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“The authors have made a considerable effort to make this book useful and 
interesting to different kinds of readers: they provide a detailed treatment of the 
basic concepts of time and frequency measurements, carefully describe different 
kinds of lasers and some of the most advanced laser-based measurement techniques, 
and finally present the latest developments in the field, with a hint to the 
possible future trends in applications and fundamental science. Being among the 
many important actors in this long story, the authors of this book are privileged 
witnesses of the evolution of time and frequency measurements and can provide an 
informed and wide vision of this developing field from many different viewpoints.” 

         — From the Foreword by Professor T.W. Hänsch, Ludwig-Maximilians-
Universität München and co-recipient of the 2005 Nobel Prize in Physics 

Based on the authors’ experimental work over the last 25 years, this self-contained 
book presents basic concepts, state-of-the-art applications, and future trends in 
optical, atomic, and molecular physics. It provides all the background information 
on the main kinds of laser sources and techniques, offers a detailed account of the 
most recent results obtained for time- and frequency-domain applications of lasers, 
and develops the theoretical framework necessary for understanding the experimental 
applications. 

Features 
•	 Discusses laser-based time-frequency measurements not only in the 

context of frequency metrology and the science of timekeeping but also 
in light of contemporary and future trends of fundamental and applied 
research in physics

•	 Emphasizes the extension of optical frequency comb synthesizers (OFCSs) 
to the IR and UV parts of the spectrum

•	 Explores the up-and-coming field of quantum-enhanced time and 
frequency measurements, covering the link between OFCS-based 
frequency metrology and quantum optics 

•	 Describes applications of both ultra-fast and ultra-precise lasers
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Foreword

Since its first realization in 1960, the laser has quickly parted from its initial definition of
“a solution looking for a problem” to become the solution to many and incredibly differ-
ent problems, both in our everyday lives and in the most advanced fields of science and
technology.

Thanks to its unique properties, i.e., the capability to generate intense, highly direc-
tional, and highly monochromatic radiation in different regions of the electromagnetic spec-
trum, the laser has found applications in fields as diverse as communications, medicine,
fundamental physics, as well as supermarket counters. . . .

In particular, thanks to the possibility of producing either ultrashort laser pulses, lasting
just a few femtoseconds, or continuous beams with an extremely well-controlled frequency,
the two fields of accurate time and frequency measurements have literally boomed in the
last decades. Measuring times and delays with femtosecond accuracy has allowed us, for
example, to observe the real-time movement of atoms in molecules, and to follow and steer
chemical reactions. On the other hand, measuring frequencies with a very high precision has
given us unprecedented access to the most intimate structure of matter, is revolutionizing
precision metrology of time and space, and is providing new tools for many important
applied fields, like environmental monitoring.

These two intertwined subjects, time and frequency, have continued to evolve indepen-
dently for many years, with the impressive parallel evolution of ultrafast and ultra-stable
laser sources, until it was recently realized that they can be seen as two different faces of the
same medal. In fact, the frequency spectrum of the train of ultrashort pulses emitted by a
(properly phase-stabilized) mode-locked laser is remarkably simple. It is made of millions of
extremely narrow spectral lines whose frequencies are exactly spaced by the laser repetition
rate. Such a special laser source can thus combine the best of the two worlds: on one side,
by giving access to a huge number of ultra-stable laser lines, all with precisely controlled
frequencies, it serves as a perfect ruler in the spectral domain; on the other side, by making
it possible to control the absolute optical phase of ultrashort light pulses, it discloses new,
highly nonlinear phenomena to experimental investigation.

This experimentalist’s dream came true with the development of frequency combs around
the beginning of this century, and it was a strike of serendipity on the hill of Arcetri in
Florence, where the LENS and INO laboratories used to be, that started it. There, on a
lucky afternoon in 1997, Marco Bellini and I could surprisingly observe stable interference
fringes from the white-light supercontinua independently produced by two identical ultra-
short pulses. Since that moment, the evolution of comb-based measurements has seen no
sign of slowing down, and has made possible some of the most accurate measurements ever
performed by mankind, allowing to measure frequencies in the simplest atom in the uni-
verse, hydrogen, as well as to calibrate spectra coming from the borders of the universe,
itself.

Indeed, if a stable and precisely determined frequency reference is available, it can be
used as a clock to measure time intervals with high accuracy by just counting the number
of cycles in the interval. Furthermore, from the definition of the speed of light, any distance
measurement can be referred to a time or frequency measurement. Since the measure of
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many physical properties, beyond time and distance, can be often converted to a phase or
frequency measurement, the incredible precision made possible by frequency combs can be
readily exported to a number of different fields.

Laser-based precision measurements are now facing a new era, where the ever-growing
accuracy in the determination of times and frequencies will not only allow us to unveil some
of the best hidden secrets of nature, but also impact our everyday lives.

In this context, the publication of this book is particularly timely and welcome. The
authors have made a considerable effort to make this book useful and interesting to differ-
ent kinds of readers: they provide a detailed treatment of the basic concepts of time and
frequency measurements, carefully describe different kinds of lasers and some of the most
advanced laser-based measurement techniques, and, finally, present the latest developments
in the field, with a hint to the possible future trends in applications and fundamental science.

Being among the many important actors in this long story, the authors of this book are
privileged witnesses of the evolution of time and frequency measurements, and can provide
an informed and wide vision of this developing field from many different viewpoints.

Theodor W. Hänsch
Co-Recipient of the 2005 Nobel Prize in Physics



Preface

Time and light or, in other words, frequency and photons: two key ingredients that are mak-
ing possible the most accurate and sensitive measurements ever performed by mankind. This
was the flywheel to writing this book and the “leitmotiv” throughout it. However, dealing
with this subject is an impervious task both in a historical perspective and in the viewpoint
of contemporary developments. Indeed, on the one hand, the art of timekeeping has deep
roots, dating back to the origins of civilization, and light from the sky was soon recognized
as a vital element for measuring time. On the other hand, trying to describe the furious
activity and progress that have been characterizing this field for the last decades is a bit
like taking a picture of a very fast object that keeps moving at increasingly high speed.
In such a fascinating adventure, the laser-era undoubtedly represented a turning point,
marking the birth of optical frequency metrology. In this wake, a new metrological tool
emerged around 1999, when it was realized that the pattern of equally spaced pulses gen-
erated by a mode-locked laser in the time domain is equivalent to a precisely spaced comb
of frequencies in the frequency domain, and that the phase of light is the same throughout
the broad-covered spectrum. This eventually merged decades of independent technologies,
namely those of ultrastable and ultrafast laser sources, emitting, respectively, continuous-
wave radiation and trains of very short pulses. In parallel, another real breakthrough was
represented by the advent of laser-based optical clocks that, by progressively reducing the
fluctuations in the emitted frequency, have now reached impressive stability and accuracy
levels. But many other milestones have been achieved in the field of laser-based measure-
ments, since the introduction of the laser itself. Among the most remarkable, we should
mention guiding and delivering laser-light with optical fibers as well as accessing additional
portions of the electromagnetic spectrum with frequency-tunable coherent sources, based
on novel materials and operation principles, or nonlinear optical phenomena. Apart from
these spectacular technological achievements, the quantum nature of light and matter has
opened other new scenarios, like that of measurements based on entanglement of photons
and macroscopic objects. As a whole, such a scientific fervor has revolutionized the branch
of atomic, molecular, and optical physics allowing, as the first immediate consequence, to
devise increasingly ambitious experiments of fundamental character, but also engendering
tremendous progress in terms of high-tech, everyday-life applications, perhaps going so far
as to change even the way we think. This book is based on first-hand, laser-based measure-
ments and direct experimental work performed by the authors during the last 25 years. Such
activities are strictly related to the rise and development of the European Laboratory for
Nonlinear Spectroscopy-LENS in Florence and the Istituto Nazionale di Ottica-INO (now
part of the Italian National Research Council-CNR) in Florence and Naples, Italy. These
labs and activities have flourished on the hill of Arcetri (Florence), where Galileo Galilei
spent the last part of his life and Enrico Fermi conceived quantum statistics, but also in
front of the breathtaking gulf of Naples, where, in his quick passage, Ettore Majorana left
an indelible legacy. In fact, also thanks to their irresistible charm, these two cities have al-
ways attracted scientists from all over the world, so years of collaborations, discussions, and
joint work are somehow reflected in the text of this book. The purpose is to offer a detailed
account of the most recent results obtained for time- and frequency-domain applications
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of lasers, while providing all the background information on the main kinds of sources and
techniques developed thus far. Moreover, the theoretical framework necessary to understand
the experimental applications is fully developed throughout the book. Therefore, most of
the matter is intended to be accessible to final-year undergraduates, but also post-docs and
scientists actively working in the field can find a wide, fresh, and balanced overview of con-
quests in the field of laser-based measurements together with the main related references.
A detailed outline is given at the end of Chapter 1, as a natural outcome of the historical
introduction. Also preliminary in character, Chapter 2 provides the basic concepts and the
mathematical tools that are necessary to address the physics of oscillators, at the heart of
the whole treatment. Likewise relevant to the self-sufficiency of the book, microwave, and
particularly, optical resonators are extensively discussed in Chapter 3. Crucial aspects of
operation and fundamental properties of lasers are presented in Chapter 4, while precision
spectroscopy and absolute frequency metrology are dealt with in Chapters 5 and 6, respec-
tively. Then, Chapter 7 is devoted to microwave and optical frequency standards and their
dissemination. Finally, Chapter 8 dwells upon the variegated speculative landscape opened
by the field of laser-based frequency measurements, outlining the most exciting, current, and
forthcoming research directions. Due to the large amount of unfolded work, we apologize in
advance for any mistakes, inaccuracies, and inevitable limitations, hoping that the reader
may appreciate our approach and share our enthusiasm.

The authors wish to thank Luca Lorini for careful reading of Chapter 2; Simone Borri
and Gianluca Gagliardi for their contribution to two sections in Chapter 4 and Chapter 8,
respectively; Maurizio De Rosa for stimulating discussions; Gianluca Notariale for preparing
many of the figures; Elisabetta Baldanzi for editing part of the text and caring about per-
mission requests; and Rita Cuciniello for creating the cover. Also, the authors are immensely
grateful to Prof. Theodor W. Hänsch for writing the Foreword.

Pasquale Maddaloni
Marco Bellini

Paolo De Natale
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Shedding light on the art of timekeeping

He was the true Light,

which doth enlighten every

man, coming to the world.

John - 1,9

The Present contains nothing more than

the Past, and what is found in the effect

was already in the cause.

Henri L. Bergson - Creative Evolution

1.1 The great show of Time and Light, the curtain rises!

We have always lived in a world illuminated by Light and marked by the relentless flow of
Time. In spite of the difficulty of finding a universal definition for them, Light and Time
are essential elements of our existence. They govern countless aspects of our practical life
and accompany us in various cultural and sentimental experiences. The earliest people on
the planet naturally entrusted the organization of their activities in the light coming from
celestial bodies. The periodic character of the most basic astronomical motions was imme-
diately recognized: the Sun rise and set (Earth’s rotation around its axis), the appearance
of the highlighted portion of the Moon (Moon’s revolution around the Earth), and the
weather periodical behavior that seemed to be related to the movement of the Sun with
respect to the stars (Earth’s revolution around the Sun). The units of days, months, and
years accordingly followed. The main disadvantage of Nature’s clocks resided in that the
scale unit was too large for many practical purposes. Consequently, natural oscillators soon
began to be supplemented by those constructed by mankind. Around 3500 BC Egyptians
already divided the time of the day into shorter sections by observing the direction of the
shadow cast from obelisks or sundials by the Sun, depending on its position in the sky
[1]. It is amazing to note that the ancient and honored Earth-Sun clock met many of the
most demanding requirements that the scientific community today exacts from an accept-
able standard: first, it is universally available and recognized; second, it involves neither
responsibility nor operation expenses for anyone; third, it is pretty reliable and we cannot
foresee any possibility that it may stop or lose the time. In spite of all these nice features,
however, this clock does not represent an extremely stable timepiece. According to our cur-
rent knowledge in astronomy, first, Earth’s orbit around the Sun is elliptical rather than a
perfect circle, which means that Earth travels faster when it is closer to the Sun than when
it is farther away. In addition, Earth’s axis is tilted with respect to the plane containing its
orbit around the Sun. Finally, Earth spins at an irregular rate around its axis of rotation
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and even wobbles on it. The latter effect is due to the circumstance that, as Earth is neither
perfectly symmetrical in shape, nor homogeneous, nor ideally rigid (its mass distribution
constantly changes over time), its rotation axis does not coincide exactly with the figure
axis. For the same reason, even natural disasters of exceptional importance may perturb the
clock mechanism. For example, it has been calculated that the recent earthquake in Japan
(March 2011) has moved Earth’s figure axis by a few milliarcseconds or, in other words,
rearranged Earth’s mass bringing more of it a bit closer to the rotation axis. This should
have slightly increased Earth’s rate of spin, thus shortening the length of the day by less
than 2 microseconds [2]. Such a small variation has no practical effect in daily life, but it is
of interest for precision measurements of space and time.

Although the interaction between sunlight and Earth’s swinging is far from being consid-
ered a resonant phenomenon, Earth-Sun clocks constitute the first example of a timepiece in
which a light source interrogates a frequency reference. Quite surprisingly, however, in the
following five millennia, Light and Time travelled rather distinct roads in the advancement
of human thought and abilities.

1.2 Brief history of timekeeping: time-frequency equivalence

Clepsydrae based on controlled flows of water (either into or out of a vessel) were available
in Egypt, India, China, and Babylonia from about 1500 BC and represented the first non-
astronomical means of measuring time. Sand clepsydrae were introduced only in the late
fourteenth century AD. By using the integrated quantity of moved substance to provide
a measurement of the elapsed time, this type of timekeeper did not rely on counting the
number of cycles of an oscillatory event. The resort to light was abandoned too. In the last
part of the thirteenth century mechanical clocks began to appear in Europe [3]. The first
prototypes, representing the natural progression of wheel clocks driven by water (already
introduced in China after the 8th century), were just geared machines based on the fall of
a weight regulated by a verge-and-foliot escapement. Variations of this design reigned for
more than 300 years, but all had the same basic problem: the period of oscillation of the
escapement was heavily affected both by the amount of force and the extent of friction in
the drive. Like water flow, the rate was difficult to adjust.

A significant advance occurred in the 17th century when Galileo Galilei discovered that
the period T of a pendulum swing virtually does not depend on the excursion, provided
that the latter is not too large:

T ≃ 2π

√

l

g
(1.1)

Here l is the pendulum length, and g is the acceleration due to gravity. Galilei, in fact,
recognized the value of the pendulum as a time-keeping device and even sketched out a
design for a clock. However, it was Christiaan Huygens in 1656 to realize the first successful
operational pendulum clock. Reaching an error of less than 1 minute a day, such device
recovered and definitively consecrated the idea that the most accurate way of keeping the
time was to employ an oscillatory system operating at a specific resonance frequency ν0.
Hence, any time interval could be measured by counting the number N of elapsed cycles
and then multiplying N by the period T = 1/ν0. Light, however, was still excluded from
the time-keeping saga.
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From then onwards, time and frequency became the quantities that humanity could
measure with the highest precision. Indeed, during the next three centuries, continuous re-
finements improved considerably the accuracy of pendulum clocks. In 1671, William Clement
began building clocks with the new anchor escapement, a substantial improvement over the
verge because it interfered less with the motion of the pendulum. In 1721, George Graham
improved the pendulum clock accuracy to 1 second per day by compensating for changes in
the pendulum length due to temperature variations. John Harrison, a carpenter and self-
taught clockmaker, developed new methods for reducing friction. By 1761, he had built a
marine chronometer with a spring-and-balance-wheel escapement that kept time on board
a rolling ship to about one fifth of a second a day, nearly as well as a pendulum clock could
do on land. Over the next century, refinements led in 1889 to Siegmund Riefler’s clock with
a nearly free pendulum, which attained an accuracy of a hundredth of a second a day and
became the standard in many astronomical observatories. A true free-pendulum principle
was demonstrated by R.J. Rudd around 1898. This gave birth to a generation of superior
timepieces that culminated in 1920 with the realization by William H. Shortt of a clock con-
sisting of two synchronized pendulums. One pendulum, the master, swung as unperturbed
as possible in an evacuated housing. The slave pendulum driving the clockwork device was
synchronized via an electric linkage and in turn, every half a minute, initialized a gentle
push to the master pendulum to compensate for the dissipated energy. Keeping time better
than 2 milliseconds a day, Shortt clocks almost immediately replaced Riefler ones for time
distribution on local and eventually national scale.

The performance of such clocks was overtaken as soon as the technology of quartz crystal
oscillators became mature for the construction of the first timekeeper (W. Marrison and
J.W. Horton, 1927). Quartz clock operation hinges on piezoelectricity that is the capability
of some materials to generate electric potential when mechanically stressed or, conversely,
to strain when an electric potential is applied. Due to this interaction between mechanical
stress and electric field, when placed in a suitable oscillating electronic circuit, the quartz
will vibrate at a specific resonance frequency (basically depending on its size and shape)
and the frequency of the circuit will become the same as that of the crystal. Such a signal is
eventually used to operate an electronic clock display. As they had no escapements to disturb
their regular frequency, quartz crystal clocks soon proved their superiority with respect to
pendulum-based ones. A serious source of systematic error, namely the dependence of the
period on the strength of the local gravity vector (and hence on the pendulum location), was
overcome too. Although quartz oscillators had provided a major advance in timekeeping, so
as to become, in the late 1930s, the new timekeeping standards, it was apparent that there
were limitations to that technology. These devices could provide frequency with a precision
of about 10−10, but going beyond proved to be a real challenge. Operationally, fundamental
mode crystals could be made to provide frequencies up to 50 MHz. Higher frequencies
capable of providing more precise timekeeping were possible using overtones but were not
commonly used. Moreover, aging and changes in the environment, including temperature,
humidity, pressure, and vibration, affected the crystal frequency. In order to compensate for
these problems, different systems were designed, including temperature-compensated and
oven-controlled crystal oscillators.

To make a significant advance in precision timekeeping of laboratory standards, however,
a fundamental change was required [4, 5, 6]. Scientists had long realized that atoms (and
molecules) have resonances; each chemical element and compound absorbs and emits electro-
magnetic radiation at its own characteristic frequencies. An unperturbed atomic transition
is identical from atom to atom, so that, unlike a group of quartz oscillators, an ensemble
of atomic oscillators should all generate the same frequency. Also, unlike all electrical or
mechanical resonators, atoms do not wear out. Additionally, all experimental observations
in spectroscopy have proved compatible with the hypothesis that atomic properties are the
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same at all times and in all places, when they are assessed by an observer situated close to
the atom and accompanying it in the same motion. It is therefore possible to build instru-
ments, which, using a specified atomic transition, are all able to deliver a signal in real time
with the same frequency, anywhere and at any time, provided that relativistic effects due
to non-coincidence of atom and observer have been properly taken into account [7]. These
features were appreciated by Lord Kelvin who suggested using transitions in hydrogen as
a time-keeping oscillator. However, it wasn’t until the mid 20th century that technology
made these ideas possible. The first atomic clocks owe their genesis to the explosion of
advances in quantum mechanics and microwave electronics before and during the Second
World War. Indeed, the sudden development of the radar and very high frequency radio
communications made possible the generation of the kind of electromagnetic waves (mi-
crowaves) needed to interact with atoms. Atomic oscillators use the quantized energy levels
in atoms and molecules as the source of their resonance frequency. The laws of quantum
mechanics dictate that the energies of a bound system, such as an atom, have certain dis-
crete values. An electromagnetic field at a particular frequency can excite an atom from one
energy level to a higher one. Or, an atom at a high energy level can drop to a lower level by
emitting energy. The resonance frequency of an atomic oscillator is the difference between
the two energy levels, E1 and E2, divided by Planck’s constant, h:

ν0 =
E1 − E2

h
(1.2)

The basic idea of atomic clocks is the following. First, a suitable energy transition is
identified in some atomic species (microwave atomic frequency standards are commonly
based on hyperfine transitions of hydrogen-like atoms, such as rubidium, cesium, and hy-
drogen). These provide transition frequencies that can be used conveniently in electronic
circuitry (1.4 GHz for hydrogen, 6.8 GHz for rubidium, and 9.2 GHz for cesium). Then,
an ensemble of these atoms is created (either in an atomic beam, or in a storage device,
or in a fountain). Next, the atoms are illuminated with radiation from a tunable source
that operates near the transition frequency ν0. The frequency where the atoms maximally
absorb is sensed and controlled. When the absorption peak is achieved, the cycles of the
oscillator are counted: a certain number of elapsed cycles generates a standard interval of
time. Most of the basic concepts of atomic oscillators were developed by Isidor Rabi and his
colleagues at Columbia University in the 1930’s and 40’s. Although he may have suggested
using cesium as the reference for an atomic clock as early as 1945, research aimed at de-
veloping an atomic clock focused first on microwave resonances in the ammonia molecule.
In 1949, the National Bureau of Standards (NBS) built the first atomic clock, which was
based on ammonia (at 23.8 GHz). However, its performance wasn’t much better than the
existing standards, and attention shifted almost immediately to more promising atomic-
beam devices based on cesium. The first practical cesium atomic frequency standard was
built at the National Physical Laboratory (NPL) in England in 1955 by Dr. Louis Essen.
In collaboration with the U.S. Naval Observatory (USNO), it was immediately noted that
observations of the Moon over a period of several years would be required to determine
Ephemeris Time with the same precision as was achieved in a matter of minutes by the
first cesium clock. For the benefit of the reader, we recall here that the ephemeris second
is based on the period of revolution of the Earth around the Sun which is more predictable
than the rotation of Earth itself (for more details, refer to Chapter 7).

While NBS was the first to start working on a cesium standard, it wasn’t until several
years later that NBS completed its first cesium atomic beam device. By 1960, cesium stan-
dards had been refined enough to be incorporated into the official timekeeping system of
NBS. Standards of this sort were also developed at a number of other national standards
laboratories, leading to wide acceptance of this new timekeeping technology. Then, pres-
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sure mounted for an atom-based definition of time. This change occurred in 1967 when, by
international agreement,

the second was defined as the duration of 9,192,631,770 periods of the radia-
tion corresponding to the transition between two hyperfine levels |F = 4,mF =
0〉 ↔ |F = 3,mF = 0〉 in the ground state 2S1/2 of the 133Cs atom.

This definition made atomic time agree with the second based on Ephemeris Time, to
the extent that measurement allowed. As of 2011, the definition of the SI second remains
the same, except for a slight amendment made in 1997. Calculations made by Wayne Itano
of NBS in the early 1980s revealed that blackbody radiation can cause noticeable frequency
shifts in cesium standards [8], and his work eventually resulted in an addendum to the
definition: the Comité International des Poids et Mesures (CIPM) affirmed in 1997 that the
definition refers to a cesium atom at rest at a thermodynamic temperature of 0 K. Thus, a
perfect realization of the SI second would require the cesium atom to be in a zero magnetic
field in an environment where the temperature is absolute zero and where the atom has no
residual velocity.

Excluding the pendulum, quartz and microwave atomic clocks are far from being rel-
egated to history and their study will be resumed in Chapter 7. We close this section by
observing that the development of increasingly more accurate frequency standards was par-
alleled by an augmented frequency of the employed oscillator: from Earth’s rotation (∼
10 µHz), via pendulum clocks (∼ 1 Hz) and quartz oscillators (∼ 1 MHz), to microwave
atomic standards (∼ 1 GHz). More strictly, the accuracy performance of a frequency stan-
dard is characterized by the so-called quality factor (Q) which is defined, in general, as the
oscillator resistance to disturbances to its oscillation period. This notion can be grasped in
the case of a pendulum clock, where, in order to replace the energy lost by friction, pushes
must be applied by the escapement. These pushes are the main source of disturbance to the
pendulum motion. The smaller the fraction of the pendulum energy that is lost to friction,
the less energy needs to be added, the less the disturbance from the escapement, the more
the pendulum is independent of the clock mechanism, and the more constant its period is.
In other words, the Q factor is related to the ratio of the total energy in the system to the
energy lost per cycle or, equivalently, to how long it takes for the swings of the oscillator to
die out:

Q ≡ τ

T
=
ν0
Γ

(1.3)

where τ ≡ 1/Γ is the time constant describing the (exponential) decay of the swing
amplitude. Hence, the Q of pendulum clocks is increased by maximizing τ or, equivalently,
minimizing the overall frictional losses (Γ). As it will be shown in Chapter 2, for a damped
harmonic oscillator, Γ equals the full width at half maximum ∆ν of the system response
function (resonance curve) in the frequency domain. With this in mind, the above formula
can be generalized to all types of oscillators as

Q ≡ ν0
∆ν

(1.4)

Concerning quartz oscillators, here we just mention that, starting from the electric equiv-
alent of the crystal, ν0 and ∆ν are respectively calculated as the resonance frequency and
width of an oscillatory circuit. In the case of atoms, finally, ∆ν is calculated in the frame
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of quantum mechanics. Actually, as we will see in Chapter 4, atoms absorb or emit energy
over a small frequency range surrounding ν0: this spread of frequencies is referred to as the
linewidth and its ultimate limit is related to Heisenberg’s uncertainty principle. Since the
response of a high-Q system decays much more rapidly as the driving frequency moves away
from ν0, the oscillator with the highest Q would be desirable as a frequency standard, Q−1

being roughly proportional to its limiting accuracy. This can be achieved either by using an
atomic transition where ν0 is as high as possible, or by making ∆ν as narrow as possible.

1.3 The parallel story of the speed of light

In order to fully appreciate the significance of the modern physical measurements of the
speed of light, just think that even today we are usually not aware of any delay between the
occurrence of an event and its visual appearance in the eye of a distant observer. In fact,
a single visual snapshot is probably, for most people, the basis for the intuitive notion of
an instant. Therefore, it is of great interest to shortly trace the history of ideas concerning
the finiteness of the velocity of light [9, 10]. Among the ancient Greeks, there was a general
belief that this speed was infinite. An exception is represented by Empedocles from Acragas
(490-435 BC) who, according to Aristotle (384-322 BC), “was wrong in speaking of light as
travelling or being at a given moment between the earth and its envelope, its movement
being unobservable to us”. So powerful is Aristotele’s cosmology that it compels him to
declare that “...light is due to the presence of something, but it is not a movement”.

An interesting proof that the velocity of light must be infinite is given by Heron of
Alexandria (I century BC). According to him, you turn your head to the heaven at night,
keeping the eyes closed; then suddenly open them, at which time you see the stars. Since
no sensible time elapses between the instant of opening the eyes and the instant of sight of
the stars, light must travel instantaneously. Since the causal direction of an instantaneous
interaction is inherently ambiguous, it’s not surprising that ancient scholars considered two
competing models of vision, one based on the idea that every object is the source of images
of itself, emanating outwards to the eye of the observer, and the other claiming that the
observer’s eye is the source of visual rays emanating outwards to feel distant objects. Indeed,
at that time, the problem of the speed of light was secondary, whereas there was much more
interest in catoptrics and vision matter.

Amidst the Islamic scientists, Avicenna (980-1073) was perhaps the most famous: his
thought represents the climax of medieval philosophy. Avicenna observed that, if the per-
ception of light is due to the emission of some sort of particles by the luminous source (as
he believed), then the speed of light must be finite. Alhazen (965-1039), another Muslim
physicist and one of the greatest scholars of optics of all time, came to the same conclusion.
In his treatise on optics he states that light is a movement and, as such, is at one instant
in one place and at another instant in another place. Since light is not in both these places
at the same time, there must be a lapse of time between the two: hence the transmission
cannot be instantaneous.

Nevertheless, Aristotle’s point of view was echoed by many thinkers in western history:
John Peckam (1230-1292), Thomas Aquinas (1225-1274), and Witelo (1230-1275) to name a
few. It is curious to note that Roger Bacon (1214-1292), although in perfect agreement with
Alhazen’s conclusions on this subject, felt the need to show in "Opus Majus" that the sort
of reasoning used by Alhazen was identical to that of the scientists who attempted to prove
the opposite view. Bacon’s remarks afford a striking example of the confusion exhibited by
a first rate mind attempting to be reasonable with no genuine scientific or experimental
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basis as guide. The debate continued into the beginning of the scientific revolution of the
17th century. Such giants as Francis Bacon (1561-1626), Johannes Kepler (1571-1630), and
René Descartes (1596-1650) adhered to the idea of instantaneous propagation. Descartes
considered an eclipse of the moon, caused by the moon, earth, and sun being in a straight
line, with Earth interposed between the other two: “Now suppose that it requires an hour
for light to travel from the earth to the moon. Then the moon will not become dark until
exactly one hour after the instant of collinearity of the three bodies. Similarly, here on the
earth, we will not observe Moon’s darkening until the passage of another hour, or until two
hours after the moment of collinearity. But during this time, the moon will have moved in
its orbit and the three bodies will no longer be collinear. But clearly, this is contrary to
experience, for one always observes the eclipsed moon at the point of the ecliptic opposite
to the sun. Hence light does not travel in time, but in an instant”.

In the face of all this, the remarks by Galileo (1564-1642) seem like a breath of fresh air
in a stale room. In his great treatise on mechanics there is a conversation about the velocity
of light during which Salviati claims that the general inconclusiveness of observations on
this subject had led him to conceive an experiment. He says: “Let each of two persons
take a light contained in a lantern such that, by the interposition of the hand, the one can
shut off or admit the light to the vision of the other. Next, let them stand opposite each
other at a distance of a few cubits and practice until they acquire such skill (in uncovering
and occulting their lights) that the instant one sees the light of his companion, he will
uncover his own. After acquiring this skill, the two experimenters were to perform the same
operations at greater distances, ten miles if necessary (using telescopes). If the exposures
and occultations occur in the same manner as at short distances, we may safely conclude
that the propagation is instantaneous; but if time is required at a distance of three miles,
which, considering the going of one light and the coming of the other, really amounts to
six, then the delay ought to be easily observable”. This experiment was executed by the
Florentine Academy and their account of it is as follows: “We tried it at a mile’s distance
and could not observe any. Whether in a greater distance it is possible to perceive any
sensible delay, we have not yet had an opportunity to try”.

The first experimental evidence of the finite speed of light was due to Ole Christensen
Roemer in 1676 by observing the eclipses of the inner-most moon of Jupiter (Io) [11].
Discovered by Galileo in 1610, detailed tables of the movements of these moons had been
developed by Borelli (1665) and Cassini (1668). Io has a period of about 42.5 hours and,
if Earth were stationary, it would show an eclipse at regular intervals of 42.5 hours. But
Earth revolves about the sun and, in so doing, assumes positions 1 and 2 in Figure 1.1.
Roemer noticed that when the Earth was close to Jupiter (position 1), the eclipses occurred
8.5 minutes ahead of the time predicted on the basis of yearly averages. The eclipses were
late by the same amount when the Earth was opposite (position 2). Roemer concluded that
twice that difference was the time it took the light to traverse the diameter of Earth’s orbit
(∼ 3 · 108 km), which gave a figure of ∼ 227000 km/s.

Despite the force of Roemer’s analysis, and the early support of both Huygens and
Newton, most scientists remained skeptical of the idea of a finite speed of light. Alternative
explanations were provided by Cassini and later by his nephew Giacomo Filippo Maraldi.
They suggested that Jupiter’s orbit and the motion of its satellites might explain the ob-
served inequalities. It was not until 50 years later, when the speed of light was evaluated in
a completely different way, arriving at nearly the same value, that the idea became widely
accepted. Such measurement was performed in 1728 by James Bradley by observing stellar
aberration, that is the apparent displacement of stars due to the motion of the Earth around
the Sun. A useful analogy to help understand aberration is to imagine the effect of motion
on the angle at which rain falls. If you stand still in the rain (when there is no wind), it
comes down vertically on your head. If you run through the rain it appears to come to you
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FIGURE 1.1
Roemer’s evaluation of the speed of light.

from an angle and hit you on the front. It is worth pointing out that all stellar positions are
affected equally in the aberration phenomenon, which distinguishes this effect from paral-
lax where nearby stars are influenced more noticeably. By observing a star in Draco, and
recording its apparent position during the year, Bradley argued that stellar aberration is
approximately the ratio of the orbital speed of the Earth (around the Sun) to the speed of
light (see Figure 1.2). Based on the best measurement of the limiting starlight aberration
(20.5 arcseconds ≃ 0.0001 rad) by Otto Struve, and taking the speed of Earth to be about
30 km/s from Encke’s estimate, this implied a light speed of about 301000 km/s [9].

Unfortunately, measurements of the speed made in this way depended on the astronomi-
cal theory and observations used. Better determinations of the speed might be made if both
source and observer were terrestrial. The first measurement of c on Earth was by Armand
Fizeau in 1849 [12]. His method measured the time needed for light to travel to a flat mirror

Source
Apparent

source

FIGURE 1.2
Bradley’s determination of the light speed.
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at a known distance and return. For that purpose he designed a set-up where a collimated
beam emitted by a limelight passed through a half-mirror and a rotating cogwheel was then
reflected back by a mirror situated some 8.633 kilometers away, passed (or not) through the
cogwheel again, and was eventually reflected by the half-mirror into a monocular (see Figure
1.3). At a low rotation rate, the light passes through the same blank of the wheel on the way
out and on the way back. But with increasing rotation rate, a higher and higher percentage
of the transmitted light is cut on its way back by the incoming tooth of the wheel, resulting
in a decreasing light intensity collected in the monocular. Total extinction of the returning
light is reached when the time duration of the open gate corresponds exactly to the duration
of the round-trip, such that the light that has gone through finds the gate closed when it
returns. Knowing the precise distance d between the wheel and the mirror, the number of
teeth Nt of the wheel, and its rotation rate ω (expressed in radians per second), the speed
of light in air can be deduced to be

c = (2d)(2Nt)fc (1.5)

where fc = Ntω/2π is the frequency at which the beam is effectively stopped. Obviously,
if one increases further the rotating speed of the wheel, light will appear again as the
returning light will start passing through the gap situated right after the one it has passed
on its way out. Using this method with the cogwheel placed in Montmartre and the reflector
in Suresnes, Fizeau obtained a value of c = 315300 km/s, limited by the precision of his
measurement of ω, but yet better than any measurement realized before. Such a method was
subsequently taken up first by Marie Alfred Cornu in 1874 and then by Joseph Perrotin in
1902. Some experimental tricks allowed them to provide the following more accurate results
for the speed of light in vacuum: 299990 ± 200 km/s and 299901± 84 km/s, respectively
(their results already included correction for the refractive index of air) [13].

In 1855, Kirchhoff realized that 1/
√
ε0µ0 has the dimension of a speed, where µ0 (ε0)

is the magnetic permeability (electric permittivity) of free space entering the laws of mag-
netism (electricity). In 1856 Weber and Kohlrausch measured this constant using only elec-
trostatic and magnetostatic experiments [14]. Incidentally, they were the first to adopt the
symbol c (from Latin celeritas) for the speed of light. Within experimental accuracy, the
value found by them agreed with the speed of light. This remained a coincidence until
Maxwell formulated his theory of electromagnetism in 1865 and concluded that “...light is
an electromagnetic disturbance propagated through the field according to electromagnetic
laws” [15]. Maxwell’s equations established that the velocity of any electromagnetic wave
(and thus of light) in a vacuum is c, where

FIGURE 1.3
First terrestrial measurement of c, performed by Fizeau.
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c2 =
1

ε0µ0
(1.6)

At this stage, the status of c increased tremendously because it became a characteristic
of all electromagnetic phenomena.

The method demonstrated by Leon Foucault (1862) relies on the same principle adopted
by Fizeau (time of flight technique), but replaces the cogwheel by a revolving mirror (Figure
1.4). Light rays from the source S that strike the revolving mirror R and proceed through
the lens will strike the stationary mirror M and return to the source. If, after the light beam
first strikes R outbound from S, R can be rotated before it is struck again by the beam
returning from M , then the returning beam will no longer return exactly to the source S
but will instead be deflected away from S in the direction of the rotation. By rotating the
mirror at a constant speed, the amount of deflection will be the same for all light beams
which go through the lens, strike M and return. Then, for a continuous beam of light from
S and a constant high speed of rotation of R, an image of the source will appear beside
S instead of coincident upon it. The faster R rotates or the longer is RS, the farther the
returned image I will be displaced from the source S and the easier it will be to measure
the deflection. By carefully measuring the amount of displacement from S to I, and the
distance from S to R, the angle of deflection can be determined. Together with the known,
fixed speed of rotation, this angle can be used to determine the time it took light to travel
the distance from R to M and back. Let θ = arctan(IS/IR) denote the angle of deflection
(this means that the angle through which the mirror has rotated is θ/2). If the speed of
rotation is measured in number of cycles (nc) per second, then the speed of light is given
by

c =
2 ·RM
θ

2

1

2π

1

nc

(1.7)

In this arrangement, the distances IS and SR should be as large as possible to reduce
the error in measuring θ. The distance IS is maximized by maximizing the speed of rotation
of R and the distance RM . In Foucault’s setup, M was spherical with center at R. The
greatest distance RM achieved by Foucault was 20 m, which produced a displacement IS
of only about 1 mm. The result was 298000± 500 km/s [13].

Going back to the approach by Weber and Kohlrausch, in 1907 Rosa and Dorsey ob-
tained a much more accurate determination of c. As the value of µ0 is fixed at exactly
4π · 10−7 N·A−2 through the definition of the ampere, only ε0 had to be measured in their
experiments. This can be accomplished by determining the ratio of the capacitance of a
condenser as measured in electrostatic and electromagnetic units. Rosa and Dorsey used
the Maxwell bridge method (employing carefully standardized resistances) to determine the
electromagnetic capacitance and standards of length and mass to determine the electrostatic
capacitance [16]. They used a variety of shapes (spherical, cylindrical, and plane) and sizes
of condensers [17]. Both the calculations and experiments were beset with difficulties, but
their result was probably the most reliable up to that time. The final value, c = 299710
km/s, was the mean of about 900 individual determinations with an estimated maximum
error of 30 km/s, apart from uncertainties in the value taken for the international ohm. In
1941 a more accurate knowledge of the latter standard allowed Birge to apply a correction
to their result yielding the value c = 299784 km/s [18].

Foucalt’s apparatus was perfected by Michelson in several versions till the famous ex-
periment in 1927 [19]. As shown in Figure 1.5, the apparatus involved a rotating octagonal
glass prism. When the prism is stationary the light follows the path shown and an image
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FIGURE 1.4
Focault’s apparatus for measuring c.

of the source can be seen through the telescope. If the prism is rotated slowly, the image
disappears because either face X is not in a suitable position to direct the outgoing beam
to the concave reflector C, or face Y is unable to send the incoming beam to the telescope.
However, if the rotation speed of the prism is increased so that it turns exactly one-eighth
of a revolution in the same time that it takes light to travel from X to Y , then an image
of the source is seen through the telescope. Michelson adjusted the speed of rotation until
he was able to observe a stationary image of the source. This occurred when the prism was
rotating at frot ≃ 530 Hz (this rate was measured by comparison with a free pendulum
furnished by the United States Coast and Geodetic Survey). The experiment was carried
out on Mt. Wilson (USA) and the concave reflector C was on Mt. San Antonio d = 35 km
away. The result was c = (2d)/[(1/8)(1/frot)] = 299796± 4 km/s.
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FIGURE 1.5
Michelson’s famous experiment for the measurement of c.
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An ingenious modification of the toothed-wheel method was used by Karolus and Mit-
telstaedt in 1928. In their apparatus, a Kerr cell, at the terminals of which an alternating
difference of potential was applied, was used to periodically interrupt the passage of a lu-
minous beam. The main advantage of this method is that the frequency of such periodic
interruption can be accurately determined, which was not the case when the toothed wheel
was used; moreover, a much higher frequency can be used with this method (around 10
MHz), so that a correspondingly short base (in this case 41.4 meters) can be utilized [13].
This approach gave the value 299778± 20 km/s.

The completion of this excursus on the measurements of c necessitates now the discussion
of experiments whose understanding requires knowledge beyond basic physics, many of the
involved concepts being precisely the subject of this book. For the moment, may the reader
be satisfied with an intuitive comprehension; a full appreciation will result from revisiting
each experiment as the pertinent notions are gradually acquired.

As we will learn in Chapter 3, another valuable option to determine c is to measure the
resonance frequencies of a cavity resonator whose dimensions are precisely known. In 1946,
Louis Essen and A.C. Gordon-Smith pursued this approach, by establishing the frequency
for a variety of normal modes of an evacuated microwave cavity [20, 18]. The latter consisted
of a copper cylinder constructed with great uniformity. The resonant frequency νn of an
evacuated right circular hollow cylinder closed at both ends is given by

c =
νn

√

( r

πD

)2

+
( n

2L

)2

(

1 +
1

2Qcav

)

(1.8)

where r is a constant for a particular mode of resonance, n is the number of half-
wavelengths in the guide, D is the diameter and L the length of the cylinder, and Qcav is
the quality factor of the resonator accounting for the finite conductivity of the cavity walls.
The quantities νn, D, L, and Qcav could all be measured with a precision of a few parts in
106. In particular, the dimensions of the resonator were measured in the Metrology Division
of the National Physical Laboratory using gauges calibrated by interferometry. The final
result (using the E010 and E011 modes) was c = 299792 ± 9 km/s, where the estimated
maximum error was the sum of different contributions including setting of the frequency to
resonance and measurement of the frequency by the spectrum analyzer, uncertainty of the
resonator temperature, dimensional measurements, residual effects of coupling holes and
probes, non-uniformity of the resonator, and uncertainty of Qcav. Almost simultaneously,
a very similar value (299789.3± 0.4 km/s) obtained by the same measurement scheme was
published by Bol in a short note [21].

In those years, radar systems also began to be used to measure the speed of light. Again,
the time-of-flight principle was exploited: twice the known distance to a target was divided
by the time it took a radio-wave pulse to return to the radar antenna after being reflected
by the target. This was done by Aslakson in 1949 with the result 299792.4 ± 2.4 km/s
[22]. Incidentally we mention here (see Chapter 7 for further details) that, today, a Global
Positioning System (GPS) receiver measures its distance to GPS satellites based on how
long it takes for a radio signal to arrive from each satellite: from these distances the receiver
position is calculated.

Then came the geodimeters. Originally intended for use in geodesic surveying,
Bergstrand demonstrated their use in accurate measurement of the light speed [23]. With
reference to Figure 1.6, the principle can be described as follows: a light beam is emitted
through a Kerr cell to a distant mirror and reflected back to a receiving photocell close
to the emitter. The two cells are supplied by the same crystal-controlled high frequency
voltage (about 10 MHz in the original work). The difference in phase of the emitted and
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FIGURE 1.6
Bergstrand’s method for evaluating c.

received light is compared. If the mirror distance is known, the speed of light can be mea-
sured [24]. Bergstrand repeated this kind of measurement several times with the final value
299793.1± 0.2 km/s [25]. Such phase-shift method was pushed to the limit of its accuracy
by Grosse in 1967: 299792.50± 0.05 [26].

Another way to get the speed of light is to independently measure the frequency ν and
wavelength λ of an electromagnetic wave in vacuum. The value of c can then be found by
using the relation c = λν (see Figure 1.7).

This approach was followed first in the microwave domain at NPL by Froome in 1958
[27]. The basis of the determination consisted of the simultaneous measurement of the
free-space wavelength and frequency of an electromagnetic wave generated by a microwave
source. The latter was a frequency-stabilized klystron oscillator operating at 36 GHz (in
short, the klystron is a specialized linear-beam electron vacuum tube which converts, via
velocity modulation, the kinetic energy of the electron beam into a radio-frequency/micro-
wave signal). The greater part of the output from this oscillator was fed by means of
a waveguide switch into one of the two silicon crystal distorter units tuned for maximum
harmonic output at 72 GHz (about 0.4 cm wavelength). One harmonic generator was used to
supply the interferometer itself, the other for operating the cavity resonator refractometer
by means of which the refractive index of the air in the neighborhood of the equipment
could be measured. The measurement of the microwave frequency was accomplished by
comparing a portion of the klystron output against a high harmonic of a 5-MHz quartz
crystal standard. The 5-MHz was multiplied in stages of two to five times up to 600 MHz
and then fed into a silicon crystal harmonic generator mounted in waveguide, so that the
harmonic at exactly 36 GHz could be mixed with a small fraction of the klystron output.
The beat frequency between the two was detected by means of a calibrated communications
receiver. The accuracy of frequency determination was at least as good as 1 part in 108. The
estimated accuracy of the refractive index measurement was 1.1 parts in 107. The value of

Frequency chain

Interferometer

Splitter

l

n

c=ln
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FIGURE 1.7
Determination of c = λ · ν by independent measurements of the free-space wavelength λ
and frequency ν of an electromagnetic wave.
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microwave wavelength obtained by means of the interferometer, when multiplied by the air
refractive index and the microwave frequency, gave a vacuum phase velocity which had still
to be corrected for the effect of diffraction before the true free-space value could be derived.
Basic concepts of interferometry for wavelength measurements will be given in Chapter 5.
Here we just recall that the diffraction limit is proportional to λ. It is interesting to note
that the greatest single uncertainty in the whole measurement arose from the use of the
length standards. At that time, interferometry-based length measurements were ultimately
referenced to the cadmium red line (falling at λ ≃ 644 nm) as emitted by the international
specified form of the Michelson lamp. The result was 299792.50± 0.10 km/s.

Later, it was discovered that the cadmium line was actually a cluster of closely separated
lines, and that this was due to the presence of different isotopes in natural cadmium. Thus,
in order to get the most precisely defined line, it was necessary to use a mono-isotopic
source. Allowing for easier isotopic enrichment and lower operating temperatures for the
lamp (which reduces broadening of the line due to the Doppler effect), the pretty bright
orange line of krypton-86 (at λ ≃ 606 nm) was then selected as the new standard. Krypton-
86 offered the additional advantages of having zero nuclear spin.

In the same years, a quite different, spectroscopy-based approach was also pursued to
measure c [28]. That was the so-called band spectrum method, involving the simultaneous
measurement of the rotational constant B′′ of the ground state of a diatomic (or linear)
molecule in pure frequency units by means of microwave spectroscopy and in cm−1 units
by means of infrared (rotation-vibration) spectroscopy. Then, the ratio

B′′ microwave
B′′ infrared

= c (1.9)

yields the speed of light. The most precise result obtained by such method was c =
299792.8± 0.4 km/s, the main limitation being dictated by the accuracy of the theory of
band spectra of molecules.

1.3.1 The laser arrives: length-frequency equivalence and the birth of
optical frequency metrology

Up to this point in both stories, that of timekeeping and c, only microwave radiation made
its entrance. The future of metrology was changed fundamentally on 12 December 1960
when a small team at Bell Labs, led by Ali Javan, eventually found the right conditions for
their Optical Maser to generate the self-sustained optical oscillation that was anticipated
by Charles Townes and Arthur Schawlow in a classic paper of 1958 [29]. The emergence of
the laser promised to open new scenarios in the field of metrology. Indeed, very soon the
wavelength of visible radiation could be measured fairly well by Michelson or Fabry-Perot
interferometers. This possibility enabled the development of laser frequency measurement
programs at various national standards laboratories such as NBS at Boulder, NPL at Ted-
dington, and National Research Council at Ottawa. In spite of the fact that lasers provided
coherent frequency sources in the infrared and visible, optical frequencies could not imme-
diately be measured with the required degree of accuracy. Specifically, two fundamental
drawbacks had to be overcome. First, laser frequency stability had to be greatly improved.
Indeed, in the case of the gas laser, although its short term linewidth was a few hundred
Hz, over a long period, its frequency could vary within the Doppler and pressure broad-
ened gain curve of the laser. By the late 1960s, lasers stabilized in frequency to atomic
and molecular resonances were becoming reliable research tools and the development of
the technique of saturated absorption had produced lasers with one-second fractional fre-
quency instabilities as small as 5 · 10−13 [26]. Second, the laser optical frequency was much
too high for conventional frequency measurement methods. To remove this limitation, the
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approach taken was to synthesize signals at progressively higher and higher frequency us-
ing harmonic-generation-and-mixing (heterodyne) methods and to lock the frequency of a
nearby oscillator or laser to the frequency of this synthesized signal. Photodiodes, as well as
metal-insulator-metal (MIM) diodes, fabricated by adjusting a finely tipped tungsten wire
against a naturally oxidized nickel plate, were used for harmonic generation and mixing [30].
With this approach, a frequency synthesis chain was constructed linking the microwave out-
put of the cesium frequency standard to the optical region [31], so that the Boulder group
could directly measure the frequency of a helium-neon laser stabilized against the 3.39-µm
(88 THz) transition of methane [32] (note that the frequency of the methane stabilized
helium-neon laser is over 1000 times higher in frequency than that of the oscillator used in
Froome’s measurement). At the same time, the wavelength of the 3.39-µm line of methane
was measured with respect to the Kr-86 6057-Angstrom standard by using a frequency-
controlled Fabry-Perot interferometer [33]. In this way, the laser eventually permitted to
preserve the small interferometric errors associated with the short optical wavelength, while
utilizing microwave frequencies which were still readily manipulated and measured. The
extension of frequency measurements into the infrared portion of the electromagnetic spec-
trum had in a sense solved the dilemma raised raised by Froome’s experiment: to measure
the frequency, it is best to do the experiment not too far removed from the primary Cs fre-
quency where extremely stable oscillators can be made and frequencies are easily measured
with great accuracy. However, to measure the wavelength it is best to do the experiment
close to the visible 86-krypton wavelength standard where wavelengths can be more easily
compared and where diffraction problems are not severe. Table 1.1 summarizes the most
significant milestones in the story of c measurements.

When the measurements were completed, the uncertainty limitation was found to be
the asymmetry of the krypton line on which the definition of the meter was then based
[34]. The experiment thus showed that the realization of the meter could be substantially
improved through redefinition. This careful measurement resulted in a reduction of the
uncertainty of the speed of light by a factor of nearly 100. The methods developed at NIST
were replicated in a number of other laboratories [35, 36, 37], and the experiments were
repeated and improved to the point where it was generally agreed that this technology
could form the basis for a new definition of the meter. An important remaining task was
the accurate measurement of still higher (visible) frequencies which could then serve as
more practical realizations of the proposed new definition. The Boulder group again took
the lead and provided the first direct measurement of the frequency of the 633 nm line of
the iodine-stabilized helium-neon laser [38], as well as a measurement of the frequency of
the 576 nm line in iodine [39].

These and similar measurements around the world (frequency and wavelength measure-
ments were refined to the accuracy of few parts in 1010 and in 109, respectively) were the
last ingredients needed to take up the redefinition of the meter. The product of the mea-
sured frequency and the wavelength yields a new, definitive value for the speed of light. The
new (and current) definition of the meter, accepted by the 17th Conference Generale des
Poids et Mesures in 1983, was quite simple and elegant:

the meter is the length of the path traveled by light in vacuum during a time
interval of 1/299,792,458 of a second

A consequence of this definition is that the speed of light is now a defined constant, not
to be measured again. In subsequent years, measurement of other stabilized-laser systems
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added to the ways in which the meter could be realized. Furthermore, these experiments
definitely demonstrated that, in order to obtain highly precise results, it is necessary to
measure the frequency of light rather than its wavelength, marking the birth of optical
frequency metrology.

Time-frequency and length-frequency equivalence principles are only two aspects of a
more general trend in contemporary metrology, that of establishing measurement units
based, rather than on artifacts, on atomic (quantum) standards or on fundamental constants
[40]. These are invariant both on a practical scale and as far as can be measured in the
laboratory. Let’s deepen the significance of this process starting with the second and the
meter.

Although the cesium frequency cannot presently be explicitly written in terms of funda-
mental constants because of the complexity of the atomic theory required, it is a quantum
system that will have the stability associated with fundamental constants. The uncertainty
in calculating this frequency is many orders of magnitude away from its measurement uncer-
tainty. The Rydberg constant could be considered the natural fundamental constant-based
unit of frequency. It is determined with a relative uncertainty of 6.6·10−12, which is currently
the limit at which an atomic frequency can be calculated from fundamental constants. The
choice of the cesium definition was a good one in the sense that the technology, although
superior to the alternative clocks of the day, still had much room for improvement, and the
definition has endured to this day, during which time its practical realization has improved
by five orders of magnitude. A clear example of the link between fundamental constants
and the units is the adoption of the speed-of-light definition of the meter. The meter was
originally defined as the length of a prototype meter bar intended to be 1/10, 000, 000 of
the length of a quadrant of Earth. By 1960, the development of interferometry allowed an
atomic redefinition of the meter in terms of the wavelength of light from a specific source, the
krypton lamp (the meter was defined as 1650763.73 wavelengths of the orange-red emission
line in the spectrum of krypton-86 atom in vacuum). With the invention of the laser, length
measurement by interferometry was radically improved and the krypton standard was not
accurate enough. The meter definition could then have been revised using the wavelength of
a specified stabilized laser. However, the progress in understanding the metrological impor-
tance of the speed of light, along with the progress in its accurate measurements, led to the
change from defining the meter in terms of the wavelength of light from a specific source,
to a fundamental constant-based definition in which the speed of light is a defined quan-
tity. The choice of the speed-of-light definition over the use of a particular stabilized laser
should ensure that this definition will endure, whereas the krypton definition lasted only 23
years. In practice, a number of recommended radiations, that is, frequencies of particular
stabilized lasers, are published accompanying the definition. This means that to realize the
meter there is no need to measure the distance that light travels in 1/299, 792, 458 of a
second by literally timing a light beam. One can, for example, continue to use a laser in-
terferometer and measure the frequency of the laser used, or use a recommended stabilized
laser and then use the relationship c = λν (as well as corrections for refractive index, if the
measurement is not done in a vacuum). In other words, the realization is a method that
implements the definition by using the known laws of physics; it allows the experimental
production of a known quantity of the same kind as the one defined, but the method used
may be dissimilar to the one in the definition. We close this discussion by mentioning an-
other clarifying example, namely the definition of the volt. Electrical quantum metrology
started in 1962 when Josephson predicted that in the presence of an applied microwave field,
a direct superconducting tunnelling current could pass between superconductors separated
by an insulating barrier. This current can only pass when the voltage V across the barrier
satisfies the relationship
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TABLE 1.1
List of the most significant terrestrial measurements of c.

Year Investigator Method Value (km/s)

1849 Fizeau Toothed wheel 315, 300 [12]
1862 Foucault Revolving mirror 298, 000± 500 [13]
1906 Rosa and Dorsey EM constants 299, 710 ± 30[18]
1927 Michelson Revolving mirror 299, 796± 4[13]
1928 Karolus and Mittelstaedt Kerr cell 299, 778 ± 20[13]
1948 Essen and Gordon-Smith Cavity resonator 299, 792± 9[18]
1949 Aslakson Radar 299, 792.3± 2.4 [22]
1952 Bergstrand Geodimeter 299, 793.1± 0.2 [25]
1958 Froome Millimiter-wave interferometry 299, 792.50± 0.10 [27]
1965 Rank Spectroscopy 299, 792.8± 0.4 [28]
1972 Evenson Direct frequency and wavelength 299, 792.4562(11)

measurement of a laser 299, 792.4587(11)[34]

Note: The two values in Evenson’s measurement were due to the asymmetry in the krypton 6057-
Angstrom line defining the meter. Except for the first two (in air), all the listed results refer to
the value in vacuum.

2eV = nhν (1.10)

where e is the electron charge, h the Planck constant, ν the applied frequency, and
n an integer. It was recognized that voltage standards could be based on this effect. A
number of experiments found no corrections to expression 1.10 or dependence on material
or experimental conditions at a level of up to parts in 1016. In 1972, a number of countries
used the Josephson effect to maintain the volt and agreed on an assigned value for 2e/h so
that their voltages were in agreement. They are not necessarily the correct SI value; hence,
the agreed-upon value is referred to as a representation of the volt. Again a frequency
measurement played a crucial role.

1.3.2 Role of c in fundamental physics

Besides representing an essential pillar of frequency metrology, the parameter c is ubiquitous
in contemporary physics, entering many contexts that are apparently disconnected from the
notion of light itself. Our thoughts soon turn to the very famous second postulate of Special
Relativity: “The velocity c of light in vacuum is the same in all inertial frames of reference
in all directions and depend neither on the velocity of the source nor on the velocity of
the observer”. The theory of Special Relativity explores the consequences of this invariance
of c with the assumption that the laws of physics can be written in the same form in all
inertial frames (first postulate). Declared by Einstein in 1905, after being motivated by
Maxwell’s theory of electromagnetism and the lack of evidence for the luminiferous ether,
the invariance of the speed of light and its isotropy has been consistently confirmed by
many experiments over the years. Other experimentally verified implications of Special
Relativity include length contraction (moving objects shorten), and time dilation (moving
clocks run slower). The factor γ by which lengths contract and times dilate is known as

the Lorentz factor and is given by γ = 1/

√

1−
(

v
c

)2
, where v is the speed of the object.

Special Relativity also establishes that the energy of an object with rest mass m and speed
v is given by E = γmc2. Since the γ factor approaches infinity as v approaches c, it
would take an infinite amount of energy to accelerate an object with mass to the speed of
light. The speed of light is therefore the upper limit for the speeds of objects with positive
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rest mass. Experimental Tests of General Relativity for the most part also verify Special
Relativity, since the laws of the latter are included as part of the former via the principle of
consistency. For a tutorial introduction to Special and General Relativity the reader may
refer to [41], while an updated list of experimental verifications inferred from advanced
frequency measurements will be given in Chapter 8.

As a clarification of what was just discussed, it is worth adding that, in principle, we
should distinguish between the electromagnetism constant cEM = 1/

√
ε0µ0, and the space-

time constant cST appearing in the Lorentz transformation that is at the basis of the formu-
lation of Special Relativity [42]. In general, for example, the celebrated equation unifying
the concepts of energy and mass should be written in the form E = mc2ST . cEM agrees with
cST insofar as the mass of the photon is zero. If we were to show experimentally that the
photon has non-zero mass, then the standard derivation of relativity from electromagnetism
would have to be abandoned. Incidentally, extensions of quantum electrodynamics (QED)
in which the photon has a mass have been considered [43]. In such a theory, the photon
speed would depend on its frequency. No variation of the speed of light with frequency has
been observed in rigorous testing, putting stringent limits on the mass of the photon [44].
The same is true for gravitational waves: their speed in vacuum cGW , is equal to cST as long
as we assume that general relativity is valid. Again, if we were able to formulate a theory
with light massive gravitons, then the speed of propagation of gravity might be different
from cST . Finally, the space-time-matter constant cE , introduced by Einstein to describe
coupling of gravity to matter, coincides by definition with cST only in the context of general
relativity.

As mentioned, Einstein’s relativity treats space and time as a unified structure known
as space-time (with c relating the units of space and time) and requires that physical theo-
ries satisfy a special symmetry called Lorentz invariance, whose mathematical formulation
contains precisely the parameter c. Lorentz invariance is an almost universal assumption
for modern physical theories, such as quantum electrodynamics, quantum chromodynamics,
and the Standard Model of particle physics. One consequence is that c is the speed at which
all massless particles and waves, not only light, must travel. This result is constantly put to
the test in different areas of experimental physics. In this respect, great emphasis was given
to a high-energy physics experiment according to which beams of neutrinos, fired through
the ground from Cern near Geneva to the Gran Sasso lab in Italy 450 miles (720 km) away,
seemed to arrive sixty billionths of a second earlier than they should if travelling at the
speed of light in a vacuum [45]. Subsequently, however, a discrepancy between the clocks
at Cern and Gran Sasso was discovered to be at the root of the observed faster-than-light
results. In the future, use of an optical fiber, as opposed to the GPS system used at the
moment, should ensure a more accurate synchronization of the two clocks. This gives even
more prominence, if any were needed, to the scope of time and frequency measurements.

The most striking feature of Einstein’s relativity is undoubtedly the upper limit to
velocity of any physical object set by c, albeit there are situations in which it may seem
that matter, energy, or information travels at speeds greater than c. A first amazing example
is the following. Think about how fast a shadow can move. If you project the shadow of your
finger using a nearby lamp onto a distant wall and then wag your finger, the shadow will
move much faster than your finger. If your finger moves parallel to the wall, the shadow’s
speed will be multiplied by a factorD/d where d is the distance from the lamp to your finger,
and D is the distance from the lamp to the wall. If the wall is very far away, the movement of
the shadow will be delayed because of the time it takes light to get there, but the shadow’s
speed is still increased by the same ratio. The speed of a shadow is therefore not restricted
to be less than the speed of light. Unfortunately, the shadow is not a physical object and
it is not possible to send information on a shadow. Also, certain quantum effects appear to
be transmitted instantaneously and therefore faster than c. Among these we mention the
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celebrated Einstein-Podolsky-Rosen (EPR) paradox [46], the Hartman effect [47], and the
Casimir effect [48]. It has been pointed out, however, that none of these effects can be used
to send information.

Other examples come from the astrophysical/cosmological context. According to Hub-
ble’s law, two galaxies that are a distance D apart are moving away from each other at
a speed HD, where H is Hubble’s constant. This interpretation implies that two galaxies
separated by a distance greater than c/H must be moving away from each other faster
than the speed of light. Actually, the modern viewpoint describes this situation differently:
general relativity considers the galaxies as being at rest relative to one another, while the
space between them is expanding. In that sense, the galaxies are not moving away from each
other faster than the speed of light; they are not moving away from each other at all! This
change of viewpoint is not arbitrary; rather, it agrees with the different but very fruitful
view of the universe that general relativity provides. So the distance between two objects
can be increasing faster than light because of the expansion of the universe, but this does
not mean, in fact, that their relative speed is faster than light.

It is worth stressing that all the experiments performed to date have confirmed that it
is impossible for information or energy to travel faster than c. One simple general argument
for this follows from the counter-intuitive implication of special relativity known as the
relativity of simultaneity. If the spatial distance between two events A and B is larger than
the time interval between them multiplied by c, then there are frames of reference in which
A precedes B, others in which B precedes A, and others in which they are simultaneous. As
a result, if something were travelling faster than c relative to an inertial frame of reference,
it would be travelling backwards in time relative to another frame, and causality would be
violated. In such a frame of reference, an effect could be observed before its cause. Such a
violation of causality has never been recorded.

In a medium, light usually does not propagate at a speed equal to c; furthermore, different
types of light wave will travel at different speeds. The speed at which the individual crests
and troughs of a plane wave (a wave filling the whole space, with only one frequency)
propagate is called the phase velocity vp. So, while in vacuum we have c = vp = λν, in
a medium we have c/n(ν) = vp = λν where n(ν) is the refractive index of the medium
(in general it also depends on the intensity, polarization direction of propagation,...). In
actual circumstances such idealized solutions do not arise. Even in the most monochromatic
light source or the most sharply tuned radio transmitter or receiver, one deals with a finite
spread of frequencies or wavelengths. Since the basic equations are linear, it is in principle an
elementary matter to make the appropriate linear superposition of solutions with different
frequencies where each monochromatic component has its own phase velocity. Consequently,
there is a tendency for the original coherence to be lost and for the pulse to become distorted
in shape. At the very least, we might expect it to propagate with a rather different velocity
from, say, the average phase velocity of its component waves. The general case of a highly
dispersive medium or a very sharp pulse with a wide spread of wave numbers is difficult to
treat. But the propagation of a pulse which is not too broad in its wave-number spectrum,
or a pulse in a medium for which the frequency depends weakly on wave number, can be
handled in an approximate way. In this case, it can be shown that the transport of energy
occurs with the group velocity

vg =
dω

dk

∣

∣

∣

∣

k=k0

(1.11)

where ω (k)=ck/n (k) describes the dispersion of the material and k0 is the center
wavenumber of the packet. In general, however, the behavior of the wave packet is much
more complicated and the group velocity above defined does not identify with the infor-
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mation velocity. In transparent materials, the refractive index generally is greater than 1,
meaning that the phase velocity is less than c. In other materials, it is possible for the
refractive index to become smaller than 1 for some frequencies; in some exotic materials
it is even possible for the index of refraction to become negative. This reflects in turn on
the value of the group velocity. Even in those cases where group velocities exceeding c are
observed, it is still valid, according to causality, that it is impossible to transmit informa-
tion faster than the speed of light in vacuum. Indeed, when the notion of front velocity is
introduced and the principle of causality is accounted for, it can be rigorously shown in
the frame of classical electrodynamics that information travels at the front velocity that is
actually limited to c [49].

The finiteness of the speed of light has implications for the whole realm of sciences and
technologies. In some cases, it is considered as a hindrance. For instance, being the upper
limit of the speed with which signals can be sent, c provides a theoretical upper limit for the
operating speed of microprocessors. In supercomputers, the speed of light imposes a limit on
how quickly data can be distributed among processors. If a processor operates at 1 GHz, a
signal can only travel a maximum of about 30 centimeters in a single cycle. Processors must
therefore be placed close to each other to minimize communication latencies; this represents
a trade-off with cooling needs. If clock frequencies continue to increase, the speed of light
will eventually become a limiting factor for the internal design of single chips. In other cases,
the finiteness of c turns out to be useful. For instance, the finite speed of light is important
in astronomy. Due to the vast distances involved, it can take a very long time for light to
travel from its source to Earth. For example, photographs taken today in the Hubble Ultra
Deep Field capture images of the galaxies as they appeared 13 billion years ago, when the
universe was less than a billion years old. The fact that more distant objects appear to be
younger, due to the finite speed of light, allows astronomer to infer the evolution of stars,
galaxies, and of the universe itself. Moreover, position measurements by GPS systems rely
on the finiteness of c.

We close this section by observing that it is generally assumed that fundamental con-
stants such as c have the same value throughout space-time, meaning that they do not
depend on location and do not vary with time. However, it has been suggested in various
theories that the speed of light may have changed over time. No conclusive evidence for
such changes has been found, but this remains a crucial subject of ongoing metrological
research [50].

As we will see during this book, and in particular in Chapter 8, advanced laser-based
measurements in the frequency and time domains promise to give a new insight into many
of the aforementioned issues.

1.4 In the end, time and light met up again: optical atomic clocks
and outline of the book

As we have seen, the advent of the laser played a central role in the statement of the meter
definition marking, in fact, the beginning of optical frequency metrology. In the following
years, the laser became an invaluable source in many research fields. Today, it is the true
light which enlightens every advanced frequency metrology experiment. Additionally, from
the sixties to the present, three major developments were triggered by the laser in the field
of fundamental research: ultra-high-resolution spectroscopy, the field of trapping/cooling
of atoms, and the realization of optical frequency comb synthesizers based on femtosecond



Shedding light on the art of timekeeping 21

(fs) mode-locked lasers. In turn, these three discoveries have played a crucial role in the
timekeeping story leading to the realization of the current optical atomic clocks. Although
present-day cesium microwave frequency standards perform at an already remarkable level
(fractional uncertainty below 1 part in 1015), a new approach to timekeeping based on optical
atomic transitions promises still greater improvements. According to the given definition of
Q, by using optical (ν0 ∼ 1015 Hz) rather than microwave (ν0 ∼ 1010 Hz) frequencies,
optical standards should be considerably more accurate. Also several key frequency shifts
are fractionally much smaller in the optical domain and their investigation will be greatly
accelerated by the much smaller instability of the optical standards. A projection of the
fractional uncertainty achievable in the new era of optical atomic clocks is made in Figure
1.8 which displays some of the major milestones in the improvement of clocks over the past
400 years.

The potential advantages of optical atomic clocks were recognized in the early days of
frequency standards. However, optical standards did not truly begin to experience these
potential gains until the past decade, when the above three fields enjoyed an extraordinary
growth. First, huge advances in laser cooling techniques made it possible to cool a variety of
atoms and ions (including those with narrow clock transitions) to millikelvin temperatures
and below. The use of laser-cooled atomic samples enabled, in turn, the extended interaction
times required to observe a narrow transition linewidth. To resolve such narrow linewidths,
probe lasers need to be spectrally pure. Recent improvements in laser stabilization based
on environmentally isolated optical reference cavities have enabled laser linewidths at the
subhertz level to be achieved [51]. Finally, and perhaps most critically, compact and reliable
optical frequency comb synthesizers (OFCSs) for counting optical frequencies (linking them,

FIGURE 1.8
Major milestones in the improvement of clocks over the past 400 years, including the pro-
jected fractional uncertainty of next-generation optical atomic clocks. (Adapted from [5].)
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phase coherently and in a single step, to other frequencies in the microwave and optical
domains) became available replacing the old and cumbersome frequency chains [52, 53].

Being the most recent and sophisticated objects presented in this book, optical atomic
clocks will be our guiding star along the whole treatment. Thus, just to point out all the
relevant ingredients, a paradigmatic scheme is given in Figure 1.9 [5].

Schematically, the probe laser, whose frequency is pre-stabilized against an optical cavity,
is used to excite transitions in a laser-cooled, trapped sample of atoms (either neutral or
ions). A servo system uses the signal from the quantum absorbers to keep the probe laser
frequency centered on resonance. Light is sent to the OFCS, which enables counting of the
clock cycles. In this picture, as 5000 years ago, a light source (the laser plays here the role
of Sun) interrogates an oscillatory phenomenon (the atomic resonance is now the equivalent
of Earth’s rotation). The abysmal difference lies in the much higher operation frequency
(and in the much greater stability compared to Earth’s motion), as well as in the resonant
character of light-matter interaction. So, optical atomic clocks represent the happy end of
the history of Light and Time.

Now, the time is approaching when optical frequency standards will have accuracies
and stabilities superior to the best microwave cesium standards. Then it will be necessary
to revisit the definition of the second. There are a number of candidate optical frequency
standards, but at present no particular standard is clearly superior to the others. The time
lag in adopting a new atomic standard mainly reflects the work that is necessary to ensure
that one specifically selected system is indeed superior.

As illustrated in these first sections, the history of physics shows that, when the accuracy
of measurements is improved, new physics may be discovered and explored. Throughout
history, at several moments, the discovery or development of a new type of oscillator with
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FIGURE 1.9
Schematic layout of an optical atomic clock.



Shedding light on the art of timekeeping 23

improved performance has meant a huge step forward in our knowledge of physics or even
coincided with a scientific revolution. For example, the advent of pendulum clocks provided
experimental verification of Galilean laws of mechanics, while, more recently, observation of
astronomical oscillators like binary pulsars confirmed many of the predictions of the General
Relativity. In the same way, optical atomic clocks are expected to improve our knowledge
in fundamental physics.

The emergence of the laser, moreover, made it essential to distinguish its special light
from the more incoherent radiation emitted by hot bodies. This induced Roy Glauber to
utilize the quantum theory to describe the properties of light and how these can be ob-
served. His work laid the foundations for the field of research today called Quantum Optics,
and earned him the Nobel Prize awarded in 2005 [54]. Quantum Optics is a very wide field
and only those aspects that will intersect the main path of our book will be dealt with.
In technical applications, the quantum effects are often very small. The field state is cho-
sen so that it can be assigned well-defined phase and amplitude properties. In laboratory
measurements, too, the uncertainty of quantum physics seldom sets the limit. But the un-
certainty that nevertheless exists appears as a random variation in the observations. This
quantum noise sets the ultimate limit for the precision of optical observations. In high-
resolution frequency measurements, quantum amplifiers, and frequency standards, it is in
the end only the quantum nature of light that sets a limit for how precise our apparatuses
can be. Such ultimate limits have been explored in recent years by two main protagonists,
John L. Hall and Theodor W. Hänsch. For their unceasing and illuminating research within
the field of laser-based precision spectroscopy culminating with the realization of OFCSs,
they received the other half of the Nobel Prize in Physics in 2005. It now seems possible,
with the frequency comb technique, to make frequency measurements in the future with a
precision approaching one part in 1018. This will soon lead to actualize the introduction of
a new, optical standard clock. What phenomena and measuring problems can take advan-
tage of this extreme precision? Just to mention a few examples, more exact satellite-based
navigation systems will become available and novel applications in telecommunication may
emerge. Enormous benefits will also come out for navigation on long space journeys and for
space-based telescope arrays that are looking for gravitational waves or making precision
tests of the theory of relativity. Besides technological applications, this improved measure-
ment precision may also be used in fundamental physical studies like those related to the
antimatter-ordinary matter connection (spectroscopic studies of anti-hydrogen), to parity
violation in chiral molecules, as well as to the search for possible changes in the constants
of Nature over time. These and other fascinating issues will be discussed in Chapter 8.

At the end of this introductory chapter, we hope that, by grasping the concepts here
proposed, the reader is in tune with the authors to better appreciate the logical organization
of the book. In a sense, we are going to give, chapter by chapter, a detailed description of all
the key elements on which the operation of optical atomic clock hinges. Here is the outline:

In Chapter 2 we shall discuss the general basic features of harmonic oscillators and
introduce the mathematical background for their characterization. An introductory overview
of the most commonly used techniques for measuring and suppressing the phase noise in
oscillators will be also given, together with a few elementary notions on feedback systems.
The issue of accurate optical frequency synthesis will be also addressed in the last sections.

Chapter 3 is entirely devoted to passive resonators working both in the microwave and
optical domain. Greater emphasis is given to the latter: besides traditional bulk resonators
and their most updated developments, guided cavities based on optical fibers as well as
micro-resonators relying on whispering gallery modes will be treated into a certain detail.

In Chapter 4 we shall deal with continuous-wave (cw) coherent radiation sources.
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After a short introduction on masers, we will focus on lasers by illustrating, firstly, some
key aspects of their operation and a number of fundamental properties in their output.
Then, a wide range of laser-based systems will be presented. A few clarifying examples of
intensity and frequency stabilized laser sources will close the chapter.

In Chapter 5 we shall provide a comprehensive treatment of high-resolution and high-
sensitivity spectroscopic techniques for ultraprecise frequency measurements. Then, optical
frequency standards utilizing either absorption cells or atomic/molecular beams will be
described.

In Chapter 6 the issue of time and frequency measurements with pulsed laser systems
will be addressed. Starting with general mode-locking theory and mechanisms, advanced
schemes for optical frequency comb synthesis (from mode-locked lasers) and relative sta-
bilization will be presented. The extension of OFCSs into novel spectral regions, from the
extreme ultraviolet (XUV) to the far-infrared (FIR), will be also discussed.

Chapter 7 is mainly devoted to microwave frequency standards. This category
comprises high-quality crystal-based oscillators, high-performance hydrogen masers, and
cutting-edge fountains based on cold alkali atoms. Being fundamental to the understanding
of atomic standards, a propaedeutic review on trapping/cooling techniques for atoms, ions,
and molecules is also provided. In the last part, a brief account on time and frequency
dissemination (including optical frequency transfer) is given.

Chapter 8 starts with optical atomic clocks, ranging from the more established ones,
based on single laser-cooled trapped ions, to the newest systems relying on neutral atoms
trapped in an optical lattice. Then, based on the wide phenomenology explored thus far,
possible research prospects in the field of time and frequency measurements are drawn for
the next future.



2

Characterization and control of harmonic oscillators

Human time does not rotate in a circle,

but moves fast in a straight line. That is

why man can not be happy, because

happiness is the desire for repetition.

Milan Kundera - The Unbearable

Lightness of Being

The fish in the water is silent, the animals

on the earth are noisy, the bird in the air

is singing. But man has in himself the

silence of the sea, the noise of the earth

and the music of the air.

Rabindranath Tagore

2.1 The ideal harmonic oscillator

The purpose of this chapter is to acquaint the reader with the basic concepts and the
mathematical tools that are necessary to address and better understand the contents which
are at the heart of this book. From the previous chapter we learnt that oscillators are
ubiquitous in the field of frequency metrology. We start by reviewing the most relevant
features of harmonic (sinusoidal) oscillators which, although known from General Physics,
deserve here a discussion devoted to our specific context. We focus on two archetypes: the
pendulum and the RLC-series circuit. The former is the paradigm of mechanical oscillators,
while the latter embodies the electrical ones. According to the specific property we are
interested in, from time to time we will resort to one or the other system, but the conclusions
will always be general.

For a point pendulum supported by a massless and inextensible cord of length l, the
equation of motion is given by

ml2θ̈ = −mglsin θ − βθ̇ (2.1)

where m is the bob mass, g the local acceleration of gravity, θ the angle between the
cord and the vertical, and β accounts for the overall friction (basically the resistance by the
air and the escapement). For infinitesimal displacements, we replace sin θ by θ and get the
following second-order linear differential equation

θ̈ +
β

ml2
θ̇ +

g

l
θ = 0 (2.2)

25
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In the case of the RLC series circuit, it is the mesh current I obey an equation of the
same form

Ï +
R

L
İ +

1

LC
I = 0 (2.3)

with the obvious meaning of symbols. Here, the resistor R provides dissipation and is
thus responsible for damping, whereas the LC tank sets the oscillation frequency.

Another celebrated example, which actually falls into the category of mechanical oscil-
lators, is offered by the Lorenz model of the atom. Predating the emergence of quantum
mechanics, such a classical picture was the first attempt to explain atomic spectra. It rests
on the idea that an electron of massm and charge−e is bound to the nucleus (charge +e) by
a restoring force that is proportional to the displacement (Hooke’s law). To account for the
fact that an excited atom loses its energy by emitting electromagnetic radiation, a damping
mechanism for the oscillation is also considered by including a viscous term (proportional
to velocity) into the equation of motion. Therefore, the electron position turns out to be
governed by the law

ẍ+
k

m
x+

α

m
ẋ = 0 (2.4)

It is easily recognized (see Figure 2.1) that, with the appropriate identifications, Equa-
tions 2.2, 2.3, 2.4 are all of the form

ÿ + 2Γẏ + ω2
0y = 0 (2.5)

A little more general equation of motion is obtained when a driving term is added to
compensate for the slowing down of the oscillation

ÿ + 2Γẏ + ω2
0y = Dcos (ωDt) (2.6)

The driving term may arise from the interaction with an electromagnetic monochromatic
plane wave in the case of the Lorentz oscillator, or simply be the periodic push in a pendulum
as well as the AC generator in the RLC circuit. Apart from the examples just mentioned,
Equation 2.6 appears in a number of different systems ranging from solid-state turbulence
to soliton dynamics, from Josephson junctions to phase-locked loops [55]. In order to find a

Fixed
location
(nucleus)

Electron

Bob

x
q C

R

L

+

-
I

Pendulum RLC-series Lorentz model

FIGURE 2.1
Pendulum, RLC-series circuit, and Lorentz oscillator as paradigmatic examples of harmonic
oscillators. The following identifications return Equation 2.5 for each of the three cases.
Pendulum case: y ≡ θ, ω2

0 ≡ g/l, 2Γ ≡ β/(ml2); RLC circuit: y ≡ I, ω2
0 ≡ 1/(LC),

2Γ ≡ R/L; Lorentz oscillator: y ≡ x, ω2
0 ≡ k/m, 2Γ ≡ α/m.
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solution for it, first consider the homogeneous Equation 2.5. In the case ω2
0 > Γ2, from the

associated characteristic equation one finds the solution

y(t) = e−Γt
(

Eeiω
′

0t + Fe−iω
′

0t
)

(2.7)

where ω′
0 =

√

ω2
0 − Γ2 and the constants E and F are found by imposing the initial

conditions y (t = 0) = ξ and ẏ (t = 0) = η. By defining the quantities A1 = Asinϕ and
A2 = Acosϕ , Equation 2.7 can be re-written in the more convenient form

y(t) = Ae−Γt sin (ω′
0t+ ϕ) ≡ Ae−ω0g·t sin

(

ω0

√

1− g2 · t+ ϕ
)

(2.8)

where y (t = 0) = Asinϕ = ξ, ẏ (t = 0) = A [−Γsinϕ+ ω′
0cosϕ] = η, and g ≡ Γ/ω0.

Equation 2.8 describes the well-known case of a damped harmonic oscillator (see upper of
Figure 2.2) which, in the limit Γ→ 0, reduces to

y (t) = Asin (ω0t+ ϕ) (2.9)

To illustrate some interesting properties in the frequency domain, let us take the Fourier
transform of Equation 2.8 with ξ = 0

ŷ (ω) =

∫ ∞

0

Ae−Γtsinω′
0t e

−iωtdt =

A

2i

∫ ∞

0

{

e[i(ω
′

0−ω)−Γ]t − e[−i(ω′

0+ω)−Γ]t
}

dt =

A

2i

[

1

Γ− i (ω′
0 − ω)

− 1

Γ + i (ω′
0 + ω)

]

≃
A
2i

Γ− i (ω′
0 − ω)

(2.10)

where the lower integration limit has been changed from −∞ to 0 since y (t) = 0 for
t ≤ 0, and the last equality is valid close to the resonance, that is for ω − ω′

0 ≪ ω′
0. The

response function of the oscillator is thus a Lorentzian profile

|ŷ (ω)|2 =
A2/4

Γ2 + (ω′
0 − ω)

2 (2.11)

with a full width at half maximum FWHM = 2Γ. If y is interpreted as the electron position
in an atom emitting or absorbing radiation, it can be convenient to find the constant A by
normalizing the spectrum 2.11 such that

∫ +∞
−∞ |ŷ (ω)|

2
dω = 1. This returns

S(ω) ≡ |ŷ (ω)|2 =
1

π

Γ

Γ2 + (ω′
0 − ω)

2 ≡
1/(πω0)

g + (1/g)(
√

1− g2 − ζ)2
(2.12)

where ζ ≡ ω/ω0. Equation 2.12 is plotted in the lower frame of Figure 2.2 for two
different values of g.

Note that, in the limit Γ → 0+, corresponding to the response curve of the ideal un-
damped harmonic oscillator (Equation 2.9), Equation 2.12 is one of the representations of
the Dirac delta function δ (ω0). Now, the general solution of Equation 2.6 is found by simply
adding Equation 2.8 to a particular solution which we will seek in the form of

y (t) = a · cos (ωDt+ ψ) (2.13)



28 Laser-based measurements for time and frequency domain applications

0 2 4 6 8 10

t s

0.75
0.5
0.25
0

0.25
0.5
0.75

y
t

FIGURE 2.2
Representation of a damped harmonic oscillator (with ω0 = 10 Hz, A = 1, and ϕ = 0) in
time and frequency domain for two different values of g ≡ Γ/ω0 (0.1 and 0.03), according
to Equation 2.8 and Equation 2.12.

By substitution of Equation 2.13 into Equation 2.6 we obtain the following system of
equations

{

−aω2
Dcosψ − 2aΓωDsinψ + aω2

0cosψ −D = 0
aω2

Dsinψ − 2aΓωDcosψ − aω2
0sinψ = 0

(2.14)
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whose solution yields

ψ = arctan

(

2ΓωD
ω2
D − ω2

0

)

(2.15)

a =
−D

√

4Γ2ω2
D + (ω2

D − ω2
0)

2
(2.16)

Therefore, by introducing the phase ψ = ϑ+ π
2 , the general solution of Equation 2.6 is

finally obtained as

y (t) = Ae−Γtsin

(

√

ω2
0 − Γ2 · t+ ϕ

)

+
D

√

4Γ2ω2
D + (ω2

D − ω2
0)

2
sin (ωDt+ ϑ) (2.17)

Under steady-state conditions (t → ∞), the oscillator output, no more damped, is
described by



































y (ωD) = Y0 (ωD) sin [ωDt+Φ(ωD)]

Y0 (ωD) =
D

√

4Γ2ω2
D + (ω2

D − ω2
0)

2
≡ D0
√

4g2ι2 + (ι2 − 1)2

Φ (ωD) = arctan

(

2ΓωD
ω2
D − ω2

0

)

− π

2
≡ arctan

(

2gι

ι2 − 1

)

− π

2

(2.18)

where ι ≡ ωD/ω0 and D0 ≡ D/ω2
0 . The oscillation amplitude Y0 (ωD) is maximum for

ωD = ω0; the corresponding phase is Φ (ωD = ω0) = 0 (see Figure 2.3). This example makes
clear the character of the so-called resonance phenomenon between an external driving
source and an oscillator with its own characteristic frequency. An expression for the FWHM
of such resonance curve can be given by finding an approximate solution for the equation
[

Y 2
0 (ωD = ω0)

]

/2 = Y 2
0 (ωD). This provides

4Γ2ω2
D +

(

ω2
D − ω2

0

)2
= 8Γ2ω2

0 (2.19)

which, putting s = ω2
D − ω2

0 , is equivalent to a quadratic algebraic equation in s

s2 + 4Γ2s− 4Γ2ω2
0 = 0 (2.20)

which returns

ω2
D,± = ω2

0 − 2Γ2 ± 2Γ
√

ω2
0 + Γ2 ≃ ω2

0 ± 2Γω0 (2.21)

where the last approximate equality holds for high-quality oscillators (ω2
0 ≫ Γ2). Then,

we can write

ωD,± = ω0

√

1± 2Γ

ω0
≃ ω0

(

1± Γ

ω0
±O

[

Γ2

ω2
0

])

(2.22)

from which the FWHM is calculated as

FWHM ≡ ωD,+ − ωD,− = 2Γ (2.23)
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FIGURE 2.3
Amplitude and phase of a driven oscillator for two different values of g (0.1 and 0.01)
according to Equation 2.18.

In order to gain more physical insight, in agreement with the intuitive vision introduced
for the pendulum in the previous chapter, we now define the Q factor of the resonance as

Q = 2π
max. energy stored in the oscillator at ω0

energy lost per cycle at ω0
≡ 2π

E (ω0)

W (ω0)
(2.24)
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In order to evaluate this formula, let us first observe that, at resonance, Equation 2.18
gives

y2 (t, ωD = ω0) =

(

D

2Γω0

)2

sin2 (ω0t) (2.25)

Next, let us exploit the analogy with the RLC circuit. By identification of y with I, we
get

E (ω0) =
1

2
LI2max =

1

2
L

(

D

2Γω0

)2

(2.26)

and

W (ω0) =

∫ 2π/ω0

0

RI2 (t)dt = R

(

D

2Γω0

)2 ∫ 2π/ω0

0

sin2 (ω0t)dt

=
πR

ω0

(

D

2Γω0

)2

(2.27)

Combining Equations 2.24, 2.26, and 2.27 we finally obtain

Q =
ω0

R/L
=
ω0

2Γ
≃ ω0

FWHM
(2.28)

This derivation relates the two directly observable quantities ω0 and FWHM to the
inner physical meaning of the Q factor. Moreover, from the third of Equations 2.18 and the
formula arctan (x) = π

2 − arctan
(

1
x

)

(valid for x > 0) we get

Φ (ωD) = − arctan

(

ω2
D − ω2

0

2ΓωD

)

(2.29)

that, for very high Q (which is equivalent to say close to the resonance), can be expanded
as follows

Φ (ωD) ≃
ω2
0 − ω2

D

2ΓωD
+

1

3

(

ω2
D − ω2

0

2ΓωD

)3

+ . . . (2.30)

Retaining only the first term in the Taylor expansion, we have

dΦ (ωD)

dωD

∣

∣

∣

∣

ωD=ω0

≃ − 1

Γ
= −2Q

ω0
(2.31)

which suggests that a very rapid phase change is attainable in the vicinity of the reso-
nance frequency of high-Q oscillators. It is left as an exercise to show that, for very high Q,
the inflection points of [Y0 (ωD) /D]2 are given by ωipD= ω0± Γ√

3
and that, in the vicinity of

them, we can write

[Y0 (ωD)]
2 ≃ D2

{

S

(

ω0 ±
Γ√
3

)

∓ 3
√
3

4

Q3

ω5
0

[

ωD −
(

ω0 ±
Γ√
3

)]

}

(2.32)

This means that, close to the inflection points, the response function of the oscillator
acts as an extremely sensitive frequency-to-amplitude converter (see also Section 2.7.2).
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2.1.1 Synchronization in coupled oscillators

Many physical situations can create coupling between two or more oscillatory systems. A
classical example in electronics is represented by a pair of LC resonant circuits coupled
by a mutual inductance, while a paradigmatic mechanical system is that consisting of two
spring-and-mass oscillators coupled by a third spring. In all such situations, the frequency
of one or both oscillators will be shifted and energy can be transferred from one to the
other. In order to introduce the notion of synchronization between two coupled oscillators,
we exploit here the analogy with the pendulum. As a matter of fact, the earliest accounts on
synchronization are by the Dutch researcher Christiaan Huygens [56]. He studied the motion
of two identical clocks (two pendulums of almost same time period) suspended from the same
wooden beam. He observed that the motion of the two pendulums in opposite directions
was very much in agreement and that the rhythm was maintained without getting spoilt.
Even when this rhythmic motion was disturbed by some external means, the pendulums
readjusted in a short time. This is credited to the phenomenon of synchronization. He
attributed this synchronous motion to the interaction of the two pendulums through the
wooden beam supporting them. For a long time, synchronization has also been known to
occur in living systems. Examples of such systems abound. Synchronous flashing of fireflies,
singing crickets, cardiac pacemakers, and firing neurons are some of them. In recent years,
the idea of synchronization has also been extended to systems which are not oscillatory.
Synchronization of systems showing aperiodic behavior, such as chaotic systems, is one of
the new fields of study. In order to derive some general basic properties of the synchronized
behavior of two oscillators, in the following we discuss precisely the phenomenon discovered
by Huygens. Let us start with two identical pendulums which interact mutually. Physically,
the interaction is introduced by suspending them from a common support. Mathematically,
this corresponds to the two coupled equations

{

ẍ+ ω2
0x = Γ (ẏ − ẋ)

ÿ + ω2
0y = Γ (ẋ− ẏ) (2.33)

By defining the error variable e (t) = x (t)−y (t) and subtracting the two equations from
each other, we get

ë+ ω2
0e+ 2Γė = 0 (2.34)

Being identical to Equation 2.5, we already have a solution for the above equation. It is
given by

e (t) = e0e
−Γtsin

(

√

ω2
0 − Γ2 · t+ φe

)

(2.35)

where e0 and φe are determined by the initial conditions on e (t) (and hence on x (t) and
y (t)). Therefore, for positive Γ, the error must go to zero asymptotically regardless of the
initial conditions. This means that, for sufficiently long times, Equation 2.33 reduces to

{

ẍ+ ω2
0x = 0

x (t) = y (t)
(2.36)

which yields x (t) = y (t) = Bsin (ω0t+ ψ) . The outputs from the two oscillators are
coincident in amplitude, frequency and phase. A similar behavior may also arise for two
non-identical oscillators

{

ẍ+ ω2
xx = Γ (ẏ − ẋ)

ÿ + ω2
yy = Γ (ẋ− ẏ) (2.37)
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provided that the detuning δω = ωx − ωy is small in comparison to the coupling Γ.
Defining two new variables u = ẋ and w = ẏ, from Equation 2.37 we obtain the first-order
system















ẋ = u
ẏ = w
u̇ = −ω2

xx− Γu+ Γw
ẇ = −ω2

yx+ Γu− Γw

(2.38)

which can be expressed in the following matrix form








ẋ
ẏ
u̇
ẇ









=









0 0 1 0
0 0 0 1
ω2
x 0 −Γ Γ
0 −ω2

y Γ −Γ

















x
y
u
w









≡ A









x
y
u
w









(2.39)

The secular equation det (A− λI) = 0 provides the eigenvalues (λ1, λ2, λ3, λ4) and the
corresponding eigenvectors (z1, z2, z3, z4), so that the general solution is given by









x
y
u
w









= c1z1e
λ1t + c2z2e

λ2t + c3z3e
λ3t + c4z4e

λ4t (2.40)

where the constants ci are determined by the initial conditions x (t = 0), y (0), u (0),
and w (0). The general analytical expression of Equation 2.40 is rather involved, but a
numerical solution can be found for any given choice of the initial conditions and of the
system parameters. Just as an example, for ωx = 10 Hz, ωy = 10.1 Hz, and Γ = 0.5 Hz, we
obtain solutions of the form























x (t) = 2 |A1| e−α1tcos [ω1t+ arg (A1)]
+2 |A2| e−α2tcos [ω2t+ arg (A2)]

y (t) = 2 |B1| e−α1tcos [ω1t+ arg (B1)]
+2 |B2| e−α2tcos [ω2t+ arg (B2)]

(2.41)

with ω1 = 10.037 Hz, ω2 = 10.050 Hz, α1 = 0.495 Hz, and α2 = 0.005 Hz. As usual, A1,
A2, B1, and B2 are determined by the initial conditions. For instance, the set of conditions
x (0) = −0.5, y (0) = 1, u (0) = 0.5, and w (0) = 1 yields |A1| = 0.383, |A2| = 0.136,
|B1| = 0.380, |B2| = 0.136, arg (A1) = 0.115, arg (A2) = 0.282, arg (B1) = −0.084, and
arg (B2) = 0.480. Such numerical results are summarized in Figure 2.4, where Equations
2.41 are plotted over two consecutive timescales.

Since α1 ≫ α2, after a short transient, Equations 2.41 reduce to
{

x (t) = 2 |A2| e−α2tcos [ω2t− arg (A2)]
y (t) = 2 |B2| e−α2tcos [ω2t− arg (B2)]

(2.42)

The phenomenon of two coupled oscillators with different natural frequencies beginning
to oscillate at a common frequency owing to coupling is called frequency locking, and this
common frequency of oscillation is called locking frequency. In our example, this frequency
turns out to be ω2=10.050 Hz, that is the average of ωx and ωy, correct to three decimal
places. Secondly, the phase difference of the two oscillators settles to a constant value dif-
ferent from zero. This phenomenon is termed as phase locking. The described effect can be
understood on the basis of the following argument. Coupling between the two oscillators
tries to make their phases equal while detuning tries to drag the phases apart. Hence, the
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FIGURE 2.4
Oscillation amplitudes for the two coupled oscillators discussed in the text according to
Equation 2.41. Two consecutive timescales are displayed.

effects of coupling and detuning are counteractive. So, we get two qualitatively different
situations based on the relative strengths of coupling and detuning. When the detuning is
small in comparison to the coupling strength, the oscillators settle into a common frequency
and a stable relationship between the phases of the two oscillators is established. We then
call the two oscillators synchronized. For relatively larger values of detuning, the effect of
the coupling is not good enough to force a relation between the phases of the two oscillators.
This leads to loss of synchrony.
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2.1.2 Beating two oscillators

Suppose now that the outputs (here written for convenience in complex notation) from two
independent oscillators E1 = E01e

i(ω1t+ϕ1) and E2 = E02e
i(ω2t+ϕ2) superimpose at some

point P in the space. Then we have

E (P ) = E1 + E2 = ei(Ωt+Φ)
[

Aei(∆Ω·t+∆Φ) +Be−i(∆Ω·t+∆Φ)
]

(2.43)

where Ω = (ω1+ω2)/2, Φ = (ϕ1+ϕ2)/2, ∆Ω = (ω1−ω2)/2, and ∆Φ = (ϕ1−ϕ2)/2. An
interesting situation arises when ∆Ω≪ Ω. In that case the total amplitude is characterized
by a fast oscillation at Ω whose amplitude is modulated at the slow frequency ∆Ω. Such
effect is well known in acoustics, where the term beat is used to describe an interference
between two sounds of slightly different frequencies, perceived as periodic variations in
volume whose rate is the difference between the two frequencies (see Figure 2.5). This can
be analytically seen in the particular case A = B, when Equation 2.43 simplifies to

ℜ [E] = 2Acos (∆Ω · t+∆Φ)cos (Ωt+Φ) (2.44)

If we are measuring the intensity rather than the amplitude, from Equation 2.43 we
obtain

I(P ) = |E|2 = A2 +B2 + 2ABcos [(ω1 − ω2) t+ (ϕ1 − ϕ2)] (2.45)

Dropping the DC term, as already shown, the square modulus of the Fourier transform of
the signal 2.45 is the Dirac delta function δ (ω1 − ω2). However, for real oscillators perturbed
by noise processes, the difference ϕ1−ϕ2 fluctuates in time causing a spread over a frequency
range around ω1 − ω2. This aspect will be taken up later.

Later, we will discover that an important application of such beat-note phenomenon is
in frequency metrology, where, for example, one can measure the frequency of some laser
by recording its beat note with a close-by optical signal of known frequency. In this scheme,
the two light beams with different optical frequencies are superimposed on a photodetector

FIGURE 2.5
Beat-note phenomenon between two oscillators obtained by taking the real part of Equation
2.43. The following values are used in the simulation: ω1 = 10 Hz, ω2 = 11 Hz, ϕ1 = 0,
ϕ2 = 0.2, A = 1, and B = 0.5.
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measuring the optical intensity. As a fast photodetector can have a bandwidth of tens of
gigahertz (or even higher), optical frequency differences of this order of magnitude can be
measured, e.g., by analyzing the photodetector output with an electronic frequency counter
or a spectrum analyzer.

2.2 Self-sustained oscillators

In this section we adopt the language of electronics to show that an effective way of introduc-
ing a forcing term in a damped oscillator is to derive the driving source from the oscillator
output itself in a positive (regenerative) feedback scheme. We anticipate that this is exactly
the working principle of the laser. The basic LC oscillator tank circuit is shown in the left
frame of Figure 2.6. The capacitor is charged up to the DC supply voltage V by putting the
switch in position A. When the capacitor is fully charged, the switch changes to position
B. The charged capacitor is now connected in parallel across the inductive coil L through
which it begins to discharge itself. The voltage across C starts falling as the current through
the coil begins to rise. This rising current sets up an electromagnetic field around the coil
which resists this flow of current. When the capacitor is completely discharged, the energy
that was originally stored in it as an electrostatic field is now stored in the inductive coil as
an electromagnetic field around the windings. As there is no external voltage in the circuit
to maintain the current within the coil, it starts to fall as the electromagnetic field begins
to collapse. A back electromotive force is induced in the coil keeping the current flowing in
the original direction. This current now charges up the capacitor with the opposite polarity
to its original charge. C continues to charge up until the current reduces to zero and the
electromagnetic field of the coil has collapsed completely. The energy originally introduced
into the circuit through the switch has been returned to the capacitor which again has an
electrostatic voltage potential across it, although it is now of the opposite polarity. The
capacitor now starts to discharge again back through the coil and the whole process is re-
peated. The polarity of the voltage changes as the energy is passed back and forth between
the capacitor and inductor producing an AC type sinusoidal voltage and current waveform.
This forms the basis of an LC oscillator tank circuit and, theoretically, the oscillatory action
(at frequency ω0 = 1/

√
LC) would continue indefinitely. However, in a practical LC circuit,

every time energy is transferred from C to L or from L to C, losses occur basically due to
the resistance of the inductor coils and in the dielectric of the capacitor. All the loss sources
can be lumped into a resistor R, which brings us back to the RLC-series circuit studied
above. As a consequence, the oscillation in the circuit steadily decreases until it dies away
completely and the process stops. To keep the oscillations going, we have to replace exactly
the amount of energy lost during each cycle. The simplest way of doing this is to take part
of the output from the LC tank circuit, amplify it, and then feed it back into the LC circuit
again. This process can be achieved using a voltage amplifier like an operational amplifier,
FET, or bipolar transistor as its active device. To produce a constant-amplitude oscillation,
the level of the energy fed back to the LC network must be accurately controlled. In other
words, there must be some form of automatic amplitude or gain control when the amplitude
tries to vary from a reference voltage either up or down. Intuitively, a stable oscillation is
maintained if the overall gain of the circuit is equal to one. Any less, the oscillations will
not start or die away to zero; any more, the oscillations will occur but the amplitude will
become clipped by the supply rails causing distortion. Consider the circuit in the right frame
of Figure 2.6, where a bipolar transistor is used as the amplifier with the tuned LC tank
circuit acting as the collector load. Another coil L2, whose electromagnetic field is mutually
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FIGURE 2.6
LC-tank circuit without and with positive (regenerative) feedback.

coupled with that of coil L, is connected between the base and the emitter of the transistor.
The changing current flowing in one coil circuit generates, by electromagnetic induction, a
potential voltage in the other. In this way, as the oscillations occur in the tuned circuit, elec-
tromagnetic energy is transferred from coil L to coil L2 and a voltage of the same frequency
as that in the tuned circuit is applied between the base and emitter of the transistor. This
provides the necessary automatic feedback voltage to the amplifying transistor. Also, the
amount of feedback can be increased or decreased by altering the coupling between the two
coils L and L2. It is worth pointing out that, when the circuit is oscillating at ω0 = 1/

√
LC,

its impedance is resistive and the collector and base voltages are 180◦ out of phase. On the
other hand, as dictated by Equation 2.18, at resonance, the voltage applied to the tuned
circuit must be in-phase with the oscillations occurring in it. Therefore, we must introduce
an additional 180◦ phase shift into the feedback path between the collector and the base.
This is achieved by winding the coil of L2 in the correct direction relative to coil L or by
connecting a phase shift network between the output and input of the amplifier.

The instructive LC example has been used to introduce the general theory of oscillators
with positive feedback [57]. The basic scheme (Figure 2.7) is a loop in which the gain A of
the sustaining amplifier compensates for the loss β (ω) of the resonator at a given angular
frequency ω0. The condition for the oscillation to be stationary is calculated considering
first the open loop (i.e., in the absence of feedback). In this case we have

FIGURE 2.7
General scheme of oscillator with positive feedback: if ω = ω0, a period is reproduced after
a round trip, when ω 6= ω0 each round trip attenuates the signal.
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Vout = A · Vin (2.46)

Then, feedback is allowed and the output voltage re-calculated as

Vout = A · (Vin − βVout) (2.47)

The closed-loop gain is thus given by

G =
Vout
Vin

=
A

1 +Aβ
(2.48)

which tells us that G = ∞ if −Aβ = 1. This means that we have a finite output
voltage with zero input, that is a sinusoidal oscillator. The condition −Aβ = 1, known as
Barkhausen condition, is equivalent to

{

|Aβ (ω)| = 1
arg [−Aβ (ω)] = 0

(2.49)

The unused input (0 V) in Figure 2.7 serves to set the initial condition that triggers
the oscillation, and to introduce noise in the loop. It is often convenient to use a constant-
gain amplifier (A is independent of frequency), and a bandpass filter as β = β (ω) in the
feedback path. Some small frequency dependence of the amplifier gain, which is always
present in real-world amplifier, can be moved from A to β = β (ω). The model of Figure 2.7
is quite general and applies to a variety of systems (electrical, mechanical, lasers...), albeit a
little effort may be necessary to identify A and β. Oscillation starts from noise or from the
switch-on transient. In the spectrum of such random signal, only a small energy is initially
contained at ω0. For the oscillation to grow up to a desired amplitude, it is necessary that
|Aβ (ω)| > 1 at ω = ω0 for small signals. In such a condition, oscillation at the frequency
ω0 that derives from arg [−Aβ (ω)] = 0 rises exponentially. As the oscillation amplitude
approaches the desired value, an amplitude control (not shown in the figure) reduces the
loop gain, so that it reaches the stationary condition Aβ (ω) = 1. The amplitude can be
stabilized by an external automatic gain control, or by the large signal saturation of the
amplifier. The latter effect is shown in Figure 2.8: when the input amplitude exceeds the
saturation level, the output signal is clipped. In summary, we stress that in real-world
oscillators

1. it is necessary that |Aβ (ω)| > 1 for small signals,

2. the condition |Aβ (ω)| = 1 results from large-signal gain saturation,

3. the oscillation frequency is determined only by the phase condition arg [−Aβ (ω)] =
0.
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FIGURE 2.8
Some features in the onset of oscillation are illustrated for real-world oscillators with positive
feedback. (Adapted from [57].)

We have now all the ingredients needed to analyze into more detail one of the most
effective realizations of the LC oscillator, namely the Colpitts oscillator [58]. Such a scheme
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is shown in Figure 2.9 together with the linear model of the circuit making use of an inverting
amplifier with large-signal voltage gain Av and output impedance R0. The open loop gain
is

A ≡ Vout
Vin

=
V23
V13

= Av
Z

Z +R0
(2.50)

where

1

Z
=

1

Z2
+

1

Z1 + Z3
(2.51)

while the feedback fraction is given by

β ≡ Vf
Vout

=
Vf
V23

=
Z1

Z1 + Z3
(2.52)

Combining Equations 2.50, 2.51, 2.52, we get

Aβ =
AvZ1Z2

Z2 (Z1 + Z3) +R0 (Z1 + Z2 + Z3)
(2.53)

Then, the resonance frequency is found by imposing the condition Z1 + Z2 + Z3 = 0,
which provides

ω0 =

√

1

L

C1 + C2

C1C2
(2.54)

that, in turn, implies

Aβ =
AvZ1Z2

Z2 (Z1 + Z3)
=
−AvZ1

Z2
(2.55)

Finally, we express the Barkhausen criterion

−Aβ = Av
C2

C1
= 1 (2.56)

which, for a given value of Av, suggests the sizing of C1 and C2.
Other useful schemes of electrical oscillators will be mentioned in Chapter 7 when the

quartz frequency reference will be extensively studied.

_

+
3 Av

1
2

Z1 Z2

Z3

1

2

Z1
Z2

Z3
+

_
R0

3 3

Vf

A VV 13

Vo

3

FIGURE 2.9
Scheme of Colpitts oscillator.
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2.3 The noisy oscillator

Now let us come to non-ideal oscillators. The frequency and amplitude of even the most ad-
vanced oscillators are not really constant in time, but fluctuate due to several factors. These
unwanted fluctuations are often referred to as noise or jitter. The noise term, originated in
acoustics, is used to name any physical variable that fluctuates over time in an irregular
and unpredictable way, as opposed to periodic oscillatory behaviors (sounds in acoustics)
for which the initial conditions can be utilized to predict in deterministic manner the future
state and which are generically referred to as signals. In most cases, noise is generated by
spontaneous fluctuations of microscopic quantities, often related to thermal agitation in
the system. For frequency standards one deals in general with the best available oscillators
where the quasi-perfect sinusoidal signal is modelled as

V (t) = V0 [1 + α (t)] cos [2πν0t+ ϕ (t)] (2.57)

where ν0 = ω0/ (2π) is the carrier frequency; the random variables α (t) (dimensionless)
and ϕ (t) (having the units of radians) are the fractional amplitude noise and phase noise,
respectively. Obviously, we assume α≪ 1 and ϕ≪ 1, and that the expectation value of the
amplitude and frequency are V0 and ν0, respectively. In the above equation it is assumed that
phase and amplitude fluctuations are orthogonal meaning that no amplitude fluctuations are
transferred to phase fluctuations and vice versa. Since, of necessity, all practical oscillators
inherently possess an amplitude-limiting mechanism of some kind, amplitude fluctuations
are greatly attenuated and phase noise generally dominates. In addition, affecting timing,
phase noise is far more important and is first analyzed. Then, a brief treatment of amplitude
noise is also given.

2.4 Phase noise

The output-phase performance of real-world oscillators can be characterized by three main
gauges: accuracy, stability, and reproducibility (see also Figure 2.10):

• In general, accuracy is the extent to which a given measurement, or the average of a set of
measurements for one sample, agrees with the definition of the quantity being measured:
it is the degree of correctness of a quantity. Thus, in the specific context of frequency
standards, the accuracy is the capability of an oscillator to provide a frequency that is
known in terms of the accepted definition of the second. In short, the frequency accuracy
of an oscillator is the offset from the specified target frequency.

• Stability is a measure of how much the frequency of the oscillator fluctuates over some
period of time and, as we shall see in a short while, is usually characterized in terms of the
two-sample Allan variance. In practice, stability is the property of an oscillator to resist,
over time, changes in its rate as a function of parameters such as temperature, vibration,
and the like. A high-stability oscillator may not necessarily be an accurate one. In a sense,
stability can be considered a particular case of precision that is the extent to which a
given set of measurements of one sample agrees with the mean of the set.

• Reproducibility is the ability of a single frequency standard to produce the same fre-
quency, without adjustment, each time it is put into operation.
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FIGURE 2.10
Accuracy and stability in the classical analogy between the shot of the marksman and the
performance of an oscillator. (Adapted from [59].)

The discussion that follows relates to frequency stability [60, 61, 62, 63, 64]. Before
getting involved in the analysis of phase and amplitude noise in oscillators, a small digression
is needed to introduce some mathematical tools that are useful for statistical analysis. Then,
in accordance with these tools, fundamental types of noise will be described.

2.4.1 Review of mathematical tools

Any fluctuating signal B(t) can be decomposed into a purely fluctuating contribution b(t)
and a mean (or expectation) value defined as the time average

B (t) = lim
T→∞

1

2T

∫ T

−T
B (t) dt (2.58)

Since in the following we are going to consider only stationary ergodic processes, time
averages coincide with ensemble averages (denoted by 〈〉), so that we can write

B (t) = b (t) +B (t) = b (t) + 〈B〉 (2.59)

Now consider the autocorrelation function defined as

Rb (τ) ≡ b (t+ τ) b∗ (t) = lim
T→∞

1

2T

∫ T

−T
b (t+ τ) b∗ (t)dt

= 〈b (t+ τ) b∗ (t)〉 (2.60)

Since b (t) represents a physical signal, the complex conjugate in the above definition
seems unnecessary at first sight. Nevertheless, complex notation is very often adopted to
simplify calculations and Definition 2.60 must be used. Note that, if the fluctuations were
uncorrelated, then Rb (τ) would cancel for any τ . Also, by definition, Rb (τ) = Rb (−τ).
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Another important property is that for a zero-mean (B (t) = 0) signal, Rb (0) coincides
with the classical variance of the signal

Rb (0) = lim
T→∞

1

2T

∫ T

−T
|b (t)|2dt = |b (t)|2 ≡ σ2

b = V AR (b) (2.61)

Starting from the autocorrelation function, an extremely important observable quantity
can be defined. For this purpose, we introduce the quantity b̂ (ω) defined as

b̂ (ω) =

∫ ∞

−∞
bT (t) e−iωtdt (2.62)

where the signal bT (t) given by

bT (t) =

{

b (t) |t| < T
0 otherwise (2.63)

has finite energy and is thus Fourier integrable. Then we can write

∣

∣

∣b̂ (ω)
∣

∣

∣

2

=

∣

∣

∣

∣

∣

∫ T

−T
b (t) e−iωtdt

∣

∣

∣

∣

∣

2

=

∫ T

−T

∫ T

−T
b (t) b∗ (τ)e−iω(t−τ)dtdτ (2.64)

and, taking the ensemble average,

〈

∣

∣

∣
b̂ (ω)

∣

∣

∣

2
〉

=

∫ T

−T

∫ T

−T
〈b (t) b∗ (τ)〉e−iω(t−τ)dtdτ =

∫ T

−T

∫ T

−T
Rb (t− τ)e−iω(t−τ)dtdτ =

∫ 2T

−2T

(2T − |τ |)Rb (τ) e−iωτdτ (2.65)

where the integral property

∫ T

−T

∫ T

−T
g (t− τ)dtdτ =

∫ 2T

−2T

(2T − |τ |) g (τ) dτ (2.66)

has been exploited for the last step. Next we consider the quantity

〈

∣

∣

∣b̂ (ω)
∣

∣

∣

2
〉

2T
=

∫ 2T

−2T

(

1− |τ |
2T

)

Rb (τ) e
−iωτdτ

=

∫ ∞

−∞
Rb,T (τ) e−iωτdτ (2.67)

where

Rb,T (τ) =

{ (

1− |τ |
2T

)

Rb (τ) |τ | < T

0 |τ | ≥ T
(2.68)

has been defined. Finally, we define the 2-sided spectral density as

S2−sided
b (f)

def
= lim

T→∞

〈

∣

∣

∣b̂ (ω)
∣

∣

∣

2
〉

2T

=

∫ ∞

−∞
lim
T→∞

Rb,T (τ) e−iωτ dτ =

∫ ∞

−∞
Rb (τ) e

−i2πfτdτ (2.69)
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from which the inverse relationship also holds

Rb (τ) =

∫ ∞

−∞
S2−sided
b (f) · ei2πfτdf (2.70)

Therefore, the autocorrelation function Rb (τ) and the spectral density function
S2-sided
b (f) form a Fourier transform pair. This is the content of the Wiener-Khintchine

(WK) theorem [65, 66]. From Rb (τ) = Rb (−τ) it follows that S2-sided
b (f) is a real, non-

negative, and even function. In experimental work, however, only positive frequencies are
of interest. Hence, a one-sided power spectral density is often introduced for non-negative
Fourier frequencies

S1−sided
b (f) = 2S2−sided

b (f) (2.71)

Finally, it is immediately recognized that

V AR (b) = Rb (0) =

∫ +∞

−∞
S2−sided
b (f) df (2.72)

We anticipate here that, in spite of its rigorous formulation, the power spectral density
defined by the first equality of Equation 2.69 is a quantity directly observable by a spectrum
analyzer.

2.4.2 Fundamental noise mechanisms

Now we are in a position to give a quantitative description of fundamental types of noise.
Though the fundamental noisiness of electrical conductors had been known for some time, it
was not until 1918 that German physicist Walter Schottky identified and formulated a theory
of tube noise - a fluctuation in the current caused by the granularity of the discrete charges
composing it [67]. Ten years later, Johnson and Nyquist similarly analyzed a different type
of noise - one caused by the thermal fluctuations of stationary charge carriers. These are now
known as shot noise and Johnson noise, respectively, and it is a startling fact that neither of
them depends on the material or the configuration of the electrical circuit in which they are
observed. However, Johnson also measured an unexpected flicker noise at low frequency and
shortly thereafter W. Schottky tried to provide a theoretical explanation. In the following
we present summaries of the theories of shot [68, 69], Johnson-Nyquist [70, 71], flicker [72],
and thermodynamic [73, 74] noise.

Shot noise is due to the corpuscular nature of transport (quantization of the charge
carried by electrons). It is always associated with direct current flow. Indeed, the latter is not
continuous, but results from the motion of charged particles (i.e., electrons and/or holes)
which are discrete and independent. At some (supposedly small, presumed microscopic)
level, currents vary in an unpredictable way. If you could observe carriers passing a point
in a conductor for some time interval, you would find that a few more or less carriers would
pass in one time interval versus the next. It is impossible to predict the motion of individual
electrons, but it is possible to calculate the average net velocity of an ensemble of electrons,
or the average number of electrons drifting past a particular point per time interval. The
variation around the mean value (or average) of these quantities is the noise. In order to see
shot noise, the carriers must be constrained to flow past in one direction only. The carrier
entering the observation point must do so as a purely random event and independent of
any other carrier crossing this point. If the carriers are not constrained in this manner, then
the resultant thermal noise will dominate and the shot noise will not be seen. A physical
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system where this constraint holds is a pn junction. The passage of each carrier across the
depletion region of the junction is a random event, and, due to the energy barrier, the
carrier may travel in only one direction. Since the events are random and independent,
Poisson statistics describe this process. Consider the quantized contribution to the current
by any given electron. Its current pulse can be approximated as a delta function centered at
some time tk: I (t) =

∑

k qδ (t− tk), where q is the elementary charge. The corresponding
Fourier transform is given by

I (ω) =
∑

k

qe−iωtk (2.73)

which provides

|I (ω)|2 = q2
∑

k

∑

h

eiω(th−tk) = q2



NT +
∑

k 6=h

∑

h

eiω(th−tk)



 (2.74)

where NT is the total number of events occurring in the interval 2T . Since the times tk
are random, if we take the average of the above equation over an ensemble of a very large
number of physically identical systems, the second term on the right side can be neglected
in comparison to NT

〈

|I (ω)|2
〉

≃ q2 〈NT 〉 = q2 〈N〉 2T = qI2T (2.75)

where 〈N〉 = 〈NT 〉 /2T is the average rate at which the events occur and I = q 〈N〉 is the
corresponding average current. Finally, by definition of power spectral density, we obtain

S1−sided
I = 2S2−sided

I = 2 lim
T→∞

〈

|I (ω)|2
〉

2T
= 2qI (2.76)

The counterpart of shot noise in radiation sources, namely intensity noise due to granular
character of light (photons), is often referred to as photonic noise. As for electrons in a
conductor, Poisson statistics also applies in this case. Here, the random arrival times of the
photons (at a detector) cause fluctuations in the average number of the detected (per unit
time) photons and hence in the detected power. The spectral density associated with such
quantum power noise is obtained as

S1−sided
P = 2(hν)P (2.77)

where the elementary charge and the average current in Equation 2.76 have been replaced
by the energy hν carried by a single photon and the average detected optical power P .

Johnson-Nyquist noise (thermal noise) is the electronic noise generated by the thermal
agitation of the charge carriers (usually the electrons) inside an electrical conductor at equi-
librium, which happens regardless of any applied voltage. Thermal noise is approximately
white, meaning that the power spectral density is nearly equal throughout the frequency
spectrum. Additionally, the amplitude of the signal has very nearly a Gaussian probability
density function. Here, we give a microscopic derivation for it. Consider a conductor of
resistance R, length l, and cross-sectional area A. The voltage across it is

V = IR = RAj = RANe 〈u〉 (2.78)

where I is the current, j the current density, e the charge on an electron, N the charge
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carrier density, and 〈u〉 the drift speed along the conductor. Noting that NAl is the total
number of electrons in the conductor, the following relationships hold















〈u〉 = 1

NAl

∑

i ui

〈

u2
〉

=
1

NAl

∑

i u
2
i

(2.79)

By substitution of Equation 2.79 into Equation 2.78, one gets

V = RANe
1

NAl

∑

i

ui =
Re

l

∑

i

ui =
∑

i

Vi (2.80)

which allows to define the random variables Vi as

Vi =
Re

l
ui (2.81)

The power spectral density associated with Vi is given by

S1−sided
i,V = 4

∫ ∞

0

〈Vi (t)Vi (t+ τ)〉cos (2πfτ)dτ

= 4

∫ ∞

0

〈

V 2
i (t)

〉

e
− τ
τc cos (2πfτ)dτ

= 4

(

Re

l

)2
〈

u2i
〉

∫ ∞

0

e
− τ
τc cos (2πfτ)dτ

= 4

(
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l

)2
〈

u2i
〉 τc

1 + (2πfτc)
2 ≃ 4

(
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l

)2

τc
〈

u2i
〉

(2.82)

from which the total power spectral density is calculated as

S1−sided
V =

∑

i

S1−sided
i,V = 4

(

Re

l

)2

τc
∑

i

〈

u2i
〉

= 4NAl

(

Re

l

)2

τc
〈

u2
〉

= 4NAl

(

Re

l

)2

τc
kBT

m

= 4kBTR
Ne2τc
m

RA

l
= 4kBTR (2.83)

where the equipartition theorem
〈

u2
〉

= kBT/m, and the identities σ = Ne2τc/m and
RA/l = 1/σ, known from solid state physics, have been exploited. Also note that for metals
at room temperature we have τc < 10−13, hence from the DC through the microwave range
2πfτc ≪ 1 is satisfied.

Flicker noise is a type of electronic noise with a 1/f spectrum. Its origins are somewhat
less understood compared to thermal (Johnson) noise and shot noise. It occurs in almost all
electronic devices, and results from a variety of effects, such as impurities in a conductive
channel, generation and recombination noise in a transistor due to base current, and so
on. In electronic devices, it is a low-frequency phenomenon, as the higher frequencies are
overshadowed by white noise from other sources. In oscillators, however, the low-frequency
noise is mixed up to frequencies close to the carrier which results in oscillator phase noise.
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Since flicker noise is related to the level of DC, if the current is kept low, thermal noise will
be the predominant effect.

A simple explanation of the appearance of 1/f noise can be stated by considering a
single exponential relaxation process

N (t, tk) =

{

N0e
−λ(t−tk) t ≥ tk
0 t < tk

(2.84)

In that case we have

F (ω) =

∫ +∞

−∞

∑

k

N (t, tk)e
−iωtdt =

N0

λ+ iω

∑

k

eiωtk (2.85)

so that

S2−sided
N (ω) = lim

T→∞

〈

|F (ω)|2
〉

2T

=
N2

0

λ2 + ω2
lim
T→∞

1

2T

〈

∑

k

eiωtk
∑

h

e−iωth

〉

=
N2

0

λ2 + ω2
〈N〉 (2.86)

If the relaxation rates are instead distributed according to

dP (λ) =
A

λβ
dλ (2.87)

one obtains

S2−sided
N (ω) ∝

∫ λ2

λ1

1

λ2 + ω2

dλ

λβ
=

1

ω1+β

∫ λ2

λ1

1

1 + λ2

ω2

d (λ/ω)

(λ/ω)
β

=
1

ω1+β

∫ λ2/ω

λ1/ω

1

1 + x2
dx

xβ
≃ 1

ω1+β

∫ ∞

0

1

1 + x2
dx

xβ
≃ 1

ω1+β
(2.88)

where the approximate equality holds in the limit λ1 ≪ λ≪ λ2. Thus we obtain a whole
class of flicker noise with different exponents.

Finally, it is interesting to note that flicker noise frequently appears in physical nature.
For example, a 1/f spectral density is found for the fluctuations in the earth’s rate of
rotation and undersea currents. A study of a common hourglass demonstrated that the flow
of sand fluctuates as 1/f [75].

Thermodynamic noise The vast majority of electronic components have temperature-
dependent parameters. This means that electronic circuits are strongly affected by unavoid-
able temperature instabilities. As we have just seen, long-term temperature variations (re-
laxation processes) generate 1/f noise. Likewise prominent are relatively fast variations,
due to quantization of thermal energy in phonons. The higher the temperature and the
lower the heat capacity of the system, the more important these fluctuations are. It is well
known from thermodynamics that the total variance of fluctuations of temperature for heat
capacity C is described by the following formula

〈

∆T
2
〉

=
kBT

2

C
(2.89)
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In order to derive the power spectral density, we consider the equation describing the
system temperature

C
dT (t)

dt
+G [T (t)− T0] =W (t) (2.90)

where G denotes the thermal conductivity and W (t) is the (possible) power supplied to
the system. Note that, if we identify T (t) with the velocity v(t) and C with the mass m,
the above equation also describes the Brownian motion of a particle subject to a frictional
force −Gv(t) plus the random (white spectral density) force W (t). This means that the
notion of thermodynamic fluctuations in volume coincides with that of Brownian noise
(or random walk). Since we are dealing with spontaneous temperature fluctuations, we
allow for a fluctuating W (t), positive and negative (added to and subtracted from the
system) and completely random (hence with a white noise spectrum). We shall callH(t) this
power (Langevin method) and write the following equation for the consequent temperature
fluctuations ∆T (t) = T (t)− T0

C
d∆T (t)

dt
+G ·∆T (t) = H (t) (2.91)

Taking the Fourier transform of the above equation, we get

∆T (f) =
H (f)

G+ i2πCf
(2.92)

which translates into the following relationship

S1−sided
∆T (f) =

S1−sided
H

G2 + (2πCf)
2 (2.93)

To find the value of S1−sided
H , we use the fact

kBT
2

C
=
〈

∆T
2
〉

=

∫ +∞

0

S1−sided
∆T (f) df =

S1−sided
H

4CG
(2.94)

so that

S1−sided
∆T (f) =

4GkBT
2

G2 + (2πCf)
2 (2.95)

which suggests, in particular, that the only way to reduce this kind of fluctuation is to
cool the system.

2.4.2.1 Fluctuation-dissipation theorem (FDT)

We close this digression with another very important consideration concerning fluctuations,
that is the so-called fluctuation-dissipation theorem (FDT) [76]. It states that the linear
response of a given system to an external perturbation is expressed in terms of fluctuation
properties of the system in thermal equilibrium. Onsager proposed a simple derivation of
FDT for time-dependent perturbations. This derivation bypasses the more cumbersome an-
alytical developments using linear response theory formalism, the Fokker-Planck equation,
or the generalized master equation approach. Onsager derivation is based on the following
regression principle: if a system initially in an equilibrium state 1 is driven by an external
perturbation to a different equilibrium state 2, then the evolution of the system from state 1
towards state 2 in the presence of the perturbation can be treated as a spontaneous equilib-
rium fluctuation (in the presence of the perturbation) from the (now) non-equilibrium state
1 to the (now) equilibrium state 2. Suppose that the system is initially in equilibrium with
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a thermal bath at temperature T, then the probability distribution of system configuration
C in state 1 is given by the canonical ensemble:

P0 (C) =
e−βE(C)

∑

C e
−βE(C) (2.96)

where β = kBT and the subscript 0 indicates that the system is unperturbed. At time
t = 0 a constant perturbation coupled to the observable B (C) is applied to the system
changing its energy into

Eǫ (C) = E (C)− ǫ (t)B (C) (2.97)

where ǫ (t) = ǫ if t > 0, and zero otherwise. The effect of the perturbation can be
monitored by looking at the evolution of the expectation value 〈A (t)〉ǫ of an observableA(C),
not necessarily equal to B (C), from the equilibrium value in state 1 〈A (t = 0)〉ǫ = 〈A〉0
towards the new equilibrium value in state 2. The expectation value of 〈A (t)〉ǫ is given by
the average over all possible dynamical paths originating from initial configurations weighted
with the probability distribution Equation 2.96

〈A (t)〉ǫ =
∑

C,C0

A(C)Pǫ (C, t |C0, 0)P0 (C0) (2.98)

where Pǫ (C, t |C0, 0) is the conditional probability for the evolution from the configu-
ration C0 at time t = 0 to the configuration C at time t. The Onsager regression principle
asserts that the conditional probabilities after having applied the perturbation are equal
to those of spontaneous equilibrium fluctuations in state 2. Hence since the state 2 is still
described by the canonical ensemble, but with the energy now including the perturbation
term, then

Pǫ (C, t |C0, 0) = P0 (C, t |C0, 0) eβǫ[B(C)−B(C0)] (2.99)

Inserting Equation 2.99 into Equation 2.98 and expanding the exponential up to linear
order we get

〈A (t)〉ǫ =
∑

C,C0

A(C)P0 (C, t |C0, 0)P0 (C0) +

+βǫ
∑

C,C0

A(C)P0 (C, t |C0, 0) [B (C)−B (C0)]P0 (C0) =

= 〈A〉0 + βǫ [〈A (t)B (t)〉0 − 〈A (t)B (0)〉0] (2.100)

If we define the correlation function, the time-dependent susceptibilty and the response
function as

CA,B (t, s) = 〈A (t)B (s)〉0 (2.101)

χA,B (t) = lim
ǫ→0

〈A (t)〉ǫ − 〈A〉0
ǫ

(2.102)

∫ t

0

JA,B (t, s) ds =χA,B (t) (2.103)
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from Equation 2.100 we get
∫ t

0

JA,B (t, s) ds =β [CA,B (0)− CA,B (t)] = β

∫ t

0

∂

∂s
CA,B (t, s) ds (2.104)

which, defining t− s = y, becomes

JA,B (y, 0) = −β
[

∂

∂y
CA,B (y, 0)

]

θ (y) =

= −β
2

[

∂

∂y
CA,B (y, 0) + sign(y)

∂

∂y
CA,B (y, 0)

]

(2.105)

Taking the Fourier transform of Equation 2.105 one obtains

ℑ [JA,B (ω)] = − ω

2kBT
CA,B (ω) (2.106)

For a system described by X (ω) = α (ω)F (ω), X being the position, F the external
forcing term, and α the response function, Equation 2.106 can be cast in a more familiar
form. Indeed, with the identifications JA,B(ω) ≡ α(ω) and CA,B(ω) ≡ RX(τ), and using
the WK theorem, the power spectral density associated with X can be written as

S1−sided
X (f) = 2 · F [RX (τ)] = −4kBT

ω
ℑ [α (ω)] (2.107)

where F denotes here the Fourier transform. Similarly, one has

S1−sided
F (f) = −4kBT

ω

ℑ [α (ω)]

|α (ω)|2
= −4kBT

ω
ℑ
[

1

α∗ (ω)

]

(2.108)

The two above formulas represent the most commonly encountered statements of the
fluctuation-dissipation theorem.

Finally, it is worth noting that Johnson noise is a particular case of the FDT. To see this,
consider an open circuit consisting of an impedence Z (ω). Ohm’s law is Q (ω) = α (ω)V (ω)
where α (ω) = 1/[iωZ (ω)]. Thus we have

S1−sided
V (f) = −4kBT

ω
ℑ
[

1

α∗ (ω)

]

= −4kBT

ω
ℑ [−iωZ∗ (ω)]

= 4kBT · ℜ [Z (ω)] = 4kBTR (2.109)

This example also allows one to establish another useful form of FDT. Indeed, one can
define the admittance Y (ω), the conductance σ (ω), and the resistance R (ω) as



















Y (ω) =
1

Z (ω)
= iω · α (ω)

σ (ω) = ℜ [Y (ω)]

R (ω) = ℜ [Z (ω)] = ℜ
[

1

Y (ω)

]

(2.110)

In this way, Equation 2.107 can be thus re-written as

S1−sided
X (f) = −4kBT

ω
ℑ [α (ω)] =

kBT

π2f2
ℜ [Y (ω)] =

kBT

π2f2
σ (ω) (2.111)
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Now, when the applied force is periodic F (ω) = F0cos (ωt) , we can write

S1−sided
X (f) =

kBT

π2f2
σ (ω) =

2kBT

π2f2

Wdiss

F 2
0

=
8kBT

ω2

Wdiss

F 2
0

(2.112)

where the real part of the admittance (i.e., the conductance) has been related to the
average power dissipated by the system, Wdiss, through the relationship

σ (ω) = 2
Wdiss

F 2
0

(2.113)

In order to justify the above relationship, again the analogy with the circuit is useful.
Indeed, in this case we have Wdiss = V 2 · σ ⇒ Wdiss = F 2 · σ = F 2

0 /2. Equation 2.112 will
prove very useful in the application of FDT for the treatment of thermal noise in optical
cavities (see next Chapter).

2.5 Phase noise modelling

In previous section we have learnt that fundamental types of noise exhibit power spectral
densities with a power-law behavior. The next step is to model an oscillator as a system
with n inputs (each associated with one noise source) and two outputs represented by α (t)
and ϕ (t) of Equation 2.57 [77]. In the electrical equivalent of the oscillator, noise inputs are
in the form of current sources injecting into circuit nodes and voltage sources in series with
circuit branches (frame a of Figure 2.11). In this way, circuit noise evolves into amplitude
and phase noise of the oscillator output voltage. To better understand this, consider the
specific example of an ideal parallel LC oscillator shown in frame b of Figure 2.11. If we inject
a current impulse as shown, the amplitude and phase of the oscillator will have responses
similar to that shown in the lower frame of Figure 2.11. The instantaneous voltage change
∆V is given by

∆V =
∆q

Ctot
(2.114)

where ∆q is the total injected charge due to the current impulse and is the total capac-
itance at that node. Note that the current impulse will change only the voltage across the
capacitor and will not affect the current through the inductor. It can be seen (frame c of
Figure 2.11) that the resultant change in α (t) and ϕ (t) is time dependent. In particular, if
the impulse is applied at the peak of the voltage across the capacitor, there will be no phase
shift and only an amplitude change will result. On the other hand, if this impulse is applied
at the zero crossing, it has the maximum effect on the excess phase and the minimum effect
on the amplitude. An impulse applied sometime between these two extremes will result in
both amplitude and phase changes.

Focusing our attention on the phase, in the light of the above considerations, one can
assume the unit impulse response for excess phase as

hϕ (t, τ) =
Γ (ω0τ)

qmax
u (t− τ) (2.115)

where u (t) is the unit step function and Γ is the impulse sensitivity function (ISF) (divid-
ing by qmax, the maximum charge displacement across the capacitor, makes Γ independent
of signal amplitude). It is a dimensionless, frequency- and amplitude-independent periodic
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FIGURE 2.11
Generic model for a self-sustained noisy LC oscillator. (Adapted from [77].)
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function with period 2π which describes how much phase shift results from applying a unit
impulse at time t = τ . Given the ISF, the output excess phase ϕ (t) can be calculated using
the superposition integral

ϕ (t) =

∫ +∞

−∞
hϕ (t, τ)i (τ) dτ =

1

qmax

∫ t

−∞
Γ (ω0τ)i (τ) dτ (2.116)

where i (τ) represents the input noise current injected into the node of interest. This
equation, to be solved numerically, allows computation of ϕ (t) for an arbitrary input cur-
rent, provided that the ISF has been determined. Therefore, once all the noise sources
i1 (τ) , . . . ,iN (τ) are properly accounted for, ϕ (t) and hence the power spectral density
Sϕ (f) can be determined. Rather than computing Sϕ (f) from Equation 2.116 for each of
the forementioned fundamental types of noise, we take a heuristic approach where, starting
from the dominant noise mechanisms known (from experience) for the single components
(amplifier and resonator), a model is developed that is able to explain the general behavior
observed for Sϕ (f) in a variety of practical self-sustained oscillators [57]. Before embarking
on this study, starting from the phase ϕ (t), let us define other useful quantities. First, from
Equation 2.57, the instantaneous frequency is given by

ν (t) ≡ 1

2π

d

dt
[2πν0t+ ϕ (t)] = ν0 +

1

2π

dϕ (t)

dt
(2.117)

In order to compare frequency standards operating at different frequencies ν0, it is also
helpful to define the normalized phase noise (also referred to as phase time)

x (t) =
ϕ (t)

2πν0
(2.118)

and the instantaneous normalized frequency deviation (also referred to as fractional
frequency fluctuation)

y (t) =
ν (t)− ν0

ν0
=
ϕ̇ (t)

2πν0
= ẋ (t) (2.119)

From this definition, it follows that the expectation value of y (t) is zero. Now, if ϕ (t)
identifies with b (t) of Equation 2.60, we have

Rϕ (τ) = lim
T→∞

1

2T

∫ T

−T
ϕ (t+ τ)ϕ∗ (t) dt

=

∫ +∞

−∞
S2−sided
ϕ (f) ·ei2πfτdf (2.120)

Similarly, for the variable x (t) we have

Rx (τ) = lim
T→∞

1

2T

∫ T

−T
x (t+ τ) x∗ (t) dt

=
1

(2πν0)
2 lim
T→∞

1

2T

∫ T

−T
ϕ (t+ τ)ϕ∗ (t) dt

=
1

(2πν0)
2

∫ +∞

−∞
S2−sided
ϕ (f) ·ei2πfτdf

≡
∫ +∞

−∞
S2−sided
x (f) ·ei2πfτdf (2.121)
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where

S2−sided
x (f) =

1

(2πν0)
2S

2−sided
ϕ (f) (2.122)

has been introduced. Finally, we have for the variable y (t)

Ry (τ) = lim
T→∞

1

2T

∫ T

−T
y (t+ τ) y∗ (t)dt

=
1

(2πν0)
2 lim
T→∞

1

2T

∫ T

−T
ϕ̇ (t+ τ) [ϕ̇ (t)]

∗
dt

=
(2πf)

2

(2πν0)
2

∫ +∞

−∞
S2−sided
ϕ (f) ·ei2πfτdf

≡
∫ +∞

−∞
S2−sided
y (f) ·ei2πfτdf (2.123)

where we have used the property that the time-domain derivative maps into a multipli-
cation by iω = i2πf in the Fourier transform domain and the function

S2−sided
y (f) =

(

f

ν0

)2

S2−sided
ϕ (f) (2.124)

has been introduced. Equation 2.124 defines the well-known relationship between the
PSD of phase fluctuations and the PSD of fractional frequency fluctuations. The latter
quantity is also referred to as the frequency modulation (PM) noise. In the laser literature,
one often sees the frequency noise expressed as the PSD of frequency fluctuations

S1−sided
δν (f) = ν20S

1−sided
y (f) = f2S1−sided

ϕ (f) (2.125)

2.5.1 The Leeson effect

Now, coming back to our main concern, let us start by studying the case of an oscillator in
which the feedback circuit β is an ideal resonator, free from frequency fluctuations and with
a large merit factor Q. In order to find an effective model for the function Sϕ (f), let us
make the following considerations. If a static phase ψ is inserted in the loop (Figure 2.12),
the Barkhausen phase condition (Equation 2.49 with A = 1) becomes

arg β (ω) + ψ = 0 (2.126)

and the loop oscillates at the frequency

ω0 +∆ω at which arg β (ω) = −ψ (2.127)

Within the accuracy of linearization, the effect of ψ on the oscillation frequency is
obtained as

∆ω = − ψ
d
dω arg β (ω)

(2.128)

which, together with Equation 2.31, yields

∆ω =
ω0

2Q
ψ (2.129)
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Next, let us replace the static phase ψ with a random phase fluctuation ψ (t) that
accounts for all the phase noise sources in the loop. In this picture, the phase fluctuation
ϕ (t) in Equation 2.57 is just the effect of ψ (t). We analyze now the mechanism by which
the power spectrum density of ψ is transferred to ϕ. For fluctuations of ψ faster than the
inverse of the relaxation time τrel = 2Q/ω0, the resonator is an open circuit for the phase
fluctuation. The fluctuation ψ(t) crosses the amplifier and shows up at the output, without
being fed back at the amplifier input. No noise regeneration takes place in this conditions,
thus ϕ(t) = ψ(t), and

Sϕ (f) = Sψ (f) (2.130)

For the slow components of ψ (t), ψ can be treated as quasi-static perturbation according
to Equation 2.129

∆ν =
ν0
2Q

ψ (t) (2.131)

such that

S∆ν (f) =

(

ν0
2Q

)2

Sψ (f) (2.132)

On the other hand, the instantaneous output phase is

ϕ (t) = 2π

∫

(∆ν)dt (2.133)

which, as the time-domain integration maps into a multiplication by 1/(2πf)
2 in the

spectrum, provides

Sϕ (f) =
1

f2
S∆ν (f) =

1

f2

(

ν0
2Q

)2

Sψ (f) (2.134)

Under the assumption that there is no correlation between fast and slow fluctuations,
we can add the effects stated by Equation 2.130 and Equation 2.134 to obtain

Sϕ (f) =

[

1 +

(

fL
f

)2
]

Sψ (f) (2.135)

where the Leeson frequency has been introduced

fL =
ν0
2Q

(2.136)

By inspection of Equation 2.135, the oscillator behavior is that of a first-order filter with
a perfect integrator (a pole in the origin in the Laplace transform domain) and a cut-off
frequency fL (a zero on the real left-axis), as shown in Figure 2.12. It is worth stressing
that Equation 2.135 has still a general form since the amplifier noise has not been specified.
Moreover, it accounts only for the phase-to-frequency conversion inherent in the loop: the
resonator noise is still to be added for the noise spectrum to be correct. Therefore, in order
to accomplish this treatment, next we have to specify the amplifier noise Sψ (f) and finally
introduce the effect of the resonator noise.

Concerning the amplifier noise, it has been experimentally observed that, for a given
amplifier, the total phase noise spectrum results from adding the white and the flicker noise
spectra, as in Figure 2.13. This relies on the assumption that white and flicker phenomena
are independent, which is true for actual amplifiers. It is important to understand that b0
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FIGURE 2.12
Model for a noisy self-sustained oscillator and Leeson-effect transfer function. (Adapted
from [57].)

(white) is proportional to the inverse of the carrier power P0: Sϕ (f) = b0 = FkBT0/P0

where F is the amplifier noise figure, while b−1 (flicker) is about independent of P0. The
factor F is an empirical fitting parameter and therefore must be determined by measure-
ments. The position of the corner frequency fc depends on the input power. The belief that
fc is a noise parameter of the amplifier is a common mistake. When such an amplifier is
inserted into an oscillator, it interacts with the resonator according to Leeson’s formula
(Equation 2.135)

Sϕ (f) =

[

1 +

(

fL
f

)2
]

Sψ (f) =

[

1 +

(

fL
f

)2
]

[

b0 +
b−1

f

]

(2.137)

Concerning the resonator noise, the dissipative loss of the resonator, inherently, orig-
inates white noise. Yet, the noise phenomena most relevant to the oscillator stability are



Characterization and control of harmonic oscillators 57

f

Lower power

Higher power

Range of fc

fc

S ( )j f

b f-1

-1

b =Fk T/P0 0B

FIGURE 2.13
Typical phase noise of an amplifier on a Log-Log plot (b−1 about constant). (Adapted from
[57].)

the flicker and the random walk of the resonant frequency ν0. Thus, the spectrum Sy (f)
of the fractional frequency fluctuation y = ∆ν/ν0 shows a term h−1f

−1 for the frequency
flicker, and h−2f

−2 for the frequency random walk. According to the relationship between
Sϕ (f) and Sy (f) established by Equation 2.124, the term h−1f

−1 of the resonator fluctu-
ation yields a term proportional to f−3 in the phase noise, and the term h−2f

−2 yields a
term f−4. The resonator fluctuation is independent of the amplifier noise, for it adds to the
oscillator noise.

In light of the above treatment, a model that is found useful in describing the noise
spectra in an arbitrary oscillator is the power law

Sϕ (f) =

−4
∑

i=0

bif
i (2.138)

in the range 0 ≤ f ≤ fh, where fh is the high-frequency cutoff of an ideal (sharp-cutoff)
low-pass filter. According to Equation 2.124, the corresponding expansion of Sy (f) is given
by

Sy (f) =

−2
∑

i=2

hif
i (2.139)

with the hi coefficients given in Table 2.1.
Experimental determinations of spectral densities for different frequency sources reach-

ing from quartz oscillators to atomic frequency standards have indeed confirmed the behav-
ior described by Equation 2.138 (or equivalently by Equation 2.139).

2.5.2 The Allan variance

Another tool often used in the characterization of oscillators is the two-sample or Allan
variance σ2

y (τ), as a function of the measurement time τ [78, 65]. The Allan variance is
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TABLE 2.1
Power spectral density and Allan variance for the different noise processes (γ = 0.577216 is
Euler’s constant).

noise type Sϕ(f) Sy(f) Sϕ(f) ↔ Sy(f) AV AR(y) MAVAR(y)

white ϕ b0 h2f2 h2 =
b0

ν2
0

3fh

4π2τ2
h+2 ∝ τ−3

flicker ϕ b−1f−1 h1f h1 =
b−1

ν2
0

3[γ + ln(2πfhτ)]

4π2τ2
h+1 ∝ τ−2

white f b−2f−2 h0 h0 =
b−2

ν2
0

1

2τ
h0 ∝ τ−1

flicker f b−3f−3 h−1f−1 h−1 =
b−3

ν2
0

2 ln 2h−1 ∝ τ0

rand. walk f b−4f−4 h−2f−2 h−2 =
b−4

ν2
0

2π2τ

3
h−2 ∝ τ

always estimated by averaging. Given a stream of M data y, each representing a measure
of the quantity y(t) averaged over a duration τ , ending at the time tk = kτ , the estimated
two-sample Allan variance is

AV AR (y) ≡ σ2
y (τ)

=
1

2 (M − 1)

M−1
∑

k=1

(

yk+1 − yk
)2 ≡ 1

2

〈

(

yk+1 − yk
)2
〉

(2.140)

where

yk =
1

τ

∫ tk+τ

tk

y (t) dt (2.141)

Practically, to calculate the Allan variance, a set of M independent frequency offset
measurements must be acquired, by M successive averages of the signal over a time τ . The
process repeats for growing values of τ , to finally obtain the Allan variance trend. Clearly,
the τ value corresponding to the minimum of this function corresponds to the averaging
time that provides the best stability for the system under investigation. It is worth noting
that the Allan variance is based on differences of adjacent frequency values rather than on
frequency differences from the mean value, as is the classical standard deviation. Then, the
Allan deviation is defined as the square root of the Allan variance.

By definition, it also follows

AV AR (y) =

〈

1

2

(

1

τ

∫ tk+2

tk+1

y (t′) dt′ − 1

τ

∫ tk+1

tk

y (t′) dt′
)2〉

(2.142)

This means that a single sample is obtained by one-half of the squared difference of the
mean values of the function y (t) derived from two adjacent intervals of duration τ , and the
Allan variance is then the expectation value of this quantity (that is the ensemble average
on many samples). To obtain many samples it is not necessary to divide the function y (t)
into discrete time intervals but rather we derive a sample for each instant t as follows
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AV AR (y) =

〈

1

2

(

1

τ

∫ t+τ

t

y (t′) dt′ − 1

τ

∫ t

t−τ
y (t′) dt′

)2
〉

=

=

〈

(∫ +∞

−∞
y (t′)hτ (t− t′) dt′

)2
〉

(2.143)

where the function

hτ (t) =



















− 1√
2τ

−τ < t < 0

1√
2τ

0 ≤ t < τ

0 otherwise

(2.144)

has been introduced. The square modulus of its Fourier transform Hτ (f) is given by

|Hτ (f)|2 = 2
sin4 (πτf)

(πτf)
2 (2.145)

Consequently, the Allan variance is the mean square of the following convolution integral

⇀
y (t) =

∫ +∞

−∞
y (t′)hτ (t− t′) dt′ ≡ y ∗ hτ (2.146)

that can be interpreted as the temporal response of a hypothetical linear filter with
impulse response hτ (t) to an input signal y (t). Thus, in formula, we can write

AV AR (y) =

〈

(⇀
y (t)

)2
〉

(2.147)

Note that, from the convolution theorem, we have

F

[⇀
y (t)

]

= F [y (t)] · F [hτ (t)] ≡ ŷ (f)Hτ (f) (2.148)

Now, by virtue of the definition of y (t) (see Equation 2.119), we have

⇀
y (t) = 0 (2.149)

so that
〈

(⇀
y (t)

)2
〉

= V AR
(⇀
y
)

(2.150)

Then, Equation 2.147 becomes

AV AR (y) = V AR
(⇀
y
)

=

∫ +∞

−∞
S2−sided

⇀
y

(f)df (2.151)

where the expression 2.72 for the classical variance has been exploited. Now, by definition
of power spectral density and by virtue of Equation 2.148 and Equation 2.145, we obtain
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S2−sided
⇀
y

(f) = lim
T→∞

〈

∣

∣

∣F

[⇀
y (t)

]∣

∣

∣

2
〉

2T
= lim

T→∞

〈

|Hτ (f)|2|ŷ (f)|2
〉

2T

= 2
sin4 (πτf)

(πτf)
2 lim

T→∞

〈

|ŷ (f)|2
〉

2T
= 2

sin4 (πτf)

(πτf)
2 S2−sided

y (f) (2.152)

that, inserted into Equation 2.151, finally yields

AV AR (y) = 2

∫ +∞

−∞
S2−sided
y (f)

sin4 (πτf)

(πτf)
4 df =

= 2

∫ +∞

0

S1−sided
y (f)

sin4 (πτf)

(πτf)
4 df (2.153)

This relationship allows to compute the Allan variance directly from the (one-sided)
power spectral density. The time-domain description of the instability of oscillators by
the Allan variance is often chosen as it is easily calculated from the time series measured
with simple electronic counters. The description of fluctuations by power spectral densities
in the Fourier frequency domain, however, contains the full information about the noise
process if properly determined. Furthermore, AV AR (y) can always be calculated from
Sy (f); in contrast, the calculation of the power spectral density from the measured Allan
variance requires the solution of an integral equation which is possible only in simple cases.
Substitution of each of the five terms of the expansion of S1−sided

y (f) (Equation 2.139)
separately into Equation 2.153 gives a very clear picture of the effect of the bandwidth
(see Table 2.1). We see that terms in h1 and h2 tend to diverge when f → ∞. Practically,
however, an infinite AV AR will not be observed as the case f →∞ would require an infinite
bandwidth of the measurement equipment. More rigorously, for h1 and h2, we have to write

AV AR (y) = 2

∫ fh

0

S1−sided
y (f)

sin4 (πτf)

(πτf)
4 df (2.154)

As one can see from the above table, AV AR is not very sensitive to distinguish between
flicker phase noise and white phase noise. To overcome this deficiency the so-called modified
AV AR (MAV AR) has been introduced [79, 80]

MAV AR (y) ≡ mod σ2
y(τ)

=
1

2m4 (M − 3m+ 2)

M−3m+2
∑

j=1







j+m−1
∑

i=j

[

i+m−1
∑

k=i

(

yk+m − yk
)

]







2

(2.155)

It is estimated from a set of M frequency measurements for averaging time τ = mτ0,
where m is the averaging factor and τ0 is the basic measurement interval. With the use
of MAV AR the first four types of power spectral densities have the same dependence on
τ as AV AR, while, for h2f2, MAVAR is proportional to τ−3. Analytical expressions for
MAV AR can be found in [80]. In a doubly logarithmic plot the particular contributions to
the above equation can be identified readily by their slope, thereby allowing identification
of the causes of the noise mechanisms in the oscillators (see Figure 2.14).
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FIGURE 2.14
Representation of different noise processes in a Log-Log plot of AV AR and MAV AR as a
function of sampling time.

It is worth pointing out that, besides stochastic fluctuations, deterministic variations of
the frequency of a given oscillator have a strong impact on the measured Allan variance. Just
as an example, consider an oscillator whose normalized frequency deviation exhibits a linear
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drift y (t) = at. In this case one can easily calculate the Allan variance as σy (τ) =
(

a/
√
2
)

τ .
Hence, a linear frequency drift leads to an Allan deviation that linearly increases with
measuring time τ .

Throughout this book, we will have occasion to study different types of oscillators, each
displaying a characteristic power spectral density or Allan variance behavior, according to
the specific dominant noise mechanisms (i.e. to the specific values of the bi coefficients in
Table 2.1).

2.5.3 Oscillator power spectrum in the carrier frequency domain

Often, when dealing with laser or microwave frequency standards, one is interested in the
power spectrum of the oscillator in the carrier frequency domain. From previous general
considerations, we already know that an ideal oscillator operating at the frequency ν0 would
consist of a delta function at ν0 in the carrier frequency domain. Actually, we also learnt
that for a real oscillator (perturbed by noise processes) the power is spread over a frequency
range around the center frequency ν0.

Now, we establish a link between carrier frequency domain and Fourier frequency domain
[81]. For this purpose, the output signal of the oscillator is expressed here in the complex
form

V (t) = A0e
i[ω0+ϕ(t)] (2.156)

Under the usual assumption of stationary ergodic processes, we calculate the autocor-
relation function as

RV (τ) =
1

2
ℜ 〈V (t) V ∗ (t+ τ)〉 = |A0|2

2
cos (ω0τ) ℜ

〈

ei[ϕ(t)−ϕ(t+τ)]
〉

=
|A0|2
2

cos (ω0τ) e
−
〈[ϕ(t)−ϕ(t+τ)]2〉

2 (2.157)

where the last step follows from the Gaussian moment theorem. Now recalling that

〈

[ϕ (t)]
2
〉

=
〈

[ϕ (t+ τ)]
2
〉

def
= Rϕ (τ = 0)

=

∫ +∞

−∞
S2−sided
ϕ (f)df =

∫ +∞

0

S1−sided
ϕ (f)df (2.158)

and that

〈ϕ (t)ϕ∗ (t+ τ)〉 def= Rϕ (τ) =

∫ +∞

0

S1−sided
ϕ (f) cos (2πfτ) df (2.159)

we have
〈

[ϕ (t)− ϕ (t+ τ)]
2
〉

2
= 2

∫ +∞

0

S1−sided
ϕ (f) sin2 (πfτ) df (2.160)

By substitution of Equation 2.160 into Equation 2.157, one obtains

RV (τ) =
|A0|2
2

cos (2πν0τ) e
−2

∫

+∞

0
S1−sided
φ (f)sin2(πfτ) df (2.161)
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Finally, from the WK theorem we have

S1−sided
V (f) = 2S2−sided

V (f) = 2

∫ +∞

−∞
RV (τ) e−i2πfτdτ =

2

∫ +∞

−∞
RV (τ) cos (2πfτ) dτ = 4

∫ +∞

0

RV (τ) cos (2πfτ) dτ

= |A0|2
∫ +∞

0

{cos[2π(ν + f0)τ ]

+ cos[2π(ν − f0)τ ]} e−2
∫

+∞

0
S1−sided
ϕ (f) sin2(πfτ)dfdτ (2.162)

that, neglecting the rapidly varying term cos [2π (ν + f0) τ ], becomes

S1−sided
V (f)

= |A0|2
∫ +∞

0

cos [2π (f − ν0) τ ] · e−2
∫

+∞

0
S1−sided
ϕ (f)sin2(πfτ)dfdτ (2.163)

This equation allows to calculate the power spectrum if the frequency-noise power spec-
tral density is known. This formula will prove particularly useful in Chapter 4 in the study
of the laser linewidth. Note that the real part of the signal defined by Equation 2.156 may
also result from the beating of two oscillators (Equation 2.45) provided that we make the
identifications ω0 = ω1 − ω2 and ϕ (t) = ϕ1 (t) − ϕ2 (t). In that case, the power spectrum
of the observed beat note S1−sided

V (f) gives information about the relative phase noise
between the two beating oscillators. Of course, if one of the two oscillators is a reference
(ϕ1 (t) ≪ ϕ2 (t)), this procedure returns the power spectral density of the oscillator under
test S1−sided

ϕ (f).
It is also useful (see below) to develop an approximate expression of Equation 2.163 for

very low phase fluctuations (
∫ +∞
0

S1−sided
ϕ df ≪ 1). To this aim, by virtue of Equations 2.158

and 2.159, let us rewrite Equation 2.157 as

RV (τ) =
|A0|2
2

cos (ω0τ)e
−Rϕ(0)+Rϕ(τ)

≃ |A0|2
2

cos (ω0τ)[1−Rϕ(0) +Rϕ(τ)] (2.164)

such that S1−sided
V now takes the form

S1−sided
V (f) ≃ |A0|2

∫ +∞

0

cos[2π(f − ν0)τ ][1 −Rϕ(0) +Rϕ(τ)]dτ

=
|A0|2
2

∫ +∞

−∞
ei2π(f−ν0)τ [1−Rϕ(0) +Rϕ(τ)]dτ

=
|A0|2
2

{

[1−Rϕ(0)]
∫ +∞

−∞
ei2π(f−ν0)τdτ + S2−sided

ϕ (f − ν0)
}

=
|A0|2
2

{

[1−Rϕ(0)]δ(f − ν0) + S2−sided
ϕ (f − ν0)

}

=
|A0|2
2

{

[1−
∫ +∞

0

S1−sided
ϕ (f)]δ(f − ν0) + S2−sided

ϕ (f − ν0)
}

≃ |A0|2
{

e−
∫

+∞

0
S1−sided
ϕ (f)df · δ(f − ν0) + S2−sided

ϕ (f − ν0)
}

(2.165)
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Hence, the spectrum in the carrier frequency domain consists of a delta function at
f = ν0 (the carrier) plus two symmetric sidebands with the level of the phase-noise spectral
density at |f − ν0|.

As a first example of calculation of Equation 2.163, we consider a source whose power
spectral density in the Fourier frequency domain can be represented as white (frequency
independent) frequency noise. By virtue of Table 2.1 one can write

S1−sided
ϕ (f) =

ν20h0
f2

(2.166)

In this case, using
∫ +∞
0

[sin2 (Af)]/f2df = π|A|/2, one obtains from Equation 2.163

S1−sided
V (f) = |A0|2

∫ +∞

0

cos [2π (f − ν0) τ ] e−π
2ν2

0h0τdτ =

= |A0|2
ν20h0π

2

ν40h
2
0π

4 + 4π2 (f − ν0)2
(2.167)

Hence, the power spectrum (of frequency fluctuations) in the carrier frequency domain
of an oscillator with white frequency noise in the Fourier frequency domain is a Lorentzian
whose FWHM is given by

FWHM = πν20h0 ≡ πS0
δν (2.168)

This suggests that the intrinsic (quantum-limited) linewidth of real oscillators, including
lasers, can be simply estimated by measuring the floor S0

δν in the PSD of Sδν(f) (see also
Chapter 4 for a more detailed discussion in the framework of lasers).

In general, Equation 2.163 can be computed numerically for each of the other noise terms
in Table 2.1, provided that Sϕ(f) is multiplied by the square modulus of a suitable low-pass
transfer function L(if) (always present in practical situations): S′

ϕ(f) ≡ Sϕ(f) · |L(if)|2.
Some notable cases, like white and flicker phase noise, have also been analytically solved
[82]. In the former, particularly meaningful case, a single-pole RC filter is used such that

S′
ϕ(f) =

b0
1 + (f/fn)2

(2.169)

where fn is the −3dB filter bandwidth. Then, by substitution of Equation 2.169 into
Equation 2.163, we obtain

S1−sided
V (f) =

|A0|2
2πfn

e−σ
2
ϕ {πδ(∆)

+σ2
ϕℜ
[

2F2(1, 1− i∆; 2, 2− i∆;σ2
ϕ)

1− i∆

]}

(2.170)

where ∆ = (f − ν0)/fn, 2F2(a1, a2; b1, b2;σ
2
ϕ) is a generalized hypergeometric function

and

σ2
ϕ =

∫ +∞

0

S′
ϕ(f)df =

πb0fn
2

(2.171)
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is the total amount of phase noise. Then, if the latter quantity is well below 1 rad (σ2
ϕ →

0), the spectrum consists of an infinitely narrow carrier (Dirac delta function) sitting on a
Lorentzian pedestal. If the phase noise increases, the pedestal expands in height in relation
to the carrier, preserving the linewidth as determined by the filter. Further, as the integral
of phase noise approaches 1 rad, an interesting phenomenon occurs: the pedestal starts to
spread out and the carrier suddenly falls into the pedestal and disappears. If the noise level
increases further, the pedestal spreads out proportionally to n2 [83]. This phenomenon,
called carrier collapse, was experimentally demonstrated more than two decades ago [84].

2.5.3.1 Effect of frequency multiplication on the power spectrum

When the frequency of a signal is multiplied (divided) by a factor n, the resulting Sϕ(f) is
multiplied (divided) by a factor n2. This can be readily seen as follows [85]. Since the only
measurable quantity is the accumulated phase, independently of the implemented multipli-
cation technique, the resulting signal takes the form

Vn (t) = V0cos [n2πν0t+ nϕ (t)] (2.172)

in the case of multiplication, and

V1/n (t) = V0cos [(1/n)2πν0t+ (1/n)ϕ (t)] (2.173)

in the case of division. In deriving the above equations, Equation 2.57 with α ≪ 1 was
used. Now, the remainder of the proof is straightforward using the definition of Sϕ(f) as
the Fourier transform of the autocorrelation function of ϕ(t).

In the following, we focus on the multiplication process. In practice, the noise added by
the specific multiplication process must also be accounted for, whereupon

Sϕ(nν0, f) = n2Sϕ(ν0, f) +Multiplication PM (2.174)

Firstly, consider white frequency noise. In this case, it is trivial to show that the multi-
plication process simply increases the linewidth of the Lorentzian shape by a factor n2. In
the case of white phase noise, instead, as discussed above, the increase in noise causes the
carrier collapse. More in general, under the assumption of small PM noise, equation 2.165
can be used: according to Equation 2.174, it predicts that the power in the carrier decreases
exponentially as e−n

2

such that, after a sufficiently large multiplication factor n, the carrier
power density is less than the PM noise power. The calculation of the collapse frequency
of a signal is particularly important because it represents the maximum frequency that can
be coherently achieved when multiplying a given signal.

Finally, consider frequency translation. This latter has the effect of adding the PM noise
of the input signal at νinput and the reference signal at νref to that of the PM noise in the
non-linear device (or any other mechanism) providing the translation

Sϕ(ν2, f) = Sϕ(νinput, f) + Sϕ(νref , f) + Translation PM (2.175)

Incidentally, this suggests that dividing a high-frequency signal, rather than mixing two
high-frequency signals, generally produces a low frequency reference signal with less residual
noise.

In the field of modern absolute frequency metrology, frequency multiplication repre-
sented a crucial issue in the design of femto-second (fs) dividers which are, in essence, very
high order frequency multipliers. Indeed, as we will see in Chapter 6, a mode-locked fs laser
provides ultra-short pulses (∼ 50 fs) at a repetition rate fr (typically 100 MHz to a few
GHz). In the frequency domain this corresponds to a comb
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νn = nνr + νceo (2.176)

where n is the harmonic number and νceo is the offset frequency from zero. Thus, in the
light of the above discussion, we have

Sϕ(νn, f) = n2Sϕ(νr, f) + Sϕ(νceo, f) + (Mode-Locking PM) (2.177)

where all the noise contributions arising from the mode-locking process itself have been
lumped into the last term. The relative weight of the various noise terms in the above
equation may change for different configurations. In particular, for νn to fall in the optical
domain, an extremely high harmonic number is required (n ∼ 500000, νr = 1 GHz). This
implies that the phase noise of the RF reference is increased by 115 dB when it is effectively
multiplied up to the optical domain using the fs laser comb. For example, a high-quality
quartz-based RF reference at 1 GHz might have a typical noise floor of -110 dBc/Hz, but,
when it serves as reference for νr, there will be nothing remaining of the phase-coherent
carrier in the optical mode νn (carrier collapse). There are, however, a few ways to minimize
this phase-noise multiplication problem [86]. First of all one can rely on the relatively good
short-term stability of the fs laser itself. On time scales of less than ∼ 1 ms, the noise of a
typical Ti:Sa laser has been measured to fall below that of the most high-quality microwave
sources. This means that if one controls νr relative to a microwave reference, a control
bandwidth of ≤ 1 kHz is all that is required to remove the low-frequency thermal and
acoustic noise of the mode-locked laser. Although the observed optical linewidth may still
be on the order of 0.1− 1 MHz, one generally finds that the fractional stability of the comb
elements can be equal to the fractional stability of the microwave reference. Of course, if
a microwave reference with lower phase noise is available (such as a cryogenic sapphire
microwave oscillator), then one can potentially narrow the optical linewidth further.

2.6 Noise reduction in oscillators

In this section we take up the issue of frequency and phase locking between two oscillators,
but from a different point of view with respect to that of Section 2.1.1. Indeed, here we focus
on noisy self-sustained oscillators and discuss two relevant schemes that, hinging on phase
locking between a reference (master) oscillator and a noisier one (slave), can be used for
reduction of noise in the latter. We are speaking of the phase-locked loop and the injection
locking scheme.

2.6.1 Phase-locked loops

A phase-locked loop (PLL) is a circuit that synchronizes the signal from an oscillator with a
reference signal, so that they operate at the same frequency [87]. The synchronized signal is
usually a voltage-controlled oscillator (VCO), that is an oscillator whose frequency changes
in response to a control voltage (typically an astable multivibrator). The loop synchronizes
the VCO to the reference by comparing their phases and controlling the VCO in a manner
that tends to maintain a constant phase relationship between the two. In some types of
PLLs this phase relationship is held constant, while in other types it is allowed to vary
somewhat (in any case the frequency is always synchronized). A block diagram of the basic
PLL is shown in Figure 2.15.

The phase detector (a flip-flop phase detector or a doubly balanced mixer) compares
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FIGURE 2.15
Block diagram of the basic PLL. (Adapted from [87].)

the reference to the VCO output and produces a signal u1 that is proportional to the
difference in their phases. This is processed by the loop filter to provide the oscillator
control signal u2. The loop filter can be as simple as a flat amplifier (u2 = KLFu1), but
it is usually designed to provide some advantageous response characteristic. If the output
frequency, ωout = dϕout/dt, should be greater than the reference frequency, ωin = dϕin/dt,
then u1 ∼ (ϕin − ϕout −Θ) would necessarily decrease with time, causing u2 to decrease,
which, in turn, would cause ωout to decrease, bringing ωout down toward ωin. Thus the
PLL provides negative feedback to keep the output frequency ωout equal to the reference
frequency ωin. The output amplitude A0 is constant and independent of the input amplitude
Ai. Figure 2.16 shows the type of response that we would like to get from a phase detector
(PD).

It produces a voltage proportional to the difference in phases of the reference ϕin and
the VCO output, which is also the loop output, ϕout. The constant of proportionality, KPD,
is the gain of the phase detector

KPD =
du1

d (∆ϕ)
(2.178)

where ∆ϕ = ϕin − ϕout. In its simplest form, the loop filter consists merely of an
amplifier, so that

du2
du1

= KLF (2.179)

Analogously, the VCO can be characterized by

dωout
du2

= KV CO (2.180)

u1

(Volt)

Ä = -j j j
in out

A

0 2p

FIGURE 2.16
Response of an ideal phase detector. (Adapted from [87].)
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The open-loop gain is thus given by

dωout
d (∆ϕ)

=
du1

d (∆ϕ)

du2
du1

dωout
du2

= KPDKLFKV CO ≡ K (2.181)

In order to calculate the range of ωin over which lock can be maintained, we observe
that if the PD output has a sawtooth characteristic which can vary over a total range of
A, this equals 2πKPD rad or, equivalently, ±πKPD rad about the midpoint. We obtain
the corresponding change in ωout by multiplying the change in PD output by KLFKV CO,
giving a total hold-in (or synchronization) range of

±ΩH,sawtooth = ±πKPDKLFKV CO rad = ±πK rad (2.182)

Now, we re-write Equation 2.181 as

dωout
dt

= K
d (∆ϕ)

dt
= K (ωin − ωout) (2.183)

If the reference ωin is constant, it may be subtracted on the left side, so that we can
write

d (∆ω)

∆ω
= −Kdt (2.184)

where ∆ω ≡ ωout − ωin. The solution of this equation is

∆ω (t) = ∆ω (0) e−Kt (2.185)

Finally, the output frequency is given by

ωout = ωin + ∆ω (t) = ωin +∆ω (0) e−Kt (2.186)

Thus we see that this simple loop responds to an initial frequency error ∆ω (0) by
exponentially decreasing the error with a time constant equal to 1/K. The mathematical
relationships in the Laplace domain for the loop can be shown by means of the block diagram
in Figure 2.17.

Here the input variable is the reference, or input, instantaneous phase ϕin (t). A block is
shown preceding ϕin in order to establish the integral relationship (1/s) between ωin (s) and
ϕin (s). The output from the adder (a subtracter in this case) is the phase error ϕe (s), the
difference between the input phase and the VCO phase, ϕout. The phase error is converted to
voltage in the phase detector, which is represented by the gainKPD = u1 (s) /ϕe (s). For this
simple case the loop filter is merely an amplifier with gainKLF ; KV CO represents the tuning
sensitivity ωout (s) /u2 (s) of the VCO. The output from this block is the output frequency
ωout. However, ϕout is needed to complete the loop so ωout (s) is integrated (multiplied by
1/s) to produce it. Then the loop is completed by subtracting ϕout (s) from ϕin (s) in the
summer. Note that the minus sign at the summer represents −180◦ of phase shift around

w
in
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-
S K
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K

VCO1/s 1/s j
out

(s)

j
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(s)j
e
(s)j
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FIGURE 2.17
PLL mathematical relationships in the Laplace domain. (Adapted from [87].)
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FIGURE 2.18
Generic control system block diagram. (Adapted from [87].)

the loop that does not appear in the transfer functions of the individual blocks. The generic
control system block diagram is shown in Figure 2.18.

The well-known equations describing its transfer function are the response of the con-
trolled variable C to the reference R,

C

R
=

GF
1 +GRGF

(2.187)

where GF and GR are forward and reverse transfer functions, respectively, and the
response of the error E to the reference

E

R
=

1

1 +GRGF
(2.188)

Note that −GRGF is the open-loop gain and C/R and E/R are closed-loop gains. So
we identify C as ϕout (s) and R as ϕin (s). Since the feedback path has unity gain, we have
also GR = 1 and −GF is the entire open-loop transfer function −G (s)

G (s) =
KPDKLFKV CO

s
≡ K

s
(2.189)

Thus from Equation 2.187 we obtain

ϕout (s)

ϕin (s)
=

G (s)

1 +G (s)
=

1

1 + s/K
(2.190)

and from Equation 2.188

ϕe (s) = ϕin (s)− ϕout (s)⇒
ϕe (s)

ϕin (s)
=

1

1 +G (s)
=

s

s+K
(2.191)

Equation 2.190 represents a low-pass characteristic with a cutoff (−3 dB) frequency of
ω = K. This is analogous to the low-pass filter of Figure 2.19 in which the voltages have
been given names corresponding to the phases. Equation 2.191 says that the error phase
has a high-pass characteristic, analogous to Figure 2.19.

It is generally true, even in more complex loops, that the output has a low-pass rela-
tionship to the input while the error has a high-pass relationship. This reflects the fact that
the error responds immediately to a change in the input while, and because, the output
response is delayed. At frequencies well below ω = K, Equation 2.190 can be approximated
as

ϕout (s)

ϕin (s)
= 1 (2.192)

whereas at frequencies well above ω = K the equation is approximately
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FIGURE 2.19
Low-pass (high-pass) behavior of the output-to-input ratio (error) in a PLL. (Adapted from
[87].)

ϕout (s)

ϕin (s)
=
K

s
= −iK

ω
(2.193)

This equals the open-loop transfer function, Equation 2.189. Thus, at low frequencies,
where the gain is high, the output follows the input faithfully, whereas, at high frequencies,
where the gain becomes low, the loop is essentially open and the response is as if there
were no loop (except that the low-frequency gain keeps it locked - otherwise none of these
equations would be valid). At the loop corner frequency, ω = K, it is easy to show from
Equation 2.190 that the closed-loop gain is 1/

√
2, or -3 dB, and the phase shift is −45◦,

just as in the case of the low-pass filter.

For educational purposes we have started our study with first-order PLLs (for which the
loop filter transfer function is a constant, i.e., a wide-bandwith amplifier) that are never used
in practice. Effective locking circuits make use of second-order PLLs (i.e., characterized by
a transfer function with two poles) which can be obtained by using, for example, a low-pass
filter of the type

HLPF =
1

1 +
s

ωLPF

(2.194)

where ωLPF is the cutoff frequency. This can be provided, for instance, by a RC network
(ωLPF = RC). In this case we have for the open-loop transfer function

G (s) =
KPDKV CO

s

1

1 +
s

ωLPF

=
KPDKV COωLPF
ωLPF s+ s2

(2.195)

and hence for the closed-loop transfer function

H (s) ≡ ϕout (s)

ϕin (s)
=

G (s)

1 +G (s)
=

KPDKV COωLPF
ωLPF s+ s2 +KPDKV COωLPF

(2.196)

By comparison with a second-order damped oscillator with unitary DC gain
(lims→0H2or(s) = 1)
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H2or (s) =
ω2
0

2ζω0s+ s2 + ω2
0

(2.197)

one recognizes the PLL natural angular frequency (roughly corresponding to the circuit
bandwidth) as

ωn =
√

KPDKV COωLPF (2.198)

and the damping constant

ζ =
1

2

√

ωLPF
KPDKV CO

(2.199)

Now, if we want a fast system, but without over-elongations, it is necessary to choose
the critical damping condition ζ = 1/

√
2. This yields a well-defined relationship between

the low-pass filter bandwidth and the gain

ωLPF
2

= KPDKV CO (2.200)

Next, we calculate the steady-state phase error for a ramp input ∆ω·t. The corresponding
Laplace transform is ϕin (s) = ∆ω/s2. Therefore, by virtue of Equation 2.196, we can write

ϕerr (s) = ϕin (s)

[

1− ϕout (s)

ϕin (s)

]

=
∆ω

s2
[1−H (s)]

=
∆ω

s2
ωLPF s+ s2

ωLPF s+ s2 +KPDKV COωLPF
(2.201)

By applying the final value theorem we finally get

ϕerr (t→∞) = lim
s→0

sϕerr (s) =
∆ω

KPDKV CO
(2.202)

This means that the PLL mantains a non-zero error, inversely proportional to the gain.
The latter however cannot be increased ad libitum due to the proportionality with ωLPF
which should be not too high for efficient filtering of the output of the phase comparator.

Another kind of loop filter, denoted as lag-lead filter, is represented in Figure 2.20.
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R
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FIGURE 2.20
Passive lag-lead loop filter.
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Its transfer function is

KLF (s) =
v2 (s)

v1 (s)
=

1 +R2Cs

1 + (R1 +R2)Cs
=

1 + s/ω1

1 + s/ω2
=

1 + τ1s

1 + τ2s
(2.203)

In this case, the open-loop transfer function is

G (s) =
KPDKV CO

s
KLF (s) =

KPDKV CO

s

1 + s/ω1

1 + s/ω2
(2.204)

while the closed-loop transfer function is

H (s) =
ϕout (s)

ϕin (s)
=

1

1 +
1

G (s)

=

KPDKV CO

τ2
+
τ1
τ2
KPDKV COs

s2 +
KPDKV CO

τ2
+

(

1 +KPDKV COτ1
τ2

)

s

(2.205)

which yields



















ωn =

√

KPDKV CO

τ2

ζ =
1

2ω0τ2
+
ω0τ1
2

(2.206)

Therefore, in this case it is possible to choose ζ and ω0 independently by properly
choosing R1, R2, and C.

As a final example, consider the charge-pump PLL. It is one of the most popular PLL
structures since the 1980s. Instead of a standard phase comparator, it employs a more
sophisticated digital circuit called a phase and frequency detector (PFD). Unlike classical
phase detectors, the latter gives a non-zero output signal even if the two input frequencies
are different. The PFD has two outputs, UP and DOWN, that can alternatively have a high
signal. Such outputs are connected to a circuit referred to as a charge pump whose output
drives the VCO. Charge-pump PLLs have several advantages over the traditional ones. As
already mentioned, the PFD output is non-zero even in the presence of input signals with
different frequencies. In this way, it is not necessary to keep the loop filter bandwidth high
to allow the PLL to lock signals with sudden frequency changes. In addition, the charge
pump acts as a further integrator (besides the VCO), thus giving rise to a zero steady-state
phase error (for a ramp input). The block diagram for a charge-pump PLL is shown in
Figure 2.21. The charge pump output is, in fact, a train of current pulses Ip which charge
the capacity of the low-pass filter.
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FIGURE 2.21
Block diagram of a charge-pump PLL and scheme of the corresponding low-pass filter.

In this configuration, the open-loop transfer function is calculated as

G (s) =
Ip

2πC
KV CO

sRC + 1

s2
(2.207)

from which the corresponding closed-loop function is calculated as

H(s) =

Ip
2πC

KV CO(sRC + 1)

s2 +
Ip
2πC

KV CO +
Ip
2π
KV CORs

≡ ω2
n + 2ζωns

s2 + ω2
n + 2ζωns

(2.208)

that is again a second-order with






















ωn =

√

Ip
2πC

KV CO

ζ =
R

2

√

IpC

2π
KV CO

(2.209)

with a zero at ωzero = −1/(RC). Now we can address the issue of phase noise reduction. For
this purpose, consider a noiseless reference and allow the VCO output to have a spurious
component ϕV CO which can be modeled as a noise input added to the output of a noiseless
VCO (see Figure 2.22).

PFD/CP LPF VCO SS
jn,ref

=0

+

-

jn,A

jn VCO,

jn out,

FIGURE 2.22
Block diagram for calculating the noise transfer function in a PLL.
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Considering only the noisy components of phases we have






ϕn,out = ϕn,A + ϕn,V CO

ϕn,A = −G (s)ϕn,out

(2.210)

from which one gets

N (s) =
ϕn,out
ϕn,V CO

=
1

1 +G(s)
(2.211)

By substitution of Equation 2.207 into Equation 2.211 one obtains the noise transfer
function as

N (s) =
s2

s2 + 2ωnζs+ ω2
n

(2.212)

Note that N(s) ≡ 1 − H(s). As shown in Figure 2.23, Equation 2.212 tells us that
the phase noise of the VCO is reduced within a bandwith defined by ωn, while above this
frequency, it is reported to the output without corrections.

Thus, if we assume for the VCO pure white frequency noise

S1−sided
ϕ (f) = (ν20h0)/f

2 ≡ ∆ν/πf2 (2.213)

then the residual phase variance can be calculated as

σ2 ≡
∫ +∞

0

S1−sided
ϕ (f)|N(f)|2df (2.214)

By plugging Equation 2.213 and Equation 2.212 into Equation 2.214, we obtain

σ2 =
∆ν

π

∫ +∞

0

f2/f4
n

1 + (f/fn)4
df =

∆ν

π
=

∆ν

πfn

∫ +∞

0

z2

1 + z4
dz

=
∆ν√
2fn

(2.215)

where s = i2πf , ωn = 2πfn have been used, ζ = 1/
√
2 has been chosen (critically

damped loop), and z = f/fn has been introduced.

2.6.1.1 Optical phase-locked loops

When studying the beat-note phenomenon, we have already mentioned that, if the output
of two lasers is combined upon the surface of a photodiode, then the inherent non-linearity
of the detector will give rise to an internal oscillating field at a frequency equal to the
difference frequency of the two lasers. Then, the photodiode output signal can be used as
the input to a phase or frequency locking control system which can maintain the frequency
separation between the lasers as a constant. In this case, the beat-note signal plays the role
of the synchronized oscillator (VCO), its frequency being locked against the rf/microwave
reference. Here, the width of the beat-note signal plays the role of ∆ν in Equation 2.215.

One major difficulty of such electronic phase locking is the high level of phase fluctuations
of typical laser sources with respect to conventional signal sources in the rf and microwave
domains [88]. This causes two potential problems: first, the phase-locked loop needs a wide
bandwidth to suppress the phase fluctuations to an acceptable level; and, second, there is a
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FIGURE 2.23
Log-Log plot and Log-Linear plot of the amplitude and the argument of Equation 2.212
with ω = 100 Hz and for two different values of ζ: 0.1 (gray curve) and 0.7 (black curve.)

probability that the instantaneous residual phase error at the phase detector of the PLL may
exceed the detector’s dynamic range. If this occurs, then there may be a permanent loss or
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gain of a whole number of phase cycles between the slave laser diode and the reference laser.
This event termed as cycle slip arises because the output of the phase detector is a periodic
function of the phase. It is clear that when the residual phase variance is significantly smaller
than the range of the phase detector, the probability of a cycle slip is predicted to become
negligible.

Clearly, if the in-loop phase fluctuations are to be below 1 rad, then it is necessary for the
loop bandwidth to exceed the linewidth of the lasers by a significant fraction. For example,
the linewidth of typical free-running laser diodes ranges from a few megahertz to several
hundreds of megahertz, thus placing severe technical requirements on the control systems.
Several approaches have been used to overcome these difficulties [88]:

• High-Bandwidth and High-Gain Electronics. Using state-of-the-art electronics, free-
running diode lasers with linewidths on the order of 10 MHz have been phase-locked. The
widest bandwidth loop achieved was 130 MHz [89].

• Large Dynamic Range Phase Detectors. Instead of using extremely high bandwidths
to suppress the large free-running fluctuations within the dynamic range of a simple mixer,
one can, alternatively, design more complex phase detectors that have broader dynamic
ranges.

Prevedelli et al. designed a digital phase detector with a range of ±32π rad to lock two
diode lasers with a linewidth in the range 25-50 kHz [89]. Using a maximum bandwidth
of 1.7 MHz, the measured mean square phase fluctuations, σ2, were reduced to around
0.2 rad2. More importantly, though, they demonstrated that even using PLL bandwidths
of around 20 kHz, the residual Allan frequency deviation was still reduced to the order of
7 · 10−15/τ . Under similar conditions a normal multiplying mixer-based PLL would have
been cycle slipping so frequently that it would not have been useful. These rubber-band
phase locks allow the experimenter to trade off the phase-lock circuitry speed against
short-term phase fluctuations without needing to compromise long-term accuracy. Such
a system was later perfected by use of an analog+digital phase detector. The analog and
digital detectors are mutually exclusive so that only one of them is active at a given time,
resulting in a phase detector with both the broad capture range of digital circuits and the
high speed and low noise of analog mixers [91]. The rms phase error of the phase lock was
about 100 mrad in a 5 Hz–10 MHz bandwidth. More recently, using an ultralow-noise,
only-digital phase detector and appropriate loop filters, a phase-locked diode laser system
with a residual phase-noise variance less than 0.02 rad2 was also reported [92].

• Pre-stabilization By pre-stabilizing the laser to a reference optical cavity, one can reduce
the free-running linewidth (see Chapter 3 and 4) by 3−5 orders of magnitude, thus relaxing
the requirements of the phase-locking circuit bandwidth.

2.6.2 Injection locking

Injection locking is a non-linear phenomenon that can be observed in many natural os-
cillators when an oscillator is perturbed by a weak signal whose frequency is close to the
oscillator free-running frequency. In some sense, injection locking is a special type of forced
oscillation in non-linear oscillators. Experimentally one observes the following effects: sup-
pose that a signal of frequency ωinj is injected into an oscillator, which has a self-oscillation
(free-running) frequency ω0. When ωinj is quite different from ω0, beats of the two frequen-
cies are observed. When ωinj enters some frequency range very close to ω0 (and if coupling
is strong enough), the beats suddenly disappear, and the oscillator starts to oscillate at ωinj
instead of ω0. The frequency range in which injection locking happens is called the locking
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range. Injection locking also happens when ωinj is close to a harmonic or sub-harmonic of
ω0, i.e., nω0 or 1/nω0. They are called harmonic (or super-harmonic) and sub-harmonic
injection locking, respectively. On the other hand, when the second oscillator merely dis-
turbs the first but does not capture it, the effect is called injection pulling. Injection locking
and pulling effects are observed in numerous types of physical systems; however, the terms
are most often associated with electronic oscillators or laser resonators. In optics, injection
locking has been used in lasers to improve the frequency stability and reduce the frequency
noise of laser diodes. In electronic systems, injection locking is a well known and practical
technique for phase-locked loops (PLLs) to increase pull-in range and reduce output phase
jitter. As a result, fast and accurate prediction of injection locking is very important.

Here we follow the approach given in [93], by modelling the oscillator as a one-port
circuit consisting of a parallel tank, whose loss is represented by G1, and a mildly non-
linear negative conductance −Gm. The injecting (master) oscillator is represented by a
current driver (see Figure 2.24).

In this circuit

C1
d2Vosc
dt2

+ (G1 −Gm)
dVosc
dt

+
1

L1
Vosc =

dIinj
dt

(2.216)

Now let us assume

Iinj (t) = Iinj,pcosωinjt = ℜ
{

Iinj,pe
iωinjt

}

(2.217)

and

Vosc (t) = Venv (t) cos (ωinjt+ θ) = ℜ
{

Venv (t) e
iωinjt+iθ(t)

}

(2.218)

where Venv (t) denotes the envelope of the output. In other words, the output is assumed
to track the input except for a (posssibly time-varying) phase difference. Substituting the
exponential terms in Equation 2.216 and separating the real and imaginary parts, we have























































C1
d2Venv
dt2

− C1

(

ωinj +
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dt
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Venv

+ (G1 −Gm)
dVenv
dt

+
1

L1
Venv = ωinjIinj,psin θ

2C1

(

ωinj +
dθ

dt

)

dVenv
dt

+ C1
d2θ

dt2
Venv

+ (G1 −Gm)

(

ωinj +
dθ

dt

)

Venv = ωinjIinj,pcos θ

(2.219)

To develop more insight, let us study these results within the lock range, i.e., when
dθ/dt = dVenv/dt = 0. Moreover, we assume that the magnitude of the envelope can be

-Gm

+

-

VoscG1
C1

L1Iinj

FIGURE 2.24
One-port representation of an oscillator under injection. (Adapted from [93].)
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approximated as the tank peak current produced by the −Gm circuit, Iosc,p, multiplied by
the tank resistance G−1

1 = QL1ω0 (Venv = QL1ω0Iosc,p), Q being the quality factor of the
tank (note that in a RLC-parallel circuit the quality factor is the reciprocal of that in a
RLC-series circuit (Equation 2.28), while ω0 = 1/

√
L1C1 in both cases). Equations 2.219

thus reduce to














ω0 − ωinj =
ωinjIinj,p
2QIosc,p

sin θ

(G1 −Gm)Venv = Iinj,pcos θ

(2.220)

where ω2
inj −ω2

0 ≈ 2ω0 (ω0 − ωinj) has also been exploited. The first is Adler’s equation
[94], from which the injection locking range is easily retrieved by using ωinj ≈ ω0

ω0 − ωinj =
ω0Iinj,p
2QIosc,p

sin θ (2.221)

Since the values of sin θ can only be between −1 and +1, the maximum locking range is

ωL = ± ω0Iinj,p
2QIosc,p

(2.222)

and the threshold condition is expressed as

Iinj,p
Iosc,p

> 2Q
|ω0 − ωinj |

ω0
(2.223)

Now, by squaring Equations 2.220 and adding the results to each other, we get

(

ω0 − ωinj
ωL

)2

+

(

G1 −Gm
Iinj,p

Venv,p

)2

= 1 (2.224)

For ωinj = ω0

Gm = G1 −
Iinj,p
Venv,p

(2.225)

that is, the circuit responds by weakening the −Gm circuit (i.e., allowing more satura-
tion) because the injection adds in-phase energy to the oscillator. On the other hand, for
|ω0 − ωinj | = ωL, we have Gm = G1, as if there is no injection. Figure 2.25 illustrates the
behavior of Gm across the lock range. While derived for a mildly non-linear oscillator, the
above result does suggest a general effect: the oscillator must spend less time in the linear
regime as ωinj moves closer to ω0. A linear oscillator therefore does not injection lock (a
linear oscillator can be defined here as one in which the loop gain is exactly unity for all
signal levels).

The phase noise of oscillators can be reduced by injection locking to a low-noise source.
Using the one-port model and the identity expressed by Equation 2.225, we can estimate the
phase noise reduction in a mildly non-linear oscillator that is injection-locked to a noiseless
source. As depicted in Figure 2.26, the noise of the tank and the −Gm cell can be represented
as a current source In. In the absence of injection, the (average) value of −Gm cancels G1,
and In experiences the following transimpedance

∣

∣

∣

∣

Vout
In

(iωn)

∣

∣

∣

∣

≈ 1

|2 (ωn − ω0)C1|
(2.226)

Thus, In is amplified by an increasingly higher gain as the noise frequency approaches
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FIGURE 2.25
Behavior of Gm across the lock range according to Equation 2.224.

ω0 (for very small frequency offsets, the noise shaping function assumes a Lorentzian shape
and hence a finite value). Now suppose a finite injection is applied at the center of the
lock range, ωinj = ω0. Then, Equation 2.225 predicts that the overall tank admittance rises
to G1 − Gm = Iinj,p/Venv,p. In other words, the tank impedance seen by In at ω0 falls
from infinity (with no injection) to Venv,p/Iinj,p under injection locking. As the frequency
of In deviates from ω0, Venv,p/Iinj,p continues to dominate the tank impedance up to the
frequency offset at which the phase noise approaches that of the free-running oscillator
(Figure 2.27). To determine this point, we equate the free-running noise shaping function
of Equation 2.226 to Venv,p/Iinj,p and note that C1/G1 = Q/ω0 and Venv,p ≈ Iosc,p/G1

|ωn − ω0| =
ω0

2Q

Iinj,p
Iosc,p

(2.227)

Thus, the free-running and locked phase noise profiles meet at the edges of the lock
range. If the input frequency deviates from ω0, the resulting phase noise reduction becomes
less pronounced. In fact, as ωinj approaches either edge of the lock range, G1 −Gm drops
to zero, raising the impedance seen by the noise current.

In Chapter 4, with the proper identifications, these results will be straightforwardly
extended to the case of a master laser injecting a noisier, but more powerful slave laser.

+

-

VoscC1
L1Iinj In

G1 -Gm

FIGURE 2.26
Model for studying phase noise in an injection-locked oscillator. (Adapted from [93].)
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FIGURE 2.27
Reduction of phase noise due to injection locking. (Courtesy of [93].)

2.7 Phase noise measurements

Finally, let us discuss the measurement techniques which are usually employed to character-
ize the phase and the amplitude in the output of a real (noisy) oscillator. Different methods
are presented which apply to the general oscillator. In the next chapters, we will see how
the described schemes specialize to the case of lasers.

2.7.1 Frequency counting

The frequency of electric signals up to a few GHz can be measured directly with an electronic
counter. In this case, it is the Allan deviation, calculated on the collected data, to provide
information about phase noise. From the previous chapter we learnt that since Galilei and
Huygens invented the pendulum clock, time and frequency have been the quantities that we
can measure with the highest precision. Measuring a frequency, i.e., counting the number
of cycles during a given time interval, is intrinsically a digital procedure that is immune
to many sources of noise. Moreover, the precision of time measurements can be increased
essentially without limit, by increasing the measurement duration and simply counting the
increased number of cycles of some regularly spaced events. However a stronger information
growth with measurement duration is possible if we have a nice source that has coherence
from the beginning of the measurement until the end. For the present purpose we may take
this coherence to mean that, if we know the oscillation cycle phase early in the measurement,
the coherent source is so steady that the oscillation phase could be predicted at later times
near the measurement end to a precision of 1 radian of phase. In this case we can have
a measurement precision which will grow with the measurement interval τ according to
τ3/2 [52]. A simple way to explain this assertion is to suppose we divided the measurement
duration into 3 equal sections, each withN/3 measurements. In the starting zone we compare
the reference clock and the unknown clock, with a relative phase precision which scales as
(N/3)

1/2. Next, in the middle section, we merely note the number of events, N/3. In the last
section we again estimate the analog phase relationship between test and reference waves,
with a relative imprecision which is again (N/3)1/2. Subtracting the two analog phases
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increases the uncertainty of one measurement by a factor 21/2 so, altogether, the relative
precision increases as (1/21/2) · (N/3)3/2.

The conventional counter is a digital electronic device which measures the frequency of
an input signal [95]. The latter is initially conditioned to a form that is compatible with
the internal circuitry of the counter. The conditioned signal appearing at the door of the
main gate is a pulse train where each pulse corresponds to one cycle or event of the input
signal. With the main gate open, pulses are allowed to pass through and get totalized by
the counting register. The time tgate between the opening to the closing of the main gate
is controlled by the time base (usually a 10-MHz quartz oscillator). The frequency, f , of a
repetitive signal is measured by the conventional counter by counting the number of cycles,
ncycle, and dividing it by the time interval, tgate

f = ncycle/tgate (2.228)

The basic block diagram of the counter in its frequency mode of measurement is shown in
Figure 2.28. The time base divider takes the time base oscillator signal as its input and pro-
vides as an output a pulse train whose frequency is variable in decade steps made selectable
by the gate time switch. The time, tgate, of Equation 2.228 or gate time is determined by
the period of the selected pulse train emanating from the time base dividers. The number
of pulses totalized by the counting register for the selected gate time yields the frequency
of the input signal. The frequency counted is displayed on a visual numerical readout.

By summarizing, a frequency counter measures the input frequency averaged over a
suitable time, versus the reference clock. High resolution is achieved by interpolating the
clock signal. Further increased resolution is obtained by averaging multiple frequency mea-
surements highly overlapped. In the presence of white phase noise, the square uncertainty
improves from σ2

ν ∝ 1/τ2 to σ2
ν ∝ 1/τ3 [96]. In this case, however, care must be taken

if the two-sample (Allan) variance is estimated through measurements by such a counter.
Indeed, if the algorithm to retrieve the Allan variance is applied so naive, without properly
accounting for the specific counter internal process, then a distorted representation of the
Allan variance is obtained [97].

2.7.2 Homodyne techniques

For higher frequencies, electronic counters fail and alternative techniques must be used.
One possibility is to use a phase-detector, that is a device capable of converting phase

to amplitude: such a discriminator can be the slope of a Fabry-Perot interferometer, of an

Input Conditioning
Counting Register Display

Main Gate
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Time Base
Oscillator

Input
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counted
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Oscillator

FIGURE 2.28
Basic block diagram of a frequency counter.
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absorption lineshape, or of an electronic filter (Figure 2.29). As already shown (see Equation
2.32), if the oscillator or the filter is tuned such that the carrier frequency of the oscillator
is at the slope, preferably near the inflection point νip, the power transmitted by the filter
varies, to first order, linearly with the frequency of the signal as

V (ν − νip) = V (νip) + (ν − νip)Kφ (2.229)

The detector behind the filter converts the power fluctuations into the fluctuations of
a voltage that can be analyzed by means of a spectrum analyzer. The application of this
method requires knowledge of Kφ and that the contributions of other noise sources do
not affect the measurement. For instance, fluctuations of the center frequency of the filter
or fluctuations of the signal amplitude may mimic a higher spectral density of frequency
fluctuations.

2.7.3 Heterodyne techniques

Alternatively, heterodyne techniques can be used. In this case the oscillator under test
is compared against a reference one. The basic scheme is shown in Figure 2.30 [98]. The
double-balanced mixer, saturated at both inputs, works as a phase-to-voltage converter. For
example, an electronic mixer multiplies two input signals, often termed the RF and LO,
leading to an output signal called the IF. When needed, an optional synthesizer makes the
nominal frequencies equal.

For two input harmonic signals, the output of a doubly balanced mixer contains the sum
and the difference of the two input signals but not the input signals or their harmonics

Sout ∝ cos (ωRF t+ ϕRF ) cos (ωLOt+ ϕLO) =

= (1/2) cos[(ωRF + ωLO)t+ (ϕRF + ϕLO)] +

+(1/2) cos[(ωRF − ωLO)t+ (ϕRF − ϕLO)] (2.230)

When ωRF = ωLO = ω, the output signal consists of an ac component of twice the input
frequency (which can be removed by a low-pass filter) on a dc signal that depends on the
phase difference between the reference and under test signals. Consequently, the mixer can
be used as a discriminator to detect phase fluctuations, provided that the proportionality
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Homodyne measurement of frequency-noise power spectral density by means of a phase
detector.
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Heterodyne approach for characterizing phase noise in oscillators. (Adapted from [98].)

constant contained in Equation 2.230 has to be determined a priori. To have a constant
slope for the phase discriminator, it has to be operated close to 90◦ during the measurement,
where the cosine near zero can be approximated by a linear discriminant curve. This is the
case only if a PLL is used to realize the condition ωRF = ωLO. The PLL uses the signal
from the mixer as the error signal. If the voltage fluctuations from the mixer are measured
by a spectrum analyzer, they are a measure of the fluctuations of the phase difference
provided that amplitude modulation is negligible. These in turn can be attributed to the
phase fluctuations of the oscillator under test only if the phase of the reference oscillator
can be regarded as more stable. Modern spectrum analyzers show a quantity that is directly
related to the spectral density of the fluctuations of the signal. Care has to be taken if a
continuous signal is sampled digitally to obtain spectral densities. It is well known that a
harmonic signal can be sampled digitally unambiguously only if at least two samples are
taken per period T . The corresponding minimal sampling frequency νN = 2/T is referred to
as the Nyquist frequency. Corruption of the power spectral density resulting from insufficient
sampling is referred to as aliasing.

2.7.4 Self-heterodyning

Another useful approach is based on a delay-line measurement (Figure 2.31). The phase
fluctuations of a single oscillator are determined by comparing a portion of the signal under
study with a second part of the the same signal at a previous epoch. To this aim, after
splitting the oscillator output and delaying the signal in one path with respect to the other
one, the two portions are mixed again and amplified.

By inspection of Figure 2.31, in the Laplace domain we have

Φ0 (s) = HΦ (s)Φi (s) (2.231)

where HΦ (s) = 1− e−sτ . Turning the Laplace transforms into power spectra, the above
equation becomes

SΦ0
(f) = |HΦ (f)|2SΦi (f) (2.232)

where
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|HΦ (f)|2 = 4sin2 (πfτ) (2.233)

Equation 2.232 is used to derive the phase noise SΦi
(f) of the oscillator under test.

2.8 Amplitude noise measurements

In the case of amplitude noise, generally the spectrum contains only the white noise h0f0,
the flicker noise h−1f

−1, and the random walk h−2f
−2 [99]

Sα (f) = h0 + h−1f
−1 + h−2f

−2 (2.234)
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From Equation 2.57, the signal power is obtained as

P =
V 2
0

2R
(1 + α)

2 ∼= V 2
0

2R
(1 + 2α) (2.235)

The resistance R is needed in the definition if one identifies V (t) in Equation 2.57 with a
voltage. It is convenient to write P as P = P0 + δP with P0 = V 2

0 /2R and δP = 2P0α. The
amplitude fluctuations are measured through the measurement of the power fluctuation δP

α (t) =
1

2

δP

P0
(2.236)

and of its power spectrum density

Sα (f) =
1

4
SP/P0

(f) =
1

4P 2
0

SP (f) (2.237)

Figure 2.32 shows the basic scheme for the measurement of AM noise.
The detector characteristic is vd = kdP ; hence, the ac component of the detected signal is

ṽd = kdδP so that ṽd (t) = 2kdP0α (t). Turning voltages into spectra, the latter relationship
becomes

Sα (f) =
1

4k2dP
2
0

Sv (f) (2.238)

Due to linearity of the network that precedes the detector (directional couplers, cables,
etc.), the fractional power fluctuation δP/P0 is the same in all the circuits, thus α is the
same. As a consequence, the separate measurement of the oscillator power and of the atten-
uation from the oscillator to the detector is not necessary. The straightforward way to use
Equation 2.238 is to refer P0 at detector input, and ṽd at the detector output. Interestingly,
phase noise has virtually no effect on the measurement. This happens when the bandwidth
of the detector is much larger than the maximum frequency of the Fourier analysis; hence,
no memory effect takes place. Of course, this measurement gives the total noise of the source
and of the instrument, which can not be separated. However, if a reference source is available
whose AM noise is lower than the detector noise, the latter can be previously estimated. If
this is not the case, it is useful to compare two detectors, as in Figure 2.32B. The trick is
to measure a differential signal g (Pb − Pa), which is not affected by the power fluctuation
of the source (this, of course, relies upon the assumption that the two detectors are about
equal). The lock-in helps in making the output independent of the power fluctuations. Some
residual PM noise has no effect on the detected voltage.

2.8.1 AM noise in optical systems

As we shall see in Chapter 4, Equation 2.57 also describes a quasi-perfect optical signal,
when the voltage is replaced by the electric field

E (t) = E0 [1 + α (t)] cos [2πν0t+ ϕ (t)] (2.239)

Yet, the preferred physical quantity used to describe the AM noise is the Relative In-
tensity Noise (RIN), defined as

RIN = SδI/I0 (f) (2.240)

that is, the power spectrum density of the normalized intensity fluctuation [I(t)−I0]/I0.
The RIN includes both fluctuation of power and the fluctuation of the power cross-section
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distribution. If the latter is constant in time, the optical intensity is proportional to power
δI/I0 = δP/P0. Then, in low-noise conditions (|δI/I0| ≪ 1), the power fluctuations are
related to the fractional amplitude noise α by δI/I0 = δP/P0 = 2α. Therefore we have

RIN (f) = 4Sα (f) (2.241)

Generally laser sources show a noise spectrum of the form

RIN (f) = h0 + h−1f
−1 + h−2f

−2 (2.242)

in which the flicker noise can be hidden by the random walk. Additional fluctuations
induced by the environment may also be present.
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Passive resonators

A tympanic resonance, so rich and

overpowering that it could give an air of

verse to a recipe for stewed hare.

John McPhee

Some people will believe anything if you

whisper it to them.

Miguel de Unamuno

For many contemporary physics experiments, the use of microwave and optical res-
onators has become a powerful tool for enhancement in detection sensitivities, nonlinear
interactions, and quantum dynamics. Most often, the term cavity is used to describe such
electromagnetic resonators. This term has been taken over from microwave technology,
where resonators really look like closed cavities, whereas optical resonators traditionally
have an open kind of setup. That difference in geometry is related to the fact that optical
resonators are usually very large compared with the optical wavelength, whereas microwave
cavities are often not much longer than a wavelength. As discussed in the course of this
book, microwave and optical cavities allow one to extend the interaction length between
matter and field, to build up the optical power, to impose a well-defined mode structure on
the electromagnetic field, to implement extreme nonlinear optics, and to study manifestly
quantum mechanical behavior associated with the modified vacuum structure and/or the
large field associated with a single photon confined to a small volume [100].

Here we shall examine the basic properties of microwave and optical resonators from
which we will draw at the appropriate time in the next chapters. We start by considering
microwave cavities which represent, in our context, the basis of operation for masers, cesium
fountains, and cryogenic sapphire dielectric resonators. Then, we will deal with optical
cavities. In a quite general way, these can be defined as arrangements of optical components
allowing a beam of light to circulate in a closed path. Such resonators can be made in
very different forms. In a traditional approach, an optical resonator can be made from bulk
optical components, like dielectric mirrors or prisms. Another common realization is based
on fiber components, where the light is guided rather than sent through free space. Often,
waveguide resonators are also implemented in the form of integrated optics. Mixed types of
resonators, containing both waveguides and parts with free-space optical propagation, also
exist. This happens, for instance, in some fiber lasers, where bulk optical components need to
be inserted into the laser resonator for various purposes. In the past two decades, whispering
gallery mode (WGM) microcavities, featuring the highest Q-factors, have attracted a lot of
interest. They will be discussed in certain detail in the last part of this chapter. As one can
easily guess, countless experimental activities have benefited from the use of optical cavities
in their diversified realizations. Of course, the most important utilization is in laser physics
itself, where the resonator losses are compensated by a gain medium to maintain or build
up optical power. Other significant applications will be mentioned in a short while as soon
as properties of each specific kind of resonator are derived.
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3.1 Microwave cavities

The microwave range of the e.m. spectrum covers frequencies between about 1 GHz and
100 GHz. Such high-frequency waves cannot be confined in electric wires; they are usually
transmitted through hollow conducting tubes known as waveguides. Accordingly, microwave
cavities are completely enclosed metal boxes in which a standing wave can be produced. In
general, the dimensions of the cavity are of the order of a wavelength and thus for 30 GHz
the dimensions are of the order of 1 cm.

The electric and magnetic fields within a waveguide are given by solutions of Maxwell’s
equations with the boundary conditions set by the conducting walls of the waveguide
[65, 101]. Basically, if the waveguide walls are assumed to be perfect conductors, the electric
(magnetic) field cannot have a component along (perpendicular to) the boundary surface.
A microwave cavity is usually constructed either by closing off the ends of a short section
of a rectangular (or cylindrical) waveguide or from high-permittivity dielectric material (di-
electric resonator). Radiation can be coupled from a waveguide into a microwave cavity by
means of a suitable aperture or coupling device (a small wire probe or a loop). For specific
frequencies, reflections within the cavity can set up standing waves. At these resonant fre-
quencies, the cavity acts like a termination nearly matched to the characteristic impedance
of the waveguide and the power reflected back into the waveguide is reduced. The cavity
resonance can be precisely studied by measuring the ratio of reflected to incident power as
a function of frequency near the resonance. A practical situation of great importance is the
propagation or excitation of electromagnetic waves in hollow metallic right cylinders (see
Figure 3.1). As already mentioned, such geometry is widespread in frequency standards,
e.g., in the hydrogen maser or the cesium fountain clock.

For the moment, the boundary surfaces are presumed to be perfect conductors. In this
configuration, assuming for the fields inside the cavity a sinusoidal time dependence eiωt,
Maxwell’s equations (in a volume of space which is free of currents and charge and is filled
with a uniform, non-dissipative medium) take the form















∇×E= −iωB
∇×B=iωεµE
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FIGURE 3.1
Hollow metallic right cylinder for the study of microwave cavities.
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where ε=ε0εr and µ = µ0µr ≃ µ0 are the permittivity and permeability of the medium,
respectively. From Equation 3.1 and by a little algebra one obtains the well-known Helmholtz
equation

(

∇2 + k20
)

{

E

B

}

= 0 (3.2)

where k20 = εµω2. Because of the cylindrical geometry, it is useful to single out the
spatial variation of the fields in the z direction and to assume

{

E (r) = E (r, φ) e±ikz

B (r) = B (r, φ) e±ikz
(3.3)

with k the wavenumber in the waveguide. Recalling the explicit expression for the rotor
in cylindrical coordinates

∇×G =

(

1

r

∂Gz
∂φ
− ∂Gφ

∂z

)

êr +

(

∂Gr
∂z
− ∂Gz

∂r

)

êφ

+

[

1

r

∂ (rGφ)

∂r
− 1

r

∂Gr
∂φ

]

êz (3.4)

and using the first two Maxwell’s equations together with Equation 3.3, we are able to
express the radial and azimuthal components of the fields in terms of the axial ones

Er (r, φ, z) =
ik

k2 − k20

(

∓∂Ez (r, φ, z)
∂r

+
ω

k

1

r

∂Bz (r, φ, z)

∂φ

)

(3.5)

Eφ (r, φ, z) =
ik

k2 − k20

(

∓1

r

∂Ez (r, φ, z)

∂φ
− ω

k

∂Bz (r, φ, z)

∂r

)

(3.6)

Br (r, φ, z) =
ik

k2 − k20

(

∓∂Bz (r, φ, z)
∂r

− µεω
k

1

r

∂Ez (r, φ, z)

∂φ

)

(3.7)

Bφ (r, φ, z) =
ik

k2 − k20

(

∓1

r

∂Bz (r, φ, z)

∂φ
+ µε

ω

k

∂Ez (r, φ, z)

∂r

)

(3.8)

Therefore, the wave equations have to be solved only for the z components. Then,
Equations 3.5, 3.6, 3.7, 3.8 allow retrieval of the remaining components. On the other hand,
by substitution of Equation 3.3 into Equation 3.2, we have for the z components

∇2 [Ez (r, φ)] +
(

k20 − k2
)

Ez (r, φ) = 0 (3.9)

∇2 [Bz (r, φ)] +
(

k20 − k2
)

Bz (r, φ) = 0 (3.10)

Since the boundary conditions on the electric and magnetic fields cannot be satisfied
simultaneously, solutions to the above equations divide themselves into two distinct cate-
gories:

• Transverse magnetic (TM) waves:
Bz = 0 everywhere; boundary condition: Ez perpendicular to S

• Transverse electric (TE) waves:
Ez = 0 everywhere; boundary condition: Bz parallel to S
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where S is the surface of the cylinder. By using the explicit form for the Laplacean
operator in cylindrical coordinates

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2
(3.11)

and introducing the quantity γ2 = k20 − k2, Equations 3.9, 3.10 provide
[

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+ γ2

]

Ez (r, φ) = 0 (3.12)

and the same equation for Bz (r, φ). Now, let us look for solutions of the form

Ez (r, φ) = A (r) Φ (φ) (3.13)

By insertion of Equation 3.13 into Equation 3.12, one derives

r2

A (r)

[

∂2

∂r2
A (r) +

1

r

∂

∂r
A (r) + γ2A (r)

]

= −

∂2Φ (φ)

∂φ2

Φ (φ)
(3.14)

whose left (right) side depends only on r (φ). This implies that both sides are equal to
the same real constant m2, providing the two following differential equations

∂2

∂r2
A (r) +

1

r

∂

∂r
A (r) +

(

γ2 − m2

r2

)

A (r) = 0 (3.15)

∂2Φ (φ)

∂φ2
+m2Φ (φ) = 0 (3.16)

The latter equation has solution e±imφ; moreover, for the potential to be single-valued
when the full azimuth is allowed, m must be an integer (m = 0, 1, 2, . . .). Concerning
Equation 3.15, it can be put in a standard form by the change of variable ξ = γr:

∂2

∂ξ2
A (ξ) +

1

ξ

∂

∂ξ
A (ξ) +

(

1− m2

ξ2

)

A (ξ) = 0 (3.17)

that is Bessel’s differential equation. Its general solution is formed by means of two sets
of functions, the Bessel functions of first kind Jm (ξ), and the Bessel functions of second
kind (also known as Weber functions) Ym (ξ):

A (ξ) = C1Jm (ξ) + C2Ym (ξ) (3.18)

However, since Ym (ξ) is divergent at ξ = 0, in order to obtain a physically meaningful
result, the associated coefficient C2 is forced to be zero. As a consequence, for each m, the
solutions of Equation 3.17 are given by the Bessel functions of the first kind Jm (γr). Let
us consider first TM solutions. By virtue of the boundary condition, among these we have
to choose only those for which Ez (r = R, φ) = 0. Thus, if we denote with ξmn = γmnR the
n-th root of the equation Jm (γR) = 0, the solution for the z component of the electric field
is

Ez (r, φ, z) = Ez (r, φ) e
−ikz = Jm

(

ξmn
R

r

)

· e±imφe±ikz≡ Ψe±ikz (3.19)

Then, let us search for TE solutions. These have the same form (Bz (r, φ) ∝ Jme
±imφ)

but the argument of Jm is found by imposing that Eφ (r = R) = 0 and Br (r = R) = 0. By
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TABLE 3.1
Roots of the Bessel function of the first kind (Jm(x) = 0).

m xm1 xm2 xm3 xm4

0 2.405 5.520 8.654 11.792
1 3.832 7.016 10.173 13.324
2 5.136 8.417 11.620 14.796
3 6.380 9.761 13.015 16.223

TABLE 3.2
Maxima or minima of the Bessel function of the first kind.

m xm1 xm2 xm3 xm4

0 3.832 7.016 10.173 13.324
1 1.841 5.331 8.536 11.706
2 3.054 6.706 9.936 13.170
3 4.201 8.015 11.346 14.586

virtue of Equation 3.6 (or Equation 3.7) and the fact that Ez = 0, this is equivalent to the

condition ∂Jm

∂ξ

∣

∣

∣

ξ=γR
= 0. Therefore, if we denote with ξ′mn the n-th root of the equation

∂Jm

∂ξ

∣

∣

∣

ξ=γR
= 0, the solution for the z component of the magnetic field is given by

Bz (r, φ, z) = Bz (r, φ) e
−ikz = Jm

(

ξ′mn
R

r

)

· e±imφe±ikz≡ Υe±ikz (3.20)

The first few values of the roots ξmn and ξ′mn are given in Tables 3.1 and 3.2.
Now, we have to impose the boundary conditions at the plane surfaces. To this aim,

we must superimpose waves moving in both the positive and negative z direction. Starting
with TM fields, from Equation 3.19 we get

Ez (r, φ, z) =
Ψ

2

(

e+ikz + e−ikz
)

= Ψcos kz (3.21)

On the other hand, from Equations 3.5, 3.6, we obtain

E+
⊥ (r, φ, z) =

−ik
k2 − k20

∇⊥ [Ez (r, φ, z)]

=
−ik

k2 − k20
e+ikz∇⊥Ψ for e+ikz (3.22)

and

E−
⊥ (r, φ, z) =

ik

k2 − k20
e−ikz∇⊥Ψ for e−ikz (3.23)

where the subscript ⊥ denotes the transverse components. For clarity sake, the vectors
∇⊥ ≡

(

∂
∂r ,

1
r
∂
∂φ

)

and E⊥ (r, φ, z) ≡ (Er (r, φ, z) , Eφ (r, φ, z)) have been introduced. From
the above equations it follows
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E⊥ (r, φ, z) =
1

2

[

E+
⊥ (r, φ, z) + E−

⊥ (r, φ, z)
]

=
k (∇⊥Ψ)

k2 − k20
sin kz (3.24)

If the plane boundary surfaces are at z = 0 and z = L, Equation 3.24 together with
the boundary condition E⊥ (r, φ, z = 0) = E⊥ (r, φ, z = L) = 0 implies that k = qπ/L
(q = 0, 1, 2, . . .). By summarizing these results, eigenoscillations being TM with respect to
z are given by























Ez (r, φ, z) = E0Jm

(

ξmn
R

r

)

e±imφ cos
(qπz

L

)
m = 0, 1, 2, ...
n = 1, 2, 3, ...
q = 0, 1, 2, ...

Bz = 0 everywhere

(3.25)

Similarly, for TE fields, the condition Bz (r, φ, z = 0) = Bz (r, φ, z = L) = 0 requires
that eigenoscillations being TE with respect to z are given by























Bz (r, φ, z) = B0Jm

(

ξ′mn
R

r

)

e±imφ sin
(qπz

L

)
m = 0, 1, 2, ...
n = 1, 2, 3, ...
q = 1, 2, 3, ...

Ez = 0 everywhere

(3.26)

In Equations 3.25, 3.26 E0 and B0 are the field amplitudes. The field configurations
determined by the integersm,n, and q are called the modes of the cavity. The corresponding
eigenvalues are found by expressing the relationship γ2 = k20 − k2 as

γ2mn = µεω2 −
(qπ

L

)2

(3.27)

which returns

ν(TM)
mnq =

1

2π
√
µε

√

ξ2mn
R2

+
q2π2

L2
(3.28)

and

ν(TE)
mnq =

1

2π
√
µε

√

(ξ′mn)
2

R2
+
q2π2

L2
(3.29)

These formulas show that resonant cavities have discrete frequencies of oscillation with
a definite field configuration for each resonance frequency. This implies that, if one were
attempting to excite a particular mode of oscillation in a cavity by some means, no fields
of the right sort could be built up unless the exciting frequency were exactly equal to the
chosen resonance frequency. In actual fact, there will not be a delta function singularity,
but rather a narrow band of frequencies around the eigenfrequency over which appreciable
excitation can occur. An important source of this smearing out of the sharp frequency of
oscillation is the dissipation of energy in the cavity walls and perhaps in the dielectric filling
the cavity. For finite conductivity of the walls of the resonator, the high-frequency electro-
magnetic field penetrates into the metallic walls of the cavity. At the same time the electric
currents in the walls suffer from ohmic losses and the eigenoscillations are damped. The
field distribution inside cylindrical cavities, however, does not differ considerably from that
of an ideal resonator with infinite conductivity. A fraction of the energy of the electromag-
netic wave is dissipated continuously to heat by the ohmic losses of the wall currents and
hence the energy flux in the wall decreases exponentially with a characteristic length. In a
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regular conducting material such as, e.g., copper, this characteristic length is given by the
skin depth δS of a few micrometers. In a superconducting material the penetration depth
is given by the much smaller London depth of, e.g., λL ≈ 30 nm in niobium. As extensively
discussed in Chapter 2, a measure of the sharpness of the cavity response to an external
excitation is given by the Q factor, defined as the ratio between a particular resonance
frequency and the corresponding FWHM (Q = ω0/FWHM = ω0/2Γ). The cavity losses
also have the effect to shift the resonance frequency from the ideal (in the absence of losses)
value ω0 by the amount (see Equation 2.8)

∆ω =
√

ω2
0 − Γ2 − ω0 = ω0

√

1−
(

1

2Q

)2

− ω0

≃ ω0

√

(

1− 1

2Q

)2

= − ω0

2Q
(3.30)

By combination of Equation 3.30 and Equation 3.28, we get

ν
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mnq,Q =
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2π
√
µε

√
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+
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(

1− 1
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(3.31)

that, for an evacuated cavity, provides
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mnq,Q
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√
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(
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2π

√
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q2π2

L2

(

1 +
1

2Q

)

(3.32)

which proves Equation 1.8 introduced in Chapter 1 when discussing the experiment by
Louis Essen.

It is worth anticipating here that in Cs fountains and hydrogen masers the TE011 reso-
nance is most often used to interrogate or to excite magnetic hyperfine transitions: atoms
supposed to interact with the magnetic field enter and leave the resonator through small
holes in the center of the bottom and top of the right circular cylinder (see Chapter 7).

Let us close this section with a few considerations about the typical performance of
microwave cavities. Dielectric loss of air is extremely low for high frequency electric or
magnetic fields. Generally, losses originating from wall currents are small too. Just to give
an idea, copper cavities exhibit a typical Q on the order of 105. Nevertheless, they tend
to oxidize, which increases their loss. For this reason, copper cavities are usually plated
with silver. Even though gold is not a good conductor compared to copper, it still prevents
oxidation and the resulting deterioration of Q factor over time. However, because of its
high cost, it is used only in the most demanding applications. For example, some satellite
resonators are silver plated and covered with a gold flash layer. Then, the current mostly
flows in the high-conductivity silver layer, while the gold flash layer protects the silver one
from oxidizing. When higher Q factors are required, like in advanced fundamental research,
superconducting materials are employed; for example, superconducting niobium at 1.8 K
leads to a quality factor as high as 1010. This application will be detailed in Chapter
7, where, based on the above treatment, sapphire dielectric microwave resonators will be
presented. In such a frame, two particular configurations may serve as further illustrative
examples for the current and remaining discussion. The first type is a low-order TE-mode
resonance of a cylindrical sapphire puck having its surface coated with a superconducting
material. This arrangement can be thought of as a vacuum cavity filled with the dielectric
sapphire material. The second type is the whispering gallery mode configuration. It consists



94 Laser-based measurements for time and frequency domain applications

of a sapphire ring which confines the electromagnetic energy to the dielectric region by a
physical mechanism not unlike total internal reflection in optical systems (see Section 3.6).

3.2 Basic properties of bulk optical cavities

As we try to increase the frequency from microwave to light, we realize that, using the
closed cavity argument, we must have a cavity whose dimensions should be of the order of 1
micron. At the beginning of laser research, this was an important hurdle; however, scientists
realized that there is no necessity for a closed cavity. We can use an open cavity which, for
the case of lasers, is usually nothing other than two facing mirrors. As mentioned, we will
divide the class of resonators operating in the optical frequency domain into three main
subcategories: bulk resonators, optical-fiber cavities, and WGM microcavities.

Since in traditional optical cavities the wavelength of about one micrometer is typically
very small compared to the dimensions of the resonator, diffraction effects are often not
very relevant and the resonator structures need not be confined in all three dimensions but
can be set up using discrete mirrors. The most simple arrangement consists of two reflecting
mirrors facing each other (separated by the distance L), but more than two mirrors can be
arranged in a ring or bow-tie configuration (Figure 3.2).

Two approaches are useful for describing the operation of an optical resonator:

• The simplest approach is based on ray optics. Optical rays are traced as they reflect
within the resonator; the geometrical conditions under which they remain confined are
determined.

• Wave optics is used to determine the resonator modes, i.e., the resonance frequencies and
wavefunctions of the optical waves that exist self-consistently within the resonator.

FIGURE 3.2
Some configurations of bulk, mirror-based optical cavities.
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3.2.1 Fabry-Perot etalon

Before attacking with either the ray optics or the wave optics treatment, let us first consider
a paradigmatic one-dimensional configuration consisting of two flat mirrors at a distance L.
This simple resonator, known as Fabry-Perot (FP) etalon, indeed allows one to understand
much of the physics of traditional optical cavities. Note that, as we will see in a short
while, such a cavity is not stable and the light walks off perpendicular to the cavity axis.
Nevertheless, this case can be considered physically meaningful if the flat mirrors have
effectively infinite extent and the input light can be approximated by a perfect plane wave.
Any given mirror may be characterized by its field amplitude reflection coefficient r and
its transmission coefficient t. In general these are complex quantities. Typically we are
interested in the intensity reflectivity R = |r|2 and transmission T = |t|2. Let us neglect
mirror losses for the moment and let the input (output) mirror coefficients be r1 and t1 (r2
and t2). It is convenient to write these in polar form, such as r1 = |r1| eiφr1 =

√
R1e

iφr1 . If
the input field is E0, with reference to Figure 3.3, the amplitude of the electric field internal
to the cavity is given by

Ei = t∗1E0

∞
∑

n=0

(

r1r2e
2ikL

)n
=

t∗1E0

1− r1r2e2ikL
(3.33)

where k = 2π/λ (we assume unitary refractive index inside the cavity).
The corresponding intensity is

Ii = |Ei|2 =
T1

∣

∣1−
√
R1R2e2ikL+iφr1+iφr2

∣

∣

2 I0 =
T1

∣

∣1−
√
R1R2eiΩ

∣

∣

2 I0 (3.34)

where Ω =2kL+ φr1 + φr2. The transmitted field is easily calculated from the internal
field as

Et = Eie
ikLt2 =

t∗1t2e
ikL

1− r1r2e2ikL
E0 (3.35)
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FIGURE 3.3
Fabry-Perot etalon.
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such that the transmitted intensity is

It = |Et|2 =
T1T2

∣

∣1−
√
R1R2eiΩ

∣

∣

2 I0 (3.36)

The field reflected from the resonator is actually the coherent sum of two different fields:
the promptly reflected beam, which bounces off the first mirror and never enters the cavity;
and a leakage beam, which is the small part of the standing wave inside the cavity that
leaks back through the input mirror:

Er = −r∗1E0 + eikLr2e
ikLt1Ei =

[

−r∗1 +
T1r2e2ikL

1−
√
R1R2eiΩ

]

E0 (3.37)

The fact that the directly reflected light is described by −r∗1E0 rather than simply r1E0

arises from imposing energy conservation constraints on a single mirror (Stokes relations)
[102]. By a little algebra, the reflected intensity is obtained as

Ir = |Er|2 =

∣

∣

∣

∣

−1 +
(

1 +
T1
R1

)√
R1R2e

iΩ

∣

∣

∣

∣

2

∣

∣1−
√
R1R2eiΩ

∣

∣

2 R1I0 (3.38)

• Let us first consider the transmitted intensity. For normal incidence onto an ideal dielectric
mirror we can assume φr1 = φr2 = π, whereupon

It =
T1T2I0

∣

∣1−
√
R1R2eiΩ

∣

∣

2 =
T1T2I0

1 +R1R2 − 2
√
R1R2 cos (2kL)

=
T1T2I0

(

1−
√
R1R2

)2
+ 4
√
R1R2 sin

2

(

2πL

c
ν

) (3.39)

From the above expression, one can easily recognize that It peaks at wavenumbers kmL =
mπ or equivalently at frequencies νm = mc/2L, where m is an integer and c the speed of
light. The separation between adjacent peaks, called the free spectral range, is given by

FSR = νm+1 − νm =
c

2L
(3.40)

that is the inverse of the round-trip travel time τr (equivalently, the path traveled by
light in a single round-trip is an integer number of wavelengths of light). This condition
can be used to instantly derive the expression for the free spectral range of any geometric
arrangement of plane mirrors (provided that each mirror reflection introduces a phase shift
of π). Just as an example, for the equilater ring cavity shown in Figure 3.2 we have FSR =
1/τr = 1/3d/c = c/3d. Alternatively, the longitudinal modes can be derived by imposing
the condition that a mode is a self-reproducing wave, i.e., a wave that reproduces itself after
a single round-trip. In the case of the ring cavity, for instance, the phase shift imparted
by a single round-trip of propagation is 3kd while the phase shift imparted by reflection is
3π (π at each mirror). Thus, the self-reproducing condition on the phase translates into:
3kmL + 3π = m2π which yields 3L (km+1 − km) = 2π that is νm+1 − νm = c/(3d). Note
the strict analogy of this condition with the Barkhausen criterion in a positive feedback
oscillator requiring that the output of the system be fed back in phase with the input.
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The linewidth of the peaks in the FP transmission can be readily derived by observing
that in the proximity of the m-th peak we have

sin2
(

2πL

c
ν

)

≃ 4π2L2

c2
(ν − νm)

2 (3.41)

In this approximation, the resonance curve becomes a Lorentzian whose FWHM is

δν =
1−
√
R1R2

π (R1R2)
1/4

c

2L
=
FSR

F (3.42)

where the cavity finesse

F =
π (R1R2)

1/4

1−
√
R1R2

(3.43)

has been defined. For a symmetrical (R1 = R2 = R), high-finesse cavity, the above
formula simplifies to

F =
π
√
R

1−R ≃
πR

1−R ≃
π

1−R (3.44)

Now one can express the cavity transmission in terms of the cavity finesse and free spectral
range

It =
Imax

1 +

(

2

π
F
)2

· sin2
( π · ν
FSR

)

(3.45)

where Imax = T1T2I0/
(

1−
√
R1R2

)2
. Then, for high finesse values, the transmission

peaks will be narrow compared with FSR (see Figure 3.4).

This means that a Fabry-Perot etalon may be used as a sharply tuned optical filter or
a spectrum analyzer. Indeed, if we scan the cavity length (for example by attaching one
mirror to a piezoelectric transducer element), the resonant frequencies are scanned too. As
a consequence, if the injected light contains frequencies in a range around some resonant
frequency, then one can record the source spectrum. Because of the periodic nature of the
spectral response, however, the spectral width of the measured light must be narrower
than the free spectral range in order to avoid ambiguity. Otherwise, it is necessary to
use the FP in series with some other wavelength selective device such as, for instance,
a grating or prism monochromator. Moreover, it is worth observing that, if the spectral
width Γ (let us say the full width at half maximum) of the light source under test is
larger than the ratio FSR/F , the signal at the FP output is a convolution between the
FP transfer function and the input spectrum. To see this, consider a Lorentzian profile
for the input light source

L (ν) =
L0

(ν − ν0)2 + Γ2/4
(3.46)

where ν0 is the emission center frequency. On the other hand, close to a resonance, Equa-
tion 3.45 can be written in the form
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FIGURE 3.4
Fabry-Perot transmission according to Equation 3.45 for three different finesse F values: 5,
25, 80. Higher finesse values correspond to narrower transmission peaks.

It =
Imax

1 +
4F2

FSR2 · (ν − νm)
2

(3.47)

Then, the effect of scanning the FP resonance around ν0 is simulated by taking νm = ν0+y
with y varying in the interval (−∆,+∆) with ∆ ≫ Γ. Without loss of generality we can
take ν0 = 0, such that the FP output is determined as

Conv(y) ≡ V (y)

Imax · L0
=

+∆
∫

−∆

1

1 +
4F2

FSR2 · (ν − y)
2

· 1

ν2 + Γ2/4
dν (3.48)

A plot of Equation 3.48 is shown in Figure 3.5. As a further example, consider a two-mode
input light source modelled as

L (ν) =
L1

(ν − ν1)2 + Γ2/4
+

L2

(ν − ν2)2 + Γ2/4
(3.49)

with L2 < L1 and |ν2 − ν1| > 2Γ. In this case, Equation 3.48 becomes

Conv′(y) ≡ V
′

(y)

ImaxL1
=

+∆
′

∫

−∆′

1

1 +
4F2

FSR2 (ν − y)2

·
[

1

(ν − ν1)2 + Γ2/4
+

L2/L1

(ν − ν2)2 + Γ2/4

]

dν (3.50)
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FIGURE 3.5
(a) Plot of Conv(y) for F = 5000 and three different values of Γ/FSR (2 · 10−3, 2 · 10−4

and 2 ·10−5); integration was performed with ∆/FSR = 0.01 MHz. (b) Plot of Conv′(y) for
L2/L1 = 0.2, F = 5000, ν1 = 0, ν2/FSR = 8 · 10−3, and Γ/FSR = 2 · 10−3; integration
was performed with ∆′/FSR = 0.02.

The result of this integration is shown in frame b of Figure 3.5.

In light of the above discussion, it is obvious that another application of a FP etalon is
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to filter the frequency content of the incident optical radiation. As we will see in the next
chapter, etalons are used, for example, to construct single-mode lasers. Without an etalon,
a laser will generally produce light over a wavelength range corresponding to a number of
cavity modes. Inserting an etalon into the laser cavity, with well-chosen finesse and free
spectral range, can suppress all cavity modes except for one, thus changing the operation
of the laser from multi-mode to single-mode.

Note that, besides shifting the resonance position, a change ∆L in the cavity length also
affects the value of the free spectral range, albeit to a much lower extent

∆νm = −νm
∆L

L
∆FSR = −FSR∆L

L
⇒ ∆νm

∆FSR
=

νm
FSR

(3.51)

Hence, for a typical optical frequency (100 THz) and FSR = 1 GHz, we have ∆νm =
105∆FSR.

• In order to study the behavior of the intensity internal to the cavity, Equation 3.34 must
be used. On resonance and for a symmetrical cavity, we have

Ii =
T1I0

(

1−
√
R1R2

)2 =
I0

1−R ≃
F
π
I0 (3.52)

For example, a finesse F ≃ 30000 gives an enhancement in the intra-cavity intensity of
about 10000. This can be exploited in several applications for which concentration of a
huge optical power around a particular frequency may be required. Cavity-enhanced sub-
Doppler saturation spectroscopy (Chapter 6) or non-linear optics processes (Chapter 4)
just represent two examples.

• A detailed discussion on the behavior of the reflected intensity (Equation 3.38) will be
given in Chapter 4 when the Pound-Drever-Hall method will be presented.

The results so far describe an ideal cavity, in which there is no absorption or other losses
of light inside the cavity. In practice, no mirror is perfect: the mirror material absorbs some
amount of the incident light; furthermore the mirror surface is also always imperfect and
scatters some amount of light. Moreover, the finite size of the mirrors causes a fraction of the
light to leak around the mirror and thereby to be lost. All these loss sources can be lumped
into an effective reduced mirror reflectance (R′

1, R′
2). Finally, losses due to absorption and

scattering in the medium between the mirrors must also be included. If αs denotes the
absorption coefficient of the medium and Lambert-Beer law is used, the overall intensity
attenuation factor in a single round-trip is

a = R′
1R′

2e
−2αsL ≡ e−2αrL (3.53)

where the last equality holds by definition of the following effective overall distributed-
loss coefficient

αr = αs +
1

2L
ln

1

R′
1

+
1

2L
ln

1

R′
2

≡ αs + αm1 + αm2 (3.54)

In this case the cavity finesse is calculated from Equation 3.43 by replacing the product
R1R2 by the factor a
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F =
πe−

αrL
2

1− e−αrL
≃ π

αrL
(3.55)

where αrL≪ 1 has been assumed. By substitution of Equation 3.55 into Equation 3.42,
we obtain

δν =
cαr
2π

=
1

2πτp
(3.56)

where the photon lifetime τp = 1/(cαr) has been defined, cαr representing the loss per
unit time. Being a manifestation of the time-frequency uncertainty relation, Equation 3.56
states that the resonance line broadening is governed by the decay of optical energy arising
from resonator losses. In summary, three parameters are convenient for characterizing the
losses in an optical resonator of length L: the finesse F , the loss coefficient αr (expressed in
cm−1), and the photon lifetime τp (in seconds). In addition, we introduce the quality factor
Q defined, as usual, as

Q =
ν0
δν

=
ν0
FSR

F (3.57)

Since optical resonator frequencies ν0 are typically much greater than the mode spacing
FSR, we have Q≫ F . The quality factor of an optical resonator is usually far greater than
that of a typical resonator at microwave frequencies. Just as an example, for F = 10000,
ν0 = 100 THz, and FSR = 1 GHz, we have Q=109.

3.2.2 Paraxial ray analysis

As already mentioned, the planar-mirror resonator configuration discussed above is highly
sensitive to misalignment. If the mirrors are not perfectly parallel, or the rays are not
perfectly normal to the mirror surfaces, they undergo a sequence of lateral displacements
that eventually causes them to wander out of the resonator. Spherical-mirror resonators, in
contrast, provide a more stable configuration for the confinement of light that renders them
less sensitive to misalignment under certain geometrical conditions. Such cavities consist of
two spherical mirrors of radii R, separated by a distance L. The centers of the mirrors define
the optical axis, about which the system exhibits circular symmetry. Each of the mirrors can
be concave (R < 0) or convex (R > 0). Obviously, the planar-mirror resonator is a special
case for which R1 = R2 =∞. We first examine the conditions for the confinement of optical
rays [103]. Then, we shall determine the resonator modes. The propagation of paraxial rays
through various optical structures can be described within the ABCD formalism [102], where
the ray is characterized by its distance x from the optical axis and by its slope x′ (assumed
to be small) with respect to that axis, and a single optical element is characterized by its
own ABCD matrix (generally with determinant 1).

The ray path through a given optical element is given by
(

x2
x′2

)

=

(

A B
C D

)(

x1
x′1

)

(3.58)

where x1, x′1 are the input quantities and x2, x′2 are the output quantities. Now, the most
simple arrangement for an optical resonator consists of two reflecting mirrors facing each
other separated by the distance L. The effect on the light rays that bounce back and forth
between these mirrors is the same as in a periodic sequence of identical optical systems.
The ray transfer through n consecutive elements of the sequence is described by the n-th
power of the matrix. This can be evaluated by means of Sylvester’s theorem
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(

A B
C D

)n

=
1

sinΘ

(

Asin[nΘ]− sin [(n− 1)Θ] Bsin[nΘ]
Csin[nΘ] Dsin[nΘ]− sin [(n− 1)Θ]

)

(3.59)

where cosΘ = 1
2 (A+D). Sequences are stable when the trace obeys the inequality

−1 < 1

2
(A+D) < 1 (3.60)

Inspection of Equation 3.59 shows that rays passing through a stable sequence are period-
ically refocused. For unstable systems, the trigonometric functions in that equation become
hyperbolic functions, which indicates that the rays become more and more dispersed the
further they pass through the sequence. In the case of laser resonator with spherical mirrors,
one can choose, as an element of the periodic sequence, a spacing followed by one mirror
plus another spacing followed by the second mirror. From this one can obtain the trace, and
write the stability condition in the form

0 <

(

1− L

R1

)(

1− L

R2

)

< 1 (3.61)

For a cavity consisting of two identical mirrors (R1 = R2 = R), that is the most common
arrangement, this condition simplifies to 0 < L < 2R.

Among the different configurations (summarized in Figure 3.6), an interesting degener-
acy occurs if we choose the cavity length to be equal to the radius of curvature of the FP
cavity. In this case, each resonant mode in the cavity can be thought of as a bow-tie mode,
which transverses the cavity twice before retracing its path, hence νconfocalFSR = c/ (4L).

3.2.3 Wave analysis

In a previous section, we have learnt that in a FP etalon the maxima of the Airy function
(Equation 3.39) occur at the eigenfrequencies νm = mc/(2L). The corresponding electro-
magnetic field components, called the longitudinal (or axial) modes of the resonator, are
plane waves along the optical axis of the resonator. As a plane wave would extend to in-
finity in the transverse direction, the energy contained in such a wave would be unlimited.
A more realistic treatment of the electromagnetic field in the resonator has to include an
amplitude dependence on the transverse coordinates and a transverse confinement of the
wave inside the resonator. On the other hand, any transverse confinement will result in
diffraction effects. Now, let us take another step by taking into account the wave nature of
the laser beams. Yet, we neglect for the moment diffraction effects due to the finite size of
apertures. The results derived here are applicable to optical systems with apertures that
intercept only a negligible portion of the beam power. An ab initio treatment would require
the solution of the Helmholtz equation for each field component under proper assumptions.
Here, instead, we choose a heuristic approach, based on the following considerations [104].

A Gaussian beam (refer to Figure 3.7) reflected from a spherical mirror will retrace the
incident beam if the radius of curvature of its wavefront is the same as the mirror radius.

Thus, if the radii of curvature of the wavefronts of a Gaussian beam at planes separated
by a distance L match the radii of two mirrors separated by the same distance, a beam
incident on the first mirror will reflect and retrace itself to the second mirror, where it
once again will reflect and retrace itself back to the first mirror, and so on. The beam
can then exist self-consistently within the resonator, satisfying the Helmholtz equation and
the boundary conditions imposed by the mirrors. The Gaussian beam is then said to be a
mode of the spherical-mirror resonator, provided that the phase also retraces itself. Now we
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FIGURE 3.6
Resonator stability diagram with g1 = (1−L/R1) and g2 = (1−L/R2). A spherical-mirror
resonator is stable if the parameters g1 and g2 lie in the regions bounded by the lines g1 = 0
and g2 = 0, and the hyperbola g2 = 1/g1. All symmetrical resonators lie along the line
g1 = g2.

proceed to determine the Gaussian beam that matches a spherical-mirror resonator. The
center of the beam, which is yet to be determined, is assumed to be located at the origin
z = 0; mirrors R1 and R2 are located at z1 and z2 = z1 + L. The values of z1 and z2 are
determined by matching the radius of curvature of the beam, R (z) = z+ z20/z, to the radii
R1 at z1 and R2 at z2











R1 = z1 +
z20
z1

−R2 = z2 +
z20
z2

(3.62)

Solving for z1, z2, and z0, we obtain

z1 =
−L (R2 + L)

R1 +R2 + 2L
(3.63)

z2 = z1 + L (3.64)

z20 =
−L (R1 + L) (R2 + L) (R1 +R2 + L)

(R1 +R2 + 2L)
2 (3.65)
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FIGURE 3.7
Some parameters of a Gaussian beam are summarized: Wavelength: λ; Waist radius: w0;
Spot size: w2(z) = w2

0 [1 + (λz/πw2
0)

2]; Radius of curvature: R(z) = z[1 + (πw2
0/λz)

2];
Rayleigh range: zR = πw2

0/λ; Confocal parameter: b = 2zR; Beam divergence: Θ ≃ λ/πw0;
Gouy phase: ψ(z) = arctan(z/zR).

Having determined the location of the beam center and the depth of focus 2z0, everything
about the beam is known. The waist radius is w0 =

√

λz0/π and the beam radii at the
mirrors are

w1,2 = w0

√

1 +

(

z1,2
z0

)2

(3.66)

For the solution to indeed represent a Gaussian beam, z0 must be real. Using Equation
3.65, it is easy to show that, by imposing z20 > 0, Equation 3.61 is retrieved, that is exactly
the confinement condition required by ray optics. As already mentioned, a Gaussian beam
is a mode of the spherical-mirror resonator provided that the wavefront normals reflect onto
themselves, always retracing the same path, and that the phase retraces itself as well. Since
the phase of a Gaussian beam is given by [104]

ϕ (r, z) = kz − ζ (z) + kr2

2R (z)
(3.67)

with ζ (z) = arctan (z/z0) and r2 = x2 + y2, on the optical axis we have ϕ (0, z) =
kz− ζ (z) (the phase retardation relative to a plane wave is ζ (z)). As the beam propagates
from mirror 1 to mirror 2, its phase changes by

ϕ (0, z2)− ϕ (0, z1) = k (z2 − z1)− [ζ (z2)− ζ (z1)] = kL−∆ζ (3.68)

Note that, since the mirror surface coincides with the wavefront, all points on each mirror
share the same phase. For the beam to truly retrace itself, the round-trip phase change must
be a multiple of 2π, i.e., 2kL− 2∆ζ = m2π. This yields

νm =
c

2L

(

m+
∆ζ

π

)

(3.69)
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The frequency spacing of adjacent modes is the same as that obtained for the planar-
mirror resonator and is independent of the curvatures of the mirrors. The second term, which
does depend on the mirror curvatures, simply represents a displacement of all the resonances.
The Gaussian beam is not the only beam-like solution of the paraxial Helmholtz equation.
An entire family of solutions, the Hermite-Gaussian family, exists. Although a Hermite-
Gaussian beam of order (p, q) has the same wavefronts as a Gaussian beam, its amplitude
distribution differs. The design of a resonator that matches a given beam is therefore the
same as in the Gaussian-beam case, regardless of (p, q). It follows that the entire family of
Hermite-Gaussian beams represents modes of the spherical-mirror resonator (Figure 3.8).
The resonance frequencies of the (p, q) mode do, however, depend on the indices (p, q).
This is because of the dependence of the axial phase delay on p and q. It can be shown that
the phase of the (p, q) mode on the beam axis is [104]

ϕ (0, z) = kz − (p+ q + 1) ζ (z) (3.70)

which provides

νp,q,m = m
c

2L
+ (p+ q + 1)

∆ζ

π

c

2L
(3.71)

As already mentioned, modes of different m, but the same (p, q) have identical intensity
distributions and are known as longitudinal or axial modes. The indexes (p, q) label different
spatial dependences on the transverse coordinates (x, y); these represent different transverse
modes.

Next, let us consider a symmetrical resonator with concave mirrors. By substitution of
R1 = R2 = − |R| into Equation 3.63, we get z1 = −L/2 and z2 = L/2, that is the beam
center lies at the center of the resonator. Moreover we obtain
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(3.72)

and the confinement condition

0 ≤ L

|R| ≤ 2 (3.73)

is again found. From the above expressions, it is easily recognized that the radius of
the beam at the mirrors has its minimum value when |R|/L = 1, i.e., for the symmetrical
confocal resonator. In this case Equations 3.72 further simplify to
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which imply ∆ζ = π/2. In this case from Equation 3.71 we have

νp,q,m = m
c

2L
+ (p+ q + 1)

c

4L
=

c

2L

[

m+
p+ q + 1

2

]

=

=
c

4L
(2m+ p+ q + 1) =

c

4L
· integ. (3.75)

which means that in a symmetrical confocal resonator, the resonance frequencies of the
transverse modes either coincide or fall halfway between those that result from a change
of the longitudinal mode index m. Consequently, in the confocal FP resonator, modes with
frequencies can be excited that differ by c/4L. As already discussed, an electromagnetic
wave impinging onto one of the mirrors of the optical resonator can only excite those modes
whose frequencies coincide with that of the wave. Now, in a confocal resonator an infinite
number of axial modes have the same eigenfrequencies but have different distribution of the
transverse field distribution on the surface of the mirror. Consequently, a wave of a given
field distribution will predominantly excite that particular mode inside the resonator whose
field distribution coincides with the one of the impinging wave. Mathematically speaking,
the incident wave will be decomposed into a linear combination of the modes, i.e., of the
eigenfunctions representing the field inside the resonator. The coupling of the incident wave
to the particular modes is determined by the coupling coefficients which are determined by
the overlap integrals between the modes in the resonator and the incident wave. If only one
mode is to be excited, the field distributions of the incident wave and of the resonator mode
have to coincide exactly at the surface of the resonator mirror.

To conclude the wave-analysis treatment, we briefly comment on diffraction losses by
observing that, since Gaussian and Hermite-Gaussian beams have finite transverse extent
and since the resonator mirrors are of finite extent, a portion of the optical power escapes
from the resonator on each pass. An estimate of the power loss may be determined by
calculating the fractional power of the beam that is not intercepted by the mirror. If the
beam is Gaussian with radius w and the mirror is circular with radius Ra = 2w, for example,
a small fraction, exp(−2R2

a/w
2) = 3.35 · 10−4, of the beam power escapes on each pass, the

remainder being reflected (or absorbed in the mirror). Higher-order transverse modes suffer
greater losses since they have greater spatial extent in the transverse plane. This fact is
used to prevent the oscillation of higher-order modes by inserting apertures into the laser
resonator whose opening is large enough to allow most of the fundamental (m, 0, 0) mode
energy through, but small energy to increase substantially the losses of the higher-order
modes.

3.3 Cavity-design considerations

As one can guess, the finesse is a parameter of utmost importance in an optical cavity. For
example, it determines the enhancement factor for the intra-cavity absorption signal that
can be recovered from the cavity transmission; as the finesse increases, the cavity resonances
become more sensitive to optical loss: as a result, small absorption signals become amplified
by the cavity response. Precise knowledge of the cavity finesse is crucial, for instance, in
spectroscopy experiments for making accurate measurements of the intra-cavity absorption.
As we will learn in Chapter 5, for high-finesse cavities (F >1000), the finesse is usually
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FIGURE 3.8
Intensity profiles of the lowest-order Hermite-Gaussian modes.

measured via cavity ring-down spectroscopy (CRDS). CRDS measurements are performed
by injecting laser light into a resonant mode of the cavity and then rapidly switching off the
incident light. It is straightforward to use a single-frequency, continuous-wave (cw) laser for
CRDS measurements. In this case, for fast switching of the light source, the laser frequency
can be swept quickly across the cavity resonance, such that the time the laser spends on
it is shorter than the cavity lifetime. Another way of switching the incident light is to use
an acousto-optic or electro-optic modulator that can provide switching times of less than a
few hundred nanoseconds, sufficiently shorter than a typical high-finesse cavity lifetime.

A second relevant property of an optical cavity is represented by the spectral bandwidth.
The latter refers to a spectral window for which the cavity has a high finesse and nearly
uniform cavity FSR.

3.3.1 Quarter wave stack reflectors

Both the cavity finesse and the spectral bandwidth are determined by the reflectors used to
construct the cavity. In the following, we analyze the properties for a type of highly reflective
mirror used in most cavity-enhanced spectroscopic measurements, including the brand new
cavity-enhanced direct-frequency-comb spectroscopy (CE-DFCS). These mirrors, commonly
referred to as quarter wave stack (QWS) reflectors, are constructed from alternating layers
of high (nh) and low (nl) index of refraction dielectric material (see Figure 3.9).
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FIGURE 3.9
Structure of quarter wave stack high-reflectivity mirrors.

Indeed, as we will see in a short while, a condition of high reflectivity is produced from
alternating dielectric layers with an optical thickness of λ/4, where λ is the wavelength that
the mirror is designed to reflect. The reflectivity of a QWS mirror, based on the transfer
matrix formalism, can be found in [105]. At normal incidence, the transfer matrix for a
single film of refractive index n and thickness l is given by

M =

(

A B
C D

)

=







cos
2πnl

λ
− i
n
sin

2πnl

λ

−insin 2πnl

λ
cos

2πnl

λ






(3.76)

and the reflection coefficient is determined as

r =
An0 +BnTn0 − C −DnT
An0 +BnTn0 + C +DnT

(3.77)

where n0 and nT are the refractive indices of the two infinite media located at the
left and the right of the film, respectively. The film reflectivity is eventually calculated as
R = |r|2. In the case of a QWS mirror, the transfer matrix of a stack of 2N layers (or N
layer pairs) is calculated as

MQWS =













cos
2πnlll
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2πnlll
λ

−inlsin
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λ

cos
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·







cos
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λ
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sin

2πnhlh
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−inhsin
2πnhlh
λ

cos
2πnhlh
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N

(3.78)

from which the A,B,C,D elements and thus r are determined. This procedure allows
one to calculate RQWS (λ) for given values of nlll and nhlh. If the QWS mirror is in air
(n0= nT = 1) and nlll = nhlh = λ/4, Equation 3.78 and use of Equation 3.77 yields
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RQWS = |r|2 =











1−
(

nh
nl

)2N

1 +

(

nh
nl

)2N











2

(3.79)

As can be seen from Equation 3.79, the reflectivity of a quarter wave stack depends
on the number of layer pairs in the stack and the ratio nh to nl. For example, in the
case of 20 layer pairs of fused silica (nl = 1.45, lh = 276 nm) and niobium oxide (nh = 1.9,
lh = 210 nm), the peak reflectivity at a center wavelength of 1.6 micron is RQWS = 0.99992.
The wavelength dependence of the reflectivity, shown in Figure 3.10, is found by explicitly
calculating RQWS (λ): first, the products nlll and nhlh are fixed by the condition nlll =
nhlh = λc/4, where λc is the desired center wavelength; then, the matrix elements (Equation
3.78) are computed as a function of λ and inserted into Equation 3.77; finally, 3.79 is used to
obtain RQWS (λ). From this calculation, we find that the spectral bandwidth of the mirror
reflectivity is determined by the ratio nh to nl. Larger nh/nl lead to broader spectral
bandwidths of the mirror reflectivity. In Figure 3.10, we can see that the combination of
fused silica and niobium oxide provide high reflectivity over a spectral range covering 1.5 to
1.7 micron. Outside of this region, the mirror reflectivity drops very rapidly. Therefore, the
useful spectral bandwidth of these mirrors is about 200 nm or about 13% of the center optical
frequency of the coating. However, the spectral coverage of modern broadband coherent
radiation sources (optical frequency comb synthesizers) can be very large (around 90% of
the central frequency).

Another important issue related to the design of a high-finesse optical cavity is its
dispersion which determines, in essence, the uniformity of the FSR. Actually, due to a
variety of frequency-dependent phase shifts inside an optical cavity, the mode spacing is
also frequency-dependent. The cavity schematic in Figure 3.11 shows several sources of
frequency-dependent phase shifts including the mirror phase shift φr (ω), the diffraction
phase shift φD (ω), and the phase shift due to intra-cavity media φm (ω) [106].

To derive an expression for the frequency dependence of the cavity mode spacing, we

FIGURE 3.10
Reflectivity against wavelength for a QWS mirror (N = 20, nL = 1.45, and nH = 1.9).
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FIGURE 3.11
Several sources of frequency-dependent phase shifts in a QWS mirror-based high-finesse
cavity. (Adapted from [106].)

begin by writing an expression for the phase shift accumulated during one round-trip inside
the cavity

φrt (ω) =
ω

c
(Lc − Lm) +

ωnm
c

Lm + φD (ω) + φm0 (ω) + φr (ω) (3.80)

Here, the phase accumulation inside the intra-cavity medium has been separated into
a frequency-independent component, ωnmc/Lm, and a frequency dependent component,
φm0 (ω). Cavity modes exist at frequencies where the round-trip phase is equal to a multiple
of 2π such that

2πq = φrt (ω) (3.81)

where q is the mode number. The change in mode number as a function of frequency is
found by taking the derivative of the mode number with respect to ω

∂q

∂ω
=

1

2π

[

Lc + Lm (nm − 1)

c
+

∂

∂ω
(φD + φm0 + φr)

]

(3.82)

The FSR is defined as the frequency interval between adjacent modes; therefore, setting
∆q = 1 yields an expression for the frequency dependent mode spacing

FSR (ω) =
c

2L+ c
∂φ (ω)

∂ω

(3.83)

where L = Lc+Lm (nm − 1) and φ (ω) = φD (ω)+φm0 (ω)+φr (ω). The degree to which
the cavity FSR is wavelength (or optical frequency)-dependent is determined by the intra-
cavity dispersion term. Low intracavity dispersion is crucial, for example, when coupling
a broad-bandwidth comb spectrum to respective cavity modes. To better understand this
aspect, we shall anticipate here that the frequency spectrum of an optical frequency comb
synthesizer consists of a series of discrete, sharp lines typically covering a full optical octave.
Such spectrum is described by the formula fnt = f0 + ntfr, where f0 and fr are two
fixed, well-stabilized frequencies falling in the rf domain and nt is a huge integer number
(105-106) labeling the different comb teeth. As a consequence, the comb modes fnt are
regularly spaced in the optical frequency domain whereas, as just shown, the cavity FSR
is frequency-dependent. It is now clear that intra-cavity dispersion ultimately determines
the spectral bandwidth over which the cavity modes and the comb components can be
overlapped simultaneously (see also Chapter 6).
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3.3.2 Prism-based cavities

In response to this, efforts toward improved designs for low-loss and low-dispersion mirrors
have been intense over the past few years including the use of different dielectric materials
and specialized coating designs. Recently, new designs for high-finesse cavities that use prism
retro-reflectors instead of mirrors have been under development [107, 108]. Since prism retro-
reflectors are based on broad bandwidth effects, such as Brewster’s angle and total internal
reflection, these cavities could provide spectral bandwidths of >80% of the center optical
frequency with a finesse of up to 50000. The major advantage of using such prisms is that
the bandwidth of the high finesse cavity is practically limited only by the spectral regions of
low internal transmission loss of the material used to construct the prisms. Using a variety
of materials, it is potentially possible to construct prism cavities capable of covering a region
stretching from the UV into the mid-IR. For example, calcium fluoride could be used in the
UV/Vis region, fused silica in the visible to the near-IR, and barium fluoride in the near-IR
to the mid-IR. In the following we describe the working principle and the main features of
this novel cavity design. A thorough analysis including a discussion of the expected loss as
well as of the effects of both prism misalignment and errors in construction (that is suitable
for specification of prism manufacture and design of the mounting and alignment system)
is given in [107]. Figure 3.12 shows a top view of the retro-reflective prisms.

Let the short side (AB) have a length a and the prisms be made of isotropic material,
such as fused silica, with refractive index n, relative to the medium surrounding the prisms.
A light ray enters the long face (AD) at R0 with an external angle of incidence nearly
at Brewster’s angle (θB = arctan (n)) (we will neglect this deviation below). The internal
ray strikes face AB at R1 with an angle of incidence equal to 45◦. This requires that the
angle ∠DAB=135◦−θB. As long as n is greater than

√
2, this ray will undergo total internal

reflection when it strikes side AB. It will then propagate to the next side (BC) and experience
a second total internal reflection off this face at R2 with an angle of incidence equal to 45◦

as long as ∠ABC= 90◦. This ensures that this reflected ray, R2R3, is exactly parallel in the
horizontal plane to the ray incident on side AB, R0R1, and this ray will leave the prism
at Brewster’s angle for the prism to air interface at R3, which is just the complement of
Brewster’s angle for the air to prism interface. The prism exiting ray is parallel to the
incident one. By the law of sines, the ray will be centered on the AB face if the length AR0

is given by

AR0 =
asin 45

◦

2sin θB
=
a
√
1 + n2

2
√
2n

(3.84)

FIGURE 3.12
A schematic of the Brewster’s-angle retroreflector-based ring cavity showing the optical
beam path. Light is coupled into the cavity at R0 and decoupled at R5. All surfaces are flat
except EF which has a 6 m convex curve. The effective reflectivity of the cavity is controlled
by tuning the input prism around Brewster’s angle. (Courtesy of [108].)
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The second equality results from tan θB = n. Likewise, the propagation distance R0R1

is given by

R0R1 =
a

2

sin
(

135
◦ − θB

)

sin θB
=

a

2
√
2

(

1 +
1

n

)

(3.85)

The propagation distance R1R2 is R1R2 = a/
√
2, and the propagation distance R2R3 is

R2R3 = 3 (R0R1)−R1R2 =
a

2
√
2

(

1 +
3

n

)

(3.86)

Thus the total path inside each prism is

Lp = R0R1 +R1R2 +R2R3 =
√
2a

(

1 +
1

n

)

(3.87)

Therefore, the distance R3A is three times R0A, and in order to maintain the maximum
aperture, the distance AD should be

AD ≥ 4R0A =
2a√

2sin θB
=

2a
√
1 + n2

√
2n

(3.88)

We will take this to be an equality. The aperture will be maintained if BC≥AB.

1. For n ≥
√
3, this is realized if we take BC=AB, ∠BCD=135◦, and ∠CDA=θB.

In this case CD =
√
2a/n.

2. If n <
√
3, it is preferred to take ∠BCD=3θB−45◦. This will allow the input ray to

the cavity, which will strike surface AD at R3 near Brewster’s angle, to leave the
prism by striking surface CD near Brewster’s angle and minimize reflections and
thus scattered light inside the prism. In this case, the prism will have ∠CDA =
180◦−2θB, ∠BCD = 2θB−45◦ and some tedious geometry allows one to calculate
that

BC = a
5 + 3n+ n2 − n3

(1 + n) (4n− n2 − 1)
(3.89)

CD = a

√
2
(

1 + n2
)3/2

n (n− 1) (4n− n2 − 1)
(3.90)

In this second case, the condition

BC = a
5 + 3n+ n2 − n3

(1 + n) (4n− n2 − 1)
> AB = a (3.91)

returns n <
√
3.

An optical cavity is formed by facing two such retroreflectors towards each other such
that corresponding faces are nearly parallel as shown in Figure 3.12. Vertices E, F, G,
and H in the second prism correspond to A, B, C, and D, respectively, in the first prism.
Likewise, the intersection points of the optic axis with the surfaces in the second prism,
R4, R5, R6, and R7, correspond to R0, R1, R2, and R3 in the first prism. Let Lg be the
distance along the optical axis from Brewster face (AD) to Brewster face (EH); this will
be the distance of propagation in the sample per pass of the cavity. Further, the prisms
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must be placed such that a ray leaving R3 at Brewster’s angle will strike R4, which is
the point on the second prism that corresponds with R0. This will allow for a ring optical
cavity with the optical path passing through the points R0. . .R7, R0. As described such
a cavity would be on the borderline of optical stability. To form a stable optical cavity,
some focusing element is needed. A convenient approach is to construct a convex curved
surface on face EF and center at R5. Because the optic axis strikes this surface at 45◦, there
will be considerable astigmatism and it would be ideal to construct an astigmatic surface,
with different horizontal and vertical radii of curvature, to compensate. Since this typically
proves too difficult for fabricators, one is often obliged to select a convex spherical surface
with radius Rc. Using the ABCD-matrix formalism we can derive the condition for a stable
cavity in the tangential direction (in the plane of incidence). For this purpose, we use the
expressions for matrices for a tilted flat interface given in [109]. With reference to Figure
3.13, the tangential matrices describing refraction at interface AD from air to glass and
from glass to air are respectively given by

Ma−g
t =







cos θ2
cos θ1

0

0
cos θ1

n · cos θ2






(3.92)

Mg−a
t =







cos θ4
cos θ3

0

0
n · cos θ3
cos θ4






(3.93)

In our case, θ1 = θB and sin θ2 = sin θ3 = sin θ1/n, such that the matrix describing
propagation through the first prism is (note that total internal reflection is described by the
identity matrix)

Mp1 =Mg−a
t

(

1 Lp
0 1

)

Ma−g
t =

(

1
Lp
n3

0 1

)

(3.94)

For the second prism, the effect of focusing due to reflection (at an angle of 45◦) at the
curved interface EF must be included via the matrix

q1

q2

q4

q3

FIGURE 3.13
Propagation of a ray through a prism.
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whereupon
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(
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(3.96)

Finally, the matrix describing one round-trip in the cavity is calculated as

Mround-trip =MairMp2MairMp1 (3.97)

with

Mair =

(

1 Lg
0 1

)

(3.98)

Then, the trace of Mround-trip is

Tr (Mround-trip) =
2
(

−2
√
2Lp − 2

√
2Lgn

3 +Rc
)

Rc
(3.99)

Recalling that the cavity is stable if −1 ≤ Tr (Mround-trip)/2 ≤ 1, we obtain the condi-
tion

Lg <
Rc −

√
2Lp√

2n3
(3.100)

We will now briefly discuss the various sources of optical loss in an ideally constructed
cavity, which determines the cavity finesse. The first loss to consider, and the dominant
term as one goes to the shorter wavelengths, is the bulk loss of the prism material, due to
absorption and scatter. In the near-IR, it is essential to use low OH− fused silica in order
that bulk absorption loss does not dominate, especially near 1.4 µm. For such fused silica,
in much of the visible and near-IR, the intrinsic material loss is dominated by Rayleigh
scattering, which scales as λ−4. Loss of 1.362 ppm/cm has been reported for fused silica at
λ0 = 1064 nm. Given a fused silica path of Lp =38.2 mm in each prism, this amounts to a
scattering loss of about 10 ppm per both prisms (at 1 µm wavelength). Therefore, we can
model the Rayleigh scattering loss as

LR (λ) =
1.362 · 1.0644

λ4
ppm/cm (3.101)

with λ expressed in micron. Due to the wavelength dependence, this loss becomes unac-
ceptably large (compared to what can be obtained with dielectric mirrors) for wavelengths
shorter than 400–500 nm, which correspond to scattering loss of 350–150 ppm/pass, re-
spectively. Another source of loss is scatter at each of the interfaces where one has either
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transmission or total internal reflection. Using super polished substrates, with surface rough-
ness σ = 0.1 nm root mean squared, the surface scattering can be estimated as 0.15 and
0.79 ppm at λ0 = 1 µm for transmission at Brewster’s angle and total internal reflection,
respectively, for an estimated loss of 1.88 ppm per prism. In both cases, the surface scatter-
ing loss scales as λ−2

0 and thus becomes less important, compared to Rayleigh scattering,
at shorter wavelength. The dominant loss source is due to the fact that P polarized light
is coupled into the cavity by deviating the input prism slightly (δθ) from Brewster’s angle
(θB). Then, the fractional Fresnel input and loss per surface is [102]

RP (λ) =





√

1− [1/nsin (δθ + θB)]
2 − ncos (δθ + θB)

√

1− [1/nsin (δθ + θB)]
2
+ ncos (δθ + θB)





2

≃
[

n4 (λ)− 1
]2

4n6 (λ)
[δθ (λ)]2 =

[

n4 (λ)− 1
]2

4n6 (λ)
[θi − θB (λ)]2

=

[

n4 (λ)− 1
]2

4n6 (λ)
[θi − arctan [n (λ)]]2 (3.102)

Here θi is a fixed incidence angle, very close to Brewster’s angle for a given wavelength
value, let us say θi = −0.7

◦

+arctan [n (λ0)]. Figure 3.14 shows a plot of 2RP (λ) (when both
prisms are considered) vs. wavelength obtained by using Sellmeier equation for fused silica
and taking λ0 = 1 micron, such that θi = −0.7

◦

+arctan (1.45). The function 2LR (λ) · 3.82
and the total round-trip loss 2RP (λ) + 2LR (λ) · 3.82 (neglecting surface scattering loss)
are also plotted. A loss ranging from 240 to 160 ppm is found between 600 and 750 nm,
corresponding to a finesse between 13100 and 19600. This behavior has been experimen-
tally confirmed [108]. In aligning the cavity, one has a trade-off of reducing cavity loss (by
operating close to Brewster’s angle) and cavity transmission, which is linearly proportional
to the Fresnel reflectivity in the common limit that the excitation laser linewidth is much
larger than the width of the cavity resonances. An alternative way to couple the optical
beam into the cavity is to use frustrated total internal reflection at one of the flat surfaces.
This method has the advantage that both prisms can be tuned precisely to Brewster’s an-
gle, which will minimize loss. Also, the coupling into the cavity can be adjusted to achieve
impedance matching (input loss matching the sum of all other losses), which maximizes the
amplitude of the wave coupled into the cavity. The disadvantage of this approach is that
alignment is now much more difficult. Finally, we observe that the change in Brewster’s
angle with temperature is given by

dθB
dT

=
d

dT
[arctan (n)] =

1

1 + n2

dn

dT
≃ 40 µrad/K (3.103)

for fused silica with λ > 500 nm, which is negligible for typical ambient temperature
changes.

The dispersion of the prism cavity, which will limit the effective spectral range that can
be coupled into the cavity as fixed prism spacing, can be written as

FSR (λ) =
c

2 {Lg[n (λ)] + n (λ)Lp[n (λ)]}
≃ c
[

L0 − 2λ

(

dn

dλ

)(

Lp + n
dLp
dn

+
dLg
dn

)] (3.104)
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FIGURE 3.14
Total round-trip loss against wavelength (black curve). Individual loss contributions from
the dominant loss mechanisms are also shown: Rayleigh scattering (light gray) and Fresnel
loss (gray).

where L0 = 2 (Lg + nLp) is the round-trip optical path length, dLp/dn and dLg/dn
are the changes in the intraprism and extraprism path lengths when the prism index, n,
changes. Experimentally, one finds that Lp ≫ ndLp/dn+ dLg/dn, i.e., the direct material
dispersion dominates

FSR (λ) ≃ c
[

L0 − 2λ

(

dn

dλ

)

Lp

] (3.105)

A plot of Equation 3.105 is given in Figure 3.15, showing a fractional change in the FSR
of about 0.2% over a 1.5-micron wavelength span. This result is considerably better than
what can be obtained with QWS mirrors.

FIGURE 3.15
Prism cavity FSR as a function of wavelength.
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3.4 Ultrastable cavities

As discussed before and in particular stated by Equation 3.51, the resonance frequencies
of cavities are determined by their length. On the other hand, as we will see in the next
chapters, many advanced experiments require that the level of frequency stability of lasers is
improved by some external means. Just to mention a few applications, highly stable narrow-
linewidth lasers are essential in high-resolution spectroscopy, optical frequency metrology,
and fundamental physical tests as well as in interferometric measurements including gravi-
tational wave detection and future space missisons. Most often, frequency stability in lasers
is achieved exactly by locking the laser to a narrow resonance of a high-finesse cavity. This
transfers the length stability of the cavity to frequency stability of the laser. In this task,
feedback control is employed to guide the laser frequency to be within a small fraction of
the linewidth of one of the cavity resonances, eliminating the intrinsic noises of the laser
and replacing them with the measurement noise associated with the FP cavity resonance.
However, changes in cavity temperature, in optical power dissipated within the cavity, and
mechanical forces deform the cavity, affecting its resonance frequencies. Thus, the prime
challenge in the use of cavities for frequency stabilization lies in ensuring that their length
be minimally affected by external perturbations. This goal is tackled from two sides: by
reducing the level of external disturbances and by making the cavity itself less sensitive to
such disturbances. In the following, we will first focus on the effects of thermal instabilities;
then, we shall deal with undesired fast mechanical vibrations.

3.4.1 Thermal stability

One of the most significant environmental parameters that affect the stability of the mechan-
ical dimensions of macroscopic resonators is the temperature. Temperature fluctuations ∆T
around the working temperature T0 of the resonator result in a variation of the length L0

to L(T ) which can be described as a Taylor series with linear α, quadratic β. . . coefficients
of thermal expansion

L (T ) = L (T0) + L (T0)α ∆T + L (T0)β (∆T )
2
+ . . . (3.106)

Since ∆νm/νm = −∆L/L, we have to first order

∆νm
νm

= −α ∆T (3.107)

High frequency stability thus asks for minimization of the temperature fluctuations
and the employment of materials with a low coefficient of thermal expansion (CTE). At
room temperature, the linear coefficient of thermal expansion of copper is αCu = 1.65 ·
10−5 K−1 and that of the temperature compensated nickel iron steel Invar is about an
order of magnitude lower and comparable to that of fused silica. Much lower values of the
thermal expansion are provided by a mixture of glass and ceramic materials such as Zerodur
or temperature compensated glasses called Ultralow Expansion glass (Corning ULE 7971,
comprising about 80% SiO2 and 20% TiO2) [65].

However, at non-zero temperatures, the rigid reference cavity has an inevitable me-
chanical thermal fluctuation which fundamentally limits the frequency stability, even if the
coefficient of thermal expansion (CTE) is zero.

In the following, we discuss the calculation of such thermal fluctuation in an FP cavity
where two mirrors are optically contacted to the ends of a rigid spacer [110, 111]. To get a
rough order estimate, we calculate thermal fluctuation in the spacer and mirror with coating
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separately and then add the results, assuming that every noise component is uncorrelated.
Although this is not a rigorous treatment, the process may help our understanding. In
principle, the thermal noise in each cavity component is the sum of two contributions: the
thermoelastic noise and the Brownian noise.

The former (associated with thermoelastic dissipation) is caused by heat flow along the
temperature gradients around the laser beam spot [112]. Thermoelastic noise is interpreted
as fluctuations due to thermoelastic damping. The mechanism of the damping in solids
was found in the 1930s by Zener. When a non-uniform temperature distribution is applied
onto an elastic body, it is deformed through its finite thermal expansion coefficient. On
the other hand, when the deformation of the volume is applied by an external force, a
non-uniform temperature distribution arises. The temperature distribution relaxes through
thermal conductivity, accompanying a reactive deformation of the elastic body. The relax-
ation is done within a finite time determined by the thermal capacitance and the thermal
conductivity of the material. If the applied force is cyclic, the phase of the deformation by
the temperature gradient presents a delay against the phase of the applying deformation.
The phase delay causes mechanical loss — this is called thermoelastic damping. Since cou-
pling between temperature distribution and elastic deformation is provided by the thermal
expansion coefficient, thermoelastic noise is negligible when materials with CTEs close to
zero are used.

So we are left with the Brownian noise. The latter is associated with all forms of back-
ground dissipation that are homogeneously distributed impurities and dislocations within
a material. In fact, the dissipation mechanism is not theoretically calculated, but rather
handled as an intrinsic constant dissipation through the FDT. Since the calculation of the
dissipated energy is simpler than that of the imaginary part of the transfer function, here
we use the FDT in the form stated by Equation 2.112

Gx (f) =
8kBT

ω2

Wdiss

F 2
0

(3.108)

where Wdiss is the average dissipated power when the generalized oscillatory pressure

p (r) = F 0cos (2πft)P (r) (3.109)

is applied on the system. Here, P (r) is a weighting function (having the units of the
inverse of a surface) whose meaning will become clear in a short while. For homogeneous
materials, the dissipation is accounted for using the complex Young’s modulus [113]

E = E0 [1 + iφ(f)] (3.110)

such that the dissipated power can be written in the form

Wdiss = ωEmaxφ(f) ≡ 2πfEmaxφ(f) (3.111)

where Emax is the elastic energy when the strain is at its maximum. Let us start by
estimating the contribution from the spacer, regarding the mirrors as small accompaniments
of it. In other words, the system is assumed to be a free cylindrical elastic bar of length l,
radius R (cross-section area A = πR2), and P (r) = x̂ (see Figure 3.16).

The coordinate (x) at the left-hand and right-hand sides are zero and l, respectively.
The thermal longitudinal vibration at the left-hand side (x = 0) is estimated. The frequency
range of interest is lower than the first longitudinal resonant frequency. The equation of the
motion of this elastic bar without the dissipation is described as

ρ
∂2u

∂t2
= E0

∂2u

∂x2
(3.112)
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0 l

x
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Observation surface

FIGURE 3.16
Schematic of elastic bar for the calculation of the thermal noise contribution from the cavity
spacer.

where u is the longitudinal displacement and ρ is the density. This equation is solved by
the ansatz u (x, t) = u (x) eiωt which leads to

∂2u (x)

∂x2
− k2u (x) = 0 (3.113)

with the wavenumber k = ω
√

ρ/E0. The above equation is solved by a linear combina-
tion of a sine and a cosine function

u (x) = Bcos (kx) + Csin (kx) (3.114)

where B and C are determined by the boundary conditions. Since the thermal noise at
the left-hand side (x = 0) is calculated, the generalized force, F , is applied on the left-hand
end. The first boundary condition is expressed as

F0 = −E0A
du

dx

∣

∣

∣

∣

x=0

(3.115)

The other end is free. The second boundary condition is written as

0 = −E0A
du

dx

∣

∣

∣

∣

x=l

(3.116)

It is worth stressing that the effect of cos (2πft) in the force has already been ac-
counted for in the formulation of the FDT. Therefore, we get C = −F/kE0A and
B = Ccos (kl)/sin (kl), whereupon

u (x) =
C

sin (kl)
[cos (kl) · cos (kx) + sin (kl) · sin (kx) ] =

−F0

kE0A · sin (kl)
cos [(x− l)k] (3.117)

Therefore, the maximum of the elastic energy is given by



120 Laser-based measurements for time and frequency domain applications

Emax ≡
1

2
E0

∫ l

0

(

∂u (x)

∂x

)2

A · dx

=
A

2
E0

∫ l

0

F 2
0

E2
0A

2

sin2 [(x− l)k]
sin2 (kl)

dx ≃

≃ F 2
0

2E0A

∫ l

0

(

x− l
l

)2

dx ≃ lF 2
0

6E0A
(3.118)

such that

Wdiss = ωφEmax =
φωF 2

0l

6E0A
(3.119)

which, inserted into Equation 3.108, gives

Gspacer (ω) =
4kBT

ω

l

3πR2E0
φspacer (3.120)

Next, we evaluate the contribution from the mirror [114]. A simple analytic expression
is obtained only when we regard the mirror body as an infinite-half volume (let us say
z > 0). This is a good approximation when the mirror substrate is sufficiently larger than
the Gaussian beam. In the case, when the beam profile is Gaussian and the center of the
light spot coincides with the center of the transverse coordinates, we have for the weighting
function

P (r) =
1

πr20
e
−r

2

r2
0 ẑ (3.121)

where r0 is the radius of the laser beam. Let yz (r) be the normal displacement of
the surface (z = 0) at location r under the action of the applied pressure. In the linear
approximation of small strains, from basic elasticity theory we have [115]

yz (r) =

∫

G (r, r′) p (r′) d2r′ (3.122)

where G (r, r′) is a Green’s function given by

G (r, r′) =
1− σ2

πE0

1

|r − r′| (3.123)

where σ is the Poisson ratio of the material. In this case, we have for the maximum
elastic energy stored in the material
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Emax ≡
1

2

∫

p (r) yz (r) d
2r

=
F 2
0

2

1− σ2

E0π3r40

∫ ∞

r=0

∫ ∞

r′=0

∫ 2π

ϕ=0

∫ 2π

ϕ′=0

rr′e
− r

2+r′2

r2
0

√

r2 + r′2 − 2rr′cos (ϕ′ − ϕ)
drdr′dϕdϕ′

=
F 2
0

4

1− σ2

E0π3r0

∫ ∞

t=0

∫ π/2

α=0

∫ 2π

ϕ=0

∫ 2π

ϕ′=0

t2e−t
2

sin (2α)
√

1− sin (2α)cos (ϕ′ − ϕ)
dtdαdϕdϕ′

=
F 2
0

4

1− σ2

E0π3r0

√
π

4

∫ π/2

α=0

∫ 2π

ϕ=0

∫ 2π

ϕ′=0

sin (2α)
√

1− sin (2α) cos (ϕ′ − ϕ)
dαdϕdϕ′

=
F 2
0

8

1− σ2

E0π3/2r0
I (3.124)

where ϕ′ − ϕ = θ is the angle between r and r′ and polar coordinates r = tr0cosα,
r′ = tr0sinα have been introduced. In principle, yx (r) and yy (r) should also be considered
in the derivation of Emax, but by virtue of the geometry of the problem, the dominant
contribution comes from yz (r). The integral I in Equation 3.124 is evaluated as follows

I =

∫ π/2

α=0

∫ 2π

θ=0

sin (2α)
√

1− sin (2α)cos (θ)
dαdθ

=

∫ π/2

α=0

∫ 2π

θ=0

sin (2α)

[

1 +

∞
∑

n=0

(2n+ 1)!!

(2n+ 2)!!
· [sin (2α)cos (θ)]n+1

]

dαdθ

≃ 2.7π (3.125)

where the series expansion of 1/
√
1− x has been used. Finally, we obtain Emax ≃

[2.7F 2
0 (1 − σ2)]/(8E0

√
πr0) which inserted into Equation 3.111 and then into Equation

3.108 yields

Gmirror (f) = 2.7
kBT

ω

1− σ2

E0
√
πr0

φsub (3.126)

When the full calculation (including contributions from yx (r) and yy (r)) is carried out,
the only difference is that the factor 2.7 is replaced by a factor 4 [116]. Equations 3.120, 3.126
suggest that, when selecting a suitable material for a resonator, attention has to be given
also to Young’s modulus of elasticity E0 of the material. A higher E0 value corresponds
to a lower displacement fluctuation. A larger spot size may also improve the stability. In
addition, the higher E0 the smaller the deformation and, hence, the smaller the variation of
the eigenfrequencies due to tilt or acceleration. Also, when the beam radius decreases, the
thermal noise increases because canceling happens only in fluctuations on a smaller scale
than the beam radius. In practice, the mirror reflective coating introduces additional losses.
Thus, for small coating thickness (d ≪ r0), the total loss angle φ can be approximated as
[117]

φ ≃ φsub +
d

r0
· φcoat = φsub

(

1 +
d

r0

φcoat
φsub

)

(3.127)

such that
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TABLE 3.3
Relevant properties of materials suitable for ultrastable bulk resonators.

Symbol Units Copper Invar Fused ULE Zerodur M Sapphire
silica (4.2 K)

α 10−8 /K 1650 150 55 0.3 < 1 5 · 10−4

E0 109 N/m2 130 145 73 68 89 435
ρ 103 Kg/m3 8.92 8.13 2.2 2.21 2.52 4.0
cp J/(Kg K) 385 500 703 0.77 0.81 5.9 · 10−6

λ W/(m K) 400 10.5 1.38 1.31 1.63 280
σ 0.33 0.30 0.17 0.18 0.24 0.25-0.30

Note: The following legend holds: α=linear coefficient of thermal expansion, E0= Young’s modulus
of elasticity, ρ=density, cp=specific heat, λ=heat conductivity, σ=Poisson’s ratio.

Gcoated mirror (f) ≃ Gmirror (f)
(

1 +
d

r0

φcoat
φsub

)

(3.128)

Finally, if we add contributions from the two mirrors and the two ends of the spacer,
assuming everything is uncorrelated, we have for the total length fluctuation

Gcavity (f) = 2 ·Gcoated mirror (f) + 2 ·Gspacer (f) (3.129)

Assuming T = 300 K, R = 4 cm, l = 24 cm, φspacer = φsub = 1/(6 · 104), E0 =
6.8 · 1010 Pa, σ = 0.18 (ULE values reported in table 3.3), d = 2 µm, φcoat = 4 · 10−4,
and r0 = 240 micron, we obtain

√

Gcavity ≡
√
GL = 5 · 10−17 m/

√
Hz for f =1 Hz,

the dominant contribution coming from the mirror: Gcoated mirror/Gspacer ≃ 110. This
displacement fluctuation results in a frequency noise

√
Gν/ν =

√
GL/L or

√

Gν =

√
GL
L

c

λ
(3.130)

For 563 nm light, this yields a frequency noise
√
Gν = 0.1 Hz/

√
Hz. This estimate is a

good approximation of the world-highest level stabilization result using a cavity.
However, to calculate an accurate thermal-noise level, we must take everything into ac-

count simultaneously and precisely: the two mirrors are finite sized and optically contacted
onto the spacer, which is a three-dimensional cylinder. Again we have to calculate Wdiss (to
be inserted in Equation 3.108) when a generalized oscillatory pressure with a Gaussian pro-
file for the weighting function is applied on the system. This problem is adequately solved
numerically by the help of commercial finite element software. Table 3.4 summarizes eight
cases of calculation results (corresponding to the cavity shapes in Figure 3.17), showing
the displacement noise level at 1 Hz along with contributions from each component. Cor-
responding frequency stability limits are also shown, assuming 563 nm light. These results
suggest that the thermal-noise limitation is about 0.1 · (1Hz/f)1/2Hz/

√
Hz, although the

selection of materials, dimensions, and/or beam radius may nominally change this result.
In every case, the mirror is the dominant thermal-noise source. This is because, at a fre-
quency region well below the mechanical resonance, only the losses around the beam spot
contribute to thermal noise. Therefore, the cavity’s overall shape and/or the loss of the
spacer do not greatly affect thermal noise when other conditions around the mirror, such as
the beam radius, are kept identical (case No. 2/6/7 and case No. 2/3). Because the mirror
contribution is dominant, noise decreases with a larger beam radius or with a lower-loss
mirror substrate (e.g., case No. 2/4 and case No. 1/2). In the case of the fused silica mirror
substrate, the contribution from the coating becomes the most dominant source (e.g., case
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TABLE 3.4
Calculation results for the displacement and frequency noise noise level at 1 Hz [110].

Case Sh Sp Sub r0
√
GL Contr. in G (%)

√
Gν

(µm) (m/
√

Hz) Sp Sub Coat (Hz/
√

Hz)

1 A ULE ULE 240 6.0 3 84 13 0.13
2 A ULE Silica 240 2.6 14 24 62 0.059
3 A Silica Silica 240 2.5 1 28 71 0.055
4 A ULE Silica 370 2.0 25 28 47 0.044
5 A Zerodur Zerodur 240 21 3 96 1 0.47
6 B ULE Silica 240 2.6 14 24 62 0.058
7 C ULE Silica 240 2.8 25 21 54 0.063
8 D ULE Silica 200 3.1 16 21 63 0.11

Note: Frequency noise is calculated for 563-nm light. Assumed losses, φ, for ULE, fused silica,
Zerodur, and coating are 1/(6 · 104), 1/(1 · 106), 1/(3 · 103), and 4 · 10−4, respectively. The
following legend holds: Sh=shape, Sp=Spacer material, Sub=Substrate material, Coat=Coating.
Shapes refer to Figure 3.17.

No. 8). Because one cannot greatly alter the coating thickness, the coating loss, or the beam
radius, thermal noise from the coating becomes the practical limitation. Cooling the cavity
will also help, according to the FDT temperature dependence and assuming material losses
which decrease with temperature (not true for fused silica).

3.4.2 Vibration insensitive optical cavities

By summarizing, the ultimate stability limit for a cavity is set by thermomechanical noise,
but this limit can only be reached when care is taken to suppress the coupling of temper-
ature fluctuations and mechanical vibrations to the cavity length. Thus, the dimensional
stability of optical cavities is paramount too. Depending on the frequency f of the vibrations
compared to the mechanical eigenfrequencies fi of the system (in the 10 kHz range), two
regimes can be distinguished. In the high-frequency regime f ≥ fi the external vibrations
excite the eigenmodes: the response can be obtained by a decomposition of the individ-
ual modes and the reaction of the mode to the applied forces. In the low-frequency limit
f ≪ fi, the forces that are coupled to the solid accelerate the solid as a whole and lead

FIGURE 3.17
Assumed cavity shapes. Common parameters are axial hole diameter: 10 mm, mirror diam-
eter: 25.4 mm, mirror thickness: 5 mm, and coating thickness: 2 micron. The thick arrows
show positions of Gaussian forces in the calculation. (Courtesy of [110].)
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to quasi-static deformation of the solid under the external force (typically the sensitivity is
around 100 kHz/ms−2). Vibration isolation systems can minimize the noise level, but com-
pact commercial systems are generally not sufficient to reach a sub-hertz laser linewidth
(in particular, they are not effective at reducing seismic noise below ∼ 1 Hz). One way to
improve the spectral performance of stabilized lasers is to reduce vibration sensitivity by
carefully designing the cavity geometry and its mounting. Several groups have proposed and
implemented low vibration sensitivity cavities [118, 119, 120, 121].

Here we describe in some detail the most recent design in this context. As already
explained, a high-finesse ultrastable optical cavity typically has axial symmetry, comprising
two highly reflective concave mirrors bonded to a spacer with a central bore. The optical
mode coincides with the symmetry axis and has a small diameter at the mirror surface
relative to the cavity dimensions. To achieve vibration insensitivity, one has to ensure that
the distance between the two points at the centers of the mirror surfaces remains invariant
when a force is applied to the support. This may simply be achieved through symmetrical
mounting: a force applied through the mount will cause one half of the cavity to contract
while the other half expands with the result that there is no net change in dimension.
An obvious implementation of this is to hold the cavity about its plane of symmetry with
its axis aligned with gravity and, using this approach, a reduced acceleration sensitivity
of 10 kHz/ms−2 has been demonstrated [120]. A cavity mounted with its axis horizontal
sags asymmetrically under its own weight. However, through optimization of the support
positions, the distance between the centers of the mirrors can be made invariant, even
though the cavity still deforms on application of a vertical force and, by this method, a
vertical acceleration sensitivity of 1.5 kHz/ms−2 has been demonstrated [119].

A similar result is achieved by removing material from the underside of the cavity and
using this approach a vertical acceleration sensitivity < 0.1 kHz/ms−2 has been reported
[118]. The geometry is shown in Figure 3.18. Square cutouts are made to the underside of
a cylindrical spacer and the cavity is supported at four points. The cutouts compensate for
vertical forces. Vibration insensitivity in the horizontal plane is achieved through symmet-
rical mounting. Generally, finite element analysis of cavity deformation can be carried out
using commercially available software (COMSOL Multiphysics). In such a model, spacer
and mirror substrates are considered to be a single rigid body. Also, a static stress-strain
model can be used, because the frequency of accelerations that make a significant contri-
bution to the frequency noise are less than 10 Hz and, therefore, to a good approximation,
can be considered to be at dc relative to the first structural resonance (∼ 10 kHz). For a de-
tailed description of finite element-based analysis of cavity deformation under the influence
of vibration noise, for a number of different cavity and support configurations, the reader
is referred to [122]. In the specific case of the design presented in Figure 3.18, the solution
for total displacement is shown in Figure 3.19. Although the cavity deforms when loaded,
the axial displacement at the center of the mirror surface, where the laser beam is reflected,
remains unchanged. There is, in fact, no unique null condition: the locus of the displace-
ment zero is a plane in xzc space. The existence of zero crossings in the displacement as a
function of support position is an important aspect of the design: it offers an experimental
parameter that can be adjusted to obtain the null condition.

A second important type of mirror deformation is, in principle, represented by the tilt,
where the mirrors are shifted through an angle θ. For an ideal cavity (where optical and
mechanical axes coincide), however, the tilt-induced length variation is a second-order effect
and can thus be safely neglected. By contrast, in real cavities, mechanical and optical axes
are not coincident due to imperfections in the construction (e.g., mirror polishing, spacer
machining, and contacting of the mirrors onto the spacer). In this case, the effects of tilt-
induced length variations must be carefully accounted for. This task was accomplished
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FIGURE 3.18
(a) Cutout cavity on mount. The cavity is represented by the light gray shaded area; the
mirror substrates and spacer are made from ULE glass (the mirrors have a concave surface
with a radius of curvature of 350 mm and a reflectivity of 0.99998). The support yokes
are shown in white. Spacer length, 99.8 mm; diameter, 60 mm; axial bore diameter, 21.5
mm; vent-hole diameter, 4 mm. The mirrors are 31 mm in diameter and 8 mm thick. The
parameters relevant to the design, the cut depth c, and the support coordinates x and z are
indicated. (b) Details of the support point in cross section. The black shaded areas represent
rubber tubes and spheres. Case A: Diamond stylus set into a cylindrical ceramic mount,
cushioned on all sides by a rubber tube, and from below by a rubber sphere. The stylus
digs into the underside of the cavity, and can be considered to be in rigid contact with it.
Case B: 3-mm diam rubber sphere recessed into a cylindrical hole in the yoke. (Courtesy of
[118].)

in [121], where the above design was further improved. Incidentally, a progression in the
thermal noise level was also achieved by using fused silica for the mirror substrates, which
provides a higher mechanical Q factor in comparison to ULE. Based on the results of
extensive simulations using finite element software, two ultrastable optical cavities were
designed and constructed: one horizontal, and the other vertical. The spacers for both
configurations were machined from ULE glass rods. The wavelength range of the high-
reflection coating mirrors allowed operation at both 1064 and 1062.5 nm (Nd:YAG and
Yb-doped fiber laser). Each cavity was optically contacted with a flat mirror and a concave
mirror with radius of curvature of 500 mm. Both cavities had a finesse of 800000. As already
mentioned, the mirror substrates were made from fused silica, giving rise to a thermal
noise floor of ≃ 4 · 10−16 (for a 100-mm-long cavity), dominated by the thermal noise of
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FIGURE 3.19
Plot showing the deformation of a quarter section of the cavity. The point O marks the
center of the mirror surface. c = 18.45 mm, x = 22 mm, and z = 17 mm. The scale of the
distortion is amplified by a factor of 107 and a uniform downward displacement of 10 nm is
subtracted. The white (black) lines indicate the outline of the loaded (unloaded) geometry.
(Courtesy of [118].)

the high-reflection coatings. Compared to an all-ULE cavity, this gave an improvement
greater than a factor of 2. However, since fused silica shows a larger CTE than ULE,
the overall effective CTE was much larger than that of an all-ULE cavity, and the zero
thermal-expansion coefficient was shifted to well below 0 ◦C, instead of 10-20 ◦C. Due to
this increased temperature sensitivity, a high thermal shielding factor coupled with a tight
temperature control was necessary to minimize the impact of environmental temperature
fluctuations. Reported vibration sensitivities were equivalent to the above horizontal cavity
design: better than ≃ 1 ·10−11 (ms−2)−1, but with strongly reduced dependence on support
points’ position. The vertical cavity, instead, showed a much lower sensitivity than previous
vertical cavity designs: ≃ 3.5 · 10−12 (ms−2)−1 in the vertical direction and ≃ 1.4 · 10−11

(ms−2)−1 in the horizontal ones.

More recently, an optical cavity design that is insensitive to both vibrations and orien-
tation has also been reported [123]. The design is based on a spherical cavity spacer that
is held rigidly at two points on a diameter of the sphere (see Figure 3.20). Coupling of the
support forces to the cavity length is reduced by holding the sphere at a squeeze insensitive
angle with respect to the optical axis. Finite element analysis was used to calculate the
acceleration sensitivity of the spherical cavity for the ideal geometry as well as for several
varieties of fabrication errors. The measured acceleration sensitivity for an initial, sub-ideal
version of the mounted cavity was 4.0(5) · 10−11/g, 1.6(3) · 10−10/g, and 3.1(1) · 10−10/g
(with g = 9.81 m/s2) for accelerations along the vertical and two horizontal directions. This
low acceleration sensitivity, combined with the orientation insensitivity that comes with a
rigid mount, indicates that this cavity design could allow frequency stable lasers to operate
in non-laboratory environments.
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FIGURE 3.20
CAD rendering of a spherical cavity mounted at the squeeze insensitive angle with Viton
Oring contacts. Important coordinate systems and dimensions are labelled. The sphere is
50.8 mm in diameter and has a 6 mm diameter bore drilled through it along the optical
axis. The mirrors are optically contacted to the sphere on flats separated by L = 48.5 mm
and are 12.7 mm in diameter and 4.2 mm thick. The two support contacts are attached to
the sphere along the support axis which is oriented at θsupport = 37.31◦ with respect to the
y axis and have dimensions dsupport = lsupport = 1 mm. (Courtesy of [123].)

Let us conclude this section by describing in more detail the procedure by which the
thermal noise-driven and vibration-induced cavity length fluctuations are systematically
investigated from an experimental point of view (see Figure 3.21).

First, a free-running laser is servo-locked to the resonance of a Fabry-Perot cavity ac-
cording to the Pound-Drever-Hall technique (see next chapter): the measured remaining
instability of the locked laser is a combination of the instability in the length of the fre-
quency reference itself (environmental noise sources that modulate the cavity length are
mainly of acoustic origin in the range above 50 Hz and seismic origin from 1 to 50 Hz; for
Fourier frequencies less than 1 Hz, temperature changes affect the cavity length as well as
other dimensions in the experiment that may inadvertently contribute to the instability)
and the defects of the servo-locking system. Therefore, if the lock is sufficiently tight (high
electrical bandwidth), measuring the frequency noise power spectral density (FNPSD) of
the locked laser in the proper frequency range provides information on the instability of
the length cavity. Practically, in order to measure the laser FNPSD, the beat note with a
second identical (or better) system is detected and sent to a FFT analyzer after passing
through a frequency-to-voltage converter. Alternatively, the beat note signal can be pro-
cessed by a counter to provide the Allan standard deviation. In particular, to measure the
three vibration sensitivity components of the cavity under investigation, the latter is shaken
(by means of active vibration isolation platforms) with sinusoidal signals in the frequency
range of 1-10 Hz, the amplitude of the imparted acceleration being measured by means of
a three-axis seismometer. Then, modulation at the drive frequency is resolved in the power
spectrum (Figure 3.22). Finally, a response is derived from the modulation amplitude and
the measured acceleration.
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FIGURE 3.21
Schematic of experimental setup for measuring the cavity vibration response. PD: photodi-
ode; f-V: frequency-to-voltage converter. The thicker lines indicate beam paths; the thinner
lines indicate electronic signal paths. (Adapted from [118].)

FIGURE 3.22
Frequency noise power spectral density for induced acceleration in a vibration-insensitive
cavity. Measurement is between two independent identical systems. (Courtesy of [121].)

3.5 Fiber cavities

Single-mode optical fibers represent another attractive approach to realize high-finesse op-
tical resonators. Basically there are three ways to implement a fiber-based optical cavity:
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FIGURE 3.23
Schematic of an all single-mode fiber resonator. (Adapted from [124].)

1. One scheme makes use of a single fiber strand and a directional coupler;

2. In a second configuration the two end facets of a single strand of fiber, properly
worked out and coated, are faced to each other;

3. The third method relies on a couple of facing Bragg gratings imprinted into the
fiber.

3.5.1 Directional coupler-based fiber cavities

With the recent advances in single-mode fiber directional couplers, a fiber ring can be closed
in a low-loss manner [124]. A schematic of such a resonator is shown in Figure 3.23.

If the directional coupler has large coupling, light trapped in the fiber ring will couple
from port 2 to port 3 and will continue to circulate. Similarly, light introduced to the input
port 1 will couple mostly to the output port 4. Consider the case in which the fiber-loop
length is adjusted for constructive interference (addition) between coherent components
entering port 3 from ports 1 and 2. The small fraction of light from port 2 to port 4 will
destructively interfere with the light coupling from port 1 to port 4. The circulating field
will grow until an equilibrium is reached. With an optimum value of coupling that depends
on losses, the two destructively interfering components emerging from port 4 are equal in
amplitude and completely cancel each other. From an energy-conservation point of view,
the circulating power grows until the power dissipated by losses in the loop equals the input
power at port 1. If the light frequency is now varied continuously, the power emerging from
port 4 will show a series of sharp minima whenever the input optical frequency matches the
resonant condition. The behavior is similar to a Fabry-Perot-type resonator whose reflected
power has sharp minima at resonance. For a resonator of this type to function properly, the
directional coupler must have a low insertion loss. As the optimum value of coupling depends
on losses, a variable coupling coefficient is desirable. For instance, an evanescent field coupler
can be used (see later in this chapter). A single strand of optical fiber is bonded into two
slotted quartz blocks a distance L apart. Each fiber-block unit is ground and polished to
within a few micrometers of the fiber core. Placing the two units in contact, oriented as
in Figure 3.23, produces a ring resonator of perimeter L. Coupler tuning is accomplished
by sliding one block over the other to vary the core-to-core separation and optimize the
coupling coefficient. The directional coupler is modelled as a perfect (lossless) device with
an added lumped loss that is independent of the coupling coefficient. Referring to Figure
3.23, the fractional coupler intensity loss γ0 is given by
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|E3|2 + |E4|2 = (1− γ0)
(

|E1|2 + |E2|2
)

(3.131)

where Ei is the complex filed amplitude at the i-th port. The complex amplitudes in
the fibers after the coupled-mode interaction are related to the incident-field amplitudes by

E3 =
√

1− γ0
[

√

1− χE1 + i
√
χE2

]

(3.132)

E4 =
√

1− γ0
[

i
√
χE1 +

√

1− χE2

]

(3.133)

where χ is the intensity coupling coefficient (no coupling corresponds to χ = 0 whereas
χ = 1 gives complete cross coupling). E2 and E3 are further related by

E2 = E3e
−αLeiβL (3.134)

with

β =
nω

c
(3.135)

where α is the fiber amplitude attenuation coefficient and n the refractive index. From
Equations 3.132, 3.133, 3.134 we obtain
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where κr = (1− γ0) e−2α0L. For a resonant situation we require |E4/E1|2 to vanish,
which can be obtained if χ = κr. Indeed, in that case we get
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such that |E4/E1|2 = 0 when sin2 (βL/2− π/4) = 1. This is obtained when

2πnL

c
νq = q2π − π

2
(3.138)

with q = 0, 1, 2, . . . . Thus, the free spectral range is

FSR =
c

nL
(3.139)

The circulating intensity is given by

∣
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E1

∣
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∣

∣

2

max

=
(1− γ0)
(1− κr)

(3.140)

By equating the first of Equations 3.137 to 1/2 |E3/E1|2max, the FWHM is found to be
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FWHM =
c

nL

{

1

2
− 1

π
arcsin

[

1− (1− κr)2
2κr

] }

(3.141)

that for κr near unity, simplifies to

FWHM ≃ c

nL

1− κr
π
√
κr

(3.142)

where arcsin (1− x) ≃ π/2−
√
2x has been exploited. The cavity finesse is therefore

F =
FSR

FWHM
=

π
√
κr

1− κr
(3.143)

A finesse of 80, corresponding to κr = 0.962, was achieved in the first experimental
realization [124], limited by the coupler insertion loss γ0 = 3.2%. With today’s couplers,
finesse values of several hundreds are possible.

3.5.2 Resonators based on closely faced fiber tips

In a simple analogy to the free-space optical cavity made of two mirrors, use of gold or
multilayer dielectric coatings on the facet, either flat or concave, of a fiber (applied by
vacuum evaporation or by pull-off films) has been reported in literature; a stable fiber
cavity is then formed from two closely spaced fiber tips placed face to face. Limited by the
methods used to fabricate the concave surface on the fiber, so far such cavities have been
built with moderate finesse (up to a few 1000) [125]. In this frame, a fiber-based Fabry-Perot
cavity combining very small size, high finesse (> 30000), small waist and mode volume, and
good mode matching between the fiber and cavity modes was recently realized, mainly for
cavity quantum electrodynamics (CQED) studies [126]. In that experiment, a CO2 laser
pulse was used to shape the concave mirror surface, which was then coated with a high-
performance dielectric coating. In particular, a parameter regime was found where a single
pulse of CO2 laser radiation focused on the cleaved end face of an optical fiber produced a
concave surface with extremely low roughness. In this regime, thermal evaporation occurs,
while melting is restricted to a thin surface region, avoiding global contraction into a convex
shape. Incidentally, this sets it apart from the regimes used in CO2 laser-based fabrication
of microspheres and transformation of microdisks into high-Q microtoroid resonators (see
last section in this chapter). The section through the center in Figure 3.24 shows a profile
that is reasonably well approximated by a Gaussian over a wide parameter range.

Close to the center of the profile, the shape is well approximated by a circle, the cen-
tral radius of curvature (ROC) defining the mirror curvature R. The full width at 1/e of
the Gaussian profile gives an estimate of the useful mirror diameter D. Because of the ap-
proximately Gaussian shape of the depression, R, D, and the total structure depth zt are
related by zt ≈ D2/8R. For example, a mirror structure with R = 50 micron and useful
diameter D = 10 micron is only zt = 0.25 micron deep. With typical laser parameters,
the resulting structures are 0.01-4 micron deep and have diameters D between 10 and 45
µm. ROCs measured at the bottom of the depression are between 40 and 2000 µm. Surface
roughness was extracted by atomic force microscopy (AFM) measurements σsc = 0.2± 0.01

nm and used to obtain an estimate of scattering losses according to S = (4πσsc/λ)
2. Thus,

S = 10 ppm is obtained for λ = 780 nm, assuming a high-quality mirror coating that does
not significantly increase this roughness. A realistic value for the absorption loss of a su-
permirror coating is A = 2 ppm [127]. Therefore, with a transmission equaling the losses
(T = S +A) and using Equation 3.44 together with the relationship R +A+ S + T = 1,
a maximum finesse F = π/(T + S +A) = 130000 is expected for a cavity made from two
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FIGURE 3.24
(a) A Fabry-Perot cavity made from two closely faced single-mode fiber strands. (b) Mirror
geometry and parameters. The profile is not spherical: R designates the ROC in the center
and D the structure diameter as defined in the text; zt is the depth of the structure.
(Adapted from [126].)

fiber mirrors with identical coatings. In the pioneering experiment, however, a standard
dielectric coating, consisting of 14 layers of SiO2 and 15 layers of Ta2O5 (2.102 refractive
index), was employed. As a consequence, a maximum finesse of only 37000 was measured.
One key advantage of this configuration is that coupling to and from the cavity is robust
and stable over time, as the cavity mirrors are part of the in-coupling and out-coupling
fibers. Also, there are no mode-matching lenses, so coupling efficiency is given directly by
the mode matching between the mode leaving the fiber and the cavity mode. If single-mode
operation is not required, a multi-mode fiber can be used on the output side. This virtually
eliminates coupling loss and also makes the cavity more robust against various types of
misalignment. But even for single-mode fibers, coupling efficiencies as high as 85% were
measured. Finally, it should be noted that, since the cavity length can be made very small
(a few microns down to hundreds nm), the part of field penetrating into the multilayer
stack contributes significantly to the effective cavity length which enters the formula for the
cavity free spectral range (see below).

3.5.3 FBG-based fiber resonators

Instead of coatings applied to the fiber surface, one may also use fiber Bragg gratings
(FBGs) as internal mirrors. FBGs are periodic modulations (of period Λ) of the refractive
index written into the core of a sensitized optical fiber [128] (Figure 3.25). More in detail, the
fabrication of FBGs typically involves the illumination of the core material with ultraviolet
laser light, which induces some structural changes and thus a permanent modification of the
refractive index. The photosensitivity of the core glass is actually strongly dependent on the
chemical composition and the UV wavelength: silica glass has a very weak photosensitivity,
whereas germanosilicate glass exhibits a much stronger effect, making possible a refractive
index contrast up to 10−3. A significant further increase in photosensitivity is possible by
loading the fiber with hydrogen (hydrogenated fibers). The first fiber Bragg gratings were
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FIGURE 3.25
Structure of the basic fiber bragg grating. The core refractive index is spatially modulated
as n (z) = n+ n1cos (2βBz).

fabricated with a visible laser beam propagating along the fiber core, but in 1989 a more
versatile technique was demonstrated using the interferometric superposition of ultraviolet
beams which come from the side of the fiber (transverse holographic technique). The angle
between the ultraviolet beams determines the period of the light pattern in the fiber core
and thus the Bragg wavelength. The two ultraviolet beams are often generated by exposing
a periodic phase mask (photomask) with a single UV beam (phase mask technique), using
the two first-order diffracted beams. Another approach is the point-by-point technique,
where the regions with increased refractive index are written point by point with a small
focused laser beam. Ultimately, the level of background losses depends on the fiber type,
the photo-sensitization process, and writing conditions. Advantages of fiber gratings over
competing technologies include all-fiber geometry, low insertion loss, high return loss or
extinction, and potentially low cost. But the most distinguishing feature of fiber gratings
is the flexibility they offer for achieving desired spectral characteristics. Numerous physical
parameters can be varied, including: induced index change, length, apodization, period
chirp, fringe tilt, and whether the grating supports counterpropagating or copropagating
coupling at a desired wavelength. By varying these parameters, gratings can be made with
normalized bandwidths ∆λ/λ between 0.1 and 10−4, extremely sharp spectral features, and
tailorable dispersive characteristics.

In essence, an FBG is simply the realization of a QWS mirror inside a fiber and, in
principle, the same formalism could be adopted. In this case, however, the jump in the
refractive index δn = nh − nl is only between 10−5 and 10−3. As a consequence, a fairly
large number of periods is necessary to reach high reflectivity, which exaggeratedly increases
the computation time. Moreover, in dielectric quarter-wave stacks, the larger ratio of high
index to low index leads to bandwidths several orders of magnitude higher than Bragg
gratings. Typically, the period Λ is of the order of hundreds of nanometers (or much longer
for long-period fiber gratings not considered here) and the modulation extends over a few
millimeters or centimeters. Most fiber Bragg gratings are used in single-mode fibers, and
in that case the physical modelling is often relatively handy [129]. It is based on mode
coupling, leading to a pair of differential equations with a coupling term, the magnitude
of which is related to the local strength of the index modulation. The coupling is then
effectively assumed to be smoothly distributed, and the numerical integration is done with
a step size which can be much larger than the grating period. Such methods can be used for
calculating the frequency-dependent complex amplitudes for transmission and reflection of
light as well as, via numerical differentiation, the chromatic dispersion. Numerical models
become substantially more complicated if many propagation modes are involved, which
happens either for multimode fibers or in single mode fibers if birefringence is relevant. The
simplest case is presented here. Let us express the refractive index and the loss within the
grating as
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{

n (z) = n+ n1cos (2βBz) βB =
π

Λ
n1 ≪ n

α (z) = α
(3.144)

The Bragg wavelength is thus defined as λB = 2nΛ and the spatially varying propagation
constant is

k (z) = k0n (z) + iα = k0n+ k0n1cos (2βBz) + iα (3.145)

with k0 = ω0/c = 2π/λ0 and α ≪ k0n ≡ β0. Neglecting terms in α2, αn1, and n2
1 we

can write

k2 (z) ≃ β2
0 + 4β0kccos (2βBz) + 2β0iα (3.146)

where the coupling constant kc = π/λ0n1 has been defined. When Bragg scattering
dominates (β0 ≃ βB), the scalar wave equation

∇2E (z) + k2 (z) · E (z) = 0 (3.147)

can be analytically solved because only two of the infinite set of diffraction orders are in
phase and have significant amplitude. So the total electric field can be written as the sum
of two counterpropagating waves of complex amplitudes A(z) and B(z), namely

E (z) = Ef (z) + Eb (z) = A (z) eiβz +B (z) e−iβz (3.148)

where β is the propagation constant of the uncoupled waves given by

β ≡ k (z)|n1=0 = k0n+ iα = β0 + iα (3.149)

whereupon

β2 ≃ β2
0 + 2β0iα (3.150)

which allows one to re-write Equation 3.146 as

k2 (z) = β2 + 2β0kc
(

ei2βBz + e−i2βBz
)

(3.151)

By insertion of Equations 3.148, 3.151 into Equation 3.147 and using the slowly-varying
envelope approximation (amounting to neglecting the second derivatives) we obtain the
following pair of coupled-wave equations



















dA

dz
≃ ikcei2∆zB

dB

dz
≃ −ikce−i2∆zA

(3.152)

where ∆ = βB−β = βB −β0− iα has been defined. The integration of this system with
boundary conditions Eb (L) = 0 and Ef (0) = Einc leads to the following expressions of the
forward and backward components of the electric field

Ef (z) = Einc
pcosh [p (z − L)]− i∆sinh [p (z − L)]

pcosh [pL] + i∆sinh [pL]
eiβBz (3.153)

Eb (z) = −iEinckc
sinh [p (z − L)]

pcosh [pL] + i∆sinh [pL]
e−iβBz (3.154)
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with p =
√

k2c −∆2. The reflection and transmission coefficients are then given by

r =
Eb (0)

Ef (0)
= ikc

sinh [pL]

pcosh [pL] + i∆sinh [pL]
(3.155)

t =
Ef (L)

Ef (0)
(3.156)

whereupon the reflectivity and the transmittivity are calculated as

R = |r|2 and T = |t|2 (3.157)

Figure 3.26 shows a plot of the first of Equations 3.157 vs. λ0 for n = 1.45, n1 = 10−4,
L = 2 cm, α = 0.023 cm−1, and λB = 1550 nm. The ideal reflectivity (corresponding to
α = 0) is also plotted, clearly showing that, though FBGs may have reflectivity of up to
99.99%, scattering and absorption losses (here lumped into α) ultimately limit the attainable
finesse (a few hundreds) in FBG-based optical cavities.

A schematic of an FBG-based fiber cavity is shown in Figure 3.27. For resonators con-
structed with distributed reflectors, like FBGs, in order to account for the penetration
depth, the free spectral range is defined as [130]

FSR =
c

2n (L0 + Leff1 + Leff2)
=

c

2n (L0 + 2Leff )
(3.158)

where two identical FBGs have been considered. To simplify the calculation of Leff ,
first let us define the detuning δ = βB − β0 such that ∆ = δ − iα. Then, let’s stay in a
neighborhood of the Bragg wavelength (small detuning) where

p =
√

k2c −∆2 =

√

k2c − (δ − iα)2 =
√

k2c − δ2 + α2 − 2iδα ≃ kc (3.159)

Then, from Equation 3.155 one obtains

FIGURE 3.26
FBG reflectivity acording to Equation 3.157 for some typical parameters. The black curve
corresponds to the ideal lossless case, while the gray one describes the lower real reflectivity.
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ϕr = arctan

[ℑ (r)

ℜ (r)

]

= arctan

[

kccosh (kcL) + αsinh (kcL)

δsinh (kcL)

]

= arctan

[

kccoth (kcL) + α

δ

]
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kc
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]

=
π
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− arctan
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δ

kc
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]

≃ π

2
− δ

kc
tanh (kcL) (3.160)

whereupon the reflection delay time is calculated as

τr ≡
dϕr
dω0
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∣

∣

δ=0

=
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dϕr
dν0

∣

∣

∣

∣

δ=0
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λ20
2πc
· dϕr
dλ0

∣

∣
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δ=0

=
λ20
2πc

2n

n1λ0
tanh (kcL) =

n

ckc
tanh (kcL) (3.161)

Finally, denoting with vg the group velocity and noting that for conventional fibers ng
equals the refractive index n no less than 1%, we can write

Leff=
vgτr
2

=
cτr
2ng

=
cτr
2n

=
1

2kc
tanh (kcL) (3.162)

Just as an example, for n1=10−4, L=2 cm, and λ0=1550 nm, we obtain Leff ≃ 2.5 mm.
This effect may be not negligible if the distance between L0 between the two FBGs is small.

While we have focused here solely on the basic aspects of fiber Bragg gratings, nowadays
the realm of FBG-based devices and applications is, to say the least, vast. Just to give an
idea, telecom applications of FBGs often involve wavelength filtering, e.g., for combining
or separating multiple wavelength channels in wavelength division multiplexing systems.
Extremely narrow-band filters can be realized, e.g., with long FBGs (having a length of
tens of centimeters) or with combinations of such gratings. Also, FBGs are commonly
used as end mirrors of fiber lasers (distributed Bragg reflector fiber lasers), then typically
restricting the emission to a very narrow spectral range. Even single-frequency operation
can be achieved, e.g., by having the whole laser resonator formed by an FBG with a phase
shift in the middle (distributed feedback lasers). Outside a laser resonator, an FBG can
serve as a wavelength reference, e.g., for stabilization of the laser wavelength (refer also to
next chapter).

The reader who is interested in further exploring this topic may refer to the review
papers [131], [132] and references therein.

L1 L2L0

FIBER

FBG2FBG1

FIGURE 3.27
Fabry-Perot fiber cavity formed by two FBGs. L1 and L2 are the physical lengths of the
FBGs and L0 is the distance between them. (Adapted from [130].)
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3.6 Whispering gallery mode resonators

Despite their versatility, traditional Fabry-Perot resonators and their folded or ring varieties
have remained fairly complex and expensive devices, large in size, difficult in assembly, and
prone to vibration instabilities because of relatively low-frequency mechanical resonances.
For certain applications, stability and small modal volume are of great importance; however,
miniaturization of conventional FP resonators is either very complicated (when high-finesse
mirrors are utilized), or yields rather low quality Q-factors [133]. We focus here on the
rapidly growing field of monolithic resonators in which the closed trajectories of light are
supported by any variety of total internal reflection in curved and polygonal transparent
dielectric structures. Following the traditional term of microwave electronics, we call these
resonators open dielectric resonators. Extremely high values of Q-factor can be achieved in
optical modes of very small volume with appropriately designed high precision dielectric
interface, and with use of highly transparent materials. The simplest geometry of such
resonators is either a ring, or a cylinder, or a sphere.

Among all resonant geometries, surface tension-induced microcavities, such as silica mi-
crospheres, exhibit the highest Q-factor to date of nearly 9 billion [134]. The modes of a
spherical dielectric particle were first investigated by Mie at the beginning of the 19th cen-
tury, in the context of light scattering from spherical particles. The scattering spectrum
exhibited sharp features, which can be attributed to resonant circulation of optical energy
within the sphere. These optical modes are confined by continuous total internal reflection
at the dielectric air interface and are often referred to as whispering gallery modes. This
description originated from the problem of the whispering gallery which Lord Rayleigh pub-
lished in 1912, describing the phenomenon of acoustical waves he had observed propagating
around the interior gallery of the Saint Paul’s Cathedral [135]. Before Rayleigh, this effect
was assigned to the reflection of acoustic rays from a surface near the dome apex. It was
assumed that the rays propagated along different large arcs of the dome in the form of a
hemisphere should concentrate only at the point that is located diametrically opposite to
a sound source. However, Rayleigh found that, along with this effect, another effect exists:
sound clutches to the wall surface and creeps along it. The concave surface of the dome does
not allow the beam cross section to expand as fast as during propagation in free space. While
in the latter case the beam cross section increases and the radiation intensity decreases pro-
portionally to the square of distance from a source, the radiation in the whispering gallery
propagates within a narrow layer adjacent to the wall surface. As a result, the sound in-
tensity inside this layer decreases only directly proportionally to the distance, i.e., much
slower than in free space. Rayleigh confirmed his explanation by direct experiments using
a whistle as a sound source and a burning candle as a detector. It was found much later,
at the beginning of the 20th century, that in dielectric spheres the electromagnetic waves
can exist, which have the same spatial structure as whispering gallery acoustic waves. The
waves of this type did not attract much attention until the last decade when they suddenly
became the objects of wide studies and applications in optics.

3.6.1 Wave theory of whispering gallery modes

First of all, let us try to better understand the intimate character of whispering gallery
waves and under what conditions they can appear. This requires the study of the structure
of fields in dielectrics. Below, we consider the electrodynamics of a dielectric sphere. The
optical modes of a spherical dielectric particle can be calculated by solving the Helmholtz
equation in spherical coordinates. While the vector equation in Cartesian coordinates is



138 Laser-based measurements for time and frequency domain applications

simply a set of three scalar equations (one in each of the rectangular components of the
vector), in other coordinate systems the situation is more complicated. Nevertheless, in
Section 3.1 it was shown how the analytic difficulties involved in the treatment of vector
differential equations in curvilinear coordinates might be overcome in cylindrical systems by
a resolution of the field into two partial fields, each derivable from a purely scalar function
satisfying the wave equation. In that case, the two scalar functions were naturally taken as
Ez and Hz. In a short while, we will see that in spherical coordinates the two corresponding
modes are those in which the electric and magnetic fields, respectively, are transverse to
the radius vector from the center of coordinates. So, following [136], [137], let the scalar
function Ψ = ψ (r, θ, ϕ) e−iωt be a solution of the Helmholtz equation in a homogeneous
and isotropic medium

∇2ψ + k2ψ = 0 (3.163)

which in spherical polar coordinates is expanded as

1

r2
d

dr

(

r2
∂ψ

∂r

)

+
1

r2sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

r2sin2θ

∂2ψ

∂ϕ2
+ k2ψ = 0 (3.164)

The equation is separable, so that upon placing ψ (r, θ, ϕ) = ψ1 (r)ψ2 (θ)ψ3 (ϕ) one finds

r2
d2ψ1

dr2
+ 2r

dψ1

dr
+
(

k2r2 − p2
)

ψ1 = 0 (3.165a)

1

sin θ

d

dθ

(

sin θ
dψ2

dθ

)

+

(

p2 − q2

sin2θ

)

ψ2 = 0 (3.165b)

d2ψ3

dϕ2
+ q2ψ3 = 0 (3.165c)

The parameters p and q are separation constants whose choice is governed by the physical
requirement that at any fixed point in space the field must be single-valued. If the properties
of the medium are independent of the equatorial angle ϕ, it is necessary that ψ3 be a periodic
function with period 2π and q is therefore restricted to the integers m = 0,±1,±2, . . . .To
determine p, we first identify the solution ψ2 as an associated Legendre function. Upon
substitution of η = cos θ, Equation 3.165b transforms to

(

1− η2
) d2ψ2

dη2
− 2η

dψ2

dη
+

(

p2 − m2

1− η2
)

ψ2 = 0 (3.166)

that, if we choose p2 = l (l + 1) where l = 0, 1, 2, . . . , has periodic solutions in θ (which
are finite at the poles η = ±1) known as the associated Legendre polynomials. For positive
m they are given by

ψ2 (η) = Pml (η) = (−1)m
(

1− η2
)m/2

2ll!

dl+m
(

η2 − 1
)l

dηl+m
(3.167)

while, for negative m, they are given by

P−m
l (x) = (−1)m (l −m)!

(l +m)!
Pml (x) (3.168)

There remains the identification of the radial function ψ1 (r) satisfying Equation 3.165a.
If we write ψ1 (r) = 1/

√
krχ (r), it is readily shown that χ (r) obeys the equation
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d2χ

d(kr)
2 +

1

kr

dχ

d (kr)
+
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1−
(

l + 1
2

)2

k2r2

]

χ = 0 (3.169)

whose solution, already discussed in Section 3.1, is given by the first-order Bessel function
χ = Jl+ 1

2
(kr). Finally, inside the sphere we have

ψs (r, θ, ϕ) = ψ1s (r)ψ2 (θ)ψ3 (ϕ)

= Cs
Jl+ 1

2
(ksr)√
ksr

· Pml (cos θ) ·
{

cos (mϕ)
sin (mϕ)

(3.170)

where Cs is an arbitrary constant and ks = 2πνns/c, ns being the refractive index of
the sphere. Physically, the solution outside the sphere should have the asymptotic form of
a runaway wave, because a wave coming from infinity cannot exist. This means that the
solutions outside the sphere should be expressed in terms of the Hankel functions of the first
kind (which are also solutions to the Bessel equation), which have for large arguments the
asymptotic form of a runaway wave with the amplitude decreasing inversely proportional
to the distance. Thus, outside the sphere, we have

ψa (r, θ, ϕ) = ψ1a (r)ψ2 (θ)ψ3 (ϕ)

= Ca
Hl+ 1

2
(kar)√
kar

· Pml (cos θ) ·
{

cos (mϕ)
sin (mϕ)

(3.171)

where another arbitrary constant has been introduced (Ca) and ka = 2πνna/c, na being
the refractive index of the medium containing the sphere (typically air). Now, as in the case
of cylindrical coordinates, one can deduce solutions of the vector wave equation directly
from the scalar solution ψs,a. In spherical coordinates the following relations

Ms,a = rot (rψs,a) and ks,aNs,a = rotMs,a (3.172)

must be used, where M and N identify, respectively, with the magnetic and electric
field for the TM solution (conversely, the TE solution is found by identifying M and N with
the electric and magnetic field, respectively). As an example, we consider the TM modes.
In this case, the electric field is allowed to have a radial component proportional to ψs,a (by
contrast, the magnetic field will have only transverse components) such that

Hs,a = rot (rψs,a) = rot (rψs,a, 0, 0) =
(

0,
1

sin θ

∂ψs,a
∂ϕ

,−∂ψs,a
∂θ

)

≡
(

Hs,a
r , Hs,a

θ , Hs,a
ϕ

)

(3.173)

and

Es,a =
1

ks,a
rot (Hs,a)

=

(

l (l + 1)

ks,ar
ψs,a,

1

ks,ar

∂2 (rψs,a)

∂r∂θ
,

1

ks,arsin ∂

∂2 (rψs,a)

∂r∂ϕ

)

≡
(

Es,ar , Es,aθ , Es,aϕ
)

(3.174)
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Note that the above expressions for the field components were derived just by use of the
explicit expression for the rotor in spherical polar coordinates, except for Es,ar for which
Equations 3.163, 3.165a were also exploited. To obtain explicit expressions for the vector
wave functions we only need to carry out the differentiations
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(3.175)

The corresponding expressions for the field components outside the sphere are found by
replacing ks with ka, Cs with Ca, and Jl+ 1

2
(ksr) with Hl+ 1

2
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(3.176)

The above expressions should satisfy the conditions on the sphere boundary. The conti-
nuity condition for the tangential components provides

Ha
θ (R) = Hs

θ (R) ⇒ Ca = Cs
Jl+ 1

2
(ksR)

Hl+ 1
2
(kaR)

√

na
ns

(3.177)

and

Eaϕ (R) = Esϕ (R)⇒

[√
ksrJl+ 1

2
(ksr)

]′

r=R√
ksRJl+ 1

2
(ksR)

=
ns
na

[√
karHl+ 1

2
(kar)

]′

r=R√
kaRHl+ 1

2
(kaR)

(3.178)

where R is the radius of the sphere and the prime indicates the total derivative over r.
The former condition allows us to find only the ratio between Cs and Ca, so that one of
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them remains free. It is determined by the power of the optical source exciting the waves.
Solution of the equation stated by the latter condition yields, instead, the eigenvalues of the
problem, namely the resonance frequencies of the WGMs. Before solving this equation, let
us first identify which of the above modes actually correspond to the WGMs. According to
the description of Rayleigh, a whispering gallery wave should be pressed down to the sphere
surface. Let us look attentively at the radial dependence of the field described by the fourth
of Equations 3.175. For a small index l, the function fills almost the entire volume of the
sphere. Such modes cannot be the WGMs. However, for a large index l, the Bessel function
is very small up to r ≃ l/ks. For r > l/ks, the Bessel function begins to oscillate with a
decreasing amplitude. Therefore, for given ks and R, the first l index corresponding to a
WGM is given by l ≃ Rks. In other words, if we choose the value of ksR that is closest to
the first root of the Bessel function, the field near the sphere surface will have the structure
without oscillations (Figure 3.28).

Next we focus on the polar structure of the wave described by Pml (cos θ). For m = l,
we have P ll (cos θ) ∝ sinlθ such that the polar structure is peaked at π/2 that is on the
equatorial plane (by contrast, if m 6= l the mode acquires an oscillating transverse structure
and the oscillations increase with increasing the difference l −m); in addition, the higher
is the index l, the narrower is the peak width around π/2. For very large l, P ll (cos θ)
∝ sinlθ ≃ sinlπ/2 ≃ 1. These results are illustrated in Figure 3.29.

In light of the above considerations, it is reasonable to call a WGM a wave for which the
Bessel function has no roots inside a sphere and which has identical and large indices l and
m. Formally, to construct a WGM, the following instructions must be followed. Given the
optical wavelength λ, the sphere radius R, and the refractive indices (ns and na), the index
l must be found for which the first maximum of Jl+ 1

2
(ksr)/(ksr)

3/2 falls at r = R. Then,
Esr , Ca, and hence Ear can be explicitly computed (one can assume, for example, cos (mϕ)
for the equatorial structure and P ll (cos θ) ≃ const as already discussed) such that

Er
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=
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(3.179)

The associated intensity is given by

I ∝























n2
s

[

l (l + 1)
Jl+ 1

2
(ksr)

(ksr)
3/2

· cos (mϕ)
]2

r < R (3.180a)
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In Figure 3.30 the above expression for the intensity is plotted for the case R = 11.5
micron, λ = 1 micron, na = 1, and ns = 1.453. By looking at the behavior of Equation
3.6.1a along r, it is easily recognized that for l = 100 the intensity has its maximum just at
r = R. Then, for this l value, the intensity is calculated over all r by computing Equation
3.6.1a inside the sphere and Equation 3.6.1b outside. One can see that the optical intensity
falls down very rapidly (within one optical wavelength) outside the sphere (evanescent field).
By taking into account also the azimuthal dependence, we can have a nice 3-D picture of the
intensity corresponding to this mode (Figure 3.31). Finally, it is worth pointing out that, by
plotting the last three of Equations 3.175, it is readily seen that the dominant electric-field
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FIGURE 3.28
Radial dependence in the radial component of the electric field inside the sphere for l = 50
(upper frame) and l = 1 (lower frame), according to the fourth of Equations 3.175.

component in a WGM (i.e., for sufficiently l = m values) is the radial one. Conversely, for
TE modes, the electric field is prevalently polarized azimuthally.
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FIGURE 3.29
Polar dependence in the radial component of the electric field inside the sphere according
to the fourth of Equations 3.175. Upper frame: l = m = 50 corresponds to the black curve,
while (l = 50, m = 48) to the gray one. Lower frame: l = m = 50 corresponds to the black
curve, while l = m = 10 to the gray one.
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FIGURE 3.30
Upper frame: plot of Equation 3.6.1a for all r values. Lower frame represents the actual
intensity behavior: plot of Equation 3.6.1a inside the sphere and of Equation 3.6.1b outside.

Now, we have to calculate the eigenvalues (resonance frequencies). For this purpose,
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FIGURE 3.31
3-D intensity profile, from two different angles, corresponding to the same mode considered
in Figure 3.30.

rather than solving numerically Equation 3.178, we will find the eigenvalues from the solu-
tion of an appropriate approximate equation. Thus we come back to Equation 3.165a

d2ψ1

dr2
+

2

r

dψ1

dr
+

[

k2 − l (l + 1)

r2

]

ψ1 = 0 (3.181)

First, we pose ψ1 = u/r to get

d2u

dr2
+

[

k2 − l (l + 1)

r2

]

u = 0 (3.182)
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which can be approximated near the sphere surface (r = R) as

d2u (r′)

dr′2
+

[

k2 − l (l + 1)

R2
− 2l (l + 1)

R3
r′
]

u (r′) = 0 (3.183)

where r′ = R− r. Upon placing α = k2− l (l + 1)/R2, β = 2l (l + 1)/R3 (σ = 1/β), and
t = −α+ βr′, we obtain

d2u (t)

dt2
− σ2t · u (t) = 0 (3.184)

that is the Airy equation which has two linearly independent solutions Ai and Bi, such
that

u (t) = A′ · Ai
(

σ2/3t
)

+B′ ·Bi
(

σ2/3t
)

(3.185)

Since the Bi function is divergent for t→∞, we set B′ = 0 and get

u (r′) = A′ · Ai
(

β−2/3t
)

= A′ ·Ai
(

−αβ−2/3 + β1/3r′
)

(3.186)

The boundary condition u (r′ = 0) implies Ai
(

−αβ−2/3
)

= 0 that yields

−αqβ−2/3 = zq = − |zq| (3.187)

where zq are the roots of the Airy function Ai (z) = 0 (for example z1 = −2.338, z2 =
−4.088, z3 = −5.521). Finally we have

u (r′) = A′ ·Ai
(

− |zq|+
[2l (l + 1)]

1/3

R
r′
)

(3.188)

The second boundary condition u (r′ = R) ≃ 0 is automatically satisfied. Indeed, for
l≫ 1, the above equation provides

u (r′ = R) = A′ ·Ai
(

− |zq|+ [2l (l + 1)]1/3
)

≃ A′ · Ai
[

(√
2l
)2/3

]

= A′ · e−
2
3

√
2l

2
√
π
(√

2l
)1/6

≃ 0 (3.189)

where the asymptotic expansion of the Ai function has been exploited. Coming back to
the secular equation, we get

k2l,q −
l (l + 1)

R2
=

[

2l (l + 1)

R3

]2/3

|zq| (3.190)

that provides

k2l,q ≃
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R2
+
|zq|
R2
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2l2
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=
l2
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1 +
|zq| 22/3
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)

(3.191)

which yields

kl,q ≃
l

R
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1 +
|zq| 22/3
2l2/3

)

=
1

R

[

l + |zq|
(

l

2

)1/3
]

(3.192)
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such that

νl,q =
c

2πnsR

[

l + |zq|
(

l

2

)1/3
]

(3.193)

Therefore, a WGM can be characterized by its polarization (TE or TM), i.e., the di-
rection of the dominant electric field component, and three integer orders (q, l,m) where q
denotes the radial order (it counts the number of field maxima in the radial pattern), l the
angular mode number (corresponding to the number of wavelengths around the circumfer-
ence), and m the azimuthal mode number (in the range −l ≤ m ≤ l, it gives l − m + 1
maxima in the polar distribution of the field). The above equation is independent on the
azimuthal mode number m, which means that the polar modes in a perfect sphere cavity are
degenerate. For definiteness we will apply the term WGM to the modes with large indices
l, l = m and q = 1. Note, however, that modes with indices l 6= m, but close to l, and with
q > 1, but close to unity, have properties that are close to those of WGMs. This means
that there is no sharp difference between WGMs and other modes with nearest indices and,
for this reason, the modes with a small difference l − m are sometimes also assigned in
the literature to WGMs. Tuning of the eigenfrequencies can be achieved by temperature
variation or by strain. The resonance frequency is shifted by ∆ν/ν = −∆R/R −∆ns/ns:
the temperature dependence reduces the mode frequency by a few GHz per degree; larger
tuning over several hundred GHz can be achieved by applying a compressive force near the
polar regions in a microvice or by stretching a microsphere with two attached stems. For
very large l, the free spectral range can be approximated as

FSR ≃ c

2πnsR
(3.194)

This is just the free spectral range expected for a wave that propagates along the inner
surface of the sphere that is continuously internally reflected. The total internal reflection
process also gives rise to the frequency shift between the nearly identical TM and TE spectra.
To see this formally, a similar treatment should be carried out to find the TE eigenvalues.
However, a simple argument can be used to find this result [138]. Consider a plane wave
propagating along a closed equatorial polygonal ring path withN total (internal) reflections.
Addition of the individual phase shifts (given by the Fresnel formulas) that occur during
one round trip leads to a frequency shift between TE and TM modes given by [105]

∆TM −∆TE = 2N arctan





cos θ

√

sin2θ − (na/ns)
2

sin2θ



 (3.195)

with θ = (1− 2/N)π/2. In the limit of large N , this returns

∆TM −∆TE = 2π

√

1− (na/ns)
2 (3.196)

correponding to

∆FSR = FSRTM − FSRTE =
c

2πnsR

√

1− (na/ns)
2 (3.197)

that is exactly the result one would find by calculating the eigenvalues for the TE modes
according to the procedure followed to find those for the TM modes. As mentioned above,
the eigenfrequencies for modes with the same index l but different indicesm are degenerated.

This degeneration is removed when the shape of a dielectric body deviates from a sphere.
For example, in the case of a spheroid with a small eccentricity, we can calculate a correction
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to the frequency using perturbation theory. For this purpose, we will use the nuclear energy
levels calculated for a spheroidal model [139] written as

ǫ
(

x2 + y2
)

R2
+

z2

ǫ2R2
= 1 (3.198)

where R is the radius of the undistorted sphere. By comparison with the standard form of
the spheroidal equation

(

x2 + y2
)

/a2+z2/b2 = 1, we get this expression for the eccentricity
e ≡ a− b/R = (R/

√
ǫ − ǫR)/R = −ǫ + 1/

√
ǫ ≃ −(2/3)(λ − 1) (when |λ− 1| ≪ 1). With

this notation, a potential well of constant depth in a spheroidal region of constant volume
is defined as

V (s) =

{

−D s < R
0 s ≥ R (3.199)

with s =
√

ǫ (x2 + y2) + z2/ǫ2. For small values of e, the eigenvalues can be computed
by first-order perturbation theory employing the normalized solution ψ0 (x, y, z) of the un-
perturbed problem
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SS
Ψ · n dσ (3.200)

where SS is the surface of the sphere, the vector Ψ ≡ |ψ0 (x, y, z)|2 (x, y,−2z) has been
introduced, and the Gauss theorem has been exploited (n is the versor normal to the surface
of the sphere). Therefore, by introducing spherical coordinates one gets

E(e)− E(0) = −De

3

∫∫

SS
|ψ0(R, θ, ϕ)|2[(x, y,−2z) · (nx, ny, nz)]dσ

= −De

3
R3|Rn,l(R)|22π

∫ π

0

(1− 3 cos2 θ)|Y ml (θ, ϕ)|2 sin θdθ (3.201)

where ψ0 (x, y, z) = ψ0 (r, θ, ϕ) = Rn,l (r) Y ml (θ, ϕ) has been used. Recalling that

Y ml (θ, ϕ) =

√

2l+ 1

4π

(l −m)!

(l +m)!
Pml (cos θ) eimϕ (3.202)

we finally obtain
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(3.203)

where l≫ 1 has been exploited in the last step.
Finally, let us consider an even more crude approximation of Equation 3.182 for r > R

and near the sphere surface
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u = 0 (3.204)

Its solution is
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√
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s−1· rλ (3.205)

where C2 has been set to zero to avoid divergence, and the relations k0 = 2π/λ = ks/ns
and ksR ≃ l have been used (see Equation 3.193). Since the field amplitude becomes
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very small at distance r > Rns, the intensity of radiation emitted from the sphere is
very low (very high Q). As a result, we can imagine the following picture. The WGM field
occupies a volume bounded by a spherical surface of radiusRns. Radiation is emitted outside
from this volume in the form of a runaway wave with very small amplitude. However, the
field occupies, in fact, not the entire volume of a sphere with radius Rns but it is pressed
down to the surface of the dielectric sphere, extending outside the sphere by the distance
r = λ/2π

√

n2
s − 1. For such materials as glass and quartz, this distance is smaller than the

wavelength in free space, not to mention dielectric with even larger refractive index like
diamond or certain semiconductor materials.

We close this section by observing that for other interesting geometries (like microtoroids,
microdisks, ...), Helmholtz’s equation is not separable. Thus, unlike spherical cavities, there
is still no analytical theory for the structure and positions of WGMs in these configurations.
Recently, several methods have been developed to numerically solve Maxwell’s equations
based on techniques like Finite Difference Time Domain (FDTD) or Finite Element Method
(FEM) [140].

3.6.2 WGMs in a ray-optical picture

After this rigorous, tutorial discussion on WGMs, let us a introduce a simple approach to
gain a deeper physical insight into this phenomenon. For a perfect microsphere, as that
previously treated, the problem can be explored by employing geometric optics on its cross
section because the incident plane is conserved. Considering a sphere with a radius R and
refractive index ns surrounded by air as shown in Figure 3.32, when light is incident at the
interface with an angle i larger than ic, where ic = arcsin(1/ns) is the critical angle, the ray
is then totally reflected. Due to the circular symmetric, it therefore keeps the same incident
angle for the following reflections. As a result, the light ray is trapped inside the cavity by
successive total internal reflections. If the travel distance in one round-trip is an integral
multiple of the wavelength, the WGM resonance mode will be formed. For a large circle
where R ≫ λ and incident angle i ≃ π/2, the ray travels very close to the circle interface.
Thus an approximate condition for a WGM resonance can be expressed as 2πR = λl/ns
where l is a interference order and λ is the wavelength in vacuum. The resonance condition
for frequency is ν = lc/(2πNsR) and thus the free spectral range is FSR = c/(2πnsR).
For the cavity with ns = 1.45 (fused silica refractive index) and radius R = 20 micron,
its FSR is about 1.6 THz in frequency or 3.5 nm at λ = 800 nm in wavelength. It should
be stressed that this approach works for the case where the cavity is much larger than
the operation wavelength (l is large). On the other hand, we also introduce the angular
momentum L as shown in Figure 3.32, which is defined as follows: L = r × k. In the
case of the WGM resonance shown in Figure 3.32, its angular momentum can be easily
derived: L = r1k = r1Nk0 where k0 is the wave number in vacuum and r1 = R · sin(i).
In the condition where sin(i) ≃ 1, we have L ≃ Nk0R = l. So the interference order l
is often called angular order. As already mentioned, in an ideal sphere the optical modes
possess a 2l + 1 degeneracy with respect to the azimuthal mode number m. This can be
understood by using classical ray optical interpretation, in which the optical modes with
same l, but different m, orbit around the equatorial plane by alternating reflections from
the lower to the upper hemisphere (and vice versa), thereby taking different excursions
away from the equator. In other words, along the surface of the sphere, a mode can be
thought as tracing out a zig-zag path around the sphere with the equatorial plane being the
mean plane of propagation: the mode is confined to a belt around the equatorial plane by
the curvature of the sphere in the polar direction (Figure 3.33). The wavevector associated
with this trajectory is |βl| = l (l + 1)/a and the projection onto the equatorial plane (i.e.,
the propagation constant) is given by |βm| = m/a. Different values of m imply that the
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modes travel in zig-zag paths with different inclinations with respect to the equatorial
plane. As already rigorously shown, when m = l (fundamental mode), the inclination is the
smallest. Although modes with decreasing values of m propagate at larger inclinations, for
the same value of l they all have the same resonant wavelength. This is because modes that
take larger excursions away from the equator need to propagate over shorter distances to
complete a revolution around the sphere (from the fact that higher latitude circles have less
circumference than the equator).

By summarizing, in the ray optics picture, the optical modes within a microsphere are
confined by continuous total internal reflection at the dielectric cavity-air interface. However,

R i
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r1
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qL
TE TM

Polar axis ( )z
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FIGURE 3.32
Sketch of the cross section plane of a sphere where a light ray is travelling by total internal
reflections (frame a) and of a WGM in a perfect microsphere (frame b).



152 Laser-based measurements for time and frequency domain applications

it is a general property that total internal reflection at a curved interface is incomplete, and
leads to a transmitted wave, which for the case of a resonator causes loss of optical energy. A
good intuitive explanation of this effect can be given by considering the phase velocities in a
ray optical picture [134]. For total internal reflection at a planar interface, the exponentially
decaying field component has a constant phase velocity u0 < c in the evanescent region.
For a curved surface, however, the phase velocity increases with increasing separation from
the boundary i.e., u (r) = u0r/a. At the point where the phase velocity exceeds the phase
velocity in air (u (r) > c) the evanescent field becomes propagating, leading to tunnel losses.
This loss mechanism is called whispering gallery loss, and is due to tunneling of the photons
out of their bound states. This tunneling process can be understood by drawing an analogy
to the quantum mechanical treatment of a 1-D particle in a central potential [140]. To
this aim, one can re-write the first of Equation 3.165 as an eigenvalue problem using the
transformation ψ1 = u/r and introducing the energy term E = k20

−d
2u

dr2
+ Ueffu = Eu (3.206)

where the effective potential is given by

Ueff =

{

l(l+ 1)

r2
+ k20 [1− n2(r)]

}

(3.207)

with

n(r) =

{

ns r ≤ R
1 r > R

(3.208)

Thus, the effective potential is discontinuous at the cavity-air interface, giving rise to a
potential well. Furthermore the characteristic radii Ra and Rb are given by

Ra =

√

l(l + 1)

nsk0
(3.209)

Rb = Rans (3.210)

In the well region Ra < r < Rb discrete bound states exist which correspond to the
whispering gallery modes. The region r < Ra as well as R < r < Rb corresponds to a
potential barrier, in which the optical modes are exponentially decaying (i.e., evanescent).
The region Rb > r supports a continuum of modes, which are unbound. Due to the finite
height and finite width of the potential barrier in the region R < r < Rb, the optical modes
can tunnel from their bound well states into the continuum, giving rise to a tunnel loss. The
height and width of the potential barrier decreases as a function of the polar mode number
l, causing an increase in tunnel loss.

3.6.3 Mode Q and volume

As already stressed, the extent to which dissipation is present in a resonant system is
commonly expressed by the Q-factor of the mode ω which is related to the lifetime τ of
light energy in the resonator mode as Q = ωτ . Just to give an idea, the ring down time
corresponding to a mode with Q = 1010 and wavelength λ = 1.3 µm is 7 µs, thus making
ultrahigh Q resonators potentially attractive as light storage devices. The total Q-factor is
comprised of several loss contributions: intrinsic material absorption, scattering losses (both
intrinsic, as well as inherent to the surface of the cavity), surface absorption losses (e.g., due
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FIGURE 3.33
Schematic of the mode propagation constants along the surface of a sphere.

to the presence of adsorbed water), whispering gallery loss (or tunnel loss), and external
coupling losses to a useful external mode (such as a prism or a waveguide)

Q−1
tot = Q−1

mat +Q−1
scatt +Q−1

surf +Q−1
ext +Q−1

WGM (3.211)

The highest Q-factor up to the date, Q = 2 · 1010, was achieved in crystalline WGRs
[133]. The oblate spheroidal resonators with diameter 0.5-12 mm and thickness 0.03-1 mm
were fabricated out of single-crystal blocks by standard diamond cutting and lapping, and
optical polishing techniques. It is believed that the current Q-factor values are limited by
extrinsic losses in particular specimens of material (originating from uncontrolled residual
doping non-stoichiometry). The highest measured Q-factor in amorphous WGM resonators
is Q = 8 · 109 at 633 nm [141]. Approximately the same WGM Q-factors were observed in
near infrared (1.55 µm) [142] and at 780 nm [143]. The near-spherical WGR radius varied
from 60 µm to 200 µm in [143], and from 600 to 800 µm in [141], [142]. The measured
Q-factors were close to the maximum achievable value for the fused silica at 630 nm [144].
Q-factors measured in liquid WGRs (e.g., free-flying or trapped droplets of liquid aerosols)
are less than 105. The problem is in the difficulty of excitation and detection of WGMs with
larger Q using free beam technique [145]. Theoretical implications from the experimental
data for the Q factors in liquid WGRs are more optimistic: Q ≥106 for ∼ 20µm droplets
[146]. On the other hand, it was shown that a pendant 400 µm liquid-hydrogen droplet can
achieve high-Q values that exceed 109 for WGMs in the ultraviolet [147]. Quality factor
Q = 2 · 108 at λ=2.014 µm was reported earlier for a multiple total-internal reflection
resonator, analogous to a WGR, used in optical parametric oscillators pumped at 1064
nm [148]. Quality factors of microring and microdisk WGRs typically do not exceed 105.
For instance, all epitaxial semiconductor 10 µm diameter microring resonators vertically
coupled to buried heterostructure bus waveguides have Q = 2.5 · 103 [149]. Unloaded Q-
factor of the order of 105 was demonstrated in 80 µm microdisks [150]. Micron-size microdisk
semiconductor resonators have Qs of order of 104 [151].

In many applications, like non-linear optics and cavity quantum electrodynamics, not
only temporal confinement of light (i.e., the Q-factor), but also the extent to which the light
is spatially confined is an important performance parameter. The mode volume of a WGM
mode is defined as
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Vmode =

∫

w (r)d3r

wmax
(3.212)

where

w (r) =
1

2

[

ε0ε (r)E (r) ·E∗ (r) +
1

µ0
B (r) ·B∗ (r)

]

(3.213)

is the electromagnetic energy density. Numerically calculated mode volumes show that
the effective WGM volume occupies only a small fraction of the total volume of the micro-
resonator (a few percent/per miles) [134]. Indeed, WGRs can have mode volumes orders of
magnitude less than in Gaussian-mode resonators.

3.6.4 WGM evanescent coupling

Unlike Fabry-Perot cavities, laser beams propagating in free space cannot induce efficient
excitation of high-Q WGMs in microcavities. Indeed, in the geometric-optics point of view,
the WGMs being confined by successive total internal reflections, no incoming ray can
directly excite them. Then, the right approach is that of evanescent-wave coupling, which
exploits the WGM evanescent field outside the geometrical boundaries of the microcavity
[140]. In last two decades, several evanescent coupling techniques have been developed for
this purpose.

The approach used in early studies was based on prism couplers (frame a of Figure 3.34).
The incident light strikes the inner prism interface with a specified angle to undergo total
internal reflection, and the resulting evanescent field is used to excite the WGMs by placing
the microcavity in this field. When it is carefully optimized, this technique can achieve
rather good coupling efficiency up to 80 percent, but this requires difficult beam shaping,
and it has a bulky size.

At present, in addition to this well-known approach, coupler devices include side-polished
fiber couplers (having limited efficiency owing to residual phase mismatch), fiber tapers
(almost 100% coupling achieved), hollow fibers, pigtailing technique with an angle-polished
fiber tip in which the core-guided wave undergoes total internal reflection, and special
technique of coupling of the cavities and semiconductor lasers [133].

The most efficient coupling to date was realized with tapered fiber couplers (frame b of
Figure 3.34). In general, the evanescent field in a commercial step index single mode fiber
locates in its cladding part (as propagation occurs through total internal reflection at the
core-cladding interface). To be able to utilize this field, one can either remove the cladding
part by chemical etching or by tapering. Tapering is an easy and efficient way to produce
an adiabatic coupler with low losses. In this case, the fiber is typically tapered down to
micrometer or even nanometer scale. For instance, a tapered fiber can be produced by gen-
tly stretching an optical fiber while it is heated over a flame. Under these conditions, the
original fiber core becomes so small that it has no significant influence any more, and the
light is guided only by the air-glass interface. Provided that the transition regions from the
full fiber diameter to the small waist and back again are sufficiently smooth, essentially all
the launched light can propagate in the taper region and (more surprisingly) find its way
back into the core of the subsequent full-size fiber region. We want now to describe the
coupling mechanism occurring when the evanescent field of a fiber taper (or a prism) and a
WGM microcavity are brought together. Whatever scheme is used, the coupling efficiency
(coupling coefficient α) as a function of the various experimental parameters can be calcu-
lated, in principle, by computing the overlap intregral between the wavefunctions describing,
respectively, the input field and the particular WGM to be excited. Then, the physics of
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FIGURE 3.34
Two examples of microsphere resonator WGM couplers.

the coupling mechanism is often analyzed in the frame of coupled-mode theory [152]. How-
ever, a better physical insight is obtained by another approach, called Evanescently coupled
Fabry-Perot model [140].

Figure 3.35 shows the schematic of a fiber taper coupled WGM microcavity system,
where Ein denotes the amplitude of the input optical field, and Eout is the amplitude of
transmitted or output field. g represents the coupling gap between the taper coupler and
a cavity. Ecav is the amplitude of internal field just after the input. The schematic of
Evanescent F-P model is also presented in Figure 3.35. In this model, an input mirror with
transmission T (g) as a function of g represents the evanescent field coupling between a fiber
and a WGM cavity. The other mirror can describe the radiation losses or other coupling
components, like a second fiber taper. Also shown is the round-trip internal absorption loss
coefficient P/2. The optical field in the cavity after one round-trip is noted E′

cav. In this
model, the input mirror is characterized by the reflection coefficient −r (outside), r (inside),
and the transmission coefficient t (for both outside and inside). For the second mirror, the
corresponding coefficients are given as r′ and t′.

First, we consider only the case of perfect mode matching, where the whole incoming
field can enter into the cavity and excite the mode under study. In this case, the amplitudes
of the optical field can be written as







Ecav = tEin + rE′
cav E′

cav = r′e−P/2eiφEcav

Eout = −rEin + tE′
cav E′

out = t′Ecav

(3.214)

where e−P/2 represents the internal absorption loss in one round-trip, r′ contains the
radiation losses, and eiφ represents the round-trip phase. In the following, E′

out will be
ignored as it is not significant here. From Equation 3.214 we obtain
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FIGURE 3.35
Schematic of the fiber taper-coupled WGM microcavity system. (Adapted from [140].)



















Ecav =
t

1− rr′e−P/2eiφEin

Eout =

(

−r + t2r′e−P/2eiφ

1− rr′e−P/2eiφ
)

Ein

(3.215)

So the amplitude reflection coefficient of the cavity is given by

rFP =
Eout
Ein

=
−r + r′e−P/2eiφ

1− rr′e−P/2eiφ (3.216)

where r2 + t2 = 1 has been exploited. This coefficient has a resonance when the round-
trip phase φ is an integer multiple of 2π. Therefore, if we consider only one given resonance,
we can replace eiφ by eiδφ where δφ = φ− 2mπ. Since the WGM microcavities have a high
finesse, we can assume that the mirror transmissions T = |t|2, T ′ = |t′|2 and the internal
losses P verify T, T ′, P ≪ 1, whereupon one can write
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(3.217)

Moreover, in the neighborhood of a resonance, as long as δφ≪ 2π, one has eiδφ ≃ 1+ iδφ.
So, neglecting all the second order terms, the expression of the reflection coefficient simplifies
to

rFP =

T − (T ′ + P )

2
+ iδφ

T + (T ′ + P )

2
− iδφ

(3.218)

Here, the reflected signal is the field that escapes from the coupling region, which should
be identified to the field transmitted by the taper. This leads to the normalized (intensity)
transmission Tout at the taper output

Tout =
Pout
Pin

=

∣

∣

∣

∣

Eout
Ein

∣

∣

∣

∣

2

= 1− T (T ′ + P )
(

T + T ′ + P

2

)2

+ (δφ)
2

(3.219)

One notes that, on resonance, when the total internal losses T ′ + P match the coupling
losses T , the transmission Tout drops to 0. This effect is known as critical coupling. Moreover,
we can observe that the internal losses P can not be completely distinguished from the
radiation losses T ′, and we will merge them in the so-called intrinsic losses, in contrast
with the coupling losses represented by T . It is more useful to write these expressions in
terms of angular frequency by using the fact that φ = Nω/cL, where L is the round-
trip length and N the internal refraction index. This introduces the FSR of the cavity
∆ωFSR = c/NL, such that δω = ∆ωFSRδφ. We will furthermore write N = NS for silica,
and L = 2πa, so that ∆ωFSR = c/2πNSa (here a denotes the microsphere radius). Using
the same scaling factor, we introduce the intrinsic and coupling linewidths

{

γI = ∆ωFSR (T ′ + P )
γC = ∆ωFSRT

(3.220)

With these notations, the taper transmission is written as

Tout = 1− γIγC
(

γC + γI
2

)2

+ (δω)
2

(3.221)

However we also need to take account for a small mismatch which is difficultly avoided
between the incoming mode and the mode of the cavity. For this purpose we introduce a
phenomenological complex overlap parameter α, with 0 < |α| < 1 which measures the frac-
tion of the incoming field that actually contributes to excite the cavity. Therefore, Equation
3.214 should be rewritten as follows







Ecav = αtEin + rE′
cav E′

cav = r′e−P/2eiφEcav

Eout = −rEin + α∗tE′
cav E′

out = t′Ecav

(3.222)
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So the following equations are obtained for the taper transmission and the cavity build-
up
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(3.223)

In general, we investigate the microcavity by detecting the throughput of the fiber taper
on the output photodetector: IPD (δω) = Tout (δω) Iin. In the wavelength range where the
WGMs are not excited (out of resonance or weak coupling), one has Tout = 1. When a
WGM is excited, the transmitted signal decreases. Therefore, to characterize the effect of
a signal coupling into a WGM resonance, we can introduce the so-called dip parameter,
defined by D (δω) = 1− Tout which provides

D (δω) = |α|2 γIγC
(

γC + γI
2

)2

+ (δω)
2

(3.224)

According to Equation 3.224, we recognize that a WGM resonance has a Lorentzian
shape of full width at half maximum (FWHM) γtot = γC + γI . Equation 3.224 also allows
one to re-write Equation 3.223 as

Pcav =
∆ωFSR
γI

D (δω)Pin = FID (δω)Pin (3.225)

where the intrinsic cavity finesse FI = ∆ωFSR/γI has been introduced. On resonance,
the dip is

D (δω = 0) = |α|2 4γIγC

(γC + γI)
2 (3.226)

From Equation 3.226 we deduce that two conditions should be fulfilled at the same time
to achieve critical coupling condition (D (δω) = 1). The first one is the condition γI = γC ,
which will be discussed here, while the second one is the mode matching condition (mostly
gap independent). For more simplicity we will assume that it is properly achieved, ensuring
the condition |α| = 1. Note that value of the intrinsic Q-factor of a given microcavity is
a fixed parameter, leading to a fixed γI , and the coupling condition will thus be analyzed
through the tuning of γC , which is related to the evanescent gap g. Therefore, we introduce
the exponential dependence of the transmission T as a function of the coupling gap g. This
can be written as follows

T = T0e
−2κg ⇒ γC = γC0e

−2κg (3.227)

where κ−1 = λ/2π
(

N2
S − 1

)−1/2
represents the evanescent wave characteristic depth (see

Equation 3.205). Here γC0 denotes the coupling losses when the coupler is in contact with
the cavity. By insertion of Equation 3.227 into Equation 3.226 (with |α| = 1), one obtains

D (δω = 0) =
1

cosh2κ (g − gc)
(3.228)

where the critical coupling gap gc ensuring D (δω = 0) = 1 is defined as
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gc =
1

2κ
log

γC0

γI
(3.229)

The critical coupling condition g = gc (or γC = γI) is of great importance for both active
and passive devices. The corresponding dip on resonance reaches its maximum value 1, where
the output signal drops down to zero. Also, the loaded linewidth at this position is twice the
intrinsic linewidth. The circulating power in the cavity is expressed as Pcav = FIPin. Thus,
for a finesse on the order of 106 and a modest input power 1 µW, the resulting circulating
power in the cavity can be larger than 100 mW.

Another important feature, though often ignored, is that, due to phase change on re-
flection experienced by evanescent waves, coupling introduces a resonance frequency shift.
The evanescent coupled FP model can account for this effect too. In this case, the reflection
coefficient involved in Equations 3.222 has a given non-zero phase. When calculations are
carried out considering this phase change, a resonance frequency shift ∆ωC = ∆ωC0e

−2κg

is found, where ∆ωC0 is, as for γC0, the value achieved in contact.

We close this section by observing that in 1995 it was discovered that high-Q (above
108) WGMs typically split into doublet mode structures [153]. It was suggested that such
a splitting is due to the coupling between clockwise and counter-clockwise WGMs, which
results from the internal backscattering caused by surface roughness or density fluctuations
in silica which behave as Rayleigh scatterers. These two components, corresponding to
standing waves, are called symmetric and asymmetric modes. Several papers have been
devoted to refine this interpretation [154]. Such phenomenon can be accommodated in the
Evanescent F-P model too [140].

3.6.5 Fabrication and applications of whispering gallery resonators

Today, WGM resonators exist in several geometrical structures like cylindrical optical fibers,
microspheres, microfiber coils, microdisks, microtoroids, photonic crystal cavities, etc. up
to the most exotic structures, such as bottle and bubble microresonators (Figure 3.36). In
the remainder of this chapter we give a brief overview on both the fabrication techniques
and applications of such novel resonators.

Concerning the former issue, several techniques have been developed over the past
decades to fabricate ultrahigh-Q dielectric microresonators [156]. In the case of microspheres,
melting is the favorite technique, as it can easily produce, thanks to surface tension, dielec-
tric microspheres of both good sphericity and surface smoothness. To achieve the melting
point for glass materials, several heating methods have been successfully applied:

• Gas flame - Using a microtorch with propane or hydrogen is the most ancient and still
rather common technique to melt glass.

• Carbon dioxide laser - It has become the most common technique. Indeed, the CO2 laser
has a working wavelength in mid-infrared region (typically 10.6 µm), which is efficiently
absorbed and transformed to heat glass.

• Electric arc - Electric arc is generally used with fiber-splicing equipment.

• Wafer-based fabrication - A variety of other geometries (microdisks, microtoroids, . . . ) can
be realized thanks to the standard wafer-processing technology used for the fabrication of
integrated circuits and optical waveguides.
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FIGURE 3.36
Several microcavity designs. The microcavities are organized by column according to the
confinement method used and by row according to high-Q and ultrahigh-Q. Upper row:
micropost, microdisk, add/drop filter (here, one Q value is for a polymer design and the
second for a III-V semiconductor design), photonic crystal cavity. Lower row: Fabry-Perot
bulk optical cavity, microsphere, microtoroid. n denotes the material refractive index, V the
resonator volume, F the finesse, λ the optical wavelength. (Courtesy of [155].)

Next, we focus on applications. Unique spectral properties of WGMs, including narrow
linewidth, tunability, and high stability under environmental conditions, make WGRs at-
tractive for numerous practical applications including dynamic filters in optical communica-
tion, frequency stabilization, strong-coupling cavity quantum electrodynamics, enhancement
and suppression of spontaneous emission, novel sources, spectroscopy, and sensing. Due to
space limitations, for each of the following items only the basic principles will be elucidated
[157, 155]. However, some of these applications will be resumed in future chapters.

• Passive filters - As already shown, the simplest resonator-based filter includes a WGR
and an optical coupler, e.g., a prism coupler. Unfortunately, the Lorentzian lineshape of
the filter function associated with a single microresonator represents a limitation for its
application in many systems that require large sidemode rejection, in addition to a narrow
bandpass and a large tuning range. Thus, cascaded resonators must be used. WGRs offer
new possibilities for multipole filtering because of their small size, low losses, and integra-
bility into optical networks. A variety of multiresonator and tunable filters have already
been demonstrated in compact and robust packages. Based on this technology, filters with
10-100 GHz bandwidths and optical Qs as high as 105 are commercially available.

• Continuous-wave WGM lasers - Miniature lasers are among the most obvious applications
of WGRs. The high quality factor of the resonators leads to the reduced threshold of the
lasing. The first WGM lasers were realized in solid materials. However, probably because
of the lack of input-output techniques for WGMs, the work was discontinued at that point.
The next development of WGM-based lasers was in liquid aerosols and individual liquid
droplets. Then, during the last decade, the lasers based on sole solid-state WGRs were
rediscovered, demonstrated experimentally, and intensively studied.

For example, one effective way to create a WGR laser is the use of solids doped with active
elements; e.g., rare earth ions as a WGR host material. Alternatively, a passive WGR can
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be coated with gain medium: for instance, erbium-doped solgel films can be applied to the
surface of high-Q silica microspheres to create low-threshold WGR lasers. Furthermore,
lasing in capillaries (cylindrical resonators) has also been demonstrated.

Moreover, WGM-based lasers can be created with semiconductor quantum dots coupled
to the WGMs. Such a microlaser made by capturing the light emitted from a single InAs-
GaAs quantum dot in the WGM of a glass microsphere was proposed theoretically. One
of the most important problems here is fabrication of a single quantum dot microlaser. In
addition, WGRs can significantly improve operation of semiconductor quantum well lasers.
Just to mention one realization in this frame, an InGaAs-InGaAsP room temperature
quantum well disk laser operating at 1.542 micron and using 0.85-micron optical pumping
has been demonstrated.

Finally, Raman lasers also represent an interesting option for WGM-based microlasers.
On one hand, substantial optical power enhancement within a high-finesse optical cavity
has recently yielded bulk CW Raman lasers with low threshold and large tunability. On
the other side, an enhancement of stimulated Raman scattering (SRS) is one of the ef-
fects demonstrated in spherical microcavities. For this reason, SRS in ultrahigh-Q surface
tension-induced spherical and chip-based toroid microcavities is considered both theoret-
ically and experimentally.

• WGRs are also used in optical parametric as well as hyper-parametric wave mixing pro-
cesses. In the following we only dwell upon the latter issue. Hyperparametric optical oscilla-
tion is based on four-wave mixing (FWM) among two pump, signal, and idler photons, and
results in the growth of the signal and idler optical sidebands from vacuum fluctuations at
the expense of the pumping wave. The hyperparametric oscillations are different from the
parametric ones. In fact, the parametric oscillations are based on χ(2) non-linearity cou-
pling three photons, and have phase matching conditions involving far separated optical
frequencies that can only be satisfied in birefringent (or quasi-phase matchable) materials
in the forward direction. In contrast, the hyperparametric oscillations are based on χ(3)

non-linearity coupling four photons, and have phase matching conditions involving near-
lydegenerate optical frequencies that can be satisfied in most of the materials, both in
the forward and backward directions. Recently, the study of hyperparametric oscillations
had a new stage connected with the development of WGM, as well as photonic crys-
tal microresonator technology, leading to the realization of microresonator-based optical
frequency combs. In Chapter 6 such an application will be further investigated.

• WGRs offer interesting possibilities from both classical as well as quantum points of view.
High Q-factors as well as small mode volumes of WGMs result in a multitude of interesting
and important phenomena.

1. Chaos - One of the fundamental problems is related to WGMs in an asymmetric
WGR. It was shown that departure from an axial symmetry results in the
occurrence of chaotic behavior of light in the resonator. The lifetime of light
confined in a WGR can be significantly shortened by a process known as chaos-
assisted tunneling. Surprisingly, even for large deformations, some resonances
were found to have longer lifetimes than predicted by the ray chaos model due
to the phenomenon of dynamical localization.

2. Photonic atoms - Another fundamental area of application of WGRs is based on
the ability of the resonators to mimic atomic properties. Indeed, it was pointed
out that WGM mode numbers correspond to angular, radial, and the azimuthal
quantum numbers, respectively, the same as in atomic physics. Thus, WGMs
can be thought of as a classical analogy of atomic orbitals.
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3. Cavity QED - There is great activity in both theoretical and experimental
investigations of cavity quantum electrodynamics effects in WGRs. For instance,
spontaneous emission processes may be either enhanced or inhibited in a cavity
due to a modification of the density of electromagnetic states compared with
the density in a free space. This effect was studied theoretically as well as
experimentally in WGRs. In this frame, several methods have been proposed
for control of atomic quantum state in atoms coupled to microspheres. These
include excitation, decay control, location-dependent control of interference of
decay channels, and decoherence control by conditionally interfering parallel
evolutions.

• Spectroscopy - Starting from liquid WGRs used for resonator-enhanced spectroscopy,
solid-state WGRs were utilized to enhance the interaction between light and
atoms/molecules. One of the first experiments on the subject was realized in the frame
of cavity-QED. The radiative coupling of free atoms to the external evanescent field of a
WGM was detected. The coupling manifested itself as a narrow absorption line observed
in the resonator transmission spectrum. It was proven that the evanescent field of a high-
Q and small mode volume-fused silica microsphere enables velocity-selective interactions
between a single photon in the WGM and a single atom in the surrounding atomic vapor.
The next stage in the sensor development was related to WGR-based biosensors. The
basic detection scheme is that binding of molecules to the microresonator surface induces
an optical change proportional to the quantity of bound molecules. The paradigm for this
process is a change in the cavity Q as the surface bound molecules affect the photon stor-
age time, either through increased scattering or absorption. In effect, the analyte spoils
the Q, and the resulting change can be measured.

• WGM resonators for laser frequency stabilization - Optical feedback from a high-Q mi-
crosphere resonator can also be used to narrow the emission linewidth of a laser in a
Pound-Drever-Hall(PDH)-type scheme. For further details, see the next chapter.

• In another relevant application, optical WGRs may also serve as sources of coherent
microwave radiation, i.e., as optoelectronic oscillators. This will be discussed in Chapter 7.
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Continuous-wave coherent radiation sources

I knew, of course, that trees and plants

had roots, stems, bark, branches and

foliage that reached up toward the light.

But I was coming to realize that the real

magician was light itself.

Edward Steichen

The genuine coherence of our ideas does

not come from the reasoning that ties

them together, but from the spiritual

impulse that gives rise to them.

Nicolas Gomez Davila

The invention of the laser, which stands for light amplification by stimulated emission
of radiation, can be dated to 1958 with the publication of the scientific paper, Infrared
and Optical Masers, by Arthur L. Schawlow, then a Bell Labs researcher, and Charles H.
Townes, a consultant to Bell Labs [158, 159] . The work by Schawlow and Townes, however,
can be traced back to the 1940s and early 50s and their interest in the field of microwave
spectroscopy. In 1953, Townes, Gordon, and Zeiger demonstrated a working device, which
Townes called the maser, which stands for microwave amplification by stimulated emission
of radiation [160]. Then, Townes realized that the shorter wavelengths beyond those of
microwaves - the wavelengths of infrared and optical light - probably offered even more
powerful tools for spectroscopy than those produced by the maser. Schawlow’s idea was
to arrange a set of mirrors, one at each end of the cavity, to bounce the light back and
forth on-axis, which would eliminate amplifying any beams bouncing in other directions.
In the fall of 1957, they began working out the principles of a device that could provide
these shorter wavelengths. While Schawlow was working on the device, Townes worked on
the theory. After eight months of work, the collaboration was fruitful. In 1958, the two
men wrote the aforementioned paper, although they had not yet made an actual laser. Two
years later, Schawlow and Townes received a patent for the invention of the laser; the same
year a working laser (a pulsed ruby laser at λ=694 nm) was built by Theodore Maiman
at Hughes Aircraft Company [161]. Since then, lasers have been developed spanning the
spectral range from the far infrared to the vacuum ultraviolet region. They have proved to
be invaluable tools not only for the solution of a myriad of scientific problems but also for
countless technical applications. In this chapter, we discuss the basic physical principles of
lasers as well as the most important classes of both direct laser systems and laser-based
coherent radiation sources, with particular regard to the applications in the field of optical
frequency measurements.
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4.1 Principles of masers

While in many modern textbooks the maser is relegated to history, here we give a fairly
detailed description of it, both for educational purposes and because the hydrogen maser is
still today a relevant frequency standard. We start by describing the first maser which was
an ammonia-beam-based one [46]. To this aim, a model for the ammonia molecule is first
needed. The NH3 molecule is pyramidal in shape: the nitrogen atom is at the apex, while
the 3 hydrogen atoms form an equilateral-triangle-shape base (Figure 4.1). Let’s denote
with B the plane of the 3 hydrogen atoms, with R the perpendicular to it passing through
the nitrogen and with x the position of the intersection of B with R. The position of the
nitrogen atom is chosen as the origin of the x axis. For low excitation energies, the molecule

N N

H H

FIGURE 4.1
The ammonia molecule. Upper frame: the two classical configurations. Lower frame: the
actual potential (full line) and the simplified (dashed line) describing the inversion [46].
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retains its pyramidal shape and the nitrogen atom remains fixed. Qualitatively, the potential
energy V(x) is shown in Figure 4.1. At the equilibrium position x = b, V(x) exhibits a
minimum. If x is forced to become smaller, the energy increases; then, it encounters a
maximum for x = 0, corresponding to an unstable state with the four atoms being in the
same plane. When x becomes negative, the molecule is reversed like an umbrella in the
wind: for symmetry reasons, V(x) = V(−x). In the following, the actual potential V(x) is
replaced by a simplified square-well potential V (x), for which the quantum motion of a
particle with mass 3mH is studied, with mH being the mass of the hydrogen atom. In other
words, a collective motion is considered for the 3 H atoms, assuming that they always lay
in the same plane. In this frame, it is straigthforward to find the stationary states of the
system: for E < V0, the solutions are sinusoids in the regions L and R and exponentials
in the middle region M. Since the wave functions have to vanish for x = ±(b + a/2), the
eigenstates of the Hamiltonian can be written as

ψs(x) =











λ sin k(b+ a/2 + x) L
µ coshKx M
λ sin k(b+ a/2− x) R

(4.1)

for the symmetric solutions and

ψa(x) =











−λ sin k(b + a/2 + x) L
µ sinhKx M
λ sin k(b+ a/2− x) R

(4.2)

for the anti-symmetric solutions, with k =
√
2mE/~ and K =

√

2m(V0 − E)/~. These
two types of solutions are sketched in Figure 4.2. The continuity equations for the wave-
function and its derivative at the points x = ±(b− a/2) yield the conditions



















tanka = − k

K
cothK(b− a

2
) for ψs

tanka = − k

K
tanhK(b− a

2
) for ψa

(4.3)

FIGURE 4.2
Qualitative behavior of the symmetric and anti-symmetric solution (gray curve). The orig-
inal double-well model potential (black curve) is also shown.
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Next, in order to gain some physical insight with simple algebra, let’s consider the case
E ≪ V0, which leads to K ≃

√
2mV0/~≫ k. We also assume that the width of the central

potential barrier, ∆ = 2b− a, is such that K∆≫ 1. Then we obtain


















tan ka ≃ − k

K
(1 + 2eK∆) for ψs

tan ka ≃ − k

K
(1 − 2eK∆) for ψa

(4.4)

whereupon
{

tan ka = −εska for ψs

tan ka = −εaka for ψa
(4.5)

where the two quantities εs = 1/Ka(1+ 2e−K∆) and εa = 1/Ka(1− 2e−K∆) have been
introduced. Then, by using tanka ≃ ka− π, Equations 4.5 provide











ks ≃
π

a(1 + εs)

ka ≃
π

a(1 + εa)

(4.6)

such that the wavefunctions corresponding to the two lowest energy levels |ψs〉 and |ψa〉
are separated by the energy difference

2A ≡ Ea − Es =
~
2

2m
(k2a − k2s)

=
~
2π2

2ma2

[

1

(1 + εa)2
− 1

(1 + εs)2

]

≃ ~
2π2

ma2
4e−K∆

Ka
(4.7)

In the basis {|ψs〉, |ψa〉} the Hamiltonian operator can thus be written in the form

Ĥs,a =

(

E0 − A 0
0 E0 +A

)

(4.8)

Starting from |ψs〉 and |ψa〉, we now define two other acceptable states of the system

|ψR〉 =
1√
2
(|ψs〉+ |ψa〉) (4.9)

|ψL〉 =
1√
2
(|ψs〉 − |ψa〉) (4.10)

or, in matrix form,

|ψR〉 =
1√
2

(

1
1

)

(4.11)

|ψL〉 =
1√
2

(

1
−1

)

(4.12)

As illustrated in Figure 4.3, these wavefunctions correspond to states for which the
probability density is concentrated almost entirely on the left (right) for ψL (ψR), thus
portraying the classical configurations for which the molecule is oriented towards either
the left- or right-hand side (it is worth stressing that, classically, for E < V0, there are
two ground states of equal energy, one in the L configuration and the other in the R
configuration, and that no transition L ↔ R is possible). Now, let’s introduce the Bohr
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FIGURE 4.3
Classical configurations of the ammonia molecule. Qualitative behavior of ψL and ψR (gray
curve). The original double-well model potential (black curve) is also shown. (Adapted from
[46].)

frequency ~ω0 = hν0 = Ea − Es = 2A and consider the time evolution of a wave function
which is equal to ψR at time t = 0:

ψ(x, t) =
1√
2

[

ψs(x)e
− iEst

~ + ψa(x)e
− iEat

~

]

=
e−

iEst
~

√
2

[

ψs(x) + ψa(x)e
−iω0t

]

(4.13)

Then, one recognizes that, after a time t = π/ω0, the wave function ψ(x, t) is proportional
to ψL: the molecule is in the left configuration; at time t = 2π/ω0, the wave function
ψ(x, t) is again proportional to ψR: the molecule is back to the right configuration. In other
words, due to quantum tunneling, the NH3 molecule turns over periodically. This inversion
phenomenon is precisely at the basis of the ammonia laser operation. In particular, the
quantity A determines the frequency at which the transition between the two minima of
the potential occurs (ν0 ≃24 GHz).

Next, we define an operator that measures the side of the double well in which the
particle (the plane of the 3 H atoms) is located

X̂s,a =

(

0 1
1 0

)

(4.14)

Indeed, it is easily seen that X̂ |ψR〉 = |ψR〉 and X̂ |ψL〉 = −|ψL〉. If the result of a
measurement of X̂ is +1 (−1), the particle is in the right (left)-hand well. The two vectors
|ψR〉 and |ψL〉 also form a basis of the Hilbert space under consideration. Obviously, the
above operator is diagonal in this basis

X̂R,L =

(

1 0
0 −1

)

(4.15)

On the other hand, the Hamiltonian is no longer diagonal, but has the form

ĤR,L =

(

E0 −A
A E0

)

(4.16)

whose eigenvectors are ψs and ψa, with eigenvalues E0∓A (notice that the non-diagonal
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terms are responsible for the inversion phenomenon). From now on, we work with the basis
{|ψs〉, |ψa〉}. The electric dipole moment operator is then defined as

D̂s,a = d0X̂s,a =

(

0 d0
d0 0

)

(4.17)

where d0 ∼ 3 · 10−11eV·m/V is a characteristic measurable parameter of the molecule.
Next, we apply a static electric field E to the molecule (parallel to the x axis). Then, the
natural choice for the potential energy observable in the molecule in an electric field is then

Ŵs,a = −ED̂s,a =

(

0 −η
−η 0

)

(4.18)

where η = Ed0. The total Hamiltonian of the molecule is therefore

Ĥtot
s,a = Ĥs,a + Ŵs,a =

(

E0 −A −η
−η E0 +A

)

(4.19)

whose eigenvalues are easily found as

E− = E0 −
√

A2 + η2 (4.20)

E+ = E0 +
√

A2 + η2 (4.21)

that, in the weak field limit (η/A≪ 1), reduce to

E∓ = E0 ∓
(

A+
E2d20
2A

)

(4.22)

In the same approximation the corresponding eigenfunctions are

|ψ−〉 ≃ |ψs〉+
η

2A
|ψa〉 ∼ |ψs〉 (4.23)

|ψ+〉 ≃ |ψa〉 −
η

2A
|ψs〉 ∼ |ψa〉 (4.24)

Now, consider a molecular beam which is made to travel along some direction x and
then to cross a region where an inhomogeneous electric field (E2 = y2+z2) is applied. Since
the molecules are ”large” objects, their motion in space can be treated as classical, so that,
to a good approximation, they are subjected to a force given by

F∓ = ±∇
(E2d20

2A

)

(4.25)

As a result, a beam in the pure state |ψ−〉 will be defocused and a beam in the pure
state |ψ+〉 will be channelled; thus, the field inhomogeneity represents a means of selecting
molecules whose (internal) state is |ψ+〉 ∼ |ψa〉 (Figure 4.4). Then, the maser effect is
achieved by forcing these molecules to release their energy 2A by falling down to the ground
state |ψs〉. Since the lifetime for spontaneous transitions from the state |ψa〉 to |ψs〉 is very
long (1 month), one valuable option is to stimulate this emission by application of an
oscillating field E0 cosωt, provided that ω is tuned to the Bohr frequency ω0 of the system.
The mechanism of stimulated emission allows this transition to occur very rapidly (T ≈ 70
ns for a field E0 ≈ 1013 V/m). In this case, the Hamiltonian 4.19 becomes

Ĥtot−s,a =

(

E0 −A −η0 cosωt
−η0 cosωt E0 +A

)

(4.26)
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beam of NH3

−

FIGURE 4.4
Channelling (removing) of the beam |ψ+〉 ∼ |ψa〉 (|ψ−〉 ∼ |ψs〉) in an electrostatic
quadrupole field. (Adapted from [46].)

where η0 = d0E0. Now, if we write the state vector of a single molecule as

|ψ(t)〉 =
(

a(t)
b(t)

)

(4.27)

the time-dependent Schrödinger equation leads to the following first-order coupled linear
differential system

{

i~ȧ = (E0 −A)a− η0b cosωt
i~ḃ = (E0 +A)b − η0a cosωt

(4.28)

which, by setting a(t) = e−i(E0−A)t/~α(t) and b(t) = e−i(E0+A)t/~β(t), becomes
{

2iα̇ = −ω1β
[

ei(ω−ω0)t + e−i(ω+ω0)t
]

2iβ̇ = −ω1α
[

e−i(ω−ω0)t + ei(ω+ω0)t
] (4.29)

where ω1 = η0/~ and the initial conditions are α(t = 0) = 0 and β(0) = 1. This
system does not admit analytical solution, but a good approximation can be obtained near
the resonance (ω ≈ ω0) by neglecting the rapidly oscillating terms e±i(ω+ω0)t whose effect
averages to zero after a time ≈ 2π/ω. In this case, the transition probability PA→S(t) to
find (at time t) a molecule in the state |ψs〉, having thus released the energy 2A = Ea−Es,
is given by

pA→S(t) = |α|2 =
ω2
1

(ω − ω0)2 + ω2
1

sin2
√

(ω − ω0)2 + ω2
1

t

2
(4.30)

This probability oscillates in time between 0 and the maximum value

pmax =
ω2
1

(ω − ω0)2 + ω2
1

(4.31)
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As the frequency ω is varied, Pmax exhibits a characteristic resonant behavior (with a
maximum equal to 1 for ω = ω0), with the HWHM of the resonance being ω1. Thus, if an
ω value is chosen which satisfies |ω − ω0| ≪ ω1, practically all the molecules have released
their energy 2A at a time T = π/ω1.

A schematic description of a maser is given in Figure 4.5. Summarizing, an electrostatic
quadrupole field is first used to separate the molecules in the state |ψa〉 within a molecular
beam of mean velocity v. The resulting beam then enters a microwave cavity, where the
oscillating field E0 cosωt is applied (in the original work a cylindrical copper cavity was
used, operating in the TE011 mode). The cavity length, L, is adjusted so that L/v = T =
(2n+1)π/ω1 (in practice, a servo mechanism constantly tunes the cavity so that the signal
is maximum). In this way, when leaving the cavity, the molecules are in the state |ψs〉 and
have released their energy 2A in the form of electromagnetic radiation. The energy emitted
by such a maser oscillator is usually in an extremely monochromatic wave. The total width
at half-power of the spectral distribution of the oscillation is given by [162]

∆νST = 2πkBT
(∆ν0)

2

P0
(4.32)

Focuser

Output
guide Input

guide

NH3

Source Cavity

FIGURE 4.5
Sketch of an NH3 maser device. A heater gives energy to the ammonia molecules in the
source. At this stage about half of the molecules are in the excited state. Then, the ammonia
molecules stream into the focuser (also called the separator) which is evacuated. The latter
removes molecules in the lower quantum state, which would absorb rather than emit photons
at the desired frequency, while channelling those in the upper state. Thus, the ammonia
molecules that enter the resonant cavity (tuned to 24 GHz) are almost all in the excited state
(inverted population). Since the cavity has a very high Q, there is sufficient noise power
to initiate transitions from the upper to the lower state. Photons from these transitions
can then stimulate emission from other molecules. This radiation reflects back and forth
inside the cavity, whose size is specially chosen and regulated to reinforce waves of just this
frequency. If the power emitted from the beam is enough to maintain the field strength in
the cavity at a sufficiently high level to induce transitions in the following beam, then self-
sustained oscillations will result (in the first realization such oscillations were produced with
an output power around 10−8 W and a linewidth of 8 kHz). By contrast, under conditions
such that oscillations are not maintained, the device may serve as an amplifier for an external
microwave signal (close to the molecular resonance) injected into the cavity via an input
waveguide. Recall that the criterion for self-sustained oscillation is that the power delivered
to the cavity by the atomic beam must equal that lost by the cavity.
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where ∆ν0 is the full width of the molecular emission line and P0 is the power emit-
ted from the beam. Inserting values corresponding to typical experimental conditions into
Equation 4.32 (T = 300 K, ∆ν0 = 3 · 103 Hz, P0 = 10−10 W) we find FWHM ≃ 0.01 Hz.
Another interesting effect, known as frequency pulling, was also pointed out in [162]: the
center frequency ν of the oscillation is given to a good approximation by the equation

ν = ν0 +
∆ν0
∆νC

(νC − ν0) (4.33)

where ∆νC is the FWHM of the cavity mode, and νC − ν0 is the difference between
the cavity resonant frequency and the line frequency. Reversing the original treatment by
Schawlow and Townes, we will prove Equations 4.32 and 4.33 first for lasers and then extend
them to the case of masers. Sometimes, it is useful to express Equation 4.33 in the form

ν = ν0 +
QC
Q0

(νC − ν0) (4.34)

where the quality factors of the cavity (QC) and the atomic resonance line (Q0) have
been introduced, and ν0/νC ≃ 1 has been used.

4.1.1 The hydrogen maser

The hydrogen maser was invented on the basis of research carried out by Ramsey’s team
at Harvard, USA, at the end of the 1950s. Its operation relies on the same principle of
the ammonia maser. In this case, the ground-state (12S1/2) hyperfine levels (labelled by
the quantum number F ) of atomic hydrogen are exploited. In particular, the frequency of
the Zeeman sub-levels (identified by their F,mF numbers), as a function of the applied
magnetic field, is given by the well-known Breit-Rabi formula [163]

ν|F=I± 1
2
,mF〉 =

−ν0
2 (2I + 1)

+
µBgImFB

h
± ν0

2

√

1 +
4mFx

(2I + 1)
+ x2 (4.35)

with x = (gJ − gI)µBB/(hν0). It is worth noting that the Breit-Rabi formula applies
for intermediate values (i.e., between the so-called anomalous-Zeeman and Paschen-Back
regimes) of the magnetic field. Here ν0 (≃ 1.42 GHz) is the hyperfine separation in zero field
between the states F = I + 1/2 and F = I − 1/2, while gJ and gI are the appropriate fine
structure Landé factor and the nuclear g-factor, respectively. In the case of the hydrogen
atom, the angular momentum of the nucleus is I = 1/2 and the two hyperfine levels F = 1
(for which mF can take the values −1, 0 and 1) and F = 0 (for which only mF = 0
is allowed) are obtained. Also, since gJ ≫ gI and gJ = 2 for S = J = 1/2, we can
approximate x ≃ 2µBB/(hν0). On such basis, Figure 4.6 shows the level structure of the
12S1/2 ground state under the influence of an applied magnetic field (gI = 0.0030 for the
proton). For use as a frequency standard, the hydrogen maser oscillates on the transition
F = 1,mF = 0〉 → F = 0,mF = 0〉 at a very low magnetic field value BH (on the order of
10−7 T).

Today, a hydrogen maser does not differ much from the first realization in Norman
Ramsey’s laboratory [164, 65]. Figure 4.7 provides a schematic diagram. Molecular hydrogen
is dissociated in the source and is formed into an atomic beam which passes through a state-
selecting magnet. The emergent beam contains only atoms in the states (F = 1,m = 1) and
(F = 1,m = 0). Then, the beam passes into a storage bulb which is located in the center
of a cylindrical rf cavity, operating in the TE011 mode, tuned to the hyperfine transition
frequency. Stimulated emission occurs if the beam flux is sufficiently high and a signal is
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FIGURE 4.6
The active hydrogen maser is an oscillator which obtains its energy from transitions in
the ground state 12S1/2 of the hydrogen atom (for such state, the total angular momentum
J = L+S of the electronic shell results entirely from the spin S = 1/2 of the electron since its
orbital angular momentum is L = 0). The latter consists of a manifold of 4 sub-levels. Under
the influence of the electron-nucleus interaction, the sub-levels split into a triplet and a
singlet, the latter level lying lowest. These two groups are identified by the quantum numbers
F = 1 (highest) and F = 0 (lowest). Their unperturbed energy difference corresponds to
the well-known 21-cm hydrogen wavelength or to the frequency νH ≃1.42 GHz. In the
presence of a magnetic field the degeneracy of the sub-levels is removed, giving rise to the
Zeeman structure. The hydrogen maser operates between the levels |F = 1,mF = 0〉 and
|F = 0,mF = 0〉, represented by the black lines.

produced in the cavity. This signal is detected by means of a small coupling loop. The
cavity is surrounded by magnetic shields to reduce the ambient field and the BH field is
produced at the storage bulb by a solenoid. Until the first realization, the main difficulty
to produce a self-sustained maser oscillation with gaseous atoms resided in the weakness of

Storage bulbCavityMagnetic shield

Output

H2H2
H-atoms

H2H2

teflon

H-atoms

Solenoid
Ion pump

6-pole magnet Microwave
field lines

FIGURE 4.7
Schematic of an active hydrogen maser.
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the magnetic dipole radiation matrix elements. However, Ramsey and co-workers guessed
that with sufficiently long interaction times with the radiation field, such oscillation could
be achieved. This increased interaction time was obtained by retaining the atoms in a
specially designed storage box with paraffin-covered walls, where the atoms remained for
approximately 0.3 seconds before escaping. Also, due to the small interaction with the
paraffin surface, atoms were not seriously disturbed for at least 104 collisions with the
walls. In this section we only illustrate the general theoretical aspects, while a more detailed
discussion concerning both the practical implementations and the achievable performance
as a frequency standard will be given in Chapter 7.

Following the treatment given in [7, 65, 165, 163], let ∆I denote the difference in the
flux of atoms entering the storage bulb in the (F = 1,m = 1) and (F = 1,m = 0) states.
Then the average power radiated by this beam is P = ∆Ihνp, where ν represents the maser
oscillation frequency and p the averaged probability of finding the atoms in the excited state.
For typical quality factor values (QC ≃ 5 · 104 and Q0 ≃ 1.5 · 109) and a small detuning
(νC − ν0 ≃ 10 Hz), Equation 4.34 assures a fractional shift (ν − ν0)/ν0 no larger than
2.5 · 10−13. Thus, in the following we can consider ν ≃ νC ≃ ν0. Neglecting for the moment
any losses, we can use Equations 4.30 and 4.31 to derive p = 〈pA→S(t)〉 = (1/2)pmax (〈〉
denotes time averaging) and write

Pno−losses =
1

2
∆Ihν

b2

b2 + [2π(ν − ν0)]2
(4.36)

where the Rabi frequency b is defined here as

b = µB
〈Bz〉b
~

(4.37)

with 〈Bz〉b being the Bz component of the rf field averaged over the bulb. The above
arguments lay their foundation on the formalism of the state vector for a system whose
evolution is described by the Schrödinger equation. Actually, such an approach is not well
suited to the case in which the coupling between an atom and its environment (such as, for
instance, through collisions with other atoms) is not negligible [166]. If we are interested
exclusively in the evolution of the atom (rather than in the correlations induced by the
atom/environment interactions), then the formalism of the density matrix can be adopted.
In this frame, the effect of the environment on the atom is described by the introduction of
suitable relaxation terms in the equation of evolution of the density matrix. A paradigmatic
application of the density matrix is just to the case we are considering here, i.e. a two-level
atomic system in which the relaxation terms determine its de-excitation. Incidentally, in
this simple case, the density matrix can be represented by the so-called Bloch vector, which
provides handy geometrical pictures of the system evolution. Summarizing, to correctly
describe the hydrogen maser, the relaxation of the atoms in the upper state has to be
taken into account. In particular, we shall distinguish between processes which relax the
population difference between the two states of interest and those which relax the oscillating
moment. In analogy with nuclear magnetic resonance (NMR) terminology, the decay times
for such processes are designated, respectively, by T1 (longitudinal relaxation time) and T2
(transverse relaxation time). These can be expressed in terms of the following dominant
relaxation processes [167]

1

T1
≡ Γb + Γw + Γse = Γ1 (4.38)

1

T2
≡ Γb + Γw +

Γse
2

= Γ2 (4.39)

where Γb represents the relaxation rate due to atoms escaping through the entrance
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hole of the bulb (essentially depending on the bulb geometry), Γw is related to the losses
occurring when atoms hit the wall (basically due to absorption on the surface), and Γse is
the relaxation rate describing spin-exchange collisions. Typical values are T1 = 0.3 s and
T2 = 0.5 s. Then, it can be shown that, including such decay times, Equation 4.36 becomes
[165, 166]

P =
1

2
∆Ihν

b2

Γ1Γ2 + b2 +
Γ1

Γ2
[2π(ν − ν0)]2

(4.40)

which, at resonance, reduces to

P0 =
1

2
∆Ihν

T1T2b
2

1 + T1T2b2
=

∆Ihν

2
− 1

T1T2b2
P0 =

∆Ihν

2
− P0

b2
(Γb + Γw)

2

[

1 +
3Γse

2(Γb + Γw)
+

Γ2
se

2(Γb + Γw)2

]

(4.41)

Now, a necessary condition for self-sustained oscillation of the maser is that the power
delivered by the beam P0 is equal to the power dissipated in the resonator dW/dt, where
W is the energy stored in the magnetic field of the cavity. Thus we can write

P0 =
∆Ihν

2
− dW

dt

1

b2
(Γb + Γw)

2

[

1 +
3Γse

2(Γb + Γw)
+

Γ2
se

2(Γb + Γw)2

]

(4.42)

Next, let’s find an explicit expression for dW/dt. To this aim, we first observe that

W =
1

2µ0

∫

VC

B2dV =
VC
2µ0

〈

B2
〉

C
(4.43)

where
〈

B2
〉

C
is the mean squared amplitude over the cavity volume VC . Also, according

to Chapter 2, the average stored energy W and the average dissipated energy −dW/dt are
related by −dW/dt = (ωC/QC)W . To contextualize, starting from Equation 2.8 and using
ω0 ≫ Γ we have

W ∝ 〈e−2Γt sin2(ω′
0t)〉 ≃

e−2Γt

2
(4.44)

and
−dW
dt

= Γe−2Γt (4.45)

such that
W

−dW/dt =
1

2Γ
≡ Q

ω0
(4.46)

which, with the equalities Q ≡ QC and ω0 ≡ ωC , proves the above assertion. Thus, we
obtain

dW

dt
=

ωCVC~
2

2µ0QCηµ2
B

b2 (4.47)

where the filling factor η ≡ 〈Bz〉2b /
〈

B2
〉

C
has been introduced and Equation 4.37 has

been exploited. By substitution of Equation 4.47 into Equation 4.42 we get

P0 =
∆Ihν

2
− ωCVC~

2

2µ0QCηµ2
B

(Γb + Γw)
2

[

1 +
3Γse

2(Γb + Γw)
+

Γ2
se

2(Γb + Γw)2

]

(4.48)

which can be put in the form

P0

Pc
=

∆Ihν

2Pc
−
[

1 +
3Γse

2(Γb + Γw)
+

Γ2
se

2(Γb + Γw)2

]

(4.49)
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if the quantity

Pc ≡ (Γb + Γw)
2 ωCVC~

2

2µ0QCηµ2
B

(4.50)

is introduced. Next, we observe that Γse = nσsevr where σse is the hydrogen “spin-flip”
cross section (2.85 · 10−15cm2), vr = 4(kBT/πm)(1/2) the average relative velocity of the
hydrogen atoms (3.58 · 105 cm/s at T = 308 K), and n = N/Vb the hydrogen density (N is
the total number of atoms in the volume Vb of the bulb). Therefore, we have

Γse = nσsevr =
Itot
VbΓb

σsevr (4.51)

where Itot denotes the total flux of atoms entering the storage bulb. Note that, in order
to explicit n in Equation 4.51, the condition stating that the incident beam flux must equate
the escaping one (Itot = NΓb) has also been used. Finally, we define a threshold flux

Ith = 2Pc/(hν) ≃ 2Pc/(~ωC) (4.52)

i.e., the minimum flux that is required to sustain oscillation in the cavity. In conclusion,
by substitution of Equation 4.51 and Equation 4.52 into Equation 4.49 we obtain

P0

Pc
=

∆I

Ith
−
[

1 + 3q
∆I

Ith
+ 2q2

(

∆I

Ith

)2
]

(4.53)

with
q =

σvr~

2µ2
Bµ0

VC
Vb

1

QCη

Itot
∆I

Γb + Γw
Γb

(4.54)

Therefore, self-sustained oscillation (P/Pc > 0) of the H maser occurs only if the flux
of atoms falls in the range between ∆Imin and ∆Imax. These limits are derived by solving
Equation 4.53 for P/Pc = 0

∆Imin,max
Ith

=
1− 3q ∓

√

1− 6q + q2

4q2
(4.55)

The maser quality parameter q is usually less than 0.1 and the power dissipated in the
cavity is close to 1 pW, while the power coupled to external circuits is usually equal to one
tenth of this value. At the end of this section it is worth pointing out some advantages of
the hydrogen maser:

• Due to the long transition time (exceeding one second), the resonance line is extremely
narrow: its width is about 1 Hz without maser operation.

• Since the diameter of the storage bulb is smaller than the transition wavelength, this
guarantees confinement to the Lamb-Dicke regime which suppresses the first-order Doppler
effect of the atoms interacting with the standing-wave field in the microwave resonator.
In other words, the velocity of the hydrogen atom in the bulb, when suitably averaged, is
close to zero;

• The hydrogen atom spends most of its time in free space where it has a simple unperturbed
hyperfine spectrum and the effects of wall collisions are small due to the low electric
polarizability;

• The ability of the device to operate as a self-excited maser oscillator provides the advan-
tages of low noise amplification which characterize masers.

A deeper understanding and appreciation of these features will arise in the next sections
and future chapters.
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4.2 Compendium of laser theory

As stated by the acronym, by definition, the laser is an amplifier, but, as we shall soon
see, it is really an oscillator. Lasers need an active medium which can amplify light; this
amplifier, using a suitable cavity for feedback, becomes an oscillator. An amplifier is nothing
but an energy converter from one form of energy to another. Just as an example, consider
an integrated circuit amplifier and say it can amplify input power from 10 mW to 1000
mW at radio frequency. As well known, extra power comes from the dc power supply. Thus,
in a sense, the amplifier is converting dc power to rf power. The same happens in a laser
amplifier, that is, every laser must have what we call a pump (most commonly electrical or
optical); through the laser, this pump power is converted into light energy. Let us go further
into the analogy with electrical oscillators. Recall that for the basic feedback oscillator, the
Barkhausen condition (Equation 2.49) for oscillation is −Aβ = 1, meaning that we have a
finite output with no input signal. A small noise signal (spontaneous emission) will start and
grow until a steady-state situation arises. All the frequencies that satisfy this condition can
oscillate. However, since both A and β are functions of frequency, we can select the frequency
of oscillation by proper choice of their dependence. In a nutshell, A is determined by the
active medium while the feedback fraction β is decided by the optical cavity. Summarizing,
a laser basically consists of three components (Figure 4.8):

1. the active medium where an inverted population, strongly deviating from a
thermal Boltzmann distribution, is created by selective energy transfer. This acts
as an amplifier for the incident light.

2. The energy pump (flashlamp, gas discharge, electric current, or another laser)
that generates the mentioned population inversion.

3. The optical resonator that stores the fluorescence (spontaneous emission) emit-
ted by the active medium in a few modes of the radiation field (cavity resonances).
The fluorescent emission is isotropic, but some of these photons will travel along
the cavity optical axis. Then, the optical resonator allows for them to go back
and forth through the active medium, thus realizing a long amplification path.
In these modes the photon number becomes q ≫ 1 and, therefore, the induced
emission becomes much larger than the spontaneous one. At the same time, the
resonator makes the ouput laser beam highly directional.

One of the challenges in understanding the behavior of atoms in cavities arises from the
strong feedback deliberately imposed by the cavity designer. This feedback means that a
small input can be amplified in a straightforward way by the atoms, but not indefinitely.
Simple amplification occurs only until the light field in the cavity becomes strong enough
to affect the behavior of the atoms. Then, the strength of the light, as it acts on the am-
plifying atoms, must be taken into account in determining the strength of the light itself.
This sounds like circular reasoning and in a sense it is. The responses of the light and the
atoms to each other can become so strongly interconnected that they cannot be determined
independently but only self-consistently. Strong feedback also means that small perturba-
tions can be rapidly magnified. Thus, lasers are potentially highly erratic and unstable
devices, sometimes exhibiting a truly chaotic behavior that has long been studied. Anyway,
for our purposes, we want to describe lasers when they operate in a stable regime, with
well-determined output intensity and frequency as well as spatial mode structure. In this
frame, a short compendium of laser theory will be given, inspired by a few classic textbooks
[168, 169, 68, 170, 171, 172, 104].
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FIGURE 4.8
Schematic setup of a laser.

The main phenomena taking place in a laser are the propagation process of the light
generated in the resonator and the light-matter interaction in the active medium. The former
can be understood in the wave picture of light and is, in its simplest form, described by the
theory of the Fabry-Perot interferometer, summarized in Chapter 3. In the following, the
light-matter interaction processes which are relevant to laser operation are described.

4.2.1 The active medium

For a two-level system, when light of frequency ν corresponding to the energy difference
∆E = E2 − E1 = hν0 passes through the medium, three forms of photon-atom interac-
tion are possible (Figure 4.9). If the atom is in the lower energy level, the photon may be
absorbed, whereas if it is in the upper energy level, a clone photon may be emitted by stim-
ulated emission. These two processes lead to attenuation and amplification, respectively.
In particular, the stimulated emission provides a phase-coherent amplification mechanism
for an applied signal. The signal extracts from the atoms a response that is directly pro-
portional to, and phase coherent with, the electric field of the stimulating signal. Thus the
amplification process is phase-preserving. The stimulated emission is, in fact, completely
indistinguishable from the stimulating radiation field. This means that the stimulated emis-
sion has the same directional properties, same polarization, same phase, and same spectral
characteristics as the stimulating emission. These facts are responsible for the extremely
high degree of coherence that characterizes the emission from lasers. The third form of in-
teraction, spontaneous emission, in which an atom in the upper energy level emits a photon
independently of the presence of other photons, is, instead, responsible for amplifier noise
(in addition to triggering the laser action).

4.2.1.1 Einstein A and B coefficients for absorption and emission

The classical treatment of the radiation field accounts only for the effects of absorption and
stimulated emission, whereas a quantum mechanical approach introduces the additional
concept of spontaneous emission. Here, we follow Einstein’s original formulation and con-
sider these three spectroscopic events to be experimentally observable transitions for which
we can write rate equations. To start, it is convenient to consider the radiation in which the
sample is bathed to be that of a blackbody absorber-emitter. Although the blackbody is
an ideal gas of photons, the use of a convenient expression for the energy density ρ(ν) will
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FIGURE 4.9
Absorption, induced emission, and spontaneous emission in a two-level system.

not restrict the applicability of the general rate expressions obtained: the rate constants
are molecular properties, so the relationships among them do not depend on the use of
the blackbody model. Let us designate the phenomenological rate constants for absorption,
stimulated emission, and spontaneous emission with B12, B21, and A21, respectively. Let us
designate the population density of the upper (lower) level by N2 (N1). Then, we have the
following expressions for the rates (per unit volume) of upward (W12) and downward (W21)
transitions

W12 = N1B12ρ(ν) (4.56a)

W21 = N2B21ρ(ν) +N2A21 (4.56b)

Note that in the absence of radiation, Equation 4.56b predicts a first order decay of the
excited state population, that is N2(t) = N2(0)e

−A21t. This leads to the conclusion that the
radiative lifetime is the inverse of the A coefficient

τspont =
1

A21
(4.57)

If there is more than one downward transition, the radiative rate is the sum of the rates
for all downward transitions. To maintain equilibrium, the rates of upward and downward
transitions must be balanced

N1B12ρ(ν) = N2B21ρ(ν) +N2A21 (4.58)

Next, since in linear spectroscopy experiments the Boltzmann populations of the two
states are practically unperturbed, we write

N2

N1
=
g2
g1
e
−E2−E1

kBT =
g2
g1
e
− hν
kBT (4.59)

Solving Equation 4.58 for the energy density and using Boltzmann’s law gives

ρ(ν) =
A21

B12
g1
g2
e
hν
kBT −B21

(4.60)

Then, as already mentioned, we assume that ρ(ν) is a blackbody
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ρ(ν) =
8πhν3

c3
1

e
hν
kBT − 1

(4.61)

Now, Equations 4.60 and 4.61 are in agreement if

g1B12 = g2B21 (4.62a)

A21 =
8πhν3

c3
B21 (4.62b)

In material media other than gases, Equation 4.62b can be generalized by replacing c
with c0/n where n is the refractive index and c0 is the vacuum light speed. From here and
in the subsequent discussion, we adopt the notation c = (c0/n) with c0 = λν where λ is the
vacuum wavelength (in gases n ≃ 1). Equation 4.62b has the important consequence that,
as the frequency increases, spontaneous emission competes more and more effectively with
stimulated emission. Thus in systems at equilibrium at room temperature, the spontaneous
emission of light at optical frequencies is greatly favored over stimulated emission. But as
the frequency decreases into the far-IR and microwave regions, the process of stimulated
emission becomes more favorable. In this sense, it is no coincidence that laser action was
first achieved in masers. Indeed, the above advantage goes with a second boon: according
to Boltzmann’s distribution, the population ratio of the higher energy state to the lower
one is about 1:1 in the microwave range (∆E ∼ 10−5 eV); this means that thermal energy
(kBTroom = 0.0258 eV) is enough to generate a large population of atoms in the upper,
inherently long-lived, energy state, which implies no need for pumping.

Before continuing the main discussion, we incidentally mention that, in the frame of
quantum mechanics, one can show that the B12 coefficient is related to the transition dipole
moment µ12 =

∫

ψ∗
2µψ1dr, µ being the electric dipole moment operator, by the relationship

B12 =
|µ12|2
6ε0~2

(4.63)

whereupon one obtains

τspont =
1

A21
=

3ε0~

8π2

g2
g1

λ3

|µ12|2
(4.64)

So far, we have considered the transition rates due to a field with a uniform (white)
spectrum. However, in order to derive the rate equations for a laser system, in the following
we focus the attention on the transition rates that are induced by a monochromatic (i.e.,
single-frequency) field. On the other hand, as we will see later, absorption or emission
of radiation on an atomic transition ∆E = E2 − E1 = hν0 does not result in a strictly
monochromatic spectral line, but rather in a frequency distribution around the central
frequency ν0. This gives a line profile g(ν − ν0), normalized such that

∫

g(ν − ν0)dν = 1,
whose shape depends on basic physical properties. For example, optical frequency transitions
in gases can be broadened, e.g., by lifetime, collisions, or Doppler broadening, whereas
transitions in solids can be broadened by lifetime, dipolar or thermal broadening, as well as
by random inhomogeneities. Therefore, we can establish here that the rates of absorption
and stimulated emission due to the interaction between a monochromatic field of frequency
ν with an atomic transition centered at ν0 are proportional to the field strength times the
lineshape function g(ν − ν0). This allows us to re-write ρ(ν0) in Equations 4.56a and 4.56b
as ρ(ν0) = ρνg(ν − ν0)
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W12 = N1B12ρνg(ν − ν0) (4.65a)

W21 = N2B21ρνg(ν − ν0) +N2A21 (4.65b)

Now, let us suppose that the monochromatic field is described by a plane wave traveling
in the z-direction through the active medium. Then, since the processes of absorption and
stimulated emission, respectively, subtract from and add to the energy of the radiation field,
the elemental change dρν in the elemental time dt = dz/c is calculated from Equations 4.65b
and 4.65a as

dρν
dt

=

[(

N2 −
g2
g1
N1

)

B21ρνg(ν − ν0)
]

hν (4.66)

whereupon

dρν
ρν

=

(

N2 −
g2
g1
N1

)

σ21(ν − ν0)dz (4.67)

where the stimulated-emission cross section

σ21(ν − ν0) ≡ B21g(ν − ν0)
hν

c
=
A21λ

2

8πn2
g(ν − ν0) =

λ2

8πn2τspont
g(ν − ν0) (4.68)

has been defined. Similarly, we have

σ12(ν − ν0) ≡ B12g(ν − ν0)
hν

c
=
g2
g1
B21g(ν − ν0)

hν

c
=
g2
g1
σ21(ν − ν0) (4.69)

Note that in Equation 4.66 (and hence in Equation 4.67), we have neglected the small
contribution of spontaneous emission in the same direction of the beam, as spontaneous
emission is emitted in all directions. Since the intensity field Iν is simply proportional to
the energy density, integration of Equation 4.67 between z = 0 and z yields

Iν(z) = Iν(z = 0)e

(

N2−
g2
g1
N1

)

σ21(ν−ν0)z (4.70)

This equation shows that the material behaves as an amplifier if N2 > (g2/g1)N1, while
it behaves as an absorber (attenuator) if N2 < (g2/g1)N1. On the other hand, as already
mentioned, at thermal equilibrium, populations are described by Boltzmann statistics. As
a consequence, for light frequencies (500 THz) and room temperature (T=300 K), we have
N2 ≪ N1(g2/g1). However, if a non-equilibrium condition is achieved for which N2 >
N1(g2/g1) (population inversion), then the material acts as an amplifier (active medium).

4.2.1.2 Line-broadening mechanisms

The term broadening is used to denote the finite spectral width of the response of atomic
systems to electromagnetic fields. Line broadening may be typically noticed in a plot of the
absorption as a function of frequency or in the frequency dependence of the gain of a laser
medium. This has a major effect on the laser operation.

For resonances observed on a large group of atoms, it is useful to distinguish between line-
broadening mechanisms according to whether all atoms have the same broadened spectrum,
or the spectrum of the whole group is broadened because each atom has a slightly different
frequency and the global spectrum merely reflects the distribution of frequencies among
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the particles. The former is called homogeneous broadening, as exemplified by broadening,
common to all atoms, due to a finite radiative lifetime, while the latter is inhomogeneous
broadening, as exemplified by a group in which each atom has a slightly different frequency
because of its differing environment.

Homogeneous broadening
As just mentioned, the essential feature of a homogeneously broadened atomic transition

is that a signal applied to it has exactly the same effect on all atoms in the ensemble. Mech-
anisms which result in a homogeneously broadened line are lifetime broadening, collision
broadening, dipolar broadening, and thermal broadening.

• Lifetime broadening - Already treated in Chapter 2, this type of broadening is caused by
the decay mechanisms of the atomic system. Spontaneous emission or fluorescence has a
radiative lifetime. Broadening of the atomic transition due to this process is related to the
fluorescence lifetime τ21 by ∆ωaτ21 = 1, where ∆ωa is the bandwidth. Actually, since the
natural or intrinsic linewidth of an atomic line often gives a minor contribution, physical
situations in which the lineshape is determined by the spontaneous emission process itself
are quite rare.

• Collision or pressure broadening - Collisions of radiating particles (atoms or molecules)
with one another and the consequent interruption of the radiative process in a random
manner also lead to broadening. This can be understood with the following simple argu-
ment. Since a collision interrupts either the emission or the absorption of radiation, the
long wave train, that otherwise would be present, becomes truncated. After the collision,
in fact, the process is restarted without memory of the phase of the radiation prior to
the collision. Thus, qualitatively, the result of frequent collisions is the presence of many
truncated radiative or absorptive processes. Since the spectrum of a wave train is inversely
proportional to its length, the radiation linewidth in the presence of collisions is greater
than that of an individual uninterrupted process. Collision broadening can be significant
in gas lasers.

• Dipolar broadening - Dipolar broadening arises from interactions between the magnetic or
electric dipolar fields of neighboring atoms. This interaction leads to results very similar
to collision broadening, including a linewidth that increases with increasing density of
atoms. Since dipolar broadening represents a kind of coupling between atoms, so that ex-
citation applied to one atom is distributed or shared with other atoms, it is a homogeneous
broadening mechanism.

• Thermal broadening - This is brought about by the effect of the thermal lattice vibrations
on the atomic transition. Such vibrations modulate the resonance frequency of each ion
in the active medium at a very high frequency. As this represents a coupling mechanism
between the ions, a homogeneous linewidth is obtained in this case, too. For example,
thermal broadening is the mechanism responsible for the linewidth of the Nd:YAG laser.

Whatever the originating mechanism, the normalized (
∫

gLdν = 1) lineshape in the case
of homogeneous broadening is given by a Lorentzian

gL(ν − ν0) =
ΓL/2π

(ν − ν0)2 + Γ2
L/4

(4.71)

where ΓL is the FWHM. By virtue of Equation 4.68 and Equation 4.71, the peak value
for the Lorentzian case is obtained as
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σpeakL =
λ2

4π2n2τspontΓL
(4.72)

Inhomogeneous broadening
Mechanisms which cause inhomogeneous broadening tend to displace the center frequen-

cies of individual atoms, thereby broadening the overall response of a collection (without
broadening the response of individual atoms). For example, owing to Doppler shifts, differ-
ent atoms have slightly different resonance frequencies on the same transition. An applied
signal, at a given frequency within the overall linewidth, interacts strongly solely with those
atoms whose shifted resonance frequencies lay close to the signal frequency. Examples of
inhomogeneous frequency-shifting mechanisms include Doppler broadening and crystal in-
homogeneities.

• Doppler broadening - This is due to the Doppler effect caused by a distribution of veloc-
ities in the atomic/molecular sample. Different velocities of the emitting (or absorbing)
particles result in different (Doppler) shifts, the cumulative effect of which is precisely the
line broadening. A particular and perhaps the most important case is the thermal Doppler
broadening related to the thermal motion of the particles.

• Crystal inhomogeneities - Solid-state lasers may be inhomogeneously broadened by crys-
talline defects. This happens only at low temperatures where the lattice vibrations are
small. Random variations of dislocations, lattice strains, and so forth may cause small
shifts (via the Stark effect) in the exact energy level spacings from ion to ion. Just like
Doppler broadening, these variations do not broaden the response of an individual atom,
but they do cause the exact resonance frequencies of distinct atoms to be slightly different.

In order to determine the lineshape for an inhomogeneous line, we can imagine the
medium as made up of classes of atoms each designated by a center frequency νξ. Further-
more, we define a function p(νξ) so that the a priori probability that an atom has its center
frequency between νξ and νξ + dνξ is p(νξ)dνξ (with

∫ +∞
∞ p(νξ)dνξ = 1). The atoms within

a given νξ are considered homogeneously broadened having a lineshape function gξ(ν) that
is normalized so that

∫ +∞
−∞ gξ(ν)dν = 1. Then we obtain

ginhom(ν)dν =

[∫ +∞

−∞
p(νξ)g

ξ(ν)dνξ

]

dν (4.73)

If we assume that in each class ξ all the atoms are identical (homogeneous broadening)
we can use

gξ(ν) =
∆ν/2π

(ν − νξ)2 + (∆ν/2)2
(4.74)

where ∆ν is called the homogeneous linewidth of the inhomogeneous line. Atoms with
transition frequencies that are clustered within ∆ν of each other can be considered indis-
tinguishable. The term homogeneous packet is often used to describe them. Now, let us
consider the specific case of thermal Doppler broadening in a gaseous system. An atom is
in thermal motion, so that the frequency of emission or absorption in its own frame corre-
sponds to a different frequency for an observer. The change in frequency associated with an
atom with velocity component vz along the line of sight (say z axis) is, to lowest order in
v/c, given by

ν = ν0(1 +
vz
c
) (4.75)
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where ν0 is the rest-frame frequency. The number of atoms having velocities in the range
vz to vz + dvz is proportional to the Maxwellian distribution

e
− mv2z

2kBT dvz (4.76)

where m is the mass of the atom. From the above two equations we have that the
strength of the emission in the frequency range ν to ν + dν is proportional to

e
−mc

2(ν−ν0)2
2ν2

0
kBT dν (4.77)

The normalized (
∫

gDdν = 1) shape function for the Doppler-broadened line can there-
fore be written as

gD(ν − ν0) =
√

ln 2

π

2

ΓD
e
− 4 ln 2(ν−ν0)2

Γ2
D (4.78)

where the FWHM given by

ΓD =
√
8 ln 2

ν0
c

√

kBT

m
(4.79)

has been introduced. By virtue of Equation 4.68 and Equation 4.78, the peak value for
the Doppler case is obtained as

σpeakD =

√

ln 2

π

λ2

4πn2τspontΓD
(4.80)

Now, by using Equations 4.77 and 4.74 into Equation 4.73 and putting ∆ν = ΓL, we
obtain a composite lineshape known as Voigt profile

gV (ν) =
ΓL
ΓD

√
ln 2

π3/2

∫ +∞

−∞

e
− 4 ln 2(νξ−ν0)2

ΓD

(ν − νξ)2 + (ΓL/2)2
dνξ (4.81)

Obviously, Equation 4.81 reduces to Equation 4.71 (4.78) in the limit ΓL ≫ ΓD (ΓD ≫
ΓL). Finally, it is left for exercise to show that the convolution of a Lorentzian line of width
ΓL1 with another Lorentzian curve of width ΓL2 again gives a Lorentzian whose width is
ΓL = ΓL1 +ΓL2. Also, the convolution between a Gaussian line of width ΓD1 and a second
Gaussian of width ΓD2 is again a Gaussian curve, this time of width ΓD =

√

Γ2
D1 + Γ2

D2.
For any combination of broadening mechanisms, it is therefore always possible to reduce the
problem to a convolution of a single Lorentzian line with a single Gaussian line. Sometimes,
however, one mechanism predominates, and it is then possible to speak of a pure Lorentzian
or Gaussian line.

4.2.2 The pump

We now consider how to produce a population inversion in a given material. Thus far, we
have not specified where levels 1 and 2 appear in the overall energy-level scheme of the
lasing atoms. We might imagine that level 1 is the ground level and level 2 the first excited
level of an atom. In this case, when we attempt to achieve continuous laser oscillation, we
encounter a serious difficulty: the mechanism we use to excite atoms to level 2 can also
de-excite them. For example, if we try to pump atoms from level 1 to level 2 by irradiating
the medium, the radiation will induce both upward transitions 1 → 2 (absorption) and
downward transitions 2 → 1 (stimulated emission). The best we can do by this optical
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pumping process is to produce nearly the same number of atoms in level 2 as in level 1;
we cannot obtain a positive steady-state population inversion using only two atomic levels
in the pumping process. It is not necessary to show this by writing down equations; since
g1B12 = g2B21, such an argument is quite intuitive.

A possible way to circumvent this problem is to make use of a third level, as shown in
the left frame of Figure 4.10. In such a laser, some pumping process acts between level g and
level 3. An atom in level 3 cannot stay there forever. As a result of the pumping process,
it may return to level g, but for other reasons such as spontaneous emission or a collision
with another particle, the atom may drop to a different level of lower energy. In the case of
collisional de-excitation, the energy lost by the atom may appear as internal excitation in
a collision partner, or as an increase in the kinetic energy of the collision partners, or both.
The key to the three-level inversion scheme is to have atoms in the pumping level 3 drop
very rapidly to the upper laser level 2. This accomplishes two purposes. First, the pumping
from level g is, in effect, directly from level g to the upper laser level 2, because every atom
finding itself in level 3 converts quickly to an atom in level 2. Second, the rapid depletion
of level 3 does not give the pumping process much chance to act in reverse and repopulate
the ground level g.

Another useful model for achieving population inversion is the four-level laser scheme
shown in the right frame of Figure 4.10. Pumping proceeds from the ground level g to the
level 3, which, as in the three-level laser, decays rapidly into the upper laser level 2. In this
model the lower laser level 1 is not the ground level, but an excited level that can itself
decay into the ground level. This represents an advantage over the three-level laser, as the
depletion of the lower laser level obviously enhances the population inversion on the laser
transition. That is, a decrease in N1 results in an increase in N2−N1. In addition, level 1 is
generally not populated (if ∆E1g ≫ kBT ), which immediately gives a population inversion.

It is obvious from Figure 4.10 that the minimum energy input per output photon is
hν3g; so the power efficiency of the laser cannot exceed

ηq =
ν21
ν3g
≡ ν0
ν3g

(4.82)

which is known as atomic quantum efficiency. According to this formula, in an efficient
laser system ν0 and ν3g must be of the same order of magnitude and, as a consequence, the
laser transition should involve low-lying levels.

In this frame, it is customary to define another quantity, referred to as the quantum
defect q, which sets an upper limit to the power efficiency:
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Scheme of a three-level (left frame) and four-level (right) laser.
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q = hνpump − hνlaser = hνpump

(

1− λpump
λlaser

)

(4.83)

that is different from the quantum efficiency. The latter refers, in fact, to the average
number of output photons per pump photon, rather than to the photon energies. In other
words, the above q definition tells us that the power efficiency of the laser could not be 100%
even if every pump photon could be converted into a laser photon. As we will see later, some
laser crystals (e.g. those doped with ytterbium) have a particularly small quantum defect
of only a few percent of the pump photon energy, leading to potentially very high power
efficiency. However, a small q also leads to quasi-three-level behavior of the gain medium,
which makes certain aspects of laser design more sophisticated, and may even make it more
difficult to achieve a high wall-plug efficiency.

We close this section by shortly reviewing the most common pump sources employed in
lasers, referring the reader to [168] for a more comprehensive discussion.

• Optical pumping, i.e., by cw or pulsed light emitted by a powerful lamp or laser beam.
Optical pumping by an incoherent source is particularly suited to solid-state or liquid
lasers (i.e., dye lasers). Line-broadening mechanisms in solids and liquids produce, in fact,
considerable broadening, so that we usually deal with pump bands rather than sharp lines.
These bands can therefore absorb a sizeable fraction of the broadband light emitted by
the lamp. As a general rule, an efficient pump system utilizes a radiation source having a
spectral output that closely matches the absorption bands of the gain medium, transfers
the radiation with minimum losses from the source to the absorbing laser material, and
creates an inversion which spatially matches the mode volume of the resonator mode.

• Electrical pumping, i.e., by a cw, radio frequency, or pulsed current flowing in a con-
ductive medium, such as a semiconductor or an ionized gas. In the latter case, indeed,
line-broadening mechanisms are weaker than in solids. For gases at low pressure, often
used in lasers (a few tens of Torr), in fact, collision-induced broadening is very small, and
the linewidth is essentially determined by Doppler broadening (on the order of a few GHz
or less). In conclusion, due to the absence of broad absorption bands in the active medium
of gas lasers, optical pumping would be inefficient.

A common means of pumping gas lasers is an electric discharge, which may be produced
in a gas contained inside a glass tube by applying a high voltage to electrodes on either
side of the tube. Electrons are ejected from the negative electrode (the cathode) and drift
toward the positive electrode (the anode). When an electron collides with an atom (or
molecule), there is some probability that the atom makes a transition to a higher energy
state. In an inelastic collision of the first kind, the energy lost by the electron is converted
to internal excitation energy of the atom. Such a process is often referred to as electron-
impact excitation (in electron-impact excitation of molecules, the internal energy added to
the molecule may be in the form of vibrational and rotational energy as well as electronic
energy). If an electron collides with an already excited atom or molecule, it can cause the
atom or molecule to drop to a lower level of excitation, the energy difference now going
into an increase in the kinetic energy of the system. This type of inelastic collision is called
a collision of the second kind (or a superelastic collision).

A gas laser may be pumped directly by electron-impact excitation, in the sense that
collisions of the active atoms with the electrons are the sole source of the population
inversion. In this case, the rates for the various excitation (collisions of the first kind)
and de-excitation (collisions of the second kind) processes enter into the population rate
equations as pumping and decay rates, respectively. Frequently, however, electron-impact
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excitation produces a population inversion indirectly, in the sense that it sets the stage for
another process that acts more directly to produce a positive gain. The most important of
these other processes is excitation transfer from one atom (or molecule) to another. One
way for an excited atom to transfer energy to another atom is by photon transfer: the
photon spontaneously emitted by one atom is absorbed by the other. In this way, the first
atom drops to a lower level and the second atom is raised to a higher level, i.e., there is an
excitation transfer between the two atoms. This process has a negligible probability of oc-
currence unless the photon emitted by the donor atom is within the absorption linewidth
of the acceptor atom, that is, there must be a resonance (or near-resonance) of the atomic
transitions. Actually, the process of excitation transfer via spontaneous emission is quite
negligible compared to other transfer processes that result from a direct non-radiative
(e.g., collisional) interaction between two atoms. The calculation of excitation transfer
rates between atoms (and molecules) is usually very complicated, and experimental de-
terminations of transfer rates are essential; such studies form an entire field of research.

• Chemical pumping, i.e., by an exothermic chemical reaction. Two such reactions can be
used, namely: associative reactions, i.e., A + B = (AB)∗, which results in the molecule
AB being left in an excited vibrational state; dissociative reactions, where dissociation
may be induced by a photon, i.e, AB+ hν = A+B∗, which results in species B (atom or
molecule) being left in an excited state. Chemical pumping usually applies to materials in
the gas phase, and it generally requires highly reactive and often explosive gas mixtures.
Energy generated in an exothermic reaction is often quite large, and high powers (for cw
operation) or energies (for pulsed operation) can be available for laser action.

4.2.3 The resonator

As already explained, to make an oscillator from an amplifier, it is necessary to introduce
suitable positive feedback. This is accomplished by placing the active medium between
two highly reflecting mirrors (optical cavity). In this case, a plane e.m. wave travelling
in a direction perpendicular to the mirrors bounces back and forth between them, and is
amplified on each passage through the active material. Also, if one of the two mirrors is
partially transparent, a useful output beam is obtained from it.

Consider a resonator of length L in which an active medium of length l is inserted. Let
I represent the intensity of the beam just after mirror 1 at a given cavity position at time
t = 0. The intensity I ′ after one cavity round-trip is

I ′ = R1R2(1− Li)2Ie2(N2−
g2
g1
N1)σ21l = R1R2(1− Li)2Ie2Nσ21l (4.84)

where N = N2 − (g2/g1)N1, R1 = 1 − a1 − T1 and R2 = 1 − a2 − T2 are the power
reflectivities of the two mirrors, and Li is the single-pass internal loss of the cavity. Note
that, in order to lighten the notation, in Equation 4.84 we have dropped the frequency
dependence of the cross section (σ21(ν − ν0) ≡ σ21). The change of intensity for a cavity
round-trip is then

∆I ≡ I ′ − I =
[

(1− a1 − T1)(1− a2 − T2)(1− Li)2e2Nσ21l − 1
]

I (4.85)

Next we assume that the mirror losses are equal a1 = a2 = a and so small that we can
set 1− a1 − T1 ≃ (1− a)(1− T1) such that

∆I =
[

(1− T1)(1− T2)(1 − a)2(1− Li)2e2Nσ21l − 1
]

I (4.86)

Now we define γ1 = − ln(1 − T1), γ2 = − ln(1 − T2), γi = − ln(1 − a) − ln(1 − Li) and
γ = γi + (γ1 + γ2)/2 such that
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∆I =
[

e2(Nσ21l−γ) − 1
]

I ≃ 2(Nσ21l − γ)I (4.87)

Next, if we divide both sides by the time ∆t = 2Le/c0 where Le = L + (n − 1)l is the

optical length of the resonator, and make the approximation ∆I/∆t ≃ dI

dt
we get

dI

dt
=

(

c0σ21lN

Le
− γc0
Le

)

I (4.88)

Obviously, the above equation is valid in the same form for the number of photons q,
such that we can write

dq

dt
=

(

c0σ21lN

Le
− 1

τc

)

q (4.89)

where

1

τc
=
γc0
Le

=
γic0
Le

+
γ1c0
2Le

+
γ2c0
2Le

(4.90)

that is the decay time for photons in the optical resonator, has been introduced. Once
again, we have neglected the small contribution of spontaneous emission in the same direc-
tion of the beam. With reference to Figure 4.11, this could be included in Equation 4.89 by
the term Rsp ∝ (1/τ2g + 1/τ21)N2(Al), A being the area of the active medium. However,
since, when the laser is oscillating, the number of photons in the cavity can be as high as
1016 (and much more than this value for pulsed lasers), we drop the term Rsp, and instead
assume that an arbitrarily small number of photons is initially present in the cavity just to
allow laser action to start.

Finally, from Equation 4.90 we recognize that the last term gives the rate of photon loss
due to transmission through mirror 2. The output power through this mirror is thus given
by

Pout = hν
γ2c0
2Le

q (4.91)
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Pumping-oscillation cycle for a typical 4-level laser.
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4.2.4 Rate equations for a four-level system

Now we have all the ingredients to write down the rate equations describing the laser
behavior. We will consider only a four-level system (corresponding to the most commonly
used configuration) in the space-independent model (both the mode distribution and the
pump rate are assumed to be spatially independent). We will also assume that the transition
from the pump band into the upper laser level and from the upper to the lower laser level
occurs very rapidly. Therefore, referring again to Figure 4.11, we can write















N3 ≃ 0 N1 ≃ 0
dN2

dt
= wpNg −

N2

τ21
− N2

τ2g
−DqN

Ntot = Ng +N1 +N2 +N3 ≃ Ng +N2

(4.92)

where the effective pumping rate

wp =

(

1 +
τ32
τ31

+
τ32
τ3g

)−1

wg3 ≤ wg3 (4.93)

addresses the fact that some of the absorbed pump photons will decay to levels other
than the upper laser level. The last term in the second of Equations 4.92 deserves some
explanation. As already discussed, in one cavity round-trip, the rate of stimulated-emission
transitions (per unit volume) minus that of absorption transitions is given by

2

(

N2 −
g2
g1
N1

)

Fνσ21 = 2NFνσ21 (4.94)

where Fν is the flux of photons (number of photons per unit surface and unit time) at
frequency ν interacting with the active medium. Thus we have

Fν =
q

Ab(2Le/c0)
=

ql

Va(2Le/c0)
(4.95)

where Va = Abl represents the so-called active volume, Ab being the cross-sectional area
of the cavity mode. By insertion of Equation 4.95 into Equation 4.94 we get

2NFνσ21 =
lc0σ21
VaLe

≡ Dqn (4.96)

where D = lc0σ21/(VaLe) has been defined. Now, −Dqn is exactly the rate at which N2

decreases due to the combined effect of absorption and stimulated emission. Next we define
the fluorescence decay time of the upper laser level as

1

τf
=

1

τ21
+

1

τ2g
≡ 1

τspont
+

1

τ2g
(4.97)

Also, since Ng ≫ N2 we can write Ntot = Ng + N2 ≃ Ng such that the quantity
wpNg ≃ wpNtot ≡ Rp is constant. Finally we obtain

dN

dt
= Rp −

N

τf
−DqN (4.98)

where N = N2− (g2/g1)N1 ≃ N2 has also been used. Now, by also considering Equation
4.89, we get the following set of coupled equations
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dN

dt
= Rp −

N

τf
−NqD

dq

dt
=

[

DVaN −
1

τc

]

q
(4.99)

The above coupled equations describe the static and dynamic behavior of the considered
4-level laser. If pumping is initiated at t = 0, they must be solved with the initial conditions
q(t = 0) ≃ 1 and N(t = 0) ≃ 0. Anyway, here we are only interested in the steady-
state solution, while the time-dependent solution will be discussed later on. We begin by
considering the threshold condition for laser action. Suppose that at time t = 0 an arbitrarily
small number of photons (e.g., q(t = 0) ≃ 1) is present in the cavity due to spontaneous
emission. From the second master equation we then see that in order to have dq/dt > 0, we
must have DVaN > 1/τc. Laser action is therefore initiated when the population inversion
N reaches a critical value Nth given by

Nth =
γ

lσ21
≡ γ′

σ21
(4.100)

where γ′ = γ/l. Being equivalent to the first Barkhausen condition (see Equation 2.49),
Equation 4.100 expresses the circumstance that, at the threshold, the gain

G = Nσ21 = N
λ2

8πn2τspont
g(ν − ν0) (4.101)

must equal the losses γ′: Gth = γ′. Next, we find the steady-state solution (dN/dt =
dq/dt = 0) as

N0 =
γ

lσ21
= Nth (4.102)

and

q0 = Vaτc

(

Rp −
N0

τf

)

= Vaτc

(

Rp −
Nth
τf

)

(4.103)

The condition q0 > 0 defines the critical pumping rate as

Rp,th =
Nth
τf

=
γ

lτfσ21
(4.104)

If we define x = Rp/Rp,th = Pp/Pp,th where Pp is the pumping power and Pp,th is its
threshold value, then we can write

q0 = Va
τc
τf
Nth(x− 1) (4.105)

According to Equation 4.91, the laser output power is given by

Pout,0 ≡ P4−lev = Ab
hν

τfσ21

γ2
2
(
Pp
Pp,th

− 1) (4.106)

We can define the laser slope efficiency as

ηs ≡
dP4−lev
dPp

= Ab
hν

τfσ21

γ2
2

1

Pp,th
(4.107)

which can be re-arranged in a very meaningful form if an explicit expression for Pp,th is
found. For this purpose, to fix the ideas, we consider the specific case of electrical pumping,
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and define the pump efficiency ηp as the ratio between the pump power Pp = RpAlhν3g
required to produce the pump rate Rp and the actual electrical power feeding the lamp Pel:

Pp = ηpPel (4.108)

Therefore, we have

Pel =
Rp
ηp
Alhν3g (4.109)

which, at threshold, becomes

Pp,th ≡ Pel,th =
Rp,th
ηp

Alhν3g =
γ

ηp

hν3g
τf

A

σ21
(4.110)

where Equation 4.104 has been used. By insertion of Equation 4.110 into Equation 4.107
we get

ηs = ηp
γ2
2γ

ν

ν3g

Ab
A
≡ ηpηcηqηt (4.111)

where ηc represents the fraction of generated photons coupled out of the cavity (output
coupling efficiency); ηt, being the fraction of the active medium cross section used by the
beam cross section, is called the transverse efficiency.

For a fixed rate, there is some value for the transmission, T2, of the output mirror that
maximizes the output power. Physically, the reason for this optimum arises from the fact
that, as the transmission T2 is increased, we have the following two contrasting effects: (1)
the output power tends to increase due to the increased mirrorr transmission; (2) the output
power tends to decrease due to the decreased number of cavity photons arising from the
increased cavity loss. The optimum transmission is obtained by imposing the condition (for
a given value of pump power Pp)

dP4−lev
dγ2

= 0 (4.112)

Of course, we must take into account that Pp,th is also function of γ2. To this aim, we
re-write

Pp,th =
γ

ηp

hν3g
τf

A

σ21
= Pp,th(γ2 = 0)

γ

γi +
γ1
2

(4.113)

where the minimum threshold pump power Pp,th,min ≡ Pp,th(γ2 = 0) has been intro-
duced and

P4−lev =
hν

τfσ21
Ab

(

γi +
γ1
2

)

S

[

xm
S + 1

− 1

]

(4.114)

with S = (γ2/2)/(γi + γ1/2) and xm = Pp/Pp,th,min. Now, the only term in 4.114 that
depends on γ2 is the quantity S which is simply proportional to γ2. Therefore, the optimum-
coupling condition can be obtained by setting dP4−lev/dS = 0 which returns

Sopt =
√
xm − 1 (4.115)

The corresponding expression for the output power is obtained as

P4−lev,opt = Ab
hν

τfσ21

(

γi +
γ1
2

)

(
√
xm − 1)

2 (4.116)
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We close this section by remarking that the above rate-equations-based treatment implic-
itly assumes a single-mode oscillating laser. In next sections we shall make some clarifications
about this point.

4.2.4.1 Transient behavior and relaxation oscillation

In general, the set of coupled rate Equations 4.99 derived for a 4-level laser does not admit
an analytic solution and one has to resort to numerical computation. As a representative
example, Figure 4.12 shows a computed plot of N(t) and q(t) obtained by using for the
parameters Rp, D, τf , τc, and Va values which can be considered typical for a Nd:YAG
laser (see figure caption).

Qualitatively, the behavior is the following. While the population inversion immediately
starts growing due to the pumping process, the photon number remains at its initial low
value until the population inversion crosses the threshold value. When the photon number
becomes large enough, the stimulated emission process becomes dominant over the pumping
process. The population then begins to decrease and, after the photon peak, population
inversion is driven below its threshold by the continuing high rate of stimulated emission.
Thus the laser goes below threshold, and the photon number decreases. When this photon
number decreases to a sufficiently low value, the pumping process again becomes dominant
over the stimulated-emission process. The population inversion can now begin growing again
and the whole series of events just considered repeats itself. The photon number is then
seen to display a regular sequence of peaks of decreasing amplitude; consecutive peaks are
approximately equally spaced in time. The output power therefore shows a similar time
behavior. This aspect of regular oscillation for the output power is usually referred to as
a damped relaxation oscillation. Indeed, for times long enough, the behavior of q(t) is well
described by that of a damped sinusoidal oscillation. In the specific case of Figure 4.12,
such oscillation occurs with a period Tro ≃ 10 µs and an exponential decay time tro ≃ 100
µs. Recalling the basic properties of harmonic oscillators (discussed in Chapter 2), in the
relative intensity noise (RIN) spectrum (see Section 2.8) this will correspond to a Lorentzian
peak centered at νro = 1/Tro ≃ 100 kHz and having a width of Γro = 1/(2π)tro ≃ 1.6 kHz.
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FIGURE 4.12
Computed plot of N(t) and q(t) for the following parameters: σ21 = 9.2 · 10−23 m2, τf =
2.3 · 10−4 s, Le = 0.123 m, γ = 0.009, and Ab = 30 · 10−6 m2.

Finally, it is interesting to note that the oscillation of N(t) precedes that of q(t) by about
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half the oscillation period, since we must first produce an increase in population to have a
corresponding increase in the photon number.

4.3 Frequency pulling

In order to find the laser oscillation frequency we require that the phase shift imparted to
a light wave completing a round-trip within the resonator must be a multiple of 2π. In the
absence of population inversion we have

2
2πν

c0
Le + phase due to mirror refl. = 2πm (4.117)

Now, if a population inversion is created in the active medium, then this will change
the real part of the refractive index by the amount ∆nr, whereupon the frequencies of the
cavity modes will become

2
2πν

c0
Le + 2

2πν

c0
∆nrl + phase due to mirror refl. = 2πm (4.118)

Incidentally, note that Equation 4.118 expresses the second Barkhausen condition (see
Equation 2.49). The m-th resonant frequency, νm, of the cold resonator is obtained by
putting ∆nr = 0 into Equation 4.118. Thus we have

ν +
l

Le
∆nrν = νm (4.119)

In order to progress beyond this point, it is necessary to make some assumptions
about the gain medium. It is well known that for a homogeneously broadened transition
(Lorentzian lineshape) with FWHM = Γ, the real and imaginary part of the refractive
index are related by

∆ni

∆nr
=

1

2

Γ

ν0 − ν
(4.120)

Further, the gain G(ν), as expressed by Equation 4.101, is related to the ∆ni by

G(ν)

2
= −2πν

c0
∆ni (4.121)

such that

∆nr =
ν − ν0

Γ

c0
2πν

G(ν) (4.122)

which, inserted into Equation 4.119, yields

ν +
c0
2π

l

Le

ν − ν0
Γ

G(ν) = νm (4.123)

This equation can be solved for the oscillation frequency ν = ν′m corresponding to each
cold-resonator mode νm. Under steady-state conditions, i.e., when the gain equals the loss,
G(νm) = γ′(νm) = γ(νm)/l = (1/lc0)(Le/τc) = (2π/c0)(Le/l)δν (see Equations 4.90 and
3.56), where δν is the width of the cold resonator mode. Therefore, an approximate analytic
solution can be obtained if ν = ν′m ≃ νm
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ν′m ≃ νm − (νm − ν0)
δν

Γ
(4.124)

The cold-resonator frequency νm is therefore pulled toward the atomic resonance fre-
quency ν0 by a fraction δν/Γ of its original distance from the central frequency (νm − ν0).
The sharper the resonator mode, the less significant the pulling effect. This result is also
valid for an inhomogeneous line. In general, the oscillation frequency is well approximated
by the weighted average of the two frequencies νm and ν0

ν′m =

ν0
Γ

+
νm
δν

1

Γ
+

1

δν

(4.125)

of which, as it can be easily seen, Equation 4.124 represents a particular case (in the
limit δν/Γ≪ 1).

Frequency pulling is, of course, present in masers too. In this case (δν/Γ≫ 1), Equation
4.123 yields

ν − ν0
−ν + νm

=
Γ

δν
(4.126)

which in the limit Γ/δν ≪ 1 (ν ≃ ν0) provides

ν = ν0 + (νm − ν0)
Γ

δν
(4.127)

that returns Equation 4.33.

4.4 Achieving single-mode oscillation

We have already mentioned that the two coupled rate Equations 4.99 derived for a four-
level system assume single mode oscillation. Actually, in lasers, the frequency separation of
the cavity modes is usually smaller than the width of the gain profile. Just as an example,
if we take L = 1 m, the frequency difference between two consecutive longitudinal modes
is ∆ν = c/2L = 150 MHz. The laser linewidth, on the other hand, may range from 1
GHz, for a Doppler-broadened transition of a visible or near-infrared gas laser, to 300 GHz
or more for a transition of a crystal ion in a solid-state material. This is at the basis of
multi-mode oscillation in lasers. In fact, spontaneous photons, which are responsible for
triggering the laser action, are distributed among all the resonator modes 1, ...,M falling
under the lineshape function g(ν−ν0) associated with the active medium. As a consequence,
in principle, we should write M rate equations for the quantities q1, ...qM . If, however, we
are only interested in the steady-state laser operation, the problem greatly simplifies.

Let’s start by considering the homogeneously broadened case and assume, for simplicity,
that one cavity mode, let us say q1, is coincident with the peak of the gain curve (we
further assume that oscillation occurs on the TEM00 mode, so that all mode frequencies are
separated by c/2L). In this case, since all the atoms in the active medium possess the same
lineshape gL(ν − ν0), the condition expressing that the gain must equal the cavity losses
can written as
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Nth
λ2

8πn2τspont
gL(ν − ν0) = γ′ (4.128)

which clearly shows that oscillation starts in the central mode q1 when the inversion
N = N2 − (g2/g1)N1 reaches the critical value

Nth =
γ′4π2n2τspontΓL

λ2
(4.129)

where Equation 4.72 has been used. Moreover, it was demonstrated that the steady-state
gain coefficient remains clamped at the threshold value Gth even when the pumping rate
Rp is increased above its threshold value Rp,th. Therefore, the peak gain, represented by
the length OP in Figure 4.13, remains fixed at the value OPth when Rp ≥ Rp,th. Since the
line is homogeneously broadened, its shape cannot change, so the whole gain curve must
remain the same for Rp ≥ Rp,th. As a consequence, the gains of other modes, represented
by lengths O′P ′, O′′P ′′, etc., always remain smaller than the OPth value for the central
mode q1. The latter is thus the only mode that can oscillate in the steady state.

In practice, however, homogeneously broadened lasers do indeed oscillate on multiple
modes because the different modes occupy different spatial portions of the active medium.
When oscillation on the most central mode is established, the gain coefficient can still exceed
the loss coefficient at those locations where the standing-wave electric field of the most cen-
tral field vanishes. This phenomenon is called spatial hole burning. It allows another mode,
whose peak fields are located near the energy nulls of the central mode, the opportunity to
lase as well (Figure 4.14).

By contrast, in an inhomogeneously broadened medium, the lineshape function
ginhom(ν), and hence the gain, represents the composite envelope of several Lorentzian
lineshape functions gξ(ν) (see Equation 4.74), and hence of several gains, each correspond-
ing to a cluster of atoms (homogeneous packet) centered at νξ. For each of these packets,

FIGURE 4.13
Frequency dependence of laser gain coefficient versus pump rate Rp for an ideal homoge-
neously broadened medium.
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FIGURE 4.14
Spatial hole burning: for simplicity let us consider two modes whose standing wave patterns
are shifted by λ/4 in the active medium. We assume that mode 1 is the first to reach
threshold. However, when oscillation on mode 1 starts, inversion around those points where
the electric field is zero (points A, B, etc.) is mostly left undepleted, so the inversion can
continue growing there even when the laser is above threshold. This situation is clarified
in the upper frame, where the spatial distribution of the population inversion in the laser
medium is indicated. Accordingly, mode 2, which initially has a lower gain, experiences a
growth in gain with increased pump rate, since it uses inversion from regions not depleted by
mode 1. Therefore, sufficiently far above threshold, mode 2 can also be set into oscillation;
this obviously occurs when its gain becomes equal to its losses.

we can define an its own gain coefficient (independent from that of the other packets) given
by

Gξ(ν) = N
λ2

8πn2τspont
gξ(ν) (4.130)

Therefore, when Rp (and hence N) increases above Rp,th, the gain of the central mode
remains fixed at OPth; the gains of the other modes O′P ′, O′′P ′′, etc., can, however, keep
on increasing to the threshold value (Figure 4.15). In this case, if the laser is operating
somewhat above threshold, more than one mode can be expected to oscillate. Accordingly,
it is possible to burn holes in the composite gain curve ginhom(ν) (spectral hole burning).
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Then, two additional features are worthy of mention:

• The phenomenon of spatial hole burning does not play a significant role in an inhomoge-
neous line. In this case, in fact, different modes (with a large enough frequency separation)
interact with different sets of atoms, so the hole-burning pattern of one set of atoms is
ineffective for the other mode.

• In the case of a homogeneous line, when a few modes are oscillating with frequencies
around the center of the gain line, the spatial variation of inversion is essentially smeared
out due to the presence of the corresponding, spatially shifted, standing wave patterns
of these modes. Therefore, the homogeneous character of the line prevents other modes,
further away from the center of the gain line, from oscillating. As a result, compared to
an inhomogeneous line, a homogeneous line restricts oscillation to a smaller number of
modes centered around the peak of the gain line.

Finally, it should be noted that many types of lasers may reach the oscillation threshold
even for several atomic or molecular transitions. In such case, in order to achieve single-mode
operation, one has first to select a single transition. Then, several methods for constraining
the laser to oscillate in a single transverse and/or longitudinal mode, for either homogeneous
or inhomogeneous lines, can be applied.

4.4.1 Line selection

In order to achieve single-line oscillation in laser media that exhibit gain for several transi-
tions, wavelength-selecting elements inside or outside the laser resonator can be used. If the
different lines are widely separated in the spectrum, the selective reflectivity of the dielec-
tric mirrors may already be sufficient to select a single transition. In the case of broadband
reflectors or closely spaced lines, prisms or gratings are commonly utilized. Left frame in
Figure 4.16 illustrates line selection by a prism. The different lines are refracted by the

FIGURE 4.15
Frequency dependence of laser gain coefficient versus pump rate Rp for an inhomogeneously
broadened medium: phenomenon of spectral hole burning.
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FIGURE 4.16
Line selection in a laser by means of a prism or a grating.

prism, and only the line that is vertically incident upon the end mirror is reflected back into
itself and can reach the oscillation threshold, while all other lines are reflected out of the
resonator. As most prism materials such as glass or quartz absorb in the infrared region, in
this wavelength range it is more convenient to use a Littrow grating (right frame in Figure
4.16). Often the laser beam is expanded by a proper mirror configuration in order to cover
a larger number of grating grooves, thus increasing the spectral resolution.

4.4.2 Single-tranverse mode selection

In most applications, oscillation in TEM00 mode is desirable and, to achieve this, a di-
aphragm of suitable aperture size may be inserted at some point on the axis of the resonator.
If the radius a of this aperture is sufficiently small, it dictates the value of the Fresnel num-
ber of the cavity a2/Lλ. As a decreases, the difference in loss between the TEM00 mode
and the next higher order modes (TEM01, or TEM10) increases. Therefore, by choosing an
appropriate aperture size, we can enforce oscillation on the TEM00 mode. Note that this
mode-selection scheme inevitably introduces some loss for the TEM00 mode itself.

4.4.3 Single-longitudinal mode selection

A particularly straightforward method consists of employing a laser cavity sufficiently short
that the longitudinal mode separation is greater than the width of the gain curve. In this
case, if a mode is tuned (for example by mounting one cavity mirror on a PZT) to coincide
with the center of the gain curve, the two adjacent longitudinal modes are far enough away
from the line center that, for a laser not too far above threshold, they cannot oscillate. The
requirement for this mode-selecting scheme can be written as
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L ≤ c

∆ν0
(4.131)

where ∆ν0 is the total width of the gain curve and L the cavity length. Such a technique
works for short helium-neon lasers (c/L = 1 GHz for L = 0.3 m), where gain line widths
are relatively small (a few GHz or smaller), and for some semiconductor lasers (c/L = 1000
GHz). For lasers with much larger bandwidths (e.g., dye lasers or tunable solid-state lasers),
the cavity length to satisfy the above condition becomes too small to be practical. In this
case, and also when longer lengths of the active medium are needed (e.g., for high-power
lasers), longitudinal mode selection can be accomplished by means of other techniques.

A common way of achieving single-longitudinal mode oscillation, for both homogeneous
or inhomogenous lines, involves inserting one or more Fabry-Perot (FP) etalons within the
cavity. As a trivial generalization of what was shown in Chapter 3, the transmission maxima
of the etalon occur at frequencies νn

νn = n
c

2nrd cos θ′
(4.132)

where θ′ is the refraction angle of the beam within the etalon, and nr and d are the
refractive index and the length of the etalon. If d is small enough, the spacing between
adjacent resonance frequencies of the etalon will be large compared to the width ∆ν0 of
the gain profile. By adjusting θ′, a resonance frequency can be brought near the center of
the gain profile, while the next resonance frequency lies outside the gain profile. In this
configuration, it is easy to show that the cavity length must satisfy the condition

c

∆ν0
≤ L ≤ c

∆ν0
2F (4.133)

where F is the finesse of the etalon. If the cavity length does not satisfy Equation 4.133,
then two or more etalons of different thickness are needed. In the case of two etalons, the
thicker one is required to discriminate against adjacent longitudinal modes of the cavity;
the second, thinner one must then discriminate against adjacent transmission maxima from
the first etalon (Figure 4.17).

For a homogeneously broadened transition, single-longitudinal mode operation can au-
tomatically be achieved, or at least greatly facilitated, if the laser cavity has the form of
a ring and oscillation is constrained to be unidirectional. In this case, in fact, the phe-
nomenon of spatial hole burning within the active medium does not occur, and the laser
tends to oscillate on a single mode. Actually, if the transition is only partly homogeneously
broadened and the gain profile is very broad, some further bandwidth selecting elements,
such as birefringent filters and/or etalons, may also be needed. An additional advantage
of this unidirectional ring configuration is that higher output power is available, since the
entire active medium, rather than just those regions around the maxima of the standing
wave pattern, contributes to laser output. To achieve unidirectional ring operation, a unidi-
rectional device, or optical diode, giving preferential transmission for one direction of beam
propagation, must be inserted within the cavity. Figure 4.18 shows a typical example of a
folded ring configuration, including a unidirectional device. In this case, pumping is pro-
vided by an ion laser and the dye solution is made to flow transversely to the beam in the
form of a liquid jet. Single-transverse mode operation is automatically achieved due to the
transverse gain distribution from focused pumping. Laser tuning and gain bandwidth reduc-
tion are obtained by combining a birefringent filter with two FP etalons (a thin etalon and
a scanning etalon of different free spectral ranges). The optical path length of the cavity is
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FIGURE 4.17
Transmission curves for different intra-cavity components. For a single-mode operation, the
transmission maxima of the different elements have to coincide in one point. In increas-
ing gray-scale order: Mirror&Crystal, Birefringent filter, Thin etalon, Thick etalon, Cavity
modes.

conveniently tuned by rotating a tilted, plane-parallel, glass plate inside the resonator (the
galvoplate). Single-longitudinal mode operation is then ensured by a unidirectional device
consisting of a Faraday rotator and a birefringent plate.

So far, in referring to cavity modes, we have ignored polarization. A very common and
convenient way of obtaining a linearly polarized output from a laser is to use various optical
elements inclined at Brewster’s angle. As an example, Figure 4.19 illustrates a laser in which

Ion Laser Beam Pump
M Pump

M2M1

Galvoplate

Scanning
Etalon

Thin
Etalon

Unidirectional
Device

M3

M4Birefringent
Filter

Output
beam

Dye jet

FIGURE 4.18
Typical folded ring configuration: single-longitudinal mode dye laser using a unidirectional
ring cavity.
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qB

FIGURE 4.19
A laser with the gain-cell windows cut at the Brewster angle. The indicated polarization
(parallel to the plane of incidence, which is the plane of the figure) will suffer no reflective
loss at the windows, and therefore will lase preferentially. The orthogonal polarization will
undergo a greater loss due to reflection at the windows.

the ends of the gain cell are cut at the Brewster angle with respect to the cavity axis. The
plane of incidence associated with the cavity field is that of the figure. Laser radiation that
is linearly polarized in this plane will not suffer any reflection off the ends of the gain cell.
Radiation polarized perpendicular to the plane of the figure, however, will have a greater
loss coefficient because it is reflected at the windows. Lasing is therefore more favorable for
linear polarization in the plane of incidence.

Another example of unidirectional ring resonator using a non-planar cavity, known as
non-planar ring oscillator (NPRO), is shown in Figure 4.20 [173]. In this configuration,
the laser light circulates in a single laser crystal, typically made of Nd:YAG or Yb:YAG.
The internal surface of the slightly convex, input/output (front) face is provided with a
dielectric mirror coating which is highly transmissive for the pump light, while serving as
the resonator output-coupler mirror. Thanks to the non-planarity, total internal reflection
occurring at the other surfaces induces, in each round-trip, a slight rotation of the light
polarization. Moreover, if a small magnet is attached to the laser crystal, an additional
polarization rotation can be achieved by exploitation of the Faraday effect. Third, the coat-
ing of the output-coupler facet also exhibits a slightly polarization-dependent reflectivity.
As a result of the combination of these three effects, one of the two oscillation directions
experiences a lower optical loss when the beam hits the output-coupler surface. By contrast,
the higher loss experienced by the opposite oscillation direction eventually suppresses the
latter. This scheme smartly avoids any standing-wave pattern and hence the spatial hole
burning phenomenon. Typically, NPRO cavities exhibit relatively large free spectral range
values, allowing for continuous (mode-hope free) frequency tuning over several GHz. Tun-
ing is accomplished either by means of a piezoelectric transducer pressing on the crystal,
or by changing the crystal temperature (with a Peltier element), or by adjusting the pump
power. By virtue of the high mechanical stability and the low resonator optical losses, in
conjunction with the reduced noise levels attainable with pumping diode lasers, the noise
of an NPRO-based laser can be very small. Indeed, typical linewidths are in the range of a
few kilohertz, while output powers up to several watts can be reached.
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FIGURE 4.20
Setup of a non-planar ring oscillator laser. The front face of the crystal has a dielectric
coating, serving as the output coupler and also as a partially polarizing element, facilitating
unidirectional oscillation. The light gray beam is the pump beam, normally originating from
a laser diode.

4.5 The laser output

The light emitted by a laser has properties that are radically different from those of the
light emitted by classical (incoherent) sources. These properties have been the basis for
the myriad applications found for lasers since their advent in the 1960s; they have escaped
the confines of the research laboratory to become ubiquitous in industrial production and
modern society. Lasers now have countless applications in such disparate areas as medicine,
metallurgy, and telecommunications and are at the heart of new developments in commer-
cial electronics. Essentially, laser-based applications can be distinguished between those for
which the energy delivered by a laser beam is of principal importance and those relying
on the unique coherence properties of the light lasers emit. In this book we are interested
only in the latter ones. Coherence is one of the most important concepts in optics and is
strongly related to the ability of light to exhibit interference effects. A light field is called
coherent when there is a fixed phase relationship between the electric field values at different
locations or at different times. Partial coherence means that there is some (although not
perfect) correlation between phase values.

4.5.1 Spatial coherence

Spatial (or lateral) coherence means a strong correlation (fixed phase relationship) between
the electric fields at different locations across the beam profile. Lasers have the potential for
generating beams (e.g., Gaussian beams) with very high spatial coherence arising from the
existence of resonator modes, which define spatially correlated field patterns. For example,
within a cross section of a beam from a laser with diffraction-limited beam quality, the
electric fields at different positions oscillate in a totally correlated way, even if the tempo-
ral structure is complicated by a superposition of different frequency components. Spatial
coherence is the essential prerequisite of the strong directionality of laser beams. In this
respect, a laser beam is the closest approximation that we possess to the light ray of geo-
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metrical optics. Nevertheless, as already remarked in Chapter 3, resting on the assumption
of infinite transverse extent of the cavity (so that the circulating light fields can be repre-
sented by plane waves), the simplified description of the laser operation given in previous
sections is somewhat unrealistic. Indeed, the various components of a laser cavity are of
limited spatial extent and, if the light waves were really plane waves, the diffraction at one
of these aperture-limiting components would make impossible reproduction of the form of
the wavefront after a complete cavity round trip and would, furthermore, introduce severe
losses. We also know that, in practice, diffraction losses are compensated for by the use of
focusing elements such as concave mirrors and that the light field inside the cavity (and
hence the output beam) is described by a Gaussian transverse profile. Thus, the output
laser beam is characterized by the radius w0 of its waist and the divergence Θ = λ/πw0, λ
being the laser wavelength. This implies that, in order to reduce the divergence, a shorter
wavelength can be employed, or a larger beam diameter can be used by insertion of suit-
able optics along the path. Conversely, when a laser beam (assumed parallel) with initial
waist wi is focused by a lens of focal length f , the final radius of the spot wf is given by
wf = λf/πwi. By using large numerical aperture lenses for which the induced aberrations
have been minimized (for example, microscope objectives) and illuminating their entire
aperture by a well-collimated laser beam, it is possible to obtain a focal spot of size of the
order of an optical wavelength. It is worth noting, however, that this is a lower limit that
can only be achieved for lasers operating on the fundamental TEM00 transverse mode. In
conclusion, spatial coherence allows the laser light to be focused onto a small area or to be
transmitted in a highly parallel beam.

4.5.2 Spectral and temporal coherence

Much more relevant for the subject of this book, the temporal coherence of a single-mode
laser ensures its monochromaticity. Let us start, precisely, by clarifying from the experi-
mental point of view the intimate connection between these two concepts which may seem,
at first glance, rather distinct.

The degree of temporal coherence is usually measured by a Michelson interferometer
(Figure 4.21). The incident beam is split by a 50:50 beam splitter (BS) into two beams
of equal intensity. One of these beams is reflected off mirror M1 and makes its way to BS

d1

BS

d2

P

M2

Incident beam

M1

FIGURE 4.21
Basic setup for a Michelson interferometer.
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again, where part of it is transmitted. Similarly, the other beam reflects off mirror M2 and
propagates back to BS, where part of it is reflected. At a point such as P, there is thus a
superposition of two fields. It is well known from general physics that in the case of perfectly
monochromatic light and for stationary fields, the total intensity at P is given by

〈I(P )〉 = 〈I(R)〉 cos
[

2π

λ
(d1 − d2)

]

(4.134)

with constructive interference at P when

|d1 − d2| = nλ n = 0, 1, 2, ... (4.135)

and destructive interference when

|d1 − d2| = (n+
1

2
)λ n = 0, 1, 2, ... (4.136)

where the angular brackets denote time averaging. Suppose now that the radiation inci-
dent upon the Michelson interferometer has a spectral width δλ. Then the total intensity at
P is the sum of contributions like Equation 4.134 if we add intensities of different frequency
components. Since each wavelength component of the incident radiation is associated with
a different pattern of bright and dark spots as |d1−d2| is varied, the pattern will be smeared
out if δλ is large enough. A convenient way to quantitatively characterize the behavior of
intensity at point P is to introduce the so-called visibility defined as

V =
〈I(P )〉max − 〈I(P )〉min
〈I(P )〉max + 〈I(P )〉min

(4.137)

where 〈I(P )〉max (〈I(P )〉min) is the maximum (minimum) intensity recorded at point
P as the interferometer path separation is varied. Experimentally, it is found that the
visibility decreases with increasing values of the time difference τ = 2|d1 − d2|/c in the
arrival at point P (between the wave traveling in the first and second arm). Furthermore,
the visibility decreases more rapidly for larger bandwidths of the quasi-monochromatic
radiation. In other words, the more nearly monochromatic the radiation, the greater its
temporal coherence. To understand this, we will assume for simplicity that the intensity is
constant for wavelengths between λ− (1/2)δλ and λ+(1/2)δλ, and zero outside this range.
Then we expect that the interference pattern is smeared out if |d1 − d2| is large enough
that the largest wavelength λ+(1/2)δλ corresponds to an intensity maximum, whereas the
smallest wavelength λ− (1/2)δλ corresponds to an intensity minimum (or vice versa). From
Equations 4.135 and 4.136 we have therefore the two conditions

|d1 − d2| = n(λ+
1

2
δλ) (4.138)

|d1 − d2| = (n+
1

2
)(λ− 1

2
δλ) (4.139)

Subtraction of the first of these equations from the second yields

|d1 − d2| =
(

1

λ− 1
2δλ
− 1

λ+ 1
2δλ

)

=
1

2
(4.140)

Since δλ≪ λ we then obtain

|d1 − d2| =
λ2

2δλ
(4.141)
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Since 2|d1 − d2|/c = τ , where τ is the time difference in the arrival at point P (between
the wave traveling in the first and second arm), then we have

τ =
1

c

λ2

δλ
=

1

δν
(4.142)

where c = λν and δλ/λ = δν/ν have also been exploited. Equation 4.142 gives the
value of the time difference τ , at which we expect the interference pattern to be smeared
out. For separations larger than τ the visibility should be very small or zero. In agreement
with experiments, τ decreases with increasing bandwidth δν. It is worth noting that there is
some arbitrariness to the boundary between coherence and incoherence. Instead of Equation
4.142 it is conventional to define

τcoh =
1

2πδν
(4.143)

as the coherence time of quasi-monochromatic radiation of bandwidth δν. The distance
cτcoh is called the coherence length. If a beam is divided into two parts, the coherence length
is the path difference beyond which there will be very little interference (or fringe visibility)
when the two fields are superimposed. Note that the coherence length arises from temporal
coherence and is thus unrelated to the coherence area of Section 4.5.1, which is a measure of
spatial coherence. A laser operating on a single transverse mode will have excellent spatial
coherence, whereas its temporal coherence will be determined by the bandwidth of the
output radiation. If it is operated on a single longitudinal mode, δν is often so small that
the coherence length is practically infinite for many purposes. As an example, in the optical
region of the spectrum (ν ≃ 500 THz) and for δν = 100 Hz, the fractional spectral purity
of a laser beam can be as low as 2 · 10−13. In this respect, temporal coherence allows the
laser energy to be highly concentrated in the frequency domain. A laser operating on more
than one longitudinal mode, however, can have a much larger bandwidth, and therefore
a much smaller coherence length, than in the single-mode case. Many He-Ne lasers, for
instance, operate on two longitudinal modes separated in frequency by c/2L (L being the
laser cavity length). In this case δν ∼ c/2L. As we will see in Chapter 6, in the case
of mode-locked lasers, where many longitudinal modes oscillate in phase, the output is a
train of phase-locked pulses and the spectrum is a frequency comb. The coherence length is
determined by the duration of the individual pulses, and since they can be extremely short,
the coherence length can be very small. For pulses in the femtosecond range, coherence
lengths are measured in microns; this makes them useful in optical coherence tomography.

In conclusion, it is worth stressing that the above treatment only refers to the so-called
degree of first-order coherence g(1). The degree of second-order coherence g(2), ignored
here, is typically used to find the statistical character of intensity fluctuations as well as
to differentiate between states of light that require a quantum mechanical description and
those for which classical fields are sufficient [174].

4.5.3 The effect of spontaneous emission

Having introduced the concept of spectral coherence from a phenomenological perspective,
a fundamental question now arises: what is the spectral width of the output of single-
mode lasers? This question was answered by Schawlow and Townes and the fundamental
(ultimate) limit to the frequency width of a laser’s output is consequently known as the
Schawlow-Townes limit. Its cause is spontaneous emission. Whereas stimulated emission
adds coherently to the stimulating field, that is, with a definite phase relationship, the
spontaneously emitted radiation adds incoherently to the cavity field. Some of the radiation
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emitted by the spontaneous emission will propagate very nearly along the same direction as
that of the stimulated emission and cannot be separated from it. This has two main conse-
quences. First, the laser output will have a finite spectral width. This effect is described in
Section 4.5.3.1. Second, the signal-to-noise ratio achievable at the output of laser amplifiers
is limited because of the intermingling of spontaneous emission noise power with that of the
amplified signal. The issue of amplified spontaneous emission (ASE) and its impact on the
signal-to-noise ratio will be addressed in Section 4.5.3.2.

4.5.3.1 Intrinsic laser linewidth

A proper treatment of spontaneous emission requires the quantum theory of radiation.
Therefore, the problem of determining the fundamental lower limit to the spectral width of
a laser can be solved rigorously only by using quantum electromagnetic theory. However,
it is possible to give an argument that leads to the same answer given by the quantum
theory of radiation [68]. Let us consider the effect of one spontaneous emission event on the
electromagnetic field of a single oscillating laser mode. A field such as

E(t) = ℜ
[

E0e
i(ω0t+ϑ)

]

(4.144)

can be represented by a phasor of length E0 rotating with an angular (radian) rate ω0.
In a frame rotating at ω0, we would see a constant vector E0. Since E2

0 is proportional to
the average number of quanta in the mode, q, we shall represent the laser field phasor before
a spontaneous emission event takes place by a phasor of length

√
q as in Figure 4.22.

The spontaneous emission adds one photon to the field, and this is represented, according
to our conversion, by an incremental vector of unity length. Since this field increment is
not correlated in phase with the original field, the angle ψ is a random variable (i.e., it is
distributed uniformly between zero and 2π). The resulting change ∆ϑ of the field phase can
be approximated for q ≫ 1 by

∆ϑone−emission =
1√
q
sinψ (4.145)
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FIGURE 4.22
Effect of the ith spontaneous emission event on the electric field of a single oscillating laser
mode.
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Next, consider the effect of Nspont spontaneous emissions on the phase of the laser field.
The problem is one of angular random walk, since ψ may assume with equal probability
any value between 0 and 2π. We can then write

〈

[∆ϑ(N)]
2
〉

=
〈

[∆ϑone−emission]
2
〉

N =
1

q

〈

sin2 ψ
〉

Nspont (4.146)

where 〈〉 denotes an ensemble average taken over a very large number of individual
emission events. Therefore, to obtain the root mean square (rms) phase deviation in a time
t, we need to calculate the average number of spontaneous emission events Nspont(t) into a
single laser mode in time t. This task is readily accomplished by observing that the total
number of spontaneous emissions per second in the active volume Va within the bandwidth
∆ν is (VaN2/τspont)g(ν)∆ν (recall that N2 is the total number of atoms per unit volume
in the upper laser level, g(ν) the normalized lineshape function, and τspont the spontaneous
lifetime of an atom in level 2). If Nmode is the number of modes within the bandwidth ∆ν,
then the total number of spontaneous emissions per second is

Nspont =
VaN2

Nth

Nth
Nmodeτspont

g(ν)∆ν ≡ Vaµ
Nth

Nmodeτspont
g(ν)∆ν (4.147)

where µ = N2/Nth has been introduced and Nth is, as usual, the population inversion
N2− (g2/g1)N1 at threshold. According to Equations 4.101 and 4.90, this can be expressed
as

Nth =
8πn2τspont

g(ν)

γ′

λ2
=

8πn2τspont
g(ν)λ2

Le
l

1

c0τc
(4.148)

while the total number of spatial modes (including transverse and longitudinal modes)
in the cavity volume Vc is, according to standard theory of blackbody radiation [68], given
by

Nmode = Vc
8πn3

λ2c0
∆ν (4.149)

By substitution of Equations 4.148 and 4.149 into Equation 4.147 we obtain

Nspont =
Va
Vc

Le
nl

µ

τc
=
l[L+ (n− 1)l]

Lnl

µ

τc
≃ µ

τc
(4.150)

It is worth noting that the quantity l[L + (n − 1)l]/(Lnl) is exactly equal to 1 either
if n = 1 (gas laser) or if L = l (the active medium fills the entire cavity). Therefore, the
number of spontaneous emissions into a single lasing mode in a time t is given by

Nspont(t) =
µ

τc
t (4.151)

As a consequence, using also
〈

sin2 ψ
〉

= 1/2, Equation 4.146 becomes

〈

[∆ϑ(t)]
2
〉

=
1

2q

µ

τc
t (4.152)

such that, by virtue of Equation 2.157, we can write for the autocorrelation function

RE(τ) =
|E0|2
2

cos(ω0τ)e
−
〈[∆ϑ(τ)]2〉

2

=
|E0|2
2

cos(2πν0τ)e
− µ

4qτc
τ (4.153)
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from which the frequency-noise power spectral density is calculated as (see Equation
2.162)

S1−sided
E (f) = 4

∫ ∞

0

RE(τ) cos(2πfτ)dτ

= |E0|2
∫ ∞

0

{cos[2π(f + ν0)τ ] + cos[2π(f − ν0)τ ]} e−
µ

4qτc
τ
dτ

≃ |E0|2
∫ ∞

0

cos[2π(f − ν0)τ ]e−
µ

4qτc
τ
dτ (4.154)

which, according to Equation 2.167, yields a Lorentzian profile with a FWHM given by

∆νST =
µ

4πqτc
=

µ

2q
δν (4.155)

where δν = 1/(2πτc) is, as usual, the width of the cold resonator mode. Finally, according
to Equation 4.91, the output power is Pout = hν0q(γ2c0/2Le) ≃ hν0q/τc = 2πhν0qδν, where
the second equality holds if γi ≃ γ1 ≃ 0 (see Equation 4.90). Thus we obtain

∆νST = π
µhν0(δν)

2

Pout
≡ πS0

ν (4.156)

which, according to Equations 2.166 and 2.168, corresponds to a white-frequency noise
described by the following power spectral density

S1−sided
φ (f) =

S0
ν

f2
(4.157)

Equation 4.156 is the celebrated Schawlow-Townes (ST) formula. Note that in a four-
level system N1 ≃ 0 and hence µ ≃ 1. Just as an example, for a typical helium-neon laser
(Pout = 1 mW, ν0 = 4.741 · 1014 Hz, δν ≃ 5 · 105 Hz) one has ∆νST ≃ 10−3 Hz, whilst for
a semiconductor laser (Pout = 3 mW, ν0 = 1.935 · 1014 Hz, δν ≃ 3 · 1010 Hz) ∆νST ≃ 1
MHz is found. This means that, while in the former case technical broadening is dominant,
in the latter case the ST limit is easily accessible to experiments. About semiconductor
lasers, the analysis leading to the above ST formula ignores the modulation of the index of
refraction of the laser medium, which is due to fluctuations of the electron density caused
by spontaneous emission. We will include this effect later.

We close this discussion by observing that, in order to retrieve the ST limit for a maser,
we only have to replace the energy in one quantum hν0 with the energy due to thermal
agitation kBT and the width of the cold resonator mode with that of the molecular (atomic)
emission line. In this way, we exactly find the original result by ST (see Equation 4.32).
Indeed, in the case of masers, the atomic response function is narrower than that of the
cavity, and hν0 ≪ kBT such that zero-point fluctuations are due to thermal agitation. By
contrast, in lasers one has hν0 ≫ kBT and there is essentially no thermal noise. Spontaneous
emission is thus responsible for quantum mechanical noise.

Additional considerations on the laser linewidth - It should be pretty clear by
now that spectral properties of lasers are conveniently described either in terms of their
optical line shape and associated linewidth or in terms of the power spectral density of their
frequency noise. A measurement of the laser linewidth (obtained by heterodyning with a ref-
erence laser or by self-homodyne/heterodyne interferometry using a long optical delay line)
is often sufficient in many applications. Some experiments, though, require more complete
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knowledge of the Fourier distribution of the laser frequency fluctuations. Knowledge of the
frequency-noise power spectral density enables one to retrieve the laser line shape and, thus,
the linewidth (while the reverse process, i.e., determining the noise spectral density from
the lineshape is not possible). However, this operation, as formalized by Equation 2.163, is
most often not straightforward. Here we use the quantity S1-sided

δν (f) instead of S1-sided
φ (f).

Note however, that, since δν ≡ ν(t)−ν0 = (1/2π)φ̇ (see Equation 2.117) and that the time-
domain derivative maps into a multiplication by i2πf in the Fourier transform domain, we
simply have S1-sided

δν (f) = f2S1-sided
φ (f). In Chapter 2, few analytically solvable cases were

presented. Of course, in the most general case (arbitrary noise spectrum), a numerical com-
putation of Equation 2.163 can be carried out starting from the measured frequency noise
power spectral density. Such a numerical analysis reveals that, under some assumptions,
the frequency noise spectrum can be separated into two regions that affect the lineshape in
a radically different way [175]. In the first region, defined by S1-sided

δν (f) > 8 ln(2)f/π2 , the
noise contributes to the central part of the lineshape, which is Gaussian, and thus to the
laser linewidth. In the second region, defined by S1-sided

δν < 8 ln(2)f/π2, noise contributes
mainly to the wings of the lineshape. Therefore, one can obtain a good approximation of
the laser linewidth by the following simple expression

FWHM =
√

8 ln (2)A (4.158)

where A is the area of the overall surface under the portions of Sδν (f) that exceed the
β-separation line

A =

∫ ∞

1/T0

H
(

Sδν (f)− 8 ln (2) f/π2
)

Sδν (f) df (4.159)

where H(x) is the Heaviside unit step function (H(x) = 1 if x≥0 and H(x) = 0 if x<0)
and T0 is the measurement time that prevents the observation of low frequencies below 1/T0
(Figure 4.23).

FIGURE 4.23
A typical laser frequency noise spectral density composed of flicker noise at low frequencies
and white noise at high frequencies. The dashed line separates the spectrum into two regions
whose contributions to the laser line shape is very different: the high modulation index area
contributes to the linewidth, whereas the low modulation index area contributes only to the
wings of the line shape. (Courtesy of [175].)
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As an application of this approach, let us discuss the process of laser linewidth reduction
for a simplified laser frequency noise model that still keeps the main features of the problem.
In this model, a free-running laser with a constant frequency noise level hb (Hz2/Hz) is
considered, and we assume that the frequency noise is reduced to another constant level ha
with a servo loop of bandwidth fb. The resulting frequency noise power spectral density is
given by

Sδν(f) =

{

ha if f < fb

hb if f ≥ fb
(4.160)

With this model, it is interesting to calculate the evolution of the laser line shape and
linewidth with the servo-loop bandwidth. By insertion of Equation 4.160 into Equation 2.163
and subsequent numerical evaluation, the FWHM is determined. Obviously, the result is
that the laser linewidth tends toward πhb when the bandwidth fb tends toward zero. On the
other hand, the linewidth drops down to πha when the bandwidth fb tends toward infinity.
In Figure 4.24 we report with a dashed line the linewidth obtained with the approximate
formula 4.158, and the agreement with the results of the numerical integration is good,
except when the value of the servo bandwidth is between ha and hb. In order to understand
the origin of this discrepancy, we reported in Figure 4.25 the laser line shape for four
particular values of the bandwidth.

We observe that the lineshape changes considerably in this range: the servo loop repels
the frequency noise from the center, and, as a consequence, two sidebands appear outside
of the servo bandwidth, i.e., at δν > fb, while the central part strongly narrows and be-
comes Lorentzian. Because of this radical change of lineshape, the different linewidths at
half-maximum are not similar in this range, and comparison with Equation 4.158 loses its
significance, which explains the observed discrepancy. Nevertheless, the approximate for-
mula is able to predict the minimum servo-loop bandwidth necessary to efficiently reduce
the laser linewidth, which is given by fminb = π2hb/(8 ln(2)). It depends on the free-running

FIGURE 4.24
Evolution of the laser linewidth (FWHM) with the servo-loop bandwidth fb. Special values
are indicated by the following points: a, fb = 100 Hz; b, fb = 300 Hz; c, fb = 500 Hz; and
d, fb = 1500 Hz. The continuous line has been obtained by numerical integration of the
exact relation (Equation 2.163), while the dashed one results from the approximate formula
(Equation 4.159). (Courtesy of [175].)
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FIGURE 4.25
Evolution of the laser lineshape with the servo-loop bandwidth. (Courtesy of [175].)

laser noise level hb and corresponds to the situation in which the noise level hb is entirely be-
low the β-separation line for frequencies outside of the servo bandwidth. As a consequence,
when fb > fminb , only the low frequency part with noise level ha is above the β-separation
line and contributes to the laser linewidth, which is given by πha. Note that the final laser
linewidth depends on the noise level ha, and thus on the servo-loop gain at low frequency,
but is independent of the servo bandwidth, provided that fb > fminb .

4.5.3.2 Amplified spontaneous emission

As already explained, in addition to the process of stimulated emission, spontaneous emis-
sion of photons also occurs in lasers. These spontaneous photons are also amplified by the
active medium. Such amplified spontaneous emission (ASE) is a fundamental source of
noise. Whereas the amplified signal has a specific frequency, direction, and polarization, the
ASE noise is broadband, multidirectional, and unpolarized. As a consequence it is possible
to filter out some of this noise by following the amplifier with a narrow bandpass opti-
cal filter, a collection aperture, and a polarizer. In this section we will derive the effect of
spontaneous emission noise in a traveling-wave optical amplifier in which the gain medium,
with no mirrors, is used to amplify a weak input field [68]. The basic problem is to find the
degradation of the signal-to-noise power that is caused by the (inevitable) addition of some
spontaneous emission (noise) power to the amplified signal.

To evaluate the added noise power from spontaneous emission, we consider an inverted

dz

z=0

G(n)

z=L

P0

FIGURE 4.26
Schematic drawing of an optical amplifier of length L and cross section A, with a gain
coefficient G(ν).
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atomic medium with population densitiesN2 andN1 in the upper and lower transition levels,
respectively. Here, of course, we refer to the steady-state values of population densities, but,
not to overburden the notation, we drop the subscript th which stands for threshold. The
inverted medium occupies the space between z = 0 and z = L with a cross sectional area
A. An optical beam with power P is propagating through the gain medium. According to
Equation 4.101, the coherent amplification due to stimulated emission is given by

dP = N
λ2g(ν)

8πn2τspont
Pdz = G(ν)P · dz (4.161)

As photons are emitted via the spontaneous emission process in the medium, they are
also being amplified as they propagate. We will next calculate the power of the amplified
spontaneous emission at the output of the optical amplifier. Referring to Figure 4.26, we
consider a differential volume element Adz at z. The number of excited atoms (in the
upper state) inside the volume is N2Adz. Thus, the total optical power (due to spontaneous
emission) from this volume element can be written as

dPN =
N2hνAdz

τspont
(4.162)

Since this power is emitted into many transverse spatial modes, only a small fraction β
is emitted into the transverse spatial mode of the input wave. Moreover, only the fraction
falling within an optical bandwidth ∆ν is of interest to us (physically, ∆ν can be the
bandwidth of a bandpass filter in front of the detector). Therefore, we have

dPN = β
N2hνA

τspont
g(ν)∆νdz (4.163)

which, by virtue of Equation 4.161, can be re-arranged as

dPN = β
8πn2A

λ2
N2

N
G(ν)hν∆νdz (4.164)

Now, within a spectral bandwidth of ∆ν, the number of longitudinal modes of traveling
waves is given by ∆ν/(c0/nL). Thus the fraction of spontaneous emission power going into
this group of longitudinal modes all corresponding to a single spatial transverse mode (one
direction of propagation, one polarization) is given, according to Equation 4.149, by

β =
1

Nmode

∆ν

(c0/nL)
=

λ2

8πn2A
(4.165)

Then, putting µ = N2/N we obtain

dPN = µG(ν)hν∆νdz (4.166)

Therefore, the total increment of optical power due to stimulated and spontaneous emis-
sion into the transverse spatial mode of the input wave is given by (note that, if the two
contributions were coherent, we would add their fields)

dP = G(ν)Pdz + µG(ν)hν∆νdz (4.167)

which, solved with the boundary condition P (z = 0) = P0, yields

P (z = L) = P0e
GL + µhν∆ν(eGL − 1) ≡ P0Ga + µhν∆ν(Ga − 1) (4.168)

where Ga = eGL is the intensity gain of the amplifier. The ASE power is then recognized
as
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PASE = µhν∆ν(Ga − 1) (4.169)

The signal-to-noise power ratio at the output of the optical amplifier (in the optical
domain) is

(

S

N

)

output

=
GaSi

GaNi + µhν∆ν(Ga − 1)
(4.170)

where Si is the input signal power, Ni the noise power of the signal at input, and
Namp ≡ PASE is the noise power added by the amplifier. For a four-level system (µ ≃ 1)
with high gain (Ga ≫ 1) the above equation simplifies to

(

S

N

)

output

=
Si

Ni + hν∆ν
(4.171)

which is maximized by reducing the optical bandwidth ∆ν as much as possible.

4.6 Laser frequency fluctuations and stabilization techniques

Most often, the Schawlow-Townes limit is masked by the so-called technical noise. In prac-
tice, the limit to monochromaticity is set by changes in cavity length induced by vibrations
or thermal drifts. We have already seen in Chapter 3 that any alteration in the optical
length of the laser cavity causes a corresponding change in the frequency of the selected
cavity mode. Thus, for a typical laser cavity length of 1 m, the displacement of a mirror
through λ/600 (1 nm for a laser operating in the yellow region of the visible spectrum) leads
to a frequency change of 1 MHz. Such displacements can arise for numerous reasons, for ex-
ample, thermal expansion of the cavity structure, or changes of pressure (either atmospheric
or caused by acoustic waves), which give rise to a change in the refractive index of the air
in the laser cavity, as well as pump noise (e.g., injection current noise for diode lasers).
These phenomena give rise to a more or less random modulation of the laser frequency,
which is known as jitter. Because of this, the short-term frequency stability of a laser, in
the absence of active stabilization techniques, is often not better than a few MHz. In the
longer term (more than one minute) laser frequency variations arise mainly as a result of
slow temperature changes so that the laser frequency is rarely defined to better than the
longitudinal mode separation. A good first step, then, would seem to consist in controlling
the temperature of the laser cavity. However, this strategy places unrealistic limits on the
temperature control for even a modest requirement on the long-term stability of the optical
frequency. As an example, if the laser frequency is required to stay within 100 kHz of its
desired operating point of 400 THz (750 nm), the requirement on the length L of a laser
cavity is

∆ν

ν
=

∆L

L
= αT <

105Hz
4 · 1014Hz

= 2.5 · 10−10 (4.172)

Despite constructing the laser from relatively low expansion materials like Invar and
glass, the temperature fluctuations ∆T of the entire cavity would have to be stabilized to
less than 0.25 mK, a daunting engineering task, to say the least. While passive stabilization
efforts can be used to reduce these harmful effects on the frequency, active feedback control
is often necessary to meet the frequency stability required for many applications.
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FIGURE 4.27
Laser frequency stabilization cast as a problem in control theory.

A general arrangement for active feedback control of the laser frequency is shown in
Figure 4.27 [176].

Schematically: a portion of the light from the laser is sampled by the discriminator,
which converts frequency fluctuations into voltage fluctuations with a conversion gain or
slope of Dv (V/Hz). A loop filter, having a frequency dependent gain coefficient G (V/V),
conditions this error signal for stable, optimal feedback. The control signal from the loop
filter is then sent to the transducer (with a conversion gain K (Hz/V)), which makes the
correction to the laser frequency. Using active frequency control, the spectral density of
laser frequency noise, Sf,laser , can be suppressed over the bandwidth of the control loop.
The closed-loop spectral density of frequency noise Sf,cl (Hz/

√
Hz) for the control problem

shown in Figure 4.27, where the discriminator noise and servo noise are ignored, is given by

Sf,cl =
Sf,laser

|1 +KGDv|
(4.173)

This equation represents a somewhat simplified view of active frequency control because
it assumes that the closed-loop performance is affected only by the frequency noise of the
laser. This is difficult to realize in practice. A more realistic situation is one where each
element in the controller is modeled to have a noise contribution that adds to its input.
The laser and actuator noise contributions are lumped in Figure 4.27 into one term Sf,laser
because the noise contribution at the output of the actuator is indistinguishable from the
laser noise. Sv,discr and Sv,servo are the spectral densities of voltage noise associated with
the frequency discriminator and servo. The linear spectral density is the square root of the
power spectral density and the total noise power is the sum of the individual contributions.
Therefore, the total closed-loop linear spectral density of frequency noise is given by

Sf,cl =

√

S2
f,laser + |KSv,servo|

2
+ |KGSv,discr|2

|1 +KGDv|
(4.174)
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In the limit of very large servo gain G, the discriminator noise contribution dominates
all other terms and the minimum closed-loop spectral density of frequency noise is

Sf,cl,min =
Sv,discr
Dv

(4.175)

This minimum spectral density of frequency noise depends only on the properties of the
discriminator Dv, and its noise contribution Sv,discr. From this result, feedback performance
is increased in the following two ways:

• Increase the discriminator slope: This is accomplished by using the slope of narrow
atomic (molecular) resonances or that provided by the modes of ultrastable (i.e., con-
structed in such a way as to provide the necessary stability over the time scale of interest)
high-finesse optical cavities.

• Minimize the discriminator noise: The discriminant noise, however, includes contri-
butions from technical noise associated with the discrimination technique such as fluctua-
tions in the resonant frequency of the Fabry-Perot, 1/f noise in the discriminant amplifiers
and quantum noise associated with measurement of the laser frequency. For a properly
designed frequency controller, the fundamental limit on frequency noise is set by the
quantum fluctuations at the discriminant detector (quantum-limited shot noise).

In the remainder of this introduction, we describe the main features of a feedback control
system used for laser frequency stabilization. Then, in the following subsections we shall
illustrate some specific schemes, each corresponding to a particular way of generating the
slope discriminator.

Proportional-Integrative-Derivative control - The reader should note that all
aforementioned gains and spectral noise densities are (Fourier) frequency dependent. Each
component in the feedback loop has a finite operating bandwidth, and understanding the
combined frequency response of these elements is critical to achieving stable feedback. Ba-
sically, the requirement for stability restricts the achievable gain in a feedback system. To
understand this, imagine that each component in the loop has a frequency noise that is
flat until its specified −3 dB bandwidth is reached, after which the response rolls off at −6
dB/octave. This decreasing amplitude response necessarily corresponds to a −90◦ phase lag
(characteristic of an integrator). Since each loop component contributes some phase lag, a
certain frequency always exists where the total accumulated phase for the closed loop signal
will be −180◦. At this frequency, the feedback is now positive: the applied correction signal
is no longer cancelling the disturbance noise but is instead reinforcing it. If the total loop
at this frequency is above unity, the system will become unstable and strongly oscillate.
The gain at this frequency needs to be reduced below unity for the feedback to operate
in a stable manner. As an alternative to lowering the gain, stable operation can also be
achieved by raising the frequency at which the oscillation occurs. A fundamental treatment
of control theory is beyond the scope of this book, and only general guidelines will be given
here [177, 178].

Consider a system characterized by a single variable S which may vary and drift some-
what over time due to the variation of environmental variables v which we cannot measure
or are unaware of. We possess a mechanism for measuring the state of the system as well
as a control input u which we can use to modify the state S of the system. Our objective is
to set or lock the state of the system to a desired value S = Sd and keep it there without
letting it drift or vary over time, regardless of variations in the environmental variables v. In
the case of laser frequency stabilization, S is the signal provided by the slope discriminator



216 Laser-based measurements for time and frequency domain applications

Unknowns v
modify S

System
SState

Measurement of S

Control
Modifies

u
S

FIGURE 4.28
Generic feedback model.

and the variable v corresponds to the laser frequency that we want to lock to the reference
frequency (i.e., the zero of the slope). Thus, in this case we have Sd = 0. With reference to
Figure 4.28, we will lock the state of the system to S = Sd with the following procedure:

1. Measure the state S of the system.

2. Determine how far the system is from its desired set point by defining an error
variable, e = S − Sd.

3. Calculate a trial control value u = u(e).

4. Feed the calculated control value, u(e), back into the control input of the system
S.

5. The state of the system changes in response to the change in the control value.

6. Return to step.

If we repeat this feedback cycle indefinitely with an appropriately calculated control
value u(e), then the system will converge to the state S = Sd and remain there even under
the influence of small changes to other variables (i.e., v) which influence the value of the
state S. The PID controller is the most common form of feedback. For a PID control, the
expression for u(e) depends only on the error signal e = S − Sd and is given by

u(e, t) = gP e(t) + gI

∫ t

0

e(t′)dt′ + gD
d

dt
e(t) (4.176)

where gP , gI , and gD are, respectively, the proportional, integral, and derivative gains.
We now make the simplifying assumption that the control input variable, u(e), controls
or modifies the state of the system through the process of addition. If the system has a
characteristic response time τ , then the system state variable S evolves according to

S(t+ τ) = S(t) + u(e, t) (4.177)

For small τ we have

S(t+ τ) ≃ S(t) + τ
d

dt
S(t) (4.178)

whereupon

u(e, t) = τ
d

dt
S(t) (4.179)
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By substitution of Equation 4.179 into Equation 4.176, we get (with Sd = 0)

τ
d

dt
S(t) = gPS + gI

∫ t

0

S(t′)dt′ + gD
d

dt
S(t) (4.180)

Taking the time derivative of Equation 4.180, we obtain

(τ − gD)S̈ − gP Ṡ − gIS = 0 (4.181)

that is a homogeneous second-order differential equation with constant coefficients. Its
solution is of the form

S(t) = A+e
λ+t +A−e

λ+t (4.182)

where

λ± =
gP ±

√

g2P + 4gI(τ − gD)
2(τ − gD)

(4.183)

and A+, A− can be calculated by setting the initial conditions (for instance, S(t =
0) = S0 and Ṡ|t=0 = 0). Therefore, one can see that the system will converge to Sd = 0
when feedback control is applied, so long as λ+ and λ− are negative (negative feedback),
otherwise the system will diverge. Since τ is not known accurately a priori, optimizing
the gain values for proportional, integral, and derivative values may be done manually or
with tuning methods such as the Ziegler-Nichols method [179]. Concerning the practical
implementation of PID controllers, operational amplifiers can be used. A complete PID
circuit is composed primarily of op-amps which, depending on their placement within a
circuit, can subtract, add, invert, amplify, differentiate, integrate, and filter signals. A typical
circuit scheme is shown in Figure 4.29. However, as already mentioned, such a realization
implies that the three gains gP , gI , and gD are (Fourier) frequency dependent. In this case,
it is useful to write the PID regulator in Laplace transform form

G(s) = gP (s) +
gI(s)

s
+ gD(s)s (4.184)

from which one recognizes that the derivative part mainly takes care of fast peaks in the
perturbations, while the primary purpose of the integral part is to provide infinite gain at
DC (0 Hz). This ensures that the steady-state value of S is really Sd. Indeed, just due to
the actual frequency dependence gP (s), a pure proportional controller will not settle at its
target value, but may retain a steady-state error.

In order to point out additional interesting aspects, we continue the discussion in the
Laplace domain (Figure 4.30). The whole system can be described by its complex transfer
function S(s) and the servo is represented by G(s). The transfer function, which determines
the capability of the system to follow the input signal, is described by

H(s) ≡ Yout(s)

Yin(s)
=

G(s)S(s)

1 +G(s)S(s)
(4.185)

Another important parameter is the effectiveness of the servo for cancelling perturba-
tions. The transfer function that characterizes this is given by

H ′(s) ≡ Yout(s)

Z(s)
=

S(s)

1 +G(s)S(s)
(4.186)

For laser stabilization this is the interesting term because disturbances have to be com-
pletely cancelled in a fast way. We are not interested in optimizing the properties of H(s) as
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FIGURE 4.29
Simplified scheme of a servo controller for a frequency stabilized laser.

the setpoint is usually kept constant. Obviously, the bigger G(s) is, the better perturbations
are cancelled. Now, for the system under control, we use a second-order system with a res-
onance (this describes quite well the behavior of a piezo attached to a mirror). Its transfer
function is given by

S(s) =
ω2
0

ω2
0 +

ω0

Q
s+ s2

(4.187)

where ω0 is the resonance frequency and Q is the damping factor of the resonance.
The points where the phase equals 180◦ and the gain crosses unity gain are of critical
importance. Whether a system oscillates can be determined by looking at the open loop
gain G(s)S(s). In this respect, the derivative part of the controller adds a leading phase
which can compensate the phase lag of the resonance. This controller can be optimized in
such a way that it is capable of a fast and smooth settling by increasing the servo bandwidth.
The increased bandwidth makes it possible to use higher gain values. Nevertheless, the gain
at low frequencies has not increased as much as one would wish. A better approach is to add
another PI stage. Figure 4.31 shows the behavior of a PID+PI servo and of a double PI + a

G s( ) S s( )
Y sout( )Y sin( )

Z s( )

Z s perturbation
Y s input signal

Y s output signal

( )
( )

( )
in

out

-

FIGURE 4.30
Basic servo loop with servo G(s) and system S(s).
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FIGURE 4.31
Left plot: open loop gain of the system with PID + PI servo and system with double PI
servo + notch filter. Right plot: reaction of the two systems to a step function at the input.
(Courtesy of [177].)

notch filter (band-stop filter). It is apparent that the low frequency gain has been improved
by more than 30 dB for the double PI + notch servo. Still, a stable system is maintained as
can be seen in the response to a step function. The ringing is only minimal and the response
is fast. The PID + PI servo does a comparable job but the gain at low frequencies is roughly
20 dB less. This means that the PI + notch servo can cancel low frequency perturbations
better than the PID + PI servo. In practice it turns out that always at least two PI stages
and a notch are used to achieve a tight and stable lock.

4.6.1 Side-lock to an atomic/molecular resonance

In this approach, the laser beam is passed through a gas vapor (at relatively low pressure)
and the transmission is measured by a photodetector. As the laser frequency is scanned
across a given atomic/molecular resonance, the gas absorbs the laser light, and the de-
tected transmission signal exhibits a Doppler-broadened dip. Either side of such transmis-
sion feature provides a discriminator slope for locking the laser frequency off resonance. To
obtain a steeper discriminator slope, Doppler-free saturation spectroscopy, providing more
narrow resonance features, can be performed. A modification of such traditional side-lock
technique, exhibiting first-order insensitivity to laser intensity fluctuations, has also been
demonstrated [180]. In this approach, the different power dependencies of the Doppler-free
saturated-absorption spectrum and the Doppler-broadened background spectrum are ex-
ploited. A judicious combination of these components can make the intensity dependences
in the error signal cancel and deliver a first-order intensity insensitivity. For further details,
refer to the section devoted to Doppler-free saturated-absorption spectroscopy in the next
chapter.

Obviously, the side-lock (SL) technique can be applied to a cavity resonance as well.
Unlike quantum resonances, an optical cavity does not suffer from saturation effects and
its linewidth can be engineered to give much larger discriminator slopes. Although easy to
implement, the SL scheme suffers from several drawbacks. First, as it is modulation-free, one
necessarily detects the error signal at DC, where there can be significant amplitude noise.
Second, amplitude modulation (AM) from the laser directly couples into the error signal;
the feedback loop cannot tell the difference between frequency modulation (FM) and AM.
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Changes in the laser amplitude will therefore be written onto the laser frequency. Also, when
a cavity is used, fast frequency fluctuations of the laser will not be detected in transmission
through the cavity due to the photon-lifetime of a Fabry-Perot cavity. Moreover, because
one locks to the side of the resonance rather than the top, there is reduced build-up of
optical power in the cavity, and there may be increased noise on the transmitted intensity.
Another limitation is the narrow locking range. A small deviation from the locking point can
cause the laser to unlock if the frequency momentarily shifts across the cavity transmission
peak.

4.6.2 Pound-Drever-Hall method

All the above complications are circumvented if the Pound-Drever-Hall (PDH) stabilization
method is adopted [181, 182]. Named after its inventors and R.V. Pound, who used a
corresponding technique in the microwave region, such a scheme hinges on the modulation of
the frequency of the laser light. This enables detection of the error signal at a high frequency
where the technical noise is close to the shot-noise limit. The resulting demodulated error
signal has a high signal-to-noise ratio and a large acquisition range, which can produce
robust locks. Furthermore, this error signal has odd symmetry about the line center that
enables locking to the top of a cavity fringe.

The idea behind the PDH method is simple. Consider a purely frequency modulated
(FM) laser beam impinging on the input mirror of an optical cavity and reflecting back to a
detector. For low modulation index, one can view the frequency spectrum of the modulated
light as consisting of a carrier with two sidebands: one at higher frequency with a phase
relative to the carrier that is in phase with the modulation, and one at lower frequency that
is out of phase by 180◦. As long as there is no absorption or phase shift of the laser carrier or
modulation sidebands with respect to one another, the detector photocurrent will not have
a signal at the modulation frequency. A simple view of this fact is that the beating between
the carrier and the upper frequency sidebands creates a photocurrent modulation that is
exactly canceled by the out-of-phase modulation from the lower frequency side. If a sideband
is attenuated or phase shifted, or the carrier phase is shifted, the photocurrents will not
cancel and RF power at the modulation frequency will appear on the detector signal. Near
a cavity resonance, the resultant optical reflection of the carrier from the cavity is phase
shifted with respect to the sideband components that are further away from the cavity
resonance. Consequently, the detector photocurrent will show power at the modulation
frequency. The laser frequency noise will then appear as noise sidebands centered around
the modulation frequency. When this signal is mixed to base-band (using phase-sensitive
detection with the appropriately chosen phase), the result is a frequency discriminator with
odd symmetry that may be used to correct the frequency of the laser. Here we note that
the light seen by the detector actually consists of two components: the fraction of the input
beam that is reflected, plus the fraction of the internal cavity wave that is transmitted back
out of the input coupler. The detected photocurrent represents the interference of these two
components. For Fourier components of the laser frequency noise below the cavity linewidth,
this system acts like a frequency discriminator, as described above. At frequencies above
the cavity linewidth, the input field is essentially heterodyned with the cavity wave. Thus,
for these Fourier components, the system acts as a phase discriminator, so that the system
response to faster frequency fluctuations decreases as 1/f . In electronic terms, the PDH
technique gives us a frequency error signal with a sensitivity that can be measured in
volts per hertz of optical frequency. At the Fourier frequency corresponding to the cavity
linewidth, the sensitivity starts to decrease, and continues to decrease as 1/f . At some
higher frequency, the error signal will cease to be useful as the magnitude decreases to the
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FIGURE 4.32
Basic Pound-Drever-Hall scheme.

level of the background noise, although this limit is usually well above the attainable servo
bandwidth.

Figure 4.32 shows a basic setup. The phase of the laser beam is modulated by an electro-
optical modulator. The reflected beam is picked off with an optical isolator (a polarizing
beamsplitter plus a quarter-wave plate) and sent into a photodetector, whose output is
compared with the local oscillator signal via a mixer. A low-pass filter on the output of
the mixer isolates the DC (or very low) frequency signal, which then goes through a servo
amplifier and into the tuning port on the laser, locking the laser to the cavity. The phase
shifter is not essential in an ideal system, but is useful in practice to compensate for unequal
delays in the two signal paths.

After the beam has passed through the Pockels cell (electro-optic modulator), its electric
field becomes

Einc = E0e
i(ωt+β sin Ωt) (4.188)

where Ω is the modulation frequency and β is the modulation depth. We can expand
this expression, using Bessel functions, to

eiβ sinΩt =

+∞
∑

n=−∞
Jn(β)e

inΩt

= J0(β) +

+∞
∑

n=1

[

Jn(β)e
inΩt + (−1)nJn(β)e−inΩt

]

≃ J0(β) + J1(β)e
iΩt − J1(β)e−iΩt (4.189)

where the last equality holds in the limit β ≪ 1 and J−n(β) = (−1)nJn(β) has been
exploited (J0(β) ≃ 1 and J1(β) ≃ β/2). Therefore, the total reflected beam is given by

Eref/E0 = F (ω)J0(β)e
iωt + F (ω +Ω)J1(β)e

i(ω+Ω)t

−F (ω − Ω)J1(β)e
i(ω−Ω)t (4.190)
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where F (ω) is the cavity reflection coefficient at frequency ω. Then, the power in the
reflected beam is

Pref = |Eref |2 = Pc|F (ω)|2 + Ps
{

|F (ω +Ω)|2 + |F (ω − Ω)|2
}

+2
√

PcPs {Re[F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)] cosΩt

+Im[F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)] sinΩt}+ (2Ω terms) (4.191)

where Pc = J2
0 (β)P0, Ps = J2

1 (β)P0, Pc + 2Ps ≃ P0, and P0 = |E0|2. Now, in order to
find a convenient expression for F (ω), let us recall Equation 3.37. For a symmetric cavity
(r1 = r2 =

√
Reiφr , T1 = T2 = T ) with φr = φr1 = φr2 = π and with no losses (R+T = 1),

it simplifies to

F (ω) =
Er
E0

=
√
R 1− e

2πiν
FSR

1−Re
2πiν
FSR

=
√
R 1− e

2πi(νm+f)
FSR

1−Re
2πi(νm+f)

FSR

=
√
R 1− e

2πif
FSR

1−Re
2πif
FSR

(4.192)

where f is the distance of the laser frequency from the resonance νm. So, if (2πf)/FSR≪
1 and F ≃ πR/(1 −R) (valid for high finesse) we have

F (ω) ≡ F (f) = 1√
R

f

(

f − i δν
2

)

δν2

4
+ f2

≃
f

(

f − i δν
2

)

δν2

4
+ f2

≡ x(x − i/2)
x2 + 1/4

(4.193)

where δν = FSR/F and the variable x ≡ f/δν has been defined.
Now, we feed one input of the mixer with Pref and the other with a modulation signal

at Ω′ and recall that the mixer forms the products of its inputs. First, let us consider the
effect on the sine term. In this case we have

sinΩt sinΩ′t =
1

2
{cos [(Ω− Ω′)t]− cos [(Ω + Ω′)t]} (4.194)

that for Ω = Ω′ simplifies to a dc term plus a 2Ω term. In a similar way, the 2Ω terms
give rise to Ω and 3Ω terms, the first term gives rise to a Ω term, and the cosine term to
a 2Ω term. Then, if the mixer output is followed by a low-pass filter, we have a PDH error
signal of the form

ǫafter mixer = K
√

PcPs · Im[F (ω)F ∗(ω +Ω)− F ∗(ω)F (ω − Ω)]

≡ K
√

PcPs · Im[F (x)F ∗(x+ xΩ)− F ∗(x)F (x − xΩ)] (4.195)

where K is a proportionality constant. Figure 4.33 shows a plot of such error signal with
F (f) given by Equation 4.193.

According to Equations 4.193, close to the resonance (f → 0) we can write |F (ω)|2 ≃ 0,
|F (ω ± Ω)|2 ≃ 1, and [F (ω)F ∗(ω + Ω) − F ∗(ω)F (ω − Ω)] ≃ −2iIm[F (ω)] ≃ −4(f/δν),
whereupon Equation 4.191 becomes

Pref ≃ 2Ps − 8
√

PcPs
f

δν
sinΩt+ (2Ω terms) (4.196)
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FIGURE 4.33
Plot of Equation 4.195 (normalized to K

√
PcPs) against x/xΩ.

from which one identifies the error signal before the mixer as

ǫ = −8
√

PcPs
f

δν
= −8

√

PcPs
F

FSR
f = −16

√

PcPs
LF
λ

f

ν
(4.197)

where L is the cavity length and λ = c/ν is the laser wavelength. The slope D of the
error signal is thus proportional to

D = −8
√

PcPs
F

FSR
(4.198)

which can be maximized by increasing the ratio F/FSR. It is sometimes useful to
maximize D with respect to the power in the sidebands, too. The quantity D has a very
simple form when Pc + 2Ps ≃ P0, i.e., when negligible power goes into the higher order
sidebands,

D ∝
√

PcPs ≃
√

P0

2

√

(

1− Pc
P0

)

Pc
P0

(4.199)

which is maximum at Pc/P0 = 1/2 or at Ps/Pc = 1/2. In other words, D is maximized
when the power in each sideband is half the power in the carrier.

So far, we have only talked about laser frequency, but it is a straightforward exercise to
extend this analysis in terms of both frequency and cavity length

ǫ = −16
√

PcPs
LF
λ

{

f

ν
+
δL

L

}

(4.200)

where δL is the deviation of the cavity length from resonance, analogous to f . Note that
it is not possible to distinguish laser frequency noise from cavity noise just by looking at the
error signal. Finally, let us derive an expression for the shot-noise-limited resolution. Any
noise in the error signal itself is indistinguishable from noise in the laser’s frequency. There
is a fundamental limit to how quiet the error signal can be, due to the quantum nature of
light. On resonance, the reflected carrier will vanish, and only the sidebands will reflect off
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the cavity and fall on the photodetector. The average power falling on the photodiode is
approximately Pref = 2Ps . The shot noise in this signal has a flat spectrum with spectral
density of

Se =
√

2(hν)(2Ps) = 2

√

hc

λ
Ps (4.201)

Dividing the error signal spectrum by Equation 4.198 gives us the apparent frequency
noise

Sf =
Se
D

=
1

8

1

FL

√

hc3

λPc
=
δν

4

√

hν

Pc
(4.202)

Since you can’t resolve the frequency any better than this, you can not get it any more
stable than this by using feedback to control the laser. Note that the shot noise limit does
not explicitly depend on the power in the sidebands, as you might expect. It only depends
on the power in the carrier. The shot noise limit does depend implicitly on the power in the
sidebands, since Pc = P0 − 2Ps, but this is a relatively minor effect. It is worth putting in
some numbers to get a feel for these limits. For this example we will use a cavity that is 20
cm long and has a finesse of 104, and a laser that operates at 500 mW with a wavelength of
1064 nm. If the cavity had no length noise and we locked the laser to it, the best frequency
stability we could get would be

Sf ≃ 1.2 · 10−5 Hz√
Hz

(4.203)

Incidentally we note that, by squaring Equation 4.202 and using Equation 4.156 (with
µ=1), we obtain the minimum laser linewidth

∆νPDH = π
(δν)2

16

hν

Pc
= ∆νST

Pout
16Pc

(4.204)

This means that, in principle, the closed-loop spectral density can be suppressed to a
level below the ST limit within the bandwidth of the loop. In practice, it is difficult to reach
this level of stability due to amplifier noise in the discriminator, non-ideal mode-matching
into the interferometer, and residual AM noise in the phase modulators (see below).

The same shot noise would limit your sensitivity to cavity length if you were locking the
cavity to the laser. In this case, the apparent length noise would be

SL =
L

ν
Sf =

1

8

1

F

√

hcλ

Pc
(4.205)

For the cavity and the laser we used in the example above, this would be

SL = 8.1 · 10−21 m√
Hz

(4.206)

In conclusion, it is useful to summarize the advantages inherent to the PDH technique:

• The modulation frequency can be chosen high enough for the technical noise of the laser
to be no longer relevant;

• Since we are locking on resonance, where the reflected carrier vanishes, none of the fol-
lowing sources contribute (to first order) to the error signal: variation in the laser power;
response of the photodetector used to measure the reflected signal; the modulation depth;
the frequency modulation Ω;
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• The reference cavity can serve as a very efficient mode-cleaner for the laser beam if the
PDH technique is used to lock the cavity resonance frequency to the laser frequency [183].

It is also worth pointing out the following possible deception. As explained, in principle,
the error signal of a purely phase modulated laser beam is zero when the laser is in resonance
with the cavity mode. The carrier is completely transmitted and the two sidebands are
reflected with a 180◦ phase and thus exactly cancel each other. Every perturbation of this
symmetry causes an additional offset so that the zero crossing is off the resonance. This
is even worse if the perturbations are time dependent. Possible sources of perturbations
creating an offset are the following:

• The polarization of the light does not match the crystal axis of the EOM. In this case,
the polarization is rotated with the modulation frequency of the EOM. The subsequent
polarizing beam splitter produces an amplitude modulation of the light and thus prevents
a perfect cancellation of the sidebands at the photodiode. This produces a DC-offset after
the mixer. Thus the polarization of the light has to be carefully aligned with the crystal
axes;

• It has been observed that an EOM is capable of producing residual amplitude modulation
(RAM). If the crystal is cut at Brewster’s angle, internal backscattering is prevented and
the residual modulation is minimized;

• Another problem is crosstalk between the signal modulating the EOM and the photodiode
detecting the error signal. This again generates a DC signal after the mixer. Shielding of
the photodiode and reducing the stray fields of the RF helps to get rid of this problem.

Finally it is worth remarking that, due to the limited bandwidth of electronic servo
loops, frequency fluctuations at high Fourier frequency cannot be sufficiently suppressed by
the PDH technique. When needed, such high frequency noise can be filtered passively by the
narrow transition modes of an optical resonator. To avoid the complexity of an independent
second filter cavity, the reference resonator itself (which is already kept in resonance by
the servo loop) can be used for filtering. The photon lifetime in the high-finesse cavity
and thus the averaging time of the intracavity field is long enough that high frequency
laser fluctuations are efficiently filtered in the transmitted light. Thus, the cavity acts as a
low-pass filter for the laser noise S0

ν which is suppressed in the transmitted light to Scν as

Scν(f) =
S0
ν(f)

1 +

(

f

∆fHFHM

)2 (4.207)

where ∆fHFHM is the width of the cavity resonance [184]. A typical setup for filtering
the laser light is shown in Figure 4.34.

4.6.2.1 10−16-level laser frequency stabilization

As discussed in Chapter 3, state-of-the-art for stabilization techniques usually involves
phase-locking a laser source (with electronic feedback) to a single longitudinal and/or trans-
verse mode of a passive, ultrastable Fabry-Perot (FP) cavity. The FP cavity consists of very
high-reflectivity mirrors, optically contacted onto a rigid spacer. In the limit of good signal-
to-noise ratio and tight phase lock, the length stability of the FP cavity gives the frequency
stability of the resulting optical wave. A fundamental limit that many cavity-stabilized
lasers have reached is given by Brownian thermal mechanical fluctuations of the FP cavity.
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FIGURE 4.34
Setup of the filtered laser system with extended cavity diode laser (ECDL), Pound-Drever-
Hall (PDH) lock to the high finesse ultralow expansion glass (ULE) resonator, and additional
detector for residual amplitude modulation (RAM). The filtered light is amplified by an
injection-locked slave laser diode. The acousto-optic modulator (AOM) in double-pass with
quarter wave retardation plate is used to tune the laser frequency. (Adapted from [184].)

As derived in Chapter 3, the fractional frequency instability limit from thermal noise is
typically dominated by the two cavity mirrors

σtherm =

√

ln 2
8kBT

π3/2

1− σ2

Ew0L2

(

Φsub +Φcoat
2√
π

1− 2σ

1− σ
d

w0

)

(4.208)

Here, σ, E, and Φsub are Poisson’s ratio, Young’s modulus, and the mechanical loss
for the mirror substrate, w0 is the laser beam (1/e field) radius on the mirror, T is the
mirror temperature (K), kB is Boltzmann’s, constant and L is the cavity length. Φcoat
and d denote the mechanical loss and thickness of the thin-film reflective coating. The
first term in parentheses is the mirror substrate contribution and the second term is the
contribution from the coating. High-stability FP cavities are typically made from ultralow
expansion (ULE) glass to reduce cavity length changes due to temperature drift around
room temperature. Cavity lengths are often 10-20 cm. Under such conditions, the lowest
thermal noise instability is typically 3 · 10−16 to 1 · 10−15, roughly consistent with the best
experimentally observed instability. To reduce thermal noise, the choice of mirror substrate
material (E and Φsub), beam radius (w0), cavity length (L), and cavity temperature (T )
can be modified. Each modification presents different technical challenges. In a very recent
experiment, a long cavity featuring a larger beam size and alternative mirror material was
fabricated to realize an ultrastable optical atomic clock [185]. Such cavity was composed of
a rigid ULE spacer with optically bonded fused-silica mirror substrates. Since the value of
Φsub for fused-silica mirror substrates is more than ten times smaller than that for ULE,
the substrate thermal noise term shrinks below that of the thin-film reflective coating.
Dominated by the thin-film coating, σtherm could be further reduced by choosing a long
cavity (L = 29 cm) with a longer radius of curvature (R = 1 m), allowing for a larger beam
radius w0. With these cavity parameters, the thermal-noise-limited fractional frequency
instability was reduced to 1.4 · 10−16.

For characterization purposes, two similar cavity systems were constructed (Figure 4.35).
Then, several milliwatts of laser light at 578 nm were divided into multiple paths, one to
each of the two cavities and one to the ytterbium optical lattice apparatus (see Chapter
7). Each cavity was enclosed in a vacuum chamber, which was single-stage temperature
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FIGURE 4.35
Laser light at 578 nm is incident on two independent, isolated optical cavities. Each cavity
is composed of a rigid ULE spacer with optically bonded fused-silica mirror substrates.
Feedback for laser frequency control is usually applied to acousto-optic modulators. The
stabilized light probes the narrow clock transition in an ultracold sample of ytterbium,
confined in a one-dimensional optical lattice. (Courtesy of [185].)

controlled (fluctuations over 24 h at a few millikelvin). Length changes due to acceleration-
induced deformation were strongly suppressed by implementing a cavity mounting design,
similar to those described in Chapter 3 [121, 118]. In this way, the measured acceleration
sensitivity (along gravity) was as low as 1 · 10−11/ms−2. The vacuum chamber and optics
coupling light to the cavity sat on vibration isolators (one cavity on an active system, the
other passive). Each system was located in different parts of the laboratory in independently
closed acoustic-shielded chambers. Optical links between the isolated systems and the laser
source were made with optical fibers using active phase stabilization (discussed later in this
chapter). Free-space optical paths were generally in closed boxes to reduce air currents. The
free-running 578 nm laser light was locked to Cavity A using PDH stabilization, using fast
electronic feedback to an AOM common to all optical paths, and slow electronic feedback
to a piezoelectric transducer on the laser source. Thus, light incident on both cavities was
phase-stabilized to Cavity A. To measure the laser frequency noise spectrum, an additional
AOM was used to tune laser light incident on Cavity B into resonance, and the PDH signal
of Cavity B served as a frequency discriminator. To measure laser frequency stability, the
PDH signal from Cavity B was filtered and fed to an AOM to lock the laser frequency of
the second beam to the resonance of this cavity. This AOM frequency thus provided the
difference between the two cavities, and was counted to determine the frequency stability.
The frequency noise spectrum of one cavity-stabilized laser is shown in Figure 4.36. The
noise spectrum approaches the projected thermal noise for Fourier frequencies around 1 Hz;
at higher frequencies, the spectrum is approximately white, with several spikes attributed to
seismic noise on one of the cavities. In the same figure, the fractional frequency instability,
together with σtherm, is also shown. During typical best performance, for averaging times
below 10 s an instability as low as 2 · 10−16 was observed. For averaging times > 10 s,
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FIGURE 4.36
(a) Frequency noise spectrum (data) and theoretical estimate of the thermal noise (line).
(b) Fractional frequency instability of one cavity. Squares and circles refer to data derived
from two different frequency counters. The dashed line denotes the Brownian thermal-
noise-limited instability. (c) Laser power spectrum (dots) and Lorentzian fit (trace) with
FWHM linewidth of 250 mHz (resolution bandwidth, 85 mHz). (d) Measured CTEcav versus
temperature for Cavity A (dots with solid linear fit) and Cavity B (squares with dashed
linear fit). (Courtesy of [185].)

laser instability typically increased. The measured laser power spectrum with a linewidth
of 250 mHz is displayed too. Moreover, to minimize thermal drift of the cavity resonance,
the cavity coefficient of thermal expansion (CTE) was engineered to cross zero near room
temperature.

In light of the above discussion, to further improve the laser frequency stability, the
ultimate limit set by thermodynamic fluctuations in the mirror substrates and coatings
must be overcome. In this sense, several proposals are discussed in the literature, including
cryogenic operation of reference cavities [186, 187, 188, 189]. In an alternative method, the
optical reference cavity is replaced by a long (∼ km) all-fiber delay line yielding a simplified
setup at the expense of slightly reduced stability. A different approach consists of using high
Q whispering gallery mode (WGM) resonators. These two latter schemes are discussed in
the following subsections.

4.6.2.2 WGM resonators for laser frequency stabilization

In this approach, the reference for the laser’s frequency is provided by fabricating whispering
gallery mode (WGM) resonators from a single crystal of magnesium fluoride [190]. In that
work, the WGM resided in a protrusion of a MgF2 cylinder, whose compact dimensions (≤ 1
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cm3) and monolithic nature inherently reduced the resonator’s sensitivity to vibrations. In
principle, it also enables operation in more noisy and/or space-constrained environments,
such as a cryostat or a satellite. Furthermore, in contrast to the highly wavelength-selective
and complex multilayer coatings required for mirror-based resonators, WGM resonators
are intrinsically broadband, limited only by optical absorption in the host material. WGM
resonators were fabricated combining a shaping and several polishing steps on a home-built
precision lathe. Several MgF2 resonators were produced with a typical radius of 2 mm,
the WGMs being located in the rim of the structure. The achieved surface smoothness,
together with very low absorption losses in the ultrapure crystalline material (Corning),
enabled quality factors in excess of 2 · 109. A high-index prism was used to couple the beam
of an external cavity diode laser into the WGM. For the laser stabilization experiments, a
MgF2 resonator was mounted into a prism-coupling setup shielded against vibrations and
thermal fluctuations (Figure 4.37).

Then, the beam of a commercial Littman-type extended cavity diode laser was focused
on the face of the coupling prism through anti-reflection coated windows in the vacuum
chamber and small (diameter 1 cm) bore holes in the aluminum shields. The laser was
locked to a high-Q WGM using the PDH method, implemented with an external electro-
optic phase modulator driven at 11.4 MHz. The obtained error signal was fed back via a
two-branch control system actuating both the grating tilt in the laser (via a piezoelectric
transducer) and the diode pump current. To assess the frequency fluctuations of the laser
locked to the WGM resonator, its frequency was compared to that of an independent diode
laser locked to an ultrastable mirror-based resonator in the same laboratory (Figure 4.38).

The extraordinary stability of the latter afforded a direct measurement of the WGM-
stabilized laser by analyzing the spectral properties of the radio-frequency (rf) beat gen-
erated between the two lasers in a heterodyne detector. Using a rf spectrum analyzer, the
width of the beat signal at 586 MHz could be fitted to a Lorentzian of 290 Hz linewidth.
For a more systematic characterization, the Allan deviation σy(τ) of the stabilized laser’s
frequency as a function of gate time τ was also determined. The results of these measure-
ments are summarized in Figure 4.39. A minimum Allan deviation of 20 Hz at an optical

FIGURE 4.37
Thermal and acoustic isolation of MgF2 cavity and coupling setup (not to scale). (Courtesy
of [190].)
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FIGURE 4.38
Laser stabilization to a MgF2 resonator using the PDH method, and comparison to an
ultrastable laser locked to a mirror-based cavity on another optical table. APD: avalanche
photodiode; ECDL: external cavity diode laser; EOM: electro-optic modulator; λ/2: half-
wavelength retardation plate; PI(D): proportional-integral-(differential) feedback controller;
ULE: ultralow expansion glass. (Courtesy of [190].)

wavelength of 972 nm, corresponding to a relative Allan deviation of 6 ·10−14, was found at
an integration time of 100 ms (this level of instability is compatible with the limits imposed
by fundamental fluctuations of the material’s refractive index at room temperature).

In conclusion, while the stability does not yet reach the level achieved by optical ref-
erences based on two-mirror resonators, WGM resonators could be used to significantly
reduce the frequency fluctuations of diode lasers or free-running frequency combs in simple,
compact setups, or be employed to transfer a first laser’s stability to other lasers across
a wide wavelength region. Moreover, the performance is expected to improve if the strong
temperature sensitivity can be reduced or eliminated. For example, the operation close
to temperatures (∼ 200◦C) at which the thermo-refractive coefficients α2 of MgF2 vanish
is practically feasible. On the other hand, self-referenced temperature stabilization could
dramatically improve temperature stability. Finally, the inherent compatibility of these res-
onators with cryogenic operation opens a promising approach not only towards an improved
temperature stability and reduced sensitivity to temperature fluctuations, but also in view
of a strong suppression of thermodynamic fluctuations limiting also today’s best optical
flywheels.

More recently, with a similar setup, the same group exploited the strong thermal depen-
dence of the difference frequency between two orthogonally polarized TE and TM modes
of the optically anisotropic MgF2 crystal to derive a dual-mode feedback signal. This was
used as feedback for self-referenced temperature stabilization to nanokelvin precision, re-
sulting in frequency stability of 0.3 MHz/h at 972 nm, as measured by comparing with an
independent ultrastable laser [191].
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FIGURE 4.39 (SEE COLOR INSERT)
Allan deviation of the optical beat note in Hz, and normalized to the optical carrier at
308 THz. Inset shows a beat note measured at 586 MHz with a spectrum analyzer and
a Lorentzian fit. Diamonds are reference measurement of beat-note stability between two
lasers locked to two mirror-based resonators. Red symbols are Allan deviation of beat fre-
quency between one laser locked to a mirror-based resonator and the other one to the WGM
resonator, as obtained with two different counters (triangles and squares). Full (open) sym-
bols show data after (before) removal of a linear drift of 38 Hz/s. For comparison, circles
show the Allan deviation measured between a laser stabilized to a two-mirror cavity and
one tooth of an optical frequency comb stabilized by a hydrogen maser. Blue dashed and
orange dotted lines indicate the estimated Allan deviation due to thermo-refractive and
photo-thermal noise, respectively. (Courtesy of [190].)

4.6.3 Hänsch-Couillaud technique

Polarization spectroscopy of a reflecting anisotropic cavity can also provide dispersion-
shaped resonances which are well suited for locking a laser frequency to a fringe center
[192]. To explain this method let us consider the setup illustrated in Figure 4.40.

Linearly polarized light from a tunable single mode laser is reflected by a confocal
reference cavity used off-axis so that a small angle between incident and reflected beam
avoids feedback into the laser cavity. The linear polarizer inside the cavity is rotated so that
its transmission axis forms an angle θ with the polarization axis of the incident beam. The
incoming light can be decomposed into two orthogonal linearly polarized components with
the electric field vector parallel and perpendicular to the transmission axis of the intracavity
polarizer. Their field amplitudes are

E
(i)
⊥ = E0sin θ (4.209)

E
(i)
‖ = E0cos θ (4.210)

where E0 is the amplitude of the incident beam. The parallel component sees a cavity of
low loss and experiences a frequency-dependent phase shift in reflection. The perpendicular
component, simply reflected by the mirror M1, serves as a reference. Any relative phase
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FIGURE 4.40
Scheme for Hänsch-Couillaud laser frequency stabilization.

change between the two reflected components will make the resulting beam elliptically
polarized. We first consider the parallel component. The complex amplitude of the reflected
wave is obtained by Equation 3.37 with the following identifications r1r2 = 1 and r1 =

√
R1.

Thus we get

E
(r)
‖ = E

(i)
‖
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(4.211)

where R1 and T1 are the reflectivity and transmittivity of the cavity entrance mirror M1,
and R < 1 gives the amplitude ratio between successive round-trips, which determines the
cavity finesse F = π

√
R/ (1−R). Such ratio accounts for any attenuation by the internal

polarizer and for other losses, including the two extra reflections which are required for one
round-trip in a confocal resonator used off-axis. The amplitude of the reflected perpendicular
component, on the other hand, is to first approximation simply

E
(r)
⊥ = E

(i)
⊥
√

R1 (4.212)

At exact resonance (δ = 2mπ), both reflection coefficients are real and the reflected wave
components remain in phase. Away from resonance, however, the parallel component ac-
quires a phase shift relative to the perpendicular component, owing to the imaginary part
of E(r)

‖ , and the reflected beam acquires an elliptical polarization. The handedness of the
polarization ellipse depends on the sign of the detuning from resonance.

To detect the ellipticity, the reflected light is sent into an analyzer assembly consisting
of a λ/4 retarder and a linear polarization beam splitter. The fast axis of the retarder is
rotated by 45◦ relative to the polarization axis of the beam splitter output a. The light
intensities Ia and Ib at the two outputs are monitored by two detectors connected to a
differential amplifier. In order to calculate the signal, we assume, without loss of generality,
the fast axis of the QWP is parallel to the axis of the intra-cavity polarizer. Then, using
the formalism introduced by Jones, we find the field amplitudes of the reflected beam after
passing through the retarder and polarization beamsplitter
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Ea,b =
1

2

(

1 ±1
±1 1

)(

1 0
0 i
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Er‖
Er⊥

)

(4.213)

where the first matrix describes a linear polarizer set at 45◦ and the second one a quarter-
wave plate with the fast axis horizontal. Hence the difference signal of the photocurrents
is

i1 − i2 ∝ E2
0cos θ sin θ

T1Rsin δ

(1−R)2 + 4Rsin2δ/2
(4.214)

This function is plotted in Figure 4.41. It combines a steep resonant slope with far
reaching wings and provides an ideal error signal for servo locking of a laser frequency. The
signal is maximized if θ = 45◦, so that 2 cos θ sin θ = 1. However, the total intensity of the
reflected light at resonance is smallest near θ = 0 and operation at smaller angles θ can offer
a better signal to noise ratio, if laser intensity fluctuations are the dominant source of noise.
Any birefringence due to stress in the dielectric mirror coatings or other optical elements
has been ignored in our analysis. Such residual birefringence can produce line asymmetries
and should be compensated.

The HC technique is very versatile owing to its simple and inexpensive setup (no fre-
quency modulation of the laser is needed) and is often used for pre-stabilization of a laser.
However, as with any dc technique the locking point is sensitive to baseline drifts of the
error signal and it is furthermore affected by the technical noise of the laser at low Fourier
frequencies.

4.6.4 Laser frequency stabilization by locking to an optical fiber-delay
line

Another approach for suppressing frequency noise in a laser is to phase lock its emission
to a fiber interferometer [193]. With reference to Figure 4.42, lets denote with E1 and E2

the electric fields of the radiation before combining at the second beam splitter. Thus, if
L1 ≫ L2, in complex notation, we have

E1 = E0e
i(Ω′t+Ω′t0) = E0e

iΩ′t0ei(Ω
′−Ω)teiΩt (4.215)

FIGURE 4.41
Dispersive resonances obtained by polarization spectroscopy (R = 0.9).
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FIGURE 4.42
Scheme of the optical fiber used as optical delay line to stabilize the frequency of the laser.
RS=reference signal; PS=phase-sensitive detector; BS=beam splitter. (Adapted from [193].)

E2 = E0e
i(Ωt+Γ sinωt) ≃ E0e

iΩt

(

1 +
Γ

2
eiωt − Γ

2
e−iωt

)

(4.216)

where Ω′ = 2πc/λ′ and Ω are the optical frequencies at the ends of fibers 1 and 2, Γ and ω
are the amplitude and frequency modulations, and

t0 =
L1 − L2

c
(4.217)

c being the speed of light. As Γ ≪ 1, the Bessel series approximation (to first order in Γ)
has also been used in the last step of Equation 4.216. After these two beams are combined,
provided that the polarization of the beams in the fibers can be kept, the electric field is
E = E1 + E2, whereupon the radiation intensity incident on the photodetector is

I = |E|2 ≃ E2
0 {2 + 2 cos[(Ω− Ω′)t− Ω′t0]

+Γ cos[(Ω− Ω′)t+ ωt− Ω′t0]− Γ cos[(Ω− Ω′)t− ωt− Ω′t0]} (4.218)

The above signal is first demodulated in the lock-in amplifier (mathematically this corre-
sponds to a multiplication by a term proportional to sinωt). Subsequently, the high fre-
quency components in the mixer output is filtered out. Thus, the output S of the lock-in
amplifier is proportional to

S ∝ sin[(Ω− Ω′)t− Ω′t0] = sin[(Ω− Ω′)t− 2π
L1 − L2

λ′
] (4.219)

After the error signal S is fed back, the phase of the laser is locked and we have

sin

[

(Ω− Ω′)t− 2π
L1 − L2

λ′

]

= 0 (4.220)
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whose solution
(Ω− Ω′)t− 2π

L1 − L2

λ′
= nπ (4.221)

may be further separated into
Ω− Ω′ = 0 (4.222)

2
L1 − L2

λ′
= nπ (4.223)

where n is an integer. Equation 4.223 shows that L1 − L2 can be used to define λ′, while
Equation 4.222 shows that, with such a feedback, the light frequency at different points of
the optical fiber will follow the defined frequency at any time t. It is obvious that in practice
L1−L2 is not constant and different kinds of noise may occur. For a low output level laser,
we can disregard the noise induced by non-linear scattering processes; so the noise source
could be temperature drift, shot noise, mechanical thermal noise, vibration, acoustic noise,
strain noise, etc.

The first frequency stabilization experiment of a laser onto a fiber spool used a Mach-
Zehnder interferometer (MZI), with phase modulation into one arm, to stabilize a He-Ne
laser. Corrections were applied via a Piezoelectric Transducer (PZT)-stretcher. It led to a
5 kHz linewidth on 1 s [193]. Later, a distributed feedback (DFB) erbium-doped fiber laser
(EDFL) was stabilized onto a 100 m path imbalance MZI using homodyne electronics and
a PZT actuator, reaching about 2 Hz2/Hz at 1 kHz [194].

In the following, we present a system using an all-fiber 2-km imbalance Michelson inter-
ferometer (MI) with heterodyne detection [195]. Referring to Figure 4.43, the input optical
wave is split between the two arms by a 50/50 fiber coupler. The first arm is directly con-
nected to a Faraday mirror; the second arm is connected to a 1-km spool of standard SMF-
28 fiber followed by an acousto-optic frequency shifter and a Faraday mirror. The Faraday
rotator mirror ensures that, in a retracing fiber-optic link, the polarization output state is
orthogonal to the entrance state; as a consequence, the two waves in the MI output port have
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PD
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FMAOM2

FM
Michelson

Interferometer
50/50

~40 MHz

Fast
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f 2X

Stabilized
output

S
lo
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FIGURE 4.43
Scheme of the laser frequency noisereduction system: AOM, acousto-optic modulator; PD,
photodiode; VCO, voltage-controlled oscillator; PI, proportional-integrator filter; FM, Fara-
day mirror. (Adapted from [195].)
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always the same state of polarization, which leads to a maximum beat-note signal amplitude
without requiring any polarization controller. The fiber spool is situated into a ring-shaped
aluminum box, and the interferometer is placed inside a thick aluminum box, recovered by a
thermal isolating thermoplastic film, which is set onto a compact seismic vibration isolation
platform. The whole experiment is covered by an acoustic isolation box. As discussed in
Chapter 2, the frequency-shift fibered MI acts as an optical frequency (νopt) to rf phase
(Φerr) converter with transfer function Φerr(f)/νopt(f) ≡ HMich(f) = [1 − exp(−i2πfτ)],
where τ is the fiber double-pass delay time and f is the Fourier frequency. For f ≪ 1/τ , we
have HMich ≃ 2πτ . Then, the optical power photo-detected at the interferometer output
port contains an rf carrier at 2fAOM , phase modulated by Φerr, which is down-converted
by an rf mixer driven by the frequency-doubled output of a low-noise reference oscilla-
tor at 70 MHz. This provides a low-frequency error signal proportional to Φerr + ∆θRF ,
where ∆θRF is the local oscillator phase shift. The error signal is amplified, filtered, and
converted into optical frequency correction using an AOM operating at 40 MHz, which is
driven by a high-modulation-bandwidth voltage-controlled oscillator for fast correction and
a piezoelectric element controlling the fiber-laser cavity length for drift compensation. The
correction bandwidth (∼ 100 kHz) is limited by the round-trip delay in the fiber interfer-
ometer. The laser source is a single-longitudinal-mode Er3+-doped fiber Bragg grating laser
with an emission wavelength of 1542 nm and a maximum output power of 100 mW. The
free-running laser-frequency noise is dominated by a flicker component with 104 Hz2/Hz at
100 Hz. The frequency-noise PSD of the fiber-stabilized laser is measured by comparison
with a high-finesse Fabry-Perot cavity-stabilized laser. For this purpose, the rf beat-note
signal is down-converted to 700 kHz by a low-phase-noise synthesizer, then frequency-to-
voltage converted and analyzed using a fast Fourier transform analyzer (after removing a
linear drift of the order of 1 kHz/s). Results are shown in Figure 4.44. With the antivi-

FIGURE 4.44
Frequency-noise power spectral density versus Fourier frequency of the free-running laser
(dashed curve) and laser stabilized on a 2 km imbalance Michelson interferometer with
(dark curve) and without (gray curve) a passive anti-vibration table. (Courtesy of [195].)
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bration platform, the frequency-noise reduction is larger than 40 dB between 1 Hz and 10
kHz, and the frequency noise PSD is (notwithstanding several peaks) below 1 Hz2/Hz in the
same range. The effect of the anti-vibration table is remarkable between 5 Hz and 100 Hz;
however, even without this special table, noise reduction is better than 30 dB. For Fourier
frequencies between 40 Hz and 30 kHz the measurement is limited by the reference-laser
frequency noise and is therefore an upper limit of the fiber-stabilized laser noise. Mainly
due to the use of rf heterodyne detection (at a frequency where laser intensity noise and
detection noise are negligible), this represents a several-orders-of-magnitude improvement
compared to previous results of laser stabilization hinging on fiber-delay lines. In the tele-
com spectral window, the above method represents a valuable alternative to cavity locking.
Indeed, by providing a fibered system without any optical alignment or polarization ad-
justment, it is inherently more compact and flexible than cavity-based systems. For Fourier
frequencies below 40 Hz, the described system is presumably limited by thermal fluctuations
and mechanical vibrations, which can be further improved. For example, the interferometer
could be installed in a temperature-stabilized vacuum tank with several thermal shields. In
addition, special fibers (such as specifically designed photonic-crystal fibers or liquid-crystal
polymer coatings) with lower thermal sensitivity could be employed.

4.6.5 Injection locking

The injection locking technique is applied primarily to continuous-wave single-frequency
laser sources when a high output power is desired in conjunction with a very low intensity
noise and phase noise. Such low-noise performance is hardly achievable in high-power lasers,
because these are generally more susceptible to mechanical vibrations and thermal influ-
ences; in addition, they cannot utilize very low-noise pump sources. In principle, a valuable
option would be to construct a low-noise, low-power laser and then amplify its output. How-
ever, this approach is beset with various fundamental and practical problems: in particular,
reaching the standard quantum noise level is prevented by the to-some-extent unavoidable
amplifier noise. This drawback is precisely overcome in the injection locking scheme. As we
learnt in Chapter 2, injecting a weak signal into a more powerful free-running oscillator can
produce an interesting and useful set of injection locking effects in any kind of self-sustained
periodic oscillator, including the laser. In this specific context, let us consider a high-power
laser (called the slave laser) which is initially producing a coherent output intensity I0 at
the free-running frequency ω0. Suppose now that a very weak signal of intensity I1 coming
from a second laser (called the master laser) is injected into the slave laser via some suitable
coupling method, at frequency ω1 which is sufficiently close but not exactly coincident with
ω0 (Figure 4.45). In these conditions, the injection forces the slave laser to operate exactly
on the injected frequency with relatively scant noise (usually, the injection-locked laser op-
erates on a Gaussian resonator mode, but it is also possible to enforce operation on some
higher-order mode). As expressed by Equation 2.222, the full locking range is given by

∆ωlock =
ω0

Q

√

I1
I0

(4.224)

where Q is the quality factor of the resonance at ω0. The square root term in Equation 4.224
is due to the fact that currents in Equation 2.222 must now be replaced with intensities, or
powers. As already illustrated in Chapter 2, injection locking is a powerful tool to suppress
frequency noise in the free-running oscillator (slave laser).

To conclude the analysis of the injection locking phenomenon, lets investigate its physical
origin in the specific case of lasers [171]. As already stated, the gain of an oscillating laser is
clamped at the threshold value; this implies that the gain for an externally injected signal
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FIGURE 4.45
Schematic of laser injection locking. (Adapted from [171].)

at any other frequency away from the exact resonance frequency remains stable. In other
words, in spite of the much stronger oscillation already present at ω0, the signal at ω1 can
circulate around inside the cavity and be regeneratively amplified by the active medium. In
principle, with sufficiently narrow-band filters, one could measure the amplification of the
injected signal ω1 6= ω0, wholly independent of the simultaneous oscillation at ω0 (this is
entirely true only if the signal at ω1 is weak enough to make interference/beating effects
negligible). There will come a time where the amplified intensity at ω1 approaches the free-
running oscillation intensity I0; at this point, the amplified signal saturates the laser gain
down by just enough that the free-running oscillation at ω0 is turned off, leaving only the
injected signal at ω1. For a comprehensive review on this topic, the reader is referred to
[196].

Laser injection locking was first realized with two He-Ne lasers [197] and then exten-
sively applied to diode lasers [198]. More recently, optical injection locking was exploited to
combine the unique spectral features of a comb-referenced difference frequency generation
(DFG) source with the power scaling capabilities of mid-IR quantum cascade lasers (QCLs)
[199]. For an explanation of the working principle of these laser sources, see later in this
chapter. A schematic of the apparatus is shown in Figure 4.46.
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FIGURE 4.46
Injection-locking setup between a comb-referenced DFG source and a QCL.

The slave QCL is a continuous-wave Fabry-Perot type device emitting up to ∼ 20 mW
near room temperature. The laser facets are not anti-reflection coated. The master radiation
(maximum power ∼ 100 µW) is produced by nonlinear difference frequency generation in
a periodically-poled LiNbO3 (PPLN) crystal using an Yb-fiber-amplified Nd:YAG laser (at
1.064 µm) and an external-cavity diode laser (ECDL) emitting at 867 nm. In order to
control the phase/frequency of the generated IR radiation against the fs Ti:sapphire OFCS
an electronic scheme based on direct digital synthesis (DDS) was used (see later in this
chapter); in particular, this led to a MIR radiation with a kHz-level spectral purity of the
monolithic Nd:YAG laser. An accurate mode matching between master and slave, along with
precise control of their polarization via quarter-/half-wave plates, was necessary to achieve
the injection-locking (IL) regime. The IL condition was checked and optimized by observing
the slave radiation transmitted by a Fabry-Perot resonator (free spectral range 650 MHz,
finesse ≃ 20). The QCL remained injection-locked for several minutes without any active
control. In this passive IL regime, the frequency of the single-mode slave laser radiation
could be scanned within a locking range as high as 1 GHz (depending on the slave/master
power ratio) by tuning the master laser. As expected, the locking range was proportional
to the square root of the ratio between master and slave powers. Then, the IL quality was
directly studied by analyzing the beat note spectrum between master and slave radiations.
For this measurement, the slave radiation was frequency-shifted by 90 MHz via an acousto-
optical modulator. Both the master and slave beams were superimposed by means of a beam
splitter and finally detected onto a fast HgCdTe detector (nominal bandwidth 200 MHz).
The beat note was measured by a real-time FFT spectrum analyzer (see Figure 4.47).

For a deeper understanding of the frequency-noise characteristics of the injection-locked
radiation, a measurement of the frequency-noise power spectral density (FNPSD) for both
laser sources was also carried out (Figure 4.48). For this purpose, both the master and slave
radiations were coupled to the Fabry-Perot cavity, and the slope of a transmission mode was
used as a frequency discriminator to convert frequency noise into amplitude fluctuations.

Compared to the free-running case, phase fluctuations were largely reduced (by three to
four orders of magnitude in most of the frequency interval). As expected, optical injection
was successful in strongly reducing also the noise contribution due to the laser current
driver, allowing to overcome one of the main limiting factors to the QCL linewidth and thus
loosening the requirements on QCL power supply. As repeatedly emphasized, by integrating
the FNPSD autocorrelation function it is possible to reconstruct the laser spectral profile
and to measure its linewidth over any desired timescale. To this aim, a numerical integration
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FIGURE 4.47
Recorded beat notes, with the QCL in unlocked and locked conditions. The slave is operated
at 618 mA, with an output power of ∼ 6 mW, corresponding to a slave/master power
amplification PS/PM ≃ 250. The first trace maps the broad power spectrum of the unlocked
QCL, while the second trace shows a narrow peak, whose width is limited by the resolution
of the spectrum analyzer, rising about 40 dB above a residual plateau.

of the acquired noise spectra was performed. The whole spectral range of Figure 4.48 (20
Hz to 20 MHz) was considered, obtaining the spectral profiles and linewidths over 50-ms
timescale (see the inset of Figure 4.48). By switching from free-running to injection-locking
regime, the QCL linewidth was reduced by more than two orders of magnitude, from 2.75
MHz to 23 kHz (HWHM), thus confirming the large improvements in the slave spectral
profile previously highlighted by the beat-note analysis.

In conclusion, the above frequency-noise analysis demonstrates that the stability prop-
erties of the DFG source are transferred to the slave QCL, which is forced to oscillate at
the master frequency, with an effective power amplification up to a factor 1000, within a
range of ∼ 1 GHz in passive injection-locking conditions.

4.7 Intensity fluctuations

Although significantly less severe than frequency noise, intensity fluctuations in the laser
output beam are also present, primarily due to vibrations of the resonator as well as to the
other specific sources:

• Gas lasers: fluctuations in the power supply current and instability of the discharge pro-
cess;
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FIGURE 4.48
FNPSD measurements. Above ∼ 1 kHz, the free-running QCL exhibits a current-driver
dominated frequency noise. Above ∼ 10 MHz, the trace corresponding to the injection-
locked slave overlaps with the free-running one due to the detector noise floor. For the
master radiation, the excess noise around 200 kHz comes from the phase-locking loop of the
ECDL to the frequency comb. From this comparison it emerges that, in the injection-locking
regime, the QCL well reproduces the noise features of the master source throughout the
investigated interval.

• Dye lasers: density fluctuations in the dye jet solution;

• Solid-state lasers: pump fluctuations;

• Semiconductor lasers: fluctuations in the bias current, amplitude fluctuations related to
spontaneous emission and electron-hole recombination.

Besides these short-term fluctuations, long-term drifts also exist, generally caused by ther-
mal misalignment in the laser cavity and by degradation (over at least a few thousand
hours) of various optical components, including the active medium itself.

Whatever the origin, several schemes have been devised for intensity stabilization. In
the following, we shall discuss two that are most often used. The former is schematically
depicted in Figure 4.49. A small fraction of the output power is conveyed by a beam splitter
(BS) onto a detector, whose output VD is compared with a reference voltage VR. Then,
the difference ∆V = VD − VR is amplified and fed to the power supply of the laser. Ob-
viously, the upper frequency limit of this stabilization loop is settled by the capacitances
and inductances in the power supply as well as by the time interval it takes for the in-
crease of the laser intensity following the current increase. In gas lasers, for instance, this
delay is represented by the time required by the gas discharge to reach a new equilibrium
after the current change; this means that it is not possible to stabilize the system against
fluctuations of the gas discharge. Concerning diode-pumped solid-state lasers, on the other
hand, intensity fluctuations can be effectively reduced up to a frequency higher than the
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FIGURE 4.49
Intensity stabilization of lasers by controlling the power supply.

relaxation-oscillation one, as the inverse of this latter is much longer than the response time
of the diode pump. The above stabilization technique suppresses intensity fluctuations down
to less than 0.5%, which can be satisfactory for many purposes. In more challenging exper-
iments, however, the power fluctuations of the free running laser would limit the detection
sensitivity. Just as an example, this is the case for the laser interferometers employed in the
detection of gravitational waves (GWs): here, power fluctuations in the GW frequency band
induce radiation pressure fluctuation which, by shaking the suspended test mass, can mask
possible GW signals [200]. For this and other demanding applications, another technique,
illustrated in Figure 4.50, is more suitable. The operation principle is that the optical power
is reduced by means of an electrically controllable attenuator, and the control signal is de-
rived from the output power as measured with a photodiode: in essence, the attenuation is
augmented when the power is measured to be too high, and vice versa. The most common
approach is based on a PID-type electronic feedback loop, whose design is crucial for realiz-
ing effective noise suppression over a large bandwidth. An EOM or AOM can be employed
to control the power throughput with a high servo bandwidth. The ultimate performance
of such power stabilization scheme is fixed by the photo-detector sensitivity, with the lat-
ter being limited, in principle, by technical noise and quantum noise. Being related to the
quantization of the light energy into photons (or the quantization of the photocurrent into
electrons after the photodetection process), this latter represents a fundamental limit and
can be surpassed only by non-classical states of light, such as squeezed states (however, we

FIGURE 4.50
Traditional noise eater for laser power stabilization. (Courtesy of [200].)
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should mention that, due to their complex generation and fragility, these are not used in
any power stabilization experiment so far). As already shown in Chapter 2, the single-sided
linear spectral density Sq of the relative quantum power noise, often referred to as shot
noise, is independent of the Fourier frequency

Sq =

√

2hc

Pλ
(4.225)

where λ is the vacuum wavelength and P is the detected laser power. In case a photode-
tector is used as a power sensor, this quantum-noise level can also be expressed using the
photocurrent I

Sq =

√

2e

I
(4.226)

where e is the elementary charge. Therefore, the quantum-noise-limited sensitivity of a
photodetector can be improved by increasing the detected laser power P (and with it the
photocurrent I). The drawback is that a high power originates troublesome technical prob-
lems, such as saturation and thermal effects in the photodiode, as well as dynamic range
limits of the readout electronics. So, in order to successfully increase the photodetector
sensitivity, two different, complementary approaches can be undertaken [200].

4.7.1 High-sensitivity photodiode array

One approach consists of scaling the number of photodiodes leading to a high-power high-
sensitivity array (Figure 4.51). A Nd:YAG NPRO with an output power of about 2 W
is the laser source to be stabilized. The beam emerging from the ring resonator (used as
mode cleaner and to reduce beam pointing fluctuations) is split with 50:50 beam splitters
into eight partial beams of nearly equal power (57-65 mW) using multiple reflections. The
photodiode array comprises eight InGaAs photodiodes with an active diameter of 2 mm
(each photodiode is connected to a low-noise transimpedance amplifier with a low current
noise 200 Ω resistor; at the operation point, each photodiode detects a photocurrent of about
50 mA). Four signals are added and used to stabilize the laser power (in-loop), while the

FIGURE 4.51
Setup of the photodiode array power stabilization experiment. The power fluctuations of the
laser are measured with the in-loop photodetector IL and are compensated by the feedback
control loop using the electro-optic amplitude modulator EOAM. The photodetector OOL
is used for an independent measurement of the achieved power stability. (Courtesy of [200].)
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remaining four signals are added and utilized to check the power stability (out-of-loop). The
in-loop signal is subtracted from a low-pass-filtered voltage reference, amplified in analog
servo electronics, and fed back to the EOAM. This dc-coupled feedback control loop has a
bandwidth of about 80 kHz with a loop gain of more than 68 dB for frequencies below 1
kHz. With closed feedback loop, the out-of-loop measured power noise (Figure 4.52) is at the
expected level defined by the uncorrelated sum of the quantum noise and electronic noise
of both the in-loop and out-of-loop detectors in the whole frequency band. For frequencies
up to 7 Hz the measured noise is dominated by the electronic noise of the in-loop and out-
of-loop detector and for higher frequencies by quantum noise at a level of 1.8 · 10−9 Hz−1/2.
At 10 Hz a relative power noise of 2.4 ·10−9 Hz−1/2 is measured at the out-of-loop detector.

4.7.2 Optical ac coupling

The other approach is using optical resonators to enhance the sensitivity of a photode-
tector without increasing the average photocurrent. Conventionally, electrical ac coupling
is exploited to measure small fluctuations on top of large dc signals (or of slowly vary-
ing ones). In optical ac coupling, the reflection at an optical resonator is used to create a
similar effect, where the signal is attenuated at low Fourier frequencies. The principle is
the following: while the carrier and low-frequency sidebands are almost completely trans-
mitted for a nearly impedance-matched resonator, power fluctuation sidebands are mainly
reflected by the resonator at high frequencies. In this way, the average power in reflection

FIGURE 4.52
Power noise measured out-of-loop (a) with the photodiode array. For low frequencies, the
measurement is limited by electronic noise (b) and for frequencies above 7 Hz by quantum
noise (c) of the in-loop (200 mA photocurrent) and out-of-loop detector (189 mA photocur-
rent). The in-loop measured power noise (e) is far below these limiting noise sources. The
Advanced LIGO power-noise requirement (d), shifted by 3 dB in the plot to account for the
noise of the out-of-loop detector, is met in the whole frequency band. (Courtesy of [200].)
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is reduced, whereas the high frequency fluctuation sidebands are fully preserved [201]. This
effect can be more rigorously described as follows. Let h(f) = 1/(1 + if/f0) characterize
the approximated power fluctuation filter effect (in transmission) of the resonator with the
bandwidth f0. Next, consider the field amplitude Uin of a laser beam with the average
amplitude U0 that is modulated at a frequency f = ω/2π with a modulation index m≪ 1
in the plane-wave model

Uin = U0

(

1 +meiωt
)

= U0 + Ufl (4.227)

where Ufl ≡ U0me
iωt represents the fluctuating part of the incident field amplitude. This

input beam is coupled into the optical resonator. At resonance, the field amplitude Urefl
of the reflected beam can be written as the sum of two terms. The first one corresponds to
reflection of the average field Urefl,1 = U0a, where the parameter a describes the impedance
matching of the resonator. The resonator is under-coupled for a ∈ (0, 1], impedance matched
for a = 0 (recall that a resonator is said to be impedance-matched when the reflected power
from the cavity is exactly zero on resonance), and over-coupled for a ∈ [−1, 0). The second
term contributing to Urefl corresponds to reflection of the fluctuating field and is thus
given, for an impedance-matched resonator, by Ufl[1−h(f)]. For a non-impedance-matched
resonator, the latter expression is readily generalized to Urefl,2 = Ufl[1 − (1 − a)h(f)],
whereupon we get

Urefl = Urefl,1 + Urefl,2 = U0

{

a+meiωt [1− (1− a)h(f)]
}

(4.228)

Therefore, the transfer function G(f) (at the Fourier frequency f) for relative power fluc-
tuations from the beam upstream of the resonator to the beam in reflection is given by

G(f) =
1− (1− a)h(f)

a
= g − (g − 1)h(f) (4.229)

|G(f)| =

√

√

√

√

√

1 + g2 f
2

f2
0

1 + f2

f2
0

(4.230)

where g = 1/a represents the maximum gain for very high frequencies: G(f ≫ f0)→ g. This
transfer function G(f) can be used to realize more sensitive power detectors, provided that
a special impedance matching and a very good mode matching are accomplished: with mod-
erate experimental effort, a gain of about g = 10 is indeed realizable. Figure 4.53 shows the
novel power stabilization setup that can be implemented within this approach. The beam
splitter and the in-loop photodetector of the traditional configuration are substituted by a
compound detector, comprising the resonator and the photodetector in reflection. Thanks
to the mode cleaner, a mode matching exceeding 99% is achieved to the subsequent ACC
resonator (used for the optical ac coupling). The latter has a finesse of about 10000, a band-
width of about 35 kHz, and is slightly under-coupled. The laser frequency is stabilized to a
fundamental mode resonance of the ACC. The beam reflected off the ACC is detected with
the LPD photodetector. The relative power noise measured with optical ac coupling is com-
pared with that measured in a traditional setup (this latter measurement is accomplished
by setting the laser frequency off-resonant to the ACC). Figure 4.54 shows that these two
measurements agree to each other (within the measurement and calibration accuracy of ≃ 1
dB) up to ≃ 2 MHz. At higher frequencies, instead, the traditional (optical ac coupling)
measurement is limited by quantum noise at a level of 1 · 10−8 Hz−1/2 (7 · 10−10 Hz−1/2),
3 mA photocurrent.
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FIGURE 4.53
Simplified experimental setup of the power stabilization experiment with optical ac coupling.
About 10% of the beam is sampled and detected with the HPD photodetector; the remaining
beam power of up to 900 mW is directed to the ACC. In the power sensing experiment, the
free-running power noise of the laser is measured with photodetector LPD. In the power
stabilization experiment, this detector is used as an in-loop detector and the power noise is
measured with the independent out-of-loop photodetector HPD. (Courtesy of [200].)

FIGURE 4.54
Measured relative power noise with optical ac coupling. The laser relaxation oscillation at 1
MHz and the steep roll-off towards higher frequencies are apparent. The quantum limits for
the different measurements are shown as horizontal lines. The sensitivity using the optical
ac coupling (b) is improved by G(f), compared to the same detector with off-resonant ACC
(a). The signal at 20 MHz is injected for calibration purposes and that around 29 MHz is
due to the modulation for stabilizing the mode cleaner at a resonance. (Courtesy of [200].)

4.7.3 The laser as quasi-ideal oscillator

In light of discussions so far, particularly when frequency/intensity stabilization techniques
are also used, we can definitely state that the laser output represents the closest possible
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approximation to a classical monochromatic, polarized electromagnetic wave. The associated
electric field can be described as

E(r, t) = E0 cos[ω0t+ φ(r) + ϕ(t)] (4.231)

where φ(r) characterizes the spatial dependence of the wavefront. In addition, a well-
collimated Gaussian laser beam can also be viewed as the closest approximation to the
light ray of geometrical optics. In that case, the wavefronts are nearly plane (φ(r) = −k ·r).
At the same time, if the small random fluctuations (over time) of E0 and ϕ are consid-
ered, apart from the constant wavefront phase term, Equation 4.231 coincides with that
of a quasi-perfect sinusoidal oscillator (see, for instance, Equation 2.57). Therefore, all the
formalism developed in Chapter 2 can be exploited. In particular, all the measurement tech-
niques to characterize phase and amplitude noise, described in Section 2.7, apply to lasers
as well.

We summarize here the approaches that are most commonly used to ascertain frequency
noise of lasers:

• Measurement of the frequency-noise power spectral density (PSD). In this scheme
the laser frequency fluctuations are converted into amplitude fluctuations (against an
atomic/molecular or cavity resonance having a known slope) which are then processed by
a spectrum analyzer. This provides the PSD in the Fourier domain which is related to
the power spectrum in the carrier frequency domain, or the laser line shape, by Equation
2.163.

• Beating with a reference laser. This originates a signal of the type expressed by Equation
2.45. Counting the frequency of the resulting beat note gives a time-description of the
laser instabilities via the quantity AV AR, which is ultimately related to the frequency-
noise PSD by Equation 2.153. Alternatively, the width Wbeat of the Fourier transform of
the beat-note signal (as measured by a spectrum analyzer) provides the laser linewidth
Wlaser

Wbeat =
√

W 2
laser +W 2

ref ≃Wlaser (4.232)

where Wref ≪Wlaser denotes the width of the reference laser.

• Delayed self-heterodyning (DSH) technique (Figure 4.55) [202, 203, 204]. One portion of
the laser beam is transmitted through a long optical fiber which provides some time delay;
the other part passes through an AOM which shifts all the optical frequency components
by a few tens/hundreds of MHz. The two beams are then superimposed on a second beam
splitter, and the resulting beat note (centered at the AOM frequency) is recorded with a
sufficiently fast photodetector. If the delay time is much larger than the coherence time of
the laser, the electric fields of the two beams are uncorrelated and the frequency-shifted
beam is regarded as an independent local oscillator that has the same linewidth as that
of the delayed beam. Therefore, the original spectral shape of the laser can be estimated
from the observed spectrum. For lasers with a very narrow linewidth (i.e. long coherence

length), let’s say below 1 kHz, a more effective scheme to obtain uncorrelated beams is
represented by the re-circulating fiber loop (Figure 4.56). Here, a long delay is realized by
making the light perform multiple round trips through a moderately long fiber. In order to
keep the components corresponding to different numbers of round trips well separated in
the frequency domain, an AOM is inserted in the loop, which shifts the optical frequency
by the amount ωs (much larger than the laser linewidth) in each round trip. As a result,
the beat signal with a frequency of n · ωs is produced by the two beams with a time
difference of n · τd. Therefore, if we can detect the n · ωs beat signal, n-fold improvement
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FIGURE 4.55
Delayed self-heterodyning technique.

in the resolution can be expected compared with that of a conventional DSH method.
Indeed, if we assume that the laser has a Lorentzian line shape with a FWHM of ∆ω and
that the delay time is much longer than the coherence time of the laser, one can show
that the normalized nth-order beat spectrum Sn(ω) is given by [202]

Sn(ω) =
(α/2)n(∆ω/π)

∆ω2 + (ω − nωs)2
(4.233)

where α represents the transmission coefficient of the delay fiber and the AOM and ω =
2πf , with f being the Fourier frequency. Actually, without any amplifying element in the
loop, the losses from both the AOM and the fiber are notable, so that the light intensity
quickly decays during the round trips. This heavily restricts the number of round trips
that can be used for the linewidth measurement. To overcome this drawback, the effective
loss of the loop can be strongly decreased by inserting a fiber amplifier.

However, a major hindrance to the transfer of low-phase-noise signals is represented by
the fact that the fiber optical insertion phase is extremely sensitive to environmental

Laser

Fiber coupler
Detector

Polarization
controller

Long
fiber

AOM

Fiber
amplifier

FIGURE 4.56
Recirculating fiber loop for improving the resolution of the delayed self-heterodyne method.
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FIGURE 4.57
Scheme of the fiber noise cancellation. (Adapted from [177].)

perturbations, including changes in the refractive index, pressure and temperature. As a
consequence of the phase noise written onto the laser beam propagating through the fiber,
the original spectrum is broadened (under typical operating conditions, such broadening
can be at the kHz level). In the current context, this implies that a beat measurement
between two very narrow lasers, where one or both beams travel in fibers, will be domi-
nated by the broadening of the fiber. A simple and effective technique for accurate fiber
noise cancellation, which is crucial in demanding applications, such as optical frequency
standards and quantum optics, is illustrated in Figure 4.57 [177]. Before entering the
fiber, the light is sent through the AOM. A small fraction of the light is back-reflected
from the other end fiber and passes again through the AOM. In this way, a double pass
setup is realized, where the beat note between the light passing the AOM twice and the
un-modulated light can be detected. The beat-signal is then mixed down to DC with a
stable reference which also runs at ωAOM . The phase difference between the reference
and the beat signal is eventually fed back to the VCO which drives the AOM. The servo
tries to set the quantity φAOM +φfiber to zero, thus compensating the phase fluctuations
caused by the fiber. Experimentally, it is found that the cancellation only works, if the
fiber length is shorter than the coherence length of the laser.

4.8 Some specific laser systems

In the following we shortly review the most important laser sources, either direct or based on
non-linear conversion processes, restricting our attention to those systems that have played,
or still play, a crucial role in optical frequency metrology. Moreover, skipping all the aspects
related to although important fabrication technologies, we shall deal solely with basic con-
cepts, while those properties that are relevant to the issue of frequency measurements will
be discussed in the next chapter in the scope of laser frequency standards. For each type
of laser treated here, more details, from both a physical and a technical point of view, can
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Energy-level diagrams of He and Ne.

be found in [168, 169, 205, 206]. Such textbooks also offer a good starting point to learn
more about some laser categories that are ignored in this context, like chemical, excimer,
free-electron, and X-ray lasers.

4.8.1 He-Ne laser

Most early laser developers sought four-level laser materials that could sustain a steady
population inversion so that they could produce a cw beam. Years of gas spectroscopy
experiments had generated extensive tables of spectral lines, which could be mined for
promising transitions. Thus, seven months after Maiman’s success with ruby, the helium-
neon laser became the first type to emit a continuous beam rather than pulses (at 1.15 µm).
The energy-level diagram of He and Ne atoms is shown in Figure 4.58.

Note that actual laser emission takes place through the neon energy levels while helium
gas is added to the mixture to greatly facilitate the pumping processes. Ne is excited by the
transfer of excitation from He atoms, which in turn are excited by collisions with electrons.
The population inversion mechanism in He-Ne lasers thus involves a combination of electron-
impact excitation (of He) and excitation transfer (from He to Ne). In Figure 4.58 the 3.39
µm, 1.15 µm, and 632.8 nm lines of neon, which are the strongest lasing transitions, are
indicated, the actual oscillating transition basically depending on the wavelength at which
the peak reflectivity of the dielectric cavity mirrors is centered. The common upper level of
the 3.39-µm and 632.8-nm transitions, designated 3s2, is populated by excitation transfer
from nearly resonant He atoms excited by electron impact to the 21S level. The upper level
of the 1.15-µm transition is nearly resonant with the 23S level of He, and is populated by
excitation transfer from He atoms in that excited state. Actually, Ne is also pumped directly
into excited states by electron impacts, but the excitation transfer from He is the dominant
pumping mechanism. The excited levels 21S0 and 23S1 of He, in addition to being nearly
resonant with levels of Ne (and therefore allowing strong collisional excitation transfer), have
the advantage of being forbidden by a selection rule to de-excite by spontaneous emission
(S→ S transitions are electric-dipole-forbidden). This allows these levels to hold energy for
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delivery to Ne during collisions. The partial pressures of Ne and He in typical He-Ne lasers
are roughly 0.1 and 1 Torr, respectively. At these low pressures the upper-state lifetimes are
determined predominantly by spontaneous emission rather than collisional de-excitation.
The 3s2 and 2s2 levels of Ne have short radiative (i.e., spontaneous emission) lifetimes,
roughly 10-20 ns, due to the strong allowed ultraviolet transitions to the ground state. For
Ne pressures typical of He-Ne lasers, however, these radiative lifetimes are actually about
10−7 s because of radiative trapping. This occurs when the spontaneously emitted photons
are re-absorbed by atoms in the ground state, thereby effectively increasing the lifetime
of the emitting level. Since the ground state is generally the most highly populated level
even when there is population inversion, radiative trapping is significant only from levels
connected to the ground level by an allowed transition. Thus, the Ne 3p4 and 2p4 levels,
which are forbidden by a selection rule from decaying spontaneously to the ground level,
are not radiatively trapped and have lifetimes of about 10−8 s, roughly 10 times shorter
than the 3s2 and 2s2 levels. This means that the s → p transitions have favorable lifetime
ratios for lasing, that is, their lower (p) levels decay more quickly than their upper (s) levels,
making it easier to establish a population inversion. The integrated absorption coefficients
of the 632.8-nm and 3.39-µm lines have roughly the same magnitude, but the 3.39-µm line
has a Doppler width about 5.4 times smaller than the 632.8-nm line, and consequently a
considerably larger line-center gain. Without some mechanism for suppressing oscillation on
the 3.39-µm line, therefore, the familiar 632.8-nm line would not lase. The 632.8-nm laser
overcomes this problem by introducing into the optical path elements that absorb strongly
at 3.39 µm, but not at 632.8 nm, such as glass or quartz Brewster windows. This raises the
threshold pumping level for the 3.39 µm oscillation above that of the 632.8-nm oscillation.
The 632.8-nm and 1.15-µm transitions have a common lower level, 2p4, which decays rapidly
into the 1s2 level. The latter is forbidden by a selection rule from decaying radiatively into
the ground level, and is therefore relatively long-lived. This is bad for laser oscillation on the
632.8-nm and 1.15-µm lines because electron-impact excitation can pump Ne atoms from
1s2 to 2p4, thereby reducing the population inversion on these lines. However, Ne atoms
in the 1s2 level can decay to the ground level when they collide with the walls of the gain
tube. In fact, it is found that the gain on the 632.8-nm and 1.15-µm lines increases when
the tube diameter is decreased; this is attributed to an increase in the atom-wall collision
rate with decreasing tube diameter.

A typical gas-laser setup is shown in Figure 4.59. The gas envelope windows are tilted at
Brewster’s angle such that radiation with the electric field vector in the plane of the paper
suffers no reflection losses at the windows. This causes the output radiation to be polarized
in the sense shown, because the orthogonal polarization undergoes reflection losses at the
windows and, as a consequence, has a higher threshold.

4.8.2 Carbon dioxide laser

The electric-discharge carbon dioxide laser has a population inversion mechanism similar
in some respects to the He-Ne laser: the upper CO2 laser level is pumped by excitation
transfer from the nitrogen molecule, with N2 itself excited by electron impact. The relevant
energy levels of the CO2 and N2 molecules are vibrational-rotational levels of their electronic
ground states. Figure 4.60 shows that the first excited vibrational level (υ = 1) of the N2

molecule lies close to the level (001) of CO2. Because of this near resonance (∆E is only
≃ 18 cm−1), there is a rapid excitation transfer between N2(υ = 1) and CO2(001), the
upper laser level. N2(υ = 1) is itself a long-lived (metastable) level (transition 1 → 0 is
in fact electric-dipole-forbidden as a diatomic homonuclear molecule cannot have a net
electric dipole moment), so it effectively stores energy for eventual transfer to CO2(001); it
is also efficiently pumped by electron-impact excitation. As in the case of the He-Ne laser,
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Schematic setup of a typical gas laser.

therefore, advantage is taken of a fortuitous near resonance between an excited state of
the lasing species and an excited, long-lived collision partner. Moreover, the cross section
for direct electric collisions e + CO2(000) → e + CO2(001) is very large and appreciably
larger than those for excitation to both the 100 and 020 level. Note also that direct electron
impact can also lead to excitation to upper (00n) vibrational levels of CO2. However, the
CO2 molecule rapidly relaxes from these upper states to the (001) state by near-resonant
collisions of the type CO2(00n)+CO2(000)→ CO2(00, n−1)+CO2(001). This process tends
to degrade all excited molecules to the (001) state. The next point to consider is the decay
of both upper and lower laser levels. Note that, although transitions 001→ 100, 001→ 020,
100 → 010, and 020 → 010 are optically allowed, the corresponding decay times τsp, for
spontaneous emission, are very long (τspont ∝ 1/ν3). The decay of these various levels is
therefore determined essentially by collisions. Taking for example the case of a total pressure
of 15 Torr (in a 1:1:8 CO2:N2:He partial-pressure ratio), one finds that the upper laser level
has a lifetime τs ≃ 0.4 ms. Concerning the relaxation of the lower laser level, we note that
the 100 and 020 levels are essentially resonant. This accidental degeneracy results in a strong
quantum mechanical coupling in which states in effect lose their separate identities (Fermi
resonance effect). Furthermore, the 010 and 020 levels undergo a very rapid vibration-to-
vibration energy transfer 020+000→ 010+010. For practical purposes, then, the stimulated
emission on the 001→ 100 vibrational band takes CO2 molecules from 001 to 010. The 010
level thus acts in effect like a lower laser level that must be rapidly knocked out in order to
avoid a bottleneck in the population inversion. Now we are left with the decay time from
010 to the ground level 000. Since this transition is the least energetic one in any of the
molecules in the discharge, relaxation from the 010 level can occur only by transferring this
vibrational energy to translational energy of the colliding partners. According to collision
theory, energy is most likely to be transferred to lighter atoms, i.e., to helium in this case.
For the same partial pressures considered above one obtains a lifetime of about 20 µs. It
follows from the preceding discussion that this is also the value of the lifetime of the lower
laser level. Therefore, due to the much larger value of the upper state lifetime, population
accumulates in the upper laser level, so the condition for cw laser action is also fulfilled. Note
that He has another valuable effect: due to its high thermal conductivity, He helps keep the
CO2 cool by conducting heat to the walls of the container. A low translational temperature
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for CO2 is necessary to avoid populating the lower laser level by thermal excitation; energy
separation between levels is in fact comparable to kBT .

From the preceding considerations we see that laser action in a CO2 laser may occur
either on the 001 → 100 (λ = 10.6 µm) transition or on the 001 → 020 (λ = 9.6 µm)
transition. The laser transition has a low-pressure (< 5 torr) Doppler linewidth at T = 300
K of ∆νD ≃ 60 MHz (pressure broadening sets in at > 5 torr and becomes dominant above
100 torr). The CO2 laser is one of the most powerful and efficient lasers (several kilowatts
and about 30% overall working efficiency). This efficiency results primarily from the fact
that the laser levels are all near the ground state and hence the atomic quantum efficiency
is about 45%.

So far we have ignored the fact that both upper and lower laser levels consist of many
closely spaced rotational levels. Accordingly, laser emission may occur on several equally
spaced rotational-vibrational transitions belonging to either P or R branches, with the P
branch exhibiting the largest gain. To complete our discussion we must also consider that,
as a consequence of the Boltzmann distribution between rotational levels, the J ′ = 21 ro-
tational level of the upper 001 state is the most heavily populated. Laser oscillation then
occurs on the rotational-vibrational transition with the largest gain, i.e., originating from
the most heavily populated level. This happens because, in a CO2 laser, the thermaliza-
tion rate among rotational levels (∼ 107s−1 torr−1) is faster than the rate of decrease in
population (due to stimulated emission) of the rotational level from which laser emission
occurs. Therefore, the entire population of rotational levels contributes to laser action on
the rotational level with the highest gain. In conclusion, laser action in a CO2 laser normally
occurs on the P (22) line. Other lines of the same transition as well as lines belonging to
the 001→ 020 transition (the separation between rotational lines in a CO2 laser is about 2
cm−1) can be selected by a diffraction grating.

4.8.3 Dye lasers

Dye lasers are the original tunable lasers. Discovered in the mid-1960s these tunable sources
of coherent radiation span the electromagnetic spectrum from the near-ultraviolet to the
near-infrared. In addition to their extraordinary spectral versatility, dye lasers have been
shown to oscillate from the femtosecond pulse domain to the continuous wave regime. Dye
lasers provide especially interesting examples of optical pumping, accomplished either by
lasers or flash-lamps. In particular, recent advances in semiconductor laser technology have
made it possible to construct very compact all solid-state excitation sources that, coupled
with new solid-state dye laser materials, should bring the opportunity to build compact
tunable laser systems for the visible spectrum [206]. In the following, however, by virtue
of their relevance in the scope of spectroscopic frequency measurements (particularly for
sub-Doppler spectroscopy), we only focus on traditional cw dye lasers utilizing liquid gain
media. The active molecules in these lasers are large organic molecules in a solvent such
as alcohol or water. Such molecular gain media have a strong absorption generally in the
visible and ultraviolet regions, and exhibit large fluorescence bandwidths covering the entire
visible spectrum. The general energy level diagram of an organic dye is shown in Figure
4.61.

It consists of electronic singlet and triplet states with each electronic state containing
a multitude of overlapping vibrational-rotational levels giving rise to broad continuous en-
ergy bands. Indeed, due to the strong interaction of dye molecules with the solvent, the
closely spaced rovibronic levels are collision broadened to such an extent that the different
fluorescence lines completely overlap: thus, both the absorption and fluorescence spectrum
consists of broad continuum which is homogeneously broadened. Absorption of visible or
ultraviolet pump light excites the molecules from the ground state S0 into some rotational-
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Vibrational energy levels of CO2 and N2.

vibrational level belonging to an upper excited singlet state, from where the molecules decay
non-radiatively to the lowest vibrational level of the first excited singlet state S1 on a pi-
cosecond time-scale. From S1 the molecules can decay radiatively, with a radiative lifetime
on the nanosecond time-scale, to a higher lying vibrational-rotational level of S0. From this
level they rapidly thermalize into the lowest vibrational-rotational levels of S0. Alterna-
tively, from S1, the molecules can experience non-radiative relaxation either to the triplet
state T1 by an inter-system crossing process or to the ground state by an internal conversion
process. If the intensity of the pumping radiation is high enough, a population inversion
between S1 and S0 may be attained and stimulated emission occurs. Internal conversion
and inter-system crossing compete with the fluorescence decay mode of the molecule and
therefore reduce the efficiency of the laser emission. The rate for internal conversion to the
electronic ground state is usually negligibly small so that the most important loss process
is inter-system crossing into T1 that populates the lower metastable triplet state. Thus,
absorption on the triplet-triplet allowed transitions could cause considerable losses if these
absorption bands overlap the lasing band, inhibiting or even halting the lasing process.
This triplet loss can be reduced by adding small quantities of appropriate chemicals that
favor non-radiative transitions that shorten the effective lifetime of the T1 level. One very
important characteristic of laser dye molecules is that their emission spectra are shifted in
wavelength from their absorption spectra (the emission wavelength is longer than the ab-
sorption wavelength). This fortunate circumstance prevents the laser radiation from being
strongly absorbed by the dye itself. This is a consequence of the Franck-Condon principle
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Schematic energy level diagram for a dye molecule. Full lines: radiative transitions; dashed
lines: non-radiative transitions; dotted lines: vibrational relaxation.

and the fact that the vibrational relaxation associated with any electronic state is very
rapid. Laser dyes usually belong to one of the following classes: A) Polymethine dyes, which
provide laser oscillation in the wavelength range 0.7 − 1.5µm; B) Xanthene dyes, whose
laser operation is in the visible (a celebrated example is represented by rhodamine 6G at
590 nm); C) Coumarin dyes, which oscillate in the blue-green region 400-500 nm (a cele-
brated example is represented by coumarin 2 at 450 nm). Oxadiazole derivatives, working
between 330-450 nm, allow lasing in the UV region.

Cw dye lasers use dye flowing at linear speeds of up to 10 meters per second which
are necessary to remove the excess heat and to quench the triplet states. Various resonator
configurations, pump geometries, and designs of the dye flow system have been successfully
tried to realize optimum performance in terms of output power, tuning range, and frequency
stability.

In the original cavity reported by Peterson and colleagues, in 1970, a beam from an
Ar+ laser was focused onto an active region which was contained within the resonator.
The resonator comprised dichroic mirrors that transmitted the blue-green radiation of the
pump laser and reflected the red emission from the dye molecules. Using a pump power of
about 1 W, in a TEM00 laser beam, a dye laser output of 30 mW was reported. Subsequent
designs replaced the dye cell with a dye jet, an introduced external mirror, and integrated
dispersive elements in the cavity. Dispersive elements such as prisms and gratings are used
to tune the wavelength output of the laser. Frequency-selective elements, such as etalons
and other types of interferometers, are used to induce frequency narrowing of the tunable
emission. The most commonly used cw dye laser cavity design is shown in Figure 4.62. It
is an eight-shaped ring dye laser cavity comprised of mirrors M1, M2, M3, and M4, which
eliminates the spatial hole burning effect.

Two aspects of cw dye lasers are worth emphasizing. One is the availability of relatively
high powers in single longitudinal mode emission and the other is the demonstration of very
stable laser oscillation [207, 208]. In the area of laser stabilization and ultra-narrow linewidth
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oscillation it is worth mentioning the work by the group of J.C. Bergquist [209], where a dye
laser at 563 nm was locked to a well-isolated, high-finesse (>150000) Fabry-Perot cavity.

Rather than locking the laser directly to the high-finesse cavity, it was first pre-stabilized
against a cavity with a finesse of 800 using the PDH technique. To this aim, an intra-cavity
EOM in the dye laser provided high-frequency correction of laser frequency noise. A PZT
behind one of the dye laser cavity mirrors eliminated long-term frequency drifts between
the dye laser and the low-finesse cavity. A loop bandwidth of 2 MHz in this pre-stabilization
stage narrowed the dye-laser short-term linewidth to 1 kHz. Then, an optical fiber delivered
light from the dye-laser table to a vibrationally isolated table supporting the high-finesse
cavity. An AOM mounted on the isolated table shifted the frequency of the incoming light
to match a cavity resonance. Again, frequency locking was implemented using the PDH
method. The feedback loop performed corrections at frequencies as high as 90 kHz by
varying the AOM drive frequency and at low frequencies by adjusting a PZT on the pre-
stabilization cavity. The high-finesse cavity, consisting of ULE mirrors optically contacted
onto the ends of a ULE spacer, was of the ultrastable type described in Chapter 3. In this
way, a linewidth of 0.6 Hz for averaging times up to 32 s was achieved, with a fractional
frequency instability of 3 · 10−16 at 1 s.

From the early days of dye lasers, attempts were made to incorporate the dye molecules
into solid hosts and a variety of materials and pumping arrangements were tried for oper-
ation of dyes in the solid state, but the lasing efficiencies were low and the dye molecules
experienced fast photodegradation, resulting in the laser emission fading rather quickly. In
the early 1990s, however, the development of improved host materials with higher laser dam-
age resistance and the synthesis of new high-performance laser dyes spurred a renaissance
in the field of solid-state dye lasers. In recent years, approaches involving the use of either
new polymeric formulations or silicon-modified organic matrices or organic-inorganic hybrid
materials as host materials for the laser dyes, are resulting in novel, improved solid-state dye
lasers. These promising results have been obtained with dyes emitting in the green to red
spectral region, while much less work has been done with dyes emitting in the blue. Also,
the obtained results in solid state are still far from the performance of the same dyes in
liquid solution. Additional interesting prospect applications of dye lasers can be envisioned
in micro-opto-fluidics systems.
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FIGURE 4.62
Cw dye laser ring cavity. FSE=frequency selective element, UDD=uni-directional device.
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4.8.4 Ion-doped lasers and optical amplifiers

The first laser, set up by Maiman in 1960, was a ruby laser, using chromium ions (Cr3+) in
a solid-state matrix of sapphire (Al2O3) [161]. Thereafter, many different combinations of
host materials, like Y3Al5O12 (yttrium aluminum garnet or simply YAG) or glass and metal
ions became successful gain media with emission wavelengths from the ultraviolet to the
mid-infrared spectral range. In particular, ions of rare earths, like erbium, neodymium, ytter-
bium, holmium, praseodymium or thulium, represent nowadays worldwide spread dopants
of solid-state and fiber gain media to construct efficient lasers and optical amplifiers. De-
spite the rapid progress in semiconductor laser technology, solid-state lasers still play an
important role in many fields in science. An updated review on this topic is represented by
[210].

4.8.4.1 Nd:YAG laser

Nd-YAG lasers are probably the most renowned in this family. Besides this oxide medium,
other host media include some fluoride (e.g., YLiF4) or vanadate (e.g., YVO4) materials as
well as some phosphate or silicate glasses. Typical doping levels in Nd:YAG, e.g., are ∼ 1
atomic %. This laser relies on a classical four-level lasing scheme. A typical feature, shared
within the family of rare earth-doped gain media, is that ions’ levels energies are quite
unperturbed by the host matrix. Energies of ions quantum levels are, in principle, shifted
by electric fields within the host material (Stark shift). However, triply ionized rare earth
dopants generally have the upper laser levels (4f), that determine the emission wavelength,
well shielded from host electric fields by the outer 6s orbitals. Figure 4.63 shows a simplified
energy level scheme for Nd:YAG. The two main pump bands of Nd:YAG occur at ∼ 730
and 800 nm, respectively. These bands are coupled by a fast non-radiative decay to the
4F3/2 level from where decay to the lower I levels occurs (to 4I9/2, 4I11/2, 4I13/2, etc.). The
rate of this decay is much slower (≃ 230 µs). This means that level 4F3/2 accumulates a
large fraction of the pump power, so that it is a good candidate as the upper level for laser
action.

From the preceding discussion, one sees that several laser transitions are possible be-
tween 4F3/2 and several lower lying I levels; among these transitions, 4F3/2 →4 I11/2 is
the strongest one. Level 4I11/2 is then coupled by a fast (hundreds of picoseconds) non-
radiative decay to the 4I9/2 ground level, so that thermal equilibrium between these two
levels is very rapidly established. Since the energy difference between 4I11/2 and 4I9/2 levels
is almost an order of magnitude larger than kBT , then, according to Boltzmann statistics,
level 4I11/2 may, to a good approximation, be considered empty at all times. Thus laser
operation on the 4F3/2 →4 I11/2 transition corresponds to a four-level scheme. The 4F3/2

level is split by the Stark effect into two sub-levels (R1 and R2), while the 4I11/2 level is split
into six sub-levels. Laser action usually occurs from the upper R2 sub-level to a particular
sub-level of the 4I11/2 level, since this transition has the highest value for the stimulated
emission cross section. The transition occurs at λ= 1.064 µm, which is the most widely used
lasing wavelength for Nd:YAG lasers. Note that laser action can also be obtained on the
4F3/2 →4 I13/2 transition (λ = 1.319 µm is the strongest transition wavelength in this case)
provided the multilayer dielectric coatings of the cavity mirrors have high reflectivity at λ
= 1.319 µm and sufficiently low reflectivity at λ = 1.064 µm. In the case of the usual λ=
1.064 µm transition, the laser transition is homogeneously broadened at room temperature
via interaction with lattice phonons. The corresponding width is ∆ν ≃ 4.2cm−1=126 GHz
at T=300 K. Nd:YAG lasers can operate either cw or pulsed, and can be pumped by either
a lamp or a semiconductor laser.

With its very narrow free-running linewidth (about 1 kHz) and a power stability of 0.1%
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FIGURE 4.63
Simplified energy levels of Nd:YAG.

(when the laser employs an internal amplitude noise eater), the Nd:YAG laser (at 1064 nm),
in the non-resonant planar ring oscillator configuration, represents an ideal starting point
for developing ultrastable optical oscillators. Indeed, a subhertz-linewidth Nd:YAG laser
was recently obtained by locking to a high-finesse, ultrastable reference cavity by means of
the PDH technique [211].

4.8.4.2 Ti:Sa laser

In the case of a TiSa laser it is a Ti3+ ion which is the dopant into sapphire, Al2O3, as host.
This small amount of titanium (roughly 0.1%) is then responsible for the lasing emission.
It can be operated over a broad tuning range (∆λ ≃ 400 nm), thus providing the largest
bandwith of any laser. Figure 4.64 shows the 3d1 absorption and emission band of the Ti3+

ion. The surrounding crystal field splits this level up into the 2T2g and the 2Eg levels. These
levels get split further by the spin orbit interaction and experience a big broadening caused
by the interaction of the ion with lattice vibrations.

Population inversion is achieved by a strong pump laser populating a high vibrational
mode of the 2Eg level (usually an Ar laser or a frequency-doubled Nd:YAG laser). The
electrons then decay very quickly by phonon interaction into a lower vibrational mode. A
decay by emission of a photon into a vibrational mode of the 2T2g level is followed by a
non-radiative decay into the ground state. This effectively corresponds to a four-level laser
where two transitions occur by a fast non-radiative decay. Since the gain profile of the active
medium is very broad, in order to avoid multi-mode lasing, additional frequency selective
elements inside the laser help to select a single mode. A further advantage of the Ti:Sa
crystal is the very good mechanical stability and the high heat conductivity which renders
it pretty stable in frequency and power output. A comprehensive description of an advanced
cw Ti:Sa laser system can be found in [177].

Finally, due to the extremely large gain bandwidth of the Ti3+ ion, allowing the gener-
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Level scheme of the Ti+3 ion in sapphire.

ation of very short pulses, the Ti:Sa laser has also played a crucial role in the realization of
optical frequency comb synthesizers via the Kerr-lens mode-locking effect (see Chapter 6).

4.8.4.3 Erbium-doped fiber amplifiers (EDFAs)

It has been found that the glass optical fibers that are used as waveguides in communications
can also be used as optical amplifiers if they are doped with optically active atoms such
as erbium. The erbium-doped fiber amplifier(EDFA) is the one that is most widely used
because the energy levels of the Er3+ ion in a glass host provide a convenient pumping
wavelength centered about 0.94 µm and a stimulated emission central wavelength of 1.54
µm. Glass fibers have three wavelength regions of low loss at approximately 0.8 µm, 1.3 µm,
and 1.55 µm that have come to be known as the first, second, and third telecommunications
windows, respectively. Semiconductor lasers, which are commercially available with emission
wavelengths of 810 and 980 µm, are generally used as the pumping source. However, there is
also a strong absorption band centered about 1.5 µm, which permits pumping with 1.48 µm
semiconductor lasers [212]. The transitions that are involved in producing the stimulated
emission of an EDFA are shown in Figure 4.65. Most often a pump wavelength of 980 nm is
used to raise ions to the upper level. The lifetime in this state is very short, on the order of
1 µs. Ions then decay to a metastable state with a relatively long lifetime of approximately
10 ms. This long lifetime allows the population of ions in the metastable state to build up
so as to produce an inverted population with respect to the ground state.

Metast. State

Ground State

980 nm

1480 nm
1536 nm

4I (3)11/2

4I (2)13/2

4I (2)15/2

FIGURE 4.65
Energy levels and transitions in EDFA.
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Basic configuration of an EDFA.

The fact that the metastable and the ground state are not single energy levels, but
rather manifolds or bands of energy levels, results in the amplifier having gain over a range
of wavelengths from approximately 1520 to 1600 nm. The basic physical implementation of
an EDFA is shown in Figure 4.66. A thorough discussion about specific EDFA systems and
their performances is given in [213] and [214].

4.8.4.4 Ytterbium-doped fiber amplifiers (YDFAs)

Yb-doped silica fiber gain medium operates efficiently in the 1030-1100 nm wavelength re-
gion. As an example, the energy levels of Yb3+ ions in Yb:YAG are shown in Figure 4.67.
Within the above range, output power levels of several kW have been achieved. Gain media
doped with Yb ions have a comparatively higher power efficiency, that is defined as the
difference between the energy of each pump photon to that of a laser photon (also called
Stokes shift), with respect to Er:Yb-codoped lasers emitting around 1.5 micron wavelength.
Indeed, Yb-doped gain media are generally pumped at 976 nm wavelength and laser photons
can have an energy differing only a few percent from the pump, providing higher slope effi-
ciency and lower threshold. This also implies that they are quasi-three-level lasers, with the
general problem of re-absorption of generated laser photons by unsaturated gain medium.
This makes the overall design of Yb-doped lasers and amplifiers a bit more critical, but
the impressive scaling of their performance in the last ten years, especially in terms of out-
put powers, justifies their increasing and pervasive use in many applications simultaneously
requiring high powers and high coherence. Since the emission cross section of Yb-doped alu-
minosilicate fiber extends up to 1200 nm, several approaches have been proposed to operate
Yb-doped fiber lasers in the long wavelength (up to 1200 nm) range [215, 216, 217, 218, 219].

In addition to a broad-gain bandwidth, Yb-doped fiber amplifiers can offer high output
power and power-conversion efficiency. Also, they do not have many of the problems af-
fecting erbium-doped amplifiers. In particular, excited state absorption and concentration
quenching by inter-ionic energy transfer do not occur, and high doping levels are possible,
leading to high gain in short fiber lengths. Amplification of ultrashort pulses takes advantage
from the broad bandwidth and the high saturation fluence allows for high pulse energies.

In principle, pumping sources can be in the 860-1064 nm wavelength range, thus allowing
a variety of pumping schemes. To get high-output power from fiber amplifiers, double-clad
fibers are used [220, 221]. Such fibers usually have a single-mode core where the signal wave
propagates, surrounded by a larger multi-mode undoped inner cladding into which the pump
light is launched. The modes of the inner cladding have some overlap with the doped core
so that the pump light can be absorbed there. The main advantages of this scheme are the



Continuous-wave coherent radiation sources 261

940 nm

1030 nm 1050 nm

2
F5/2

2
F7/2

FIGURE 4.67
Energy levels of Yb3+ ions in Yb:YAG, and the usual pump and laser transitions.

following: higher powers can be coupled into a multi-mode core (because of the larger spot
size); the pump source (e.g., a high-power diode laser) does not need to emit a single spatial
mode; the pump launch efficiency can be very high and the alignment tolerances relatively
uncritical.

In 1997, two groups recognized the peculiar advantages of Yb-doped fiber amplifiers
for precise spectroscopic applications, as compared to semiconductor lasers and amplifiers
[222, 223]. Indeed, the combined high-power and narrow-linewidth properties proved to be
very appealing for precise atomic and molecular frequency measurements as well as for
the development of frequency standards in the visible range by use of frequency-doubled
radiation [224, 225, 226]. A very low added phase noise arising in the amplification of highly
coherent cw sources was measured for the first time in 2000 [227]. In that work, an upper
limit of 300 Hz was measured for the additional phase noise originating in the amplification
of the radiation coming from a 5-kHz-linewidth NPRO-based Nd:YAG laser. Moreover, a
negligible cross talk for simultaneous amplification of several different laser frequencies was
for the first time described, marking a significant difference with respect to semiconductor-
based amplifiers. This feature seemed to be in contrast with the dominantly homogeneous
transition broadening observed in Yb-doped germanosilicate and silicate glasses [228]. Such
effect could be ascribed to the slow gain dynamics of YDFAs. Indeed, transient effects of gain
saturation and recovery typically occur on a time scale of approximately 100 ms, depending
on signal and pump levels. In the saturation regime, YDFAs are thus virtually free from
transient gain modulation effects (referred to as cross talk), that vanish for modulation
frequencies above approximately 10 kHz. This is a definite advantage of rare earth-doped
fiber amplifiers as compared to semiconductor optical amplifiers, which are characterized
by a picosecond gain dynamics and thus show high cross talk effects, which represents a
well-known limit for multi-channel transmission in optical communication systems.

To better understand the physics of Yb-doped fiber amplifiers, we will make an example
of basic design mainly intended for operation around 1083 nm, that corresponds to a well-
known transition of atomic He (23S → 23P ), thoroughly investigated to determine the fine
structure constant and measure QED effects. We make this example by using the original
design reported in [222]. As shown in Figure 4.68, the emission cross section of an Yb-doped
germanosilicate glass has maxima around 975 and 1027 nm.

In particular, the emission cross section at 1083 nm (where we want to optimize the
amplifier emission) is one third lower than that at 1027 nm. As a general rule, in order to
get an optimized amplifier configuration, the residual pump power at one end of the fiber
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FIGURE 4.68
Absorption and emission cross sections of ytterbium-doped germanosilicate glass, as used
in the cores of ytterbium-doped fibers. (Courtesy of [222].)

should be just sufficient to reach transparency (zero gain) for the signal wave at this end
[228]. In Figure 4.69 we plot the transparency power versus signal wavelength for various
pump wavelengths and typical fiber parameters as given by

Ptrans =
AChνp
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where Ac is the core area, νp is the pump frequency, σ(p)
12 and σ(p)

21 are the effective pump
absorption and emission cross sections, σ(s)

12 and σ(s)
21 the corresponding values for the signal

wavelength, and ηp represents an additional overlap factor accounting for the fact that some
fraction of the power propagates in the undoped cladding of the fiber.

By pumping around 910 nm wavelength, where there is a strong absorption peak, one
can get a strong population inversion, but most of the amplifier gain would be concentrated
around 975 nm, where there is the strongest emission peak. Since the gain at 1083 nm
(where the seeding radiation is injected) is much lower, this would imply a strong ASE
(Amplified Spontaneous Emission) generation around 975 nm. Of course, one would like to
ideally get 100% of the amplified radiation within the linewidth of the seeder and nothing
elsewhere. To avoid such a strong ASE generation with a consequent low gain around 1083
nm, a better pumping wavelength is around 975 nm. Around this wavelength the cross
sections for absorption and emission are about the same and an inversion approaching 50%
can be achieved for powers well above the pump saturation power. In these conditions,
most of the ASE comes from the emission peak at 1027 nm, that is anyway much lower
than that at 975 nm. Moreover, the expected gain at 1083 nm is approximately one-third
of that at 1027 nm. ASE generation can be limited by proper filtering around the emission
peak wavelength. It is also worth noting that when the seeding wavelength is far enough
from the absorption peaks, as is the case of 1083 nm, some overlength of fiber does not
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FIGURE 4.69
Transparency pump power versus signal wavelength for various common pump wavelengths,
assuming a germanosilicate fiber with 900-nm cutoff and NA=0.2. (Courtesy of [222].)

create significant re-absorption problems and hence does not degrade the amplifier gain
performance (indeed, the signal re-absorption at 1083 nm in unpumped fiber is estimated
at only 0.4 dB/m, including background loss). Figure 4.70 shows the experimental setup. A
pump power of up to 500 mW at 978 nm was generated by a fiber-coupled semiconductor
MOPA laser, while the 1083-nm signal was produced by a semiconductor distributed Bragg
reflector (DBR) laser with external cavity. In a preliminary experiment 14 dB gain and 60
mW of amplified signal were achieved.

As already mentioned, in a subsequent experiment, such laser source was used for ac-
curate frequency measurement of the fine-structure energy splittings in helium atom [226].
Since obtaining a secondary frequency standard at 1083 nm was a difficult task, a valuable
approach was doubling the frequency to 541 nm and then seeking a suitable saturated-
absorption dip in the rich I2 spectrum. Thus, the 1083-nm emission coming from the
ytterbium-doped fiber amplifier was applied to a type-I phase matched Mg:LiNbO3 crystal
in a high-Q fundamental-resonant cavity for frequency doubling. The doubling cavity Q was
∼ 2 ·107, and about 70% of the incident power was coupled in. The maximum 2nd-harmonic
conversion efficiency exceeded 20% and provided an output power of 3.7 mW for making
continuous frequency scans of up to 600 MHz in the green. An optical spectrum analyzer
at 541.5 nm showed fringes of 4.6 MHz full width half maximum, close to the instrumental
width.

4.8.4.5 Narrow-linewidth fiber lasers

The broadband emission of trivalent rare earth ions allows the development of sources
emitting either broad continuous-wave (cw) spectra or ultrashort pulses, as well as widely
tunable narrow-linewidth radiation, as described in the following [229]. The core diameter of
a standard single-mode fiber can vary from 3 to 10 µm, so that a significant intensity can be
developed with a modest average power. As a consequence, the intensities necessary to reach
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Set-up of a power amplifier for a single-frequency at 1083 nm. It is based on a Yb-doped
silica fiber which is pumped by a MOPA semiconductor laser at 978 nm. LD1=1083-nm
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the cw oscillation threshold for both three-level and four-level systems can be achieved with
modest input powers. The inherent waveguiding property associated with the fiber ensures
that the intensity is maintained over long distances, thereby providing long interaction
lengths between the rare earth dopant and the pump field. Hence, a significant intracavity
gain can be developed, and a small-signal gain of 25 dB is not uncommon. A small-signal
gain of this amplitude enables elements with a comparatively high insertion loss, such as
optical isolators, frequency modulators, and integrated interference filters, to be inserted
in the cavity of a fiber laser without significantly increasing the oscillating threshold or
reducing the output power. A fiber laser using a trivalent rare earth as the active element
has the potential for very narrow linewidth operation compared with other sources that
oscillate in the same spectral regions (e.g., semiconductor lasers). The cavity linewidth
scales inversely with the cavity length of the laser, and the waveguiding nature of a fiber
allows cavity lengths of many meters to be established. In comparison, the cavity length
of semiconductor lasers is typically a fraction of a centimeter. The coupling of amplified
spontaneous emission to the oscillating mode is determined by the gain cross section of
the transition. For most rare earth ions, this cross section is of the order of 10−21 cm2,
whereas for a semiconductor laser it is typically 10−16 cm2. This means that the optimum
linewidth that can be expected from a fiber laser is significantly smaller than that of a
semiconductor laser, making the fiber laser a suitable tool for narrow-linewidth applications.
In addition, single-frequency fiber lasers are attractive because they can offer shot-noise-
limited operation in the MHz range, whereas for semiconductor lasers this occurs several
100 MHz away from the center frequency. The round-trip optical path length for a typical
fiber laser may range from 1 cm to 50 m, giving a longitudinal mode spacing from 30 GHz
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to 6 MHz. Since rare earth dopants (like Er3+ and Nd3+) exhibit fluorescence spectra that
extend over hundreds of THz, the gain medium can support many longitudinal modes of the
cavity. It is accepted that the spectral broadening for a rare earth dopant in an amorphous
host is a result of both homogeneous and inhomogeneous broadening mechanisms. The most
effective way to obtain oscillation in only one longitudinal mode is to include bandwidth-
limiting elements in the cavity. These can be either wavelength-selective mirrors (such as
a Bragg reflector, a diffraction grating,...) or tunable filters (like an interference filter, a
Fabry-Perot filter,...). More specifically, several different configurations have proved reliable
to induce narrow-linewidth, single-mode operation in fiber lasers for a variety of host and
dopant materials [229]. In the simplest realization, a laser cavity is established by two
temperature-controlled, spectrally narrow passive FBGs that are fusion spliced to a short
piece of active material. In this way, the lasing wavelength is determined by the spectral
overlap between the two FBGs. In such a scheme, aside from varying the temperature of the
Bragg reflector, the laser wavelength can be tuned by placing the grating under tensile or
compressive stress. However, one of the major problems associated with a linear-cavity laser
is spatial hole burning, which can preclude single-frequency operation. Various methods to
overcome this drawback have been proposed and implemented, ranging from simple short
two-mirror cavities to modified Sagnac cavities as well as twisted-mode fiber laser cavities.
In the former case, the two outputs from a 50% fused fiber coupler are spliced together to
form a fiber Sagnac loop (Figure 4.71). Light launched into one of the coupler’s input ports
propagates in both directions around the loop and recombines at the coupler. For a lossless
50% coupler and no loop birefringence, all the light is coupled back to the arm into which
light was launched. In other words, the loop acts as a mirror with a reflection coefficient
of 100%. Then, the Sagnac geometry can be modified by placing a length of gain fiber and
an optical isolator inside the fiber loop. The latter suppresses spatial hole burning. If one
of the input arms is spliced to a length of fiber containing a reflective device (either a bulk
mirror or a bulk diffraction grating or a Bragg reflector) a linear cavity can be configured in
which the gain medium is accessed by a travelling wave, the remaining port of the coupler
then acting as an output for the cavity.

In the twisted-mode configuration, spatial hole burning is avoided by ensuring that
circularly polarized light counter-propagates through the gain medium (Figure 4.72). In
general, a standard rare earth doped fiber is weakly birefringent. By applying the correct
strain to such a fiber, any desired state of polarization can be generated at a given point. A
twisted-mode cavity comprises a polarization-sensitive fused fiber coupler, which defines the
polarization state of the cavity and a length of active fiber placed between the two polar-
ization controllers. The cavity reflectors can be provided, for instance, by butt-coupled high
reflectors as shown in Figure 4.72. With proper adjustments of the polarization controllers,
two counter-propagating waves with the same circular polarization state are generated,
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FIGURE 4.71
Diagram of unidirectional Sagnac loop fiber laser. (Adapted from [229].)
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FIGURE 4.72
Schematic of a twisted-mode fiber laser cavity. (Adapted from [229].)

which avoids interference, thus eliminating spatial hole burning. With such lasers, output
powers around 1 watt and linewidths of a few kHz can be achieved.

However, one of the major problems associated with both the modified Sagnac loop
lasers and the twisted-mode laser is that they are sensitive to environmental perturbations,
which can induce random frequency changes and mode hopping. Therefore, the most ef-
fective method to eliminate spatial hole burning is to ensure that the laser operates as a
unidirectional ring, such that the gain medium is interrogated by a travelling wave. While
in a bulk ring laser, a differential loss of ∼ 5% is sufficient to ensure unidirectional oper-
ation, in a fiber laser such loss level does not necessarily eliminate bidirectional operation
and a more effective method of forcing unidirectional operation is needed. For example, an
integrated fiber-optic isolator with a low insertion loss (1 dB) and a high optical isolation
(greater than 35 dB) can be used. Because of their importance in optical communications,
single-frequency Er-doped fiber lasers operating at 1550 nm have been extensively studied
in the unidirectional ring configuration. A paradigmatic scheme is shown in Figure 4.73.
In this case, multi-mode operation is inhibited by increasing the spectral selection in the
cavity by concatenation of two FP fiber filters. The first of them is broadband (FSR = 4
THz, transmission bandwidth of 26 GHz) and can be used for coarse electrical tuning of the
laser. The second filter (FSR = 100 GHz, bandwidth 1.4 GHz) suppresses the multi-mode
operation. An optical isolator placed between the two filters eliminated inter-etalon effects.
In the first realization, the laser linewidth was measured using a re-circulating, delayed,
self-heterodyne interferometer to be 1.4 kHz with a frequency jitter of 2.4 kHz owing to
thermal noise [230]. The noise characteristics of the laser system were also quantified: if
the amount of ASE power (originating in the gain medium) coupled to the cavity modes is
reduced, the dominant noise source will be the detector itself. This can be accomplished by
placing the narrow-band filter between the gain medium and the output coupler.

In the remainder we focus on the second main category of fiber lasers, i.e., that of Yb-
doped lasing devices. With a gain coefficient of up to 5 dB/cm, optical single-mode fiber
made from highly doped phosphate glass is uniquely suited for short, single-frequency fiber
lasers based on this design. Indeed, Er/Yb co-doped phosphate glass fiber lasers, emitting
around 1.06 or 1.5 µm, have been developed using only a few centimeters of active fiber
(which relaxes the requirements for mode selection) with attractive output features: narrow
linewidth around 1-3 kHz, fast frequency modulation up to 10 kHz, polarized, single-mode
(with a side-mode suppression ratio better than 50 dB) output exceeding 200 mW with very
low intensity, and frequency noise [231]. In particular, for an emission wavelength of 1038
nm, coinciding with the maximum of the gain spectrum, a slope efficiency of more than
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FIGURE 4.73
Erbium-doped unidirectional ring resonator containing two fiber FP filters with dif-
ferent free spectral ranges. FFP=fiber Fabry-Perot, NB=narrow band, BB=broadband,
PC=polarization controller, WDM=wavelength-division multiplexer, Er=erbium-doped
fiber. (Adapted from [229].)

50 % and a record output power of more than 400 mW was observed from a 1.7-cm long
piece fiber.

More recently, an all-fiber, high power, Yb-doped silica fiber laser operating at 1179 nm
(when core pumped at 1090 nm and heated at 125◦C) was demonstrated [219]. In that case
aluminosilicate host fiber, which is preferable for the long wavelength generation, was used.
Such fiber had a 10 µm Yb-doped core diameter with an NA of 0.11. The Yb concentration
in the core was estimated to be 14000 ppm-wt. The background loss in the fiber was less
than 10 dB/km. Figure 4.75 shows the schematic of the Yb-doped fiber laser experimental
set up. The fiber laser consisted of a 20-m long Yb-doped fiber that was fusion spliced
to a 1090-1179 nm WDM (wavelength division multiplexer) coupler. The pump power was

HR FBG
FWHM ~ 0.4 nm

Active fiber
1.5 ~ cm long

OC FBG R~50%
FWHM ~ 0.05 nm

Pump

Fusion splice

Fusion splice

Output

Fusion splice

FIGURE 4.74
Cavity geometry for Yb-doped phosphate-glass fiber laser. (Adapted from [231].)
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FIGURE 4.75
Experimental setup of the 1179 nm fiber laser. (Adapted from [219].)

coupled into the core of the Yb-doped fiber through the WDM coupler. The pump consisted
of a patented Yb-doped fiber laser capable of delivering up to 30 W of output power at 1090
nm. Therefore, the WDM coupler was mounted on a heat sink to remove excess heat and
avoid damage during the high power operation. The other end of the doped fiber was flat
cleaved and butted to a broadband mirror with high reflectivity both at the pump and
signal wavelengths. An FBG, acting as an output coupler, was spliced to the 1179 nm arm
of the WDM coupler to select the lasing wavelength. The reflectivity of the FBG was 61%
at 1179 nm with 3 dB bandwidth of 0.25 nm. The Yb-doped fiber was placed inside an
oven, which was maintained at 125 ◦C to increase the pump absorption at 1090 nm. With
such a system, an output power exceeding 12 W (corresponding to a slope efficiency of 43
%) was obtained, and the 3-dB linewidth of the laser spectrum was less than 0.38 nm.

4.8.5 Semiconductor lasers

The concept of a semiconductor laser was introduced by Basov et al. (1961) who suggested
that stimulated emission of radiation could occur in semiconductors by the recombination
of carriers injected across a p-n junction [232]. The first semiconductor lasers appeared in
1962, when three laboratories independently achieved lasing. After that, progress was slow
for several reasons. One reason was the need to develop a new semiconductor technology.
Semiconductor lasers could not be made from silicon where a mature fabrication technology
existed. Rather, they required direct bandgap materials which were found in compound
semiconductors. There were also problems involving high threshold currents for lasing, which
limited laser operation to short pulses at cryogenic temperatures, and low efficiency, which
led to a high heat dissipation. A big stride toward solving the above problems was made in
1969, with the introduction of heterostructures. Then, cw operation at room temperature
became possible because of better carrier and optical confinement. Two factors are largely
responsible for the explosion in the field of semiconductor lasers. One is the exceptional
and fortuitous close lattice match between AlAs and GaAs, which allows heterostructures
consisting of layers of different compositions of AlxGa1−xAs to be grown. The second is
the presence of several important opto-electronic applications where semiconductor lasers
are uniquely well suited, as they have the smallest size (several cubic millimeters), highest
efficiency (often as much as 50% or even more), and the longest lifetime of all existing lasers.

Today, semiconductor lasers include several types of devices. The most important classes
for high-resolution spectroscopy are reviewed in the following.
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4.8.5.1 Heterostructure diode lasers

Even if the p-n homojunction is now relegated to history, it is very useful to illustrate
the general working principle. Referring to results from quantum mechanical treatments
as found in standard textbooks, we first illustrate some basic properties of semiconductor
physics [233]. Semiconductors are solid-state materials where the valence band is filled with
electrons and the conduction band is empty at zero temperature. In contrast to isolators, the
energy width of the gap between these bands is about 1 eV and, hence, at finite temperatures
some electrons are thermally activated into the valence band. In a semiconducting material,
the Fermi energy (i.e., the energy level separating the filled energy levels from the empty
ones) is located in the gap between the conduction and the valence band (close to the middle
of the band gap). Also, we can state that it is possible for many purposes to treat electrons
in the conduction band and holes in the valence band similar to free particles, but with an
effective mass (mn or mp) different from elementary electrons not embedded in the lattice.
This mass is furthermore dependent on other parameters such as the direction of movement
with respect to the crystal axis. The kinetic energy of electrons is measured from the lower
edge of the conduction band upwards, that of the holes downward from the upper edge of
the valence band (Figure 4.76).

Intrinsic semiconductors are rarely used in semiconductor devices since it is extremely
difficult to obtain sufficient purity in the material. Moreover, in most cases one intentionally
alters the property of the material by adding small fractions of specific impurities. This
procedure, which can be performed either during crystal growth or later in selected regions
of the crystal, is called doping. Depending on the type of added material, one obtains n-
type semiconductors with an excess of electrons in the conduction band or p-types with
additional holes in the valence band. In the former (latter) case, a movement of the Fermi
level EF,n (EF,p) from the intrinsic level towards the conduction (valence) band occurs. For
heavily doped material (∼ 1018 atoms/cm3), the levels EF,n and EF,p are pushed into the
conduction and valence bands, respectively (Figure 4.77) [234].

In the GaAs semiconductor, a popular donor impurity is Se from column VI in the
periodic table, which has one more valence electron than As, which is in column V, while
popular acceptor impurity is Zn from column II, which has one valence electron less than
Ga from column III. Note that the doped media by themselves are electrically neutral, that
is, they are not charged positively or negatively, even though they have current carriers.
To see how an inversion is created at a p-n junction, we plot in Figure 4.77 the energy
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FIGURE 4.76
Potential and kinetic energy for a semiconductor in the band representation.
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FIGURE 4.77
Band diagram of heavily doped p and n GaAs.

bands and electron occupation as functions of position in the transverse x direction, i.e.,
perpendicular to the junction plane. This figure shows that, once the two bodies (n-type and
p-type) are brought into contact, in the absence of an applied voltage across the electrodes,
the chemical potential µ (Fermi energy) is constant throughout the entire structure (the
two levels EF,n and EF,p line up through the diffusion of electrons from the n+ to the p+

and vice versa to establish thermal equilibrium) resulting in no net flow of carriers. More
importantly, there is no region containing both electrons in the conduction band and holes
in the valence band, which is necessary to obtain an inverted population. When a voltage V0
is applied so that the p-doped region is positive relative to the n-doped region, the system
is not in thermal equilibrium and the electron energies are altered as shown in the lower
frame of Figure 4.78. The shared chemical potential now splits into two levels separated by
the amount eV0 so that a region originates over which population inversion exists (active
region).

Inside this region, stimulated emission occurs due to electron-hole recombination. At
steady state, the inversion is maintained by the injection of carriers, via the electrodes,
by an external power supply. Lasing occurs when the rate of stimulated emission due to
electron-hole recombination approximately equals the total rate of optical losses. If it is
assumed that the only electrons that recombine are those at the bottom of the conduction
band, then electrons injected at the quasi-Fermi level must lose kinetic energy in order to
reach the band edge. This is achieved by the emission or absorption of phonons so that both
energy and momentum are lost to the lattice. The electrons therefore cascade through the
states to occupy those made empty by recombination (Figure 4.79). Similar arguments apply
to the hole current. Such a cascade process is extremely fast, of the order of a picosecond,
in the extended states of the semiconductor. Therefore, a semiconductor with an inverted
population behaves like a four-level system.

To date, most laser diodes have been made in GaAs, Ga1−xAlxAs, or GaxIn1−xAs1−yPy ,
but other materials will no doubt eventually also be used extensively to obtain emission at
different wavelengths, once the fabrication technology has been developed.

A p-n junction is usually formed by epitaxial growth of a p-type layer on an n-type
substrate. Ohmic contacts are made to each region to permit the flow of electrical current
which is the pumping energy source required to produce the inverted population in the
active region adjacent to the junction. Two parallel end faces are fabricated to work as
mirrors providing the optical feedback necessary for the establishment of a lasing optical
mode (Figure 4.80). To provide feedback for laser action, the two end faces are prepared
by cleavage along crystal planes. Often, these two surfaces are not provided with reflective
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FIGURE 4.78
Electron energy and occupation perpendicular to the p-n junction (a) without an applied
voltage and (b) with a forward biased applied voltage.

coatings; in fact, since the refractive index of a semiconductor is very large (e.g., n=3.6 for
GaAs), there is already a sufficiently high reflectivity (about 32% for GaAs) from the Fresnel
reflection at the semiconductor-air interface [212]. The laser end faces are often referred to
as Fabry-Perot (FP) surfaces.

As already explained, when current is passed through the laser diode, light can be gener-
ated in the resulting inverted population layer by both spontaneous and stimulated emission
of photons. Due to the reflection that occurs at the FP surfaces, some of the photons will
pass back and forth many times through the inverted population region and be preferen-
tially multiplied by stimulated emission. Those photons that are travelling exactly in the
plane of the layer and exactly perpendicular to the FP surfaces have the highest probabil-
ity of remaining in the inverted population layer where they can reproduce themselves by
stimulated emission. Hence, they become the photons of the optical mode or modes that are
established when steady-state operation is achieved at a given current level. The radiation
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FIGURE 4.79
An equivalent four-level scheme for a diode laser with phonon cascade for the electrons and
holes. (Adapted from [234].)

of the lasing mode must also be of uniform frequency and phase to avoid destructive inter-
ference. As a result, a standing wave is produced within the laser diode with an integral
number of half-wavelengths between the parallel faces

m =
2Ln

λ0
(4.235)

where L is the distance between the end faces, n the index of refraction of the laser
material, and λ0 is the vacuum wavelength of the emitted light. The mode spacing is de-
termined by taking dm/dλ0, keeping in mind that semiconductor lasers are operated near
the bandgap where n is a strong function of wavelength. Thus
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n
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FIGURE 4.80
Basic structure of a p-n junction laser.
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For dm = −1, the mode spacing is given by

dλ0 =
λ20
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or equivalently
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(
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n

dn

dν

) (4.238)

Usually, several longitudinal modes will coexist, having wavelengths near the peak wave-
length for spontaneous emission. The mode spacing for a GaAs laser is typically dλ0 ≃ 0.3
nm. In order to achieve single mode operation, the laser structure must be modified so as
to suppress all but the preferred mode. When a laser diode is forward biased and current
begins to flow, the device does not immediately begin lasing. The dynamics can be described
as follows [212]. At low current levels, the light that is emitted is mostly due to spontaneous
emission and has a characteristic spectral linewidth on the order of hundreds of Angstroms
(incoherent light). As the pumping current is increased, a greater population inversion is
created in the junction region and more photons are emitted. The spontaneously emitted
photons are produced going more or less equally in all directions. Most of these start off in
directions that very soon carry them out of the inverted population region where net stim-
ulated emission can occur, and thus are unable to reproduce themselves. However, those
few photons that happen to be travelling exactly in the junction plane and perpendicular
to the reflecting end faces are able to duplicate themselves many times before they emerge
from the laser. In addition, for any given energy bandgap and distribution of holes and
electrons, there is one particular energy (wavelength) that is preferred over others. To first
order, this wavelength usually corresponds to the peak wavelength at which spontaneous
emission takes place in the material. As a result of this preferred energy and direction, when
stimulated emission builds up with increasing current, the emitted radiation narrows sub-
stantially both in spectral linewidth and spatial divergence. As stimulated emission builds
up, the photon density (intensity) of the optical mode increases, thus leading to a further
increase in stimulated emission so that more hole-electron pairs are consumed per second.
Hence, spontaneous emission is suppressed for any given input hole-electron pair generation
rate, because the stimulated emission uses up the generated pairs before they can recom-
bine spontaneously. The transition from non-lasing to lasing emission occurs abruptly as the
current level exceeds the threshold value. As the threshold current is exceeded, the onset of
lasing can be experimentally observed by noting the sharp break in the slope of the optical
power versus pump current curve, which results from the higher quantum efficiency inher-
ent in the lasing process. Also the spectral lineshape of the emitted light abruptly changes
from the broad spontaneous emission curve to one consisting of a number of narrow modes.
Quantitatively, the lasing threshold corresponds to the point at which the increase in the
number of lasing photons (per second) due to stimulated emission just equals the number of
photons lost because of scattering, absorption, or emission from the laser. In conventional
terms used to describe an oscillator, one would say that the device has a closed loop gain
equal to unity. Using this fact, it is possible to develop an expression for the threshold
current as a function of various material and geometrical parameters [212]
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where R is the power reflection coefficient of the FP surfaces, D is the thickness of the
emitting layer, e the electronic charge, ∆ν is the linewidth of spontaneous emission, ηq
is the internal quantum efficiency, α is the loss coefficient (including all types of optical
loss). Equation 4.239 shows that a homojunction laser has a very high threshold current
density at room temperature (Jth ∼ 105 A/cm2). This prevents the laser from operating
as cw at room temperature (without suffering destruction in a very short time). The main
reason for this high threshold is that the photon distribution extends or spreads into the
non-inverted regions on each side of the junction due mainly to diffraction. Thus, there is
a light emitting layer of thickness D, which is greater than the thickness d of the inverted
population layer. For example, in GaAs diodes, d ≃ 1 micron and D ≃ 10 micron. This
fact suggests that the laser diode should be designed so as to make the ratio D/d = 1
for optimum performance. Given these reasons, homojunction lasers only operate cw at
cryogenic temperatures (typically at liquid nitrogen temperature T=77 K).

We have just seen that confining the optical field to the region of the laser in which the
inverted population exists results in a substantial reduction of the threshold current density
and a corresponding increase in efficiency. The method that is now generally adopted for
decreasing the active layer thickness involves blocking the carrier flow with a layer of material
that has a higher bandgap energy than the active region. The resulting structure is called
single heterostructure if only one blocking layer is used, and double heterostructure (DH) if
a blocking layer is used on either side of the active region. With a heterostructure laser, the
thickness of the active region is determined during growth, and active region thicknesses
of 0.1 µm or less can readily be achieved. The physical structure of a typical DH laser in
GaAlAs is shown in Figure 4.81, along with a diagram of the index of refraction profile in
the direction normal to the p-n junction plane [212].

The double heterostructure also provides an optical waveguide for the laser field, result-
ing in a higher confinement factor. Equally important, because of their wider bandgap, the
blocking layers are transparent to the laser field, thus reducing optical losses. The improve-
ment in laser performance due to the introduction of heterostructures is largely responsible
for making semiconductor lasers into practical devices. Indeed, the DH laser has a threshold
current density typically from 100 to 400 A/cm2, and a differential quantum efficiency as
high as 91%. More details both on the physical properties and the fabrication techniques of
advanced heterojunction laser structures can be found in [212].
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FIGURE 4.81
Double heterostructure laser diode. (Adapted from [212].)
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Once lasing is achieved, the next goals are usually to increase output power and lower
laser threshold current. For the double heterostructure laser just described, scaling to a
higher power is a problem. The reason is that both the carriers and the laser mode are
confined to within the same thin region. While we would like the carriers to be in a thin
layer to maximize the density, we would also like the radiation field to be in a thick layer
to ensure that its intensity is below the material damage threshold. It turns out that we
can have both with more complicated heterostructure configurations. One example is the
separate confinement heterostructure (SCH), which involves two barrier layers for carrier
confinement, and two cladding layers for optical confinement. Present state-of-the-art fab-
rication techniques allow one to reduce the active layer thickness even to the dimension of
the order of or less than an electron de Broglie wavelength, which is about 120 Angstrom in
GaAs. We then have a quantum-well laser where the carriers are confined to a square well
in the transverse dimension and move freely in the other two dimensions. The change from
a three-dimensional to a two-dimensional free-particle density of states causes a quantum-
well gain medium to behave differently from a bulk gain medium. A useful property of a
quantum-well layer is that it is thin enough to form stable heterostructures with semicon-
ductors of noticeably different lattice constants. The necessary deformation (strain) in the
quantum-well lattice structure produces stress in the neighborhood of the interface which
significantly alters the band structure. The change in band structure can lead to a reduc-
tion of laser threshold current density. Additional improvements of the semiconductor laser
performance appear possible if one reduces the dimensionality of the gain medium even
further than in the quasi-two-dimensional quantum wells. Instead of having carrier confine-
ment only in one space dimension, one may produce structures where the quantum con-
finement occurs in two or even all three space dimensions. These quasi-one-dimensional or
quasi-zero-dimensional nanostructures are referred to as quantum wires or quantum dots,
respectively. Simple density-of-state arguments indicate that the reduced dimensionality
leads to a more efficient inversion and, hence, to the possibility of ultralow threshold laser
operation. However, more recent studies show that the Coulomb interaction effects among
the charge carriers become increasingly more important for a decreased dimensionality of
the semiconductor structure. These Coulomb effects seem to, at least partially, remove the
advantages gained by the modified density of states. Furthermore, the manufacturing of
quantum-wire or quantum-dot laser structures is still in its infancy. Therefore, we do not
discuss the potentially very interesting quantum-wire or quantum-dot laser devices in this
book. A good starting point to enter this intriguing topic is given, for instance, by [235].

Intensity noise

For a diode laser, which is operated from a low-noise current source and which is isolated
against optical feedback, the technical contributions are usually small compared to other
tunable sources. Furthermore, as a result of their low cavity Q-factor and due to the short
inversion lifetime, the relaxation resonance of diode lasers appears at rather high Fourier
frequencies (typically GHz range) and noise enhancement due to this effect can be neglected
at low Fourier frequencies [236]. The spectrum of the intensity noise density is usually quite
flat in the Fourier frequency range 1 MHz < f < 1 GHz. It displays a peak at the relaxation
frequency position and a certain increase below 1 MHz where thermal and mode-partition
effects become important (see below). The flat portion at intermediate frequencies is about
10-20 dB above the shot-noise level, its actual amplitude critically depending on the number
of modes which contribute to the output signal. A typical value of the relative spectral
intensity noise density is about 10−6 Hz−1.
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Mode partition noise

Although the intensity noise of the total light output of a laser diode is small, this does not
hold in general for an individual mode. All longitudinal modes make use of essentially the
same gain reservoir if we assume a homogeneously broadened gain profile but they are driven
independently by spontaneous emission. Hence, if the instantaneous power of an individual
mode increases, for instance, the sum of the powers of all other modes decreases by almost
the same amount. Due to this cross-saturation effect the power of an individual mode may
fluctuate stronger by orders of magnitude than the total power of all modes. This kind
of excess intensity noise is usually called mode partition noise [236]. Large mode partition
noise levels are predominantly found in diode lasers which oscillate in just a few longitudinal
modes of comparable power. The power modulation index of each of these modes may reach
values not very different from unity in extreme cases. Such strong fluctuation processes can
be understood as some kind of fast switching between these modes, and may have a severe
impact on many kinds of measurements.

Spectral linewidth and frequency noise

Like all lasers, diode lasers exhibit unavoidable, random fluctuations in the phase and the
intensity of their radiation. We previously derived the (Schawlow-Townes) linewidth arising
from spontaneous emission noise, and remarked that for diode lasers, in contrast to most
other lasers, this fundamental source of noise typically dominates technical noise. Indeed,
for diode lasers, correction to the Schawlow-Townes formula, due to a coupling of the laser
phase and intensity, can be significant. By following the treatment given in [169], we now
discuss in greater detail these two corrections to the ST formula. To simplify the derivation,
we assume in the wave equation

∇2E − 1

c2
∂2E

∂t2
=

1

ε0c2
∂2P

∂t2
(4.240)

an electric field and a polarization density of the form

E(z, t) = x̂E(t)e−i(ωt−kz) P (z, t) = x̂P(t)e−i(ωt−kz) (4.241)

If the complex amplitudes E(t) and P(t) vary slowly compared to e−iωt, we can drop
their second derivatives with respect to time in the wave equation and write
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which, in terms of the refractive index n(ω) and the group velocity vg, becomes
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An injection current will change the refractive index of the active medium. We denote
by n0(ω) the index in the absence of a current and by ∆n(ω) = ∆nR(ω) + i∆nI(ω) the
change in the index caused by the injection current, and use n = n0+∆nR+ i∆nI in 4.243.
Taking n0 to be real and k = n0ω/c, and assuming that ∆nR and ∆nI are small enough
that ∆n2

R, ∆n2
I , ∆nR∆nI can be ignored, we replace 4.243 by

Ė = −vgω
c

∆nI(1− iα)E (4.244)

where the enhancement linewidth factor α = ∆nR/∆nI has been defined. Now ∆nI
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causes changes in the real part of the field amplitude E , i.e., it is associated with gain G
and loss γ in the medium

−vgω
c

∆nI =
G− γ

2
(4.245)

such that 4.244 becomes

Ė =
1

2
(G− γ)(1− iα)E (4.246)

which, in terms of the amplitude |E| and phase φ (E = |E|eiφ), provides the two following
equations

d

dt
|E|2 = (G− γ)|E|2 (4.247)

φ̇ = −α
2
(G− γ) (4.248)

Since |E|2 is proportional to the field intensity and therefore to the number of photons
q, we can write these equations equivalently as

q̇ = (G− γ)q (4.249)

φ̇ = −α
2
(G− γ) (4.250)

This exhibits the coupling between the field phase and intensity, the strength of which
depends on the α parameter. Equations do not include effects of spontaneous emission. To
calculate the principal quantity of interest here, i.e., the mean-square phase fluctuation, we
will refer again to Figure 4.22. A change ∆φ

(1)
i in the phase φ due to the i-th spontaneous

emission event is given by

∆φ
(1)
i ≃

1√
q
sin θi (4.251)

Here, the symbol ψ (∆ϑ) is replaced by θi (∆φi). There is another contribution to the
change in φ in a spontaneous emission event, this one due to the phase-intensity coupling
described by Equation 4.250; integrating both sides of that equation from a time before the
i-th spontaneous emission event occurs to a time immediately after, we obtain

∆φ
(2)
i = −α

2
[ln(q +∆qi)− ln(q)] ≃ − α

2q
∆qi (4.252)

if the change ∆qi in the length of the phasor is small compared to the length q of the
phasor before the spontaneous emission. ∆qi can be deduced with reference to Figure 4.22
and the law of cosines: ∆qi = 1 + 2

√
q cos θi. Therefore,
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Then for the change in φ in the i-th spontaneous emission event we write

∆φi = φ
(1)
i + φ

(2)
i = − α

2q
− 1√

q
(sin θi − α cos θi) (4.254)

and the total phase change after N spontaneous emission events is
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where we have dropped the constant phase term −α/(2q), as we are only interested in
phase fluctuations. Then we have
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which is exactly the same as Equation 4.152 multiplied by the factor (1 + α2). This
means that Equation 4.156 can be generalized to

∆νST =
πµhν0(δν)

2

Pout
(1 + α2) (4.257)

The α factor in the above formula is often referred to as the Henry factor αH , as
C.H. Henry first presented a comprehensive theory of the spectral width of a single-mode
semiconductor laser [237]. αH basically depends on the material of the diode laser. Just to
give an idea, for GaAs and λ = 850 nm, α ≃ 4 has been determined. Moreover, the ST
derivation is based on the assumption that the laser output coupling is small, that is, that
the mirror reflectivities are near unity. More generally the quantum lower limit to the laser
linewidth can be written as
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r1 and r2 denoting here the power mirror reflectivities. The K factor, which is ascribed
to excess spontaneous emission noise, approaches unity as r1, r2 → 1, but can be greater
than 1 in other configurations.

Substantial deviations of the frequency noise density from the above white noise level
have been observed in practice both for the low and high Fourier frequency region [236]. For
most diode lasers, one finds a 1/f increase at low frequencies resulting from different effects:
noise of the current source, thermal fluctuations of the carrier density, mode partition noise,
presence of carrier traps in the vicinity of the active layer. Such 1/f noise contribution be-
comes important for Fourier frequencies below a corner which is typically between 100 kHz
and 10 MHz. At high Fourier frequencies, the frequency noise is enhanced above the white
noise floor due to the carrier density dynamics of the LD (relaxation resonance). The reso-
nance manifests itself in the emission spectrum as satellite peaks, which are separated from
the line center by the relaxation resonance frequency (GHz range) and multiples thereof.

Tuning of diode lasers

To find the frequency of the mth longitudinal mode, the phase shifts occurring at the laser
facets have to be taken into account [65]. Often, the facet at the rear of the diode laser is
coated as a mirror of high reflectivity and the laser field can be thought of as a standing
wave with a node at the facet. This is obviously not true for the other facet that serves as
an output coupler with a typical coefficient of reflection of ≃ 35%. Consequently, there is a
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phase shift ϕ of the wave internally reflected from the output facet that is equivalent to an
additional optical path length

mλ = 2n(ν)L+ ϕ
λ

2π
= m

c

ν
(4.260)

or

νm = m
c

2n(ν)L+
ϕc

2π

(4.261)

In the case of small variations of these parameters one can assume

∆ν
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ν
FSR− ∆ϕ

2πν
FSR− ∆L

L
− ∆n

n
(4.262)

with the FSR determined according to Equation 4.238. The first contribution can lead to
mode jumps of about 100 GHz. The phase ϕ in the second term can be varied in particular
by coupling back a part of the light emitted by the diode laser. This effect can be used
for frequency stabilization of diode lasers. On the other hand, spurious radiation reflected
back, e.g., by the window of the housing of the diode laser, by the collimating lens or from
other optical components, can alter the frequency of the laser. The last two contributions
are influenced by the temperature of the laser. For small temperature variations the length
L(T ) of the laser diode is expected to vary linearly with the temperature. The index of
refraction n influences the laser frequency in a complicated way since it varies with the
frequency, temperature, the injection current, and the laser power. Temperature fluctuations
affect the index of refraction via different effects. In general, raising the temperature of
a laser diode increases its wavelength where the monotonic variation is interrupted by
discontinuous jumps [238]. The monotonous variation with a typical value of about −30
GHz/K is due to the length variation and the associated shift of the mode frequency. At
the same time the temperature-dependent lattice constants of crystal and the associated
variation of the band structure result in a shift of the gain profile of the laser. As a result,
mode jumps of about 50 GHz - 100 GHz or more occur and the mean wavelength variation
with temperature over a wide temperature range amounts to about −100 GHz/K. The
wavelength, however, is not an unambiguous function of the temperature but rather shows
hysteresis, depending on whether the temperature is raised or lowered. Besides the ambient
temperature, the temperature of the diode laser is also affected by the injection current.
With a nearly constant voltage drop across the p-n junction the dissipated power, and hence
the temperature increase, is proportional to the injection current. Consequently, a smooth
increase of the injection current results in a red detuning of the frequency of the laser due to
the associated temperature variation. The shift of the frequency of a solitary diode laser as a
function of the injection current varies from a few negative to positive GHz/mA, depending
on the specific device material. Variation in the current, in general, also affects the index
of refraction by the changed number of the free charge carriers. For larger variations of the
injection current and higher modulation frequencies this influence of the current prevails,
which is of particular importance when the injection current is to be used as a fast input
for frequency stabilization.

In light of the above discussion, diode lasers are usually operated under temperature-
stabilized conditions and with low-noise power supply. Valuable examples of temperature-
control circuits and current drivers for diode lasers can be found in [239].

Modulation characteristics

An important advantage of semiconductor diode lasers (SDL) over other laser systems is
that the amplitude and frequency of the emitted radiation can be easily modulated by
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changing the injection current [240]. The output electric field for a current-modulated SDL
can then be written as

E(t) = A[1 +m cos(ωmt)] sin[ωt+ β cos(ωmt+ θ)] (4.263)

where ω/2π is the laser carrier frequency, ωm/2π is the modulation frequency, andm and
β are the amplitude and frequency modulation indices, respectively. The FM modulation
index is typically more than ten times larger than the AM modulation index. In fact, in those
applications where FM modulation is important, the AM modulation can be often ignored.
As far as the FM modulation capabilities are concerned, changes in the injection current
affect both the diode temperature and the index of refraction which depends on the carrier
density. The temperature effect is the dominant one in the low frequency modulation range
(< 105 − 106 Hz), where the frequency change is about 3 GHz/mA. For higher modulation
frequencies, the change in the index of refraction dominates, leading to a smaller variation
of the emission frequency with the injection current. In presence of optical feedback, the
frequency modulation capabilities are strongly modified.

Frequency stabilization techniques for diode lasers

The large linewidth of a solitary diode laser of the Fabry-Perot type cannot be reduced
by negative electronic feedback alone, as the required large servo bandwidth can hardly be
achieved. These difficulties can be overcome by employing an optical feedback loop. The
basic idea in this case is to reduce the intrinsic linewidth of the laser by using a cavity
with a Q much higher than the one of the solitary laser diode. Depending on the elements
and configurations used to accomplish the feedback, several terms have been coined. If an
external reflective element is added to the solitary diode laser, the combined arrangement
is termed External Cavity Laser (ECL), as an external cavity is formed by the reflective
element and the output coupler of the solitary laser. If the output coupler has a low re-
flectivity, e.g., from an anti-reflective coating, the laser cavity is formed by the rear mirror
of the laser diode and the external reflector and, hence, acts as an Extended Cavity Diode
Laser (ECDL). In addition, if a wavelength-selective optical element is used in such a cavity,
this system may also allow a control of the emission wavelength.

Resonant optical feedback - The high sensitivity of diode lasers to optical feedback
is a well-known phenomenon that generally has a disruptive effect on the lasers’ output
frequency and amplitude stability. Under certain circumstances this sensitivity to feedback
can be put to advantageous use. Frequency stabilization of diode lasers by resonant optical
feedback was first realized by [241]. In that work, with the appropriate optical geometry the
laser optically self-locked to the resonance of a separate Fabry-Perot reference cavity. The
method relies on having optical feedback occur only at the resonance of a high-Q reference
cavity. In this case the cavity serves two functions. It provides the optical feedback, which
narrows the laser’s spectral width, and it provides the center-frequency stabilization to the
cavity resonance. Such laser locking system contrasted with the previous systems in that the
laser saw optical feedback only when its frequency matched the resonant frequency of the
reference cavity. A variety of optical locking geometries were tested; Figure 4.82 diagrams
a particularly simple and effective version.

When the confocal reference cavity is operated off axis, it should be viewed as a four-
port device. It is important to note that the two ports on the input mirror side (labeled I
and II) have different output characteristics. The output beam of type I is a combination
of the reflected portion of the input beam with the transmitted portion of the resonant
field inside the cavity. This beam has a power minimum when the laser frequency matches
a cavity resonance. In contrast, the three outputs of type II contain only the transmitted
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FIGURE 4.82
Schematic of one version of the optical feedback locking system. Lens L2 is used to mode
match the laser into the confocal reference cavity. The aperture blocks the unwanted feed-
back of type I while passing the desired feedback of type II. The variable attenuator is used
to study the feedback power dependence of the locking process. The piezoelectric translator
PZT-0 is used to optimize the feedback phase relative to the undisturbed laser. PZT-C
is used to scan the reference cavity and in turn the optically locked laser frequency. A
photodetector (Det.) monitors the transmitted power. (Adapted from [241].)

portion of the cavity resonant field and hence have the desired characteristic of a power
maximum on resonance. The geometry of Figure 4.82 is one possible method of arranging
to have the resonant optical feedback of type II (maximum feedback on resonance) while
avoiding the complications inherent in the directly reflected beam contained in output I. For
a wide range of feedback conditions this system tends to self-lock stably, thus forcing the
laser frequency to match that of the cavity resonance. The original experiment was carried
out using commercial, single-mode, 850-nm GaAlAs lasers without any special preparation
of these devices. The free-running, unperturbed laser linewidths were measured to be ap-
proximately 20-50 MHz. A variety of reference cavities were used for the optical locking
system. These had free spectral ranges varying from 250 MHz to 7.5 GHz and resonance
widths ranging from 4 to 75 MHz. With type II feedback if the laser frequency is far from
matching a reference cavity resonance there is no optical feedback and the laser frequency
scans as usual with changes in the injection current. However, as the laser frequency ap-
proaches a cavity resonance, resonant feedback occurs and the laser frequency locks to the
cavity resonance, even if the laser current continues to scan. The actual frequency range
over which the diode laser locks is a function of the feedback power level and the phase of
the feedback light relative to that of the unperturbed laser. The optical locking of the laser
frequency to the reference cavity resonance can be observed directly with a photodiode,
which monitors the power transmitted through the cavity as a function of the laser current.
In the original experiment, such a signal consisted of an unusual Fabry-Perot transmission
function, which had a flat top and a width approximately 10 times larger than the actual
cavity resonance width of 50 MHz. This shape is a manifestation of the fact that the laser
frequency is not scanning with the laser current but is locking to the frequency of peak
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transmission of the cavity resonance. For low levels of optical feedback the locking range
depends on the feedback power ratio. This is the ratio of the external feedback power, cou-
pled into the laser mode, to the power reflected internally by the output facet. Locking
ranges of a few hundred megahertz were observed with feedback power ratios typically in
the range of 10−4 to 10−5. In order to determine the spectral characteristics of the opti-
cally locked semiconductor lasers, the beat note between two lasers independently locked to
separate reference cavities was also measured. Such analysis revealed a linewidth reduction
by a factor of about 1000 (from 20 MHz to 20 kHz) without any electronic control. One
additional advantage of the optically self-locked laser system is that it shows some reduction
in sensitivity to other sources of optical feedback. Furthermore, the excess intensity noise is
reduced by roughly 10 dB when the laser is optically locked to the cavity. Finally, for many
applications it is important to be able to scan the laser frequency as well as to have a stable
long-term frequency lock. Continuous, narrow linewidth scans of the laser frequency can
be made by synchronizing the sweep of the laser current with that of the reference cavity
length (PZT-C) and the feedback phase (PZT-0). With this synchronization, continuous
scans of several GHz can be made. It is worth noting that it is necessary to control the
laser current only accurately enough that the free running laser frequency is within the
optical-self-locking range. A detailed theoretical description of optical feedback from a FP
interferometer is given in [242]. If we assume a white frequency noise spectral density, the
laser linewidth can be expressed as

∆ν =
∆ν0

[

1 +
√
1 + α2

√
β
Lp
ηld

Fcfp
Fd

]2 (4.264)

where ∆ν0 = (1 + α2)∆ST is the linewidth of the free-running diode laser. Here ηld is
the diode laser optical length, Lp the length of the confocal FPI, α the Henry parameter, β
the power mode coupling factor, Fcfp and Fd, respectively, the confocal FP finesse and the
diode laser cavity finesse. For typical values of Fd = 2, Fcfp = 100, ηld = 1 mm, Lp = 20
cm, α = 4, β = 10−3, one would expect a linewidth reduction of 10−8 and hence a linewidth
of few Hz. In practice, however, the minimal achievable linewidth was measured around
a few kilohertz which can be attributed to the influence of technical 1/f noise at Fourier
frequencies below 1 MHz.

Extended Cavity Diode Laser - In the opposite regime, strong feedback from an ex-
ternal diffraction grating allows one to obtain a reduction by about two orders of magnitude
of the emission linewidth and to achieve a wavelength tuning range of several nanometers
at fixed temperature. The main drawback of this scheme is that it requires the diode facets
to be anti-reflection coated in order to increase the amount of light coupled into the diode.
However, most of diode lasers available on the market are already provided with a high
reflectance coating on the back facet and with a reduced reflectance coating on the output
facet. Two particular arrangements are often used [65, 243, 240](Figure 4.83). The first one,
called the Littrow configuration, employs the reflection grating as the output coupler of
the extended cavity. The grating angle is set such that the first-order reflection coincides
with the incident beam from the diode laser. The zero-order reflection is used to couple
out the output beam and the wavelength of the diode laser is adjusted by a rotation of the
grating. The Littman-Metcalf configuration uses a folded laser cavity. In contrast to the
Littrow configuration, the incident beam and the diffracted beam are no longer collinear.
The diffracted beam is reflected back from a mirror and is directed into the laser diode after
a second diffraction at the grating. Tuning of the wavelength is achieved by rotating the
mirror. Again, the zero-order beam is used to couple out a fraction of the power circulating
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in the cavity. By comparing both configurations, the Littman-Metcalf configuration has the
advantage that the tuning does not change the direction of the output beam. The double
diffraction, however, leads to increased intra-cavity losses and requires gratings of high re-
flectivity. The double pass, on the other hand, leads to an increased selectivity. Another
advantageous feature of the Littman-Metcalf configuration is the free choice of the angle of
incidence independent of the wavelength. Consequently, this configuration allows one to use
a large angle of incidence independently thereby illuminating a large number of grooves of
the grating with the associated better resolution.

More recently, an enhanced Littrow-configuration ECDL has been developed that can
be tuned without changing the direction of the output beam [244]. In this scheme, the
output of a conventional Littrow ECDL is reflected from a plane mirror fixed parallel to
the tuning diffraction grating. Using a free-space Michelson wavemeter to measure the laser
wavelength, the laser can be tuned over a range greater than 10 nm without any alteration
of alignment.

For an ECDL with grating, one can show that the minimum achievable linewidth is
given by

∆νmin =
∆νDL

[1 + (Ld/nLDL)]2
(4.265)
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FIGURE 4.83
ECDL using a grating as output coupler in Littrow configuration (top frame) and an intra-
cavity grating in Littman-Metcalf configuration.
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FIGURE 4.84
Schematic of the external cavity laser using an interference filter (FI) for wavelength selec-
tion: (DL) laser diode, (LC) collimating lens, (OC) partially reflective out-coupler, (PZT)
piezoelectric transducer actuating OC, (L1) lens forming a cat’s eye with OC, and (L2) lens
providing a collimated output beam. (Adapted from [245].)

where ∆νDL, n, and LDL are the linewidth, the refractive index, and the length of the
original laser, whereas Ld denotes the distance between the grating and the laser output
facet.

Being too sensitive to the ambient pressure and optical misalignment (induced by me-
chanical or thermal deformation), the above grating-based ECDL designs are not well suited
for applications where better robustness is required such as, for instance, space-born ones. In
that case, ECDLs incorporating narrow-band dielectric filters can be used [245]. A schematic
of this setup is given in Figure 4.84.

The light emitted from the diode is collimated by an objective lens with short focal
length (3 - 4.5 mm) and high numerical aperture (0.6). The lens is chosen to compensate
for aberrations arising from the diode’s packaging window. A partially reflecting mirror,
here named out-coupler, provides the feedback into the diode. The OC is displaced by a
piezoelectric transducer (PZT) in order to vary the cavity length. A narrow-band high-
transmission interference filter is introduced into the cavity. The filter (90% transmission
and 0.3 nm FWHM) provides the frequency selectivity usually obtained by replacing the
out-coupler with a diffraction grating. With this setup, single mode, tunable operation is
achieved. In addition much better stability against optical misalignment is achieved by
focussing the collimated beam in a cat’s eye onto the out-coupler. Contrary to the Littrow
laser design, reflection and wavelength discrimination are provided by two different elements
so that the amount of feedback can easily be optimized (by varying the reflectivity of the
out-coupler). The diode back facet is coated for high reflection, while the output facet has
no particular high-quality AR coating giving rise to a second cavity formed by the laser
chip itself, but making it inexpensive. Finally, it is worth pointing out that the reduction of
the wavelength sensitivity against mechanical instabilities is not achieved at the expense of
a reduced tunability. Indeed, tuning over 20 nm was demonstrated in the first realization.

Grating enhanced external cavity diode laser

The above approaches lead to complementary results: diode lasers with optical feedback
from a cavity provide the smallest linewidth. For these lasers, the frequency noise at large
Fourier frequencies is strongly reduced. They are therefore well suited for applications where,
e.g. two independent lasers have to be phase locked by means of an optical phase locked
loop. However, their continuous tuning ranges are much smaller than those of ECDLs,
due to the lack of an intracavity element that provides a coarse wavelength pre-selection.
Further, ECDLs are much easier to use and are more reliable than external cavity diode
lasers. For example, extended cavity diode lasers show much better frequency repeatability



Continuous-wave coherent radiation sources 285

than external cavity diode lasers that usually require four dependent actuators to set the
wavelength, i.e., the current, an etalon, the length of the feedback cavity, and the position
of a mirror used to adjust the path length to the external cavity. For an extended cavity
diode laser there are only two actuators (current, grating), which are almost independent,
if only modest tuning ranges (≃ GHz) have to be achieved.

There have been efforts to connect both ideas for combining the advantages of both
approaches and overcoming the drawbacks. A pseudo-external cavity was developed to get
control on the power used for feedback to the laser and the power available for the exper-
iment. In this setup, a polarizing cube was inserted in the external cavity, together with
waveplates, to control power through polarization. Such a laser was used to simultaneously
injection lock a more powerful laser diode emitting around 796 nm and lock a bow-tie cav-
ity for frequency doubling. Continuous frequency tuning in excess of 11 GHz in the UV
allowed scanning of a Ca II transition at 397 nm, while the fundamental radiation was
used to record an Ar I sub-Doppler line [246]. More recently, an approach that truly com-
bines the external cavity and the extended cavity setup has been proposed, referred to as
grating-enhanced ECDL (GEECDL) [247, 248]. It basically consists of a grating diode laser
in Littman configuration with the retro-mirror replaced by an external cavity (finesse 35).
In short, with reference to Figure 4.85, light emitted by the laser diode is diffracted by a
transmission grating. The first diffraction order (95% efficiency) is coupled into a folded
cavity, which provides optical feedback to the laser diode. Obviously, the optical setup con-
stitutes two coupled cavities, which are defined by, e.g., the two mirrors MP and MF and by
MF and the rear facet of the laser diode chip. The coupled cavity configuration necessitates
a relative frequency stabilization (internal stabilization) to guarantee reliable single-mode
operation. Internal stabilization is realized by means of a polarization-sensitive stabilization
scheme (Hänsch-Couillaud type) and actuation of mirror MP. With such an arrangement,
a continuous tuning range of up to 20 GHz was achieved. Also, a short-term linewidth of
about 11 kHz was measured by beating two essentially identical diode lasers. Phase locking
between these lasers was achieved with a servo bandwidth as small as 46 kHz, although an
analog phase detector was used that required sub-radian residual phase error. Despite small
phase error detection range and small servo bandwidth, cycle-slip-free phase locking was
accomplished for typically many 10 min, and the optical power was essentially contained in
a spectral window of less than 20 mHz relative to the optical reference. Due to the excellent
performance this laser concept is well suited for atomic or molecular coherence experiments,
which require phase locking of different lasers to each other, and as part of a flywheel for
optical clocks.

4.8.5.2 Distributed feedback (DFB) lasers

The lasers that have been described so far depend on optical feedback from a pair of re-
flecting surfaces, which form a Fabry-Perot etalon. An alternative approach utilizes DFB
from a Bragg-type diffraction grating. In DFB lasers, the grating is usually produced by
corrugating (by chemically assisted ion beam etching) the interface between two of the
semiconductor layers that comprise the laser (Figure 4.86). This corrugation provides 180◦

reflection at certain specific wavelengths, depending on the grating spacing. The basis for
selective reflection of certain wavelengths has already been explained in Chapter 3: the
vacuum wavelength of light that will be reflected through 180◦ by such grating is

λ0 =
2Λng
l

(4.266)

where Λ is the grating spacing, ng is the effective index in the waveguide for the mode
under consideration, and l = 1, 2, 3, .... Although the grating is capable of reflecting many
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FIGURE 4.85
Schematic of the setup. D, laser diode; COL, collimator; GRT, transmission grating; HWP,
half-wave plate; MC (T=8.2%), MP, MF (both R=99.7%), mirrors define the external cavity
CAV. HCD, balanced polarization detector is part of the internal stabilization; OD, optical
diode. (Adapted from [248].)

different longitudinal modes, corresponding to the various values of l, usually only one mode
will lie within the gain bandwidth of the laser. Thus single-longitudinal-mode operation is
obtained relatively easily in DFB lasers (in fact, because of the difficulty of fabricating a
first order (l = 1) grating, usually a third-order grating is used).

The active region can also be isolated from the grating region by using the distributed
Bragg reflection (DBR) structure. In such a device, two Bragg gratings are employed, which
are located at both ends of the laser and outside of the electrically-pumped active region.
In addition to avoiding non-radiative recombination due to lattice damage, placement of
two grating mirrors outside of the active region permits them to be individually tailored to
produce single-ended output from the laser. In order to achieve efficient, single-longitudinal-
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FIGURE 4.86
Cross-sectional view of an optically pumped DFB laser. (Adapted from [212].)
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mode operation, one distributed reflector must have narrow bandwidth, high reflectivity at
the lasing wavelength, while the other must have relatively low reflectivity for optimal
output coupling. DFB and DBR lasers have unique performance characteristics that give
them distinct advantages over conventional reflective-end-face lasers in many applications.
As already mentioned, first, the spacing between the lth and the l± 1 modes is generally so
large compared to the linewidth of the laser gain curve that only one mode has sufficient gain
to lase. Thus single-longitudinal-mode operation is obtained relatively easily in distributed
feedback lasers. In addition to providing a means of accurately selecting the peak emission
wavelength, grating feedback also results in a narrower linewidth of the optical emission.
The spectral width of the emission line is established by a convolution of the laser gain curve
with the mode-selective characteristics of the laser cavity. Since the grating is much more
wavelength selective than a cleave or polished end-face, the resulting emission linewidth of a
DFB or DBR laser is significantly less than that of reflective-end-face laser. While the single-
mode linewidth of a conventional cleaved-end-face laser is typically about 50 GHz, values
reported for modern DFB and DBR lasers with sophisticated grating structures range from
about 50-100 kHz. Finally, DFB lasers offer improved wavelength stability as compared to
cleaved-end-face lasers, because the grating tends to lock the laser to a given wavelength.
Also, DFB lasers are characterized by an improved temperature stability resulting from the
fact that, while the shift of emitted wavelength in the cleaved laser follows the temperature
dependence of the energy bandgap, the shift in wavelength of the DFB laser follows only
the temperature dependence of the index of refraction.

Fabricated from disparate materials, the market of diode lasers is today very vast. Trying
to summarize, the following main categories are available:

• Fabry-Perot diodes: emission between 370 and 1120 nm, output power up to 300 mW from
ECDL.

• AR-coated diodes: emission between 650 and 1770 nm, output power up to 150 mW from
ECDL, maximum coarse tuning of 100 nm, minimum linewidth (5 µs integration time) of
100 kHz.

With FP diodes, the internal resonator of the diode functions like an etalon, attenuating
certain external modes, and therefore participating in the selection of the external mode.
The effect of the internal resonator is less pronounced when an AR coating is added on the
output facet. AR diodes do not lase without external feedback. The AR coating improves
coarse and mode-hope-free tuning of an ECDL and allows for more stable single-mode
operation. The internal resonator of both FP and AR diodes can be synchronized with
the grating movement by changing the diode current simultaneously. This feed forward
mechanism moves the internal mode structure of the laser diode along with the external
modes, permitting larger mode-hop free tuning.

• DFB/DBR: emission between 640 and 2900 nm, output power up to 150 mW, maximum
coarse tuning of 6 nm, minimum linewidth (5 µs integration time) of 500 kHz. Frequency
tuning is accomplished by thermally or electrically varying the grating pitch. Thermal
tuning offers extremely large mode-hop free scans of hundreds of GHz. Electric modula-
tion, on the other hand, can be employed for fast frequency modulation over a smaller
range (several tens of GHz at modulation frequencies from kHz to MHz).

Whether to choose an external cavity diode laser or a DFB/DBR laser depends on the
individual application. An ECDL is the preferred choice for applications that require a
broad coarse tuning range, or an ultra-narrow linewidth. The main advantage of a DFB
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laser is its extremely large continuous tuning range. Indeed, mode-hope-free (MHF) scans
of several nanometers are routinely attained, while maximum MHF tuning is 50 GHz in
ECDLs.

Finally, it is worth spending a few words on the spatial properties of the output beam.
In most diode lasers it exhibits non-favorable properties, such as a large divergence, high
asymmetry of radius between two perpendicular directions, and astigmatism. It is not always
trivial to find the best design for beam shaping optics, that need to be compact, easy to
manufacture and align, able to preserve the beam quality and to avoid interference fringes, to
remove astigmatism, and with low losses, etc. Typical parts of such diode laser beam shaping
optics are collimating lenses (spherical or cylindrical), apertures, and anamorphic prisms.
Obviously, when enough power is available, the output spatial mode can be eventually
projected into the TEM00 one by propagation through an optical fiber.

Needless to say, at the same time, incessant search for novel materials and development of
more and more effective fabrication technologies is ongoing, aiming at extending the current
spectral coverage of semiconductor diode lasers both to the UV [249] and MIR regions [250,
251, 252, 253]. The radiation sources reported in these works (and references therein) still
suffer, however, from some limitations, particularly either in terms of cw narrow-linewidth or
room-temperature operation. In any case, at the time of writing, accurate characterizations
of their spectral features cannot be found in literature and examples of high-resolution
spectroscopic measurements certainly cannot either.

Some of these cutting-edge sources fall in two other well-established classes of semicon-
ductor diode lasers, namely vertical-cavity surface-emitting lasers (VCSELs), and multiple-
quantum-well (MQW) lasers. After a digression on tapered semiconductor amplifiers, these
will be shortly reviewed in the following two subsections, referring the interested reader to
[234] for a more extensive treatment.

4.8.5.3 Tapered semiconductor amplifiers

When higher output powers are needed, tapered semiconductor amplifiers (TSA) can be
used [254, 255] to amplify the radiation coming from a semiconductor diode laser. In fact,
the double heterostructure, p-n junction diode which is used in semiconductor lasers can also
function as an optical amplifier. The basic mechanism of amplification is that of stimulated
emission, just as in a laser. However, in the amplifier the diode is usually biased somewhat
below lasing threshold so that oscillation does not occur. In this frame, offering high power
combined with good spatial mode, tapered amplifiers have become the most valuable choice.
In addition, when injected with light from a single-mode external-cavity grating-stabilized
diode laser, TSA can retain the narrow spectral features of the injected light. The master
laser beam is coupled into the small single-mode channel at the AR coated rear facet of
the tapered amplifier chip. The single-mode channel acts as a spatial mode filter (like a
single-mode fiber). The close-fitting tapered angle is adapted to the diffraction angle of a
single-mode laser at a specified wavelength. The laser beam is amplified in a single pass
through the tapered region, without losing its high spectral and spatial quality, and leaves
the chip through the AR coated large output facet (Figure 4.87). Since the amplifier tapers
laterally, this leads to an output aperture that is highly asymmetric and to an astigmatic
output beam. The same considerations as for bare diode lasers thus apply.

More recently, a 1-W tapered amplifier requiring only 200 µW of injection power at 780
nm was presented [256]. This was achieved by injecting the seeding light into the amplifier
from its tapered side and feeding the amplified light back into the small side (Figure 4.88).
The amplified spontaneous emission of the tapered amplifier was suppressed by 75 dB. Such



Continuous-wave coherent radiation sources 289

FIGURE 4.87
Geometry of a tapered semiconductor amplifier chip. Such flared geometry maintains a single
transverse mode while boosting the power to the watt level (http://www.toptica.com).

a double-passed tapered laser is extremely stable and reliable: the output beam remains well
coupled to the optical fiber for a timescale of months, whereas the injection of the seed light
did not require realignment for over a year of daily operation.

4.8.5.4 Multiple-quantum-well lasers

In all the lasers previously discussed the dimensions of device structures were large com-
pared to the wavelength of electrons in the device. When the dimensions of the structure
are reduced to the point at which they are approaching the same order of magnitude as
the electron wavelength some unique properties are observed. This is the case with a class
of devices that have come to be known as quantum well devices, which feature very thin
epitaxial layers of semiconductor material. Improved lasers can be made by employing quan-
tum well structures. A good starting point for a detailed theoretical description is provided
by [205], while a more in-depth discussion on specific structures is given in [212]. Here we
just explain the main benefit of quantization in the electron and hole states with simple
arguments. A quantum well structure consists of one or more very thin layers of a relatively
narrow bandgap semiconductor interleaved with layers of a wider bandgap semiconductor,
as shown in Figure 4.89.

The special properties of these very thin layers result from the confinement of carriers
(electrons and holes) in a manner analogous to the well-known quantum mechanical problem
of the particle in a box. In this case, the carrier is confined to the narrow bandgap well by
the larger bandgap barrier layers. The magnitude of the wavefunction of the electron (or
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FIGURE 4.88
Schematic diagram of the TA double-pass configuration. The seed light is delivered to the
setup via a single-mode optical fiber. It then passes through the auxiliary port of a Faraday
isolator, a λ/2 wave plate, a single cylindrical lens (CL), and a collimation lens until it
reaches the tapered region of the TA chip. After its first amplification, it emerges from the
small side, where it is collimated and retro-reflected. A microscope cover slip acts as a beam
splitter (BS) to monitor the return optical power (Pback). After the second amplification,
the light is delivered to the experiment via a polarization-maintaining single-mode optical
fiber. The TA chip is mounted onto a solid copper support, glued onto a Peltier element,
which, in turn, is glued onto a solid base. The aspheric lenses, used for the collimation of
the beam, are epoxied to the same support as the TA. (Courtesy of [256].)

hole) must approach zero at the barrier wall because the probability of finding the particle
within the wall is very small. Hence, the wavefunction must form a standing wave pattern,
sinusoidally varying within the well and damping to near zero at the edge of the barrier. The
set of wavefunctions which satisfy these boundary conditions corresponds to only certain
allowed states for the carrier. The carrier motion is thus quantized, with discrete allowed
energies corresponding to the different wavefunctions. Such quantization reduces the total
number of carriers needed to achieve a given level of population inversion. The free carrier
absorption coefficient, which is proportional to the number of carriers, is also reduced. As
a consequence, the threshold current density is reduced by approximately a factor of 10 as
compared to that of a conventional double heterostructure laser diode. Photon generation
in a MQW laser occurs through electron transitions from the nth energy level (Enc) in the
conduction band to the mth energy level (Emv) in the valence band

~ω = Eg + Enc + Emv (4.267)

where Eg is the band-gap energy.
The advent of quantum well structures has changed the direction of semiconductor laser
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FIGURE 4.89
Multiple-quantum-well (MQW) structure. A typical MQW structure might have about 100
layers. The thickness of the layers is typically 100 Angstrom, or less. The GaAs-AlAs ma-
terial system is particularly convenient for the growth of MQW devices because GaAs and
AlAs have almost identical lattice constants and thus interfacial strain can be avoided. How-
ever, GaInAsP is also a suitable material, as long as the concentrations of the constituent
elements are properly chosen to produce lattice matching. (Adapted from [212].)

research and development over a period of just a few years. Substantial improvements in
threshold current density, linewidth and temperature sensitivity have already been demon-
strated, even as compared to the properties of the DFB laser. Combining DFB and MQW
structures has produced devices in InGaAsP with linewidth-power products of 1.9-4.0 with
minimum linewidths of 1.8-2.2 MHz [257]. In this frame, continuous-wave around-room-
temperature operation of type-I quantum well GaInAsSb/ AlGaInAsSb DFB laser diodes
emitting from 2900 to 3500 nm has also been reported [258]. Such lasers are characterized
by an optical output power > 1 mW and a linewidth < 3 MHz.

It seems certain that continued development of this relatively new device, including the
development of quantum wire and quantum dot lasers, will lead to further improvements in
the operating characteristics of semiconductor laser diodes.
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4.8.5.5 Vertical-cavity surface-emitting lasers

Unlike the commonly known and market dominating edge-emitting structures that emit light
perpendicular to the epitaxial growth direction of the semiconductor layers, the so-called
vertical-cavity surface-emitting lasers (VCSELs) feature surface emission parallel to the
growth direction. This concept, proposed by Iga in 1977 and firstly realized two years later,
offers numerous advantages, such as low power consumption, low beam divergence, high
fiber coupling efficiency due to a circular output beam, and on-wafer testing. Furthermore,
these devices emit inherently longitudinally single-mode due to their small cavity lengths
of only several micrometers and, therefore, large longitudinal mode separation. The typical
device structure of a VCSEL is shown in Figure 4.90. The key elements are an active layer,
two DFB mirrors, and a contact window to allow light to be emitted from the surface.
In the particular device shown, a strain-compensated, quantum-well, 7-layer active region
is sandwiched between two AlGaAs/GaAs mirrors by wafer fusion [212]. Typically, the
active region is a multilayer, double heterostructure diode, as in a conventional Fabry-
Perot end-face laser. However, in this case, lightwaves travel in the direction perpendicular
to the junction plane. They are reflected by top and bottom mirrors which consist of
multilayer structures, alternating layers of materials with differing indices of refraction that
are approximately one half wavelength thick (at the lasing wavelength in the material). For
this spacing, the lightwaves reflected from each interface between layers positively reinforce
waves reflected from all of the others in the reverse direction, so an effective mirror is
formed. The overall reflectivity of the multilayer structure depends on the reflectivity at each
interface and on the number of layers. The reflecting semiconductor layers are usually grown
by either MOCVD (Metal Organic Chemical Vapor Deposition) or and MBE (Molecular
Beam Epitaxy), since sub-micron thickness is required.

The most common wavelength is 850 nm, but devices spanning from blue-green to near-
/mid-infrared have also been realized. Both frequency [260] and intensity [261] noise have
been investigated into a certain detail for 850-nm selectively oxidized VCSELs. In the former
work, the frequency noise power spectral density was measured (against the slope of a
Fabry-Perot resonator) revealing a 1/fn part in the low-frequency range, independent of
the output power, and a white-noise part in the high-frequency range, inversely dependent
of the output power. Considering only white noise, the laser power spectrum, described by
a Lorentzian, exhibited a linewidth ∆νL = πA/Pout with A = 180 MHz·mW. In the latter
experiment, the intensity noise characteristics were deeply explored for both a free-running
and injection-locked (by a low-noise ECDL) VCSEL. In particular, sub-shot noise operation,
resulting from very strong anti-correlations between the transverse modes, was observed.
As expected, injection locking reduced the power of the non-injected modes and improved
the anti-correlations between the transverse modes.

Finally, a microwave frequency reference based on VCSEL-driven dark line resonances
in Cs vapor has also been reported [262]. An external oscillator locked to one of these
resonances exhibited a stability of 1.6 · 10−12 at 100 s. A physics package for a frequency-
reference based on this design can be compact, low-power, and simple to implement.

4.8.5.6 Quantum cascade lasers

Quantum cascade lasers (QCLs) are a special kind of semiconductor lasers, emitting in the
mid- and far-infrared spectral regions, in which laser action takes place between quantized
energy levels in the conduction band [263]. Its innovative conception has been thought to
overcome the severe limitations of standard bipolar semiconductor lasers in long wavelength
emission. Due to the dependence of the emitted light on the material bandgap, extension of
diode-laser operation to the mid-infrared spectral region has proven hard. As the bandgap
shrinks, indeed, diode laser operation becomes more critical in terms of maximum operat-
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FIGURE 4.90
Cross-sectional view of a VCSEL. Typical layers of GaAs and GaAlAs are shown but other
materials such as GaInAsP/InP are often used. In some cases the reflecting layers can be
thin films of dielectrics. (Courtesy of [259].)

ing temperature and temperature stabilization, while undesired effects, like thermal run-
away and thermal recycling, become more and more significant and chemical bonds become
weaker. As an example, semiconductor laser diodes made of lead salts emit in the mid-IR
but, due to the problems highlighted above, they must be operated at cryogenic tempera-
tures and can only provide, at most, mW-level output powers, having a small continuous
single-mode tuning range. Quantum cascade lasers (QCLs) rely on a completely different
process for light emission, independent of the bandgap. They are unipolar devices, as they
use only one type of charge carriers (electrons) which allow light emission by means of quan-
tum jumps between conduction band sublevels artificially created by structuring the active
region in a series of quantum wells. In Figure 4.91 a schematic of the operation principle
for bipolar diode lasers (a) and QCLs (b) is shown for direct comparison.

The schematic energy diagram of an intersubband light emitting device is shown in
Figure 4.92. Although this structure shown cannot provide any laser action (for several
physical reasons), we refer to it in the schematic description of the working principle of a
QCL. Keep in mind that all the following statements are valid for a working structure such
as those shown in 4.93.

The device consists of a series of identical stages made of a quantum well and a barrier.
Once an electron is injected into a quantum well (the gain region) by an external current
driver, it undergoes a radiative transition (yellow arrow) between two sub-levels of a quan-
tum well (level 3 is the upper state of the laser transition and level 2 the lower one). The
energy of the emitted photon (equal to the energy difference between these two states) is
determined primarily by the thickness of the quantum well. This is why QCLs can be de-
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FIGURE 4.91
Schematic of the operation principle for bipolar diode lasers (a) and QCLs (b).

signed, for the same material choice, to emit at any desired wavelength in a wide spectral
range. Following the photon emission, a non-radiative transition (electron-optical phonon
interaction, brown dashed arrow) quickly depletes level 2 and brings the electron to the
ground state (level 1). The population inversion is assured by the longer lifetime of level
3 (τ3 ≈ 1 ps) with respect to level 2 (τ2 ≈ 0.1 ps). The tilting of identical stages provides
the peculiar cascade mechanism: thanks to an appropriate bias voltage the energy levels of
adjacent stages are aligned according to Figure 4.92. Each electron in the ground state can
be recycled by injection into the upper state of the adjacent identical active region through
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FIGURE 4.92
Schematic energy diagram of an intersubband light emitting device.
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FIGURE 4.93 (SEE COLOR INSERT)
Two different QCL structures: a standard three quantum wells on the left and a bound-to-
continuum structure on the right.

quantum tunnelling: here a new photon is emitted, and the process continues along the
whole structure. This cascade effect, with one photon emitted per electron at each of these
steps, is responsible for the high power which QCLs are able to provide.

In a working device the active region is made of several coupled quantum wells provid-
ing the quantum levels involved in laser emission. Active regions are alternated with doped
multi-quantum-well regions called injectors which, when an appropriate bias voltage is ap-
plied, quickly channel the electrons into the next stage. The number of periods (injector +
active region) typically ranges from 20 to 40 for mid-IR devices, but working devices with
up to 100 periods have been demonstrated. In Figure 4.93 two different working structures
(a standard three quantum wells on the left and a bound-to-continuum structure on the
right) are shown.

The first operating QCLs were demonstrated by the group of Federico Capasso, at Bell
Labs, in 1994 [264], more than 20 years after the original idea proposed by Kazarinov and
Suris in 1971 [265]. These first prototypes, based on AlInAs (barriers)/GaInAs (wells) grown
on InP substrate by molecular beam epitaxy (MBE), operated only at mid-IR wavelengths,
in pulsed mode and at a maximum temperature of 90 K. In just over 15 years, thanks
to advancements in band-engineering and waveguide design, operating temperatures well
above 300 K have been achieved, for both pulsed and single-mode cw operation. Output
powers up to 3 W [266, 267] cw and 34 W [268] pulsed have been achieved around room
temperature for mid-IR Fabry-Perot type devices, corresponding to cw power efficiencies
above 15%.

Following the first Fabry-Perot type devices, characterized by multimode operation, the
realization of distributed feedback (DFB) devices [269] has to be mentioned as a fundamen-
tal step towards the development of single-mode, narrow-linewidth QCLs. The diffraction
grating, which helps in selecting a single mode, can be either etched on the upper surface
of the laser ridge or in the material just above the injector-active region stack. A great
advance of DFB QCLs is their mode-hope-free wide tunability, extending over tens of cm−1

by varying operating current and temperature.
Undoubtedly, however, the most important factor in the establishment of QCLs as ver-

satile mid-infrared sources has been played by the development of devices operating near
room temperature [270]. As a consequence, they are much more compact, stable and easy
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to handle than cryogenic ones. One of the advantages of near room temperature operation
is the possibility to deposit effective optical coatings on the laser facets, which allows to
incorporate QCLs in external cavity configurations. Following this approach, in the last few
years, QCLs operating near room temperature with broad gain profiles and mounted in
external cavities have been demonstrated, with tuning ranges up to 200 cm−1 cw and over
300 cm−1 in pulsed operation [271, 272, 273, 274].

Materials

The most used material for mid-IR QCLs is AlInAs/GaInAs (grown on InP substrate), with
a conduction band offset (quantum well depth) of 520 meV. These InP-based devices have
reached extremely high levels of performance in the mid-infrared spectral range, achiev-
ing high power and above room temperature operation, even in continuous wave emission.
Moving to longer wavelengths, to the far-IR (or TeraHertz) region, requires to change both
the heterostructure composition (typically to AlGaAs/GaAs) and its design (bound-to-
continuum structures). AlGaAs/ GaAs QCLs were demonstrated by Sirtori et al. in 1998
[275], proving that the QC concept is not restricted to one material system. Moving to
operating wavelengths significantly shorter than ∼ 5 µm causes the upper laser state to
move up in energy, increasing the rate of electron escape into the quasi-continuum above
the barriers. This process is even more critical when the device works in cw mode near
room temperature and, as the active region can reach temperatures substantially higher
than the laser mount (tens to hundreds of degrees), it represents the main limiting factor
for QCLs temperature performance (maximum operating temperature). This limitation can
be reduced by increasing the barrier height as happens, for example, in heterostructures
with higher Al content in the barriers and lower In content in the quantum wells (strained
AlInAs/GaInAs heterostructures). Recently, QCLs have been developed in material sys-
tems with very deep quantum wells in order to achieve short wavelength emission. The
AlAsSb/InGaAs material system has quantum wells 1.6 eV deep and has been used to fab-
ricate QCLs emitting around 3 µm [276, 277]. The InAs/AlSb material system is attractive
for the development of short wavelength QCLs due to the high conduction band offset of
2.1 eV: working devices in the 2.6− 2.9 µm interval have been demonstrated [278, 279] and
electro-luminescence at wavelengths as short as 2.5 µm has been observed [280]. QCLs may
also allow laser operation in materials traditionally considered to have poor optical prop-
erties such as Si and Ge. Indeed, Si-based QCLs would be key components for a photonic
platform integrated in the complementary metal-oxide semiconductor technology. The ab-
sence, in these materials, of the electron-longitudinal optical phonon scattering, presently
considered the main source of non-radiative intersubband relaxation for electrons in III-V
compounds, should considerably improve carrier lifetimes, leading to larger gain and higher
operation temperature. Theoretical proposals for Si/SiGe and Ge/SiGe quantum cascade
emitters have been made [281, 282] and intersubband absorption in the conduction band of
compressively strained germanium quantum wells bounded by Ge-rich SiGe barriers have
been observed in the THz range [283].

THz QCLs

Emission of QCLs at THz frequency was demonstrated only in 2002 [284]. The importance of
this result goes in parallel to the interest in the far-infrared spectral region; indeed, the filling
of the THz gap has recently raised a wide technological interest, owing to the possibility
of realizing novel systems for security, quality control, and medical imaging operating at
these frequencies. The first device was based on GaAs/AlGaAs heterostructure and showed
single-mode emission at 4.4 THz with output powers of more than 2 mW at relatively low
threshold current densities. Since the QCL tunability scales linearly with emission frequency,
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application to spectroscopy proved to be difficult with the first THz devices. Tuning rates
with driving currents in the range of 4-5 GHz/A were measured for 4.6 THz devices [285],
about two orders of magnitude less than the typical values for mid-infrared QCLs. Several
schemes have been proposed to obtain a wider tunability, in particular by means of extended
cavities [286, 287], demonstrating coarse tuning up to 5.5 cm−1, about 4% of the laser
center frequency. Operation of extended cavity configurations is quite difficult due to the
need for cryogenic cooling (generally close to He-liquid temperatures), that forces use of a
vacuum-tight vessel. Priorities in THz QCLs research include an increase of the maximum
operating temperatures as well as of the emitted power. At present, the maximum operating
temperature of a THz QCL is 195 K [288] and recently approached 225 K in high magnetic
fields [289]. Increasing the operating temperatures up to the range of commercially available
thermoelectric coolers (about 240 K) will make THz QCLs very attractive for a broad range
of potential applications in areas such as biological sensing, pharmaceutical sciences, THz
wave imaging, and hazardous materials detection. Nevertheless, QCLs represent the THz
solid state radiation sources that actually show the best performance in terms of optical
output power which, in the best devices, reaches more than 100 mW (average), still at
cryogenic temperatures. A closely correlated goal to the raise of the power is the assessment
of the electrical-to-optical power conversion efficiency, the so-called wall-plug efficiency. High
power bound-to-continuum QCLs operating at 2.83 THz having a wall-plug efficiency as high
as 5.5% in continuous wave at 40 K were demonstrated [290]. These lasers are expected to
show excellent spectral characteristics. Previous measurements set an upper limit of few
tens of kHz to their fast linewidth [285].

Very recently, following previous studies on mid-IR QCLs [291, 292, 293, 294] that will be
discussed below, experimental studies as well as theoretical calculation of the linewidth in a
QCL emitting at a frequency of 2.5 THz have been performed [295]. The measured intrinsic
linewidth of about 90 Hz represents the narrowest ever observed in any semiconductor laser.
A further step towards metrological applications of THz lasers has been the generation of
a free-space-propagating THz comb, that has already proven useful for phase-locking onto
one of the teeth of a 2.5 THz emitting QCL [296]. An alternative approach for generation
of THz frequencies is based on difference frequency generation in dual-wavelength mid-
IR QCLs [297, 298]. In a typical scheme, a passive non-linear layer, designed for giant
optical non-linearity, is integrated on top of the active region of a dual-wavelength mid-
IR QCL. This approach, although strongly power limited, has the advantage to provide
THz radiation with room temperature mid-IR devices. In a slightly different scheme, THz
radiation is generated inside a QCL starting from IR coherent radiation [299]. A pioneering
hybrid approach was based on mixing of an IR QCL and radiation from a gas CO2 laser,
at a wavelength around 8 µm, in a MIM diode. Although a power of only a few hundred
pW was generated, application to spectroscopy was demonstrated, by recording two lines
of hydrogen bromide [300].

Finally, further information concerning both specific structures and applications of THz
QCLs are reviewed in [301, 302].

Linewidth in QCLs

Since their first demonstration, QCLs have been expected to exhibit peculiar noise charac-
teristics and high intrinsic spectral purities. Although several theoretical [303, 304, 305, 306]
and experimental [304, 307, 308, 309] works have explored the frequency noise of QCLs, only
recently a thorough study of their intrinsic noise has been possible [295, 291, 292, 293, 294]
due to some stringent requirements: this noise, indeed, is often overwhelmed by the contri-
bution coming from the QCL current source, so that an ultralow-noise current driver (along
with a sensitive and fast enough detector) is needed to single out the elusive intrinsic noise.
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As previously discussed, the Schawlow-Townes formula describes the linewidth for any
laser. However, due to its generality, such formula does not contain the specific parame-
ters (and thus the inner physical mechanisms) that determine linewidth for each specific
device. Since the advent of diode lasers in 1962, 20 years of theoretical and experimen-
tal activity [310, 311, 312] were needed to formalize the theory of their linewidth [237].
As already detailed, the Schawlow-Townes equation was corrected by the so-called Henry
linewidth enhancement factor αH . The latter, in essence, accounts for the effect of refractive
index variations caused by electron density fluctuations, and finally explains the excess line
broadening shown by bipolar semiconductor lasers. QCLs, however, are intersubband-based
devices and their inner physical mechanisms are very different from bipolar lasers. In 1994,
an αH factor close to zero was predicted for QCLs, because of their negligible refractive
index variations at the peak of the gain spectrum [264]. This assumption was confirmed by
several experiments [313, 314, 315]. The pioneering theoretical work by Yamanishi et al.
[306], based on rate equation analysis of a three-level model of a QCL, reformulated the
Schawlow-Townes equation in terms of the characteristic parameters of the QCL medium
and the operating conditions. The prediction of an intrinsic linewidth several orders of
magnitude smaller than that of bipolar semiconductor lasers operating at the same driving
current was subsequently verified by direct experimental observation [291]. A subsequent
paper clarified the main differences and analogies, in terms of power noise spectral den-
sity, between bipolar and cryogenically cooled intersubband lasers [292] (see Figure 4.94).
Three main trends have been highlighted in the measured FNPSD of the QCL: a 1/f trend
dominating at low frequencies (curve B), a cut-off at about 200 kHz (curve C), and the
final flattening onto the white noise level (trace A). Besides fluctuations in the refractive
index of the medium (curve A), taken into account by the Henry factor, current fluctuations
(and hence temperature fluctuations) also arise in bipolar semiconductor lasers (trace D).
This latter contributes much to the total noise at low frequencies, giving rise to curve E in
the inset. In QCLs, these two latter mechanisms are ineffective. The former is suppressed
by the very small Henry factor, while the latter no longer exists because of the almost in-
stantaneous recovery of electron density fluctuations to the steady-state value (due to the
very fast non-radiative relaxation channels), which makes the corresponding current fluctu-
ations negligibly small in the low frequency range. QCLs, instead, show a 1/f noise at lower
frequencies, for which an explanation has recently been suggested [292]. Imperfections in
QCLs’ quantum wells would cause current fluctuations internal to the heterostructure: they,
in turn, would generate temperature fluctuations, contributing to the frequency noise. In
this frame, the slope change observed in the FNPSD (curve C) is due to a thermal cut-off.

For a more intimate understanding of these features, it is important to recall the main
physical differences at the basis of lasing in bipolar and QC lasers. The main channel that
depopulates the upper laser level in a QCL is non-radiative, with a typical decay time τnr ∼
ps , i.e., about 3 orders of magnitude faster than the radiative channel τr ∼ ns (see Figure
4.95). This implies that the threshold in a QCL is much higher than that of a bipolar laser,
where the non-radiative channel is negligible. Now, the intrinsic linewidth is defined as the
ratio of the spontaneous emission rate (wr) to the stimulated emission rate (ws) effectively
coupled into the lasing mode, and

wr ∝ β
N3

τr
(4.268)

ws ∝ β
(N3 −N2)

τr
Nph (4.269)

where N2, N3 are the electronic populations of levels 2, 3 respectively, Nph is the number
of photons in the laser cavity at threshold, β is the coupling coefficient of the spontaneous
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FIGURE 4.94
Expected contributions to the frequency-noise power spectral density (FNPSD) in a QCL.
The measured FNPSD is also plotted and compared with the typical noise figure of a diode
laser (dashed line and inset).

emission into the lasing mode (see [306] for a complete discussion). Therefore, when a
QC starts lasing, the number of photons is several orders of magnitude higher than in
a bipolar laser just above threshold and this corresponds to a predominant stimulated
emission and thus to a narrower intrinsic linewidth. It is worth noting that, in general, QC
lasers can operate at higher currents than bipolar ones, generally becoming unstable when
the operating current is much larger than the threshold (typically much lower than that in
QCLs): this is another way to understand the narrower intrinsic linewidth in QCLs. Finally,
very recent studies [293, 294] show that frequency noise power spectral density and intrinsic
linewidth in QCLs are much reduced operating them close to room temperatures rather
than cryogenically cooled.

FIGURE 4.95
In a bipolar diode laser a moderate pumping (P) is sufficient to start lasing (left). In a QCL,
due to its large non-radiative decay channels, a much larger pump is needed (right). This
mechanism is responsible for the high thresholds of QCLs and, consequently, of the much
larger number of photons present in the laser cavity with respect to standard diode lasers.
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4.8.5.7 Interband cascade lasers

Interband cascade lasers (ICLs) differ from both conventional and cascaded semiconductor
radiation sources in that population inversion is essentially created by carriers which are
produced internally, at semimetallic interfaces (SMIF) within each stage of the active region
(Figure 4.96) [316]. Such internal generation is aided by the alignment of the conduction
band (CB) minimum in InAs at an energy ∼ 0.2 eV below the valence band (VB) max-
imum of GaSb. The applied electric field induces a transition from a positive energy gap
(procured by quantum confinement) back to the semimetallic alignment with band overlap
ESM (V ), which allows the electron (hole) states in the InAs (GaSb) QW to be populated
in thermal quasi-equilibrium. As the generated carriers are swept away from the junction
by the external electric field, with holes (electrons) flowing to the left (right), in order to
maintain quasi-equilibrium, equal numbers of carriers must be replenished continuously at
the SMIF. Ideally, the single-stage voltage drop, i.e. the separation between the quasi-Fermi
levels (QFLs) in adjacent stages, must be such as to produce an optical gain which compen-
sates the photon loss in the cavity, simultaneously generating internally a quasi-equilibrium
carrier density. While the former condition is a characteristic of the active QWs, the latter
depends on the design and doping of the (multiple) electron and hole QWs on both sides of
the SMIF. Ultimately, when joined to any carriers brought about by extrinsic doping, the
resulting electron and hole densities determine the desired QFL separation. To go into more
detail, with reference to Figure 4.97, let us consider the typical multiple QW. It consists
of a chirped InAs/AlSb electron injector, two active InAs electron QWs of the next stage
on one side of the SMIF, and a GaSb/AlSb hole injector (whose role, apart from entering
the voltage-balancing condition, is to provide a barrier to direct the electron current flow
that bypasses the VB) plus an active GaInSb hole QW on the other. In such analysis,
carrier thermalization on both sides of the SMIF is assumed to be much faster than the
carrier lifetime. Since the injected electrons dwell mostly in the injector, whereas almost all
the injected holes move to the active GaInSb QW, the active hole population considerably
outnumbers that for electrons. In this scenario, the quasi-equilibrium electron and hole pop-
ulations in the active QWs are only partially rebalanced, provided that Auger recombination
and free-carrier absorption processes are much weaker for holes than for electrons. Then, full
rebalancing can be accomplished by n-doping the electron injector QWs much more heavily
(5 · 1018 cm−3). As experimentally confirmed, this substantially lowers the lasing threshold
Jth and the power density relative to earlier ICL devices. In particular, values of Jth as
low as 170 A cm−2 have been demonstrated in [316], falling within the typical range for
near-infrared diodes. By requiring nearly two orders of magnitude less input power to oper-
ate in continuous-wave, room-temperature mode than the QCL, the ICL represents a very
attractive option for spectroscopic applications asking for low output power and minimum
heat dissipation at wavelengths from 3 µm to beyond 6 µm. While referring the interested

reader to [316] (and references therein) and to [317] for a more comprehensive discussion
on ICLs, in the remainder we focus on their spectroscopic applications.

In this respect, operation of cw, room-temperature ICLs in external-cavity configura-
tion has also been demonstrated; in particular, tuning across the 3.2-3.5 µm wavelength
range was achieved at a maximum power of 4 mW [318]. Formerly, a trace-gas sensor
based on a pair of liquid-nitrogen-cooled ICLs was developed for simultaneous detection
of formaldehyde and ethane; minimum detection limits of 3.5 ppbv and 150 pptv were ob-
tained, respectively, with a 100-m astigmatic Herriott multi-pass cell and 1-s integration
time [319]. More recently, a DFB ICL (operated under liquid-nitrogen cooling at 86 K)
with an output power of 4 mW (at a current of 25 mA) was used in an off-axis integrated-
cavity-output-spectroscopy experiment for real-time breath ethane measurements; a detec-
tion sensitivity of 0.48 ppb/Hz1/2 was achieved [320]. In addition, measurements of the
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FIGURE 4.96
Schematic diagram of the carrier injection process in an ICL. The black vertical lines point
the location of the SMIF within each stage. The energy alignment for adjacent InAs and
GaSb QWs in equilibrium and under bias is also shown: the solid blue and red lines represent
the conduction and valence-band edges, respectively, in bulk materials. In the absence of a
bias, quantum confinement induces an energy gap Eg between the lowest conduction and
highest VB states (blue and red dotted lines, respectively), whereas, under bias, a semi-
metallic overlap ESM is imposed that procures the generation of equal electron and hole
densities, represented by the solid blue and open red circles, respectively. The applied field
also causes both carrier types to flow away from the interface (arrows), requiring that they
be replenished continuously to preserve quasi-thermal equilibrium populations. (Courtesy
of [316].)

relative intensity noise for an ICL were performed as a function of laser current at 30 and
100 K; such characterization revealed that: away from threshold, the laser primarily ex-
hibits a frequency-independent photon noise spectral density in agreement with theory; at
threshold, the observed photon noise spectral density exhibits large fluctuations at closely
spaced discrete frequencies; thermal effects at 100 K result in a large increase in the photon
noise above threshold [321].
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FIGURE 4.97 (SEE COLOR INSERT)
Illustrative band diagrams of the complete ICL active core. Probability densities and zone-
center energies (indicated by the wavefunction zero points) for some of the most important
subbands are superimposed. The probability densities for the active electron (hole) subbands
are indicated with blue (red) lines, while those for the injector-electron (hole) subbands are
indicated with wine-coloured (green) lines. The blue (red) arrows indicate the direction of
the electron (hole) motion in the structure. The dashed lines indicate the position of the
quasi-Fermi levels in each stage. (Courtesy of [316].)

However, neither high-resolution spectroscopic measurements nor accurate characteri-
zations of frequency noise have been reported so far.

4.8.6 Nonlinear laser cw sources

In 1961, by focusing the 694-nm-wavelength pulses emitted from the newly invented ruby
laser onto a quartz plate, Franken discovered that ultra violet light of wavelength 347 nm
was emerging from the crystal [166]. This observation suggested that, by virtue of some
nonlinear phenomenon taking place in the quartz, the intense excitation light of frequency
ω had generated the second harmonic, at frequency 2ω. Such a discovery marked the birth
of Nonlinear Optics.

A useful approach for a quantitative treatment of non-linear optical phenomena, taking
place in a medium that is perfectly transparent to the propagating radiation, is to write
down the equations which relate the polarization P to the electric field E. Consider that,
as a thumb-rule, the equivalent electric field binding an outermost electron in a dielectric is
on the order of 1 GV/m. Therefore, for electromagnetic fields much lower than this value,
propagating in a dielectric, it is possible to expand P in a power series of the applied electric
field, E. Thus, neglecting the frequency dependence (small dispersion), the expansion takes
the form

Pi = ε0
∑
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where χ(2)
ijk (χ(3)

ijkl) is a real rank 3 (4) tensor, which characterizes the second-order (third-
order) non linear susceptibility, and so on. For typical laser intensities, successive terms in
the expansion of Equation 4.270 drop off fast, so that it generally suffices to retain up to
the second-order term, unless χ(2) happens to be zero, in which case the third-order term
in χ(3) must be called into question. Next, consider the case in which the point r in the
material is subjected to a superposition of two laser fields (i.e., two monochromatic fields
of frequency ω1 and ω2) propagating along the direction z

E1(t) = E1ei(k1z−ω1t) + c.c. (4.271)

E2(t) = E2ei(k2z−ω2t) + c.c. (4.272)

Following a standard procedure contained in all non-linear optics textbooks (see for in-
stance [322, 166]), by substitution of E(t) = E1(t) + E2(t) into Maxwell’s equations and
under suitable approximations, one finally obtains an equation relating the amplitude of
the generated field E3 to the components Pω3

NL

dE3
dz

= i
ω3

n3c
χ(2)E1(z)E2(z)ei∆kz (4.273)

where n2
3 ≡ n2(ω3) = 1 + χ(1)(ω3) is the refractive index seen by the generated field (the

medium is supposed to be homogeneous and isotropic at first order) and

• ω3 = ω1 + ω2, χ(2) ≡ χ(2)(−ω3;ω1, ω2), and ∆k = k1 + k2 − k3 for the sum frequency
generation (SFG) process. A particular case is represented by second harmonic generation
(SHG) for which ω1 = ω2 = ω.

• ω3 = ω1−ω2, χ(2) ≡ χ(2)(−ω3;ω1,−ω2), and ∆k = k1−k2−k3 for the difference frequency
generation (DFG) process.

Since the amplitude of the wave at ω3 is zero at the entry face of the non-linear crystal,
we have: E3(z = 0) = 0. Also, due to the weakness of the non-linear effect, to a first
approximation, the intensity of the pump beams does not change over the length of the
medium; in other words, we can take E1 and E2 to be constant. Then, integration of Equation
4.273 between z = 0 and z = L yields

|E3(L)|2 =

(

2ω3χ
(2)

n3c

)2

|E1|2|E2|2
[

sin∆k · (L/2)
∆k

]2

(4.274)

for the intensity of the ω3 wave leaving the non-linear crystal. According to this equation, for
a given mismatch ∆k, the non-linear conversion process will exhibit maximal efficiency for
a crystal of length Lopt = π/|∆k|; the corresponding optimal intensity will be proportional
to

|E3(Lopt)|2 =

(

2ω3χ
(2)

πn3c

)2

|E1|2|E2|2L2
opt (4.275)

Obviously, in order to exploit an optimal non-linear crystal that is as long as possible, one
has to make ∆k as small as possible. The perfect phase matching condition ∆k = 0 can be
expressed as

k3 = k1 ± k2 (4.276)

for the SFG and DFG process, respectively. Note that in the DFG case, the energy and
linear momentum conservation relations can be re-written as ω1 = ω3+ω2 and k1 = k3+k2,
respectively. These latter are formally identical to the SFG conditions, provided that indexes
1 and 3 are inter-changed. So in the following considerations, we can just refer to one of these
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FIGURE 4.98
SFG process in a birefringent non-linear crystal of type I.

two processes, say the SFG one. Since we must have ω3 = ω1+ω2, it would seem impossible
to achieve perfect phase matching in a dispersive material, where ki = n(ωi)(ωi/c) and the
refractive index n(ω) is a monotonic (increasing) function of ω. However, we can overcome
this obstacle by employing a birefringent material, where the refractive index depends on the
polarization. For example, in the case of a type-I non-linear crystal, two along-x-polarized
waves at ω1 and ω2 originate a wave at ω3 which is polarized along y (the waves propagate
along z, as shown in Figure 4.98). Thanks to the birefringence, the refractive index is
different for the waves polarized along x (ordinary index no) and for the wave polarized
along y (extraordinary index ne). To fix ideas, in the case of SFG we have

ne(T, ω3)
ω3

c
= no(T, ω2)

ω2

c
+ no(T, ω1)

ω1

c
(4.277)

To simplify, let us consider the particular case ω1 = ω2 = ω for which ω3 = 2ω. In this case
(SHG), Equation 4.277 requires ne(T, 2ω) = no(T, ω) which can be satisfied by a proper
choice of the crystal temperature, provided that ne(ω) < no(ω) (negative crystals). An ele-
gant, alternative approach is represented by the quasi-phase matching (QPM) technique, in
which several slices of non-linear medium are placed end-to-end, each slice being of length
π/|∆k|, but with the signs of the coefficients χ(2) alternating from one piece to the next.
Essentially, the idea is to allow for a phase mismatch over some propagation distance, but to
reverse the non-linear interaction at positions where otherwise the interaction would occur
with the wrong conversion direction. In fact, momentum is conserved in QPM through an
additional momentum contribution corresponding to the wavevector of the periodic struc-
ture (see for instance [323, 324] and references therein). In other words, phase matching is
obtained if for some integer m, the following condition is satisfied

k3 = k1 + k2 +m
2π

Λ
→ n(T, λi)

λ3
=
n(T, λ1)

λ1
+
n(T, λ2)

λ2
+

1

Λ
(4.278)

where n(T, λ) can be calculated by using the Sellmeier equation. Thus, given the pump
wavelengths λ1 and λ2 (which sets λ3 through energy conservation λ−1

3 = λ−1
2 + λ−1

1 ,
Equation 4.278 can be satisfied by properly choosing the temperature and the modulation
period Λ of the crystal. When possible, first-order QPM (m = 1) is exploited, as the
intensity of the generated field scales as 1/m2. In contrast to birefringent phase matching,
by appropriate selection of Λ, QPM materials can be engineered for phase matching at
any wavelengths within the transparency range of the crystal. This method enables a free
choice of polarization of the interacting waves and the exploitation of the largest non-linear
susceptibility component. Moreover, since QPM does not rely on birefringence, it can be
used in isotropic materials with a high optical non-linearity.

The most popular technique for generating QPM non-linear crystals is periodic poling
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of ferroelectric materials such as lithium niobate (LiNbO3), lithium tantalate (LiTaO3),
and potassium titanyl phosphate (KTP, KTiOPO4) by ferroelectric domain engineering.
Here, micro-structured electrodes are used to apply a strong electric field to the crystal for
some time, so that the crystal orientation and thereby the sign of the nonlinear coefficient
are permanently reversed solely below the electrode fingers. Typical poling periods range
between 5 and 50 µm.

Starting from two cw pumping lasers, a SFG/DFG process can be used to realize a cw
coherent radiation source operating at a higher/lower frequency (with respect to that of the
pumping lasers). Therefore, up-conversion represents an effective way to extend the spectral
coverage of laser sources to the ultraviolet region, whereas down-conversion performs the
same task for the infrared. Another relevant second-order down-conversion non-linear optical
process is that of optical parametric oscillation (OPO), which converts an input laser wave
(the pump) into two output waves of lower frequency (idler and signal). In this case, the
energy-conservation condition is expressed as ωp = ωs + ωi.

4.8.6.1 Sum frequency generation

As an example of SFG, we describe here the generation of cw ultraviolet radiation in period-
ically poled crystals [325]. Practical limitations to this approach are set by the availability
of transparent materials at the considered wavelengths and by the ability to realize reg-
ular periodic structures. LiNbO3 and KTP, widely used in the visible and IR range, are
not transparent in the UV range. Lithium tantalate (LiTaO3) is a valid alternative for UV
generation, as its transparency window extends in the UV range, and has a nonlinear con-
stant d33 similar to that of KTP. Also, LiTaO3 is less sensitive to photo-refractive damage
and green induced infrared absorption with respect to LiNbO3. This latter feature makes
LiTaO3 more suitable than LiNbO3 when high power densities are involved. However, the
first-order QPM condition for efficient generation of UV sum frequency would require a pol-
ing period of about 2 µm. At present, such small periods cannot be easily realized, especially
with a depth of at least several hundreds of micron, that is the typical beam dimension.
Thus, a valuable option is to use a PPLT crystal with a poling period corresponding to
a third-order QPM condition. The experimental apparatus is shown in Figure 4.99. The
laser source is a semiconductor laser with an Ytterbium-doped fiber amplifier emitting up
to 10 W of cw radiation around 1064 nm, with a linewidth of less than 300 kHz. In a first
stage, second harmonic at 532 nm is generated. For this purpose, a temperature-controlled,
1%-MgO-doped, 30-mm-long, 1-mm-thick z-cut stochiometric MgO:LiTaO3 crystal with a
7.97 µm period is used. The crystals’ ends are antireflection coated for both fundamental
and second harmonic. With the PPLT crystal an optimized SH power of 1.4 W with 8.5
W of pump power, with a resulting efficiency of 16.5% (0.65% W−1 cm−1), is obtained.
In the second stage, the outcoming infrared and green light interact in a second non-linear
crystal (with waists of 90 µm for the fundamental beam and 60 µm for the second harmonic
one). The latter crystal, identical to the first one except for the poling period, exploits
third-order QPM which can be met with a period of about 6.5 µm, albeit at the cost of
about a factor-of-ten decrease in efficiency. The generated UV radiation is monitored by a
calibrated silicon photodiode and, in the most favorable case, a maximum UV power of 7
mW is measured. This is approximately one order of magnitude lower than what is expected
for third-order QPM in PPLT, assuming d33 = 13 pm/V. Such discrepancy can be largely
attributed to the unbalance in the duty cycle. In fact, the efficiency of m-th order QPM is
proportional to sin2(mπD), being D the duty cycle. Therefore, third-order QPM has three
optimal values for D(1/6, 1/2, and 5/6), while the efficiency is null for D = 1/3 and 2/3.
Indeed, the estimated mean duty cycle is very close to the worst cases.
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FIGURE 4.99
Schematic view of experimental setup. HWP, halfwave plate; PBS, polarizing beam split-
ter; OSA, optical spectrum analyzer; L, lens; DP, dispersive prism. SHG and SFG are
temperature stabilized periodically poled crystals for second harmonic and sum frequency
generation, respectively.

The above approach is particularly favorable when high spectral purity and tunability
are required for the UV radiation. Indeed, it can exploit the robustness of high-performance
and powerful lasers, such as solid state or fiber lasers, and naturally transfer, by virtue of
the coherent character of non-linear optical processes, their advantageous spectral features
to the final frequency. As we will see in Chapter 7, narrow-linewidth cw UV laser sources
are crucial for high-resolution spectroscopy of atoms and for laser cooling and trapping.

4.8.6.2 Optical parametric oscillators

In some respects, an OPO is very similar to a laser: first, it makes use of a kind of laser
resonator (but relying on optical gain from parametric amplification in a non-linear crystal
rather than from stimulated emission); second, it exhibits a threshold for the pump power,
below which there is only some parametric fluorescence. Let us start by considering a non-
linear crystal illuminated by an intense wave (the pump) at frequency ω3 and a weak
wave (the signal) at ω1; then, we assume that the phase-matching condition is satisfied for
ω2 = ω3−ω1 [166]. In this case, the signal is amplified while another wave, the idler, appears
at ω2. For a mathematical treatment, we rewrite Equation 4.273 and the corresponding ones
for the fields E2 and E1

dE3
dz

= i
ω3

n3c
χ(2)E1(z)E2(z) (4.279)

dE2
dz

= i
ω2

n2c
χ(2)E3(z)E∗1 (z) (4.280)

dE1
dz

= i
ω1

n1c
χ(2)E3(z)E∗2 (z) (4.281)

Under the constant pump approximation, Equations 4.280 and 4.281 imply that

d2E2
dz2

=

(

χ(2)|E3|
c

)2
ω1ω2

n1n2
E2 ≡ γ2E2 (4.282)

For the initial conditions E2(z = 0) and E1(z = 0) = E1(0), the solution is

E2(z) = i

√

ω2n1

ω1n2

E3
|E3|
E1(0) sinh(γz) (4.283)

E1(z) = E1(0) cosh(γz) (4.284)

Thus, as anticipated, the signal wave E1 is amplified, while a complementary wave E2,
referred to as the idler, also appears. The usefulness of such a parametric amplification
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FIGURE 4.100
Layout of an optical parametric oscillator. The optical cavity can be resonant for just the
signal beam or for both the signal and idler beams. (Adapted from [166].)

process mainly resides in its rather broad tunability range (obtained by adjusting the phase-
matching condition). Next, focusing solely on the non-degenerate case (where signal and
idler have different frequencies and the parametric interaction can amplify a signal field of
any phase), we will consider the situation which originates when a parametric amplifier is
placed inside a resonant cavity. The OPO is shown schematically in Figure 4.100. It consists
of a nonlinear crystal of length L, in which the parametric interaction takes place, inserted
within an optical cavity of length Lcav, assumed to be a ring cavity. This cavity is totally
transparent at the wavelength of the pump beam. The two most typical configurations are:

• Singly resonant OPO: the cavity is transparent at the wavelength of the pump and idler
beams. While M1, M2 and M3 are perfectly reflecting mirrors, the output mirror Ms

(transparent for the pump and idler) exhibits low transmission at the wavelength of the
signal beam. Let’s denote with R and T the reflection and transmission coefficients for
the intensity at this mirror.

• Doubly resonant OPO: still transparent at the wavelength of the pump beam, the cavity
is now resonant for both the signal and idler beam. The mirrors M1, M2 and M3 are
perfectly reflecting, while the output mirror Ms is weakly transmitting at frequencies ω1

and ω2.

In the following we restrict ourselves to the first case [166]. The behavior of a singly-resonant
optical parametric oscillator (SR-OPO) is, in several but not all aspects, analogous to that
of a homogeneously broadened laser. As for a laser, an oscillation is only set up if, for each
round trip, the parametric gain dominates losses due to transmission at the output mirror.
So, just as happens for the laser, there will be an oscillation threshold, governed here by the
intensity of the pump beam. In principle, oscillation takes place on the cavity mode which
experiences the highest gain, and only on that. Indeed, when oscillation starts, the pump
power is depleted, the gain is lowered to the value of the loss of the cavity mode closest to
the peak of the parametric gain curve, and the oscillation of other modes is thus inhibited
[322]. Nevertheless, mainly due to mechanical instabilities of the cavity, frequent hops take
place between different longitudinal modes among the tens (or hundreds) which lie within
the gain profile [326]. Mode-hops can be successfully prevented increasing the free spectral
range of the OPO resonator or making use of intra-cavity, wavelength-selecting elements,
such as etalons, which restrict the number of cavity modes which can experience gain, thus
letting the OPO operate at a single frequency [327]. Usually, low reflectivity (and hence
low finesse) etalons are used, in order to reduce losses inside the cavity. Now, by virtue of
Equation 4.284, the signal field leaving the crystal can be expressed as

E
(+)
1 (z = L) = E1(0)ein1ω1L/c cosh γL (4.285)
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while the signal field that has reflected off the output mirror and propagated once around
the cavity is given by

E
(+)
1 (Lcav) =

√
RE1(0)eiφ1 cosh γL (4.286)

where φ1 = [Lcav + (n1 − 1)L](ω1c) is the phase accumulated by the signal during the
propagation over a complete cavity round trip. As for a laser, the conditions for steady-state
oscillation are derived by imposing that, after one cavity round trip, the field is reproduced in
both phase and amplitude; then, in complex value, we have E(+)

1 (Lcav) = E
(+)
1 (0) = E1(0),

whereupon √
Reiφ1 cosh γL = 1 (4.287)

which implies the two real conditions

cosh γL = 1 (4.288)

(n1 − L)L+ Lcav = mλ1 (4.289)

with m an integer. The first (second) condition expresses the equality of gain and loss (the
resonant character of the cavity for the signal wave). For a low-intensity pump (γL ≪ 1)
and a highly resonant cavity (

√
R ≃ 1 − T/2), the first condition yields the pump beam

intensity at the oscillation threshold

|E3|2 =
n1n2c

2

ω1ω2

2π

FL2(χ(2))2
(4.290)

where F = 2π/T is the cavity finesse. Under typical experimental conditions, this is on the
order of a few watts. When the pump exceeds this threshold, the energy transferred on each
trip around the cavity from the pump to the signal and idler waves is no longer negligible;
so, the pump wave amplitude diminishes during propagation, thus inducing a drop in the
parametric gain (gain saturation phenomenon [322]). Due to the high value of the threshold
intensity, development of effective continuous-wave, singly-resonant OPOs has been greatly
facilitated by the advent of QPM ferroelectric crystals with a higher conversion efficiency.

In conclusion, in spite of the strong similarities discussed above, three major differences
between the OPO and the laser must be emphasized:

• In the (singly-resonant) OPO, the emission wavelength is not determined by the level
structure of the active medium, as it happens in lasers, but is rather related to the phase-
matching conditions. These can be adjusted by changing the temperature or orientation of
the crystal, so that tunability can be realized over a very broad spectral band (essentially
limited only by the transparency window of the nonlinear medium) with a conversion
efficiency (of the pump to the sum of the signal and idler waves) of up 90%.

• For an OPO system, gain saturation is caused by the pump depletion through energy
transfer in parametric amplification whereas, in the laser case, it is due to the reduction
of population inversion in amplification by stimulated emission;

• While the energy transfer from the pump mode to the signal and idler modes is practically
instantaneous in the OPO, the excited laser level is able to store energy for an appreciable
time length.

Linewidth of a cw SR-OPO

Let’s consider an OPO singly resonant on the signal. The signal linewidth strongly depends
on the stability of the OPO resonator (see below), while the spectral content of the idler,
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which constitutes the ouput of such an OPO, is substantially given by the convolution of
the linewidth of the pump and of the signal [328].

When operating in free-running mode, the main elements which affect the width of
the signal are essentially the crystal inside the cavity (in terms of its gain lineshape and
characteristic dispersion curve) and the finesse of the cavity itself. This could be accounted
for as follows [329, 330, 331].

∆νs =
∆νc
√

〈n〉
(4.291)

where ∆νs is the signal linewidth, ∆νc is the single-pass bandwidth of the crystal (i.e.
the width of the single-pass parametric gain curve) and 〈n〉 is the mean number of cavity
transits (which, in turn, depends on the cavity finesse 〈n〉 = F/π), which can be evaluated
starting from the reflectivity of the mirror coatings and of the crystal facets. For typical
values ∆νc = 500 GHz and 〈n〉 = 100, one gets ∆νs = 50 GHz, which is extremely high if
the OPO has to be used for high-resolution spectroscopy.

In order to dramatically reduce the OPO linewidth it is necessary to lock the signal
emission to a reference, e.g. a high-finesse cavity. In first approximation, the locking of
the signal emission to a high-finesse optical cavity can be simulated considering the OPO
resonator as stationary, i.e. as totally free from mechanical instabilities. In such an idealized
view, an upper limit to the signal linewidth is given by the linewidth of the OPO resonator
modes ∆νcav. Then, the linewidth of the idler is obtained by convolution of the pump and
signal profiles. Therefore, for narrow-linewidth pump lasers (on the order of 10 kHz), ∆νcav
can be considered the maximum idler linewidth. Finally, it can be shown that the ultimate
limit for the linewidth (FWHM) of a SR-OPO can be expressed as [332, 333]

∆νs =

(

κs
κi

)2

∆νp + 2
hνs
Ps

κ2s (4.292)

where κ is the resonator decay rate (with κi ≫ κs) and P is the output power. The
first term depends on the spectral quality of the pump and on the finesse of the OPO
cavity at signal and idler wavelengths; the second term is the so called quantum phase
diffusion term and represents the OPO analog of the Schalow-Townes laser linewidth. For
typical experimental parameters, the first term dominates. Being of the sub-Hz order, this
latter value is practically negligible in the convolution with the pump linewidth for the final
calculation of the idler linewidth.

Singly-resonant optical parametric oscillator for mid-infrared high-resolution spec-
troscopy

As an example of recent OPO systems, we present here a singly-resonant cw optical paramet-
ric oscillator, emitting more than 1 W in the 2.7-4.2 µm range, mainly developed for high-
resolution molecular spectroscopy [334]. In this frame, wide tunability, narrow linewidth and
high power are required for the source. In particular, the latter two properties are crucial
for effectively probing sub-Doppler transition signatures, without the need for complicated
experimental configurations, or even for trapping and manipulation of cold molecules. The
experimental setup is shown in Figure 4.101. The OPO is pumped by a narrow-linewidth
(FWHM=40 kHz at 1 ms) cw Yb-doped fibre laser, which seeds a Yb-doped fibre amplifier,
delivering up to 10 W at 1064 nm. Laser frequency can be rapidly tuned over few GHz
by changing the fibre cavity length through the action of a piezoelectric actuator, while a
coarse and slow tuning can be achieved by changing the temperature of the laser cavity.
The OPO cavity is in bow-tie configuration, singly resonating for the signal wavelength,
with two plane mirrors and two curved ones (R.O.C.=100 mm). The optical path inside
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the cavity is 695 mm, corresponding to a longitudinal mode spacing of 430 MHz. All the
cavity mirrors have high-reflectivity (HR) coating for the signal frequency (R > 99.9%,
between 1.4-1.8 µm). The curved mirrors have a high-transmission coating for the pump
(R < 2%) and the idler wavelengths (R < 5%). The nonlinear crystal is a 50-mm-long
periodically-poled sample of 5%-MgO-doped congruent lithium niobate, with seven poling
periods ranging from 28.5 to 31.5 µm. The crystal end facets have anti-reflection coating
for the pump (R < 3% at 1064 nm) and the signal (R < 1% in the range 1450-1850 nm),
and high transmission coating for the idler (R < 10% in the range 2500-4000 nm). The
crystal is temperature-stabilized with a precision better than 0.1◦C and placed between
the two curved mirrors, in correspondence of the smaller cavity waist. The value of this
waist varies from 52 µm at 1.4 µm, to 59 µm at 1.8 µm. The amplifier output beam is
coupled into the cavity through one of the curved mirrors and focused at the centre of the
nonlinear crystal with a beam waist of 48 µm, so that pump and signal have approximately
the same focusing parameter. An adjustable 400 µm-thick YAG etalon is placed between
the two flat mirrors, in order to reduce mode-hop events. A Germanium (Ge) filter is used
to separate the transmitted idler beam from residual pump and other spurious frequencies.
The measured idler power as a function of the wavelength is shown in 4.102(a). The idler
power is ∼ 1 W, for wavelengths in the range 2.7-3.6 µm, while it decreases down to ∼ 400
mW at longer wavelengths. The regular decrease at longer wavelengths is due to the in-
herent dependence on wavelength of the down-conversion efficiency. Scattering of the data
can be partly attributed to small changes of the cavity losses, depending, in turn, on small
inhomogeneities of the coatings at different wavelengths. Figure 4.102(b) shows the idler
power as a function of the pump power at the wavelength of 2.93 µm, corresponding to the
31.5 µm-period grating at the temperature of 30◦C. Experimental data have been fitted
according to the empirical expression

Pi(Pp) = C

[

1−
(

Pthr

Pp

)
1
3

]

(4.293)

where Pi and Pp represent the idler and pump power, respectively, Pthr is the OPO
threshold, and C is a constant weakly depending on the cavity passive losses. As a result of
the fit, the OPO threshold was found to be Pthr = 3.1 W.

The signal frequency is locked (by the PDH technique) to a high-finesse Fabry-Perot
cavity consisting of two HR curved mirrors (R.O.C. = 1 m). The HR coating spans the
same wavelength range of the OPO mirrors, providing high finesse (& 4000) all over the
OPO operating range. The reference cavity mirrors are glued on an invar spacer, held
by a mechanical suspension and placed in a vacuum chamber for seismic and acoustic
isolation. The chamber temperature is actively stabilized (< 0.1◦C), reducing the cavity
length fluctuations. For the PDH scheme, the signal beam leaking through one of the OPO
cavity mirrors is coupled into a polarization-mantaining optical fibre and sent to a fibre-
coupled electro-optic phase modulator (EOM), driven at 30 MHz by a local oscillator, and
coupled into the reference cavity. A polarizing beam-splitter and a quarter waveplate deviate
the beam reflected off the cavity to an InGaAs PIN photodiode. The ac-amplified signal from
the detector is mixed with a reference signal from the local oscillator and low pass filtered.
Such PDH signal is used as error signal for the servo-loop, whose output (correction signal)
drives the OPO cavity PZT. The reference cavity is initially set to be nearly resonant
with the signal frequency, by slightly changing the PZT voltage, then the servo-loop is
switched on and operates. Once the locking was working, both the error and correction
signals were acquired with an oscilloscope with on-board FFT routine, thus obtaining the
power spectral density (PSD) for both signals. The correction signal PSD, within the servo
bandwidth, represents the frequency noise of the free-running OPO, while the error signal
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FIGURE 4.101
Experimental scheme of the OPO four-mirrors ring cavity and saturation spectroscopy
setup. BS: beam splitter; E: YAG etalon; FPI: Fabry-Perot interferometer; Ge: germa-
nium filter; LO: local oscillator; PBS: polarizing beam-splitter; PD: photodiode; PPLN:
periodically-poled lithium niobate crystal; PZT: piezoelectric actuator; QW: quarter wave-
plate.

PSD provides the in-loop residual frequency noise (Figure 4.103). The PDH spectrum out of
the cavity resonance was also measured, as it sets the actual detection limit level. The servo-
loop has a bandwidth of 4 kHz and is technically limited by the piezo resonances. At lower
frequency (∼ 100Hz) noise is reduced at the detection limit, while the structures visible up
to 2 kHz are mostly due to mechanical resonances of the OPO cavity. In fact, in-loop noise
is not the actual signal frequency noise, as it is the relative noise of the signal frequency
with respect to the cavity resonance, i.e., it indicates how close the signal frequency is to
the cavity resonance. A similar cavity showed an intrinsic frequency stability of 2 × 10−2

Hz/
√
Hz around 1 kHz. However, for times longer than one second, a length drift of ∼ 1

MHz/s was observed mainly due to the piezo relaxation. Thus, at least on a time scale
longer than few ms, the in-loop PSD sets just a lower limit to the signal frequency noise,
while for shorter times it can be reasonably assumed to be the actual frequency noise of the
signal. With this assumption, from the in-loop PSD we calculated for the signal frequency a
FWHM of ∼ 70 kHz at 1 ms. This linewidth, together with the uncorrelated laser linewidth,
determines for the idler a final linewidth of 80 kHz, quite comparable to typical linewidths
attainable with DFG sources.

The spectroscopic performance of such an OPO was evaluated by carrying out sub-
Doppler dip (phase-sensitive) detection (see next Chapter) on several transitions in the
ν1 ro-vibrational band of CH3I (around 3.38 µm), resolving their electronic quadrupole
hyperfine structure [335].
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FIGURE 4.102
E(a) Experimental idler power as a function of the wavelength, from 2.7 µm up to 4 µm. (b)
Idler power as a function of the pump power, for the 31.5-µm-period at the temperature of
30◦C, corresponding to an emission wavelength of 2.93 µm. The continuous line represents
data fitting by Equation 4.293.

FIGURE 4.103
Power spectral densities concerning frequency stabilization of signal emission to the reference
cavity. (a), PSD of the correction signal fed to the OPO piezo, corresponding to free-running
signal noise; (b), PSD of the PDH signal corresponding to the in-loop residual frequency
noise; (c), PSD of the out-of-resonance PDH, indicating the detection limit.

4.8.6.3 Difference frequency generators

Among all the recently developed IR laser sources, DFGs in periodically-poled non-linear
(PPLN) crystals have proved to be the most reliable ones for high-resolution spectroscopic
applications [336]. Indeed, due to the deterministic and coherent character of the DFG
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process, frequency stability and spectral purity properties, attainable for the visible/NIR
pumping lasers, through well-established techniques, are automatically transferred to the
MIR radiation. Although OPOs are also based on visible/NIR pumping lasers, their use in
high-resolution spectroscopy has not yet taken off because complex setups are often neces-
sary to obtain frequency-stable and single-mode behavior. On the contrary, OPO sources
can be more attractive in applications where high power is required. Actually, the main
drawback of DFGs is represented by their emission power, typically limited to a few mW.

DFG laser sources consist of two seed laser sources, namely a signal and a pump laser
source, which are combined and focussed into a non-linear optical medium to generate an
idler beam of the difference frequency of the respective seed lasers. The difference-frequency
conversion efficiency has been investigated by Boyd and Kleinman, based on the electric
field generated by two focused Gaussian beams, the dependence of the generation power
on the focusing conditions, and the properties of the non-linear mixing material [337, 323].
In the case of two collinear Gaussian beams (with powers Pp and Ps at frequencies ωp
and ωs, for the pump and signal beam, respectively) having identical confocal parameters
b = kpw

2
p = ksw

2
s (here w is the beam waist), the DFG output power Pi, at the difference-

frequency ωi = ωp − ωs, can be written as

Pi =
256π2

c3
ω2
i
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k−1
s + k−1

p

LPpPse
−αL (4.294)

here c is the speed of light in vacuum, n is the index of refraction, L is the crystal length,
deff is the effective non-linear coefficient, and α is the absorption coefficient of the nonlinear
optical medium at the DFG frequency. The units in Equation 4.294 are cgs and ε0 was not
factored out of deff . The subscripts s, p, i refer to the signal, pump, and idler (infrared),
respectively. The focusing function h(µ, ξ, α) involving walk-off and focused beam effects is
given as (focusing point is assumed at the center of the crystal):

h(µ, ξ, α) =
1

4ξ
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) (4.295)

where µ = kp/ks and ξ = L/b is the focusing parameter. The complex character of the
h(µ, ξ, α) function is only apparent: the integration, in fact, cancels the i dependence and
yields a real function. Equation 4.294 shows typical features for a three-wave parametric
mixing process

1. DFG power is proportional to the non-linear optical figure of merit, d2eff/ninsnp.

2. The output power varies linearly with the product of the input powers. In prac-
tice, the pumping power densities incident on the nonlinear optical crystal are
usually limited by the laser induced damage of the crystal. A large optical damage
threshold is thus highly desirable. Commercially available ferroelectric material-
based QPM crystals, such as periodically poled LiNbO3 (PPLN) or RbTiOAsO4

(PPRTA), exhibit high laser induced damage thresholds and lead to mW CW
DFG power by using high-power (∼ W) pumping sources.

3. DFG power is proportional to the square of infrared frequency ωi.

4. DFG power varies with the crystal length L in the case of Gaussian beam coupling,
and reaches a maximum value with an optimum focusing parameter of ξ ∼ 1.3. For
example, optimum beam waists for near-IR pump and signal wavelengths inside
the PPLN crystal typically range between 30 to 60 µm for 20 to 50 mm crystal
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lengths.The h-function reduces to h ∼ ξ when using loose focusing parameter
ξ ≪ 1, which makes the DFG power proportional to L2, as in the case of the
plane-wave approximation.

Commercial PPLN crystals are available at 0.5 and 1 mm thickness. While the optimal
focussing condition for conversion efficiency, as described in the above equations, is tied to
the length of the crystal, it ignores the thickness and width of the crystal. The generated
idler beam (with a beam waist that is determined by the signal and the pump beam) diverges
much faster than the pump and signal beams, and hence the idler beam may clip causing
diffraction and scattering noise if the crystal thickness is too thin or the crystal length
too long. Thus, the most useful length of the crystal is determined by the combination of
idler wavelength, PPLN crystal thickness, and focussing condition. Another consideration
is absorption loss which occurs at wavelengths of 4.2 µm and longer in PPLN, limiting
the useful range of DFG wavelengths up to 4.6 µm. In recent years, an alternative DFG
crystal design utilizing a ridge type waveguide PPLN has become available, in which the
conversion efficiency is no longer limited by diffraction or the focussing condition into a
bulk crystal. In a waveguide, the cross section of the non-linear conversion is kept to the
smallest possible guiding size over the length of the crystal, and thus is proportional to L2.
Waveguide PPLN crystals demonstrated conversion efficiencies of 100 times higher than
bulk PPLN crystals, resulting in tens of mWs of DFG power. In particular, thanks to its
resistance to photo-refractive damage, a QPM Zn:LiNbO3 waveguide was recently used in
conjunction with a high-power fiber amplifier as a pump source to realize a 3.4-µm DFG
source with a tunability range of 10 nm and a maximum output power of 65 mW [338]. An
updated survey of DFG sources is given in [337].

So far, the most sophisticated DFG source in terms of combined output-power and
spectral characteristics was developed at Istituto Nazionale di Ottica. It is based on a
special intra-cavity design [339] where the pumping sources are referenced to a Ti:Sa optical
frequency comb synthesizer (OFCS) via a direct digital synthesis (DDS) scheme [340]. In
essence, the intracavity setup enhances the idler output power up to 30 mW (at 4510 nm),
while the DDS approach provides an intrinsic linewidth as low as 10 Hz. For a better
understanding, we discuss the two apparatuses separately.

In the intracavity design, shown in Figure 4.104, the DFG non-linear crystal (a period-
ically poled MgO:LiNbO3) is placed at the secondary waist position of a ring Ti:Sa laser,
which is optically injected by an ECDL. The dashed box represents the baseplate of the
Ti:Sa laser cavity, which is thermo-electrically stabilized within 1 mK around room tem-
perature. The Ti:Sa gain crystal is water-cooled to efficiently remove the excess absorbed
power from the 532 nm pump. The transmission value T of the output coupler (about 1.2%
at 861 nm) was chosen as the best trade-off between a large power enhancement factor
and a good coupling efficiency of the injecting ECDL. The former is maximum for T = 0,
while the latter is maximum when T equals all other round trip losses, including the pump
depletion in the DFG process. Indeed, these losses are experimentally quantified to about
2.4% at 10 W signal power. The 2-cm-length PP crystal, incorporating 7 channels with
different poling periods (23.0, 23.1, 23.2, 23.3, 23.4, 23.5, 23.6 µm), is Brewster cut for
λp. The pump, signal, and idler beams are angularly separated, due to dispersion at the
output facet of the crystal. The idler beam is reflected out of the Ti:sapphire cavity by
a gold mirror and then collimated by lens L3 (f = 100 mm). As already mentioned, the
Ti:Sa laser is injection-locked by a fiber coupled ECDL with 838-863 nm tuning range, thus
permitting tuning of the idler within the 3850-4540 nm range. However, the ECDL was op-
erated constantly at the 861 nm wavelength (corresponding to an idler wavelength of 4510
nm) and 60 mW power throughout all measurements. An external 40-dB optical isolator
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FIGURE 4.104
Layout of the intracavity DFG source. FA, fiber amplifier; ECDL, extended-cavity diode
laser; OI, optical isolator; PLL, phase-locked-loop; OFC, optical frequency comb; L, lens; M,
dielectric mirror; DM, dichroic mirror; GM, gold mirror; OC, output coupler; λ/2, half-wave
plate; λ/4, quarter-wave plate; DG, diffraction grating; PBS, polarizing beam splitter; PH,
pinhole; PD, photodiode; BS, beam stopper; SM, spherical mirror.

is required to avoid feedback effects from the Ti:Sa cavity, in addition to the internal one,
having the same isolation level. A monolithic-cavity Nd:YAG laser seeds a Yb-doped fiber
amplifier that can deliver a nominal power of 10 W, providing the signal radiation for the
DFG process. The pump laser is phase-locked to the signal laser by use of the DDS scheme
(see below). Lenses L1 (f = 300 mm) and L2 (f = 250 mm) perform an optimal matching
of the Nd:YAG and ECDL beams to the Ti:Sa cavity mode. The cavity length is actively
stabilized to keep it resonant with the injecting ECDL, by the polarization-based Hänsch-
Couillaud technique. Proportional-integral processing electronics feeds the correction signal
back to the PZT-mounted dichroic mirror, which is highly transmissive for the signal and
highly reflective for the pump. A locking bandwidth as high as 8 kHz was achieved.

Now, let us discuss the DDS scheme with reference to Figure 4.105. Both pump and
signal frequencies are beaten with the closest tooth of the OFCS (the corresponding integer
orders Np and Ns are measured by a wavemeter) and the respective RF beat notes ∆νpc
and ∆νsc satisfy the following equations:

∆νpc = νp −Npνr − ν0 (4.296)

∆νsc = νs −Nsνr − ν0 (4.297)

where νr ≃ 1 GHz is the repetition rate and ν0 is the OFCS carrier-envelope-offset
(CEO), which is canceled from these beat notes by standard RF mixing. A low bandwidth
(≃ 10 Hz) phase-locked-loop (PLL) is used to remove the frequency drift of the Nd:YAG
laser. A DDS circuit multiplies the ∆νsc + ν0 frequency by a factor Np/Ns. A second PLL
circuit with a wide bandwidth (≃ 2 MHz) locks the ∆νpc+ν0 frequency to the DDS output
by sending feedback corrections to the ECDL current and PZT voltage. The pump frequency
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is then νp = (Np/Ns)νs, without any contribution from the OFCS parameters ν0 and νr (at
least at frequencies > 10 Hz). As a consequence, the absolute frequency νi of the generated
idler radiation is given by the following equation:

νi = νp − νs =
(

Np
Ns
− 1

)

νs (4.298)

Therefore, the idler linewidth δνi can be expressed in terms of the signal linewidth δνs,
as follows:

δνi =

(

Np
Ns
− 1

)

δνs (4.299)

where, for all frequencies below 10 Hz, δνs traces the linewidth of the comb tooth
around 1064 nm while, for all frequencies above 10 Hz, δνs coincides with the free-running
Nd:YAG laser fluctuations. The accuracy of νi is only limited by the reference oscillator
of the OFCS. In the original experiment this was a Rb/GPS-disciplined 10-MHz quartz
with a stability of 6 · 10−13 at 1 s and a minimum accuracy of 2 · 10−12. From the above
discussion it emerges that the attainable stability is ruled only by the signal laser. Of course,
several approaches can be implemented to further enhance the signal frequency stability,
e.g., by narrowing it onto Fabry-Perot cavities. In order to test the frequency stability of
this source, a 1-m-long high-finesse cavity with maximum reflectivity at 4500 nm was built.
The ZnSe plano-concave mirrors had a high-reflection coating on their concave surface (6
m radius of curvature) and an anti-reflection coating on the plane surface. Each mirror
was measured to have 270 ppm losses (100 ppm absorption and 170 ppm transmission),
corresponding to a finesse F = 11500. The transmitted power through the resonant cavity
was about 35% of the incident one and the achieved mode-matching was 86%. The mirror
holders were separated by a three-bar invar structure which guaranteed a good passive
thermal stability. The whole structure laid inside a vacuum chamber with a cantilever
system damping mechanical vibrations in all directions. The vacuum conditions prevented
frequency fluctuations due to pressure changes. A three PZT system was mounted on one
mirror for fine cavity tuning. In order to use this cavity as frequency noise discriminator of
the IR source, its passive frequency stability was accurately characterized. The cavity drift
of about 1 kHz/s was measured from the linewidth of the cavity transmission averaged over
long time scales (about 500 s) when illuminated with the OFCS-locked DFG source, having
negligible drift in this time interval. At 100 Hz, the frequency noise induced by the PZT-
driven electronics was measured to be one order of magnitude lower than the one of the IR
source, and it decreased with a 1/f behavior up to 30 kHz. A resonance frequency of about
19 Hz and a damping time of about 5 s for the cantilever damped vibration system were
measured by using an accelerometer. In Figure 4.106, the 19 Hz peak was assigned to the
residual vibrational cavity noise at the cantilever resonance. Due to the narrow linewidth
of this resonance, the noise amplitude fell by 15 dB at 20 Hz. For frequencies higher than
20 Hz, the vibrations were damped following a 1/f2 law in units of Hz/

√
Hz, as inferred by

the solution of the differential equation for a damped harmonic oscillator forced by external
vibration-induced white noise. To characterize the frequency noise of the DDS-based DFG
source, the cavity length was tuned at a transmission corresponding to half of the peak
value. Thus, the slope of the fringe side was used as a frequency-to-amplitude converter.
The frequency noise spectral density recorded with a FFT spectrum analyzer is shown in
Figure 4.106. The various lines highlight different behaviors of the spectrum: 1/f technical
noise (ν < 2 kHz), white noise (ν > 2 kHz), cavity-cutoff region (ν > 10 kHz), detector-
cutoff region (ν > 400 kHz). Following the above discussion about the cavity frequency
stability, the cavity contribution to this noise can be considered negligible in the spectral



Continuous-wave coherent radiation sources 317

FIGURE 4.105
OFCS-referenced DFG infrared source. OFCS is used as a transfer oscillator to phase-lock
the ECDL directly to the Nd:YAG. DM, dichroic mirror; Ge, germanium filter. See text for
other acronyms.

range shown in the figure. From the power spectral density in the white-noise region an IR
intrinsic linewidth of about 10 Hz can be inferred, while the time-integrated linewidth over
1 ms is about 1 kHz.

4.8.6.4 Tunable far-infrared radiation

Historically, frequency conversion by non-linear generation has been a key tool for synthe-
sizing radiation, often continuously tunable over wide intervals, in regions where lasers did
not directly emit. Non-linear difference frequency generation has been conveniently used
for many years to generate cw radiation throughout the infrared region, till the millimetric
range, where microwave sources had been available as coherent sources before the advent of
the laser. The far-infrared (FIR) part of the electromagnetic spectrum spans the frequency
range from 300 GHz to 10 THz (λ: 1 mm - 30 µm). In this spectral region rotational tran-
sitions of light molecules fall, which are of high interest for applicative research (mainly
astrophysics and atmospheric physics) as well as for fundamental studies. Moreover, since
absorption coefficients normally scale as either the square or the cube of frequency for
hν ≪ kT , FIR transitions are much more sensitive tools (compared to millimetric transi-
tions) to detect neutral/ionized atoms/molecules. In spite of the very large scientific interest,
high-resolution spectroscopic studies in the sub-millimetric started much later than in the
neighboring microwave and infrared spectral regions, due to the lack of both adequate co-
herent sources and detectors. The introduction of optically pumped fixed-frequency FIR
lasers and of liquid He cooled bolometric detectors (NEP in the order of 10−13 − 10−14

W/Hz1/2) was the first step toward the development of high-resolution spectroscopy in this
region. Wider tunability has then been achieved with the laser magnetic resonance (LMR)
spectrometer. Such a technique only works on paramagnetic species, by tuning, via a mag-
netic field, the transition of interest into resonance with a FIR laser line. In this range, LMR
is one of the most sensitive spectroscopic techniques, because it is intra-cavity in nature,
with a minimum detectable absorption in the order of 10−10. Nevertheless, the accuracy
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FIGURE 4.106
Frequency-noise spectral density for the DDS-based DFG source. Three spectra with dif-
ferent frequency spans (2 kHz, 10 kHz, 1 MHz) are stuck together and plotted in the same
graph (RBW = 3 · 10−3× span).

of frequency measurements is limited to only several MHz due to the uncertainty in the
extrapolation at zero magnetic field and the lack of reproducibility in the center of the
FIR laser line. In the 80s, two metrological-grade techniques, based on difference frequency
generation by non-linear conversion, were developed. The first of these is generation of mi-
crowave sidebands on the strongest FIR laser lines in Schottky diodes [341, 342, 343, 344]. It
produces tunable FIR radiation up to about 3 THz (100 cm−1) with 5 kHz linewidths and
roughly 500 kHz accuracy. At present, with the recent improvement of harmonic multipli-
cation from radio frequencies, it is only rarely implemented for FIR measurements. Thanks
to the pioneering work of K.M. Evenson and co-workers, a significant improvement in the
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accuracy and very wide tunability were then obtained with the tunable far-infrared spec-
trometer (TuFIR) [345]. It is based on a synthesis of FIR radiation starting from infrared
and microwave radiation mixed onto a non-linear device, namely the metal-insulator-metal
(MIM) diode. In a later version [346], the TuFIR spectrometer produces radiation through
non-linear mixing of three radiations (two from CO2 lasers and one from a microwave source)
in a third-order MIM diode [347]. The MIM diode generates microwave sidebands on the
CO2 difference frequency

νFIR = ν1 − ν2 ± νµw (4.300)

where ν1 and ν2 are the laser frequencies, and νµw is the microwave frequency. Figure
4.107 is a schematic of a third-order TuFIR spectrometer.

The radiation from lasers 1 and 2 is combined by means of a beam splitter and coupled
onto the diode by a 25-mm focal length lens. The microwave radiation is coupled onto the
diode by a bias-tee connected to the diode junction. The generated FIR, radiated from the
diode’s whisker in a long wire antenna pattern, is then collected and collimated by a 30-mm
focal length off-axis section of a parabolic mirror. After passing through an absorption cell,
the FIR is detected on a liquid He-cooled Si bolometer. The FIR radiation is frequency
modulated (by frequency modulation of the CO2 lasers) and detected with a lock-in am-
plifier. The far infrared frequency is tuned by scanning the microwave frequency. This is
controlled by a personal computer, which also collects data from the lock-in amplifier. The
standard frequency coverage of such a spectrometer is from 0.3 to 6 THz. The lower limit
is set by the bolometer and the upper limit by the largest difference frequency between
the two CO2 lasers. Both CO2 lasers are frequency stabilized to the 4.3 µm wavelength
saturated fluorescence signal from low-pressure CO2 cells (not shown in the figure) [348].
These frequencies have been measured to an absolute frequency with an uncertainty better
than 5 kHz [349] [350]. Without using special locking techniques, a stability of about 25
kHz is obtained for each laser. The overall (statistics + systematic) frequency uncertainty
of generated FIR radiation is thus 35 kHz. The spectrometer sensitivity is limited by the
FIR power and the sensitivity of the detector. FIR powers up to a few hundred nW are
generated with 150 mW from each laser and 6-10 dBm of microwave power applied to the
MIM diode. For the best contacts, minimum detectable absorptions are around 10−4 in a
1-second integration time, corresponding to a minimum detection coefficient of 10−6 for
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FIGURE 4.107
Schematic diagram of the tunable far-infrared spectrometer at LENS. The generated fre-
quency is in the range of 0.3 to 6 THz.



320 Laser-based measurements for time and frequency domain applications

a 1-meter long cell. The MIM diode consists of an electrochemically sharpened tungsten
whisker (25-pm diameter and 3 to 7 mm long) contacting a metal base. The metal base has
a naturally occurring thin oxide insulating layer. Both nickel and cobalt have been used as
base materials, but cobalt is generally more consistent in the production of third-order FIR
radiation.

With such a spectrometer, mainly operated at NIST, Boulder, Colorado, USA, at
LENS, Florence, Italy, and later on in Japan [351], a large number of rotational and ro-
vibrational transitions of light molecules and free radicals were measured with high accuracy
[346, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363]. In addition, atomic fine
structure transitions could be measured [364, 365, 366], as well as transition dipole moments
of molecules of atmospheric interest, with an accuracy up to 10−4 [367, 368]. In spite of
the scarce reproducibility in the emission from the MIM diode, pioneering studies on the
breakdown of the Born-Oppenheimer approximation could be performed and an analysis of
sensitivity for such a spectrometer was performed [369]. Such a setup proved to be sensitive
enough for the observation of tiny birefringence induced in a sample gas by a longitudinal
magnetic field (Faraday effect), giving new insights in the achievable sensitivity of FIR spec-
trometers [370, 371]. Detailed studies of the limiting bandwidth of the TuFIR spectrometer
showed that frequencies up to 10 THz could be generated, by using laser lines emitted from
rare isotopes of CO2 [372].

The MIM diode and present-day antennas

The MIM diode was for many years a key device for frequency metrology, being also used
as a laser mixer in frequency chains, before the advent of combs [52]. Not so many studies
could unveil its unique properties as a mixer, detector, and radiation generator, basically
related to its ultrawide bandwidth. Notwithstanding, it is interesting to compare its proper-
ties with present-day antennas. Antennas find a very wide range of applications, including
near-field optics and imaging (see [373] for a recent and intriguing review), with a need for
scaling to nanometers, in order to operate in the visible range. An antenna is a structure
that must efficiently convert incident radiation into localized energy (receiving antenna),
and vice versa (transmitting antenna). The concept of antenna can be usefully scaled from
radio frequencies up to optical frequencies, though the working principle changes. Indeed,
at longer wavelengths (radio and microwave range) metals are perfect conductors and radia-
tion cannot penetrate the metal at depths comparable with the antenna size (negligible skin
depth). Instead, skin depth cannot be neglected at optical frequencies, where the antenna
size is in the nanometer range. In this case, the description of radiation-antenna interac-
tion is well explained by a propagating plasmon wave coupled to incident radiation. As a
consequence, scaling of antenna size with wavelength differs from standard antenna theory,
set for the radio-frequency range. Therefore, working principles of optical antennas depend
on plasmonics and nanoptics and, ultimately, they are better described by quantum optics,
similarly to atoms and molecules. Interestingly, MIM diodes were used for a long time in
the whole range from radio to optical frequencies, without any significant change in their
shape and mode of operation. Indeed, the longer straight part of it was considered useful for
transceiving (receiving and transmitting) radio/micro/THz-waves while the tip was reputed
good for shorter wavelengths. A first consideration, arising from present-day interpretation
of antennas, is that the MIM diode could operate in a range (far/mid infrared) that is
intermediate between the two extremes, radio and optical waves, where principles are more
clear. Another point that is worth remarking is that its huge bandwidth is still unmatched
in present devices (see, e.g., [374]), though they are very much specialized and benefit from
micro/nano electro-optics for fabrication, as compared to hand-crafted fabrication proce-
dures of MIM diodes. A possible origin of MIM unmatched wide bandwidth is possibly due
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to the hard-touch of the nanometer scale tungsten tip against the metal base, that reduces
to a minimum the contact area and thus device capacitance. Finally, a re-visitation of the
unique properties of the very simple MIM geometry in light of present-day physics could
help in creating better transceiver devices for opto-electronics applications throughout the
electromagnetic spectrum.
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High-resolution spectroscopic frequency measurements

Method is much, technique is much, but

inspiration is even more.

Benjamin Nathan Cardozo

A great building must begin with the

unmeasurable, must go through

measurable means when it is being

designed and in the end must be

unmeasurable.

Louis Isidore Kahn

Due to their unprecedented degree of monochromaticity and directionality, lasers have
revolutionized the field of interferometry and spectroscopy. In the former branch, just think
of the practical development of holography as well as of the ambitious experiments that are
in progress to detect gravitational waves [375]. In the latter field, through the introduction
of novel high-resolution and high-sensitivity interrogation techniques, lasers have allowed
the study of atomic/molecular spectra with an unprecedented precision. In a nutshell, the
resolution limit is now determined by the width of the spectral lines of the substance under
investigation rather than by the instrumental width of the spectral apparatus. In turn, the
implementation of more and more sophisticated spectroscopy-based frequency measurement
schemes have improved the laser performance, eventually leading to the realization of op-
tical standards. In this chapter we review the most advanced spectroscopic techniques for
gaseous samples and the realization of standards using either absorption cells or effusive
beams. Essentially, the same spectroscopic interrogation methods are also at the basis of fre-
quency standards using samples of cold/trapped atoms and ions. These will be dealt with in
Chapter 7.

5.1 Interferometric wavelength measurements

Interferometry is a vast branch of physics and a comprehensive treatment is beyond the
scope of this book. In this section, we only discuss the basic principle of wavelength mea-
surements. Indeed, the reader will surely remember from Chapter 1 that the current def-
inition of the speed of light c, which is a pivot of modern frequency metrology, is based
on an accurate, simultaneous measurement of the wavelength and frequency of a He-Ne
laser. Even though the original experiment by K. Evenson et al. made use of a Fabry-Perot
interferometer, here we focus on the Michelson interferometer (MI) which is at the heart of
modern wavemeters.

323
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In the basic MI (schematically shown in Figure 5.1) the light from a source, S, is divided
by a 50% beam splitter oriented at 45 degrees to the beam. The transmitted beam travels
to mirror M1 where it is back reflected to BS. 50% of the returning beam is deflected by 90
degrees at BS and it then strikes the screen, E (the other 50% is transmitted back towards
the laser and is of no further interest here). The reflected beam travels to mirror M2 where
it is reflected. Again, 50% of it then passes straight through BS and reaches the screen
(the remaining 50% is reflected towards the laser and is again of no further interest here).
The two beams that are directed towards the screen, E, interfere to produce fringes on the
screen. For an incident plane wave, and denoting with s the distance from the source, at
the screen we will have the superposition of the two following waves

E1 = E0e
i(−ωt+ks1+ϕ1) (5.1)

E2 = E0e
i(−ωt+ks2+ϕ2) (5.2)

where k = ωn/c, n being the refractive index. Thus the total field can be expressed as

Etot = E1 + E2 = E0e
−iωtei(ks1+ϕ1)

[

1 + eiΦ
]

(5.3)

where Φ = k∆s + ∆ϕ, with ∆s = s2 − s1 = 2d and ∆ϕ = ϕ2 − ϕ1. Finally, the total
intensity is

Itot ≡ EtotE∗
tot = 2I0 (1 + cosΦ ) = 4I0cos

2

(

Φ

2

)

(5.4)

Hence, Itot is maximum for Φ=2mπ and minimum for Φ=(2m+ 1)π, m = 0, 1, 2, . . . .
This means that, if the two mirrors are perfectly parallel, then the whole illuminated area
of the screen will be uniformly lit to a certain extent (including zero) for any value of ∆s.
With parallel incident light but slightly tilted mirrors (M1 or M2), instead, the interference
pattern will consist of parallel fringes, which move into a direction perpendicular to the
fringes as ∆s is changed. To understand this, we consider the configuration in which M2 is
tilted by the angle θ/2 (see frame (b) of Figure 5.1). Waves are reflected normally by M1
and at an angle θ to the z-axis. Therefore, at the screen we will have







E1 = E0e
−iωteiϕ1eik(2d+z)

E2 = E0e
−iωteiϕ1eik(x sin θ+z cos θ+∆ϕ/k)

(5.5)

which provides

Itot = |E1 + E2|2 = 4I0cos
2

[

k

(

d− x

2
sin θ + zsin2

θ

2
− ∆ϕ

2k

)]

= 4I0cos
2
[

k
(

d− x

2
sin θ + z0

)]

(5.6)

where z0 = zsin2(θ/2)−∆ϕ/2k. Such intensity is maximum when

k
(

d− xm
2

sin θ + z0

)

= mπ (5.7)

that returns

xm =
1

sin θ

[

2(z0 + d)− mλ

n

]

(5.8)

from which the fringe spacing is calculated as
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FIGURE 5.1
Basic layout of a Michelson interferometer.

∆x = xm − xm+1 =
λ

n · sin θ (5.9)

If d moves in time with uniform velocity v, d = vt, then the number Nfr of fringes that
cross the center of the screen in a time T is given by

Nfr =

dxm
dt
|t=T · T
∆x

=
2nd

λ
(5.10)

Therefore, the MI can be used for absolute wavelength measurements by counting the
number of fringes when the mirror M1 is moved along a known distance d. Based on this
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principle, in the following we describe the realization of a compact, very accurate Michelson
wavemeter [376]. The essential concept is illustrated in Figure 5.2. Two lasers, one of which
has a known wavelength (reference laser), propagate simultaneously through the MI. While
the relative lengths of the MI arms are varied by means of the travelling cornercubes, the
interference fringes arising from both lasers are counted by the detectors. Therefore, as the
mirror is moved by the distance d (which is the same for both lasers), the number of fringes
counted for each of the two wavelengths is given by

NR =
2dnR
λR

(5.11)

NU =
2dnU
λU

(5.12)

where λR (λU ) is the wavelength of the reference (unknown) laser and nR (nU ) the
refractive index of air at the reference (unknown) wavelength. This finally yields

λU =
NR
NU

λR
nU
nR

(5.13)

or, equivalently,

νU =
NU
NR

νR
nR
nU

(5.14)

Then, the reference and unknown fringes can be counted for a fixed time with a single
conventional frequency counter (provided with an external reference for determining the
counting time), configured to show directly the wavelength ratio. It is worth noting that, if
the vacuum wavelength is required, the wavemeter should be operated, in principle, under
vacuum conditions. Otherwise, correction for dispersion has to be applied a posteriori.

By virtue of its low cost and well-defined wavelength, a HeNe laser is typically used as
the reference. In this case, the uncertainty in the final measurement can be expressed as

(

∆λ

λ

)2

=

(

∆λWC

λ

)2

+

(

∆λalign
λ

)2

+

(

∆λHeNe
λ

)2

+

(

∆λcount
λ

)2

(5.15)

where ∆λWC , ∆λalign, ∆λHeNe and ∆λcount are the uncertainties due to wavefront
curvature, beam misalignment, HeNe wavelength, and counting resolution.

• Wavefront curvature in the laser beams will result in counting errors due to diffraction
effects. The magnitude of this uncertainty, as estimated from simple diffraction theory, is
given by

(

∆λWC

λ

)

=
∆θ2

4
(5.16)

where ∆θ is the divergence of the beam. ∆θ = 0.25 mrad is a typical value for a HeNe
laser.

• Relative misalignment of the reference and unknown beams will produce counting errors
since the lengths traveled by the two beams will differ. This is a simple cosine error, which
is, for small angles

(

∆λalign
λ

)

=
1

2

(

∆x

L

)2

(5.17)

where ∆x/L is the relative angular displacement. Typical values can be taken as L = 0.5
m and ∆x = 0.5 mm.
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FIGURE 5.2
Wavemeter layout. (Adapted from [376].) The HeNe beam is reflected by mirror M1, then
split at the non-polarizing beam splitter, BS. The transmitted beam reflects off M2 and then
strikes the cornercube reflector, CC1, which sends the beam back parallel to its original path,
with some transverse displacement. The beam reflected from BS travels via M3, M4, and
M5 to CC2, where it also is reflected back parallel to its path. Mirror M4 is added for
alignment purposes. The two beams, one from CC1 and the other from CC2, converge at
the beamsplitter, producing two output beams. One is used to detect the interferences; the
other is used as a guide to align the second laser. The motion of the cornercubes (which
should be as much smooth and laterally stable as possible) is realized by mounting them on
an air bearing. The latter consists of a cart through which compressed air flows; this forms
a cushion which supports the cart over a track [376].

• The HeNe laser wavelength is uncertain due to the ≃ 1.5 GHz Doppler width of the Ne
emission line (corresponding to a wavelength uncertainty of 2 pm), and to the unknown
Ne isotope mixture used in the tube (amounting to 1 pm). Both uncertainties can be
minimized by controlling the HeNe cavity temperature to obtain equal intensities of two
operating longitudinal modes with orthogonal polarization [377].

• Concerning the uncertainty due to fringe counting, it is determined by the limited number
of fringes counted during the measurement. For example, if 780000±1 fringes are counted
from the HeNe, we have ∆λcount/λ = 1/780000 = 1.28 · 10−6.

Summing all the uncertainties in quadrature, the final relative accuracy ∆λ/λ is on the
order of few parts in 106. During the last 30 years, many variants of this measurement princi-
ple have been developed, achieving an accuracy of few tens of MHz. Major improvements in-
cluded high-resolution counters, superior-performance optical and mechanical components,
and augmented-stability reference lasers. However, the moving components within the in-
terferometer arm necessitated elaborate mechanical and optical isolation of the wavelength
meter from the actual experiment. More recently, wavelength meters (WLMs) based on
solid-state Fizeau interferometers have taken the technological lead in precision wavelength
measurement. They can achieve wavelength resolution down to the 10-MHz level without
any moving parts. For highly accurate readout of the interference pattern, state-of-the-art
CCD detectors are used. The solid-state etalon concept still relies on an accurate distance
measurement in the first place (the distance between the mirror facets of the etalons has to
be well characterized) yet the dependence of the measurement on the refractive index of the
intermediate space is significantly reduced [378]. The measurement block is manufactured
from solid components with well-known optical properties and mounted within a thermal
isolation housing. The most precise Fizeau-type WLMs, with a resolution of 10−8, require
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calibration with a frequency-stabilized reference laser. In commercial systems, these range
from Zeeman-stabilized HeNe lasers at 473.612467 THz (fractional uncertainty ±2 · 10−8)
to frequency-doubled Nd:YAG lasers locked against the iodine molecule absorption line
(R56,32-0) at 563.259651965 THz (fractional uncertainty ±2 · 10−9).

5.2 Spectroscopic frequency measurements

Spectroscopy is a powerful tool to gain access to atomic and molecular physics, to test
the foundations of quantum physical models, and is the cornerstone in research on fun-
damental constants. Insight and measurement precision both increase dramatically with
resolution. In the case of gas-phase spectra, most often the first barrier that is encountered
is represented by collision broadening. Usually this is overcome simply by using samples at
lower pressures. But soon after, a more severe obstacle is hit, namely the Doppler effect.
Well, laser spectroscopy has revolutionized this situation, currently allowing resolutions sev-
eral orders of magnitude better than the Doppler limit. Indeed, many new high-resolution
detection schemes have become feasible due to the high brightness, wide tunability, and
narrow linewidth of lasers. Far from wishing to give a comprehensive review on laser spec-
troscopy techniques, for which the reader is referred to [379], after a short introduction
on the basic principles of absorption laser spectroscopy, in the remainder of this chapter
our discussion will focus on laser-based high-resolution spectroscopic techniques. Among
these, several methods will be necessarily left out of the discussion, according to the fol-
lowing reasons. Despite having played a crucial role in fundamental physical studies, some
approaches have been gradually either replaced by or evolved into more advanced ones.
Here we are thinking of opto-galvanic spectroscopy [380], and coherent-spectroscopy tech-
niques including level-crossing and quantum-beat schemes [381]. Although still in vogue,
other techniques, including ionization spectroscopy with its particularly successful variant,
namely resonance-enhanced multiphoton ionization (REMPI) spectroscopy [382]; velocity-
modulation spectroscopy of molecular ions [383]; synchroton-radiation-based spectroscopy
[384]; and laser-magnetic resonance spectroscopy [385], are today essentially a prerogative
of Chemistry. Finally, some other techniques, above all the photo-acoustic one [386], are
primarily used in applied spectroscopy for trace-gas detection. In short, we will deal solely
with those spectroscopic techniques which do possess the potential for ultrahigh-resolution
frequency measurements. In addition, although certainly fitting into the range of tradi-
tional high-resolution spectroscopic methods, a few particular schemes, like quantum-jump
spectroscopy, double-resonance, and coherent population trapping, will be more naturally
discussed in the frame of frequency standards (Chapter 7).

In practice, however, high resolution is most often related to high-sensitivity detection.
Just as an example, if the gas pressure is lowered to reduce pressure broadening, less signal is
available, which can be compensated for by employing longer path lengths or diminishing the
measurement noise. So, we shall also deal with some (the most effective ones) of those which
are usually referred to as high-sensitivity spectroscopic techniques. In fact, we will precisely
start with them in order to devote, without any digression, the heart of this chapter to high-
resolution spectroscopic techniques. It will be then clear to the reader that the distinction
between the two categories is only of convenience and, in fact, a number of spectroscopic
interrogation methods inherently possess the potential for both high-resolution and high-
sensitivity detection. Indeed, the availability of a molecular-spectroscopy technique, able to
combine the ultimate performance in terms of sensitivity, resolution, and frequency accuracy,
can be crucial in many fundamental physical measurements.
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5.2.1 Principles of absorption laser spectroscopy

As discussed in Chapter 4, the laser output very well approximates a polarized, monochro-
matic electromagnetic plane wave. Now, when the latter passes along the x direction through
an absorbing gas, the change dI in the intensity depends in general in a non-linear way on
the incident intensity

dI = −∆N (I) · I · σ · dx (5.18)

where σ is the absorption cross-section and the intensity-dependent population density
difference can be written as a power series

∆N (I) = ∆N0 +
d (∆N)

dI
I +

1

2

d2 (∆N)

dI2
I2 + . . . (5.19)

In this way, we can re-write

dI = −
[

∆N0Iσ +
d (∆N)

dI
I2σ + . . .

]

dx (5.20)

Here, the first term describes the linear absorption (Beer’s law), while the second one
reduces the absorption because d (∆N)/dI < 0 (indeed, if i is the lower level and f is the
upper one, then dNi/dI < 0 and dNf/dI > 0). A classical experiment which points out the
effects of the non-linear absorption consists of measuring the intensity Ifl of the fluorescence
induced by a laser in a given sample as a function of the laser intensity IL itself. In this
case, one at first observes that Ifl increases linearly with IL, but for higher laser intensities
the growth becomes less than linear, as the absorption coefficient, and hence the relative
absorption of the laser intensity, decreases. For even higher laser intensities, the fluorescence
intensity eventually approaches a constant value (saturation), which is basically limited by
the rate of the relaxation processes refilling the absorbing level. This saturation of the
absorption can be used for Doppler-free spectroscopy, as will be outlined in a following
section.

5.3 Frequency modulation spectroscopy

While in an ideal laser spectrometer, absorption signals would be affected only by the shot
noise, in every actual situation, the measured noise level is several orders of magnitude
higher. As already stressed in several places, such an excess noise is the result of contribu-
tions from many independent sources. Part of the excess noise affecting absorption signals
has a random nature, and results in a Gaussian distribution of the output voltage around
a mean value. Gaussian noise can be dramatically reduced by acquiring sequentially the
signal and performing ensemble averaging. In this case, the noise level is expected to scale
inversely proportional to the square root of the number M of averaged signals. However,
since not all noise affecting the measurement system is Gaussian, it is not possible to aver-
age indefinitely. It is then crucial determining to which extent a quantity can be averaged
successfully. Such analysis relies on the evaluation of the Allan variance as a function of
the averaging time τ . Clearly, the τ value corresponding to the minimum of the Allan vari-
ance corresponds to the averaging time that provides the best stability of the mean value.
Suppression of non-Gaussian, structured noise, such as, for instance, the 1/f noise, relies
on completely different detection schemes, mostly based on heterodyne detection, which
are outlined in the following. Heterodyne detection is an effective noise-reduction technique
for spectroscopic applications, for it allows to move detection frequency away from DC,
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towards regions where the flicker noise is negligible, and at the same time to reduce the
bandwidth over which the noise is detected. Heterodyne techniques basically rely on ampli-
tude or frequency modulation of the probing radiation and coherent signal demodulation
by phase-sensitive electronics. A periodic modulation of an optical frequency ν0 is defined
by a modulation frequency νm and an amplitude, or depth a

ν(t) = ν0 + a cos νmt (5.21)

Often, the modulation depth is expressed in terms of modulation index m, defined as the
ratio between a and the width Γ of the absorption feature of interest. Different modulation-
based detection schemes can be implemented, depending on the parameters νm, a and Γ
[387].

5.3.1 Harmonic detection

The regime where both modulation depth and frequency are negligible with respect to the
width of the absorption line to be detected (νm, a≪ Γ) is normally referred to as harmonic
detection or derivative spectroscopy. Such a small-depth modulation results in a FM-AM
conversion, as it can be seen by performing a Taylor expansion of the transmitted intensity
(with ∆N0 ≡ n)

S (ν) ≡ 1

nL

I0 − I (ν)
I0

= σ (ν) (5.22)

around ν0:

S (ν) ≃ σ (ν0) + σ′ (ν0) (ν − ν0) +
σ′′ (ν0)

2
(ν − ν0)2 +

σ′′′ (ν0)

6
(ν − ν0)3 + . . . (5.23)

Since
ν − ν0 = acos νmt (5.24)

then we have

S (ν) ≃ σ (ν0) + σ′ (ν0) acosνmt +
σ′′ (ν0)

2
a2cos2νmt +

σ′′′ (ν0)

6
a3cos3νmt + . . . (5.25)

which, recalling that

cos2x =
1 + cos 2x

2
(5.26)

and
cos3x =

3cosx + cos 3x

4
, (5.27)

yields

S (ν) ≃
[

σ (ν0) +
σ′′ (ν0)

4
a2
]

+

[

σ′ (ν0) a+
σ′′′ (ν0)

8
a3
]

cos νmt

+
σ′′ (ν0)

4
a2cos 2νmt+

σ′′′ (ν0)

24
a3cos 3νmt

≃ σ (ν0) + σ′ (ν0) a · cos νmt +
σ′′ (ν0)

4
a2· cos 2νmt

+
σ′′′ (ν0)

24
a3· cos 3νmt (5.28)

In the above relation one easily recognizes a term oscillating at frequency νm carry-
ing information on the absorption cross section’s first derivative, a term at frequency 2νm
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carrying information on the absorption cross section’s second derivative, and a term at fre-
quency 3νm carrying information on the absorption cross section’s third derivative. These
signals can be extracted by means of a lock-in amplifier. One of the advantages of derivative
spectroscopy is that only noise components at νm or 2νm are detected (whereas the whole
detection bandwidth depends on the lock-in integration constant). These effects typically
result in a one-order-of-magnitude enhancement in the signal-to-noise ratio (SNR) with
respect to simple absorption spectroscopy. In addition, derivative detection offers the ad-
vantage of baseline flattening. For example, in second derivative spectra all the spectral
components which are constant (baseline offset) and linear with wavelength (baseline slope)
are eliminated. Equation 5.28, shows that the signals detected at frequency νm and 2νm
scale, respectively, as a and a2; therefore, increasing modulation depth can lead to a further
sensitivity enhancement. In this respect, the requirement a ≪ Γ, necessary for the valid-
ity of the Taylor expansion, sets a limitation on the SNR improvement achievable with
derivative spectroscopy.

5.3.2 Wavelength modulation spectroscopy

On the other hand, even under a deeper modulation, the absorption cross section remains
a periodic function of time and, consequently, is liable for a Fourier expansion

σ(ν0 + a cos νmt) =
∑

n=0

Hn(ν0) cosnνmt (5.29)

Hn(ν0) =
2

π

∫ π

0

σ(ν0 + a cos θ) cosnθdθ (5.30)

Therefore, still it is possible to improve the SNR by increasing the modulation depth
to values a ≫ Γ. However, the signals detected at frequencies νm, 2νm, etc. can no longer
be confronted with the terms of a Taylor expansion, but with the harmonics of the Fourier
expansion as given by Equation 5.29. In literature, this regime (νm ≪ Γ, a≫ Γ) is referred to
as wavelength modulation spectroscopy (WMS). Numerical evaluations of integrals defined
by Equation 5.30 for different lineshape functions (either Lorentzian or Gaussian) can be
found in [388]. These show that the amplitude of the WMS signal is actually not monotonic
with the modulation depth, but different trends occur depending on the absorption profile
under study.

5.3.3 Single- and two-tone frequency modulation spectroscopy

Frequency modulation (FM) spectroscopy relies on much faster modulation frequencies
(νm ≫ Γ) [389, 390]. In this case, modulation results in the formation of two distinct
sidebands, shifted of ωm ≡ ±2πνm with respect to the carrier ω0 ≡ 2πν0. Now, the widely
separated sidebands can individually interact with the absorption line of interest as the
laser source is tuned through the spectral region. Alternatively, the entire line shape of the
spectral feature can be scanned by tuning the radio frequency (ωm) with the laser set at a
fixed optical frequency (ω0). In general, an external phase modulator can be used to convert
the single-mode laser input into a pure frequency modulated optical spectrum with a low
modulation index M . Figure 5.3 is a schematic of a typical experimental arrangement for
FM spectroscopy.

As already shown during the discussion of the Pound-Drever-Hall technique, the phase-
modulated output electric field can be expressed as

E2(t) = E0e
i(ω0t+M sinωmt) = E0e

iω0t
+∞
∑

n=−∞
Jn(M)einωmt (5.31)
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FIGURE 5.3
Typical experimental arrangement for FM spectroscopy.

where the expansion in a series of nth-order Bessel functions Jn characterizes the fre-
quency components of the modulated light spectrum. Since J−n(M) = (−1)nJn(M), the
lower-frequency components with odd n are 180 degrees out of phase from the upper side-
bands. In the case of traditional FM spectroscopy, the modulation index is typically so
small that the light spectrum consists essentially of the strong carrier and only one set of
sidebands at ω±1 = ω0±ωm, while higher-order sidebands are negligible. It is worth noting
that we are implicitly assuming that the laser carrier linewidth is much smaller than ωm,
such that it does not enter critically into the theoretical formalism. For small M values we
have J0(M) ≃ 1 and J1(M) ≃M/2 whereupon

E2(t) = E0e
iω0t

[

1 +
M

2
eiωmt − M

2
e−iωmt

]

(5.32)

We continue the theoretical analysis by assuming that the optical field defined by Equa-
tion 5.32 is passed through a sample that contains an absorption line of spectral width Γ.
The effect of the sample on each frequency component ωn = ω0+nωm can be characterized
by the complex transmission function T (ωn) ≡ Tn = exp(−δn − iφn), where δn is the field
amplitude attenuation and φn is the optical phase shift at ωn. The transmitted optical field
is then

E3(t) = E0e
iω0t

[

T0 + T1
M

2
eiωmt − T−1

M

2
e−iωmt

]

(5.33)

Since the photodetector electric signal S(t) is proportional to the square modulus of
E3(t), by assuming that |δ0− δ1|, |δ0− δ−1|, |φ0 −φ1|, |φ0− φ−1| are all small compared to
1, we get

S(t) = S0e
−2δ0 [1 + (δ−1 − δ1)M cosωmt+ (φ1 + φ−1 − 2φ0)M sinωmt] (5.34)

This means that the in-phase cosωmt component of the beat signal is proportional to the
difference in loss experienced by the upper and lower sidebands, whereas the quadrature
sinωmt component is proportional to the difference between the phase shift experienced
by the carrier and the average of the phase shifts experienced by the sidebands. The FM
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spectroscopy condition is achieved when ωm is large compared with the spectral feature of
interest such that only one sideband (let us say the upper one) probes the atomic/molecular
line. In this case, the losses and phase shifts experienced by the carrier and lower sideband
remain essentially constant. Thus δ−1 = δ0 = δ and φ−1 = φ0 = φ where δ and φ are the
constant background loss and phase shift, respectively. If the quantities ∆δ = δ1 − δ and
∆φ = φ1 − φ are introduced, then Equation 5.34 further simplifies to

S(t) = S0e
−2δ[1−∆δ ·M cosωmt+∆φ ·M sinωmt] (5.35)

Thus the cosine component of the beat signal is now directly proportional to the absorp-
tion induced by the spectral feature, whereas the sine component is directly proportional to
the dispersion induced by the spectral feature. The rf beat signal arises from a heterodyning
of the FM sidebands with the carrier frequency, and thus the signal strength is proportional
to the geometrical mean of the intensity of each sideband and the carrier. The null signal
that results with pure FM light can be thought of as arising from a perfect cancellation of
the rf signal arising from the upper sideband beating against the carrier with the rf signal
from the lower sideband beating against the carrier. The high sensitivity to the phase or
amplitude changes experienced by one of the sidebands results from the disturbance of this
perfect cancellation.

The lineshapes of the FM spectroscopy signals depend critically on the ratio of sideband
spacing to the width of the spectral feature. If, for example, the latter is Lorentzian, the
dimensionless attenuation δ and phase shift φ can be expressed as

δ(ω) = δpeak

(

1

R2(ω) + 1

)

(5.36)

φ(ω) = δpeak

(

R(ω)

R2(ω) + 1

)

(5.37)

with
R(ω) =

ω − Ω0

Γ/2
(5.38)

where Ω0 is the line center frequency and Γ the FWHM. The above three equations define
δj = δ(ωj) and φj = φ(ωj) for each spectral component of the FM optical spectrum (again,
the subscript j = 0,±1 denotes the values at frequencies ω0 and ω0 ± ωm, respectively).
Substitution of these results in Equation 5.34 gives a complete specification of the FM signal
lineshape obtained when ω0 or ωm is scanned. If we define the following quantities

x0 =
ω0

Γ/2
xm =

ωm
Γ/2

X0 =
Ω0

Γ/2
t0 =

x0 −X0

xm
(5.39)

we can re-write the above expressions as

yj ≡
δj
δpeak

=
1

1 + (t0 + j)2x2m
(5.40)

zj ≡
(t0 + j)xm

1 + (t0 + j)2x2m
(5.41)

with j = 0,±1. In this way, referring to Equation 5.34, the absorption (cosωmt) signal
is Sabs ∝ y−1 − y1, while the dispersion (sinωmt) signal is Sdisp ∝ z1 + z−1− 2z0. A plot of
such signals is shown in Figure 5.4.

Finally, we carry out a signal-to-noise analysis. For simplicity we consider the case where
a purely absorptive feature is probed with a single isolated bandwidth and no background
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FIGURE 5.4
Typical absorption and dispersion signals in FM spectroscopy as a function of t0 for xm = 10
(see text).

absorption is present. Thus from Equation 5.35 with ∆φ = δ = 0, the slowly varying
envelope P (t) of the optical power incident on a photo-conductor (quantum efficiency η and
gain g) is

P (t) = P0(1−∆δM cosωmt) (5.42)

where P0 is the total laser power. The generated current is i(t) = i+ is(t) where the dc
photocurrent is given by

i = geη
P0

~ω0
(5.43)

while the beat-signal photocurrent is

is(t) = −geη
P0

~ω0
∆δM cosωmt (5.44)

Thus the rms power of the beat signal is

i2s(t) =
g2e2η2

2

(

P0

~ω0

)2

∆δ2M2 (5.45)

Since 1/f amplitude noise is insignificant at rf frequencies for single-mode lasers, the
dominant noise sources are thermal noise and shot noise generated at the photodetector.
The rms noise power is given by

i
2
N = i

2
SN + i

2
TH (5.46)
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where

i
2
SN = 2egi∆f = 2g2e2η

(

P0

~ω0

)

∆f i
2
TH =

(

4kBT

R

)

∆f (5.47)

where ∆f and R represent the bandwidth and the input impedance of the detection
electronics, respectively. The ratio of signal-to-noise is then

S

N
=
i2s(t)

i
2
N

=

g2e2η2

2

(

P0

~ωc

)2

∆δ2M2

2g2e2η

(

P0

~ω0

)

∆f +

(

4kBT

R

)

∆f

(5.48)

from which it can be seen that it is always advantageous to increase either P0 or M , to
have η near unity, and to work with narrow-band detection electronics. For sufficiently high
power, shot noise predominates over thermal one. In such conditions, we have

S

N
=
i2s(t)

i
2
N

=

η

(

P0

~ω0

)

∆δ2M2

4∆f
(5.49)

Actually achieving quantum-noise-limited detection sensitivity requires careful attention
to experiment details. In this respect, the so-called residual amplitude modulation (RAM)
plays a crucial role. Indeed, in practice, pure phase (or frequency) modulation is difficult to
achieve, and the FM laser beam is amplitude modulated even when no sample is present.
This happens either when the phase modulation is induced externally with an EOM or
when it is obtained by modulating the current of a diode laser. The effect is that, besides
the components at ω0, ω0 ± ωm in Equation 5.32, a small component at ωm may arise,
resulting from a small imbalance in the amplitudes of the sidebands or a relative shift in
phase which prevents the beat frequency from vanishing. This RAM can be detected by a
photodiode and introduces a non-zero baseline. A comprehensive discussion on RAM, from
both a theoretical and an experimental point of view, is given in [391]. In particular, a
number of techniques to suppress RAM are also illustrated.

In some cases, however, FM scheme is limited by its severe technical requirements. In
fact, since the condition ωm ≫ Γ must be accomplished, the modulation frequency is deter-
mined by the width of the spectral line under study. In the case of pressure broadened lines,
for instance, modulations frequencies and, consequently, detectors as fast as few GHz are
required. To overcome this limitation, an alteration of the described scheme can be adopted,
namely the two-tone frequency modulation spectroscopy (TTFMS) [392]. In TTFMS two
closely spaced modulation frequencies ω1 and ω2 are used (see Figure 5.5). These frequen-
cies are both larger than the absorption linewidth, but their difference ω1 − ω2 = Ω, at
which the detection is performed, is relatively small (in the order of MHz), enough to lie
within the detector bandwidth. In this way, one can also consider ω1 and ω2 as sampling
essentially the same part of the absorption feature (which is typically broad with respect to
Ω). Formally, the electric-field amplitude of the laser after modulation at these two distinct
frequencies can be written as

ETT (t) = E0e
i(ω0t+β1 sinω1t+β2 sinω2t) (5.50)

where β1 and β2 are the FM indexes, and ω1 = ωm + Ω/2 (ω2 = ωm − Ω/2). Then we
set β1 = β2 ≡ β, which is tantamount to taking the modulation power associated with ω1
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and ω2 to be equal. Then, assuming β ≪ 1, we get

ETT (t) ≃ E0e
iω0t

[

1 +
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2
eiω1t − β

2
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2
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4
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2
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2
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}

(5.51)

This spectrum is shown pictorially in Figure 5.5, which is not drawn to scale, as the size
of Ω is greatly exaggerated in order that the separate sidebands be discernible.

Thus, after interaction with the sample, described by the complex transfer function
Tj = exp(δj − iφj), we have

ETTs(t) = E0

{

T0

[

eiω0t − β2

4
ei(ω0+Ω)t − β2

4
ei(ω0−Ω)t

]

+
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2
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[

ei(ω0+ω1)t + ei(ω0+ω2)t
]

− β

2
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[

ei(ω0−ω1)t + ei(ω0−ω2)t
]

}

(5.52)
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FIGURE 5.5
Spectral components of the laser after single and two-tone modulation.
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The field is then incident on the photodetector that provides a signal STT (t) ∝
ETTsE

∗
TTs. Since we extract the signal through narrow-band heterodyne detection at fre-

quency Ω, we are interested only in the photocurrent output at Ω, although there will
certainly be output at other frequencies. After some algebra, this is obtained as

STTFM (at Ω) ∝ β2
[

e−2δ1 + e−2δ−1 − 2e−2δ0
]

cos(Ωt) (5.53)

which, for small absorption, simplifies to

STTFM (at Ω) ∝ β2 [2δ0 − δ1 − δ−1] cos(Ωt) (5.54)

To illustrate these ideas, consider the effect of tuning the laser across an absorption
line from below in frequency. First, the upper sideband pair will be absorbed. Thus δ1
becomes non-zero, and a net negative signal results. Further scanning of the laser brings
the absorption line onto the central group of sidebands and 2δ0 becomes non-zero, and a
net positive signal results. Finally, absorption of the lower sideband pair creates a nonzero
δ−1, and again a negative signal results. The recorded absorption spectrum will thus have a
central positive peak and two symmetrically placed negative peaks with one half the height
of the central peak. As shown in Figure 5.6, this behavior can be formally retrieved by use
of Equation 5.40.

A typical experimental arrangement for TTFM spectroscopy is shown in Figure 5.7.
Finally, it is worth noting that the TTFM signal is proportional to the square of the FM
index rather than to the FM index as in conventional single-tone FM spectroscopy. Also,
no phase information is encoded in the TTFM signal.

5.4 Magnetic rotation spectroscopy

Magnetic (Faraday) rotation (or magneto-optical effect) spectroscopy is a technique capable
of enhancing the sensitivity of laser absorption experiments by taking advantage of the fact

FIGURE 5.6
Typical TTFMS signal (xm = 2).
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FIGURE 5.7
Typical experimental arrangement for TTFM spectroscopy.

that a transition in a paramagnetic molecule can alter the polarization state of incident
linearly polarized light in the presence of a magnetic field. In such a configuration, the mag-
netic field breaks the magnetic (MJ) degeneracy of the rotational states (Zeeman effect).
The resulting frequency shift of transitions is different for left-handed and right-handed
circularly polarized light, giving rise to different refractive indices for these polarization
components at a given radiation wavelength (circular birefringence). As a light beam, orig-
inally linearly polarized, propagates through the sample, this anisotropy leads to a rotation
of the polarization axis. This magnetically induced birefringence in a longitudinal field and
the related rotation of the polarization axis of linearly polarized light is called Faraday effect.
This effect can be detected by means of two nearly crossed polarizers [393, 394, 395, 396].
In this way, laser amplitude noise is largely suppressed. Employing a static magnetic field
in combination with a tunable laser, the sensitivity of direct absorption spectroscopy can
be improved by 2-3 orders of magnitude. Another possibility is using an alternating mag-
netic field (modulated around B = 0) in combination with phase-sensitive detection (lock-in
amplifier).

A typical experimental schematic is shown in Figure 5.8 [371]. In such an arrangement,
continuous (dc) and sine-wave modulated (ac) magnetic fields can be applied (both with
root-mean-square value equal to and different from zero). It is worth pointing out that, in
the ac-modulated regime, the detected signal is in general due to a superposition of the
Faraday and Zeeman modulation effects. Let us consider linearly polarized radiation that
propagates along the z direction in a paramagnetic gaseous medium in the presence of a
longitudinal magnetic field. The linearly polarized beam can be considered the superposition
of right (σ1) and left (σ2) circular polarizations. For this reason, if the x direction is the
polarization axis, the electric field can be written as

E(ω) =
E0

2
(x̂+ iŷ)e[i(ωt−kz)] +

E0

2
(x̂− iŷ)e[i(ωt−kz)] (5.55)
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The externally applied magnetic field induces a difference in the refractive indices (n) and
the absorption coefficients (α) for the σ1 and σ2 components. The difference ∆n = n+−n− in
the refractive indices introduces a rotation in the plane of polarization. Simultaneously, the
originally linearly polarized radiation becomes elliptically polarized because of the difference
∆α = α+ − α− in the absorption coefficients (magnetic circular dichroism). Thus, after
interaction with the sample, the electric field becomes

E(ω) =
E0

2
eiωt

{

x̂

[

e
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−ik+L−α
+

2 L

)

+ e
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−ik+L−α
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2 L
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− e
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−

2 L

)]}

(5.56)

where L is the interaction length. If the sample is placed between two nearly crossed
polarizers, the transmitted field is given by
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E0

2
eiωte−ik

+Le−
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}

(5.57)

where ∆k = k+ − k− = ∆nω/c and θ is the uncrossing angle between the polarizers.
Then the transmitted intensity is evaluated as

It(ω) = I0e
−L2 (α++α−)

{

1

2

[

cosh

(

∆α

2
L

)

− cos(∆kL+ 2θ)

]

+ ξ

}

(5.58)

where I0 is the incident intensity and ξ the polarizer extinction ratio. In the limit ∆kL≪
1 and ∆αL≪ 1 this reduces to

It(ω) = I0e
−L2 (α++α−)

[

sin2 θ +
∆kL

2
sin(2θ) + ξ

]

(5.59)

For small θ values then we get

It(ω) ≃ e−
L
2 (α++α−)I0

[

θ2 +∆kLθ + ξ
]

(5.60)

Thus we see that the Faraday signal is reduced by θ whereas the laser noise is suppressed
by θ2, which means that the SNR can be improved. In the above equation, the term which
contains ∆k is in general a complicated function of frequency because it depends on the
Zeeman splitting associated with the transition [396]. In particular, this term is given by a
summation of all the overlapping dispersion profiles that correspond to the MF + 1←MF

and MF − 1←MF Zeeman components, where MF is the component of the total angular
momentum F in the field direction, which takes the values MF = F, F−1, · · ·−F . Assuming
that all the ∆MF = 1 and ∆MF = −1 components are superimposed, an overlapping of
only two dispersion curves can be considered.

As mentioned above, the Faraday effect has long been used to enhance sensitivity and
selectivity in spectroscopic investigation of paramagnetic molecules, as it is an essentially
zero-background technique like the related polarization spectroscopy technique (see later on
in this chapter). However, this technique had mostly been applied in the visible and near
infrared spectral regions where highly performing polarizing components can be used, with
the aim to reduce the large amplitude fluctuations typical of tunable sources in this range,
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FIGURE 5.8
Schematic view of the experimental apparatus for observation of the magneto-optical (Fara-
day) effect by use of dc and sine-modulated ac magnetic fields.

such as cw dye and color-center lasers, with output powers of several hundred milliwatts. In
1997 an experiment at the European Laboratory for Nonlinear Spectroscopy, Florence, Italy
first reported the observation of the Faraday effect in the far infrared range, at a wavelength
around 85 micron, on a rotational transition of NO2 with a tunable far-infrared spectrometer
(see Chapter 4) [361]. The main disadvantage of this spectral region was that state-of-the-
art polarizers in the FIR barely achieved extinction ratios of 10−3. Moreover, because of
the low-power levels available from TuFIR sources at that time (a few tens of nanowatts),
detector noise (or thermal background noise) often limited the achievable sensitivity. Never-
theless, it was recognized that the far-infrared region is particularly convenient for magnetic
rotation spectroscopy since Doppler-limited linewidths of molecular transitions are about
2 orders of magnitude narrower than in the visible range. Hence, the magnetic fields to
rotate the polarization can be much lower. As just mentioned, the first demonstration of
the Faraday effect in the far-infrared range was done on a rotational transition within the
ground vibrational and electronic ground state of the NO2 molecule, at 3514950.50± 0.04
MHz (as measured at zero magnetic field). To observe the effect, a collimated FIR beam
was passed through a first polarizer (to fix the polarization axis) and then interacted with
the gas sample, contained in a 2-m-long glass cell, and after the cell it was analyzed by a
second polarizer. The cell was concentric to a plastic tube, around which two side-by-side
solenoids, each 1-m-long, were wrapped. The inductance of each solenoid was about 3.5 mH,
and peak currents of 0.5 A could be applied. Such current values generated a longitudinal
flux density of 12.5 G when a temporally constant magnetic field was generated. Sinusoidal
modulation was also applied to the magnetic field, using an audio amplifier. Peak-to-peak
flux densities of 36 G were achieved at frequencies near 1 kHz. By combining together two
polarizers, an extinction ratio up to 7 · 10−4 could be achieved for the input and output of
the cell. Varying the uncrossing angle θ between the two polarizers, a maximum of the S/N
ratio was found for a large θ, close to 60◦, as shown in Figure 5.9. Actually, such a large
uncrossing angle could be explained by the very low power used in that experiment and the
predominant contribution of detector noise, at smaller angles, typically found to optimize
the S/N in the visible, near-IR ranges. In that experiment, a mean value of the difference
in the refractive index at the NO2 line center for σ+ and σ− polarizations at a flux density
of 36 G was measured to be ∆n = (5.90± 0.07) · 10−6. In a subsequent theoretical analysis,
it was shown how differential detection schemes could be highly beneficial to increase, in
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FIGURE 5.9
Top, experimental values and best-fit shape (curve) of the magneto-optical profile obtained
for θ = 58◦, B = 36 G, PNO2

= 300 mTorr. Bottom, the residual difference between the
experimental values and the best-fit shape.

general, the sensitivity of far infrared coherent sources, like the tunable FIR spectrometer
just described for magnetic rotation spectroscopy (see also Chapter 4) [369]. Later on, a
thorough experimental and theoretical description of the continuous transition from a Zee-
man effect regime to a Faraday (or magnetic rotation) effect regime was reported [371]. In
this work, a key parameter to get increased detection sensitivity using a setup based on
Magnetic Rotation (Faraday effect) emerges to be the coherent source power, given detec-
tion noise and optical bandwidth. Therefore, present availability of THz quantum cascade
lasers could provide a boost for such spectroscopic techniques for detecting paramagnetic
species.

5.5 Cavity-enhanced spectroscopy

The Lambert-Beer law shows that another valuable way to improve the SNR of an ab-
sorption signal is increasing the interaction path L between the sample and the probing
radiation. The simplest technique to accomplish this task is using a multiple reflection cell
(MRC). A MRC is a simple device consisting of two or more facing mirrors separated by
a distance d. If the cell is properly aligned, the laser beam, coming from a hole in the in-
put mirror, undergoes Nr reflections, each time traversing a different path before leaving
the cell through an output hole. In this way, if the MRC contains an absorbing sample,
the absorption pathlength is increased by a factor Nr without adding extra noise in the
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detected signal. The number of reflections is set by the cell geometry, and can reach a few
hundreds, depending on the quality of mirrors. The main types of multiple reflection cells
are the White [397] and Herriott type [398].

This multipass effect can be realized much more efficiently by placing the sample in
an optical resonator. In fact, as already stressed, the use of an optical cavity leads to
an enhancement of the effective absorption path-length proportional to the cavity finesse.
The current state of the art for high reflectivity mirrors sets a limit on available cavity
finesses in the range from 105 to 106. In the mid-infrared region mirrors with reflectivities
of 99.97% are commercially available, providing path-length enhancements in the order of
104. However, from the experimental point of view, the intensity transmitted by an optical
cavity is affected by an additional source of noise, introduced by the resonant nature of the
signal. In fact, any relative frequency fluctuation between laser and cavity resonance results
in a strong amplitude instability that affects the transmitted radiation. The sharper is the
resonance linewidth (i.e., the higher is the finesse) the stronger is such FM-AM conversion.
This places stringent requirements on the free-running frequency noise of the interrogating
laser as well as the acoustic and seismic isolation required for the interferometer operation.
Eventually, the same factor that enhances the absorption signal may affect its noise level,
unless some refined technique is adopted to suppress this effect. Moreover, a better cavity
finesse reduces the cavity mode line width, which makes the laser-cavity coupling more
difficult. In the following, a few schemes are described, which successfully address these
issues [336, 399].

5.5.1 Cavity-enhanced absorption spectroscopy

Cavity-enhanced absorption spectroscopy (CEAS) relies on a continuous coupling of laser
light into the high-finesse cavity, which requires the laser frequency to be actively locked to
one of the cavity modes. This can be accomplished either by electronic or optical feedback
to the laser. In the former case, the well-established Pound-Drever-Hall (PDH) technique
is used; however, any residual relative (between the laser and the cavity mode) frequency
noise will evolve into amplitude noise in the transmitted light. Then, the molecular absorp-
tion profile is recovered by scanning the cavity free-spectral range. The general formula for
the intensity transmitted from a cavity has been already given in Chapter 3. A more spe-
cific expression, corresponding to the case in which the laser frequency is locked to a cavity
mode, will be provided in a following section, when dealing with cavity-enhanced saturation
spectroscopy (see Equation 5.106). At the same time, while being highly efficient, electronic
locking is complex, sensitive to external perturbations, and is difficult to use when the
measurement instrumentation must be compact and robust (e.g., in environmental appli-
cations). As mentioned above, a second valuable option is represented by resonant optical
feedback (OF) injection [400]. In this case, the laser-cavity coupling is arranged so as to
permit a restrained return of the resonant intracavity field back to the laser, while avoiding
reappearance of light directly reflected from the cavity input mirror. Essentially, for a wide
interval of the OF level (defined as the ratio between the OF and the incident intensity) and
a suitable OF phase (controlled by the distance between the laser and the optical cavity),
the laser linewidth can be narrowed well below the cavity-mode one. As the very first result,
on resonance, this maximizes the cavity injection efficiency. Moreover, when sweeping the
laser across the cavity mode, such a narrowing effect is associated with a temporary laser-
to-mode frequency locking. In this way, when performing fast frequency scans, one obtains
a very accurate recording of the maxima of consecutive cavity modes. Furthermore, since
the linewidth of the laser is well within that of the cavity mode, normalizing the transmit-
ted signal to the incident light intensity authorizes the use of the cavity-transfer-function
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FIGURE 5.10
V-shaped cavity setup for OF-CEAS. Only a restrained part of the exiting resonant intra-
cavity field is allowed to come back to the laser. At the same time, the realized optical
feedback induces a laser linewidth reduction and provides an automatic laser-to-cavity-
mode frequency locking. This elegantly overcomes the drawback of a noisy cavity output.
The variable attenuator (A) adjusts the OF level, whereas the PZT-mounted steering mirror
controls the phase of the OF field. The translation stage allows wider adjustment of the
laser-cavity separation. The beam splitter (BS) is used to monitor the power incident on
the cavity. (Adapted from [401].)

formalism to convert the cavity-enhanced spectra into absorption units. Finally, due to the
regular comb structure of the cavity modes, a high degree of linearity is conferred to the
frequency scale. This technique is called optical feedback cavity-enhanced absorption spec-
troscopy (OF-CEAS). A typical OF-CEAS setup, based on a V-shaped optical cavity, is
shown in Figure 5.10. While the general principles of resonant optical feedback in diode
lasers have already been outlined in Section 4.8.5.1, a more comprehensive discussion, spe-
cialized to the case of a three-mirror, V-shaped optical cavity, can be found in [401]. As
demonstrated in this work, OF-CEAS is capable of reaching sensitivities in the 2.5·10−8

Hz−1/2 range, limited by parasitic interference fringes.

5.5.2 Off-axis integrated cavity output spectroscopy

In the integrated cavity output spectroscopy (ICOS) technique, the cavity length (and
hence its mode structure) and/or the laser frequency are dithered on a time scale, τdith,
considerably faster than the typical temporal span for sweeping an absorption profile, τsweep.
This has the effect of randomizing the input coupling of the light into the cavity. At the
same time, the cavity output is integrated over a duration that is longer than τdith, but
shorter than τsweep [402]. Also, the frequency dependence in the cavity transmission can be
dramatically depressed implementing an off-axis configuration (OA-ICOS), where the laser
beam is injected at an angle with respect to the main axis of the cavity, thus exciting a high
density of transverse modes, whose spacing can practically equal their widths.

First investigated by Herriott, off-axis paths through optical resonators spatially separate
the multiple reflections within the cavity until the re-entrant condition is satisfied, i.e., when
the ray begins to retrace itself on the original path. This is dictated by the specific curvature
r and spacing L of the mirrors forming the cavity. As shown in frame (a) of Figure 5.11,
the multiple reflections appear on the mirrors as a series of spots in an elliptical pattern.
The angle 2θ of a round-trip rotation is again purely determined by the geometry of the
cavity and is given by cos θ = 1 − L/r. When 2mθ = 2pπ, where m equals the number of
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FIGURE 5.11
(a) Schematic of the off-axis cavity alignment evidencing the multiple-reflection beam path.
If m equals the number of optical round-trip passes, the pattern becomes re-entrant for a
cavity-effective free-spectral range FSR = c/(2mL). In graph (b), a typical empty-cavity
transmission spectrum is shown in the case of an on-axis FSR′ of 166 MHz and an alignment
with m = 11, so that FSR = 15 MHz. To wash out the cavity mode structure, both laser-
frequency and cavity-length modulations are introduced and combined to time integration
of the output signal. As an example, graph (c) also shows a typical sample absorption profile
recorded with a DFG spectrometer, corresponding to ro-vibrational transitions of the CH3D
υ4 and CH4 υ2 + υ4 bands, respectively, at 2960.617586 cm−1 and 2960.65530 cm−1. The
cavity was filled with pure methane in natural isotopic abundance at 100 mTorr pressure.

optical round-trip passes and p is an integer, the pattern becomes re-entrant, and the cavity
effective free-spectral range (FSR) equals c/2mL. Actually, the sensitivity enhancement of
the OA-ICOS method also depends on the ability to remove the cavity-resonance structure
[403, 404]. This is in principle accomplished in the case of an effective FSR well below the
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laser linewidth ∆ΩL, because the amount of energy coupled to the resonator virtually ceases
to be a function of laser wavelength. However, in many experimental situations, the above
condition is not met, and large-peak-intensity fluctuations are observed in the transmission
spectrum, as shown in the example of frame (b) of Figure 5.11 for FSR = 15 MHz and
∆ΩL = 1 MHz. Nevertheless, even in that case, if the width of the absorption feature of
interest is much larger than the cavity effective FSR, both laser-frequency and cavity-length
modulations can be introduced and combined to time integration of the output signal to
efficiently flatten the cavity frequency response, while a sufficient number of data points
are retained to define the absorption profile. The result of this experimental procedure can
be appreciated in frame (c) of Figure 5.11 where a typical absorption line is shown for an
absorbing gas in the cavity. The relationship between the laser tuning rate G = fscan · δω
(with fscan as the frequency of the laser scan and δω as the scan interval) and the cavity
ring-down time τ also plays an important role for the stabilization of the cavity output.
Indeed, the resonant energy build-up of the cavity can be efficiently suppressed when the
laser is scanned through one effective FSR within the ring-down time. For a given value of
δω, this sets a lower limit for the laser-frequency scan fscan ≥ FSR/(τδω). Note that, at the
same time, fscan should also be chosen with a value much less than the characteristic cavity
frequency fcavity = 1/(2πτ), which describes the cavity-amplitude response. The optimum
value for fscan is chosen in the above range to maximize the signal-to-noise ratio while
avoiding any distortion in the transmission spectrum. On the basis of this consideration, for
all practical purposes, wavelength and electric-field phase information can be neglected in
the description of the intracavity optical intensity, leading to a simplified theoretical model.
Therefore, for any FSR-to-∆ΩL ratio, to account for the presence of a cw laser injected into
the cavity, we can simply add a constant source term to the standard differential equation
used to describe the change of the intracavity power. This yields

dI

dt
=

c

2L
[I0CpTm − 2I(1−Rm)] (5.61)

where I0 is the incident intensity, Cp is a factor between 0 and 1 describing the amount
of incident radiation coupled to the resonator, and Tm (Rm) is the mirror transmittivity
(reflectivity). The steady-state transmitted intensity is found by multiplying the stationary
solution of Equation 5.61 by the output mirror transmittivity It = I0CpT

2
m/[2(1 − Rm)].

The presence of a weakly absorbing species in the cavity is taken into account by replacing
the reflectivity with R′ = Rm exp[−α(ω)PsL] ≃ Rm[1 − α(ω)PsL], and the output signal
can be rewritten as

It(ω) =
I0CpT

2
m

2[(1−Rm) +Rmα(ω)PsL]
(5.62)

with α(ω) as the absorption coefficient of the selected transition and Ps as the absorber
pressure. From Equation 5.62, the integrated absorbance (IA), namely, the area under the
recorded absorption signal, can be calculated as

IA ≡
∫ +∞

−∞

It,α=0 − It(ω)
It,α=0

dω =

∫ +∞

−∞

α(ω)

α(ω) +
1

PsLeq

dω (5.63)

where Leq = LRm/(1− Rm) is the effective absorption pathlength. The above formula
for the quantity IA highlights the enhancement inherent to the OA-ICOS technique; indeed
for very high Leq values, the integrand tends to unity which yields, in turn, a large IA value.

The OA-ICOS method is, in general, limited by a low cavity transmission and a fluc-
tuating coupling efficiency, and typically reach sensitivities in the 10−7 Hz−1/2 range. The
best results achieved so far with ICOS and OA-ICOS are 2·10−10 Hz−1/2 [405] and 2·10−9

Hz−1/2 [406], respectively.
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5.5.3 Noise immune cavity-enhanced optical heterodyne molecular
spectroscopy

All aforementioned techniques, however, do not make use, in their most common realiza-
tions, of any modulation methodology to reduce flicker noise. In this frame, wavelength
modulation spectroscopy (WMS) has been combined with both cw-CEAS and OA-ICOS.
In the former case, a sensitivity of 3·10−11 Hz−1/2 was obtained, but an extremely tight
laser-to-cavity lock (1 mHz relative to the cavity) was mandatory [407]. In the latter case, an
improvement in the detection sensitivity of a factor 20 was reported [408]. So far, the most
rewarding approach to merge cw-CEAS with a modulation technique is represented by the
noise-immune cavity-enhanced optical-heterodyne molecular-spectroscopy (NICE-OHMS)
technique [407, 409, 399]. In this case, frequency modulation spectroscopy (FMS) is hap-
pily combined with CEAS to reach a close-to-shot-noise sensitivity in the 10−13 Hz−1/2

range. The clever idea is to choose the modulation frequency exactly equal to the cavity
free spectral range, such that all the components of the FM-triplet are transmitted through
the cavity. Thus, any residual laser frequency noise will influence the three spectral com-
ponents in an identical manner, and no conversion to amplitude noise will appear in the
detected signal. In this sense, the technique is immune to laser frequency noise. The attrac-
tive feature is that, while taking advantage of the cavity enhancement, the benefits of FMS
are fully exploited. Moreover, WMS can additionally be implemented in order to suppress
leftover noise in the FMS background. Finally, like in cw-CEAS, the presence of counter-
propagating high-intensity laser beams can be exploited to perform Doppler-free saturation
spectroscopy.

Now let us discuss more quantitatively the case of Doppler-limited NICE-OHMS. Here,
the three FM modes propagating inside the cavity interact with separate velocity groups of
molecules. As a result, the interaction between the absorbers and the light can be described
by addressing one mode at a time. The Doppler-broadened frequency modulated NICE-
OHMS signal is obtained by simply multiplying Equation 5.34, describing the photodetector
electric FM signal, by the cavity-enhancement factor 2F/π:

SFM,N−O =
2F
π
{1 + [δ(ω0 − ωm)− δ(ω0 + ωm)]M cosωmt

+[φ(ω0 − ωm) + φ(ω0 + ωm)− 2φ(ω0)]M sinωmt} (5.64)

where, as usual, F denotes the cavity finesse, ωm the modulation frequency, and P0 is the
power of the laser beam. So, in the ideal case, where the cavity-enhancement effect applies
only to the signal without introducing any extra noise, the sensitivity of FM spectroscopy
will be augmented by the factor 2F/π. A generic schematic of the experimental setup
for NICE-OHMS is shown in Figure 5.12 [399]. Three modulation frequencies are usually
employed to optimize the performance of the spectrometer:

• A PDH scheme is implemented to lock the laser frequency against a longitudinal mode of
the external cavity. For this purpose, the laser light is frequency modulated at νPDH (via
an electro-optic modulator for instance) and the error signal derived in cavity reflection.
By virtue of the noise-immune principle, the requisites for the PDH locking are looser,
albeit the servo bandwidth still needs to be sufficiently high in order to realize an effective
laser-to-cavity coupling (the needful bandwidth is basically set by the laser linewidth
which, for high cavity finesse values, generally exceeds the cavity mode width). Depending
on the specific type of laser used, the frequency correction signal is distributed among
internal actuators and medium/high bandwidth external actuators (AOMs and/or EOMs),
according to their respective frequency responses. After the PDH locking, scanning of the
laser frequency along the absorption profile is accomplished, as usual, by tuning the cavity
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length. In this respect it is useful noting that, when acquiring Doppler-broadened spectra,
high gain at low frequencies is needed (for the locking loop) so as to guarantee that the
laser closely follows the large cavity scan.

• Then, a higher modulation frequency, νm, is also applied (typically through a second
EOM) for NICE-OHMS detection. In order not to compromise the noise-immune principle
as the FSR is varied during the cavity-length scan, such frequency is actively locked to
the cavity FSR (via a second locking servo). Such active tracking of the cavity FSR is
vital, particularly when scanning across a Doppler-broadened transition, where the FSR
is varied by a significant fraction of the cavity-mode width. Conversely, this is less critical
in Doppler-free detection, for which a shorter tuning range is needed. Commonly, the
FSR-locking error signal is derived from cavity reflected light at the difference frequency
νm−νPDH (in the hundreds of megahertz range) by the so-called deVoe-Brewer technique
[410]. However, it should be pointed out that, even in the presence of robust FSR tracking,
due to the gas dispersion, the frequency distance between the cavity modes against which
the three FM components are respectively locked changes in an asymmetric manner. As
a consequence, the noise-immune condition is perfectly met only at resonance.

• In addition, cavity-length dithering (at frequency fm) is usually accomplished in order to
implement WMS. This helps to lessen the effects of low-frequency noise which inevitably
comes into play through the RAM (both from the laser and the EOM) as well as via
unwanted optical interference fringes.

Finally, the NICE-OHMS signal is detected in the cavity transmission, either in the FM
or WM mode of detection. So far, the best detection sensitivity (5 · 10−13, 1-s integration
time) with the NICE-OHMS technique was obtained in Doppler-free detection mode on
C2HD with a Nd:YAG laser (at 1064 nm) and an enhancement cavity of finesse 100000
(FSR = 320 MHz, 47-cm length)[409].

In spite of some indisputable technical hurdles, the NICE-OHMS technique offers unique
advantages in terms of detection sensitivity and is becoming, for this reason, increasingly
popular in the field of precision spectroscopy and optical frequency metrology.
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Gas

Vvm = FSR
Vvm

FIGURE 5.12
Schematic layout of a NICE-OHMS setup. (Adapted from [399].)
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5.5.4 Cavity ring-down spectroscopy

Cavity ring-down spectroscopy (CRDS) relies on the fact that absorption is an additional
loss in the cavity, and consequently changes its decay time, which is measured from the
transient cavity transmission after an abrupt interruption of the injection [411, 412, 413,
414]. The absorbance is then evaluated through a comparison between the decay time of
the transmitted laser light, respectively, in the presence and absence of the gas sample.
Alternatively, the comparison can be made between the decay time in correspondence of two
wavelengths, on- and off-resonance. While multiple longitudinal/transverse mode excitation,
as realized when employing pulsed lasers, gives rise to multi-exponential decays (indeed each
mode has its own characteristic ring-down time, RDT), excitation of a single cavity mode
results, in principle, in a genuine single exponential process. Furthermore, use of pulsed
lasers will more likely introduce unwanted interference effects in the light leaking out of
the cavity, thus superimposing detrimental intensity modulations on the ring-down decay
signal. As a result, the highest sensitivity will be achieved by use of a cw, narrow-linewidth
laser. In the following we focus on such configuration. In this case, the ring-down event can
be triggered either by breaking off the injected radiation or by rapidly scanning the laser
over a cavity mode (or vice versa). The primary benefit of CRDS is that, in principle, it
is not limited by the amplitude noise of the laser source, but only by the detection shot
noise. In practice, however, drifts in the system between two consecutive measurements
always prevent from achieving this ultimate limit and from averaging measurements over
long times.

Figure 5.13 shows a generic schematic layout of the components making up a typical cw
CRDS experiment. In the simplest scheme, the resonator length is continuously dithered (by
an annular piezoelectric actuator mounted on one of the cavity mirrors) to bring the cavity
mode frequencies into resonance with the laser beam. In this way, intensity will accumulate
in the cavity (i.e., the cavity rings up); then, as a resonance builds up, a threshold detector
triggers a large shift in the AOM frequency that rapidly brings the laser radiation out of
resonance. If this switch-off is sufficiently fast (on the nanosecond timescale), a ring-down of
the trapped light intensity will be recorded by a detector external to the cavity (obviously,
the detector electrical bandwidth should be much greater than the inverse of the RDT).
The average of many acquisitions, recorded by the oscilloscope, is then used to extract the
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Photo-
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V
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FIGURE 5.13
A schematic layout of a cw diode laser CRDS experiment. AOM=acousto-optic modulator;
PZT=piezoelectric transducer; M=mirror. Also shown are the waveforms of applied voltages
used for scanning the diode laser wavelength and modulating the cavity length. (Adapted
from [413].)
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RDT by means of a least-squares fitting routine; finally, hundreds of determinations of RDT
yield the average cavity decay time τ together with its standard error.

Next, let us derive an expression for the limiting detection sensitivity in CRDS [413].
To this aim, consider a cavity of length L which is excited by a laser beam of intensity Iin;
then, after the first passage through the cavity, the intensity measured by the detector will
be

I0 = T 2e−αdIin (5.65)

where T denotes the mirror intensity transmittivity, and α the frequency-dependent
absorption coefficient of a sample filling a region of length d inside the cavity. The factor
e−αd expresses the one-pass intensity attenuation due to absorption and/or scattering by the
homogeneous sample, according to the well-known Lambert-Beer law. For each successive
round-trip, the intensity diminishes by an additional factor of R2e−2αd, with R being the
mirror intensity reflectivity. Thus, after n round-trips, the intensity at the detector will be

In = [R · e−αd]2nI0 = I0e
−2n(lnR+αd) (5.66)

Next, by changing the discrete variable n to a continuous one, t = 2Ln/c, corresponding
to the time spent in the cavity by the light to travel the distance 2Ln, we can write

I(t) = I0e
− ctL (− lnR+αd) (5.67)

So, the cavity RDT, that is the time taken for the initial intensity to decrease by factor
of e, is given by

τ =
L

c(− lnR+ αd)
≃ L

c(1−R+ αd)
(5.68)

which clearly shows that the RDT does not depend on the laser intensity (hence it is
not affected by intensity fluctuations). In the absence of the sample, the RDT for an empty
cavity is

τ0 =
L

c(1 −R) (5.69)

from which the mirror reflectivities can be accurately measured. If τ and τ0 are experi-
mentally recorded as functions of the laser frequency, the absorption spectrum of a sample
within the cavity can be retrieved according to the following formula

α(ν) =
L

cd

(

1

τ(ν)
− 1

τ0

)

(5.70)

Finally, we can fix the limiting CRDS sensitivity as the minimum absorption coefficient,
αmin, that can be detected in the limit of τ → τ0

αmin =
L

cdτ0

∆τmin
τ0

=
1−R
d

∆τmin
τ0

(5.71)

where ∆τmin is the minimum detectable change in the cavity ring-down time. Equation
5.71 shows that the spectrometer sensitivity can be optimised either by increasing R or by
increasing d, as well as by minimizing ∆τmin/τ0 which represents the relative error of the
cavity ring-down time measurements.

Within the above basic approach, sensitivities in the ∼ 10−8 Hz−1/2 range can routinely
be achieved. Higher sensitivities can be reached by actively locking the cavity and laser
in resonance, which originates higher and more reproducible intra-cavity intensities and
therefore improved signals. In the experiment by [415], a single-beam, dual-arm approach
to CRDS was adopted to reduce shot-to-shot fluctuations and eliminate oscillations in the
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FIGURE 5.14
cw-CRDS setup employing a ring resonator locked to an external laser source. PPL=p-
polarized light, SPL=s-polarized light, PM=phase modulator. (Adapted from [415].)

spectral backgrounds. More in detail, with reference to Figure 5.14, two orthogonal polarized
beams are derived from the laser source (one s- and the other p-polarized with respect
to the ring-down cavity mirrors) which see different mirror reflectivities at non-normal
incidence (typically, dielectric mirrors have a lower reflectivity for PPL than for SPL). In
this way, a single resonator can be simultaneously used as a low-finesse cavity for continuous
locking to the probe laser (via the usual PDH technique) with one arm, and as a high-
finesse cavity with the other arm, where the light is switched on and off (via the AOM)
to perform CRDS measurements. Further improvement of this scheme, basically relying on
simultaneous detection of an on- and off-resonance mode, allowed to push the detection
sensitivity down to 4.2 · 10−11 Hz−1/2 [416].

An ac heterodyne technique in CRDS was also demonstrated achieving a detection
sensitivity of 1.6 · 10−10 at 1-s averaging [417]. In such configuration, two cavity modes,
one probing the empty cavity and the other probing intracavity absorption, are excited
simultaneously but with their intensities temporally out of phase, with one mode decaying
and the other rising. Heterodyne detection between the two modes reveals the dynamic time
constants associated with the empty cavity and the additional intracavity gas absorption.

5.5.4.1 Phase-shift (PS) CRDS

Phase-shift CRDS hinges on the principle that light trapped within a high-finesse optical
cavity experiences a phase shift relative to light that bypasses the cavity [418]. In the basic
PS CRDS scheme, a cw laser beam is sinusoidally intensity modulated at angular frequency
Ω. Then, the time dependence of the light intensity entering the optical cavity, Iexc(t), can
be written as

Iexc(t) = I0(1 +M sinΩt) (5.72)

where M is the modulation depth. Since the light intensity inside the cavity also decays
exponentially with the characteristic time τ(ν), the intensity measured behind the cavity
at time t is given by

ICRD(t) =
1

τ(ν)

∫ t

−∞
I0(1 +M sinΩt)e

− t−t
′

τ(ν) dt′

= I0

{

1 +
M

√

1 + Ω2τ(ν)2
sin[Ωt− arctanΩτ(ν)]

}

(5.73)
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which means that the light transmitted through the cavity is phase shifted with respect
to the incident beam by the amount φ given by

tanφ = −Ωτ(ν) (5.74)

Incidentally, the modulation depth decreases by the factor 1/
√
1 + Ω2τ2. It follows there-

fore that the cavity ring-down time τ(ν) can be determined in an intensity-independent way
from a measurement of the ratio of the in-phase component to the out-of-phase component
of the modulated light intensity that exits the optical cavity as a function of laser wave-
length. For optimum detection sensitivity, Ω is selected such that Ωτ(ν) is around 1. Use of
a lock-in amplifier enables measurement of the phase shift and determination of the ring-
down time from which absorption coefficients can be derived in the usual way. PS CRDS is
now finding increasing popularity in cavity-enhanced spectroscopy experiments making use
of broadband light sources and in analytical applications of fiber-loop cw CRDS.

5.5.4.2 Saturated-absorption cavity ring-down spectroscopy

In principle, CRDS is not limited by amplitude noise of the laser source, but only by
detection shot noise. However, variations of the empty-cavity decay rate always prevent us
from achieving this ultimate limit and from averaging measurements over long times. The
empty-cavity background could be subtracted by quickly switching the radiation frequency
between nearby longitudinal cavity modes. Nevertheless, this method cannot be completely
resolutive as different cavity modes are affected by uncorrelated fluctuations. To overcome
this drawback, a novel spectroscopic technique, namely, saturated-absorption cavity ring-
down (SCAR) was recently demonstrated [419]. Hinging on the decrease of the saturation
level during each SCAR event, such a technique proved very effective in identifying and
decoupling any variation of the empty-cavity decay rate. Saturation effects had already
been observed in CRD experiments, but they had been either considered as a disadvantage
to be avoided, or only used to get Lamb dips. Giusfredi et al., instead, developed and
experimentally tested an effective model to take advantage of the SCAR effect in high-
sensitivity and high-resolution spectroscopic detection. Let us assume that the gas interacts
with intra-cavity radiation in a TEM00 mode with a time-dependent intensity I and power
P given by the following expressions

I (ρ, t) = I0 (t) e
−2(ρ/w)2 (5.75)

P (t) =
πw2

2
I0 (t) (5.76)

where ρ =
√

x2 + y2 is the radial coordinate, I0 (t) = I (ρ = 0, t) is the peak intensity
on the cavity axis z, and w is the beam waist, assumed to be constant along z. We also
define a time-dependent saturation parameter as

G (t) ≡ I0 (t)

Is
=
P (t)

Ps
(5.77)

It is worth noting that we are neglecting the effects of the standing-wave light field
inside the cavity and we are spatially averaging the different saturation levels of molecules
interacting with light in node and anti-node positions. In the presence of inhomogeneous
broadening due to a thermal Gaussian distribution of molecular velocities, the absorption
coefficient is affected by saturation and obeys the following equation

α (ρ, t) =
α0

√

1 +
I (ρ, t)

Is

(5.78)
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where α0 is the non-saturated value of α. Power attenuation due to gas absorption, along
the z axis, can be expressed as [379]

dP

dz
(t) = −2π

∫ ∞

0

α (ρ, t) I (ρ, t) ρdρ = −α0
2P (t)

1 +

√

1 +
P (t)

Ps

(5.79)

where the spatial integration over the transverse beam profile corresponds to a local
approximation. That is correct at pressure regimes where the diffusion time of molecules
is longer than the population relaxation time of molecular levels. Let us combine this con-
tinuous loss mechanism (following the Beer-Lambert law) with the discrete mirror losses (2
each cavity round-trip), and define the decay rates γc = c (1−R) /l and γg = cα0 where R
is the mirror reflectivity. Then, by using the speed of light relation d/dz = (1/c)d/dt, we
get the following rate equation for the saturation parameter

dG

dz
(t) = −γcG (t)− γg

2G (t)

1 +
√

1 +G (t)
(5.80)

where G (t = 0) = G0 = P0/Ps is the saturation parameter value when the SCAR
event starts, triggered by a threshold set on the signal detected in transmission. Numerical
integration of Equation 5.80 can be preformed with the 4th-order Runge-Kutta algorithm
within the CRD fitting procedure itself. Since the dynamic range of the decay curve exceeds
4 decades, it is useful to factorize G as follows

G(t) ≡ G0e
−γctf(t;G0; γc, γg) (5.81)

whereupon the following differential equation is obtained

d

dt
f(t) = −γg

2f(t)

1 +
√
1 +G0e−γctf(t)

f(0) = 1 (5.82)

In Figure 5.15, SCAR measurements are compared with the model. The experimental
data in this figure are the average of 3072 decay signals measured at a fixed frequency
near the absorption peak of the chosen molecular transition (0331 − 0330 R(50) transition
of 12C16O2, recorded at room temperature and pressure of 50 µbar in a 1-m-long cavity
formed by two 440-ppm-optical-loss high-reflectivity mirrors) over a 4-s time interval. The
discrete noise values in the tail of the SCAR signal are due to the resolution of the digitizing
oscilloscope. Almost flat residuals witness the validity of the theoretical model. A rough and
intuitive explanation for the intrinsic ability of this technique to distinguish between empty-
cavity and gas-induced decay rates can be given as follows. Three consecutive intervals can
be recognized in the SCAR signal: zones A, B, and C carry information, respectively, on
γc, γc+ γg, and the detector offset due to thermal background (whose fitted value has been
subtracted from the signal in figure). The A-B transition is marked by a slope change in the
SCAR signal, which needs the condition G0 ≫ 1 to be well observable, as it is more evident
in the f curves. As a consequence, a large detection dynamics is needed to measure the
transition from strong-saturation to linear-absorption regime in the SCAR decay, before it
falls below the noise level (B-C transition). The best choice for G0 should give such three
zones with similar durations.

As shown in Figure 5.16, the high-resolution performance of the SCAR technique was
also tested by resolving the hyperfine structure of the (0001 − 0000) R(0) transition of
17O12C16O at natural abundance (7.5 · 10−4). Thanks to its ability to efficiently remove
empty-cavity background losses, the SCAR technique has recently demonstrated to be
a powerful tool for ultrahigh sensitivity spectroscopy. Indeed, radiocarbon detection was
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Comparison between experimental data and theoretical model for the SCAR technique.
Experimental data points for the caseG0 = 50, the superimposed fit curve, and the residuals
are plotted with left scale. Saturated decay functions f , simulated for different values of G0
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achieved with a sensitivity to partial pressure of 14CO2 in the part-per-quadrillion range
[420]. This result simultaneously represents the lowest pressure of a gas phase simple
molecule and a brand new, all-optical way for radiocarbon dating, directly challenging
accelerator mass spectrometry (AMS) [421].
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FIGURE 5.16
Sub-Doppler spectrum of the (0001 − 0000) R(0) transition of 17O12C16O (ν0 = 2340.765
cm−1, S = 1.25 ·10−22 cm), recorded with a pressure of 2 µbar. The dimensionless quantity
D displaying the Lamb-dip features is defined as D ≡ G0Ps/P0. The experimental data and
a multi-Lorentzian curve fitting the 3 Lamb dips and the corresponding 3 crossovers are
plotted.
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5.6 Doppler-free saturation spectroscopy

Here begins our discussion on high-resolution spectroscopic techniques. Very soon after the
advent of lasers, the first sub-Doppler spectroscopic technique (allowing the resolution of
features on a frequency scale that is much smaller compared to Doppler width) was demon-
strated. Also known as saturated absorption spectroscopy, this method was first observed
by Lamb in the gain curve of a gas laser and then perfected by C. Bordé and T. Hänsch.
It has revolutionized the field of high-resolution spectroscopy and is still widely employed.
In a typical experimental setup (Figure 5.17), two counter-propagating laser beams de-
rived from a single laser beam are sent through an atomic vapor cell (let us say along the
z direction). The pump beam has a high intensity in order to make the gas transparent,
while the transmittance of the probe beam (typically with a factor of ten smaller intensity)
through the vapor is recorded by the detector and provides the actual spectroscopic signal.
Let’s start by considering the case where only the probe beam is allowed to go through the
sample. Then, the usual Doppler-broadened absorption profile is recorded (we are assuming
here that the gas pressure is sufficiently low to make the Lorentz broadening contribution
negligible). Instead, if the pump beam is also sent through the vapor cell, a very narrow
feature is observed in the signal at the resonance frequency ν = ν0 of the atomic/molecular
transition.

Qualitatively, the reason for this is the following: whenever atoms with non-zero velocity
along the radiation propagation direction see the probe beam shifted into resonance due to
the Doppler effect, at the same time the pump beam is shifted further away from resonance.
By contrast, atoms at zero velocity do see both the pump and the probe beam into resonance.
Then, if the photon flux in the pump beam is high enough, the ground is significantly
depleted by the pump-induced absorption processes. As a result, the absorbance of the
probe beam is reduced (compared to the case without pump beam) and a dip appears in
its transmission spectrum.

The last comment of this qualitative introduction concerns the width of the Lamb dip
which is, obviously, much narrower than the Doppler one. So, if the laser linewidth is small
enough, the observed Lamb dip width can approach the natural linewidth of the atomic
transition.

Next, let us try to derive a quantitative expression for such saturation-spectroscopy

Gas sample
BS M

Detector

ALaser
beam

pump probe

FIGURE 5.17
Illustration of the principle of Lamb-dip spectroscopy. The laser beam passes through the
sample twice, using an arrangement of beam splitter (BS), mirror (M), and attenuator (A).
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signals. For the sake of simplicity, let us consider atoms with only two internal states, the
ground state |g〉 and the excited one |e〉. First, analyze the effect of the pump beam. In a
two-level system, the populations in the two states obey the following equations

{

Ṅe = −ΓNe + σΦ (Ng −Ne)
Ng +Ne = N = const

(5.83)

where the first term in the rate equation stems for spontaneous emission and the second
term for stimulated processes, and Φ = I/hν is the incident photon flux. Then we have

Ṅe = − (Γ+2σΦ)Ne + σΦN (5.84)

whose steady-state solution is

Ne (∞)

N
=

1

2 +
Γ

σΦ

(5.85)

which gives

△Npump
N

=
Ng (∞)−Ne (∞)

N
= 1− 1

1 +
Γ

2σΦ

(5.86)

Now, if the absorption cross section has a Lorentzian profile with linewidth Γ and a
Doppler-shifted resonance frequency

σ (ν, vz) = σ0
Γ2/4

(

ν − ν0 +
ν0
c
vz

)2

+ Γ2/4
(5.87)

we have

△Npump
N

= 1− s

1 + s+
4∆2

Γ2

(5.88)

where ∆=δ + kvz , δ = ν − ν0, s = Φ/Φsat, Φsat ≡ Isat/(hν) = Γ/ (2σ0). Then we can
write

△Npump
N

= 1− s(Γ/2)2
(

ν − ν0 +
ν0
c
vz

)2

+ (Γs/2)2
(5.89)

with Γsat = Γ
√
1 + s. Next, let us consider the probe beam (and neglect interference

effects between pump and probe). In this case, due to the opposite direction of propagation,
the cross section is given by

σprobe (ν, vz) = σ0
Γ2/4

(

ν − ν0 −
ν0
c
vz

)2

+ Γ2/4
(5.90)

So the absorption coefficient, having the units of cm−1, is given by

α (ν) =

∫ +∞

−∞
σprobe · △Npump · dn (vz) (5.91)
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FIGURE 5.18
Normalized absorption coefficient according to Equation 5.91 as a function of the detuning
ν − ν0 for the following parameters: T = 300 K, m = 30 · 10−24 g, Γ = 0.0001 cm−1,
ν0 = 3000 cm−1, and two different saturation parameters (s = 0.1 and s = 1).

where

dn (vz) = n0
e
−
(

vz
vp

)

2

vp
√
π

dvz (5.92)

is the fraction of atoms belonging to a certain velocity class, n0 being the density of
atoms in the vapor cell and vp =

√

(2kBT )/m is the most probable velocity. The result
of numerical integration of Equation 5.91 is shown in Figure 5.18 for typical parameters.
The saturation dip appearing at the center of the Doppler(Voigt)-broadened profile has a
FWHM approximately equal to Γsat. The simulation also shows that, in order to obtain an
appreciable depth for such a dip, the laser intensity must be of the order of the saturation
intensity.

To find an explicit expression for the saturation power

Isat =
hνΓ

2σ0
, (5.93)

one has to calculate the on-resonance cross section σ0 in the frame of quantum mechanics.
To this aim, we first observe that, for a polarized laser field (let us say along the x-direction),
the on-resonance absorption cross section is proportional to |x12|2 where x12 ≡ x̂ · µ12

(µ12 =
∫

ψ∗
2µψ1dr). Thus we can write

σ0(x12) = α · 3× |x12|
2

3
= α · 3× |µ12|2 = 3× σ0(µ12) (5.94)

where α is a proportionality constant and |x12|2 = |µ12|2/3 has been exploited (the
factor 1/3 arises from averaging of |x12|2 over all the possible spatial orientations of the
atom). Next we can use Equation 4.72 (with n = 1) to express σ0(µ12) whereupon

σ0(x12) = 3× λ2

4π2

A21

Γ
(5.95)
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that, inserted into Equation 5.93, finally yields

Isat =
2π2hcΓ2

3λ3Γnat
=
πε0~

2c

2

Γ2

|µ12|2
(5.96)

where Equation 4.64 (with g2 = g1) has been used for A21 ≡ Γnat in the last step.
The above formula allows one to estimate the saturation intensity for a given transition,
provided that the pertinent Γ and dipole moment are known. In this regard, the following
clarification should be made: the actual value of Γ can be significantly larger than that
of the natural linewidth. Most often, indeed, additional broadening mechanisms prevent
observation of the natural linewidth for the detected Lamb dip. In other words, the value
of Γ to be used in Equation 5.96 is the width of the Lorentzian profile resulting from the
convolution of all homogeneous-broadening contributions Γi

Γ =
∑

i

Γi = Γnat + Γcoll + Γtransit + Γlaser + . . . (5.97)

where the most common broadening mechanisms, namely the natural, the collisional,
and the transit-time ones, have been highlighted. A possible non-negligible frequency jitter
in the laser source has been considered too. Just to give an order of magnitude for saturation
intensities in atoms, we consider the 52S1/2 − 52P3/2 transition (at 780.24 nm) in 87Rb. In
this case we have µ12 ∼ 10−29 C·m and Γnat ≃ 6 MHz. So, with typical experimental
parameters, Γ ≃ Γnat and Isat ∼ 1 mW/cm2 is found. This value is usually much lower
than that for ro-vibrational molecular transitions, where weaker transition dipole moments
occur. Moreover, in the case of molecules, the natural contribution Γnat in Equation 5.97
can be extremely low (few kHz or less), such that the saturation intensity is practically
determined by the experimental parameters. Just as an example, for a reasonable width
(Γ = Γcoll + Γtransit + Γlaser = 500 kHz) and a relatively high transition dipole moment
(on the order of 10−31 C·m), Isat ∼ 100 mW/cm2 is found.

It is also useful to give here the explicit expressions for the various broadening contri-
butions [422, 423]:

Γnat =

(

2π

λ

)3 |µ12|2
3πε0~

(5.98)

Γcoll = cpp (5.99)

Γtransit =

√

ln 2

π

kBT

m

1

w0
(5.100)

where cp is the pressure-broadening coefficient (characteristic of the considered transi-
tion), p and T are the gas pressure and temperature, m the atomic/molecular mass, and
w0 is the radius of the Gaussian laser beam. Finally, recall that the width measured for the
dip is Γsat = Γ

√
1 + s.

In conclusion, three further observations are worthy of mention:

• Actually, since the simple theoretical requirements which led to Equation 5.91 can only
be approximated in real experiments, the saturation contrast is much less pronounced
and the dip linewidth is further broadened. Thus, the attainable experimental resolution
is degraded. In particular, the following geometrical effects must be considered. Counter-
propagating laser beams might be slightly misaligned, and the surface of constant phase
of a beam is generally curved. Each of these deficiencies contributes a line broadening
because a single molecule is effectively irradiated by two slightly different frequencies.
Thus by simple geometry a misalignment of θ contributes a linewidth of

sin θ ·∆νDoppler (5.101)
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Extending this geometry by integrating across the beam gives a curvature broadening of

∆νDoppler
√

2πR/λ
(5.102)

where R is the radius of curvature of the wave-front [424].

As an example of a real Doppler-free saturation spectrum, Figure 5.19 shows a Lamb-dip
detection on the Doppler profile of the R(4) lines around 3067 cm−1 performed with a
DFG source according to a single-pass pump-and-probe scheme.

• When the atom has several sub-levels, either in the ground or excited state, other narrow,
resonant (spurious) signals appear [166]. To fix ideas, let us consider the case with a single
excited state, e, and two ground sub-levels, g and g′, having an energy spacing less than
the Doppler width. Now, if the pump beam is resonant on the transition g → e, it will
deeply alter the population of level e, which will affect the absorption experienced by the
probe beam when it is tuned to either of the transitions g → e and g′ → e. As a result, a
resonant change in the absorption will take place when the same velocity class interacts
with both counter-propagating beams on either of the two transitions. This happens when
the laser frequency ω is given by either ω = ωg→e, or ω = ωg′→e, or ω = (ωg→e+ωg′→e)/2.
This latter is referred to as cross-over resonance. Thus, for atoms/molecules possessing
a hyperfine structure, the saturated absorption signal generally exhibits a complicated
form. The other side of the medal is that a dense grid of frequencies is available for laser
frequency locking.

• The Doppler effect ultimately derives from time dilation, and is thus essentially relativis-
tic, while the shift ν = ν0(1 + v/c), which is usually derived by simpler considerations,
represents just the first-order correction for small velocities in collinear geometry. Higher-
order corrections arise for all geometries, and even if the molecular velocity v is entirely
perpendicular to the laser beam there will be a Doppler shift

ν = ν0

√

1− v2

c2
≃ ν0

(

1− v2

2c2

)

(5.103)

Clearly this cannot be removed by any counter-propagation method since it is indepen-
dent of the sign of v. Nevertheless, it can be calculated and corrected for if the velocity
distribution is known (see later on in this chapter). The additional linewidth contribution
may be significant for lighter atoms but is generally negligible for heavier species (e.g., a
few Hz for OsO4).

5.6.1 Frequency locking to a Lamb dip

As already discussed in Chapter 4, saturated-absorption spectroscopy provides a narrow
and stable reference for long-term frequency stabilization of a laser. A recent example of
such an approach, shown in Figure 5.20, can be found in [425]. In that work, the frequency
of a DFB quantum cascade laser (QCL) emitting at 4.3 µm was long-term stabilized to the
Lamb-dip center of a CO2 ro-vibrational transition by means of first-derivative locking to
the saturated absorption signal. Also, thanks to the non-linear sum-frequency generation
(SFG) process with a fiber-amplified Nd:YAG laser, the QCL mid-infrared radiation was
linked to an optical frequency-comb synthesizer (OFCS) and its absolute frequency counted
with a kHz-level precision and an overall uncertainty of 75 kHz. The saturation signal was
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FIGURE 5.19
Lamb-dip detection on the Doppler profile of the R(4) lines at 3067.2344 cm−1 and 3067.2610
cm−1, respectively. The cell was filled with pure CH4 at 30 mTorr pressure. In the inset,
the Lamb dip is shown on a 16-times magnified scale. The saturation contrast is nearly 4%
while the FWHM is 2.5 ± 0.5 MHz. The spectra were averaged over several acquisitions,
thus reducing the detection bandwidth down to about 1 kHz.

first observed in direct absorption, by continuously scanning the laser frequency with a slow
(few Hz) saw-tooth modulation of the laser current (frame (a) of Figure 5.21).

A well contrasted Lamb dip (13% contrast factor) was obtained, exhibiting a HWHM of
about 5 MHz. Wavelength modulation spectroscopy was then implemented at 40 kHz rate,
with a modulation depth of about 3.5 MHz: this value was chosen in order to have the largest
first-derivative signal without broadening the dip. The AC channel of the detector pre-
amplifier was sent to an analog lock-in amplifier for demodulation. Frame (b) of Figure 5.21
shows a first-derivative saturated-absorption spectrum recorded in the same experimental
conditions as in frame (a). The best fit of the experimental data was obtained with a
convolution between two Gaussian functions (accounting for both the Doppler profile and
the Lamb dip). The Lamb-dip HWHM resulting from the fit was about 5.3 MHz. Therefore,
since the expected contributions of pressure and transit-time broadening to the Lamb-dip
width (HWHM) were about 70 kHz and 100 kHz, respectively, the measured Lamb-dip width
could be attributed to the free-running QCL frequency jitter. Then, the first-derivative
saturation dip was used as the error signal to lock the QCL frequency to the transition
center. To this aim, the lock-in output was processed by a PID controller, and the feedback
signal sent to the modulation input of the current driver. Figure 5.22 shows a comparison
between the frequency-noise power spectral density of the QCL in both locked and unlocked
modes. A noise reduction exceeding 20 dB at frequencies lower than 30 Hz is obtained; the
cutoff introduced by the lock-in time constant, set to its minimum available value of 1 ms, is
also evident. The reduction of the slow frequency fluctuations is qualitatively presented in
frame (b), where the lock-in output, in locked and unlocked conditions, is shown. Because
of the small bandwidth, the loop is unable to reduce the laser high-frequency jitter.
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FIGURE 5.20 (SEE COLOR INSERT)
Schematic of the experimental setup for frequency locking to a Lamb dip. The main blocks
of the apparatus are highlighted by dashed lines: the QCL housing and collimation (a), the
saturation spectroscopy setup (b), the SFG assembly (c), the near-IR lasers phase-locked to
the comb (d), and the beat-note detection and measurement (e). P1 and P2 are wire grid
polarizers, T − λ/2 is a tunable half-waveplate and BS is a beam splitter. Despite the lack
of mid-IR optical isolators, use of the crossed polarizers (P1 and P2) allows to have full
control on the counter-propagating beams overlap and focusing, while avoiding undesired
optical feedback to the laser.

Frequency stabilization techniques based on a combination of modulation and syn-
chronous detection, like that just described, usually have better performance compared
to schemes making use of direct detection. However, in certain applications, a modulated
laser output may represent an obstacle. In that case, a side-locking (SL) technique can be
adopted. We already mentioned in Chapter 4, that a modification of the traditional SL
scheme, exhibiting first-order insensitivity to laser intensity fluctuations, has also been re-
ported [180]. Now we have all the ingredients to understand such a method. Conventionally,
the SL signal is generated by difference between the Doppler-broadened linear absorption
and the saturated absorption signal, such that only the Doppler-free features survive on a
flat background (see Figure 5.23). Then, a dc offset is added to the output of the differen-
tial amplifier in order to generate a zero-crossing signal at the input of the integrator, the
value of such offset determining the frequency to which the laser is stabilized. With this ap-
proach, however, the fluctuations in laser power lead to changes in the frequency of the lock
point. To overcome this drawback, one can exploit the different power dependencies of the
Doppler-free saturated absorption spectrum and the Doppler-broadened background spec-
trum. Indeed, a wise combination of these components can make the intensity dependences
in the error signal (ES) at the input of the integrator cancel, thus providing a first-order
intensity insensitivity. It is worth noting that, working only for correlated intensity fluctua-
tions in all three beams (pump, saturated probe, and unsaturated probe), such a technique is
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FIGURE 5.21
Saturation spectrum of the (0111-0110) P(30) CO2 transition in direct-absorption (a) and
first-derivative detection (b). The gas pressure in the cell was 20 mTorr (bringing to a
relative absorption of about 10%) and the pump intensity interacting with the gas sample
was about a factor 2 greater than the saturation level. The two traces have been recorded
by a digital scope, with a sweeping time of about 0.2 seconds. The first-derivative signal
was obtained by a lock-in amplifier with 1 ms integration time constant. The best fit and
residuals are also shown.

ineffective against intensity changes arising from pointing fluctuations (caused, for instance,
by fluctuations in the air refractive index or mechanical vibrations).

In principle, one could also apply this scheme to a Fabry-Perot resonator, in order to
realize, by the simultaneous measurement of the incident and reflected (or transmitted)
power, a power-independent lock to the side of a resonance.

5.6.2 Cavity-enhanced Doppler-free saturation spectroscopy

Fabry-Perot cavities represent a powerful tool for saturation of weakly absorbing samples.
Indeed, if a cw laser is locked to a resonance frequency of a symmetrical cavity, according
to Equation 3.39, the transmitted power is given by

Pt =M
T 2

(1−R)2
P0 (5.104)

where P0 is the incident laser power, T and R represent the power transmission and re-
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FIGURE 5.22
(a) QCL noise power spectral density in free-running and locking conditions, obtained by
using the slope of a germanium-etalon transmission fringe as a frequency discriminator.
(b) The lock-in output signal qualitatively shows the frequency fluctuations that can be
compensated by the loop.

flection coefficients of the cavity mirrors, and M is the mode-match parameter that quanti-
fies the coupling of the input power into the resonator. In the presence of a weakly absorbing
gaseous medium, the transmitted power is calculated by replacing R with R exp[−κ(ν)pL]
(see Equation 3.53) in the above equation. Here κ(ν) is the absorption coefficient (i.e., the
absorption cross-section expressed in cm−1torr−1), p the sample gas pressure (in torr), and
L the cavity length. In case of weak absorption (exp[−κ(ν)pL] ≃ 1−κ(ν)pL), this procedure
yields

Pt(ν, p) ≃
Pt

[

1 +
κ(ν)pLeq

2

]2 (5.105)

where Leq = 2FL/π is the effective interaction length, F ≃ πR(1−R) being the empty
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cavity finesse (see Equation 3.43). Therefore, the fractional change in the transmitted power,
caused by the absorbing sample, is derived as

∆Pt(ν0)

Pt
≡ Pt(p = 0)− Pt(ν = ν0, p)

Pt(p = 0)
= 1− 1

(1 + x)2
=
x(2 + x)

(1 + x)2
(5.106)

where x = κ0pLeq/2 with κ0 ≡ κ(ν0), ν0 being the line center frequency in cm−1. Now,
if saturation of absorption occurs, a narrow Lamb dip appears at the center of the Doppler-
broadened profile. The change in the absorption cross section δκ0 due to saturation leads
to a variation of the cavity transmission which is given by

δPt(ν0)

Pt
=

1

Pt

dPt(ν0, p)

dκ0
δκ0 =

pLeq
(1 + x)3

δκ0 =
Pc
Psat

x

(1 + x)3
(5.107)

where δκ0/κ0 ≃ Pc/(2Psat) has been used in the last step and the saturation power is
given by Psat = πw2

0Isat. Finally, the contrast G of the Doppler-free line with respect to
the Doppler envelope can be calculated as

G ≡ δPt(ν0)

∆Pt(ν0)
=

Pc
Psat

1

(2 + κ0pLeq/2) (1 + κ0pLeq/2)
(5.108)

It is worth noting that the amplitude of the saturation dip exhibits a different behavior
as a function of the gas pressure, with respect to that of the line contrast. G decreases with
increasing pressure. On the contrary, at very low pressures, when κ0pLeq ≪ 1 and the mean-
free path of molecules is much greater than the beam radius, δPt increases linearly with the
pressure. Hence, out of the free-flight regime, when Psat strongly depends on the pressure,
δPt starts to decrease [426]. A typical experimental setup for cavity-enhanced saturation
spectroscopy is shown in Figure 5.24 [427]. In that work, 5 µW of DFG radiation at 4.25 µm
were coupled to a confocal FP cavity (finesse ≃ 550) to record Lamb dips of weak transitions
in the fundamental ro-vibrational band of CO2 up to the J = 82 level. Frequency locking of
the IR radiation to the FP cavity was achieved with a PDH scheme. For this purpose, phase
modulation of the generated IR beam was obtained by transferring, through the non-linear
process, the phase modulation imposed on the DFG signal beam at 1064 nm (provided by a
Nd:YAG laser) by an electro-optic modulator (driven at only 3.6 MHz to match the limited
4-MHz bandwidth of the liquid-nitrogen-cooled InSb detector). The error signal from the
feedback electronics was sent to the current driver of the master diode laser (MDL), which
optically injected the pump slave diode laser. For detection of the transmission signal,
the cavity length (and hence the frequency) was scanned by sending a voltage ramp to
the cavity’s three piezoelectric transducers to perform both direct-absorption and first-
derivative recording. In the latter case, the cavity was dithered with a low-frequency (< 1
kHz) sinusoidal modulation added to the ramp. The signal was then demodulated by a
lock-in amplifier.

5.6.2.1 Doppler-free NICE-OHMS

As already mentioned, Lamb dips can be observed with NICE-OHMS due to the presence
of high-intensity counter-propagating waves inside the cavity [428, 399]. Since three modes
propagate in each direction in the cavity, sub-Doppler dispersion signals occur at detunings
(∆ω) of 0 (mainly when the two carriers interact with molecules with zero axial velocity),
±ωm/2 (when one carrier and one sideband address a common velocity group of molecules),
and ±ωm (when the two lower or the two upper sidebands interact with the same group of
molecules). As the FM detection scheme is insensitive to the carrier absorption, the center
peak, which has the largest amplitude in the dispersion signal, is instead missing in the
absorption recording. For an extensive investigation of the shape and size of sub-Doppler
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FIGURE 5.24
Optical setup for cavity-enhanced saturation spectroscopy: EOM, electro-optic modulator;
D, InSb detector; BS, beam splitter; PG, pressure gauge; PZT, piezoelectric transducer;
RG, ramp generator; HV, high voltage; MDL, master diode laser.

NICE-OHMS signals, the reader is referred to [429]. Here we just mention that in the first
demonstration, the NICE-OHMS technique was exactly applied to obtain the saturated
signal of a C2HD overtone transition at 1064 nm [430]. In that case, the obtained sensitivity
was 1.2 · 10−10 at 1 s averaging. Moreover, selection of slow molecules gave a linewidth
four times better narrower than the room-temperature transit-time limit. More recently,
fiber-laser-based sub-Doppler NICE-OHMS was carried out on C2H2 at 1531 nm up to
saturation degrees of 100 [428]. The apparatus is shown in Figure 5.25. While the two rf
modulation are usually applied through separate, consecutive EOMs, here a fiber EOM is
used to create both the 20-MHz sidebands for the PDH lock and the 379.9-MHz sidebands
for the NICE-OHMS detection. Locking of the FM modulation frequency to the cavity FSR
is accomplished by the deVoe-Brewer technique, while scans over the sub-Doppler signals
are performed by applying a low-frequency (40-100 mHz) ramp to the cavity input PZT.
Detected in cavity transmission, the signal is then demodulated at 379.9 MHz with a double-
balanced mixer. A phase shifter in the reference arm is used to set the FM detection phase
to dispersion phase by maximizing the sub-Doppler signal. In addition, in order to suppress
low-frequency noise, a WM dither at 125 Hz is directed to the cavity output PZT and the
signal is further demodulated with a lock-in amplifier. Finally, after proper adjustment of
the gain and phase, both the scan and the dither are fed forward to the laser PZTs in
order to remove some load from the locking servo. Peculiar examples of strongly saturated
NICE-OHMS signals are displayed in Figure 5.26.

5.7 Doppler-free polarization spectroscopy

Polarization spectroscopy (PS) was first reported in 1976 by Wieman and Hänsch as a
useful Doppler-free method offering a considerably better signal-to-noise (S/N) ratio in
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FIGURE 5.25
Experimental setup for sub-Doppler NICE-OHMS. The following legend holds:
EDFL=Erbium-doped fiber laser, EOM=electro-optic modulator, pol.=free space po-
larizer, λ/2=half-wave plate, VA=variable attenuator, PBS=polarizing beam splitter
cube, λ/2=quarter-wave plate, OI=optical isolator, PD=photodetector, DBM=double bal-
anced mixer, Phase=phase shifter, Gain=separate gain stage, BP=bandpass filter, nodes
(•)=power splitters/combiners. The dotted lines correspond to the free-space laser beam
path. (Courtesy of [399].)

comparison with standard saturation spectroscopy [431]. In a typical PS setup, a strong
pump beam and a weak probe beam with different polarizations and counter-propagating
through the target sample are tuned to the desired optical transition (Figure 5.27). The
optical pumping induced by the polarized pump beam induces a birefringence in the medium
and a consequent detectable polarization change in the weak probe beam. In fact, PS can be
regarded as a kind of saturation spectroscopy, where the change in the complex refractive
index is proportional to the pump intensity.

We now derive expressions for the amplitude and shapes of the polarization signals
obtained with PS [432, 433, 434]. First of all, the z axis is fixed by the propagation direction

FIGURE 5.26
Typical sub-Doppler FM-NICE-OHMS absorption (a) and dispersion (b) features over the
Doppler-broadened envelopes. The experiment used 500 ppm of C2H2 at 20 mTorr intra-
cavity pressure and an intracavity power of 4.6 W, corresponding to a saturation degree of
50 for the carrier and 1.5 for the sidebands. (Courtesy of [399].)
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FIGURE 5.27
Experimental setup for Doppler-free polarization spectroscopy. The beam splitter (BS) picks
off a fraction of light coming from the laser to form the probe beam. Then, the nearly
counter-propagating pump and probe beams overlap in the vapor cell. A half-wave plate
(HWP) is used to rotate the plane of polarization of the probe with respect to the axis of
the beam splitting cube (BSC); a quarter-wave plate (QWP) is used to make the pump
circularly polarized. M=mirror, PD=photodetector. (Adapted from [432].)

of the probe beam. Then, we can write the initial state, which is linearly polarized in a plane
at an angle ψ with respect to the x axis, in terms of the circular polarization vector basis
(σ+ and σ− components)

E =

(

Ex
Ey

)

= E0

(

cosψ
sinψ

)

= E0

{

e−iψ

2

(

1
i

)

+
e+iψ

2

(

1
−i

)}

(5.109)

In propagating through the cell of length L, these two components undergo differential
absorption and dispersion due to the gas and cell windows, so that the probe-beam electric
field after the cell is given by

E(L) = E0

{

e−iψ

2

(

1
i

)

e−ik+Le−α+L/2e−ikw+l

+
e+iψ

2

(

1
−i

)

e−ik−Le−α−L/2e−ikw−l

}

(5.110)

with
k∓ =

ω

c
n∓ (5.111)

kw∓ =
ω

c
nw∓ (5.112)

where α+ and n+ (α− and n−) are the absorption coefficient and the refractive index
experienced by the σ+ (σ−) components. The refractive indices of the window (thickness l)
are also in general complex nw∓ = (1/l) [bR∓ − i(c/ω)bI∓]. Then, if we define

Ω1 =
ω

2c
(∆n · L+∆bR) (5.113)

Ω2 =
L

4
∆α+

1

2
∆bI (5.114)
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n =
1

2
(n+ + n−) , α =

1

2
(α+ + α−) , bR =

1

2
(bR+ + bR−) ,

bI =
1

2
(bI+ + bI−) , ∆n = n+ − n−, ∆α = α+ − α−,

∆bR = bR+ − bR−, ∆bI = bI+ − bI− (5.115)

we get

E(L) =
E0

2
e−i

ω
c (nL+bR)e

−
(

αL
2 +bI

)
(

e−iψe−iΩ1e−Ω2 + eiψeiΩ1eΩ2

ie−iψe−iΩ1e−Ω2 − ieiψeiΩ1eΩ2

)

(5.116)

In conventional PS, the probe beam is horizontally polarized (the angle ψ is equal to
zero) while the analyzer is a linear polarizer slightly misaligned from the vertical such that
a change in signal is detected when the plane of polarization of the probe is rotated (the
pump beam is always circularly polarized). If ϑ is the misalignment angle of the polarizer
relative to the vertical axis (y axis), the transmitted electric field is

Et = Ex sinϑ+ Ey cosϑ (5.117)

whereupon, by use of Equation 5.116, we get

It = I0e
−(αL+2bI ) |sinϑ cosΦ + cosϑ sinΦ|2 (5.118)

where Φ ≡ Ω1− iΩ2. When plotting this expression for different ϑ values, two important
drawbacks can be identified: first of all, the need of keeping ϑ very small, which implies a
very weak signal; secondly, the unavoidable presence of an offset, comparable or even larger
than the amplitude of the PS signal itself, and correlated to the laser intensity fluctuations.

To overcome these limitations, the following double-balanced variant can be used. The
probe beam is decomposed into horizontal and vertical components by the beam splitting
cube and the difference in their intensity gives the PS signal

Isignal = Ix − Iy = E2
0e

−(αL+2bI )
cos (2ψ + 2Ω1)

= E2
0e

−(αL+2bI) (cos 2ψcos 2Ω1 − sin 2ψsin 2Ω1) (5.119)

which, in the hypothesis Ω1 ≪ 1, ψ = π/4 (which maximizes the dispersive component),
simplifies to

Isignal = −I0e−(αL+2bI)
(

∆n · L · ω
c
+∆bR ·

ω

c

)

(5.120)

with I0 = E2
0 . Now we assume that the laser frequency is scanned across a single reso-

nance and that the spectral profile of the difference in absorption is a (power broadened)
Lorentzian

∆α =
∆α0

1 + ξ2
(5.121)

where∆α0 is the maximum difference in absorption at the line center and ξ = (ω0−ω)/Γs
is the scaled detuning in units of half the saturated linewidth Γs. According to the Kramers-
Kronig dispersion relation we also have

∆n =
2(ω0 − ω)

Γs

c

ω

α

2
=
c

ω
∆α0

ξ

1 + ξ2
(5.122)

whereupon we finally obtain

Isignal = −I0e−(αL+2bI )

(

∆α0
ξ

1 + ξ2
· L+∆bR ·

ω

c

)

(5.123)
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which, for optically isotropic windows (∆bR = 0), reduces to

Isignal = −I0e−(αL+2bI)

(

∆α0
ξ

1 + ξ2
L

)

(5.124)

i.e., we obtain a signal that is dispersion shaped, being the derivative of the sub-Doppler
linewidth. This remains true for a wide range of angles, centered around ψ = π/4 at which
the maximum amplitude is obtained. Finally we note that the finite extinction ratio of the
polarisers (η ∼ 10−6 to 10−8) can be accounted for by writing

Id = I0e
−(αL+2bI )

[

η +∆α0L
ξ

1 + ξ2

]

(5.125)

In a more recent realization, a double-balanced PS experiment has been carried out with
a quantum cascade laser at 4.3 µm on a hot-band CO2 transition [433]. The experimental
apparatus is shown in Figure 5.28, while typical sub-Doppler PS signals are shown in Fig-
ure 5.29. The balanced technique, in particular, allows to obtain sharp spectra with much
higher signal-to-noise ratios with respect to standard saturation spectroscopy. Because of
the absence of any modulation onto the laser, such signals are particularly suited for an
efficient frequency stabilization of the laser to the molecular line.

5.8 Doppler-free two-photon spectroscopy

This technique was first proposed by Chebotaev and co-workers [435, 436, 166]. Consider a
two-quantum atomic/molecular transition in the field formed by two counter-propagating

FIGURE 5.28
Experimental setup for double-balanced PS with a QCL laser source. The wire-grid polar-
izers P1 and P3 are used as polarizing beam splitters. The rotation angle ϑ of the analyzer
polarizer P3 is adjusted with respect to P2 in order to obtain the desired signal: ϑ ≃ 0◦ (P2
and P3 almost crossed) corresponds to the standard PS sugnal, while ϑ ≃ 45◦ is used for
balanced detection. D1 and D2 are identical InSb detectors.
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FIGURE 5.29
Lamb-dip detection on the (0111−0110)P(30) ro-vibrational transition of CO2 at 2310.5062
cm−1. The S/N ratio on the sub-Doppler feature increases when upgrading from (a) the
single-pass standard saturation spectroscopy to (b) the standard polarization spectroscopy,
up to (c) the double-balanced technique. The three traces were acquired in identical exper-
imental conditions.

(along the x-direction) laser beams of the same frequency ω (Figure 5.30). Then, for a
particle moving with velocity v, the frequencies of the two travelling waves in the atom’s
rest frame are, respectively, given by ω−k1 ·v = ω(1−vx/c) and ω−k2 ·v = ω(1+vx/c). As
a result, if the two-photon transition is driven by a double excitation in a single travelling
wave, the resonance condition depends on the atomic velocity as

ωf − ωi = 2ω
(

1− vx
c

)

(5.126)

In this case, for a given value of ω, a single velocity class is excited, which corresponds
to a resonance with a Doppler-broadened lineshape. Conversely, if the atoms absorb one
photon from each of the counter-running waves, the condition of two-photon resonance is
given by

ωf − ωi = ω
(

1− vx
c

)

+ ω
(

1 +
vx
c

)

= 2ω (5.127)

In this type of resonance, all particles, regardless of velocity, take part in the two-photon
absorption, which originates a sharp increase in the absorption signal. Qualitatively, the
latter is thus the sum of a wide Doppler profile, corresponding to two-quantum absorption
from a unidirectional wave, and a narrow Lorentzian resonance, arising from two-quantum
absorption by all particles for which ωf − ωi = 2ω. As we will derive below, the amplitude
contrast of such a Lorentzian peak roughly equals the ratio of the Doppler width to the
homogeneous width.

The two main advantages of two-photon spectroscopy with respect to saturation spec-
troscopy can be summarized as follows:

• All the atoms contribute to the absorption, irrespective of their velocity, whereas in sat-
uration spectroscopy only a small fraction of the atoms produces the narrow resonance.

• The width of the resonance peak is unattached by the wavefront curvature as the two
photons are absorbed simultaneously at the same point in space (recall that, in order
to obtain narrow resonances in saturation spectroscopy, the wave vector should have
rigorously the same direction along the whole cross section of the standing wave). As a
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FIGURE 5.30
Doppler-free two-photon spectroscopy scheme. (a) An atomic vapor interacts with two
counter-propagating laser beams of the same frequency. A picture is given in both the
lab frame and in the atom’s rest frame. (b) Two-photon transition with two equal or dif-
ferent photons. (c) Experimental arrangement for Doppler-free two-photon absorption with
fluorescence detection. (Adapted from [166] and [379].)

result, light beams with huge cross sections can be employed, thus dramatically reducing
the transit-time broadening. Indeed, the two-photon transition probability is independent
from the orientation of atomic velocities about the standing light wave. Therefore, transit
broadening can effectively be diminished by guaranteeing that the particles move along
the standing wave rather than across it.

The quantitative treatment of two-photon absorption in an atomic (molecular) vapor
relies on a quantum mechanical approach. According to second-order perturbation theory,
for a stationary atom subjected simultaneously to two laser fields, the transition rate (prob-
ability per unit time) for two-photon absorption is found to be [322]

R
(2)
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∣

∣

∣

∣
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[ωfi − (ω1 + ω2)]2 + γ2/4
(5.128)

where E1 (ω1) is the electric field amplitude (angular frequency) associated with laser
beam 1, µfk (µki) is the dipole matrix element (having the units of C·m) between the states
f and k (k and i), ωki = ωk − ωi, ωfi = ωf − ωi, and Γ = Γi + Γf is the sum of the widths
of the initial and final levels. The above sum extends over all real atomic levels k that are
connected by allowed one-photon transitions with the initial level i. Assuming that a single
level dominates the sum, Equation 5.128 reduces to
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(5.129)
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where I1 = E2
1 and I2 = E2

2 . Next, for an atom moving with velocity v, Equation 5.129
is readily generalized to

R
(2)
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∣
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1
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∣

∣

∣

∣

2

· SI1I2γ
[ωfi − (ω1 + ω2)− v · (k1 + k2)]2 + Γ2/4

(5.130)

where k1 = ω1/ck̂1 and S = |µfkµki/2~2|2. Now, let us consider two counter-propagating
beams generated from the same laser beam (ω1 = ω2 = ω and I1 = I2 = I) and let us
distinguish between the three possible transition rates:

1. The first photon (i.e., the photon connecting level i to the virtual level) is absorbed
from laser beam 1 and the second photon (i.e., the photon connecting the virtual
level to level f) from laser beam 2. This event is non-distinguishable from that
in which the first photon is absorbed from laser beam 2 and the second photon
from laser beam 1. Thus, from Equation 5.130 with k1 = −k2 = k one has
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2. Both the photons are absorbed from the laser beam 1. Now, Equation 5.130 with
k1 = k2 = k yields
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(5.132)

3. Both the photons are absorbed from the laser beam 2. Now, Equation 5.130 with
k1 = k2 = −k yields
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For non-resonant transitions (|ωki−ω| ≫ k ·v), all the above denominators (ωki−ω+k ·v)
can be approximated as (ωki − ω), whereupon

Rtot = R1 +R2 +R3 = B(ω) ·
{

4

(ωfi − 2ω)2 + Γ2/4

+
1
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}

(5.134)

with

B(ω) ≡ 4SI2Γ
|ωki − ω|2

=
4SI2Γ

|ωfi/2 + δ − ω|2 (5.135)

where the frequency difference between the virtual level and the intermediate level k has
been introduced. Then, when the frequency 2ω is scanned around ωfi by a small amount
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(a few Γ), for typical values of the detuning δ, one has δ ≫ (ωfi/2− ω) such that B(ω) is,
in effect, constant B(ω) = 4SI2Γ/|δ|2 ≡ B. Therefore, Equation 5.134 can be re-written as

R′
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(5.136)

where the z direction has been assumed coincident with that of propagation of the laser
beam. With the introduction of the variable t = ωfi − 2(ω/c)vz ≡ ωfi − 2kvz, integration
over the velocity distribution
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2
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dvz (5.137)
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where, in the limit of very small Γ, the Lorentzian representation of the Dirac delta
function has been used in the last step. Equation 5.138 represents the superposition of a
Doppler-broadened background and a narrow Lorentzian profile. The peak of the Doppler
profile, however, amounts only to the fraction

η =
2
√
π

kvpγ

γ2

16
≃ Γ

2ΓD
(5.139)

of the Lorentzian peak height, ΓD = 4kvp ln 2 being the FWHM of the Doppler profile.
Just as an example, for Γ = 2 MHz and ΓD = 1 GHz, the Doppler-free signal is about
1000 times higher than the peak of the Doppler-broadened background. To conclude this
elementary discussion, frame (c) of Figure 5.30 shows an experimental arrangement for
Doppler-free two-photon absorption with fluorescence detection. Other, more sophisticated
schemes will be described in the remainder of this chapter.

5.9 Second-order Doppler-free spectroscopy

As already mentioned in Section 5.6, a more intransigent limitation is posed by the second-
order Doppler effect (SODE). In principle, there are basically two ways to suppress the
SODE influence. The first one is connected with cooling/trapping of particles and will be
dealt with in Chapter 7. The second one relies on optical selection of cold particles in a
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gas by means of the inhomogeneous saturation in a standing light wave [437, 438]. Under
transit-time conditions (Γτ0 ≪ 1, where Γ is the homogeneous linewidth and τ0 = a/v0 the
transit-time for a particle with an average thermal velocity v0 crossing the light beam of
radius a), the main contribution to the saturation resonance is provided by slow particles
whose transverse velocity is much less than an average thermal one. Equivalently, the main
contribution to the saturation resonance is determined by cold particles with an effective
temperature Teff ∼ (Γτ0)

2T0, with T0 being the gas temperature. Therefore the SODE
shift of a resonance is small δ ≃ (Γτ0)

2∆0 at Γτ0 ≪ 1 (∆0 = −(1/2)(v0/c)2ω0). Thus, the
saturation lineshape approaches, in essence, that for a single stationary particle.

The expression for the resonance shape under the transit-time conditions with allowance
for SODE can be approximated as [439]

α(Ω) =
α0κβ

2

4
Γ2

∫ ∞

0

W (u)du

γ2 + [Ω + (1/2)(u/c)2ω0]
2 (5.140)

where W (u) = (u/v20) exp(−u2/v20) is the Maxwellian distribution of particles over the
transverse velocities u, κ = (2dE/~Γ)2 denotes the saturation parameter, 2E represents
the field amplitude, d the dipole matrix element of the absorbing transition, γ = Γ + u/a,
α0 is the unsaturated absorption coefficient, β = Γτ0, and Ω = ω − ω0. The physical
sense of Equation 5.140 is plain, i.e., the resulting resonance shape is a superposition of
separate resonances, each located at the frequency ω = ω0 − (1/2)(u/c)2ω0 with half-width
γ = Γ + u/a.

In a saturated absorption spectroscopy experiment, an effective method to select slow
absorbers out of the thermal distribution consists of diminishing the laser intensity. In
this way, intuitively, just the slow atoms lagging enough in the laser field will significantly
contribute to the saturation signal. At the same time, the use of slow atoms/molecules also
increases the interrogation time of the laser radiation with the particles and therefore leads
to a reduced transit-time broadening. The drawback is that such a scheme only exploits a
little fraction of the molecules in the thermal velocity distribution, which strongly reduces
the saturation signal, thus necessitating the use of an ultrastable laser spectrometer. Within
this approach, the first observation of SODE-free optical resonances with a width of 50
Hz was reported in [438]. The experiment was carried out in methane on the F (2)P (7)υ3
absorption line (at 3.39 µm) with a special spectrometer based on the use of a He-Ne laser
with a telescopic beam expander (TBE) inside the cavity. This permitted recording the
resonance at a pressure of 10−6 torr and lower, and making an effective selection of cold
particles. With this method, a relative spectral linewidth of less than 3 ·10−13 was observed.
Such an approach has been applied successfully also on OsO4 and SF6 at 10 µm [440].

Besides this saturated absorption-based technique, slow-molecule detection was also car-
ried out in a (Doppler-free) two-photon scheme [441]. More recently, an extremely refined
implementation of the latter scheme was applied to the Hydrogen 1S-2S transition [442] and
will be the object of a more detailed discussion (see Section 5.12.5). As already mentioned,
however, the most effective method to reduce the detrimental influence of high velocities is
to cool the absorbers. For example, atoms and ions can be cooled by laser radiation if they
have a strong cycling transition; in the case of molecules, instead, due to the lack of cycling
transitions, several alternative cooling/trapping techniques are emerging. These aspects will
be discussed in Chapter 7.
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5.10 Sub-Doppler spectroscopy in atomic/molecular beams

Another valuable option to overcome Doppler broadening consists of reducing the velocity
distribution of the atoms/molecules by producing them in collimated beams. As we will see
in a short while, although the mean beam velocity may be quite high, like in supersonic
beams, the spread of velocities is strongly reduced. As a result, the effective temperature for
spectroscopy may be as low as a few Kelvins (in other words, the beam molecules possess
poor relative kinetic energy). Moreover, when probing low-divergence beams in a transverse
geometry, both Doppler broadening (originating from a spread of velocities in the laser
propagation direction) and shifts (due to the beam velocity) are heavily suppressed.

As schematically shown in frame (a) of Figure 5.31, a molecular beam is created by
letting a gas escape (via a small orifice) from a high-pressure vessel into an evacuated
chamber. If the mean free path in the gas reservoir is large compared to the hole size, then
molecules will every now and then leak without undergoing collisions. The resulting effusive
beam is characterized by the fact that distributions over velocities and internal degrees of
freedom (rotation, vibration) are the same as in the vessel. In such beams, the most probable
velocity of molecules is typically a few hundred meters per second, while a small fraction of
them will have speeds around ten meters per second. These slower molecules can be filtered
out by means of curved electrostatic guides or mechanical selectors [443]. Higher fluxes of
slow and internally colder molecules can be obtained when the effusive beam is formed by
means of the buffer gas-cooling technique (see below).

By contrast, if the mean free path is shorter than the orifice diameter, which is achieved
either for higher vessel pressures or with larger holes, molecules will frequently collide while
escaping. As we will discuss below, this will produce adiabatic cooling of all degrees of
freedom. In other words, all the energy originally available to the molecule in the reservoir
is converted, in the expansion region, into kinetic energy (directed flow), i.e., a supersonic
beam of internally cold molecules is created.

5.10.1 Effusive beams

Operation at thermal equilibrium and the absence of collisions imply that an effusive beam
contains a well-defined equilibrium distribution of internal states. This is an important
advantage over many other beam sources, which are much less well defined in this respect.
For this reason, in order to point out the main features of sub-Doppler spectroscopy on
atomic/molecular beams, we focus here on effusive beams, following the treatment by [379].
This starts with the density of molecules impinging on the area A of the aperture having
speed between v and v + dv

n(v) = n0
4√
π

v2

v3p
e−(v/vp)

2

dv (5.141)

where n0 is the total density of molecules. As a consequence, the far-field density in the
effusive flow beam as a function of polar coordinates is given by

n(v, r, θ) =
n(v)

4π
dΩ = n0π

−3/2 v
2

v3p
e−(v/vp)

2 A · cos θ
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≡ C v
2
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e−(v/vp)

2

cos θdv (5.142)

where dΩ is the solid angle element under which the area A of the source is seen
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(a)

(b)

FIGURE 5.31
Principle of a supersonic expansion. (a) A high-pressure gas is expanded via an orifice into
vacuum, molecular velocities being represented by the arrows. The randomness in direction
and magnitude of the thermal static gas in the vessel is converted into directed flow after
the nozzle. (b) Velocity distribution for helium in a static gas at room temperature (light
gray), a static gas at 10 K (gray), and a supersonic expansion at 10 K with a mean forward
velocity of 2 km/s (black): when a static gas is cooled, the velocity distribution narrows,
but the peak remains centered at zero velocity; in a supersonic expansion, instead, besides
the narrowing in the velocity distribution, the maximum shifts to a non-zero value, as the
flow is preferentially in one direction. (Adapted from [445].)

from a given point (with polar coordinates θ and r), 4π is the total solid angle, and
C = (n0π

−3/2A)/v3p. With reference to Figure 5.32, we choose the molecular beam axis
as the z-axis, place the slit in the y direction, and consider a laser beam propagating along
the x direction. Molecules effusing from the reservoir through the orifice (area A) into the
vacuum chamber pass through a narrow slit (width b) at a distance d from A before reaching
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FIGURE 5.32
Schematic experimental arrangement for laser excitation spectroscopy with reduced Doppler
width in a collimated molecular/atomic beam.

the interaction region with the laser beam. The quantity b/2d = tan ǫ ≃ ε is referred to as
the collimation angle.

Since the vectors r and v are parallel to each other, the following relations hold: x =
r sin θ and vx = v sin θ which imply vx = (x/r)v (dvx = (|x|/r)dv). Thus, we can write

n(vx, x) = C
z

|x|3 v
2
xe

−(rvx/xvp)
2

dvx ≡ ñ(vx, x)dvx (5.143)

Now, when the laser beam travels along the x-direction through the molecular beam, its
power decreases as

P (ω) = P0 exp

[

−
∫ x2
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α(ω, x)dx

]
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[
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]

(5.144)

where small absorption has been assumed and the absorption coefficient is given by

α(ω, x) =
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−∞
ñ(vx, x)σ(ω, vx)dvx (5.145)

such that
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As usual, the cross section σ(ω, vx) is expressed by the Lorentzian formula

σ(ω, vx) = σ0
Γ2/4

(ω − ω0 −
ω0

c
vx)2 + Γ2/4

(5.147)
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Inserting Equation 5.147 and Equation 5.143 into Equation 5.146 we obtain
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that, with the change of variable ω′
0 = (ω0/c)vx, becomes
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where z/r = cos θ ≃ 1 has also been exploited and

C′ =
σ0Γ

2

2
Cz

c3

ω3
0

(5.150)

Analytical integration of Equation 5.149 over x provides
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where xmax = zε has been used and

C′′ = C′ω
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(5.152)

Finally, with the change of variable ω′ = ω0 + ω′
0 we get
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which represents a Voigt profile, but with the Doppler width reduced by the collimation
ratio of the beam ε = b/(2d). For example, a collimation ratio of 0.01 corresponds to a
reduction of the Doppler width by a factor 100.

5.10.2 Supersonic beams

As anticipated, when the mean free path of the molecules is much smaller than the size of the
orifice, a supersonic free jet is formed by allowing the gas to expand into a vacuum. While
referring to [444] for a detailed description of the supersonic expansion, here we briefly
discuss only those aspects which are of interest in the context of precision spectroscopy
[445, 379]. Conservation for the total energy (of a mole of mass m) before (E0) and after
(Ef ) the expansion (in the z-direction) requires

E0 = U0 + p0V0 +
1

2
mu20 = Ef = Uf + pfVf +

1

2
mu2f (5.154)

where U = Utrans +Urot +Uvib represents the internal energy, pV the potential energy,
and (1/2)mu2 the kinetic-flow energy associated with the mean forward velocity u along
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z. Next we can safely assume u0 ≪ uf (the gas is, in fact, at thermal equilibrium in the
vessel) and pf ≪ p0 (the gas expands into vacuum), whereupon

U0 + p0V0 = Uf +
1

2
mu2f (5.155)

This equation shows that, if most of the energy U0+p0V0 is converted into the (1/2)mu2f
term, then a beam with small internal energy Uf will be produced. In other words, the
enthalpy necessary to establish the directed mass flow is gradually furnished by the enthalpy
which was associated with the random thermal motion in the static gas (upper frame of
Figure 5.31). The cooling that is produced directly, as the internal energy is decreased during
the supersonic expansion, is that of the translational motion. The velocity distribution is
then described by a modified Maxwellian

n(vz) ∝ exp

[

−m(vz − uf)2
2kBTtrans,f

]

(5.156)

around the flow velocity uf . The distribution width, fixed by the translational tem-
perature Ttrans,f , defines the relative energy of collisions in the expanding gas. From a
spectroscopic point of view, this represents an important advantage: indeed, in spite of the
high velocity of the molecular flow, the spread of velocities within the beam is strongly re-
duced. Moreover, at least in the early stages of the expansion, collisions between molecules
occur, which tend to cool the vibrational and rotational degrees of freedom too (in a sense,
the vibrating and rotating molecule finds itself in a translationally cold bath). This re-
sults in a compression of the population distribution n(υ, J) into the lowest vibrational
and rotational levels, which drastically simplifies the molecular absorption spectrum and
greatly enhances the strength of transitions starting from low rotational levels. However, the
three internal degrees of freedom are cooled to different extents. Indeed, non-translational
cooling stops when the density becomes too low to allow a significant number of collisions
(this happens in the downstream expansion, where the translational temperature decreases
but the molecular density also does). Therefore, only degrees of freedom that equilibrate
rapidly with the translational bath will be extensively cooled: since the cross sections for
collisional energy transfer σvib−trans or σvib−rot are generally much smaller than σrot−trans
and σrot−trans ≪ σtrans−trans, then we deduce Ttrans < Trot < Tvib.

With regard to spectroscopic applications, the last relevant issue is that of condensa-
tion. Fortunately, this is a slow process in a supersonic expansion inasmuch as, while cooling
requires only two-body collisions, it needs at least three-body collisions to constitute con-
densation nuclei. Ultimately condensation or formation of clusters will take place, thus fixing
the minimum temperature attainable for a supersonic free jet. A well-established strategy
to counteract this drawback consists of mixing a small quantity of the molecule of interest
with a large amount of a carrier gas, such as helium or other rare gases, and then expanding
the mixture to form a jet. In this way, most of the collisions will occur between carrier gas
atoms, which considerably weaken the inter-atomic forces.

We close this section by pointing out that supersonic beams are most often operated
in a pulsed mode, which relaxes pumping requirements thus allowing use of millimeter-
sized orifices. In such beams, densities as high as 1013 molecules cm−3 at translational
temperatures below 1 K can be realized, the mean forward velocity being determined by
the temperature and pressure of the source as well as by the mass of the carrier gas. For
example, the final velocity of molecules seeded in a room-temperature Kr (Xe) expansion is
about 440 m·s−1 (330 m·s−1) [443]. High-flux and low-temperature properties, however, are
not the only desirable characteristics for a spectroscopic experiment. Indeed a low molecular
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speed is crucial to greatly enhance the interrogation time and hence the ultimate resolution
in spectroscopic frequency measurements. For this reason, such seeded pulsed beams often
just represent ideal starting points for subsequent Stark, Zeeman, and optical deceleration
experiments. These techniques will be discussed in the first sections of Chapter 7 which are
devoted to trapping and cooling of atoms, ions, and molecules.

5.10.3 Buffer-gas-cooling

An alternative effective tool to produce either cold, dense stationary gases or high-flux beams
of cold atoms and molecules is the buffer-gas-cooling (BGC) method [446]. With reference to
Figure 5.33, the cooling process of the desired molecular species A, at initial temperature Ti,
takes place inside a cryogenic cell filled with He buffer gas at low temperature Tb and density
nHe. After a characteristic number of collisions Ncoll, the translational temperature T of
A comes arbitrarily close to equilibrium with the buffer gas, such that T ≃ (1 + ǫ)Tb when
Ncoll = −k · ln(ǫTb/Ti). Here k = (mA+mHe)

2/(2mamHe) and mA (mHe) is the mass of A
(He). Rotational degrees of freedom are also cooled during these collisions (obviously, only
the ground vibrational state is populated in this temperature regime). Then, a beam of A is
formed by allowing both He and A particles to exit the cell into a high-vacuum environment
via a small hole of diameter d. In order to obtain the highest flux of cold, slow A molecules,
several relevant parameters must be taken into account. First, the number of cold A particles
in the beam depends on both nHe and the cell geometry. During thermalization, a particle
of A typically travels a distance R ≃ Ncoll/(nHe · σt), where σt is a thermally averaged
cross section for elastic collisions. Hence, for a cell with distance Rh from the entry point
to the hole, the particles of A will be efficiently thermalized before exiting only if R < Rh.
Secondly, the forward velocity vf of the thermalized beam of A particles is determined by
the ratio d/λ where λ = 1/(nHe·σc), σc being the elastic cross section of cold A-He collisions.
In the effusive limit (λ≫ d), vf will be given approximately by the thermal velocity of cold
A particles, i.e., vefff ≃ vA =

√

2kbT/mA. By contrast, when λ ≪ d, the A particles will
become entrained in the outward flux of He, so that ventrf ≃ vHe =

√

2kBT/mHe. Since
mA ≫ mHe for most molecular species of interest, vf is much smaller in the effusive limit
than for an entrained beam.

From the above considerations, one can recognize that the conditions for efficient ther-
malization and for a slow beam are in conflict: thermalization is most efficient for nHe above
a threshold value, while effusive flow demands that nHe be less than a different one. The
best compromise is obtained when Rh and d are chosen so that such thresholds coincide
n−1
He = dσc = (Rhσt)/Ncoll. This corresponds, of course, to a partial entrainment of A in the

helium flow and, therefore, to a forward velocity which lies between vefff and ventrf . Finally,
one also wishes to maximize the number NA of A molecules in the beam. Monte Carlo
simulations of the beam formation process show that NA increases rapidly (approximately
∝ n3

He) up to a critical value of nHe (ncrHe), above which it remains roughly constant at
a value given by Nmax

A = Nfmax, where N is the total number of A particles inside the
buffer gas cell and fmax = d2/(8R2

h) is the ratio between the area of the hole and that of a
hemisphere at radius Rh. In light of the above discussion, the properties of the beam (flux,
forward velocity, and temperature) are simultaneously optimized according to the following
procedure. Just to fix ideas, let us consider the specific case of fluoromethane molecules,
where the quantity 1/ncrHeσc sets the hole diameter d to the mm order. Moreover, assuming
Tb = 3 K and ǫ = 0.1, we haveNcoll ≃ 40; since σc and σt are of the same order of magnitude,
(typically σc ≥ σt), this implies that Rh ≃ dNcoll is of the order of a few cm. This eventually
returns fmax = 1/(8N2

coll) ≃ 10−4, which ensures a relatively intense flux starting from a
typical value of N . In a real experiment, once the geometrical parameters (d,Rh) have been
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FIGURE 5.33 (SEE COLOR INSERT)
Buffer-gas-cooling setup. The buffer gas cell, mounted in a stainless-steel vacuum vessel, is
a gold-coated copper box, with the top face attached to the 3-K plate of a cryostat based
on a commercial pulse-tube cooler. The exit hole is centered on one side face. Buffer gas
continuously flows into the cell through a narrow tube that is thermally anchored to the
3-K plate too. In this way, both the cell walls and the He gas are typically at Tb = 3 K.
Outside of the buffer-gas cell, good vacuum is maintained in the beam region by means
of charcoal sorbs which pump away (pumping speed of about 1000 l/s) the helium and
non-guided molecules.

fixed, the optimum buffer gas density is found by scanning nHe around the value ncrHe. The
produced molecular beam can be monitored using laser absorption spectroscopy. In partic-
ular, the absorption signal coming from the longitudinal (relative to the molecular beam)
probe laser beam is fitted to a distribution of the form fl(v) ∝ exp[−mA(v− vl)2/2kBTl] to
extract the flux, the forward velocity vl and temperature Tl (recall that, rather than forming
an effusive beam, the A molecules are partially entrained in the helium flow). For transverse
temperature, ft(v) ∝ exp[−mAv

2/2kBTt] can be used for fitting. It is experimentally found
that the BGC process guarantees complete thermalization in the sense that longitudinal,
transverse, and rotational temperature coincide with each other. At the end of such BGC
stage, a continuous CH3F beam with a flux of 1013 molec/s, vl = 100 m/s, and T = 3 K
can be obtained.

In conclusion, we refer the reader to [447] for a comprehensive review on the different
BGC flow regimes as well as to other physical/technical considerations.

In principle, any type of spectroscopy that has been used to study static gases may
be applied to investigate samples cooled in a supersonic expansion. In a classical scheme,
saturation spectroscopy is performed simply by letting a laser beam cross the molecular
beam perpendicularly and then be reflected on itself by means of a mirror located on the
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opposite side of the molecular beam. The most sophisticated scheme relies, however, on
two-photon Ramsey fringes. This will be described in the following section.

5.11 Ramsey fringes

This method was developed by Ramsey to reduce systematic effects such as time-of-flight
broadening and ac Stark shifts in rf experiments. The basic idea is to replace one single
long interaction region by two spatially separated driving fields oscillating phase coherently,
i.e., with a fixed relative phase (Figure 5.34). The passage through the first interaction zone
leaves an atom in a coherent superposition of ground state and excited state. During the
time-of-flight T between the two regions the atomic wave function oscillates freely with the
transition frequency. In the second interaction region, depending on the relative phase of
the atom-field system, the atom is either excited or de-excited. As a function of the driving
frequency, Ramsey interference fringes in the excitation probability can be observed [448].

Now let us go into details of this method by following the original theoretical treatment
[449]. Consider a molecular system which at time t1 enters a region where it is subjected to
an oscillatory perturbation which induces transitions between two molecular eigenstates p
and q with energies Wp and Wq, respectively. Assume that the perturbation V is of such a
form that

Vpq = ~beiωt, Vqp = ~be−iωt, Vpp = 0, Vqq = 0 (5.157)

where b represents the Rabi frequency. Then, if

ψ (t) = Cp (t)ψp + Cq (t)ψq (5.158)

the Schrödinger time dependent equations reduce to

i~Ċp (t) = WpCp (t) + ~beiωtCq (t) (5.159)

i~Ċq (t) = WqCq (t) + ~be−iωtCp (t) (5.160)

If at time t1, Cp and Cq had the values Cp(t1) and Cq(t1), respectively, then, as it can

l, t l, tL, T

t=0

Source

RF

Detector

FIGURE 5.34
Schematic setup for a Ramsey in the RF domain.
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be readily confirmed by direct substitution, solution of the above equations at time t1 + T
is
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Cq (t1 + T ) =
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where

cos θ = (ω0 − ω) /a, sin θ = 2b/a (5.163)

a =
[

(ω0 − ω)2 + (2b)
2
]1/2

, ω0 = (Wq −Wp) /~ (5.164)

In the particular case b = 0 we have

Cp (t1 + T ) = e−
iWpT

~ Cp (t1) (5.165)

Cq (t1 + T ) = e−
iWqT

~ Cq (t1) (5.166)

Now, consider a molecule on which the perturbation acts while the molecule goes a
distance l in time τ after which it enters a region of length L and duration T in which b is
zero, after which it is again acted on by the perturbation for a time τ . Then, if t is taken to
be zero when the first perturbation begins to act, and if Cp (0) = 1, Cq (0) = 0, Equations
5.161 and 5.162 with t1 = 0 and T = τ yield

Cp (τ) =
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Next, Equations 5.165 and 5.166 with t1 = τ give

Cp (τ + T ) = e−
iWpT

~ Cp (τ) (5.169)

Cq (τ + T ) = e−
iWqT

~ Cq (τ) (5.170)

Finally, Equations 5.161 and 5.162 with t1 = τ + T and T = τ provide

Cp (2τ + T ) =
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(5.171)
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Cq (2τ + T ) =
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The elimination of the intermediate values of the C’s gives Cq (2τ + T ) and hence the
final probability that the system changes from state p to q

Pq ≡ |Cq (2τ + T )|2

= 4sin2θ sin2
aτ

2

[

cos
δT

2
cos

aτ

2
− cos θsin

δT

2
sin

aτ

2

]2

(5.173)

where
δ = ω0 − ω = 2π(ν − ν0) (5.174)

In the immediate vicinity of the resonance (cos θ ≃ 0, sin θ ≃ 1) this simplifies to

Pq ≃
1

2
sin2aτ [1 + cos δT ] (5.175)

From this one finds that optimal excitation of the atom is achieved for two interactions
with aτ=π/2, i.e., π/2 pulses. Equation 5.175 predicts, as a function of the detuning δ,
fringes with a periodicity equal to 1/T , the FWHM of the central fringe being δν = 1/2T .
Hence, the achievable resolution with Ramsey excitation improves with increasing separation
between the applied fields. Obviously, if there is a phase difference ∆Φ = Φ2 −Φ1 between
the two interacting zones, then 5.175 has to be modified to

Pq ≈
1

2
sin2aτ [1 + cos δT+ ∆Φ] (5.176)

This means that phase differences in general shift the center of the Ramsey structure by
the amount ν′0 − ν0 = ∆φ/(2πT ). As a consequence, for the operation of precise frequency
standards a few methods have been devised to keep such phase shifts as low and as constant
as possible (see Chapter 7).

The transition probability expressed by Equation 5.173 applies to only a single molecular
velocity, since times T and τ are inversely proportional to the velocity. Hence, Equation 5.173
must be averaged over the distribution of molecular velocities occurring in the molecular
beam. By virtue of Equation 5.141, one can write

Pq,av =
(4vp/

√
π)
∫ +∞
0 y3e−y

2

Pqdy

(4vp/
√
π)
∫ +∞
0 y3e−y2dy

= 2

∫ +∞

0

y3e−y
2

Pqdy (5.177)

where y = v/vp. By insertion of Equation 5.173 into Equation 5.177 and subsequent
numerical computation, one obtains the behavior shown in Figure 5.35 for two different
temperature values. From such plot two main features can be recognized: 1) in general,
the fringe contrast decreases gradually as we move away from the center frequency; 2) the
lower is the temperature the higher is the amplitude and the number of fringes recorded
in the same frequency interval. As a result, a significant improvement in the signal-to-noise
ratio, and hence in resolution of the frequency measurement, is expected when using a cold
molecular beam.

The extension of Ramsey’s idea to the optical spectral region seems quite obvious if
the RF fields are replaced by two phase-coherent laser fields. However, the transfer from
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FIGURE 5.35
Ramsey fringes averaged over the distribution of molecular velocities (according to Equation
5.177) for L = 50 cm, l = 1.5 cm, b = 8.83 kHz, 16× 1.67 · 10−27 Kg, and for two different
temperature values: T = 300 K (upper frame) and T = 30 K (lower frame).

the RF region, where the wavelength λ is larger than the field extension l, to the optical
range where λ ≪ l, causes some difficulties. In this case, even if the two optical light
fields oscillate phase coherently, the fringe pattern washes out, since the phase of a running
wave varies in space on the scale of the optical wavelength. In the optical domain, this
method must be associated with a sub-Doppler technique in order to avoid scrambling
of the fringe pattern. The use of three- and four-zone configuration [450] imposes severe
conditions on parallelism and equidistances that, in practice, limit the distance between
zones and hence the ultimate resolution. By contrast, in the case of two-photon spectroscopy
with two photons being absorbed from opposite directions in a standing wave, the phase
is space independent [451, 452]. With reference to Figure 5.36, the quantitative description
starts from the probability amplitude c(2)n (t) for the atom to be in level n at time t as derived



High-resolution spectroscopic frequency measurements 385

in the two-photon-absorption theory [453]. Thus, after the interaction (in a time τ = l/v)
with the laser beam in the first zone we can write

c(2)n (τ) =
∑

m

µnmµmg|E|2
~2(ωmg − ω)

· e
i(ωng−2ω)τ − 1

ωng − 2ω
≡ Dng(ω) ·

e−i∆τ − 1

∆
(5.178)

where ω (E) represent the angular frequency (the electric field) associated with the
laser beam, µnm (µmg) is the dipole matrix element corresponding to the n→ m (m→ g)
transition, and ∆ = ωng− 2ω. The transit (in a time T = L/v) through the free-field region
followed by the passage through the second interaction zone is instead described by

c(2)n (τ, T ) = e−i∆T e−γT ·Dng(ω)

[

e−i∆τ − 1

∆

]

(5.179)

where 1/γ is the spontaneous lifetime of the upper level, which accounts for the fact
that part of the excited molecules decay before they reach the second zone. Then the final
probability amplitude for the atom to be in level n is obtained as

∣

∣
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(5.180)

where B(ω) = D2
ng(ω)τ

2, A = 1 + e−2γT , C = 2e−γT , and ∆τ ≪ 1 has been used in the
last step. Therefore, the transmission signal will consist of periodical fringes, with period
P = v/(2L) and contrast C, which are superimposed on the broader (Doppler-free) two-
photon background signal B(ω) arising from the absorption in one single zone. Equation
5.180 generalizes Equation 5.173, or Equation 5.175 to the optical domain. Therefore, further
averaging over the distribution of molecular velocities is needed to obtain the actual signal.
Again, this will result in a gradual attenuation of the side fringes. It is worth noting that, in
the derivation of the final probability amplitude for the RF-domain case, the spontaneous
lifetime of the upper level was not considered (see Equations 5.169 and 5.170) because in
the RF domain much smaller γ values usually arise, such that γT ≪ 1.

L
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FIGURE 5.36
Each of the interaction tracts corresponds to a laser standing wave. The condition that the
relative phase between them is fixed is automatically fulfilled by generating both standing
waves inside the same Fabry-Perot cavity.
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In conclusion, the ingenious idea of the separated-fields Ramsey excitation scheme is
in the possibility of tailoring the transit-time broadening and the resolution independently
from each other. Indeed, the former can be augmented by shortening the interaction time
at each single zone (so that a large fraction of the atoms can contribute to the signal),
whereas the overall measurement resolution is determined by the much longer time-of-
flight between the two interaction zones. For these reasons, as we will discover in the next
chapters, the Ramsey interrogation scheme is at the basis of atomic/molecular fountains
as well as of sophisticated experiments employing cold molecular beams. Moreover, if the
atomic state being studied decays spontaneously, the separated oscillatory fields method
permits the observation of narrower resonances than those anticipated from the lifetime
and the Heisenberg uncertainty principle, provided the two separated oscillatory fields are
sufficiently far apart; only states that survive sufficiently long to reach the second oscillatory
field can contribute to the resonance. This method, for example, has been used by Lundeen
et al. in precise studies of the Lamb shift [454].

We close this section by describing a very refined experiment in the frame of two-photon
optical Ramsey fringes [455]. With reference to Figure 5.37, the supersonic SF6 beam has
a forward velocity of 400 m/s and the distance between the two interaction zones is 1 m,
corresponding to a fringe periodicity of 200 Hz. The transition of interest is P(4) E0 in the
υ3 band (Figure 5.38). A folded, U-shape cavity is used to provide the two phase-coherent
stationary waves of the Ramsey spatial interferometer. A carbon dioxide laser (at 28.4 THz)
is used to excite two-photon Ramsey fringes on the molecular beam. Such a laser (Ramsey
laser) is offset phase locked to a second CO2 laser (reference laser) which is stabilized, in
turn, against a 2-photon transition in SF6 (FWHM 40 kHz). Then, AOM1 is needed to
tune the excitation beam to the desired frequency (76 MHz below the r level). Moreover,
the signal transmitted from the U cavity is used for locking the cavity resonance onto the
excitation frequency. However, to increase the signal strength, the Ramsey fringe signal is
detected via stimulated emission in a one-photon transition (from the upper energy level to
the intermediate ro-vibrational level) in a separate Fabry-Perot cavity. To this aim, AOM2
is used to bring the detection beam into resonance with the e → r transition. In this way,
a fringe signal (reflecting the periodic behavior of the population in level e) is recorded
by detector 2, as the frequency of the excitation beam is scanned (in steps) across the
two-photon resonance. Finally, the frequency measurement is ultimately referenced to the
Cs primary standard. For this purpose, a comb is created by a sum-frequency generation
(SFG) process (in a non-linear crystal) between the reference CO2 laser and a mode-locked
Ti:Sa fs laser (see next chapter). The resultant frequency comb can be expressed as fSFGq =
qfr + f0 + f(CO2). This SFG comb overlaps the high-frequency part of the initial comb,
and the beat notes fSFGq − fp = f(CO2)− (p− q)fr are obtained, which are insensitive to
f0. A large number of (p, q) pairs gives the low-frequency beat note f(CO2)−mfr, which is
used to phase lock the mth harmonic of the repetition rate to the CO2 laser frequency. The
repetition rate is simultaneously compared to a 100 MHz or 1 GHz frequency reference, and
the error signal is returned to the CO2 laser via a servo loop of bandwidth of 10-100 mHz.
The reference is based on a combination of a hydrogen maser and a cryogenic oscillator
controlled with a Cs fountain (LNE-SYRTE signal), and is transferred to the laboratory as
an amplitude modulation on a 1.5 µm carrier, via 43 km of optical fiber. The phase noise
added by the fiber introduces an instability of a few 10−14 for a 1 s integration time, reducing
to around 10−15 over 1000 s. These are figures for passive transfer, but can be improved more
than 10 times when the fiber noise is compensated. All radio frequency oscillators in the
system are also referenced to the LNE-SYRTE signal. In this experiment, the mean value of
about 500 individual measurements was ν(SF6, P (4)E0 = 28412764347320.26± 0.79) Hz,
where the uncertainty (2.8 · 10−14 as a fractional value) was the standard deviation.
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Detailed experimental setup for two-photon optical Ramsey fringes. (Adapted from [455].)
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FIGURE 5.38
Schematic of the three levels involved in the P(4) E0 resonance. (Adapted from [451].)

5.12 Laser frequency standards using thermal quantum absorbers

In its simplest realization, an optical frequency standard consists of a narrow-linewidth laser
which is made to interact with a sample of atoms/ions/molecules that possess appropriate
absorption lines. When the laser frequency is scanned across a given resonance, an absorp-
tion feature is detected. The latter is then converted (by means of a suitable stabilization
circuit) into an error signal, which is eventually used to keep the laser frequency at the line
center. With this in mind, it is quite obvious that a weak dependence of the line-center fre-
quency on external fields as well as a high quality factor are highly desirable properties for
a reference atomic/molecular transition. Finally, it is worth stressing that such a frequency-
stabilized laser can be viewed as an optical standard only if its frequency is determined in
relation to the primary Cs atomic clock.

Over the years, optical frequency standards at various frequencies (from the blue to the
infrared) have been developed in several laboratories, many of them operating with the
absorbing gas confined in a cell.
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5.12.1 Iodine-stabilized lasers

Molecular iodine offers several distinct advantages as an optical frequency standard. First,
it is characterized by a rich spectrum of narrow absorption lines in the visible range. Second,
being rather heavy, its velocity is relatively low at room temperature. Last, by properly ad-
justing the temperature of the absorption cell, one can control the vapor-pressure-mediated
collision-induced shifts [456]. For iodine standards based on He-Ne lasers (at λ ≃ 543, 612,
633 and 640 nm), the fractional uncertainty of output frequency can be as low as 2.5 ·10−11

with an output power of about 100 µW. As shown in Figure 5.39, standards with higher
power levels can be achieved using frequency-doubled Nd:YAG lasers (532 nm) [456]. Here,
about 100 mW of radiation at 532 nm are passed through a first polarizing beam splitter
(the deflected beam being available for experimental use). PBS2 then divides the laser beam
into a pump (saturating) beam and a probe beam, and a modulation-transfer Doppler-free
saturation scheme is implemented. For this purpose, an AOM shifts the frequency ω/2π of
the pump beam by δ/2π = 80 MHz. Also, the rf signal driving the AOM is switched on and
off at a frequency of 23 kHz. As a result, (deflected and frequency-shifted) saturating pump
beam is speedily chopped. Afterwards, the pump beam passes through the cell and period-
ically saturates the absorption of those iodine molecules whose Doppler-shifted transition
frequency coincides with the frequency of the pump beam. Finally, the saturated absorption
is probed by a counter-propagating laser beam of frequency ω/2π. Now, since the superpo-
sition of these two counter-propagating beams gives rise to a walking wave structure, where
the nodes and anti-nodes move with a velocity c · δ/(2π), saturated absorption mechanism
applies to iodine molecules that move with this same velocity component (and thus expe-
rience a standing wave). Correspondingly, the laser frequency ωL/2π at the center of the
observed saturation dip is Doppler-shifted by an amount of δ/2 (to first order) and the
transition frequency of the molecule at rest is given by ω0/2π = (ωL + δ/2)/2π. Moreover,
phase-sensitive detection is implemented. To this aim, the phase of the probe beam is modu-
lated at 5 MHz such that, when the laser frequency is tuned across the molecular resonance,
an intensity modulation at that frequency occurs, which is detected by the photodetector
(PD) and demodulated by means of the double balanced mixer (DBM). In turn, this latter
signal is phase sensitively detected by a lock-in, which is driven with the chopping frequency
(23 kHz). With this scheme, frequency offsets generated by a residual linear absorption are
strongly suppressed and only the saturated absorption contributes to the error signal. As a
result, the achieved stability can be as low as a few 10−11. Tunable lasers were also used
to take advantage from molecular iodine reference lines in the green. In particular, a solid
state tunable source emitting around 541 nm wavelength and having a continuous tunability
range of about 1.2 THz was set up. An extended cavity DBR (distributed Bragg reflector)
diode laser emitting cw around 1083 nm was amplified, in a Yb-doped fiber amplifier, and
frequency doubled in a PP-KTP nonlinear crystal [225]. With this source, frequency locked
onto sub-Doppler I2 lines, a frequency stability of 4 parts in 1013 (300 s integration time)
for the diode laser frequency was achieved and used as reference for precise measurements
of atomic helium fine structure transitions around 1083 nm [226].

5.12.2 Acetylene-stabilized lasers

With its two isotopomers, 12CH2 and 13CH2, the acetylene molecule provides a very dense
grid of ro-vibrational overtone transitions in the telecom spectral range (approximately
between 1.515 and 1.553 µm). Potentially, any of these lines can be used for laser fre-
quency stabilization. Nevertheless, due to the weakness of such overtone transitions, high
laser intensities are needed in order to generate Doppler-free saturated absorption signals.
This can be accomplished either by employing high-power erbium lasers in direct-excitation
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Layout of an iodine-stabilized Nd:YAG laser. (Adapted from [456].)

schemes [457], or by resorting to cavity-enhanced methods [458]. In this regard, for in-
stance, application of the NICE-OHMS technique may considerably improve the stability
of acetylene-stabilized diode lasers, which is currently almost an order of magnitude worse
than that of iodine-stabilized He-Ne lasers [456].

5.12.3 Methane-stabilized lasers

Because of its spherical-top symmetry, which provides it with a spectrum only weakly
influenced by any spurious external field, the CH4 molecule has always played a crucial role
in frequency metrology. Moreover, overlapping with the 3.39 µm line of the He-Ne laser, the
F

(2)
2 component of the ν3 P (7) transition has historically been used as a reference frequency

for such laser. Eventually, the celebrated simultaneous measurement of the wavelength and
frequency of this laser has led to the current definition of the speed of light. Typically, a
CH4-stabilized He-Ne laser relies on a 60-cm-long laser resonator with an intracavity CH4

absorption cell (approximately 30 cm in length) [456]. The FWHM of the obtained Doppler-
free saturation signal (about 300 kHz) is mainly determined by transit-time broadening. By
expanding the diameter of the laser beam, this was strongly reduced up to resolve the
hyperfine structure and even the 1.3-kHz recoil splitting in the saturation signal [459]. As
already discussed, however, this scheme is powerless against the shift and broadening caused
by the second-order Doppler effect, which can only be reduced by the use of slow molecules.
With the method described above (see Section 5.9), a relative spectral linewidth of less than
3 · 10−13 was observed [438].

5.12.4 OsO4-stabilized lasers

Possessing a number of lines with favorable characteristics in the 10-µm-wavelength range
(in particular, the isotopomers 188OsO4, 190OsO4, and 192OsO4 have no hyperfine struc-
ture), OsO4 has widely been used for frequency stabilization of CO2 lasers [460]. Vari-
ous configurations have been realized so far, ranging from large external absorption cells
[440], to optical resonators containing the molecular gas [462, 460], as well as to molecular
beams [463]. With the best OsO4-stabilized systems, a fractional frequency stability of a
few 10−15/

√

τ/s and a reproducibility of 2 · 10−13 have been reported [456].
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Most often, atomic/molecular samples for frequency standards are prepared in beams
rather than in absorption cells. As already discussed, the main advantage of this configu-
ration is that a transversal excitation geometry can be adopted, which strongly suppresses
first-order Doppler effects (see Section 5.10). Moreover, the excitation and detection zones
can be spatially separated, which affects in a beneficial way the signal-to-noise ratio. Last
but not least, the refined Ramsey-fringes technique, discussed in Section 5.11, can be im-
plemented.

5.12.5 Atomic hydrogen standard

For atomic beams, the hydrogen standard is clearly the most advanced one. Recently, the
measurement of the 1S − 2S transition frequency in atomic hydrogen has been further
improved via two-photon spectroscopy on a 5.8 K beam to a fractional frequency uncertainty
of 4.2 · 10−15. Such progression mainly arose from an improved stability of the spectroscopy
laser, and a better determination of the main systematic uncertainties. Giving here a detailed
description of this experiment will be quite instructive, as it puts together practically all
the concepts presented so far in this chapter anticipating, at the same time, some others
contained in future chapters. With reference to Figure 5.40, coherent radiation at 243 nm
(13 mW) is obtained by frequency doubling twice (within two resonant cavities) the laser
radiation coming from a tapered amplifier injected, in turn, by an ECDL master oscillator
emitting at 972 nm. A linewidth of less than 1 Hz and a fractional frequency drift of 1.6·10−16

s−1 are obtained by locking the master laser to a high-finesse ULE cavity. Then, a fiber-laser
frequency comb (250-MHz repetition rate) phase coherently links the cavity frequency to
an active hydrogen maser which is, in turn, referenced to a mobile cesium fountain atomic
clock. Cycle slip detection is also applied as described in [464].

Emerging from a cooled copper nozzle, the atomic hydrogen beam then enters the differ-
entially pumped excitation region (10−5/10−8 mbar). The latter is shielded by a grounded
Faraday cage from electric stray fields. Excitation of the 1S-2S transition is accomplished
by two counter-propagating photons in the 243-nm standing laser wave formed by the en-
hancement cavity. Then, for detection, excited, metastable atoms are quenched via the 2P

FIGURE 5.40
Schematic of the beam apparatus for an improved measurement of the hydrogen 1S-2S
transition frequency. A standing laser wave at 243 nm (between gray mirrors) excites the
sharp 1S-2S transition in a collinearly propagating cold thermal beam of atomic hydrogen.
The 2S state is detected after quenching with a localized electric field which releases a
Lyman-α photon. (Courtesy of [442].)
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state by an electric field (10 V/cm) and the emitted 121-nm photons are collected by a
photomultiplier tube (PMT). The intracavity power is monitored by measuring the cavity
transmission be means of a photodiode connected to an integrating sphere. For spectroscopy,
an external magnetic field of 0.5 mT is applied to separate the magnetic components and
use the transitions (1S, F = 1,mF = ±1)→ (2S, F ′ = 1,mF = ±1) whose Zeeman shifts of
the ground and excited state almost completely cancel. The hyperfine centroid frequency is
obtained by adding ∆fHFS = +310712229.4(1.7) Hz as calculated from the experimental
results for the 1S and 2S hyperfine splittings. The recorded spectra are shown in Figure 5.41
for different detection delays τ (see below). At each frequency point, Lyman−α photons are
counted for 1 s. In principle, for such light atoms and high frequencies, the recoil shift is
quite large. Indeed, due to the recoil of the atom when it emits or absorbs a photon, there
is a frequency shift given by hν2/2Mc2 where M is the mass of the atom. For example, it
amounts to 12.6 MHz for the Lyman−α line. Obviously, it can be corrected for, usually with
a very low residual fractional uncertainty (3.6 · 10−18 in the experiment under description).
Thus, the two main systematic effects to be compensated for are the ac Stark shift (or light
shift) and the second-order Doppler effect.

The former is caused by the interaction of the incident radiation with the non-resonant
states of the atom. The effect of far-detuned laser light on the atomic levels can be treated
as a perturbation in the second order of the electric field, i.e., linear in terms of the field
intensity. As a general result of second-order time-independent perturbation theory for non-
degenerate states, an interaction (Hamiltonian H1) leads to an energy shift of the i-th state
(unperturbed energy Ei) that is given by

∆Ei =
∑

j 6=i

|〈j|H1|i〉|2
Ei − Ej

(5.181)

For an atom interacting with laser light, the interaction Hamiltonian is H1 = −µ̂ · E
with µ̂ = −er representing the electric dipole operator. For the relevant energies Ei, one has
to apply a dressed-state view, considering the combined system atom plus field [465]. In its
ground state the atom has zero internal energy and the field energy is n~ω according to the
number n of photons. This yields a total energy Ei = n~ω for the unperturbed state. When
the atom is put into an excited state by absorbing a photon, the sum of its internal energy
~ω0 and the field energy (n − 1)~ω becomes Ej = ~ω0 + (n− 1)~ω = −~∆ij + n~ω. For a
two-level atom, the interaction Hamiltonian is H1 = −µE and Equation 5.181 simplifies to
[466]

∆E = ±|〈e|µ|g〉|
2

∆
|E|2 = ±3πc2

2ω3
0

Γ

∆
I(r) (5.182)

for the ground and excited state (upper and lower sign, respectively). We have used the
relation I = 2ε0c|Ẽ|2 and the expression for the dipole matrix element. This effect is thus
proportional to the incident light intensity and is generally in the range of several hundreds
of kHz in usual experiments involving cw lasers. Finally, the dc Stark effect is also worthy of
mention: a static electric field may shift and broaden the line, by mixing levels of opposite
parity. In a typical experiment, it is very difficult to eliminate stray electric fields altogether,
residual amplitudes lying in the range of 10 mV cm−1. Similarly, stray magnetic fields are
responsible for the dc Zeeman effect.

Coming back to the current experiment, in order to correct for the ac Stark effect,
a double-pass acousto-optic modulator (AOM) in zero-th order is placed in front of the
enhancement cavity to quickly alter the power level under otherwise identical conditions.
Then, the transition frequency is extrapolated to zero intensity. However, a small quadratic
contribution must be taken into account before applying such linear extrapolation, the asso-
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FIGURE 5.41 (SEE COLOR INSERT)
Single scan line profile for different delays along with Lorentzian fits. With the detection
delay τ , an upper limit is set on the atoms’ velocity, which reduces the signal accordingly.
The full width at half maximum (FWHM) is about 2 kHz. (Courtesy of [442].)

ciated fractional uncertainty amounting to 0.8 ·10−15. Moreover, the fractional uncertainties
related to the dc Stark and Zeeman effects are 0.4 and 0.38 ·10−15, respectively.

The Doppler effect, due to the velocity v of the atoms, is cancelled to first order thanks
to the two-photon excitation scheme. The remaining second-order Doppler (SOD) shift
(−v2f1S−2S/2c

2) is compensated as follows. First, the excitation light is chopped at 160 Hz
which allows time-of-flight resolved detection of atoms excited to the 2S state. Evaluating
only 2S counts recorded at a certain delay τ after the light has been switched off by the
chopper wheel allows the fastest atoms to escape. This samples the slow tail of the velocity
distribution and removes most of the SOD; in other words, the delay τ between blocking
the 243 nm radiation and the start of photon counting sets the upper limit for the atomic
velocity of v < l/τ , where l is the distance between the nozzle and detector. Then, with the
help of a multichannel scaler all photons are counted and sorted into 12 adjacent time bins
τ1 = 10...210 µs,. . . τ12 = 2210...2410 µs. Therefore, for each scan of the laser frequency
over the hydrogen 1S-2S resonance, up to 12 spectra are obtained, measured with different
delays. Then, to correct for the SOD shift, an elaborate theoretical model is used to fit all
the delayed spectra of one scan simultaneously with a set of 7 parameters. The result of the
fitting procedure is the 1S-2S transition frequency for a hydrogen atom at rest. The overall
fractional uncertainty in the SOD correction amounts to σ/f1S−2S = 2.0 · 10−15.

The other two dominant contributions in the total uncertainty budget come from statis-
tics (2.6 · 10−15) and lineshape model (2.0 · 10−15). Summarizing all corrections and uncer-
tainties, the value f1S−2S = 2466061413187035(10) Hz is found for the 1S − 2S hyperfine
centroid frequency. Other uncertainty sources, which were less significant in the above mea-
surement, but are relevant to the operation of frequency standards, will be mentioned in
Chapter 7.
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5.12.6 Calcium standard

Other suitable candidates are represented by Ca and Mg. Indeed, the intercombination
transitions of alkaline earth atoms, like those shown in Figure 5.42, are celebrated examples
of references for optical frequency standards. Just to give an idea, Mg and Ca exhibit
natural linewidths as low as 0.04 kHz and 0.4 kHz, respectively. Additionally, in both cases,
the frequencies of the ∆mJ = 0 transitions are almost insensitive to electric and magnetic
fields.

So far, most attention has focused on Ca atomic beams. Early work started in 1979 when
Barger et al. obtained a resolution as low as 1 kHz [467]. Later, such 657-nm intercombina-
tion transition was extensively investigated at various labs worldwide, and a transportable
beam standard was also constructed for dissemination purposes [468]. The key components
of such a standard were a pre-stabilized diode laser system with a linewidth below 2 kHz
and a miniaturized thermal (effusive) calcium beam apparatus. A separated-field (optical
Ramsey) excitation scheme was used to resolve spectroscopic structures of a width below 20
kHz, which were used to stabilize the laser frequency to the center of the intercombination
line. The characterization of the stability and reproducibility of the standard was investi-
gated in comparison with a stationary standard based on laser-cooled Ca atoms resulting
in a relative frequency uncertainty of 1.3 · 10−12 [456].

We conclude this chapter by dealing with two other important, vast spectroscopy
branches, namely Fourier Transform Infrared (FTIR) spectroscopy and Raman spec-
troscopy. Although not commonly employed as ultrahigh-resolution techniques, these un-
doubtedly deserve some consideration, particularly in connection with two modern, sophisti-
cated applications. Indeed, both Raman and FTIR spectroscopy are experiencing a renewed
interest thanks to the advent of modern optical frequency comb synthesizers based on fs
lasers (see Chapter 6) [469, 470, 471]. Moreover, Raman scattering is at the basis of advanced
cooling schemes (refer to Chapter 7).
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FIGURE 5.42
Partial energy diagrams of the alkaline earth metals magnesium and calcium. (Adapted
from [456].)
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5.13 Fourier transform spectroscopy

Fourier Transform Infrared (FTIR) spectrometry was originally developed to overcome the
limitations encountered with dispersive instruments in recording infrared molecular spectra
over wide spectral intervals. Indeed, the main difficulty was the slow scanning process and a
method for measuring all of the infrared frequencies simultaneously, rather than individually,
was needed. So a solution was developed which employed an interferometer. The latter is
indeed able to produce a unique type of signal (interferogram) which has all of the infrared
frequencies encoded into it. In this way, the signal can be measured very quickly, usually
on the order of a few seconds. Thus, the time element per sample is reduced to a matter
of a few seconds rather than several minutes. With reference to Figure 5.43, to measure
a spectrum with an FT spectrometer, a Michelson interferometer is illuminated with a
white or polychromatic source of radiation and the movable mirror is translated over a
distance−xmax,+xmax which depends on the desired resolution. The output signal is passed
through a sample, and the resulting interferogram signal is received by an IR detector. The
signal produced by the detector is sampled at certain increments of x. Then, a means
of decoding the individual frequencies is needed, which can be accomplished through the
Fourier Transform (via computer) [472, 473].

Formally, an interferogram for a polychromatic source which consists of frequencies from
0→ νm is

I(x) =

∫ νm

0

I(ν)[1 + cos(2πνx)]dν

=
1

2
I(0) +

∫ νm

0

I(ν) cos(2πνx)dν (5.183)

With many different wavelengths present, such interferogram exhibits the following fea-
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FIGURE 5.43
Schematic diagram of a Michelson interferometer configured for FTIR (L = xmax/2).
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tures. Ideally, it is symmetrical about x = 0; when x = 0 the interference between all of
the frequencies is constructive, giving rise to a central maximum; instead, for x = ∞ the
frequencies combine both constructively and destructively and the net contribution due to
the integral in Equation 5.183 vanishes. Thus I(∞) = I(0)/2 and Equation 5.183 becomes

F (x) =

∫ νm

0

I(ν) cos(2πνx)dν (5.184)

where F (x) = I(x)− I(∞). Note that F (x) is symmetric about x = 0 because cosine is
an even function. Now let us take the Fourier transform of F (x)

∫ +∞

−∞
F (x)e2πifxdx =

∫ +∞

−∞
F (x) cos(2πfx)dx

=

∫ νm

0

I(ν)

[∫ +∞

−∞
cos(2πνx) cos(2πfx)dx

]

dν

=
1

2

∫ νm

0

I(ν)

{∫ +∞

−∞

[

e2πi(ν+f)x + e2πi(ν−f)x
]

dx

}

dν

=
1

2

∫ νm

0

I(ν)[δ(ν + f) + δ(ν − f)]dν =
I(f)

2
(5.185)

where I(−f) = 0 has been exploited. Finally, the spectrum is obtained as

I(f) = 2

∫ +∞

−∞
F (x)e2πifxdx = 4

∫ +∞

0

F (x) cos(2πfx)dx (5.186)

The spectrum I(f) of the sample under investigation is precisely recovered by computing
Equation 5.186 (in practice, two measurements of I(f), with and without the sample, are
required). In practice, however, the interferogram is from −xmax and +xmax, not −∞ to
+∞. Such limited mirror travel manifests into a loss of information in recovering I(f). The
relationship between resolution δν and mirror displacement xmax may be derived as follows.
Consider a monochromatic wave illuminating the interferometer. From Equation 5.184 we
get

Fmon(x) = I(ν1) cos(2πν1x) (5.187)

In this case, according to 5.186 and the above considerations, the spectrum is practically
determined as

Imon(f) = 2

∫ +xmax

−xmax

I(ν1) cos(2πν1x)e
2πifxdx

= 2

∫ +∞

−∞
I(ν1) cos(2πν1x)e

2πifxrect(x)dx

= 2F.T.[Fmon · rect]

= 2

∫ +∞

−∞
F.T.[Fmon](u) · F.T.[rect](y − u)du (5.188)

where the rectangular function

rect(x) =

{

1 −xmax ≤ x ≤ +xmax

0 elsewhere
(5.189)
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has been introduced and the convolution theorem used in the last step. Since

F.T.[rect] =

∫ +∞

−∞
rect(x)e2πifxdx = 2xmaxsinc(2πfxmax) (5.190)

and

F.T [Fmon] =

∫ +∞

−∞
I(ν1) cos(2πν1x)e

2πifxdx

=
1

2

∫ +∞

−∞
I(ν1)

[

e2πi(f+ν1)x + e2πi(f−ν1)x
]

dx

=
1

2
I(ν1)[δ(f + ν1) + δ(f − ν1)]

=
1

2
I(ν1)δ(f − ν1)] (5.191)

(the unphysical negative frequency has been discarded in the last step), Equation 5.188
becomes

Imon(f) = 2

∫ +∞

−∞
xmaxsinc(2πuxmax)I(ν1)δ(f − ν1 − u)du

= I(ν1)2xmaxsinc[2π(f − ν1)xmax] ≡ I(ν1) · ILS (5.192)

where the instrumental lineshape ILS = 2xmaxsinc[2π(f − ν1)xmax] has been intro-
duced. Now we observe that the side lobes of the sinc function drop off 22% below zero and
that such unacceptable ringing in the spectrum is closely related to the sharp edges of the
rectangular function. Thus, an apodization procedure is needed, that is choosing a gentler
aperture function. The most common one is the following triangular aperture

tri(x) =







1− |x|
xmax

−xmax < x < +xmax

0 elsewhere
(5.193)

whose Fourier transform of tri(x) is

F.T.[tri(x)] =

∫ +xmax

−xmax

(

1− |x|
xmax

)

e2πifxdx

=
sin(2πfxmax)

πf
− 2

xmax

∫ xmax

0

x cos(2πfx)dx

= xmaxsinc
2(πfxmax) (5.194)

This is characterized by the absence of negative side lobes, an increased linewidth, and
small-size positive lobes. In this case, a monochromatic line ν gives the following spectrum

I ′mon(f) = I(ν1)ILS
′ (5.195)

with ILS′ = xmaxsinc
2[π(f − ν1)xmax]. The relation between resolution δν and mir-

ror scan 2L may be derived by considering an interferometer to be illuminated with two
monochromatic sources, ν1 and ν2, where ν2 − ν1 = δν . In order to resolve ν1 and ν2,
one generally uses the Rayleigh criterion, which is fulfilled when the central maximum of
ILS′(f − ν2) falls upon the first zero of ILS′(f − ν1). Thus, one obtains

δν =
1

xmax
=

1

2L
(5.196)
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where the last step follows from the fact that, when the moving mirror travels between
−L and L, the optical path difference varies between −xmax = −2L and xmax = 2L. For
example, if 2L is 10 cm, then δν = 0.1 cm−1. However, the above resolution assumes that a
perfectly collimated light beam propagates throughout the interferometer. In practice, due
to divergence of the input source, paths travelled by the rays at the edge of the beam differ
from those travelled by the axial ones. This means that, for some value of x, the axial and
extreme rays will interfere destructively at all frequencies, such that no further increase
in resolution originates from ulterior mirror displacement. The maximum tolerable beam
divergence without degrading resolution is formulated as the maximum half-angle of the
beam, γmax =

√

δν/νmax (with νmax being the highest frequency in the spectrum). The
necessary reduction in the beam divergence, as set by νmax, is undertaken by inserting an
aperture into the output beam from the interferometer.

Another important issue concerns the number of data points to be sampled from an
interferogram in order to retrieve the spectrum with full information (within the limit of
resolution). According to the Nyquist criterion, if the spectrum extends from 0 < ν ≤ νmax,
this is given by 2νmax/δν . For example, if a spectrum is to be measured with a resolution of
1 cm−1, and if the highest frequency in the spectrum is 5000 cm−1, then 10000 data points
must be sampled on each side of the x = 0 point of the interferogram. According to the
Cooley-Tukey fast Fourier transform algorithm, the data are digitized in equal increments
of path difference ∆x [474]. Rather than collecting data by the step and integrate procedure,
as in early systems, modern instruments use a rapid scan approach, in which the infrared
radiation is modulated (in the kHz frequency range), and many interferograms are acquired
and averaged. State-of-the-art, commercially available FTIR systems may exhibit spectral
resolutions as low as 30 MHz.

We close this pedagogic discussion by mentioning two celebrated advantages associated
with FTIR with respect to dispersive instruments. The first one, known as Jacquinot’s or
the throughput advantage, arises from the fact that, due to the absence of grating and slit
between the source and the detector, the energy loss in a FT spectrometer is much reduced
compared to a dispersive instrument. This means that interferometric spectrometers permit
the observation of spectra from very weak sources and indeed they are widely utilized in
astronomical observations.

The Felgett advantage can be understood as follows. Consider a spectrum of width ∆ν
to be measured with resolution δν, which corresponds to a number of elements

M =
∆ν

δν
(5.197)

Now, if a grating/prism instrument is used, each of them is severally observed for a time
T/M , with T being the time spent to acquire the whole spectrum. Thus, since the noise is
proportional to

√

T/M in an element of width δν (in the infrared region the noise is indeed
random and independent of the signal level), we can write

(

S

N

)

grating

∝ T/M
√

T/M
=
√

T/M (5.198)

For an interferometer, instead, the signal coming from all the elements is accepted at
the same time, such that the signal in one element is ∝ T , while the noise is again ∝

√
T .

As a result, for the signal-to-noise in an interferometer, we get
(

S

N

)

interferometer

∝ T√
T

=
√
T (5.199)
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Finally, the Felgett advantage can be expressed as

(S/N)interferometer
(S/N)grating

=
√
M (5.200)

While an updated and comprehensive treatment of FTIR spectroscopy can be found
in [475], specific applications in the emerging field of FTIR spectroscopy based on optical
frequency combs will be discussed in the next chapter.

5.14 Raman spectroscopy

First discovered by C.V. Raman in 1928, this spectroscopic method relies on inelastic scat-
tering of light by molecules. The laser radiation interacts with the vibrational, rotational
or electronic modes in the molecular system, resulting in the energy of the photons being
shifted up or down (Figure 5.44).

In a first type of interaction (Stokes process), following the collision between a laser
photon of energy ~ω1 and a molecule in the initial level Ei, a photon with lower energy,
~ωs, is detected, while the molecule is found in a higher-energy level Ef

ωs = ω1 − ωfi with ωfi ≡
Ef − Ei

~
(5.201)

Conversely, if the incoming photon is scattered by a molecule in an excited state, super-
elastic scattering may happen, where the excitation energy is relocated to the scattered
photon, which now possesses a higher energy than the incident photon (anti-Stokes process):

ωas = ω1 + ωif with ωif ≡
Ei − Ef

~
(5.202)

A third type of interaction, referred to as elastic Rayleigh scattering, is possible for a
molecule with no Raman-active modes (see below). In this case, after absorbing a photon
of frequency ω1, the excited molecule returns back to the same basic vibrational state and
emits light with the same frequency ω1.

In order to understand the physical origin of Raman scattering, we now consider an
approach in which both the electromagnetic radiation and the material system are treated
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FIGURE 5.44
Schematic level diagram of Raman scattering.
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classically [476]. The electric field (associated with the laser) distorts the electron cloud
of the molecule, thereby creating an induced electric dipole moment which, in turn, will
emit, i.e., scatter, EM radiation. Our target is to derive the frequency-dependent, linear
induced-electric-dipole vector (µind) of a molecule, by exploiting the relationship

µind = αE (5.203)

where E ≡ (Ex, Ey, Ez) is the electric field vector associated with the incident monochro-
matic plane wave of frequency ω, and α denotes the polarizability tensor of the molecule.
In general, this latter quantity will be a function of the nuclear coordinates and hence of
the molecular vibrational frequencies. Therefore, the frequency dependence of the induced-
electric-dipole vector can be retrieved by inserting into Equation 5.203 the frequency de-
pendence of E and α. For the sake of simplicity, the scattering system will consist of just
one molecule which is space-fixed in its equilibrium configuration: the molecule does not
rotate, but the nuclei are free to vibrate about their equilibrium positions. By denoting with
Qk, Ql, ... the normal coordinates of vibration associated with the molecular vibrational fre-
quencies ωk, ωl, ..., then we can expand each component αij of the polarizability tensor in
a Taylor series as follows

αij = (αij)0 +
∑

k

(

∂αij
∂Qk

)

0

Qk +
1

2

∑

k,l

(

∂2αij
∂Qk∂Ql

)

0

QkQl + ... (5.204)

where the summations are over all normal coordinates, and the subscript ‘0’ indicates
that the derivatives are taken at the equilibrium configuration. Moreover, we shall neglect
the terms involving powers of Q higher than the first (electrical harmonic approximation).
Next, let’s focus our attention on one normal mode, Qk, whereupon we can rewrite Equation
5.204 as

(αij)k = (αij)0 + (α′
ij)kQk (5.205)

where the quantities

(α′
ij)k =

(

∂αij
∂Qk

)

0

(5.206)

are the components of the derived polarizability tensor. Since Equation 5.206 holds for
all tensor components, we can write

αk = α0 +α′
kQk (5.207)

Under the assumption of simple harmonic motion, the time dependence of Qk is given
by

Qk = Qk0 cos(ωkt+ δk) (5.208)

where Qk0 represents the normal coordinate amplitude and δk a phase factor. Then,
Equation 5.208 and Equation 5.207 can be combined to yield the time dependence of the
polarizability tensor resulting from the k-th molecular vibration:

αk = α0 +α′
kQk0 cos(ωkt+ δk) (5.209)

Now we introduce E = E0 cosω1t and 5.209 into Equation 5.203 to obtain

µind = α0E0 cosω1t+α′
kE0Qk0 cos(ωkt+ δk) cosω1t (5.210)

which by a little algebra can be re-formulated as

µind = µRay(ω1) + µRam,s(ω1 − ωk) + µRam,as(ω1 + ωk) (5.211)
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where
µRay(ω1) = α0E0 cosω1t (5.212)

corresponds to Rayleigh scattering, and

µRam,s(ω1 − ωk) = (1/2)α′
kE0Qk0 cos[(ω1 − ωk)t− δk] (5.213)

µRam,as(ω1 + ωk) = (1/2)α′
kE0Qk0 cos[(ω1 + ωk)t+ δk] (5.214)

correspond to the Stokes and the anti-Stokes component of Raman scattering, respec-
tively. So far we have considered only the induced dipole moment; if the molecule also
possesses a permanent dipole moment µperm, this depends on the nuclear displacements of
the vibrating molecule as well. For small displacements from the equilibrium position, this
quantity can also be expanded into a Taylor series

µperm = (µperm)0 +
∑

k

(

∂µperm
∂Qk

)

0

Qk + ... (5.215)

which for just one normal mode reduces to

µperm = (µperm)0 +

(

∂µperm
∂Qk

)

0

Qk (5.216)

Thus the total dipole moment for the molecule is

µtot = µperm + µind = (µperm)0 +α0E0 cosωt

+

(

∂µperm
∂Qk

)

0

Qk0 cos(ωkt+ δk)

+
1

2
α′
kE0Qk0 cos[(ω − ωk)t− δk]

+
1

2
α′
kE0Qk0 cos[(ω + ωk)t+ δk] (5.217)

where the third term describes the IR spectrum. Now we realize that:

• A vibrational mode is infrared active if the derivative of at least one component of the
derived dipole moment vector with respect to the normal coordinate Qk, taken at the
equilibrium position, is non-zero: (∂µperm/∂Qk)0 6= 0.

• The vibrational mode is Raman active if at least one component of the derived polariz-
ability tensor with respect to the normal coordinate Qk, taken at the equilibrium position,
is non-zero: α′

k 6= 0.

• Since the classical equilibrium polarizability tensor α0 always has some non-zero compo-
nents, all molecules exhibit Rayleigh scattering.

To illustrate these concepts, in the following we consider a few simple cases. Let’s start with
a homonuclear diatomic molecule, A2, which has just one mode of vibration. Due to the
symmetry of the electron distribution, such a molecule has no permanent dipole moment in
the equilibrium position; also, this symmetry does not change as the internuclear separation
is varied, so that the dipole remains zero during a vibration: as a result, the derivative is
zero and the vibration is infrared inactive. Concerning Raman activity, we can represent the
non-zero polarizability of the molecule by an ellipsoid having (at equilibrium) one principal
axis along the bond direction and the other two principal axes at right angles to the bond
direction. In general, this polarizability ellipsoid is characterized by three components; in the
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Equilibrium Separation
Internuclear distance

Polarizability

FIGURE 5.45
Qualitative plots of α (black), α‖ (light gray), and α⊥ (gray) as functions of the internuclear
distance, for a diatomic homonuclear molecule. (Adapted from [476].)

case of a σ bond, however, these reduce to two components: the polarizability along the bond
(α‖) and the polarizability at right angles to the bond (α⊥). Then, for a given internuclear
separation, the mean polarizability is defined by a = (1/3)(α‖ + α⊥), while the anisotropy
by γ = (α‖ − α⊥). In order to calculate how these quantities vary with the internuclear
separation (in the neighborhood of the equilibrium position), one has to resort to quantum
mechanics. Shown in Figure 5.45, the result is that the vibrations of A2 diatomic molecules
are Raman active. We next consider the example of a heteronuclear diatomic molecule
(AB), again having just one mode of vibration. The above arguments for the polarizability
variations also apply to this case, so that the vibration will be Raman active. Then, let’s
address the issue of infrared activity. We first observe that, due to the asymmetry in the
electron distribution, the AB molecule necessarily possesses a permanent dipole moment.
The typical behaviour of the dipole moment component along the bond direction against
the internuclear distance is shown in Figure 5.46, whereas the components at right angles
to the bond direction are, of course, always zero. As a general result, the maximum dipole
moment occurs at an internuclear separation different from the equilibrium distance, which
implies that the derivative at the equilibrium position is non-zero: the vibration in AB
molecules is thus infrared active. The A2 and AB cases are summarized in Figure 5.47.

Finally, Figure 5.48 also shows the polarizability and dipole moment variations in the
neighbourhood of the equilibrium position for a linear ABA molecule.

In conclusion, we should mention that, although the classical theory honestly describes
the frequencies ω1 ± ωk of the Raman lines, it suffers from three major limitations which
can be overcome only within a quantum mechanical treatment: first, it does not give the
correct line strengths; second, it is not applicable to molecular rotations (actually, in a
classical frame, you cannot assign specific discrete rotational frequencies to molecules);
third, it cannot yield information as to how α′

k is related to the properties of the scattering
molecule.

To complete this introductory discussion, we deal with a generic concept/experimental
setup for measurement of Raman scattering [477]. Since scattered light leaves the sample in
all directions, the detectors may be placed at any angle. Figure 5.49 shows the coordinate
system for a typical 90-degree scattering arrangement. The incident light propagates along
the X direction, while the scattered light is detected along the Y direction. Raman spectra
are measured using incident light polarized in the Z direction. The two polarization com-
ponents of the scattered light are then resolved by means of a polarization analyzer located
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Equilibrium Separation
Internuclear distance

Dipole moment

FIGURE 5.46
Dipole moment as a function of internuclear distance in a diatomic molecule AB. The
specific form of the plot, and hence the magnitude and sign of the derivative, varies from
one molecule to another. (Adapted from [476].)
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FIGURE 5.47
Illustration of vibrational Raman and infrared activities for an A2 and an AB molecule.
(Adapted from [476].)
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FIGURE 5.48
Vibrational Raman and infrared activities for a linear ABA molecule. (Adapted from [476].)

between the sample and the detector. The polarized (depolarized) spectrum is measured by
observing the scattered light polarized in the Z (X) direction, Ipol ≡ I‖ (Idep ≡ Iperp). Ipol
and Idep are in turn proportional to the differential cross sections of the scattering process.
These are obtained by projecting the polarizability tensor onto the polarization directions
êsc and ê1 ≡ (0, 0, 1) of the scattered and incident radiation (in cgs units)

(

dσif
dΩ

)

sc,1

=
ω1ω

3
sc

c4

∣
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(5.218)

where the transition polarizability tensor having elements such as (αXX)if , (αXY )if ,
etc. connects the initial and final rotational and/or vibrational states, and

êsc =

{

(1, 0, 0) dep
(0, 0, 1) pol

(5.219)



404 Laser-based measurements for time and frequency domain applications

êsc

ê1

X

Z

Y

FIGURE 5.49
Ninety-degree Raman scattering geometry. Uppercase letters XYZ indicate the space-fixed
coordinate system, i.e. the lab reference frame, whereas lowercase letters refer to the body-
fixed coordinate system, i.e. a coordinate system fixed in the molecule. (Adapted from
[477].)

So, in the 90 degree scattering arrangement, we have

(

dσif
dΩ

)

sc,1

=
ω1ω

3
sc

c4
·
{

|(αZX)if |2 dep
|(αZZ)if |2 pol

(5.220)

Note that, since polarizabilities are normally expressed in CGS units of cm3, the cross
section 5.220 has, as it must, the units of a surface. On the other hand, the elements of
the transition polarizability tensor are conveniently expressed according to the Kramers-
Heisenberg-Dirac formalism in the molecule frame of reference [477]

(αρσ)if =
1

~

∑

n

[ 〈i|µρ|n〉〈n|µσ|f〉
ω1 + ωnf + iΓn

− 〈i|µσ|n〉〈n|µρ|f〉
ω1 − ωnf − iΓn

]

(5.221)

where ρ and σ are directions x, y, z in the molecule frame. In Equation 5.221, the sum ex-
tends over all molecular levels |n〉 having a width Γn accessible by single-photon transitions
from the initial state |i〉. Now the problem is to convert molecule-frame tensor elements to
the necessary lab-frame components. In the conventional 90◦ scattering arrangement, we
require αZZ for the polarized spectrum and αZX for the depolarized one. We are interested
here in a sample of randomly oriented molecules, as in the gas or liquid phase. Then, it can
be shown that [477]

|αZZ |2 =
1

3
Σ0 +

2

15
Σ2 (5.222)
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|αZX |2 =
1

6
Σ1 +

1

10
Σ2 (5.223)

where the invariants Σ0, Σ1 and Σ2 are written in terms of the molecule-frame compo-
nents of the polarizability:

Σ0 =
1

3
|αxx + αyy + αzz |2 (5.224)

Σ1 =
1

2

[

|αxy − αyx|2 + |αxz − αzx|2 + |αyz − αzy|2
]

(5.225)

Σ2 =
1

2

[

|αxy + αyx|2 + |αxz + αzx|2 + |αyz + αzy|2
]

+
1

3

[

|αxx − αyy|2 + |αxx − αzz|2 + |αyy − αzz |2
]

(5.226)

Now we have all the ingredients to calculate Equation 5.220, provided that the molecule-
frame components (αρσ)if of the polarizability have been previously evaluated starting from
the corresponding wavefunctions. In conclusion, the intensity of a Raman line at the Stokes
or anti-Stokes frequency is proportional to the cross section defined by Equation 5.220 times
the product between the population density in the initial level N(Ei) and the incident laser
intensity I1

Ispont. Raman ∝
(

dσif
dΩ

)

sc,1

·N(Ei) · I1 (5.227)

Since, at thermal equilibrium, the population density N(Ei) follows the Boltzmann
distribution, the intensity of the Stokes lines, for which the initial state may be the vi-
brational ground state, is usually quite larger than that of the anti-Stokes lines, for which
the molecules must have initial excitation energy. Even with strong pump laser beams, the
intensity of spontaneously scattered Raman light is often very weak (indeed the scatter-
ing cross sections in spontaneous Raman spectroscopy are typically on the order of 10−30

cm2). Nevertheless, according to Equation 5.221, the Raman scattering cross section raises
significantly if the laser frequency ω1 matches a transition frequency ωnf of the molecule
(resonance Raman effect). Under such conditions, one can achieve an enhancement of 106,
but at the expense of increasing the background due to fluorescence. Since both fluores-
cence and Raman scattering are emitted isotropically, normally the fluorescence cannot be
suppressed easily. To overcome this problem, several techniques have been developed in-
cluding the Inverse Raman effect, the Hyper-Raman effect, the Raman-induced Kerr effect,
Surface-enhanced Raman scattering, Coherent anti-Stokes Raman spectroscopy (CARS),
and Stimulated Raman scattering (SRS). Since we are only interested in high-resolution
Raman spectroscopy of gases with cw laser sources, we can restrict our discussion to these
two latter techniques.

5.14.1 Coherent anti-Stokes spectroscopy

Among the different variants of Raman spectroscopy, coherent anti-Stokes Raman spec-
troscopy (CARS) has probably the most general utility and offers several distinct advan-
tages [478]. In the CARS scheme, two relatively high-power laser beams, at frequencies ωl
and ωs, are focused in the sample under investigation. As a result of mixing the two lasers,
a coherent beam, resembling a laser beam at frequency ωas = 2ωl − ωs, is generated in
the medium (see Figure 5.50), the efficiency of such conversion process depending critically
upon the presence of molecular resonances at a frequency ωl−ωs. A CARS spectrum is then
retrieved by recording the intensity variation of the beam at ωas, as ωl−ωs is swept over the
molecular resonance Conversion of the two laser beams into the anti-Stokes component at
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FIGURE 5.50
The energy diagram of coherent anti-Stokes Raman spectroscopy: ω1 ≡ ωl, ω2 ≡ ωs,
ωCARS ≡ ωas. The solid lines represent molecular energy levels and the dashed lines indicate
virtual levels.

ωas = 2ωl−ωs is a direct consequence of the non-linear dielectric properties of the material.
As already discussed, the macroscopic polarization P of a medium in an applied electric
field E may generally be expressed as a power series

Pi =
∑

j

χ
(1)
ij Ej +

∑

j

∑

k

χ
(2)
ijkEjEk +

∑

j

∑

k

∑

l

χ
(3)
ijklEjEkEl + ... (5.228)

where χ(i) denotes the dielectric susceptibility tensor of rank i+1 associated with the i-
order of the electric field. In the scope of Raman spectroscopy, the first-order term (which is
the only relevant term under low intensity fields) describes spontaneous Raman scattering,
the second-order one is responsible for the hyper-Raman effect, while the third-order term
is related to CARS. In an isotropic medium, such as a gas, inversion symmetry exists in
its macroscopic dielectric properties, so that the lowest order non-linearity which may be
present is due to the third-order susceptibility. In what follows, we shall assume the same
direction for all the involved electric fields so as to treat each field as a scalar quantity.
Then, using complex notation, we express the electric field at frequency ωi = 2πc/λi as

Ei(ωi) =
1

2

[

Eiei(kiz−ωit) + c.c.
]

(5.229)

where Ei is the amplitude, ki = ωini/c is the momentum vector and ni the index
of refraction at ωi. In the CARS case, only two frequencies at ω1 ≡ ωl and ω2 ≡ ωs are
introduced; consequently, only those terms in which the polarization varies by ω3 = 2ω1−ω2

are retained. Thus we have

P (3) =
1

8
[3χ(3)(−ω3, ω1, ω1,−ω2)]E21E∗2 ei[(2k1−k2)z−(2ω1−ω2)t] + c.c. (5.230)

where the usual Bloembergen notation is adopted such that χ(3)(−ωa, ωb, ωc, ωd) rep-
resents the susceptibility for the process in which ωa = ωb + ωc + ωd. By substitution of
Equation 5.230 into Maxwell’s equations, the gain equation for plane waves is obtained as

dEas
dz

= − iπωas
2cnas

[3χ(3)]E2l E∗s ei(2kl−ks−kas)z (5.231)
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where the previous subscripts 1, 2, and 3 have been replaced by l, s, and as to symbolize
the laser frequency, the Stokes frequency, and the anti-Stokes frequency, respectively. By
integrating Equation 5.231 and using the intensity Ii = (c/8π)|Ei|2, we get

Ias =

(

4π2ωas
nasc2

)2

|3χ(3)|2I2l IsL2

[

sin(∆kL/2)

∆kL/2

]2

(5.232)

where L is the length over which the beams are mixed through the sample and ∆k =
2k1 − ks − kas represents the momentum mismatch resulting from the fact that, due to
dispersion in the medium, propagating waves move in and out of phase. Since dispersion
in gases is usually pretty small, phase matching over moderate path lengths is readily
attained (of course, this is not the case for condensed media). Next, we want to find an
explicit expression for χ(3) [478, 322]. To this aim we first observe that, in the presence of
a vibrational resonance, the total susceptibility associated with the process 2ωl − ωs = ωas
is the sum of a frequency-dependent resonant part and a nearly frequency-independent
non-resonant part

χ(3) = χ(3)
res + χ

(3)
NR (5.233)

It is precisely the presence of the χ(3)
NR term that limits the sensitivity of the technique,

as Raman spectra can be recorded only to an extent that χ(3)
res exceeds χ(3)

NR. An expression
for χ(3)

res can be derived following a classical approach. We start by assuming that the
vibrational mode can be described as a simple harmonic oscillator of resonance frequency ωυ
and damping constant Γ. We also relate the molecular polarizability α to a bond stretching
coordinate q (i.e., the deviation of the internuclear distance from its equilibrium value)

α = α0 +

(

∂α

∂q

)

0

q + ... (5.234)

where the subscript 0 denotes the equilibrium position. In this way, the force exerted on
the oscillator by a field because of this polarizability is given by

F =
1

2

(

∂α

∂q

)

0

〈E2〉 (5.235)

where the angular brackets denote a time average over an optical period. The equation
of motion for the simple damped harmonic oscillator is thus

q̈ + Γq̇ + ω2
υq =

1

2m

(

∂α

∂q

)

0

〈E2〉 (5.236)

where
E = El + Es =

1

2

[

Elei(klz−ωlt) + Esei(ksz−ωst) + c.c.
]

(5.237)

Since we are only interested in the time-varying part of 〈E2〉, we can write

〈E2〉 = 1

2
ElE∗s ei(Kz−Ωt) + c.c. (5.238)

where only the term oscillating at the lowest frequency has been retained andK = kl−ks
and Ω = ωl − ωs. Now by adopting for Equation 5.236 the following trial solution

q(t) =
1

2

[

q(Ω)ei(Kz−Ωt) + c.c.
]

(5.239)
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we find the amplitude of the molecular vibration as

q(Ω) =
(1/2m)(∂α/∂q)0ElE∗s

ω2
υ − Ω2 − iΩΓ (5.240)

Now, since the polarization of the medium is by definition given by

P (t) ≡ N

(

∂α

∂q

)

0

q(t)E(t)

=
N

4

(

∂α

∂q

)

0

[

q(Ω)ei(Kz−Ωt) + c.c.
]

·
[

Elei(klz−ωlt) + Esei(ksz−ωst) + c.c.
]

(5.241)

where N is the molecular number density, the component of the polarization oscillating
at ωas = 2ωl − ωs is

Pas(t) =
N

4

(

∂α

∂q

)

0

q(Ω)Elei(2kl−ks)ze−i(2ωl−ωs)t + c.c.

=
1

8

N

m

(

∂α

∂q

)2

0

ω2
υ − Ω2 − iΩΓE

2
l E∗s ei(2kl−ks)ze−i(2ωl−ωs)t + c.c. (5.242)

where Equation 5.240 has been used in the last step. Comparison of Equation 5.242 with
Equation 5.230 then yields

3χ(3)
res(ωas) =

N

m

(

∂α

∂q

)2

0

∆j

ω2
υ − (ωl − ωs)2 − iΓ(ωl − ωs)

(5.243)

whereN ·∆j represents the difference in population between the lower and upper state for
a particular transition j, ∆j accounting for the statistical distribution, i.e. ∆j = 1(0) in the
limit of zero (infinite) temperature. In the vicinity of a resonance, we have ωυ− (ωl−ωs)≪
ωυ and Equation 5.243 simplifies to

3χ(3)
res(ωas) ≃

A

2[ωυ − (ωl − ωs)]− iΓ
(5.244)

with A = (N/m)(∂α/∂q)20(1/ωυ). Inserting the square modulus of Equation 5.244 into
Equation 5.232, under phase matching conditions, the intensity of the beam at ωas can be
expressed as

Ias =

[

4π2ωasLN

mωυnasc2

(

∂α

∂q

)2

0

]2
1

4[ωυ − (ωl − ωs)]2 + Γ2
I2l Is (5.245)

from which one can see that the strength of the CARS signal increases, in particular,
with the square of the molecular density N and with the product I2l Is. As anticipated, the
intensity Ias of the beam at frequency ωas = 2ωl−ωs changes as ωl−ωs is swept around the
molecular resonance at ωυ, giving rise to a Lorentzian profile. However, if the non-resonant
susceptibility χ(3)

NR is non-negligible, it is the quantity |χ(3)
res + χ

(3)
NR|2 that must be inserted

into Equation 5.232. This results in a distortion of the Lorentzian lineshape. Moreover, as
it is apparent from the above derivation, Equation 5.245 only incorporates, via Γ, the effect
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of homogeneous broadening mechanisms. Actually, Doppler broadening can be accounted
for by replacing Equation 5.244 with

3χ̃(3)
res(ωas) ≃ A

√

m

2πkBT

∫ +∞

−∞

e
− mv2z

2kBT

2[ωυ(1 +
vz
c )− (ωl − ωs)]− iΓ

dvz (5.246)

where vz is the velocity component along the direction of propagation (z) of the beam
at ωas [479].

In conclusion, the advantages of CARS can be summarized as follows [379]:

• As suggested by the presence of a resonant denominator in Equation 5.245, the intensity
of the anti-Stokes signal is by far larger than in spontaneous Raman spectroscopy.

• While in spontaneous Raman spectroscopy molecular lines are Doppler-broadened by the
thermal motion of the scattering molecules, in CARS experiments the ultimate spectral
resolution is virtually dictated by the bandwidth of the two incident lasers and the molec-
ular intrinsic linewidth.

• Since the anti-Stokes wave forms a highly collimated beam, the detector can be far away
from the interaction region, which considerably diminishes any spontaneous background
signal.

A typical experimental arrangement to generate CARS signals with cw lasers is shown
in Figure 5.51. Such an apparatus was used to measure the Q(2) vibrational line in D2

around 2987 cm−1 [480]. The source providing the ωl frequency was an argon laser at 514
nm (5 W), while the one providing ωs was a tunable, single-mode dye laser near 607 nm
(50 mW). The two laser beams were combined, using the constant deviation prism P1, and
focused into the cell with the lens L1. The three emerging beams, Ar, dye, and anti-Stokes
(λ−1
as = 2λ−1

l − λ−1
s ≃ 445 nm), were collimated by L2 and dispersed by the second prism

P2. The use of the various diaphragms, prims P2, narrow-band filter F reduced the parasitic
light at the CARS wavelength to a point below the dark count of the photomultiplier. With
this setup, the center frequency of the line under investigation was measured for different
gas pressure values. The extrapolated zero-pressure frequency was then 2987.237 ± 0.001
cm−1.
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FIGURE 5.51
Schematic layout of the apparatus for cw CARS in gases.
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FIGURE 5.52
Energy diagram of stimulated Raman scattering.

5.14.2 Stimulated Raman scattering

Stimulated Raman scattering (SRS) is a third-order non-linear χ(3) process too. In this case,
however, the role of the laser at ω2 is played by the Stokes wave generated by the pump
laser (at ωl) itself (Figure 5.52). The physical origin of SRS can be grasped in terms of the
interactions illustrated in Figure 5.53 [322]. In the upper frame, the molecular vibration is
shown to modulate the refractive index of the medium at frequency ωυ, which impresses
frequency sidebands onto the laser field. In the lower frame, the Stokes field at frequency
ωs = ωl − ωυ is shown to beat with the laser field, which produces a modulated intensity,
I(t) = I0 + I1 cos(ωl − ωs)t. This latter coherently excites the molecular oscillation at
ωl − ωs = ωυ. These two processes strengthen each other: the lower-frame interaction gives
rise to a stronger molecular vibration which, by the upper-frame interaction, originates a
larger Stokes field; in turn, this produces a stronger molecular vibration. Such a parametric
interaction can be quantitatively described within the same exact formalism introduced
above for CARS. Typically, SRS is a very strong scattering process: more than 10% of
the energy of the incident laser beam is converted into the Stokes frequency, the emission
occurring in a narrow cone in the forward and backward directions.

The most straightforward form of SRS is that in which a linearly polarized pump beam
(at ωl ≡ Ω) induces a Raman gain (loss) at the Stokes (anti-Stokes) frequency ω which is
measured by a probe beam linearly polarized either parallel or perpendicular to the pump
(inverse Raman effect is the terminology commonly used to designate the induced loss at

wu

w w wu = -l s

wl

w w ws l= - u

w w was l= + u

wl

wl

ws

FIGURE 5.53
Interpretation of stimulated Raman scattering. (Adapted from [322].)
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the anti-Stokes frequency). The basic setup for cw SRS is shown in Figure 5.54 [481]. The
pump beam is modulated prior to being focused through the sample, thus producing a
modulated Raman gain at the Stokes frequency which is synchronously (at the pump beam
modulation frequency) detected by the probe beam P (ω). Then, the Raman spectrum is
obtained by scanning the spectral difference frequency between the pump and probe. In the
case of Gaussian pump and probe beams with identical beam parameters which are focused
collinearly through a sample in exact coincidence, it can be shown that the fractional power
gain δP (ω)/P (ω) at the probe frequency ω induced by a pump beam at frequency Ω is
given approximately by

δP (ω)

P (ω)
=

96π2Ωω

nc3
ℑ[χiijj(3) (−ω, ω,Ω,−Ω)]P (Ω) (5.247)

where n is the refractive index at ω and χiijj(3) is the third-order non-linear susceptibility.

From the above expression, the linear dependence of the SRS signal on χ(3) and the pump
power P (Ω) can be appreciated, which contrasts with the quadratic dependence of CARS.
Therefore, SRS techniques offer significantly stronger output signal power levels for low-
density applications using low-power cw sources.

Although SRS is a powerful technique per se, some variants have been developed to pro-
vide enhanced capabilities. In this respect, an example is given by the optically heterodyned
polarization technique. Here the beam polarizations are no longer parallel or orthogonal to
each other and a polarization analyzer is added at the exit of the sample. In essence, such
scheme combines the SRS principle with the SNR enhancement inherent to polarization
spectroscopy. Just as an example, let us consider a linearly polarized pump. In this case,
one can choose the pump field EΩ along the x axis with the probe analyzing polarizer
oriented at 45 degrees transmitting along the x − y diagonal. Then, the probe is made
to transmit a small component through the polarizer by the insertion of a HWP into the
probe beam path prior to the sample. In this way, a linearly polarized probe yields ℑ[χ(3)],
whereas an elliptically polarized probe gives ℜ[χ(3)]. In both cases, the output signal is still
linear in χ(3).

In the very end, we refer the reader to [482] for an updated and extended review on
high-resolution Raman spectroscopy of gases.

Another important application of SRS is in the field of Raman lasers. Here, starting from
a tunable pump laser at frequency ωL, intense coherent radiation sources at frequencies
ωL ± nωυ (n = 1, 2, 3, . . . ) can be realized, a striking difference with respect to standard
lasers lying in the absence of population inversion. An enticing feature is that essentially
any Raman laser wavelength can be attained with a proper choice of the pump wavelength,
provided that both wavelengths fall in the transparency window of the Raman gain medium.
The latter is usually based on either an optical fiber [483], or a solid-state bulk crystal
[484, 485], or a silicon waveguide on a chip [486], or a silica toroidal microcavity [487], or a
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FIGURE 5.54
Schematic experimental setup for cw SRS.
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gas [488]. In all cases, low threshold powers are possibly achieved with the aid of high-finesse
laser resonators.

In general, one major drawback of these devices is that, since Raman amplification works
only at high intensities, other, undesired nonlinearities (e.g. Kerr effect or four-wave mixing)
come into play, which eventually prevent from achieving narrow-linewidth operation.



6

Time and frequency measurements with pulsed laser

systems

The sky was remarkably clear and the

twinkling of all the stars seemed to be but

throbs of one body, timed by a common

pulse.

Thomas Hardy

He who is to be a good ruler must have

first been ruled.

Aristotle

6.1 Introduction

Exploiting the high peak intensities characteristic of short laser pulses to excite multipho-
ton processes or to drive highly nonlinear phenomena (and generate new wavelengths, for
example), while maintaining the high resolution characteristic of CW sources to investigate
very narrow spectral structures of atoms or molecules, is one of the forbidden dreams of
the laser experimentalist. Unfortunately, the two conditions of short pulse duration and
high spectral resolution normally appear in striking contrast, since short pulses invariably
correspond to broad spectral bandwidths that limit the frequency resolution to the inverse
of the pulse duration (see Figure 6.1a).

However, this is not the end of the story because several techniques have been devised
in relatively recent years to overcome this apparent limit and, surprisingly, it is exactly by
using very short pulses (in the form of a laser frequency comb) that the highest precisions
have been achieved in frequency and time measurements.

A glimpse of the mechanisms that can be used to beat the frequency limitations con-
nected to the use of short laser pulses can be gained from a simple example: if pairs of
time-delayed and phase-locked pulses (like those generated by splitting a single laser pulse
by means of a Michelson interferometer) are used, a simple Fourier transformation shows
that the corresponding spectrum preserves a broad bell-shaped envelope, but also acquires a
sinusoidal modulation with a spectral period given by the inverse of the temporal separation
τ between the two pulses (see Figure 6.1b). In the ideal case, where the two time-delayed
pulses with electric fields E1(t) and E2(t + τ) are perfectly phase-locked, their combined
spectrum is easily found as:

It(ω, τ) = I1(ω) + I2(ω) + 2
√

I1(ω)I2(ω) cos(ωτ) (6.1)

413
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which reduces to
It(ω, τ) = 2I(ω)(1 + cos(ωτ)) (6.2)

in the case of equal pulse intensities I(ω) = I1(ω) = I2(ω).
It is this 1/τ fringe period that now sets the instrumental resolution and allows one,

in principle, to investigate very fine spectral features if a long time delay τ is available.
In principle, the spectral resolution ∆ν achievable by these methods just depends on the
maximum time delay τ between the exciting pulses as ∆ν ≈ 1

τ . If the delay is introduced by
translating an optical delay line of a distance L (like in one arm of a Michelson interferom-
eter), the delay is T = 2L

c where c is the speed of light, and the resolving power achievable
with a given mirror displacement is thus

R =
ν

∆ν
≈ 2L

λ
, (6.3)

i.e., it simply corresponds to twice the number of wavelengths (λ) scanned by the mirror
movement.

One of the first demonstrations of high-resolution spectroscopy of multiphoton atomic
transitions with pairs of ultrashort pulses dates back to 1996, when it was showed that it
was indeed possible to measure line splittings (the hyperfine separation of the 8S 1

2
state

in cesium in that case) in a two-photon transition with a spectral resolution much better
than that given by the single-pulse spectral width [489]. Actually, this is based on the
same principle of Fourier Transform Spectroscopy, that normally uses broad-bandwidth cw
sources to perform medium-to-high resolution studies in the medium and far infrared; one
of the advantages of employing this technique with short pulses is that one can use their
high peak intensities to move to different spectral regions or to investigate new transitions
involving two or more photons.

The idea of using a pair of phase-locked pulses in order to achieve a better spectral
resolution can also be extended by the use of longer sequences of equally time-delayed and
phase-locked pulses. The spectrum that one obtains in this case still exhibits the broad
bandwidth related to the short pulse duration, but is now modulated in a sharper and
sharper fashion as longer pulse sequences are used (see Figure 6.1c). In the case of N equally
spaced (by a delay τ) and phase-locked pulses, the textbook solution for the corresponding
spectrum is given by the expression:

I(ω, τ) = I0(ω)

(

sinNωτ/2

sinωτ/2

)2

(6.4)

and the spectral interference pattern is the well-known array of intense and sharp in-
terference maxima at ωn = n 2π

τ , with some small residual modulations in between. In the
ideal limit of an infinite train of phase-locked and equally-spaced pulses of duration τp, the
resulting spectrum essentially consists of a comb of infinitely sharp lines, equally separated
by a frequency spacing corresponding to the inverse of the inter-pulse period and extended
over a frequency range inversely proportional to τp.

The advantages of such a peculiar spectral distribution are evident: this spectral comb
can be used as a precise ruler to measure unknown frequency intervals in a relatively simple
way. By locking two laser lines to two different teeth of the comb, and by counting the
integer number of interposed teeth, one can immediately obtain the unknown frequency
gap, if the separation between the teeth is well known. A mode-locked laser is a natural way
for generating such an ideally infinite sequence of time-delayed pulses with a well-defined
phase relationship [490]. Its spectrum (given by the set of equally-spaced longitudinal modes
of the cavity) is a broad comb of frequencies with a mode separation equal to the measurable
and controllable pulse repetition rate (see Figure 6.1c). The largest frequency gap that can
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FIGURE 6.1
A single laser pulse has a frequency bandwidth which scales with the inverse of its duration
τp (a). If one uses a pair of phase-locked pulses, delayed by a time τ , the resulting spectrum
maintains the broad envelope of width 1/τp but with a sinusoidal modulation of spectral
period 1/τ (b). This width sets the new instrumental resolution. If one uses an infinite
sequence of pulses, locked in phase and equally delayed in time of a time interval τ , the
spectrum breaks up in a comb of very narrow lines (the teeth) equally spaced by a frequency
interval 1/τ (c).

be bridged with such a comb is determined by the inverse of the pulse duration τp (if the
pulse is Fourier transform-limited), but it can be widely extended if non-linear interactions
are used to broaden the spectrum.

In this chapter we will discuss the basics of ultrashort pulse generation by means of the
mode-locking phenomenon and we will then concentrate on the development of the new tool
of Optical Frequency Comb Synthesizers (OFCSs) that have brought about a revolution in
the way we measure frequency and time (see the 2005 Nobel lectures of T. W. Hänsch and J.
Hall [52, 53]). We will then discuss the extension of precision frequency measurements based
on ultrashort laser pulses and OFCSs to new spectral ranges, which has recently paved the
way to the exploration of a rich and almost untouched territory.

6.2 Theory of mode locking

The emission of coherent radiation from a laser is governed by a subtle interplay between the
gain spectrum of the active medium and the resonant frequencies of the laser cavity itself.
As we have seen before, continuous-wave (CW) lasers emitting light at a single, well-defined
frequency that is highly stable in time are normally used for precision spectroscopy. To
achieve this single-frequency emission big efforts are usually made to force their oscillation
on a single transverse and longitudinal mode of the cavity. While the transverse mode
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distribution can be narrowed by placing spatial filters in the cavity, the longitudinal mode
selection is usually performed by shortening the cavity or introducing frequency-selective
losses (spectral filters) that allow only one mode to experience sufficient gain. If such spectral
filters are removed and the emission profile of the gain medium is wide enough, several
longitudinal modes of the cavity can simultaneously oscillate and the output intensity of
the laser is no longer constant with time.

Assuming that emission takes place only in the fundamental TEM00 transverse mode,
the laser can thus emit on many longitudinal modes (see Figure 6.2a), whose frequencies
νm satisfy the condition

νm =
mc

2nL
(6.5)

where m is a positive integer, c is the speed of light, L is the length of the cavity, and n is
an effective average refractive index. Here we initially consider that the laser elements are not
dispersive, i.e., that the refractive index does not depend on the frequency; then, the different
longitudinal modes are equally spaced with a constant separation νr = νm+1−νm = c/2nL.

The electric field of a laser that oscillates on M adjacent longitudinal modes of frequency
ωm = 2πνm = ωp + 2πmνr centered about a mode of frequency ωp = 2πpνr (with p a large
positive integer) with the same amplitude ε0 can thus be written as

Ẽ+(t) =
1

2
ε0e

iωpt

(M−1)/2
∑

m=(1−M)/2

ei(2mπνrt+φm), (6.6)

where m ranges from (1 − M)/2 to (M − 1)/2 and φm is the phase of mode m. In
general, this gives rise to a field that periodically repeats itself with a period corresponding
to the cavity round-trip time τr = 1/νr (see Figure 6.2b). For random relative phases φm
among the different longitudinal modes, as is normally the case for a free-running laser, their
emission adds up incoherently and the result is a noisy output with an average intensity
that equals the sum of the intensities of the individual modes. Actually, when the laser
operates in this regime a competition exists among the different modes to be amplified by
stimulated emission, and this causes big fluctuations in the relative phases and amplitudes
of the modes, which explain the big fluctuations of the instantaneous output intensity. If,
on the contrary, all the modes have the same phase φ0 (or a fixed phase separation exists
between successive modes, such as φm+1−φm = α), then their emission will periodically add
up coherently, resulting in a sequence of intense and short bursts of light (see Figure 6.2c).

FIGURE 6.2
(a) Emission spectrum of laser oscillating on a set of many equidistant longitudinal modes;
(b) corresponding time evolution of the laser power in the case of random phase variations
among the different longitudinal modes; (c) mode-locked emission in the time domain.
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In this case the sum in Equation 6.6 can be easily evaluated and the total laser field is

Ẽ+(t) =
1

2
ε0e

iφ0eiωpt
sin(Mπνrt)

sin(πνrt)
(6.7)

that, for large M , corresponds to a train of well-isolated pulses spaced by τr = 1/νr
and whose duration is approximatively given by τP ≈ 1/(Mνr). It is straightforward to see
that the minimum pulse duration is thus given by the inverse of the laser bandwidth, and
that the maximum of the field amplitude at the peaks is M times that of a single mode
ǫpeak = Mǫ0. The peak intensity now grows with the square of the number of modes and
can thus become much larger than the single-mode emission if many modes are made to
lase coherently.

Setting a constant phase relationship among the different longitudinal modes of the
cavity is what is usually referred to as mode locking. If the conditions for mode locking are
met, then the laser emission consists of a regular train of very short pulses with high peak
intensity. The purpose of locking the modes is indeed to organize their competition in such a
way that the relative phases stay constant. Equivalently, in the time domain it corresponds
to forcing the output intensity of the laser to consist of a periodic series of pulses resulting
from the shuttling back and forth of a wave packet within the laser cavity.

In the following section we will review some of the most important mechanisms currently
used to achieve mode locking and the techniques to control the dispersion in the laser cavity
as to obtain the shortest output pulses.

6.3 Mode-locking mechanisms and dispersion compensation schemes

Mode locking in a laser requires a mechanism that results in higher net gain for a train
of short pulses, compared to cw operation. This can be done by inserting in the cavity an
active element, such as an acousto-optic modulator, or, passively, by including a saturable
absorber (real or effective). Passive ML yields the shortest pulses because the self-adjusting
mechanism becomes more effective than active ML, which can no longer keep pace with the
ultrashort time scale associated with pulses as short as tens or even just a few fs. In real
saturable absorption, which occurs in dyes or semiconductors, the shortest pulse width is
limited by the finite response associated with the relaxation time of the excited state. On
the other side, effective saturation absorption typically relies on the non-linear refractive
index of some materials, together with spatial effects or interference to produce a higher net
gain for more intense pulses. In this case, the ultimate limit on minimum pulse duration is
basically due to an interplay among the ML mechanism, group velocity dispersion, and net
gain bandwidth. Currently, the generation of ultrashort optical pulses is dominated by the
Kerr-lens and the non-linear polarization-rotation mode-locking mechanisms, described in
the next two sections.

6.3.1 Ti:sapphire lasers and Kerr-lens mode locking

The primary reason for using Ti:sapphire is its enormous gain bandwidth (700-1000 nm),
which allows the generation of spectra of approximately 100 THz bandwidth directly in
the oscillator, corresponding to ultrashort pulses with durations of approximately 10 fs.
Moreover, the Ti:sapphire crystal can also serve as the nonlinear material for mode locking
through the Kerr effect which manifests itself as an increase of the nonlinear index at
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FIGURE 6.3
Kerr-lens mechanism: at high optical intensities, a Gaussian index profile is generated in
the crystal; this acts as a lens and focuses the beam. Therefore, only high intensities are
fully transmitted through the aperture, while low intensities experience losses. Since short
pulses produce higher peak powers, mode-locked operation is encouraged.

increasing optical intensity
n(x, y) = n0 + n2I(x, y). (6.8)

Since the transverse intensity profile of the intracavity beam is Gaussian, a Gaussian
index profile is created in the Ti:sapphire crystal, which makes the latter equivalent to a
lens. As a consequence, the beam tends to focus, the focusing increasing with the optical
intensity. Together with a correctly positioned effective aperture, this effective lens can act
as a saturable absorber, i.e., high intensities are focused and hence are fully transmitted
through the aperture, while low intensities experience losses. Since short pulses produce
higher peak powers, they experience lower losses, making mode-locked operation favorable
(see Figure 6.3).

This mode-locking mechanism has the advantage of being simple and essentially instan-
taneous, but has the disadvantages of not being self-starting and of requiring a critical
misalignment from optimum cw operation. Spectral dispersion in the Ti:sapphire crystal
due to the variation of the index of refraction with wavelength will result in temporal
spreading of the pulse each time it traverses the crystal. At these wavelengths, sapphire
displays normal dispersion, where longer wavelengths travel faster than shorter ones. In
order to prevent the pulses from spreading, the overall group velocity dispersion (GVD)
experienced by them in a cavity round trip has to be minimized. So, to counteract the
Ti:S normal dispersion, prism sequences are normally used to provide adjustable negative
dispersion [491]. It is also possible to generate anomalous dispersion by using the so-called
chirped mirrors [492]. These have the disadvantage of less adjustability, if used alone, but
they allow shorter cavity lengths and give additional control over higher order dispersion. If
used in combination with prisms they allow one to produce pulses even shorter than those
achieved using prisms alone [493].

The Ti:sapphire ML laser can deliver several watts of average output power but, because
it is a free-space laser system, the cavity must be carefully engineered for good stability. The
compactness and cost of the system are generally limited by the necessary high-power (>
5 W) solid-state pump lasers, usually frequency-doubled cw Nd:YVO4 lasers operating at
532 nm. The laser cavity itself can be built in an extremely compact framework, providing
the highest repetition rate of all comb sources. Recently, a 10-GHz Ti:sapphire comb was
demonstrated [494].
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6.3.2 Fiber-based lasers and nonlinear-polarization-rotation mode-
locking

Two main kinds of fiber lasers, the Erbium- and the Ytterbium-doped ones, are currently
used for metrological-related applications based on their mode-locked operation.

Er-doped fiber lasers [495, 496, 497, 498, 499] owe their success to the widespread use
of Er:fiber amplifier technology in optical communication systems [500]. Therefore, Er:fiber
lasers may now be built from compact, inexpensive, and extremely reliable industrial com-
ponents such as the 980-nm grating-stabilized pump laser diodes and fiber-optic couplers,
splitters, and multiplexers. The cavity of a fiber laser consists mainly of a closed beam path
that makes these systems inherently stable. Their emission wavelength of approximately
1.55 µm also allows the use of highly nonlinear fibers (HNFs) for spectral broadening [501]
that, as we will see in the following, is a necessary requisite for obtaining a stable fre-
quency comb. In contrast to PCFs and related fibers with air holes, these highly nonlinear
silica fibers consist of solid cladding and core (diameter ≈4.0 µm), which allows them to
be spliced onto standard communication fibers with low loss. Consequently, a higher level
of integration is possible for Er:fiber systems, which improves the overall stability. Modern
Er:fiber ML lasers provide repetition rates as high as 250 MHz, average powers of several
hundred milliwatts, and excellent long-term stability; they are also cost-effective, compact,
and extremely user-friendly (turnkey operation).

Yb-doped femtosecond fiber lasers have the same basic design as Er:fiber systems and
exhibit similar advantages such as turnkey operation, compactness, and high intrinsic stabil-
ity. Their shorter operation wavelength of approximately 1.03 µm, however, does not allow
them to employ as many industrial components and requires the use of PCFs or similar
fibers for spectral broadening. Yb:fiber ML lasers are mostly recognized for their excellent
high-power capabilities. Due to the small pump defect of the laser transition (976-nm pump,
1.03-µm emission) and the availability of fibers with extremely high doping concentrations,
amplified Yb:fiber systems exhibit tens of watts of output powers [502, 503] and repetition
rates can be as high as 1 GHz. Therefore, these systems are an ideal choice for transferring
the advantages of ML laser operation into the ultraviolet [504, 505, 506] and infrared [507]
regions via nonlinear frequency conversion.

Fiber-based fs ML lasers are based on different mechanisms. One approach is additive
pulse mode-locking (APM) whose working principle is illustrated in Figure 6.4 [508]. The
fiber is contained in a resonator which has the same round-trip time as the laser resonator
and is coupled to it by a semi-transparent dielectric mirror. Pulses returning from the fiber
resonator interfere with those pulses which already are in the main laser resonator. For
proper adjustment of the resonator lengths, there is constructive interference near the peak
of the pulses, but not in the wings, because the latter have acquired different nonlinear
phase shifts in the fiber. As a result, the peak of a circulating pulse is enhanced, while

FIGURE 6.4
Schematic of the additive-pulse mode-locking mechanism.
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the wings are attenuated. The APM technique makes it possible to obtain rather short
pulses without using very special components and can work in different wavelength regions.
However, the resonator length adjustment is rather critical, questioning the practicability
of the technique for commercial products.

Therefore, mode locking in fiber lasers is usually achieved by using nonlinear polariza-
tion in a fiber. When an intense optical pulse propagates in an optical fiber which is not
polarization mantaining, a nonlinear (i.e., intensity-dependent) change to some elliptical
polarization state is produced. The physical cause of this effect is related to self-phase and
cross-phase modulation as well as to some uncontrolled birefringence in the fiber. Thus,
if the pulses afterwards pass a polarizer, the power throughput actually depends on the
optical peak power. A typical mode-locking configuration contains some fiber polarization
controller or waveplates, which can be adjusted so that the maximum transmission (mini-
mum loss) at the polarizer occurs for the highest possible optical intensity [509]. Figure 6.5
shows the whole setup for a highly stable, frequency-controlled mode-locked erbium fiber
laser [510].

The cavity is unidirectional and an all-fiber design is obtained by using a WDM coupler
for pump light coupling as well as a 90/10-fiber coupler for output coupling. Moreover, a
zero-dispersion cavity is obtained by balancing the dispersion from the positive and nega-
tive fibers. A single polarization is selected by the intracavity polarizing isolator and the
polarization controllers on each side of the isolator are used to optimize polarization evo-
lution for optimum mode-locked operation. The described nonlinear-polarization-rotation
mode-locking (NPRM) mechanism is actually related to APM. Indeed, in this case two po-
larization modes coupled to each other through the intensity-dependent birefringence are
interferometrically combined at a polarizing element, where interference occurs, as in APM.

FIGURE 6.5
Experimental setup for a stretched pulse Er-doped fiber ring laser [509]. A typical mode-
locking configuration contains fiber polarization controllers, which can be adjusted so that
the maximum transmission (minimum loss) at the polarizer occurs for the highest possible
optical intensity. Moreover, a zero-dispersion cavity is obtained by balancing the dispersion
from the positive and negative fibers.
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6.4 Optical frequency comb synthesis from mode-locked lasers

As we have seen above, an ideal mode-locked laser emits a train of equally-spaced pulses with
a period τr , which corresponds to a comb of modes in the spectral domain whose spacing
νr = 1/τr is constant. However, differently from the ideal situation described in Section 6.2,
dispersion from active and passive elements inside the cavity causes the refraction index
not to be a constant across the laser gain bandwidth and, therefore, the group and phase
velocities vg and vp of the propagating field to differ. Consequently, after the pulse envelope
has undergone each full round trip in the laser cavity, the field phase front has accumulated
a time delay that can be expressed as

τCEO = 2L(
1

vg
− 1

vp
) (6.9)

and the phase of the wave at the carrier frequency νc has acquired a shift from the pulse
envelope of

φCEO = 2πνcτCEO. (6.10)

Since an additional phase φCEO (CEO is for carrier-envelope offset) is acquired by all
pulses exiting the laser cavity (see Figure 6.6) at a repetition rate νr = 1/τr, this constant
(at least in principle) phase slippage causes an additional frequency contribution ν0 < νr,
given by

ν0 =
φCEO
2πτr

(6.11)

that has to be taken into account in the determination of the optical frequencies of the
spectral comb lines emitted by a mode-locked laser, which then results in

νm = ν0 +mνr. (6.12)

The spectrum of a "perfect" mode-locked laser is shown in Figure 6.6, and is thus
composed of a series of equally-spaced lines (the teeth of the comb) whose frequencies
are perfectly defined by the knowledge of the mode index m, the offset frequency ν0, and
the repetition rate of the laser νr. Since both these frequencies lie in the rf domain, the
large (of the order of 105 ÷ 106) integer mode index m can act as a multiplying wheel to
establish a direct link between the rf and the visible range, thus giving access to the absolute
determination of optical frequencies if one is able to accurately measure and control both
ν0 and νr.

In a "real" mode-locked laser, neither ν0 nor νr are strictly constant because of vibra-
tional motions of the mirrors and fluctuations in the pump power; several techniques have
then been devised in the recent years to accurately measure and stabilize them.

6.4.1 Comb stabilization

For the comb generated by a ML laser to be useful as a precise reference for absolute optical
frequencies, control of its spectrum, i.e., the absolute position and spacing of the comb lines,
is necessary. Although measurement of νr and ν0 are in principle sufficient to determine an
absolute optical frequency, it is generally preferable to use the measurements in a feedback
loop to actively stabilize or lock one or both of them to suitable values. In terms of the
above description of the output pulse train, this means control of the repetition rate, νr,
and the pulse-to-pulse phase shift, φCEO, which may be achieved by making appropriate
adjustments to the operating parameters of the laser itself.
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FIGURE 6.6
Scheme of a series of ultrashort laser pulses emitted from a mode-locked laser. Successive
pulses are exact replicas of each other apart from a phase factor φCEO. This translates in
the frequency domain to a comb-like structure of narrow spectral modes separated by the
laser repetition frequency νr = 1/τr and with an offset from zero frequency given by ν0.

Some experiments only require control of the repetition rate, νr = 1/τr = vg/L, where
vg is the round-trip group velocity and L is the cavity length. The simplest way of locking νr
is therefore by adjusting L . Mounting either end mirror in the laser cavity on a translating
piezoelectric actuator (PZT) easily achieves this. The actuator is then typically driven by
a phase-locked loop that compares νr or one of its harmonics to an external clock. Locking
the comb spacing alone is sufficient for measurements that are not sensitive to the comb
position such as measurement of the difference between two laser frequencies νl1 and νl2.

However, many experiments require the control of both νr and ν0. To do so, both the
round-trip group delay and the round-trip phase delay must be controlled. Since both de-
pend on the cavity length, a second parameter in addition to it must be controlled. In an
ideal situation, an orthogonal control of νr and ν0 would be desirable to allow the servo
loops to operate independently. If this cannot be achieved, one servo loop will have to cor-
rect changes made by the other or, if necessary, orthogonalization can be achieved by either
mechanical design, or by electronic means.

A mode-locked laser that uses two intracavity prisms to produce the negative group
velocity dispersion necessary for Kerr-lens mode-locking provides an additional knob to
adjust the comb parameters. By using a second PZT to slightly tilt the mirror at the
dispersive end of the cavity about a vertical pivot, one can introduce an additional phase
shift proportional to the frequency distance from the central one, which displaces the pulse
in time and thus changes the round-trip group delay (see Figure 6.7). In the frequency
domain this corresponds to introduce a change of the length of the cavity that depends
linearly on the frequency. This leads to changes in both νr and ν0 but leaves the central
frequency mode on the pivot axis constant.

In addition to tilting the mirror after the prism sequences, the difference between the
group and phase delays can also be adjusted by changing the amount of glass in the cavity
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FIGURE 6.7
Schematic of a typical Kerr-lens mode-locked Ti:sapphire laser with controls for both rep-
etition rate and offset frequency stabilization.

or adjusting the pump power. The first approach changes the difference between the group
delay and phase delay due to dispersion in the glass but has the disadvantage of mechanical
limitations that prevent rapid response time in a servo loop. On the other hand, changing
the pump power can be achieved very rapidly by means of acousto- or electro-optical mod-
ulators. Its main effect is that of changing the power of the intracavity pulse, which has
been empirically shown to change the pulse-to-pulse phase due to nonlinear effects.

Both νr and ν0 have to be precisely measured in order to control them in a feedback
loop. Measurement of νr is straightforward; one simply detects the pulse train with a fast
photodiode. Although it can range from tens of MHz to several GHz, νr is typically around
100 MHz and its measurement poses no particular problem. On the other hand, measuring
ν0 is not as simple. An elegant solution is available in the case where the optical spectrum
spans an octave in frequency, i.e., the highest frequencies are a factor of 2 larger than the
lowest frequencies. If one uses a second harmonic crystal to frequency double a comb line,
with index n, from the low-frequency portion of the spectrum, it will have approximately the
same frequency as the comb line on the high-frequency side of the spectrum with index 2n
(see Figure 6.8). Measuring the heterodyne beat between these yields a difference frequency

2νn − ν2n = 2(nνr + ν0)− (2nνr + ν0) = ν0 (6.13)

which is just the sought offset frequency. More details about the stabilization of a fem-
tosecond frequency comb will be given later in the context of absolute frequency measure-
ments.

Thus, an octave-spanning comb spectrum enables simple measurement of ν0 by means
of such a so-called f-to-2f interferometer, but such a broad spectrum is not readily available
from a mode-locked laser oscillator (although octave spanning lasers have been recently
demonstrated). Therefore, additional external mechanisms normally have to be used to
substantially broaden the spectrum. One possible way to achieve such extreme spectral
broadening relatively simply is through white-light continuum generation. Provided that the
laser pulses are intense enough, focusing them into a suitable transparent material results
in the generation of a white-light continuum that contains wavelengths ranging from the
IR to the near UV. Although continuum generation is a complex issue involving changes
in the temporal and spatial beam characteristics, the dominant process and the starting
mechanism leading to spectral superbroadening is the self-phase modulation of the pulse,
which is due to the intensity-dependent refractive index of the medium. In any material with
a third-order nonlinear susceptibility χ(3) 6= 0 and an instantaneous response, the refractive
index depends on the intensity I(t) of the propagating field as

n(t) = n0 + n2I(t) (6.14)
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FIGURE 6.8
Conceptual scheme for the measurement of the offset frequency ν0 of a mode-locked laser
whose spectrum spans more than an optical octave.

So, after propagation through a short length L of such a medium, the field at a carrier
frequency ν0 experiences a time-dependent shift in the instantaneous frequency that is equal
to

∆ω(t) = −ω0n2L/c
dI(t)

dt
, (6.15)

resulting in red detuning at the leading edge of the pulse and blue detuning at the trailing
edge. A 100-fs pulse focused to a peak intensity of 1014 W/cm2 in a 1-mm-thick medium
with a typical nonlinear index coefficient of 10−16 cm2/W will give rise to a continuum
pulse with a frequency excursion that is comparable to the frequency of the carrier itself.

The generation of the continuum is, however, the result of a very complex interplay
among competing processes, and the exact characteristics of the output field appear strongly
dependent on the exact initial conditions of the interaction and hardly predictable. In par-
ticular, one is led to expect that the white-light pulses produced by phase-locked pump
pulses have lost any precise phase relationship in the generation process. Considering that
phase coherence among successive pulses in the train is an essential ingredient for the gen-
eration of a broadband frequency comb, such white-light pulses may, at first glance, appear
inadequate for this purpose.

Unexpectedly, in 1997, a simple experiment [511] proved that supercontinuum generation
could preserve the phase coherence of the pulses and set the basis for extension of the
frequency comb to a full octave. However, at that time pulses intense enough to observe
this effect could only be produced in amplified systems at a kHz repetition frequency, too
dense a frequency grid to be used in frequency space. It was necessary to wait until 1999
before a group from Bell Labs [512] reported the massive spectral broadening of relatively
low power fs pulses in a photonic crystal fiber (PCF). These strongly-guiding fibers are
made of an array of air holes that confine the light to a pure silica core region embedded
within the array. The large refractive index contrast between the pure silica core and the
"holey" cladding, and the resultant strong nature of the optical confinement, allows the
design of fibers with very different characteristics to those of conventional ones. Here, a
very small core size of 1µm leads to increased nonlinear interaction of the guided light with
the silica. At the same time the very strong waveguide dispersion substantially compensates
the material dispersion of the silica at wavelengths below 1 micron. This gives an overall
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GVD which can be zero around the central wavelength of standard Ti:sapphire lasers. As
a result, short optical pulses travel further in these fibers before being dispersed, which
further increases the nonlinear interaction and allows very broad spectra to be generated
at relatively low peak powers. Soon it was discovered that supercontinuum could also be
obtained in tapered fibers [513].

With the availability of photonic-crystal and tapered fibers, broad frequency combs could
be easily generated and it became straightforward to set up a frequency chain measuring
the interval between an optical frequency ν and its second harmonic. Due to the availability
of the PCF this was first demonstrated in J. Hall’s group in Boulder [514, 515] and shortly
afterwards in T. W. Hänsch’s group in Garching [516].

6.4.2 Measurements with a frequency comb

As the frequency comb has developed over the last decade, two general approaches have
emerged for its application as an ultraprecise measurement tool. In the first case, the comb
serves simply as a frequency ruler against which a cw laser is calibrated and measured. It is
the cw laser that then performs the spectroscopy. This kind of applications will be described
first in what follows. The second general approach employs the frequency comb to directly
probe atomic and molecular samples. This approach will be described later, followed by a
review of the most recent and interesting applications of frequency combs to a variety of
scientific fields.

6.4.2.1 Measuring frequency differences

The simplest use of the frequency comb produced by a mode-locked laser is the measure-
ment of the frequency difference between two optical sources, typically, single-frequency
lasers. If the absolute frequency of one of the two sources is known, this yields an absolute
measurement of the other. This scheme was first demonstrated by Kourogi [517] with an
optical frequency comb generator based on the addition of frequency sidebands to a CW
laser in a periodically-modulated optical cavity, but the introduction of optical combs based
on mode-locked lasers has largely extended the range of measurable frequency differences.
Since the absolute frequency reference is constituted by one of the cw laser sources, the
comb is just used as a precise frequency ruler in this case; therefore, an accurate knowledge
of its repetition rate νr, determining the tooth frequency spacing, is all that is needed. A
simplified scheme of this kind of experiments is shown in Figure 6.9. The first example of
this measurement scheme was the determination of the absolute frequency of the D1 line in
atomic cesium, performed in 1999 by Hänsch’s group at MPQ [518, 519]. Here, the 18.4 THz
frequency gap between a diode laser stabilized on the saturated cesium line and the fourth
harmonic of a methane-stabilized He-Ne laser was bridged by locking these two emission
lines to two teeth of a femtosecond frequency comb. If the a priori uncertainty on the un-
known transition frequency is smaller than roughly half the separation between two comb
teeth, then determining the integer number of teeth between the two laser lines leads to a
precise measurement of the frequency under study. Shortly after this initial experiment, the
group of J. Hall at JILA demonstrated the possibility of widening the measurable frequency
gap by using a mode-locked laser with shorter pulse duration and further broadening its
spectrum by self-phase-modulation in a single-mode optical fiber [520]. This allowed them to
bridge the 104 THz frequency gap between a Ti:Sapphire laser locked to a two-photon tran-
sition of 85Rb at 778 nm and a iodine-stabilized Nd:YAG laser at 1064 nm, thus improving
the precision of the available frequency standard.
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FIGURE 6.9
Conceptual scheme for the measurement of the large difference between two laser emission
frequencies. The two laser outputs are beated against the closest "teeth" of a mode-locked
laser, whose repetition rate νr is accurately measured or controlled. The frequency of the
test laser is easily measured as νx = νref +mνr± ν1± ν2; where νref is the frequency of the
reference laser, and the unambiguous identification of the integer m relies on a sufficiently
accurate estimate of the unknown frequency νx.

6.4.2.2 Measuring absolute frequencies with an octave-spanning comb

The experiments described above showed the great potential of femtosecond frequency-
combs for high-precision frequency measurements. However, it was soon realized that one
could also use them for directly comparing the optical frequencies to the microwave primary
standard without intermediate steps. Depending on the available bandwidth from the mode-
locked laser, one can use different schemes to this purpose. The first realization of a direct
radio-to-optical frequency conversion using a femtosecond laser relied on a rather complex
scheme based on the comparison of different optical harmonics of the same fundamental
laser frequency [521]. It allowed to reference the frequency of a methane stabilized He-Ne
laser to an integer multiple of the cesium clock that controlled the mode spacing. By doing
this, every other frequency in the setup, including every mode of the comb, was known with
the precision of the cesium clock. Radiation at 486 nm, corresponding to the 7th harmonic
of the He-Ne laser, was then used to measure the absolute frequency of the hydrogen 1S-2S
two-photon resonance, occurring at the fourth harmonic of this wavelength. The outcome
was one of the most precise measurements of an optical frequency at those times, providing
a transition frequency value as accurate as 1.9 parts in 1014, limited by the reproducibility
of the hydrogen spectrometer.

Much simpler schemes can be adopted if a spectrum spanning more than one optical
octave is available. As shortly discussed above, different methods can now achieve this goal
with simple and compact setups. With an octave-spanning frequency comb, the frequency
of a single-frequency laser can be determined by measuring the frequency interval between
the laser and its second harmonic, i.e., 2ν − ν = ν , where ν is the frequency of the single-
frequency laser (see Figure 6.10). This technique requires a minimum effort to control the
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FIGURE 6.10
Conceptual scheme for the absolute measurement of an unknown laser frequency with an
octave-spanning frequency comb from a mode-locked femtosecond laser. The difference be-
tween the fundamental laser frequency and its second harmonic (that is, the laser frequency
itself) can be measured with the method described in the previous section.

comb, as only the comb spacing νr needs to be controlled. In principle, the comb spacing
does not have to be locked, it only needs to be measured.

This technique was utilized at JILA [515] to make one of the first direct microwave to op-
tical measurements using a single mode-locked laser. In this experiment the octave-spanning
frequency spectrum was obtained by spectral broadening in a piece of microstructured op-
tical fiber. Here, the frequency difference between the 1064 nm line of a Nd-YAG laser
stabilized to molecular iodine transition and its second harmonic was measured. It was thus
possible to achieve the first measurement of the absolute frequency of an optical transition
starting directly from a microwave Cs clock.

6.4.2.3 Absolute optical frequency synthesizer

As we have briefly shown above, the absolute frequency of the m-th tooth of a femtosecond
frequency comb is fully determined by Equation 6.12. Therefore, by measuring and control-
ling the comb offset frequency ν0 and repetition rate νr, both in the microwave region and
directly linkable to the Cs time-frequency standard, one can directly synthesize millions of
absolutely known optical frequencies corresponding to the individual comb teeth. Such an
absolute optical frequency synthesizer can be used as an absolute frequency scale against
which every laser line falling within the ML laser bandwidth can be measured.

Let us now look in more detail to a typical scheme for implementing a self-referencing
optical frequency synthesizer based on a titanium-sapphire mode-locked laser and on the
f-2f method. The laser spectrum is first broadened to more than one optical octave with a
microstructure fiber. After the fiber, a dichroic mirror separates the infrared ("red") part
from the green ("blue"). The former is frequency doubled in a non-linear crystal and reunited
with the green part to create a wealth of beat notes, all at ν0. The number of contributing
modes is given by the phase matching bandwidth ∆νpm of the doubling crystal and can
easily exceed 1 THz. To bring all these beat notes at ν0 in phase, so that they all add
constructively, an adjustable delay in the form of a pair of glass wedges or cornercubes is
used. It is straightforward to show that the condition for a common phase of all these beat
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FIGURE 6.11
Schematic view of the setup for a self-referenced frequency comb. The repetition rate νr
is simply measured with a photodiode, while an f-2f interferometer measures the offset
frequency ν0 after octave spectral broadening of the mode-locked laser pulses. The feedback
mechanisms to measure and stabilize the laser νr and ν0 are not shown here for simplicity.

notes is that the green and the doubled infrared pulse reach the photodetector at the same
time. The adjustable delay allows to compensate for different group delays, including the
fiber. In practice the delay needs to be correct within c∆νpm which is 300 µm for ∆νpm= 1
THz. Outside this range a beat note at ν0 is usually not detectable. The maximum signal-to-
noise ratio when measuring ν0 is obtained for equal intensities reaching the detector within
the optical bandwidth that contributes to the beat note [522]. In practice this condition is
most conveniently adjusted by observing the signal-to-noise ratio of the beat note with a
radio frequency spectrum analyzer. A grating is also frequently used to prevent the extra
optical power, that does not contribute to the signal but adds to the noise level, from
reaching the detector. Typically only a very moderate resolution is sufficient and it is usually
not necessary to use a slit between the grating and the photodetector. When detecting the
beat note as described above, more than one frequency component is obtained. Observing
the beat notes between frequency combs, not only the desired component k = 2m−m′ = 0 is
registered, but all positive and negative integer values of k contribute, up to the bandwidth
of the photodetector. This leads to a set of radio frequency beat notes at kνr ± ν0 for
k = ...,−1, 0,+1, .... In addition, the repetition rate νr and its harmonics will most likely
give the strongest components. A low-pass filter with a cutoff frequency of 0.5νr selects
exactly one beat note at ν0. The design of such a filter may be tricky, mostly depending
on how much stronger the repetition rate signal exceeds the beat note at ν0, and for this
reason it is desirable to work at high repetition rates. In addition, a larger repetition rate
concentrates more power in each mode further improving the beat notes with the frequency
comb.

Once ν0 and νr have been measured, it is necessary to control and stabilize them. As
discussed above, several knobs can be used for controlling these two frequencies, and sta-
bilization is usually performed by mixing the detected frequencies with radio frequency
references. In this way the frequency difference is generated, low-pass filtered, and with
appropriate gain sent back to the proper actuators. When properly designed, such phase-
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locked loops force one oscillator, the repetition rate or the offset frequency, to stay in phase
with another, the radio frequency reference. In particular, since for averaging times shorter
than acoustic vibrations of several ms period, a typical free-running titanium-sapphire laser
shows better phase stability than a high-quality synthesizer, it is important to use a mod-
erate servo bandwidth (of a few 100 Hz at most) for phase locking the repetition rate.
Stabilizing the carrier envelope frequency, even though it generally requires faster electron-
ics, does not have the stability and accuracy issues that enter via the repetition rate due
to the large multiplication factor m in Equation 6.12. Any fluctuation or inaccuracy in ν0
just adds to the optical frequencies rather than in the radio frequency domain where it is
subsequently multiplied by m.

In general, measuring the frequency of an unknown cw laser at νL by means of a stabilized
frequency comb involves the creation of a beat note νb with the comb itself. For this purpose
one needs a good spatiotemporal mode match between the beam of the cw laser and that
of the comb. One usually reflects out a small portion of the frequency comb around νL
by means of a dichroic beam splitter and mixes it with the cw laser output at the right
intensity ratio for an optimum signal-to-noise ratio. The frequency of the cw laser is then
given by

νL = mνr ± ν0 ± νb (6.16)

The signs may be determined by introducing small changes to one of the frequencies
with a known sign while observing the sign of changes in another frequency. For example
the repetition rate can be increased by picking a slightly different frequency of the reference
oscillator. If νL stays constant we expect νb to decrease (increase) if the "+" sign ("−"
sign) is correct. The other quantity that needs to be determined is the mode number m.
If the optical frequency νL is already known to a precision better than the mode spacing,
the mode number can simply be determined by solving the corresponding Equation 6.16 for
m and allowing for an integer solution only. A coarse measurement could be provided by a
wave meter, for example, if its resolution and accuracy is trusted to be better than the mode
spacing of the frequency comb. If this is not possible, at least two measurements of νL with
two different and properly chosen repetition rates may leave only one physically meaningful
value for νL. This technique for measuring absolute frequencies using a self-referenced comb
was first demonstrated at JILA by Jones et al. [514] for the measurement of the frequency of
a 778 nm single-frequency laser locked to a two-photon transition in 85Rb (see Figure 6.12).

6.4.2.4 Direct frequency-comb spectroscopy

The previous examples essentially use a frequency comb to enhance a conventional spec-
troscopy setup by providing a frequency axis for the laser sources. In a different approach,
combs can be used to interrogate a sample directly. Interestingly, this is the route that was
launched in the late 1970’s to explore pairs of comb modes and multiphoton transitions
in atomic systems [490, 523]. Direct frequency-comb spectroscopy may bring a number of
advantages to particular applications, thanks to the inherent accuracy and spectral purity
of the comb modes and to the wide spectral coverage, all in a collimated single-spatial-mode
beam with teeth that can be coupled to a matched cavity for long effective path lengths [15].
However, the large quantity of OFCS modes often results in a very low power per mode,
limiting sub-Doppler spectroscopy to atomic (or molecular) beams or cooled systems. More-
over, if used in a transmission scheme, the presence of many non-resonant modes can be
detrimental to the detected signal-to-noise ratio.

The most straightforward scheme to implement involves a frequency comb illuminating
a sample and the detection of fluorescence from an excited state while either νr or ν0 is
scanned. In this configuration, the frequency-comb is like a multimode laser with narrow-
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FIGURE 6.12
Simplified view of a typical scheme for absolute frequency measurements with a self-
referenced optical frequency comb. The emission of the test laser is superposed to that
from the comb, and the appropriate part of the common spectrum is detected with a photo-
diode to measure the beat frequency νb. The unknown laser frequency νL is then obtained
from Equation 6.16.

linewidth modes at precisely known optical frequencies and a spectral coverage of hundreds
of terahertz. As a result, all the well-known cw-laser spectroscopic techniques can be used
with the additional advantage of the absolute frequency calibration against primary stan-
dards and of the spectral coverage of different atomic or molecular structures with a single
laser source.

This basic approach has been implemented with alkali atoms in a magneto-optical trap
(MOT), beam, and cell [524, 525, 526, 527]. With cold atoms, or propagation orthogonal to
an atomic beam, Doppler broadening can be greatly reduced, yielding uncertainties in the
determination of transition frequencies that begin to rival the best measurements presented
with cw laser spectroscopy. The first single-photon DFCS experiment was the measurement
of the 5S-5P transition (at 384 THz) excited by a 100-MHz Ti:S comb in a 87Rb optical
molasses [528]. Here, the νr and ν0 parameters of the comb were conveniently chosen as
to only excite this particular Rb transition. Similar experiments have been performed to
demonstrate EIT with a comb [529, 530], and the D1 and D2 lines of cesium at 900 nm
and 850 nm, respectively, were measured with a 1-GHz Ti:Sa comb in a thermal beam
[531, 526, 532].

Another interesting application of single-photon DFCS spectroscopy was the frequency
measurement of a forbidden transition, like the P1 calcium clock transition at 657 nm [533].
In this work, the two main limitations for this spectroscopic technique were overcome: the
OFCS power was enhanced and its linewidth narrowed. The first was achieved by amplifying
the comb radiation by a comb-injected slave diode laser [534]. With such an enhanced source,
together with long interrogation times, thanks to the use of cold Ca atoms, saturation
spectroscopy, photon recoil splitting, and Ramsey-Bordé fringes were observed. For OFCS
narrowing, a short-term, highly stable cw fiber laser was used as a comb reference oscillator
instead of the usual RF one.

If the comb mode separation νr is smaller than the Doppler profile of the transition in
a room temperature sample, comb excitation becomes velocity selective and transparency
holes can be probed by scanning a separate cw laser [535, 536].
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Counterpropagating beams can also provide reduced Doppler broadening when multi-
photon transitions are being investigated [527, 537]. Similarly to the single-photon DFCS
spectroscopy, multi-photon transitions can be driven by using OFCSs. Here, two typical
situations can occur: multiphoton transitions with an intermediate atomic or molecular
resonance, and those in which the pulse spectrum is far detuned from an intermediate reso-
nance. Example of the former is an experiment of multiphoton spectroscopy of the 5D and
7S hyperfine manifolds of rubidium atoms via the resonant 5S-5P single-photon transition
[525, 528]. In this case, the multiphoton comb spectroscopy can be viewed as a two-mode cw
laser with frequencies resonant with the intermediate transitions. The hyperfine spectrum
was recorded and frequency measured by changing the νr frequency with an accurate choice
of its initial value to get the proper resonant frequency and to discriminate between multi-
photon and single-photon transitions. Vice versa, multiphoton DFCS of the 8S, 9S, and 7D
hyperfine manifolds of cesium [538] is a demonstration of multiphoton comb spectroscopy
without intermediate resonant transition. In this case, instead of matching the comb fre-
quencies with the two intermediate single-photon allowed transitions by means of accurate
control of the frequency comb parameters, the motion of the atoms is used for Doppler-
velocity selection of atoms simultaneously excited by two comb modes with an energy equal
to the considered two-photon atomic transition. With these experiments, frequencies and
hyperfine coefficients of the Cs states involved in the measured transitions were determined
with an accuracy of 50-200 kHz.

At first glance it may seem that a two-photon transition requires high power that is
generally not available in a single comb mode. However, it is straightforward to see that
in this case the modes can sum up pairwise such that the full power of the frequency
comb contributes to the transition rate, as initially proposed by Ye. F. Baklanov and V. P.
Chebotayev [523]. Suppose the frequency comb is tuned such that one particular mode, say
near the center, is resonant with the two-photon transition. This means that two photons
from this mode provide the necessary transition energy. In this case, also the combination
of modes symmetrically placed with respect to the central one are resonant, as they sum
up to the same transition frequency. In fact, all modes contribute to the transition rate in
this way. The same applies if the two-photon resonance occurs exactly halfway between two
modes, as schematically shown in Figure 6.13. It can be shown [523] for unchirped pulses
that the total two-photon transition rate is the same as if one would use a continuous laser
with the same average power.

One disadvantage of fluorescence detection is that multiple comb elements can also
simultaneously interact with different transitions for the same value of νr and ν0. Thus, the
detected fluorescence may arise from two (or many) levels which share the same excited
state, rendering the individual transitions indistinguishable.

Multiplexing with a VIPA spectrometer
Other techniques exist, however, that circumvent this problem by directly measuring

the power and/or phase of individual comb teeth that have interacted with the atomic or
molecular gas. This is perhaps the most interesting application of DFCS, because it also
allows the parallel detection of a huge number of transitions in the comb bandwidth for a
mixture of different atomic or molecular species.

Implementing this kind of highly-multiplexed frequency-comb spectroscopy requires a
detection system that is broadband, yet highly resolving in the spectral domain. Simple
grating spectrographs can provide a resolution of several tens of gigahertz and bandwidths
of hundreds of gigahertz to several terahertz; however, frequency combs typically exhibit a νr
that rarely exceeds 1 GHz and bandwidths of several hundred terahertz. This means that
a grating-based spectrometer falls short in both categories. An alternative multi-channel
detection technique is therefore needed which can discriminate the comb teeth.
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FIGURE 6.13
Direct frequency-comb spectroscopy of a two-photon transition. All the symmetrically
placed pairs of modes contribute to the excitation if the two-photon transition is resonant
with one of the comb modes if it occurs exactly halfway between two comb modes.

The most promising spatial detector for comb modes is the grating-VIPA (virtually im-
aged phased array) detector which uses two dispersive elements (grating and plane-parallel
etalon) acting in two orthogonal spatial directions. The VIPA provides ≈1 GHz resolution
in the visible spectral range (≈500 MHz at 1550 nm) [539, 540, 541]. When combined with
a lower dispersion grating in the orthogonal spatial direction, 5–10 THz of bandwidth can
be captured in a single measurement taking a few milliseconds. Briefly, the comb light is fo-
cused in a line and illuminates the VIPA etalon at a small angle. As a result of the multiple
interference inside the VIPA, different frequencies exit from the etalon at different angles.
This pattern is repeated for each free-spectral range of the VIPA, but different orders can
be separated by dispersion in the orthogonal direction by a standard grating. The resulting
output is detected by a CCD array where each single OFCS mode is clearly distinguishable
from the others. Frequency calibration as well as details on the indexing of the numerous
detected modes are described in [540].

This technique has been successfully employed for molecular fingerprinting and trace gas
detection in the visible, near-infrared, and mid-infrared spectral regions. When combined
with a multipass cell or enhancement cavity, minimum detectable absorption below 1×10−9

cm−1 has been achieved along with sensitivities to concentrations below 10 ppb for some
common gases [539, 541]. In particular, Thorpe and co-workers demonstrated highly efficient
CRDS, in which a Ti:S OFCS was coherently coupled to a high-finesse Fabry-Perot optical
cavity [539]. In this configuration, more than 100000 optical comb teeth, each coupled to a
specific longitudinal cavity mode, undergo ring-down decays when the cavity input is shut
off. Sensitive intracavity absorption information is then simultaneously available across 100
nm in the visible and NIR regions. In this way, real-time, quantitative measurements were
made of the trace presence, the transition strengths and linewidths, and the population
redistributions due to collisions and temperature changes for molecules such as O2, NH3
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and H2O. In a similar experiment fiber-comb-based CRD spectroscopy was used to record
a 100-nm bandwidth spectra of NH3, C2H3, and CO around 1500 nm [542].

Vernier spectrometer
At low tooth spacings where the VIPA approach cannot be used, or if one wants to avoid

the use of a hard-to-align VIPA element altogether, a different scheme can be applied. Gohle
and co-workers first developed it by performing DFCS in conjunction with a high-finesse
optical resonator [543]. In this experiment, νr is intentionally mismatched to the cavity
FSR in such a way that only every x − th comb mode is on resonance. This results in an
effective filtering of the original comb so that, for sufficiently large x, it can be resolved with
a simple grating spectrograph (see Figure 6.14). This situation may be realized by choosing
νr/νFSR = x/(x+1) or νr/νFSR = x/(x− 1), as in a Vernier scale. As the resonator length
is tuned, the next set of xνr-spaced comb modes is brought into resonance and so on, until
the resonator round-trip length has been scanned by a wavelength.

By recording several spectra over the entire sweep, a final spectrum may be reconstructed
that exhibits both a sampling period given by the comb spacing (i.e., νr) and the final
spectral resolution limited by the width of an individual comb line.

Fourier transform spectrometer
As we have seen above, Fourier transform spectroscopy (FTS) can be used to measure

complex broadband optical absorption or emission from molecules at high resolution by
measuring the laser spectrum via time-domain interference [544]. Commonly used FT spec-
trometers employ thermal light sources to cover 5–50000 cm−1 with resolutions as low as
0.001 cm−1. Acquisition time is a major shortcoming of FTS because the resolution scales
directly with the range of the scanning arm; higher spectral resolution thus requires longer

FIGURE 6.14
Scheme of a Vernier detection approach for a comb-cavity system. With a proper mismatch,
the cavity filters the comb emission to contain only lines separated by xνr . By sweeping νr,
one can tune every comb line onto resonance sequentially.
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scans and lower acquisition times. An important advantage of FTS lies in the possibility
of recording broad optical spectra, but it requires a broadband light source if absorption
is to be measured. Good spatial mode-matching of the waves traveling in two arms of the
interferometer is required to obtain an interference signal with significant contrast. Unfor-
tunately, most white-light sources such as tungsten lamps do not possess sufficient spatial
coherence for good mode matching unless a diffraction-limited emission cone is used, which
greatly reduces the intensity of the source. Therefore, thermal sources require a considerable
averaging time to achieve a sufficiently good signal-to-noise ratio. Replacing the thermal
source with a frequency comb (to act as a diffraction-limited white-light source), a tech-
nique known as frequency comb Fourier transform spectroscopy, can overcome this problem
and immediately provides increased brightness and reduces the averaging times [545, 546].
Furthermore, the scheme may be directly extended to the mid-infrared region with suitable
detectors.

However, an even greater potential was recently unveiled [471]. Because the comb is
a pulsed laser source with a very precise repetition rate, an effective modulation/lock-in
detection scheme that samples exactly at νr can be used. Unlike usual modulation frequen-
cies, which are in the kilohertz range, νr is typically 100 MHz and above, which virtually
eliminates any low-frequency noise. In addition to the brightness factor (a decrease of ap-
proximately tenfold in averaging time) the lock-in detection may add another factor of 105

in improvement [471]. In addition, the quadrature components of the lock-in signal can also
be measured, which carry information on the dispersion of the sample, whereas traditional
FTSs can only measure absorption.

An interesting interpretation of the FTS data is based on the Doppler shift that the
light bouncing off the mirror, which is moving at a speed v, experiences. This generates a
new frequency comb with a Doppler shifted mode spacing of (1(v/c))νr. Of course, rather
than Doppler-shifting a copy of the frequency comb, one could start out with two different
frequency combs that operate with slightly different repetition rates. This allows recording
to be done without moving parts, scanning to be much faster, and, even more importantly, it
can provide very accurate calibration by controlling ν0 and νr of the two combs rather than
trying to determine the velocity v. This is exactly the idea behind the multi-heterodyne
detection scheme described below.

Multi-heterodyne detection
This approach employs two frequency combs with their repetition rates slightly detuned

from each other (e.g., by ≈1 kHz). One of the combs serves as a reference, while the second
acts as a probe, which passes through the sample [547, 548, 549]. Data are acquired from the
heterodyne beat between the two combs using a high-speed detector and digitizer. The basic
operation can be understood in both the time and frequency domains. In the former, the
slight detuning of the combs results in multiple heterodyne beats between individual pairs of
modes from each comb. This is the time domain equivalent to the pulse trains from the two
combs walking through each other, similar to what could be achieved with a scanning delay
line, although with no moving parts. The digitized data are similar to that acquired from the
conventional scanning Michelson interferometer of a Fourier transform spectrometer, and
the complex spectrum (amplitude and phase) is obtained via Fourier transformation. With
mutual stabilization of the frequency combs, sequential interferograms can be obtained and
averaged, resulting in high signal-to-noise over broad spectral bandwidths with high spectral
resolution [549]. While two frequency combs are required, this approach has the advantage
of employing a single point detector. It is also compatible with cavity enhancement, in which
case a minimum detectable absorption ≈ 1× 10−8 cm−1 has been demonstrated [550].
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6.4.2.5 Other measurement schemes and applications

Combs in astronomy
Spectroscopy has always been one of the most important tools for studying the universe.

Current astronomical spectrographs have sufficient short-term stability to measure the ex-
tremely small Doppler shifts resulting from planets orbiting distant stars or the possible
slow change in the cosmological red-shift. However, even the best spectrographs are op-
tomechanical systems that require periodic calibration, which is currently performed using
atomic vapor lamps. Now, in much the same way as the frequency-stabilized laser has re-
placed the krypton lamp for the realization of the meter, broad-bandwidth frequency combs
with large mode spacing may begin to replace such conventional discharge lamps and ab-
sorption cells for astronomical spectrographs requiring the highest level of calibration. Such
broadband combs indeed possess the required properties of high accuracy, great spectral
range, and nearly perfect long-term stability.

A typical application is the detection of extrasolar planets from the changing recoil ve-
locity (and the consequent Doppler shift of spectral lines) of their star during the orbital
period. These recoils velocities are extremely small unless a massive planet in close orbit
is considered. For example, the variation imposed by the Earth on the velocity of our Sun
has an amplitude of only ve=9 cm/s with a period of one year. To detect such a tiny
modulation in other stars, where it is also superimposed with a center-of-mass motion of
typically hundreds of km/s and with the motion of the Earth around the Sun, a relative
Doppler shift of ve/c = 3 × 10−10 needs to be measurable. Converted to visible radiation,
this requires a resolution of 150 kHz and the same reproducibility after half the orbital time.
While this may be many orders of magnitude less precise than present optical frequency
standards and clocks, there are other factors involving both the astronomical instrumen-
tation and the frequency comb that make such precision challenging. Spectral lines from
atoms and ions from interstellar clouds and the surface of stars are subject to strong line
broadening due to collisions and the Doppler broadening of typically several GHz due to
their thermal motion. Given these rather broad lines, the required spectral or velocity res-
olution can be obtained only by using the statistics of many lines observed simultaneously.
It thus requires a very broad-bandwidth spectrometer with extremely small irregularities
in the calibration curve. A frequency comb appears to be the optimum tool for this kind
of calibration task, both in terms of providing an equidistant dense calibration and for al-
lowing long-term reproducibility that derives from the possibility to reference to a precise
clock (see scheme of Figure 6.15). In this case even a simple GPS disciplined rubidium clock
suffices for the required 3 × 10−10 reproducibility to detect Earth-like extrasolar planets.
However, for the comb to be useful for this application its repetition rate should be high
enough such that individual comb teeth can be resolved by the spectrograph. In a typical
echelle-type astronomical spectrograph, this amounts to a mode spacing of several tens of
gigahertz in the visible or near infrared. Moreover, such large mode spacing is required
over bandwidths of hundreds of nanometers, which is an extremely difficult problem, par-
ticularly in the visible portion of the spectrum. Some promising avenues towards this goal
include the direct generation of high-repetition-rate self-referenced frequency combs, such
as a recently demonstrated 10 GHz Ti:sapphire [551], mode filtering of lower repetition rate
sources [552, 553, 554, 555], or the generation of broadband combs via parametric means in
microresonators (see later) [556, 557, 558, 559]. Several groups are moving forward with cal-
ibration efforts using narrower bandwidth combs, and preliminary results appear promising
[560, 561, 562].

Other possible approaches to astronomical applications include the direct heterodyne
detection with a frequency comb. In this scheme the star light is mixed with the frequency
comb on a fast photodetector producing a radio frequency spectrum identical to the optical
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FIGURE 6.15
Simplified view of a possible arrangement for the use of a femtosecond frequency comb for
the calibration of spectral lines from astronomical sources. The set of comb modes acts as an
extremely broad-bandwidth and high-reproducibility frequency ruler that avoids frequent
re-calibration of the spectrometer.

spectrum but shifted by the optical frequency. Signal processing can then be done with
a radio frequency spectrum analyzer rather than with an optical spectrometer. This type
of detection is known for producing shot noise limited signals and is used to demonstrate
noise levels below the shot noise limit with squeezed light. The frequency comb can provide
a large number of optical local oscillators to shift any optical component within its span to
the radio frequency domain.

Frequency/time transfer
With the new generations of ultrastable clocks and frequency standards, the possibility

of distributing time and frequency information to remote locations without loss of accuracy
or precision has become an important topic. For example, applications such as long-baseline
radio astronomy or particle acceleration and free-electron lasers require stringent timing over
extended distances. The phase coherence and broad optical bandwidths of frequency combs
can be exploited for frequency transfer and timing synchronization across fiber networks.

For frequency transfer, a coherent optical frequency comb has been used to translate
the optical clock frequency to a phase-coherent 1.5 µm cw laser. This laser signal can then
be transmitted over long distances of a Doppler-compensated optical fiber to a remote fre-
quency comb, where its frequency is translated back to either a second optical frequency
or the RF domain, depending on the application [563, 564]. Fractional frequency uncertain-
ties of 1019 are achievable over large distances, allowing for the faithful dissemination and
comparison of state-of-the-art optical clocks. The demonstrated performances thus show
that the various technologies of phase-stabilized cw lasers, frequency combs, and fiber links
can be successfully incorporated into a fiber network capable of preserving the stability
and phase noise of current optical sources while bridging large distances and traversing the
optical spectrum.

Time transfer, as opposed to frequency transfer, is a more challenging task that has
yet to be demonstrated in a comb-based system, mainly due to fiber dispersion. However,
timing synchronization across a local network has indeed been demonstrated at sub-10-fs
levels by exploiting the precise timing of the pulse train from a frequency comb source [565].
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Stable microwave sources
The initial drive for the development of self-referenced frequency combs was to multiply

the frequency of RF clocks up to the optical domain. However, frequency combs can also
be operated in the reverse direction, dividing the optical domain down to the RF regime.

As already mentioned, a cw laser oscillator stabilized to a high-finesse optical cavity
(resonant Q approaching 1011) is one of the lowest phase noise electromagnetic oscillators
available in any frequency range [209]. One can then use this ultrastable cw oscillator as
the reference for a frequency comb. A self-referenced frequency comb is phase-locked to a
continuous-wave laser that is itself phase-locked to a high-finesse optical cavity. The low
phase noise properties of the cw laser oscillator can thus be transferred to all the elements
of the optical frequency comb, including the repetition rate and its harmonics.

In the limit of perfect phase-locking, the comb’s repetition rate is a fraction of the
continuous-wave laser frequency, with the phase noise given by the intrinsic thermal cavity
noise. In the simplest case, a fast photodetector at the output of the stabilized frequency
comb will generate photocurrent at frequencies equal to the spacing of the comb modes
[566, 567]. For example, in the case of a 1 GHz frequency comb, the photocurrent output
from the photodiode is made up of tones at 1,2,3,4.. . . GHz, up to the cutoff frequency
of the diode. It will thus generate a microwave signal with a close-in phase noise lower
than that achieved with room-temperature dielectric RF oscillators. This kind of signal
can then be used to synthesize other frequencies or waveforms with low-phase noise in the
microwave, millimeter-wave, or terahertz domains. These low-phase-noise microwaves can
support sensitive Doppler RADAR and precision microwave interferometry measurements.

Waveform generation
A broad array of uniformly and widely spaced comb modes with milliwatt-level power

would be valuable for applications in the field of microwave photonics and optical arbitrary
waveform generation. In this case one can envision using line-by-line amplitude and phase
control of the individual teeth of a frequency comb for the generation of arbitrarily syn-
thesized optical waveforms with low phase noise and timing jitter (see Figure 6.16). When
combined with high-speed photodetection, the manipulation of comb modes spaced by tens
of gigahertz can also be used to generate arbitrary RF waveforms that are challenging, if not
impossible, to synthesize with conventional techniques involving digital-to-analog convert-
ers. Demonstrations of different pulse shaping architectures using un-stabilized frequency
combs have been carried out [568, 569], and the additional aspect of line-by-line pulse shap-
ing with a low-phase-noise comb could add enhanced capabilities for applications in signal
processing, secure communications, radar, and imaging, to name a few. Coherent LIDAR
is also a motivation behind the generation and metrology of arbitrary optical waveforms
[570]. The ability to generate arbitrary optical waveforms would permit coherent excitation
of atoms or molecules well beyond today’s demonstrations, which have so far been limited
by the relatively simple comb structure available to Raman or two-photon transitions.

Ranging
Another important application of frequency combs is related to the precise measurement

of distances, which can be easily converted to a time or frequency determination. In fact,
length is a basic physical quantity and its precise measurement is of fundamental significance
in science and technology. The ability to determine the absolute distance to an object
(ranging) is important for applications such as large-scale manufacturing and future space
satellite missions involving tight formation flying, where fast, accurate measurements of
distance are critical for maintaining the relative pointing and position of individual satellites

Today, optical interferometers are commonly used to measure distances with an ac-
curacy better than an optical wavelength; indeed, in extreme cases, such as gravitational
wave detection, which calls for ultrasensitivity, the accuracy can be many orders of mag-
nitude below the wavelength. Generally speaking, laser ranging determines the phase shift
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FIGURE 6.16
Scheme of a possible setup for arbitrary waveform generation based on the amplitude and
phase modulation of the individual modes of a frequency comb.

of a signal after it has traveled a certain distance. Conventional laser interferometry tech-
niques use continuous-wave lasers to measure the phase of optical wavelengths to attain
subwavelength-resolution over ranges exceeding a few tens of meters. But measurements
are limited to relative range changes (it is not possible to determine directly the abso-
lute value of the distance being measured), meaning that this type of approach yields a
small ambiguity range (range window) of just half the wavelength used. It also means that
to measure any distance at all, an interferometer mirror must be moved along the entire
distance while fringes are counted. Time-of-flight techniques, on the other hand, measure
distance through pulsed or rf-modulated waveforms. Such systems offer large measuring
ranges but poorer resolution (50–100 µm). In pursuit of the best of both worlds (larger
ambiguity range and good resolution) multiple wavelengths can be combined to generate a
longer "synthetic wavelength." Unfortunately, this requires either a tunable laser source or
multiple laser sources to generate stable, accurate optical wavelengths over a wide spectral
range. As such, the accuracy of absolute distance measurements is greatly affected by the
individual precision of the wavelengths used.

As with spectroscopy, frequency combs can thus be used to support these conventional
laser ranging approaches by functioning as a precise spectral ruler. Examples include the
synthetic wavelength interferometer, operating with a sequence of RF harmonics of the pulse
repetition rate. Using the principle of multi-wavelength interferometry, the frequency of a
single cw laser can be consecutively locked to a sequence of selected modes of a stabilized
optical comb and this scheme was used in determining the absolute length of gauge blocks
with an overall calibration uncertainty of 15 nm [571]. In order to overcome the drawback
of time-consuming consecutive measurements at different wavelengths, a different scheme
was adopted by Schuhler et al. [572]. By frequency stabilizing two lasers (emitting around
1.3 µm) to a fiber-based optical frequency comb, they realized a two-wavelength source
permitting the generation of synthetic wavelengths from tens of micrometers to several
meters. By generating synthetic wavelengths as small as 90 µm with an accuracy better
than 0.2 ppm and with a phase accuracy better than 2π/200, the system allowed researchers
to reach a nanometer accuracy.

However, frequency combs can also be used directly for distance measurements instead of
just as spectral rulers. An interesting alternative for absolute length metrology at arbitrary
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distances with a resolution better than an optical fringe was proposed by Ye [573]. The
approach relies on the consideration that a phase-stabilized mode-locked fs laser can provide
both incoherent, time-of-flight information and coherent, fringe-resolved interferometry. In
fact, an ultrafast pulse train allows determination of an absolute distance by use of time-of-
flight information as in the incoherent measurement approach. However, a phase-stabilized
femtosecond pulse train also allows one to build optical interference fringes when pulses
traversing different arms of an interferometer are allowed to overlap and interfere, given
a proper adjustment of the mode-locked laser. Essentially one can thus create a white-
light interferometry condition at any desired length difference between the two arms in the
interferometer.

More recently, researchers at the Delft University of Technology and Korea Advanced
Institute of Science and Technology have combined three distance-measuring techniques
in one instrument [574]: spectrally resolved interferometry (SRI) to reach nanometer-scale
resolution, but with a nonambiguity range of about 1.5 mm; time-of-flight (TOF), which
measures arbitrarily long absolute distances with a resolution of about 7.5 mm; and syn-
thetic wavelength interferometry (SWI), which has a resolution of about 0.16 mm and a
nonambiguity range of greater than 7.5 mm. In this way, SWI could link the high resolution
of SRI to the absolute measuring capability of TOF. Later, this approach was extended to
the precise measurement of long (tens of meters) path differences, only limited by the uncer-
tainties in the refractive index of air [575]. Here, an 815-nm ML Ti:sapphire laser is used as
the frequency-comb source, with both repetition frequency and offset frequency referenced
to a cesium atomic clock. The frequency-comb source has a pulse duration of 40 fs and a
repetition rate of 1 GHz, which corresponds to a pulse-to-pulse distance of 30 cm. After
collimation, the source is sent to a Michelson interferometer, with one part of the beam
(the short reference arm) reflected by a corner cube mounted on a piezoelectric transducer,
and the other part of the beam (the long measurement arm) reflected by another corner
cube, which can be moved along a 50-m-long measurement bench. A correlation function is
measured by overlapping the beams on an avalanche photodiode (APD) while the PZT is
modulated.

Building on these works, Coddington et al. [576] recently demonstrated a new comb-
based LIDAR technique. Their approach combines the advantages of both time-of-flight
and interferometric approaches to provide absolute distance measurements simultaneously
from multiple reflectors and at low power. They use a pair of stabilized broadband, fiber-
based, femtosecond-laser frequency combs with pulse trains of slightly different repetition
rates (100.021 and 100.016 MHz). One comb acts as the "signal" source and samples a
distance path defined by reflections off a target and reference plane; the other acts as a
broadband local oscillator and recovers range information in an approach equivalent to linear
optical sampling. In this way, pulse time-of-flight information can be obtained, yielding 3-
µm distance precision with a 1.5-m ambiguity range in 200 µs. Through the optical carrier
phase, the measurement accuracy improves to better than 5 nm in 60 ms, and through the
radio frequency phase the ambiguity range can be extended to 30 km, potentially providing
ranging with an accuracy of 2 parts in 1013 at long distances.

These techniques share the common aim of extending the subwavelength precision of the
interferometric principle at long range by making use of the frequency comb of femtosecond
lasers. In a recent experiment at KAIST [577], a completely non-interferometric approach
based on the time-of-flight principle using femtosecond comb lasers was used for long dis-
tance ranging. In this case the arrival times of a train of reference pulses are compared
to that of the same train reflected from a distant object by means of a nonlinear optical
cross-correlation technique. The relative delay between one pulse of the reference train and
one of the object train is finely locked to zero by adjusting the laser repetition rate νr.
This allows one to determine the distance as an integer multiple of the cavity length with
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direct traceability to the RF time standard. In comparison to some of the aforementioned
interferometric techniques, this simple time-of-flight method offers nanometer precision at
a higher sampling rate and with less post-processing computation. The measuring capa-
bility is also well maintained at long range, with neither periodic ambiguity nor coherence
limitation in the measurable distance. A sub-10 nm measurement precision in vacuum can
thus be achieved with this method at integration times as short as 10 ms, regardless of the
extent of the distance to be measured.

6.4.3 Relevant properties of a mode-locked laser for frequency-comb
applications

Although Ti:sapphire-based frequency combs were the first to be spectrally broadened to
an octave and self-referenced, the last decade has witnessed an expansion of the frequency
comb technology to new femtosecond lasers with some distinct advantages over the original
Ti:sapphire. Primarily, erbium- and ytterbium-based fiber-based lasers, which are directly
pumped by laser diodes, have emerged as low-cost, compact, and robust alternatives. At
the same time, the search for the ideal frequency comb continues and each of these new
different lasers has its own benefits and disadvantages. However, in choosing the appropriate
frequency comb for a given application, there are several key properties that need to be
considered.

Spectral Bandwidth and Coverage The first issue to be addressed is probably the
spectral range to be covered. At the moment, the wavelength range from 400 nm to nearly
2200 nm is well covered by a combination of Ti:sapphire-, Er:fiber-, and Yb-based lasers.
Although Ti:sapphire is the only one capable of directly generating octave-spanning spec-
tra [578, 579, 580], all the others employ nonlinear optical fibers to obtain the necessary
spectrum for self-referencing.

Frequency and Amplitude Noise In the ideal case, the frequency comb should add
no noise in excess of the reference oscillator that controls νr and ν0. With reasonable con-
trol electronics, this is typically not an issue on time scales greater than ≈0.01 s, as the
comb faithfully reproduces the reference in accordance with Equation 6.12. However, on
time scales from 2/νr up to ≈1 ms, the noise properties of different frequency combs can
vary substantially. Frequency noise that arises from temperature and acoustically driven
fluctuations can usually be overcome with good mechanical design and well-designed con-
trol servos; however, amplitude and frequency noise coming from a noisy pump laser or
from fundamental noise within the laser (amplified spontaneous emission, ASE) can be
more challenging to eliminate [581, 582]. Generally speaking, noise on the pump laser will
be transferred to both fluctuations in the amplitude and frequency of the comb modes up
to Fourier frequencies corresponding to the characteristic gain dynamics (typically ≈5–10
kHz in Er:fiber [582], ≈0.5–1 MHz in Ti:sapphire [583]). Femtosecond lasers with high in-
tracavity power and short pulses will have less ASE-induced frequency noise on the comb.
In this regard, Ti:sapphire and other solid-state lasers with cavity losses of a few percent
should have an advantage over fiber lasers where losses can exceed 50%. External to the
mode-locked laser itself, the main source of amplitude and phase noise comes from spectral
broadening in nonlinear fibers. Both technical and fundamental noise (from ASE and pho-
ton shot noise) can be amplified in the nonlinear fiber, such as the microstructured fiber and
the highly nonlinear fiber (HNLF) [584, 585, 586]. In some cases, this can lead to optical
spectra nearly devoid of the original comb structure, although such decoherence is generally
less of a factor when short pulses (e.g., <50 fs) are used to pump a short nonlinear fiber
having zero dispersion near the central wavelength of the femtosecond laser [585].

Repetition Rate For most of the traditional frequency metrology experiments, it is
desirable to have the highest practical repetition rate at which an octave spectrum is ob-
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tained. This is typically in the range of a few hundred megahertz up to a few gigahertz.
Given a fixed average power, a higher repetition rate provides more power per frequency
mode. The development of broad bandwidth combs with mode spacings larger than 10–50
GHz is very challenging but very valuable for emerging applications in microwave photonics
as well as in the calibration of astronomical spectrographs, as described above. Generation
in this case is challenging with conventional mode-locked laser-based frequency combs due
to the necessity of a short cavity length. Moreover, because the pulse energy scales inversely
with repetition rate, the nonlinear spectral broadening at rates of many tens of gigahertz is
much less effective than at 100 MHz repetition rate. To date, the highest repetition rate for
which octave-spanning spectra and self-referencing has been achieved is 10 GHz with a ring
Ti:sapphire laser [551]. Along the lines of higher repetition rates, a fascinating development
of the past few years was the parametric generation of frequency combs in highly nonlinear
microresonators (see later).

For applications that employ the comb directly for spectroscopy, the best repetition
rate is more difficult to define. Lower rates (≤100 MHz) with higher energy per pulse are
desirable for high spectral resolution and when nonlinear frequency conversion is needed to
get to mid-infrared or ultraviolet wavelengths. On the other hand, gigahertz repetition rates
enable the direct resolution of individual modes and can permit nonlinear spectroscopy with
an individual mode [587].

Some tunability (1–5%) of the repetition rate is also desirable in the determination of
the mode index.

Size, Weight, and Power A definite and important trend for frequency comb sources
is towards smaller, more efficient, more robust, and less expensive sources. Compelling
applications in spectroscopy, length measurement, waveform synthesis, and optical atomic
clocks will ultimately require frequency combs that can operate in real-world conditions
outside the research lab. Such environments require not only robustness, but also the overall
power usage is an important factor. It is clear that the currently most significant reduction
in power usage comes with the direct diode-pumped Er and Yb fiber-based systems, which
are about 10 times more efficient than Ti:sapphire.

6.4.4 Microresonator-based frequency combs

In view of the above considerations, for many interesting applications of frequency combs
it seems advantageous to further reduce their footprint and at the same time to increase
the repetition rate into the frequency range above 10 GHz. A new optical frequency comb
generation principle has recently emerged that goes exactly in this direction by using para-
metric frequency conversion in high quality factor microresonators [556]. This approach
provides access to high repetition rates in the range of 10 to 1000 GHz, may lead to a new
generation of combs that enable planar integration, and may permit a direct link from the
radio frequency (RF) to optical domain on a chip.

The general scheme is based on the interaction between a continuous-wave pump laser
with the modes of a monolithic microresonator via the Kerr nonlinearity. Thanks to the small
volume of the resonator, light can be highly confined so that its intensity and nonlinear
interaction with the medium are enhanced. The ultrahigh Q-factor (proportional to the
photon cavity-storage time, and in excess of 108 in some cases) results in long interaction
lengths and can lead to extremely low thresholds (submicrowatt power level) for nonlinear
optical effects.

An important class of microresonators are whispering gallery mode (WGM) resonators
(such as microdisks, microspheres, microtoroids, or microrings) which confine light by total
internal reflection around the perimeter of an air-dielectric interface. The optical WGM
resonances correspond to an integer number of optical wavelengths around the microres-
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FIGURE 6.17
Generation of an equidistant set of frequency modes by four-wave mixing in a microresonator
pumped by a cw laser. Both degenerate and non-degenerate processes concur in producing
new sidebands spaced by the cavity free spectral range.

onator’s perimeter. For resonators made of materials that exhibit inversion symmetry, the
elemental nonlinear interaction is third-order in the electric field, which gives rise to the pro-
cess of parametric four-wave mixing (FWM). This, because of energy conservation, converts
two pump photons into signal and idler photons at frequencies that are equally spaced with
respect to the pump [588]. If the signal and idler frequencies coincide with optical microres-
onator modes, the parametric process is enhanced, resulting in efficient sideband generation.
In WGM resonators momentum is also intrinsically conserved when signal and idler modes
are symmetrically located with respect to the pump mode. The initially generated signal
and idler sidebands can interact with each other and produce higher-order sidebands by
non-degenerate FWM, which ensures that the frequency difference of pump and first-order
sidebands is exactly transferred to all higher-order sidebands. Thus the successive, cascaded
FWM to higher orders intrinsically leads to the generation of phase-coherent sidebands
spaced by the cavity FSR, that is, an optical frequency comb (Figure 6.17). Dispersion, the
variation of the free spectral range of the cavity with wavelength, ultimately limits this con-
version process and leads to a finite bandwidth of the comb generation process, because the
cascaded FWM becomes much less efficient when the generated sidebands do not coincide
with the cavity mode spectrum.

Optical comb generation with a microresonator thus fundamentally requires a high-Q
cavity with small mode volume that is made from a material with a third-order nonlinearity
and low dispersion. Toroidal microresonators [589] were the first system in which optical
frequency comb generation was demonstrated [556]. They consist of a small silica toroidal
WGM and can attain Q-factors in excess of 108. Highly efficient coupling into these planar
devices can be achieved by using the evanescent field of tapered optical fibers (see Fig-
ure 6.18). Using tapered fiber coupling of 100 mW pump power at 1550 nm, a 375-GHz
repetition rate frequency comb was first attained with a spectral bandwidth exceeding 350
nm, and the uniformity of the mode spacing was shown to be better than 1 part in 1017 [556].
This broad bandwidth was possible thanks to the intrinsic dispersion compensation in silica
in the 1550-nm region. Pumping around this wavelength has recently led to the creation of
broad frequency combs that exhibit more than a full octave span in wavelength [590].

Millimeter-scale crystalline resonators, made by polishing a cylindrical blank, can also
feature exceptional Q-factors that exceed 1010. Input and output coupling of light in this case
is achieved with evanescent prismatic couplers, and optical frequency combs with a mode
spacing as low as 12 GHz have been demonstrated [557]. This frequency is low enough to be
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FIGURE 6.18
The amplified output of a tunable cw laser is coupled to a microresonator by means of the
evanescent field of a tapered optical fiber. If the laser frequency coincides with one of the
cavity modes, a broad frequency comb can be generated, as witnessed by the appearance of
a peak at the resonator free spectral range in the detected transmitted signal.

directly detected using a photodetector, and such microresonators have been employed to
generate microwave signals having high spectral purity [591, 592]. Fabry-Perot fiber-based
cavities can equally give rise to optical comb generation [559] by using an interplay of the
third-order nonlinearity and Brillouin scattering.

Optical frequency combs have also been generated in more compact silicon photonic cir-
cuits that integrate both resonator and waveguide on the same chip. In particular, optical
frequency comb generation in integrated silicon nitride (SiN) resonators fabricated using ap-
proaches compatible with widespread complementary metal-oxide semiconductor (CMOS)
technology has been recently demonstrated [593]. Notwithstanding a significantly smaller
Q-factor, that is partially compensated for by the tight confinement of the field inside the
microresonators, SiN exhibits a third-order nonlinearity that is approximately one order of
magnitude larger than that of silica or crystalline materials such as CaF2 or MgF2. The
main benefit of this approach is that it is fully planar and offers considerable flexibility,
such as access to dispersion engineering through suitable resonator coatings. Moreover, this
approach allows direct integration of the waveguide on the same chip-scale platform pro-
viding a means to fabricate a compact packaged device. Using an integrated SiN resonator,
optical frequency comb generation has recently been demonstrated in this manner [594].
In addition, parametric comb generation has been demonstrated with another planar inte-
grated resonator using a doped silica glass (Hydex) [558] that is also CMOS compatible and
exhibited even higher optical Q-factors (> 106).

An important aspect of the optical frequency comb in metrology is the stabilization of
the comb repetition rate and carrier envelope frequency. Although microresonators do not
feature any moveable parts, ν0 is directly accessible by varying the pump laser frequency
and the repetition rate νr can be varied by use of the intensity-dependent round-trip time
of the cavity. Due to both thermal effects (i.e., the change of refractive index due to heating
by absorbed laser power) and the Kerr nonlinearity, power variations of the laser are con-
verted to variations in the effective path length of the microresonator and therefore change
the mode spacing of the frequency comb [591]. By using electronic feedback on both laser
frequency and laser power, a microresonator Kerr comb with a mode spacing of 88 GHz
has been fully frequency stabilized, with an Er:fiber laser-based frequency comb serving
as reference. This latest result has been achieved by mitigating some of the problems that
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still affect microresonator-based frequency combs. In fact, due to the small volume, many
noise processes (such as thermo-refractive and thermo-elastic noise) are enhanced in mi-
croresonators compared to more standard cavities. Phase stabilization is only viable when
the noise on the measured ν0 and νr beat notes is sufficiently low to be compensated with
servo-control techniques. Moreover, especially for the planar waveguide and microtoroid
systems discussed above, the reduction of νr to a readily measured frequency below 100
GHz may be an additional important issue.

Solving these problems will probably give access to compact frequency combs that have
the interesting possibility of working also with different materials. Semiconductors such as
InP, Ge, SiN, or Si are transparent in the mid-IR. Hence, microresonator-based mid-IR
combs could enable a new generation of optical sensing devices in the important spec-
troscopic "molecular fingerprinting" regime, with a multichannel generator and spectral
analysis tools residing on the same chip.

Besides the possible applications described above, the extremely high repetition rate
available to microresonator-based frequency combs combined with a high power per mode
(> 1 mW) could find interesting applications in high-capacity telecommunications. The
advantage of the optical comb generator is that it can simultaneously generate hundreds of
telecommunication channels from a single low-power chip source. Thus, a single laser source
and a microresonator-based comb can in principle replace the individual lasers used for each
channel in telecommunications.

6.5 Extension of OFCSs into novel spectral regions

6.5.1 High-order laser harmonics and extensions to the XUV

Current amplified pulsed laser systems can reach peak intensities of the order of 1015−1020

Wcm−2 and, under these conditions, a perturbative approach is no longer adequate to model
the nonlinear response of materials to radiation. As a matter of fact, at a peak intensity
of 3.5 × 1016 Wcm−2, the electric field of the laser corresponds to the field which binds
an electron to the proton in the ground state of an hydrogen atom: the assumption that
successive terms in the expansion of the medium polarization in powers of the incident field
get progressively smaller with the order cannot hold. The most impressive consequence of
the breakdown of the perturbative approach is the deviation from the expected exponential
decay of the intensity of successive harmonic orders. The appearance of a so-called plateau,
a region of the spectrum where several harmonics are generated with almost constant ef-
ficiency, is the characteristic feature of high-order harmonic generation (HHG) in gases
[595, 596].

Here, short and intense laser pulses are typically focused in a pulsed gas jet to produce
coherent radiation in the extreme ultraviolet (XUV) and soft X-rays, a wavelength range (1-
100 nm) where the lack of coherent sources has greatly limited the possibility of spectroscopic
investigation, so far.

As a consequence of the isotropy of the gaseous medium, only odd-order harmonics are
generated, and one finds that the region of efficient production of high harmonics is limited
by a so-called cutoff. The most energetic photons generated in the process possess a cutoff
energy Ecutoff , which is experimentally found to follow the simple law:

Ecutoff ≈ IP + 3.2UP (6.17)

here IP is the ionization potential of the atoms in the gas jet, and UP is the ponderomo-



Time and frequency measurements with pulsed laser systems 445

FIGURE 6.19
Schematic view of the typical spectrum of high-order harmonics. Only odd-order harmonic
photons are generated, with successive harmonics separated by twice the energy of the
pump laser. The first harmonics follow the predictions of a perturbative approach, with
intensities exponentially decreasing with the order. Then a plateau is formed and extends
up to Ecutoff .

tive energy, which corresponds to the mean kinetic energy acquired by an electron in one
cycle of oscillation in the laser field:

UP =
e2E2

4mω2
(6.18)

with e and m the electron charge and mass, respectively, E the amplitude of the laser
field, and ω its frequency [597]. It is evident that high laser intensities and high ionization
potentials are required in order to reach very short wavelengths. Indeed, rare gas atoms and
ultrashort pulses of very high peak intensity are normally used to generate high harmonics. A
further advantage of using hard-to-ionize gases and short pulses is given by the requirement
that neutral atoms survive long enough to experience the full peak pulse intensity instead
of being completely ionized at the leading edge of the pulse itself. If W (I) is the atomic
ionization rate and τp the pulse duration, then the maximum effective intensity useful to
produce harmonic photons is the so-called saturation intensity Is, approximately given
by W (Is)τp = 1; W (I) being a monotonously increasing function of I, higher saturation

FIGURE 6.20
High-order harmonic generation in a gas jet.
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FIGURE 6.21 (SEE COLOR INSERT)
The three-step model for HHG. Electrons are first tunnel-ionized by the intense laser field,
then they are accelerated during an optical cycle and finally recombine with the ion, thus
releasing the accumulated kinetic energy in the form of harmonic photons.

intensities can be reached with shorter laser pulses and, of course, with light noble gases
having higher ionization potentials.

6.5.1.1 Generation and properties of high-order laser harmonics

The standard picture of the high-order harmonic generation (HHG) process can be easily
visualized from a semi-classical perspective in a single-atom approach (see Figure 6.21):
every half optical cycle of the laser pulse, electrons undergo tunnel ionization through the
potential barrier formed by the atomic potential and by the electric field potential of the
laser itself; after being accelerated in the ionization continuum by the field, they may come
back to the ion core and recombine to emit harmonic photons that release the accumulated
kinetic and ionization energy [598].

Some of the most relevant features of harmonic radiation can be simply obtained by
using this single-atom picture and solving the classical equations of motion for an electron,
freed with zero velocity at different moments in an oscillating electric field. Depending on
the phase of the field at the moment of ionization, the electron can either escape from the
parent ion or oscillate in the field and come back to the original position after a fraction of
the optical period T . Only electrons ionized within T/4 after each field maximum contribute
to harmonic emission, by recombining with the ion and converting their kinetic and potential
energy into photons (see Figure 6.22).

The experimentally found cutoff law can be simply obtained by noting that the max-
imum return kinetic energy (brought back by electrons which escape slightly after each
field maximum every half optical cycle) corresponds to about 3.17 Up. For the generation of
harmonics with photon energies below the cutoff limit, there are always two different trajec-
tories (corresponding to two different release times within each half cycle) that the electron
can follow in the continuum such that it returns to the ion core with the correct energy.
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FIGURE 6.22
Schematic representation of the main electron trajectories involved in the HHG process
(only the first half optical cycle is considered for simplicity, but things repeat with a T/2
periodicity). Electrons which are ionized when the absolute value of laser field amplitude
is growing just escape from the ion and do not contribute to the process, while electrons
released after the peak can come back to the core position and recombine to emit harmonic
photons. Electrons ionized in A return with the maximum kinetic energy (about 3.17 Up)
and generate the most energetic photons in the cutoff region. Electrons released in B and C
follow different trajectories in the continuum but return with the same kinetic energy, thus
both contributing to the generation of the same harmonic.

These two trajectories, although giving rise to photons with the same energy, may corre-
spond to quite different permanence times of the electrons under the influence of the laser
field, and some of the spatial and temporal characteristics (phase-matching relations, defo-
cusing and frequency modulation) of the emitted harmonic radiation will thus be strongly
affected [599, 600].

Harmonic emission during a single pump pulse is thus seen to be composed of a train of
XUV photon bunches, essentially released twice every optical cycle of the laser field. This
temporal structure translates into the characteristic spectral structure of high-order har-
monics, with peaks corresponding to the odd orders, separated by twice the laser frequency.
The semiclassical model [598] also offers a simple explanation for other experimentally ob-
served characteristics of harmonic radiation. A linear polarization of the laser is needed to
make sure that the electron oscillating in the field may hit the ion and recombine with it
when it comes back after the oscillation in the continuum; experiments have shown that just
a small degree of ellipticity is sufficient to completely inhibit the generation of harmonics. It
is also clear that, although the expressions for Ecutoff and Up seem to favor long-wavelength
pump pulses for the generation of high harmonics, actually, the longer time that it takes
for the electron to return to the ion (proportional to the pump laser wavelength) implies
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a significant spreading of the electron wavepacket during its oscillation and a final lower
overlap with the ion wavefunction, which in turns causes the probability of recombination
to decrease.

6.5.1.2 Ramsey-type spectroscopy in the XUV with high-order harmonics

In recent years there has been an increasing interest towards high spectroscopic resolution
in the vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) regions, where important
investigations involving several atomic and molecular species can be performed [601]. A
broad and simple tunability in all this spectral range and extending to the soft X-rays
is only achieved by synchrotron facilities, which, when used in combination with the best
monochromators available, can provide radiation with a bandwidth as small as 0.5÷1 cm−1

[602]. Apart from their limitations in spectral resolution, synchrotron sources suffer from
some lack of accessibility, and tabletop-size sources would be much more desirable for a
more widespread use. On the other hand, laser-based narrow-band cw sources hardly exist
at such short wavelengths [603].

In this context harmonic sources look like a very appealing alternative but the extremely
broad bandwidth associated with their short pulse duration seems to prevent their use for
spectroscopy. In fact, even if some low-to-medium-order harmonics can be generated with
pump pulses in the nano- and picosecond range [604, 605, 606], allowing one to keep a good
spectral resolution for selected applications, higher-order harmonics can only be created
at intensities above 1013 W/cm2 by ultrashort laser pulses; and a 100-fs pulse is already
characterized by a spectral width in the THz range.

A way to overcome this limit is with the application of the two-pulse technique described
above to the harmonic radiation, for example by splitting and delaying the XUV pulses by
means of a Michelson interferometer before sending them to the samples under study. It is
interesting to note that, according to Equation 6.3 and in the case of XUV radiation with
wavelengths in the 30-100 nm range, just a few mm of mirror displacement can achieve the
same resolving power of the best synchrotron monochromators. Unfortunately, the use of this
technique with HOH pulses is far from straightforward, mainly because good interferometers
cannot be built to work in the XUV due to the lack of suitable optics. This problem can be
solved by moving the pulse-splitting stage in the path of the laser beam, in order to create
two phase-locked and time-delayed pump pulses that would then generate equally phase-
related XUV pulses. Of course, in order for this technique to work, one has to make sure
that the phase lock is preserved in the generated pulses: if the process of HOH generation
were an incoherent one, no phase relationship could be preserved between the XUV pulses
and such a scheme for spectroscopy with harmonics would be useless.

The mutual phase coherence between the harmonic pulses produced by phase-locked
pump pulses was clearly demonstrated in a series of experiments performed in Florence and
Lund at the end of the 90’s, where the stable interference pattern between two secondary
XUV pulses showed that the harmonic generation process could preserve the memory of the
pump pulse phases [607, 608, 599]. Not only was the phase not scrambled in the process,
but it was also demonstrated that a negligible frequency chirp was imparted to the XUV
pulses. Nice, stable, and highly contrasted interference fringes indicated that the generation
process was not as phase-destructive as it was initially thought, and showed that harmonic
generation could become a suitable source for XUV interferometry [609] and high-resolution
two-pulse spectroscopy.

Successively, other experiments performed in Florence and Paris [610, 611] directly
demonstrated the appearance of the modulated spectrum described in Equation 6.2 by us-
ing collinear XUV pulses as produced by time-delayed pump pulses exiting an unbalanced
Michelson interferometer.
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FIGURE 6.23
Experimental spectra of harmonics 11 (a), 15 (b), 19 (c), and 23 (d) generated by two laser
pulses delayed by 120 fs and focused at 2x1014 Wcm−2 [611]. According to expectations,
the spectra exhibit the broad envelope of the single pulse, with a superposed sinusoidal
modulation showing fringes with a period δλ = λ2/cτ .

Here, the temporally integrated signal I(ωs, t) observable at the exit slit of an XUV
spectrometer centered at ωs as a function of the delay t can be obtained by considering the
harmonic field as the sum of two identical and temporally separated pulses. If F (ω−ωs) is
the transmission function of the monochromator filter, which we assume to be symmetric
and much narrower than the single-pulse spectrum I0(ω), one obtains:

I(ωs, t) ∝ I0(ωs) (1 + F̃ (t) cos(ωst)) (6.19)

where F̃ (t) is the Fourier transform of F (ω), normalized to have F̃ (0) = 1, and corre-
sponds to the visibility of the resulting interference fringes. Measuring the fringe visibility
as a function of the delay thus simply yields the Fourier transform of the filter transmission
function. Expression 6.19 shows that two short time-delayed pulses that would not normally
interfere due to their temporal separation may be forced to overlap again as a result of the
broadening of their temporal profile introduced by the spectral filtering. If the filtering ac-
tion of the monochromator is replaced by the narrow resonance of an atomic system, this
technique may then allow the study of its spectral characteristics with an unprecedented
resolution for this wavelength region. This approach is at the basis of Ramsey-type and
Fourier transform spectroscopic schemes in the XUV with high-order harmonic pulses.

Ramsey-type spectroscopy with ultrashort laser pulses [612, 613] had been demonstrated
in applications to bound state spectroscopy with optical sources in single-photon as well as in
multiphoton and multistep transitions [489, 614]. Its general idea is similar to what was first
introduced by N. Ramsey in 1950 [449] to face the transit-time-limited interaction between
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the molecules in a jet and a microwave field. In that case a greater effective interaction
time was obtained by using two widely spaced interaction zones. In an analogous way one
may think to extend the interrogation time characteristic of an ultrashort harmonic field by
using pairs (or sequences) of collinear, phase-coherent, and time-delayed pulses. Consider
the sinusoidally modulated two-pulse spectrum depicted in Figure 6.1b and imagine that a
narrow atomic transition is placed somewhere under the broad spectral envelope. If the delay
between the incoming pulses is varied, the fringe pattern moves and the transition will get in
and out of resonance in a sinusoidal fashion. Of course, when the delay gets so long that the
period of the spectral fringes becomes comparable or smaller than the transition linewidth,
then the contrast of the excitation modulation will tend to decay. From a different point of
view, one can consider the first short pulse as inducing a coherence in the two-level system
and creating a dynamical polarization of the medium. The induced polarization oscillates at
the transition frequency with a decaying amplitude during the dephasing time. The second
pulse, depending on its phase with respect to the polarization oscillation, can enhance
or destroy the residual system excitation. As a result, any excitation-related observable
exhibits interference fringes when varying the delay between the two pulses. In more complex
excitation schemes, involving more than two interacting states, the modulation of the fringe
pattern and the appearance of beat notes can give information on the energy separation of
nearby levels and on their lifetimes. In principle, the same information can also be retrieved
with a Fourier transform spectroscopy (FTS) scheme, by directly measuring the integrated
transmission of the pulse pair through the absorbing sample as a function of the interpulse
delay. By a Fourier transformation of the resulting interferograms, the spectrum of the
transmitted radiation can be retrieved.

High-order harmonics are ideal candidates to study the spectral characteristics of high-
lying excited states with one-photon transitions, and Ramsey and FTS schemes have been
recently demonstrated.

An experiment in Saclay [615] showed that it is possible to measure the spectral pro-
file of harmonics by employing a FTS setup and measuring the interferogram produced
by pairs of XUV pulses as a function of their delay. This illustrated the potential of the
technique but was not followed by any real spectroscopic application, mainly because of the
small absorption of the XUV radiation by a gaseous sample at low density which results in
undetectable changes in the harmonic spectral profile.

Ramsey schemes have in principle a much higher sensitivity since the signal comes from
directly measuring an atomic excitation, which, in the case it results in ionization, can have
a unit detection efficiency. The first test of Ramsey-type spectroscopy with harmonics was
performed on a pair of krypton autoionizing states, resonant with the ninth harmonic of a
Ti:sapphire laser [616, 617]. The quantum interference manifested itself as a fringe pattern
in the electron/ion signal caused by the ionization versus the delay between the pulses, with
a fringe spacing given by the atomic transition period [618], in this case about 0.29 fs (see
Figure 6.24). On the other hand, the modulation of the fringe contrast on the scale of the
state lifetime, amounting to hundreds of fs, reflected the decay of the autoionizing states
and the beating of the two transition frequencies.

More recently, the same Ramsey-type scheme based on pump pulse splitting has been
successfully extended to the investigation of bound highly-excited states in Ar [619]. In this
case, much longer level lifetimes (and correspondingly much narrower transition linewidths,
although limited by Doppler broadening) allowed to put to a stringent test the spectral
resolution limits of the original two-pulse XUV Ramsey scheme. Since the upper level lay
close to the first ionization threshold of the atom, excited electrons could be promoted to
the continuum by a further absorption of a delayed single IR photon at the fundamental
wavelength (see Figure 6.25).
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FIGURE 6.24
First Ramsey fringes in the excitation of an autoionizing transition in the XUV by means
of a pair of time-delayed high-order harmonic pulses. The fringe spacing corresponds to the
0.29-fs period of the atomic transition.

However, if accurate measurements of transition frequencies are to be performed, all
the atomic quantum interference fringes have to be accurately followed over a long time
interval. While this is the norm for standard FTS in the visible and IR regions, follow-
ing this approach for Ramsey spectroscopy in the XUV is far from straightforward and
almost technically impossible. In fact, since these measurements are normally performed
in an ion/electron counting regime, they are intrinsically very slow and one has to face
long acquisition times that pose severe constraints on the overall system stability. One can
overcome these constraints and make measurement times substantially shorter, by acquir-
ing fringes only over a limited subset of randomly-chosen delay intervals in the whole delay
range T that is needed for a given target spectral resolution.

It is worth examining in some detail a few different cases: let us assume that we are
dealing with a single resonant atomic transition of negligible linewidth compared to the
inverse of the time delay. The simplest case is depicted in Figure 6.26a where the atomic
interference fringes are acquired while spanning the delay t in a single time window between
t0 and t0+δt: this is the case of a typical measurement like the one depicted in Figure 6.24.
The square modulus of the Fourier transform (FT) of the Ramsey signal is a sinc2-shaped
curve centered at the atomic transition frequency and with a spectral width ≈1/δt (right
column of Figure 6.26a).

If the Ramsey signal is acquired while the delay t of the second pulse is sequentially
spanned in two δt–long windows starting at t0 and t0 +T (T being accurately measured on
the scale of the atomic oscillation period), the above spectral curve is further modulated
by a cos2 term of period 1/T (see Figure 6.26b). This high-frequency modulation opens
the possibility of high-resolution spectroscopy. However, if T ≫ δt, many different spectral
maxima are eligible as the real atomic frequency and the identification is highly ambiguous
unless a previous determination of the frequency is available with an uncertainty < 1/2T
[620].

This ambiguity can also be solved by sampling the Ramsey fringes while scanning the
delay of the second pulse in several time windows of width δt, either regularly spaced, or
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FIGURE 6.25 (SEE COLOR INSERT)
Scheme of a setup for Ramsey spectroscopy of highly-excited bound states in argon [619].
A single IR pump pulse is split int two delayed replicas in a highly-stable Michelson inter-
ferometer. After high-order harmonic generation, the two XUV pulses are used to excite Ar
atoms in a jet. A successive IR pulse probes the system excitation by ionizing atoms in the
upper excited level (see atomic level scheme above). Ramsey fringes are observed in the ion
signal as a function of the delay between the exciting pulses.

with a random sampling of the delay intervals. The random approach has various advantages
in this sense, as different sinusoidal modulations with incommensurable periods rapidly
cancel the satellite comb peaks (see Figure 6.26c), leading to a substantial reduction of the
acquisition time. Moreover, the width of the surviving tooth, corresponding to the atomic
resonance, approaches the theoretical resolution limit (1/T ) also in this case [621].

In principle, this scheme imposes to scan and accurately measure the delay t over all the
measurement windows. Anyhow, as far as one is concerned with a well-isolated resonance,
a remarkable experimental simplification can be obtained by just accurately monitoring the
relative delay of distinct pairs of measurements. In other words, the basic two-time-window
acquisition schematically depicted in Figure 6.26b can be repeated several times for a set
of random delays spanning the whole range up to T , as in Figure 6.26d.

Then, the square moduli of the FTs corresponding to different pairs can be simply
combined by taking their product. The advantage of this approach is that this high spectral
resolution can be achieved by combining a very limited number of short acquisition pairs
at random but accurately known relative delays, instead of performing a very demanding
interferometrically calibrated single acquisition of Ramsey fringes over a long delay of several
picoseconds. This corresponds to a large reduction of the acquisition time, while preserving
the final spectral resolution and with the fundamental experimental advantage of combining
data from independent measurement runs. In the bottom inset of Figure 6.27 a zoom of
the frequency region around the resonance is shown for each of the 20 pairs of Ramsey
measurements. After a few acquisitions the resonance peak is correctly identified and its
width becomes progressively narrower as more pairs at longer relative delay are added [622].

Another approach to Ramsey-type spectroscopy with harmonics has been recently de-
veloped by the group of Eikema and Ubachs in Amsterdam [623] and uses the amplification
of successive pulses from a mode-locked, phase-stabilized, laser oscillator to generate two
or more accurately delayed harmonic pulses. In this case, the time separation between the
driving pump pulses for harmonic generation is provided by the accurately known repetition
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FIGURE 6.26
Different possibilities for scanning the relative delay between the excitation pulses in a
Ramsey experiment with harmonics. The corresponding spectral information achievable
by Fourier-transforming the Ramsey signals is shown in the right panels. See the text for
details.

rate of a stabilized femtosecond frequency comb laser, instead of being introduced by split-
ting a single amplified laser pulse in a Michelson interferometer. More in detail, electro-optic
modulators are used to select two or more (consecutive or not) pulses from the mode-locked
pulse train. These pulses are then amplified in a Ti:sapphire nonsaturating amplifier up to
an energy of about 15-25 µJ per pulse, while their spectrum is limited to about 0.5-0.7 nm
in order to excite just a single transition of interest.

In the first experiment of this kind [623] a two-photon transition at 212.55 nm in krypton
was excited by producing the necessary radiation by fourth-harmonic generation of the
amplifier output at 850.2 nm through sequential frequency doubling in two beta-barium
borate (BBO) crystals (see Figure 6.28). Sequences of two or three consecutive pulses of
the mode-locked train were used and the excited state population was then probed by a
delayed ionization pulse at 532 nm.

The inter-pulse delay T was scanned by changing the comb laser repetition frequency
around 75 MHz. With a single pulse, the excitation probability is clearly constant. With
two pulses, a clear cosine oscillation with a high contrast is observed, while three-pulse
excitation gives a pulse-like structure appearing with narrower peaks compared to two-pulse
excitation. Also in this case, the unambiguous identification of the mode corresponding to
the true position of the resonance is not trivial and requires in principle a preliminary
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FIGURE 6.27
Effect of increasing the number of randomly delayed Ramsey scans on the retrieved spec-
tral signal. The more scans are added at incommensurable delays, the less satellite peaks
appear in the spectrum, until a single narrow resonance is clearly left. Absolute frequency
measurements in the XUV are thus possible [622].

determination of the transition frequency with a sufficient accuracy. One can obviate to
this problem as illustrated above, by performing scans at different delays and then looking
for coincident peaks. Here, one can perform different sets of measurements at different
laser repetition rates of the mode-locked oscillator. In the experiment of reference [623]
three different frequencies were used to correctly identify the two-photon resonance and
determine its absolute frequency with an uncertainty of 3.5 MHz, one order of magnitude
better than previous measurements based on single nanosecond laser pulses.

In a successive experiment the same group used 125 nm pulses to excite a bound state
in xenon which was subsequently probed by ionization with an additional delayed visible
pulse [624]. Radiation at the desired wavelength was produced by third harmonic generation
in a gas cell of the frequency-doubled output from a Ti:sapphire amplifier at 750 nm. In
this case two electro-optic pulse pickers were used to selectively amplify either one pulse,
two pulses separated by an integer number of oscillator round-trip times, or a pulse train
consisting of up to six pulses, from a mode-locked frequency-comb laser. Once again, the
time delay between them is scanned on an attosecond time scale by varying the repetition
frequency νr of the frequency comb oscillator, while keeping the phase difference between
successive pulses φCEO fixed. If two pulses are used with their separation varied in steps
corresponding to an increasing number of oscillator round-trip times, cosine oscillations
of decreasing period are observed, as shown in Figure 6.29b, so that the precision in the
determination of the maxima is increased. On the other hand, by adding more pulses to the
first two, the frequency resolution can be also increased, as is shown in Figure 6.29a: in the
limit of adding an infinite number of pulses and infinite transition lifetime, sharp modes
would emerge, resembling the original frequency comb structure.

The above two experiments did not really use the process of high-order harmonic gen-
eration to move comb-assisted Ramsey spectroscopy to the XUV. This was achieved more
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FIGURE 6.28
Schematic view of the experimental setup for the Ramsey-like spectroscopy of krypton at
212 nm [623]. A phase-stabilized oscillator is used here (after amplification) to provide an
accurate control of the inter-pulse delay between the two exciting pulses.

recently by the Amsterdam group through the amplification of a pair of subsequent pulses
from an IR frequency-comb laser with a double-pulse parametric amplifier to the milli-joule
level. These energetic pump pulses could then be used for standard HHG in a krypton jet
to efficiently produce radiation at the 15th harmonic at 51.5 nm [625]. The pairs of XUV
pulses were used to excite the transition from the 1s2 ground state to the 1s5p excited state
of 4He and state selective ionization was then performed with an additional pulse at 1064
nm. Like in previous experiments, the delay between the XUV pulses was varied with at-
tosecond precision by changing the repetition frequency of the mode-locked oscillator, while
widely different repetition rates were used to unambiguously identify the correct resonance.
Such measurements led to a new determination of the ground state ionization energy for
4He of h×5 945 204 212(6) MHz, with an improvement in the accuracy of almost one order
of magnitude compared to previous measurements.

The two different approaches to Ramsey spectroscopy in the XUV based on: (1) the
pulse-splitting technique by a Michelson interferometer, and (2) the amplification of suc-
cessive pulses from a stabilized mode-locked laser have different merits and drawbacks. In
the comb-based scheme the time delay between successive pulses is accurately known and
controlled via the repetition frequency of the laser, but the amplification process is known
to introduce additional phase shifts that have to be accurately monitored and taken into
account for the correct determination of the resonance frequency. On the other hand, the
approach based on pulse-splitting owes its accuracy to the accuracy of the path displacement
in the interferometer and therefore significant stability problems have to be faced, especially
when long time delays (high spectral resolutions) are needed. The latter approach also allows
in principle a continuous scan of the delay over long intervals and has no minimum delay to
start from, as is the case for comb-based Ramsey spectroscopy. The minimum delay for the
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FIGURE 6.29
Ionization signal from Xe atoms following different schemes of excitations by UV pulses at
125 nm [624]. See the text for details.

latter is set by the inverse of the maximum repetition rate of the mode-locked oscillator and
this technique is therefore intrinsically limited to the excitation of states whose lifetimes
are longer than the comb interpulse delay, currently around 10 ns.

6.5.1.3 Cavity-enhanced XUV frequency combs

The above Ramsey-type schemes for precision spectroscopy in the XUV essentially rely on
the frequency conversion of just a pair of delayed and mutually phase coherent pulses. A
significant step forward would be made if the entire (ideally infinite) train of phase-locked
pulses emitted from a stabilized mode-locked laser could be directly converted to the XUV.
In this case one could translate the whole comb structure characteristic of the visible or
near-IR laser spectrum to the XUV. If the original comb tooth frequencies were given by
the usual form of Equation 6.12, then the XUV comb structure of the k-th harmonic should
become:

νh = hνr + kν0 (6.20)

where the integer index h now spans an interval of k times larger values than the index
m in Equation 6.12, and also the offset frequency ν0 of the pump comb is multiplied by
k when moved to the XUV. It is clear that obtaining this kind of result would allow to
extend all the benefits and spectroscopic techniques discussed above for the frequency comb
femtosecond lasers in the visible and near-IR to a new, and almost unexplored, spectral
region.

Unfortunately, the original frequency comb structure is normally lost due to the re-
duction of the pulse train repetition rate required to actively amplify single pulses to the
energies required for the HHG process to take place. In fact, the energy of pulses directly
coming from a mode-locked laser oscillator is usually in the nJ range, while at least sev-
eral µJs are needed for harmonic generation. Amplifying the energy of ultrashort pulses
to this range implies reducing their repetition rate in a CPA scheme, typically in the kHz
regime. The resulting frequency comb would thus be far too dense to be useful. It would
for example require a preliminary knowledge of the investigated resonance frequencies at
unavailable precisions. The mode spacing would also be too narrow for direct frequency
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comb spectroscopy which requires the separation of the modes, i.e., the repetition rate, to
be larger than the observed transition linewidth.

To obviate to this situation a new approach to high order harmonic generation has been
recently developed that allows the direct generation of XUV radiation at the high repeti-
tion rates of the original mode-locked laser oscillators. It consists of coherently coupling the
pulse train emitted from the laser to an external enhancement cavity where the nonlinear
process of harmonic generation can take place. Cavity-enhanced nonlinear frequency con-
version is a standard technique when used in combination with CW laser emission, and has
allowed impressive conversion efficiencies due to the resonant enhancement of the laser field
circulating in the cavity. However, coupling the femtosecond pulse train to an enhancement
cavity is not as straightforward: instead of just locking the monochromatic laser line to a
single cavity mode, here all the longitudinal modes of the cavity have to be simultaneously
resonant with each mode νm that originates from the laser. This can be accomplished with
a resonator of appropriate length and zero group velocity dispersion, whose offset frequency
ν0 is matched to the laser. Rephrased into time domain language, coherent pulse addition
in a resonator occurs if (1) the round-trip time of the pulse is the same as the period of
the laser, (2) the pulse envelope does not change its shape during one round-trip, and (3)
the carrier phase shift with respect to the envelope of the circulating pulse is the same per
round trip as the pulse to pulse change from the laser. If these conditions are met, then the
pulses arriving from the mode-locked cavity and those circulating in the cavity always meet
at the cavity input coupler with the right timing and the right relative phase to coherently
add their amplitudes in the cavity by constructive interference.

For increasing cavity finesse, the stored pulse undergoes an increasing number of round-
trips and therefore its energy is progressively enhanced. At the same time, also, dispersion
compensation becomes more critical, but it can be achieved with appropriately designed
chirped mirrors.

If a low-density gas target is now placed in a position corresponding to a focus of such
a resonator, it can act as the nonlinear medium for HHG. In contrast to the usual HHG
schemes, the power that is not converted into the XUV after a single pass through the
medium is "recycled" and can contribute in subsequent passes, so that higher total conver-
sion efficiencies than for conventional schemes can be expected. In the first experiments of
cavity-enhanced harmonic generation from a frequency comb mode-locked laser performed
at Garching [626] and at JILA [627], the peak intensities in the cavity focus were in the
range of 5× 1013 W/cm2, sufficient for the generation of high harmonics up to the 7th [627]
or 15th [626] order.

As the HHG process is extremely nonlinear, it has been a significant concern that fre-
quency comb coherence could not be maintained through HHG. If the harmonic generation
process is coherent, i.e., if it does not disrupt the precise phase relationships between the
successive pulses in the generated train of XUV pulses, then one may expect that radiation
at each harmonic frequency is further broken into a comb structure with teeth at frequencies
simply given by Equation 6.20. Indeed, it is a prerequisite that coherence is maintained be-
tween successive pulses in the train as this sets the frequency comb linewidth to be less than
the repetition frequency. This comb linewidth determines the ultimate frequency resolution
for experiments using an XUV frequency comb.

The fact that the phase coherence is preserved to a certain degree in the HHG pro-
cess had already been demonstrated in early experiments [599], and all the Ramsey-type
spectroscopic schemes with harmonics cited above critically rely on this property. However,
showing that the phase coherence is well preserved over the timescale of single pulses or
over a pair of successive pulses is not a guarantee that an accurate phase lock is established
among all the pulses in the XUV train, so the existence of an XUV frequency comb has not
been fully demonstrated yet.
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FIGURE 6.30 (SEE COLOR INSERT)
First experimental scheme for the cavity-enhanced generation of high-order harmonics from
a phase-stabilized oscillator [627]. See the text for details.

Both the first two experiments [626, 627] showing the possibility of producing cavity-
enhanced high-order harmonics also successfully tested the preservation of the comb coher-
ence. This was done only up to the third harmonic by performing a beat experiment between
the radiation produced by the gaseous medium in the cavity and that generated in a more
conventional low-order harmonic generation in nonlinear crystals. The presence of clear and
narrow beat lines in the temporally overlapped heterodyne signals demonstrated that the
full temporal coherence of the original near-IR comb had been faithfully transferred to the
third harmonic in the HHG process. The third harmonic is however generated in a fully
perturbative regime and this demonstration thus cannot be directly translated to higher
orders, where highly non-pertubative processes take place.

A successive experiment in Garching [628] showed that it is possible to produce much
higher power at XUV wavelengths by using a lower repetition rate mode-locked laser. In
this case, the use of a frequency comb at 10.8 MHz repetition rate and a long (13.9 m)
enhancement cavity allowed the production of up to the 19th harmonic and achieved a
power in the µW range for harmonics in the plateau. Such power levels are now of a sufficient
order of magnitude as to be able to excite two-photon XUV transitions like the 1S-2S one
in hydrogen-like He+ at 60 nm. The group of J. Ye at JILA [504] also investigated the
production of an XUV frequency comb by the up-conversion of the pulse train from a
high-power mode-locked femtosecond fiber laser at 1070 nm. In this case below-threshold
harmonics (that is, with photon energies below the ionization potential of the atom) from the
7th to the 13th order were generated and analyzed, and a direct measurement of the pulse-
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to-pulse coherence for the 7th harmonic at 153 nm was performed. Very recently, the same
group reported the generation of extreme-ultraviolet frequency combs, reaching wavelengths
of 40 nanometers [506]. These combs were now powerful enough to observe single-photon
spectroscopy signals for both an argon transition at 82 nm and a neon transition at 63 nm,
thus confirming the combs coherence in the extreme ultraviolet. Moreover, the absolute
frequency of the argon transition was determined by direct frequency comb spectroscopy.
The resolved ten-megahertz linewidth of the transition, which is limited by the temperature
of the argon atoms, is unprecedented in this spectral region and places a stringent upper
limit on the linewidth of individual comb teeth.

6.5.1.4 Attosecond pulses

The possibility of controlling the offset frequency ν0 and thus stabilizing the carrier en-
velope phase φCEO of a mode-locked laser [522, 514] has opened new opportunities for
high-intensity laser physics. Setting the offset frequency to zero, which can be readily ac-
complished with the technique of self-referencing, it is possible to obtain a train of pulses
that have a fixed phase of the carrier with respect to the envelope. This means that all the
pulses in the train have exactly the same electric field, even though the value that the carrier
envelope phase actually assumes upon stopping its pulse-to-pulse slippage is unknown.

The precise value of φCEO does not make a big difference for long pulses that com-
prehend many optical field cycles under the pulse envelope, but may give substantially
different results in experiments performed with few-cycle pulses [629], if they are used to
drive processes which depend on the electric field in high order [630]. High-order harmonic
generation is one of such cases. Let us examine what happens when trying to generate cut-
off harmonics with two ultrashort pump pulses having the extreme configurations of φCEO
that correspond to so-called "cosine" or "sine" pulses (see Figure 6.31). In the first case a
peak of the field oscillation corresponds to the envelope maximum, while in the second case
a zero of the field coincides with the peak of the envelope. It is easy to observe that the
maximum value of the electric field is different in the two cases. Since generation of cutoff
harmonics only takes place close to the peak of the pulse envelope, it may happen that,
in the "cosine" configuration of the carrier envelope phase, only the central field peak may
be sufficiently intense to start the process. Therefore, a single burst of high-energy, cutoff
harmonic photons will be produced for each pump pulse. Due to the extreme temporal lo-
calization of the event, much shorter than the pump optical cycle, the duration of the XUV
burst is in the attosecond (10−18 s) regime. Stabilizing φCEO to zero to produce trains of
few-cycle "cosine" pump pulses are therefore the conditions for generating single, isolated,
attosecond pulses.

In the opposite "sine" case, on the other hand, the two field maxima close to the en-
velope peak may not be sufficiently intense to generate bursts of cutoff harmonic photons
altogether. Otherwise, they might produce two lower-intensity, attosecond bursts in the
same pump pulse, separated by a delay corresponding to a roughly half optical cycle.

A clear signature of these effects is obtained by measuring the harmonic spectra produced
by these different pulses [631, 632, 633]. While in the "cosine" pulse case single attosecond
pulses produce a continuum spectrum in the cutoff region, in the "sine" case attosecond
XUV pulses are produced in time-delayed pairs and thus produce a characteristic sinusoidal
spectral interference with a spectral period equal to the inverse of their half-cycle temporal
delay.

Detecting and stabilizing the carrier envelope phase not only allowed the production of
attosecond pulses for the first time, but it also allowed to completely recover the electric-field
transients of ultrashort pulses. Such a direct measurement uses the crosscorrelation between
single attosecond pulses generated the way described above with the driving pulses. The
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FIGURE 6.31
Generation of single attosecond pulses from a few-cycle IR pump pulse. The absolute phase
of the driving pulses is crucial in the outcome of this highly nonlinear process. A "cosine"
pulse can produce a single attosecond pulse in the cutoff region of the spectrum. A "sine"
pulse can produce a pair of lower-intensity attosecond pulses with a delay corresponding to
a half optical cycle. This is made evident by the sinusoidal structure of the spectrum in the
cutoff region.

attosecond pulses are used to ionize atoms and the liberated electrons are accelerated by
the instantaneous field of the ultrashort infrared pulses. By changing the delay between
the pulses, the electric-field transient can be sampled with a temporal resolution on the
attosecond scale [634]. Figure 6.32 shows the result of such a measurement.

6.5.2 Mid- and far-infrared OFCSs

Most ro-vibrational transitions of simple molecules fall in the IR region of the spectrum.
Accurate frequency measurements of these transitions not only allow a better knowledge of
the energy level structure of these molecules, but also provide a “natural” grid of frequency
references for a variety of applications including environmental monitoring, astrophysics
spectroscopy, and telecommunications, among others. Direct comb synthesis in the IR is
therefore extremely useful for absolute frequency metrology of molecular spectra. In this
frame, a few schemes have been devised for the extension of OFCSs to the IR region.

Broadening the spectrum of fs mode-locked lasers through highly nonlinear optical fibers
has already succeeded in extending combs up to a wavelength of 2.3 µm [635]. However, so
far, the approach which has produced the most relevant results in molecular spectroscopy
relies on OFCS-assisted DFG IR laser sources.

The metrological performance of optical frequency comb synthesizers (OFCSs) has been
transferred to the mid-IR, around 4.2 µm, by phase-locking the pump sources of a difference
frequency generation (DFG) scheme to the teeth of a near-IR comb [636]. With this appara-
tus the frequency of some CO2 transitions in the antisymmetric stretching vibrational mode
around 4.3 µm was measured [422]. Sub-Doppler spectroscopy on these transitions was also
performed by coupling the low DFG radiation power into a high-finesse Fabry-Perot cavity
in order to enhance the laser intensity to the CO2 saturation values [637, 638]. An im-
portant feature of comb-referenced DFG sources is the possibility of realizing very narrow
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FIGURE 6.32 (SEE COLOR INSERT)
Snapshot of the electric field of a few-cycle IR pulse as measured by a streaking technique
using single attosecond probe pulses [634].

linewidth sources which are useful both in high-precision and high-sensitivity applications.
Indeed, as the DFG pump and signal lasers fall in the OFCS coverage range, phase-locking
their frequencies to the nearest teeth of the comb gives a very narrow idler linewidth only
limited by the excess phase noise between the two comb teeth due to the propagation of
the repetition rate phase-noise to the optical frequencies.

Such a method, however, precludes the possibility of direct comb referencing for laser
sources emitting directly in the mid-IR and not based on frequency mixing, such as quantum
cascade lasers. More recently, a 270-nm span frequency comb at 3.4 µm has been realized
by difference frequency generation between two spectral peaks emitted by a single uniquely
designed Ti:Sa fs laser [639]. A composite frequency comb ranging from the violet to the
mid-IR (0.4-2.4 µm) has also been obtained from a phase-controlled fs Ti:Sa laser and a
synchronously pumped optical parametric oscillator [640].

A more flexible and direct approach for the creation of mid-IR combs has been demon-
strated in Naples [641]. It is essentially based on a DFG process between a continuous-wave
(cw) laser source and a near-IR fiber-based OFS. The pump beam is generated by an
external-cavity diode laser (ECDL) emitting in the range 1030-1070 nm and is amplified by
an Yb-doped fiber amplifier which delivers up to 0.7 W, preserving the linewidth of the in-
jecting source (less than 1 MHz). The signal beam originates from a near-IR OFCS covering
the 1-2 µm octave; a fraction of its output covering the 1500-1625 nm interval is fed to an
external Er-doped fiber amplifier. The amplified comb beam has an average power of 0.7 W
and spans from 1540 to 1580 nm (with a 100 MHz spacing), corresponding to nearly 50000
teeth in the frequency domain. Concerning the intensity and frequency noise spectral den-
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sity, simultaneous amplification of many optical carriers does not introduce any appreciable
additional noise in the process, owing to the slow gain dynamics which makes the amplifier
practically immune from crosstalk effects. The two pumping laser beams are finally com-
bined onto a dichroic mirror and focused into a periodically poled lithium-niobate (PPLN)
crystal for DFG. Then, the mid-IR comb centered near 3.3 µm, with a bandwidth of 180
nm (5 THz) and an overall power of about 5 µW, is detected with a liquid-nitrogen-cooled
HgCdTe detector. By tuning the 1-µm laser wavelength, and the quasi-phase-matching con-
ditions of the crystal, the center frequency of the DFG comb can be tuned from 2.9 to 3.5
µm.

Such a scheme can be similarly applied to different IR regions, provided that nonlin-
ear crystals with suitable transparency and conversion efficiency are used. Actually, use of
advanced fiber-based devices, which benefit from the continuous progress in telecom tech-
nology, may give additional advantages for the realization of more and more effective setups.

The first direct frequency comb referencing of a 3-µm DFG source [642] was also achieved
in Naples with a scheme similar to the previous one (Figure 6.33). However, in this exper-
iment, the Er amplifier was also simultaneously seeded by a narrow-linewidth diode laser
emitting in the 1520-1570 nm interval. As a consequence, two DFG processes take place
simultaneously in the PPLN crystal, and both a cw source and a 3-µm comb arise from
the interaction. The beat-note signal recorded at 3-µm by the fast MCT detector is used
to phase-lock the cw coherent radiation to its closest tooth in the mid-IR and then use it
for gas-cell spectroscopy. In this way, absolute frequency metrology of molecular vibration
spectra was demonstrated by tuning the comb mode spacing across the Doppler-broadened
absorption profile of a CH4 ro-vibrational transition.

A similar scheme was also used to realize the first absolute frequency measurement
performed using a quantum cascade laser (QCL) referenced to an OFCS [643]. For this
purpose, a 4.43 µm QCL was used for producing near-IR radiation at 858 nm by means of
sum-frequency generation (SFG) with a Nd:YAG source in a PPLN crystal. The absolute
frequency of the QCL source was then measured by detecting the beat note between the sum
frequency and a diode laser at the same wavelength, while both the Nd:YAG and the diode
laser were referenced to the OFCS. Doppler-broadened line profiles of 13CO2 molecular
transitions were recorded with such an absolute frequency reference. Even better accuracies
in the line center determination were achieved by means of sub-Doppler saturation spec-
troscopy performed with the same OFCS-assisted QCL spectrometer [425]. In this case, the
QCL was frequency locked to the saturation dip while the beat note frequency between the
diode laser and the SFG radiation was counted, yielding an accuracy 20 times better than
the Doppler-limited measurements.

The mentioned spectroscopic works also address the issue of developing new effective
molecular IR clocks. Such clocks have the advantage that they can be implemented with
simple sub-Doppler spectroscopic techniques in gas cells or molecular beams, offering the
opportunity to construct less expensive, transportable and stable oscillators. On the other
hand, the mid-IR clock quality factor is intrinsically lower than in the optical-UV region,
but, nonetheless, direct comb referencing represents the simplest and the most direct way
to work in the crucial molecular “fingerprint” region.

Mid-IR clock oscillators can be developed by using the ro-vibrational transitions of
spherical top molecules as CH4 [639, 644], OsO4 [645] and SF6 [646]. As for the UV/visible
clock transitions, OFCSs have been used to measure either the absolute transition frequency
or to characterize the stability performance of these molecular-based clocks. The CO2 laser
locked to the OsO4 ro-vibrational transition at 28 THz (10.5 µm) has been used for a long
time in frequency chain synthesis as an intermediate oscillator to bridge the visible and
microwave regions. Thanks to a femtosecond Ti:Sa OFCS, the CO2/OsO4 frequency has
been measured with an accuracy of 10−12 and with a stability of 3× 10−14 in 1 s [645]. The
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same group has proposed to use a CO2 laser that is frequency locked to a ro-vibrational
transition of SF6 as another possible reference clock at 10 µm [646]. In both cases, the same
experimental approach was used to link the IR frequencies to the Cs primary standard: a
SFG nonlinear up-conversion process involving the CO2 laser and visible radiation gener-
ates radiation still in the visible, whose frequency can be measured against the OFCS. In
the CO2/OsO4 experiment, the SFG signal laser was an 852 nm OFCS-phase-locked diode
laser, and the generated 788 nm SFG pump was used to phase-lock another diode laser at
this wavelength. In this way, the beat-note SNR between the OFCS and the diode laser at
788 nm was increased. A more elegant approach was adopted in the CO2/SF6 experiment.
Here, the SFG signal laser was the low-frequency part of the comb, giving rise to a pump
comb coinciding with the high-frequency part of the originary OFCS. The SNR value of the
beat note between the generated and the originary comb around 788 nm is increased, due to
the collective contribution of the many comb pairs involved in the frequency counting. The
main advantages of this scheme are that only one phase-lock loop is needed (to control the
OFCS repetition rate frequency against the microwave Cs primary standard) and that the
beat note is CEO free. Such a technique was first introduced to develop a CEO-free clock-
work by using a CH4-stabilized He-Ne laser at 3.39 µm as an OFCS oscillator [639, 644].
A 10−13 frequency stability at 1 s was measured for this He-Ne/CH4 OFCS with an abso-
lute frequency reproducibility of 10−12 at the same time scale. Finally, it is worth giving a
short overview on progress in the development of frequency combs in the far infrared (FIR)
spectral window (lying between the mid-IR and the microwave regions), roughly covering
the 10 THz-0.3 THz range. Also for FIR, as in the other spectral windows discussed above,
the importance of combs is related both to the very precise frequency referencing of other
FIR sources and to their direct use as broadband sources. As already discussed in Chapter
4, laboratory coherent sources in this region generally have low power, ranging from the
nanowatt to the few-mW range; the latter figure applies to the most recent cw quantum cas-
cade lasers, whereas the lower powers typically afflict generation schemes based on frequency
synthesis that, for this reason, are often limited in terms of spectral coverage at higher FIR
frequencies. In this framework, comb generation in the microwave range (i.e., below 300
GHz) proved successful [647]. On the other hand, referencing of cw QCLs to fiber-based
NIR combs was explored either by using current modulation in photo-conductive antennas
[648] or by using electro-optic crystals [649]. However, these approaches suffered from low
efficiency and required most of the QCL power for referencing to the comb, thus hindering
its use for experiments. Moreover, these two approaches did not allow to generate a free-
propagating THz comb, similarly to what was demonstrated in other spectral regions. The
latter drawback has been overcome in a very recent experiment, where an air-propagating
comb, covering the 0.1-6 THz spectral range, was created by difference frequency generation
among teeth of a near-IR comb in a surface-waveguide lithium niobate crystal [296]. In this
experiment, phase-locking of a QCL laser, emitting around 2.5 THz, to a comb tooth was
also demonstrated, paving the way to a number of unpredictable metrological applications
in the FIR range.
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FIGURE 6.33
Upper Frame: Concept scheme for direct phase-locking a cw laser to a 3-µm comb. Two
simultaneous DFG processes in a PPLN crystal are exploited to produce an OFS and a co-
herent source at 3 µm. Then, the detected beat-note signal is used to phase-lock the probe
radiation directly to the MIR comb, while a second beam is allowed to record molecular
spectra with an absolute frequency scale. Lower Frame: detailed experimental setup. First,
the DFG pump source at 1-µm is phase-locked to the FC1500 comb. Then, the signal beams
are obtained by simultaneous amplification of a cw 1.5-µm laser and the 1.5-µm portion
of the NIR OFS. The MIR beat note is used to phase lock the 1.5-µm laser, and therefore
the 3-µm probe radiation, to the MIR OFS, while reflection by a CaF2 window is used
for gas-cell spectroscopy. The following legend holds: ECDL=external cavity diode laser,
G=diffraction grating, M=mirror, HWP=half wave plate, PBS=polarizing beam splitter,
P=linear polarizer, D=iris diaphragm, L=lens, PD=InGaAs photo-detector, DM=dichroic
mirror, Ge-F=germanium filter, FC=frequency counter, BS=beam splitter, C=fiber colli-
mator, Y=fiber splitter.
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Frequency standards

Even a broken clock is right twice a day.

Stephen Hunt, The Court of the Air

I love that you get cold when it’s 71

degrees out.

from the movie “When Harry Met Sally...”

7.1 General features of frequency standards and clocks

Today, clocks and oscillators are vital devices in countless scientific and technological ap-
plications, encompassing sophisticated tests of fundamental physical theories on one side
as well as synchronization of communication systems on the other one. There are by now
many diverse realizations, ranging from common wristwatch quartz oscillators to ultra-
refined primary frequency standards. In spite of this wide assortment, both in terms of
cost and performance, all oscillators can be characterized within the same formalism. This
is also true for time and frequency dissemination. Indeed, transmitting time over dial-up
telephone lines with an uncertainty of about 1 ms hinges on the same principles that are
the foundation of the 1-ns-uncertainty, satellite-based time broadcasting. Let us start by
summarizing a few considerations scattered in previous chapters and putting some order in
the nomenclature [650].

A frequency standard is a stable oscillator used for frequency calibration or reference.
It generates a fundamental frequency with a high degree of accuracy and precision (some-
times, higher-order harmonics are also used as references). The oscillator, in turn, consists
of two elements: a generator producing periodic signals and a discriminator controlling
the output frequency. If the discriminator is actively oscillating and the output frequency of
the device is fixed by a resonance in its response, then we speak of a self-sustained oscillator
and, consequently, of Active Frequency Standard. Shining examples are represented by
pendulum and quartz-crystal oscillators, as well as lasers and masers. Conversely, if the
frequency-selective feature of the discriminator is probed by a tunable generator whose fre-
quency is then locked to the peak of the discriminator response function (via a feedback
loop), then we speak of Passive Frequency Standard. Paradigmatic examples are offered
by cesium, rubidium, and optical atomic standards.

465
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Then, a standard clock comprises: 1) a frequency standard; 2) a device to count off
the cycles of the oscillation emitted by the frequency standard; 3) a display to output the
result.

While some common properties of standards and clocks, certain relevant frequency-
noise processes affecting their performance, as well as the statistics tools used for their
characterization, were extensively discussed from a general point of view in Chapter 2,
here we present the most relevant specific systems, which can be divided into four main
categories:

• Microwave dielectric oscillators. This class basically comprises quartz and cryogenic sap-
phire oscillators.

• A second category of microwave oscillators is represented by photonic microwave oscil-
lators based on whispering gallery mode (WGM) resonators and ultrastable microwaves
generated via optical frequency division.

• Microwave atomic standards and clocks. These include, in particular, active hydrogen
masers, cesium and rubidium fountains as well as microwave ion standards.

• Optical atomic clocks. These include trapped-ion clocks and neutral atom optical lattice
clocks. Actually, this topic will be dealt with in the next chapter. Indeed, representing the
cutting-edge technology in the field of absolute frequency metrology, optical atomic clocks
are not yet well established as frequency standards and research is underway at a number
of laboratories worldwide to investigate the stability and accuracy of different systems. In
addition, hinging on a unique mix of the finest ingredients, introduced one by one in each
chapter, optical atomic clocks capture the essence of the whole book, in a perfect reunion
with the first chapter.

For a better understanding of these two latter items, a preliminary discussion on cool-
ing/trapping of atoms and ions will be also provided in this chapter. Then, we will conclude
by addressing the issue of time and frequency dissemination, with special emphasis on the
emerging transfer techniques based on optical means.

7.2 Quartz oscillators

Piezoelectricity is the main feature of a crystal which is used as an oscillator. Essentially, it
is the appearance of an electric potential difference (EPD) across certain faces of a crystal
when a mechanical strain (bending, shear, torsion, tension, or compression) is exerted on
it. In a crystal with a non-symmetrical unit cell (UC), by virtue of the applied strain, the
ions in each UC are displaced, thereby inducing the UC electric polarization. Due to the
regularity of the crystalline structure, these effects accumulate, eventually determining the
appearance of an EDP between definite facets of the crystal. Conversely, when an external
voltage is applied across the crystal, the latter undergoes mechanical movement (Figure
7.1). In this case, the ions in each UC are dislocated by electrostatic forces, leading to
a mechanical deformation of the entire crystal. Among the various crystalline substances
which would lend themselves to be used in a frequency reference, by virtue of its many
favorable characteristics, quartz has become the most popular [95, 65, 59]. It has a formula
unit composition of SiO2. Alpha-quartz (characterized by a trigonal crystal system), which
is thermodynamically stable up to 573 ◦C, is the most common polymorph of the silica
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FIGURE 7.1
Illustration of piezoelectricity principles. (Adapted from [95].)

minerals. Indeed it offers two unique advantages: first, it can be grown with high purity and
then easily machined; second, it is characterized by high stiffness and elasticity, which allows
to fabricate plates with high-frequency and high-Q mechanical oscillations. Most physical
properties of a quartz are anisotropic, as one can sense by the complicated shape of the
macroscopic quartz crystal (Figure 7.2). As a consequence, alterations during the growth
process which affect anisotropy will induce crystal imperfections. Early diagnosis, both in
terms of crystal orientation and possible flaws, is accomplished by the use of polarized
light, X-rays, and chemical etching. The major axis of quartz growth is not anisotropic
to light and is, as such, called the optic axis. In literature, it is labelled as the Z axis
in an orthogonal X, Y, Z coordinate system. The choice of specific axes and angles at
which the crystal is cut to realize a plate of quartz material is of the utmost importance in
determining the physical and electrical parameters of the oscillator. The most common cuts,
conventionally referred to as AT, BT, etc., are shown in Figure 7.3. These are characterized
by different trade-offs between electrical-mechanical capability and temperature coefficient.
For example, AT-cut crystals exhibit extremely small temperature coefficients, whereas SC-
cut ones offer excellent stress compensation. As already mentioned, when the obtained plate
is subjected to a voltage alternating at appropriate frequency, the crystal will start vibrating
and produce a steady signal, the mode of vibration depending on the specific cut. Just as
an example, an extensional (thickness shear) mode is excited for an X (AT) cut. Different
vibration modes are illustrated in Figure 7.4. Both harmonic and non-harmonic signals and
overtones may be realized in such a vibration set-up. While unwanted non-harmonic signals
are suppressed by preparing highly polished and properly shaped quartz pieces, harmonic
overtones are highly desirable, as they permit the realization of higher-frequency references
using the same cut. For example, a 10-MHz quartz oscillator can be attained as the 5th
overtone of an AT-cut element. The final value of the center oscillation frequency depends
crucially on the precision with which the plate thickness is controlled. For this reason, fine
adjustment of the center frequency is often undertaken a posteriori by covering the quartz
plate with gold layers (to give an idea, a monolayer of gold typically changes the frequency
by 2 parts in 107).

Now, application of the quartz oscillator as a reference requires including it as a tuned
circuit in a suitable feedback arrangement, such that the mechanical vibrations stabilize
the oscillator’s frequency. To better understand this, let us start by considering the electric
equivalent circuit of a quartz crystal unit (Figure 7.5) [65]. The L− C series describes the
swapping between the mechanical energy stored in the crystal elastic deformation and the
electric energy stored in the capacitor, while the resistance R account for dissipation of
the energy from the oscillation to the thermal energy (both in the crystal itself and in the
mounts). Finally, C0 represents the static capacitance of the electrodes and the leads. The
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FIGURE 7.2
Axis orientation in a doubly terminated quartz crystal. (Adapted from [59].)

FIGURE 7.3
Orientations of singly and doubly rotated cuts (left) and angles of a few significant cuts
(right). (Adapted from [59].)

values of these components are determined by the crystal parameters (basically the cut, the
size, and the shape) and give, in turn, the quartz resonance frequency. Using the Laplace
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FIGURE 7.4
Different vibrational modes in a quartz crystal. (Adapted from [59].)

transform (s = jω), the impedance of the equivalent circuit can be determined as

Z(s) =
s2 + (R/L)s+ ω2

s

sC0

(

s2 + (R/L)s+ ω2
p

) (7.1)

where
ωs =

1√
LC

(7.2)

is the series resonant frequency and

ωp =

√

C + C0

LCC0
≃ ωs

(

1 +
C

2C0

)

(7.3)

is the parallel resonant frequency (C0 ≫ C). In practice, for small R/L values, ωs (ωp)
is a zero (a pole) of Z(s). Generally, the series resonance is a few kilohertz lower than the
parallel one. Just as an example, from typical values of a 4-MHz quartz (L ≃ 100 mH,
C ≃ 0.015 pF, C0 ≃ 5 pF, R ≃ 100 Ω) we have νs = (1/2π)ωs ≃ 4.109 MHz, νp =
(1/2π)ωp ≃ 4.115 MHz and (1/2π)(R/L) ≃ 159 Hz, such that ωs, ωp ≫ (R/L) is satisfied.
Crystals below 30 MHz are generally operated between series and parallel resonance, which
means that the crystal appears as an inductive reactance in operation. Crystals above 30
MHz (up to > 200 MHz) are generally operated at series resonance where the impedance
appears at its minimum and equal to the series resistance (see Figure 7.6). As explained
in Chapter 2, the quartz resonator must be inserted into an amplifier circuit to form an
oscillator. In this configuration, a fraction of energy is fed back to the crystal, thus inducing

LC R

C0

CL

FIGURE 7.5
Electrical equivalent circuit for a quartz crystal unit. (Adapted from [65].)
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FIGURE 7.6
Reactance (i.e., the imaginary part of the impedance) plot for a quartz crystal, typical of
any overtone.

vibrations which tend to stabilize the generated frequency at the resonance value [59]. A
simplified amplifier feedback circuit is shown in Figure 7.7. The series capacitance, tunable
by an applied voltage, is used to slightly change the phase of the feedback so as to finely tune
the oscillator frequency. Such a Voltage Controlled Crystal Oscillator (VCXO) represents a
good compromise between the good intrinsic stability of a crystal oscillator (a few parts per
million) and the tunability. At this point, it should be well known that, at the frequency of
oscillation, the closed-loop phase shift is φ = 2nπ. After initial energizing, the only signal
present in the circuit is noise. Then, only the noise component, whose frequency fulfils
the above phase condition, propagates around the loop with increasing amplitude until the
amplifier gain is reduced by non-linearities of the active elements (self-limiting). At steady
state, the closed-loop gain is equal to 1. If a phase perturbation ∆φ occurs, the frequency
must shift by ∆ν = −ν0(2QL)−1∆φ to maintain the 2nπ phase condition, where QL is the
loaded Q of the crystal in the network.

The quartz plate mounting is also paramount to attain elevated Q-factors, as well as to
minimize the cross-coupling between different vibrational modes and external stress. In this
respect, a critical point is represented by the stress induced by deposition of the metallic
electrodes on the quartz plate, which constitutes a major source of aging. This is smartly
averted by the so-called BVA (Boitier a Vieillissement Ameliore, Enclosure with Improved
Aging) structure, where the electrodes are on ancillary plates with a few-micron gap to
the vibrating quartz. This also enables the attainment of a higher Q-value, which is not
deteriorated through damping introduced by the electrode material.

Moreover, due to dependence of the crystal unit’s frequency on temperature, high im-
munity to temperature fluctuations must be achieved in most demanding applications. This
can be better accomplished by use of an oven controlled crystal oscillator (OCXO), in which
the crystal and other temperature sensitive components are in a stable oven which is ad-
justed to the temperature (usually & 80◦C) where the crystal’s frequency vs. temperature
has zero slope. Temperature compensated crystal oscillators (TCXOs) and microcomputer
compensated crystal oscillators (MCXOs) are also often employed, albeit their performances
are quite lower.

Inspired by [651], in the following we analyze the factors that most significantly affect
both the frequency accuracy and stability of quartz oscillators.
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FIGURE 7.7
Schematic of a quartz oscillator. Among the various types, the Pierce, the Colpitts, and the
Clapp circuits are the most widely used. They only differ by the location of the rf ground
points. In the Butler circuits, the emitter current is the crystal current. The gate oscillator
is a Pierce-type which uses a logic gate plus a resistor instead of the transistor. (Adapted
from [59].)
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FIGURE 7.8
Oven controlled crystal oscillator. (Adapted from [59].)

7.2.1 Factors affecting crystal oscillator frequency accuracy

Temperature

Although crystals with different cut angles exhibit different frequency-temperature char-
acteristics, a quite general feature is the cubic dependence on temperature. Also, the zero
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temperature coefficient point is usually changed by varying the angle between crystal wafer
and crystal axis. Just as an example, in a wide temperature range (between −55 and 105◦

C), the relative frequency change of AT-cut crystals can be kept as low as ±2 · 10−5 with a
proper angle processing.

Aging

In literature, the change in the crystal resonator frequency caused by the operational time
is referred to as aging. Most often this fractional variation of the vibrational frequency
(∆f/f) is monotonic, albeit in some cases the aging rate can reverse sign over time. Aging
essentially results from: thermal gradient effects (in this respect, the behavior of SC-cut
OCXOs is much better than that of AT-cut OCXOs); pressure release effects; the increase
or decrease of the mass of the crystal polar plates (respectively due to gas absorption or
decomposition); changes in the crystal structure.

Drive level

At high-precision levels, the oscillator frequency also depends on the alternating current, i,
which flows across the crystal, according to the following equation [651]

∆f/f ≃ ki2 (7.4)

where k is a constant related to the specific crystal. When such drive electric current
is too large, the aging performance and the long-term frequency stability will be worse.
Conversely, with a too small drive level, the crystal electric current may be dominated by
the noise, which adversely affects the short-term frequency stability. Thus, a compromise
must be found. As an example, the driving level is less than 70 µA in 5-MHz high-precision
crystal oscillators.

Retrace and thermal hysteresis

The so-called retrace error is nothing but the frequency variation that occurs when power
is removed from an oscillator (for several hours) and then re-applied on it. In this case,
indeed, the oscillator frequency tends to stabilize at a slightly different value. Particularly,
the retrace error plays an important role in OCXOs. Moreover, due to lattice defects and
stress relief in the mounting structure, the frequency-temperature characteristic of a quartz
oscillator does not retrace itself exactly upon temperature cycling (thermal hysteresis).

Frequency pushing and pulling

While frequency pushing (expressed in MHz/V) just represents the sensitivity of the oscilla-
tor output frequency to the supply voltage, frequency pulling is a measure of the frequency
change caused by a non-ideal load. By influencing the oscillator circuitry, both of them
modify the phase or amplitude of the signal reflected into the oscillator loop, which, in
turn, changes the oscillator frequency.

Tuning port reference voltage drift

Since both tuning range and sensitivity strongly depend on the tuning port reference voltage,
any drift in the latter will also perturb the oscillator frequency accuracy.
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7.2.2 Factors affecting frequency stability

Oscillator tuning port noise

In light of the above remark, by disturbing the tuning sensitivity, tuning-port noise can also
affect the oscillator stability.

Reference source noise

Of course, if the quartz oscillator is linked to a reference one, the source noise is somehow
transferred to the output frequency.

Power supply noise

This affects both frequency and phase, determining cycle-to-cycle jitter.

Vibration-induced noise and other external sources

Needless to say, due to the crystal sensitivity to acceleration, random and/or periodic
mechanical vibrations can introduce a considerable amount of phase noise in a high-
performance quartz. Other detrimental factors include spurious electric and magnetic fields,
ambient pressure and humidity, gas permeation, etc.

7.2.3 State-of-the-art ultrastable quartz oscillators

Today, the most advanced quartz oscillators (see, for instance, OCXO8607 model from Oscil-
loquartz S.A.) rely on the technique of housing a state-of-the-art BVA, SC-cut, 3rd-overtone
crystal resonator and its associated oscillator components in double oven technology (oper-
ating temperature range −30 to +60 ◦ C). Standard output (7-dBm-level sine waveform)
frequencies are 5 and 10 MHz (harmonics < −40 dBc and spurious < −70 dBc) with a phase
noise (BW = 1 Hz) of −150 dBc at 1 kHz and the following frequency stability (∆f/f)
features (http://www.oscilloquartz.com/):

• Long-term stability (aging after 30 days of continuous operation) of 4 · 10−9/year;

• Stability over temperature range ≤ 2 · 10−10 peak to peak;

• Stability versus power supply of 5 · 10−11 (Vcc ± 10%);

• Stability versus load changes of 2 · 10−11 (50 Ω± 10%);

• Short-term stability (Allan deviation) σy(τ) = 1 · 10−13 (1-30 s);

• g sensitivity < 5 · 10−10/g

Characterization of a few other ultrastable quartz oscillators can be found in [652].

7.3 Cryogenic sapphire oscillators

As we will see later on in this chapter, fractional frequency stabilities of passive atomic
standards are now close to the 10−14/

√
τ level (with τ being the measurement time), only

restricted by the number of interrogated atoms. This exacts an interrogation oscillator with
a short-term stability better than 10−14, which, as just discussed, cannot be afforded by
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current quartz technology. In this regard, ultrastable cryogenic microwave oscillators have
demonstrated a short term frequency stability in the range 10−14 to a 10−16 [653]. Such
oscillators are based on resonators exhibiting very high electricalQ-factors (in excess of 108),
which can only be reached in super-conducting cavities or sapphire resonators operating at
low temperatures in liquid-helium-cooled systems. Recently, great efforts have been made
to exempt the need for liquid helium and realize more compact, portable liquid-nitrogen-
cooled systems. For the sake of truth, we have to mention here that room-temperature
sapphire oscillators for research applications exhibit comparable phase-noise performance
[654]. However, this very mature technology can be now considered at its end and will hence
be omitted. By contrast, the younger technology of cryogenic sapphire oscillators (CSOs) is
still open to strong improvement. For this reason, in the following we focus solely on CSOs
[653].

These have been built by several groups around the world since the late 1980s. Monocrys-
talline sapphire (Al2O3) is characterized by uniaxial anisotropic complex permittivity. At
microwave frequencies the permittivity parallel (perpendicular) to the crystal’s c-axis is
11.5 (9.4). Typically, the cavity design consists of a sapphire cylinder (or disk), with the
crystal c-axis aligned to the cylinder axis within 1◦, surrounded co-axially by a metallic
shield (made from copper, silver, or superconducting material) to hinder rf radiation losses.

When this metallic shield is realized as a coating on the sapphire surface, then the
resonator can be regarded as a vacuum cavity filled with dielectric. In this case, the the-
oretical description is practically that for a vacuum cavity (see Section 3.1), leading to
transverse-magnetic (TMm,n,q) or transverse-electric (TEm,n,q) modes. In such a configura-
tion, resonators operate on low order modes (i.e., low azimuthal numbers) and the Q-factor
is determined by the surface resistance (even for superconductive coatings).

In a second arrangement, the sapphire element is suspended in a metallic can at some
distance from it, as illustrated in Figure 7.9 [655, 656]. Here, rf energy is coupled into
the resonator via magnetic loop probes, thus creating an electro-magnetic field distribu-
tion mainly confined within the sapphire. An adequate theoretical treatment reveals that
in this configuration the resonator modes are in general an hybrid between TM and TE
[657]. In literature, a mode with a dominant axial (z-direction) electric-field dependence is
denoted as an Em,n,p+δ-mode (quasi-TMm,n,p+δ or WGHm,n,p+δ), whereas one with a dom-
inant axial magnetic-field dependence is indicated as a Hm,n,p+δ-mode (quasi-TEm,n,p+δ or
WGEm,n,p+δ). Here m, n, and p are the number of azimuthal, radial, and axial variations
and δ is a number slightly less than 1. Physically, this corresponds to the whispering gallery
mode (WGM) configuration, where the electromagnetic energy resides in the sapphire com-
ponent, but close to the dielectric/vacuum interface through a physical mechanism not
different from total internal reflection in optical systems. The higher the azimuthal num-
ber, the more the modes become WG-like. Cryogenic WGM resonators typically use modes
on the order of ten. The unloaded electrical quality factor for such a shielded dielectric
resonator can be expressed as [653]

Q =
1

RsΓ−1 + pε tan δ + pµχ′′ (7.5)

where pε and pµ denote the mode electric and magnetic filling factors (that are a measure
of the respective field energies stored in the dielectric to the total stored energy), RsΓ−1 is
the metallic-shield loss, tan δ ≡ ε′′/ε′ is the tangent loss of the dielectric material (ε′ and ε′′

being the real and imaginary part of the relative dielectric constant, respectively), and χ′′

is the imaginary part of the ac susceptibility originating from paramagnetic impurities. For
a carefully designed resonator, the unloaded-cavity Q-factor is determined by the tangent
loss, such that it is on the order of 100000 at ambient temperature, higher than 10 millions
at 77 K, and up to 109 at the liquid-helium temperature.
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FIGURE 7.9
Basic sapphire-loaded cavity design. The sapphire cylinder (typical size: diameter 3-5 cm,
height 1-3 cm) is suspended in the metal cavity. Radio frequency energy is coupled into
and out of the resonator via magnetic loop probes. Top and bottom illustrations indicate,
respectively, the total internal reflection and field pattern for the TE5,5,δ mode. (Courtesy
of [655].)

A major difficulty encountered with sapphire WG-mode resonators is represented by
the high sensitivity to thermal fluctuations, which originates from the heavy temperature
dependence of the sapphire permittivity. To overcome this drawback, a few temperature sta-
bilization and compensation schemes have been then worked out. In essence, the resonator
structure has to incorporate some perturbation mechanism to compensate for the sapphire
permittivity thermal sensitivity. In this way, the modified resonator will exhibit a turnover
temperature, T0, where the thermal sensitivity as a whole vanishes at the first order. How-
ever, since the perturbation inevitably degrades the resonator Q-factor, the turnover tem-
perature is in practice restricted to T0 ≤ 80 K. Different techniques including paramagnetic,
dielectric, or mechanical compensation have been implemented so far [658, 659].

• Thermo-mechanical compensation - The sapphire resonator is made of two disks slightly
spaced by a copper (or silver) piece. Since the dilatation coefficient of the copper is higher
than that of the sapphire, any increase in the resonator temperature causes a correspond-
ing extension in the relative height of the gap. In this way, the mean value of the relative
permittivity seen by the electric field (which is essentially axial for a WGH mode) dimin-
ishes, which represents the opposite behavior of the natural sapphire relative permittivity
variation.

• Dielectric compensation - Since sapphire has a positive temperature coefficient of per-
mittivity (TCP), thermal compensation can be attained by combination with a dielectric
having a negative TCP, like rutile (TiO2). In such a scheme, the resonator consists of two
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thin rutile rings placed on the two flat surfaces of the sapphire puck. Within this approach,
a turnover temperature of 53 K and a Q-factor of the order of 107 can be obtained.

• Paramagnetic compensation - Another method relies on doping the sapphire crystal with
paramagnetic Ti3+ ions. The effect of the resulting temperature-dependent magnetic sus-
ceptibility on the resonator frequency is opposed to those caused by the sapphire permittiv-
ity sensitivity. With a 0.1% by weight Ti3+ ions concentration, the turnover temperature
is in the range of 20-77 K, depending on the WG mode.

Furthermore, WG modes can be perturbed by a number of low-Q spurious modes (these
are, for instance, other WG modes as well as the usual empty-cavity modes perturbed by the
presence of the sapphire) that can degrade the resonator performance. To realize an effective
modal selection, without resorting to a sharp bandpass filter in the loop, the so-called open-
cavity technique has been demonstrated (Figure 7.10) [659]. In this configuration, only the
metal caps are retained, while the cylinder is replaced with a microwave absorber. Such
assembly is then inserted in a vacuum chamber whose internal walls are overlaid with
a microwave absorber. Now, the spurious resonances are no longer confined, thus being
completely removed from the spectrum. By contrast, the high-order WG modes are nearly
unaffected by the absorber. Indeed, the Q-factor measured for them is still higher than
2 · 108. Concerning the achievable flicker floor, for a resonator operating on a high-order
(m = 15) WGH mode at 10.959 GHz, a value of σy(τ) = 7 · 10−15 (Allan deviation) was
observed (as measured against a microwave synthesizer driven by a hydrogen maser), the
cryogenic oscillator instability showing up at τ > 100 s [659]. A typical oscillator loop
is shown in Figure 7.11. Two coaxial cables link the cooled resonator to the sustaining
circuit at room temperature. Due to the large temperature gradients experienced by these
cables, which manifests in a strong fluctuation of their electrical length, a significant phase
drift originates along the oscillator loop. To compensate for this and make the oscillation
frequency equal to the resonator frequency, a Pound servo is implemented. To this aim, the
loop signal is phase modulated by a voltage phase shifter at a frequency νmod higher than the
resonator bandwidth. A circulator (C) is used to direct the signal reflected by the resonator
to a tunnel diode. Operating as a quadratic detector, the latter provides a voltage that is
synchronously demodulated at νmod in a locking amplifier. The reflected signal comprises
the residual carrier at νosc and two sidebands at νosc±νmod. When the oscillating frequency
νosc just equals the resonator one ν0, the residual carrier is sucked by the resonator and
only the two sidebands survive. These latter are then mixed in the diode which gives as
output a voltage, for which the a.c. component is at 2νmod: the demodulated signal is zero.
Conversely, if νosc 6= ν0, the diode voltage is modulated at νmod: the demodulated signal is
proportional to νosc− ν0. The locking amplifier output signal is integrated and sent back to
the VCPS bias stage. In this way, the phase fluctuations originating in the loop are corrected
in real time in the loop bandwidth. Finally, in order to mitigate the detrimental effects due to
microwave power dissipation and radiation pressure inside the resonator, the power injected
into the latter is stabilized by a standard power control comprising a quadratic detector as
the sensor and a voltage controlled attenuator (VCA) in the loop.

Another interesting experimental issue is related to the difficulty of an accurate charac-
terization of the phase noise of a CSO. Indeed, high-resolution phase noise measurements
would require two identical phase-locked CSOs. Unfortunately, due to mechanical toler-
ances, two resonators machined from the same high-purity crystal typically may differ by
100 kHz-1 MHz, while the sapphire resonator bandwidth is only on the order of 10 Hz.
Figure 7.12 shows a setup which overcomes this limitation [660]. It was used to characterize
the phase noise of a first CSO (CSO1) placed on a specially designed cryo-cooler against a
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FIGURE 7.10
Picture of the opened cavity WG resonator. (Courtesy of [659].)

second CSO (CSO2) which was cooled in a large liquid-helium dewar. Both CSOs operated
on a whispering gallery mode at 9.99 GHz, their frequencies differing by 745 kHz (at 6
K). Also, both CSOs used a Pound frequency stabilization and a power servo, as described
above. Then, the two CSO signals were mixed. The resulting 745-kHz beat note was first
amplified and then compared to the signal derived from the frequency division of a 95-MHz
signal coming from a low-noise RF synthesizer. The latter was eventually phase locked on
the beat-note signal. The PLL acted on the varactor of a 10 MHz VCO used as reference
for the RF synthesizer.

We close this section by analyzing the fundamental limitations to the frequency stability
of a sapphire oscillator [653]. An oscillator can be regarded as a resonator whose losses
originate from an amplifier with a noise temperature TN . By virtue of the Townes-Schawlow
formula, the thermal noise energy, kBTN , is responsible for the following fractional frequency

FIGURE 7.11
Typical circuit implemented for a WG-mode CSO. Only the resonator is cooled, whereas
the sustaining circuit is outside the cryostat. The bold line corresponds to the oscillator
loop, while the thin lines refer to the electronic controls. VCPS=voltage controlled phase
shifter, VCA=voltage controlled attenuator. (Courtesy of [659].)
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FIGURE 7.12
Setup for measuring the extremely low phase noise of a CSO. (Adapted from [660].)
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where τ is the measurement integration time and P the power. Another important fluc-
tuation term is related to radiation pressure. Indeed, both its amplitude and fluctuations
increase as P grows. The resulting fluctuating mechanical deformation degrades the res-
onator frequency stability which can be characterized by [653]
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where h is Planck’s constant. Since the above two terms have inverse power dependences,
there will be an optimum power level which minimizes their sum
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where An = kBTN/(hf) is the amplifier noise number. The corresponding minimum
frequency fluctuation is given by
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where (1/f)∂f/∂U is on the order of 10−6 J−1 for sapphire, U = PQ/(2πf) representing
the energy stored in the resonator. So, if the amplifier has ideal quantum-limited perfor-
mance (An = 1), we find the limit (∆f/f)min ≃ 10−20/

√
τ . However, measured stabilities

are orders of magnitude above this quantum limit for several reasons. First, the resonator
is driven by an amplifier with An ≫ 1. Second, due to technical power instabilities, ra-
diation pressure fluctuations are much larger than assumed in Equation 7.7. Some other
technical sources of frequency instability are discussed in [656]. As a result, for integration
times τ between a few seconds and about one hundred seconds, the best sapphire oscilla-
tors constructed so far can reach a flicker floor in the Allan deviation at σy(τ) ≃ 3 · 10−16

[653, 656].
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7.4 Photonic microwave oscillators based on WGM resonators

We have already seen that a laser locked to a narrow resonance of a high-finesse cavity rep-
resents an ordinary source of stable, narrow-linewidth optical signals. In this respect, being
characterized by small size, high transparency windows, and narrow resonances, whispering
gallery mode (WGM) resonators may offer a unique tool for laser stabilization. Precisely
in this frame, the thermodynamic (fundamental) limitations of the frequency stability of
WGM resonators have been evaluated in [661, 662].

Here we discuss, instead, the possibility of direct generation of high-stability microwave
signals using such resonators. Photonic microwave oscillators commonly rely on the gener-
ation and subsequent demodulation of polychromatic light to provide a suitable beat-note
signal. Among the different possible approaches, one effective scheme is based on excitation
of hyperparametric oscillations in WGM resonators [663]. While usual parametric oscilla-
tions hinge on a χ(2) nonlinearity (involving three photons) and impose phase matching
conditions between far separated optical frequencies, hyperparametric oscillations rely on a
χ(3) nonlinearity (involving four photons: two pump, signal, and idler) and require phase
matching conditions among nearly degenerate optical frequencies. Here, the signal and idler
optical sidebands grow from vacuum fluctuations at the expense of the pumping wave. In the
current specific configuration, such a four-photon process, ~ω+~ω → ~(ω+ωM )+~(ω−ωM ),
is triggered by an external pumping source at ω, with ωM being determined by the free
spectral range of the WGM resonator ωM ≃ ΩFSR. This latter frequency, obtained through
demodulation of the oscillator output via a fast photodiode, exactly represents the desired
microwave signal. Its spectral purity is obviously improved by increasing the Q-factor of
the resonator, which also decreases the pumping threshold value for the oscillation (down
to few microwatts).

Next, let us discuss the phase noise associated with such a system. With reference to
Figure 7.13, the amplitude of the phase-modulated electric field at the exit of the resonator
can be expressed as

Eout = eiω0t
[

A+BeiωM teiφ(t) −Be−iωM te−iφ(t)
]

= eiω0t {A+ 2iB sin[ωM t+ φ(t)]} (7.10)

where A (B) is the amplitude of the carrier (each sideband), ωM the distance between
each generated sideband and the pumping light, and φ(t) is the oscillator phase noise. The
field amplitude at the photodiode is then

EPD = Eoute
−αr + ELOe

iω0teiψ0

√

1− r2 (7.11)

where e−α is the amplitude loss at the output coupler (Cp2), r the amplitude transmit-
tivity of the splitter Sp2, and ELO (ψ0) the amplitude (phase) of the local oscillator, that
is the electric field propagating through the delay line. If we choose ψ0 = π/2, then the DC
optical power on the photodiode is

PPD = PAe
−2αr2 + PLO(1− r2) ≃ PLO(1− r2) (7.12)

where PA is the power of optical carrier escaping the resonator and PLO is the power of
the local oscillator. Similarly (ψ0 = π/2), by neglecting the terms quadratic in B, the AC
photocurrent in the photodiode is given by

j = 4RELOr
√

1− r2e−αB sin[ωM t+ φ(t)] (7.13)
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where R is the responsivity of the photodiode. Hence, the demodulated time-averaged
microwave power is

Pmw = 8ρr2R2PLOPBe
−2α(1− r2) (7.14)

where ρ is the resistance at the output of the photodiode. Thus, the generated microwave
power is proportional to the power of the optical sidebands. Finally, the phase noise of the
oscillator can be characterized by a modified Leeson formula

Sφ =

[

1 +
ηPmw

2ρR2P 2
PD

PPD
PB

γ2

f2

]

2~ω0

ηPPD

≃
[

1 + 4ηe−2αr2
γ2

f2

]

2~ω0

ηPLO(1− r2)
(7.15)

where γ is the HWHM of the loaded WGM resonance and η is the quantum efficiency
of the detector. The above equation shows that (i) the phase noise power spectral density
is independent from the efficiency of the parametric process; and (ii) the phase noise corner
frequency can be greater than the HWHM of the loaded WGM resonance. These conclusions
are confirmed by the experimental observations, as shown by the typical phase noise plot
of Figure 7.14. Indeed, the phase noise floor agrees with shot-noise-limited operation and
the corner frequency is determined by the linewidth of the WGM resonances. Apart from
increasing the resonator quality factor, the oscillator performance could be considerably
improved through the generation of multiple harmonics. In this respect, a significant noise
reduction in the generated microwave signal would be achieved through the creation of
an optical comb. Indeed, assuming that the comb has N equidistant, phase-locked optical
harmonics, the phase noise of the beat note between any two neighboring harmonics is
N times lower than that of the optical frequencies. However, the number of generated
optical harmonics is limited by the presence of stimulated Raman scattering (SRS), which
adds noise to the generated microwave signal. Starting right after the hyperparametric
oscillations (when the power of the first signal and idler sidebands are several percents of
the overall optical power entering the resonator), SRS is particularly efficient because modes
corresponding to Stokes light (generated in different mode families uncoupled from the fiber
couplers) typically have higher quality factors. To overcome this drawback, WGM resonators
of a proper shape as well as special geometrical/spectral dampers could be employed so as
to decrease the SRS efficiency. In turn, this would eventually lead to an increase in the
number N without extra noise.

Since N is inversely proportional to the square root of the finesse of the resonator and
the phase diffusion of the microwave signal is inversely proportional to the finesse, one
can guess that the noise properties will still be improved if the finesse of the resonator is
increased.

7.5 Generation of ultrastable microwaves via optical frequency
division

A promising alternative approach to generate high-frequency stability microwaves exploits
high-Q optical resonators in conjunction with all-optical frequency division. Indeed, as dis-
cussed in more places, low absorption and scattering in the optical domain can provide
1011-level Q-factors in a Fabry-Perot cavity. In addition, if well-isolated, this resonator will
exhibit average length fluctuations in the order of ∼ 100 attometer on a 1 s timescale. As
a result, a fractional frequency instability as low as 2 · 10−16 (for averaging times of 1-10
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FIGURE 7.13
Experimental setup of a whispering gallery photonic hyperparametric microwave oscillator.
Light from a YAG laser is split at Sp1, one part being sent into the CaF2 WGM resonator
(toroidal shape with a diameter of several millimiters and thickness in the range of several
hundred microns) through coupler Cp1. The resonator loaded Q factor is on the order of 109,
the intrinsic Q exceeding 1010. The other part is sent to a fiber delay line. Then, splitter Sp2
is used to combine the light coupled out of the resonator (via Cp2) with that propagated
through the delay line. In this way, about 90% of light from the resonator goes to the fast
photodiode (PD). The output microwave signal is pre-amplified with an amplifier (g) and
directed to a microwave spectrum analyzer (SA). (Adapted from [663].)

s) can be attained for a continuous-wave (cw) laser by stabilizing it against such a cavity.
Transfer of this stability to a microwave signal is precisely the topic of this section [664].
Figure 7.15 illustrates the principle of such a photonic oscillator.

In essence, the frequency stability of the high-performance cw laser, that is the optical
reference at νopt1, is transferred to the repetition rate (fr ≃ 0.1−10 GHz) of a self-referenced
femtosecond laser frequency comb. For this purpose, the nth comb element is phase locked to
νopt1, while simultaneously stabilizing the offset frequency f0. In this way, the optical cavity
stability is transmitted to the OFC mode spacing fr = (νopt1− f0)/fr. Then, the stabilized
pulse train is detected by a fast photodiode, which produces photocurrent at frequencies
equal to fr and its harmonics (up to the cutoff frequency of the photodiode). Since the
phase noise level obtained for such microwave signals is lower than that available from
commercially available microwave references, accurate characterization requires comparing
two similar, fully independent systems (Figure 7.16). In this apparatus, the first (second)
optical divider comprises an octave-spanning 1 GHz Ti:sapphire femtosecond laser which
is phase locked to a cavity-stabilized cw laser at 578 nm, νopt1 (1070 nm, νopt2). In each
system, the stabilized pulsed output illuminates a high-speed photodiode, thus producing
a microwave signal at 1 GHz and harmonics up to ∼ 15 GHz. Then, the two independent
10-GHz tones, selected by bandpass filters, are mixed after proper amplification. Finally, the
mixer output is analyzed to determine the relative frequency and phase fluctuations. Phase
noise data are presented in Figure 7.17. In conclusion, with this kind of photonic oscillator,
a 10 GHz signal has been demonstrated with an absolute instability of ≤ 8 · 10−16 at 1
s of averaging. Such performance is comparable to that produced by the best microwave
oscillators, but without the need for cryogenic temperatures. Also, Figure 7.18 shows a
comparison with other leading microwave generation technologies in the 10 GHz range.

Such phase-coherent division retains the fractional frequency instability, while reducing
the phase fluctuations by a factor of ∼ 5 · 1014 (500 THz/10 GHz).
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FIGURE 7.14
Typical phase noise of a WGM-based oscillator with a floor of −126 dBc at 300 kHz,
corresponding to a HWHM of the resonance of ≃ 115 kHz and a delay line length of ∼ 115
m. For a total optical power on the detector of 6 mW, the power of the generated microwave
signal leaving the detector is −46.1 dBm. After the microwave amplifier (characterized by
a noise figure of 7 dB and a gain of 43.1 dB), a power of −3 dBm is reached. (Courtesy of
[663].)

7.6 Trapping and cooling of neutral atoms

While by now the world of cold atoms represents per se an exciting and vast field of contem-
porary physics, here, inspired by a few specialized reviews [665, 666, 667, 668, 669], we only
discuss those aspects which are strictly necessary for understanding frequency standards
and clocks.

As already extensively discussed, two primary restrictions arise in spectroscopic studies
which use room-temperature gaseous samples, due to the high thermal velocities (on order
of hundreds of m/s) of the atoms/molecules. First, Doppler effects cause displacement and
broadening of the spectral lines. Second, the ultimate attainable spectral resolution is set
by the limited observation time. The wish to decrease motional effects in spectroscopy
and atomic clocks was a major motivation for the cooling of both neutral atoms and ions.
Indeed, although thermal atomic/molecular velocities can be reduced by refrigeration (as
the square root of temperature), any gas in equilibrium (other than spin-polarized atomic
hydrogen) would be condensed at temperatures corresponding to values below 1 m/s. So,
a change in the cooling paradigm was needed. This was provided by the advent of laser
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FIGURE 7.15 (SEE COLOR INSERT)
Principle of phase-coherent division of an ultrastable optical signal to the microwave domain
through an optical frequency comb (OFC). First, the nth comb element is phase locked to
νopt1 (while simultaneously stabilizing the offset frequency f0), which transfers the optical
cavity stability to the OFC mode spacing fr = (νopt1− f0)/fr. In the case of a high-fidelity
optical divider, the sub-hertz optical linewidth of the reference laser is translated into a
microhertz linewidth on fr. (Courtesy of [664].)

cooling and trapping of neutral atoms. In this light, starting from the initial proposals
dating back to the seventies, several methods were devised which enabled reaching lower
and lower temperatures, down to the observation of quantum degeneracy. In the following,
the most successful schemes are presented.

7.6.1 Optical molasses

Due to conservation of total momentum, when an atom with mass m and velocity v absorbs
or emits a photon with frequency ν, its velocity varies by the amount vr = hν/mc = h/(mλ),
that is the recoil velocity. While this velocity change is generally small, if several photons
are scattered, a sizeable change in the atomic speed can result. Although the absorption
of each photon is followed by a spontaneous emission event, due to randomness of the
emission direction, spontaneous emission does not have, on average, a net affect on the
atomic velocity. For a more quantitative description of the phenomenon, let us consider
the simple model of a two-level atom interacting with a plane light wave propagating in
the direction n̂ with frequency νL and intensity I [665]. Let Eg and Ee be the energies
of the lower and upper state of the atom, respectively (Ee − Eg = hνA). The momentum
exchange between the radiation field and the atom manifests itself in a force (referred to
as spontaneous force or radiation pressure) acting on the latter, F sp. The latter is given by
the momentum of a single photon times the number of absorption-emission cycles in the
unit of time, R. In turn, R is the product between the rate of spontaneous emission, 1/τ ,
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FIGURE 7.16
Experimental setup for the generation and characterization of the 10 GHz low-noise mi-
crowaves. In each independent system, stable light from the cavity is transmitted to the
OFC through an optical fiber. After phase-locking the combs against their respective op-
tical references, the two independent 10-GHz signals are mixed. The obtained mixed-down
product is characterized via frequency and phase-noise measurements. In order to evaluate
the optical stability of the OFCs and the cw lasers, the beat signal fb between the second
stabilized cw laser νopt2 and a tooth of the comb independently stabilized by νopt1 was also
measured. (Courtesy of [664].)

and the probability of occupation of the excited level. Since the latter can be expressed as

N ′
e ≡

Ne
Ng +Ne

=
1

2

I/I0

1 + (I/I0) + (4/Γ2)[δ − (νL/c)v · n̂]2
, (7.16)

we have R = (1/τ)N ′
e and F sp = n̂(hνL/c)R, where Ne (Ng) is the number of atoms in

the excited (ground) state, δ = νL − νA, I0 is the saturation intensity, and Γ = 1/(2πτ) is
the natural width of the atomic resonance. So we have

F sp = n̂
hνL
c

1

2τ

I/I0

1 + (I/I0) + (4/Γ2)[δ − (νL/c)v · n̂]2
(7.17)

Now, as contained in the original proposal by T.W. Hänsch and A.L. Schawlow in 1975,
an effective cooling configuration is realized by irradiating a moving atom with counter-
propagating laser beams of the same frequency νL, which is tuned slightly below νA [670].
Indeed, by virtue of the Doppler shift, the atom will absorb preferentially photons moving
opposite to its velocity, thus slowing down; the kinetic energy of the atoms is dissipated and
converted into energy of the electromagnetic field (Figure 7.19). By neglecting stimulated
emission (I/I0 ≪ 1) and using the above equation, the total force experienced by the atoms
can be written as the sum of the forces exerted by each of the laser beams

Fsp =
hνL
2cτ

[

I/I0

1 + (4/Γ2)[δ − (v/c)νL]
2 −

I/I0

1 + (4/Γ2)[δ + (v/c)νL]
2

]

(7.18)
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FIGURE 7.17
Measured phase-noise spectrum for a single 10-GHz photonic oscillator (a) and a single
optical reference (b) scaled to 10 GHz as determined from fb. Contributions from shot noise
and amplifiers are also plotted. Curve (e), that is the sum of curves (b), (c), and (d), then
yields the estimated achievable phase noise. (Courtesy of [664].)

FIGURE 7.18 (SEE COLOR INSERT)
Trends for single-sideband phase noise in several leading microwave-generation technologies
in the 10 GHz range. Spurious tones are neglected for all data. (a), result from the work
described in the text. (b), previous Er:fiber and Ti:sapphire optical frequency divider results.
(c),(d), cryogenic sapphire oscillators. (e), research room-temperature sapphire oscillator.
(f), commercial room-temperature sapphire oscillator. (g),(h), long-fiber (g) and coupled
(h) opto-electronic oscillators. (Courtesy of [664].)

which, in the limit of small velocities (v < Γc/νL), becomes

Fsp (v) = 16πh
ν2L
c2
δ

Γ

I/I0
[

1 + (2δ/Γ)2
]2 v ≡ −αv (7.19)
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FIGURE 7.19
Principle of 1-D cooling in optical molasses.

with

α = 16πh
ν2L
c2
δ

Γ

I/I0
[

1 + (2δ/Γ)
2
]2 (7.20)

Thus, for small v values, the spontaneous force is a linear function of velocity as in a
viscous medium. This suggested the name optical molasses for this cooling configuration.
Such a scheme is readily generalized to 3-D by employing three orthogonal pairs of laser
beams (each made of two counter-propagating beams with opposite circular polarizations).
The first experimental demonstration was provided by S. Chu in 1985 with sodium atoms
[671].

Concerning the minimum achievable temperature, two counteracting effects must be
considered. The first one is the cooling effect produced by the viscous force: the rate at which
energy is removed by cooling is Ėcool = F ·v = −αv2. The second is a heating process which
is imputable to the discrete, random character of the exchange in linear momentum between
the atom and the electromagnetic field. In other words, while the average viscous force
reduces to zero the average atomic velocity, its fluctuations are responsible for a mean square
velocity different from zero. Since for an atom having zero average speed the absorption
probabilities of a photon in the +z and −z directions are equal, each absorption event
represents a ~kL-length step in the atomic momentum random-walk, with equal probabilities
of positive and negative steps. The same is true for spontaneous emission. Eventually, each
fluorescence cycle represents two steps in a random-walk. Thus, we will have for the mean
square momentum

d
〈

P 2
〉

dt
= 2

(

hνL
c

)2

R′ (7.21)

where R′ is obtained by R always in the limit of small atomic velocity, I/I0<<1, and
assuming that the on-resonance saturation parameter in the two counter-propagating beams
is 2I/I0

R′ =
1

2τ

2I/I0

1 + (2δ/Γ)
2 (7.22)
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So the heating rate is

Ėheat ≡
1

2m

d
〈

P 2
〉

dt
=

1

m

(

hνL
c

)2
1

τ

I/I0

1 + (2δ/Γ)2
(7.23)

When the two effects balance (Ėheat = Ėcool), we will have

Ėheat = Ėcool = αv2 (7.24)

which gives

kBT = mv2 =
hΓ

4

(

Γ

2δ
+

2δ

Γ

)

(7.25)

The minimum temperature is then obtained for δ = Γ/2 and is given by

kBTD =
hΓ

2
(7.26)

That is the so-called Doppler limit. Typical values are 240 µK for sodium, 120 µK for
cesium and 140 µK for rubidium.

In the context of laser-cooled atoms, another meaningful reference temperature is the
recoil one, Trec. This corresponds to the fact that, due to the discrete character of the
exchange of momentum, the spread in the atomic energies cannot fall below the energy
associated with the single photon recoil. Thus we can define

1

2
kBTrec =

1

2m

(

hνL
c

)2

(7.27)

Just as an example, that is 200 nK for cesium. Soon after the demonstration of the first
optical molasses, accurate time-of-flight-based temperature measurements, first carried out
by W. Phillips and co-workers, pointed out a temperature value significantly smaller than
the expected Doppler limit and not far from the recoil limit [672]. This surprising result
was explained by J. Dalibard and C. Cohen-Tannoudji as a consequence of the combination
of multilevel atoms, polarization gradients, light shifts, and optical pumping [673]. How
these cooperate to produce sub-Doppler laser cooling is illustrated below with a simple
model [667]. Since the laser detuning typically employed in an optical molasses is not much
larger than Γ, both differential light shifts and optical pumping transitions will occur for
distinct ground-state Zeeman sublevels. Moreover, due to the spatial modulation of the laser
polarization, such light shifts and optical pumping rates will depend, in a correlated manner
to each other, on position. To fix ideas, let us consider the laser configuration of Figure 7.20a,
where two plane waves (having the same frequency and intensity) counter-propagate along
the z axis, with orthogonal linear polarizations. Then, it is easy to see that the polarization
of the resulting total field converts from σ+ to σ− and vice versa every λ/4, being elliptical or
linear in between. Next, let us assume an angular momentum Jg = 1/2 for the atomic ground
state (and Je = 3/2 for the excited state), such that the two Zeeman sublevels Mg = ±1/2
will experience different light shifts, as a function of the laser polarization; in other words,
their Zeeman splitting will exhibit spatial modulations of period λ/2. Also, optical-pumping
transfers between the two sublevels, Mg = −1/2 → Mg = +1/2 for a σ+ polarization and
Mg = +1/2 → Mg = −1/2 for a σ− polarization, will originate from real processes of
absorption (of photons by the atom) followed by spontaneous emission; once again, the
optical pumping rates are spatially modulated with a period λ/2. With the proper detuning
sign, and here we come to the heart of the affair, optical pumping always transfers atoms
from the higher to the lower Zeeman sublevel, but there is something else: the finite value
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of the optical pumping time introduces a time lag between internal and external variables.
As a result, an atom which is moving to the right, starting from the bottom of a valley (for
example in the state Mg = −1/2 at a place where the polarization is σ+), can climb up
the Zeeman potential hill and reach the top before absorbing a photon. Once on the peak,
the probability for the atom to be optically pumped in the other sublevel is maximum.
Thus, the atom finds itself again in the bottom of a valley, and so on (double arrows of
Figure 7.20b. Essentially, reminiscent of the myth of Sisyphus, the atom is continuously
forced to climb up successive potential hills, dissipating its kinetic energy into potential
energy in the meantime, without ever having a chance of going down and recovering kinetic
energy. The potential energy gained at the expense of kinetic energy is dissipated in the
spontaneous Raman anti-Stokes process (the spontaneously emitted photon has an energy
higher than the absorbed laser photon). In each Sisyphus cycle, the total energy E of the
atom is diminished by an amount on the order of U0, with U0 being the depth of the
optical potential wells of Figure 7.20b. This happens until E drops below U0, in which case
the atom stays trapped in the well. Therefore, the Sisyphus cooling mechanism provides
temperatures TSis such that kBTSis ≃ U0. In conclusion, since the light shift U0 ∝ ~I/δ
is much smaller than ~Γ at low laser intensity, much lower temperatures can be reached
compared to the Doppler cooling case. Actually, when U0 becomes on the order of the recoil
energy Erec = (1/2)kBTrec, the Sisyphus cooling is contrasted by the heating caused by
the recoil due to the spontaneously emitted photons (which increases the kinetic energy of
the atom) and hence ceases functioning. As a consequence, as confirmed by a full quantum
theory of Sisyphus cooling as well as by experiments, the lowest achievable temperatures
are on the order of a few Erec/kB.

However, as already discussed, optical molasses are most often realized with counter-
propagating laser beams having opposite circular polarizations. Sub-Doppler temperatures
are reached in this configuration too. The mechanism, theoretically explained in [673], is
similar to the one considered above (this time, however, it only works for J ≥ 1 in the
ground state).

Furthermore, it is in fact possible to deceive the single-photon recoil limit and realize

FIGURE 7.20
Principle of Sisyphus cooling. (Courtesy of [667].)
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atomic temperatures T lower than Trec. Two schemes have proved particularly effective to
enter such sub-recoil laser cooling regime: velocity selective coherent population trapping
(VSCPT) and Raman cooling [667]. In both of them, the idea is to make the photon ab-
sorption rate depend on the atomic velocity v and vanish for v = 0: Rabs(v = 0) = 0. In
this way, the absorption of light is quenched for an atom with v = 0, which prevents spon-
taneous re-emission and hence the associated random recoil. As a result, ultracold atoms
with v ≃ 0 are defended from the detrimental effects of the light. Conversely, atoms with
v 6= 0 undergo the usual cycles of absorption followed by spontaneous emission: the corre-
sponding random walk in v space eventually transfers them to the v ≃ 0 dark state, where
accumulation can occur. Concerning the condition Rabs(v = 0) = 0, in the VSCPT case
it is realized by exploiting destructive quantum interference between different absorption
amplitudes, whereas Raman cooling relies on proper sequences of stimulated-Raman and
optical-pumping pulses.

7.6.2 Magneto-optical traps

While providing viscous damping, the optical molasses is not a trap: the atoms are indeed
free to diffuse around, thus eventually escaping from the interaction region. First proposed
by J. Dalibard, the magneto-optical trap (MOT) overcomes this drawback by combining
the usual molasses configuration with a quadrupole magnetic field. In the most popular
realization, the three orthogonal pairs of laser beams intersect in the zero point of the
magnetic field generated by an anti-Helmholtz pair (i.e., by two identical parallel coils with
currents flowing in opposite directions). The working principle is illustrated by the 1-D
scheme of Figure 7.21 in the simple case of an atom with a J = 0 (J = 1) ground (excited)
state. The magnitude of the magnetic field is proportional to the distance from the trap
center: Bz(z) = bz. The Zeeman frequency shifts corresponding to the mJ 6= 0 excited
states are given by ∆ν(z) = ∆E(z)/h = ±(gJµB/h)bz ≡ κz, where gJ is the Landé factor
of the excited state and µB the Bohr magneton. This introduces a spatially dependent term
into the detuning

δ(z) = δ ∓ (v/c)νL ∓ κz (7.28)

Qualitatively, if νL < νA, an atom, which is located to one side of the z = 0 position,
will preferentially absorb photons from the laser beam coming from that direction, thus
experiencing a restoring force towards the center of the trap. Once again, in the low-intensity
limit, the force acting on an atom can be expressed as the sum of the forces exerted by each
of the beams. In this case, by insertion of Equation 7.28 into Equation 7.18, in the limit of
small v and κz values, one obtains

FMOT =
hνL
2cτ

I

I0

[

1

1 + (4/Γ2)[δ − (v/c)νL − κz]2

− 1

1 + (4/Γ2)[δ + (v/c)νL + κz]2

]

≃ 16πh
νL
c

δ

Γ

I/I0
[

1 + (2δ/Γ)
2
]2

(νL
c
v + κz

)

(7.29)

where the viscous term is responsible for dissipation of kinetic energy and the elastic one
provides the additional confinement. Essentially, the motion of an atom in a MOT is that
of a damped harmonic oscillator. In conclusion, it is worth pointing out that, given the
relevant figures for the experimentally realized magnetic field gradients (∇B), the magnetic
force Fm = −pm · ∇B due to direct interaction with the atomic magnetic moment (pm) is
negligible in a MOT.
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FIGURE 7.21
Principle of 1-D magneto-optical trapping: schematic experimental setup together with tran-
sition scheme. The spatially dependent term introduced in the detuning by the quadrupole
magnetic field is also represented. (Adapted from [665].)

Atoms can be collected in a MOT either from a slowed atomic beam or from the room-
temperature vapor in a cell. In the context of atomic frequency standards, to procure a fine
duty cycle between preparing and probing the sample, it is advisable to load a huge number
of atoms in a little time. In this regard, the number NMOT of atoms trapped in a MOT can
be expressed by the rate equation

dNMOT

dt
= Rc −

NMOT

τMOT
− βN2

MOT (7.30)

where Rc denotes the rate of capture, τMOT the average time spent by an atom in the
MOT, and the term containing the coefficient β represents the loss rate due to collisions
among the trapped atoms. Then, in the case of a vapor-cell trap, by neglecting the last term
in Equation 7.30, the steady-state number of confined atoms is given byNMOT,s = τMOTRc.
Next, we have to express the quantities τMOT and Rc [665]. The former is evaluated as the
loss rate due to collisions between the trapped atoms and the hot background-vapor atoms:
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τ−1
MOT = nσ

√

3kBT/m, where n is the density of the atoms in the vapor, T the temperature
of the cell, and σ the collisional cross section. The latter, defined as the rate at which
atoms with a velocity smaller than the capture velocity of the trap (vc) enter the volume V
determined by the intersection of the laser beams, can be expressed as

Rc =
nV 2/3v4c

2

(

m

kBT

)3/2

(7.31)

In turn, vc represents the maximum velocity for which an atom can be arrested within
the distance fixed by the laser beam diameter d: vc =

√

dvrec/τexc, where vrec is the recoil
velocity and τexc the excited-state lifetime. Finally, we obtain

NMOT,s = τMOTRc =
π√
6

d4v2rec
τ2excσ

(

m

2kBT

)2

(7.32)

where V = (
√
πd)3 has been exploited. Just as an example, considering a Cs MOT

(τexc = 30 ns, σ = 2 · 10−13 cm2, vrec = 3.5 mm/s) with T = 300 K and d = 1 cm, one finds
NMOT,s ≃ 5 ·109 atoms. In practice, the maximum achievable value for NMOT,s is restricted
by the βN2

MOT loss term, which can no longer be neglected above a critical value of trapped
atoms. Similar considerations apply to the maximum attainable atomic density, which is
additionally limited by the repulsive forces between trapped atoms caused by re-absorption
of scattered photons.

While dense samples (ρ ≥ 1010 atoms/cm3) of N ≫ 107 atoms are easily cooled in
a MOT, the maximum phase-space density is in the range ρΛ3

dB ∼ 10−5 − 10−4, with
ΛdB = h/

√
2πmkBT being the thermal de Broglie wavelength.

Incidentally, we mention that, besides the above radiation-pressure traps, optical dipole
traps are also widely used. These rely on the dipole force exerted on an atom by nearly-
resonant light with a non-uniform intensity I(r). In this case, rather than the scattering
of photons due to spontaneous emission, processes of absorption-stimulated emission are
exploited [465]. In the dressed-atom picture, such dipole force results from the spatially-
varying shift of atomic levels induced by a light field having a non-uniform intensity profile:
for a laser frequency lower (higher) than the atomic resonance frequency, the atoms will
be pulled towards high-intensity (low-intensity) regions. In the former (latter) case, the
detuning δ = νL − νA is negative (positive) and we speak of red (blue) dipole trap. For a
sufficiently large detuning, the depth of a dipole trap varies as I(r)/δ, while the photon
scattering rate is proportional to I(r)/δ2. Since no cooling mechanism is present in a dipole
trap, only atoms colder than its depth can be loaded into it; their lifetime is precisely limited
by the heating associated with the photon scattering rate. In its simplest realization, a
dipole trap consists of a single, red-detuned, focused laser beam. Here, three-dimensional
confinement is obtained at the focus, where the light field intensity exhibits an absolute
maximum. In blue-detuned dipole traps, atoms are repelled by the light walls and confined
in regions where light is virtually absent. Such an optical bottle beam trap can be realized,
for instance, with a strongly focused blue detuned laser beam, which passes through a
computer-generated circular π phase hologram displayed on a spatial light modulator. The
most alluring features of optical dipole traps are the following: first, atoms can be confined
in extremely small volumes; second, contrary to the case of magnetic trapping, the atoms
are not polarized, thus enabling experiments where mixed-spin systems are studied; third,
fast on/off switching is feasible; last but not least, they can be employed with atoms for
which magnetic trapping is not possible.

A comprehensive, tutorial review on optical dipole traps is given by [466], whereas an
updated reference on their use in the frame of all-optical Bose-Einstein condensation (see
below) is represented by [674].
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7.6.3 Bose-Einstein condensation

Albeit brief, this treatment cannot ignore the greatest achievement so far in the field of
ultracold neutral atoms, namely the Bose-Einstein condensation (in Bose gases) and its
counterpart in Fermi gases [675]. An additional motivation to provide a short excursus
on this topic is that some schemes, originally developed to produce and probe BECs, also
proved to be, more in general, valuable tools for creating cold atomic samples with improved
phase-space densities (like those often employed in present-day frequency standards) and for
characterizing more accurately their relevant parameters (number of atoms, temperature,
. . . ), respectively.

After a MOT stage, two additional stages are needed, that are magnetic trapping and
evaporative cooling.

7.6.3.1 Magnetic trapping

Essentially, magnetic traps are inhomogeneous magnetic field configurations, B(r), endowed
with a local minimum, such that atoms with a non-zero magnetic moment µ experience an
interaction energy given by W = −µ ·B and hence a force F = ∇(µ ·B). In principle, the
direction of this force depends on the relative magnetic moment/field orientation. However,
the treatment is dramatically simplified if the atomic motion is adiabatic (i.e., the atom
does not change Zeeman sublevel). In that case, one can introduce a local potential defined
by the product between the atomic magnetic moment and |B|. Therefore, atoms which
are in low-field-seeking (lfs) states (that are states whose energy increases with |B|) are
acted on by a restoring force towards the minimum region of |B|, thus being trapped. As a
consequence of the Wing theorem, which basically states that, in a region devoid of charges
and currents, the strength of a static magnetic field can have local minima but no local
maxima, exclusively atoms in lfs states can be trapped. It is worth pointing out that, in
order to remain in a low-field-seeking state, atoms have to retain their spin orientation
relative to the magnetic field. This is only possible if the rate of change of the magnetic
field in the reference frame of the moving atom ωF = v ·∇(B/B) is much smaller than the
Larmor frequency ωL = µB/~, v being the velocity of the atom. This cannot be achieved,
for instance, in the center of a magnetic quadrupole trap where B = 0. Thus, magnetic traps
with an offset field must be used, such that the Larmor frequency is always sufficiently large
(always B 6= 0).

Compared to MOTs, where the photon recoil limit hampers achieving of ultralow tem-
peratures, magnetic traps permit, by virtue of their conservative character, the atomic
confinement at much lower temperatures. The two main drawbacks are:

• Magnetic traps are much shallower than MOTs. For typical potential depths (∆B ∼ 100
G) atoms with µ ≃ µB can be trapped only if kBT < µB∆B ≃ 10−25 J, corresponding
to a temperature of about 10 mK. This means that it is necessary to pre-cool the atoms
(precisely in a MOT, for instance) before loading them into a magnetic trap.

• Just due to the conservative nature, a separate mechanism is needed to chill the mag-
netically confined atoms. In this sense, the most effective approaches are represented by
evaporative cooling (see next section) and sympathetic cooling via elastic collisions with
another cold species in the trap.

Among the several configurations of magnetic traps that have been used in BEC exper-
iments, we focus here on the Ioffe-Pritchard (IP) trap whose elements and current arrange-
ment are schematically shown in Figure 7.22. In its original geometry, this comprises four
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straight bars that generate a linear quadrupole field plus two end so-called pinch coils which
provide the axial confinement (along the z direction). By using cylindrical coordinates, close
to the origin (that is the trap center) the field components are

Bz = c1 + c3(z
2 − ρ2/2) + ... (7.33)

Bρ = −c3zρ+ c2ρ cos(2φ) + ... (7.34)

Bφ = −c2ρ sin(2φ) + ... (7.35)

where the c1, c2, and c3 coefficients can be calculated starting from the expressions for
the field generated by a coil and a straight conductor. Then we can write

|B|2 = c21 + 2c1c3z
2 + [c22 − c1c3 − 2c2c3z cos(2φ)]ρ

2 + c23(z
4 + ρ4/4) + ... (7.36)

showing that, with a suitable choice of the experimental parameters, the origin can be
made a minimum in any direction. The associated potential is harmonic with a nonzero bias
field (corresponding to the c1 term) at the origin

W = µ

[

c1 + c3z
2 +

1

2

(

c22
c1
− c3

)

ρ2
]

(7.37)

A bias field of a few Gauss is typically sufficient to suppress Majorana spin flips. In
conclusion we mention that, among the different variants of the IP trap, particularly effective
is the so-called cloverleaf trap [668].

7.6.3.2 Evaporative cooling

This technique relies on the selective removal of those trapped atoms whose energy is higher
than the average energy per atom and on the subsequent re-thermalization of the sample
through collisions. Since this process diminishes the average energy of the atoms remaining
in the trap, the new equilibrium state corresponds to a lower gas temperature. Evaporative
cooling can be made more efficient by forcing its proceeding rate. Rf-induced evaporation
is the most popular manner to accomplish this. Here, rf radiation is used to flip the atomic
spin so as to convert the attractive confinement force into a repulsive one, which expels the
targeted atoms from the trap (Figure 7.23). The energy-selective character of this method
arises from the fact that the resonance frequency is proportional to the magnetic field, and
hence to the potential energy of the atoms. With regard to transitions between magnetic
sublevels mF , the resonance condition for the magnetic field strength B is |g|µBB = ~ωrf ,
where g is the Landé g−factor. Since the trapping potential is given bymF gµB[B(r)−B(0)],
only atoms which have a total energy E > ~|mF |(ωrf −ω0) will evaporate (ω0 is the rf fre-
quency which induces spin flips at the bottom of the trap). A detailed discussion of the
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FIGURE 7.22
Scheme of a Ioffe-Pritchard trap.
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FIGURE 7.23 (SEE COLOR INSERT)
Principle of rf-induced evaporative cooling. Atoms populate the trap according to their
energies, which are described by a Boltzmann distribution. The most energetic atoms can
travel further from the center of the trap than the less energetic atoms can, and are more
likely to interact with the rf field. The latter induces transitions between the trappedmF = 1
state to the untrapped mF = −1 one. After this expulsion, the remaining atoms will collide
and re-thermalize, forming another Boltzmann distribution at a lower average energy. The
high-energy tail of the Boltzmann distribution contains a disproportionate share of the total
energy of the cloud, so the removal of just a small number of hot atoms can significantly
impact the average energy of the cloud. By gradually reducing the frequency of the rf field,
one can lower the temperature until a Bose-Einstein condensate is formed.

general features of evaporative cooling is given in [676]. Here we only mention that an ef-
ficient evaporative cooling requires the rate of elastic collisions to greatly exceed that of
collisions which are responsible for atom losses from the magnetic trap. These can be dis-
tinguished into collisions with the background gas and inelastic collisions. The former ones
can be reduced by decreasing the pressure of background gas; ultrahigh vacuum chambers
are indeed used in the experiments. The latter ones can be either binary collisions, such as
dipole and spin relaxation, or three-body recombination. Since evaporative cooling relies on
collisions, a high density is needed, which makes inelastic collisions unavoidable. Therefore,
for a specific atomic species, the efficiency of such process crucially depends on how the
relevant collisional parameters compare to each other. The success of BEC experiments on
alkali atoms is precisely due to the fact that they are characterized by fairly large elastic
cross sections.

By summarizing, the standard procedure to achieve BEC can in fact be divided into
three main steps [677, 678]:

• Laser cooling and trapping of atoms - This is usually accomplished by a double-
MOT apparatus in which the atoms are loaded into a first MOT from the vapor and then
transferred (by pushing laser beams) into a second, high-vacuum chamber.

• Magnetic trapping - A delicate step in this stage is the initial adiabatic compression of
the confined atoms. Indeed, just after loading, the atoms are adiabatically compressed by
raising the trap curvature. This induces an increment in the temperature and density of
the atoms, with the phase-space density remaining constant. The associated gain in the
rate of elastic collisions is vital to realize the proper re-thermalization conditions for the
subsequent evaporative cooling process.

• Evaporative cooling - When optimized, this process can provide a dramatic reduction
of the gas temperature with an enhancement of the phase-space density by 5-6 orders of
magnitude, thus allowing to reach the condition for BEC (phase-space density ∼ 1).
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7.6.3.3 Probing a BEC

Most often, cold atomic samples are characterized by measuring the power emitted by the
fluorescent light. Alternatively, one can analyze the absorption or the phase shift suffered
by the light when transmitted through the sample. In the specific case of BEC, one of the
latter two approaches is adopted [668, 665].

Absorption Imaging

In this scheme, the atomic cloud is illuminated with a short pulse of resonant light and
the shadow cast by the sample is imaged onto a CCD camera. However, due to the high
optical density, quantitative measurements cannot be performed directly in the trap. In
practice, at the end of the evaporative cooling, the trapping fields are switched off and the
absorption image is recorded after several milliseconds of ballistic expansion of the cloud.
This also relaxes spatial resolution requirements for the optical system. Then, from a single
image, information can then be extracted on the density and the temperature of the atoms
in the trap. In practice, however, a sequence of three pictures is acquired for each cycle:
the first picture of the atomic cloud is followed by a picture of the laser probing beam
itself (i.e., without any atoms present); finally, a background frame, without the probe
beam, is recorded. This is obviously a destructive observation method because each atom
scatters several photons while being probed, which heats the gas. Experiments are therefore
performed by repeated cycles of loading, evaporation, and probing.

When a weak (saturation effects are negligible) probe laser beam passes through an
atomic cloud along the z direction, it experiences both absorption and a phase shift. By
neglecting the unessential eiωt term, these can expressed as

E(z) = Eie
−n′′kzein

′kz ≡ tEieiϕ (7.38)

where n′ and n′′ represent, respectively, the real and imaginary part of the sample
refractive index. Thus, assuming as usual a Lorentzian shape for the absorption interaction,
we have

t ≡ e−n′′kz = exp

(

− ñσ0
2

1

1 + δ2

)

(7.39)

and
ϕ ≡ n′kz = − ñσ0

2

δ

1 + δ2
(7.40)

where σ0 is the resonant cross section (σ0 = 3λ2/(2π) for a two-level atom), δ = (ω −
ω0)/(Γ/2) is the laser detuning in half linewidths, and ñ(x, y) =

∫

n(x, y, z)dz is the so-called
column density. Since photodetectors are not sensitive to phase, the absorption image shows
the spatial variation of t2 from which, in turn, that of ñ(x, y) can be easily retrieved. The
above derivation assumes that light enters and exits the cloud at the same (x, y) coordinate
(thin-lens approximation).

Dark-ground and Phase-contrast Imaging

In dark-ground imaging, a collimated probe beam propagates through a weakly absorbing
sample and the coherently scattered light is imaged onto a camera. Instead, the probe beam
is blocked after passing the sample by means of a small opaque object located at the position
where the beam comes to a focus (Figure 7.24a). Since the probe light field emerging from
the sample (Ef ) can be separated into the scattered and unscattered radiation, we can write

Ef ≡ tEieiϕ = Ei +∆E (7.41)
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which, blocking the unscattered light (Ei), gives the dark-ground signal

〈Idg〉 =
1

2
|Ef − Ei|2 = Ii[1 + t2 − 2t cosϕ] (7.42)

For small ϕ values, such signal is quadratic in ϕ. Compared to absorption imaging, the
dispersive approach has two significant advantages. First, since the information is contained
in ϕ, the probe frequency can be tuned sufficiently far from resonance in order to interrogate
dense atomic clouds directly in the trap. Second, it can be a non-destructive detection
method.

Phase-contrast imaging can be thought of as a homodyne detection technique where the
unscattered light represents the local oscillator and interferes with the scattered radiation.
This is accomplished by shifting, via a phase plate (i.e., an optical flat with a small bump
or dimple in the center), the phase of the unscattered light by ±π/2 in the Fourier plane of
the imaging lens (Figure 7.24(a)). Then, the intensity of a point in the image plane is given
by

〈Ipc〉 =
1

2

∣

∣

∣tEie
iϕ + Ei

(

e±i
π
2 − 1

)∣

∣

∣

2

= Ii

[

t2 + 2− 2
√
2t cos

(

ϕ± π

4

)]

(7.43)

For small ϕ one obtains

〈Ipc〉 = Ii[t
2 + 2− 2t± 2tϕ] (7.44)

which is linear in ϕ. Thus, phase-contrast imaging should be preferred to dark-ground
imaging for small signals.

(A)

(B)

FIGURE 7.24
Principle of dark-ground (a) and phase-contrast (b) imaging. (Adapted from [668].)
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Once the column density has been experimentally determined with one of the above
techniques, a suitable fitting function can be used to extract the temperature T and the
total number of atoms N . Just to fix ideas, let us consider the case of absorption imaging of
a thermal cloud above the critical temperature for condensation. After a time t of ballistic
expansion, the density profile can be expressed as

n(x, y, z, t) =
N

(2π)3/2σx(t)σy(t)σz(t)
e
−

x2

2σ2
x(t) e

−
y2

2σ2
y(t) e

−
z2

2σ2
z(t) (7.45)

such that
∫

n(x, y, z, t)dxdydz = N . By integrating Equation 7.45 along the direction of
propagation of the laser beam, we then obtain the column density

ñ(x, y, t) =
N

2πσx(t)σy(t)
e
−

x2

2σ2
x(t) e

−
y2

2σ2
y(t) (7.46)

which can be fitted to ñexp(x, y, t) in order to extract N , σx(t) and σy(t). Then, these
two latter quantities can be used to deduce the radii in the trap σx(t = 0) and σy(t = 0),
eventually yielding the temperature T via the equipartition principle

3

2
kBT = m

[

1

2
ω2
xσ

2
x(t = 0) +

1

2
ω2
ρσ

2
ρ(t = 0)

]

(7.47)

Note that for traps with cylindrical symmetry, like those most commonly used, one has
ωy = ωz ≡ ωρ, which obviously implies σy(t) = σz(t) = σρ(t). The relationship between
σi(t) and σi(t = 0) depends on the system under investigation. For a classic ideal gas it is
given by [679]

σi(t) = σi(t = 0)
√

1 + ω2
i t

2 (7.48)

In the case of a BEC at “T = 0”, the column density is more adequately fitted with
an inverted Thomas-Fermi parabola and similar expressions can be derived for the ballistic
expansion [680].

In conclusion, as already mentioned, the production of ultracold ensembles of atoms has
revolutionized the field of atomic and optical physics generating, in addition, much interest
among researchers in other, traditionally disjoint fields. In particular, the aforementioned
realization of all-optical BECs has played a crucial role in the advancement of research in
the field of quantum degenerate gases. Indeed, the advantage of the all-optical approach is
that magnetic fields can then be used to control the interactions between the atoms (making
attractive interactions repulsive, for example) with the powerful Feshbach-resonance tech-
nique [681]. Moreover, optical traps have allowed ytterbium to be condensed in recent years
[682]. Ytterbium is notable because it is the only atom with two valence electrons to be
condensed so far. As we will see later on, generation of a BEC in Yb is also helpful in optical
lattice clocks using even isotopes of alkaline-earth-like atoms. By now, BECs on microelec-
tronic chips [683] are also routinely produced. A quite complete list of ongoing research
directions including Optical lattices; Quantum gases in low dimensions; Disordered and
designed potentials; Ultracold Molecules; Long-range and dipolar interactions; Precision
measurements with quantum gases; Atom lasers; Quantum magnetism; Non-equilibrium
phenomena; Quantum simulation; Few-body systems; and Hybrid quantum systems, can
be found in the Book of Abstracts related to the Conference, Bose-Einstein Condensation
2011 Frontiers in Quantum Gases [684]. In the very end, it is worth mentioning that BEC
of photons in an optical microcavity was also observed [685].
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7.7 Cold stable molecules

Just as the achievement of quantum degeneracy in Bose and Fermi gases has opened unimag-
inable scenarios in fundamental and applied Physics, so the impact of creating cold (1 mK
- 1 K) and ultracold (< 1 mK) molecules is expected to lead to discoveries reaching far
beyond the focus of traditional molecular science. As an example, a BEC of polar molecules
would represent a quantum fluid of strongly and anisotropically interacting particles and
thereby elucidate the link between BECs in dilute gases and in dense liquids. Furthermore,
while presenting complexities and challenges for experimental control, the extra degrees of
freedom available in molecules offer unique opportunities for the exploration and manipula-
tion of exotic quantum phases [686]. Unfortunately, the cooling techniques so far developed
for atomic species cannot be readily applied to molecules, because of the lack of a closed set
of cycling transitions, due primarily to the absence of strict selection rules between vibra-
tional levels. At present, ultracold molecules can be obtained solely in the form of dimers,
basically via magneto-association or photo-association of alkali atoms close to quantum
degeneracy. However, a huge drawback of such indirect techniques is that they only work
with molecules whose constituent atoms can be laser cooled and trapped. Thus, for the
conceivable future, many chemically relevant species (hydrides, nitrides, oxides, fluorides,
etc.) will be still excluded. Meanwhile, a number of direct, more versatile approaches have
been demonstrated to bring stable molecules into the cold temperature regime [687, 688].
Among these, the most successful methods are represented by buffer-gas cooling (BGC) and
Stark deceleration. In the former scheme, already discussed in Chapter 5, both translational
and rotational degrees of freedom of the desired molecular species are cooled via elastic col-
lisions with a helium buffer gas in a cryogenic cell. Then, a molecular beam can be formed
by allowing the molecules to exit the chamber via an orifice. Continuous buffer-gas beams
are now routinely produced in a number of laboratories with low temperature (around 3 K),
low velocity (100 m/s), and high intensity (1014 s−1·sr−1). The latter technique, invented
by G. Meijer [443], relies on Stark-effect-based deceleration of a molecular beam via time-
varying inhomogeneous electric fields and is presented into more detail in the following. As
such a method operates only with polar molecules, a more recent variant, named as optical
Stark deceleration (OSD), has also been introduced [689]. In this case, the change in the
molecular velocity is caused by the optical dipole force induced by use of far-off-resonant
pulsed optical fields in the 1012 W/cm2 range.

7.7.1 Stark decelerator

In order to describe the behavior of neutral polar molecules in an external inhomogeneous
electric field E, let us first recall that the interaction energy and the force associated with
a molecular dipole µ are, respectively, given by W = −µ · E and F = ∇(µ · E). If the
molecular motion is adiabatic (i.e., the molecule does not change the Stark sublevel) it can
be described by a local potential given by the molecular dipole times |E|. In particular, in
the presence of a minimum of |E|, the so-called low-field-seeking (lfs) states (that are states
whose energy increases with increasing electric field) experience a restoring force towards
the minimum region. To better understand the working principle of a Stark decelerator
(SD), let us consider the specific case of a symmetric top molecule, like CH3F. In this case,
rotational states are labelled by three quantum numbers: J , the total angular momentum
quantum number; K, describing the projection of the vector J onto the molecular axis;
and M , representing the projection of J onto the local electric field vector. Also, since the
Stark deceleration process does not enhance the phase-space density, the beam entering the
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SD is typically prepared via supersonic expansion to cool both the internal and external
molecular degrees of freedom. By virtue of such rotational cooling, the CH3F beam entering
the Stark decelerator consists almost exclusively of molecules that are in states with J = 0
or 1. Among these, the most populated lfs states are |JKM〉 = |100〉, |11−1〉, |1−11〉. In its
original version, the Stark decelerator consists of a longitudinal array of electric field stages,
separated by a distance L (Figure 7.25). Each stage is formed by two parallel r-radius
cylindrical hardened steel rods, spaced d apart (L, r, and d are on the mm order). One
of the rods is connected to a positive and the other to a negative switchable high-voltage
(HV) power supply. Alternating stages are connected to each other. At a given time, the
even-numbered stages are switched to the HV difference and the odd-numbered ones are
grounded. In this way, molecules in lfs states that approach the plane of the first pair of
electrodes experience the increasing electric field as a potential hill, and will lose kinetic
energy on its upward slope. When leaving the high-field region, however, the molecule would
regain the same amount of kinetic energy, due to the acceleration on the downward slope
of the hill. This can be avoided by switching off the electric field when the molecule has
reached a position that is close to the top. At the same time, the pairs of electrodes that were
grounded are switched to HV difference. Consequently, the molecule will find itself anew in
front of a potential hill and will again lose kinetic energy when climbing it. By repeating
this process many times, the velocity of the molecule can be reduced to an arbitrarily low
value. As the electric field close to the electrodes is higher than that on the molecular beam
axis, molecules in lfs states will experience a force focusing them towards it. This occurs,
however, only in the plane perpendicular to the electrodes. In order to focus the molecules
in both transverse directions, the electrode pairs that make up one deceleration stage are
alternately positioned horizontally and vertically. By contrast, high-field-seeking (hfs) states
are deflected from the molecular beam axis and will eventually be lost. In this respect, it
is crucial that the molecules stay in the lfs state throughout the decelerator. If they came
in zero electric field, projection onto hfs states might occur. As already discussed in the
case of magnetic trapping of atoms, these so-called Majorana transitions are prevented
by guaranteeing that the electric field never drops below a certain minimum value. This
also ensures that the Stark splitting exceeds that corresponding to the highest-frequency
component of the rf radiation, which originates from the fast switching of the electric fields.
After exiting the SD, the decelerated molecular packets can be either directly utilized for
experiments or further manipulated in a variety of elements. Prominently, after deceleration
to a standstill, they can be loaded into traps or storage rings for confinement of several
seconds.

Since the first demonstration in 1999, a variety of SDs have been designed and built, in-
cluding decelerators based on wire electrodes [690], integrated on a chip [691], and travelling
wave decelerators [692].

Output beams from either BGC or SD setups can be eventually loaded into elec-
tric/magnetic traps for collisional studies [693] or serve as the underpinning for further cool-
ing stages to approach the µK threshold. These include cavity-assisted laser cooling [694],
electrostatically remixed magneto-optical trapping [695], and Sisyphus-type opto-electrical
cooling [696]. Such schemes could ultimately lead to superior samples of ultracold molecules
when combined with followup techniques such as evaporative or sympathetic cooling [697].
Besides representing indispensable initial sources for any cooling route, molecular samples
provided by BGC (SD)-based machines already have the potential to dramatically influence
a variety of research domains encompassing precise control of chemical reactions, study of
novel dynamics in low-energy collisions, and ultrahigh-resolution molecular spectroscopy. In
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FIGURE 7.25
Experimental setup and principle of Stark deceleration. (Courtesy of [688].)

this latter frame, potentially all the techniques discussed in Chapter 5 for molecular-beam
spectroscopy, two-photon Ramsey fringes above all, can be applied.

7.8 Trapping and cooling of ions

The seemingly obvious opportunity of trapping a charged particle by exploiting a mere
electrostatic inhomogeneous field (E(r)) to create a restoring force (F = qE) towards a
given point O in space is unfortunately impeded by the Gauss equation for electrostatics
∇ · E = 0, which implies ∇ · F = 0 (Earnshaw theorem). To elude this, one must resort
to an association of static magnetic and electric fields (Penning trap) or, alternatively, to a
time-dependent inhomogeneous electric field (radio frequency trap or Paul trap).

7.8.1 Paul traps

Among the different configurations which are able to provide stable confinement, the one
corresponding to a time-averaged trapping potential which is harmonic and symmetric is
the most utilized [698, 699, 700]. A typical three-electrode configuration is shown in Figure
7.26, comprising two endcaps and a ring electrode whose surfaces are infinite hyperboloids
of revolution described by

r2

r20
− z2

z20
= ±1 (7.49)

where r0 is the inner radius of the ring electrode, z0 is half the distance between the two
endcaps, and the + and − sign correspond to the ring electrode and endcap, respectively.
Application of the time-varying voltage Φ0 = U0 − V0cosΩt to the electrodes will result in
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FIGURE 7.26
Electrode structure for a Paul-type trap. (Adapted from [700].)

the following potential

Φ(r, z, t) =
U0 − V0 cosΩt
r20 + 2z20

(r2 − 2z2) (7.50)

Thus, the ion is stable (unstable) in the axial (radial) direction for half the cycle and
vice versa for the other half. However, by selecting proper values for certain parameters,
stability in all three dimensions can be obtained. To find out such stability conditions, let
us first derive the electric field strength E = −∇Φ as

Er = −
Φ0

d20
r Eϕ = 0 Ez =

2Φ0

d20
z (7.51)

where 2d20 ≡ r20 + 2z20 has been introduced. It is worth mentioning that several experi-
ments use r0 =

√
2z0. Next, we can write down the equations of motion for an ion of mass

m and charge e as
r̈ +

e

md20
(U0 − V0cosΩt) r = 0 (7.52)

z̈ − 2e

md20
(U0 − V0cosΩt) z = 0 (7.53)

If the above equations are parametrized by defining the dimensionless quantities

ξ ≡ Ωt

2
ar =

4eU0

md20Ω
2

qr =
2eV0
md20Ω

2
az = −2ar qz = −2qr (7.54)

then a set of Mathieu’s differential equations is found

d2wi
dξ2

+ (ai − 2qicos 2ξ)w = 0 i = r, z (7.55)

The values of a and q for which the solutions are stable (i.e., oscillating with limited
amplitude rather than exponentially growing) simultaneously along the z direction and
in the radial plane, which is an obvious requisite for 3-D confinement, are extracted by
drawing (on the same set of axes) a composite plot of both the stability boundaries: the
overlap regions correspond to 3-D trapping. Among these, being the most practical, the
one close to the origin (a and q values much less than 1) is almost exclusively used for
ion confinement [699]. As the Mathieu equation is nothing but a differential equation with
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periodic coefficients, the general form of the stable solutions is dictated by Floquet’s theorem
[701]

wi (ξ) = Aeiβwi
ξ

+∞
∑

n=−∞
C2ne

i2nξ+Be−iβwi
ξ

+∞
∑

n=−∞
C2ne

−i2nξ (7.56)

Here, the real-valued characteristic exponent βwi and the coefficients C2n are functions
of ai and qi only and do not depend on initial conditions, whereas A and B are arbitrary
constants that may be used to satisfy boundary conditions or normalize a particular solution.
Without loss of generality, with the initial condition A = B, we have

wi (ξ) = 2A

+∞
∑

n=−∞
C2ncos [(2n+ βwi) ξ] (7.57)

By inserting this formula into Equation 7.55 and defining

D2n =
ai − (2n+ βwi)

2

qi
(7.58)

one obtains the recursion relations

C2n =
C2n−2

D2n
+
C2n+2

D2n
(7.59)

Numerical values for these coefficients can be deduced by truncating the continued frac-
tions after the desired accuracy is reached. In the case ai, qi << 1, the lowest-order approx-
imation to the ion trajectory corresponds to C±4 = 0. In this case one gets for n = 0

C0 =
C−2

D0
+
C2

D0
(7.60)

and for n = 1

C2 =
C0

D2
, C−2 =

C0

D−2
(7.61)

which combined together give

D0 =
1

D−2
+

1

D2
(7.62)

This equation translates into the following equation for βwi

ai − βwi

2

qi
= qi

[

1

ai − (βwi − 2)
2 +

1

ai − (βwi + 2)
2

]

(7.63)

which, for 4≫ ai, 4βwi , βwi

2, yields

βwi ≃
√

ai +
q2i
2

(7.64)

Note that under this approximation C2 = C−2 ≃ −qi/4C0. Therefore we have

wi (ξ) = 2A

+1
∑

n=−1

C2ncos [(2n+ βwi) ξ]

= 2A {C0cos (βwiξ) + C2cos [(2 + βwi) ξ] + C2cos [(−2 + βwi) ξ] }

≃ 2AC0cos (βwiξ)

{

1 +
2C2

C0
cos (2ξ)

}

= 2AC0cos (βwiξ) {1 +D0cos (2ξ) }

= 2AC0cos (ωit)
{

1− qi
2
cos (Ωt)

}

(7.65)
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where

ωi =

√

ai +
q2i
2

Ω

2
≡ βwi

Ω

2
(7.66)

In essence, this is the motion of an oscillator of frequency ωi whose amplitude is modu-
lated with the trap’s driving frequency Ω (the driven excursions are 180◦ out of phase with
the driving field and a factor qi/2 smaller than the amplitude of the secular motion). Since
it is assumed that βwi ≪ 1, the oscillation at ωi, referred to as the secular motion or macro-
motion, is slow compared with the superimposed fast micromotion at Ω. For typical exper-
imental parameters (Ω = 100 MHz, U0 = 1 V, V0 = 500 V, d0 = 0.001 m, m = 200 · 10−27

Kg), we have q2r/2 = 0.0032 and ar = 0.00032 such that βr =
√

ar + q2r/2 ≃ qr/
√
2 and

βz =
√

az + q2z/2 ≃
√
2qr, hence ωr ≃ ωz/2. Most often, in order to observe ion spectra in

the Lamb-Dicke regime (see below) as well as to implement laser cooling techniques, it is
desirable to have a very small trap, where the single ion is strongly confined and the secular
frequencies are elevated. For a given mass to charge ratio, this can be accomplished either
by increasing V0 or by reducing d0. In the former case, an obvious limitation is represented
by the material used for the electrodes (a too large value of V0 will trigger unwanted electric
sparks). In the latter case, the difficulty in machining miniature traps restricts the d0 value
to around ∼ 200 µm. As a consequence, secular frequencies on the order of tens of MHz
have been reported so far.

In conclusion, a few features are worth being highlighted:

• By virtue of the large difference in the frequencies ωi and Ω, the slow motion at frequency
ωi can be safely considered as separate, while time averaging over the fast oscillation at
Ω. For q2i /2≫ ai and r20 = 2z20 , this corresponds to the time-averaged pseudo-potentials
of depth Dz and Dr given by

eDz =
1

2
mω2

i z
2
0 ⇒ Dz =

eV 2
0

4mz20Ω
2

(7.67)

eDr =
1

2
mω2

i r
2
0 ⇒ Dr =

eV 2
0

4mr20Ω
2
=

eV 2
0

8mz20Ω
2

(7.68)

• Equation 7.56 shows that the motional spectrum contains the frequencies (βwi +2n)Ω/2,
with n being an integer (fundamental frequencies correspond to n = 0). This can be
experimentally demonstrated by exciting a given motional frequency by an additional
(weak) radio-frequency (rf) field applied to the electrodes: at resonance, some ions may
leave the trap, providing a signal proportional to the number of trapped ions.

• When trying to maximize the density of trapped ions, one naturally tends to increase
the potential depth Di so as to confine the highest number of particles. Actually, the
oscillation amplitudes correspondingly increase, which results in an augmented ion loss
for higher qi in a trap of a given size. Thus, a compromise must be found.

• Ideally, once stored in a Paul trap, the ions would remain there for an infinitely long time.
In practice, the lifetime is set by collisions with the neutral background molecules. Thus,
operation in an ultrahigh vacuum is necessary. At pressures around 10−8 Pa, storage times
of many hours are routinely obtained, whereas lifetimes of many months can be achieved at
extremely low pressures (10−14 Pa), as realized by cryopumping. Under certain conditions,
however, the storage time can benefit from higher background pressures. Indeed, it has
been found that, when the mass of the ion exceeds that of the neutral atom/molecule,
ion-neutral collisions tend to damp the ion motion, thus increasing the lifetime in the
trap.
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• While in thermal equilibrium at high temperatures, a cloud of trapped ions is described
by a Gaussian density distribution (averaged over a period of the micromotion), as the
temperature is gradually lowered, the cloud diameter contracts until a homogeneously
charged sphere is obtained. As a rule of thumb, the average kinetic energy of the confined
ions amounts to 1/10 of the potential depth.

• Thus far we have ignored the strong interaction between the ions arising from their mutual
Coulomb repulsion. If the ions’ kinetic energies are small compared to the energy of such
interaction, then the particles will be arranged in quasi-crystalline structures. For example,
a few ions may be aligned in the nodal line of a linear quadrupole trap (see below), just
like pearls on a string. For higher numbers of ions (up to 105), instead, more complex
structures like helices can take place. Also, due to the collective oscillations of the ions,
new motional frequencies appear [65].

• Another significant issue for single-ion traps is the displacement of the equilibrium point of
the confined ion away from the trapping node. This may be caused by stray static electric
fields of varied origin as well as by misalignment of the trap electrodes. As a consequence,
since the micromotion extent increases with the distance from the field node, unpleasant
Doppler and Stark shifts can occur. This effect can be minimized by applying proper
trim voltages to additional static compensation electrodes, which are situated close to the
main trap structure, so as to bring the ion location back to the nodal point [700]. The
most effective method to monitor the micromotion level consists of measuring the Doppler
modulation of the trapped-ion absorption rate [702]. Indeed, this latter manifests itself in
a modulation of the observed fluorescence inasmuch as the radiative lifetime for the upper
level of the cooling transition is much shorter than the rf period. As a result, a strong
correlation exists between the detected photon arrival time (PAT) and the rf drive phase,
which can be exploited for very precise adjustments of the ion position: in practice, this
is accomplished by measuring the change in the modulation amplitude and phase of the
PAT relative to the trap drive rf potential as the trim potential is tuned.

7.8.1.1 Linear Paul traps

Although the quadrupolar hyperbolic configuration provides the best approximation to a
harmonic potential over a wide trap volume, this structure is not well suited for easy viewing
of single-ion fluorescence or for the injection of laser excitation beams [700]. For this reason,
most single-ion traps use a different electrode geometry. Among the various configurations,
a very useful one is the linear rf trap, shown schematically in Figure 7.27 [701]. Here, a
common rf potential is applied to the dark electrodes; the other electrodes are held at rf
ground through capacitors connected to ground. The lower right portion of the figure shows
the x− y electric fields from the applied rf potential at an instant when the rf potential is
positive relative to the ground. A static electric potential well is created (for positive ions)
along the z axis by applying a positive potential to the outer segments (gray) relative to
the center segments (white). This design is characterized by the presence of an approximate
field nodal line along the central axis. Then, if the axial potential is rendered pretty weak
compared to the x, y ones, two or more confined ions will line up along the trap axis (in
contrast with a conventional Paul trap, where only one ion can be free of micromotion,
as this condition only exists at the center of the trap). This can be useful for addressing
individual ions with laser beams, each having very low kinetic energy. While this scheme
has been successfully implemented for microwave transitions, where localization to a length-
scale below that of the incident microwave radiation is easily obtained, an adequate degree
of confinement and cooling is much more stringent in the case of optical transitions.
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FIGURE 7.27
Schematic of a linear rf Paul trap. (Courtesy of [701].)

7.8.2 Penning traps

The Penning trap makes use of the same electrode arrangement as in the rf Paul trap, but it
only exploits static electric and magnetic fields [703]. The first component is a homogeneous
magnetic field B along the z axis, which forces a particle of charge e and massm on a circular
orbit (around the z axis) by the Lorentz force. This two-dimensional harmonic motion (radial
trapping) is referred to as cyclotron motion and has a frequency of ωc = |eB|/m. However,
this magnetic field does not confine the ions along the z axis. Then, an additional electric
quadrupole field is superimposed; it is applied to the ring with respect to the endcaps and
is described by the potential

U = U0
2z2 − r2

2d20
(7.69)

that is Equation 7.50 with V0 = 0 (recall that the radial coordinate r must appear in
the potential as it does for the potential to satisfy the Laplace equation: ∇2U = 0). In this
way, the axial z motion is a bound, harmonic oscillation provided that eU0 > 0. As a result,
the ions follow a complex orbit composed of three independent harmonic eigenmotions. The
classical equations of motion of the ion are

m
d2r

dt2
= eE (r) + e

dr

dt
×B (7.70)

that is
mẍ = e (Ex + ẏB) (7.71)

mÿ = e (Ey − ẋB) (7.72)

mz̈ = eEz (7.73)
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FIGURE 7.28
Cross section through a Penning trap (a) with the resulting motion of the ions (b). Here
fz ≡ ωz, f− ≡ ωm, and f+ ≡ ω′

c. (Courtesy of [704].)

where E ≡ −∇U ≡ (U0/d
2
0) (x, y,−2z). The axial motion is decoupled from the mag-

netic field. It is a simple harmonic motion

z̈ + ω2
zz = 0 (7.74)

with frequency

ω2
z =

2eU0

md20
(7.75)

Typically, the quadrupole potential represents a relatively weak addition (relative to the
magnetic field) in the sense that ωz ≪ ωc. For the x− y components we have

ẍ =
ω2
z

2
x+ ωcẏ (7.76)

ÿ =
ω2
z

2
y − ωcẋ (7.77)
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By adding the first of the two above equations and i times the second one, and using
the complex quantity w = x+ iy we have

ẅ =
ω2
z

2
w − iωcẇ (7.78)

which can be solved by w = w0e
−iωt, yielding the quadratic equation

ω2 − ωωc +
ω2
z

2
= 0 (7.79)

with the real solutions

ωm =
ωc
2
−
√

ω2
c

4
− ω2

z

2
magnetron frequency (7.80)

ω′
c =

ωc
2

+

√

ω2
c

4
− ω2

z

2
reduced cyclotron frequency (7.81)

Thus the radial motion is the epicyclic superposition of two uniform circular motions.
For the above roots to be real, the condition ω2

c > 2ω2
z must be satisfied, which is equivalent

to |e|B2/m > 4|U0|/d20. It is worth noting that the sum of these two radial frequencies
corresponds exactly to the free cyclotron frequency ωc = ωm+ω′

c, while ω2
c = ω′

c
2
+ω2

m+ω2
z .

Both relations can be used to determine the cyclotron frequency. Typical experimental
values are a few Volt for U0 and a few Tesla for B, r0 and z0 being on the order of a few mm
(as for Paul traps); for U0 = 5 V, d0 = 1 cm, B = 1 T, and m = 200 · 10−27, the following
typical values are found for the various frequencies: ωc = 800 kHz, ωz = 283 kHz, ωm = 26
kHz, and ω′

c = 774 kHz. In other words, for normal trapping parameters, it is always true
that ωm ≪ ωz ≪ ω′

c ≃ ωc. There are distinct differences between the magnetron motion
and the cyclotron and the axial motion. The latter represents a harmonic oscillation and
consequently the energy is swapped between its kinetic and potential part. Due to the high
velocity and the small radius, the energy of the cyclotron motion is mainly a kinetic one,
whereas the nature of the magnetron motion is essentially potential energy.

7.8.3 Trap loading

Since particles can be confined in a trap only if their kinetic energy is lower than the po-
tential well barriers, injection of defined-energy ions into a fixed-height trap is not possible.
Thus, the simplest loading technique consists of creating the ions inside the confining volume
by photon or electron ionization of neutral atoms [705]. However, this approach is hardly
applicable to low-abundance isotopes or antiparticles that are generated in accelerator fa-
cilities. In this case, within the time of the ions’ passage through the trap region, it is often
necessary to rapidly raise the potential barrier or, conversely, diminish the particles’ kinetic
energy by an effective cooling method [65].

7.8.4 Ion cooling techniques

The prime reason to cool trapped ions is to enhance their storage time. Indeed, during
the loading procedure, the ions are not created exactly at the trap center; thus, they gain
kinetic energy when falling towards it. Moreover, when produced by crossing an electron
beam with an atomic one, the ions are hot just after generation. Thus, without cooling, the
ions are readily lost as they can collide with other particles (e.g., background gas molecules)
and surpass the potential well [699]. Also, cooling is of utmost importance in quantum
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information processing and high resolution spectroscopy. In the former application, cooling
schemes are implemented to prepare the ion in its ground vibrational state before logic
operations are performed. In the latter case, Doppler effects are heavily suppressed; just
to give an idea, for a well depth of 20 eV, the mean kinetic energy of confined ions is
around ∼ 20/10 = 2 eV, whereupon the fractional frequency shift due to the second-order
Doppler effect for an ion of mass number 200 is on the order of ∆ν/ν = −(mv2/2)/(mc2) ≃
2eV/(200 · 0.94 GeV) ≃ 10−11, which is clearly unacceptable for a frequency standard.

There are various cooling schemes available. These include resistive cooling, buffer-gas
cooling, radiative cooling, laser cooling, and sympathetic cooling. For the first three meth-
ods the reader is referred to [705], whereas laser cooling and sympathetic cooling will be
discussed into a certain detail here.

7.8.4.1 Laser cooling

When dealing with laser cooling of trapped ions, two opposite regimes can be identified: the
heavy-particle and the fast-particle limit [699].

In the former, the spontaneous transition probability greatly exceeds the ion oscillation
frequency, such that laser cooling resembles that of a free particle: the lowest achievable
temperature is posed by the Doppler limit.

In the latter regime, where the opposite inequality relationship holds between the ion
oscillation frequency and the spontaneous transition probability, motional sidebands appear
in the emission spectrum. This gives rise to a different cooling mechanism called sideband
cooling: the ion energy can be progressively reduced by tuning the laser to one of the
lower sidebands. When such scheme is modified so as to become a two-photon process, the
so-called Raman sideband cooling technique is realized.

The three laser cooling schemes mentioned above (applicable to both ions trapped in
the Paul and Penning traps) are described in more detail in the following [699].

Laser cooling to the doppler limit

If the ion has a suitable energy-level structure, one can make use of the laser cooling tech-
niques developed for neutral atoms. As already shown, the lowest achievable temperature
using Doppler cooling is given as

Tmin =
~Γ

2kB
(7.82)

where Γ is the natural linewidth of the cooling transition (recall that, in order to reach
this temperature, the cooling laser must be detuned by half the linewidth below resonance:
∆ω = −Γ/2). Typical values for Tmin are in the mK range. In many cases, the kinetic energy
reduction accomplished by Doppler cooling is enough to depress second-order Doppler shifts
below the 10−17 level as well as to enter the Lamb-Dicke regime, where the ion motion
amplitude is below the wavelength of the probe laser.

Resolved sideband cooling

Being bound by a harmonic potential, the discrete energy levels of the ion are described as

E = ~ωi(
1

2
+ nωi) (7.83)

where nωi represents the vibrational quantum number and ωi is the vibrational oscilla-
tion frequency of the trapped ion. Next, let us denote with ω0 the rest frequency of the ion
cooling transition. Then, as viewed in the laboratory, the absorption and emission spectrum
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for an atom oscillating in its confining well has resolved components at ω0 and ω0 ±mωi
where m is a positive integer, provided that ωi ≫ Γ. Therefore, as shown in Figure 7.29,
a modified energy-level structure will originate for the ion, where each electronic level has
a discrete ladder of energies corresponding to different vibrational quantum numbers. Ob-
viously, such structure can only be observed if the laser irradiating the ion has a linewidth
smaller than the separation of the energy levels and if the recoil energy satisfies the same
condition. As a result, sideband cooling can be undertaken by tuning a laser to the first red
sideband such that

ωL = ω0 − ωi (7.84)

where ωL is the laser frequency and ω0 coincides with the difference in energy between
the ground and the first electronic excited state. In this way, the ion will be lifted up to the
first excited electronic state but lowered by one vibrational number; when the ion decays
back into the ground electronic state, the vibrational quantum number will be conserved:
this process diminishes the overall vibrational quantum number by one (the zero change
in the vibrational number can be understood in analogy with the Franck-Condon principle
for molecular transitions, where the strongest transition is the one that maximizes the
overlap between the initial and final wavefunction). By iteratively tuning the laser to the
red sideband, the ion is eventually optically pumped down to its ground vibrational state. In
other words, on average, each scattered photon reduces the ion vibrational quantum number
nωi by 1, such that 〈nωi〉 ≪ 1 is obtained and the particle spends most of its time in the
ground-state level of its confining potential. When 〈nωi〉 ≪ 1, T is no longer proportional
to 〈nωi〉 but depends logarithmically on 〈nωi〉

kBT =
~ωi

ln

(

1 +
1

〈nωi〉

) (7.85)

Such a cooling scheme was first demonstrated on a single Hg+ ion confined in a Paul trap
(Figure 7.30) with an oscillation frequency of ωi/2π = 2.96 MHz [706]. First, Doppler cooling
was performed by tuning a 194-nm laser onto the 2S1/2 →2 P1/2 transition. Then, resolved
sideband cooling was carried out. For this purpose, the 194-nm radiation was switched off
and the narrow 2S1/2 →2 D5/2 transition (Γ ∼ 1 Hz) was driven using a 281.5-nm laser
(note that the criterion ωi ≫ Γ is largely fulfilled). On the other hand, this also corresponds

FIGURE 7.29
Modified energy levels in the resolved sideband limit. (Adapted from [699].)
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FIGURE 7.30
(a) Optical transitions involved in the Hg II sideband cooling experiment. (b) Geometrical
arrangement of the laser beams, the 194-nm fluorescence being detected orthogonal to the
figure plane. Mirror M reflects (transmits) the 194-nm radiation (398-nm). (Courtesy of
[706].)

to a poor sideband scattering rate (on the order of six photons per second); to enhance this,
a 398-nm laser was employed in order to couple the 2D5/2 level to the 2P3/2 one. Only the y-
and z- degrees of freedom were cooled, where the values of 〈ny〉,〈nz〉 = 0.051 were reached.
The latter value was estimated by measuring the asymmetry in the absorption spectrum
(indeed, as 〈n〉 approaches zero, the lower sideband height is substantially reduced because
there is no vibrational energy level that it can couple to); then, the ratio of the amplitudes
of the lower to upper sidebands yields

〈nωi〉 =
1

√

1− SL
SU

− 1 (7.86)

where SL and SU represent the absorption strength on the lower and upper motional
sideband, respectively. With the value 〈nωi〉 = 0.051 Equation 7.85 returns a temperature
of the ion below 50 µK, corresponding to a situation where the ion is in the lowest level of
the trapping potential for about 95% of the time. More recently, a similar experiment was
performed using a single Ca+ ion in a Paul trap [707].

Raman sideband cooling

Unfortunately, the criterion ωi ≫ Γ is met only in very few ions. In all other cases, Raman
sideband cooling comes to the rescue. Here, a stimulated Raman transition between two
ground-state sublevels is exploited to compensate for the absence of narrow single-photon
transitions. To go into details, let us consider the system shown in Figure 7.31 whose levels
are labelled as |J, n〉, with J (n) representing the internal (vibrational) energy levels. Then,
initially in the |1, n〉 level, the ion is addressed with two laser beams whose frequencies are
ωL1 = ωR1 −∆ and ωL2 = ωR2 −∆+ ωi where ωR1 = ω0,n − ω1,n and ωR2 = ω0,n − ω2,n.
The difference ωL1 − ωL2 is such that, in each stimulated Raman transition, the ion is sent
into the |2, n − 1〉 level, ceding one vibrational quantum of energy. The cooling process is
then finalized by means of a third laser which addresses the transition between |2, n − 1〉
and the short-lived |aux〉 level. The resulting spontaneous Raman transition delivers the
ion to the |1, n − 1〉 level. Over many transitions, on average, the vibrational quantum
number is conserved by the character of the spontaneous Raman process. Therefore, by
iterating this process, the ion is optically pumped into the ground vibrational state. Raman
sideband cooling was first demonstrated by Monroe and co-workers in 1995 on a single Be+
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FIGURE 7.31
Illustration of the Raman sideband cooling scheme. (Adapted from [699].)

ion confined in a Paul trap, leading to the values 〈nx〉, 〈ny〉, 〈nz〉 =0.033, 0.022, 0.029 [708].

7.8.4.2 Sympathetic cooling

When laser cooling is hardly applicable due to, e.g., an unfavorable energy level structure,
one can resort to the so-called sympathetic cooling method. Here, the ion of interest is
cooled through collisions with an auxiliary species that is accessible to laser cooling. Orig-
inally carried out to cool different isotopes of the same ionic species (26Mg+ and 26Mg+

isotopes) by laser cooled 24Mg+ ions [709], sympathetic cooling has also been accomplished
between different species. In the first realization, 198Hg+ ions were sympathetically cooled
in a Penning trap by the use of laser cooled 9Be+ ions [710]. More recently, sympathetic
cooling of a single trapped 174Yb+ ion by a Bose-Einstein condensate of 87Rb was observed
[711].

7.8.5 Spectroscopy of trapped particles in the Lamb-Dicke regime

As first pointed out by Dicke, Doppler-free spectroscopy is feasible if the spatial excursions of
an atom are constrained to less than the wavelength λ of the probed transition [712]. While
in the rf and microwave domain such a Lamb-Dicke criterion is readily met by virtue of the
large radiation wavelengths, an extremely tight confinement of the particles is required at
shorter wavelengths, which most often introduces other perturbations that are harmful to
the line narrowing. In this frame, a happy haven is represented by ion traps where, simply
undergoing a harmonic motion, the particles are virtually constrained without disturbance.
For example, the Lamb-Dicke condition can be safely fulfilled in the optical domain for a
single, laser-cooled ion that is tightly confined in a miniature rf Paul trap (Coulomb repulsion
between ions makes it difficult, but not impossible, to meet the Lamb-Dicke criterion when
more than one ion is in the trap).

In order to better understand the spectral narrowing attainable by this method, let us
transform the electric field vector into the rest frame of the atom [713]

E(r(t), t) = E0 cos(ωt+ k · r(t) + φ) (7.87)

where |k| = 2π/λ. Now, if |r(t)| ≪ λ, then k · r(t) → 0 regardless of the relative
direction of motion. So, the atom begins to accumulate (lose) phase during the first half
of its cycle, but before gaining (losing) π radians and losing coherence with the field, it
reverses its direction and returns to the original phase setting. Hence, the only significant
response of the atomic system occurs at ω = ω0. Concerning the second-order Doppler shift,



512 Laser-based measurements for time and frequency domain applications

when the ion is laser-cooled to about 1 mK (that is near the Doppler-cooling limit for most
ions using a strongly allowed transition), it amounts to few parts in 1018. Moreover, since
the ion is confined in a region of nearly zero field, other shifts in the resonance frequency
owing to electric and magnetic components could be at the same level. In spite of these
nice features, however, the signal-to-noise ratio from a sample consisting of just one ion is
generally poor. To overcome this drawback, the so-called electron shelving technique (EST)
has been demonstrated [714]. Such a scheme can be understood as follows. Consider an ion
that has both a strongly allowed and a weakly allowed transition sharing the ground state
(see Figure 7.32). Next, suppose that, once trapped and cooled, the ion is initially in the
ground state; then, radiation at a frequency near the weak resonance is pulsed on, possibly
causing a transition to the long-lived upper level. After that, light with a frequency near
that of the strong transition is pulsed on. If the atom has made a transition in the previous
step, no fluorescence will be observed; otherwise, fluorescence will be observed at an easily
detectable level. Essentially, the idea is that detecting the presence or absence of fluorescence
from the strongly allowed transition (which can scatter as many as 108 photons per second)
is much more manageable than detecting the one photon that is eventually emitted when the
metastable state decays. More importantly, a transition with a narrow natural linewidth can
be detected with nearly unit efficiency by the presence or absence of the strong fluorescence.
In other words, the achievable signal-to-noise ratio is limited only by the quantum statistical
fluctuations in making the weak transition.

In the EST, the line profile of the clock transition is retrieved from the number of
quantum jumps detected in a given number of interrogation periods, as the probe laser
frequency is swept across the resonance. Stabilization against the reference transition is
then obtained by repeatedly stepping the probe laser frequency between the two estimated
half-intensity points and measuring the imbalance in the quantum jump rate; from such
imbalance a correction signal for the probe laser can also be derived [715].

With this powerful technique, J. Bergquist et al. were able to obtain the fully resolved
recoilless optical resonance and motional sidebands of the narrow S−D transition at λ = 282
nm on a single, laser-cooled 198Hg+ ion confined in a miniature rf Paul trap. Each single-
photon transition to the electric-quadrupole-allowed metastable D state was detected with
nearly unit efficiency by monitoring for the presence (no transition made) or absence (weak
transition made) of fluorescence from the strongly allowed S − P transition at 194 nm.
The fractional resolution of this spectrum already exceeded 3 · 10−11 [716]. More recently,
the spectral linewidth observed for this transition, limited by the frequency fluctuations in
the probe laser, was less than 80 Hz, corresponding to a fractional resolution of less than
10−13. Laser cooling to the zero-point energy of the trap’s harmonic well reduced the spatial
excursions of a trapped ion to less than 2.5 nm [706].

FIGURE 7.32
In the electron shelving technique, a single ion is detected by monitoring the fluorescence sig-
nal from the strong cooling transition. Each time the ion is excited to the upper (metastable)
state of the clock transition, the fluorescence disappears until the ion decays back to the
ground state. (Courtesy of [715].)
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7.9 Microwave atomic standards

Having finished this digression on cooling/trapping of atoms/ions, we now attack atomic
frequency standards. At first sight, these would appear exempt from the many factors that
afflict the performance of artifact-based standards, as the transition frequency is fixed, in
principle, solely by the atomic structure. While this is true to a great extent, the details of
the interaction between the atoms and the probe as well as the physics/electronics interplay
somehow influence the output frequency, thus misting the clear line of demarcation with a
frequency standard defined by an artifact [650].

7.9.1 Metrological properties of the active hydrogen maser

An example of an active atomic standard is provided by the Active Hydrogen Maser (AHM).
While the general working principle was already discussed in Chapter 4, here we focus on
more technical aspects as well as on the frequency accuracy and stability. In the following
we will neglect Passive Hydrogen Masers which are characterized by a poorer metrological
performance.

7.9.1.1 Maser design

A modern, high-performance (commercial) system can be schematically described as follows
[717]. First of all, molecular hydrogen is supplied (under electronic servo control) by a
compact storage bottle; molecules are then dissociated into atoms in a discharge bulb. The
atoms emerge from such source through a collimator represented by a small elongated hole.
Then, a magnetic state selector prepares an atomic beam in the proper quantum state
and directs it towards a Teflon-coated quartz storage bulb. The latter is surrounded by a
right cylindrical microwave cavity (working on the TE011 mode), resonant at the hydrogen
transition frequency, where the maser action is stimulated. The microwave signal from the
cavity is coupled (via a small loop connected with a coaxial cable) to a low-noise heterodyne
receiver (mixer + high-resolution frequency synthesizer) whose output is sent to a phase-
locked loop. This latter eventually locks a voltage controlled crystal oscillator (VCO) to
the maser output (Figure 7.33). To further enhance short-term stability, a higher-quality
crystal oscillator is also employed. Temperature-controlled multipliers, dividers and buffer
amplifiers provide several isolated outputs at standard frequencies. In order to minimize
systematic perturbations of the maser output frequency, some precautions must be taken:

• Sputter-ion pumps preserve high-vacuum conditions and remove the hydrogen in excess;

• The cavity is magnetically shielded and isolated from external temperature variations;

• The C-Field (i.e., the internal magnetic field) is controlled by means of an axial magnetic
field coil wound on the inside of the first shield;

• An automatic frequency control system is incorporated to hold the cavity at a constant
frequency relative to the hydrogen emission line (see below).

7.9.1.2 Frequency shifts

Generally, due to several effects, the actual frequency of a hydrogen maser does not coincide
exactly with that of the ground state splitting of the unperturbed hydrogen atom [65, 7, 718].
The first three contributions that we shall consider are common to all types of atomic
frequency standards, whereas the last three are specific to the hydrogen maser.



514 Laser-based measurements for time and frequency domain applications

Quartz Oscillator

Frequency
Synthesizer

Mixer

Active Maser

Low-Pass Filter

Phase Detector

Amplifier

Phase Detector

FIGURE 7.33
Block diagram of an active hydrogen maser. (Adapted from [3].)

Second order Zeeman effect (SOZE) - For weak magnetic fields, the clock transition
frequency exhibits a quadratic Zeeman effect

∆νB2 = 2.7730 · 10−1Hz
(

B

µT

)2

(7.88)

corresponding to a fractional shift of ∆νB2/ν0 ≃ 2 · 10−12 for a typical value of B =
0.1 µT. Frequency shifts induced by changes in the magnetic field within the storage bulb
are ordinarily controlled by employing multiple layers of permalloy. For better performance,
however, active compensation is needed. In one valuable approach, leakage of the external
magnetic field through the outer shielding layer is sensed by a magnetometer and feedback
is provided via a coil wound around the next inner layer. In practice, a fractional uncertainty
below 10−13 is obtained in the value of this SOZE shift.

Second order Doppler effect - The second order (SO) Doppler shift is given by

∆νSO
ν0

= − (3/2)kBT

mc2
(7.89)

where the numerator represents the average kinetic energy of the hydrogen atoms which
thermalize by impact at the storage cell wall temperature, T . For a typical operational
temperature T = 313 K, this shift amounts to −4.3·10−11 and keeping the bulb temperature
constant within 0.1 K leads to a fractional uncertainty of 1.4 · 10−14.

Cavity pulling - As already mentioned, cavity pulling occurs when the microwave
cavity eigenfrequency is not tuned exactly to the atomic resonance (see Equation 4.34). To
reduce this effect, hydrogen masers are equipped with one or another method of automatic
tuning, leading to an uncertainty less than 10−14 (see next section).

Wall shift - In an active maser, the e.m. field inside the resonant cavity induces in the
hydrogen atom a dipolar magnetic moment (DMM) which then maintains the e.m. field
itself. Collision with the storage bulb wall modifies the phase of the induced DMM. This
originates a frequency shift of the form ∆νw = K/D, where K is a constant depending on
the coating properties and the temperature and D is the bulb diameter. As an example, in
the case of FEP Teflon 120, at T = 313 K, we have K ≃ −0.4 Hz·cm; for D = 15 cm this
yields ∆νw/ν0 ≃ −2 · 10−11.
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Spin-exchange collisions - As already mentioned, collisions between hydrogen atoms
in the clock states cause both a frequency shift and a broadening of the atomic resonance.
In turn, such additional broadening may give rise to a frequency shift via the cavity pulling.
As we will see in a short while, suitable auto-tuning cavity methods can almost completely
compensate for these effects, thus reducing the residual spin-exchange incidence down to a
few times 10−13.

Magnetic-inhomogeneities relaxation - The magnetic field at the storage bulb may
contain undesired radial components. Accordingly, atoms moving through such a field may
experience a radiation spectrum at the frequency corresponding to transitions of the ∆mF =
±1 type. This induces relaxation among the populations of the energy levels and influences
the maser coherence. However, by properly designing the solenoid and the magnetic shields,
this kind of relaxation can be suppressed below the 10−13 level for B = 0.1 µT. A crucial
parameter is the size of the neck hole in the shields: the smaller it is, compatible with the
required pumping speed, the more one reduces the probability of magnetic-inhomogeneity
relaxation.

7.9.1.3 Automatic tuning of the resonant cavity

As already explained, a strict limitation is imposed on the cavity tuning frequency, if the
oscillation frequency has to stay constant. Whatever the adopted scheme, an error signal
is derived that is proportional to the detuning of the cavity relative to the value which
affords an oscillation frequency coinciding with the atomic transition one. Then, feedback
is provided by some transducer coupled to the cavity. In the following we only discuss the
cavity frequency-switching servo, which provides the best metrological performance [719].

Cavity frequency-switching servo

With reference to Figure 7.34a, let us denote with f0 the reference for the cavity servo,
namely the hydrogen emission line. The cavity frequency is switched continuously between
the two resonance values with a difference fw. If the cavity average frequency, fc, deviates
from f0, then a modulation voltage∆v is impressed on the maser output signal, which is next
sent to the servo electronics in order to remove the cavity frequency offset. The design of the
cavity frequency control system is shown in Figure 7.34b. The modulation period generator
(MPG) biases with a square-wave modulation voltage a varactor (i.e., a voltage-variable
capacitor diode) connected in series with a coupling loop within the maser cavity. This
produces the two frequencies between which the cavity is switched. A signal from the MPG
is also sent to the synchronous detector (demodulator and bandpass filter circuit). A second
coupling loop delivers the maser signal from the cavity to the receiver. Here, after proper
amplification and filtering, the modulation signal is detected and sent to the other input of
the demodulator. The output of the latter is an up or down control signal which is passed
to the cavity frequency control register. This is a digital integrator whose output voltage
biases a second varactor in another coupling loop, thus controlling the average frequency
of the cavity. Figure 7.34b also shows the servo which independently controls the cavity
temperature. The above cavity frequency-switching method gives three distinct advantages:
first, its operation needs no other stable frequency references; second, unlike conventional
automatic spin-exchange tuning, it requires no beam intensity switching, which preserves
the maser short term stability (phase noise); third, it enables the maser to deliver long-term
stability normally attributed to the most stable of cesium atomic standards.
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FIGURE 7.34
Principle and system block diagram of cavity frequency-switching servo. (Adapted from
[719].)

7.9.1.4 Frequency stability

The frequency instability of an active hydrogen maser, as characterized by the Allan de-
viation, exhibits distinct trends for different sampling times τ [65, 7]. For τ < 0.1 s, it is
basically determined by that of the quartz oscillator servo-controlled by the atomic reso-
nance. The short-term instability (between 0.1 and 10 s) can be described by a 1/τ behavior,
whereas the medium-term one (for τ greater than about 10 s) is well represented by a 1/

√
τ

dependency. For longer times (between 1000 and 10000 seconds), the Allan deviation reaches
a flicker floor (below the 10−15 level). After that, primarily due to the cavity drift, the fre-
quency instability rises again. Both the flicker-floor level and the subsequent increase are
significantly improved by the cavity frequency-switching method discussed above.

The medium-term instability basically originates from the perturbation induced by the
thermal radiation field on the e.m. field built up by the stimulated emission. Since such dis-
turbance contributes with random phase to the excited mode of the resonator, the resulting
frequency noise is white and the corresponding Allan deviation is given by

σy(τ) =
1

Qat

√

kBT

2Pat

1√
τ

(7.90)

where Qat is the quality factor of the atomic resonance and Pat the power dissipated in
the cavity.

In the short-term regime, additional white phase noise, mainly arising from fluctuations
in the resonator length and in the phase of the electronic circuit (the amplifier above all),
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FIGURE 7.35
Frequency stability plot of a high-performance, commercial active hydrogen maser with
auxiliary output generator [717].

contributes to the signal. The associated Allan deviation can be expressed as

σy(τ) =

√

3kBTfh
π2ν20Pat

(

1 + F
Pat
Pr

)

1

τ
(7.91)

where Pr is the power received by the amplifier, F the noise factor of the latter, and
the cut-off frequency fh defines the bandwidth of the equipment employed to measure the
frequency fluctuations.

The Allan deviation of a high-performance, commercial active hydrogen maser (AHM)
is shown in Figure 7.35. By virtue of their excellent stability for periods from about 10 s to
a day, AHMs are generally used as so-called flywheels for Cs cold-atom fountains (see next
section).

7.9.1.5 Cryogenic hydrogen masers

Since both the short- and medium-term frequency instabilities increase with the temper-
ature, several efforts have been made to cool the resonant cavity down to few Kelvin [7].
A further motivation has been provided by the observation that recombination and relax-
ation of the hydrogen atom are strongly lessened on a sub-Kelvin helium film. In the same
configuration, furthermore, while the hyperfine resonance broadening induced by collisions
between hydrogen atoms is three orders of magnitude lower than at room temperature (at
equal densities), the frequency shift due to collisions on the film is of the same order of mag-
nitude as in room-temperature-operated masers. This can notably enhance both the atomic
quality factor and the power dissipated in the cavity, which would contribute to reducing
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the maser frequency instability as well. On the basis of these considerations, a fractional
instability in the 10−18 range was predicted for a maser at 0.5 K. However, this assumed
that previous experimental findings and theoretical results would still apply at cryogenic
temperatures. Unfortunately, this did not prove true. First, at 0.5 K, the helium pressure
causes a drastic reduction in the mean free path of the hydrogen atoms (down to 1 cm);
as a consequence, the atoms no longer average out the spatial variations in the magnetic
fields. Second, the relative velocities of the hydrogen atoms are smaller at low temperatures,
which increases the collision time between the atoms themselves, thus leading to additional
frequency shifts. These problems, in conjunction with the technical hurdles encountered to
practically implement cryogenic masers, have relegated their use almost exclusively to basic
research [720, 721, 7].

7.9.2 Cesium clocks

Several properties made cesium a good choice as the atomic resonance source for a primary
frequency standard [6, 5]. Similar to mercury, cesium is a soft, silvery-white ductile metal
that becomes a liquid at about 28.4 ◦C. Being fairly heavy (133 amu), cesium atoms move
at a relatively slow speed (about 130 m/s at room temperature); this allows cesium atoms
to stay in the interaction zone longer than hydrogen atoms, for example, which travel at
a speed of about 1600 m/s at room temperature. Cesium also possesses a relatively high
hyperfine frequency (9.2 GHz) when compared to rubidium (6.8 GHz) and hydrogen (1.4
GHz). The only stable (natural abundance 100%) isotope 133Cs has a nuclear spin I = 7/2
which, combined with the total spin J = 1/2 of the electron shell, gives rise to the two
hyperfine states F = I+J = 4 and F = I−J = 3. In a magnetic field B, these split into 16
components (Figure 7.36). The Cs clock utilizes the transition with the lowest sensitivity to
magnetic fields |F = 4,mF= 0〉 ≡ |4, 0〉 ↔ |F = 3,mF= 0〉 ≡ |3, 0〉. The frequency of the
corresponding levels is given by the Breit-Rabi formula [163]

ν|F=I± 1
2
,mF 〉 =

−ν0
2 (2I + 1)

+
µBgImFB

h
± ν0

2

√

1 +
4mFx

(2I + 1)
+ x2 (7.92)

with

x =
(gJ − gI)µBB

hν0
(7.93)

gJ ≃ 2 and gI ≃ −0.0004 being the appropriate fine structure Landé factor and the
nuclear g-factor, respectively. From this, one can see that the |F = 4,mF= 0〉 state is a
low-field-seeking (lfs) state, while the F = 3,mF= 0〉 one is a high-field-seeking (hfs) state.
Then, the frequency separation between such levels is given by

∆ν|4,0〉↔|3,0〉(B) ≃ ν0 +
ν0
2
x2

= ν0 + 4.2745 · 10−2 Hz

(

B

µT

)2

(7.94)

where ν0 (9192631770 Hz) is the hyperfine separation in zero field between the states
F = I + 1/2 and F = I − 1/2 (Figure 7.37).

7.9.2.1 Cesium-beam frequency standards

Figure 7.38 schematically illustrates the setup for a cesium beam frequency standard, which
can be traced back to the seminal work by Rabi and Ramsey [6, 722, 65]. The atoms effuse
into a high vacuum chamber through a nozzle from an oven, heated to a temperature of
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FIGURE 7.36
Schematic diagram of the cesium clock transition. (Adapted from [6].)

about 100 ◦C or higher. The small energy separation between the F = 3 and F = 4
states implies that such levels are about equally populated in the thermal beam. In the
state-preparation region, an inhomogeneous field, generated by a Stern-Gerlach magnet,
spatially separates atoms in the various mF states, and atoms in one of the ground-state
levels (|3, 0〉 or |4, 0〉) are directed towards the Ramsey cavity. However, due to the velocity
spread in the atomic beam, this separation is imperfect, so some atoms in other mF states
are mixed in with the ground-state atoms that go through the cavity. Obviously, this state-

FIGURE 7.37
Frequency splitting for the |4, 0〉 (upper curve) and |3, 0〉 (lower curve) states in 133Cs. The
transition frequency between these two states is used to define the second. The frequency
splittings are defined here as ν(|4, 0〉, B)−ν(|4, 0〉, B = 0) and ν(|3, 0〉, B)−ν(|3, 0〉, B = 0).
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FIGURE 7.38
Schematic setup of an early cesium beam frequency standard. (Adapted from [6].)

preparation method entails the rejection of most of the atoms entering the system. While
inside the Ramsey cavity, the cesium beam is exposed to the output signal from a quartz-
based microwave synthesizer whose frequency is tuned to the desired atomic resonance
(ν0 = 9192631770 Hz). In this way, some of the atoms will change their magnetic state. In
the state-detection region, a second, identical Stern-Gerlach magnet is employed to channel
to a hot-wire (Langmuir-Taylor type) detector only those atoms that have been stimulated
by the microwave field to the other ground, mF = 0 level. Then, the central feature in the
Ramsey fringe pattern, with its maximum at ν0, is used to stabilize the VCXO frequency
against the atomic transition one. For this purpose, the signal from the detector is sent to
a servo feedback circuit which steers the quartz oscillator frequency so as to maximize the
number of atoms reaching the detector itself. Finally, standard output frequencies, such as 1
Hz, 5 MHz, and 10 MHz, are derived from the locked quartz oscillator and used as reference
signals.

Inside the Ramsey cavity, a constant magnetic field (denoted as C field) is applied
to separate energetically the otherwise degenerate magnetic sub-levels, thus allowing the
selective excitation of the clock transition. It is worth pointing out that, in order to excite
the ∆mF = 0 magnetic dipole transition, the Ramsey field must oscillate parallel to the
C field axis (so as to have zero component of angular momentum along it), which fixes
the mutual orientation of the microwave cavity and the coils generating the C field. Figure
7.39 shows the typical arrangement in a primary laboratory standard. Concerning the C
field value, it has to be large enough to isolate the clock transition from the other ones;
however, for a larger value, the clock frequency is affected to a bigger extent by fluctuations
in the magnetic field itself: typically, a value in the µT range is used. In addition, due to
the dependence of the clock-transition frequency on the magnetic field, efficient shielding
against the ambient magnetic field (and its associated fluctuations) is also implemented.
Furthermore, as a consequence of the second-order Zeeman effect experienced by the atoms
in the C field region, the center frequency of the Ramsey feature generally deviates from
the unperturbed transition frequency. Thus, to guarantee that the VCXO output frequency
represents the exact SI value, the value of the applied C field must be accurately known.

Different thermal-cesium-beam devices were developed over an approximate 40-year pe-
riod (1959-1998) and served as national primary frequency standards. Based on this design,
Cs atomic clocks are also commercially available from several manufacturers. One of the
most significant improvements made to thermal beam frequency standards consisted of us-
ing narrow-linewidth lasers for state selection and detection, thus replacing the magnets and
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C field
Cs beam

FIGURE 7.39
Cross section of a typical Ramsey resonator showing the C field (generated by a solenoid)
and the magnetic field lines of the standing rf wave. (Adapted from [65].)

the hot-wire detector found in the earlier standards. Indeed, using lasers in place of magnets
offers several distinct advantages. First, instead of merely filtering out atoms that are in the
wrong energy state, as it happens in magnetic selection, the lasers optically pump as many
atoms as possible into the desired energy state, which generates a much stronger signal. An
example of such improved configuration is represented by the NIST-7 standard, now resid-
ing in the NIST museum in Boulder. In spite of the reduced Ramsey cavity length (just 155
cm) and the not so narrow resonance width (65 Hz), NIST-7 eventually reached an accuracy
of 5 · 10−15 (below a nanosecond per day), nearly 20 times better than its predecessor. In
the most widely adopted approach, as illustrated in Figure 7.40, 852.355-nm-wavelength
laser radiation is tuned to excite atoms from the F = 4 to the F ′ = 3 state. After about 30
ns, these excited atoms decay back (by spontaneous emission) into the F = 4 and F = 3
hyperfine-split ground states; since only atoms in the F = 4 state are excited repeatedly,
after a few cycles, all population is optically pumped into the F = 3 state. Moreover, if the
configuration shown in Figure 7.41 is implemented, where the optical-pumping beam is per-
pendicular to the atomic one, then the excitation is not velocity selective. As opposed to the
restricted angle of acceptance in the magnetic selector, this gives rise to an atomic beam that
has a higher number of atoms and is more homogeneous spatially. Finally, the absence of
intense magnetic gradients associated with the Stern-Gerlach selectors, strongly suppresses
Majorana transitions. At the output of the Ramsey cavity, atoms in the F = 4 state can be
detected by monitoring the fluorescence signal originating from the F = 4 → F ′ = 5 laser
excitation and the subsequent spontaneous decay. By virtue of the quantum mechanical
selection rule ∆F = 0,±1, this is a cycling transition (i.e. atoms excited to the F ′ = 5 level
can decay only back to the F = 4 state), so that the excitation-followed-by-emission process
can take place many times. As a result, even for a low detection probability, a fair number
of fluorescence photons is readily obtained, thus enabling to detect virtually each excited
atom. A drawback related to optically-pumped frequency standards may be represented by
the presence of spurious light from the pumping/detection region along the interrogation
path of the atomic beam. Via the ac Stark effect, such radiation can introduce a light shift,
which is experimentally investigated by changing the laser power.

The various sources of frequency shift in Cs standards will be discussed directly in the
frame of fountain-based ones.

7.9.2.2 Cesium fountain clocks

The short-term stability of NIST-7 was typically σy(τ) = 7 · 10−13τ−1/2, meaning that fre-
quency measurements with uncertainties near 10−15 (one standard deviation) could be made
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FIGURE 7.40
Optical pumping for state preparation in a Cs atomic clock.

in about 10 hours. As mentioned above, the central spectral feature in the Ramsey pattern
had a linewidth ∆ν of about 65 Hz corresponding to Qat ≡ ν0/∆ν ≃ 1.5 ·108. However, the
performance of optically-pumped thermal-beam standards was still fundamentally limited
by the short interaction time (about 10 ms) resulting from the high velocity of the cesium
atoms. First introduced by Zacharias in the 1950’s, the concept of a fountain standard
aimed precisely at increasing the interaction time. The original idea was to implement the
usual Ramsey’s two-pulse interaction scheme in a vertical Cs beam standard with just one
Ramsey zone [6]. In such a configuration, slow atoms from the Cs oven would go through the
interaction zone while travelling upward, stop and invert their direction under the gravity
influence, and eventually go through the same interaction zone while travelling downward.

Laser 1

Laser 2

Preparation laser beam

Solenoid

C field

Detection laser beam

Ramsey cavity

Cs oven IICs oven I

FIGURE 7.41
Setup of a Cs clock with optical state selection and detection. (Adapted from [65].)
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With a ballistic flight of only a meter upwards, the interaction time would be enhanced
to nearly 1 s, corresponding to a very narrow Ramsey resonance (<1 Hz). Unfortunately,
Zacharias’ device did not work. Actually, all of the slow atoms were scattered out of the
beam by the fast atoms that overtook them. About thirty years later, Zacharias’ prema-
ture intuition was revived by Steven Chu at Stanford University. As we will see in a short
while, application of the laser cooling/trapping techniques discussed in previous sections
played a crucial role to overcome the mentioned difficulties. Chu’s group built fountains
first with sodium and then with cesium atoms, although neither device was employed as a
primary frequency standard. Researchers at the Bureau National de Metrologie - Systemes
de Reference Temps Espace (BNM-SYRTE) in Paris later realized the first fountain-based
primary frequency standard. Since then, several other metrology laboratories worldwide
have constructed laser-cooled Cs fountain standards.

Figure 7.42 shows schematically the key elements of fountain standards [723, 6, 163, 65].
Four main tasks must be accomplished on the atoms:

1. They must be cooled and stored in a source, and then ejected upwards;

2. They must be optically pumped into the lower of the two ground-state hyperfine
substates (F = 4);

3. They must frankly trace their vertical trajectories in a weak uniform magnetic
field (the C field), interacting with the Ramsey field only at the beginning and
end of their flight;

4. Population in each of the two hyperfine sublevels (F = 4 and F = 3) must be
monitored to derive the frequency stabilization signal.

The first two task are performed in the laser-cooled source, while the phase-coherent Ramsey
excitation is carried out sequentially in time, as the atoms go through the same microwave
cavity on their way upwards and then downwards. Finally, the transition probability mea-
surement is accomplished optically hinging on the detection of resonance fluorescence from
the cycling F = 4 ↔ F ′ = 5 transition. The entire fountain cycle takes around 1 s. In the
following, a more detailed description is given.

In the cold-atom source, six independent laser beams are used to form either a MOT or
optical molasses (OM), in which Cs atoms from a ≈10−8-torr-pressure vapor are captured
and cooled. When the starting point is a MOT, the quadrupole field is switched off after
few hundreds of milliseconds, giving way to a subsequent OM stage where the atoms are
further cooled. Conversely, when starting directly with an OM, the lin⊥lin polarization
configuration is used. This reduces the number of cooled atoms by roughly a factor of ten,
but gives three significant advantages: first, as a result of the increased size, the atomic cloud
is less dense, which considerably reduces the collisional frequency shift; second, a larger
cloud realizes a more efficient filling of the microwave cavity aperture, which originates
a more homogeneous trajectory distribution thus improving compensation of transverse
cavity phase gradients; third, in contrast to MOTs, the atomic cloud size is independent on
the number of loaded atoms, which strongly simplifies the determination of the collisional
frequency shift. After the MOT/OM stage, the atomic cloud is launched upward at 3-4 m/s.
This is conveniently accomplished in a moving molasses where the frequency ν1 (ν2) of the
downward (upward) pointing vertical laser beam is red(blue)-detuned by δν with respect
to the frequency ν utilized to cool the atoms in the OM. More in detail, by denoting with
z the upward direction, the superposition of two counter-propagating waves takes the form

E (z, t) = E0e
i[(ω+δω)t−kz] + E0e

i[(ω−δω)t+kz]

= 2E0e
iωtcos (δωt− kz) = 2E0e

iωt cos(2πδνt− 2πz/λ) (7.95)
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FIGURE 7.42
Simplified setup of an atomic fountain clock. (Courtesy of [724].)

whereupon the atoms move upwards with the speed of the phase fronts given by v =
z/t = λ · δν. During this launch, an optimized polarization-gradient cooling scheme is also
carried out, where the intensity of the cooling lasers is ramped down within a millisecond to
about 0.5 mW·cm−2, accompanied by a simultaneous increase of the detuning (10Γ− 12Γ).
Summarizing, in typically 500 ms, 105-109 atoms are collected, launched upwards and cooled
down to below 1 µK. Then, the laser light is completely extinguished to avoid disturbing
the cesium atoms along their ballistic-flight path. The ball of launched atoms (about 1 cm
in diameter) is almost exclusively in the F = 4 ground state, but all mF sublevels are
populated. State selection is then performed in a microwave state-preparation cavity by use
of a π-pulse at 9.192 GHz which drives the |4, 0〉 → |3, 0〉 transition, followed by a short
optical blast which removes the other F = 4 atoms. Then, the remaining Cs atoms, all in
the |3, 0〉 state, enter a cylindrical TE011 microwave cavity. The latter is typically made of
copper with a Q of ≃ 10000 and tuned to 9.192 GHz. In passing up through such cavity, the
atoms experience a first π/2 pulse. After reaching apogee about 1 m above the microwave
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cavity, the atomic clouds begins to fall due to gravity. On the way down, the atoms go
through the cavity a second time (about 0.5 s after their first passage) and experience a
second Ramsey π/2 pulse.

The detection region is generally located above the cooling one. The population N in
each of the |3, 0〉 and |4, 0〉 states is measured according to the following steps:

• In their fall, the atoms cross a transverse standing wave formed by retro-reflecting on
a mirror a σ+-polarized, ≃1-mW/cm2-intensity probe beam, typically tuned half a nat-
ural linewidth below the (6S1/2 F = 4) −→ (6P3/2 F

′ = 5) cycling transition. In such
a standing-wave configuration, unidirectional light pressure is suppressed, which avoids
accelerating the atoms. The resulting fluorescence-light pulse (a few milliseconds of dura-
tion) is recorded by a low-noise photodiode whose time-integrated signal is proportional
to the population in the |F = 4,mF= 0〉 state. A collection efficiency of about 0.8% is
typically realized, corresponding to a detection of few hundred photons per atom;

• Then, these atoms are pushed away by the radiation pressure of the travelling wave that
is realized by blocking the retro-reflected probe beam;

• After few ms, atoms in the |F = 3,mF= 0〉 state cross two superimposed laser beams. The
first one, resonant with the (6S1/2 F = 3) −→ (6P3/2 F

′ = 4) transition, rapidly pumps
the atoms into the F = 4 state. Then, the second beam, having the same parameters as
the aforementioned probe beam, gives rises to a second fluorescence pulse which, detected
by a second photodiode, now yields the population in the |F = 3,mF= 0〉 state.

Thus, in each fountain cycle, the signals from the two photodetectors are combined to yield
the ratio

p ∝ N (F = 4)

N (F = 3) +N (F = 4)
(7.96)

Being normalised to the total number of atoms, such signal p is largely independent
of shot-to-shot fluctuations in the atom number. It is used for the frequency stabilization
according to the following procedure. The synthesizer output frequency, feeding the Ramsey
cavity, is square-wave modulated from shot to shot of the fountain cycle, such that the
atoms are probed alternately on each side of the central Ramsey fringe. The resulting two
transition probabilities, pleft and pright, are then compared to each other. If pleft 6= pright,
then correction is applied to the synthesizer frequency. This gives the frequency deviation of
the fountain relative to reference. A typical Ramsey pattern for NIST-F1 is shown in Figure
7.43, where the upper frame corresponds to the envelope while the lower one displays an
expanded section around the central Ramsey fringe. The linewidth of the latter is around
1 Hz corresponding to Qat ≃ 1010. It is worth noting that the large number of fringes
originates from the narrower velocity distribution.

We close this section with a few technical considerations:

• In order to depress the extent of cold-atom loss via collisions with background gas as well
as the degree of detected stray fluorescence, pressure must be kept below 10−10 Torr in
the microwave, free-flight and detection regions;

• A highly homogeneous C field (defining the quantization axis) of about 1 mG is needed;
this is accomplished by means of a solenoid plus a set of compensation coils which surround
the microwave and free-flight region. Environmental magnetic fluctuations are mitigated
by a first mu-metal layer, wrapped around the whole experiment, plus 3 extra layers
surrounding the free-flight zone. In addition, an active servo system, driving a set of coils
inside the outermost shield, is also implemented. As a result, the residual fluctuations in
the interrogation region are kept below 0.1 µG;
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FIGURE 7.43
Typical Ramsey pattern for an atomic fountain clock. (Courtesy of [722].)

• Commonly referred to as the local oscillator (LO), the interrogation field feeding the Ram-
sey cavity is synthesized by a low-phase-noise frequency chain. The ultimate metrological
performance of an atomic fountain is inherently related to the phase noise, spectral purity
and phase stability of this LO. With state-of-the-art (BVA) quartz oscillators, the typical
frequency-stability of a Cs fountain is limited to 10−13τ−1/2 (with τ being the averaging
time in seconds), which makes the achievement of the 10−16-accuracy goal a real chal-
lenge (actually, a single measurement would imply an averaging time of longer than one
week). This limitation was overcome by the realization of an advanced flywheel oscillator
consisting of an ultrastable cryogenic sapphire oscillator in conjunction with an H maser
[725]. Here, starting from the low phase noise 11.932-GHz output signal of the CSO, a 100-
MHz tunable signal was synthesized that was weakly phase-locked to the H-maser output
signal with a time constant of about 1000 s. This latter time value corresponded to the
intersection between the two Allan deviation trends (Figure 7.44). Then, by proper mul-
tiplication and mixing of the CSO frequency with the frequency of a synthesizer, the 9.2
GHz microwave signal for the interrogation was generated. Implementing this system as a
local oscillator for a Cs cold atom fountain, a record frequency stability of 1.6 ·10−14τ−1/2

was obtained. While providing a great improvement in the fountain short-term stability,
CSOs require unwieldy and expensive liquid helium refills approximately every 30 days;
also, at each refill, almost a day is needed to restore optimum performance of the CSO.
An alternative solution to ensure fully continuous operation would consist of employing a
pulsed-tube cryocooler. However, as already discussed in Section 7.5, another valuable op-
tion is represented by the utilization of an ultra-low-noise, optical-frequency-comb-based
microwave generator. Atomic fountains using such optically-derived flywheel oscillators
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FIGURE 7.44
Trend lines for the Allan deviation of the CSO and the H maser used to realize a flywheel
with superior performance. (Courtesy of [725].)

have already reached short-term stabilities in the medium-low 10−14τ−1/2 range [726],
limited by quantum projection noise (see next Section).

7.9.2.3 Uncertainty budget in a Cs fountain clock

Statistical uncertainties

Generally, the relevant noise contributions are adequately described by white-noise pro-
cesses, so that the Allan standard deviation σy(τ), proportional to τ−1/2, can be used for
a quantitative analysis. In a well-designed fountain clock, the dominant noise sources are
[724]:

1. Quantum projection noise - It originates from the alternate operation on the left
and right sides of the central Ramsey fringe, where the transition probability is
neither 0 nor 1. In fact, according to quantum mechanics, if an atomic system is
prepared in a linear superposition |ψ〉 = α |a〉 + β |b〉 of the two states |a〉 and
|b〉, except when α or β = 0, the outcome of a measurement indicating whether
the system is in |a〉 or |b〉 cannot be predicted with certainty (one can only state
that the probability of finding the system in |a〉 is |α|2 with |α|2 + |β|2 = 1) no
matter how accurately the state has been prepared. Such unavoidable source of
measurement fluctuations was named ”quantum projection noise”, as it can be
regarded as deriving from the random projection of the state vector onto one of
the states compatible with the measurement process [727];

2. Photon shot noise - This arises from the statistical detection of a high number of
photons per atom;

3. Electronic detection noise - It is intrinsic to the electronic detection process,
generally accomplished by a photodetector in conjunction with a transimpedance
amplifier;

4. Local oscillator noise - This stems from a down-conversion process of the LO
frequency-noise components due to the non-continuous probing of the atomic
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transition frequency. This is known as the Dick effect which can be understood
as follows [163]. Since the interrogation must of necessity be interrupted during
part of each measurement cycle, in this lapse, the LO servo loop receives no cor-
rective feedback signal, which implies that the control on the LO is discretely
periodic. This slow sampling rate aliases the high-frequency noise of the LO to
lower frequencies that are close to the signal, thus introducing spurious frequency
shifts in the standard. The extent of degradation depends on the specific inter-
rogation scheme and has been calculated for different systems and parameters
[728]. In most advanced frequency standards, the Dick effect represents a serious
issue for the ultimate achievable stability; for this reason, local oscillators must
be selected, whose noise properties match the adopted interrogation scheme. Of
course, the degradation of the stability due to the Dick effect decreases when
the duty cycle of interrogation time versus cycle time approaches 100%. This
means that a continuous-beam fountain clock would be practically immune from
the Dick effect. A continuous fountain poses, however, a number of technical and
experimental challenges [729].

Then, the Allan standard deviation of the relative frequency fluctuations y(t) for an
atomic fountain can be expressed as [724]

σy (τ) =
1

πQat

√

Tc
τ

√

1

Nat
+

1

Natǫcnph
+

2σ2
δN

N2
at

+ γ (7.97)

where one-to-one correspondence exists between the different terms under the square
root and the noise contributions listed above. Here τ is the measurement time (expressed
in s); Tc ≃ 1 s is the fountain cycle duration (τ ≫ Tc); Qat = ν0/∆ν ≃ 1 · 1010 is the
atomic quality factor (with ∆ν being the width of the Ramsey fringe and ν0 the Cs hyper-
fine frequency); Nat is the number of detected atoms; nph the average number of photons
scattered per atom; ǫc the photon collection efficiency; σδN represents the uncorrelated
rms fluctuations of the atom number per detection channel (incidentally, note that the fac-
tor 2 in the third term arises from the fact the number of atoms in the |F = 4,mF = 0〉
and |F = 3,mF = 0〉 the states are measured separately); γ is the contribution from the
interrogator oscillator. When detecting high numbers of photons per atom, using state-
of-the-art low-noise electronic components and employing a low-noise cryogenic sapphire
oscillator, the noise contributions respectively associated with the second, third and fourth
term can be neglected. In this case, the limit set by the quantum projection noise can be
reached. This was demonstrated in [730] where, by replacing the quartz oscillator with a
CSO, an instability of 4 · 10−14(τ/s)−1/2 range was achieved with Nat = 6 · 1015.

Systematic uncertainties

The frequency outputted by a fountain deviates from the unperturbed Cs transition fre-
quency (ν0 = 9192631770Hz) by the sum of all systematic shifts. By virtue of the symmetry
of the fountain geometry, the low velocities of the atoms, and the narrow linewidth, such
difference is typically on the order of 1 mHz (for comparison, it amounts to about 2 Hz for
a thermal-beam primary standard). Its precise evaluation as well as the estimate of the cor-
responding uncertainty represent major difficulties when operating a fountain as a primary
clock. Just to give an idea of the complexity of the matter, we spend a few words for each
of the most significant frequency-shifting sources [722, 6, 724, 65].

Second-order Zeeman effect - The C field inherently causes a frequency shift due to
the second-order Zeeman effect. According to Equation 7.94, for the typical C-field strength
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of 0.1 µT, a fractional frequency shift of 5 · 10−14 is obtained. Experimentally, such shift
is accurately evaluated first by measuring the frequency of the |4, 1〉 → |3, 1〉 magnetic
field-sensitive transition and then applying the found value to correct for the shift in the
|4, 0〉 → |3, 0〉 clock transition (since such a correction asks for the determination of 〈B2〉,
which equals 〈B〉2 only in the case of a really constant C field, an excellent homogeneity
is required for the latter). Due to the high number of Ramsey fringes, a delicate issue of
this procedure is the uncertainty associated with the identification of the central fringe on
the magnetically sensitive transitions. In the most valuable approach, the Ramsey pattern
around the central fringe is repeatedly measured for the mF = 1 transition while launching
to various heights. In this way, the Ramsey fringes interfere constructively on the central
one, losing coherence away from it. Even mis-assigning 1 full fringe (considered unlikely), a
fractional frequency error in the low 10−16 range is obtained.

In the case of NIST-F1, for example, magnetic-field fluctuations of about 10−12 T exist
in the C-field region; the resulting frequency shift, in the order of 10−18 for the mF = 0 clock
transition, can thus be ignored. Therefore, the overall quadratic-Zeeman-shift uncertainty
is dominated by the central-fringe-location one; this is conservatively assigned the value of
3 · 10−16, corresponding to the aforementioned misassignment of one whole fringe.

Cavity-related shifts: residual first-order Doppler and cavity pulling - If the
atomic trajectories were perfectly vertical, frequency shifts induced by inevitable cavity
phase variations (both axial and radial) would be entirely cancelled, as the interaction be-
tween each atom and the Ramsey field would occur once with velocity +v (upwards) and
once later with −v (downwards). In particular, transverse residual thermal velocities as well
as possible misalignments in the launching direction give rise to a spread in the trajectories
between the first and the second passage; this eventually results in a residual first-order
Doppler frequency shift, usually referred to as distributed cavity phase (DCP) shift. By
carefully designing the Ramsey cavity and accurately calculating its actual phase distribu-
tion, such DCP shift has been reduced to the high 10−17 range, but with an associated
uncertainty still on the medium-low 10−16 order [726].

As in hydrogen masers, the cavity pulling effect is due to the interference inside the
microwave resonator between the field radiated by the input coupler and the field radiated
by the atomic magnetic dipoles, when the atoms pass through the cavity. This interfer-
ence induces a time-dependent phase shift between the field inside the resonator and the
signal delivered by the interrogation oscillator and thus a shift of the clock frequency. An
approximate expression for the latter is given by [731, 732]

∆νpull ≡ ν − ν0 ≃ KNat
ν0(νC − ν0)

(νC − ν0)2 + ν20/4Q
2
C

(7.98)

where Nat is the number of atoms crossing the resonator, K represents an amplitude
coefficient whose magnitude depends on the microwave power (typically on the order of a few
10−16 Hz), and the other symbols have the same meaning as in Equation 4.34. Being much
larger for the Rabi-pedestal part of the lineshape than for the Ramsey-fringe part, the
cavity-pulling frequency shift is accurately evaluated by measuring the microwave power
dependency of the offset between the Rabi pedestal and the Ramsey fringe for all seven
Zeeman components of the Cs hyperfine transition [733]. Ultimately, while having the same
physical origin as in a hydrogen maser, the cavity pulling effect is usually negligible in an
atomic fountain, where the operating conditions of the Ramsey cavity are far from maser
oscillation. Also, by virtue of the proportionality to Nat, it is automatically corrected for
when the collisional shift correction is applied (see below).

Microwave lensing - This shift originates from the modification of the atomic motion
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due to the interaction between the standing-wave field in the microwave cavity and the
atoms themselves [726]. In analogy with the optical-spectroscopy case of an atom which
interacts with a laser beam propagating along the z direction, such shift can be expressed
(in energy) as (~k)2/(2m), where ~k is the momentum of the absorbed photon and m the
atomic mass. Transferring to the microwave domain and considering the 133Cs clock transi-
tion, the corresponding fractional frequency shift is 1.5 · 10−16. However, this naive picture
overestimates the effect. Actually, since the plane wave is not infinite (in the transverse
directions), the discrete recoil experienced by the atom in the z direction is less than ~k
[734]. Also, the magnetic dipole force that arises in the transverse directions acts as a lens
to focus (or defocus) the atomic wave packets; this produces a frequency shift that is not
discrete, but varies linearly with the field amplitude and strongly depends on the atomic
state detection. When sophisticated theoretical calculations are carried out in this frame,
the microwave-lensing fractional frequency shift is indeed found to be in the high 10−17

range.

Second-order Doppler effect (SODE) - In principle, the atomic velocity distribution
can be retrieved from the Fourier transform of the observed Ramsey pattern, as this includes
the contributions of all atoms with their different speeds. However, in contrast to thermal
beam clocks, the mean quadratic velocity of the atoms in a typical fountain clock is such that
the fractional SODE shift is on the order of 10−17. Thus, time dilation and the associated
uncertainty can be safely neglected.

Microwave leakage - This effect originates from unintended interactions occurring be-
tween the atoms and stray microwave radiation existing near the outside of the Ramsey
cavity. Such an extraneous field has a complex, uncontrolled conformation, mainly consist-
ing of both a standing-wave and a travelling-wave component. The resulting frequency shift
is unlikely to be disentangled from other systematic sources (e.g. the distributed cavity
phase) and exhibits a complicated dependence on various fountain parameters, the mi-
crowave power above all. So far, typical associated uncertainties are in the low 10−16 range,
as evaluated by comparison with specially developed theoretical models [735]. More recently,
a novel experimental approach was implemented, based on the use of low-phase-transients
switchable microwave synthesizers. These not only have inherently low leakage, but also can
be effectively switched off as the atoms come out from the Ramsey cavity [726].

Neighboring transitions - Consisting of up to 16 ground-state sublevels, the 133Cs
structure allows, in principle, the coupling of several levels apart from those involved in
the clock transition (CT). Although the resulting neighbouring transitions ideally have
a symmetrical amplitude distribution (relative to the CT center), an asymmetric overlap
may arise, in practice, due to the way the atomic trajectories fit within the magnetic field
lines. This causes a distortion in the observed intensity signal, whose maximum is displaced
from the true resonance frequency. In particular, Rabi pulling originates from an overlap
of the clock line with the wings of the adjacent F = 3,mF = 1 ↔ F = 4,mF = 1 and
F = 3,mF = −1 ↔ F = 4,mF = −1 lines. Ramsey pulling stems, instead, from the
contributions of transitions with ∆mF = ±1. Potentially, frequency shifts also originate
from the so-called Majorana transitions, which may occur between different magnetic sub-
states of the same hyperfine transition (∆F = 0,∆mF 6= 0), close to zero crossings of
the magnetic field. Commonly, thanks to the state-selection process, the impact of these
frequency pulling effects is reduced to well below 10−16.

Electronics - Subtle errors arising from modulation distortion and integrator offsets
as well as from switching transients, round-off and aliasing may affect the performance



Frequency standards 531

of an even carefully devised digital servo system, eventually leading to a frequency shift.
Spurious frequency components and phase noise in the microwave Ramsey field may further
worsen the situation. Refined models for the sensitivity to all superpositions of amplitude-
modulation (AM) and phase-modulation (PM) noise as well as methods for measuring these
effects have been developed [736, 737]. Again, the present uncertainty is of a few 10−16.

Light shift - The interaction between the laser light and the atoms during their ballistic
flight implies a frequency shift via the ac Stark effect. To overcome this drawback, at the
proper stage of the fountain operation, the laser light is frequency detuned far from the
resonance and additionally blocked by mechanical shutters. As already discussed in previous
occasions, such shift is experimentally evaluated by measuring its dependence on the laser
light intensity. In this way, the associated uncertainty is typically reduced to the very low
10−16 region.

Background gas collisions - For the typical vacuum pressures in the ballistic flight
region (in the low 10−7 Pa range), the effect of residual gas collisions is evaluated to be well
below 10−16.

Blackbody radiation - The blackbody shift results from the interaction between the Cs
atoms and the thermal radiation emanated by the walls of the 300-K vacuum enclosure. In
spite of being quite large (∼ 2 ·10−14), this shift can be corrected with an uncertainty as low
as 2 · 10−16 (corresponding to an uncertainty of 1 K in the thermal radiation temperature)
by resorting to suitable theoretical models. In the case of the Cs atomic clock, the fractional
ac stark shift caused by the blackbody radiation has been calculated as

fbb = −1.573(3) · 10−14Hz
(

T

300 K

)4

×
[

1 + 0.014

(

T

300 K

)2
]

(7.99)

for a vacuum enclosure at temperature T . Going beyond the current limit will require
either a huge amount of theoretical work to gain a deeper insight into the blackbody shift,
or the realization of a cryogenic vacuum system (T = 77 K) to reduce it by two orders of
magnitude. Work is in progress at NIST to accomplish this latter option [738].

Gravitational frequency shift - As discussed later on in this chapter, a major out-
come of general relativity is that the frequencies of two non-local clocks are shifted apart by
the amount ∆ν = ν∆Φ/c2, where ∆Φ denotes the difference between the values of the grav-
itational potential at the two respective locations. When referenced to the rotating geoid,
such difference can be approximated as ∆Φ ≃ g∆h/c2, where g is the local acceleration
due to Earth’s gravitation and ∆h is the (small) height change on the surface of Earth (i.e.
higher clocks run faster). In the case of cesium, this shifts the clock frequency by approxi-
mately 10−16 per meter (relative to its elevation above sea). At present, the uncertainty of
this correction is insignificant (3 · 10−17), but is likely to become increasingly important in
future, more accurate standards.

Cold collision shifts - A leading uncertainty source is represented by the frequency
shift caused by collisions among the cold atoms in the cloud. At the temperatures under
consideration, the collision physics strongly simplifies up to be described by just one param-
eter, namely the scattering length a associated with the s-wave process. Then, if we denote
with |α〉 and |β〉 the two internal states between which Ramsey transitions are induced, the
mean-field shift is given by [739]

∆ν = −2~

m
·
∑

j

nj(1 + δα,j)(1 + δβ,j)(aα,j − aβ,j) (7.100)
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where the j index refers to the atomic Zeeman substate |F,mF 〉, nj are the partial
densities (since these are both space and time dependent, the measured frequency shift
appear as an average over these variables), the Kronecker symbol accounts for quantum
statistics and aαj (aβj) is the scattering length associated with the binary collision between
one atom in the internal state |α〉 (|β〉) and the other one in the state |j〉. The trouble is
particularly severe in the case of cesium whose collisional cross-section is unusually high
at the cloud temperatures used in fountains. This forces one to keep the Cs density at a
relatively low level; the residual shift is then evaluated by measurements at different densities
followed by zero-density extrapolation. Currently, such shift can be as high as 4.0 · 10−16

with an uncertainty in the correction of 1.0 · 10−16. Several schemes have been proposed
to further suppress this effect. In principle, one could even more reduce the atomic cloud
density and hence the collision rate. However, this would degrade the signal-to-noise ratio
and the short-term stability (according to Equation 7.97). In a smart alternative approach,
theoretically developed at Istituto Nazionale di Ricerca Metrologica (INRM), as many as
10 clouds of laser-cooled Cs atoms are launched in rapid succession in such a way that the
first atomic ball has the highest apogee, the second one has its apogee just below the first,
and so on, thus ensuring that all the trajectories intersect in the detection region. While
preserving the final number of detected atoms and hence the ultimate signal-to-noise ratio,
this technique effectively lowers the average Cs density by about a factor of 10. Indeed, a
reduction in the density-shift uncertainty down to 3·10−17 is expected with this approach [6].
However, preliminary experimental tests (performed at NIST with seven balls) have revealed
that, due to the various launch heights and travel times, the correction of systematic effects
might be different for each ball in the sequence, thus requiring further consideration.

Conceptually, an even simpler solution would be to select another element having a lower
collisional cross section. As we will see in a short while, this has motivated the construction
of rubidium fountain clocks.

In conclusion, the relevant contributions to systematic uncertainty are on the order of
a few 10−16 or less. Then, the square root of the sum of squares of the individual (inde-
pendent) contributions yields the total systematic uncertainty. A comparison between the
seven primary Cs fountain clocks can be found in [724]. As already pointed out, the supe-
rior stability of the SYRTE fountains basically stems from the cryogenic sapphire oscillator
available there. A more updated survey on atomic fountains at LNE-SYRTE is given in
[726].

7.9.3 Rubidium clocks

Rubidium has one stable isotope, 85Rb, with a natural abundance of 72% and another, very
long living isotope, 87Rb, with a natural abundance of 28%. Having a larger hyperfine
splitting in its ground state (6.83 GHz), this latter is more attractive for metrological
purposes. The energies of the hyperfine levels of 87Rb in a magnetic field are shown in Figure
7.45. Again, the transition between the states with only a weak quadratic dependence on
the magnetic field, |F = 2,mF = 0〉 ↔ |F = 1,mF = 0〉, is selected as the clock transition.
In this case, the Breit-Rabi formula yields

∆νB2 =≃ 5.74 · 10−2Hz
(

B

µT

)2

(7.101)
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FIGURE 7.45
Left: hyperfine structure of the ground state and the first excited electronic states of 87Rb.
Right: energies of the hyperfine states of 87Rb in a magnetic field.

7.9.3.1 Rb fountain clocks

As anticipated, the construction of 87Rb fountains was motivated by the expectation of a
lower collisionally induced fractional frequency shift, that is one of the dominant contri-
butions in the accuracy budget of Cs fountains. Indeed, early measurements performed on
rubidium fountains confirmed that the collisional shift of the ground hyperfine transition is
from 30 to 35 times lower for 87Rb than for 133Cs [739], thus opening new perspectives for
improving the accuracy of cold-atom microwave frequency standards.

The working principle is the same as for a Cs-based fountain. Thus, mutatis mutandis,
experimental setups for Rb fountains are essentially identical to those constructed for cesium
[740]. An updated, comprehensive survey on the design, operating parameters, and accuracy
evaluation of a Rb fountain is given in [732]. This refers to the fountain at NPL, which is
characterized by three distinctive features:

• A double-MOT system is used, where a magneto-optical source provides an intense and
continuous flux of cold 87Rb atoms which is then loaded into the main MOT. In such a
way, this latter can get to contain a high number of 87Rb atoms, without the vacuum
chamber being contaminated by the thermal rubidium vapour;

• The temperature of the fountain interrogation region is tuned and stabilized with an
uncertainty of 0.1 K;

• The fountain uses a Ramsey cavity of high loaded quality factorQc ≃ 28500 in conjunction
with an atomic sample of large transverse size, which suppresses the frequency uncertainty
due to the distributed phase.

The fractional frequency accuracy of this Rb fountain was estimated to be 3.7 · 10−16,
while the frequency stability, limited essentially by noise in the local oscillator (the 6.8-GHz
synthesizer with a stability of 1.5 · 10−13τ−1/2), was measured to be 7 · 10−16 after one day
of averaging (2 · 10−13 τ−1/2). When compared with the corresponding figures in best Cs
fountain clocks (3 · 10−16 and 3 · 10−14 τ−1/2), these numbers suggest that there is still
enough room for improvement. Furthermore, accurate investigations have revealed that the
dominant contribution (at room temperature) in the Rb case is represented by the black-
body radiation shift rather than the collisional shift, contrary to what was thought at the
beginning. In this sense, Rb fountain clocks have lost their key advantage over Cs fountains.
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7.9.3.2 Lamp-based Rb cell standards

Apart from sophisticated fountains, optically-pumped, gas-cell rubidium microwave stan-
dards represent a well-established type of (transportable) secondary frequency reference,
which provides competitive frequency stabilities up to medium-term timescales (∼ days) in
compact volumes around 0.25 to 2 liters.

In the traditional arrangement [65, 7], shown in Figure 7.46), the light form a small
(volume less than 1 cm3, which keeps the Rb atoms in the Lamb-Dicke regime) discharge
lamp (containing 1 mg of 87Rb together with a noble gas such as krypton) passes through a
filter cell (containing 85Rb and a noble gas such as argon at a pressure of around 104 Pa) and
is then directed to the resonance cell (volume of a few cm3, operational temperature around
80 ◦C) containing 87Rb and a low-pressure buffer gas (about 103 Pa) that is a mixture of
nitrogen and rare gases. Due to a favorable coincidence between the spectra of 87Rb and
85Rb, behind the filter cell, the radiation contains only the components that can excite
transitions from the F = 1 ground state. In this way, the atoms enter one of the P states,
from which relaxation into the two ground-state levels occurs either by fluorescence or by
collisions with nitrogen atoms. After a few cycles, virtually all 87Rb atoms are optically
pumped into the F = 2 state; this makes the resonance cell transparent to the filtered light,
thus maximizing the light intensity reaching the photodetector. Then, as the microwave
radiation is applied, the transition F = 2 → F = 1 in the ground state is stimulated and
the F = 1 level is thereby re-populated. As a consequence, a fraction of the incident filtered
light is absorbed, which slightly reduces the level of the photodetector signal. The resulting
absorption feature is used to generate a feedback signal that tunes a crystal oscillator
(VCXO) so as to keep the microwave frequency from the synthesiser at the atomic resonance.
The presence of the buffer gas in the resonance cell has several different reasons. First, the
resulting dilution reduces the mean free path between two collisions below the wavelength,
thus suppressing Doppler broadening of the hyperfine resonance. At the same time, the rate
at which atoms collide with the cell walls is also diminished, which reduces the associated
relaxation and frequency shift (this also prevents the blackening of the glass cell due to
the high chemical activity of alkali metals). The buffer gas pressure is such that diffusion
velocities of rubidium atoms are extremely small (on the order of 1 cm/s), whereupon they
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FIGURE 7.46
Scheme of a lamp-based Rb frequency standard. Typically, the microwave cavity sustaining
the TE111 (or TE011) mode exhibits a loaded quality factor of Qc ≃ 400. Very compact
designs can be obtained by utilizing a magnetron-type microwave resonator and combining
in a single cell the functions of the filter and the absorption cells. (Adapted from [65].)
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can be practically regarded as stationary during their relaxation time (about 1 ms). As a
drawback, collisions between the rubidium atoms and the buffer-gas constituents induce a
frequency shift in the resonance line. For a single-component buffer gas, this is typically on
the order of 10−7 (in fractional form), but it can be considerably lowered by use of suitable
mixtures; this also curbs frequency shifts resulting from temperature fluctuations (≃ 10−9

K). Apart from such collisional shift and other sources that are common to all atomic clocks,
a peculiar frequency shift is related to the double-resonance interrogation scheme, where
two transitions sharing the same energy level are simultaneously excited (see next Section);
also referred to as light shift, inasmuch as connected with optical pumping, this amounts
to a few Hz.

Concerning frequency instability, high-performance, lamp-based devices exhibit an Allan
deviation of σy(τ) ≥ 4 · 10−12τ−1/2 for 1 s < τ < 1000 s. After reaching a flicker floor
(between 10−12 and 10−13, for τ > 1000 s), σy(τ) increases again due to the influence of
systematic effects. These include the aforementioned chemical reactivity between rubidium
and glass as well as changes in the buffer gas composition and pressure (caused by diffusion
through the walls). As a result, in the long term (for τ greater than 103 − 104 s), rubidium
clocks drift by a few times 10−11 per month. For this reason, as illustrated later on in this
Chapter, rubidium clocks are often disciplined by global positioning systems (GPSs).

7.9.3.3 Laser-based Rb cell frequency standards

A clear limit of lampbased standards is represented by the fact that a troublesome back-
ground signal originates from the broad-band light that does not directly contribute to opti-
cal pumping. This latter can be more effectively accomplished by replacing the lamp+filter
system with a laser. In this respect, two schemes are presented here [741], which also allow
us to introduce in a more natural fashion two interrogation techniques that were excluded
from Chapter 5, namely double-resonance (DR) and coherent population trapping (CPT)
spectroscopy.

Rb clocks based on double-resonance spectroscopy

The first DR experiment is illustrated in Figure 7.47 [742, 743]. Mercury atoms in an external
constant magnetic field, B0, are irradiated with linearly polarized light, which drives a π
transition to the mJ = 0 level of the 3P1 excited state. The emission from these atoms is
also linearly polarized π light. Now, by application of a high-frequency (rf or microwave),
perpendicular (relative to B0) magnetic field, B1, one can induce transitions ∆m = ±1
(within the 3P1 excited state), thus populating the Zeeman substates m = 1 and m = −1.
What one eventually detects is the emission from these levels (occurring in a direction
perpendicular to that of the π emission), that is circularly polarized σ light. The essence of
such double-resonance technique (double excitation with light and rf/microwave radiation)
is that ∆m = ±1 transitions between Zeeman substates can be measured with extremely
high detection sensitivity, as the rf/microwave quanta with small energies are detected via
the much more energetic light quanta.

Optical pumping is a closely related technique. Its principle may be conveniently il-
lustrated referring to the sodium D lines, e.g. the transition from the 2S1/2 ground state
to the 2P1/2 excited state. By application of a static magnetic field, both terms are split
into Zeeman components mJ = ±1/2 (see Figure 7.48). Now, if the pumping light is cir-
cularly polarized, let’s say σ+, only transitions from the mJ = −1/2 ground state to the
mJ = +1/2 excited state can take place, which populates exclusively the 2P1/2,mJ = +1/2
level. On the other hand, emission from this state can occur either as σ+ light, leading to
the 2S1/2,mJ = −1/2 initial state, or as π light, leading to the 2S1/2,mJ = +1/2 state. The
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Double-resonance method (concept and experimental arrangement) in the case of Hg atoms.
One pair of coils produces the constant field B0, while the other one generates the high-
frequency field B1. (Adapted from [741].)

overall effect of this pumping cycle on the ground state is to increase the population of the
mJ = +1/2 terms at the cost of those with mJ = −1/2. Then, relaxation processes (caused
by collisions among the Na atoms or with the cell walls) or microwave-induced transitions
(named electron spin resonance transitions) from the upper to the lower ground-state sub-
level can be detected optically, namely through the change in the intensity of the absorption
from 2S1/2,mJ = −1/2 to 2P1/2,mJ = +1/2.

In Figure 7.49 the block diagram of a laser-pumped, double-resonance Rb atomic fre-
quency standard is shown [744]. In this work, two main issues are addressed in order to
master the short-term-stability and the long-term frequency drifts, respectively:

1. the realization of a laser pump-light source with a sufficient frequency and inten-
sity stability;

2. the control, via a fine-tuning of the cell’s buffer gas content (Ar+N2), of both
the temperature coefficient of the resonance cell and the light-shift effects under
conditions of laser pumping.

The laser head consists of a 780-nm-wavelength DFB laser diode (linewidth of 4.5 MHz,
output power of few tens of microwatts, relative intensity noise @300 Hz of 7 · 10−14 Hz−1,
frequency modulation noise @300 Hz of 4 kHz/

√
Hz, and power stability better than 0.1

%/day at fixed environmental conditions), frequency-stabilized (by FM modulation tech-
niques) to the F = 1 → {F ′ = 0, F ′ = 1} crossover sub-Doppler saturated-absorption line
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Optical pumping scheme for Na atoms. Only atoms in the ground state mj = −1/2 absorb
the σ+ light with which the sample is irradiated. π transitions occurring in emission from
the excited state lead to an increase in the population of atoms with mj = +1/2. With the
high-frequency field, transitions from mj = +1/2 to mj = −1/2 are induced, increasing the
number of atoms which are able to absorb the pumping light. (Adapted from [741].)

(derived from a small reference cell) of the 87Rb D2 (5S1/2 → 5P3/2) transition. In this way,
an efficient optical pumping of the 5S1/2 ground-state population into the F = 1 hyperfine
term can be achieved for the 87Rb atoms contained in the resonance cell encased in the
clock module. A constant magnetic field applied to this cell lifts the Zeeman degeneracy
and isolates the hyperfine ground-state transition (F = 1,mF = 0→ F = 2,mF = 0), while
two shields strongly suppress fluctuations in the ambient magnetic field. Also, a telescope
is used in order to expand the laser beam to the cell diameter, so as to sample a maxi-
mum number of atoms at low light intensity. Then, the clock transition (at 6.83 GHz) is
probed by applying (via a TE011 magnetron-type resonator) a microwave field. This latter
is provided by a high-quality microwave synthesiser with a phase-noise at 6.8 GHz of −112
dBc/Hz @300 Hz (6.8 GHz carrier); the microwave frequency is then locked to the centre
of the obtained DR line (linewidth of 467 Hz, contrast of 35%) using frequency modulation
of the microwave and lock-in detection techniques. With this setup, the authors could mea-
sure an intensity-light-shift coefficient of −1.9 · 10−12/%, a frequency-light-shift coefficient
of 2.2 · 10−17/% and a temperature coefficient < 6.6 · 10−12/K. Ultimately, a short-term
frequency stability of 4 · 10−13 τ−1/2 for 1 s < τ < 1000 s was achieved, with a medium- to
long-term stability reaching the 1 · 10−14 level at 104 s.

Chip-scale Rb clocks based on coherent-population-trapping spectroscopy

In recent years, the coherent population trapping (CPT) phenomenon has attracted much
interest in view of realizing an optically-pumped passive frequency standard using alkali
metal atoms. As opposed to the DR technique, the CPT scheme involves exciting the atoms
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FIGURE 7.49
Schematic of the setup for the double-resonance Rb clock. (Courtesy of [744].)

exclusively by means of coherent optical radiation fields. The resulting advantage is twofold:
first, no microwave cavity is requested for the excitation of the hyperfine transition; sec-
ond, when the mutually coherent optical fields are derived from the same laser by suitable
frequency modulation, a significant reduction of the light shift can be achieved [745].

While CPT is best understood within the density matrix approach [166], here we only
give a simplified physical picture referring to the so-called Λ system shown in Figure 7.50
[746]. Let’s assume for simplicity that the excited state |3〉 decays into the two long-lived
ground states, |1〉 and |2〉, at an equal rate Γ/2, while the ground states decay into each
another at the rate γ, such that Γ≫ γ. Next, let’s denote with Ω1 (Ω2) the Rabi frequency
corresponding to the incident light field detuned by δ1 (δ2) from the |1〉 − |3〉 (|2〉 − |3〉)
atomic transition. Then, the atom-light interaction Hamiltonian can be written as

Ĥint = Ω1|3〉〈1|+Ω2|3〉〈2|+ h.c. (7.102)

Now, among the infinite possible superposition states for an atom in the ground state,
let us consider the following one

|nc〉 = 1
√

Ω2
1 +Ω2

2

(Ω2|1〉 − Ω1|2〉) (7.103)

In such case, one obtains
〈3|Ĥint|nc〉 = 0 (7.104)
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FIGURE 7.50
A three-level atom-light system in Λ configuration, illustrating the CPT concept. (Adapted
from [746].)
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i.e. the atom cannot be excited by the given combination of incident light fields (by
contrast, for any other superposition state, there is always a finite excitation probability).
This implies that |nc〉 represents a dark state where atoms accumulate: indeed, while the
spontaneous emission from the excited state tends to populate it, no process is capable of
exciting the system out of it. In other words, once in |nc〉, the atom no longer interacts
with the applied field, i.e. the system becomes transparent. In particular, the atom is no
longer subject to optical pumping cycles and no longer fluoresces. Experimentally, as the
laser frequency difference is scanned, the fluorescence (transmission) spectrum displays a
dark (bright) line in a narrow region around the difference frequency between the levels |1〉
and |2〉. It can be shown that the FWHM of such dark (or bright) line is approximately
given by [747]

FWHMdark = 2(γ +Ω2
R/Γ) (7.105)

where we have supposed for simplicity Ω1 = Ω2 ≡ ΩR.

The CPT phenomenon is precisely at the basis of chip-scale atomic clocks [748]. The
micro-fabricated frequency references being developed at the National Institute of Standards
and Technology (NIST) make use of miniature cells (1 mm3 volume) that are filled with
87Rb by reacting BaN6 and 87RbCl in a controlled environment. Besides 87Rb, such reaction
produces alkali atoms, Ba, Cl, and N2. Most of this nitrogen is pumped off before sealing the
cell, while the vacuum chamber (including the interior of the cell) is backfilled with 24 kPa
of neon and 11 kPa of argon. Thanks to the presence of this buffer gas, the CPT effect takes
place over a width which, no longer masked by the atom transit time across the laser beams
(on the order of several hundred kHz, depending on the actual physical arrangement),
is greatly reduced due to the Dicke effect and mainly ruled by ground state relaxation
and laser power broadening (Equation 7.105). This situation gives rise to linewidths of
the same magnitude as those obtained in the observation of magnetic resonance lines by
means of standard radio frequency techniques. Then, the cell is integrated with heaters,
an optics assembly, a 795-nm-wavelength vertical-cavity surface-emitting laser (VCSEL),
and a photo-detector to form a functional physics package for an atomic clock of volume
12 mm3, consuming 195 mW of power at an ambient temperature of 22 ◦C. The atomic
hyperfine resonance is excited by use of CPT spectroscopy on the D1 lines (Figure 7.51).
For this purpose, the two phase-coherent circularly-polarized light fields are created by
modulating the VCSEL current at half the frequency of the ground-state hyperfine splitting,
thus producing (on the optical carrier) two first-order sidebands separated by 6.8 GHz. As
usual, a longitudinal magnetic field is applied to lift the degeneracy of the Zeeman sub-states.
Then, the CPT resonance is detected by measuring the transmitted optical power by use
of phase-sensitive detection with a lock-in amplifier. Finally, a feedback loop stabilizes the
modulation frequency of 3.4 GHz onto the center of the CPT resonance. For this 87Rb clock,
a fractional frequency instability of 4·10−11τ−1/2 was achieved for integration times between
1 s and 10 s, with a residual long-term drift (τ > 50 s) of −5 · 10−9/day. This represented
a significant improvement compared to a previous micro-fabricated clock exciting the D2

transition in Cs [262].

7.9.4 Microwave ion clocks

Trapped ions can provide reference frequencies in the microwave or in the optical domain.
In the former case, mostly magnetic dipole transitions between hyperfine components in the
ground state are used. We will not dwell much on this topic, as research on ion frequency
standards is by now focusing on optical transitions (see next chapter), albeit work is still in
progress in a few laboratories in developing compact and rugged ion clocks for metrological
applications including space operation (see for instance [749]).
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FIGURE 7.51 (SEE COLOR INSERT)
Picture of the 87Rb D1 chip-scale atomic clock and level diagram for CPT spectroscopy.
The two optical transitions (D1 radiation at 795 nm), represented by the arrows, form the
Λ system in the case of σ− polarization. These transitions connect the ground state levels
F = 1,mF = 0, F = 2,mF = 0 (of interest in the implementation of a frequency standard)
to a common level F ′ = 2,mF = −1 of the excited state. (Courtesy of [748].)

Most microwave laboratory ion standards are based on laser-cooled ions in a linear Paul
trap [750]. Recent work has concentrated mainly on 199Hg+ and 171Yb+, with some work
on 111,113Cd+ in a conventional Paul trap (there has also been work on laser-cooled 9Be+

ion clouds in a Penning trap). The relevant energy levels for Hg II and Yb II are shown in
Figure 7.52 along with the optical pumping transitions. In particular, a stable and accurate

FIGURE 7.52
Energy levels for 199Hg+, 171Yb+ for use as microwave frequency standards (from [751] and
[752]).
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frequency standard based on the 40.5 GHz ground-state hyperfine transition in Hg II was
demonstrated [751]. The ions were confined in a cryogenic linear Paul (rf) trap and laser
cooled to form a linear crystal. With seven ions and a Ramsey interrogation time of 100
s, the fractional frequency stability was 3.3(2) · 10−13 τ−1/2 for measurement times τ < 2
h. The ground-state hyperfine interval was measured to be 40507347996.84159(14)(41) Hz,
where the first number in the parentheses was the uncertainty due to statistical and sys-
tematic effects, and the second was the uncertainty in the frequency of the time scale to
which the standard was compared. Improvements in accuracy to the 10−16 level were en-
visaged following the development of a smaller trap requiring lower voltage and operated
at a lower frequency, resulting in a strong reduction of the ac Zeeman shift from any asym-
metric currents in the trap rods. Additionally, more ions could be trapped and individually
monitored to reach the projection noise limit. A few experimental details are worthy of
mention. With reference to Figure 7.52, first, the ions were cooled with both beams p and
r for approximately 300 ms. Next, beam r was blocked for about 60 ms to optically pump
the ions into the 2S1/2, F = 0 level. Both beams were then blocked during the Ramsey
microwave interrogation period, which consisted of two π/2 microwave pulses of duration
tR = 250 ms separated by the free precession period TR = 100 s. Transitions to the F = 1
state were detected by reapplying only beam p until the ion was pumped optically into the
F = 0 state (≃ 15 ms), while the number of detected scattered photons (typically about
150 per ion) was counted. This process completed one measurement cycle. The microwave
frequency was synthesized from a low-noise quartz oscillator locked to a reference hydrogen
maser.

Microwave frequency standards based on the 12.6 GHz ground-state hyperfine transition
in Yb II have been under development at the National Measurement Institute, Australia,
for many years. Using a laser-cooled ion cloud (∼ 104 ions are cooled to below 1 K in a
linear trap), the transition frequency was measured in 2001 to an accuracy of 8 parts in
1014, limited by the homogeneity of the magnetic field due to the stainless-steel vacuum
chamber. The short-term stability was estimated to be 5 · 10−14 τ−1/2Hz−1/2. Since this
experiment had no cryo-cooling of the vacuum walls, when the cooling laser was switched
off for 12.6 GHz microwave interrogation, the ion heating rate was somewhat faster than
the Hg II work at NIST (measurements showed that after 20 s the temperature had risen
to about 3 K). Cooling and optical pumping were carried out with a 369 nm laser. The
presence of the metastable 2D3/2, F = 1 state can cause problems for efficient cooling
of this ion: during cooling on the 2S1/2, F = 1 →2 P1/2, F = 0 cycling transition, the
ion can decay into the metastable level and thus no longer be able to be cooled using a
369-nm laser. Thus, a clearing laser at 609 nm is used to return the ion to the ground
state. Later, a new chamber in the alloy CrCu was realized, which is non-magnetic and has
good vacuum properties. Uncertainties associated with field inhomogeneity in this improved
vacuum system were below 1 part in 1015. Also, other systematic uncertainties such as AC
Zeeman shift, microwave imperfections, and pressure shifts were reduced to permit operation
in the 10−15 accuracy range [753].

7.10 Time transfer and frequency dissemination

Nowadays, apart from cutting-edge scientific and technological implications, an astonishing
and increasing number of daily applications rely on the dissemination of frequency and time
signals with a varied range of precision and accuracy requirements. Just to mention a few,
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these include: transportation management, navigation and communications; industrial pro-
cesses, agriculture, and finance; utility, surveillance, emergency, and environmental services.
Whatever the method used to transfer time/frequency in a specific context, the ultimate
attainable precision/accuracy depends not only on the performance of the various means
and devices utilized to send/receive the signals, but also on the overall care that is paid to
calibrate the employed instrumentation and to develop the physical model which is at the
basis of the transmission/comparison procedure. Just to give an idea of the prickly aspects
involved in this matter, the accuracy of frequency standards and clocks used in the most
demanding scientific applications is by now such that relativistic effects must be taken into
account in time and frequency comparisons.

We start this section by addressing the issue of the realization of time scales. While
the reader is referred to [7, 3] for a comprehensive discussion, only a brief account is given
here, following [650, 65]. After that, we will deal with the subject of transmitting time and
frequency information.

7.10.1 Realization of time scales

According to the definition of the SI second given in Chapter 1, this should be realized with
an unperturbed Cs atom in free space; also, the observer should be at rest relative to the
atom itself. In this way, the proper time of the clock is measured, which is independent of
any conventions with respect to coordinates or reference frames. In practical timekeeping,
however, clocks at different locations are compared utilizing time signals, which necessitates
the introduction of coordinate frames. In fact, being defined in terms of the SI second as
carried out on the rotating geoid, the so-called International Atomic Time (TAI) is a coor-
dinate (rather than a proper) time scale. To appreciate the importance of such distinction,
just think of a perfect cesium clock orbiting around the earth in a global positioning system
(GPS) application. Then, to compensate for the frequency offset with respect to TAI, an
observer on the earth must apply all the corrections extensively discussed so far, including
the gravitational redshift, the first- and second-order Doppler shifts, etc.

7.10.1.1 Realization of TAI

TAI is computed retroactively by the International Bureau of Weights and Measures
(BIPM), based on data furnished by a worldwide network of approximately 50 timing lab-
oratories, for a total of about 400 atomic clocks (either primary or commercial). Schemat-
ically, the procedure is the following (see Figure 7.53). Every five days, each laboratory
measures the time differences between each of its clocks, TA(k), and its own laboratory
time scale, designated UTC(lab). Approximating the universal coordinated time scale UTC
(to be discussed below), the UTC(lab) scales (about 60 at present) are evaluated starting
from selected ensembles clocks. Moreover, in order to compare data from different labora-
tories, following a protocol defined by the BIPM, each laboratory also measures the time
differences between UTC(lab) and GPS time (it is worth pointing out that GPS satellites
are used only as transfer standards, and the satellite clocks drop out of the data). Then,
all time-difference data are transmitted to the BIPM which, using the so-called ALGOS
algorithm, computes their weighted average to generate an intermediate time scale referred
to as echelle atomique libre (EAL). After that, the length of the EAL second is compared
with the SI second as realized by primary clocks in some major timing laboratories, and a
correction is applied so as to steer the duration of the EAL scale unit. The resulting scale
is TAI.
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FIGURE 7.53
Simplified scheme for the realization of TAI and UTC. (Adapted from [65].)

7.10.1.2 Coordinated universal time

Unfortunately, the length of the day defined using 24 × 3600 = 864000 TAI seconds was
shorter (by about 0.03 ppm) than the length of the day defined by the UT1 time scale (the
latter is derived by observing and modelling the rotation of the earth around its polar axis),
and the times of the two scales were destined to diverge more and more over the years.
Therefore, since our daily life and astronomical navigation are both governed by the earth’s
rotation, the Universal Coordinated Time (UTC) was adopted in 1972. Derived from TAI,
UTC is made to approximately follow UT1 (|UTC(t)−UT1(t)| < 0.9 s) by insertion of leap
seconds. Hence, while their scale units coincide, UTC and TAI differ by an integer number
n of seconds which depends on the earth’s irregular angular velocity

UTC(t) = UT1(t)− n (7.106)

Since UTC is derived from TAI, it is an atomic time scale too. A leap second is occa-
sionally inserted in UTC worldwide at the same epoch, the time interval between two leap
seconds being provided by the International Earth Rotation and Reference Systems Service
(IERS) on the basis of astronomical observations of Earth’s rotation. Finally, the differences
[UTC-UTC(lab)] are published periodically in BIPM Circulaire T and it is recommended
that [UTC-UTC(lab)]<100 ns; thus, the local UTC(lab) have to be steered to follow UTC.

7.10.2 Transmitting time information

In spite of their intimate relationship, time and frequency differ substantially in how they are
distributed and hence in the overall uncertainty budget associated with the dissemination
process. Obviously, uncertainties in the delay in the transmission channel between the clock
and the user influence time distribution in a direct way, directly contributing to the error
budget. Conversely, frequency is a time interval rather than an absolute time, such that the
uncertainty in its transfer is essentially dictated by temporal fluctuations in the transmission
delay rather than by its absolute magnitude. In other words, accurate knowledge of the time
delay (either by modelling or measurements) of a channel is needed when carrying time
information, whereas just stability is requested for such delay when transmitting frequency
information. Starting with time transfer, in the following we will give a brief account on
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a couple of methods. But first we have to enunciate a few key concepts and definitions,
following the report by [754].

• As already mentioned, in special and general relativity there are two types of time, proper
and coordinate. Measured by an unperturbed (i.e., insensitive to environmental conditions,
gravity, and accelerations) clock accompanying the observer, proper time, τ , is invariant
in any coordinate change. Also, since the SI second is defined exclusively in terms of the
Cs atom radiation periods (without indication of a specific gravitational potential, or state
of motion), any observer can realize it as the unit for proper times. On the other hand,
proper time cannot describe phenomena in extended domains, in which cases coordinate
time, t, must be employed. In addition to spatial coordinates, (x1, x2, x3), this constitutes
the fourth dimension, x0 = ct, of the space-time reference system. In a given reference
system, coordinate time represents a univocal way of dating. In metrology coordinate time
cannot be measured, but only computed, the relation between proper time of an observer
and coordinate time being provided by the metric.

As well known, in special relativity, for instance, the infinitesimal interval between two
events is given by ds2 = −c2dτ2 = −c2dt2 + x21 + x22 + x23, such that

c2
(

dτ

dt

)2

= c2 −
[

(

dx1
dt

)2

+

(

dx2
dt

)2

+

(

dx3
dt

)2
]

(7.107)

from which the relationship between proper and coordinate time depends on the velocity
v of the clock according to the celebrated formula

dτ

dt
=

√

1− v2

c2
≡ 1

γ
(7.108)

The situation is a bit more complex in general relativity, where the metric takes into
account the surrounding masses and energy. In this case, the gravitational field close to
the Earth is conveniently dealt with by defining a coordinate system having the origin of
the space axes at the Earth’s center of mass and which does not rotate with respect to the
most distant observable bodies of the Universe. The metric tensor of such a non-rotating
geocentric coordinate system can be expressed as [754]

ds2 = −c2dτ2 = −
(

1− 2U

c2

)

dx20 +

(

1 +
2U

c2

)

[dx21 + dx22 + dx23] (7.109)

where U = UE + UT is the sum of the Newtonian gravitational potential UE generated
by the Earth (vanishing at infinity) and the Newtonian tide-generating potential UT of
external bodies (vanishing at the geocentre), both taken with a positive sign. At the
level of frequency uncertainty of 10−14, a satisfactory approximation to the gravitational
potential of the Earth UE is provided by

UE =
GME

r
+ J2GMEa

2 1− 3 sin2 φ

2r3
(7.110)

where r = (x21 + x22 + x23)
1/2, φ is the geocentric latitude (the geocenter being O, the

geocentric latitude of a point P is the angle between OP and the equatorial plane; this
is positive towards the North), GME = 3.986004418 · 1014 m3/s2 is the product of the
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gravitational constant and the mass of Earth, J2 = 1.082636 · 10−3 is the quadrupole
moment coefficient of Earth, and a = 6378136.5 m is the equatorial radius of Earth. Next,
let us consider the effect of the tidal potential UT . Increasing with geocentric distance,
this is of order 10−15 at the distance of geostationary satellites. Its value is obtained by
summing the contributions of all celestial bodies A (in practice, the Sun and the Moon).
The lowest-order term in the expression for UT is found as

(UT )1 =
1

2

∑

A

QAijx
ixj (7.111)

where the notation of summation on repeated indexes has been used and with

QAij =
GMA

r3EA

(

3
riEAr

j
EA

r2EA
− δij

)

(7.112)

Here, riEA are the differences of coordinates, in a coordinate system centered at the
barycentre of the solar system, between the center of mass of the Earth and the body
A, rEA is the coordinate distance between these points, and δij is the Kronecker delta. All
the values appearing in Equation 7.112 can be found in astronomical ephemerides. The
next-order term for UT gives rise to frequency corrections of order 10−18 on the ground
and 2 · 10−16 at the altitude of geostationary satellites [755].

By means of Equation 7.109 and defining the coordinate speed of the clock (with respect
to the centre of Earth) as

v =

√

dx21 + dx22 + dx23
dt

, (7.113)

the relationship between proper and coordinate time can be now calculated as (the sub-
script nrg stands for non-rotating geocentric)

dτ

dt
= 1− hnrg(t) (7.114)

with

hnrg(t) = c−2

[

U(t) +
v2(t)

2

]

+O(c−4) (7.115)

Thus, more in general, we can always write

dτ

dt
= 1− h(t, x1, x2, x3) (7.116)

with h(t, x1, x2, x3) given as a power series of 1/c, its actual form depending on the specific
case under consideration. Also, since on a given world-line xi = xi(t), we may enlighten
the notation as

dτ

dt
= 1− h(t) (7.117)

For many applications, it is convenient to adopt a coordinate system which rotates with
the Earth. This is obtained from the non-rotating coordinate system implied by Equation
7.109 through a spatial rotation and is valid at the same level of approximation. When
using this coordinate system, one obtains

hrg = c−2

[

Ũg +∆Ũ(t) +
V 2(t)

2

]

+ 2c−2ω
dAE
dt

(7.118)
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where Xi is the triplet of spatial coordinates in the geocentric coordinate system rotating
with Earth (the X3-axis is close to Earth’s rotation axis), Vi = dXi/dt (V is the modulus
of V ), ω = 7.292115 · 10−5 rad/s is the angular velocity of rotation of the earth, Ũg =
6.26368575 · 107 m2/s2 is the constant potential in the geocentric rotating coordinate
system at the level of the rotating geoid (including the potential of the centrifugal force),
∆Ũ is the difference of gravitational potential in the geocentric rotating coordinate system
(including the potential of the centrifugal force) between a specified location and the
geoid (note that ∆Ũ is negative above the geoid), and AE is the area of the equatorial
projection of the surface swept out by a vector with origin at the Earth’s center of mass and
terminus at a moving point (it is measured in the rotating coordinate system and is positive
in eastward motion). The last term in Equation 7.118 results from the Sagnac effect,
originating from the fact that the clocks on Earth co-rotate with the same angular velocity
such that their velocity is dependent on the latitude. The explicit expressions for the
potential terms, corresponding to an uncertainty in normalized frequency not exceeding
10−18 (which may be necessary for current advanced metrological applications), follow
from rather complex evaluations [756]. At an uncertainty level of 10−16, the numerical
expression for ∆Ũ/c2 is

∆Ũ/c2 = −1.08821 · 10−16 b/m− 5.77 · 10−19 b/m sin2 φ

+1.716 · 10−23 (b/m)2 (7.119)

where b/m represents the altitude above the geoid expressed in meters. As just mentioned,
the above expression is accurate to better than 10−16 when b is less than 15 km and known
with an uncertainty of less than 1 m.

• The convention applied for the synchronization of two clocks is as follows. Two events
are said to be coordinate simultaneous when they have the same time coordinate in some
specified coordinate system, whatever their space coordinates xi. Then, two clocks A and
B are said to be coordinate synchronized during a time interval t1 ≤ t ≤ t2, when their
readings, τA(t) and τB(t), considered as coordinate simultaneous events, remain equal
during this interval.

• Let us denote with νC the proper frequency of a standard clock C, i.e., the frequency
derived from the proper second at the location of the standard itself. In advanced metro-
logical applications, this must be regarded as a quantity varying with time. Here we are
particularly interested in the dependence on the coordinate time t. Thus, by designating
with the constant νC,0 the proper frequency stated by the builder, it is customary to define
the proper normalized frequency deviation as

yC(t) =
νC(t)− νC,0

νC,0
(7.120)

that is a dimensionless quantity close to zero. Then, Equation 7.117 generalizes to

dτC
dt

=
dτC
dτ

dτ

dt
= [1 + yC(t)][1 − h(t)] (7.121)

7.10.2.1 Portable clocks

According to Equation 7.121, when the time is delivered from the point P (time t1) to the
point Q (time t2) by means of a transportable clock C, the difference in the clock readings,
which arises due to the transport, is

τC(t2)− τC(t1) =
∫

W (C)

[1 + yC(t)][1− h(t)]dt (7.122)
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which, in the limit yC → 0, reduces to

τC(t2)− τC(t1) = (t2 − t1)−
∫

W (C)

h(t)dt (7.123)

where W (C) is the world-line of clock C and the appropriate expression for h(t) is
used. Such technique was adopted by many timing laboratories in the past. In practice, the
limitation of this approach stems from the finite frequency stability of the portable clock (as
it is transported along the path) as well as by uncertainties in various relativistic corrections
that may have to be applied.

7.10.2.2 Global positioning system

At present, the US Global Positioning System (GPS) is the main tool used for time transfer
between remote sites, albeit a second system, named Global Navigation Satellite System
(GLONASS), is operated by Russia. Additional systems, currently in their development
stage, are planned like the European Galileo system or the Chinese COMPASS. Here we
focus on the GPS system following the treatment given in [757, 65] to which the reader is
referred for a more comprehensive discussion. As shown in Figure 7.54, the nominal GPS
system is a constellation of at least 24 satellites orbiting around the Earth in 6 planes:
approximately circular, these orbits are inclined 55◦ to the equator around which they
are spaced at a 60◦ separation (the mean distance of a satellite to the Earth’s center of
mass is about 26600 km). Atomic clocks (cesium, rubidium) are operated on board of each

FIGURE 7.54
The GPS satellite constellation.

satellite. The nominal output frequency of the clocks is f0 = 10.23 MHz, from which the
carrier frequencies on the L1 and the L2 band, f1 = 1575.42 MHz and f2 = 1227.60 MHz,
are derived (by multiplying f0 by 154 and 120, respectively). Being below 2 GHz, these
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microwave signals can be received without any directional antenna. Prior to transmission,
the two carriers are phase modulated with pseudo-random noise (PRN) binary codes. In
more detail, a 1.032-MHz-chip-rate coarse/acquisition (C/A) code is used for f1, while a
10.23-MHz-chip-rate precision (P) code modulates both f1 and f2. Being unique for each
satellite, these continuously repeated codes are used for identification and tracking purposes
through a correlation process performed by a receiver. An additional 50-bits-per-second
binary code, referred to as the navigation message, is superimposed to the PRN-codes by
an exclusive-or process. It contains information about the status of both the individual
satellite and the overall constellation, the satellites’ positions (ephemeris data), the offset
of the satellites’ clocks relative to a common reference timescale (the GPS system time), as
well as information about the ionosphere. The satellites are governed by a ground segment
comprising several monitor stations, a few uplink stations, and a master control station
(located at Colorado Springs) where, on the basis of the calculated offset between the
individual clocks and the system time, suitable clock steering commands are sent to the
satellites. The system time, derived from all clocks in the satellites and the ground stations,
is kept in close agreement with the time scale of UTC (United States Naval Observatory);
it is the master control station that assesses the performance of the various clocks in each
satellite and decides which of them are used for the signal generation. Since the transmitting
power of the GPS satellites is below 40 W, the signal is hidden in the thermal noise on the
Earth. This requires a correlation process for the signal reception and demodulation. For
this purpose, an oscillator internal to the receiver generates a local copy of the PRN-code,
which is then electronically time shifted and multiplied with the incoming antenna signal to
provide the correlation function. If the received satellite PRN-code coincides with the replica
signal, then the correlation function is at a stable maximum and the receiver tracking loops
can lock to the carrier frequencies of the satellite. Obviously, such a process necessitates a
local replica of the received carrier-frequency too; also, this replica must be frequency shifted
to compensate for the Doppler effect suffered by the received satellite carrier frequency. In
this way, the receiver can measure the phase of the received signal with an ambiguity of
multiples of cycles of the carrier frequency. In modern receivers, this is accomplished with
a precision of better than 1% of the wavelength.

A Global Navigation Satellite System (GNSS) receiver determines its local position on
Earth by simultaneously comparing the signals with time stamps from different satellites
with its local clock. The distance between the user U at the coordinates X,Y, Z and the
i-th satellite of known position xi, yi, zi is measured by the time delay ∆ti elapsed from
the transmission to the reception of the signal. Thus, if the clock in the user’s receiver
and the one on board the satellite were perfectly synchronized, the true range from a first
satellite could be calculated as R1 = c ·∆t1. Following the same procedure, a second satellite
straight provides the U position in the plane containing the two satellites and the user, as
one of the two intersection points between the circles with respective ranges R1 and R2.
Three-dimensional location in space necessitates a third satellite. However, one of the most
significant error sources is the GPS receiver’s clock. Due to the very large value of c, the
evaluated distances from the GPS receiver to the satellites are extremely sensitive to errors
in the GPS receiver clock; for example an error of one microsecond (1 µs second) corresponds
to an error of 300 meters. In order to avoid using an extremely accurate and expensive GPS
receiver clock, so as to build inexpensive, mass-market GPS receivers, a fourth satellite is
instead used. Let us assume, for instance, that the time TU of the user’s clock advances the
system time TGNSS from the satellites by δtu = TU − TGNSS. Then, the ranges computed
from the apparent time differences between the satellite clocks and the user clock are referred
to as pseudoranges Pi = Ri + c · δtu. Now, if four different pseudoranges Pi are measured,
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one can write down a set of four equations

(x1 −X)2 + (y1 − Y )2 + (z1 − Z)2 = (P1 − c · δtu)2 (7.124)

(x2 −X)2 + (y2 − Y )2 + (z2 − Z)2 = (P2 − c · δtu)2 (7.125)

(x3 −X)2 + (y3 − Y )2 + (z3 − Z)2 = (P3 − c · δtu)2 (7.126)

(x4 −X)2 + (y4 − Y )2 + (z4 − Z)2 = (P4 − c · δtu)2 (7.127)

containing four variables: the three spatial coordinates X,Y, Z and the offset of the user
clock δtu. This can be solved for the unknowns by algebraic or numerical methods. Then,
in practice, the code-measured pseudorange for one satellite ′′i′′ can be expressed as

Ci =
√

(xi −X)2 + (yi − Y )2 + (zi − Z)2 + c · δtu +∆C + ε (7.128)

where all physical influences on the signal path and the satellite clock are lumped into
the delay ∆C , and ε describes the noise in the measurement process. In turn, the ∆C term
can be modelled as

∆C = δion + δtro + δtide + δrel + δmul (7.129)

where δion (δtro) represents the signal delay caused by the ionosphere (troposphere) re-
fractivity, δtide characterizes changes related to the deformation of the Earth’s surface (e.g.,
by the gravitational potential of the Moon and the Sun, ocean tides, . . . ), δrel incorpo-
rates relativistic effects, and δmul describes multipath delays induced by signal reflections
at buildings, trees, and hard grounds nearby the receiver’s antenna as well as diffraction
effects. According the desired precision degree, more or less each of the above delays has to
be removed by suitable physical modelling [757].

While in positioning applications one is interested in determining the coordinates of the
receiver, in the framework of time and frequency comparisons the quantity of concern is the
receiver clock offset, δtu (here, in principle, the signals from just one satellite would be suffi-
cient, as the receiver’s antenna position is fixed and well known). In this case, measurements
must be referenced to an external timescale, physically provided by a 1 pulse-per-second
(PPS) signal. A typical system used in a metrology laboratory consists of the receiver itself,
usually located in a temperature-stabilized environment, and an antenna which is situated
outside, preferably at a site which minimizes multipath and diffraction effects (Figure 7.55).
First, the GPS measurements are linked to the time of an internal oscillator. This latter
is synchronized to an external frequency or, alternatively, to the frequency derived from
the satellite’s signals (dashed lines). Then, an internal 1 PPS signal is generated by a time
interval counter (TIC) and compared to the external 1 PPS signal. Since the GNSS mea-
surements are referenced to the internal oscillator too, this cancels out when combining TIC
and GNSS data. Modern state-of-the-art time and frequency receivers usually incorporate
geodetic receiver circuit boards. Originally intended for precise positioning, these also out-
put a 1 PPS signal derived from the internal clock. Moreover, they are capable to track
the C/A-code as well as the P-code on both frequencies and to measure the carrier-phase.
Finally, the boards are integrated together with the TIC and a computer which combines
the data.

In conclusion, we should mention that a few other techniques exist to compare the
readings of two distant clocks, based on the transfer of electromagnetic signals with radio
frequencies. Among these, two-way satellite time and frequency transfer (TWSTFT), here
omitted for brevity, represents the most accurate tool [650, 758].
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FIGURE 7.55
Simplified schematic of a basic time and frequency transfer receiver. (Adapted from [757].)

7.10.3 Frequency transfer

Before addressing the state-of-the-art techniques for frequency transfer both in the mi-
crowave and optical domain, we stop to describe in the following a paradigmatic, widely
used scheme for absolute optical frequency measurements, which contains many of the ele-
ments described in this and the previous chapter.

7.10.3.1 A democratic absolute frequency chain

So far, the most refined optical frequency measurements accomplished with femtosecond
combs have relied on local cesium standards or hydrogen maser references. However, the
latter are available only at national laboratories or large institutions. Conversely, being
much less expensive and bulky, high-quality BVA quartz oscillators, Rb clocks, and GPS
timing receivers are widespread. One can construct with them an absolute (traceable to
the Cs primary standard) frequency chain, as illustrated in Figure 7.56. The offset f0 and
repetition rate fr of the optical frequency comb synthesizer (OFCS) are both stabilized
against a 10-MHz BVA quartz oscillator. The latter, in turn, is phase-locked to a rubidium
clock, which is eventually phase-locked to the primary Cs standard via the GPS system
(most often, a commercial GPS-disciplined rubidium reference is directly employed).

GPS
receiver Rb clock

BVA
quartz

Mode-locked fs laser
+

spectral broadening
f0

f = +nn ·f f0 r

optical
frequency

RF domain

very stable and absolute
RF reference

fref

FIGURE 7.56
Absolute chain for optical frequency measurements consisting of an OFCS stabilized against
a quartz-rubidium-GPS reference.
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FIGURE 7.57
(a) Allan deviation plots for the quartz oscillator (squares), and for the GPS-disciplined
rubidium reference (triangles). (b) Allan deviation plot for the quartz-rubidium-GPS chain
reference (PLL time constant=100 s).

As typical Allan deviation plots show (Figure 7.57a), the quartz oscillator exhibits ex-
cellent stability on the 1−103 s time scale, whereas the GPS-disciplined rubidium oscillator
performs best over longer periods. By phase locking the two with a time constant rang-
ing from 102 to 103 s, a reference characterized by the quartz short-term stability and the
GPS long-term stability is obtained, whose Allan deviation plot is shown in Figure 7.57b.
As a result, when measuring a frequency which is phase-locked to such a chain reference,
averages can be performed over extremely prolonged acquisition periods, greatly improving
precision.

7.10.3.2 Dissemination of microwave frequency standards

Now, we resume the thread of discussion. In light of the above considerations, comparisons
between distant clocks can be carried out employing either two-way satellite time transfer
systems or a satellite link, like a global positioning system (GPS). In the latter case, a
resolution at one day of a few 10−14 (10−15) is achieved with a commercial (geodesic)
receiver. Alternatively, indirect comparisons can be accomplished utilizing transportable
clocks (with a present record accuracy of slightly below 10−15 for the Cs fountain) as
transfer oscillators between fixed high-stability clocks.
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Apart from these more traditional systems, optical fibers are being experimented as
valuable tools to establish local networks for the dissemination/comparison of time and
frequency standards, both in the microwave and optical domains. This approach offers two
main advantages: first, environmentally isolated fibers are much more stable than open-
air paths, particularly at short time scales; second, active stabilization of the fiber-optic
distribution channels can also be exploited to ameliorate the stability of the transmitted
standard itself [759].

In the microwave domain, signals in the form of amplitude modulation of an optical
carrier can be transmitted through optical fibers. The principle of such scheme is illustrated
in Figure 7.58, which refers to a transfer between two laboratories in Paris, namely LPL
and SYRTE [760]. In this experiment, a few sections of 1.55-µm telecommunication single-
mode optical fibers were interconnected to form a 43-km-total-length link. This latter was
fed with a DFB laser diode emitting at 1.55 µm. By modulating the diode junction current
with the 100-MHz reference signal, a synchronous intensity modulation of the laser output
was produced, to be then detected at the distant end of the optical link. In order to fully
characterize the frequency transfer, two independent correction systems were implemented.
In the first one, the rf signal detected at SYRTE after one round trip in the same fiber
was compared to the reference one. The extracted perturbation value, 2∆ψ, was used to
compensate one-path perturbations, ∆ψ, by phase shifting the 100-MHz signal in the op-
posite sense. This provided a corrected 100-MHz signal at LPL, then sent back to SYRTE
for evaluation via the second fiber. A second compensation system was necessary for such
transfer. Implemented at LPL, this latter acted directly on the optical path. A correction
signal was generated by comparing the phase of the 100 MHz arriving from SYRTE and
the 100 MHz modulation after one round-trip in the second fiber. Fast fluctuations were
compensated by stressing a 15-m optical fiber wrapped around a cylindrical piezoelectric
actuator (implemented at the input of the second optical fiber), while slow perturbations
were compensated by heating a 1-km optical fiber spool. Also, in order to raise isolation
between channels, the forward and return beams were modulated at different frequencies,
1 GHz and 100 MHz, respectively. Within this approach, a transfer instability of 5 · 10−15

at 1 s and 2 · 10−18 after 1 day was achieved.

7.10.3.3 Optical frequency transfer

Sharing with optical clocks the inherent advantage of a higher spectral resolution, a direct
transfer of the optical carrier itself would provide better stability. As an illustrative example
(Figure 7.59), we consider here a fiber link that was recently setup to bridge almost 70
km geographical distance between PTB and LUH in Germany [761]. The link consists of
two parallel fibers (F1 and F2) in the same underground cable which, for characterization
purposes, are connected to each other forming a 146-km loop with the input and remote ends
located in the same lab at PTB. The light source is a stabilized fiber laser (at 1542 nm) with
a fractional frequency instability of 2 · 10−15 (1 s) and a coherence length exceeding 10000
km. Only 3 mW optical power is injected into the fiber link to keep below the threshold
for stimulated Brillouin scattering. A bidirectional erbium-doped fiber amplifier (EDFA)
partially compensates the 43 dB single-pass optical attenuation. Mechanical perturbations
and temperature changes inducing optical path length fluctuations are compensated with the
commonly used fiber-noise-cancellation scheme described in Section 4.7.3. Here, the whole
fiber link is regarded as one arm of a Michelson interferometer, which is phase stabilized
against a reference arm. Derived from a double-pass signal (in-loop, at PD1), a correction
signal controls the frequency and phase of an acousto-optic modulator (AOM1) at the
fiber input; AOM2 serves to distinguish light reflected by the Faraday mirror (FM) at the
remote end from spurious reflections along the fiber. The stabilized link is characterized by
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FIGURE 7.58
Schematic of the optical link compensation for dissemination of microwave frequency stan-
dards. (Courtesy of [760].)

measuring a beat signal between outgoing laser light and light at the remote end (at PD2).
With this system, the achieved Allan deviation is 3 · 10−15/τ ; after 30000 s, the relative
uncertainty for the transfer is at the level of 1 · 10−19.

In a similar experiment, the phase coherence of an ultrastable optical frequency reference
was fully preserved over actively stabilized fiber networks of lengths exceeding 30 km (from
JILA to NIST); using frequency combs at each end of the coherent-transfer fiber link, a
heterodyne beat between two independent ultrastable lasers, separated by 3.5 km and 163
THz, achieved a 1-Hz linewidth [762].

More recently, it was demonstrated that the structure of an optical frequency comb,

FIGURE 7.59
Schematic setup of active fiber noise compensation for a 146 km fiber link. OC, optical
circulator; VCO, voltage-controlled oscillator. (Courtesy of [761].)
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transferred over several km of fiber, can be preserved with a fractional accuracy better than
3 · 10−18, a level compatible with the best optical frequency references currently available.
The stability of the mode spacing after optical-microwave conversion was also tested and
found to be preserved to better than 2 ·10−15 at 1 s and 4 ·10−17 for averaging times greater
than 1000 s [763]. The experimental setup implemented to cancel the environmentally in-
duced fiber noise is shown in Figure 7.60. Both the repetition rate fr = 100 MHz and
the offset f0 of the optical frequency comb (from a commercial 1.56 µm amplified erbium-
doped mode-locked fiber laser generating sub-150 fs optical pulses) are stabilized to a 10
MHz signal from a hydrogen maser. Being situated in a different part of the laboratory,
the laser source is connected to the experimental setup via approximately 10 m of SMF-28
fiber, which broadens the pulse duration to about 17 ps before it enters the first, 90:10
power splitter. The 10% output is employed for monitoring purposes (providing the local
pulse train), whereas the 90% output is used to propagate the comb over a 7.7-km-length
(spooled) single-mode fiber (SMF) towards the receiver end; here, a portion is returned to
the transmitter end, again via SMF. In order to accurately compare the signal that has
travelled 7.7 km with that injected at the input of the fiber, both the SMF ends are placed
in the same laboratory. The forward and backward travelling pulse trains are separated by
means of optical circulators (CIR1, CIR2), while a dispersion compensating fiber module
(DCF) recompresses the pulses to a duration below 100 ps; in addition, a free-space delay
line is adjusted to ensure appropriate temporal overlap between the local and the returned
pulse train. The returned frequency comb is combined with the original one after the latter
has been frequency shifted by fAOM = 104 MHz (via an acousto-optic modulator). Among
the notes resulting from the beating between their optical modes, the one at lowest fre-
quency (4 MHz) is amplified and phase compared with a maser-referenced synthesizer. This
generates an error signal which, after suitable integration, is applied to two fiber stretchers
and a thermally-controlled fiber spool to compensate for fast (up to a few kHz) and slow
phase fluctuations, respectively. The precision with which the whole optical-frequency-comb

FIGURE 7.60
Experimental setup for dissemination of an optical frequency comb over fiber. The detection
stage (fb det.) comprises a photodiode, a filter and cascaded amplifiers. MLL: mode-locked
laser; CIR: circulator; FS: fiber stretchers; TCS: thermally controlled spool; Integr.: integra-
tor; AOM: acousto-optic modulator; SMF: single-mode fiber; DCF: dispersion compensating
fiber. (Courtesy of [763].)
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structure is preserved across the several-km-scale fiber transmission is tested by measuring
the mode spacing fr and the frequency of a selected optical mode (Figure 7.61).

In the former case, the 80th harmonic (8 GHz) of fr at the receiver end of the fiber is
phase compared with that detected directly at the output of the laser using a microwave
mixer. By integrating the power spectral density of the phase noise fluctuations between
1 Hz and 100 kHz, as measured with an FFT analyser, a timing jitter less than 17.5 fs
is calculated. In particular, the effectiveness of noise cancellation can be appreciated by
noting that the phase noise at 1 Hz offset from the carrier is âĹŠ91 dBc/Hz, very close to
the noise measured when the 7.7-km SMF and the DCF are replaced by a 2 m fiber and an
attenuator set to provide the same overall loss. The measurement of the frequency stability
is accomplished by converting the output voltage of the microwave mixer (logged every 0.5
s with a digital voltmeter) into phase changes and then evaluating the corresponding Allan
deviation.

In the latter case, a selected optical comb mode is beaten, before and after the fiber
link, against a continuous-wave (CW), 542-nm-wavelength laser stabilized to a ULE cavity.
Since changes in the frequency of the CW laser are common mode, any difference observed
between the two resulting 35-MHz beat frequencies (the broadband noise of which is filtered
by means of 200-kHz-bandwidth tracking oscillators) originates from the fiber noise. The
power spectral density of the phase fluctuations between the two beat frequencies, and hence
of the transferred optical mode, is measured with a digital phase detector (with a linear
range extending over 256π) followed by an FFT analyser. The timing jitter evaluated from 1
Hz to 100 kHz is 5.2 fs corresponding to a phase change of approximately 2π. The frequency
stability calculated from the phase data is 4 · 10−17 at 1 s and approximately 2 · 10−18 for
timescales of a few thousand seconds (corresponding to a timing jitter smaller than 10 fs).
The mean frequency offset between the two beats corresponds to a transfer accuracy for the
optical mode frequency of 2.6 ·10−18. This clearly shows that, due to the noise introduced in
the optical-to-microwave conversion, the accuracy of the transferred repetition rate is worse
than that of the optical modes.

FIGURE 7.61
Experimental layout for measuring phase noise and frequency stability of the mode spac-
ing (a) and transferred optical modes (b). The detection stages denoted as floc and frem
comprise a fast photodiode, a narrow bandpass filter and microwave amplifiers. (Courtesy
of [763].)
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The long unmeasured pulse of time moves

everything. There is nothing hidden that

it cannot bring to light, nothing once

known that may not become unknown.

Sophocles

Whatever has been said, narrated, drawn,

reality represents much more than all this.

Johann Wolfgang von Goethe

8.1 Optical atomic clocks

As discussed in the previous chapter, with the present frequency stability of 6 · 10−16 and
accuracy of 1.1 · 10−15, microwave frequency standards based on fountains are now in their
adulthood. Also, within a few years, further affordable betterments could push the stability
into the low 10−16 range (over one-day averaging time) and the accuracy to 1 · 10−16. We
have also learnt that, when the quantum projection noise dominates over technical noise
sources, the instability of an oscillator which is locked to an atomic transition with frequency
ν0 and linewidth ∆ν can be expressed as

σ(τ) =
∆ν

πν0

√

T

Nτ
(8.1)

where T is the cycle time required to perform a single determination of the line center
frequency and N denotes the number of detected atoms [764]. Note that this formula is valid
for averaging times τ > T . Also, a signal contrast of 100% and the absence of dead time
(between the cycles) are assumed. Now, while the processes that limit the linewidth of an
atomic transition in the microwave region are essentially comparable to those in the optical
domain, a 5-orders-of-magnitude enhancement is gained by moving from the operating fre-
quency of the cesium primary standard to optical frequencies. Thus, potentially, a dramatic
reduction in the instability can be obtained by establishing a frequency standard on an
optical transition. At risk of becoming pedantic, before going on, we insist in elucidating
the principle of operation of a passive atomic frequency standard (Figure 8.1) [715].

The core is represented by an atomic reference with resonant response centered at fre-
quency ν0 and is interrogated by a suitable local oscillator of frequency ν. Then, an absorp-
tion signal arises when ν is tuned around ν0, from which an error signal is derived. Via a
servo control loop, the latter is used to accord the frequency ν of the local oscillator so as
to hold it as close as possible to the frequency ν0 of the reference transition. Finally, such
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FIGURE 8.1
Schematic layout of a passive atomic frequency standard. (Adapted from [715].)

frequency standard is converted into a clock, by counting the cycles of the stabilized local
oscillator.

In an optical atomic clock, the three main ingredients specialize as follows (see
Figure 1.9):

1. The local oscillator is an ultranarrow linewidth laser. Indeed, in order not to de-
grade the great potential offered by the natural linewidths of clock transitions in
optical frequency standards, few hertz or less, it is mandatory to diminish the
probe laser linewidth to a comparable level. As extensively discussed in Chapter
4, this is usually accomplished by using the Pound-Drever-Hall (PDH) stabiliza-
tion technique to lock the probe laser to a high finesse ultrastable optical cavity.
As discussed in Chapter 3, this commonly consists of a pair of identical concave
mirrors optically contacted on to the ends of an ultralow expansion (ULE) glass
spacer. With a typical resonator length of 10 cm and a finesse of about 200000,
a cavity resonance linewidth of 5-10 kHz is obtained. As a result, provided that
the fidelity of the lock to the cavity is high enough, the frequency stability of
the probe laser will be limited by that of the cavity resonance rather than by its
own noise. As this kind of ULE cavity is not tunable, an acousto-optic modu-
lator (AOM) is needed to shift the probe laser frequency into coincidence with
some cavity resonance (sometimes the AOM drive frequency is also controlled in
such a way as to compensate for the first-order residual drift of the ULE cavity).
In this configuration, linewidths in the range 0.4-1 Hz and fractional frequency
instabilities of a few 10−16 (for averaging times of a several seconds) have been
reported by a number of laboratories. As already examined in Chapter 3, the
most afflictive fluctuations in the ULE cavity length arise from low-frequency
(below 100 Hz) seismic and acoustic vibrations which couple to cavity (via the
support structure) and tend to deform it. Thus, mechanical designs with reduced
sensitivity to vibrations are of utmost importance and many successful efforts
have been made in this sense. Then, once the temperature is well constrained at
the zero thermal expansion point of the ULE spacer and the effects of vibrations
are efficiently suppressed, the cavity frequency stability will be dictated by di-
mensional changes due to thermal fluctuations in the mirror substrates and their
coatings. In conclusion, it has been demonstrated that the performance achieved
with state-of-the-art optical local oscillators is indeed very close to the thermal
noise limit. Nevertheless, in the near future one may expect to further reduce the
thermal noise limit through an attentive choice of cavity materials and geometry
as well as the operating temperature;
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2. Authoritative candidates for the atomic reference are either transitions in sin-
gle laser-cooled trapped ions or transitions in cold neutral atoms. These will be
presented separately in the two next sections.

3. The counting device is provided by a femtosecond optical frequency comb [765].
In an optical clock, the carrier-envelope offset frequency f0 is detected using the
usual self-referencing technique. Then, a first phase-locked loop (PLL) forces f0 =
βfr (e.g., by controlling the pump power of the femtosecond laser). In addition to
f0, a second heterodyne beat fb is measured between an individual comb element
fm = f0 + mfr and the optical standard laser oscillator that is locked to the
clock transition frequency fat. Similarly, a second PLL forces fb = αfr (e.g.,
by changing the cavity length of the femto-second laser with a piezo-mounted
mirror). The constants α and β are integer ratios which can be implemented with
frequency synthesizers that use fr/100 as a reference. In this way, every element
of the comb, as well as their frequency separation fr, is phase-coherent with the
laser locked to the atomic standard. In formulas

{

fb = fat − (f0 +mfr) ≡ αfr
f0 = βfr

⇒ fr =
fat

m+ α+ β
(8.2)

Thus, fr = fat/(m+α+β) is the countable microwave output of the clock, which
is readily detected by illuminating a photodetector with the broadband spectrum
from the frequency comb.

At this point, a crucial issue is testing how well the femtosecond comb transfers
the optical frequency standard stability to other spectral regions. This task is
accomplished by comparing the outputs from two independent combs that are
locked to the same optical reference [766, 715]. In the optical domain, such com-
parison is carried out by looking at the heterodyne beat signal between the two
combs. In the microwave domain, instead, the pulse train from each comb is di-
rected onto a photodetector. The two resulting signals are then combined into
an electronic mixer whose output provides the input of a conventional rf counter.
In both cases, any instability due to the optical reference is common to the two
combs and thus cancels out during the comparison. These experiments revealed
that, while in optical-heterodyne comparisons the excess fractional frequency in-
stability introduced by the comb is on the order of 2 ·10−17 at 1 s (averaging down
to the 10−19 range in a few thousand seconds), microwave signals extracted by
photodetection have significantly worse stability. This suggests that excess noise
may be introduced by the photodetection process.

8.1.1 Trapped ion optical clocks

As discussed in the previous chapter, a single laser-cooled ion confined in a Paul-type trap
offers some favored properties to realize an optical frequency standard. First, entering the
Lamb-Dicke regime strongly suppresses Doppler effects (broadening and shifts) that are
related to the ion motion relative to the probing radiation. Second, in a cryogenic envi-
ronment, perturbations from blackbody radiation and atomic collisions are both extremely
small. Third, the ion storage time can last for months, thus considerably increasing the
probe interaction time [767]. We also described an effective detection scheme, known as the
electron shelving technique, by which the narrow reference transition can be detected with
nearly 100% efficiency.
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TABLE 8.1
Wavelength and theoretical linewidth of the clock transition in most advanced trapped-ion
optical frequency standards currently under development in several labs.

Ion Clock Transition λ (nm) ∆ν (Hz) Lab δν/ν (10−15)

27Al+ 1S0–3P0 267 0.008 NIST 0.65
40,43Ca+ 2S1/2–

2D5/2 729 0.14 Innsbruck, NICT, Marseilles 2.4
88Sr+ 2S1/2–

2D5/2 674 0.4 NPL, NRC 3.8
115In+ 1S0–3P0 237 0.8 MPQ, Erlangen 180
171Yb+ 2S1/2–

2D3/2 436 3.1 PTB, NPL 3.2
171Yb+ 2S1/2–

2F7/2 467 ∼ 10−9 PTB, NPL 20
199Hg+ 2S1/2–

2D5/2 282 1.8 NIST 0.65

Note: Last column reports the fractional uncertainty measured for the clock transition relative to
the SI second. (Adapted from [768].)

A number of potentially suitable transitions in different ions have been recognized for
the accomplishment of an optical frequency standard. Each of them does possess clear
advantages, but it is not free from drawbacks. These can be either related to some key
clock-transition parameters, sensitivity to environmental perturbations above all, or to more
technical hurdles in the implementation of the experimental setup. So far, much progress
has been made for the ions reported in Table 8.1 [768]. Just as an example, partial term
diagrams showing the laser wavelengths needed to cool and probe the trapped ion are also
displayed in Figure 8.2 for 88Sr+, 171Yb+, and 199Hg+.

While Ca+, Sr+, Yb+, and Hg+ exhibit alkali-like atomic structure, 27Al+ and 115In+

are more similar to alkaline earth elements.
In the former case, the 2D states are metastable, decaying to the 2S1/2 ground state

via an electric quadrupole transition. Interestingly, the 171Yb+ ion also possesses a low-
lying, 6-year-lifetime 2F7/2 state which can decay to the ground state only via an electric
octupole transition. Although considerably harder to drive (compared to the quadrupole
clock transition), the latter offers the potential advantage of noticeably longer interrogation
times. Recently, the Physikalisch-Technische Bundesanstalt (PTB) group was successful
in measuring the unperturbed transition frequency of such electric octupole transition,
2S1/2(F = 0)-2F7/2(F = 3), as 642121496772645.15(52) Hz with a fractional uncertainty of
7.1 · 10−17 [769].

In the latter case, the clock transition is the strongly spin-forbidden 1S0-3P0 one. Such
a captivating transition has no electric quadrupole shift together with a small blackbody
Stark shift. As a counterpart, an evident experimental challenge is represented by the con-
struction of laser sources at the deep UV wavelengths required for cooling and probing. For
instance, the cooling wavelength for 27Al+ falls around 167 nm. To overcome this drawback,
the 27Al+ ion is co-trapped with an auxiliary 9Be+ ion that can be cooled at the more con-
venient wavelength of 313 nm. Then, the Coulomb interaction couples the two ions, leading
to sympathetic cooling of the 27Al+ ion. In this scheme, due to the absence of cooling flu-
orescence from 27Al+, the usual electron shelving interrogation cannot be applied, but the
clock-transition information can nevertheless be mapped back to the 9Be+ ion for readout
[770]. This approach, called quantum-logic spectroscopy, will be detailed in Section 8.9.3.1.

As shown in Table 8.1, the uncertainty of the best absolute frequency measurement,
that for 199Hg+ [771], is dominated by the uncertainty of the cesium microwave primary
frequency standard used as the reference. Meanwhile, other standards are approaching this
limit. This clearly demonstrates the urgent need to directly compare optical frequency stan-
dards without intermediate microwave references. For this purpose, a femtosecond optical
frequency comb can be used. The principle of such a direct comparison is illustrated in
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FIGURE 8.2
Partial term diagrams showing the laser wavelengths required for operation of an optical
clock based on 88Sr+, 171Yb+, and 199Hg+. (Adapted from [768].)

Figure 8.3 for the 199Hg+ and 27Al+ optical standards [772]. In that experiment, the ratio of
the two clock transition frequencies was determined with a relative uncertainty of 5.2·10−17.

In terms of frequency stability, notable results have been achieved with the comparison
between the 199Hg+ and 27Al+ standards [772]. Here, a combined fractional frequency insta-
bility of 4 · 10−15τ−1/2 has been measured for averaging times up to 2000 s, representing an
upper limit to the instability of each standard. Another remarkable achievement concerns
the 171Yb+ quadrupole standard, where a frequency stability of 9 · 10−15τ−1/2 has been
observed in the comparison of two similar systems [773]. More recently, an optical clock
with a fractional frequency inaccuracy of 8.6 · 10−18 was constructed, based on quantum
logic spectroscopy of an Al+ ion [774]. In that experiment, a simultaneously trapped Mg+

ion served to sympathetically laser cool the Al+ ion and detect its quantum state. Then, the
frequency of the 1S0−3P0 clock transition was compared to that of a previously constructed
Al+ optical clock with a statistical measurement uncertainty of 7.0 · 10−18. The two clocks
exhibited a relative stability of 2.8 · 10−15τ−1/2, and a fractional frequency difference of
−1.8 · 10−17, consistent with the accuracy limit of the older clock.

It has become apparent by now that the best cesium microwave primary frequency stan-
dards have been surpassed by the most advanced ion optical frequency standards. Indeed,
based on the electric quadrupole transitions in 199Hg+, 88Sr+, and 171Yb+, secondary rep-
resentations of the second were adopted in 2006 by the International Committee for Weights
and Measures (CIPM) [775].
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FIGURE 8.3
Frequency ratio measurement for the comparison of 199Hg+ and 27Al+ optical clock frequen-
cies. The fourth harmonic of a 1126-nm laser is locked to the clock transition of 199Hg+, the
second harmonic being used for pre-stabilization against an ULE Fabry-Perot cavity (which
narrows the laser linewidth down to 1 Hz). The same holds for the 1070-nm laser which,
driving the spectroscopy transition in the 27Al+ ion, is then locked to the detection transi-
tion in the co-trapped 9Be+ ion, according to the quantum-logic spectroscopy scheme. After
this, the two laser frequencies are compared by means of a femtosecond comb: the beat-note
frequency fb,Hg (fb,Al) of the mercury (aluminum) clock laser with the n(m)th comb tooth,
the comb carrier-envelope offset, fceo, and repetition rate, frep, enter the frequency ratio
measurement. (Courtesy of [772].)

8.1.1.1 Systematic frequency shifts

In the following we survey the most important systematic frequency shifts that contribute
to the overall uncertainty budget for a trapped-ion optical frequency standard. While only
a brief, general discussion on the various shift sources is given here, the reader is referred
to [768, 764, 715] for a detailed report on the extent to which each of them affects the
metrological performance of all the ions listed in Table 8.1.

Zeeman shifts

For the odd isotopes of alkali-like ions, like 199Hg+ and 171Yb+, mF = 0−mF = 0 compo-
nents exist that are field-independent to first order. Concerning the second-order Zeeman
shift, operation in µT-range magnetic fields should reduce the corresponding fractional un-
certainty to the 10−17-10−18 level, depending on the specific ion species. When using even
isotope ions, like 88Sr+ and 40Ca+, a first-order Zeeman shift is instead present, which is can-
celled out by over-and-over-again and consecutively probing two Zeeman components that
are symmetrically placed about the centroid of the multiplet. Finally, the linear magnetic-
field dependence of the 1S0-3P0 transitions in 115In+ and 27Al+ is removed in a similar
manner.

Electric quadrupole shift

In many trapped-ion optical frequency standards, the dominant systematic frequency shift
is represented by the electric quadrupole shift of the clock transition frequency, caused by
the interaction between the electric quadrupole moments of the pertinent atomic states
with any residual electric field gradient present at the trapped-ion position. As already
mentioned, for the 1S0-3P0 transitions in 115In+ and 27Al+ such shift is zero because both
the upper and lower clock transition levels have null angular momentum and hence no
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quadrupole moment. For the other ions being explored as optical frequency standards, the
electric quadrupole shift is wholly attributable to that of the upper clock transition level,
as the spherically symmetric 2S1/2 state has no quadrupole moment. Even with low-flux ion
loading techniques and effective 3-D micromotion compensation, unwanted field gradients
within the trap can readily produce quadrupole shifts of several hertz. Providentially, a
keen method to erase this shift has been demonstrated, which entails taking the average of
measurements for several different Zeeman components [776, 715].

Second-order Doppler shift

As already explained, first-order Doppler shift is eliminated by laser cooling the trapped
ion into the Lamb-Dicke regime. However, residual thermal motion and micromotion give
rise to second-order Doppler shifts. In the former case such shift is given by [768]

(

∆νDoppler
ν

)

thermal

= −3kBT

2Mc2
(8.3)

where M denotes the ion mass and the ion temperature T is close to the Doppler cooling
limit Tmin = ~γ/(2kB) , γ being the natural linewidth of the cooling transition. Then, the
corresponding fractional frequency shift will be in the range 10−18-10−20, depending on the
mass.

The second-order Doppler shift related to the micromotion is instead much more pro-
nounced. As a consequence, accurate minimization of the 3-D micromotion is mandatory
to keep this effect as low as the part in 1017 level. If the trapping-field angular frequency
satisfies the condition Ω ≫ γ, then the micromotion can be monitored by measuring the
between the scattering rate R1 (R0) when the laser is tuned to the first sideband (carrier)
[764]. Then, in the low intensity limit, the micromotion contribution to the second-order
Doppler shift can be expressed as [764]

(

∆νDoppler
ν

)

micromotion

≃ −
(

Ω

ω cosφ

)2

(8.4)

where ω is the angular frequency of the transition and φ is the angle between the
probe laser beam and the direction of the micromotion. The above equation shows that the
micromotion contribution scales quadratically with the clock transition wavelength.

Stark shifts

The main Stark-shift sources in the clock-transition frequency are [764]

• Motionally induced exposure of the ion to electric fields. Indeed, both the micromotion
and the thermal motion expose the ion to a non-zero rms electric field, whose magnitude
and constancy can be further influenced by stray charge within the trap. When the ion
is cooled to the Doppler limit, again the micromotion contribution dominates, thereby
requiring careful compensation to reach the 10−18 level.

• Interactions with the blackbody radiation field due to the temperature of the surrounding
apparatus. For a room-temperature trap, the associated fractional blackbody Stark shift
can be relatively large (few parts in 1016) and the uncertainty in the absolute value of the
correction is determined by the typical 30% uncertainties in the Stark shift coefficients.
Amongst the room-temperature systems under investigation, the 1D0-3P0 transition in
27Al+ has the lowest fractional blackbody Stark shift (−8± 3 parts in 1018 for a temper-
ature of 300 K). Since the blackbody Stark shift scales as T 4, for the 199Hg+ standard,
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which is operated in a liquid helium cryostat, it is seven orders of magnitude lower than
at room temperature, and hence negligible [765]. Recently, a new concept was developed
to realize atomic clocks with suppressed (by 1-3 orders of magnitude) blackbody radiation
shift [777]. Here, the suppression is based on the fact that in a system with two accessible
clock transitions (with frequencies ν1 and ν2) which are exposed to the same thermal
environment, there exists a synthetic frequency νsyn ∝ (ν1− ε12ν2) largely immune to the
blackbody radiation shift.

• Exposure to the various light fields required to cool and probe the trapped ion. The main
source is represented by the interaction of the probe-laser electric field with the light-field-
induced electric dipole moment in the ion. However, for typical probe laser intensities, the
associated clock transition shift is vanishingly small. An exception is represented by the
extremely weak 467-nm electric-octupole transition in 171Yb+, for which a reasonable rate
driving requires a significant light intensity. In this case, the unshifted value is determined
by measuring the transition frequency vs the laser power and then extrapolating to zero
power. Nevertheless, by narrowing the probe laser linewidth down to the hundreds-of-mHz
level, it should be possible to use a lot less light intensity so as to make such ac Stark
cease to dominate the uncertainty budget.

In conclusion, it is worth mentioning that the above list of systematic frequency shifts
should not be considered as exhaustive, in the sense that previously unexamined effects may
turn out to be more and more serious as the performance of optical frequency standards
keeps on improving. Just as an example, when considering the gravitational redshift, in order
to achieve 10−18 fractional accuracy, a to-1-cm knowledge of the height of the standard above
the geoid is needed.

Finally, one should stress that, at such high levels of performance, an accurate charac-
terization of all the systematic frequency shifts as well as of the system reproducibility can
be carried out only through direct comparison between two or more independent, nominally
similar systems. In this frame, for instance, a relative difference of 3.8(6.1) ·10−16 was found
when comparing the frequencies of the 2S1/2(F = 0) - 2D3/2(F = 2) reference transition in
171Yb+ for two single ions stored in independent traps [778].

8.1.2 Neutral atoms optical lattice clocks

A second valuable option for developing optical frequency standards hinges on ensembles
of cold atoms. In this case, according to Equation 8.1, the promising benefit is the

√
N

enhancement in stability offered by ensembles of N atoms within a cloud, an optical lattice,
or a continuous beam.

As discussed in Chapter 5, one of the most deeply investigated atomic beam standards
is the two-photon 1S-2S hydrogen transition at 243 nm, which is characterized by a natural
linewidth of 1.3 Hz. As already described thoroughly, such two-photon transition frequency
has been measured with a fractional uncertainty of 4.2 · 10−15. Since the predominant
sources of uncertainty are presently associated with the relatively high mean velocity of
the hydrogen atoms in the beam, further significant improvements in precision are closely
dependent on the development of effective techniques for laser cooling and trapping atomic
hydrogen [715].

In this context, although both first and second order Doppler shifts are heavily reduced
in a magneto-optical trap (MOT), appreciable ac Stark and Zeeman shifts of the atomic
energy levels arise due to the use of laser beams and magnetic field as required by the MOT
operation. Thus, turning off of these fields during the clock transition frequency measure-
ment is required, but this inevitably causes the atoms to expand ballistically under gravity.
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As a consequence, detrimental velocity-related systematic frequency shifts appear and, even
more fundamental, the maximum interrogation time is limited, thereby restricting clock op-
eration to relatively broad transitions. Just as an example, in the MOT-based calcium atom
optical frequency standard, the clock transition is the 657-nm 1S0-3P1 intercombination line
that has a natural linewidth of about 400 Hz.

The paradigm changed when a clever scheme was devised to increase the interrogation
time without causing recognizable perturbations to the clock transition frequency [779]. In
such a novel approach, called an “optical lattice clock,” while utilizing a big number N of
neutral atoms to substantially ameliorate the quantum projection noise limit, a single ion in
a Paul trap is simulated. Actually, this unique combination is accomplished by trapping mil-
lions of neutral atoms in an optical lattice where well-controlled perturbations are achieved
by appropriate design of the light-shift potentials (Figure 8.4). Also, the sub-wavelength
localization of a single atom in each lattice site suppresses the first-order Doppler shift and
collisional shift.

In more detail, cancelling out of the light-field perturbation is attained by means of the
so-called “magic wavelength” protocol. In essence, although the electronic states of atoms
trapped in an optical lattice are, in general, considerably energy-shifted, such light-shift
perturbation can be eliminated if the lattice field provides exactly the same amount of light
shift for the two states used in the clock transition. Now, the clock transition frequency of
atoms exposed to a lattice laser with an electric field amplitude E is given by the sum of
the unperturbed transition frequency ν0 and the differential light shift νac. In the electric
dipole (E1) approximation, this can be expressed as [779]

ν(λL, eL) = ν0 −
∆αE1(λL, eL)

2h
E2 +O(E4) (8.5)

where ∆αE1(λL, eL) = αb(λL, eL)− αa(λL, eL) is the difference between the E1 polar-
izabilities of the upper (|b〉) and lower (|a〉) states. By tuning the laser wavelength λL and
polarization eL to satisfy ∆αE1(λL, eL) = 0, the observed atomic transition frequency ν
will be equal to ν0 regardless of the lattice laser intensities (∝ E2), as long as higher-order
corrections O(E4) are negligible. This particular wavelength is referred to as the magic
wavelength, λm. Such scheme can be applied quite generally to atoms in groups II and IIB
such as He, Be, Mg, Ca, Yb, Zn, Cd, and Hg, which exhibit the J = 0→ J = 0 transition
between long-lived states. Ultimately, fourth and higher-order E1 light shift, multipolar
atom-lattice interactions, blackbody radiation shifts as well as collisional interactions re-
strict the effectiveness of an optical lattice clock. In the following, we take isotopes of Sr as
examples to gain a deeper insight. Figure 8.5 shows the light shift for |a〉 ≡ |1S0〉 (blue line)
and |b〉 ≡ |3P0〉 (red line) states as a function of the laser frequency νL = c/λL, which are
calculated by summing up the dipole moments that couple |a〉 and |b〉 to the relevant states
(assuming a laser intensity of I = 10 kW cm−2). The crossed points of blue and red lines
correspond to the magic wavelengths λm. While higher-order light shifts are ineludible at
red-detuned magic wavelengths, a blue-detuned lattice may overcome this drawback. One
such magic wavelength falls on the blue side of the 5s5p 3P0 to 5s6d 3D1 transition at 394
nm (see Figure 8.5). Indeed, since the atoms are trapped near the nodes, the effective light
intensity they experience is about one-tenth of that at the antinodes. Then, assuming a trap
depth of 10 µK, the fourth-order light shift is estimated to be 0.1 mHz, which corresponds
to a fractional uncertainty of 2 · 10−19.

However, even in a blue-detuned optical lattice clock, things get more complicated as
soon as atomic multipolar interactions are considered. Let us examine, for instance, the case
of a linearly polarized (ez) standing-wave electric field E = ez sin(ky) cos(ωt) with wave
number k and frequency ω = ck. From the Maxwell equation ∇ × E = −(∂B/∂t)/c, the
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FIGURE 8.4
A one-dimensional spatially periodic intensity pattern, that is an optical lattice with period
λ/2, is created by interference between two counter-propagating laser beams, both of wave-
length λ. Laser-cooled atoms are trapped in the lattice by virtue of the interaction between
the radiation-induced dipole moment in the atom and the intensity gradient of the laser
radiation (recall from Chapter 7 that, if the frequency of the light is lower/higher than the
resonance frequency of the atom, the atom will be attracted to the regions of highest/lowest
intensity). The lattice potential can be tailored to confine atoms in a region much smaller
than the relevant optical wavelength λL. Then, atoms are excited on the 1S0-3P0 clock tran-
sition, where the 1S0 and 3P0 states are equally energy shifted by the lattice potential. Here,
n represents the vibrational states of atoms in the lattice potential. (Courtesy of [779].)

corresponding magnetic field is given by B = −exE0 cos(ky) sin(ωt), which indicates that
the electric and magnetic field amplitudes are out of phase in space by a quarter of the
wavelength. This means that the magnetic dipole (M1) interaction is largest at the nodes of
the electric field. In addition, since the electric quadrupole (E2) interaction is proportional
to the gradient of the electric field, it is also largest at the nodes of the electric field. As
a result, the energy shift of atoms in an optical lattice is obtained by the second-order
perturbation in the E1, M1, and E2 interactions, which vary as VE1 sin

2(ky), VM1 cos
2(ky),

and VV 2 cos
2(ky), respectively. Therefore, due to the spatial mismatch of the M1 and E2

interactions with the E1 one, which induces an atomic-motion-dependent light shift, it is
no longer possible to perfectly cancel out the light shift in two clock states. To give an idea,
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FIGURE 8.5 (SEE COLOR INSERT)
Illustration of the magic wavelength protocol in the case of fermionic 87Sr and bosonic 88Sr
isotopes. f88 represents the clock transition frequency for 88Sr, where an applied magnetic
field Bm mixes the 3P0 and 3P1 states to permit the clock transition. f87 = (f+ + f−)/2
provides the clock transition frequency for 87Sr. (Courtesy of [779].)

in the specific case of Sr, the contributions from the M1 and E2 interactions are 6-7 orders
of magnitude smaller than that arising from the E1 one. Nevertheless, their effects cannot
be neglected when addressing a 10−18-level uncertainty [780]. So, denoting the differential
polarizabilities with ∆αX(λL) and the corresponding spatial distributions with qX(r) for
X = E1,M1, and M2 interactions, the transition frequency of atoms in the optical lattice
can be generalized as

ν(λL) = ν0 −
[∆αE1(λL)qE1(r) + ∆αM1(λL)qM1(r) + ∆αE2(λL)qE2(r)]E

2

2h
(8.6)

where the fourth- and higher-order terms as well as light polarization dependence are
omitted. Now, in order to eliminate the atomic-motion-dependent light shift (caused by
multipolar interactions), one has to choose a particular combination of optical lattice ge-
ometry and electric field polarization forcing the qM1(r) and/or qE2(r) terms to be ei-
ther in or out of phase with the spatial dependence of qE1(r). For example, in the case
of a 1-D lattice with the E1 spatial dependence qE1(r) = sin2(ky), the corresponding
M1 and E2 interactions are qM1(r) = qE2(r) = cos2(ky) = 1 − qE1(r). Thus, by tak-
ing ∆αEM = ∆αE1 − ∆αM1 − ∆αE2 and ∆α0 = ∆αM1 + ∆αE2, equation 8.6 can be
rewritten as ν(λL) = ν0−∆αEM (λL)qE1(r)E

2/(2h)−∆α0E
2/(2h). This suggests that the

magic wavelength can be redefined as that satisfying ∆αEM (λm) = 0. It is worth noting
that the last term just represents a spatially constant offset (typically 10 mHz or below)
that only depends on the total laser intensity (∝ E2) giving life to the lattice. This offset
frequency can be precisely determined by measuring the atomic vibrational frequencies Ω
in the lattice.

The last two issues relevant to the design of optical lattice clocks concern the collisional
frequency shift and the vector/tensor light shift:

• In ultracold atoms, the collisional shift is related to the mean field energy shift
4π~2aρg(2)(0)/m of the relevant electronic state, where a is the s-wave scattering length,
ρ is the atomic density, m is the atomic mass, and g(2)(0) is the two-particle correlation
function at zero distance (which is zero for identical fermions and 1-2 for distinguishable or
bosonic atoms). So, collisional shifts are suppressed for ultracold spin-polarized fermions,
whereas they are intrinsically unavoidable for bosons;

• The vector/tensor light shift arises from the coupling between the clock states and the



568 Laser-based measurements for time and frequency domain applications

light polarization of the lattice field. Such coupling is caused by a non-zero total angular
momentum F = I+J of the clock states, which can be zero for bosons, but not for fermions
(indeed, since optical lattice clocks employ atoms with J = 0 electronic states, isotopes
with a nuclear spin of I = 0 or any integer obey Bose statistics, and those with half-integer
nuclear spin obey Fermi statistics). This drawback can be overcome, for instance, in a 1-D
lattice composed of a single electric field vector. Here, the resulting spatially uniform light
polarization allows the vector light shift to be cancelled out by alternately interrogating the
transition frequencies f± corresponding to the 1S0(mF = ±F ) - 3P0(mF = ±F ) transition
to obtain f87 = (f++f−)/2. This cancellation technique simultaneously removes the first-
order Zeeman shift to realize virtual spin-zero atoms.

In the frame of magic lattice spectroscopy, absolute frequency measurements on the
highly forbidden 1S0-3P0 clock transition of 87Sr have been carried out by groups at Tokyo-
NMIJ, JILA [781] and SYRTE [782]. Spectroscopy is usually performed by using a ∼ 100
ms Rabi pulse which, when on resonance, transfers a fraction of the atoms into the 3P0

state. After applying the clock pulse, atoms remaining in the 1S0 state are detected by
measuring fluorescence on the strong 1S0-1P1 transition. The population in the 3P0 state is
then measured by first pumping the atoms back to the 1S0 state (through intermediate states
not shown in figure) and then by again measuring the fluorescence on the 1S0-1P1 transition
(combining these two measurements gives a normalized excitation fraction insensitive to
atomic number fluctuations from shot to shot). The agreement between the independent
measurements by the above three groups led the Comité International des Poids et Mesures
(CIPM) to adopt in 2006 the 87Sr-based optical lattice clock transition frequency (νSr =
429228004229873.7) as a secondary representation of the second (with an uncertainty of
1 · 10−15). Incidentally, the NIST group also measured the transition frequency of 171Yb to
be νY b = 518295836590865.2(7) Hz [783].

Although experiments performed on fermionic 87Sr and 171Yb atoms trapped in 1-D lat-
tices have revealed so far no prickly root of indeterminateness, investigating uncertainties
beyond 10−17 may shed new light on a variety of intriguing phenomena. These include col-
lisional shifts between spin-polarized fermions, tunnelling of atoms between lattice sites,
hyperpolarizability effects, atomic multipolar interactions with lattices, and blackbody-
radiation (BBR) shifts [779]. Addressing these issues is necessary to ascertain the effec-
tiveness of the optical lattice clock scheme towards an uncertainty level of 10−18. One of
the most severe obstacles is represented by the BBR shift, which has a sensitivity of 29 (17)
mHz K−1 for Sr (Yb) at a temperature of 293 K. Therefore, stabilization of the temperature
to better than 0.1 K or the use of a cryogenic environment is required. Otherwise, one can
resort to atomic elements like Hg whose BBR shift is an order of magnitude smaller than
that of Sr or Yb.

Obviously, in order to evaluate the performance of optical clocks below uncertainties
of 10−16, references with equivalent or better performance are needed. Therefore, compar-
isons between two independent optical lattice clocks have been carried out [784]. However,
contrary to expectations induced by the large number of the involved atoms, such opti-
cal lattice clocks exhibited stabilities of a few 10−15τ−1/2, essentially limited by the Dick
effect (attributable to the local oscillator noise). Indeed, while quantum projection noise
(QPN) limited stability (that is the ultimate measure of stability) has been demonstrated
in cesium clocks and in single-ion optical clocks (where the quantum noise overwhelms the
Dick effect), in well-designed optical lattice clocks (N ≃ 1 · 106, ∆ν/(πν0) ≃ 10−15, T ≃ 1
Hz) the QPN limit can be calculated from Equation 8.1 as σy(τ) ≃ 10−18τ−1/2. Such level
is masked by the Dick effect. Nevertheless, when synchronously evaluating the frequency
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FIGURE 8.6
Experimental setup for synchronous comparison of two independent lattice clocks. Two
probe beams derived from a single laser stabilized to an ULE cavity, with frequencies f87
and f88 (separated by a frequency difference of ≃ 62 MHz), simultaneously interrogate the
clock transitions of the two isotopes 87Sr and 88Sr. Respective excitation probabilities are
measured by PMTs to servo-lock laser frequencies f87 and f88 by steering AOMs driven by
a direct digital synthesizer (DDS). The frequency difference ν = f88 − f87 is recorded in
time series to evaluate the Allan deviation. (Adapted from [784].)

difference of two clocks by using a common clock laser, the stability degradation due to the
Dick effect may be rejected as a common-mode noise, thereby allowing the two clocks to
be compared at the QPN limit. Figure 8.6 shows the experimental setup for the frequency
comparison of optical lattice clocks operated using 87Sr and 88Sr atoms [784]. With this
approach, the Allan standard deviation reached 1 · 10−17 in an averaging time of 1600 s by
cancelling out the Dick effect to approach the QPN limit. More recently, the same group
has also demonstrated fiber-based remote comparison of two 87Sr clocks in 24-km distant
labs with an instability of 5 · 10−16 over an averaging time of 1000 s [785].

With the topic of optical atomic clocks we have inaugurated, in fact, the discussion on
future trends in fundamental and applied physics. Just as an example, the gravitational
redshift of the clock transition frequency could be exploited for refined measurements of the
Earth’s gravitational potential. Furthermore, when operated in space environment, optical
atomic clocks could also find applications in Earth observation (geoscience) as well as in
future generations of global satellite navigation systems [768]. However, it is likely that the
most immediate applications will be restricted to fundamental science. In particular, as we
will see in a short while, highly stable and reproducible atomic frequency standards play
a key role in tests of fundamental physical theories such as general relativity and quan-
tum electrodynamics. This scientific horizon, however, is but one aspect of the variegated
speculative landscape opened by the field of laser-based frequency measurements. In this
broader framework, we will try to outline the most exciting, current, and forthcoming re-
search directions. In this spirit, some pertinent streams in the brand new realm of quantum
metrology will be also sketched. It is likewise obvious that we are talking about research
areas which are experiencing a veritable outburst. Therefore our survey will inevitably be
incomplete, and only a few highlights will be touched on.
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8.2 The hydrogen atom as an inexhaustible wellspring of advances
in precision spectroscopy

Due to its simple structure (it is indeed the only stable neutral two-body system) and
abundance in the universe, hydrogen is the most important atom. From a spectroscopic
point of view, its relevance stems from the occurrence of an extremely rich spectrum of
resonances extending from the radio frequency to the vacuum ultraviolet, several of them
being particularly narrow and hence suitable for metrology. In addition, since its energy
levels can be calculated with astonishing precision, sophisticated tests of fundamental theo-
ries can be inferred by comparison between theoretical and experimental data. Inspired by
[786, 787, 788, 789], the aim of this section is precisely to show how studies on the hydrogen
atom have always played a key role in the development of modern physics, and how increas-
ingly precise spectroscopic measurements have gradually contributed to the improvement
of existing physical theoretical models.

The experimental investigation of the atomic hydrogen spectrum can be traced back
to 1885 when J. Balmer suggested an empirical formula to express the wavelengths of a
particular series of lines. In l889 J.R. Rydberg proposed independently the following more
general relationship

1

λ
= R∞

(

1

p2
− 1

n2

)

(8.7)

where R∞ is a constant and n and p any integers (the Balmer series is obtained for
p = 2, while the case p = 1 corresponds to the Lyman one). From this wholly empirical
formula, which was unexplainable in the frame of classical mechanics, the first value of the
Rydberg constant R∞ was determined. Afterwards, Rydberg’s formula was put on solid
theoretical foundations firstly by Bohr’s theory and then by Schrödinger’s equation. This
led to the following theoretical expression for the Rydberg constant
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=
En − Ep
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me4

8ε20h
3c
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)

(8.8)

where m and e represent the mass and the charge of the electron. Equation 8.8 is derived
by considering the motion of the electron around a fixed center of infinite mass and charge
−e. If one takes into account the motion of the nucleus of mass Mp, the energy of the levels
is easily generalized to

En = −hcRH
1

n2
(8.9)

where
RH =

R∞
1 +m/Mp

(8.10)

Therefore, the knowledge of the electron-to-proton mass ratio is necessary to relate
experimental measurements with the theoretical Rydberg constant R∞.

In the early 1900’s, the growing refinement in the spectroscopic sources and techniques
soon revealed that, beyond the gross structure described by Equation 8.9, the hydrogen
spectral lines possessed a fine structure, whose interpretation eventually motivated the
introduction of the electron intrinsic spin concept. This was first accommodated in the
phenomenological model by Uhlenbeck and Goudsmit and later shown by Dirac to gush out
consistently in the frame of relativistic quantum mechanics. Indeed, the electron velocity
v in the hydrogen atom is not so small compared to the speed of light c, the ratio being
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precisely on the order of the fine structure constant

α =
e2

4πε0~c
≃ 1

137
(8.11)

The main result of Dirac’s theory is the relativistic wave equation which naturally in-
troduces the electron spin s and yields energy levels characterized by the total angular
momentum quantum number j (j = l+ s):

Enj = −hcRH
1

n2

[

1 +
α2

n2

(

n

j + 1/2
− 3

4

)

+ ...

]

(8.12)

This result lifts the degeneracy in j of the levels calculated from the non-relativistic
equation, and it gives the fine structure splitting which varies approximately as 1/n3; how-
ever, it preserves the degeneracy in l for two levels corresponding to the same j but with
different values of l.

Later, using radio-frequency spectroscopy, Lamb and Retherford showed that, contrary
to Dirac’s prediction, the 2S1/2 and 2P1/2 energy levels were not degenerate in energy.
The clarification of this tiny energy difference (less than 10−6 of the energy of the states)
captured the research activity of several mid-twentieth-century famous physicists (Bethe,
Dyson, Feynmann, Schwinger, Tomonaga, Weisskopf above all), culminating in the birth
of quantum electrodynamics (QED). In particular, the detailed character of the interaction
between the electron and the vacuum fluctuations was recognized as responsible for the
deviation of experimental findings from Dirac’s theoretical predictions. The same coupling
accounts for the de-excitation of atomic levels by spontaneous decay, even in the absence
of an externally applied field. A simple explanation (Welton model) can be provided as
follows [788]. Due to the residual energy of the electromagnetic-field empty modes (the
energy ~ω/2 of the harmonic oscillators), the electron is subjected to the fluctuations of the
vacuum field which induce fluctuations in its position. This modifies the Coulomb potential
seen by the electron and is particularly significant for the S states (with respect to the P
ones), for which the electron has a large probability to be inside the nucleus. As a result,
the energy of the S states slightly increases. This is the reason for the splitting between the
2S1/2 and 2P1/2 levels. In an alternative picture, the same effect is related to the self-energy
corresponding to the emission and re-absorption of virtual photons by the bound electron.
Such self-energy term is but one of the many contributions which arise when calculating the
hydrogen spectrum in the frame of quantum electrodynamics. Actually, except for the Dirac
energy with reduced mass corrections presented above, EDiracn,j , and the hyperfine splitting
discussed below, EHFSn,l,j,F , all relativistic and QED corrections to the hydrogen energy are
lumped into the Lamb shift, ELSn,l,j , such that the complete expression for the hydrogen
energy levels can be written as

EH = EDiracn,j + ELSn,l,j + EHFSn,l,j,F (8.13)

As detailed in [788, 790, 789] and references therein, each of these ELSn,l,j terms is gen-
erally treated as a power series in Zα and ln(Zα). The most important terms include
vacuum polarization, recoil corrections, two-photon corrections, radiative-recoil corrections,
three-photon corrections, finite nuclear size effect, nuclear-size correction to self energy and
vacuum polarization, and nucleus self energy. Among these, particularly significant is the
term related to non-zero size of the nucleus. Indeed, the attractive center was assumed as a
dimensionless point so far. In fact, the electric charge of the nucleus (the proton in the case
of hydrogen) has a small, but finite volume which can be characterized by the mean square

value of the radius of this charge. Even if the RMS radius of the proton is only
√

〈r2p〉 ≃ 0.8
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fm, at extremely high levels of precision we can no longer ignore the slight reduction of
the binding energy due to the electron penetrating inside the volume of the nucleus. Such
nuclear size correction is important only for S states which have a significant probability
density near the center of attraction. This small diminution of the negative binding energy
increases slightly the energy of the S level, but not the P level, by an amount of relative
order

∆En
|En|

=
〈r2p〉

(~/mc)2
4α2

n2
(8.14)

where ~/mc is the Compton wavelength (divided by 2π). This gives a relative contribu-
tion whose maximum value for the ground level (n = 1) is of order of 3 · 10−10 (the effect
is reduced by a factor n for other levels).

Finally, one has to consider the interaction between the electron and the magnetic mo-
ment of the nucleus, which splits the fine-structure energy levels in two (or more) distinct
hyperfine sub-levels. This effect is much more important than many of the corrections dis-
cussed above, as the corresponding energy differences are of the order of 1 GHz in the
ground level n = 1 and 100 MHz in the second level n = 2. Nevertheless, in practice this
effect is quite decoupled from the preceding calculations and can be easily eliminated in the
measurement of energy levels. The additional energies of the hyperfine sub-levels of angular
momenta F = I + j are given by the following formula [789]

∆EHFSn,l,j,F =
α2gNR∞hc(1 + δN)

n3(me/Mp)

F (F + 1)− I(I + 1)− j(j + 1)

j(j + 1)(2l + 1)
(8.15)

where gN is the nuclear g-factor relating the magnetic moment µ to the nuclear spin via
µ = gNµNI and δN is a small relativistic correction. The hyperfine structure is only well
known experimentally for the low-lying states with n = 1, 2. In particular, the determination
of the transition frequency at 1420 MHz between the F = 1 and F = 0 sub-levels has
attained a very high level of precision (10−12) thanks to the hydrogen maser. For higher
lying states, the hyperfine structure is typically approximated from that of the low-lying
states using the above equation. Accurate calculations of the hyperfine splittings are not
available due to nuclear effects such as Zemach radius and polarizability. Nevertheless, in
the particular combination D21 = 8fHFS(2S) − fHFS(1S) nuclear size effects cancel to a
large extent thus allowing to test theory against experiments [789].

To summarize, Figure 8.7 shows the energy levels of atomic hydrogen for successive
steps of the theory. Clearly resolving the 2S Lamb shift (i.e., the splitting between the
2S1/2 and 2P1/2 states) in the optical spectrum, the observation in 1972 [791] of a Doppler-
free saturation spectrum on the red hydrogen Balmer−α line marked, in fact, the beginning
of a long adventure in precision spectroscopy of the simple hydrogen atom, which permits
unique confrontations between experiment and theory. This quest continues today. It has
inspired many advances in spectroscopic techniques, including the first proposal for laser
cooling of atomic gases and, most recently, the femtosecond laser frequency comb [53].

8.2.1 Determination of the Rydberg constant and of the proton radius

As illustrated in Figure 8.8, thanks to these developments, the accuracy of the Rydberg
constant R∞ has been improved by several orders of magnitude in three decades. The
hydrogen frequency measurements which are currently used for the determination of the
Rydberg constant are [788]:

• Lamb shift of the 2S1/2 level - Since the historic measurement of Lamb and Retherford,
a number of direct measurements of the 2S1/2− 2P1/2 splitting have been reported. Also,
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FIGURE 8.7
Energy levels of atomic hydrogen for successive steps of the theory. (Adapted from [789].)

FIGURE 8.8 (SEE COLOR INSERT)
Relative precision of the Rydberg constant from 1920 to the present, clearly showing the
improvements due to laser spectroscopy and optical frequency measurements. (Courtesy of
[788].)

indirect determinations exist, based on measurements of the 2S1/2 − 2P3/2 splitting in
conjunction with theoretical calculations of the 2P1/2 − 2P3/2 splitting. Now, by taking
into account both direct and indirect determinations, a mean value of 1057.8439(72) MHz
is obtained for the 2S1/2 Lamb shift;
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• 1S − 2S transition - As already discussed in Chapter 5, from an experimental point
of view, the highest resolution can be achieved on the ultraviolet 1S − 2S two-photon
resonance with a natural linewidth of only 1 Hz. The first Doppler-free spectra were
recorded in 1975 by W.T. Hänsch et al. Since then, in a long series of experiments, Hänsch
has considerably improved the precision of the measurement of the 1S − 2S frequency.
In particular, in the era of optical frequency measurements, Hänsch used a frequency
chain which linked the 1S − 2S frequency (about 2466 THz) to a transportable CH4-
stabilized He-Ne frequency standard at 88 THz. Now, this complex frequency chain has
been superseded by a femtosecond laser frequency comb, which links in one fell swoop the
Cs clock at 9 GHz to the optical frequency. Thanks to this technique, Hänsch’s group has
recently succeeded in measuring the 1S − 2S interval with respect to a transportable Cs
atomic fountain clock from the SYRTE. The latest value obtained is

f1S−2S = 2466061413187035(10)Hz (8.16)

• 2S− nS and 2S−nD transitions - In Paris, Biraben’s group began to study the 2S−nS
and 2S − nD transitions in 1983. These experiments are complementary to those of the
1S−2S measurements, as the Lamb shift of the 2S level has been measured precisely, and,
consequently, it is straightforward to extract the Rydberg constant from the 2S − nS/D
interval. The two-photon 2S − nS/D transitions are induced in a metastable 2S atomic
beam of hydrogen or deuterium collinear with the counter-propagating laser beams. The
excitation wavelength is in the near-infrared, for example 778 nm for the 2S − 8S/D
transitions. A relative uncertainty of 7.6 · 10−12 was obtained for the 2S1/2 − 8D5/2,
essentially limited by the natural width of the 8D level (572 kHz) and the inhomogeneous
light shift experienced by the atoms passing through the Gaussian profile of the laser
beams

f2S1/2−8D5/2
= 770649561581.1(5.9)kHz (8.17)

Then, the procedure used to extract the Rydberg constant consists of comparing these
experimental data for the transition frequencies with the calculated energy differences. It
is possible to make such least-squares adjustment with only the hydrogen data, the values
of the fine structure constant α, and the electron-to-proton mass ratio me/mp being given
a priori. Starting with α, it is known very accurately from the electron g − 2 experiment
[792]. Indeed, QED predicts a relationship between the dimensionless magnetic moment
of the electron (g) and the fine structure constant (α). Thus, the latest measurement of
g using a one-electron quantum cyclotron, together with a QED calculation involving 891
eighth-order Feynman diagrams, have determined α−1 = 137.035999084(51). Concerning
me/mp, this has been inferred precisely in Penning traps from an accurate measurement of
the cyclotron frequencies [790]. Then, the value reported in the 2006 CODATA adjustment
is

R∞ = 10973731.568527(73)m−1 (8.18)

with a relative uncertainty of 6.6 · 10−12. The present accuracy is such that, when com-
paring theory and experiment, one cannot dispense with considering the details of the
proton charge distribution. Indeed, the different scaling of the Rydberg constant and the
rms proton charge radius 〈r2p〉 (∝ n−2 and ∝ n−3, respectively) allows their simultaneous
determination by measuring different transition frequencies in hydrogen. In this context, a
major problem is represented by the fact that every other transition than 1S − 2S cannot
be measured with similar accuracy. Thus, QED tests with hydrogen have been limited to
the 10−12 level due to an insufficient knowledge of the proton charge radius. To gain a
deeper knowledge of 〈r2p〉, spectroscopists turned their attention to muonic hydrogen (µp).
The latter is obtained by replacing the electron with a negative muon (muonic hydrogen



Future trends in fundamental physics and applications 575

atoms are much smaller than typical hydrogen atoms because the much larger mass of the
muon gives it a much smaller ground-state wavefunction than is observed for the electron).
Here, by virtue of to-the-third-power scaling with the orbiting particle’s mass, the finite-
size effect is much more pronounced, thus permitting a more precise determination of 〈r2p〉
with less experimental accuracy. For this reason, for more than forty years, a measurement
of the µp Lamb shift has been considered one of the fundamental experiments in atomic
spectroscopy, but only recent progress in muon beams and laser technology made such an
experiment feasible [793]. In that work, the 2SF=1

1/2 − 2PF=2
3/2 transition frequency in µp was

measured to be 49881.88(76) GHz by means of pulsed laser spectroscopy. Then, by com-
paring this experimental value with its theoretical prediction based on bound-state QED,
a proton radius value of rp = 0.84184(67) fm was determined. This new value is an order of
magnitude preciser than previous results but disagrees by 5 standard deviations from the
CODATA (0.8768(69) fm) and the electron-proton scattering values. Such discrepancy has
been baptized as proton size puzzle. Indeed, it is not clear whether there is a problem in the
electron scattering data, ordinary hydrogen data or theory for either ordinary hydrogen or
muonic hydrogen which is needed to extract the charge radius from the measured transition
frequencies. An overview of the present effort attempting to solve the observed discrepancy
is given in [794].

Besides QED tests, the 1S − 2S resonance has been used to put constraints on pos-
sible variations of fundamental constants and violations of Lorentz boost invariance (see
below for both issues). Furthermore, it may be used in severe tests of the charge con-
jugation/parity/time reversal (CPT) theorem by comparison with the same transition in
anti-hydrogen (i.e., an H atom made entirely of antiparticles) [795].

8.3 Spectroscopy of cold, trapped metastable helium

Helium is the simplest atom after hydrogen, composed of only three particles (the nucleus
and two electrons) and, due to its simplicity, ab initio calculations of its atomic structure
are still possible with a very high accuracy. Atomic spectroscopy, performed on helium
samples at room temperature, in beams or in Bose-Einstein condensates, has provided high
precision measurements of key parameters, like lifetimes, Lamb shifts, or fine structure
separations [796]. Accurate frequency measurements of He transitions can be used as a
stringent test of the QED theory for a bound three-body system. Alternatively, comparison
between theoretical calculations and experimental measurements for the 23P fine structure
splittings has been used to give an accurate determination, based on spectroscopy, of the fine
structure constant, α [797, 798]. Assuming the QED theory of fine structure energies of an
atomic system to be correct, a determination of α is possible by frequency measurements of
these fine structure splittings, which are proportional to α2. Looking at the Periodic Table of
Elements, He belongs to the family of noble gases. Noble gases have resonance lines from the
ground state to other levels at wavelengths far in the ultraviolet. However, these atoms have
metastable excited states which are connected to higher-lying levels by allowed transitions
that are accessible to existing lasers. Such metastable states have lifetimes ranging from 15
seconds to about 8000 seconds (the longer lifetime being for the He 23S level) and represent
“effective” ground states for optical manipulation and detection. As an example, Figure 8.9
shows the relevant level structure of helium. In these atoms, decay to the 1S0 ground state
from metastable triplet states is doubly forbidden. Indeed, transitions to the ground state
are not electric-dipole allowed and spin-flip (triplet-singlet) forbidden.
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FIGURE 8.9
Energy levels for helium: (left) principal helium transitions for laser cooling and trapping.
The long-lived metastable 23S1 state (20 eV above the ground state) is used as an effective
ground state and the 23S1 − 23P2 transition at 1083 nm transition is used for laser cooling
and trapping. The 23S1−33P2 transition at 389 nm is used in some studies. (right) Excited-
state manifold for the 1083 nm cooling transition in both 3He and 4He (not to scale). For
4He, the 23S1 − 23P2 D2 transition is used and for 3He, which shows a hyperfine structure
as a result of the I = 1/2 nuclear spin, the C3 transition (F = 3/2 − F = 5/2) is used.
(Courtesy of [796].)

It is interesting to note that, in spite of their internal energy (in the order of 20 eV) that
is large compared to kinetic energy values around quantum degeneracy (about 10−10 eV),
Bose-Einstein condensation of metastable helium atoms was demonstrated in 2001 [799, 800]
and the first degenerate Fermi gas of metastable helium was observed in 2006 [801].

As mentioned above, low-lying triplet states of He have been the subject of many spec-
troscopic measurements and theoretical calculations. Due to the easier access with available
laser sources, He 23P and 33P manifolds have been widely investigated, and high precision
determinations have been possible after the introduction of optical frequency combs (see
[641] for a recent review and [802]). In particular, many experiments, over more than one
decade, have targeted the transitions between the 23S and 23P states in 4He, around 1083
nm wavelength, to get information on fine structure separations, with the perspective to
get an accurate α value [803, 804, 805, 797, 806, 807, 808, 809]. Indeed, due to the wider
fine structure separations, as compared to hydrogen, helium has long been considered an
optimal candidate for a spectroscopy-based α determination (see upper frame of Figure 8.10
for a comparison of updated α determinations). Measurement accuracy for the frequency
separations of the 23P energy manifold, exploiting different techniques ([803, 810] using
optically pumped magnetic resonance microwave spectroscopy), ([797, 807, 809] taking fre-
quency differences of the 1083 nm transitions) was pushed to the sub-kHz level (9 ppb
for the largest interval connecting J = 0 to J = 2 [807]). However, though recent the-
oretical calculations have resolved previous discrepancies between theory and experiment
[811, 812, 813], theoretical uncertainty is still about one order of magnitude worse than
experimental values.

Similarly to what happened for hydrogen ([814, 815]), the history and the perspectives
of spectroscopic measurements of He transitions were changed by pioneering work on pure
frequency measurements, i.e., with a direct link to the atomic cesium primary frequency
standard, replacing traditional interferometric techniques, prone to systematic effects [816].
For He, the first pure frequency measurement was performed to estimate another key pa-
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rameter, the Lamb shift of the 23S1 level, by measuring the absolute frequency of the 23S1

- 33P0 transition of 4He around 389 nm wavelength [816].
The nuclear charge radius (rc) is another important parameter that can be calculated

from precise spectroscopic measurements of He triplet frequencies. Isotopic shift frequency
measurements, e.g., comparing transition frequencies of 4He and 3He, provide an estima-
tion of nuclear mass and volume differences between the atomic isotopes. When proper
calculation singles out the nuclear mass contribution, the nuclear volume contribution can
be determined, and thus the difference between the square charge radii for the two iso-
topes [817, 818]. The rc of 4He is equivalent to that of the α-particle, whose radius has
been precisely measured [819, 820]. Therefore, a measurement of the isotopic shift of lines
of other He isotopes with respect to 4He directly gives a determination of the nuclear
charge radius for that isotope. Since nuclear volume contribution accounts for less than 100
ppm for a light atom, like He, the required measurement accuracy must be better than
this value. Uncertainties in the order of few tens of ppb could indeed be achieved for the
isotope shift measurements, determining an uncertainty on rc of 1 · 10−3 fm, where the
uncertainty limitation comes from the existing determination of the α-particle radius. Pre-
vious results using the isotopic shift to determine rc were obtained using transitions at 1083
nm [821, 822] or transitions at 389 nm [823], and a satisfactory agreement among them is
achieved, though the measurements come from different transitions. Comparison of the laser
spectroscopy result for the 3He rc with estimations from calculation using nuclear theory
[824] or electron-nucleus scattering measurements [825] shows that the spectroscopic result
has a much lower uncertainty (Figure 8.10, lower graph). Further spectroscopic results for
rc were more recently obtained on short-lived radioactive isotopes of He, namely 6He and
8He [826, 827].

As witnessed by the proton charge radius puzzle discussed above, the combined progress
of metrological-grade laser spectroscopic techniques and ab initio QED calculations of
atomic properties is providing clues unveiling possible discrepancies between theory and

FIGURE 8.10
Top: Comparison of most updated α determinations. Bottom: Comparison of the 3He nu-
clear charge radius measured from the 3He - 4He isotope shift, by electron-nucleus scattering
and calculated with nuclear theory. (Courtesy of [796].)
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experiment. These could change our view of elementary interactions or take to a change of
the fundamental physical constants. In this frame, two very recent experiments on He have
shown a significant discrepancy in the estimation of the difference of the squared nuclear
charge radii of 3He and 4He (δr2) by more than 4 standard deviations [828, 829]. The first
experiment was done in a ultracold (sub-microkelvin temperature) mixture of 3He and 4He,
where quantum degeneracy is reached by sympathetic cooling of metastable 3He atoms with
a Bose-Einstein condensate of metastable 4He. In the second (and most recent) one, instead,
the sample was an uncooled atomic beam of metastable (excited to the 23S level by electron
collisions) 3He atoms. In this work, the absolute frequency of seven out of the nine allowed
transitions between the 23S and 23P hyperfine manifolds was measured by using an optical
frequency comb synthesizer-assisted spectrometer [802] (incidentally, a relative uncertainty
of 5 · 10−12 was achieved in the frequency measurements, that is the most precise result
for any optical 3He transition to date). The resulting 23P - 23S centroid frequency was
found to be 276702827204.8(2.4) kHz. Comparing this value with the known result for the
4He centroid and performing ab initio QED calculations of the 4He-3He isotope shift, the
difference of the squared nuclear charge radii δr2 of 3He and 4He was eventually extracted.
Finally, it is interesting to note that there is a third, and older, estimation of δr2 [822]. The
three values are respectively:

δr2 = 1.028(11) fm2 (8.19)

δr2 = 1.074(3) fm2 (8.20)

δr2 = 1.059(3) fm2 (8.21)

Such disagreements can be due to systematic effects depending on the specific sample
phase or transitions investigated or by some new physics still to unveil. In this respect, it
is interesting to note that such disagreements, as well as the proton radius, will probably
soon be tested by a new experiment at the Paul Scherrer Institute, targeting a Lamb shift
measurement in muonic helium [830].

8.4 Measurements of fundamental constants

As already explained in Chapter 1, today we are witnessing a strong tendency to relate the
base units to fundamental constants [40]. As a shining example, this was done in 1983 by
fixing the velocity of light c and thus defining the length unit from the time one. Other
units, which are still linked to artifacts (that are far from being invariant in space and
time), could follow the same line. In the following we focus, in particular, on the Boltzmann
constant and the Newton gravitational constant.

8.4.1 Boltzmann constant kB

Fixed by the temperature (273.16 K) of the triple point of water, the current definition
of the Boltzmann constant implies a particular property of macroscopic matter. Indeed,
the current value of kB, 1.3806504(24) · 10−23 JK−1, recommended by the Committee on
Data for Science and Technology (CODATA), comes from the ratio between the molar gas
constant R and the Avogadro number NA. Its relative uncertainty, 1.7 · 10−6, is mostly
due to the uncertainty on R, whose accepted value is that obtained in 1988 using acoustic
gas thermometry in argon. In this case, the microscopic interpretation of temperature may
provide the key to overcome such artifact. In fact, the mean energy E per particle and
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per degree is related to the sample temperature T through the well-known relationship
E = (1/2)kBT . In turn, this energy may be related to a frequency via the Planck constant.
Thus, by directly measuring such a frequency in a gas at a well-defined temperature and
fixing the value of kB would connect temperature and time units.

In this frame, Doppler-broadened laser-absorption spectroscopy can serve as a primary
thermometric method, with the advantage of being conceptually simple, applicable to any
gas at any temperature, in whatever spectral region. It is well known that the Doppler
width, ∆νD (FWHM), of a line (with a center frequency ν) in an absorbing molecular gas
at thermodynamic equilibrium depends on the temperature T through the equation

∆ν2D = 8 ln 2
kBTν

2

mc2
≡ kB

α
T with α =

mc2

8ν2 ln 2
(8.22)

where m is the mass of the molecule. The first spectroscopic determination of kB was
performed in the mid-infrared by Daussy et al. on the υ2 Q(6,3) rovibrational line of 14NH3

at a frequency of 28953694 MHz [831]. The absorption profile was observed in the pressure
range between 1 and 10 Pa, at a temperature of 273.15 K, using a CO2 laser, frequency sta-
bilized on an OsO4 line. Under these low-pressure conditions, close to the Doppler limit, by
measuring the width of the absorption line as a function of the pressure and extrapolating
to zero pressure, it was possible to deduce the Boltzmann constant with a relative uncer-
tainty of 1.9 · 10−4. This approach allows for a very simple spectral analysis, but requires
an accurate determination of the gas pressures. Later on, a quite different implementation
of laser-absorption spectroscopy for primary gas thermometry was reported [832]. In this
work, Casa et al. demonstrated that it is possible to retrieve the gas temperature from
a molecular absorption profile even when the gas pressure is sufficiently high that the line
shape is far from the Doppler limit, but sufficiently small that one can neglect the averaging
effect of velocity-changing collisions, so that the line shape is given by the exponential of a
Voigt convolution. Absorption spectroscopy was performed in the near-infrared on a CO2

gas sample at thermodynamic equilibrium using a distributed feedback (DFB) diode laser,
probing the R(12) component of the υ1 + 2υ02 + υ3 combination band (in contrast to NH3

this molecular target does not exhibit any hyperfine structure).
The absorption cell (10.5 cm long) was housed inside a stainless steel vacuum chamber

(both the cell and the vacuum chamber were equipped with a pair of AR-coated BK7
windows). Consisting of a cylindrical cavity inside an aluminum block, with inner and
external surfaces carefully polished, the cell was temperature stabilized by means of four
Peltier elements. Three precision platinum resistance thermometers (Pt100) measured the
temperature of the cell’s body while a proportional integral derivative controller was used
to keep the temperature uniform along the cell and constant within 40 mK, over a time
interval of ∼ 2 h. This active system also permitted to vary the gas temperature between
270 and 330 K. The Pt100 thermometers were calibrated at the triple point of water and
at the gallium melting point with an overall accuracy better than 0.01 K. Both during
the calibration and when placed in the absorption cell, the thermometers were fed by a
1 mA current and the correction due to the self-heating effect was applied together with
the associated uncertainty. The sample cell was filled with CO2 gas (with a nominal purity
of 99.999%) at a pressure between 70 and 130 Pa, measured using a 1300 Pa full-scale
capacitance gauge with a 0.25% accuracy. Doppler width determinations were repeated as
a function of the gas temperature, in the range between the triple point of water and the
gallium melting point. Then, the experimental values of the quantity α∆ν2D were plotted
as a function of the gas temperature. In this way, the slope of the weighted best-fit line
directly provided the value of kB with a relative accuracy of ∼ 1.6 · 10−6. Obviously, in this
approach special attention must be paid to the frequency calibration of the spectra. For
this purpose, a broad laser frequency scan (0.5 cm−1) was performed in order to observe a



580 Laser-based measurements for time and frequency domain applications

pair of CO2 absorption lines, namely, the R(8) υ1 + 2υ02 + υ3 and R(27) υ1 + 3υ12 − υ12 + υ3
transitions, whose center frequencies, as well as that of the R(12) line under investigation,
are accurately known in literature (i.e., with relative uncertainties well below that associated
with the Doppler width determination).

More recently, quantitative atomic spectroscopy for primary thermometry was also car-
ried out [833]. In this case, by using a conventional platinum resistance thermometer and
the Doppler-thermometry technique, the Doppler broadening of atomic transitions in 85Rb
vapor was accurately measured, thus determining kB with a relative uncertainty of 4.1 ·10−4

and with a deviation of 2.7 · 10−4 from the expected value. This experiment, using an effu-
sive vapor, departs significantly from the two Doppler-broadened thermometry techniques
discussed above (which rely on weakly absorbing molecules in a diffusive regime) and, in
fact, very different systematic effects, like magnetic sensitivity and optical pumping, are
dominant.

8.4.2 Newton gravitational constant G

Despite being one of the most measured fundamental physical constants, the Newtonian con-
stant of gravity G is the least precisely known. Besides the obvious metrological interest,
many physical theories and areas would benefit from an improved knowledge of G. Shining
examples in this sense are represented by the theory of gravitation, astrophysics, and cos-
mology, as well as geophysical models. The major adversity in carrying out a very accurate
measurement of G resides in the extreme weakness of the gravitational force in conjunction
with the difficulty of shielding the effects of gravity [834]. The traditional torsion-pendulum
method involves a well-characterized moving source mass that induces a torque on a test
mass attached to a long fiber. Measurement of the test mass displacement, together with
knowledge of the pendulum mechanics and of the source-test mass gravitational force, de-
termines G [835]. In the last decade, several groups have devised new experiments based on
various concepts (and hence with radically different systematics) including a beam-balance
system [836], a laser interferometry measurement of the acceleration of a freely falling test
mass [837] as well as experiments based on Fabry-Perot or microwave cavities [838, 839].
Despite all these efforts, the most precise measurements available today still show substan-
tial discrepancies, limiting the accuracy of the 2006 CODATA recommended value for G to
1 part in 104. Therefore, the realization of additional conceptually different experiments is
highly desirable in order to identify still hidden systematic effects. In this frame, more re-
cently, two determinations of G were reported, based on cold-atom interferometry [835, 834].
Here, freely falling atoms act as probes of the gravitational field and an atom-interferometry
scheme is used to measure the effect of nearby well-characterized source masses.

In the following, we focus on the experiment performed by the group of G.M. Tino
[840, 834, 841]. Schematically, with reference to Figure 8.11, 87Rb atoms, trapped and cooled
in a magneto-optical trap (MOT), are launched upwards (and cooled down to 2.5 µ K) in a
vertical vacuum tube with a moving optical molasses scheme, producing an atomic fountain.
Near the apogee of the atomic trajectory, a measurement of their vertical acceleration is
performed by a Raman interferometry scheme. External source masses are positioned in two
different configurations and the induced phase shift is measured as a function of masses’
positions. In order to suppress common mode noise and to reduce systematic effects, the
vertical acceleration is simultaneously measured in two vertically separated positions with
two atomic samples, that are launched in rapid sequence with a juggling method. From the
differential acceleration measurements as a function of the position of source masses, and
from the knowledge of the mass distribution, the value of G can be determined.
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FIGURE 8.11
Schematic of the experiment showing the gravity gradiometer setup with the Raman beams
propagating along the vertical direction. During the G measurement, the position of the
source masses is alternated between configuration C1 (left) and C2 (right). (Courtesy of
[842].)

In more detail, three main stages can be identified:

1. State preparation - After the launch, the atoms are selected both in velocity
and by their mF state. The selection procedure uses laser vertical beams (and
a uniform vertical bias field of 250 mG which defines the quantization axis) so
that the state preparation can take place simultaneously on both clouds. After
this selection, the atoms end up in the F = 1,mF = 0 state with a horizontal
temperature of 4 µK and a vertical temperature of 40 nK, corresponding to
velocity distribution widths (HWHM), respectively, of 3.3vrec and 0.3vrec (vrec =
6 mm/s for Rb resonance transition);

2. Raman interferometer and detection - In a vertical Raman atom interferometer,
free-falling atoms are illuminated by pulses of two laser beams with frequencies
ω1 and ω2 (see Figure 8.12). The beams counter-propagate along the z-axis with
wave vectors k1 = k1ẑ and k2 = k2ẑ (ki = ωi/c, i = 1, 2). ω1 and ω2 are close
to transitions of a three-level atom in which two ground or metastable states |a〉
and |b〉 share a common excited state |e〉 (ω1 − ω2 = ∆ωab). During the pulses,
the lasers drive two-photon Raman transitions between |a〉 and |b〉 that lead to
Rabi oscillations: the probability of finding atoms in one specific state oscillates
temporally between zero and one. A π-pulse, which is a pulse of duration τ = π/Ω,
switches the atomic state coherently from |a〉 to |b〉 or vice versa. On the contrary,
a π/2-pulse with duration τ = π/(2Ω) splits the atom wave packet into an equal
superposition of |a〉 and |b〉 (note that for given transitions, the characteristic
Rabi frequency Ω depends only on the light parameters). Thus, an interferometer
is realized when the atoms are made to interact with the Raman lasers on the
three-pulse sequence π/2 − π − π/2, which splits, redirects and recombines the
atomic wavepackets. In the specific case of 87Rb under discussion, |a〉 and |b〉
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coincide respectively with the F = 1 and F = 2 hyperfine levels in the 52S1/2

state. The Raman laser beams are generated by two ECDLs (both detuned from
the D2 line by 3.4 GHz), and an optical PLL keeps their frequency difference in
resonance with the transition between these two hyperfine levels (∼ 6.8 GHz).
At the end of this interferometer, the probability of detecting the atoms in the
state F = 2 is given by P2 = (1/2)(1 − cosΦ), where Φ represents the phase
difference accumulated by the wave packets along the two interferometer arms.
As commonly accomplished in atomic fountains, probability P2 is measured using
normalized fluorescence detection. This returns the value of Φ. In the presence of
a gravity field, atoms experience a phase shift Φ = (k1 − k2) · gT 2 ≡ keff · gT 2

depending on the local gravitational acceleration g.

3. Gravity gradiometer - As already mentioned, two spatially separated atomic
clouds in free fall along the same vertical axis are simultaneously interrogated
by the same Raman beams to provide a measurement of the differential accel-
eration induced by gravity on the two samples. If glow and gup are the gravity
acceleration values at the position of the lower and upper interferometers, then
the differential phase shift is given by

δΦ ≡ Φlow − Φup = keff · (glow − gup)T
2 (8.23)

4. G measurement - When repeated for the two configurations of the source masses
(C1 and C2), the above procedure yields two values for the phase difference δΦ:
δΦC1 and δΦC2. Finally, the difference δΦC1−δΦC2 is modelled by a complex nu-
merical simulation (taking into account the evolution of the atomic wave-packets
and the distribution of the source masses) having G as a unique free parameter
[843] (recall that g and G are linked via the law of universal gravitation). In this
respect, many efforts were devoted to the control of systematic effects related to
atomic trajectories, positioning of source masses, and stray fields. In particular,
the high density of tungsten (used for the source masses) was crucial to compen-
sate for the Earth’s gravity gradient. In both configurations of the source masses,
atom interferometers could therefore be operated in spatial regions where the
overall acceleration was slowly varying and the sensitivity of the measurement to
the initial position and velocity of the atoms was strongly reduced.

After a careful analysis of the various error sources affecting the measurement, the value
obtained for G was G = 6.667 · 10−11m3Kg−1s−2 (consistent with the 2006 CODATA value
with 1 standard deviation) with a statistical uncertainty of ±0.011 · 10−11m3Kg−1s−2 and
a systematic uncertainty of ±0.003 · 10−11m3Kg−1s−2. Work is in progress to push the G
measurement precision below the 100 ppm level [842].

At the end of this section, we should encourage the reader to refer to [844] for a compre-
hensive review on interferometry with cold atoms and molecules, which represents by now
a rich branch of physics.

8.5 Constancy of fundamental constants

In the last few years there has been a strong interest in the possibility that fundamental
physical constants might show variations over cosmological timescales [845, 846]. Such an
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Graphical illustration of the Raman atom interferometer. (Left) Three-level atom with
lower states |a〉 and |b〉 that share an excited state |e〉 ≡
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∣52P3/2, F = 3
〉

. (Right) Scheme
of the Raman interferometer. On the vertical axis the atomic vertical position z(t) after
subtracting the free-fall trajectory z(t) is plotted (Adapted from [841].)

effect, as incompatible as it seems with the present foundations of physics, arises quite
naturally in modern theories attempting to unify gravity and other interactions. The first
conjecture dates back to Dirac’s big-numbers hypothesis, which suggested in particular that
Newton’s gravitational constant G decreased with the inverse of time [847]. On the other
hand, generalized Kaluza-Klein models [848] and more recent string theories [849], aiming
at incorporating gravitational physics into the Standard Model, postulate the existence of
additional compactified dimensions the size of which determines the strength of the funda-
mental forces. However, since the size of these extra dimensions is on the order of the Planck
length, overwhelming energies are needed to experimentally reveal their presence. Neverthe-
less, theory predicts that if a change in the extent of these dimensions should happen over
time, it would manifest as a variation in the fundamental constants of our 4-dimensional
world. Actually, such an idea is contained in the widely credited Inflation model of the
Universe according to which at a very early stage of evolution a phase transition caused
by cooling of the Universe as a result of expansion drastically changed several properties
of elementary particles among which the mass and the charge of the electron [850]. But, to
our current knowledge, the Universe is still expanding and cooling and this should lead, as
well, to some tiny variation of fundamental constants including the fine structure constant
α and the proton-to-electron mass ratio β ≡ mp/me [851]. These parameters appear promi-
nently both in atomic and molecular transition energies. One possible route to constrain the
fractional temporal variation of α (β) is to compare wavelengths of atomic/molecular lines
as measured at present epoch on the Earth with the corresponding ones from astronomi-
cal objects at redshifts around zQ ≃ 3 (look-back time ∼ 12 Gyr) [852, 853, 854]. Recall,
incidentally, that such enormous cosmological redshifts imply that the astronomical object
has a huge velocity component in the direction away from us; thus, according to Hubble’s
law, stating that the distance d of the astronomical object is proportional to its recessional
velocity v, d = H0v, we see that the object is very distant from earth and hence we are
observing light from very deep into the past. This approach relies on three main ingredients:

1. High-quality quasar absorption spectra of a selected molecular species M (H2 for
example); then, if λi is the wavelength of the ith spectral line as collected by
the telescope (i.e., the redshifted line position) and λ0i the corresponding rest-
frame wavelength as calibrated in the lab (zero-redshift line position), we have
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λi/λ
0
i = zQ + 1. Now, a possible mass dependence of a certain line can be added

to this equation by the introduction of the so-called sensitivity coefficient Ki for
the ith line, to obtain the corresponding wavelength λ′i

λ′i
λ0i

= (1 + zQ)

(

1 +
∆β

β
Ki

)

(8.24)

where Ki ≡ (β/λi)(dλi/dβ) represents the induced shift of a spectral line as a
function of the variation of β. Analogous relationships hold for α.

2. A highly accurate laboratory database of the M spectrum;

3. A precise semi-empirical or ab initio calculation of the sensitivity parameters Ki.

Absorption spectra from the high-redshift galaxies are collected by the largest optical tele-
scopes on Earth, e.g., the Very Large Telescope (VLT) or the Keck telescope. These are
equipped with high-resolution spectrometers, the Ultraviolet and Visible Echelle Spectro-
graph (UVES) and the High Resolution Echelle Spectrometer (HIRES), respectively. The
accuracies of the astrophysical observations actually limit the present comparisons between
laboratory and astrophysical data. In the case of VLT/UVES, for instance, the achieved
transition wavelength accuracies are in the order of 10−6 - 10−7 in the 329-451 nm range.
A recent preliminary application of frequency comb technologies in the calibration of astro-
nomical spectra has been shown to improve the accuracy [554]. An additional drawback is
that astrophysical data are retrieved from uncontrolled environments and, indeed, results
obtained so far are inconclusive and sometimes contradictory [855]. An updated review
on the activity searching for α variations in quasar absorption spectra is given in [853],
which includes studies on optical atomic spectra, molecular rotational spectra, compar-
isons of hydrogen hyperfine and UV transitions as well as comparisons involving hyperfine
and molecular rotational transitions. The recent paper [856] and references therein provide,
instead, an overview of the current constraints for β.

A different, complementary approach relies on precision molecular spectroscopy exper-
iments carried out in laboratory in a self-consistent way, which, while covering only short
time spans, offers the inherent advantage to manipulate all the relevant parameters accu-
rately and to investigate possible systematic effects in detail. In the following, we focus on
this second road. We anticipate that, contrary to the astrophysical observations, all present
laboratory experiments are compatible with constancy of constants to within 1σ. As we
will see in a short while, the α (β) parameter is most conveniently addressed in atomic
(molecular) systems.

8.5.1 Fine structure constant α

The electromagnetic interaction, whose strength is characterized by the constant α, is of
primary importance for the macroscopic structure of matter and in a plethora of observed
phenomena. The current limits on the evolution of α are established by laboratory mea-
surements, studies of the abundances of radioactive isotopes and those of fluctuations in
the cosmic microwave background, as well as other cosmological constraints [857].

In a typical all-laboratory experiment searching for temporal changes of fundamental
constants, an atomic transition frequency fat is measured with respect to a cesium clock
(i.e., the frequency ratio fat/fCs is determined, where fCs ≡ 9192631770 Hz). After a few
years the measurement is repeated and changes in the frequency ratio are looked for [858].
Recently, this procedure has been accomplished for: the ground state hyperfine frequency
of 87Rb [859], the 1S → 2S two-photon transition in atomic hydrogen [860], the transition
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2S1/2 →2 D5/2 at 1065 THz in Hg+ [861], and the 2S1/2 →2 D3/2 transition at 688 THz
in 171Yb+ [858]. A significant change in the α value would produce a clear indication, as
it would influence differently the transition frequencies in these experiments. For a better
understanding, we describe in certain detail the experiment performed at NIST [861]. With
reference to Figure 8.13, a single Hg+ ion was confined in an rf Paul trap and laser cooled
to ∼ 1.7 mK via the strongly allowed first resonance line at 194 nm. The reference for the
optical clock was the 2S1/2(F = 0) →2 D5/2(F = 2,mF = 0) electric quadrupole allowed
transition at 282 nm with a natural lifetime of 86 ms. Transitions to the 2D5/2 level were
detected via electron shelving using the 194-nm radiation. Spectroscopy of the narrow clock
transition was performed by a frequency quadrupled fiber laser, where a portion of the light
was used for stabilization to a low drift-rate (<1 Hz/s) high-finesse optical cavity at 563 nm.
The transition frequency of the Hg+-ion clock was compared to the 9192631770 Hz ground
state hyperfine splitting of Cs as realized by a Cs-fountain clock. For this purpose, a Ti:Sa-
based femtosecond laser frequency comb performed the optical-to-microwave synthesis that
compared the rates of the Cs and Hg+ clocks.

Then, the six-year time record of the absolute frequency measurements of the clock
transition in Hg+ was used to search for possible time-dependent variations of α, according
to the following model [861, 858]. While the α dependence of the optical transition of atom
j obeys νj ∝ RyFj(α), for the Cs hyperfine interval one has νCs ∝ α2Ry(µCs/µB )FCs(α).
Here Ry is the Rydberg constant, µB the Bohr magneton, and µCs the magnetic dipole
moment of the Cs nucleus. The factor Fj(α) ∝ αNj contains the relativistic correction as
a power dependence on α, the value of Nj being different for diverse atomic transitions.
Since, in principle, the ratio µCs/µB

could accompany any changes in α, the relationship
between their coupled fractional variations is determined by analyzing the time dependence
of the natural logarithm of the ratio between the optical and microwave frequencies:

d

dt
ln
νHg
νCs

=

d

dt
(νHg/νCs)

νHg/νCs
=
α̇

α
N − d

dt
ln
µCs
µB

(8.25)

where N = NHg −NCs − 2. Next, the values NHg = −3.2 and NCs = 0.8 calculated for
the Cs and Hg+ clock transitions are used, whereupon

d

dt
ln
νHg
νCs

= −6 α̇
α
− d

dt
ln
µCs
µB

(8.26)

Finally, any drift in the ratio of the clock frequencies is retrieved by a weighted least
squares linear fit to the historical time record, which gives (0.39 ± 0.42) Hz·yr−1, or frac-
tionally, d/dt[ln(νHg/νCs)] = (0.37 ± 0.39) · 10−15 yr−1. Assuming d/dt[ln(µCs/µB)] = 0,
this yields a 1− σ limit of α̇/α = (−6.2± 6.5) · 10−17 yr−1.

Moreover, by using measurements involving at least another optical transition, like the
aforementioned 1S − 2S hydrogen transition or the 2S1/2 →2 D3/2

171Yb+ transition, one
can also constrain the ratio µCs/µB. To see this, let us re-write Equation 8.26 for atom j
as follows

y = (Nj − 2.8)x− ξj with x ≡ α̇

α
y ≡ d

dt
ln
µCs
µB

ξj ≡
d

dt
ln

νj
νCs

(8.27)

where the Nj (ξj) coefficients are known from calculations (measurements). A linear
system of two (or more) equations in the two variables x and y is thus obtained, which
simultaneously places limits on the fractional temporal variation of α and µCs/µB. When
this is accomplished, a coupled constraint of −1.5 · 10−15 < α̇/α < 0.4 · 10−15 and −2.7 ·
10−15 < d/dt[ln(µCs/µB)] < 8.6 · 10−15 is obtained [861]. More recently, based on a 6-year
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record of increasingly precise atomic clock frequency comparisons at NIST (Al+ vs Hg+,
Hg+ vs Cs, H vs Cs, Yb+ vs Cs) an upgraded coupled constraint of α̇/α = (−1.6±2.3)·10−17

yr−1 and d/dt[ln(µCs/µB)] = (−1.9± 4.0) · 10−16 yr−1 was given [862].

In the near future, by implementing a synchronous interrogation scheme to remove the
Dick effect, frequency comparisons of Sr/Yb and Sr/Hg clocks could, respectively, achieve
stabilities of 2.4 · 10−17/

√
τ and 1.5 · 10−16/

√
τ , assuming 106 atoms with an excitation

linewidth of 8 Hz and use of a thermal-noise-limited laser operated at 5 · 10−16. Therefore,
an uncertainty of 10−18 would be reached with a few hours averaging, corresponding to an
investigation ∆α/α ≃ 10−18 [779].

8.5.1.1 Proton-to-electron mass ratio β

While α is basically related to the quantum electrodynamics (QED) scale, β is primarily
sensitive to the quantum chromodynamics (QCD) one. As a consequence, its secular change
should be much larger than that of α. Indeed, within the framework of Grand Unification
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frequencies. (Adapted from [861].)



Future trends in fundamental physics and applications 587

and also within string theories, a proportionality relation is derived between possible changes
of α and β

∆β

β
= S

∆α

α
(8.28)

with the proportionality factor S varying between 20 and 40. The β parameter appears
prominently both in atomic and molecular transition energies. In the case of atoms, how-
ever, constraints on β̇/β cannot be inferred in a strictly direct way, as the poorly accurate
Schmidt model must be invoked for the nuclear magnetic moment [773]. Hence, the search
for a possible time variation of β is currently focusing on molecular systems. In fact, it is
well known that β defines the scales of electronic, vibrational, and rotational intervals in
molecular spectra Eel : Evib : Erot ∼ 1 :

√
β : β. Also, molecules may exhibit fine and

hyperfine structures, Λ-doubling, hindered rotation, and other peculiar features which open
up additional possibilities. All these effects have different dependences on β. Furthermore,
it can be shown that sensitivity to temporal variation of both α and β may be strongly
enhanced in coupling between molecular levels and continuum, as well as transitions be-
tween close-lying levels of different types. In this framework, different schemes have been
proposed which involve either directly cooled stable molecules or dimers created by photo-
association of ultracold alkali atoms close to the quantum degeneracy. One design is based
on a molecular fountain seeded by a Stark decelerated beam of 15NH3 [863]. In this case,
the β parameter is addressed by probing the inversion transition around 22.6 GHz in a mi-
crowave cavity according to a Ramsey-type measurement. In a different approach, diatomic
molecular hydrogen ions (H+

2 , D+
2 , HD+, HT+) confined in a radio-frequency trap are sym-

pathetically cooled by atomic ions (9Be+) [864]. Then, either two-photon spectroscopy with
counter-propagating beams on a cold ensemble or quantum logic spectroscopy on a single
ion could be performed to yield highly accurate values for β, as well as for the nuclear mass
ratios. Other interesting but quite complex schemes consider molecules formed by ultracold
atoms like Sr and Cs to constrain temporal variations of β at a 10−15·yr−1-level or better.
In the former case, vibrationally excited Sr2 in the electronic ground state is produced via
photoassociation in an optical lattice [865]. Then, Raman spectroscopy aided by a fem-
tosecond optical frequency comb will interrogate the energy spacings between deeply bound
vibrational levels and those closer to the dissociation limit. In the latter, proposing the use
of ultracold Cs2, it is shown that a sensitive search for variation of β could be accomplished
by measuring the change in the hyperfine splitting between a nearly degenerate pair of
molecular vibrational levels, each associated with a different electronic potential [866]. In
such a scheme, the Cs2 molecules should be produced in the desired levels via Feshbach
resonance followed by stimulated pumping processes.

So far, the most stringent test of the time variation of β has been performed by comparing
a given vibrational transition in SF6 with a cesium fountain over 2 years, which has resulted
in a limit of β̇/β = (−3.8± 5.6) ·10−14 yr−1 [455]. Since νCs and νSF6

scale, respectively, as

νCs = K2

(

µCs
µB

)

α2F (α)Ry = K2

(

µCs
µB

)

α2α0.8Ry (8.29)

νSF6
= K1

√

1

β
Ry, (8.30)

in this case one has

d

dt
ln
νSF6

νCs
= −1

2

β̇

β
− 2.8

α̇

α
− µ̇r
µr
≃ −1

2

β̇

β
(8.31)

where µr ≡ µCs/µB has been defined, and β̇/β ≫ α̇/α (see Equation 8.28) and
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α̇/α ∼ µ̇r/µr (as obtained from atomic clock experiments) have been exploited. Hence, a
spectroscopic frequency measurement carried out over a few years period directly translates
into an assessment of the stability of the proton-to-electron mass ratio. In this experiment,
already described in Chapter 5, the SF6 transition (namely the P (4)E0 transition in the
2υ3 band) was accessed using a CO2 laser to interrogate two-photon Ramsey fringes on a
supersonic beam.

8.5.2 Speed of light c

Another intriguing question for both physics an metrology is the following: if α does vary,
which of the quantities in its definition, namely, c, ~, e, or ε0, is really varying? Indeed, a
change of α over time could be interpreted as supporting some non-standard cosmological
theories that invoke varying the speed of light or the electronic charge [50, 867, 868]. In
this frame, Bekenstein has also shown that a varying-c cosmology can be rephrased as
a varying-e theory through changes to standard units [869]. If attention is restricted to
electromagnetic phenomena, then either c or e could account equally well for the variation
in α. However, there may exist theoretical reasons of more fundamental character, concerned
with gravitation, to incline to believe a varying c over varying e. To include gravitation into
the current discussion, one can resort to the theory of black hole thermodynamics (see [867]
and references therein). In this frame, entropy is associated with the area of a black hole’s
event horizon, leading to a generalized second law of thermodynamics according to which
the event horizon’s area may only diminish if there is a corresponding augmentation in the
conventional entropy of the black hole’s environment. Now, in the case of a non-rotating
black hole with electric charge Q and mass M , the area AH of its event horizon, as obtained
in conventional general relativity theory from the Reissner-Nordström solution of Einstein’s
field equations, is given by

AH = 4πr2 (8.32)

where
r =

G

c2
[M +

√

M2 −Q2/G] (8.33)

As a result, an increase in the magnitude Q, with c and G remaining constant, im-
plies a reduction in AH , whereas a decrease in c would heighten the event-horizon area.
Therefore, these two contending alternatives (for an increase in α) lead to opposite end
results. In conclusion, since a reduction in AH would violate the generalized second law of
thermodynamics, the fundamental electric charge cannot increase.

8.5.2.1 Frequency dependence of c and the mass of the photon

The great success of Maxwell’s electromagnetism and quantum electrodynamics (QED)
has naturally led to the consent on the concept of massless photon. Nevertheless, serious
attempts have been made to establish experimentally, either directly or indirectly, whether
the photon mass is zero or finite. From a theoretical point of view, apart from the loss
of gauge invariance, classical electromagnetism and QED would not be overly troubled
by a nonzero photon rest mass. In addition, this latter circumstance would be perfectly
compatible also with the general principles of elementary particle physics. Thus, the final
answer can come only through observations. As we will see in a short while, the most direct
consequence of a finite-mass photon would be that electromagnetic waves propagate in free
space with a frequency-dependent velocity. In turn, the question of whether the speed of light
varies with frequency impacts on other key issues. For instance, Maxwell’s electromagnetism
implies that all electromagnetic radiation travels (in vacuum) at the speed of light c and,
indeed, this has been experimentally confirmed so far over a wide range of frequencies to
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a high degree of accuracy. A second shining example is provided by Einstein’s postulate of
the invariance of light. Being a keystone in much of modern physics, such a postulate is
continually tested in more and more stringent experiments.

One straightforward manner to consider some implications of a massive photon is to use
the simplest relativistic generalization of Maxwell’s equations, namely the Proca equations
[43]. In this formalism, the electric and magnetic fields in free space are given by

Aν ∼ exp[i(k · r − ωt)] (8.34)

where k, ω, and the rest mass mγ satisfy the Klein-Gordon equation

k2c2 = ω2 −m2
γc

2 (8.35)

Here mγ has the units of wave numbers, being related to the mass Mγ in grams by the
relation mγ = cMγ/~. Then, the phase and the group velocity of a free massive wave would
take the form

u =
ω

k
=

c
√

1−
m2
γc

2

ω2

(8.36)

vg =
dω

dk
= c

√

1−
m2
γc

2

ω2
(8.37)

where k = |k| = 2πλ−1, λ being the wavelength. The above formulas clearly show that
a nonzero photon mass would cause the group velocity to differ from the phase one as well
as a frequency dependence in both quantities. In this case, c becomes the limiting velocity
as the frequency approaches infinity. Next, let us consider two wave packets with different
propagating frequencies, ω1 and ω2. Assuming ω1 > ω2 ≫ mγc, then the velocity differential
between them takes the form

vg1 − vg2
c

=
m2
γ

8π2
(λ22 − λ21) +O[(mγλ1)

4] (8.38)

Thus, when moving through the same distance L, the time interval between the arrivals
of the two waves is given by

∆t ≡ L

vg1
− L

vg2
≃ L

8π2c2
(λ22 − λ21)m2

γ (8.39)

in which the terms of order higher than (mγλ1)
4 are neglected. Equations 8.38 and

8.39 represent the starting point for detecting a photon-rest-mass-related dispersion effect
both in terrestrial and extraterrestrial approaches. In this frame, the most stringent limit
(∆c/c < 3.3 · 10−7) with terrestrial means was set in 1958 by Froome using a radio-wave
interferometer [43]. Later on, a much more severe constraint was placed by Schaefer, hinging
on explosive astrophysical events at high redshift [870]. Based on the simultaneous arrival
of a flare in GRB 930229 with a rise time of 220 ± 30 µs for photons of 30 and 200 keV,
∆c/c < 6.3 · 10−21 was found. In this kind of experiment, in order to obtain tighter limits,
one should use waves of lower and lower frequencies propagating over longer and longer
distances. Unfortunately, however, lowering the wave energy makes measurements more
problematic due to the dissipation occurring over the long pathway in the medium.

Of course, some other relevant implications are predicted on the basis of a non-zero
photon mass, including deviations from exactness in Coulomb’s law and Ampere’s law,
the existence of longitudinal electromagnetic waves, as well as the addition of a Yukawa
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component to the potential of magnetic dipole fields [43]. All these potential effects offer
alternative, additional tools for setting an upper limit on the photon mass in both labora-
tory experiments and astrophysical/cosmological observations. Needless to say, fundamental
properties of the photon, including a possible finite rest mass, are of great concern to the
physics of elementary particles too. The upper limit currently accepted by the Particle Data
Group on the photon rest mass is Mγ ≤ 1 ·10−49 g (almost 22 orders of magnitude less than
the electron mass), that should be compared with the bound of Mγ ≤ 4.2 · 10−44 g set by
the latest dispersion-of-light experiment [870]. In spite of these impressively low values, the
search for a nonzero photon mass is relentless as several intriguing, fundamental questions
(charge conservation and quantization, the possibility of charged black holes, the existence
of magnetic monopoles and so on) are related to this issue.

A comprehensive review on the ongoing experiments in this field (both terrestrial and
extraterrestrial) is given in [43].

8.5.3 Newton’s gravitational constant

Possible temporal variations of Newton’s gravitational constant G are more effectively
pursued in space experiments rather than on Earth. For example, a decreasing gravita-
tional constant, as suggested by P.A.M. Dirac in 1937, should dilate a planet’s semima-
jor axis, a, as ȧ/a = −Ġ/G (via coupling with angular momentum conservation). The
corresponding orbital phase change expands quadratically with time, providing for strong
sensitivity to the effect on Ġ [871]. Recent analysis of Lunar Laser Ranging (LLR) data
strongly limits such variations and constrains a local scale expansion of the solar system as
ȧ/a = −Ġ/G = −(5 ± 6) · 10−13 yr−1 (in the LLR technique, lasers on Earth are aimed
at retro-reflectors planted on the Moon during the Apollo program, and the time for the
reflected light to return is determined). Finally, high-accuracy timing measurements of bi-
nary and double pulsars could also provide a good test of the variability of the gravitational
constant [872].

8.6 Tests of fundamental physics laws

8.6.1 Spectroscopic tests of spin-statistic connection and
symmetrization postulate

The symmetrization postulate and the spin-statistic connection are at the basis of a
quantum-mechanical description of systems composed of identical particles. Due to this
pivotal role, several experiments have been performed to test them, mainly based on elec-
trons and photons [873]. Here, instead, we only focus on spectroscopic tests, inspired by
[874, 875, 876]. Preliminarily, we have to illustrate a few concepts.

The symmetrization postulate (SP) asserts that only wave functions that are com-
pletely symmetric or antisymmetric in the permutation of the particles’ labels can describe
physical states. In the former (latter) case, the particles are called bosons (fermions) and
obey Bose-Einstein (Fermi-Dirac) statistics. Also, experiments indicate that particles with
integral values of spin are bosons, while particles with half-integral spin are fermions. The
spin-statistic theorem, proved by W. Pauli from the basic principles of quantum field
theory and special relativity, states that given the choice between Bose and Fermi statistics,
integral-spin particles must obey Bose statistics and half-integral spin particles must obey
Fermi statistics. In principle, however, there would be no arguments against the existence
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of states with different symmetries (although they lack some of the properties which are
peculiar to completely symmetric and antisymmetric states). The only strict requirement
that can be derived in a formal way in quantum mechanics is the so-called superselection
rule, which forbids transitions between different symmetry classes. In other words, it is not
possible to consider states given by a coherent superposition of states with different permu-
tation symmetries. As a consequence, symmetry violations in systems including identical
particles can only be described in terms of an incoherent mixture which is represented by
a density matrix. In the case of two integral-spin particles, for example, the density matrix
taking into account small symmetry violations is [874]

ρ2 =

(

1− β2

2

)

ρs +
β2

2
ρa (8.40)

where ρs (ρa) is the symmetric (antisymmetric) two-particle density matrix. In the case
of particles with half-integral values of spin, ρs and ρa are interchanged. In literature, the
quantity β2/2 is known as the symmetry-violation parameter. However, its real meaning
needs to be specified from case to case, according to the specific physical system and theo-
retical model considered.

Although both the SP and the spin-statistics connection seem to hold in the physical
world, a number of theories have been developed allowing for small deviations from con-
ventional symmetry which might have been masked in the experiments performed so far.
Indeed, the possibility of theories going beyond the Bose and Fermi statistics, arising from
the SP, has long been recognized [877]. More recently, theories allowing small SP violations
have been developed, basically following two different approaches. In the first approach,
trilinear commutation relations are defined instead of the usual bilinear Bose and Fermi
commutators [878], whereas in the second a slight deformation of the bilinear commutation
relations is introduced, using a parameter which can continuously turn each statistic into the
other [879]. Then, precise experiments are needed to discriminate between these theories.
In this respect, it is worth noting that an experimental evidence of SP violation in a system
of bosons is harder to be observed. This is due to the fact that, while there are several sys-
tems in which a violation of the Pauli exclusion principle (which is a particular case of the
SP) would be detected as a signal on a zero background, the effect of a small violation for
particles following Bose-Einstein statistics would usually manifest itself as a small change in
the properties of a many-particle system. Just for this reason, spectroscopic tests represent
the ideal tools to accurately and authentically (i.e., free from misunderstandings) seek for
possible SP violations. In this frame, two independent spectroscopic tests on 16O2, contain-
ing two identical 16O nuclei (spin-0 bosons), set the bound to a SP violation, respectively,
to 5 · 10−7 [880] and 1.3 · 10−6 [881]. The choice of a suitable test molecule/transition both
depends on bare physics and on the availability of a proper source of coherent radiation at
the corresponding wavelength. From the point of view of the general physical properties,
diatomic homonuclear molecules, such as 16O2, are not the best choice for the test, because
of their lack of active electric dipole transitions in the infrared (IR). Higher sensitivity to
look for the existence of exchange-antisymmetric states can be achieved by investigation of
polyatomic molecules containing a pair of identical bosonic nuclei. Among them the 12C16O2

molecule is one of the best candidates because its rovibrational IR transitions may have line
strengths up to 3.5·10−18 cm/molecule. Indeed, the first test on 12C16O2 (performed at 2 µm
wavelength with a DFB diode laser), due to the stronger allowed transitions involved in the
measurement, improved upon the previous ones by more than 2 orders of magnitude, setting
an upper limit of 2.1 · 10−9 to SP violations [882]. Later on, a DFG source at 4.25 µm was
employed to carry out a more sensitive search for the existence of exchange-antisymmetric
states in spin-0 particles [876]. This was accomplished by investigating the spectrum of the
0001−0000 fundamental band of 12C16O2, which is about 2000 stronger than the 1201−0000
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FIGURE 8.14
Experimental setup for a spectroscopic test of the symmetrization postulate. MDL: mas-
ter diode laser; SDL: slave diode laser; PZT: piezoelectric translator; OI: optical isolator;
DM: dichroic mirror; PPLN: periodically poled LiNbO3 crystal; PC: computer; LA: lock-in
amplifier; FP: Fabry-Perot cavity; F: Ge filter; PS: phase-scrambler; D: InSb detector.

band at 2 µm. According to the Born-Oppenheimer approximation, the total wave function
Ψ of a single molecule can be factorized in the form Ψ = ψeψυψrψn, where ψe, ψυ, ψr, and
ψn are the electronic, vibrational, rotational, and nuclear wave functions, respectively. The
ground electronic and vibrational wave functions of the 12C16O2 molecule are symmetric
in the exchange of the two 16O nuclei. Also, the nuclear wave function is symmetric, since
the nuclear spin I(16O) = 0. The rotational wave function is symmetric for even values of
J , antisymmetric for odd ones. The SP requires the total wave function to be symmetric in
the exchange of the two 16O nuclei. Therefore, rotational states with odd values of J are
forbidden in the ground vibrational state. A similar argument could show that the situation
is reversed in the 0001 vibrational state, for which even values of J are forbidden, because
the vibrational wave function ψυ in the excited state is antisymmetric. As a consequence,
detection of a weak transition of the rovibrational form 0001−0000 R(J) with an odd value
of J could indicate a SP violation and its amount. The experimental setup is shown in
Figure 8.14. The 4.25-µm radiation emerging from the non-linear crystal is coupled into a
White-type multi-pass absorption cell, with an effective absorption path length of 130 m.

The investigated forbidden transition was chosen as the 0001 − 0000 R(25) line at
2367.265 cm−1 for the following reasons: (i) It is close to the strongest R-branch lines
(at room temperature); (ii) it is far from any strong allowed line; (iii) a weak line to be used
as a frequency and sensitivity marker (the 0221 − 0220 R(80) line of 12C16O2 at 2367.230
cm−1) is well separated from the forbidden line and can be recorded within the frequency
span. Pure carbon dioxide (99.99%) was used to fill the cell at pressures ranging from 270
to 330 Pa. These pressures were chosen in order to minimize the absorption due to the
Lorentzian wings of the strong R(24) and R(26) lines and still maintain a good S/N ratio
in the spectral region of interest. A first-derivative recording of the marker line is shown in
Figure 8.15. In the same figure, an arrow indicates the calculated position of the forbidden
line. In this case, the violation parameter β2/2 can be expressed as

β2

2
<
AR(25)

AR(80)

SR(25)

SR(80)
(8.41)
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where AR(80) = 14.7 V (SR(80) = 1.81 · 10−25 cm/molecule for T = 296 K) is the
signal (the line strength) corresponding to the marker line. The analogous quantities for
the forbidden line are calculated as follows. AR(25) = 3.7 mV is estimated by measuring the
root mean square (rms) noise in the spectral range where the forbidden line is expected.
Thus we are left with the calculation of SR(25). To this aim, we start by observing that the
main dependence of the line strength of a rovibrational R-branch line on J and T is

S(J, T ) ∝ (J + 1) exp

[

−hν0 + Er(J)

kBT

]

(8.42)

where Er(J) is the rotational energy, such that

S(25, T ) ≃ S(24, T )26
25

exp

(

−50hB

kBT

)

(8.43)

with B = 0.389 cm−1 and SR(24) = 2.78 · 10−18 cm/molecule for T = 296 K. Hence,
β2/2 < 1.7 · 10−11 was finally inferred for the transition connecting the forbidden states
(0000, J = 25) and (0000, J = 26).

Substantial improvements to this sensitivity could be obtained by use of cavity-enhanced
spectroscopic techniques, such as, for instance, the Saturated-Absorption Cavity Ring-Down
Spectroscopy (SCAR) technique described in Chapter 5. Furthermore, it would be also
interesting to look for possible small SP violations by investigating rovibrational transitions
in symmetrical molecules containing three identical nuclei. In this frame, a high-sensitivity
spectroscopic study of simple molecules such as SO3, BH3, and NH3 could lead to the first
test of the symmetrization postulate for spin-0 and spin-1/2 nuclei.

FIGURE 8.15
Transmission spectrum (10 GHz total frequency span) of the White cell filled with 18 Pa of
CO2. Absorption peaks of three CO2 lines around 2367.4 cm−1 are shown. (b) Plot of the
first-derivative demodulated signal. This scan, corresponding to the dashed rectangle in (a),
contains the R(80) marker line and the region where the forbidden R(25) line is expected.
A fit curve (solid line) is superimposed on the experimental points.
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8.6.2 Search for the electron dipole moment

The electron is predicted to be slightly aspheric [883], with a distortion characterized by
a permanent electric dipole moment (EDM), de. However, no experiment so far has ever
detected this deviation. While the standard model (SM) of particle physics predicts that
de is far too small to detect (|de| < 10−38) [884], many extensions to the SM (includ-
ing Higgs models, Supersymmetric models, and Lepton-Flavor-Changing models) naturally
predict much larger values of de that should be detectable (10−29 < |de| < 10−26) [885].
Moreover, most models of particle physics predict that, if some undiscovered particle inter-
action breaks the symmetry between matter and antimatter (that could be the reason for
which the Universe has so little antimatter), this should manifest itself into a measurable
EDM [886]. Therefore, the search for the electron EDM represents an important step to-
wards the discovery of new physics. In a recent experiment, cold polar molecules were used
to measure the electron EDM at the highest level of precision reported so far, providing
de = (−2.4±5.7stat±1.5syst) ·10−28e cm, where e is the charge on the electron, which sets a
new upper limit of |de| < 10.5 · 10−28 cm with 90 percent confidence. This result, consistent
with zero, indicates that the electron is spherical at this improved level of precision [887].
The concept behind this experiment can be understood as follows. If any, a permanent elec-
tron EDM must lie along its spin, σ, that is, d = deσ, whereupon the electron energy in an
applied electric field, E, is given by −d ·E = −deσ ·E. Then, for an atom or molecule with
an unpaired valence electron, the interaction between the electron EDM and E manifests
itself into an energy difference between two states that differ only in their spin orientation.
A sensitive method of measuring such energy difference, which is proportional to de and
changes sign when the direction of the field is reversed, consists of measuring the quantum
interference between the two spin states. In this case, the EDM should appear as an interfer-
ometer phase shift that changes sign when the electric field is reversed. Compared to atoms,
diatomic polar molecules naturally possess orbitals that are strongly polarized along the
internuclear axis λ̂, which originates a significant internal effective electric field Eintλ̂. This
can be particularly large when one of the atoms is heavy and has strong s− p hybridization
of its orbitals. However, due to the molecular rotation, this strong field averages to zero
unless an external (even modest) field Eẑ is applied to polarize λ̂ along ẑ. In that case, the
EDM interaction energy takes the form V = −deEint〈λ̂ · ẑ〉〈σ̂ · ẑ〉 ≡ −deEeff 〈σ̂ · ẑ〉 [888].
The relevant energy levels and the experimental apparatus are shown in Figures 8.16 and
8.17, respectively.

Pulses of YbF molecules are emitted by the source, and molecules in the F = 0 and
F = 1 hyperfine levels of the ground state are used. First, the molecules pass through the
pump fluorescence detector, which simultaneously measures and empties out the F = 1
population. Then they enter a pair of electric field plates, between which are static electric
and magnetic fields (E,B)ẑ. A radio-frequency (rf) pulse is applied to transfer molecules
from |F,mF 〉 = |0, 0〉 to the state (1/

√
2)(|1, 1〉 + |1,−1〉), where mF is the component

of the total angular momentum, F , along the z-axis. The molecules then evolve freely for
a time T , during which the mF = ±1 components develop a phase difference of 2φ =
2(µBB − deEeff )T/~, where µB is the Bohr magneton. This is due to the Zeeman shift
µBBmF and to the EDM shift expressed by the effective interaction −deEeffmF . A second
rf pulse is then applied, which drives a transition back to the F = 0 state. The state
amplitude (1/

√
2)(eiφ + e−iφ) results in a final F = 0 population proportional to cos2 φ,

which the second fluorescence detector subsequently measures. Thus, when scanning the
phase difference via the magnetic field, the fluorescence signal shows typical interference
fringes I = I0 cos

2 φ. So, if δB is a small, carefully calibrated change in the magnitude of
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FIGURE 8.16
Optical transitions in 174YbF at 553 nm, which are 40 GHz apart. Inset: ground state
hyperfine levels F = 0, F = 1, 170 MHz apart. In static electric field, the mF = 0 sublevel
of F = 1 is lower than the mF = ±1 sublevels by an amount ∆. The detection laser is tuned
to the F = 0 component in the Q(0) line, while a second dye laser is tuned to the OP12(2)
transition. Together, these two beams pump molecules into the F = 0 ground state, while
emptying out F = 1. (Adapted from [888].)

the applied field, then the maximum detector count changes from I0 to I0 + δI1 with

δI1 =
dI

dφ
δφ1 =

dI

dφ

T

~
µBδB (8.44)

Moreover, since de is expected to be vanishingly small, a reversal in the applied electric
field, which reverses Eeff , is also associated with a small change in the maximum detector
count

δI2 =
dI

dφ
δφ2 =

dI

dφ

T

~
2deEeff (8.45)

Finally, we have
δI2
δI1

=
2deEeff
µBδB

(8.46)

from which the EDM is eventually derived by using the measured δI2/δI1 ratio and
theoretical value Eeff = −14.5 GV·cm−1. Although there is some uncertainty in the the-
oretical calculation, even an uncertainty of 10% would have no impact on the error at the
reported level. In practice, a more complex (with respect to Equation 8.46) correlation anal-
ysis is applied to extract the de value. This procedure, together with full particulars on the
experimental apparatus, can be found in [887].

In conclusion, it should be mentioned that another EDM experiment is in progress,
based on electron spin resonance spectroscopy on trapped molecular ions [889].

8.6.3 Parity violation in chiral molecules

Let us start by recalling that the inversion symmetry of a physical system, described by the
wave function ψ, can be characterized through the parity operator P . The latter acts by
inverting the spatial coordinates of ψ, such that Pψ(r) = ψ(−r). Then, if Pψ(r) = ±ψ(r),
we assert that ψ has well-defined parity (even parity if +, odd parity if −). Also, in a given
physical interaction described by the HamiltonianH , parity is conserved ifH commutes with



596 Laser-based measurements for time and frequency domain applications

YbF beam
Pump
beam

Probe
beam

y

x

z

PMT

PMT

field plates

E B
Rf splitter

Rf recombiner

FIGURE 8.17
Schematic diagram of the pulsed molecular beam apparatus used for the EDM experiment.
(Adapted from [887].)

P . Together with charge conjugation (C) and time reversal (T ), the parity operation enters
the well-known CPT theorem: a “mirror-image” of our universe, with all objects having their
positions reflected by an imaginary plane (corresponding to a parity inversion), all momenta
reversed (corresponding to a time inversion), and with all matter replaced by antimatter
(corresponding to a charge inversion), would evolve under exactly our physical laws. In
other words, the combined CPT symmetry is preserved by all physical phenomena (i.e., by
the four fundamental interactions: Strong, Electromagnetic, Weak, and Gravitation), albeit
individual symmetries may be broken.

Inspired by [890, 891, 892, 893, 894], here we focus on parity violation phenomena that
may occur in processes involving the weak force, as observed in 1957 by Wu et al. in the
β-decay of cobalt-60. In β-decay parity violation, a neutron is converted into a proton,
while an electron and an electron anti-neutrino are created (n → p + e + νe). Indeed,
until the 1970s, all processes discovered implying weak interactions were associated with an
exchange of electric charge between the involved particles and thereupon by an alteration
of their identity, such transformations being brought about by the gauge bosons W+ and
W−. Analogous to the photons that mediate the electromagnetic interaction, these particles
communicate the weak interaction. Unlike the photon, however, the above gauge bosons
carry a unit of electric charge; this, together with the consideration that the stability of an
atom is guaranteed only by interactions which preserve the identity of the particles, seemed
to suggest that the weak interaction and its associated parity violation were not relevant
to the physics of stable atoms. Later, due to some inconsistencies in the theoretical model
of weak interactions, Glashow, Weinberg, and Salam independently proposed unification of
the weak and electromagnetic interactions into a single fundamental interaction, namely
the electroweak one. The most important “prophecy” of such revolutionary theory, usually
referred to as the Standard Model of electroweak interactions, was the existence of a third
gauge boson (Z0) which, being associated with a neutral current, could communicate a new
kind of weak interaction without changing the identity of the interacting particles. In the
case of atoms, such neutral current is responsible for weak interactions between electrons and
nucleons as well as among electrons: e+p→ e+p, e+n→ e+n, and e+e→ e+e (in other
words, the electron-electron current acts via the Z0 boson with either the proton-proton,
neutron-neutron, or electron-electron current).

Parity non-conservation (PNC) in stable atoms is precisely a revelation of the weak in-
teraction between atomic electrons and the nucleus. Being complementary to high-energy
experiments, it emerges in high-precision measurements which assay the symmetry prop-
erties of the optical-absorption process. Nonetheless, due to their extreme faintness, these
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effects can be detected only by resorting to very specific systems: first, highly forbidden
transitions must be exploited in order to prevent the electromagnetic interaction from com-
pletely submerging the weak one; second, by virtue of the Z3 enhancement factor (Z denotes
here the number of protons), heavy atoms should be preferred. In principle, there is also a
contribution to atomic parity violation arising due to Z0 exchange between electrons, but
this effect is negligibly small for heavy atoms. Instead, another appreciable contribution
arises from the so-called anapole moment, which appears due to the presence of parity vio-
lating weak interactions between nucleons, and manifests itself in atoms through the usual
electromagnetic interaction with atomic electrons [893]. Just to better grasp the concept of
anapole moment, we mention here that, besides the usual electric and magnetic moments
(monopole, dipole, quadrupole,...), other terms come out in the electromagnetic-multipole-
moment expansion. These are usually not dealt with, as they give rise to contact, rather
than long-range, potentials. The anapole is such a moment. Formally, it originates from
an expansion of the vector potential as a series of R−1, where R is the distance from the
center of the charge distribution, and corresponds to a toroidal current distribution. The
anapole moment obeys time reversal invariance but violates parity conservation and charge
conjugation invariance, i.e., T -even and P - and C-odd.

In all atomic PNC experiments searching for the inversion asymmetry, the measured
quantity is an electric dipole moment EPNC activated by a force which disobeys parity
conservation. When this force is also time-reversal violating, then EPNC can be a permanent
electric dipole moment, which produces an energy shift of the atom in an external electric
field. By contrast, if the force is time-reversal preserving, EPNC is only observable through
its interference with some other atomic moment in radiative transitions. Of interest here is
the PNC interaction which exhibits time-reversal symmetry. While both the two relevant
PNC contributions (i.e., that originating from weak interaction between the nucleus and
the electrons and that resulting from usual electromagnetic interaction between the nuclear
anapole moment and the electrons) have been first observed in Cs atoms [895], in the
following we describe a more recent experiment performed on 174Yb, reporting the largest
atomic PNC amplitude yet observed (2 orders of magnitude larger than cesium) [896].
With reference to Figure 8.18, the idea is to excite the forbidden 408-nm transition (6s2
1S0 ≡ |Ψ1〉 → 5d6s 3D1 ≡ |Ψ2〉) with resonant laser light in the presence of a quasi-
static electric field (Es). In the absence of electric fields and weak neutral currents, an
electric dipole (E1) transition between |Ψ1〉 and |Ψ2〉 is forbidden by the parity selection
rule: Π(|Ψ1〉) · Πphot 6= Π(|Ψ2〉), where the parity of photon is Πphot = −1 and the atomic
states, both with even angular momentum L, have the same parity Π(|Ψ1〉) = Π(|Ψ2〉) = 1.
However, the weak neutral current interaction, associated with the Hamiltonian HW , mixes
a small amount of atomic wave functions with opposite parity into the |Ψ1〉 and |Ψ2〉 states.
In this specific case the 6s6p1P1 state is mixed into the |Ψ2〉 one, thus leading to a small
opposite-parity admixture in the original |Ψ2〉 atomic state: |Ψ2〉 → |Ψ̃2〉 = |Ψ2〉 + |δΨ2〉.
This mixing gives rise to E1 transitions between states of the same nominal parity, resulting
in a PV E1 transition amplitude given by

APNC = 〈Ψ̃2|HE1 |Ψ1〉 = 〈δΨ2|HE1 |Ψ1〉 (8.47)

where HE1 is the electric-dipole Hamiltonian (here we are not considering for simplicity
the anapole contribution). The purpose of the applied electric field is to provide an observ-
able (transition rate R) that is first order in this amplitude through the interference of the
reference transition amplitude AE (due to Stark mixing of the same states) with the PV
amplitude:

R = |AE +APNC |2 = |AE |2 + |APNC |2 + 2ℜ[AEA∗
PNC ]

≃ |AE |2 + 2ℜ[AEA∗
PNC ] ≡ RE +∆R (8.48)
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FIGURE 8.18
Energy levels and transitions which are relevant to the Yb parity-violation experiment.
(Adapted from [896].)

Then, the Stark-PV interference term (∆R) is isolated from the dominant Stark-induced
one (RE) through a harmonic modulation of Es. In this way,RE has a static component and
a component oscillating at twice the modulation frequency, while ∆R oscillates at the first
harmonic, which permits frequency discrimination using lock-in amplifiers. A schematic
of the Yb-APV apparatus is shown in Figure 8.19. An effusive beam of Yb enters the
main interaction region where the Stark- and PV-induced transitions take place. Frequency
doubling the output of a Ti:Sa laser provides the 408.345-nm wavelength light (80 mW).
The latter is coupled into a 9000-finesse power build-up cavity (PBC) inside the vacuum
chamber. The laser is locked to the PBC via the PDH technique. A uniform magnetic
field (up to 100 G) is generated by a pair of rectangular coils, while additional coils (placed
outside of the vacuum chamber) compensate for the external magnetic fields down to 10 mG
at the interaction region. The electric field is generated by two wire-frame electrodes: an ac
voltage up to 10 kV (at a frequency of 76.2 Hz) is supplied to them to provide the field Ẽ = 5
kV/cm (an additional dc electric field of 40 V/cm is also used). The 556-nm wavelength
light emitted from the interaction region is conveyed by a light guide to a photomultiplier
tube, and the resulting signal used for initial selection of the atomic resonance as well as
for monitoring purposes. The 649-nm light-induced fluorescence from the probe region is
eventually collected by the photodetector PD (the 649-nm excitation light is derived from
a single-frequency diode laser saturating the 6s6p 3P0 → 6s7s 3S1 transition). Finally, the
signal from the PD is fed into a lock-in amplifier for frequency discrimination and averaging.
Since J = 1 (J = 0) for the 3D1 (1S0) state and hyperfine components are not resolved,
for an arbitrary angle of polarization θ (θ = π/4 is typically used), both the first- and
second-harmonic signals contain three Zeeman components (∆MJ = −1, 0, 1) in the B-
field split 408-nm spectral line. The emergence of a first-order harmonic spectrum provides
the signature for atomic parity violation. One can show that the extent to which the PV
phenomenon occurs, that is the ratio ∆R/RE, can be evaluated from the amplitudes of the
Zeeman components, as measured in the first and second-harmonic spectrum, according to
the following combination [896]

A1st
−1

A2nd
−1

+
A1st

+1

A2nd
+1

− 2
A1st

0

A2nd
0

=
16I
Ẽ

(8.49)
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FIGURE 8.19
Experimental setup for the PV-Stark interference experiment. Light is applied collinearly
with x, and θ is the angle between the light polarization and the magnetic field. (Courtesy
of [896].)

where the PV-interference parameter I has been introduced. In the case of 174Yb, I =
39(4)stat(5)syst mV/cm is found, which is in agreement with theoretical predictions and
about 2 order of magnitude larger than in Cs.

The weak interaction is also active in molecular systems, especially in the interplay
between electrons and nuclei. As a consequence, the standard model predicts a petite en-
ergy difference between enantiomers of chiral molecules [890]. More in detail, as shown in
Figure 8.20, the potential energy surface of a chiral molecule exhibits two minima, corre-
sponding to the left L and right R enantiomers. For a very high interconversion barrier,
these can be regarded as energy eigenstates which, in the absence of the weak force, are
degenerate. By contrast, in the presence of the weak force, a small parity-violation energy
difference (PVED), ∆EPV , is predicted to arise between the ground states (as well as ex-
cited states) of the two enantiomers. In this case, right- and left-handed molecules are no
longer the exact mirror images of each other (in other words, enantiomers become diastere-
omers). However, such parity-violation frequency differences are predicted to be vanishingly
small. Just to give an idea, it is approximately 30 mHz for the chiral molecule CHFClBr.
For a comprehensive theoretical treatment of PV violation in chiral molecules, the reader
is referred to [897, 898].

The idea proposed by Letokhov in 1975 to detect such effect is illustrated in Figure 8.21.
This approach consists of measuring the difference ∆νPV = νL− νR = (∆E∗

PV −∆EPV )/h
between the frequencies of a given ro-vibrational transition in two enantiomers of a suit-
able chiral molecule. Later on, theoretical studies have indicated that ∆νPV /ν is in the
range 10−16 - 10−19, depending on the considered molecular transition (it is worth not-
ing that ∆νPV is much smaller than the molecular intrinsic line width). The first high-
resolution experiment was carried out in 1999 on CHFClBr by the group of Chardonnet
using laser-saturated absorption spectroscopy in two separate Fabry-Perot cavities, contain-
ing the S-(+)-1 and R-(-)-1 configuration, respectively (Figure 8.21). For this purpose, a
high-performance CO2 laser-based spectrometer was developed to probe a hyperfine com-
ponent of the C-F stretching fundamental band of CHF37Cl81Br at 30 THz. In that ex-
periment, a mean difference νR(−) − νS(+) of 9.4 Hz was obtained with statistical and
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FIGURE 8.20
Potential energy surface of a chiral molecule as a function of the inversion coordinate q. The
weak interaction is responsible for a small difference between the ro-vibrational frequencies
νL and νR of the left and right enantiomers. (Adapted from [890].)

systematic uncertainties of 5.1 and 12.7 Hz, respectively. This corresponded to an upper
limit of ∆ν/ν = 4 · 10−13 for the PV effect [899]. Repeated in 2002, this experiment set the
limit 5 · 10−14. Work is in progress in the same group to tackle the challenge of observing
PV in chiral molecules. To this aim, a consortium of physicists, chemists, theoreticians, and
spectroscopists has been organized. On one hand, one has to enhance resolution implement-
ing the two-photon Ramsey-fringes technique on an alternate supersonic beam of right- and
left-handed molecules. Also, an ultrastable laser source (ultimately referenced to an atomic
frequency standard) should be employed. On the other hand, one has to synthesize the ideal
chiral molecule which should satisfy all the following requirements: (i) exhibit a large ∆νPV ;
(ii) be attainable in huge enantiomeric excess; (iii) evading nuclei with a quadrupole mo-
ment to avoid large hyperfine structure; (iv) possess an appropriate two-photon transition
connecting a state in the fundamental vibrational level, υ = 0 to one in the υ = 2 level; (v)
permit the production of molecular beams.

8.7 Perspectives for precision spectroscopy of cold molecules

Cold molecules are currently subject to intense research efforts as they promise to lead
major advances in precision measurement, quantum control, and cold chemistry. As already
discussed in Chapters 5 and 7, a number of techniques has already been demonstrated to
reach temperatures in the mK regime, while different schemes are being examined to ac-
cess the µK threshold. Essentially, by increasing considerably the interaction time between
the interrogating spectroscopic source and the molecular sample, such cooling/decelerating
techniques may lead to unprecedented spectral resolution and accuracy levels (recall that
the cooling process also strongly simplifies the molecule spectrum). Furthermore, the field of
ultrahigh-resolution molecular spectroscopy has known, in recent years, an ulterior revolu-
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Principle of the PV test on CHFClBr: spectra of the two enantiomers are recorded simul-
taneously using identical cavities. (Adapted from [890].)

tion marked by the appearance of optical frequency comb synthesizers based on femtosecond
mode-locked lasers. Thus, a new generation of more and more severe tests of fundamental
physics laws is today possible by bringing together the two main thrusts of modern atomic,
molecular, and optical (AMO) physics: the cold and the ultraprecise. In this frame, the check
of the constancy of fundamental constants, the search for parity and time reversal-violating
permanent electric dipole moments, the assay of the spin-statistic relation, and the pursuit
of parity-violating electroweak interactions are just examples of intriguing challenges where
molecular spectroscopy may play a crucial role [687].

As anticipated, another extremely alluring trend of experiments hinges on the realization
of colder molecules in a relentless race towards ensembles with the highest possible phase
space density. One can envisage that this stream of experiments, gradually approaching the
quantum degeneracy regime, will take on and further expand the role of cold atomic physics
and chemistry in the discovery of new phenomena. With concern to low-temperature chem-
istry, the quantum nature of ultracold collisions may provide a detailed probe of fundamental
chemical reactions. At higher temperatures, measurements of the rates of chemical processes
are subject to a large amount of averaging which obscures the intricate details of molecular
collisions. By contrast, at ultracold temperatures, averaging over quantum states is mini-
mized; the populations of the internal quantum states collapse into the lowest one or two
states and the collisional angular momentum becomes highly restricted, ultimately reaching
the limit of a single active collisional angular momentum state (pure s-wave or p-wave scat-
tering). Chemical reactions at low collision energies can also be profoundly influenced by
the long-range intermolecular forces which control the orientation of the reactants during
collisions. Experiments with cold molecules offer a way to sensitively probe this part of the
intermolecular potential surface. Moreover, the weakness of these long-range interactions
suggests that external fields are likely to exert a strong influence on the dynamics of chem-
ical processes, potentially allowing fine control over the rates and outcomes of molecular
collisions. These considerations suggest that the sub-Kelvin world of chemical reactions will
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be one in which the refined control and detailed interrogation of chemical processes should
be possible. Experimental measurements should provide considerable challenges to quantum
theories of chemical reaction rates, both in the calculation of ab initio potential energy sur-
faces and the solution of the equations for quantum reactive scattering. And although these
temperatures lie well below those occurring naturally, studies of cold and ultracold chemical
processes will ultimately provide a better understanding of thermally averaged dynamics at
higher temperatures, for example in the 10 to 20 K range found in interstellar gas clouds.
In the area that is more purely attributable to Physics, we would like to mention here a few
breakthrough perspectives which, following the tradition inaugurated by ultracold atoms,
are at the boundary with the condensed-matter domain, in the continued advance of our
capabilities in the precise study, control, and measurement of increasingly complex quantum
systems. As an example, the study of electric dipole-dipole interaction in quantum degener-
ate fermionic molecular gases would give a new insight into the Bardeen-Cooper-Schrieffer
(BCS) pairing. Even more cardinal, ultracold polar molecules may shed light on the char-
acter of fundamental interactions between particles. So far, only forces between pairs of
particles have been deeply investigated and, as a consequence, our understanding of the
plethora of phenomena in condensed-matter physics rests on models involving effective two-
body interactions. On the other hand, exotic quantum phases, such as topological phases or
spin liquids, are often identified as ground states of Hamiltonians with three or more-body
terms. Although the study of these phases and the properties of their excitations is currently
one of the most exciting developments in theoretical condensed-matter physics, it is difficult
to identify real physical systems exhibiting such properties. It has been recently recognized,
though, that polar molecules in optical lattices driven by microwave fields naturally give
rise to Hubbard models with strong nearest-neighbor three-body interactions, whereas the
two-body terms can be tuned with external fields [686]. This may open a new route for
an experimental study of exotic quantum phases with quantum degenerate molecular gases.
The growing interest in states of matter with topological order also lies in the fact that these
are characterized by highly stable ground states robust to arbitrary perturbations and which
support excitations with so-called anyonic statistics. Topologically ordered states can arise
in two-dimensional lattice-spin models, which have been proposed as the basis for a new
class of quantum computation. Again, the relevant Hamiltonians for such spin lattice models
can be systematically engineered with polar molecules stored in optical lattices, where the
spin is represented by a single-valence electron of a heteronuclear molecule. The combination
of microwave excitation with dipole-dipole interactions and spin-rotation couplings enables
building a complete toolbox for effective two-spin interactions with designable range, spatial
anisotropy, and coupling strengths significantly larger than relevant decoherence rates. In
this framework, two paradigmatic models have been theoretically demonstrated: one with
an energy gap providing for error-resilient qubit encoding, and another leading to topolog-
ically protected quantum memory. Therefore, ultracold polar molecules trapped in optical
lattices are believed to provide a promising platform for quantum information processing
[687]. About this, it is worth mentioning that a Stark decelerator, made of gold electrodes
deposited on a glass substrate, has already been realized on a chip. This can be seen as the
very first step towards the development of more complex hybrid quantum devices where
decelerated molecules are trapped just above the surface of mesoscopic features patterned
on a chip. The proximity of molecules to the surface can lead to strong couplings between
the internal and/or motional states of the molecules and the quantum states of objects on
the chip itself. For example, in the case of molecules trapped by static electric fields formed
by on-chip electrodes, the molecular rotational states heavily couple to microwave photons
confined in the strip-line geometry.
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In conclusion, although the field of ultracold molecules can be considered still in its
infancy at the time of writing, the exceptional growing rate of the emerging techniques for
cooling/trapping of molecules in conjunction with the flourishing of convincing proposals
for both fundamental and applied research portends that Molecular Science will be the
supreme protagonist in the immediate future.

8.8 Tests of general relativity: from ground-based experiments to
space missions

Currently, the fundamental physical laws of Nature are contained in two major theories,
namely the Standard Model and Einstein’s General Relativity (GR). The former designates
the families of fermions (leptons and quarks) and describe their interactions by vector
fields which communicate the strong, electromagnetic, and weak forces. The latter is a
tensor field theory of gravity. In spite of its beauty and ability to describe cosmological
phenomena, GR is a classical theory and hence fundamentally incomplete. Notwithstanding
recent progress in string theory, the road to merge gravity and quantum mechanics, so
as to have a unified description of all particle interactions, seems long yet (Figure 8.22).
There are even scientists who speculate that a new theory of quantum gravity must be
radically different from standard GR and quantum theory, and must thus violate one or
more of the principles underlying these theories [768]. In this frame, a number of theoretical
groups is at work to perfect the formulation of alternative theories [900]. In particular,
fresh developments in scalar-tensor extensions of gravity suggest a few tests to look for
deviations (from Einstein’s theory) which are three to five orders of magnitude below the
level currently tested by experiments. In conjunction with the cutting-edge technologies
developed in ground-based labs, offering variable gravity potentials, large distances, as well
as high velocity and low acceleration regimes, space environment may provide a unique
playground for many of these searches. Just to give an idea, for a practical height of a
laboratory clock, the interaction time in an atomic fountain is limited to about 1 s. This
can instead be increased up to 10 s in a microgravity environment, like that provided by
a satellite orbiting Earth. In this respect, space-borne atomic clocks, both microwave and
optical, will provide major benefits to address a variety of fundamental physical issues. In
the following we shall examine the most popular ones.

Grand  Unified  Theory  ?

Theory of
Gravitation

Standard Model

Theory of
Weak Interaction

Theory of
Strong Interaction

(QCD)

Theory of
e.m. Interaction

(QED)

FIGURE 8.22
Classical theories of gravitation like GR are fundamentally incomplete. The Grand Unified
Theory, aiming at merging the theory of gravity with the Standard Model, is the dream of
all physicists. (Adapted from [768].)
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FIGURE 8.23
The Einstein EP is at the basis of the concept that space-time is curved. Only metric
theories of gravity satisfy it: the most celebrated one is General Relativity, but there are
other examples [901, 900, 902]. Some experiments are also indicated, which can be performed
to test certain aspects of the theory. (Adapted from [768].)

8.8.1 Testing the Einstein Equivalence Principle

Being at the foundation of the general theory of relativity, the Equivalence Principle (EP)
contains three hypotheses (see also Figure 8.23) [768, 900]:

1. The trajectory of a freely falling test body (one not acted upon by forces such
as electromagnetism and too small to be affected by tidal gravitational forces) is
independent of its internal structure and composition. This is known as the weak
equivalence principle (WEP). When dropping two different test bodies in a grav-
itational field, the WEP implies that the bodies fall with the same acceleration.
This is known as the Universality of Free Fall (UFF);

2. The outcome of any local non-gravitational experiment is independent of the ve-
locity of the freely falling reference frame in which it is performed. This is termed
Local Lorentz Invariance (LLI) and suggests that clocks’ rates are independent
of the clocks’ velocities;

3. The outcome of any local non-gravitational experiment is independent of where
and when in the universe it is performed. This is referred to as Local Position
Invariance (LPI) and postulates that clocks’ rates are also independent of their
space-time positions.

8.8.1.1 Tests of UFF

Precise laboratory tests of UFF are typically performed by comparing the free-fall acceler-
ations, a1 and a2, of two different test bodies. When these are at the same distance from
the gravity source, the expression for the EP can be cast in the form

∆a

a
=

2(a1 − a2)
a1 + a2

=

[

mG

mI

]

1

−
[

mG

mI

]

2

(8.50)

wheremG and mI denote the gravitational and inertial masses of each body, respectively
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[900]. Then, the sensitivity of the experiment is fixed by the precision of the differential-
acceleration measurement divided by the extent to which the test bodies differ (e.g., com-
position). Within this approach, the fractional differential acceleration between beryllium
and titanium test bodies was recently given as ∆a/a = (1.0± 1.4) · 10−13, based on an Eöt-
Wash rotating-torsion-balance experiment [903]. With respect to Earth-based laboratories,
experiments in space can take advantage of free fall as well as dramatically suppressed con-
tributions related to seismic, thermal, and other nongravitational noise. Among the many
experiments that have been proposed to test the EP in space, we only mention the cold
atom-based Quantum Interferometer Test of the Equivalence Principle (QuITE). This aims
at measuring with an accuracy of 1 part in 1016 the absolute single-axis differential acceler-
ation by employing two colocated-matter wave interferometers with different atomic species
[900]. QuITE will improve the current EP limits placed by ground-based experiments work-
ing on the same principle, like that by Fray and co-workers [904]. Here, a matter wave
interferometer was developed, based on the diffraction of atoms from effective absorption
gratings of light: in a setup with cold rubidium atoms in an atomic fountain, the gravita-
tional acceleration of the two isotopes 85Rb and 87Rb was compared, yielding a difference
∆g/g = (1.2± 1.7) · 10−7.

8.8.1.2 Tests of LLI

Before being incorporated into the theory of General Relativity, Local Lorentz Invariance
had been at the basis of the formulation of Special Relativity (SR). As such, LLI has
been intensively scrutinized in an experimental perspective, and various test theories have
been proposed to account for possible deviations from SR. For the purpose of quantifying
experimental results, the one by Robertson, Mansouri, and Sexl (RMS) is the most widely
used. In the following, we present it following the brief formulation given in [905].

Essentially, this model abandons Einstein’s postulates and assumes an isotropic speed
of light c only for a hypothetical preferred reference frame Σ(T,X). Then, general linear
transformations between Σ and a frame S(t,x) moving at a velocity V along X (with
respect to Σ) are derived. By virtue of Einstein synchronization, such generalized Lorentz
transformations take the form

T = Γ

(

t

â
+
V x

b̂c2

)

(8.51)

X = Γ

(

x

b̂
+
V t

â

)

Y =
y

d̂
Z =

z

d̂
(8.52)

with Γ = 1/
√

1− V 2/c2. The three velocity-dependent test functions â(V 2), b̂(V 2),
d̂(V 2) parametrize time dilation as well as Lorentz contraction in the longitudinal and
transverse directions. For special relativity, they are all unity. By expanding these functions
in powers of V 2/c2, that is, â(V 2) = [1+ α̂V 2/c2+O(c−4)] and so on, three test parameters
α̂(V 2), β̂(V 2), δ̂(V 2) are obtained:

• The Ives-Stilwell experiment tests α̂, that is the time dilation parameter;

• The Kennedy-Thorndike experiment tests |α̂ − β̂|, that is the boost dependence of the
speed of light;

• The Michelson-Morley experiment tests |β̂ − δ̂|, that is the isotropy of the speed of light.

Ives-Stilwell experiments

In this type of experiments, the idea is to measure the Doppler shift of light emitted from
moving particles [905]. The first time-dilation measurement, carried out by Ives and Stilwell
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in 1938, used a collinear setup in which the Doppler-shifted frequencies of light emitted from
hydrogen canal rays were measured both in forward and backward directions relative to the
atomic motion. If β = v/c and γ = 1/

√

1− β2, for the simultaneous measurement of the
Doppler-shifted frequencies νp = ν0/[γ(1− β)] parallel and νa = ν0/[γ(1 + β)] antiparallel
to the particles’ motion in the laboratory frame, one obtains

ν20 = νaνp (8.53)

assuming plane waves. As discussed above, the β-independence of this relation is a con-
sequence of time dilation in special relativity, regardless of the chosen clock synchronization
scheme. On the other hand, an analysis of Doppler shift experiments within the RMS test
theory shows that a non-vanishing α̂ would modify the outcome of the Ives-Stilwell experi-
ment as

νaνp
ν20

= 1 + 2α̂(β2 + 2βlab · β) +O(c−4) ≃ 1 + 2α̂β2 (8.54)

where βlab = V lab/c with Vlab = 350 km/s (Σ is, in fact, generally assumed to be
the cosmic-microwave-background rest frame). Recently, an Ives-Stilwell experiment was
carried with fast optical atomic clocks [905]. More in detail, 7Li+ ions are accelerated by
a tandem Van de Graaff accelerator and injected into the test storage ring (TSR) shown
in Figure 8.24. In the TSR, 7Li+ can be stored at velocities ranging from β1 ≃ 0.030 to
β2 ≃ 0.064. Neglecting the sidereal term, the Doppler-shifted frequencies ν1,2a and ν1,2p
measured at β1 and β2 can be combined using Equation 8.54 to

ν
(2)
a ν

(2)
p

ν
(1)
a ν

(1)
p

=
1 + 2α̂β2

2

1 + 2α̂β2
1

≃ 1 + 2α̂(β2
2 − β2

1) (8.55)

The moving clocks are read using laser saturation spectroscopy on the strong 2s 3S1(F =
5/2)→ 2p 3P2(F = 7/2) transition at 548 nm. The laboratory frequencies νp and νa of the
parallel and antiparallel laser beams (with respect to the ion beam) must obey Equation
8.54 for resonance, which is indicated by a dip in the fluorescence spectrum. Through
permanent cooling of the ions by a cold electron beam, a Doppler width of 2.5 GHz (FWHM)
is obtained. Then, to overcome this broadening in a saturation-spectroscopy scheme, two
lasers are overlapped parallel and antiparallel with the ion beam, respectively, and excite the
clock transition. The co-propagating laser (a Nd:YAG laser at 532 nm for β1 and an argon-
ion laser at 514 nm for β2) is frequency-locked to a well-known iodine (I2) line, whereas
the counter-propagating light is generated by a tunable dye laser (at 565 nm and 585 nm
for β1 and β2, respectively). The dye laser frequency is referenced to a second, I2-stabilized
dye laser by a tunable frequency-offset lock. The iodine lines are calibrated using an optical
frequency comb. All laser frequencies are known absolutely to 70 kHz during the whole
experiment. Taking all systematic errors into account, the transition frequencies νa and νp
measured for β1 = 0.030 and β2 = 0.064 yield

α̂ = (−4.8± 8.4) · 10−8 (8.56)

which is consistent with special relativity. Later, the same group also placed a limit on
the second-order time dilation parameter (√νaνp/ν0 = 1 + α̂β2 + α̂2β

4): |α̂2| < 1.2 · 10−5

[906].

Space missions with optical clocks in their payloads also represent an enormous potential
to severely assess LLI. Indeed, besides the gravitational redshift term, the frequency differ-
ence between a space-borne clock and a terrestrial one will generally contain a contribution
that depends on the coordinate velocities of the two clocks. In fact, a precise measurement
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FIGURE 8.24
Schematic setup of the Ives-Stilwell experiment with fast optical atomic clocks. (Adapted
from [905].)

of such term is equivalent to address time dilation [768]. Just as an example, let us consider
the SAGAS (Search for Anomalous Gravitation using Atomic Sensors) mission proposal,
which is intended, in essence, to fly highly sensitive atomic sensors (an optical clock and a
cold atom accelerometer) on a Solar System escape trajectory [907]. Now, at the end of the
SAGAS mission, the above time-dilation term is about 4 · 10−9. Thus, with the proposed
clock accuracy of 10−17, it could be measured with a relative uncertainty of approximately
3 · 10−9. This would represent an improvement by approximately a factor of 30 compared
to the best (ground-based) current limit given above (|α̂| ≤ 8.4 · 10−8).

Kennedy-Thorndike experiments

The best Kennedy-Thorndike experiment to date has been performed by continuously com-
paring, over a period of greater than six years (from September 2002 to December 2008),
the resonant frequency (11.932 GHz) of a cryogenic sapphire oscillator (CSO) with the 100-
MHz output of a hydrogen maser [908]. In such a terrestrial experiment, the laboratory
velocity V (t) is modulated daily by the rotation of the Earth about its axis (amplitude
∼ 300 m/s, depending on latitude) and annually by Earth’s orbital motion around the Sun
(amplitude ∼ 30 km/s). Since the resonance frequency of the cavity (the CSO in this case)
is proportional to c(V ), the frequency difference between the frequency standard (the H
maser) and the cavity will be modulated in a corresponding way if Lorentz invariance is
violated. Due to the long-term operation, both sidereal and annual modulations could be
investigated. By properly modelling the boost with respect to the cosmic microwave back-
ground (CMB) frame, these results gave PKT ≡ β̂− α̂−1 = −1.7(4.0) ·10−8 for the sidereal
and −23(10) · 10−8 for the annual term, with a weighted mean of −4.8(3.7) · 10−8.

Michelson-Morley experiments

Concerning the isotropy of c, an improved laboratory test was recently performed by com-
paring the resonance frequencies of two orthogonal optical resonators implemented in a
single block of fused silica and rotated continuously on a precision air bearing turntable
[909]. More in detail, the resonance frequencies of the two crossed optical Fabry-Perot (FP)
resonators are compared by stabilizing (via the PDH technique) two Nd:YAG lasers to these
cavities and taking a beat note measurement (see Figure 8.25). Recalling that the resonance
frequency ν of a linear FP cavity (length L) depends on the speed of light c along its optical
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FIGURE 8.25
Improved Michelson-Morley test. Picture of the crossed high-finesse fused-silica resonators
and basic principle of the experiment. The frequencies of two lasers, each stabilized to one
of two orthogonal cavities, are compared during active rotation of the setup. (Courtesy of
[909].)

axes as given by ν = mc/(2L) (with m an integer number), in order to detect an anisotropy
∆c = cx − cy, a modulation of the beat frequency ∆ν is sought, while continuously ro-
tating the setup. Since the light in the cavities travels in both directions and c refers to
the two-way speed of light, such an isotropy violation indicating modulation would occur
at twice the rotation rate. An analysis of data recorded over the course of one year set a
limit on an anisotropy of the speed of light of ∆c/c ∼ 1 · 10−17 or, equivalently, a limit
PMM ≡ δ̂ − β̂ + 1/2 = (4± 8) · 10−12 on the RMS isotropy parameter. This was a factor of
10 more stringent as compared to the value given in [910], based on the comparison of two
orthogonal CSOs rotating in the lab.

Possessing the inherent advantages of high orbital velocity and strongly reduced cavity
deformation in the microgravity environment, space-borne optical clocks are also expected to
substantially improve the detection sensitivity in both Kennedy-Thorndike and Michelson-
Morley experiments.

8.8.1.3 Tests of LPI

Such principle is effectively assayed in gravitational redshift experiments. Indeed, as a con-
sequence of LPI, a clock proceeds more slowly the closer it is to a massive body. Therefore,
when measuring the fractional frequency shift between two identical clocks located at dif-
ferent heights in a static gravitational field, one should find

Z ≡ ∆ν

ν
=

∆U

c2
(8.57)

where ∆U is the difference in the Newtonian gravitational potential between the clocks.
By contrast, if LPI were not valid, the above equation would modify to

Z ≡ ∆ν

ν
= (1 + α′)

∆U

c2
(8.58)

with the parameter α′ being related to the internal structure of the particular clocks
employed [715].

Before focusing on tests based on atomic clocks, we mention that a precise, all-ground-
based measurement of such gravitational redshift was recently carried out, hinging on a
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re-interpretation of cold-atom interferometry experiments previously used to measure the
acceleration of free fall. This determination provided the value α′ = (7±7)·10−9, compatible
with General Relativity within the standard error [911].

Now, let us come back to atomic clocks. We start by observing that, although being
routinely accounted for in satellite-based navigation systems, the gravitational redshift effect
is exceptionally small in the range of length scales encountered in our daily life. For example,
if two identical clocks are separated vertically by 1 km near the surface of Earth, the
higher clock emits about three more second-ticks than the lower one in a million years.
Nevertheless, due to the astonishing performance of optical atomic clocks, the detection of
relativistic time dilation due to a change in height of 33 cm was recently reported [774]. In
this experiment, two optical clocks based on individual trapped 27Al+ ions, with reported
systematic frequency uncertainties of 8.6 · 10−18 and 2.3 · 10−17, were compared to each
other. Now, for small height changes on the surface of Earth, Equation 8.57 specifies to

∆ν

ν
=
g∆h

c2
(8.59)

where g = 9.80 m/s2 is the local acceleration due to gravity and ∆h denotes the height
distance between the two clocks. Hence, the gravitational shift corresponds to a clock shift
of about 1.1·10−16 per meter of change in height. To observe this shift, the frequencies of the
two Al+ clocks were first compared at the original height difference of ∆h = h(Mg−Al)−
h(Be−Al) = −17 cm, which was measured with a laser level. Then, the optical table of the
Mg-Al clock was elevated, supporting it on platforms that increased the height by 33 cm.
By comparing the two frequencies again, a fractional frequency change of (4.1± 1.6) · 10−16

was found. When interpreted as a measurement of the change in height of the Mg-Al clock,
the result 37± 15 cm well agreed with the known value of 33 cm.

Concerning space-based tests, the most accurate measurement so far dates back to the
Gravity Probe A experiment performed in 1976 [913]. By comparing the frequency of two
hydrogen masers, one on the ground and other on board a spacecraft launched to an altitude
of 10000 km, this set a limit of |α′| < 7 · 10−5. An improvement of more than one order of
magnitude should come from the ACES (Atomic Clock Ensemble in Space) mission which,
planned for launch in 2014, will install a cold-atom cesium clock (PHARAO) and a space
hydrogen maser (SHM) on board the International Space Station (ISS) [914]. By exploiting
the high accuracy of PHARAO (10−16) in conjunction with the gravitational redshift of the
ISS orbit (Z ≃ 4.5·10−11), a precision of few ppm could be reached in the measurement of the
frequency difference with a high-performance ground-based clock (having an accuracy better
than 10−16). Obviously, optical clocks could provide further appreciable gain in precision. In
this frame, one proposed experiment is contained in the Einstein Gravity Explorer (EGE)
mission, which uses a highly elliptical Earth orbit to make an absolute measurement of
the frequency difference between the ground and the satellite clocks when the satellite
is at apogee (hence, in this approach, the dominant contribution to the redshift is from
the earth’s gravitational potential) [915]. This provides a terrestrial gravitational potential
difference of ∆U/c2 ∼ 6.5 · 10−10. For an accuracy of the optical clock of 2 · 10−17, a
measurement of the gravitational redshift with 3 · 10−8 relative uncertainty is expected. In
a complementary manner, an extremely accurate measurement of the solar gravitational
redshift may be accomplished in the SAGAS mission whose escape trajectory exhibits a
gravitational-potential change of ∆U/c2 ∼ 10−8. In particular, a fractional uncertainty of
10−9 should be achieved with an optical clock of 10−17 accuracy [907].
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Null redshift tests

LPI also entails the so-called universality of the gravitational redshift (UGR) according to
which the frequencies νA and νB of two atomic clocks with different structure must undergo
identical redshifts as they move together through a changing gravitational potential U(t)
[768, 908]. In such a null-redshift experiment, if LPI were violated, from Equation 8.58 we
may write

νA(t)− νB(t)
ν

= (α′
A − α′

B)
U(t)

c2
(8.60)

For ground-based clocks, the dominant contribution to changes in U(t) comes from the
annual elliptical orbit of the Earth about the Sun: U(t)/c2 = −[Gms/(ac

2)]e cos(Ω⊕t⊕),
where G is the gravitational constant, ms the mass of the sun, a the semimajor axis,
e the eccentricity of the orbit, Ω⊕ the angular frequency of a sidereal year, and t⊕ the
time elapsed with respect to a recorded Aphelion. This implies variations in U/c2 of 3.3 ·
10−10. Recently, on the basis of a seven-year comparison between cesium-fountain primary
frequency standards and hydrogen masers, the bound |α′

H − α′
Cs| = (0.1 ± 1.6) · 10−6 was

reported [862]. Of course, much more sensitive tests can be performed in space, where larger
values of ∆U/c2 can be exploited (considering again the SAGAS mission, for instance,
the change in U/c2 is approximately 10−8). In conclusion, it is worth mentioning that
null-redshift experiments are inherently more accurate than absolute gravitational-redshift
measurements for a twofold reason: first, there is no demand for a high-precision knowledge
of the gravitational potential along the orbit; second, dependence of the measurement on a
link to ground clocks is avoided.

8.8.2 Test of post-Newtonian gravity

Although a metric theory is generally identified by ten parameters, only two of them, known
as the Eddington-Robertson-Schiff ones, β and γ, are needed to describe an isotropic Uni-
verse in which conservation laws for total momentum and angular momentum hold. Physi-
cally, β is a measure of “nonlinearity” in the superposition law for gravity, whereas γ defines
the extent of space-time curvature produced by unit rest mass. Since β = γ = 1 in general
relativity, precise measurements of such parameters can play a key role in discriminating
between GR and other metric theories of gravity [768, 916].

In the framework of optical clocks, perspectives for improved measurements essentially
concern the γ parameter. Its first determination dates back to the celebrated experiment
by Dyson and co-workers, who measured the deflection of light by the Sun’s gravitational
field from observations made at the total eclipse of May 29, 1919 [917]. Later, more refined
investigations involved evaluating the so-called Shapiro delay, i.e., measuring the time delay
(to and from an interplanetary spacecraft) suffered by radio signals as a consequence of
the Sun’s gravitational field. Such increase ∆t in the time taken for the electromagnetic
radiation to travel the round-trip between the ground antenna and the spacecraft can be
expressed as [768]

∆t = 2(1 + γ)
GMS

c3
ln

(

4r1r2
b2

)

(8.61)

whereMS is the mass of Sun, r1 and r2 are the respective distances of the ground antenna
and the spacecraft from the Sun, and b is the impact parameter (i.e., the perpendicular
distance between the radiation path and the center of the field created by an object that
the radiation is approaching). In practice, the associated fractional frequency shift ∆ν/ν is
rather measured

∆ν

ν
=
d(∆t)

dt
= −4(1 + γ)

GMS

c3b

db

dt
(8.62)
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Now, if r2 ≫ r1, db/dt ≃ 30 km/s (namely the Earth’s orbital velocity) and b ≃ 7 ·108 m
(at grazing incidence), whereupon the maximum size corresponding to this effect is 1.7·10−9.
So far, the most severe constraint, γ = 1+(2.1± 2.3) · 10−5, was placed by Doppler ranging
to the Cassini mission (during solar occultation). Much lower fractional uncertainties (down
to 10−7 in the case of SAGAS) could be reached by space missions making use of optical
atomic clocks.

8.8.3 Tests of the gravitational inverse square law

A complementary exploration scope is represented by the Physics of the short-range (sub-
millimeter) world, where new interactions may arise due to the existence of extra dimen-
sions. This suggestive hypothesis is contained in several modern theories of gravity, ranging
from string to brane world ones [871]. In particular, these predictions have triggered a sig-
nificant trend of experiments to search for possible departures from Newton’s gravitational
inverse-square on ranges from 1 mm to 1 µm [918]. In a recent ground-based torsion-balance
experiment, the gravitational inverse-square law was found to hold down to 55 µm, which
corresponded to constrain the size of a possible extra-dimension to less than 44 µm [919].
The most striking feature of this experiment is that it was able to probe distances less
than the dark-energy length scale λd = 4

√

~c/ud ≃ 85 µm, with energy density ud ≃ 3.8
keV/cm3. This means that laboratory-setting experiments are now competitive with par-
ticle physics research. More recently, a cryogenic microcantilever was used as the force
sensor, its displacement being measured with a fiber interferometer. Such apparatus was
capable of measuring atto-Newton forces between masses separated by distances on the
order of few microns, thus allowing to constrain Yukawa-type deviations from Newtonian
gravity, VY (r) = −GN (m1m2/r)(1 + αe−r/λ), with a 95% confidence exclusion of forces
with |α| > 14000 at λ = 10µm [920].

While in torsion-pendulum-type experiments the role of lasers is possibly relegated to
traditional interferometers and/or autocollimators used to read rotations and translations,
far more important missions will be entrusted to lasers in radically different experiments.
For example, Dimopoulos and Geraci in consultation with Mark Kasevich have proposed
a probe of submicron-range forces using interferometry of Bose-Einstein condensed atoms
[921]. In this approach, two Bose-Einstein condensates (having a well-defined initial relative
phase) would be loaded into two laser-trap regions at different distances from a source mass.
Then, the difference in phase evolution rate of the two BECs would provide a measure of
the different sitting potentials. In other similar proposals, sensitive measurements of forces
at micron scale would be performed by exploiting Bloch oscillations of ultracold atoms in
optical lattices [922, 923].

In conclusion, we mention that theoreticians have also considered the possibility that
non-compact extra dimensions may produce deviations from the inverse-square law (ISL)
at astronomical distances [871]. Currently, however, the gravitational ISL is only assayed
through precise measurements of the Moon’s orbit about the Earth (analysis of Lunar Laser
Ranging data tests the gravitational inverse-square law to 3 ·10−11 of the gravitational field
strength), whereas interplanetary laser ranging could substantially extend the distance-scale
of the test.

8.8.3.1 Detection of gravitational waves

Gravitational waves (GWs), a key prediction of Einstein’s general theory of relativity, are
perturbations (ripples) in the curvature of space-time caused by accelerated masses. The
first (indirect) evidence for their existence, coming from binary pulsar investigation, can
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be traced back to 1974. Such discovery earned the 1993 Nobel Prize in physics to Russell
Hulse and Joseph Taylor. However, although gravitational wave detectors have been built
and constantly improved since the 1960s, no direct observation has been reported so far. A
discussion on GWs is beyond the scope of this book, and only a brief account on detectors
based on laser interferometers will be given in the following inspired by [375] (this same
review represents a good starting point for the reader who wants to know more about GWs).
Just to have an idea of the experimental challenge, the gravitational wave amplitude (or
strain) is usually given as the dimensionless quantity

h =
2δlGW
l

(8.63)

where δlGW is the change in the proper distance l between two space-time events, caused
by the gravitational wave. It is related to the reduced quadrupole moment I of the source
as well as to the distance r from the source

h =
2G

c4
1

r

∂2I

∂t2
(8.64)

where the factor 2G/c4 is precisely responsible for the exceptionally small values of
the gravitational wave amplitude, which can be compensated for solely by compact cosmic
objects with large accelerations and quadrupole moments. But even for violent events, like
a supernova explosion in the Milky Way, the strain h is as low as 10−20. Therefore, if
the amplitude spectral density h̃ =

√

Sh(f)[1/
√

Hz] (that is the square root of the power
spectral density) is used to characterize the performance of a GW detector, then the effective
detection sensitivity can be expressed as h = h̃∆f for a detector with bandwidth ∆f (where
h̃ ≃ const has been assumed).

In the case of a laser-interferometer detector, let us say a Michelson-type one, a GW
changes two perpendicular proper distances (corresponding to the two interferometer arms)
by the same amount δlGW , but with different sign, provided that the orientation of the test
masses (that are the masses of the interferometer mirrors) is optimum. As a result, if two
light beams (of wavenumber k = 2π/λ) travel these distances, a phase shift

δφGW =
4π

λ
δlGW (8.65)

arises between them, which can be detected as a change in the output interference signal.
To give some numbers, for an arm length of l = 1 km and a gravitational wave amplitude
of h = 10−21, the detector response is 2 · δlGW ∼ h · l ∼ 10−18 m. The corresponding phase
shift (δφGW ∼ 6 · 10−12, with a Nd:YAG laser as the light source) is, in practice, monitored
by a nulling method: one keeps the laser light returning from the two arms always 180◦ out
of phase so that the output is dark; then, the error signals (from the automatic control)
applied to the end mirrors in order to maintain the dark fringe are directly proportional to
the exertion by the gravitational wave. In this respect, the advantage of laser interferometers
(compared to resonant-mass detectors) is the broad detection band, from about 10 Hz to 5
kHz. The ultimate sensitivity obviously depends on the arm length and the amount of light
energy stored in the arms. In order to increase the storage time, Fabry-Perot cavities are
usually employed in the interferometer arms. Also, to suppress acoustic disturbances as well
as fluctuations in the local refractive index, the interferometer must be operated in ultra-
high vacuum (at a pressure of ∼ 10−7 Pa). Moreover, a cw laser with great output power
and exceptional frequency and intensity stability is required. Most often, a non-planar ring
oscillator Nd:YAG laser is used, which typically delivers an output power of about 1 W at
a wavelength of 1064 nm. This is amplified in a second laser resonator by injection-locking
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(master-slave scheme) or in a combination of master-oscillator/power-amplifier (MOPA) to
about 10 or 20 W. This light is then coupled into one or two ring resonators (mode cleaners)
to prepare the TEM00 mode.

The present-day generation of large laser interferometric GW detectors (GEO600, LIGO,
TAMA300, Virgo) is close to the targeted sensitivity for detecting GWs from sources in the
Milky Way. In case of failure, however, the second generation of advanced detectors (based
on 100-W power cw lasers, massive mirrors of high-Q materials and cryogenic coolers)
will open new possibilities. Moreover, allowing for larger arm lengths (50000 or 5 million
km), space-based gravitational wave observatories, such as the planned Laser Interferometer
Space Antenna (LISA), will offer access to a range of the gravitational wave frequency
spectrum (the mHz frequency band) that is not accessible on Earth. Consisting of an array
of three spacecraft orbiting the sun, each separated from its neighbor by about 5 million
kilometers, laser beams will be used to measure the minute changes in distance between the
spacecraft induced by passing gravitational waves (for this purpose, the spacecraft have to
be drag-free, a requirement common for many fundamental physics missions). LISA expects
to detect gravitational waves from the merger of massive black holes in the centers of
galaxies or stellar clusters at cosmological distances, and from stellar mass compact objects
as they orbit and fall into massive black holes. Finally, since both emission and propagation
properties of gravitational waves are altered in modified-gravity models, a powerful insight
for these theories may be gained through LISA [871].

8.9 Quantum-enhanced time and frequency measurements

8.9.1 Standard quantum limit in physical measurements

Measurement is a physical process, and the accuracy to which measurements can be per-
formed is governed by the laws of physics. In particular, the behavior of systems at small
scales is governed by the laws of quantum mechanics, which place limits on the accuracy to
which measurements can be performed.

In general, any measurement process is plagued by statistical or systematic errors. The
source of statistical errors can be accidental (for example, resulting from insufficient control
of the probes or the measured system) or fundamental (for example, resulting from Heisen-
berg uncertainty relations). Whatever their origin, one can reduce the effect of statistical
errors by repeating the measurement and averaging the outcomes. This is a consequence
of the central limit theorem, which states that the average of a large number n of inde-
pendent measurements (each having a standard deviation ∆σ) will converge to a Gaussian
distribution with standard deviation ∆σ/

√
n, so that the error on average scales as n−1/2,

where one can generally consider n as the number of times that the system is sampled. The
statistical scaling of errors with n−1/2 is referred to as the standard quantum limit (SQL)
or shot noise in quantum optics, and only assumes at most classical statistical correlations
between different probes, which, on the other hand, are usually uncorrelated in a typical
experiment.

Usual measurement strategies therefore fail to fully exploit the quantum nature of the
system and probes. A more favorable statistical scaling of errors can be achieved if quantum
effects such as entanglement are used to correlate the probes before letting them interact
with the system to be measured, allowing the SQL boundary to be surpassed through non-
classical strategies [924, 925]. Nevertheless, quantum mechanics still sets ultimate limits in
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FIGURE 8.26
Scheme of a Mach-Zehnder-type interferometer for the measurement of an unknown phase
ϕ.

precision through Heisenberg-like uncertainty relations, which are typically referred to as
Heisenberg bounds and scale as n−1. Quantum metrology is a recently born new discipline
that aims to study these bounds and the quantum strategies that allow us to attain them.

We can gain some insight on the limits on the precision of classical measurement strate-
gies by examining the prototype case of a Mach-Zehnder interferometer for the measurement
of an unknown phase. Note that Mach-Zehnder interferometry is formally equivalent to
Ramsey spectroscopy; so the main conclusions derived here are also valid for the prototype
of frequency measurements that we are interested in.

The interferometer acts in the following way: a light beam impinges through the input
port A on a semitransparent mirror (a beam splitter), which divides it into a reflected
and a transmitted part. These two components travel along different paths and then are
recombined by a second beam splitter. Information on the phase difference ϕ between the
two optical paths of the interferometer can be extracted by monitoring the two output beams
at the outputs C and D, typically by measuring their intensity (the photon number). To see
how this works, suppose that a classical coherent beam with N average photons enters the
interferometer through the input A. If the phase difference ϕ is zero, all the photons will
exit the apparatus at output D. On the other hand, if ϕ = π radians, all the photons will
exit at output C. In the intermediate situations, a fraction cos2(ϕ/2) of the photons will
exit at the output D and a fraction sin2(ϕ/2) at the output C. By measuring the intensity
at the two output ports, one can estimate the value of ϕ with a statistical error proportional
to
√
n̄.

Let us see how this is obtained. In a typical setup the intensity difference M between
the two outputs C and D is usually computed

M(ϕ) = IA cos(ϕ) (8.66)

where IA is the input intensity, proportional to the mean number of photons in the field.
If we set the phase close to the point ϕ = π/2, the two output intensities are balanced and
M ≈ 0. This is the point where the curve 8.66 crosses the horizontal axis and its slope is
the steepest, so the sensitivity of the interferometer to phase changes is maximum here. For
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small changes of the phase around this position the change in the output intensity difference
is thus

∆M =
∂M

∂ϕ
∆ϕ = IA sin(ϕ)∆ϕ (8.67)

and
∆ϕ ≈ ∆M

IA
(8.68)

therefore, if one could measure the intensity unbalance M with infinite precision (∆M =
0), also the phase would be perfectly determined, that is ∆ϕ = 0. As far as electromagnetic
waves are concerned, nothing fundamentally prevents ∆M being zero and it would appear
that, if all technical imperfections are eliminated, any minimum phase shift can be detected,
no matter how small it is.

The problem is that the simple classical arguments we used above do not take into
account the effects of quantum mechanics [926]. Specifically they do not take into account
the fact that the intensity of the light field is not a constant, which can be measured with
infinite precision, but that it fluctuates about some average value, and those fluctuations
have their origin in the vacuum fluctuations of the quantized electromagnetic field. Hence
the uncertainty always has some finite value and the consequent phase ϕ will always have
its finite related uncertainty ∆ϕ 6= 0.

Due to the quantized nature of the electromagnetic field and to the Poissonian statistics
of classical coherent light emitted by a laser, the number of photons in a coherent state
having a mean number of photons n̄ has a probability distribution

p(n) =
n̄ne−n̄

n!
(8.69)

with a
√
n̄ width. So, given the field intensity IA proportional to n̄, and the minimum

measurable intensity difference ∆M , corresponding to a signal-to-noise ratio of 1, propor-
tional to

√
n̄, from Equation 8.68, one obtains that the minimum uncertainty on the phase

determination is
∆ϕ ≈ 1√

n̄
(8.70)

Hence quantum mechanics puts a quantitative limit on the uncertainty of the optical
intensity, and that reflects itself in a consequent quantitative uncertainty of the phase mea-
surement. This is a consequence of the fact that photons in a classical coherent beam are
uncorrelated and do not present any cooperative behavior. In fact, the same 1/

√
n depen-

dence can be obtained if, instead of using a classical beam with n average photons, one uses
n separate single-photon beams. In this case, cos2(ϕ/2) is the probability of the photon
exiting at output C, while sin2(ϕ/2) is the probability of the photon exiting at output D.

Anyway, by looking at Equation 8.70, it would seem that any desired sensitivity ∆ϕ could
be attained by simply increasing the laser power and hence n̄. However, since ∆ϕ scales only
slowly as 1/

√
n̄, the laser power rapidly becomes so large that the power fluctuations at the

interferometer’s mirrors introduce additional noise terms that eventually limit the device’s
overall sensitivity. This is the common situation in the case of gravitational wave detectors
based on interferometric setups [927], where this kind of quantum noise is currently the
main limit to the achievable sensitivity.

8.9.2 Using nonclassical light states for quantum-enhanced
measurements

The 1/
√
n bound on the precision (n being the number of photons used, either one by

one or as the average photon number in a coherent beam) is referred to as the shot noise
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or standard quantum limit. The term shot noise comes from the notion that the photon-
number fluctuations arise from the scatter in arrival times of the photons at the beam
splitter, much like buckshot from a shotgun ricocheting off a metal plate. However, the shot
noise limit is not fundamental and is only a consequence of the employed classical detection
strategy, where neither the state preparation nor the readout takes advantage of quantum
correlations.

In quantum mechanics, the outcomes xj of the measurements of a physical quantity x
are statistical variables; that is, they are randomly distributed according to a probability
determined by the state of the system. The Heisenberg uncertainty relation states that when
simultaneously measuring incompatible observables such as position x and momentum p,
the product of the spreads is lower-bounded: ∆x∆p ≥ ~/2, where ~ is Planck’s constant.
The same is true when measuring one of the observables (say x) on a set of particles prepared
with a spread ∆p on the other observable. In the general case, when we are measuring two
observables A and B the lower bound is given by the expectation value of the commutator
between the quantum operators associated to A and B.

One can gain an intuitive picture of the situation of measurement in quantum mechanics
by looking at the representation of quantum and classical states of the field in the phase
space. In Figure 8.27 the Wigner function (a so-called quasi-probability distribution that
completely describes the state and allows one to extract the probability distribution of
any observable) of a coherent state is shown. Differently from what one might guess for
a classical state of an harmonic oscillator, where the position and momentum are always
perfectly measurable (at least in principle) and the corresponding Wigner function should
look like a Dirac δ-function in phase space, a coherent state has finite and equal spreads
in position and momentum: ∆x = ∆p. A coherent state is also a minimum uncertainty
state, in the sense that the combined spread of position and momentum is the minimum
achievable according to the Heisenberg relation.

In Figure 8.27, two so-called squeezed states are also shown; they have reduced fluctua-
tions in one of the two incompatible observables at the expense of increased fluctuations in
the other. The Heisenberg relation only states that the product ∆x∆p must be larger than
~/2; therefore these states are also minimum uncertainty states that are perfectly allowed
by quantum mechanics.

When dealing with the quantum description of electromagnetic fields, that is in quan-
tum optics, the position and momentum observables x and p are replaced by the in-phase
and out-of-phase amplitudes of the field, usually called the "field quadratures." It is then
easy to see that a coherent state, the kind of light state normally generated by a well-
above-threshold laser, has characteristic uncertainties both in its intensity and phase, ap-
proximately indicated by the spreads of the Wigner distribution in the radial and tangential
directions of Figure 8.28. The Heisenberg uncertainty principle then tells us that both phase
and intensity cannot be measured simultaneously with infinite precision. In particular, the
Heisenberg relation can be cast in this case in the form of a number-phase uncertainty as

∆ϕ∆n ≥ 1 (8.71)

For a coherent light state, where the photon number distribution is Poissonian with a
spread ∆n =

√
n̄, one easily obtains Equation 8.70 from here.

However, as shown above, squeezed states are also allowed, and in particular the so-
called phase-squeezed states, that can decrease the uncertainty in the phase determination
at the expense of a larger spread in the intensity. Rather intuitively, the maximum spread
that one can obtain in the photon number distribution (i.e., in the laser field intensity) must
be of the order of the mean photon number n̄ itself, which can be obtained by squeezing
the uncertainty ellipse of Figure 8.28 along the radial direction all the way to the origin
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FIGURE 8.27
Wigner function quasi-probability phase-space distributions and contour plots for a coherent
state |α〉, having equal uncertainties in x and p, and two squeezed states, with reduced
fluctuations in either of the two conjugate observables.

of the phase space. In these conditions one can reach ∆n = n̄ and, using 8.71, recover the
Heisenberg limit for phase measurements

∆ϕ =
1

n̄
(8.72)

It is interesting to note that also in the case of a vacuum state, where the average field
amplitude is zero, quantum fluctuations are nonetheless present, as indicated by its Wigner
function, which has the same Gaussian shape and width of a coherent state but is centered
at the origin of the quadrature phase space. In an accurate analysis of the limits of phase
sensitivity for an interferometer fed with coherent light, Caves [926] found that it is actually
the quantum fluctuations associated to the vacuum field entering the unused interferometer
port that are responsible for the standard quantum limit proportional to 1/

√
n. No matter

what state of the photon field injected in port A, so long as nothing (quantum vacuum) is
put in port B, one will always recover the standard quantum limit. Note that this effect can
be understood also by invoking the partition noise in the distribution of photons between
the output modes operated by the first beam splitter.

In his 1981 paper [926], Caves also showed a natural solution to this problem, that was
to plug the unused port B with squeezed light (squeezed vacuum to be exact). In that
case, with coherent laser light in port A as before and in the limit of infinite squeezing,
the phase sensitivity can asymptotically approach the Heisenberg limit 1/n for large mean
photon numbers, proportional to the optical input power. This is a great achievement in
that the total laser power required for a given amount of phase sensitivity is greatly reduced.
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FIGURE 8.28
Phase-space diagram showing quantum fluctuations of different states of the electromag-
netic field. A “classical” field is represented as a point in phase-space, with perfectly defined
intensity and phase, and no fluctuations. A coherent state, the closest quantum approxima-
tion to a classical field, is a disk, with equal fluctuations in intensity and phase. Also shown
is a particular squeezed state, a "phase-squeezed" one, showing decreased fluctuations along
the angular direction at the expense of increased fluctuations in the radial (corresponding
to the intensity) coordinate. Such a phase-squeezed state can be used to beat the shot-noise
limit in a phase measurement.

For a typical milliwatt laser power in an optical interferometer gravity wave detector, this
could amount to about an eight order-of-magnitude increase in phase-shift sensitivity of the
interferometer from the quadratic increase in the power law alone.

Using squeezed states is not the only possible way to beat the standard quantum limit
in measurements. Instead of such an "analog" approach, one can follow other routes that
exploit discrete photon number and path-entangled optical states, where the number of
photons is strictly fixed. The first use of states with a well-defined number of photons, or
Fock states, for improving interferometric phase sensitivity was proposed in 1986 by Yurke
et al. [928] and Yuen [929]. They showed that phase sensitivity can reach the Heisenberg
1/n limit for large n if suitably correlated states are used at the interferometer inputs. A
typical state of this kind has the form:

|Ψ〉 = 1√
2
(|n+〉A |n−〉B + |n−〉A |n+〉B) (8.73)

where n± = (n ± 1)/2 and the subscripts A and B label the two input modes. This is
a highly nonclassical state, where the correlations between the inputs at A and B cannot
be described by a local statistical model. It is therefore called a path-entangled state, in
the sense that the state at each single input is random, i.e., it can contain (n + 1)/2 or
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(n− 1)/2 photons with equal probabilities, but the global state at the two inputs is strictly
correlated. If input mode A contains (n + 1)/2 photons, then input mode B necessarily
contains (n− 1)/2, and vice versa.

In 1993, Holland and Burnett [930] proposed the use of so-called dual-Fock states, where
the number of photons at each input mode of the interferometer is exactly the same, such
that the input quantum state can be written as

|Ψ〉 = |n/2〉A |n/2〉B (8.74)

In this case, although the final measurement strategy at the interferometer outputs
turned out to be more complicated than simply taking the photocount difference, the same
improvement over the standard quantum limit was proved possible.

Although it was demonstrated that these and other similar states [931] can reach the
Heisenberg 1/n scaling for sensitivity in the limit of Fock states with large number of
photons [932], it was soon found that another kind of heavily path-entangled state could
offer the same advantage for all values of n. The so-called N00N state was first discussed
by Sanders in 1989 [933], but it was later rediscovered in 2000 in the context of quantum
imaging as a tool to circumvent the Rayleigh diffraction limit [934, 935]. The idea is that
one still uses a fixed number n of photons in the two arms of the interferometer (after the
first beam splitter) but arranged in such a way that they are either all in the upper or
all in the lower arm, but one cannot tell - not even in principle - which is which. Naming
the mode of the upper (lower) interferometer arm as A (B), the state of all up and none
down is written |all up〉 = |n〉A |0〉B, and the state of all down and none up is similarly
|all down〉 = |0〉A |n〉B. A quantum superposition of these two extreme situations can thus
be described as

|N00N〉 = 1√
2
(|all up〉+ |all down〉) = 1√

2
(|n〉A |0〉B + |0〉A |n〉B) (8.75)

hence the name, N00N state. The reason why the N00N states are performing so well
compared to coherent or even Fock states resides in the particular way they respond to
phase shifts. When a coherent state passes through a phase shifter ϕ, such as depicted in
Figure 8.26, it picks up a phase of ϕ. This is a property of a classical monochromatic light
beam that coherent states inherit quantum mechanically. However, the behavior of Fock
states in a phase shifter is radically different. When a monochromatic beam of number
states passes through a phase shifter, the phase shift is directly proportional to n, the
number of photons. The evolution for a state passing through a phase shifter ϕ can thus be
shown to have the following two different effects on coherent versus number states:

|α〉 →
∣

∣eiϕα
〉

(8.76)

|n〉 → einϕ |n〉 (8.77)

Notice that the phase shift for the coherent state is independent of n (if n is the average
number of photons), but that there is an n dependence in the exponential for the number
state. The number state then evolves in phase n times more rapidly than the coherent state.
After the phase shifter, the N00N state can be thus shown to evolve into

|n〉 |0〉+ |0〉 |n〉 → einϕ(|n〉 |0〉+ |0〉 |n〉) (8.78)

which is the origin of the quantum improvement in phase sensitivity. If one now uses an
n-photon detector, the obtained signal at the interferometer output is of the form

MN00N(ϕ) = IA cos(nϕ) (8.79)
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and it is simple to see that the N00N signal oscillates n times faster than that for a
coherent state of the same wavelength and same mean number of photons. The distance
between peaks in the interference fringes becomes n times smaller, which allows one to beat
the Rayleigh diffraction limit by a factor of n in quantum lithographic schemes; moreover,
the slope of zero crossing also gets larger by the same amount, which implies an increase of
phase sensitivity. It turns out that, combined with the different detection scheme necessary
for N00N states, this amounts to a net minimum uncertainty for the phase

∆ϕN00N =
1

n
(8.80)

which is precisely the Heisenberg limit. Beating of the standard quantum limit in interfer-
ometric schemes by the use of N00N states has been proposed and demonstrated experimen-
tally by several groups but, while generating N00N states with n = 1 or 2 is straightforward,
moving to larger n, or high-N00N states, is very difficult [936, 937, 938, 939, 940, 941, 942].
Besides the technical issues involved in their production, this kind of quantum states is also
extremely fragile. The loss of a single photon, or its escape to the environment, is sufficient
to reveal which of the two arms of the interferometer is populated and thus destroy the
superposition state.

8.9.3 Applications to time and frequency measurements

8.9.3.1 Quantum logic spectroscopy

As already extensively explained, in order to realize atomic clocks with better and better
accuracy and stability performance, four key requirements are as follows: (i) selection of
an atom with a good reference or spectroscopy transition, which is suitably narrow and
relatively immune to environmental perturbations; (ii) cooling to minimize velocity-induced
frequency shifts; (iii) reliable initial state preparation; and (iv) efficient state detection.
Before the demonstration of quantum logic spectroscopy, to satisfy these requirements, an
atom was chosen that simultaneously had a good spectroscopy transition and other, more
strongly allowed transitions to accomplish requirements (ii) to (iv). There are, however,
excellent candidate ions not yet used for optical frequency standards since their transitions
for cooling the ion and detecting the excitation by the electron shelving technique are in the
deep ultraviolet. A method has been devised that allows one to overcome these limitations
by using two ions in the same trap where besides the clock or spectroscopy ion there is
a second one, called the logic ion, which is used for cooling the clock ion and detecting
transitions in the clock ion [770].

As an example, let us consider two ions in a linear Paul trap. The Coulomb interaction
between the ions couples their motional modes. We are interested in one of the resulting
axial normal modes with excitation quantum number m. This mode can be cooled to the
ground state (m ≃ 0) by use of Raman sideband cooling on the logic ion. We consider only
two internal levels of the spectroscopy (S) and logic (L) ion, which we denote | ↓〉S,L and
| ↑〉S,L. Figure 8.29 illustrates the coherent transfer process:

1. Initially, we assume both ions to be in the internal ground state (frame a)

Ψ0 = |↓〉S |↓〉L |0〉m (8.81)

2. Then, a laser pulse is applied to interrogate the transition of interest in the
spectroscopy ion, thus creating a superposition of ground and excited state with
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state amplitudes α and β (frame b)

Ψ0 7−→ Ψ1 = (α |↓〉S + β |↑〉S) |↓〉L |0〉m
= (α |↓〉S |0〉m + β |↑〉S |0〉m) |↓〉L (8.82)

with |α|2 + |β|2 = 1.

3. The internal state superposition is coherently mapped to a motional superposition
by applying a laser pulse of appropriate length and frequency on the spectroscopy
ion: this so-called red sideband (RSB) pulse transfers the excited state to the
ground state while adding an excitation to the transfer mode, which is shared by
both ions (frame c)

Ψ1 7−→ Ψ2 = (α |↓〉S |0〉m + β |↓〉S |1〉m) |↓〉L
= |↓〉S |↓〉L (α |0〉m + β |1〉m) (8.83)

Note that |↓〉S |0〉m component of the wave function is unaffected by this opera-
tion, because the state |↑〉 |−1〉m does not exist.

4. This mapping process can be reversed on the logic ion by applying laser light
resonant to a red sideband transition in the logic ion (frame d).

Overall, the electronic superposition created in the spectroscopy ion has then been trans-
ferred to an electronic superposition in the logic ion, where it can be efficiently detected via
the usual electron shelving technique.

This quantum-logic spectroscopy was first demonstrated by using 9Be+ as the logic ion
and 27Al+ as the spectroscopy or clock ion (Figure 8.30).

8.9.3.2 Time and frequency quantum metrology

The general idea that one can extract from the above discussion is that one can surpass
classical measurement limits and approach the more fundamental quantum boundaries by
using its resources in a clever way. Typically, using a highly correlated input state and a
collective measurement strategy does the trick (see Figure 8.31).
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FIGURE 8.29
Spectroscopy and transfer scheme for spectroscopy (S) and logic (L) ions sharing a common
normal mode of motion, the transfer mode m, with excitation n (|n〉m denotes the corre-
sponding harmonic oscillator state). (A) Initialization to the ground internal and transfer-
mode states. (B) Interrogation of the spectroscopy transition. (C) Coherent transfer of the
internal superposition state of the spectroscopy ion into a motional superposition state by
use of an RSB π pulse on the spectroscopy ion. (D) Coherent transfer of the motional su-
perposition state into an internal superposition state of the logic ion by use of an RSB π
pulse on the logic ion. (Adapted from [770].)
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Partial 9Be+ and 27Al+ energy level diagrams (not to scale). Shown are the relevant tran-
sitions for Doppler and Raman cooling on the 9Be+ ion, the spectroscopy transition, and
the hard-to-reach Doppler cooling transition at 167 nm on the 27Al+ ion. (Adapted from
[770].)

Consider for example Ramsey interferometry, which is a strict counterpart of what is
described above for a Mach-Zehnder interferometer. The aim is to measure an unknown
relative phase ϕ picked up by two orthogonal states (like the ground and an excited state,
|g〉 and |e〉) of an atomic probing system. In a conventional setup, probe preparation consists
of producing each atom in the superposition |ψin〉 = 1/

√
2(|g〉+|e〉), which yields the output

state |ψϕ〉 = 1/
√
2(|g〉+eiϕ |e〉) after the probing stage. Readout consists of checking whether

|ψϕ〉 is still in the initial state |ψin〉, which occurs with probability p = | 〈ψin| |ψϕ〉 |2 =
(1 − cosϕ)/2. Thus, by taking the ratio between the number of successes and the total
number of readouts, we can recover the phase ϕ. If we repeat this measurement n times,
the associated error on our phase estimation can then be shown to scale as 1/

√
n. The

quantum-enhanced version of the Ramsey techniques implies preparing the n atoms in a
highly entangled state where they are either all excited or all in the ground state, similarly
to the situation of Equation 8.78. If the proper detection scheme is adopted, the phase
sensitivity can thus scale much more favorably with the number of used atoms [943, 944].

The Ramsey scheme is very relevant in the accurate time or frequency determination
based on atomic transitions, that is, in the context of atomic clocks. To measure time or
frequency accurately, one can start with n cold ions or atoms in the ground state and apply
an electromagnetic pulse that creates independently in each particle an equally weighted
superposition 1/

√
2(|g〉 + |e〉) of the ground and of an excited state. A subsequent free

evolution of the particles for a time t introduces a phase factor between the two states that
can be measured at the end of the interval by applying a second, identical electromagnetic
pulse and measuring the probability that the final state is |g〉 or |e〉. This is just what
is explained above, but here the phase factor is time-dependent and is equal to ϕ = ωt,
where ω is the frequency of the transition |g〉 ↔ |e〉. Hence, the same analysis applies:
From the n independent atoms or ions we can recover the pursued frequency ω with an
error ∆ω = 1/(

√
nt), if the interaction time t is well known. Conversely, one can use a

reproducible atomic frequency standard to accurately measure time intervals.
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FIGURE 8.31
Classical and quantum measurement strategy.

Instead of acting independently on each particle, one can also start from the entangled
states introduced above. In this case, the error in the determination of the frequency is
∆ω = 1/(nt), with an enhancement of the square root of the number n of entangled ions
over the previous strategy. It boils down to the fact that the phase or frequency estimation
is based on a state that, after the first interaction with the field, is a coherent superposition
of two energy eigenstates whose energies differ by more than ~ω. For such an entangled
state of n particles, the eigenstate |all excited〉 and |all ground〉 provide the largest energy
difference, with an accumulated phase difference over the free precession period which is n
times greater than that for a single atom or ion.

Using entangled ensembles of atoms or ions the precision of atomic clocks can be in-
creased significantly (see [945, 946, 947, 948, 949, 950, 951, 952, 953, 954] for some recent
results). Further applications include highly sensitive atom interferometers for the detection
of extremely weak forces and the realization of a quantum gate, a key element in future
quantum computers.

8.9.3.3 Quantum positioning and clock synchronization

To find out the position of an object, one can measure the time it takes for some light signals
to travel from that object to some known reference points. The best classical strategy is to
measure the travel times of the single photons in the beam and to calculate their average.
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This allows one to determine the travel time with an error proportional to 1/(∆ω
√
n),

where ∆ω is the signal bandwidth. The minimum time duration 1/∆ω for each photon
thus determines an equal spread in their time of arrival. The accuracy of the travel time
measurements thus depends on the spectral distribution of the employed signal.

Similarly to the discussion presented above, one can imagine that the use of some form of
quantum correlation may improve the precision also in this kind of measurement [955]. One
of the proposed tricks is therefore that of exchanging the series of n single-photon pulses
(or, correspondingly, a coherent pulse with a n mean number of photons) of bandwidth ∆ω,
with a single frequency-entangled state whose frequency spread scales as n∆ω. This result
can also be seen by noting that the entanglement in frequency translates into the bunching
of the times of arrival of the different photons; although the individual times of arrival are
random, their average is highly peaked. Similar frequency-entangled quantum states can
be readily generated in the simple case n = 2 by means of spontaneous parametric down-
conversion pumped by a continuous wave laser source. In this case, the emitted frequencies
of the idler and signal photons are individually random but are strictly anti-correlated,
because, for energy conservation, they must sum up to the frequency of the pump photons.
Therefore, even if the arrival times of the two individual photons to distant locations have
a large spread, their difference is perfectly defined and can be used for precise timing [956].

The problem of localization is intimately connected with the problem of synchronizing
distant clocks [957, 958, 959]. In fact, by measuring the time it takes for a signal to travel
to known locations, it is possible to synchronize clocks at these locations. This immediately
tells us that the above quantum protocols can give a quantum improvement in the precision
of synchronization of distant clocks.

Recent works have proposed new ways of using quantum resources to improve accurate
space-time positioning. Lamine et al. [960] first derived the standard quantum limit for the
precise measurement of the delay between two light pulses. This is the fundamental step for
both ranging and clock synchronization and is based on comparing the arrival time of pulses
emitted from a local and a remote clock. They found that, by combining both time-of-flight
information derived from the pulse envelopes and interferometric information derived from
the relative pulse phases, a minimum classical uncertainty in timing can be expressed as:

∆tSQL =
1

2
√
n
√

ω2
0 +∆ω2

(8.84)

where n is the total number of photons of central frequency ω0 and frequency spread ∆ω
used in the experiment during the detection time. Although reaching this standard quantum
limit (of the order of tens of yoctoseconds, or 10−21 - 10−24 s) is already far from current
technological capabilities, the authors also proposed the use of appropriately squeezed light
states for going even further.

Finally, quantum effects can also be useful in avoiding the detrimental effects of dis-
persion [961]. The speed of light in dispersive media has a frequency dependence, so that
narrow signals (which are constituted by many frequencies) tend to spread out during their
travel. This effect ruins the sharp timing signals transmitted. Using the nonlocal correla-
tions of entangled signals, we can engineer frequency-entangled pulses that are not affected
by dispersion and that allow clock synchronization [962].
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8.10 Environmental metrology

We would like to close this chapter with a topic which, although apparently different, is,
in fact, intimately linked to the matter of frequency metrology, precisely in the sense dis-
cussed so far. This subject goes under the name of environmental metrology and includes,
in the widest meaning, climate changes modelling, pollution control, biomedical applica-
tions, environmental-friendly engines, geophysical survey, and homeland security. Indeed,
the outstanding precision and reliability levels characterizing today’s laser-based systems,
mainly achieved in fundamental physical research, are engendering very sophisticated mea-
surements in such less traditional disciplines too, meeting the rising public concern towards
quality-of-life issues. In the following, we select a few but representative applications of
precise laser-based techniques to environmental monitoring.

8.10.1 Geophysical survey of volcanic areas

Needless to emphasize, accurate and time-resolved information on partial pressures of gases
is a key for studies in many different environments [963, 336, 964, 965, 966]. Over the last
few decades, growing attention has been devoted to infrared laser methodologies for molec-
ular gas analysis. Whereas the NIR spectral region took advantage from the long run of
telecom-oriented semiconductor manufacturing technologies, with huge fall outs in terms of
combined low cost/high-tech lasers and components for spectroscopic detection, the big gap
in detection sensitivity, as compared to mid-/far-IR spectral regions, suggested to move to
longer wavelengths. Indeed, NIR spectroscopy can, in general, only interrogate molecules
exciting forbidden vibrational overtones. To fix the ideas, a key molecule like carbon diox-
ide (e.g., the most abundant 12C16O2) has a transition linestrength about five orders of
magnitude stronger in the fundamental ro-vibrational band around 4.3 micron wavelength,
as compared to the overtone band in the telecom window, around 1.57 microns. In prin-
ciple, this means that a comparably lower number of molecules can be detected if moving
from the telecom window. Moreover, Doppler-limited molecular linewidths scale linearly
with frequency. This means that, when detecting gases at low pressure (i.e., causing no
appreciable collisional broadening), the spectral resolution is lower when exciting overtone
rather than fundamental bands. Although interrogation of fundamental bands is very ad-
vantageous, extension to this spectral range of well-established spectroscopic techniques
used in the visible/NIR has been, until recently, a formidable challenge. A critical point has
been for a long time the lack of widely tunable mid-IR sources and optical components of
sufficiently high quality. Experimental demonstration of quasi-phase-matched (QPM) pe-
riodically poled non-linear crystals [967, 968] paved the way to highly efficient coherent
sources based on frequency mixing, like optical parametric oscillators (OPOs) [969] and
difference-frequency generators (DFGs) [970]. Another key event was quantum-well engi-
neering of semiconductor structures and the subsequent successful construction of quantum
cascade lasers (QCLs) [264]. By virtue of these achievements, high-performance sensors in-
corporating laser sources are under continuous development in laboratories worldwide. For
environmental studies, most efforts have been focused on detection of trace gases, such as
NO, NO2, HCl, CO, NH3, C2H2, CH4 as well as on quantitative chemical analysis of sam-
ples containing H2O, CO2, O2, and others. A number of high sensitivity optical techniques,
relying on long-path schemes or aiming at achieving shot-noise limited sensitivity, have been
developed (see Chapter 5). Semiconductor diode lasers still offer unique features to develop
reliable and compact spectrometers, at a reasonable cost. Also, they retain several advan-
tages in terms of tunability, spectral selectivity, and power consumption. In addition, they
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can be easily coupled into low-loss optical fibers providing, e.g., a unique tool for developing
fiber-based nets with the potential to monitor large areas.

A survey of active volcanic areas is a very demanding task for any optical instrumenta-
tion, due to the extreme conditions (high humidity, large temperature variations, fumigation
with chemically aggressive gases, presence of dust and small rocks) that are generally found
in these environments. However, the analysis of volcanic gases is widely recognized as a
powerful tool to validate geological models relevant to reliable predictions of volcanic events
[971, 972]. Indeed, the chemical composition of certain gases in volcanic effluxes may pro-
vide direct information on deep magmatic processes and hydrothermal circulation [973]. In
particular, the absolute concentration and the isotopic content of some molecular species
gives an indication of sources and sinks of volcanic gases, whereas its time variation may be
a consequence of changes in the status of a volcano. These changes can be due to chemical
reactions of magmatic gases with rocks or fluids occurring along their path to the sur-
face. Such strong motivations together with the difficulty of insitu monitoring led to the
development of many different techniques for the remote sensing of gases emitted from vol-
canoes. They include ground-based and shipborne spectrometers using incoherent sources
[974, 975, 972, 976] or powerful lasers [977] to record molecular spectra, from which retrieval
of gas concentration and/or gas fluxes is possible. These instruments have mostly been used
in campaigns, due to the difficulty of continuous gas monitoring of volcanic areas. The first
prototypes of laser-based instruments for long-standing, ground-based gas measurements
were tested around the end of the ’90s in the easier telecom window [978]. In that case,
optical fibers could be used to take all the relevant instrumentation far enough from the
measurement points. One of the major problems, anyway, was represented by the geometry
of the gas-laser interaction region.

Figure 8.32 shows the setup used in the first demonstration of monitoring of volcanic
gases with a distributed feedback (DFB) diode laser-based spectrometer [979]. The latter
was tested at Solfatara, a volcano near Naples, Italy. There, H2O (about 80%-90%) and
CO2 (about 10%-20%) account for most of the gas emission. Indeed, two lasers were used,
each tuned, respectively, on the 1.393 µm (0,0,0)-(1,0,1) vibro-rotational combination band
of H2O and the 1.578 micron (0,0,0)-(3,0,1) band of CO2. After coupling to a diplexer, both
lasers were launched into a 30-m long single-mode fiber, ending on the fumarolic flow. There,
the collimated radiation was passed through a specially designed glass cell, relaunched into
a fiber, and then coupled out for detection, using again a diplexer.

A major difficulty associated with such an optical scheme was the high content of sulfur
and water vapor in the emitted flows. As soon as the temperature of the fumarolic flow
decreased, sulfur and water vapor condensation took place, which coated/flooded the cell,
eventually blocking any transmitted laser radiation. This problem was solved by a clever
design of the interaction region (see Figure 8.32), aimed to avoid contact of the ejected
volcanic fluid with the atmosphere and to minimize its temperature variations, in order
to rule out any condensation process before interaction with laser light. Concerning data
processing, an ad hoc-developed method for simultaneous and accurate determination of
partial pressures of several gases in direct absorption spectroscopic measurements (without
using any reference cell) was adopted [980].

From this quick description, it emerges that a setup like this could evolve towards fiber-
based nets, to be deployed for monitoring large areas. However, despite their really great
potential, such devices still need a deep engineering work to become really competitive with
simpler systems (e.g., based on incoherent sources) and be suitable for long-term outdoor
operation by non-expert end users. Although for the toughest environment-related difficul-
ties proper solutions were found with this dual-wavelength spectrometer, the measurement
accuracy for carbon dioxide concentration was quite unsatisfactory, especially if compared
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FIGURE 8.32
Sketch of the portable spectrometer. L1 and L2 represent the 1.393 µm and 1.578 µm DFB
lasers. FC stands for input/output fiber port, DM for dichroic mirror, SMF for single mode
fiber, MMF for multimode fiber, RC for reference cell, and PD for photodetector.

FIGURE 8.33
Sketch of the two glass cells in which the fumarolic gas flowed.

to the few-percent overall uncertainty achieved for water vapor. The two reasons for that
were the much lower concentration of CO2, as compared to water vapor, and the low ab-
sorption intensity of this overtone band in the telecom window. Therefore, a setup still using
DFB diode lasers and optical fibers, but emitting at longer wavelengths (around 2 micron)
to excite a lower order CO2 overtone, was first built and tested in the lab [981]. Then it
was field-deployed, for several measurement campaigns in Vulcano island (Aeolian islands,
Sicily), one of the most active volcanoes of the Mediterranean area. Such spectrometer was
devoted to the simultaneous monitoring of CO2 and H2O concentrations as well as to flux
measurements of carbon dioxide diffusely released from soil, using an accumulation chamber
configuration (indeed, significant soil-released CO2 fluxes may represent a serious threat for
the health of people and animals). These pioneering results may pave the way to future
deployment of other 2-µm-wavelength sources, solid-state or fiber based, emitting a single
(tunable) frequency or even octave-spanning combs.
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8.10.2 Detection of very rare isotopes

Some of the aforementioned challenges in the field of environmental monitoring require quan-
titative measurements of extremely small amounts of molecular gases. Presently, molecular
concentration measurements are limited to the parts-per-trillion (ppt) range, even when
the strongest rovibrational molecular absorptions in the fingerprint region are targeted.
This limitation has prevented optical detection of rare-isotope-containing molecules, due to
the very low abundance of such species. Among them, concentration measurements down
to parts per billion of ubiquitous long-lived radioisotopes are relevant in a broad range
of scientific and technological fields. In particular, nature marks every living being with a
specific isotope, 14C, which has acquired great importance after the discovery of the radio-
carbon dating method in the early 1950s. Radiocarbon, produced in the upper atmosphere
by secondary cosmic rays, has a natural abundance 14C/12C≃ 1.2 · 10−12. Because of its
historical-scale radioactive half-life (about 5730 years), it is an ideal marker for age assess-
ment of samples of biological origin. At present, high energy accelerator mass spectrometry
(AMS), with 14C/12C sensitivity hitting 10−15, represents the only method capable of dat-
ing very old samples (about 50000 years), at the price of big size, cost, and complexity
of the instrumentation. Apart from dating, radiocarbon detection has become an essential
tool in modern science, such as biomedicine [982] or environmental and earth sciences [983].
AMS technology is also used for these applications but with more relaxed sensitivity re-
quirements. In this frame, radiocarbon optical detection well below natural abundance in
CO2 was recently reported, by exploiting saturated-absorption cavity ring-down (SCAR)
spectroscopy (discussed in Chapter 5) in combination with an OFCS-referenced, high-power
DFG source emitting at 4.5 µm [420] (see Figure 8.34 for a sketch of the experimental ap-
paratus). In this work, the elusive 14C16O2 molecule was detected at concentrations below
43 parts per quadrillion (ppq). This represents the lowest pressure ever detected for a gas
of simple molecules and corresponds to a minimum detectable pressure (for radiocarbon
dioxide) of 5 · 10−16 bar.

For applications not requiring the ultimate AMS sensitivity, SCAR spectroscopy can
be already superior to AMS, due to the wider dynamic range for the 14C/12C ratio (im-
portant for biomedical applications) or for the potential future portability of an infrared
spectroscopy setup, essential for environmental applications. Another important difference
of a SCAR setup, as compared to AMS, is that, in mass spectrometry, an ion from a sample
is counted only once, because its measurement neutralizes it, while a spectroscopic mea-
surement does not destroy the sample, allowing it to be repeatedly analyzed.

8.10.3 Stratospheric survey with tunable diode laser spectrometers

The understanding and modelling of stratospheric dynamics and chemistry are vital aspects
for the knowledge and prediction of climate changes, so that there has been an increased
interest in the possibility to realize analyzers for in situ monitoring of the atmosphere.
Since the last decades of the 20th century an increasing number of instruments have been
employed for trace gas measurements in the stratosphere and in the troposphere, using
both aircraft and balloons as platform. This kind of instrumentation must fulfill several
and very demanding requirements. First of all, a high selectivity is required to identify
a single molecule in a probe of air where a large number of different species is present:
the concentration measurement of the molecule of interest must be neither positively nor
negatively influenced by the other species. Also, the instrument must allow concentration
measurements from the ground to the stratosphere (namely from zero to tens of km) where
a large range of values is possible (from the ppm to the ppb or ppt level, depending on the
species). Then, a high precision is required to identify small variations in the concentration
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FIGURE 8.34
Schematics of the experimental setup. The IR radiation, tunable between 3850 and 4540
nm, is delivered by a DFG process inside a Ti:Sapphire laser cavity. The Ti:Sapphire laser,
optically injected by an external-cavity diode laser (ECDL), and a Nd:YAG laser are mixed
in a nonlinear crystal. Both lasers, and hence the IR radiation, are frequency-locked to
the OFCS. After switching off-resonance the IR radiation by an acousto-optic modulator
(AOM), the light transmitted by a Fabry-Perot cavity is detected by an InSb photodiode
(PD). The signal is acquired by an analog-to-digital converter (ADC).

of trace gases measured at the same altitude, connected with air transport mechanisms in
the atmosphere. Moreover, a fast time response is needed to detect fine structures due to air
transport and mixing from the stratosphere to the troposphere and vice versa. For instance,
if the measurement is performed from an aircraft having a cruise speed of hundreds of m/s,
a time response of a few seconds is necessary to observe structures of few kilometers. Even
faster time responses (less than one second) are necessary to perform flux measurements. In
addition, the need to work aboard an aircraft or a balloon under harsh ambient conditions
(presence of vibrations, electromagnetic interference, large excursion of pressure and tem-
perature between ground and stratosphere, humidity) and without an operator leads to the
requirement of robustness and totally unattended operation. Finally, the instrument must
meet the criteria of compactness, lightness, and portability, related to the platform where
it will be mounted.

Having the necessary characteristics to fulfill the challenging requirements listed above,
tunable diode lasers (TDLs) represent ideal sources to realize instruments for in situ trace
gas measurements. The first stratospheric balloon-borne TDL spectrometer was realized in
1983, based on a cryogenic diode laser and a multi-pass White cell [984]. Since then, many
other TDL spectrometers have been realized and employed during several measurements
campaigns, and significant advances have been achieved in the last years. In particular,
the increasing development and optimization of quantum cascade lasers and difference fre-
quency generators is making possible a gradual replacement of cryogenic lead-salt diode
lasers (emitting in the mid-infrared) for airborne/balloon measurements too. The first in
situ measurement of trace gas concentrations using a QCL was performed in 1999. The
spectrometer, which measured CH4 and N2O concentrations on board the NASA ER-2 air-
craft, was based on a quantum cascade DFB laser, cooled with liquid nitrogen, emitting at
7.9 µm [985]. In the following years, other QCL spectrometers have been deployed aboard
stratospheric aircrafts. Their main advantages, with respect to lead-salt diode lasers, are
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the higher power, with a resulting increase of the instrument sensitivity, and the possibility
of room-temperature operation, with a reduction of spectrometer weight and size. Recently,
also DFG technology has been used to increase the sensitivity of airborne spectrometers. In
2006, an instrument based on DFG at 3.5 µm by mixing a DFB diode laser at 1562 nm and
a DFB fiber laser at 1083 nm in a periodically poled LiNbO3 crystal was used in 3 different
campaigns for highly sensitive measurements of formaldehyde [986]. An overview of the last
studies and developments of TDL spectrometers in airborne measurements can be found in
[987].

Despite the large development of new technologies, TDL analyzers based on lead-salt
diode lasers are still employed and provide reliable, high-sensitivity and precise concen-
tration measurements. As an example, the COLD (Cryogenically Operated Laser Diode)
spectrometer was developed for in situ Carbon Monoxide (CO) concentration measurements
on board the M55 Geophysica, a Russian stratospheric aircraft able to operate at an al-
titude up to 21-22 km [988]. The COLD spectrometer is based on a Pb lead-salt diode
laser, cooled with liquid nitrogen, emitting around 4.6 µm, used in combination with an
astigmatic Herriott multi-pass cell providing an optical path of 36 m. A direct absorption
detection technique, which does not need in-flight calibration, is used in conjunction with
fast sweep integration, to allow absolute concentration measurements of CO. Sensitivities
achieved during in-flight operation are of few ppb, with a time resolution of 4 s (correspond-
ing to a local resolution of about 800 m for an average cruising speed of 750 km/h) and a
precision of 1%. COLD was deployed during 3 tropical campaigns between 2005 and 2006
(TROCCINOX-2, SCOUT-O3, AMMA) and during a polar campaign (RECONCILE) in
2010. The goal of the campaigns was the analysis of the chemistry and of the transport
processes in the upper troposphere (UT) and in the lower stratosphere (LS). In particular,
trace gas measurements can be very useful for the study of the tropical convection mech-
anism, to get a deeper understanding on the region of tropical tropopause layer (during
tropical campaigns) and for the analysis of structure and composition of the polar vortex
as well as for the study of the ozone depletion (during polar campaigns). In both cases,
measurements of tracers recorded during campaigns provide valuable input for the vali-
dation of atmospheric models, with possible important implications for the global climate
[989, 990, 991, 992, 993, 994]. Typical flight data, registered by the instrument COLD for
CO during the TROCCINOX-2 campaign, are reported in Figure 8.35. The CO profile fol-
lows inversely the M55 aircraft altitude, reaching the lower concentration levels, about 20
ppb, in the stratosphere, over 18-19 km and the higher level, about 120 ppb, close to ground
. The spectrometer time response of 4 s makes possible to resolve fine structures as the one
shown in the circle of frame (a). For an aircraft speed of about 210 m/s, the COLD instru-
ment provides 10-20 values of the CO concentrations in a space interval of 10-20 km, so
that structures contained in this interval can be clearly identified. Details of the structure,
which was observed at a constant aircraft altitude of about 16 km, are displayed in frame
(b). The fast CO decrease at a constant altitude is a clear indicator of direct injection of
air from the LS, which is poor of CO, into the UT normally richer of CO. For an accurate
analysis of these fine structures, transport models at very short time scales are needed.

8.10.4 Fiber sensing of physical and chemical parameters

Optical fiber systems have had great impact in the field of sensing thanks to the growth of the
optoelectronics and fiber-optic communication industries. Most components used in these
markets were developed with benefits of outstanding technologies in material design, optical
fibers, and light sources. The inherent advantages of optical fibers include light weight, low
cost, small size, and ruggedness, making it possible to directly install and integrate them
in hard-to-access environments or when minimally invasive techniques are required. Their
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FIGURE 8.35
CO data recorded by the COLD spectrometer during the flight of the 05/02/2005
(TROCCINOX-2 campaign) from Aracatuba (Brazil). (a) CO mixing ratio (black line) and
aircraft altitude (blue line) vs. universal time (UTC). (b) Zoom of the fine CO structure,
included in the circle of figure (a).

immunity to electromagnetic interference and high sensitivity are crucial for accurate and
precise sensing in various applications, while their low optical loss and wide bandwidth
ensure the data transmission over long distance to realize sensor networks covering large
areas. The past 20 years have witnessed an intensive research effort on optical fiber sensors
to measure different physical and chemical parameters [995, 996].

Among fiber-optic sensors, fiber Bragg gratings (FBGs) have shown promising features
as mechanical probes for a number of applications. Several interrogation systems have been
developed so far, often based on broad-emission radiation sources in conjunction with ei-
ther optical spectrum analyzers or filters [997, 998]. More recently, sophisticated schemes
based on narrow-band laser sources and laser-frequency stabilization methods were devised,
achieving ultrahigh strain sensitivity for quasi-static and dynamic monitoring [999, 1000].
Among them, a significant contribution came from the use of FBG-based resonant structures
whose highly-dispersive power near resonance is exploited to measure sub-pm length per-
turbations over a wide range of frequencies. On the other hand, optical resonators based on
high-reflectivity FBGs, fiber loops, and silica microspheres have been employed for refrac-
tive index measurements and chemical sensing. Cavity-enhanced and ring-down techniques
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FIGURE 8.36
RF-modulation-based FBG interrogation setup. PD: photodiode; DBM: double-balanced
mixer; BT: bias-tee.

enable the extraction of information on light-matter interaction in direct or evanescent-wave
spectroscopy schemes [1001, 1002, 1003].

8.10.4.1 Strain sensing

A frequency-modulated telecom diode laser can be used for static and dynamic interrogation
of single FBGs with improved sensitivity, as shown in Figure 8.36 [1004]. The system relies
on radio-frequency (RF) sideband generation on the laser beam, via current modulation,
and heterodyne detection of the FBG reflected light. If the sideband frequency is high
enough compared to the FBG width, its reflection spectrum can be treated as a molecular
absorption line. Demodulation at that frequency is performed by a double-balanced mixer
which yields a highly-dispersive signal with a zero-crossing around the Bragg’s resonance in
quiescent conditions. This can be employed as a discriminator (error) for Pound-Drever-Hall
(PDH) frequency locking of the laser onto the Bragg grating’s peak for continuous tracking
of the sensor.

A different kind of apparatus can be developed with high-finesse in-fiber Bragg-grating
Fabry-Perot (FFP) resonators as strain sensors. The resonator is formed by two high-
reflectivity single-mode FBGs at a relative distance of 100 mm. Small optical pathlength
variations in the intracavity fiber are turned into frequency shifts of the narrow resonance. A
first demonstration of its sensitivity to strain signals is given below (Figure 8.37). Similarly
to the previous one, a diode laser is actively locked to the resonator by an optical-electronic
loop based on PDH technique.

Although the interrogating laser can be frequency controlled again by the PDH method
[1000], different schemes, such as those based on polarization-spectroscopy (PS), can be
devised. The PS technique rests on the birefringence induced by FBG fabrication in the
resonator [1005, 1006]. The error signal is obtained by adjusting the state of polarization
(SOP) of the laser beam at 45◦ to the fiber birefringence axis and analyzing the cavity-
reflected field with a polarization analyzer [1008]. In this way, an excellent performance was
obtained without using any RF laser modulation or sophisticated electronics. The minimum
detectable strain level may be as low as 1 pε/Hz, in the acoustic range (recall that the strain
ε is defined as the fractional length variation ∆L/L).

In the past few years, intensive work has been done to reduce the effect of free-running
laser jitter via pre-stabilization on an optical-frequency reference [1007, 1008]. In a recent
work, a (fiber-based) frequency-comb (OFC) stabilized diode-laser system for strain inter-
rogation of a high-finesse fiber Bragg-grating cavity was devised (Figure 8.38). Thanks to
the exceptional frequency stability of the OFC, a strain resolution of 10−13 was achieved
from 20 mHz up to 1.5 kHz, approaching a noise floor that is possibly due to thermal effects
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FIGURE 8.37
Noise spectral density of the FBG-resonator locking signal for different excitation frequencies
in the SM-fiber cavity: (a) a sharp peak is evident at 1.2 kHz with a noise increase towards
low frequencies and spurious oscillations due to harmonics of the AC line frequency; (b) the
system is capable of detecting deformations down to 2.4 Hz.

in the fiber [1009]. A Pound-Drever-Hall frequency locking technique was implemented for
low-noise and wide dynamic range readout of the sensor.

8.10.4.2 Acceleration measurements

The monitoring of seismic signals is essential to the study of volcanoes, for surveillance
of seismic areas, or even in anti-intrusion systems for homeland-security. Seismic waves,
both longitudinal and transverse, cause vibrations that can occur over a large frequency
span ranging from quasi-static (below 1 mHz) to acoustic frequencies (above 100 Hz). At
present, commercial accelerometers generally operate below 100 Hz. To fully understand the
link between the seismic occurrences and seismic signals, detectors with high bandwidth at
high sensitivity are required. Velocities and accelerations can be efficiently measured with
fiber-optic sensors, provided that the mechanical response of the sensor element is known.
The possibility of strain-to-acceleration transduction was previously demonstrated using
a massive flexural beam sensor monitored by a FBG with basic demodulation schemes
[1010, 1011]. A possible approach consists in a long flexural-beam horizontal accelerometer,
containing three different FBGs, which were able to monitor deformations of a rigid cylinder
in all directions within the horizontal plane. A large mass is placed on top of the cylinder
while its base is anchored to the ground using a special screw. Three FBG elements are glued
into the cylinder internal surface, parallel to the vertical axis, and placed at angles of 120
degrees. Mechanical waves can be detected in the horizontal plane by at least two sensors
for determination of their intensity and direction [1012]. A customized laser-spectroscopic
interrogation technique improved the sensitivity and dynamic response of the system. A
laboratory test demonstrated successful operation along two directions in the plane for
subsequent acceleration pulses. As a further development, three separate π-shifted FBGs
(PSFBGs) can be attached to three cantilever beams that flex in orthogonal directions
(Figure 8.39) [1013]. The PSFBGs present a characteristic response which is quite similar to
common optical resonators [1014]. The phase defect in the periodic structure indeed modifies
its photonic bandgap and creates a sharp resonance exactly at the Bragg wavelength. That
strongly improves the capability of detecting small shifts caused by mechanical action on the
fiber. The sensors were interrogated by three distributed feedback lasers actively locked with
PDH technique to their central resonance using a radio-frequency modulation technique



634 Laser-based measurements for time and frequency domain applications

FIGURE 8.38
Experimental setup for ultrasensitive strain measurements. The system is composed of a
sensor unit, a diode laser, an OFC with a reference oscillator (OCXO), and a laser-comb
phase-lock unit. All optical units are connected by optical fibers. The sensing element is
a Fabry-Perot fiber resonator formed by two identical single-mode 99% FBG reflectors,
placed at a relative distance L = 130 mm along an acrylic-coated silica fiber. A PZT is used
to modulate the cavity length. The resonator is thermally and acoustically shielded from
the environment. A seismic insulation in the horizontal and vertical planes, at frequencies
above 0.7 Hz, is provided with a latex-cord pendulum suspension. SINT, synthesizer; EOM,
electro-optic modulator.

to obtain high sensitivity over a wide dynamic range while preserving a large frequency
bandwidth. With stainless steel cantilevers, a bandwidth exceeding 1 kHz and a dynamic
range of approximately 50 g can be achieved. Such system reaches a sensitivity noise floor
ranging between 10 and 900 g/Hz, in the 10-1000 Hz interval, with similar performance along
different orthogonal directions. The detection limit can be further improved either employing
a different laser or decreasing its free-running frequency noise by pre-stabilization onto an
external cavity (e.g., a fiber ring resonator). It is remarkable that such fiber-based sensors
find application in many very different fields. For example, microphones for acoustic-waves
detection can now be replaced by fiber sensors [1015].

8.10.4.3 Chemical sensing by optical-fiber ring resonators

Chemical sensors using fiber-optic methodology are the focus of extensive research and
development activity with potential applications in industrial, environmental, and biomed-
ical monitoring [1016, 1017, 1018]. In this context, miniaturized chemical sensors combin-
ing laser spectroscopy and state-of-the-art optical fiber technology may be suitable for in
situ, non-invasive gas and liquid analysis with high selectivity and sensitivity. This can
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FIGURE 8.39
Schematic diagram of the accelerometer’s head. Stainless steel cantilevers are clamped to-
gether using aluminum plates. All cantilevers have the same dimensions and nominal reso-
nant frequencies of about 1.5 kHz.

be based on either direct or indirect (indicator-based) detection techniques [1019, 1020].
In recent years, interrogation techniques have further advanced with the use of spatially
resolved spectroscopy [1021], evanescent-wave spectroscopy [1022, 1023, 1024] as well as
surface-plasmon resonance [1025, 1026, 1027, 1028]. Sensors have also been incorporated
into passive optical cavities consisting of fiber loops or linear fiber cavities defined, e.g.,
by two identical FBGs [1029, 1030, 1031]. Optical microresonators, of different geometries,
have been also used as label-free and ultrasensitive chemical sensors over the past several
years [1032, 1033, 1034, 1035]. In all cases above, a change in ambient refractive index may
lead to a wavelength shift of the cavity modes, if part of the evanescent wave of the mode is
exposed to the environment. On the other hand, if the molecules exhibit absorption lines or
bands in the vicinity of the resonance wavelength, the cavity lifetime, namely the ring-down
time (RDT), will be reduced, leading also to a reduction in power transmitted through the
resonator and in the quality (Q-) factor.

An interesting example is a passive optical-fiber ring (OFR) resonator. As is well known,
a light leakage from the fiber changes the resonator finesse. If the fiber core is exposed along
a short region of the fiber within the loop, the presence of a liquid analyte can be measured,
for example, by monitoring the light loss due to optical absorption or the refractive index
changes through evanescent-wave interaction. A possible experimental setup to interrogate
the fiber resonator and extract the absorption information was described in [132] and a

FIGURE 8.40
Schematic of the fiber-ring resonator sensor. PC: polarization controller; EAB: evanescent-
access block; LPF: low-pass filter.
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FIGURE 8.41
Cavity transmission signal for a free-running laser with no sample on the EAB (black line)
and with a sample (glycerol diluted at 99.5% with D2O) causing a small index overlay (gray
line).

sketch is shown in Figure 8.40. The OFR is made of SMF-28 fiber and a variable-ratio fiber
coupler (1-99 percent) to inject near-infrared radiation into the cavity. A fiber evanescent-
field access block (EAB) allows the (evanescent) cavity field to interact with the external
environment. The transmission peaks observed on cavity resonances over a laser-frequency
sweep are shown in Figure 8.41. A PDH signal is generated to frequency lock the laser to the
cavity resonance. In this way, the laser could be frequency-stabilized to a cavity mode for
several hours, without suffering from thermal fluctuations of the environment. A first test
of the sensors response consists of covering the EAB with a solution with high refractive
index. When the sample was applied to the EAB, the cavity resonances were observed
to remain symmetric while the width of the signal increased, as expected due to finesse
degradation. Hence a fraction of the guided core mode leaked out from the cavity due to
the high-index glycerol cladding. Other experimental schemes are possible if the absorption
process is detected through the measurement of the so-called cavity ring-down time, which is
directly related to the internal optical loss (and thus to the absorption coefficient of external
analytes). Furthermore, broadband radiation sources, such as supercontinuum lasers and
optical synthesizers, can be employed to reconstruct multiple spectra of gas samples or to
investigate wide absorption bands by liquid species.
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