)

where ψ(x, t), V (x, t) and γ represent, respectively, the wave function, the interac-
tion potential and dissipation coefficient of our new system. Equation (3.67) will be
studied now within the formalism of de Broglie–Bohm.

First, we write ψ(x, t) as

ψ(x, t) = Φ(x) exp

[
− i E

� γ
(1 − e− γ t )

]
, (3.68)

which yields
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i �
∂ψ(x, t)

∂t
= E e− γ t ψ(x, t) , (3.69)

− �
2

2 m

∂2ψ(x, t)

∂x2
= − �

2

2 m

Φ ′′(x)
Φ(x)

ψ(x, t) , (3.70)

� γ

2 i
�n

ψ(x, t)

ψ∗(x, t)
= � γ

2 i
�n

Φ(x)

Φ∗(x)
− E (1 − e− γ t ) . (3.71)

Inserting Eqs. (3.69)–(3.71), into (3.67) and using Eq. (3.68) we obtain

Φ ′′(x) +
[
q2 − m γ

i �
�n

Φ(x)

Φ∗(x)

]
Φ(x) = 0 . (3.72)

Now, considering the Madelung transformation [67] (for convenience, � has been
absorbed in the argument of the phase, S(x))

Φ(x) = φ(x) ei S(x) , (3.73)

we see that Eq. (3.72) becomes

φ′′ + 2 i φ′ S′ − φ (S′)2 + i φ S′′ +
[
q2 − 2 m γ

�
S

]
φ = 0 . (3.74)

Separating real and imaginary parts of the above expression we have,

φ′′ +
(
q2 − 2 m γ

�
S

)
φ = (S′)2 φ , 2 φ′ S′ + φ S′′ = 0. (3.75)

Defining, as usual,

ρ(x) = φ2(x) , (3.76)

and integrating Eq. (3.75) results

(S′)′

S′ = − 2 φ′

φ
→

∫
(S′)′

S′ = −
∫

2 φ′

φ
→

�n S′ = − 2 �n φ + �n C = − �n φ2 + �n C = �n
C

φ2
→

S′(x) = C

ρ(x)
, S(x) = S(0) + C

∫ x

0

dx ′

ρ
. (3.77)
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Multiplying Eq. (3.75) by φ′ and using Eqs. (3.76) and (3.77) we reach,

φ′′ φ′ + [q2 − (S′)2] φ φ′ = 2 m γ

�
S φ φ′ →

d

dx

[
1

2
(φ′)2 + 1

2
q2 φ2 + 1

2

C2

φ2

]
= 2 m γ

�
S φ φ′ . (3.78)

Since Eq. (3.76) can be written as

ρ′ = 2 φ φ′ , (3.79)

Equation (3.78) can be rewritten, using also Eq. (3.76), as

I ′(x) = 2 m γ

�
S(x) ρ′(x) , I (x) = [ρ(x)′]2

4 ρ(x)
+ q2 ρ(x) + C2

ρ(x)
. (3.80)

One can readily see that, taking Eq. (3.77), we obtain,

d

dx
(S ρ) = S′ ρ + S ρ′ = S ρ′ + C = S ρ′ + d

dx
(C x) →

S ρ′ = d

dx
(S ρ − C x) . (3.81)

Substituting Eq. (3.81) into (3.80) we have

d I

dx
= 2 m γ

�

d

dx
(S ρ − C x) → d

dx

[
I − 2 m γ

�
(S ρ − C x)

]
= 0 →

I − 2 m γ

�
(S ρ − C x) = constant = I0 →

I (x) = I0 + 2 m γ

�
[S(x) ρ(x) − C x] (3.82)

Io = [ρ′(x)]2
4 ρ(x)

+ q2 ρ(x) + C2

ρ(x)
−

− 2 m γ

�

[
ρ(x)

(
S(0) + C

∫ x

0

dx ′

ρ(x ′)

)
− C x

]
. (3.83)
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By solving the differential Equations (3.80) using a variational-of-parameter tech-
nique one has

ρ(x) = 1

2 q2

[
I (x) +

√
I 2(x) − 4 q2 C2 × cos ( 2 q [x − β(x)] )

]
,

(3.84)

where β(x) is a variational unknown function. To determine β(x) we take the deriv-
ative of Eq. (3.84), that is,

ρ′(x) = 1

2 q2

(
I ′(x) +

I (x) I ′(x) cos
(
2 q [x − β(x)]

)
√
I 2(x) − 4 q2 C2

−

−
√
I 2(x) − 4 q2 C2 sin

(
2 q [x − β(x)]

)
× 2 q [1 − β′(x)]

)
, (3.85)

where the following conditions must be obeyed

I ′(x) + I (x) I ′(x) cos [2 θ(x)]√
I 2(x) − 4 q2 C2

+
√
I 2(x) − 4 q2 C2 ×

× 2 q β′(x) sin [2 θ(x)] = 0 , θ(x) = q [x − β(x)] . (3.86)

This implies that Eq. (3.85) is written as,

ρ′(x) = −
√
I 2(x) − 4 q2 C2

q
sin [2 θ(x)] . (3.87)

From Eqs. (3.80) and (3.87) we finally reach

β′(x) = m γ S(x)

� q2

(
1 + I (x) cos [2 θ(x)]√

I 2(x) − 4 q2 C2

)
. (3.88)

We study now the scattering of a stationary flux of particles with energy E and
k2 = 2 m E/�

2 by a potential well defined by Eq. (3.54). The particles flux, inci-
dent (x < 0) and transmitted (x > L), will be given by

ψI (x) = ei k x + A e− i k x = φ(x) ei S(x) , (3.89)

ψT (x) = B ei k x = φ(x) ei S(x) . (3.90)
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Since ψ and ∂ψ/∂x are assumed to be continuous at the boundaries of the potential
well, we have that:
(a) At x = 0, Eq. (3.89) becomes

ψI (x = 0) → 1 + A = φ(0) ei S(0) , (3.91)

∂ψI

∂x
|x = 0 → 1 − A = ei S(0)

k
[− i φ′(0) + φ(0) S′(0)] . (3.92)

Adding Eqs. (3.91) and (3.92), we obtain the following expression

2 k = [cos S(0) + i sin S(0)]
(

φ(0) [k + S′(0)] − i φ′(0)
)
,

which can be separated again in two parts, real and imaginary,

2 k = cos S(0) φ(0) [k + S′(0)] + φ′(0) sin S(0) , (3.93)

0 = sin S(0) φ(0) [k + S′(0)] − φ′(0) cos S(0). (3.94)

Multiplying Eq. (3.93) by sin S(0) and Eq. (3.94) by cos S(0) and subtracting
the expressions, results

2 k sin S(0) = φ′(0) . (3.95)

On the other hand, multiplying Eq. (3.93) by cos S(0) and Eq. (3.94) by sin S(0)
and adding the expressions, we have that

2 k cos S(0) = φ(0) [k + S′(0)] . (3.96)

Squaring and adding Eqs. (3.95) and (3.96), the following expression is found

4 k2 = [φ′(0)]2 + φ2(0) [k + S′(0)]2. (3.97)

(b) At x = L , Eq. (3.90) leads to

ψT (x = L) → B ei k L = φ(L) ei S(L) , (3.98)

∂ψT

∂x
|x = L → (3.99)

B ei k L = 1

k
ei S(L) × [− i φ′(L) + S′(L) φ(L)] . (3.100)
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Taking the real and imaginary parts of Eqs. (3.98) and (3.100) and using Eq. (3.77)

φ(L) = 1

k
[− i φ′(L) + S′(L) φ(L)] → φ(L) = 1

k
S′(L) φ(L) →

S′(L) = k , ρ(L) = C

k
, (3.101)

φ′(L) = 0 , ρ′(L) = 0 . (3.102)

Subtracting Eqs. (3.91) and (3.92) and taking into account Eqs. (3.76), (3.77), (3.79),
(3.95) and (3.96), we find

2 A = ei S(0)

(
φ(0)

[
1 − S′(0)

k

]
+ i

k
φ′(0)

)
→

A = 2 i [k ρ(0) − C] − ρ′(0)
2 i [k ρ(0) + C] + ρ′(0)

. (3.103)

Taking the above expression, let us calculate the reflection (| R |2) and transmis-
sion (| T |2) coefficients

| R |2 = A A∗ = 4 [k ρ(0) − C]2 + [ρ′(0)]2
4 [k ρ(0) + C]2 + [ρ′(0)]2 , (3.104)

| T |2 = 1 − | R |2 = 4 k C
[ρ′(0)]2
4 ρ(0) + C2

ρ(0) + k2 ρ(0) + 2 k C
. (3.105)

Substitution of x = 0 into Eq. (3.83), results

I0 = [ρ′(0)]2
4 ρ(0)

+ q2 ρ(0) + C2

ρ(0)
− 2 m γ

�
ρ(0) S(0) . (3.106)

Now, substituting Eq. (3.106) into (3.105) the transmission coefficient is written as

| T |2 = 4 k C

I0 + [k2 − q2 + 2 m γ
�

S(0)] ρ(0) + 2 k C
. (3.107)

The above expression can be written in a different form. Indeed, considering
Eqs. (3.76) and (3.101), and using Eqs. (3.98) and (3.100) we can write

| T |2 = B B∗ = φ2(L) = ρ(L) = C

k
. (3.108)

To obtain the final form for | T |2 we need to determine the constant C. We find
after long calculations [62]
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|T |2 = 1

1 + sin2 [q β(0)]
(
1 − n2
2 n

)2 [
1 + m γ S(0)

� q2

(
n2 + 1
n2 − 1

)] , (3.109)

and

|R|2 =
sin2 [q β(0)]

(
1 − n2

2 n

)2 [
1 + m γ S(0)

� q2

(
n2 + 1
n2 − 1

)]

1 + sin2 [q β(0)]
(
1 − n2
2 n

)2 [
1 + m γ S(0)

� q2

(
n2 + 1
n2 − 1

)] (3.110)

where n ≡ q/k. Note that Eqs. (3.63) and (3.64) are obtained by setting γ = 0 into
Eqs. (3.109) and (3.110). After substantial calculations we find that

β(0) ∼ L

(
1 − γ�

V

[
kL

2
+ S(0)

])
(3.111)

and are in conditions to write the final expression to explain the RT effect. Indeed,
as was shown previously, this effect is characterized (see Eq. (3.65)) by

q L = π . (3.112)

With the help of Eqs. (3.112) and (3.111), we have

q β(0) ∼ π → 2 q β(0) ∼ 2 π . (3.113)

Equations (3.86), (3.87) and (3.113) lead us to

ρ′(0) = 0 , sin [q β(0)] = 0 . (3.114)

Equations (3.79), (3.95) and (3.114) yield

2 k sin S(0) = φ′(0) = ρ′(0)
2 φ(0)

= 0 → S(0) = 0 . (3.115)

Finally, Eqs. (3.109) and (3.114) show that the coefficients of transmission and reflec-
tion are given by

|T |2 = 1 and |R|2 = 0, (3.116)

in agreement with Eq. (3.66), which characterizes the RT effect. On the other
hand, |T |2 = min and |R|2 = max , provided that q β(0) → π/2 where

β(0) ≈ L
(
1 − mγkL

q2−k2

)
(Fig. 3.2).
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Fig. 3.2 Resonances in Scattering from a square potential: Transmission rate versus width of well
with small friction γ << (q2 − k2)/mkL (solid line) and without friction (dashed line). Note that
the resonances for the dissipative case display a varying periodicity

3.5 Tunneling Through a Dissipative Barrier

Dissipative quantum tunneling is a very important and active field [2]. On the other
hand, we have shown in Sect. 2.3 through Bohmian mechanics how more general
boundary conditions follow from the continuity of mass, momentum and energy den-
sities. With these new boundary conditions, a novel approach to tunneling through
sharp-edged, dissipative potential barriers is presented. The usual boundary condi-
tions are not only more general but the assumption that the wave function and its
derivative need to be continuous at a boundary are physically incorrect for dissipative
systems. To this end, let us consider the dynamics of a quantum particle in the tun-
neling region described by the Kostin equation (3.67), expressed the wave function
in a polar form ψ = φ exp(i S/�) [67]. The proper boundary conditions where the
potential undergoes a finite jump read

ρ1(0) = ρ2(0), (3.117)

ρ2(L) = ρ3(L), (3.118)

ρ1
′(0) = ρ2

′(0), (3.119)

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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ρ2
′(L) = ρ3

′(L), (3.120)

ρ1(0)v1(0) = ρ2(0)v2(0), (3.121)

ρ2(L)v2(L) = ρ3(L)v3(L), (3.122)
(

∂S1
∂t

)

0

=
(

∂S2
∂t

+ γS2

)

0

, (3.123)
(

∂S2
∂t

+ γS2

)

L

=
(

∂S3
∂t

)

L

, (3.124)

which show the discontinuity in the phase of the wave function at the boundary (γ
represents the friction coefficient as in Sect. 2.3). The potential barrier expressed as

V (x) =
{
0 , x �= 0, L
V , 0 < x < L

(3.125)

defines the following regions

I ncidence Region (1) : x < 0, (3.126)

Scattering Region (2) : 0 < x < L , (3.127)

Transmission Region (3) : x > L . (3.128)

Following Sects. 2.3 and 3.4, we find the wave functions for regions 1, 2 and 3 to
be (for convenience, in the different interaction regions, � has also been absorbed in
the arguments of the corresponding phases, S1(x), S2(x) and S3(x), respectively)

ψ1(x, t) = √
ρ1 ei S1 =

=
√
1 + a2 + 2 a cos (2 k1 x − α) × exp

[
i

(
− ω1 t +

+ α

2
+ tan− 1

[
1 − a

1 + a
tan

(
k1 x − α

2

)])]
, (3.129)

ψ2(x) = √
ρ2 ei S2 =

=
(

1

Q̄(x)

[
c2 exp

(
2
∫ x

o
Q̄ dx

)
+ d2 exp

(
− 2

∫ x

o
Q̄ dx

)
+

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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+ 2 c d cos (γ − δ)

] )1/2

× exp

[
i
( γ + δ

2
+

+ tan− 1
[ c exp(

∫ x
o Q̄ dx) − d exp(− ∫ x

o Q̄ dx)

c exp(
∫ x
o Q̄ dx) + d exp(− ∫ x

o Q̄ dx)
×

× tan
(γ − δ

2

) ]) ]
(3.130)

ψ3(x, t) = √
ρ3 ei S3 =

= √
b2 exp [i (− ω3 t + k3 x + β)] . (3.131)

where

k21 = 2mE1

�2
(3.132)

Q̄2(x) = 2 m

�2
[V − E1 + � γ Δ S2(x)] (3.133)

k23 = 2mE3

�2
, (3.134)

ω1 = E1

�
, (3.135)

ω3 = E3

�
, (3.136)

ΔS2(0) = 0, (3.137)

ΔS2(L) = − (ω3 − ω1)

γ
. (3.138)

Thus, E1,E2 and E3 are the energies of the particle in the incident, scattering and
transmission regions, Eq. (3.125), and related to the wave numbers k1, Q̄ and k3,
respectively (as expressed above).

After lengthy calculations, we find the tunneling probability to be [62]

T− 2 = b− 2 = 1

D + 2 B sinh2 α

(
A2 + 2 A B sinh2 α +
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Fig. 3.3 Tunneling through a square potential versus width of well with friction (solid line) and
without friction (dashed line): An electron with kinetic energy E = 1eV tunneling through a barrier
with V = 10eV, width L = 0.5nm and friction �γΔS = 2eV

+ 4 C sinh2 α

[
1 + sinh2 α

(
1 + k21

Q̄2(0)

)] )
(3.139)

where

A = 1

2

[ k3
k1

+ Q̄(L)

Q̄(0)

]
, B = 1

2

Q̄2(L) + k23
Q̄(L) Q̄(0)

, (3.140)

C =
[
Q̄2(L) + k23
4 Q̄(L) k1

]2
, D = Q̄(L)

Q̄(0)
and α =

L∫

0

Q̄(x) dx . (3.141)

Finally, by setting γ = 0, we recover the well-known result

T− 2 = b− 2 = 1 + (q2 + k2)2

4 k2 q2
sinh2 (q̄ L) (3.142)

where k2 = k21 = k23 = 2mE
�2 and q2(x) = 2 m

�2 [V − E] (Fig. 3.3).
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3.6 The Plasma Fluid Formulation Within Bohmian
Mechanics

In the analysis of correspondence between classical and quantum dynamics, one can
find a striking analogy between the quantum mechanics of a point particle and the
dynamics of afluidwhichhas beenpursuedby anumber of authors [68–73].As shown
in Chap.1, Bohmian mechanics clearly offers an intuitive and appealing understand-
ing of the quantumworld in a classical-like fashion by means of trajectories evolving
throughout configuration space. It provides an explanation of quantum phenomena
in terms of point particles guided by wave functions. As has also been previously
reported, Madelung [74] was the first to transform the Schrödinger equation for a
particle into two fluid-dynamical equations: a continuity equation and an Euler-type
equation. This description involves the density ρ = Ψ ∗Ψ and the velocity field v as
primary quantities. Thus, the fluid dynamicist can gather experience of its effects by
translating some of the elementary situations of the quantum theory into their cor-
responding fluid mechanical statements and vice versa. This fluid formulation was
subsequently refined by de Broglie through his pilot wave theory and further devel-
oped by Bohm [75, 76]. The wave function (which satisfies Schrödinger’s equation)
is an objective field, not just as some ghost wave of information where the particle
rides along on the wave at some position r(t).

In order to illustrate this point, we draw striking similarities with the classical
plasma fluid theory describing the motion of charged particles (electrons) in a neu-
tralized (ion) background subject to an external electric field by writing in the three
dimensional configuration space [77–79]

∂ρ(r, t)
∂t

+ ∇ · (ρ(r, t)v(r, t)) = 0 (3.143)

and

∂v(r, t)
∂t

+ v(r, t) · ∇v(r, t) + γv(r, t)

+ kBT

m

∇ρ(r, t)
ρ(r, t)

= −eE(r, t)
m

, (3.144)

where m, e, ρ, v(r, t) and (kBT/m)1/2, γ are the particle (electron) mass, charge,
density, mean velocity, thermal speed and collision frequency, respectively. In fact,
this collision frequency can also be seen as a collisional friction.E(r, t) is the electric
field and the second part of Eq. (3.144) refers to the Lorentz force.

To obtain the quantum fluid dynamical counterpart of the classical problem
described above, we can translate the information into a form that is easier to com-
prehend by means again from the continuity equation given by (3.143) and

http://dx.doi.org/10.1007/978-3-319-53653-8_1
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∂v(r, t)
∂t

+ v(r, t) · ∇v(r, t) + γv(r, t) + kT

m

∇ρ(r, t)
ρ(r, t)

= −eE(r, t)
m

− ∇
(
Q

m

)
, (3.145)

where as usual ρ(r, t) = |φ(r, t)|2 is the quantum fluid-particle density, v(r, t) =
(�/m)∇S(r, t) is the quantum fluid-particle velocity, and Q is the quantum potential
which is responsible for all the non-local effects predicted by the theory. Equation
(3.145) can be interpreted as the Hamilton–Jacobi equation for this new system, with
the additional term proportional to �

2 defining Q(r, t).
By expressing, as usual, the wave function in the polar form [67] as in Eq. (3.28),

the corresponding Schrödinger equation can be obtained

i�
∂Ψ (r, t)

∂t
= − �

2

2m
∇2Ψ (r, t) +

(
�γ

2i
ln

Ψ (r, t)
Ψ ∗(r, t)

+ kT ln |Ψ (r, t)|2
)

Ψ (r, t)

+er · E(r, t)Ψ (r, t).

(3.146)

which is the corresponding SL equation for this dissipative problem. The wave func-
tion Ψ (r, t) is that of wave mechanics, but conceived in the tradition of Maxwell
and Einstein, as an objective field [80]. The particle rides along on the wave at some
position r(t) with velocity ṙ(t) with the help of the guiding equation

ṙ(t) = �

m
Im(∇ lnΨ (r, t)), (3.147)

which constitutes the simplest first-order evolution equation for the trajectories of
the particle – the Bohmian trajectories of an evolving particle of the wave packet
ensemble with an initial position r0 – that is, compatible with the Galilean (and
time-reversal) covariance of the Schrödinger evolution.

Interestingly enough, Eq. (3.144) corresponds to the classical standard Langenvin
equation

r̈ + γṙ = −eE(r, t)/m (3.148)

except for the nonlinear term v · ∇v (which is called the inertial term in hydrody-
namics) and the pressure term p = (kBT/m)ρ. It only attains the form of Eq. (3.148)
if, for instance, v and its derivatives are small and we consider the cold-plasma
approximation. Furthermore, the analogy between Eq. (3.144) and the nonlinear SL
Eq. (3.146) renders strong support for the exploration ofmanifold solutions, based on
the well developed mathematical problem solving methods of nonlinear differential
equations in the literature.

The term μ ≡ Q/m had been loosely referred to as a quantum pressure term
(see also Chap.1). This term is a misnomer [73] because: (i) the dimensionality is

http://dx.doi.org/10.1007/978-3-319-53653-8_1
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incorrect and it would be better regarded as a quantum (chemical) potential per unit
mass, (ii) the word pressure suggests a phenomenon that depends only on the local
thermodynamics state (here fixed ρ) and (iii) the presence of the derivatives in

∇iμ = −(∇ jσi j )/ρ (3.149)

where

σi j = (�2ρ/4m2)∇i∇ j ln ρ, (3.150)

with i, j = x, y, z, shows that neighbouring points are involved in its definition.
Thus, σi j is a properly dimensioned contender for the (anisotropic) quantum stress
tensor, instead. Even more, the term (kBT/m)ρ has been proposed by Bialynicki-
Birula andMycielski [18]: a logarithmic Schrödinger-like equation with nonlinearity
b ln |Ψ |2 which possesses soliton-like solutions of Gaussian form (see Sect. 2.11).
The term (�γ/2i) ln(Ψ/Ψ ∗) in Eq. (3.146) represents quantum dissipation where
γ stands for the friction coefficient (collisional friction). Caldeira and Leggett [81]
have given support and justification for the use of nonlinear wave functions for the
description of non-conservative systems, based on their conclusion that damping
tends to destroy interference effects (decoherence) of two Gaussian wavepackets
in a harmonic potential. Therefore, the protocol presented above through Bohmian
mechanics can be used as a clue to a deeper understanding of nonlinearwavemechan-
ics as well as to encourage usage of the well developed mathematical problem by
solvingmethods of nonlinear differential equations to gather new insights and design
some physical models.

Finally, it worth stressing that electron transport studies in nanostructure devices
have also been described by the quantum hydrodynamic equations [82, 83].

3.7 The Schrödinger Equation for an Extended Electron
via Bohmian Mechanics

About a century ago, Lorentz [84, 85] andAbraham [86] argued thatwhen an electron
is accelerated, there are additional forces acting due to the electron’s own electro-
magnetic field. However, the so-called Lorentz–Abraham equation for a point-charge
electron

m
dV

dt
= 2e2

3c3
d2V

dt2
+ Fext (3.151)

was found to be unsatisfactory because, for Fext = 0, it admits runaway solutions.
These solutions clearly violate the law of inertia.

Since the seminal works of Lorentz and Abraham, inumerous papers and text-
books have given great consideration to the proper equation of motion of an electron

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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[87–97]. The problematic runaway solutions were circumvented by Sommerfeld
[91] and Page [92] by going to an extended model. In the nonrelativistic case of a
sphere with uniform surface charge, such an electron obeys in good approximation
the difference-differential equation [93–95]

m
dV

dt
= e2

3L2c
[V (t − 2L/c) − V (t)] + Fext . (3.152)

This extended model is finite and causal if the electron size L is larger than the
classical electron radius re = e2/mc2. In the following, discussion here is limited
to the sphere with uniform surface charge since the case of a volume charge is
considerablymore complicated and adds nothing to the understandingof the problem.

The dynamics of charges is a key example of the importance of obeying the validity
limits of a physical theory. If classical equations can no longer be trusted at distances
of the order of (or below) the Compton wavelength λ = h/mc, c being the speed of
light, what is the Schrödinger equation that can replace Eq. (3.152). Within quantum
electrodynamics (QED), it has not been able to derive an equation of motion and it
is unclear whether QED can actually produce an equation of motion at all. A simple
solution to this problem in the nonrelativistic regime is proposed here.

Anewquantummechanicalwave equationdescribing the dynamics of an extended
electron is derived via Bohmian mechanics. The solution to this equation is found
through a wave packet approach which establishes a direct correlation between a
classical variable with a quantum variable describing the dynamics of the center of
mass and the width of the electron wave packet. It is shown that the new Schrödinger
equation is free of any runaway solutions or any acausal responses. Besides, this
approach provides a comparatively clearer picture than the modern time quantum
approach carried out by Moniz and Sharp [95]. They derived an infinite order dif-
ferential equation, i.e., an infinite series of derivatives that apparently can not be
summed.

Aswe know, the Bohmian framework ascribes a particle motion via the de Broglie
guidance condition (in one dimension)

dx

dt
= v(x, t)|x=x(t) = 1

m

∂S

∂x

∣∣∣∣
x=x(t)

(3.153)

where v represents the particle velocity and S is the phase of the wave function Ψ

written in polar form, [67] Eq. (3.28). In this formalism, Schrödinger’s equation can
be recast as in Eqs. (3.30) and (3.31). Within this framework, a quantum extension to
the Sommerfeld-Page equation (3.152) for an electron sphere with uniform surface
charge in the absence of external forces can be accomplished by writing

∂v

∂t
+ v

∂v

∂x
= e2

3mL2c
[v(t − 2L/c) − v(t)] + 1

m

∂

∂x

(
�
2

2m
√

ρ

∂2√ρ

∂x2

)
.

(3.154)
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Then, Eqs. (3.28) and (3.154) yield

i�
∂Ψ (x, t)

∂t
= − �

2

2m

∂2Ψ (x, t)

∂x2
+
{

i�e2

6mL2c
ln

(
Ψ (x, t − 2L/c)Ψ ∗(x, t)

Ψ ∗(x, t − 2L/c)Ψ (x, t)

)}
Ψ (x, t).

(3.155)

In order to find the most general Gaussian wave packet solution to Eq. (3.155), the
usual ansatz ismade according to Eq. (3.33). First, Eq. (3.33) is substituted into (3.30)
and integrated the result being Eq. (3.34) where the constant of integration must be
zero since ρ and ρ (∂S/∂x) vanish for |x | → ∞. In fact, any well-behaved function
of (x − q) multiplied by ρ clearly vanishes as |x | → ∞. Then, substitution of
Eqs. (3.33) and (3.145) into (3.154) yields

m

2a(t)

{
δ̈(t) − e2

3mL2c

[
δ̇(t − 2L/c) − δ̇(t)

]− �
2

4m2δ3(t)

}
[x − q(t)]2 +

m

{
q̈(t) − e2

3mL2c
[q̇(t − 2L/c) − q̇(t)]

}
[x − q(t)] = 0. (3.156)

This polynomial equation is satisfied once the coefficients of [x − q(t)] and
[x − q(t)]2 are set equal to zero, namely,

q̈(t) − e2

3mL2c
[q̇(t − 2L/c) − q̇(t)] = 0 (3.157)

and

δ̈(t) − e2

3mL2c

[
δ̇(t − 2L/c) − δ̇(t)

] = �
2

4m2δ3(t)
. (3.158)

The wave packet dynamics is now completely determined by Eqs. (3.157) and
(3.158). The first equation is the Sommerfeld-Page equation (describing here the
time evolution of center of the wave packet) which does not have runaway solu-
tions [95]. The second equation describing the time evolution of the width of the
wave packet can be considered as a new result. This equation is free of any runaway
solutions or any acausal response due of the restrictive term on the right hand side:
physically this means that for t > 2e2/3mc3 (which is the time required for light
to traverse the extended electron) this term settles down the dynamics of the wave
packet.

To sum up, this new formulation to describe the nonrelativistic quantum dynamics
of an extended electron provides then a comparatively clearer picture than other for-
mulations using elaborativemanipulation of infinite series of operators. The approach
here is also reasonable because the electron is smeared out due to the uncertainty
principle and has the appropriate feature of a wave packet. In fact, there exists
as yet no proper formulation in QED (and may not be possible within QED as a
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perturbation theory). The only calculation by QED was reported by Low [98], who
has not been able to derive an equation of motion and it is unclear whether QED can
actually produce an equation of motion at all. As far we know, this treatment presents
the only nonrelativistic Schrödinger equation available to describe the problem. Fur-
ther, Eq. (3.155) may be used to investigate quantum tunneling through potential
barriers in light of the work developed by Denef et al. on the so-called classical
tunneling [99] and described previously.

Finally, Eqs. (3.30) and (3.31) have also been proposed to be macroscopic equa-
tions for many superconducting particles in the same state [100]. In this case, the
external potential is derived from the Lorentz force when an electric and magnetic
field are considered.

3.8 Surface Diffusion

The main purpose of spectroscopic experiments involving a probe and a system at
thermal equilibrium with a reservoir (or thermal bath) consists of measuring the
system response under the perturbation caused by the probe. As established by the
so-called fluctuation-dissipation theorem, the intrinsic properties of matter can be
extracted by analyzing the response whichmany times can be described by first order
perturbation theory and determined by the spectrum of the spontaneous fluctuations
of the reservoir. Within this linear approximation, the probability per time unit that
the full system formed by the probe and reservoir changes from the initial state to
the final state is given by the Fermi Golden rule. Within the Born approximation in
scattering theory, the nature of the scattered particles as well as the details of the
system-probe interaction potential are largely irrelevant, this essentially reducing
the scattering problem to a typical statistical mechanics problem [101]. The linear
response function of a system consisting of interacting particles, also known as the
dynamic structure factor, can then be related to the spontaneous-fluctuation spectrum.

As mentioned in the Introduction, the system–plus–bath approach is perhaps the
most successful and useful way to deal with stochastic dynamics, since it starts from
the physical system of interest and its environment (or bath) forming all together
a conservative system. For open quantum systems, it seems to be the most natural
approach. Within this system–plus–bath approach, the corresponding dynamics is
commonly described by a total Hamiltonian which is split up into three different
parts

H = HS + HB + HSB, (3.159)

where HS and HB correspond to the free evolution of the system and the reservoir
or bath, respectively, and HSB describes the interaction between them. In this total
Hamiltonian, the system usually consists of a few degrees of freedom, while the
environment is formed by a huge number of them (even infinity). Moreover, it is
reasonable to assume that the coupling between them is a linear function of the bath
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coordinates. This property of linearity is very convenient, since it is then very easy
to eliminate the bath coordinates in an exact way.

Let us consider briefly the Caldeira-Leggett Hamiltonian model [102, 103]. The
role of initial conditions has also been largely discussed in this model since some
problemswhen solving the Langevin equation can appear [104, 105]. This model has
been applied (and it is still applying) to physical problems with linear dissipation. In
particular, we are going to focus here on atom surface diffusion and the vibrational
relaxation of a particle adsorbed (or adsorbate or adparticle) on a surface [106, 107].
Within this context, space–time correlation functions play a key role, since they are
used to describe the decay of spontaneous thermal fluctuations at surfaces, this being
central to the study of transport phenomena. These functions are defined as the ther-
modynamic average of the product of two dynamical variables, each one expressing
the instantaneous deviation from its corresponding equilibrium value at particular
points on the surface and time. A complete description of the particle dynamics in
a many–body system is then reached when the behavior of the corresponding cor-
relation functions over the entire wavenumber range (small and long wavelengths)
is studied. This range splits into different characteristic regions, each one associated
with a different set of properties of the system. Space–time correlation functions
can also be used to describe the linear response of a fluid under a weak, external
perturbation.

In the quasielastic He atom scattering (QHAS) technique, time–of–flight mea-
surements are converted to energy transfer spectra, from which a wide energy range
can be spanned and several peaks are observed. The prominent peak around the zero
energy transfer, namely the quasi–elastic peak (Q–peak), gives information about
the adsorbate diffusion process. Additional weaker peaks at low energy transfers
around the Q–peak are also observed. These peaks are attributed to the parallel
(to the surface) frustrated translational motion of the adsorbates (T–mode) and also
to the excitations of surface phonons —at positive energy transfers we have cre-
ation processes, and annihilation ones at negative energy transfers. The measurable
quantity experimentally is the so–called dynamic structure factor or scattering law
which gives the lineshapes of all those elementary processes; in particular, those
corresponding to the Q and T peaks. The dynamic structure factor provides informa-
tion about the dynamics and structure of the adsorbates through particle distribution
functions and these ones are related to the nature of the adsorbate–substrate and
adsorbate–adsorbate interactions.

In QAHS experiments, one is usually interested in the differential reflection coef-
ficient, which can be expressed as

d2R(ΔK,ω)

d�dω
= nd FS(ΔK,ω) (3.160)

in analogy to scattering of slow neutrons by crystals and liquids [108, 109]. This
magnitude gives the probability that the probe (He) atoms scattered from the diffus-
ing collective (spread out along the surface) reach a certain solid angle � with an
energy exchange �ω = E f − Ei and a parallel (to the surface) momentum transfer
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ΔK = K f −Ki . In Eq. (3.160), nd is the (diffusing) surface concentration of adparti-
cles; F is the atomic form factor, which depends on the interaction potential between
the probe atoms in the beam and the adparticles on the surface; and S(ΔK,ω) is
the dynamic structure factor, which gives the lineshapes of the Q and T peaks —
other peaks can also be present, such as the inelastic ones related to surface phonon
excitations— and provides a complete information about the dynamics and structure
of the adsorbates through particle distribution functions. Experimental information
about long distance correlations is obtained from the scattering law when consider-
ing small values of ΔK, while information on long time correlations is available at
small energy transfers, �ω.

Surface diffusion is a dynamical problem that can be tackled by means of clas-
sical mechanics for heavy adsorbates or adparticles. For light adsorbates, quantum
mechanics has to be applied and their positions are replaced by position operator.
Thus, let us consider an ensemble of classical/quantum interacting particles on a sur-
face. Their distribution functions are described by means of the so–called van Hove
or time–dependent pair correlation function G(R, t) [108]. This function is related
to the dynamic structure factor as

S(ΔK,ω) =
∫∫

G(R, t)ei(ΔK·R−ωt) dR dt. (3.161)

Given an adparticle at the origin at some arbitrary initial time, G(R, t) represents
the average probability for finding a particle (the same or another one) at the surface
position R = (x, y) at a time t . Note that this function is a generalization of the
well–known pair distribution function g(R) from statistical mechanics [110], since
it provides information about the interacting particle dynamics.

Depending on whether correlations of an adparticle with itself or with another
one are considered, a distinction can be made between the self correlation function,
Gs(R, t), and the distinct correlation function, Gd(R, t). The full pair correlation
function can then be expressed as

G(R, t) = Gs(R, t) + Gd(R, t). (3.162)

According to its definition, Gs(R, t) is peaked at t = 0 and approaches zero as time
increases because the adparticle loses correlation with itself. On the other hand, at
t = 0, Gd(R, 0) ≡ g(R) gives the static pair correlation function (the standard pair
distribution function), while it approaches the mean surface number density σ of
diffusing particles as t → ∞. Accordingly, Eq. (3.162) can be split up as

G(R, 0) = δ(R) + g(R) (3.163)

at t = 0, and expressed as
G(R, t) ≈ σ (3.164)
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for a homogeneous system with ‖R‖ → ∞ and/or t → ∞. At low adparticle con-
centrations (coverage, θ � 1), when interactions among adsorbates can be neglected
because they are far apart from each other, the main contribution to (3.162) is Gs

(particle–particle correlations are negligible and Gd ≈ 0). On the contrary, for high
coverages, it is expected that Gd presents a significant contribution to (3.162).

Within this theoretical framework, the dynamic structure factor is better written
as [108]

S(ΔK,ω) =
∫

e−iωt I (ΔK, t) dt, (3.165)

where

I (ΔK, t) ≡ 1

N

〈
N∑
j, j ′

e−iΔK·R j (0)eiΔK·R j ′ (t)

〉
(3.166)

is the so-called intermediate scattering function—note that this function is the space
Fourier transform ofG(R, t). In Eq. (3.166) the brackets denote an ensemble average
and R j (t) the trajectory of the j adparticle on the surface. This function can be split
into two sums, distinct (Id ) and self (Is), if the crossing terms are taken into account or
not, respectively. Following neutron scattering language, the corresponding Fourier
transforms of I and Is give what is called the coherent scattering law, S(ΔK,ω), and
incoherent scattering law Ss(ΔK,ω), respectively. In QHAS experiments, and with
interacting adsorbates, coherent scattering is always obtained. The corresponding
theoretical interpretation of that scattering is usually carried out in terms of the
Vineyard convolution approximation [109]where the distinct correlation functionGd

is expressed as a convolutionof the self correlation functionGs . This approximation is
known to fail at small distanceswhere the surface lattice becomes important.Whereas
in neutron scattering many attempts to improve the convolution approximation have
been developed, in the QHAS context very little effort has been devoted to this goal.

In order to go a step further into the dynamics, a Hamiltonian has to be specified.
In surface diffusion, the full system+bath Hamiltonian is usually written as [106,
107]

H = p2x
2m

+ p2y
2m

+ V (x, y)

+1

2

N∑
j=1

⎡
⎣ p2x j

m j
+ m jω

2
x j

(
x j − cx j

m jω2
x j

x

)2
⎤
⎦

+1

2

N∑
j=1

⎡
⎣ p2y j
m j

+ m jω
2
y j

(
y j − cyj

m jω2
y j

y

)2
⎤
⎦ , (3.167)

where (px , py) and (x, y) are the adparticle momenta and positions with mass m;
and (pxi , xi ) and (pyi , yi ) with i = 1, . . . , N are the momenta and positions of the
bath oscillators (phonons), withmass and frequency given bymi andωi , respectively.
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Phononswith polarization along the z–direction are not considered. TheHamiltonian
was originally considered by Magalinskii and Caldeira and Leggett, who used it for
weak and strong dissipation (a general discussion about the Hamiltonian (3.167)
can be found in [2]). In surface diffusion, V (x, y) is in general a periodic function
describing the surface corrugation at zero temperature. The harmonic frequencies
of the bath modes and the coupling coefficients are expressed in terms of spectral
densities, defined as

Ji (ω) = π

2

N∑
j=1

c2i j
m jω

2
i j

[
δ(ω − ωi j )

]
. (3.168)

with i = x, y. These densities enable the passage to a continuum model.
In the Heisenberg picture, the time evolution of the position operators is given by

the generalized Langevin (GL) equation for each system coordinate

mẍ(t) + m
∫ t

0
γx (t − t ′) ẋ(t ′) dt ′ + ∂V (x, y)

∂x
= ξx (t), (3.169a)

mÿ(t) + m
∫ t

0
γy(t − t ′) ẏ(t ′) dt ′ + ∂V (x, y)

∂y
= ξy(t), (3.169b)

where the associated friction functions are defined through the cosine Fourier trans-
form of the spectral densities,

γi (t) = 2

πm

∫ ∞

0

Ji (ω)

ω
cosωt dω, (3.170)

with i = x, y. The nonhomogeneity of (3.169) represents a fluctuating or random
force ξ (when introducing the SL equation in Sect. 3.2, this force was labeled by Fr )
for each degree of freedom which depend on the initial position of the system and
initial positions and momenta of the oscillators of each bath [2]

ξx (t) = −
∑
j

cx j

{[
x j (0) + cx j (0)

m jω2
x j

x(0)

]
cos(ωx j t) + px j (0)

m jωx j

sin(ωx j t)

}
.

(3.171)
and

ξy(t) = −
∑
j

cy j

{[
y j (0) + cyj (0)

m jω2
y j

y(0)

]
cos(ωy j t) + pyj (0)

m jωy j

sin(ωy j t)

}
.

(3.172)
For each cartesian component of the noise, it can be easily shown that its equilibrium
(canonical ensemble) expectation value with respect to the heat bath including the
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corresponding bilinear coupling to the system vanishes. On the contrary, the noise
autocorrelation function (each cartesian component) is a complex quantity because in
general it does not commute at different times. In the classical limit� → 0, each noise
correlation reduces tomkBTγi (t),with i = x, y. ForOhmic friction,γi (t) = 2γiδ(t),
where γi is a constant and δ(t) is Dirac’s δ–function. Under the assumption of Ohmic
friction, it can be shown that noise in this model is white. The paradigm of this type
of noise is the Gaussian white noise. Dealing with large systems (the surface seen
as a thermal bath) where the number of collisions between substrate and adsorbate
is very high, one of the fundamental theorems of the theory of probability, namely
the central limit theorem, ensures that the fluctuations of the bath will be Gaussian
distributed. Diffusion can then be described by a Brownian-type motion involving
a continuous Gaussian stochastic process. In virtue of the fluctuation–dissipation
theorem, such fluctuations can be related to the friction coming mainly from surface
phonons: the phonon friction. Electronic friction due to low-lying electron–hole pair
excitations is usually neglected in most of cases. Moreover, quantum mechanically
[2], for Ohmic friction the imaginary part of each noise function is a step function
and its real part goes with csch2(πt/�β). Thus, at zero surface temperature, the noise
is still correlated even for long time (it decays as t−2) in contrast to the classical case.
These facts give rise to important differences with respect to the classical case such
as, for example, the noise and the system coordinates are correlated instead of being
zero. In particular, in classical mechanics, the random force can be neglected at zero
temperature, but quantum-mechanically this force is always present due to the zero
point motion.

In order to simplify this theoretical treatment, only classical noise will be consid-
ered, though keeping in mind that the quantum results will be only valid for not too
low surface temperatures. Moreover, the motion of only one adsorbate is considered
within the so-called single adsorbate approximation since, for very low coverage,
adparticles are considered non-interacting. Thus, if Ohmic friction is assumed, Eqs.
(3.169) reduce to two coupled standard Langevin equations1 (Markovian approxi-
mation),

mẍ(t) + mγx (t) ẋ(t) + ∂V (x, y)

∂x
= ξx (t), (3.173a)

mÿ(t) + mγy(t) ẏ(t) + ∂V (x, y)

∂y
= ξy(t). (3.173b)

In Fig. 3.4, one classical stochastic trajectory driven by a Gaussian white noise
is plotted, which simulates a realization of a two–dimensional Brownian motion. In
order to obtain information about the diffusion process, a swarm of these trajectories
(i.e., a sampling over many Brownian realizations) should be considered.

1The δ–function counts only one half when the integration is carried out from zero to infinity.
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Fig. 3.4 As an example of
Brownian motion driven by a
Gaussian white noise, the
classical stochastic trajectory
pursued by a Na atom is
displayed here at T = 300K,
though on a flat surface
(V = 0). The friction
constant is γ = 0.5 ps−1 and
the evolution is up to
t = 20, 000ps

When dealing with higher coverages, adsorbate–adsorbate interactions can no
longer be neglected. In this case, the adsorbate–surface interaction can still be
described as before, but pairwise potential functions accounting for the adsorbate–
adsorbate interactions are usually introduced into Langevin molecular dynamics
simulations [111]. Moreover, these simulations always result in a relatively high
computational cost due to the time spent by the codes in the evaluation of the forces
among particles. This problem is even worse when working with long–range inter-
actions, since a priori they imply that one should consider a relatively large number
of particles in order to get a good numerical simulation. An alternative approach
is to consider a purely stochastic description for these interactions [112–115]. This
description, which is denominated the interacting single adsorbate approximation, is
a fully Langevin approach based on the theory of spectral–line collisional broadening
developed by Van Vleck and Weisskopf [116] and the elementary kinetic theory of
gases [110]. In this approach, the motion of a single adsorbate is modelled by a series
of random pulses within a Markovian regime (i.e., pulses of relatively short duration
in comparison with the system relaxation); the pulses simulate the collisions with
other adsorbates. In particular, we describe these adsorbate–adsorbate collisions by
means of a white shot noise as a limiting case of a colored shot noise [7]. For a good
simulation of a diffusion process, one has to consider very long times in comparison
to the timescales associated with the friction caused by the surface or with the typical
vibrational frequencies observed when the adsorbates keep moving inside a surface
well. This means that there will be a considerably large number of collisions during
the time elapsed in the propagation, and therefore that, at some point, the past history
of the adsorbate could be irrelevant. This memory loss is a signature of a Markovian
dynamical regime, where adsorbates have reached what is called the statistical limit.
Otherwise, for timescales relatively short, the interaction is not Markovian and it is
very important to take into account the effects of the interaction on the particle and its
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dynamics (memory effects). The diffusion of a single adsorbate is thus modeled by
a series of random pulses within a Markovian regime (i.e., pulses of relatively short
duration in comparison with the system relaxation) simulating collisions between
adsorbates. In particular, we describe these adsorbate–adsorbate collisions by means
of a white shot noise [7] as a limiting case of colored shot noise. In this way, a typical
molecular dynamics simulation problem involving N adsorbates is substituted by the
dynamics of a single adsorbate, where the action of the remaining N − 1 adparticles
is replaced by a random force given by the white shot noise. Furthermore, the sur-
face coverage can be related to a collisional friction providing the average number
of collision per unit time, γc [114, 115], where the probability of observing a given
number of collisions, after a certain time, follows a Poisson distribution. In brief,
the adsorbate is subject to a two white noises, one coming from the substrate and
the other from the surrounding adsorbates; both noises being uncorrelated. Thus, the
total friction coefficient η for the interacting single adsorbate model is a sum of two
friction coefficients, η = γ + γc and the total noise is given by ξ = ξG + ξS (G
comes from Gaussian and S from shot) for each degree of freedom (x, y).

In this interacting single adsorbate approximation, and within a classical frame-
work, the distinction between self and distinct time–dependent pair correlation func-
tion does not exist and Eqs. (3.161) and (3.165) still hold. The intermediate scattering
function reads now as

I (ΔK, t) ≡ 〈e−iΔK·[R(t)−R(0)]〉 = 〈e−iΔK·∫ t
0 v(t

′) dt ′ 〉 (3.174)

In order to get some analytical results and therefore a guide for the interpretation
of the numerical Langevin simulations, the intermediate scattering function can be
expressed as a second order cumulant expansion in ΔK,

I (ΔK, t) ≈ e−ΔK 2
∫ t
0 (t−t ′)CΔK(t ′)dt ′ , (3.175)

where

CΔK(τ ) ≡ 〈vΔK(0) vΔK(τ )〉 ≡ lim
T →∞

1

T
∫ T

0
vΔK(t) vΔK(t + τ ) dt (3.176)

is the autocorrelation function of the velocity projected onto the direction of the par-
allel momentum transfer (whose length is ΔK ≡ ‖ΔK‖). Only differences between
two times, τ , are considered because this function is stationary. This is the so–called
Gaussian approximation [110], which is exact when the velocity correlations at more
than two different times are negligible, thus allowing to replace the average acting
over the exponential function by an average acting over its argument. These approx-
imation results of much help in the interpretation of the numerical results as well as
in getting an insight into the underlying dynamics.

The decay of CΔK(τ ) allows to define a characteristic time, the so-called correla-
tion time,
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τ̃ ≡ 1

〈v2
0〉
∫ ∞

0
CΔK(τ ) dτ , (3.177)

where
√

〈v2
0〉 = √

kBT/m is the average thermal velocity in one dimension—though
the dimensionality is two, note that CΔK is defined along a particular direction (that
given by ΔK) and therefore CΔK(0) ≡ kBT/m, i.e., the thermal velocity in one
direction. The correlation time is related to the lineshape broadening in the sense
that it provides a timescale for the decay of the intermediate scattering function and
therefore information about the width of the Q–peak in the dynamic structure factor.

On the contrary, if we are dealing with quantum position operators, Eq. (3.174) is
not longer valid due to the fact that the position operators at two different times do
not commute. However, it is possible to factorize the intermediate scattering function
in two factors, one of them being precisely that given by Eq. (3.174) [107].

In order to better understand the shape and broadening of the Q and T peaks
within the SLB equation formalism, two simple cases are considered. In the first
case, the simplest illustration for the Q-peak is to assume a Brownian motion of the
adsorbates with V (x, y) = 0; that is, the diffusion of adsorbates on a flat surface.
And the second one, for the T-peak, a good model is that provided by the harmonic
oscillator motion in a potential well of a periodic corrugated surface.

3.8.1 The Bohmian–Brownian Motion

Apart from considering the interaction potential zero, one also can assume the dif-
fusion of adsorbates on low corrugated surfaces where the energy provided by the
surface temperature can easily surmount the corresponding energy barrier. Thus, the
adparticle motion can be regarged as quasi–free since it is not ruled by a potential,
but only influenced by stochastic forces. It can be shown [115])

C(τ ) = kBT

m
e−ητ . (3.178)

Unless the relaxation of the collisional effects can be of relevance, these effects and
those caused by the surface should be indistinguishable and therefore (3.178) would
describe accurately the loss of correlation, with τ̃ = η−1.

The expression for the intermediate scattering function that results from (3.178)
is

I (ΔK , t) = exp
[−χ2

(
e−ηt + ηt − 1

)]
, (3.179)

where the so–called shape parameter χ is defined as

χ2 ≡ 〈v2
0〉ΔK 2

η2
= DΔK 2

η
. (3.180)
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From this relation we can extract both the mean free path, l̄ ≡ τ̃
√

〈v2
0〉, and the

self–diffusion coefficient D which is also given by Einstein’s relation

D = lim
t→∞

∫ t

0
C(t ′)dt ′

= kBT

mη
. (3.181)

This ensures that the adparticle velocity distribution becomes Maxwellian asymp-
totically. The same result is reached from the mean squared displacement (MSD)

D = lim
t→∞

1

4t
< (R(t) − R(0))2 > . (3.182)

When the coverage increases, the collisions among adsorbates are also expected
to increase, and so λ and therefore η. As can be easily shown, (3.179) displays a
Gaussian decay at short times that does not depend on the particular value of η,
while at longer times it decays exponentially as ηt . Thus, two dynamical regimes
can be clearly distinguished depending on the value of ηt . For ηt << 1, collision
events are rare and the adparticle shows an almost free motion with relatively long
mean free paths. This is the ballistic or free-diffusion regime characterized by the
MSD

〈q2(t)〉 ∼ kBT

m
t2. (3.183)

On the other hand, for ηt << 1, there is no free diffusion since the effects of the
stochastic force are dominant. This is the diffusive regime where the MSD is linear
with time according to

〈q2(t)〉 ∼ 2kBT

mη
t = 2Dt (3.184)

which is an alternative way to express Einstein’s law.
The type of decay is important concerning the width and shape of the dynamic

structure factor which is analytically obtained from the time Fourier transform of
Eq. (3.179),

S(ΔK ,ω) = eχ2

π

∞∑
n=0

(−1)nχ2n

n!
(χ2 + n)η

ω2 + [(χ2 + n)η]2 . (3.185)

As can be seen in the high friction limit, this function becomes a Lorentzian function
which its full width at half maximum (FWHM) is Γ = 2ηχ2. Thus, D is exper-
imentally extracted from this width and following Eq. (3.180). Furthermore, Γ is
approaching zero as η increases (narrowing effect). This in sharp contrast to what
one could expect - as the frequency between successive collisions increases one
would expect that the line shape gets broader (effect of the pressure in the spectral
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line shapes of gases [116]). The physical reason for this effect is relatively simple:
as η increases the particle’s mean free path decreases and therefore correlations are
lost more slowly. In the limit case where friction is such that the particle remains
in the same place, the space-time correlation function becomes a δ, the intermedi-
ate scattering function remains equal to one and the dynamic structure factor will
also consist of a δ–function at ω = 0. Conversely, in the low friction limit, the line
shape is given by a Gaussian function whose width is Γ = 2

√
2 ln 2

√
kBT/m ΔK ,

which does not depend on η. This is precisely the case of a two dimensional free
gas. This gradual change of the line shapes as a function of the friction and/or the
parallel momentum transfer leading to a change of the shape parameter is known
as the motional narrowing effect. Remember that in this formalism the friction is
related to the coverage. Thus, at higher coverages a narrowing effect is predicted for
a flat surface [115].2

In the quantum regimewithin theHeisenberg representation, the standard quantum
Langevin equation has the following formal solution

R(t) = R(0) + P(0)

mη
Φ(ηt) + 1

mη

∫ t

0
Φ(ηt − ηt ′)ξ(t ′)dt ′ (3.186)

where P(0) is the initial adparticle momentum operator and Φ(ηt) = 1− exp(−ηt)
and ξ is the sum of the two noises (ξG and ξS) for (x, y). As mentioned above, the
operatorsR(t) andR(0) do not commute each other, leading to amuchmore involved
diffusion dynamics according toEq. (3.174); for example,the velocity autocorrelation
function is complex with several decaying constants.

In Fig. 3.5, the real and imaginary parts of Eq. (3.174) for Na diffusion on a
flat surface are plotted at two different surface temperatures, 50 and 100 K, and
two coverages, 0.028 and 0.18 [107]. As can be clearly seen, the real part of I (t)
decreases faster with temperature and slower with coverage. On the other hand, the
imaginary part of I (t) displaysmaxima between 4–6%of the corresponding real part,
depending on the temperature. It starts linearly with time and, after passing through
a maximum, decays smoothly to zero. The corresponding quasielastic line shapes
(around the zero energy exchange) will then display narrowing with the coverage
and broadening with the surface temperature. This behavior could be experimentally
confirmed for those systems where the diffusion barrier is smaller than the thermal
energy kBT . For light particles, the imaginary part is expected to be much more
important keeping the same shape. The scattering law for the Q-peak is no longer
a simple sum of Lorentzian functions [107]. However, quantum effects are mainly
important at low surface temperatures, except if the adorbate is very light.

2At finite coverages, one usually distinguishes between two diffusion coefficients: the tracer and the
collective diffusion constants [117]. The first one refers to the self–diffusion process and focuses
on the motion of a single adsorbate. On the contrary, the second is related to the collective motion
of all adsorbates which is governed by Fick’s law. In any case, a Kubo–Green formula relates both
diffusion coefficients with the velocity autocorrelation function of a single adsorbate or with the
corresponding of the velocity of the center of mass, respectively.
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Fig. 3.5 Quantum
intermediate scattering
function (3.174) for Na
diffusion on a flat surface at
50 and 100K: a real part and
b imaginary part. Two
coverages are considered:
θ = 0.028 (black solid line)
and θ = 0.18 (red dashed
line)

Once the simplest description of the surface diffusion (Brownian motion regime)
is introduced, the next step is to see how the SLB formalism is applied to this very
fundamental quantum process. In Sect. 3.3, we have discussed the free regime prob-
lem V = 0 with no random force. For simplicity and without loss of generality, we
are going to deal with a one dimensional quantum surface diffusion (light adparti-
cles). By starting from Eq. (3.29), and assuming a Gaussian probability density given
by Eq. (3.33) for an adsorbate, the quantum trajectories are expressed by Eq. (3.38),
which comes from a direct integration of Eq. (3.36) in time, and Eq. (3.39) ruling the
time evolution of the wave packet width. Under the presence of noise, the quantum
trajectory has the following expression
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x(t) = q(0) + q̇(0)

η
Φ(ηt) + 1

mη

∫ t

0
Φ(ηt − ηt ′)ξ(t ′)dt ′ + (x(0) − q(0))

δ(t)

δ(0)
(3.187)

where the classical trajectory q(t) has been rewritten from Eq. (3.186).
In this diffusion problem, a critical function is the velocity autocorrelation func-

tion CΔK(τ )which is defined alongwith the direction given byΔK. For a flat surface,
diffusion is isotropic (however, for a corrugated surface, that direction can be deter-
mined by a symmetry direction of the surface). After Eq. (3.36), we have that the
quantum autocorrelation function is

CΔK(t) ≡ 〈v(0)v(t)〉 = 〈q̇(0)q̇(t)〉 + 〈(x(0) − q(0))2〉 δ̇(0)

δ(0)2
δ̇(t) (3.188)

since 〈q̇(0)(x(0)−q(0))〉 = 0 and 〈(x(0)−q(0))q̇(t)〉 = 0, keeping the same struc-
ture than the quantum velocity, that is, a classical contribution given by the classical
autocorrelation function and a quantum contribution governed by the time derivative
of the Gaussian wave packet width (dressing scheme). Interestingly enough, when
the initial velocity of spreading of the wave packet is zero, the quantum contribu-
tion disappears. In the long time limit, the classical contribution is simply given by
Eq. (3.178). In this limit, the overdamped regime is established and therefore the
acceleration term of the differential equation (3.41) for this width can be neglected.
Thus, Eq. (3.188) is finally expressed

〈v(0)v(t)〉 = kBT

m
e−ητ + 〈(x(0) − q(0))2〉 δ̇(0)

δ(0)2
�
2

4mηδ(t)3
(3.189)

where δ(t) is asymptotically given byEq. (3.44). Remember that the time dependence
of δ(t)−3 comes from the quantum potential. Several important consequences are
deduced from this time behavior. First, the line shape of the Q-peak is no longer
a Lorentzian function; it is modified by the quantum contribution which goes with
t−3/4 according to Eqs. (3.175) and (3.165). Second, the relation of Einstein for the
diffusion constant is also no longer valid. In fact, from Eq. (3.182),

< (x(t) − x(0))2 >∝ tα (3.190)

with α = 1/2, indicating an anomalous diffusion process [118, 119]. In general,
when the MSD is not linear in time, Einstein’s relation is violated and the diffusion
process can be described by a subdiffusion regime (α < 1) or a superdiffusion regime
(α > 1), that is, slower or faster thanordinaryBrownianmotion [120]. Superdiffusion
is originated by anomalous long jumps of a random walker while diffusion can be
associated with unusually long waiting times between successive walks. A useful
model to describe these processes is the so-called continuous time random walk.
And third, this way is still completely unexplored and new studies need to be carried
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out for a better understanding of this quantum anomalous diffusion. An open question
is if for very light adparticles, surface diffusion can exhibit this anomalous behavior.

3.8.2 The Harmonic Oscillator Motion

The harmonic potential model is an appropriate working model to understand the
bound motion inside the wells of a corrugated surface and, therefore, to also under-
stand the behavior associated with the T-mode (observed through the so-called T-
peak). This mode comes from the oscillating behavior undergone by the adparticle
when the diffusional motion is temporarily frustrated.

In contrast with the case of a dynamics where the interaction potential with the
surface does not play a relevant role, we can devise a particle fully trapped within
a harmonic potential well. The velocity autocorrelation function can be expressed
[107, 115] as

C(τ ) = kBT

m
e−ητ/2

(
cos ω̄τ − η

2ω̄
sin ω̄τ

)
, (3.191)

where

ω̄ ≡
√

ω2
0 − η2

4
(3.192)

and ω0 is the harmonic frequency. Equation (3.191) can also be recast as

C(τ ) = kBT

m

ω0

ω̄
e−ητ/2 cos(ω̄τ + δ), (3.193)

with

δ ≡ (tan)−1

(
η/2

ω̄

)
. (3.194)

Note that Eq. (3.178) can be easily recovered after some algebra in the limit ω0 →
0 from either Eq. (3.191) or (3.193). For anharmonic potentials, ω0 represents the
corresponding approximate harmonic frequency.

The only information about the structure of the lattice is found in the shape para-
meter throughΔK .When large parallelmomentum transfers are under consideration,
both the periodicity and structure of the surface have to be taken into account. Con-
sequently, the shape parameter should be changed for different lattices. The simplest
model including the periodicity of the surface is that developed by Chudley and
Elliott [121] who proposed a master equation for the pair–distribution function in
space and time assuming instantaneous discrete jumps on a two–dimensional Bravais
lattice. Very recently, a generalized shape parameter has been proposed to be [122]
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χl(ΔK) ≡
√

Γν(ΔK)

2γ
, (3.195)

where
Γν(ΔK) = ν

∑
j

Pj [1 − cos(j · ΔK)], (3.196)

ν being the total jump rate out of an adsorption site, and Pj the relative probability
that a jump with a displacement vector j occurs.

Introducing now Eq. (3.193) into (3.175), this leads to the following expression
of the intermediate scattering function

I (ΔK , t) = exp

{
−χ2

l η
2

ω̄ω0

[
cos δ − e−ηt/2 cos(ω̄t − δ)

]}
. (3.197)

The argument of this function displays an oscillatory behavior around a certain value
with the amplitude of the oscillations being exponentially damped. This translates
into an also decreasing behavior of the intermediate scattering function, which also
displays oscillations around the asymptotic value. This means that after relaxation
the intermediate scattering function has not fully decayed to zero unlike the free–
potential case. It can be easily shown that in the limitω0 → 0, Eq. (3.197) approaches
the result given by Eq. (3.179).

From (3.197) it is now straightforward to derive an expression for the dynamic
scattering factor (the time Fourier transform of the corresponding intermediate scat-
tering function), which results

S(ΔK ,ω) ∝
∞∑

m,n=0

(−1)m+n

m! n! χ2(m+n)
l

(2χ2
l + m + n)η/2

[ω − (m − n)ω̄]2 + [(2χ2
l + m + n)η/2]2 .

(3.198)
For a harmonic potential, there is no diffusion and, therefore, the line shapes (or
scattering law) are only observed when m �= n consisting of Lorentzian functions
related to vibrational excitations (creation and annihilation events of the T-mode).
These Lorentzians are characterized by a width given by Γ = (2χ2

l + m + n)η/2,
which increases as η becomes larger. This broadening (proportional to η) undergone
by the dynamic structure factor is thus contrary to the narrowing effect observed for
a flat surface. It can be then assigned to the confined or bound motion displayed
by the adparticle ensemble when trapped inside the potential wells. Hence, in order
to detect broadening of the lineshapes in surface diffusion experiments, adparticles
must spend some time confined inside potential wells, since it is induced by the
presence of temporary vibrational motions.

On the other hand, the corresponding quantum trajectory in one-dimension has
the following expression
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x(t) =
[
q(0)cos(ω̄t) +

(
q̇(0)

mω̄
+ γ

2ω̄
q(0)

)
sin(ω̄t)

]
e−ηt/2

+
∫ ∞

0
χ(t − t ′)ξ(t ′)dt ′

+ (x(0) − q(0))
δ(t)

δ(0)
(3.199)

where the standard classical trajectoryq(t) iswritten in terms of the response function

χ(t) = Θ(t)
1

mω̄
e−ηt/2sin(ω̄t) (3.200)

with Θ(t) being the Heaviside function to ensures causality and δ(t) the width of
the Gaussian wave packet which is governed by Eq. (3.39).

As said above, the velocity autocorrelation function has also two contributions,
classical and quantum. Unfortunately, analytical expressions for this function as well
as for the T-peak are no longer possible.

3.9 The Generalized Schrödinger–Langevin–Bohm
Equation

As mentioned previously in the Introduction, in the system-plus-bath model, the
dynamics is carried out in a conservative scenario. The so–called Caldeira-Leggett
Hamiltonian [102] is the starting point leading to the generalized Langevin equation
(GLE). One of the key issues is the interaction term which by construction is linear
in the bath coordinates. For example, in one dimensional systems, the dependence on
the system variable is through a function f (x) which usually is separable and linear
(linear dissipation). This scenario is known as a state–independent dissipation and
can be seen as a measurement of particle’s position by a reservoir in von Neumann’s
sense [2]. This function also appears in an additional term in the total Hamiltonian
in order to avoid the renormalization of the interaction potential. In the Markovian
regime with Ohmic (constant) friction, this GLE becomes the standard Langevin
equation for a Brownian particle where noise is additive. As we have seen along
this Chapter, Kostin [16, 17] established the link between this standard Langevin
equationwith the Schrödinger equation. The resulting logarithmic nonlinear equation
is quite different from others existing in the literature such as the so–called stochastic
Schrödinger equation and the Linblad equation for the density matrix [3].

For a nonlinear function f (x), the open quantumsystemdisplays a state dependent
dissipation process and the corresponding GLE exhibits multiplicative noise [33,
123]. Typical examples of nonlinear functions take place, for example, in rotational
tunneling systems [124], quasi-particle tunneling in Josephson systems [125], in the
Langevin canonical formulation of chiral two level systems [126], in atom surface
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scattering [127] and so on. Within the Markovian regime, the standard Langevin
equation with multiplicative noise is reached. The main purpose of this Section is to
derive a generalization of the SLB equation for nonlinear dissipation.

Without loss of generality, a one dimensional problem is again considered. As
mentioned at the beginning of this Chapter and in the previous section, for open
systems, it is usual to split the total Hamiltonian into three parts including system,
bath and mutual coupling after Eq. (3.159). Let us consider explicitly the different
Hamiltonians

HS = p2

2m
+ V (x) (3.201)

which stands for the Hamiltonian of the isolated system in presence of a force field
given by the potential V (x);

HB = 1

2

∑
i

(
p2i
mi

+ miω
2
i x

2
i

)
(3.202)

is the Hamiltonian for the bath, which acts as a reservoir, and can be represented as
an infinite set of harmonic oscillators; and

HSB =
∑
i

[
f 2(x)d2

i

miω
2
i

− 2di f (x)xi

]
(3.203)

expressing the interaction term between the isolated system and the bath, di being
appropriate coupling constants. The function f (x) is, in general, a nonlinear func-
tion of the system variable x . The term with the squared of f (x) gives the so–called
counter term introduced to compensate the renormalization of the potential. Follow-
ing the standard procedure where the bath degrees of freedom are eliminated, the
equation of motion for the corresponding system dynamics in the Heisenberg picture
of quantum mechanics is given by the GLE [102]

f ′ [x(t)] ξ(t) = mẍ(t) + V ′(x)

+ m f ′ [x(t)]
∫ t

0
dt ′γ(t − t ′) f ′ [x(t ′)] ẋ(t ′) (3.204)

where the time–dependent friction (memory kernel) is given by

γ(t) = 1

m

∑
i

d2
i

miω
2
i

cos(ωi t) (3.205)

and the external force (noise term) is expressed as (written in Sect. 3.2 as Fr )
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ξ(t) = −
∑
i

di

[(
xi (0) + di

miω
2
i

f (0)

)
cos(ωi t)

]

− di
∑
i

[
pi (0)

miωi
sin(wi t)

]
. (3.206)

In the Markovian regime, the memory kernel is a δ–function in time, giving place to
an Ohmic dissipation with a time–independent friction. Within this regime and for a
nonlinear coupling, the corresponding standard Langevin equation reads as

mẍ(t) + mγ
[
f ′(x)

]2
ẋ(t) + V ′(x) = f ′ [x(t)] ξ(t). (3.207)

Notice that the random force is multiplied by the derivative of the function f (x)
giving place to a stochastic process with multiplicative noise. When the system–bath
coupling is linear, that is, for f (x) = x , the standard Langevin equation for additive
noise (that is, when the noise term is not multiplied by any system function) with
Ohmic friction is recovered

mẍ(t) + mγ ẋ(t) + V ′(x) = ξ(t). (3.208)

Following the Kostin procedure [16], the generalized SL equation (that is, for any
f (x)) can be obtained by writing first the Schrödinger equation as

i�
∂Ψ

∂t
=
[

1

2m

(
−i�

∂

∂x

)2

+ V (x) + VD + Vr

]
Ψ, (3.209)

where the random potential Vr is given by

Vr (x, t) = − f (x)ξ(t). (3.210)

andVD is the dampingpotential, Eq. (3.4).On theother hand, the quantummechanical
current is defined as

J = 1

2m

[
Ψ ∗
(

−i�
∂

∂x

)
Ψ + Ψ

(
−i�

∂

∂x

)
Ψ ∗
]

(3.211)

Then, from ∂Ψ/∂t and ∂Ψ ∗/∂t and Eq. (3.209) we have that

d

dt
〈x〉 =

∫
Jdx

d2

dt2
〈x〉 =

∫
∂ J

∂t
dx . (3.212)
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where < . > is the expectation value of a given operator. Now, by performing the
same type of averaging into Eq. (3.207)

m〈ẍ(t)〉 + mγ〈[ f ′(x)
]2
ẋ(t)〉 + 〈V ′(x)〉 = 〈 f ′(x)ξ(t)〉, (3.213)

and comparing itwithEq. (3.209) andusingEq. (3.212),we can identify terms leading
to ∫

Ψ ∗
(

−∂VD

∂x

)
Ψ dx = γm

∫
f ′(x)2 Jdx . (3.214)

Thus, the damping potential is a functional of the wave function and can be expressed
as

VD
[
Ψ,Ψ ∗, f

] = −mγ

∫
J̃

Ψ Ψ ∗ dx, (3.215)

where the new quantum mechanical current is now

J̃ ≡ f ′(x)2 J (3.216)

which is coupling–dependent. Finally, the corresponding generalized SL equation
can then be expressed as [54]

i�
∂Ψ

∂t
=
[

1

2m

(
−i�

∂

∂x

)2
+ V (x) − mγ

∫
J̃

Ψ Ψ ∗ dx − f (x)ξ(t) − W (t)

]
Ψ.

(3.217)

where W (t) = 〈VD〉 arises from the requirement that the integration of Eq. (3.215)
with respect to x must be equal to the expectation values of the kinetic and potential
energies through the total Hamiltonian. As mentioned previously, this term can be
removed from Eq. (3.217) by introducing the transformation of the wave function
given by Eq. (3.6). We also note that when the coupling function f is assumed to be
linear in the system variable, Eq. (3.217) reduces to the standard Kostin equation.

Equation (3.217) can also be written in terms of the quantum trajectory formula-
tion by expressing the wave function in polar form [67] as in Eq. (3.28). Doing this,
Eq. (3.209) can be split into a system of two coupled equations,

∂S

∂t
= − 1

2m

(
∂S

∂x

)2

− (V + Vd + Vr + Q) (3.218)

∂φ2

∂t
= − 1

m

∂S

∂x

∂φ2

∂x
− φ2

m

∂2S

∂x2
. (3.219)
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Moreover, the current density is expressed in this formalism as

J = Ψ Ψ ∗

m

∂S

∂x
. (3.220)

By differentiating Eq. (3.218) with respect the position, the time evolution of p(x, t)
is given by

∂ p

∂t
= − p

m

∂ p

∂x
− ∂

∂x
(V + Vd + Vr + Q) . (3.221)

According to Eq. (3.207), which can be interpreted in terms of the Lagrangian frame-
work of hydrodynamics, the corresponding quantum Newton–Langevin equation
including the dissipative and random sources can be expressed as

∂ p

∂t
= − p

m

∂ p

∂x
− ∂

∂x
(V + Q)

− γ f ′(x)2 p − f ′(x)ξ(t). (3.222)

Then, by integrating Eq. (3.222) with respect to x , we obtain [54]

− ∂S

∂t
= p2

2m
+ V + Q + γ

∫
f ′(x)2 pdx

+ f (x)ξ(t) + C(t), (3.223)

where C(t) is an arbitrary time function resulting from the space integration to be
specified later on. This equation gives the evolution of the wave function phase in
presence of damping which corresponds to a generalized Caldeira–Leggett coupling.

Furthermore, the partial integration in Eq. (3.223) leads to

∫ (
d f

dx

)2

pdx =
(
d f

dx

)2

S − 2
∫

S
d f

dx

d2 f

dx2
dx, (3.224)

which gives place naturally to the coupling–dependent phase

S̃ ≡
(
d f

dx

)2

S − 2
∫

S
d f

dx

d2 f

dx2
dx . (3.225)

which can be straightforwardly expressed as

S̃ = m
∫

J̃

Ψ Ψ ∗ dx (3.226)

with
VD
[
Ψ,Ψ ∗, f

] = −γ S̃. (3.227)
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Importantly, Eq. (3.227) includes, as a special case, theBohmian version of theKostin
equation when the coupling is linear. In this case, J̃ → J and VD [Ψ,Ψ ∗, f ] →
VD [Ψ,Ψ ∗, x] = −γS, which is the dissipative potential expressed within the
Bohmian formalism [8, 53, 128].

The constant of integrationC(t) can be defined in such away that the overall phase
of thewave function should not affect its evolution. This requirement is satisfiedwhen
C(t) = −γ〈S̃〉. Therefore, C(t) ≡ W (t) and for a general nonlinear coupling, the
generalized SLB equation can be rewritten in terms of the modified quantum action,
S̃, as

i�
∂Ψ

∂t
=
[

1

2m

(
−i�

∂

∂x

)2

+ V (x) − γ
(
S̃ − 〈S̃〉

)
− f (x)ξ(t)

]
Ψ.

(3.228)

Thus, the corresponding generalized Hamilton–Jacobi equation for the nonlinear
dissipation is given byEq. (3.218)withVD given byEq. (3.227) andVr byEq. (3.210).
Notice, however, that the continuity equation is the same expressed by Eq. (3.219).

A similar theoretical analysis could be carried out with the nonlinear Eq. (3.22)
where the continuity equation has an extra term, a source or sink term.
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Chapter 4
Continuous Quantum Measurements
in the Bohmian Framework

Abstract Following a phenomenological approach for continuous measurement, a
general theory for decoherence in the framework of restricted path integrals (RPI)
has been proposed by Mensky. The corresponding propagator is modified according
to the information provided by the measurement through the so-called quantum cor-
ridors, which correspond to different readouts of the measurement. The measured
system is also considered in this theory as an open system since the back reac-
tion of the environment, considered as a measuring apparatus, is taken into account
implicitly. In this chapter, the RPI formulation is briefly presented and discussed
since our approach is inspired from Mensky’s procedure. The linear time dependent
Schrödinger equation derived from this formulation is reached for a non-Hermitian
(complex) effective Hamiltonian which takes into account the measurement readout.
The RPI formulation is equivalent to a master equation, a special case of the Linblad
equation, and to a stochastic Schrödinger equation. Within the Kostin framework, a
logarithmic nonlinear Schrödinger equation is proposed and discussed by extending
Mensky’s approach to be analyzed in terms of Bohmian trajectories, the so-called
SLB equation for continuous measurement. When a time-dependent Gaussian shape
is assumed for the probability density, soliton-like solutions are first analyzed in
order to establish the dividing line between the quantum and classical trajectories,
leading to the concept ofBohmian time.Afterwards, the solutions of theSchrödinger–
Langevin–Bohm (SLB) equation for continuous measurement are analyzed in terms
of mathematical stability for three simple cases, that is, the free particle and the
linear and harmonic potentials. In particular, the continuous position measurement
is seen that it is no longer governed by a standard continuity equation. The sign of
the extra source/sink term appearing in this new equation is critical for the stability
of the solutions. Two types of general solutions are found: (i) the stationary wave
packet considered becomes unstable (that is, this solution is not a physically accept-
able solution for that process since, as time evolves, the width of the corresponding
wave packet becomes more delocalized) and (ii) the probability density becomes
more and more localized at asymptotic times (the stationary wave packet is then an
attractor of the corresponding width dynamics); in terms of trajectories, this analy-
sis indicates that the Bohmian trajectories are not approaching the corresponding
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classical ones. These conclusions are also corroborated by carrying out an analysis
of the entropy. Finally, it is also briefly discussed the question of coupling classical
variables (apparatus) to quantum ones (system) in terms of Lyapunov exponents.

4.1 Introduction

It is well known that the path integral formulation is equivalent to the Schrödinger
picture of quantum mechanics. Thus, the restricted path integral (RPI) formalism
due to Mensky [1, 2] is also directly related to a linear Schrödinger equation but
with complex Hamiltonian and the measuring process can then be described in terms
of wave functions. A straightforward extension to a master equation in terms of the
density matrix can also be carried out. Doing this, the non-selective description of
the measurement is reached when the concrete readout is not known. In other words,
the summation or integration is carried out over the set of alternatives readouts. Fur-
thermore, dealingwith open systems, it is natural to ask oneself if theRPI formulation
is related to a stochastic (nonlinear) Schrödinger equation [3, 4].

Inspired by Mensky’s work, Nassar has proposed that the evolution of the wave
function of the quantum system under continuousmeasurement can also be described
in terms of a logarithmic nonlinear Schrödinger equation [5]. This equation clearly
provides a good starting point for a hydrodynamical description of the measuring
process in terms of quantum trajectories. We would like to show that one of the
fundamental aspects of Bohmian mechanics is its ability to tackle more intuitively
the quantum measurement problem. Following the same theoretical scheme, Nassar
andMiret-Artés [6] have also proposed that the time evolution of thewave function of
a quantumdissipative systemunder continuousmeasurement can also be described in
termsof amore general nonlinear Schrödinger equation.The logarithmic nonlinearity
for the dissipative part is the same one proposed by Kostin when considering open
quantum systems (see Chap.3) [7]. Recently, this nonlinear Schrödinger equation
has been investigated by Zander et al. [8].

As pointed out by Bell [9], the lack of clarity in regards to where the transition
between the classical and quantum regimes is located is one aspect of the mea-
surement problem. This problem represents one of the most important conceptual
difficulties in quantum mechanics. A solution to the challenge posed by Bell on the
dividing line between the quantum and classical regimes in a measurement problem
is proposed here within the Bohmian context. Via the quantum trajectory method,
a solution to this equation reveals a novel result: it displays a time threshold which
establishes the dividing line between the quantum and classical trajectories. It is
shown that continuous measurements and damping not only disturb the particle but
compel the system to converge in time to aNewtonian regimewithout any assumption
of collapse. In particular, it is shown that damping tends to suppress further quan-
tum effects on a time scale shorter than the relaxation time of the system following
also a gradual decoherence process. The solution to this equation is found through
a wave packet approach which establishes a direct correlation between a classical

http://dx.doi.org/10.1007/978-3-319-53653-8_3
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variable with a quantum variable describing the dynamics of the center of mass and
the width of the wave packet. The approach presented here gives a comparatively
clearer picture than approaches using restricted path integrals and master equation.

For these goals, this chapter is organized as follows. In Sect. 4.2, the so-called char-
acteristic function of a quantum measurement which is very convenient for the RPI
formulation is described. In Sect. 4.3, since our approach is inspired from Mensky’s
procedure, a very short introduction to path integrals and restricted path integrals
is presented In Sect. 4.4, some equations derived from the RPI formalism are pre-
sented and discussed, such as the linear time dependent Schrödinger equation for a
non-Hermitian (complex) effective Hamiltonian which takes into account the mea-
surement readout, a master equation which is a special case of the so-called Linblad
equation, and a stochastic Schrödinger equation. In Sect. 4.5, a logarithmic nonlin-
ear Schrödinger equation for continuous measurement is proposed and discussed by
extending Mensky’s approach within the Bohmian formalism which is equivalent to
the one presented in Chap.3, Eq. (3.22). In Sect. 4.6, this nonlinear equation is again
extended within the Kostin framework to be analyzed in terms of Bohmian trajecto-
ries, resulting the Schrödinger–Langevin–Bohm equation for continuous measure-
ment. Some important consequences are also analyzed when considering Eq. (3.22)
instead. In Sect. 4.7, it is established the dividing line between the quantumand classi-
cal trajectories, leading to the concept of Bohmian time. Section4.8 is devoted to the
analysis of the solutions of the Schrödinger–Langevin–Bohm in terms of mathemati-
cal stability for three simple cases, that is, the free particle and the linear and harmonic
potentials. When a time-dependent Gaussian shape is assumed for the probability
density, the continuous quantum measurement process (in particular, the continuous
position measurement) is no longer governed by a standard continuity equation. The
extra source/sink term is mainly dependent on the sign (positive/negative) of such a
parameter. Two types of general solutions are found: (i) the stationary wave packet
considered becomes unstable (that is, this solution is not a physically acceptable
solution for that process since, as time evolves, the width of the corresponding wave
packet becomes more delocalized) and (ii) the probability density becomes more and
more localized at asymptotic times (the stationary wave packet is then an attractor of
the corresponding width dynamics). In terms of stochastic trajectories, this analysis
indicates that the corresponding Bohmian trajectories are not approaching the corre-
sponding classical ones. These conclusions are also corroborated by carrying out an
analysis of the entropy. Finally, Sect. 4.9 sets out the question of coupling classical
variables (apparatus) to quantum ones (system) in terms of Lyapunov exponents.

4.2 Measurement and the Characteristic Function

As is well known, the Heisenberg uncertainty principle (HUP) has a double interpre-
tation. First, it concerns the relationship between two observables in a given quantum
state or, in general, between the so-called conjugate observables. And, second, when
dealing with instantaneous quantum measurements, it asserts that it is impossible

http://dx.doi.org/10.1007/978-3-319-53653-8_3
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to measure simultaneously two conjugate observables with arbitrary precision. The
most general expression of this principle is given by

ΔAΔB ≥ 1

2
〈Ψ |[A, B]|Ψ 〉 (4.1)

where A and B are two Hermitian operators. When these two operators are canon-
ically conjugate to each other, or their commutation relation is the same as for the
coordinate and momentum, the usual expression is obtained.1 The squared of the
uncertainty or quantum variance of an operator A is defined as

ΔA2 = 〈Ψ |A2|Ψ 〉 − 〈Ψ |A|Ψ 〉2. (4.2)

Following Mensky [2], if the uncertainties ΔA and ΔB characterize the state
before the measurement, and δA and δB refer to the state after the measurement, and
D A is the measurement error or resolution, then

δB ≥ 1

2

�

D A
(4.3)

for two canonically conjugate observables. If, on the contrary, [A, B] = iC , then

δB ≥ 1

2

|〈C〉|
D A

(4.4)

where themean value ofC is over the final state, that is, after themeasurement. These
expressions are no longer valid when continuous quantum measurements are carried
out. For example, when monitoring the position up to a certain error, information
about the momentum can not be expressed as dictated by the Heisenberg principle.

It is very well known that when a quantum system is measured, its correspond-
ing dynamics is unavoidably affected. Following the standard theory due to von
Neumann about quantum measurements, an idealized measurement is described by
the reduction postulate or collapse of the wave function. The conversion of a super-
position of states to the mixture of the same states is called decoherence. Interaction
between the system and its environment or measuring apparatus leads to entangle-
ment or quantum correlation. When the measurement is carried out, the measured
system decoheres. This measurement in standard quantum mechanics is described
in terms of projection operators, a complete set of orthogonal projectors.

In general, when dealing with composite systems (for example, S = S1 + S2),
the corresponding Hilbert space is the tensor product space of the Hilbert spaces
describing its subsystems (H = H1 ⊗H2). The corresponding density matrix when
both subsystems are uncorrelated takes also the form of a tensor product, ρ = ρ1⊗ρ2,

1As [q, p] = i�, then ΔqΔp ≥ 1
2� and, therefore, ΔAΔB ≥ 1

2�.
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and the corresponding expectation value of any tensor product of operators pertaining
to the subsystems factorizes. The reduced density matrix of one of the subsystems is
obtained by tracing over the second Hilbert space, ρ1 = Tr2ρ. This is called a coarse
grained description since very often we are not interested in all details of one of the
subsystems, usually the more extended one which is considered as the environment.
A state of H is a product state if and only if the reduced density matrices ρ1 and ρ2
describe pure states. On the other hand, if a state ofH can not be written as a tensor
product of states of the subsystems is said to be entangled.

The physical process leading to the transition from the density matrix (describ-
ing the pure state |ψ〉) ρ = |ψ〉〈ψ| to the density matrix of a mixed state where all
the coherences are zero (or when phase relations are lost) is an alternative way to
describe decoherence. The off-diagonal terms are typically decaying as an exponen-
tial function where the decoherence time is inversely proportional to the squared
difference between the measured values of the corresponding observable. In other
words, decoherence appears when quantum interference is destroyed or suppressed.
In a certain sense, it could be said that decoherence leads to the emergence of a
classical world in quantum mechanics. Environment induced decoherence [10] is
omnipresent and, in general, it is a short time phenomenon. When measuring, the
dynamics of the system tends to be decoherent. In the weak coupling approximation
between the system and environment, the trace operation carried out to obtain the
reduced density matrix is key to the existence of any master equation. However,
this operation is questionable when the system and environment are entangled at all
times, including the initial state. The role of the initial conditions has also be widely
discussed in the corresponding literature.

In a measurement, the physical mechanism leading to decoherence consists of
the interaction of the measured system with its environment (for example, a measur-
ing device). As mentioned above, this interaction also leads to their entanglement
or quantum correlation of the two systems. Thus, the information about the sys-
tem is somehow recorded in the state of the environment. This process can also be
described by the reduced density matrix of the measured system (when tracing over
the degrees of freedom of the device). Doing this, it can easily be shown (starting
from a product state of wave functions), that one more property is needed for deco-
herence, the orthogonality of the measuring device wave functions before and after
the measurement. This condition is satisfied for macroscopically distinct states and
the decoherence is irreversible. When dealing with microscopic environments where
such a condition is not satisfied, the decoherence process is reversible. An alternative
way of seeing this is by considering the environment split into two parts, one micro-
scopic part directly interacting with the system, usually called a meter or (pointer),
and this, in turn, interacts with a macroscopic part usually named reservoir. Thus,
decoherence induced by entanglement through a unitary evolution of both the system
and meter is practically reversible. When the reservoir is also present, decoherence
may be considered reversible, in principle, but it is irreversible from a practical point
of view. However, the many-worlds interpretation by Everett is an attempt to over-
come irreversibility completely. It seems to be impossible to verify it or to be testable;
in other words, to be falsified.
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When one wants to obtain information on the state of the system by means of the
measurement on the meter, we speak about the indirect (or ancilla) measurement
[11, 12]. As said before, in this composite system, correlations between the mea-
sured system and the meter are built up during their interaction. The time-dependent
interaction Hamiltonian is assumed to vanish outside the time interval [0, τ ]. If the
time interaction is sufficiently small to suppose that only the interaction Hamiltonian
is acting, the unitary time evolution operator takes a very simple form in terms of the
integrated coupling strength G (given by the integration of the time-dependent cou-
pling g(t) in that time interval). For example, if the position operator Q, canonically
conjugate to the momentum operator P of the meter, is coupled to an observable A
the interaction Hamiltonian is given by

HI (t) = g(t)AQ (4.5)

the evolution operator being then written as

U = exp(−iG AQ). (4.6)

It is a straightforward exercise to show that the variance of the inferred eigenvalue
of A (through one the measurement outcomes of P) is the sum of the variance of A
and the variance of P in the initial state divided by G2. Thus, the measurement is
the more accurate the lower the momentum uncertainty of the meter and the stronger
the coupling between the system and meter.

In standard textbooks, the measurement is introduced through the projection pro-
cedure due to von Neumann (the so-called von Neumann’s reduction postulate). In
this ideal or instantaneous measurement, the system is projected onto one of the
possible eigenstates of a given observable. In a given basis set of the observable A,
the state of the system is expressed as

|ψ〉 =
∑

m

cm |m〉. (4.7)

The probability that the system is projected onto |m〉 is |cm |2. In other words, the
transition from the state given by Eq. (4.7), before the measurement, to one of its
eigenstates, after the measurement, is the simplest form of the state reduction or
wave function collapse. This collapse is considered to be an irreversible process. In
this sense, it is claimed that this type of measurement is complete. If Pm = |m〉〈m|
is the projection operator onto the eigenstate |m〉 and the initial state of the system
is ρ = |ψ〉〈ψ|, the m possible outcome of the final state is given by

ρ f = |m〉〈m| = PmρPm

TrPmρPm
(4.8)
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with probability P(m) = Tr(PmρPm) = |cm |2 and Trρ f = 1. This is the well-known
von Neumann–Lüders projection postulate. Under the collapse condition, one may
ask for the density matrix after the measurement to have a particular measurement
outcome or alternative (selective measurement) or, for one reason or another, one
does not register the outcomes or alternatives (Nonselective measurement). In this
case, we have to sum over all possible outcomes.

The von Neumann–Lüders postulate can be generalized to a set of operators Ωm

with the condition
∑M

m=1 Ω†
mΩm = I , I being the identity operator. The different

outcomes can be again written as

ρ f = ΩmρΩ†
m

Tr(ΩmρΩ
†
m)

(4.9)

with P(m) = Tr(ΩmρΩ†
m) = Tr(Ω†

mΩmρ), being the probability of having the mth
outcome. These generalized measurements are referred to as positive- operator-
valued measure. The measurements described by such operators are minimally
disturbing. Furthermore, the positive operator F = ∑b

m=a Ω†
mΩm determines the

probability for obtaining an outcome lying in the range of real numbers [a, b]. This
positive operator is also called the effect and the operator ΩmρΩ†

m is called an oper-
ation. A measurement is a quantum non-demolition (QND) measurement for the
observable A if the operators Ωm describing the change of the quantum system
induced by the measurement commute with A. This condition is always fulfilled for
an ideal measurement of the observable A. Moreover, in a composite system, if A is a
constant of motion under the free evolution of a quantum system, a general sufficient
condition for a QND measurement takes place when the commutator of A and the
interaction Hamiltonian is zero. The more general forms for operations and effects
are established by the so-called representation theorem for quantum operations. The
reader interested in more details about the properties of such operators are addressed
to Refs. [10–17]

TheΩ operators could be thought to be a weighted (for example, a Gaussian func-
tion; the weight function is also called a characteristic function of the measurement)
sum of projectors onto the eigenstates |m〉, each one peaked around a different value
of the observable such as

Ωm = 1

N̄

∑
n

e−(n−m)2/2σ2
0 |n〉〈n| (4.10)

where N̄ is a normalization constant chosen to fulfill the normalization condition for
Ω†

mΩm previously established, the mean value is given by m and the variance by σ2
0.

After the measurement, with an outcome m, the state of the system is given by

ρ f = ΩmρΩ†
m

Tr(ΩmρΩ
†
m)

= 1

N̄

∑
n

e−(n−m)2/2σ2
0 |n〉〈n| (4.11)
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that is, the final state is peaked around the eigenvalue m with a width given by
the variance σ2

0. The width σ0 of this function corresponds to the resolution of the
measurement; sometimes, we also speak about the uncertainty of the observable.
For large variances, we have fuzzy, soft or unsharp measurements (sometimes, the
adjective weak is also used but we are going to reserve this adjective for the weak
measurement due to Aharonov et al. [18]); conversely, strong, projecting or sharp
measurements are obtained for small variances.Measurement devices have in general
a finite resolution, given by the variance in the example above. If the eigenvalues of
a given observable are not too closely spaced, one can measure such an observable
with a very small uncertainty, provided the experimental resolution is sufficiently
large. However, if such a resolution is not high enough to distinguish neighbouring
eigenvalues, our measure is quite approximate [11, 12]. The renewed interest in cou-
pling classical systems to quantum ones has been revived by a number of authors [2,
19, 20] who have examined continuous quantum measurements. Nowadays, contin-
uous or repeated (prolonged in time) measurements of a quantum system is a very
active field mainly for two reasons. First, it is a direct way to look into the intrinsic
features of quantum theory and second, suchmeasurements are gaining step by step a
predominant role in typical experimental setups [2]. In this context, one of the most
well known illustrations is the so-called quantum Zeno effect [21], as well as the
anti-Zeno effect [22], where the decaying of an unstable system can be delayed or
accelerated, respectively. This process is carried out in a series of projecting (sharp,
hard or strong) measurements. In fact, the Zeno effect is a nice illustration of the
reduction or collapse postulate of the wave function due to von Neumann. Each
observation collapses the wave function, resetting the clock and allowing to delay,
in principle, indefinitely or freezing a given decaying process. Clearly, this series of
measurements has to be carried out under certain conditions.

Acontinuousmeasurement is performedwhen information is continually extracted
from the system, by reducing such an information with the duration of the measure-
ment. This time is divided into a sequence of intervals of length Δ where a fuzzy
measurement is carried out. If, for example, the observable we want to measure is
the position of a particle, X , which displays a continuous spectrum of eigenvalues x
with 〈x |x ′〉 = δ(x − x ′), one can consider a fuzzy measurement in each time interval
Δt described by the operators [23]

Ω(α) =
(

1

πσ2
0Δt

)1/4 ∫ ∞

−∞
e−(x−α)2/2σ2

0Δt |x〉〈x |dx (4.12)

where each operator is a Gaussian-weighted sum of projectors onto the eigenstates of
X peaked atα, which is a real number. In other words, the continuum ofmeasurement
outcomes is labelled by α. The probability density P(α) of the outcome α, when Δt
is small, is then given by

P(α) = Tr(Ω(α)†Ω(α)|ψ〉〈ψ|) = 1

σ0

√
πΔt

∫ ∞

−∞
e−(x−α)2/σ2

0Δt |ψ(x)|2dx

(4.13)
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and the mean value by

〈X〉 =
∫ ∞

−∞
x |ψ(x)|2dx =

∫ ∞

−∞
αP(α)dα = 〈α〉 (4.14)

ForΔt sufficiently small, the Gaussian function is much broader than |ψ(x)|2, which
could be replaced by a delta function centered at the expected position of X . Thus,

P(α) = 1

σ0

√
πΔt

e−(α−〈α〉)2/σ2
0Δt . (4.15)

Now, following Ref. [23], the probability density given by Eq. (4.15) can be trans-
formed in the corresponding of a Wigner process if

α − 〈α〉 = σ2
0ΔW√
2

(4.16)

where ΔW denotes the small displacement of a Brownian particle [24].
A different approach is by considering a fuzzy measurement which results from

the generalization of von Neumann’s projector theory. For example, whenmeasuring
the position of a particle, a certain finite resolution should be considered. The simplest
way of describing this fact is by means of an indicator or characteristic function of
the measurement. Thus, by considering the interval [xi − Δx, xi + Δx] where xi is
the center of the interval and Δx the finite resolution, the projector Pi is defined as a
function to be unity inside the points of the above interval, and zero otherwise. Then,
the projector simply multiplies the wave function by one inside that interval

PiΨ (q) =
{

Ψ (q) , i f |q − qi | < Δa
0 , otherwise.

(4.17)

Obviously, this characteristic function which is discrete and rectangular can be
improved by considering a more general scheme [2]. Let us define a set of non-
orthogonal characteristic functions {Ri } with∑i R†

i Ri = 1 such that

|Ψi 〉 = Ri |Ψ 〉 (4.18)

with
Pi = ||Ψi ||2 = 〈Ψ |R†

i Ri |Ψ 〉 (4.19)

and ∑
i

Pi = 1. (4.20)

If these characteristic functions are assumed to be continuous functions (for exam-
ple, a Gaussian function), the index i is replaced by a continuous index xc in such a
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way that the continuous set of operators is now given by {Rxc}with
∫

dxc R†
xc

Rxc = 1
and

|Ψxc 〉 = Rxc |Ψxc 〉 (4.21)

with
Pxc = ||Ψxc ||2 = 〈Ψ |R†

xc
Rxc |Ψ 〉 (4.22)

and ∫
dxc Pxc = 1. (4.23)

In the literature, the set of positive operators {R†
xc

Rxc} represents a positive-operator-
valued measure on the set {xc} of all possible values of such a parameter.2 For a
Gaussian function, we have

RxcΨ (x) = R(x − xc)Ψ (x) (4.24)

where xc is the center of the Gaussian and its width gives the resolution of the
measurement (or fuzziness of the measurement). The measurements described by
such operators are called minimally disturbing since only the amplitude of the wave
function is rescaled, but not its phase. When the characteristic function includes a
phase of the momentum, a transition of the linear momentum is accompanied with
the measurement.

The characteristic function can be generalized to any observable. Thus, if the
observable A has a spectrum {ai }, the wave function in the representation of A is
written as

|Ψ 〉 =
∑

i

ci |ai 〉 (4.25)

and
Rac |Ψ 〉 =

∑
i

R(ai − ac)ci |ai 〉. (4.26)

The next interesting step is to consider the effect of repeated fuzzy measure-
ment and free evolution in the intervals between the measurements at each instant.
Decoherence is settled down after a measurement has been carried out. Obviously,
in the limit of many, many measurements during a finite time interval, we have a
continuous measurement with the corresponding gradual decoherence. Each fuzzy
measurement has a poor resolution leading to a poor information about the observ-
able to be measured. However, the repetition of this type of measurement improves
the resolution of the eigenvalues of the corresponding observable by projecting more
and more the state of the system onto one of the eigenvectors. Thus, with a long

2A Hermitian operator is called positive, R ≥ 0, if for an arbitrary state |φ〉 then 〈φ|R|φ〉 ≥ 0.
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series of fuzzy measurements, a model for gradual decoherence is provided leading
to von Neumann’s projection. The sequence thus defined by the measurements can
be seen as a stochastic process [2].

4.3 A Short Introduction to Restricted
Path Integrals

When dealing with classical systems, each individual trajectory or path forms a
complete description of its time evolution. However, for quantum systems, only the
sumor integration over all paths according to certain rules describes its corresponding
evolution.

The time evolution of a closed system in terms of its wave function is described
by the so-called propagator (or evolution operator), starting at t0, according to

Ψ (t) = U (t, t0)ψ(t0) (4.27)

which is equivalent to solve the time-dependent Schrödinger equation. For a time-
independent Hamiltonian, this operator is defined as

U (t, t0) = θ(t − t0) exp

[
− i H(t − t0)

�

]
(4.28)

where θ is the step function (1 for positive argument and 0, otherwise). In one-
dimension, its matrix elements are given by

U (q ′′, t ′′; q ′, t ′) = 〈q ′′|U (t ′′, t ′)|q ′〉 (4.29)

with q(t ′) = q ′ and q(t ′′) = q ′′. The evolution of the wave function is then given by

Ψ (q ′′, t ′′) =
∫

dq ′U (q ′′, t ′′; q ′, t ′)Ψ (q ′, t ′). (4.30)

The combined effect of all possible paths is defined by means of a propagator, which
acts according to Huygens’ principle. That is, following an optical analogy, the
(quantum) wave function at the time t ′′ is formed by the interference of a series of
secondary wavelets starting from a wave function at a previous time t ′.
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As is well known, this propagator can also be expressed as an integral over all
paths connecting the initial and final points [1, 2, 25, 26], the so-called Feynman
path integral, which in the one dimensional configuration space, is written as

U (q ′′, t ′′; q ′, t ′) =
∫

d [q] ei S[q]/�, (4.31)

where the integral is understood over all paths of the coordinate q fulfilling the
condition

[q] = {q(t)|t ′ ≤ t ≤ t ′′},

and the action S of the corresponding system is given by

S [q] =
∫ t ′′

t ′
L(q, q̇, t)dt (4.32)

L(q, q̇, t) being its Lagrangian, which is related to the Hamiltonian as

H(p, q, t) = pq̇ − L(q, q̇, t), (4.33)

with p = ∂L/∂q̇ . In the phase space, the path integral for U is written as

U (q ′′, t ′′; q ′, t ′) =
∫

d [p]
∫

d [q] e
i
�

∫ t ′′
t ′ (pq̇−H(p,q,t))dt , (4.34)

where the paths of the momentum are defined as

[p] = {p(t)|t ′ ≤ t ≤ t ′′}, p(t ′) = p′, p(t ′′) = p′′.

Equation (4.31) can be written in a more explicit way by means of the so-called
discretization. This procedure consists of replacing the continuous paths by contin-
uous piecewise linear curves or broken lines. The nodes of the broken line lie on the
path and are at the time and space positions q j = q(t j ) and q j+1 = q(t j+1) with
t j = jΔt . Thus, the integration over continuous path d [q] is replaced by integration
over all possible node positions

N−1∏
j=1

dq j

leading to the correct value of the integral when the time interval between nodes of
the broken lines tends to zero, i.e.,Δt = (t ′′ − t ′)/N → 0 or N → ∞. For example,
for a particle of mass m with a Lagrangian of the form
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L(q, q̇, t) = 1

2
mq̇2 − V (q, t) (4.35)

the propagator given by Eq. (4.31) is finally expressed as

U (q ′′, t ′′; q ′, t ′) = lim
N→∞

( m

2πi�Δt

)1/2 ∫ N−1∏
j=1

( m

2πi�Δt

)1/2
dq j

. exp

⎛
⎝ i

�

N∑
j=1

[
1

2
m

(q j − q j−1)
2

Δt
− V (q j , t j )Δt

]⎞
⎠ (4.36)

where a normalization factor has been introduced.
For Eq. (4.34), the measure d [q] d [p] is discretized as

N−1∏
j=1

dq j

N∏
j=1

dp j

2π�

where piecewise constant curves are used for paths [p]. The resulting expression for
the propagator is finally given by

U (q ′′, t ′′; q ′, t ′) = lim
N→∞

∫ N−1∏
j=1

dq j

N∏
j=1

dp j

2π�

. exp

⎛
⎝ i

�

N∑
j=1

[
p j (q j − q j−1) −

(
p2

j

2m
− V (q j , t j )

)
Δt

]⎞
⎠.

(4.37)

For an n-dimensional system, where q and p are n-vectors, the generalization of
the propagator is straightforward by taking into account the corresponding measures
[1, 2, 25, 26].

The next step is to describe sequential measurements of, for example, the position
of the system, in order to reach the continuous quantum measurement. If the output
of the measurement is q ′, with an error equal to Δq, by simulating the device by a
rectangular characteristic function,3 we couldwrite this operationby a set of operators
{Rq ′ } proportional to projectors as

Rq ′ = 1√
2Δq

Pq ′ , (4.38)

where Pq ′ is defined as in Eq. (4.17)

3Real devices correspond to smoother characteristic functions such as a Gaussian one.
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Pq ′Ψ (q) =
{

Ψ (q) , i f |q − q ′| < Δq
0 , otherwise

, (4.39)

with the probability density

P(q ′) = 〈Ψ |R2
q ′ |Ψ 〉, (4.40)

the normalization relation being

∫ +∞

−∞
P(q ′)dq ′ = 1. (4.41)

Usually, the sequence of measurements is carried out with intervals of free evo-
lution of the system between them. Thus, after N − 1 measurements with outputs
{q1, q2, . . . , qN−1} during the period T , we have that

Ψ (N ) = Uq1,q2,...,qN−1Ψ (0) (4.42)

where
Uq1,q2,...,qN−1 = U (tN , tN−1)RqN−1 · · · U (t2, t1)Rq1U (t1, t0) (4.43)

and the probability density of the outputs of the sequential measurement is

P(q1, q2, . . . , qN−1) = P(q1)P(q2) · · · P(qN−1) = 〈Ψ (N )|Ψ (N )〉 (4.44)

due to the unitarity of the free evolution. Finally, the normalization condition is

∫
· · ·
∫

P(q1, q2, . . . , qN−1)dq1dq2 · · · dqN−1 = 1. (4.45)

In the limit N → ∞, Δt = T/N → 0, the continuous measurement process in
the finite time interval T is reached. As seen in Fig. 4.1, the sequence of outputs
determines in this limit a quantum corridor or band of width 2Δq. It is clear why
path integrals can be used to calculate characteristics of continuous measurements.

The limit of the operator Uq1,q2,...,qN−1 is the propagator for a system under contin-
uous quantum measurement. This propagator can also be expressed in this limit as

U (q ′′, t ′′; q ′, t ′) =
∫

dq1

∫
dq2 · · ·

∫
dqN−1U (q ′′, t ′′; qN−1, tN−1)

· · ·U (q2, t2; q1, t1)U (q1, t1; q ′, t ′) (4.46)
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Fig. 4.1 The discretization procedure of both space and time required to evaluate the propagator
(4.31) is plotted which is analogous to carrying out a Riemannian integral

which satisfies the Chapman–Kolmogorov condition

U (q ′′, t ′′; q, t) =
∫

dq ′U (q ′′, t ′′; q ′, t ′)U (q ′, t ′; q, t). (4.47)

As shown byKac [26, 27], the connection between path integration and Brownian
motion is so close that they are nearly indistinguishable. The Brownian motion leads
us to the Wiener integral which is a bona fide integral on the space of paths, this
being defined from a Wiener measure. The space on which the proposed measure is
imposed is that of the continuous functions [q] where q(0) = 0 and q(t) = q. The
σ-algebra is built by forming countable unions and intersections of cylinder sets (in
our case, quantum corridors) defined as follows

K [a1, b1, t1; a2, b2, t2; ...; an, bn, tn] = {q(.)|a j < q(t j ) < b j , j = 1, . . . , N }

and the measure is the probability that a particle starting at q(0) = 0 is between a1

and b1 at time t1, is between a2 and b2 at t2, . . . , and is between aN and bN at time
tN with a j < b j and t j < t j+1, that is,

∫ b1

a1

dq1...

∫ bN

aN

dqN G(q1, t1)G(q2 − q1, t2 − t1)...G(qN − qN−1, tN − tN−1)

where the G-functions are Gaussian functions.
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4.3.1 Quantum Corridors

Opposite to strong measurements, fuzzy (unsharp, soft or weak) continuous mea-
surements have also been proposed for monitoring quantum transitions leading to a
new and deeper insight of the measuring process. In this chapter, when discussing
about weakmeasurements is to be understood as a fuzzy one, not to be confused with
the weakmeasurement due to Aharonov et al. discussed in Chap.1. For fuzzy contin-
uous measurements, the theory technically developed by Mensky provides a general
phenomenological theory of gradual decoherence in the framework of restricted path
integrals (RPI) [2]. This notion of restricted path integral was originally proposed by
Feynman [25], the propagator being modified according to the information provided
by the measurement through the so-called quantum corridor, which corresponds to
a given readout of the measurement. The measured system is then considered in
the RPI theory of measurements as an open system since the interaction with the
environment is taken into account implicitly. In general, interaction of the system
with its environment may be interpreted as measuring the system, the corresponding
information being recorded in the environment. A phenomenological approach is
sometimes preferred since no model for such interaction or measurement is chosen
and the rather cumbersome procedure of considering first explicitly the environment
and afterwards excluding it turns out to be unnecessary. In this theory, no special
postulate is introduced in order to take into account the measuring process, it is just
derived from the Feynman formulation of quantum mechanics.

In the path integral formalism, one does not deal with quantum states but with
alternatives or paths and it results a quite natural framework to describe continuous
quantum measurements. The analogue of the HUP under these conditions is the so
called action uncertainty principle (AUP) [2]. In particular, the RPI formalism turns
out to be very convenient for such a goal. This formalism takes into account the
measuring process without explicit reference to the apparatus or environment, the
back influence of the environment being considered implicitly. It makes the empha-
sis on the dynamical role of information issued from the continuous measurement
as treated as an open quantum system. Thus, in the coordinate representation, the
evolution operator or propagator is written as

U[a](q ′′, q ′) =
∫

I[a]
d[q]ei S[q]/� (4.48)

where the integral is restricted to the set I[a] of paths [q] = {q(t)|t ′ ≤ t ≤ t ′′}
(with q ′′ = q(t ′′) and q ′ = q(t ′)) representing the measurement readout [a] of a
given observable A. A similar expression can be written in the phase space. This
measurement readout may be expressed by the function or curve [a] = {a(t)|0 ≤
t ≤ T } during the measuring period of time T and characterized by an error or
resolution [Δa] = {Δa(t)|0 ≤ t ≤ T }, establishing a quantum corridor between
[a − Δa, a + Δa] (see Fig. 4.2). In this way, |q(t) − a(t)| ≤ Δa. In principle, this
resolution could also be a time dependent function. This evolution operator U[a] can

http://dx.doi.org/10.1007/978-3-319-53653-8_1
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Fig. 4.2 Restriction of a
path integral to the quantum
corridor I[a] which
corresponds to the readout
[a] when monitoring the
position. The quantum
corridor is defined by
[a − Δa, a + Δa]

be interpreted as an amplitude for the measurement to give the readout [a]. The most
probable measurement output always corresponds to the classical trajectory [q]class .
However, due to the quantum effects, outputs may differ with a large probability.
The variance we are dealing with in the HUP is with respect to the classical output.
The simplest (and weakest) way to express this AUP is

δS ≥ �, (4.49)

which means that a continuous measurement produces information such that the
uncertainty in the action is not less than the quantum of action. Thus, the most
probable output corresponds to the classical output [a]class and to the minimum of
the action. However, outputs different from the classical one with larger values of
the action are also probable but different from the minimum action by a term of the
order of the quantum action, �. Therefore, the variance of the action δS should be
not less than �.

The AUP is an inequality allowing one to specify the subset of the measurement
readout [a] having comparatively high probabilities. When monitoring a coordinate,
this principle (in a stronger form) is given by the condition [2]

max |
∫ T

0

δS[q]
δq(t)

Δq(t)dt | ≤ � (4.50)
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where the functional derivative is taken at [q] = [a] and the maximum should be
taken for all [Δq] such that [a + Δq] ∈ I[a] (condition for the measurement readout
[a] to be highly probable). When monitoring an observable A(t) = A(p(t), q(t), t)
such as |A(t) − a(t)| ≤ Δa(t), then the AUP is expressed as [2]

max |
∑

i

∫ T

0
dt

[
Δpi

(
q̇i − ∂H

∂ pi

)
− Δqi

(
ṗi + ∂H

∂qi

)]
| ≤ � (4.51)

where H(p, q, t) is the Hamiltonian of the systemwith components qi and pi for the
coordinate andmomentum, respectively. Again, themaximum is taken for |ΔA(t)| =
|A(p′(t), q ′(t), t)− A(p(t), q(t), t)| ≤ Δa(t). If we write an effective Hamiltonian
as He(p, q, t) = H(p, q, t) − δF(t)A(p, q, t), then the AUP can be reexpressed as

∫ T

0
|δF(t)|Δa(t) ≤ � (4.52)

the function δF(t) being the deviation of the measured system from the classical
behavior. This can be seen as a fictitious force describing the measurement process
on the system of interest. The readout then follows a Langevin-type equation where
δF(t) plays the role of noise.

4.3.2 Some Simple Applications of the RPI Formalism

When a continuous measurement is performed in the interval [t ′, t ′′], the information
of thismeasurement is then expressed by the positive-valued functional 0 ≤ ω[a] ≤ 1,
the measurement output being [a]. Thus, paths [q] for which this functional is close
to unity are probable. Then, the so-called measurement amplitude is defined by

U [a](q ′′, q ′) = 〈q ′|U [a]|q ′′〉 =
∫ q ′′

q ′
d [q]ω[a][q]ei S[q]/�, (4.53)

which its modulus squared roughly estimates the probability of the corresponding
output or readout, through the probability density P[a] = |U [a]|2. For the classi-
cal output, this probability is maximum. Furthermore, we have also the following
inequality

|q(t) − a(t)| ≤ Δa (4.54)

where the output is given by the curve [a] = {a(t)|t ′ ≤ t ≤ t ′′}, the quantum corridor
being defined by [a − Δa, a + Δa] and symbolized by I[a].

If the ω[a] functional is considered to be Gaussian as described by the following
expression
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ω[a][q] = exp

(
− 2

T Δa2

∫ T

0
((q(t) − a(t))2dt

)
(4.55)

the positionmonitoringmay be calledmeasurement of a path. The errorΔa is usually
taken to be a constant. Let us consider now a driven harmonic oscillator of mass m
[1]. The Lagrangian is given by

L = 1

2
mq̇2 − 1

2
mω2q2 + q F(t) (4.56)

where ω is its frequency and F(t) the driving force. The measurement amplitude is
then written as

U[a](q ′′, q ′) = e− 2
T Δa2

∫ T
0 a(t)2dt

∫ q ′′

q ′
d[q]ei S̃[q]/� (4.57)

since an effective action and effective Lagrangian can be defined as

S̃[q] =
∫ T

0
L̃(q, q̇, t) (4.58)

and

L̃ = 1

2
mq̇2 − 1

2
mω̃2q2 + q F̃(t), (4.59)

respectively. This also leads to an effective driven harmonic oscillator with complex
frequency

ω̃2 = ω2 − iν2 (4.60)

and new driving force
F̃(t) = F(t) − imν2a(t). (4.61)

The imaginary part of the complex frequency is governed by the error of the mea-
surement,

ν2 = 4�

mT Δa2
(4.62)

showing that a very precise measurement leads to very high contributions of the
imaginary parts of the frequency and driving force and, therefore, to a strong influence
on the measured system.

When spectral measurements are considered, the theoretical procedure is different
[1]. The path of an oscillator is clearly periodic and it can be expanded in a Fourier
series as

q(t) =
∞∑

n=1

qnsin
nπ

T
t (4.63)
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in the time interval [0, T ]. The continuous measurement is carried out for the qn

components with the errors Δan for the frequencies Ωn = nπ/T . If a given device
is effective in the range I = [Ωa,Ωb], only those frequencies Ωn inside such an
interval with the corresponding errors are considered a spectral measurement. The
weight functional can then be written for one of the n components as

ωan ,Δan [q] = exp

(
− (qn − an)

2

Δa2
n

)
. (4.64)

and for all components inside that interval of frequencies as a product of exponential
functions as written above. The measure for the measurement amplitude is given by

d[q] =
∞∏

n=1

dqn. (4.65)

A detailed account of this problem can be found in Mensky’s book [1],
An interesting and illustrative result is also when we want to measure the momen-

tum of a free particle. It can be shown [1] that the variance of the linear momentum
at the instant T after continuous measurement is given by

Δp =
√

Δp2
0 + 2�2

Δa2
(4.66)

which shows that it does not change with time because of the momentum conser-
vation. When there is no measurement, Δa = ∞. However, when a measurement
is carried out by monitoring the position, the variance is higher due to the error of
the measurement. In a certain sense, the particle undergoes scattering as a result of
the continuous measurement. The second sum inside the square root can be easily
understood from the uncertainty principle.

Finally, another aspect of the measurement process is worth commenting. The
variance of the outputs or readouts of a precise measurement can be considered to be
a quantummeasurement noise. For a certain level of precision, this noise becomes an
inconvenient. For a class of continuous measurements, this fact is not valid and they
have been called quantum non-demolition (QND) leading to no absolute restriction
on observability. In other words, the idea of the QND measurement is to measure a
variable such that the unavoidable disturbance of the complementary one does not
disturb the evolution of the chosen variable. This is clearly seen when measuring the
linear momentum of a free particle since it is a conserved property, even disturbing
the position. In general, a given variable is quantum nondemolition (as the linear
momentum for a free particle) when the commutation relation of this observable at
two different times is zero. Mensky has clearly shown the radical difference between
the linear momentum and the velocity of a particle when considering this quantum
property.
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4.4 Some Equations Derived from the Restricted
Path Integral

4.4.1 The Schrödinger Equation

Using Mensky’s notation, his quantum corridor approach can be outlined as follows.
If the system of interest undergoes a continuously prolonged in time measurement
(time interval T) and, therefore, is considered as being open, the propagator can
then be expressed by restricted path integrals. When monitoring an observable A =
A(p, q, t) by continuous measurement, the measurement readout may be given by
the curve

[a] = {a(t)|0 ≤ t ≤ T }, (4.67)

characterizing the values of this observable in different time moments (see Fig. 4.2
where the position is measured). However, due to the finite resolution of themeasure-
ment, Δa, the actual value of A at t may differ from a(t). In this sense, a quantum
corridor can be defined by including all curves or paths which differ from [a] by not
more than Δa. In general, the width of the corridor also depends on time performing
themeasurement,ΔaT . Thus, the restricted path integral representing themonitoring
of A has to be taken over paths in the corridor around [a].

If the squared average deflection

〈
(A − a)2

〉
T = 1

T

T∫

0

[A(t) − a(t)]2dt (4.68)

is seen as a measure of the deviation of the observable A(t) ≡ A(p(t), q(t), t) from
the readout a(t), then themost natural weight functional describing themeasurement
may be written in the Gaussian form as

ω[a][p, q] = exp

⎡
⎣−κ

T∫

0

[A(t) − a(t)]2dt

⎤
⎦ . (4.69)

In general, ω[a] is a positive-valued functional fulfilling 0 ≤ ω[a] ≤ 1. The constant κ
characterizes the resolution of the measurement andmay be expressed in terms of the
“measurement error”ΔaT which is achieved during the period T of themeasurement

κ = 1

T Δa2
T

, (4.70)
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whereΔaT decreases if its duration T increases. In general, the κ parameter can also
be a time dependent function. For small values of κ, the measurement is weak or
fuzzy; on the contrary, for large values, a sharp measurement is settled down.

The measurement amplitude (partial evolution operator) in the phase space rep-
resentation is then given by

U [a]
T (q ′′, q ′) =

∫ T

0
d[p]d[q] exp

⎧⎨
⎩

i

�

T∫

0

(pq̇ − H)dt − κ

T∫

0

[A(t) − a(t)]2dt

⎫⎬
⎭,

(4.71)

where q ′′ = q(t ′′), q ′ = q(t ′) and H the correspondingHamiltonian. This integration
is carried out over the subset of paths compatible with the [a] readout. However, the
time evolution of a continuously measuring system (open system) is described, in
general, by a set of partial evolution operators {U [a]

T }. Each partial evolution operator
is not unitary because it describes only one curve of the total evolution. Therefore,
a summation or integration over all possible alternatives or measurement readouts
gives rise to what is known non-selective description of the measurement (that is,
without fixing a certain measurement readout) and it is given only in terms of the
density matrix,

ρT =
∫

d[a]ρ[a]
T =

∫
d[a]U [a]

T ρ0(U
[a]
T )†, (4.72)

with d[a] =∏T
t=0 da(t). Obviously, the generalized unitary condition or normaliza-

tion of the RPI is ∫
d[a](U [a]

T )†U [a]
T = 1, (4.73)

and the probability density of the readout [a] is given by

P([a]) = T r(U [a]
T ρ0(U

[a]
T )†). (4.74)

Equation (4.71) has the form of a conventional Feynman path integral but with
the non-Hermitian (complex) effective Hamiltonian

H[a](p, q, t) = H(p, q, t) − iκ�[A(p, q, t) − a(p, q, t)]2. (4.75)

Now, instead of calculating a restricted path integral, onemay solve the corresponding
(linear) Schrödinger equation with the effective Hamiltonian given by

∂

∂t
Ψ (q, t) = − i

�
H[a]Ψ (q, t) =

(
− i

�
H − κ[A − a(t)]2

)
Ψ (q, t). (4.76)
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If this equation is solved for the initial wave function Ψ0 describing the initial state
of the measured system, then the solutionΨT in the final time moment represents the
state of the system after the measurement, under the condition that the measurement
readout is [a].

A special case is when considering the monitoring of the energy where A ≡ H0

is the free evolution of the system for a total Hamiltonian given by H = H0 + V ,
V being the interaction term responsible for transitions between stationary states.
Similarly, [a] ≡ [E] and [E] = {E(t), 0 ≤ t ≤ T }. The fuzziness or resolution of
the measurement is better characterized by

ΔT = 1

κT
(4.77)

than by κ since it takes also into account the duration T (the corresponding resolution
clearly decreases when increasing the duration of the measurement). The weight
functional is then expressed as

ω[E] = exp

(
−〈(H0 − E)2〉T

ΔE2
T

)
(4.78)

with

〈(H0 − E)2〉T = 1

T

∫ T

0
(H0(q, p, t) − E(t))2dt (4.79)

and the repetition of this fuzzy measurement improves the sharpness of the measure-
ment. This analysis allows one to deal with the monitoring of a transition between
two stationary states. If the characteristic difference between energy levels isΔE , the
T duration can then be controlled in order to monitor a given energy transition (when
ΔET  ΔE). The corresponding linear Schrödinger equation is now expressed as

∂

∂t
Ψ (q, t) =

(
− i

�
H − κ[H0 − E(t)]2

)
Ψ (q, t). (4.80)

Interestingly enough, each partial evolution operator describes only one channel
of the evolution. The probability of a single curve [a] (P[a] = 〈Ψ (T )|Ψ (T )〉) is zero
since, strictly speaking, the pure state evolution of the corresponding Schrödinger
equation, Eq. (4.76), is not possible. Finite probabilities are only adscribed to a bundle
A of curves [a]

P[a]∈A =
∫

A
P[a]d[a]. (4.81)

Thus, the state of the system has to be represented by a density matrix and its time
evolution is written as follows

ρT =
∫

A
d[a]ρ[a]

T =
∫

A
d[a]U [a]

T ρ0(U
[a]
T )†. (4.82)
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When the bundle A is quite narrow and the initial state is pure, the final state may
be considered to be pure to a good approximation, being represented by Eq. (4.76).

Several weight functionals ω[a] can be envisaged leading to different generaliza-
tions of the concept of monitoring an observable. Thus, for example, we can write

ω[a][p, q] = exp

⎡
⎣−κ

T∫

0

W (A, a)dt

⎤
⎦ , (4.83)

where W (A, a) is an arbitrary complex-valued function of two multidimensional
variables A and a, when simultaneous continuous measurements of several observ-
ables with different resolutions are carried out. The corresponding effective
Hamiltonian has then the expression

H[a] = H − iκ�W (A, a(t)). (4.84)

As a final remark of Mensky’s approach it is worth mentioning that this theoret-
ical framework is always considered within a linear theory where the Schrödinger
equation is valid.

4.4.2 The Master Equation

The description of the RPI in terms of the density matrix opens the door to link this
formalism with the master equation theory. If the weight functional is chosen to be a
Gaussian function, it simplifies enormously this correspondence. Mensky [2] proved
that the non-selective RPI description of the measurement is

ρt (q
′, q ′′) =

∫
d[a]〈q ′|U [a]

t ρ0(U
[a]
t )†|q ′′〉

=
∫

d[p′]d[q ′]d[p′′]d[q ′′] exp
⎧⎨
⎩

i

�

t∫

0

(p′q̇ ′ − H(p′, q ′, t))dt

⎫⎬
⎭

. exp

⎧⎨
⎩− i

�

t∫

0

(p′′q̇ ′′ − H(p′′, q ′′, t))dt

⎫⎬
⎭

. exp

⎧⎨
⎩−κ

2

t∫

0

(A(p′, q ′, t) − A(p′′, q ′′, t))2dt

⎫⎬
⎭ ρ0(q

′
0, q ′′

0 ). (4.85)

In order to derive a master equation, within the system-plus-device framework,
the density matrix of the system may be obtained by tracing out degrees of freedom
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of the device (or apparatus). The simplest master (phenomenological) equation is
given by

ρ̇ = − i

�
[H, ρ] − κ

2
[A, [A, ρ]] (4.86)

for monitoring of the observable A(p, q). This equation is a special case of the so-
called Linblad equation which was derived without using any particular model and
under the assumption of theMarkovian character of the process. The first term results
from the dynamical properties of the free system and the second term provides the
decay of the off-diagonal matrix elements. It is a straightforward exercise to prove
that Eq. (4.85) satisfies the above master equation.

When dealing with Hermitian and positive operators representing the fuzziness
or the characteristic function of the measurement, the modulus of the wave func-
tion is scaled, but not its phase. This kind of measurements carried out by such
operators is minimally disturbing. Mensky also showed the equivalence between the
corresponding RPI density matrix and a much more involved master equation.

Finally, from a practical point of view, the assumption that the measuring device
resolves time with absolute accuracy is an approximation (Markovian approxima-
tion). In this sense, the weight functional used in the RPI formalism has to be changed
and no differential equation in time exits for the resulting density matrix due to non-
local character in time [2]. The replacement of the value of an observable A(t) by
its time coarse graining 〈A〉t has to be carried out (non-Markovian approach).

4.4.3 The Stochastic Schrödinger Equation

Dealing with open systems, it is natural to ask oneself if the RPI formulation is
related to a stochastic Schrödinger equation. With appropriate change of variables,
it has been shown by several authors [3, 4] that the resulting equation is written as

d|Φ〉 =
[
− i

�
H − κ(A − c)2

]
|Φ〉dt + √

2κ(A − c)|Φ〉dW (4.87)

with a = c+(ξ/
√
2κ),Φ = exp[(1/2) ∫ t

0 dtξ2]Ψ (0) and dW = ξdt . W is aWiener
stochastic process with the property dW 2 = dt . To have the norm of the wave
function conserved, it should occur that c = 〈Φ|A|Φ〉. Therefore, this stochastic
differential equation is of Itô type and non-linear. Different stochastic equations
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have also been proposed in the literature for the description of continuous quantum
measurements [28–30].

4.4.4 The Bohmian Equations

The Bohmian formalism could obviously be applied to Eq. (4.76) in order to obtain
the counterpart of this linear Schrödinger equation in terms of the quantum action
coming from the phase of the wave function. Thus, by writing the wave function in
one dimension in the usual form as

Ψ (x, t) = ρ1/2(x, t)ei S(x,t)/�, (4.88)

and after introducing Eq. (4.88) into the time-dependent Schrödinger Eq. (4.76), the
following two real, coupled partial differential equations are obtained from the result-
ing imaginary and real parts, respectively

∂ρ

∂t
+ ∂(ρv)

∂x
= −2κ(x − q)2ρ, (4.89a)

v̇ + 1

m

∂Veff

∂x
+ vv′ = 0, (4.89b)

where the effective potential is again

Veff(x, t) = V (x) + Q(x, t). (4.90)

Q being the standard quantum potential and v′ is the first derivative of the velocity
with respect to x . Notice that Eq. (4.89a) is no longer the standard continuity equation
since the source term (−2κ(x − q)2ρ) is added due to the continuous quantum
measurement process. Furthermore, Eqs. (4.76) and (4.89) do not exhibit important
properties such as separability of noninteracting systems, normalization, etc.

4.5 The Nonlinear Schrödinger Equation
for Continuous Measurement

By considering only position measurements, monitoring a quantum particle by the
measure of the deviation of the actual path x(t), from the classical trajectory q(t),
may be given by the negative of the logarithmic of aweight functionalw[x] as follows
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[x(t) − q(t)]2 ∝ − lnw[x]. (4.91)

Now, the back influence of the selective measuring device onto the measured system
can be explicitly taken into account by the non-Hermitian effective Hamiltonian

H[x](x, t) = H(x, t) − i�κ lnw[x], (4.92)

where κ measures the strength of the interaction between the measuring apparatus
and the measured system and the choice of the weight functional depends on the
class of measurements under consideration. Nassar have proposed that the evolution
of the wave function of the quantum system Ψ (x, t) under continuous measurement
can be described in terms of the logarithmic nonlinear Schrödinger equation [5]

i�
∂Ψ (x, t)

∂t
= (H(x, t) − i�κ

[
ln |Ψ (x, t)|2 − 〈ln |Ψ (x, t)|2〉])Ψ (x, t).

(4.93)

which is identical to Eq. (3.22) of Chap.3. This generalization can be better under-
stood from the following arguments. If we start from a minimum-uncertainty wave
packet solution around the measurement readout or record q(t) written as

|Ψ (x, t)| = [2πδ2(t)]−1/4 exp

(
−[x(t) − q(t)]2

4δ2(t)

)
(4.94)

where δ(t) is the total width of the Gaussian wave packet, then ln |Ψ (x, t)|2 ∝
[x(t) − q(t)]2 by considering that continuous position measurements produce and
maintain localization as a necessary result of the information it provides. This
minimum-uncertainty wave packet solution is further supported by recent, alterna-
tive stochastic approaches [31] which have demonstrated that individual trajectories
remain minimum-uncertainty localized wave packets for all times, the localization
being stronger the smaller � becomes.

The last term of Eq. (4.93) arises from the requirement that the integration of this
equation, with respect to the variable x , under the condition that for a particle the
expectation value of the energy < E(t) > must be equal to the expectation values
of the kinetic and potential energies where

< E(t) >≡
+∞∫

−∞
Ψ ∗(x, t)E(t)Ψ (x, t)dx . (4.95)

http://dx.doi.org/10.1007/978-3-319-53653-8_3
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as seen in the Schrödinger–Langevin or Kostin equation discussed in Chap.3. Fur-
thermore, Eq. (4.93) has several unique properties easy to prove. First, it guarantees
the separability of noninteracting subsystems. Other nonlinear modifications can
introduce an interaction between two subsystems even when there are no real forces
acting between them. Second, the stationary states can always be normalized. For
other nonlinearities, stationary solutions have their norms fully determined and after
multiplication by a constant they cease to satisfy the equation. Third, this equa-
tion possesses simple analytical solutions in a number of dimensions, especially
non-spreading wave packet solutions. A remarkable feature of this equation is the
existence of exact soliton-like solutions of Gaussian shape. Hefter [32] has given
physical grounds for the use of this logarithmic nonlinear equation by applying it to
nuclear physics and obtaining qualitative and quantitative positive results. He argues
that this type of equation can be applied to extended objects such as nucleons and
alpha particles. Fourth, it is fundamentally different from the equation proposed by
Bialynicki-Birula andMycielsky due to the imaginary coefficient in front of the loga-
rithmic terms and the last term 〈ln |Ψ (x, t)|2〉 [33]. Fifth, asmentioned in Chap. 3, the
irreversible dynamics in this case due to the continuous measurement leads to fulfil
a Fokker–Planck equation. And sixth, it provides a good starting point for a hydro-
dynamical description of the measuring process in terms of quantum trajectories. In
fact, we want to show that one of the fundamental aspects of Bohmian mechanics
is its ability to tackle more intuitively the quantum measurement problem. As we
know, the wave function plays a dual role in the Bohmian framework; it determines
the probability of the actual location of the particle and choreographs its motion. As
pointed out by Bell [9], in physics the only observations we must consider are posi-
tion observations - a definite outcome in an individual measurement is determined
by the relevant position variable associated with the apparatus. It is a great merit of
the Bohmian picture to force us to consider this fact.

4.6 The Schrödinger–Langevin–Bohm Equation
for Continuous Quantum Measurement

For simplicity, let us consider again a one-dimensional problem. The time evolution
of the wave function Ψ (x, t) of a quantum stochastic system under continuous mea-
surement can also be described in terms of a more general nonlinear Schrödinger
equation. This equation has to combine two types of logarithmic nonlinearities [6]:
(i) For the description of a system under continuous measurement, Eq. (4.93) is used
with the logarithmic nonlinear term −i�κ ln |Ψ |2 and (ii) For the description of
quantum stochastic processes, Eq. (3.2) is also used but with the logarithmic nonlin-
ear term (iγ�/2) ln(Ψ/Ψ ∗). Thus, by combining both nonlinearities, the resulting
equation now reads

http://dx.doi.org/10.1007/978-3-319-53653-8_3
http://dx.doi.org/10.1007/978-3-319-53653-8_3
http://dx.doi.org/10.1007/978-3-319-53653-8_3
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i�
∂Ψ (x, t)

∂t
= [H(x, t) + i�

(
Wκ(x, t) + Wγ(x, t)

)]
Ψ (x, t), (4.96)

where

H(x, t) = − �
2

2m
∇2 + V (x) + Vr (x, t) (4.97)

Vr being the random potential (see Chap.3),

Wκ(x, t) = −κ
[
ln |Ψ (x, t)|2 − 〈ln |Ψ (x, t)|2〉] , (4.98)

and

Wγ(x, t) = γ

2

[
ln

Ψ (x, t)

Ψ ∗(x, t)
−
〈
ln

Ψ (x, t)

Ψ ∗(x, t)

〉]
, (4.99)

andwhere, asweknow, the coefficientκ characterizes the resolution of the continuous
measurement and the coefficient γ represents the friction coefficient. The terms in
< . > arise from the requirement that the integration of Eq. (4.96) with respect to
the variable x must be equal to the expectation values of the kinetic and potential
energies through the Hamiltonian H , see Eq. (4.95). Equation (4.96) has the same
unique properties than Eq. (4.93) mentioned before.

Equation (4.96) can now be further developed via themethod of quantum trajecto-
ries. In order to simplify the resulting equations and discussion, let us consider V = 0
and Vr = 0 (or zero temperature, no thermal fluctuations or noise is involved) and
whence only a dissipative free dynamics is present. To this end, the wave function is
again expressed in the polar form as in Eq. (4.88) After substitution of this equation
into Eq. (4.96), we obtain the Schrödinger–Langevin–Bohm (SLB) equation

i�

[
∂φ

∂t
+ i

�

∂S

∂t
φ

]
=

= − �
2

2m

{[
∂2φ

∂x2
− φ

�2

(
∂S

∂x

)2
]

+ i

�

[
2
∂S

∂x

∂φ

∂x
+ φ

∂2S

∂x2

]}

− i�κ
[
ln φ2− < ln φ2 >

]
φ + γ [S − 〈S〉]φ. (4.100)

http://dx.doi.org/10.1007/978-3-319-53653-8_3


210 4 Continuous Quantum Measurements in the Bohmian Framework

As we have carried out in similar contexts, Eq. (4.100) can be separated into real and
imaginary parts. By defining the quantum hydrodynamical density ρ, velocity v and
quantum potential Q respectively as

ρ(x, t) = φ2(x, t), (4.101)

v = 1

m

∂S

∂x
, (4.102)

Q = − �
2

2mφ

∂2φ

∂x2
, (4.103)

we have the corresponding splitting of the SLB equation into

∂v

∂t
+ v

∂v

∂x
+ γv = − 1

m

∂Q

∂x
(4.104)

∂ρ

∂t
+ ∂

∂x
(ρv) + 2κ [ln ρ − 〈ln ρ〉] ρ = 0. (4.105)

Equation (4.104) is again an Euler-type equation describing trajectories of a fluid
particle, with momentum p = mv. On the other hand, Eq. (4.105) describes the
evolution of the quantum fluid density ρ but it is no longer a continuity equation
since a source term is added due to the presence of the continuous measurement. This
density is interpreted as the probability density of a particle being actually present
within a specific region. Such a particle follows a definite space-time trajectory that
is determined by its wave function through an equation of motion in accordance with
the initial position, formulated in a way that is consistent with the Schrödinger time
evolution. An essential and unique feature of the quantum potential is that the force
arising from it is unlike a mechanical force of a wave pushing on a particle with
a pressure proportional to the wave intensity. By assuming that the wave packet is
initially centered at x = 0 and ρ(x, 0) = [

2πδ2(0)
]−1/2

exp
[−x2/2δ2(0)

]
and ρ

vanishes for |x | → ∞ at any time, it can be written as Eq. (4.94) Now, Eq. (4.94)
can be readily used to demonstrate that
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+∞∫

−∞

(
[x − q(t)]2

)
ρ(x, t)dx = δ2(t). (4.106)

Substitution of Eq. (4.94) into (4.105) yields

∂ρ

∂t
=
[
− δ̇

δ
+ (x − q)

δ2
q̇ + 1

δ3
(x − q)2δ̇

]
ρ, (4.107)

and

∂(ρv)

∂x
=
(

δ̇

δ
− κ

)
ρ +

[(
δ̇

δ
− κ

)
(x − q) + q̇

](
− (x − q)

δ2

)
ρ, (4.108)

which implies that

v(x, t) =
(

δ̇

δ
− κ

)
(x − q) + q (4.109)

according to the standard dressing scheme.
Analogously, substitution of Eq. (4.109) into (4.104) yields

(
δ̈(t) + (γ − 2κ)δ̇(t) + (κ2 − κγ)δ(t) − �

2

4m2δ3(t)

)
(x − q)1

+δ(q̈(t) + γq̇)(x − q)0 = 0, (4.110)

which implies that

δ̈(t) + (γ − 2κ)δ̇(t) + (κ2 − κγ)δ(t) = �
2

4m2δ3(t)
(4.111)

and

q̈(t) + γ
·
q = 0. (4.112)

Equations (4.111) and (4.112) show that a continuous measurement of a quantum
dissipative wave packet gives specific features to its evolution: the appearance of
distinct classical and quantum elements, respectively. This measurement consists of
monitoring the position of the quantum dissipative system and the result is the mea-
sured classical trajectory q(t) for t within a quantum uncertainty δ(t). If the random
potential is included (temperature different from zero), the above derivation changes
slightly the resulting equations. Thus, in Eq. (4.104) the extra random force has to
be added and Eq. (4.112) becomes the standard Langevin equation with the noise
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term. When κ = 0, the same coupled partial differential equations for the ampli-
tude and phase of the wave function, as seen in Chap.3, are recovered. Furthermore,
when γ = 0, the corresponding Bohmian equations for continuous measurements
are finally obtained.

As far as the Schuch–Chung–Hartmann equation (3.23) is concerned, notice that
if we set

κ = γ

2
(4.113)

in Eq. (4.111), we obtain such an equation and results as a special case, such that

δ̈(t) − γ2

4
δ(t) = �

2

4m2δ3(t)
(4.114)

or for the harmonic oscillator

δ̈(t) −
(

ω2 − γ2

4

)
δ(t) = �

2

4m2δ3(t)
(4.115)

with the corrected reduced frequency for the dissipative harmonic oscillator, as well
as

q̈(t) + γ
·
q +ω2q(t) = 0. (4.116)

Interestingly enough, a new starting point is the following differential equation

i�
∂Ψ (x, t)

∂t
= [H(x, t) + i�

(
Wκ(x, t) + Wγ(x, t)

)]
Ψ (x, t), (4.117)

where Wκ is defined as in Eq. (4.98) but the dissipative operator is now given by

Wγ(x, t) = −γ
[
ln |Ψ (x, t)|2 − 〈ln |Ψ (x, t)|2〉] , (4.118)

according to Eq. (3.22). Now, following the same theoretical procedure as before,
the final important equations are

∂v

∂t
+ v

∂v

∂x
= − 1

m

∂Q

∂x
(4.119)

and

∂ρ

∂t
+ ∂

∂x
(ρv) + 2(κ + γ) [ln ρ − 〈ln ρ〉] ρ = 0. (4.120)

http://dx.doi.org/10.1007/978-3-319-53653-8_3
http://dx.doi.org/10.1007/978-3-319-53653-8_3
http://dx.doi.org/10.1007/978-3-319-53653-8_3
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Again, starting from the Gaussian shape for the density given by Eq. (4.94), the
differential equations fulfilled by the width and center of the Gaussian wave packet
are, respectively,

δ̈(t) − 2(κ + γ)δ̇(t) + (κ + γ)2δ(t) = �
2

4m2δ3(t)
(4.121)

and

q̈(t) = 0 (4.122)

and the velocity is written as

v(x, t) =
(

δ̇

δ
− (κ + γ)

)
(x − q) + ·

q . (4.123)

As can be seen fromEq. (4.122), the classical dissipativemotion is not recovered. The
dissipative operator can not have the same nonlinearity term than that of the contin-
uous measurement; in other words, as expected, the two mechanisms (measurement
and friction) have to be different source.

The same theoretical analysis carried out here for Gaussian wave packets could
be extended to Airy packets introduced in Sect. 2.7 and given by Eq. (2.149),

ψ(x, t) = Ai2
[

B

�2/3

(
x − B3t2

4m2

)]
exp

[
i

(
B3t

2m�

)(
x − B3t2

6m2

)]
. (4.124)

whereAi is theAiry function,m is themass of the particle andB an arbitrary constant.
As we know, Airy wave packets continue to propagate without spreading even when
a spatially uniform and time-varying force is acting.

4.7 Bohmian Time: Dividing Line Between Quantum and
Classical Trajectories

As pointed out by Bell [9], the lack of clarity in regards to where the transition
between the classical and quantum regimes is located is one aspect of the mea-
surement problem. This problem represents one of the most important conceptual
difficulties in quantum mechanics. Consequently, this topic of research has gained
considerable interest in the last decades [2, 5]. The presence of a classical apparatus
considerably affects the behavior of the observed quantum system andmeasurements
typically fail to have outcomes of the sort the theory was created to explain.

http://dx.doi.org/10.1007/978-3-319-53653-8_2
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The solution to a challenge posed byBell on the dividing line between the quantum
and classical regimes in a measurement problem is proposed here from the theory
developed in the previous Section. It is shown that continuous measurements and
damping not only disturb the particle but compel the system to converge in time
to a Newtonian regime without any assumption of collapse. While the width of
the wave packet may reach a stationary regime, its quantum trajectories converge
exponentially in time to classical trajectories. In particular, it is shown that damping
tends to suppress further quantum effects on a time scale shorter than the relaxation
time of the system.

The associated Bohmian trajectories of an evolving i th particle of the ensemble
with an initial position xoi can be calculated by first substituting

ẋi (t) = vi (x, t) (4.125)

into Eq. (4.109) to obtain (dressing scheme)

xi (t) = q(t) + (x0i − q0i )
δ(t)

δ0
e−κt , (4.126)

where δ(0) = δ0 is the initial width. The position of the center of mass of the
wave packet (the classical trajectory) is represented by q(t) and its initial value
q0i , while x0i is the initial position of the i th individual particle in the Gaussian
ensemble corresponding to the wave function given by Eq. (4.88). Now, Eq. (4.111)
admits analytic Gaussian-shaped soliton-like solution or gausson where the width is
constant and, therefore, δ̇ = δ̈ = 0. For κ �= 0, a stationary regime can be reached
and the width of the wave packet can be related to the resolution of measurement as
follows

κ = γ

2
±
√

γ2

4
+ �2

4m2δ40
, (4.127)

which means that if an initially free wave packet is kept under a certain continuous
measurement, its width may not spread in time. The two basic existing decoherence
mechanisms are put on equal footing. The contribution �/2mδ0 is exactly the same
associated with the spreading velocity of a free Gaussian wave packet [34]. Equation
(4.127) displays a very similar form to that found for the renormalized frequency of
a damped harmonic oscillator (see below) [35]. It is worth stressing that when the
friction mechanism is added, the resolution of the apparatus is changed, showing the
intertwining role played by both mechanisms when Eq. (4.127) holds.
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The main characteristic of the transition from quantum to classical trajectories
can then be defined as the Bohmian time constant as τB ≡ κ−1 and Eq. (4.126) can
be further simplified to

xi (t) = q(t) + x0i e
−t/τB . (4.128)

It follows from Eq. (4.128) that if x0i = 0, then the particle follows the Newtonian
trajectory at any time. If, however, x0i is positive, then the particles distributed in the
right half of the initial ensemble are accelerated whereas the particles distributed in
the left half of the initial ensemble are decelerated. Nevertheless, there is only a tem-
porary asymmetry in the Bohmian velocities between any two symmetric particles
since the rate of the asymmetry diminishes with time. After a short time, the distance
in position space shifted by the particles initially lying at positive and negative x0i

′s
converges to a constant value. Thus, continuous measurements not only disturb the
particle but compel it to eventually converge to a classical position leading to the
violation of the noncrossing rule of quantum trajectories. It is also noticeable that
damping tends to suppress further quantum effects on a time scale shorter than the
relaxation time of the system. For a small friction coefficient (γ < �/mδ20), the
Bohmian time constant can be expressed as

τB � 2mδ20
�

(
1 − νmδ20

�

)
. (4.129)

Further, from Eqs. (4.103) and (4.126) we have that the quantum force is given by

Fqu = −∂Q

∂x
= − ∂

∂x

[
− �

2

8mδ40
(x − q)2 + �

2

4mδ20

]
= �

2

4mδ40
x0i e

−t/τB .

(4.130)

Thus, the convergence of the quantum particle trajectories to classical trajectories
is due to the influence of the measuring apparatus and friction through the quantum
force. From Eq. (4.94), we note that the expectation value of the quantum force
vanishes at all times since −1/m〈∂Q/∂x〉 = [�2/(2mδ2)]〈x − q(t)〉 = 0. The
quantum force is directly proportional to the initial position of the i th particle and
decays exponentially in time (it drops 63% of its initial value after a time constant
τB). Likewise, the quantum position xi (t) - the initial position of the i th individual
particle in theGaussian ensemble - approaches its classical value. In this way, friction
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and continuous observation of a wave packet may lead to a gradual freezing (gradual
decoherence) of the quantum features of the particle. This is translated in a gradual
violation of the noncrossing rule of quantum trajectories.

Finally, if the initial wave packet width for an electron is taken to be equal to
2.8×10−15 m (the approximate size of an electron [36]) and the coefficient of friction
is made very small (γ  �

mδ20
), the Bohmian time constant is found to have an upper

limit

τB � 10−26 s. (4.131)

This result provides an answer to a challenge posed by Bell [9, 37] on the lack of
clarity about the line between the quantum and classical regimes in a measurement
problem: The Bohmian time constant above may establish that dividing line.4

4.8 Some Simple Applications

As seen previously, the logarithmic nonlinear Schrödinger equation proposed for
continuous measurement in a dissipative environment for a one-dimensional prob-
lem is given by Eq. (4.96). The corresponding Hamiltonian and the nonlinear opera-
tors involving the action of the continuous measurement and the stochastic part are
expressed by means of Eqs. (4.97)–(4.99), respectively. In Fig. 4.3, a schematic view
of such a measurement is displayed. Following the work by Zander et al. [8], the
parameter characterizing the continuous measurement κ is going to be considered
a free real (mathematical) parameter and noted as χ. Doing this, the new nonlinear
differential equations to be analyzed is

i�
∂Ψ (x, t)

∂t
= [H(x, t) + i�

(
Wχ(x, t) + Wγ(x, t)

)]
Ψ (x, t), (4.132)

where

Wχ(x, t) = χ
[
ln |Ψ (x, t)|2 − 〈ln |Ψ (x, t)|2〉] , (4.133)

Some of the interesting properties of this equation have already been previously
mentioned; in particular, the breakdown of the superposition principle in this theo-
retical framework. Two important aspects are also worth commenting. First, along

4One of the most interesting uses of an RC circuit is the electronic pacemaker, which can make a
stopped heart start beating again. The electrodes are implanted in the heart, and the circuit contains
a capacitor and resistor. The pulsing rate depends on the time constant τ = RC , which regulates
the frequency of the heartbeat.
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Fig. 4.3 Schematic view of
the continuous measurement
process on a system
surrounded by an
environment

this monograph (in particular, see Chap.3), it has been pointed out several times
that the environment also plays the role of a measuring device. However, it is clear
from Eq. (4.132) that the sources of the two nonlinearities are drastically different;
the one coming from the continuous measurement goes with the amplitude of the
wave function and the one coming from the environment goes with the phase of the
wave function. The second aspect concerns the interaction potential. For example,
when the particle is considered free, these two nonlinearities play the role of a cer-
tain interaction potential (imaginary potential) and the corresponding dynamics is
no longer “free”, apart from the random potential arising from thermal fluctuations
of the environment (monitoring the position of the Brownian particle).

On the other hand, the Bohmian description of the measuring process under the
presence of an environment is easily reached when the wave function is, as usual,
expressed in the polar form as in Eq. (4.100) and substituted in Eq. (4.132). This
leads to the splitting of the Langevin–Schrödinger–Bohm equations into two coupled
equations,

∂v

∂t
+ v

∂v

∂x
+ γv = − 1

m

∂(V + Vr + Q)

∂x
(4.134)

∂ρ

∂t
+ ∂

∂x
(ρv) = 2χ [ln ρ − 〈ln ρ〉] ρ. (4.135)

which rule the time evolutions for the velocity and the probability density, respec-
tively. Equation (4.134) is again an Euler-type equation describing trajectories of a
fluid particle, with momentum p = mv. The two parameters governing this dynam-
ics, χ and γ, that is, the two basic existing decoherence mechanisms here, are put on
equal footing, leading to an intertwining or entanglement among them.

http://dx.doi.org/10.1007/978-3-319-53653-8_3
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In the Bohmian formalism, Eq. (4.135) describes the evolution of the quantum
fluid density ρ with a source/sink term R(x, t) = 2χ[ln ρ − 〈ln ρ〉]ρ, the continu-
ity equation being no longer valid. This fact has very important consequences when
analyzing the relationship between the classical and quantum trajectories and the sta-
bility of the stationary solutions. Evenmore,when the divergence or spatial derivative
term is neglected and only the source term is taken into account in Eq. (4.135), the
corresponding solution of the probability density is given by [8]

ρ(x, t) = exp[e2χt ln ρ(x, 0)]∫ +∞
−∞ dx ′ exp[e2χt ln ρ(x ′, 0)] (4.136)

which is properly normalized for all times t . For an initial Gaussian distribution given
by ρ(x, 0) = (1/

√
2π) exp (−x2/2), Eq. (4.136) becomes

ρ(x, t) = 1√
2πe−2χt

exp[−x2/2e−2χt ] (4.137)

and then

R(x, t) = 2χ

[
1

2
− x2

2e−2χt

]
ρ(x, t). (4.138)

It is clear from the above equations, and what follows below, that the sign of the
χ parameter plays a very important role; the R(x, t)-term can be negative (or sink
term) or positive (or source term). Furthermore, when χ < 0, the width of the
Gaussian function increases with time whereas, when χ > 0, the corresponding
width decreases leading to a localization of the wave packet due to the measurement
process of the particle position. Thus, Eq. (4.135) provides us the time evolution
of the probability density resulting from the corresponding evolution of the density
current ρv and the source/sink term, depending on the sign of χ. It should be noted
that the normalization of ρ is then conserved globally, not locally, since it is not
governed by a continuity equation.

The evaluation of the entropy S[ρ] and its time evolution is also a useful tool
to characterize the degree of localization exhibited by ρ due to the measurement
process. From

S[ρ] = −
∫

ρ ln ρ (4.139)

its time evolution is governed by [8]

Ṡ = −
∫

∂ρ

∂t
ln ρ dx

=
[∫ ∞

−∞
∂v

∂x
ρ dx

]
− 2χ

∫ ∞

−∞
ρ (ln ρ− < ln ρ >)2 dx . (4.140)
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where Eq. (4.135) has been used and an integration by parts has been carried out by
considering that the probability density goes to zero fast enough in the integration
limits.

4.8.1 Stability of Quantum Stochastic Trajectories

Following the same theoretical scheme used in previous chapters, a good starting
point to analyze the stability of the solutions to Eqs. (4.134) and (4.135) is by consid-
ering the interaction potential V (x) as a Taylor series expansion around the classical
trajectory q(t) up to second order

V (x) ≈ V (q) + V ′(q)(x − q) + 1

2
V ′′(q)(x − q)2 + · · · (4.141)

as well as its first derivative,

V ′(x) ≈ V ′(q) + V ′′(q)(x − q) + · · · (4.142)

where primes denote derivatives with respect to position and evaluated at the center
of the wave packet which is time-dependent, q(t), and ω2(t) = V ′′(q)/m provides
the frequency of the harmonic motion up to second order expansion. Thus, these
derivatives are only functions of time through q(t). Within the spatial region where
the wave function is appreciably different from zero, this local approximation is
assumed to be valid [38].

For a fluid particle, ρ is interpreted as the probability density of a particle being
actually present within a specific region. This particle follows a definite space-time
trajectory that is determined by the time evolution of the wave function through an
equation of motion in accordance with the initial position. As usual assumed in this
monograph, a time dependent Gaussian ansatz given by Eq. (4.107) is considered.
Then, it can be readily shown that

+∞∫

−∞

(
[x − q(t)]2

)
ρ(x, t)dx = 〈(x − q(t))2〉 = δ2(t). (4.143)

and the nonlocal character of the dynamical equations is given by the first spatial
derivative of the quantum potential Q appearing in Eq. (4.134). For this Gaussian
ansatz, this term contributes as

− 1

m

∂Q

∂x
= − �

2

4m2δ4
, (4.144)

which is only a time-dependent function.
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From Eqs. (4.107) and (4.135), the velocity field is then governed by the time
differential equation but in terms now of the parameter characterizing the continuous
measurement

v(x, t) =
(

δ̇

δ
+ χ

)
(x − q) + ·

q . (4.145)

Analogously, substitution of Eq. (4.145) into (4.134) yields

(
δ̈(t) + (γ + 2χ)δ̇(t) + (χ2 + χγ)δ(t) − �

2

4m2δ3(t)

)
(x − q)

+δ(t)

(
q̈ + γq̇ + 1

m

∂Vr

∂x

)
= −δ(t)

m

∂V

∂x
, (4.146)

which implies, according to Eqs. (4.141) and (4.142), that

δ̈(t) + (γ + 2χ)δ̇(t) + (χ2 + χγ)δ(t) − �
2

4m2δ3(t)
+ δ(t)

m
V ′′(q) = 0

(4.147)

and

q̈ + γ
·
q + 1

m

∂Vr

∂x
+ 1

m
V ′(q) = 0. (4.148)

where, as mentioned above, the spatial derivatives are evaluated at the center of
the wave packet, q(t). Equation (4.147) gives the time differential equation for the
width of the Gaussian wave packet and Eq. (4.148) is the standard Langevin equation
fulfilled by the center of the wave packet with Vr (x, t) = −x Fr (t), Fr (t) being the
random force or noise. It is worth stressing that both dynamical equations are not
coupled each other and their time evolutions are totally independent except that the
force field has to be evaluated at the points of the classical trajectory followed by
the center of the wave packet. Moreover, the Langevin equation is not affected by
the parameter characterizing the continuous measurement. As seen in Chap.3, when
χ = 0, the same partial differential equations for δ and q are recovered.

As clearly showed by Zander et al. [8], Eq. (4.147) can also be reexpressed by
assuming the following Gaussian wave function

Ψ (x, t) = ea(t)x2+b(t)x+c(t) (4.149)

where the time dependent functions a, b and c are complex functions. From the
resulting six first-order coupled differential equations for the corresponding real and
imaginary parts, only the two equations governing the evolution of the complex

http://dx.doi.org/10.1007/978-3-319-53653-8_3
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function a(t) do not involve the b and c coefficients. In particular, with the initial
conditions for the real part of a, aR(0) and ȧR(0), we have that

aR(t) = − 1

4δ2
(4.150)

aR(t) being the real part of a(t). Furthermore, Eq. (4.147) can be formally written
as [8]

δ̈(t) = −(2χ + γ)δ̇(t) − ∂U

∂δ
(4.151)

representing an equation ofmotion of a particle of unit mass and coordinate δ moving
in a one-dimensional effective potential given by

U = 1

2
(χ2 + χγ)δ2 + �

2

8m2δ2
+ δ2

2m
V ′′(q), (4.152)

the second spatial derivative being evaluated at x = q. This is a good starting point
to analyze the stability properties of the wave packet width and, therefore, of the
corresponding quantum trajectories.

After Eq. (4.145), it is easy to show that quantum trajectories are governed by

x(t) = q(t) + (x(0) − q(0))
δ(t)

δ(0)
eχt , (4.153)

displaying clearly the relationship with classical trajectories, q(t) (dressing scheme).
In principle, the gradual decoherence process due to the continuous measurement of
the particle position is easily established. At asymptotic times, the exponential term,
with negative χ values, is approaching zero and the decoherence should be complete;
in other words, the quantum trajectory is approaching the classical one with time.
Thus, in this asymptotic regime, the noncrossing rule of quantum trajectories is no
longer valid. However, we are going to see that this simply analysis is not always
right when studying the stability properties of the solutions due to the source/sink
term in Eq. (4.135) which is not, strictly speaking, a continuity equation. Moreover,
the velocity field (4.145) is then written as

v(t) = q̇(t) +
(

δ̇(t)

δ(t)
+ χ

)
(x(0) − q(0))

δ(t)

δ(0)
eχt , (4.154)

showing again that the quantum velocity has clearly two independent contributions,
one coming from the velocity of the center of the wave packet and the other one from
the velocity of its spreading. The important difference is now the presence of the χ
parameter characterizing the continuous measurement process.
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4.8.2 Free Gaussian Wave Packet

4.8.2.1 Stationary Solutions

Apart from the discussion of soliton-like solutions seen in Sect. 4.8, a second case
worth discussing is when the width of the Gaussian function reaches a stationary
value, δs , after a certain time. When no interaction potential (V = 0) is present, the
time differential equations governing such a free motion are issued from Eqs. (4.147)
and (4.148) to be

δ̈(t) + (γ + 2χ)δ̇(t) + (χ2 + χγ)δ(t) − �
2

4m2δ3(t)
= 0 (4.155)

and

q̈ + γ
·
q + 1

m

∂Vr

∂x
= 0. (4.156)

The stability of this solution can be analyzed from Eqs. (4.151) and (4.152) with the
effective potential written as

U = 1

2
(χ2 + χγ)δ2 + �

2

8m2δ2
. (4.157)

In this way, this potential depends on time only through δ. The stability is then
obtainedwhen it displays a localminimum, that is, whenU ′(δs) = 0 andU ′′(δs) > 0.
Then, a dissipative drag force requires, after Eq. (4.151), that

χ > −γ

2
(4.158)

and the condition for a stationary point is

χ2 + χγ − �
2

4m2δ4s
= 0 (4.159)

which implies that

δ4s = �
2

4m2(χ2 + χγ)
(4.160)

showing the close relationship between the stationary point and the measurement
resolution. The second derivative is positive at the stationary point δs when

χ(χ + γ) > 0 (4.161)
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which together with condition (4.158) implies that

χ > 0 (4.162)

and, therefore, the stationary point is necessarily a minimum. These facts can be
verified by numerically solving Eq. (4.155). Thus, we have that χ = κ > 0.

The positive value of χ or κ leads to very interesting properties concerning the
behavior of the probability density and entropy, after Eqs. (4.139) and (4.140), as
well as the Bohmian trajectories given by Eq. (4.153). As already mentioned when
discussing the R(x, t)-term, it becomes positive (source) and tends to localize ρwith
time whereas the current density has exactly the opposite behavior resulting that the
Bohmian trajectories exhibit an exponential deviation from the classical trajectories.
Due to the fact the source term is the dominating one, a stable solution or a stationary
wave packet is reached. This observation is consistent with a continuous quantum
measurement process. As pointed out by Zander et al. [8], this process could be
describing the collapse of the wave function (localization). Thus, for the Gaussian
ansatz given by Eq. (4.107), the entropy becomes

S(δ) = 1

2
+ ln

√
2πδ(t)2 (4.163)

and

Ṡ = δ̇

δ
+ κ − 2κ

∫
ρ (ln ρ − 〈ρ〉)2 dx (4.164)

and the localization effect contributes to the decreasing of the entropy. The time
derivative of the entropy can be seen as a balance between two contributions, one of
thembeing local, (δ̇/δ)+κ, with no definite sign, and the other one being nonlocal and
formed by the integral term with a definite sign. A stable solution means that it is an
attractor of the probability density, being amore localized solution as time progresses.
A characteristic time can then be defined as the timemakes δ(t) to reach the stationary
point δs . Following the mechanical analogy of Ref. [8], from the mechanical energy
defined as ε(t) = δ̇2/2 + U (δ), the stationary state is estimated to be reached at
time τ = 1/2(γ + 2κ). Finally, the opposite behavior of χ (negative values) makes
the solution unstable and can not be considered an acceptable description of such a
measurement. In otherwords, the very appealing property of theBohmian trajectories
approaching the classical ones is lost.

4.8.2.2 Monitoring the Bohmian–Brownian Particle

One of the paradigmatic examples where the interaction potential is negligible or
constant (we are going to assume that V (x) = 0) is the Brownian motion. The dif-
fusion process of an adsorbate on a flat surface, at a given surface temperature,
and interacting with other adparticles, can be carried out under the presence of
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a continuous monitoring of the position, the Bohmian–Brownian particle. In
Eq. (4.148), the random forces or noises arising from the thermal fluctuations of
the surface and the collision among particles are acting on the adparticle. This prob-
lem has already been discussed in Chap.1, Sect. 1.3.2., from a different perspective,
that is, within a linear theoretical framework and, therefore, without any continuous
quantummeasurement. In the previous subsection, emphasis has been only put on the
stability of the solutions in terms of the χ parameter because the friction parameter γ
is always a positive real number. As discussed in Chap. 3, and along this subsection,
when dealing with surface diffusion, we are going to assume a simple model where
the interaction of the adparticle with other adparticles is described by a collisional
friction, λ, coming from a shot noise. Thus, the total friction is given by η = γ + λ
[35, 39]. So far no discussion about the classical solution q(t) has been carried out.

Consider an adparticle of mass m initially placed at a given position on a flat
surface. This particle can be represented by a Gaussian wave packet,

Ψ (x, 0) = (2πδ2(0))−1/4e−(x−q(t))2/4δ2(0), (4.165)

with initial width, δ(0). The adparticle is also assumed to be initially in equilibrium
with the reservoir or heat bath (surface) at a temperature T , but weakly coupled
to the environment, so that dissipation can be neglected. The corresponding stan-
dard Langevin equation given by Eq. (4.148) can be conveniently written for Ohmic
(constant) friction as

q̈(t) = −ηq̇(t) + ΔFr (t). (4.166)

where the mass has been absorbed in the noise or random force term (per mass unit).
Two independent noise terms are supposed to well describe this simple stochas-
tic dynamics. Lattice vibrational effects due to the surface temperature are usually
represented by a Gaussian (G) white noise and collisions among adsorbates by a
shot (S) white noise. These two random forces affect importantly the wave packet
dynamics of the adsorbate, Fr = FG

r + F S
r . It is customarily to write the total noise

fluctuations acting on the adparticle as ΔFr (t) = Fr (t) − 〈Fr 〉, its autocorrela-
tion function at two different times being described by a Dirac δ-function, that is,
〈ΔFr (t)ΔFr (t ′)〉 = (2ηkB T/m)δ(t − t ′), kB being the Boltzmann constant [35, 39].
The solution of Eq. (4.166) is readily shown to be (see Chaps. 2 and 3)

q(t) = q(0) + v(0)

η
Φ(ηt) + 1

η

∫ t

0
Φ(ηt − ηt ′)ΔFr (t

′)dt ′ (4.167)

where Φ(ηt) = 1 − exp(−ηt). Now, after Eq. (4.153), the quantum stochastic tra-
jectories with continuous measurement χ = κ are then given by

http://dx.doi.org/10.1007/978-3-319-53653-8_1
http://dx.doi.org/10.1007/978-3-319-53653-8_3
http://dx.doi.org/10.1007/978-3-319-53653-8_2
http://dx.doi.org/10.1007/978-3-319-53653-8_3
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x(t) = q(0) + v(0)

η
Φ(ηt) + 1

η

∫ t

0
Φ(ηt − ηt ′)ΔFr (t

′)dt ′

+ (x(0) − q(0))
δ(t)

δ(0)
eκt , (4.168)

where the requirements to have stable stationary solutions for κ are the same as
previously mentioned.

As discussed in Chap. 3, in this diffusion problem, the velocity autocorrelation
function CΔK(τ ), which is defined along with the direction of observation given by
ΔK, provides us information about the diffusion coefficient. It should be recalled
that ΔK is the parallel momentum transfer of the atoms monitoring the position of
the adsorbates. For a flat surface, diffusion is isotropic and, after Eq. (4.154), we have
that the corresponding quantum velocity autocorrelation function is

〈v(0)v(t)〉 = 〈q̇(0)q̇(t)〉

+ 〈(x(0) − q(0))2〉
(

δ̇(t)

δ(t)
+ κ

)(
δ̇(0)

δ(0)
+ κ

)
δ̇(t)

δ(0)
eκt (4.169)

since 〈q̇(0)(x(0) − q(0))〉 = 0 and 〈(x(0) − q(0))q̇(t)〉 = 0, keeping a similar
structure than the quantum velocity, that is, a classical contribution given by the
classical autocorrelation function and a quantum contribution governed by the time
derivative of the Gaussian wave packet width as well as terms involving the κ-
parameter. Interestingly enough, when the initial velocity of spreading of the wave
packet is zero, the quantum contribution does not disappear due precisely to those
terms. In the long time limit, the classical contribution is the same given in Chap. 3.
In this limit, the overdamped regime is also established and hence the acceleration
term of the differential Eq. (4.155) for this width can again be neglected. However,
the corresponding time evolution is marked by its stationary value reached after a
certain time.

4.8.3 Linear Potential

As we have studied in previous chapters, the linear potential plays an important role
when a gravitational or electric field is present. As in Chap.2, Sect. 2.12.3, let us
assume that V (x) = −max with a > 0. In this case, the Taylor expansions given
by Eqs. (4.141) and (4.142) are only retained up to first order with V ′(q) = −ma,
which corresponds to a constant force. With this linear potential, the time differential
equations governing such a motion are given by Eq. (4.155) and

q̈ + γ
·
q +a + 1

m

∂Vr

∂x
= 0. (4.170)

http://dx.doi.org/10.1007/978-3-319-53653-8_3
http://dx.doi.org/10.1007/978-3-319-53653-8_3
http://dx.doi.org/10.1007/978-3-319-53653-8_2
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The stability of the corresponding stationary solutions can again be analyzed
from Eqs. (4.151) and (4.157) since the effective potential has only the dependence
on the second spatial derivative of the interaction potential. Therefore, the stability
conditions are the same as previously derived for the free particle motion; that is,
the effective potential displays a minimum at δs when χ = κ > 0. Again, these
conditions can easily be verified from a numerical evaluation. The stationary state
means that the wave packet finally reaches a constant width.

Concerning the analysis of trajectories, we start again from the resulting standard
Langevin equation issued from Eq. (4.148) for Ohmic friction

q̈(t) = −γq̇(t) − a + ΔFr (t). (4.171)

where the mass has been again absorbed in the noise or random force term (per mass
unit), which is assumed to be a Gaussian white noise. The solution of Eq. (4.171) is
readily shown to be (see Chap.2, Sect. 2.12.2)

q(t) = q(0) + a

γ
t + 1

γ
Φ(γt)

(
v(0) − a

γ

)
+ 1

mγ

∫ t

0
Φ(γt − γt ′)ΔFr (t

′)dt ′

(4.172)

whereΦ(γt) has been defined above.Again, after Eq. (4.153), the quantum stochastic
trajectories with continuous measurement are then given by

x(t) = q(t) + (x(0) − q(0))
δ(t)

δ(0)
eκt , (4.173)

with q(t) given by Eq. (4.172). It is clear that, as expected, the behavior of the
quantum dynamics with time is drastically different from that obtained in Chaps. 2
and 3

4.8.4 Quadratic Potential

When a harmonic oscillator of frequencyω is subject to dissipation, noise and contin-
uous measurement, the Taylor expansions given by Eqs. (4.141) and (4.142) are fully
considered for the potential V (x) = mω2/2 with V ′(q) = mω2q and V ′′(q) = mω2

(as in Chap.2, Sect. 2.12.4). In this case, the time differential equations governing
such a damped harmonic motion are given by Eq. (4.147) rewritten as

δ̈(t) + (γ + 2χ)δ̇(t) + (χ2 + χγ + ω2)δ(t) − �
2

4m2δ3(t)
= 0 (4.174)

http://dx.doi.org/10.1007/978-3-319-53653-8_2
http://dx.doi.org/10.1007/978-3-319-53653-8_2
http://dx.doi.org/10.1007/978-3-319-53653-8_3
http://dx.doi.org/10.1007/978-3-319-53653-8_2
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and

q̈ + γ
·
q + 1

m

∂Vr

∂x
+ ω2q = 0. (4.175)

The stability of the corresponding stationary solutions can again be analyzed
from Eqs. (4.151) and (4.152) where the effective potential includes the dependence
on the second spatial derivative of the interaction potential. Therefore, the stability
conditions, U ′(δs) = 0 and U ′′(δs) > 0, are also ruled by such a derivative. The
minimum of the effective potential is given by (χ = κ > 0)

δ4s = �
2

4m2(κ2 + κγ + ω2)
. (4.176)

provided that
κ2 + κγ + ω2 > 0. (4.177)

This inequality is valid whenever κ is a positive real number, which also ensures a
stochastic dynamics as well as that the wave packet reaches a constant width δs or
stationary motion.

If the frequencyof the harmonic oscillator is a constant,ω0, as previously discussed
in Chap.2, three regimes can be established: (i) ω0 > γ/2 (the oscillatory motion
is that of underdamped oscillator and the radicand is negative), (ii) ω0 < γ/2 (the
overdamped motion is present and the radicand is positive) and (iii) ω0 = γ/2 (the
critical dampedmotion is established). It is clear that in Eq. (4.177) is always fulfilled.
As discussed in Chap. 3, this type of motion can be responsible for the so-called T-
peak in the dynamical structure factor observed when an adsorbate is oscillating
between two potential barriers of a corrugated surface. For simplicity, we are going
to focus on the regime where ω0 > γ/2. Concerning the analysis of trajectories, we
start again from the resulting standard Langevin equation issued from Eq. (4.148) for
Ohmic friction

q̈(t) = −γq̇(t) + ΔFr (t) − ω2
0q. (4.178)

which is the equation of motion of a damped harmonic oscillator and where the mass
has been again absorbed in the noise or random force term (per mass unit). In analogy
to Eqs. (3.199) and (3.200), the corresponding quantum trajectories are given by

x(t) =
[

q(0)cos(ω̄t) +
(

v(0)

ω̄
+ γ

2ω̄
q(0)

)
sin(ω̄t)

]
e−γt/2

+ 1

mω̄

∫ ∞

0
dt ′e−γt/2sin(ω̄t)ΔF(t ′)

+ (x(0) − q(0))
δ(t)

δ(0)
eκt (4.179)
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where

ω̄ =
√

ω2
0 − γ2

4
(4.180)

is the reduced harmonic frequency. This frequency is obtained from the classical
motion as well as from the differential equation governing the time evolution of
the width of the wave packet. This is important since the continuous measurement
process is able to provide such a reduced frequency. Equation (4.115) describes such
a motion resulting from the application of the Schuch–Chung–Hartmann equation
obtained when κ = γ/2.

4.8.5 The Schuch–Chung–Hartmann Equation
for Continuous Quantum Measurement

Whendealingwith the dissipative harmonic oscillator, the Schuch–Chung–Hartmann
equation [40, 41] could be extended to continuous measurement as follows

i�
∂Ψ (x, t)

∂t
=
[
− �

2

2m

∂2

∂x2
+ 1

2
mω2(t)x2 + i�

(
Wχ(x, t) + Wγ(x, t)

)]
Ψ (x, t),

(4.181)

the dissipative operator being now given by

Wγ(x, t) = −γ [lnΨ (x, t) − 〈lnΨ (x, t)〉] , (4.182)

and Wχ(x, t) by Eq. (4.133). Following the same theoretical procedure as before, the
final new Bohmian equations are then

∂v

∂t
+ v

∂v

∂x
− γv + ω2(t)x = − 1

m

∂Q

∂x
(4.183)

and

∂ρ

∂t
+ ∂

∂x
(ρv) − (2χ − γ) [ln ρ − 〈ln ρ〉] ρ = 0. (4.184)

Then, by starting from the Gaussian shape for the density given by Eq. (4.107), the
differential equations fulfilled by the width and center of the Gaussian wave packet
are, respectively,
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δ̈(t) − (2χ − γ)δ̇(t) +
(

ω2(t) +
(

χ2 − γ2

4

))
δ(t) = �

2

4m2δ3(t)
(4.185)

and

q̈(t) − γq + ω2(t)q = 0. (4.186)

Then, the velocity is written as

v(x, t) =
(

δ̇

δ
+ (χ − γ

2
)

)
(x − q) + ·

q . (4.187)

and the quantum trajectories as

x(t) = q(t) + (x0 − q0)
δ(t)

δ0
e(χ−γ/2)t (4.188)

with x0, q0 and δ0 being the initial values of the quantum trajectory, the classical
trajectory and the width of the Gaussian wave packet.

A similar stability analysis can be carried out for these new dynamical equations.

4.9 Classical and Quantum Lyapunov Exponents

In this Section, we show how the extremely irregular character of classical chaos
can be reconciled with the smooth and wavelike nature of phenomena on the atomic
scale. It is demonstrated that a wave packet under continuous quantum measure-
ment displays both chaotic and non-chaotic features. The Lyapunov characteristic
exponents for the trajectories of classical particle and the quantum wave packet
center of mass are calculated and their chaoticities are demonstrated to be about
the same. Nonetheless, the width of the wave packet exhibits a non-chaotic behav-
ior and allows for the possibility to beat the standard quantum limit by means of
transient, contractive states [42, 43]. In particular, the periodically driven Duffing
oscillator, which has become a classic model for analysis of nonlinear phenomena
[31, 44, 45], is studied, and its classical chaos is shown to crossover into the quantum
regime. The theory presented below deals with some unresolved features posed by
chaos and on the correspondence principle which is the main focus of many new
experiments with excited atomic and molecular systems. These experiments can
directly probe the realm of high quantum numbers or classically chaotic motion.

The question of coupling classical variables to quantum variables is intimately
connected to the question of how certain variables become classical in the first
place [46]. In reality, there are no fundamentally classical systems, only quantum
systems that are effectively classical under certain conditions. One must start from
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the underlying quantum theory of the whole composite system and then derive the
effective form of the classical theory. The starting point is to think of the classical
particle as continuously monitoring the quantum particle position and responding to
the measured value. To this end, consider a classical particle of mass M with position
X in a nonlinear potential, the periodically driven Duffing oscillator, coupled to a
quantum oscillator of frequency ω and mass m

M Ẍ(t) + B X3(t) − AX (t) + λq(t) = Λ cos (Ωt) , (4.189)

where q(t) is associated with the measurement record of the quantum system and Ω

is the driving frequency. The evolution of the wave function of the quantum system
Ψ can be expressed at first in terms of the path-integral for the unnormalized wave
function

Ψ (x ′, t ′) =
∫

D[x(t)] exp
⎡
⎣ i

�

t ′∫

0

dt

(
1

2
mẋ2(t) − 1

2
mω2x2(t) − λx(t)X (t)

)⎤
⎦

× exp

⎛
⎝−

t ′∫

0

dt
[x(t) − q(t)]2

4σ2(t)

⎞
⎠Ψ (x0, 0),

(4.190)

where the path integral is over paths x(t) satisfying x(0) = x0 and x(t ′) = x ′.
The quantity σ in the equation above represents the resolution of the effective mea-
surement of the particle by the classical system, as indicated by previous works
[2, 19, 20]and Sections. However, some differences here are worth mentioning.
One is the time dependence of the quantity σ(t): most importantly is the novelty
that the general resolution of the measurement evolves according to a nonlinear
differential equation. Another difference relates to the dimension of the quantity
σ(t): it should be considered only proportional to the actual position uncertainty in
the measurement of the quantum particle. Thus, an explicit connection to a wave
packet approach can be established by writing σ2(t) = τδ2(t), where δ and τ
have dimensions of space and time, respectively. This point can be further eluci-
dated by approximating the last term of Eq. (4.190) around an average time t̄ , i.e.,
∼ exp−[(x(t̄) − q(t̄))2/4δ(t̄)2] exp(−t̄/τ ), where δ(t) clearly stands for the posi-
tion uncertainty (width of the wave packet) and τ characterizes the time constant
(relaxation time) of the measurement.

Now, the squared of the absolute value of Eq. (4.190) yields the probability den-
sity for different measurement outputs at different times and, from this equation,
the associated Schrödinger equation describing the system undergoing continuous
measurement can be written as
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i�
∂Ψ (x, t)

∂t
= − �

2

2m

∂2Ψ (x, t)

∂x2
+
(
1

2
mω2x2 + λx X (t)

)
Ψ (x, t)

− i�

4τ

(
[x − q(t)]2

δ2(t)
− 1

)
Ψ (x, t). (4.191)

Next, a solution to this equation can be found by considering previous works
[19, 31] which have shown that continuous position measurement produces and
maintains localization in phase space as a necessary result of the information it pro-
vides. In addition to localizing the state, a continuous position measurement can also
introduce noise in its evolution: the measured value q(t) can be associated with a
mean value < x(t) > plus a noise-dependent component ξ(t). Thus, in order to
obtain a semiclassical protocol one must be in a regime in which the localization
is relatively strong and the noise sufficiently weak. However, a protocol based on a
complete hierarchy of stochastic equations associated with the average value of the
position < x(t) > makes it difficult to obtain an analytic solution to the problem
[19].5 The details of the variances and resulting noise strength permit only partial
solutions based on varying � and steady state regimes. Therefore, a formalism that
keeps the measurement record quantity q(t) without dealing with the details of the
variances can circumvent this difficult task and give a direct description of the evo-
lution of the quantum system. This rationale entails a wave packet solution around
the measurement record q(t) according to Eq. (4.94). As we know, this minimum-
uncertainty wave packet solution is further supported by recent, alternative stochas-
tic approaches [31] which have demonstrated that individual quantum trajectories
remain minimum-uncertainty localized wave packets for all times: the localization
being stronger the smaller � becomes. Similar localization properties hold also for a
variety of quantum trajectory methods [49–52] where the mean uncertainty product
M[ΔxΔp]/� remains close to 1 almost independent of �, thus corroborating the
minimum-uncertainty ansatz (4.94).

In the Bohmian framework, and using the standard procedure, the auxiliary func-
tions of time δ(t) and q(t) of the wave packet fulfill the following equations

q̈(t) + ω2q(t) +
(

λ

m

)
X (t) = 0. (4.192)

and

δ̈(t) + 1

τ
δ̇(t) +

(
ω2 + 1

4τ 2

)
δ(t) = �

2

4m2δ3(t)
(4.193)

5If the noise is significant, thermal effects compete with quantum ones. To obtain the average
probability solution for this stochastic process, use can be made of Chandrasekhar’s convolution
lemma: 〈p(x, t)〉 = ∫ +∞

−∞ p(x −〈x〉, t)W (〈x〉, t)d〈x〉, where p(x, t) = |ψ(x, t)|2 and W (〈x〉, t) is
the thermal probability of some value of 〈x〉 at time t for given initial conditions [47, 48].
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Equations (4.192) and (4.193) show that a continuous measurement of a quantum
oscillator gives specific features to its evolution: the appearance of distinct classical
and quantum elements. This measurement consists of monitoring the position of the
quantum system and the result is the measured path q(t) for t within an uncertainty
δ(t).

Equation (4.192) demonstrates the claim that continuous measurement can effec-
tively obtain classicalmechanics fromquantummechanics. TheLyapunov exponents
that separate different time scales of motion can be established for both classical and
quantum solutions as follows

Λ(cl,qu) = lim
t→∞
Δ(0)→0

{
ln
[
Δ(cl,qu)(t)/Δ(cl,qu)(0)

]
/t
}
, (4.194)

where

Δ(cl,qu)(t) = {[(X+, q+) − (X−, q−)]2 + [(Ẋ+, q̇+) − (Ẋ−, q̇−)]2}1/2
(4.195)

represents the renormalized classical, quantumEuclidean distances of the trajectories
in phase space, respectively. Equation (4.194) describes explicitly the asymptotic rate
of exponential divergence of the classical and quantum trajectories evolving from
two initially close initial conditions, respectively. It appears that, at least initially,
the logarithmic divergence of trajectories with a very small perturbation in the initial
conditions is roughly linear, indicating an exponential relationship. To find the expo-
nent we need to find a line that fits the logarithm of the data. Thus, it is appropriate
to use only the data up to the point where the difference is of order one. Although a
perturbation causes exponential divergence locally, solutions near this initial condi-
tion are attracted to a strange attractor, which is a bounded set with zero area. Since
this set is bounded, the divergence can not continue indefinitely. A regression on the
data provides us a reasonable exponential function to model the divergence: for the
classical case, 8 × 10−7e0.17(1)t and for the quantum case 5 × 10−7e0.16(8)t . Thus,
the behavior of a quantum wave packet center of mass and the monitoring classical
coordinate are equally chaotic and the Lyapunov exponents for both cases is found
to be

Λqu � Λcl = 0.17. (4.196)

On the other hand, Eq. (4.193) shows that the width of the wave packet exhibits
a non-chaotic behavior. In this context, a solution to Eq. (4.193) for a free particle
(ω = 0) supports qualitatively Yuen’s conclusions [42, 43] so far as showing the
possibility to beat the standard quantum limit bymeans of transient, contractive states.
Extensive deliberations on how to defend or beat the standard quantum limit for both
discrete and continuous measurements of the position of a quantum particle can be
found in the literature [53–59]. Accurate measurements of the position of a particle is
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of much interest in the context of gravitational-wave detection where questions have
arisen as to whether there are fundamental quantum mechanical limits on detection
sensitivity. The point here is that discrete or continuousmeasurements may introduce
squeezing that affects subsequent measurements. Besides, the resolution squared
[σ2(t) = τδ2(t)] of the measurement can reach a stationary regime, namely

σ2
0 = �τ 2/m(

1 + 4ω2τ 2
)1/2 , (4.197)

which indicates that localization can occur on a time scale which might be extremely
short compared to the oscillator frequency ω. For the low-frequency limit ωτ  1
(the free particle limit ω = 0), this result reduces to σ2

0 = �τ 2/m. On the other
hand, for the high-frequency limit ωτ � 1, σ2

0 = �τ/2mω. These results show that
the resolution σ of the effective measurement increases as the characteristic time
constant τ (relaxation time) increases.

We have thus established a direct correlation between a classical variable X with
the measurement record of the quantum system q. Moreover, it is shown how the
extremely irregular character of classical chaos can be reconciledwith the smooth and
wavelike nature of phenomena by demonstrating that awave packet under continuous
quantummeasurement displays both chaotic and non-chaotic features. TheLyapunov
characteristic exponents for the trajectories of classical particle and the quantum
wave packet center of mass are calculated and their chaoticities are demonstrated
to be about the same. On the other hand, the width of the wave packet exhibits a
non-chaotic behavior and allows for the possibility to beat the standard quantum
limit by means of transient, contractive states.
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Epilogue

Throughout this monograph, our aim has been to introduce the reader to an alternative
way to deal with open quantum systems and the continuous quantum measurement
within the framework of nonrelativistic Bohmian mechanics. The time evolution
of the open quantum system is carried out following the well-known Schrödinger–
Langevin equation or Kostin equation and the measuring process treatment is inspired
by the so-called restricted path integral due to Mensky. This analysis has been carried
out by means of quantum (Bohmian) stochastic trajectories, not to be confused with
the same terminology used in different contexts, namely, quantum optics and the sto-
chastic Schrödinger equation. This way of considering the process of measuring as
an open quantum process leads us to consider its corresponding dynamics as causal,
nonlocal, nonlineal, nonunitary and stochastic and without any collapse of the wave
function. Within this theoretical formalism, two contributions of very different char-
acter, but considered on equal footing through a given coupling scheme, are present;
one coming from the interaction with the measuring device and, the second one, from
the interaction with its surroundings. Entanglement among the system, environment
and measuring apparatus results in decoherence, leading to the emergence of the
classical world. In our opinion, the inflection point in this field is when the mea-
surement problem is no longer considered as a philosophical problem but a quantum
process, following the well known rules of quantum mechanics and beyond. When
it is established as a process, the corresponding dynamics has somehow to be solved
by means of computational/numerical methods.

The measuring process of position has been described in a hydrodynamics-like
formulation. When a Gaussian shape for the probability density is assumed, two
nonlinear coupled equations for the density and the corresponding flow velocity are
obtained. One of the nice features issued from those coupled equations is that the
corresponding quantum dynamics can be clearly splitted into two contributions. Thus,
following the same dressing scheme obtained in the Bohmian formalism, where a
quantum trajectory consists of a classical trajectory dressed by a nonlocal term, a
quantum stochastic trajectory is also the result of a classical stochastic trajectory plus
a quantum (nonlocal) contribution, consisting of the time evolution of the width of the
Gaussian probability density multiplied by a critical exponential function governed
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by the characteristic parameter defining the continuous quantum measurement. For
special cases, soliton-like solutions in a dissipative medium, this exponential function
decreases with time and, at asymptotic times, the quantum trajectory is approaching
the classical one, establishing a natural dividing line (according to Bell’s proposal)
for decoherence by means of a characteristic time, the so-called Bohmian time.
However, in general, when the localization of the particle is settled down due to the
measuring process, that is, the width of the Gaussian function reaches its stationary
value, this exponential function is not a decaying function of time. In other words,
the classical trajectory is no longer an attractor and the decoherence process follows
a different route. Several simple examples have been developped to illustrate how
this nonlinear and stochastic theory works; in particular, special emphasis has been
put on surface diffusion where the Brownian motion is a paradigmatic case.

In our opinion, the increasing development of experimental setups combining
weak and strong measurements and continuous measurements can lead to an impor-
tant advance and use of classical-like objects in all branches of physics, chemistry,
and biology. Thus, recent work claiming the direct measurement of the photon trans-
verse wave function or the inference of average trajectories of single photons in a
two-slit interferometer open new and exciting perspectives. This is the first step to
observing or measuring wave functions and paths or trajectories of massive particles.
In the near future, the combination of the measurement process in terms of weak val-
ues and stochasticity is going to be of paramount importance for a more complete
and deeper understanding of quantum processes in terms of trajectories, beyond the
standard meaning of being a purely classical concept. As mentioned in the Preface
and illustrated here, it is clear that the enormous effort invested by many researchers
in the measurement problem within the standard quantum mechanics outweighs by
far that invested in Bohmian mechanics. In our opinion, the only way to overcome
such a disparity starts at the universities, when teaching the first courses of quantum
mechanics. This mechanics should be seen as an alternative and complementary way
to describe the measuring process, at the same level than any other standard picture
of quantum mechanics. We sincerely think that this approach will have a long and
fruitful life in the future with really unexpected and promising results. As the reader
will soon realize, there is plenty left to find out and develop in the near future, this
monograph being a small and humble step towards a more general and complete
theory of continuous quantum measurement within the Bohmian picture of quantum
mechanics. In this regard, if this work has served to foster the use of this picture of
quantum mechanics and to make the reader aware of the large variety of potentialities
displayed by Bohmian theory for a better understanding of the continuous quantum
measurement, all the efforts devoted to this monograph will have been worthwhile.
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Compton wavelength, 154
Congruence, 21
Continuous measurement, 188
Continuous time random walk, 168
Contractive states, 229, 232
Correlation function, 158

D
Damping potential, 130
Decoherence, 7, 36, 126, 127, 184, 185, 196,

221
Density matrix, 48
Differential reflection coefficient, 157
Diffusion

coefficient, 166
constant, 42
regime, 42

Duffing oscillator, 230
Dynamic structure factor, 157

E
Effect operator, 187
Ehrenfest-Huygens regime, 17
Einstein diffusion law, 42
Empty waves, 14, 52
Energy dissipation operator, 132
Entanglement, 35, 37, 126, 184, 185
Environment induced decoherence, 127, 185
Ermakov–Bohm invariant, 67
Ermakov invariant, 64
Eulerian scheme, 10

F
Fokker–Planck equation, 133
Fraunhofer regime, 17
Fresnel regime, 17
Fuzziness of the measurement, 190
Fuzzy measurement, 188, 189, 196

G
Gausson, 103, 214
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Geometric phase, 99
Gravitational mass, 94
Group velocity, 15
Guidance condition, 13

H
Hanay phase, 99
Hard measurement, 188
Hartman effect, 76
Hidden variables, 12

I
Ideal measurement, 186
Indicator, 189
Indirect or ancilla measurement, 186
Inertial mass, 94
Instantaneous measurement, 186
Intermediate scattering function, 159
Isochrone, 35

L
Lagrangian density, 22
Linblad equation, 205
Local value, 29
Lorentz–Abraham equation, 153
Lyapunov exponent, 229, 232

M
Matsubara frequencies, 44
Mean thermal wavelength, 37
Mean-squared displacement, 42, 165
Measurement

characteristic function, 187
Measurement amplitude, 197
Meter, 185
Minimal disturbing measurement, 187, 190,

205
Mixed ensemble, 47
Mixed state, 47
Multiplicative noise, 171

N
Narrowing effect, 170
Navier-Stokes equation, 11
Node, 11, 21
Noise

white
Gaussian, 161, 162

Noncrossing rule, 18, 21, 215, 216, 221

Nonlocality, 13
Non-selective measurement, 182, 187, 202

O
Ohmic friction, 129, 161
Operation operator, 187
Optical potential, 132
Osmotic velocity, 39, 82

P
Pinney equation, 67, 136
Pointer, 185
Positive-operator-valued measure, 187, 190
Probability tubes, 24
Pure ensemble, 47
Pure state, 47

Q
Quantum

Onsager regression theorem, 126
Quantum-classical transition wave equation,

23
Quantum corridor, 194, 196
Quantum Euler equation, 9
Quantum Lorentz equation, 100
Quantum Newton equation, 9
Quantum noise, 126
Quantum non-demolition measurement,

187, 200
Quantum potential, 9, 12
Quantum reflection, 139
Quantum stress tensor, 10
Quantum turning points, 13
Quantum variance, 184
Quantum vortices, 11

R
Random phase approximation, 49
Random potential, 129
Recurrence, 126
Reduced density

matrix, 49, 185
Reduced quantum trajectories, 50
Resolution, 184
Restricted probability, 24

S
Scattering law, 157
Selective measurement, 187
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Separatrix trajectory, 24
Sharp measurement, 188
Soft measurement, 188, 196
Soliton, 103, 128
Sommerfeld-Page equation, 154
Spectral density, 160
Spreading momentum, 16
State dependence, 13
Statistical potential, 37
Stochastic Bohmian mechanics, 33, 40
Stochastic Schrödinger equation, 205
Stochastic weak measurement, 8
Strong measurement, 188

T
Time

coherence, 41
thermal, 41

Topological phase, 101

U
Uncertainty principle, 183
Unsharp measurement, 188, 196

V
von Neumann-Lüders projection postulate,

187
Vortices, 11, 21

W
Weak coupling limit, 185
Weak measurement, 5, 196
Weight functional, 201
Wigner function, 138

Z
Zeno effect, 188
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