
Make:
Sensors

Projects and Experiments to
Measure the World with
Arduino and Raspberry Pi
Tero Karvinen, Kimmo Karvinen
& Ville Valtokari

Electronics/Microcontrollers

US $34.99 CAN $36.99

ISBN: 978-1-449-36810-4

Make: Sensors
Sensors allow you to interact with the physical world in a way most of us never
could before—measure something, interpret the result, and take action based on
its value. Combined with inexpensive little computers like Arduino and Raspberry
Pi, you can make the physical world programmable. With this book, you’ll make
gadgets that can sense it all—from various gases to infrared light to acceleration.

Recommended for makers who are looking for powerful Arduino or Raspberry Pi
applications, Make: Sensors takes you from idea to reality quickly. You’ll create
polished projects using RGB LEDs, e-paper displays, and servo motors—and
finish them off with enclosures.

Learn about touch, light, temperature, humidity, gas, and magnetic sensors as
well as accelerometers and gyroscopes. Each chapter offers a new mini-project
and an environmental experiment that demonstrates how to combine different
technologies for a unique result.

More than 50 sensor-based experiments and projects

In Make: Sensors, you’ll learn to build these projects:

» Personal Breathalyzer with Arduino and an alcohol sensor

» Email Smoke Alarm powered by Raspberry Pi

» Haunted Ringing Bell with a hidden servo motor

» Pong video game with Python and pyGame

» Color-changing Chameleon Dome with an RGB LED and color sensor

» Graphical sound visualizer that analyzes and display ambient sound

Make: Sensors teaches you to experience and understand your world more deeply by
enabling you to track, record, and interact with it in a fresh way.

Tero Karvinen, Kimmo Karvinen, and
Ville Valtokari

Make: Sensors

Make: Sensors
by Tero Karvinen, Kimmo Karvinen, and Ville Valtokari

Copyright © 2014 Tero Karvinen, Kimmo Karvinen, and Ville Valtokari. All rights reserved.

Printed in Canada.

Published by Maker Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Maker Media books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safaribooksonline.com). For more information, contact O’Reilly
Media’s corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Brian Jepson and Emma Dvorak
Production Editor: Kristen Brown
Technical Editor: Jason Tavares
Proofreader: Julie Van Keuren
Indexer: Judith McConville
Cover Designers: Juliann Brown and Brian Jepson

Interior Designer: Nellie McKesson
Illustrators: Tero Karvinen, Kimmo Karvinen, and
Ville Valtokari
Photographer: Kimmo Karvinen
Cover Photo: Kimmo Karvinen

May 2014: First Edition

Revision History for the First Edition:

2014-05-05: First release

2015-01-23: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449368104 for release details.

Make:, Maker Shed, and Maker Faire are registered trademarks of Maker Media, Inc. The Maker Media logo
is a trademark of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Maker Media, Inc. was aware of a trademark
claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36810-4

[TI]

Preface . xi

1. Raspberry Pi . 1
Raspberry Pi from Zero to First Boot . 2

Extract NOOBS*.zip . 3
Connect Cables . 3
Boot and Install Raspbian . 4
Troubleshooting Your Raspberry Pi Installation . 6

Feeling at Home in Linux . 8
Command-Line Interface is Everywhere, Forever . 8
Looking Around . 9
Text Files for Configuration . 9
sudo Make Me a Sandwich . 10

Connecting Electronics to Raspberry Pi Pins . 11
Hello GPIO, Blink an LED . 12
Building the Circuit . 13
Two Numbering Systems: Purpose and Location . 15
Controlling GPIO Pins from the CLI . 16
Writing to Files Without an Editor . 16
Light Up the LED . 17
Troubleshooting . 17

GPIO Without Root . 19
Troubleshooting GPIO . 21

GPIO in Python . 21
Hello Python . 21
What’s Next? . 24

iii

Table of Contents

2. Arduino . 25
Basic Arduino Setup . 26

Ubuntu Linux . 26
Windows 7 and Windows 8 . 27
OS X . 27
Hello World . 28
Anatomy of an Arduino Program . 29
Shields Make It Easy and Robust . 29

3. Distance . 31
Experiment: Measure Distance with Ultrasonic Sound (PING) 32

Ping Code and Connections for Arduino . 33
Ping Code and Connections for Raspberry Pi 35

HC-SR04 Ultrasonic Sensor . 38
HC-SR04 Code and Connection for Arduino . 38
HC-SR04 Code and Connections for Raspberry Pi 40
Echo Calculations Explained . 42
Environment Experiment: Invisible Objects . 43

Experiment: Detect Obstacles With Infrared (IR Distance Sensor) . . 44
IR Switch Code and Connections for Arduino 45
IR Switch Code and Connections for Raspberry Pi 47

Environment Experiment: How to See Infrared 48
Experiment: Follow Movement with Infrared (IR Compound Eye) . 50

Compound Eye Code and Connection for Arduino 51
Compound Eye Code and Connections for Raspberry Pi 54
Installing SpiDev . 56
Alternative Circuits for Raspberry Pi . 57

Test Project: Posture Alarm (Arduino) . 58
What You’ll Learn . 58
Piezo Beeper . 59
Alarm, Alarm! . 61
Combining Piezo and IR Sensor . 62
Putting Everything in a Neat Package . 64

4. Smoke and Gas . 67
Experiment: Detect Smoke (Analog Gas Sensor) 68

MQ-2 Code and Connection for Arduino . 69
MQ-2 Code and Connection for Raspberry Pi 71
Environment Experiment: Smoke Goes Up . 72
Experiment: Breathalyzer (Alcohol Sensor MQ-303A) 74
Environment Experiment: Try It Without Drinking 77

Test Project: Emailing Smoke Alarm . 78
What You’ll Learn . 78
Python for Email and Social Media . 79
Building It . 79

iv Make: Sensors

How Does Email Work? . 79
Could Arduino Send Email? Not Easily . 80
Code for Raspberry Pi . 80
Packaging . 83

5. Touch . 89
Experiment: Button . 89

Pull-Up Resistor . 90
Code and Connection for Arduino . 91
Code and Connection for Raspberry Pi . 93

Experiment: Microswitch . 94
Microswitch Code and Connection for Arduino . 95
Microswitch Code and Connection for Raspberry Pi 97

Experiment: Potentiometer (Variable Resistor, Pot) . 98
Potentiometer Code and Connection for Arduino 99
Potentiometer Code and Connection for Raspberry Pi 101

Experiment: Sense Touch Without Touch (Capacitive Touch Sensor
QT113) . 103
QT113 Code and Connection for Arduino . 104
QT113 Code and Connection for Raspberry Pi . 105

Environment Experiment: Sensing Touch Through Wood 106
Experiment: Feel the Pressure (FlexiForce) . 108

FlexiForce Code and Connection for Arduino . 108
FlexiForce Code and Connection for Raspberry Pi 109

Experiment: Build Your Own Touch Sensor . 111
Capsense Code and Connection for Raspberry Pi 113

Test Project: Haunted Ringing Bell . 114
What You’ll Learn . 115
Servo Motors . 115
Haunted Bell Code and Connection for Arduino 119
Attaching Servo to Ringing Bell . 122

6. Movement . 123
Experiment: Which Way Is Up? (Tilt Ball Switch) . 123

Tilt Sensor Code and Connection for Arduino . 124
Tilt Sensor Code and Connection for Raspberry Pi 125

Experiment: Good Vibes with Interrupt (Digital Vibration Sensor) 126
Vibration Code and Connection for Arduino . 127
Vibration Code and Connection for Raspberry Pi 128

Experiment: Turn the Knob . 130
Rotary Encoder Code and Connection for Arduino 130
Rotary Encoder Code and Connection for Raspberry Pi 132

Experiment: Thumb Joystick (Analog Two-Axis Thumb Joystick) 134
Joystick Code and Connection for Arduino . 135
Joystick Code and Connection for Raspberry Pi . 136

vTable of Contents

Environment Experiment: Salvage Parts from an Xbox Controller 138
Experiment: Burglar Alarm! (Passive Infrared Sensor) 140

Burglar Alarm Code and Connection for Arduino 140
Burglar Alarm Code and Connection for Raspberry Pi 142
Environment Experiment: Cheating an Alarm 144

Test Project: Pong . 147
What You’ll Learn . 148
Pong Packaging Tips . 152
Automatically Start Your Game When Raspberry Pi Boots 156
Run Game on Login . 156
Automatic Login . 157

7. Light . 161
Experiment: Detecting Flame (Flame Sensor) 161

Flame Sensor Code and Connection for Arduino 162
Flame Sensor Code and Connection for Raspberry Pi 164

Environment Experiment: Flame Precision . 165
Experiment: See the Light (Photoresistor, LDR) 166

LDR Code and Connection for Arduino . 168
LDR Code and Connection for Raspberry Pi 169

Environment Experiment: One Direction . 170
Experiment: Follow the Line . 172

Line Sensor Code and Connection for Arduino 172
Line Sensor Code and Connection for Raspberry Pi 174

Environment Experiment: Black is White . 175
Experiment: All the Colors of the ’Bow . 177

Color Sensor Code and Connection for Arduino 178
Color Sensor Code and Connection for Raspberry Pi 180

Test Project: Chameleon Dome . 182
What You’ll Learn . 183
RGB LED . 183
Easing Input to Output . 189
Combining Codes . 190
Dome Building Tips . 195

8. Acceleration . 201
Acceleration vs. Angular Velocity . 201
Experiment: Accelerate with MX2125 . 202

Decoding MX2125 Pulse Length . 203
Accelerometer Code and Connection for Arduino 205
Accelerometer Code and Connection for Raspberry Pi 206

Experiment: Accelerometer and Gyro Together 208
MPU 6050 Code and Connection for Arduino 209
MPU 6050 Code and Connection for Raspberry Pi 215
Hexadecimal, Binary, and Other Numbering Systems 219

vi Make: Sensors

Bitwise Operations . 221
Experiment: Hacking Wii Nunchuk (with I2C) . 225

Nunchuk Code and Connection for Arduino . 226
Nunchuk Code and Connection for Raspberry Pi 229

Test Project: Robot Hand Controlled by Wii Nunchuk 232
What You’ll Learn . 233
Adding Hand Mechanics . 237

9. Identity . 239
Keypad . 240

Keypad Code and Connection for Arduino . 241
Keypad Code and Connection for Raspberry Pi . 243

Environment Experiment: Revealing Fingerprints . 246
Fingerprint Scanner GT-511C3 . 247

Fingerprint Sensor Code and Connection for Arduino Mega 249
Fingerprint Sensor Code and Connection for Raspberry Pi 255

RFID with ELB149C5M Electronic Brick . 261
RFID Code and Connection for Arduino Mega . 263
RFID Code and Connection for Raspberry Pi . 265

Test Project: Ancient Chest from the Future . 268
What You’ll Learn . 268
Operating the Chest . 268
The Box . 269
Ancient Chest Code and Connection for Arduino 271

Who or What Is It? . 277

10. Electricity and Magnetism . 279
Experiment: Voltage and Current . 279

AttoPilot Code and Connection for Arduino . 281
AttoPilot Code and Connection for Raspberry Pi 282

Experiment: Is It Magnetic? . 284
Hall Effect Sensor Code and Connection for Arduino 285
Hall Effect Sensor Code and Connection for Raspberry Pi 286

Experiment: Magnetic North with LSM303 Compass-Accelerometer . . 288
Calibrate Your Module . 289
LSM303 Code and Connection for Arduino . 290
LSM303 Code and Connection for Raspberry Pi . 295
LSM303 Protocol . 299
Compass Heading Calculation . 299

Experiment: Hall Switch . 301
Hall Switch Code and Connection for Arduino . 302
Hall Switch Code and Connection for Raspberry Pi 303

Test Project: Solar Cell Web Monitor . 304
What You’ll Learn . 305
Connecting Solar Cells . 305

viiTable of Contents

Turn Raspberry Pi into Web Server . 308
Finding Your IP Address . 309
Making Your Home Page on Raspberry Pi . 309
Solar Panel Monitor Code and Connection for Raspberry Pi . . . 310
Timed Tasks with Cron . 312

What’s Next? . 313

11. Sound . 315
Experiment: Hearing Voices/Volume Level . 315

Microphone Breakout Code and Connection for Arduino 316
Microphone Breakout Code and Connection for Raspberry Pi . 317

Environment Experiment: Can You Hear a Pin Drop? 319
Test Project: Visualize Sound over HDMI . 320

What You’ll Learn . 320
Enabling the Serial Port in Raspberry Pi . 320
Visualizer Code and Connection for Raspberry Pi 321
Fast Fourier Transformation . 324

What Next? . 326

12. Weather and Climate . 327
Experiment: Is It Hot in Here? . 327

LM35 Code and Connection for Arduino . 328
LM35 Code and Connection for Raspberry Pi 329

Environment Experiment: Changing Temperature 331
Experiment: Is It Humid in Here? . 332

How Humid Is Your Breath? . 333
DHT11 Code and Connection for Arduino . 334
DHT11 Code and Connection for Raspberry Pi 336
Talking to Arduino from Raspberry Pi . 337

Atmospheric Pressure GY65 . 339
GY65 Code and Connection for Arduino . 340
Using Arduino Libraries . 341
GY65 Arduino Library Explained . 342
GY65 Code and Connection for Raspberry Pi 346

Experiment: Does Your Plant Need Watering? (Build a Soil Humidity
Sensor) . 350
Soil Sensor Code and Connection for Arduino 350
Soil Sensor Code and Connection for Raspberry Pi 351

Test Project: E-paper Weather Forecast . 353
What You’ll Learn . 354
Weather Forecast Code and Connection for Arduino 354

Environment Experiment: Look Ma, No Power Supply 362
Storing Images in Header Files . 362

BMP to C Conversion Program . 363
Enclosure Tips . 365

viii Make: Sensors

Appendix A. Raspberry Pi Linux Quick Reference 369

Index . 371

ixTable of Contents

Welcome to Make: Sensors. Soon you’ll be making gadgets that can sense it all—from dangerous
gases to acceleration. In this book, you’ll use sensors to measure the physical world, represent
the result as a numeric value, and take some action based on that value.

For example, a sensor could measure heat, pressure, light, or acceleration and report a value
such as 22 C, 1015 millibars, light is detected, or 2.3 g acceleration (in the case of light, notice
that we represented it as a Boolean or yes/no value rather than a numeric quantity; you’ll see
examples of this later).

A microcontroller board is the brain of the robot, system, or gadget you’re building. You’ll write
your own software to run on the microcontroller. In this book, you’ll work with two very popular
boards: Arduino and Raspberry Pi. Either of these makes it easy to write software code to work
with electronics.

It’s About Your Ideas

If your interest in electronics started with a desire to quickly learn some basics and then design
your own robots, gadgets, or projects, you’re in the right place. This book will show you how to
go from idea to reality quickly.

Theory, skills, and basics are useful—as long as they serve your creativity. Feel free to experiment
with your ideas, and have the courage to publish your results on the Web.

Each chapter presents a mini project to show how you can combine different technologies. For
example, you’ll build a wooden box that you open with a fingerprint and a color-changing
chameleon dome. These are fun projects, but also good starting points for things you invent
later yourself.

xi

Preface

The skills you learn with Arduino are easily applicable to real-life projects. For example, we
used Arduino to build the sun sensor prototype for Finland’s first satellite (Figure P-1).

Figure P-1. Finland launches its first satellite in 2014. We designed and built the sun sensor prototype with
Arduino.

How to Read This Book

When you get an idea, you can quickly build your first prototype with the help of this book.
Instead of spending hours with component data sheets, you can simply pick a sensor and
use ready-made breadboard diagrams and code. You can use sensors as building blocks
for your project, but unlike construction kits such as Meccano or Lego, the possibilities
with Arduino and Raspberry Pi are nearly endless.

If you know what you want to measure, you can easily find a sensor for it. The book is
arranged by the real-life phenomena you can measure:

• Distance (Chapter 3)

• Smoke and gas (Chapter 4)

• Touch (Chapter 5)

• Movement (Chapter 6)

• Light (Chapter 7)

xii Make: Sensors

• Acceleration and angular momentum (Chapter 8)

• Identity (Chapter 9)

• Electricity (Chapter 10)

• Sound (Chapter 11)

• Weather and climate (Chapter 12)

You can also use Make: Sensors as a maker’s coffee-table book: browse it to get ideas of what’s
available, and look for inspiration for new projects.

If you want to understand how sensors are connected to Arduino and Raspberry Pi, you’ll enjoy
the in-depth explanations. All the sensor code examples are fully self-contained, completely
showing the interaction with the sensor. Understanding the sensors in the book helps you apply
your skills to new sensors, even ones that aren’t on the market yet.

When we chose the sensors for you, we picked a variety of useful and interesting sensors. We
didn’t just pick easy or difficult ones. This means you’ll get to see solutions to the wide variety
of challenges involved in connecting sensors to Arduino and Raspberry Pi.

In each chapter you’ll find experiments, environmental experiments, and a test project:

1. Experiments give you quick instructions on how to use a single sensor with Arduino and
Raspberry Pi. You can easily use these as building blocks for your own projects or just to
see how the sensor works.

2. Environmental experiments let you play with sensors and monitor changes in the sur-
rounding environment. This gives you insight into how sensors see the world and how they
really work.

3. Sensors are more fun when you actually do something with the readings they give you. In
test projects you’ll build a device or gadget around one sensor. You’ll learn how to use
different outputs such as RGB LEDs, e-paper, and servo motors. Test projects also work as
quick starting points for your own innovations.

Input, Processing, Output

Any robot or gadget you build must handle three things: input, processing, and output.

1. Because most of the devices you build won’t have a keyboard or a mouse, sensors are your
inputs. Take a quick look at the table of contents, and keep in mind that this is just a fraction
of what’s out there. There are countless sensors to measure everything you could imagine.

2. Processing happens in your program, running in Arduino or Raspberry Pi. In your program,
you get to decide what happens next.

xiiiPreface

3. Outputs affect the world around the device. You could light an LED, turn on a servo
motor, or play a sound. Those are three of the most common types of output, but there
are others (for example, haptic feedback such as vibration, displaying something on
an e-paper screen, or turning on a household appliance).

Protocols

A protocol defines how a sensor talks to the microcontroller board, such as Arduino or
Raspberry Pi. The protocol defines how the wires should be connected and how your code
should ask for measurements.

Even though there is a staggering amount of different sensors, there is a limited number
of popular protocols. You’ll learn each of the protocols as you work through experiments
and projects, but here’s an overview of what you’ll be seeing.

You can get an overview of common sensor protocols in Table P-1.

Digital resistance
Some sensors work like a button and have two states, on or off. These sensors are easy
to read. The on state is represented when a voltage referred to as HIGH is applied to
the microcontroller input pin. This is usually either 3.3 volts or 5 volts depending on
the microcontroller board you’re using.

Analog resistance
Analog resistance sensors change their resistance in response to a physical change
(such as turning the knob of a dial). Arduino and Raspberry Pi measure the changes
in resistance by measuring the voltage level that passes through the sensor. For ex-
ample, you can turn a potentiometer to make its resistance larger or smaller. These
analog resistance sensors are very easy to make with Arduino. Raspberry Pi needs an
external chip for measuring analog values. You’ll learn to use the MCP3002 analog-to-
digital converter to measure resistance with Raspberry Pi in “Experiment: Follow
Movement with Infrared (IR Compound Eye)” on page 50. Most analog input sensors
report their value using resistance, so they are analog resistance sensors.

Pulse width
Some sensors report their value with a pulse width, or the period of time in which the
pin is held HIGH. You use functions like pulseIn() or gpio.pulseInHigh() to read the
length of the pulse. Because this is handled by a function, you don’t have to get into
low-level microcontroller operations such as interrupts; it is all handled by a library.

Serial port
A serial port sends text characters between two devices. It’s the same technique your
computer uses when talking to Arduino over USB. You’ll become quite familiar with
the serial port when you print some messages to the Arduino serial monitor in various
projects.

xiv Make: Sensors

I2C
I2C is a popular industry standard protocol. It is commonly found inside computers and
well known from Wii Nunchuk joysticks. I2C allows 128 devices to be connected to the same
wires. In Make: Sensors, you’ll get ready-made code and circuits for two sensors using I2C.

SPI
SPI is another industry standard protocol. You’ll find it easy to use the code in this book for
using an analog-to-digital converter on the Raspberry Pi. But creating your own code from
scratch for new devices using SPI will be a bit more work.

Bit-banging
Sometimes, a sensor is unusual enough that a standard protocol won’t work with it. In those
cases, you need to craft up your own code to talk to that sensor. This is often called bit-
banging, because you’re manipulating the signal from the sensor, often at the bit level.
You’ll see an example of that later in the book in “Experiment: Is It Humid in Here?” on page
332.

As you play with the sensors, you’ll get much more familiar with these protocols. Or, if you’re in
a hurry to put new sensors in your robots and innovative devices, you can just use the code in
this book and look at the details later.

Table P-1. Sensor protocols, easiest first

Protocol Example value Arduino Raspberry Pi Python Example sensors

Digital
resistance

1 or 0 digitalRead() botbook_gpio.read() Button, IR sensor switch, tilt sensor,
passive infrared movement

Analog
resistance

5%, 10%, 23 C analogRead() botbook_mcp3002.readAnalog(), chip Potentiometer, light-dependent resistor,
MQ-3 alcohol, MQ X gas family (smoke,
hydrocarbon, CO…), FlexiForce pressure,
KY-026 flame, HDJD-S822-QR999 color,
LM35 temperature, soil humidity

Pulse length 20 milliseconds pulseIn() gpio.pulseInHigh() Ping and HC-SR04 ultrasonic distance,
MX2125 acceleration

Serial port A9B3C5B3C5 Serial.read() pySerial.read() GT-511C3 Fingerprint scanner,
ELB149C5M RFID identity

I2C (2.11 g, 0.0 g, 0.1g),
very precise values

Wire.h smbus Wii Nunchuk, MPU 6050 accelerometer
and gyro combination, GY65 atmospheric
pressure

SPI 57 deg, very precise
values

Bit-banging spidev MCP3002 analog-to-digital converter

Bits encoded to
very short pulses

53% Bit-banging Bit-banging DHT11 humidity

xvPreface

Building Things Your Way

Most users won’t find raw circuit boards and components compelling to play with. Making
an attractive package for your gadget or robot makes a huge difference.

This book gives you one example for each project, but there’s no need to follow our in-
structions blindly. Try different materials and use different tools.

How about using cardboard (Figure P-2), fabric (Figure P-3) or 3D printing (Figure P-4)?

Figure P-2. Cardboard model. Photo from Ars Electronica in Linz (not made by us)

xvi Make: Sensors

Figure P-3. Fabric robot. Photo from Ars Electronica in Linz (not made by us)

Figure P-4. 3D Bender. Photo from Ars Electronica in Linz (not made by us)

xviiPreface

Trying out and learning new techniques makes the process of work more interesting, such
as welding or making something out of clay between all the soldering (see Figure P-5).

Figure P-5. Base model for animatronic gorilla head and latex skin made from it.

We also use a lot of recycled materials in our own projects. Obviously they are cheap (free!)
but they also give a unique look to a project.

Buying Components

If you need high quality components without fuss, pick a well-known shop, preferably in
the Western world. If you want cheap components, look to Asia.

Quality shops mainly selling to makers include Maker Shed, SparkFun, Parallax, and Ada-
fruit. Maker Shed is the shop from the publisher of this book. SparkFun sells a lot of breakout
boards, which require you to solder in headers. Parallax created Basic Stamp, the previous
generation of microcontroller boards for makers. Adafruit has a lot of parts, many designed
by them. The SparkFun and Adafruit websites have a lot of information about their com-
ponents, including tutorials.

These days, even big-name distributors like Element14 and RS electronics have broken
into the Maker market. Finding parts from their huge catalogs is becoming easier, as they’ve
started providing clear areas for Arduino and Raspberry Pi.

For some special parts and sometimes very cheap prices, Asia is the continent to go to.
DealExtreme is very popular at the moment. Its shipping is slow and quality varies, but the
prices are low and the assortment is wide. AliExpress is another Asian shop worth checking
out.

xviii Make: Sensors

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements such
as variable or function names, databases, data types, environment variables, statements,
and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values determined by
context.

This icon signifies a tip, warning, or general note.

Using Code Examples

You can download all the source code for this book from http://makesensors.botbook.com.

You can extract the ZIP package by double-clicking it, or by right-clicking and selecting “Extract”
from the pop-up menu.

This book is here to help you get your job done. In general, you may use the code in this book
in your programs and documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example, writing a program that uses
several chunks of code from this book does not require permission. Selling or distributing a CD-
ROM of examples from MAKE books does require permission. Answering a question by citing
this book and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does require per-
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: “Make: Sensors by Tero Karvinen, Kimmo Karvinen, and Ville
Valtokari. Copyright 2014 Tero Karvinen, Kimmo Karvinen, and Ville Valtokari,
978-1-449-36810-4.”

If you feel your use of code examples falls outside fair use or the permission given here, feel free
to contact us at bookpermissions@makermedia.com.

xixPreface

Safari® Books Online

Safari Books Online is an on-demand digital library that delivers expert
content in both book and video form from the world’s leading authors
in technology and business.

Technology professionals, software developers, web designers, and business and creative
professionals use Safari Books Online as their primary resource for research, problem solv-
ing, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government, edu-
cation, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice Hall
Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Fo-
cal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt,
Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course
Technology, and hundreds more.

Maker Media has uploaded this book to the Safari Books Online service. To have full digital
access to this book and others on similar topics from MAKE and other publishers, sign up
for free at http://safaribooksonline.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

MAKE
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

MAKE unites, inspires, informs, and entertains a growing community of resourceful people
who undertake amazing projects in their backyards, basements, and garages. MAKE cel-
ebrates your right to tweak, hack, and bend any technology to your will. The MAKE audi-
ence continues to be a growing culture and community that believes in bettering our-
selves, our environment, our educational system—our entire world. This is much more
than an audience, it’s a worldwide movement that Make is leading—we call it the Maker
Movement.

xx Make: Sensors

For more information about MAKE, visit us online:

MAKE magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any additional informa-
tion. You can access this page at:

http://bit.ly/make-sensors

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

Acknowledgments

The authors would like to thank Hipsu, Marianna, Nina, Paavo Leinonen, and Valtteri.

xxiPreface

We recommend you start with the Raspberry Pi Model B, which includes wired Ethernet and
enough USB ports for a mouse and keyboard. This makes it much easier to get started.

Figure 1-1. Raspberry Pi peripheral connections

Unless you buy your Raspberry Pi as part of a kit, it probably didn’t come with an enclosure, but
you can just put the bare board on your table for extra geek credibility. Or, if you have access

1

Raspberry Pi 1

to a 3D printer, CNC, or laser cutter, you can find many enclosures to fabricate on http://
www.thingiverse.com.

A 4 GB SD memory card is big enough to fit the operating system. A bigger card may be
less susceptible to wearing out over time (more storage to allocate to wear-leveling), so if
you have an 8 GB or bigger card, even better.

The Raspberry Pi can drive a full high-def display, and can even send sound over HDMI.
Most likely, an HD television will work nicely as a display for your Pi.

Having a keyboard and a mouse will make it easy to get started. Raspberry Pi Model B has
exactly two USB ports, just enough for the mouse and the keyboard.

If you want to add a USB WLAN adapter, you need a powered USB hub. See http://
elinux.org/RPi_USB_Wi-Fi_Adapters for a list of WiFi adapters that are known to
work with the Raspberry Pi. You’ll be able to configure WiFi on your Pi by double-
clicking the WiFi Config icon on the desktop after you install the operating system
and boot to the graphical desktop environment.

The Most Expensive $35 (USD) Computer?

Buying all the cables, keyboard, mouse, and dis-
play can cost more than a couple of Raspberry
Pis. If you don’t already have all those parts gath-
ering dust somewhere, it can be quite a lot for a
tiny computer. Even so, it saves time (== money)
to establish a comfortable development envi-
ronment. Later, when your project is working,
you can easily trim down the system to just the

needed parts. As they say, Raspberry Pi is the only
$35 computer that costs a hundred bucks.

If you decide to interact with your Raspberry Pi
through SSH or VNC over the network, you only
need to connect network and power and won’t
need the keyboard, mouse, or monitor except
during the initial setup.

Raspberry Pi from Zero to First Boot

This chapter will get you up and running with the Raspberry Pi quickly. The first thing you
need to do is to install Linux on the Raspberry Pi. It involves the following steps:

• Download and extract the installer to a formatted SD card.

• Insert the card into the Raspberry Pi and connect it to a keyboard, mouse, and monitor.

• Turn it on, choose what to install, and wait.

Once that’s done, you are ready to boot the Pi into a graphical Linux desktop.

2 Make: Sensors

Raspberry Pi from Zero to First Boot

You’ll need the following parts:

• Raspberry Pi Model B

• Micro USB cable and USB charger (or computer)

• 4 GB SD card

• Display with HDMI port

• HDMI cable

• USB mouse

• USB keyboard

Extract NOOBS*.zip
Download NOOBS_vX_Y_Z.zip (as of this writing, it was NOOBS_v1_3_4.zip but the filename may
be different by the time you read this) from http://raspberrypi.org/downloads.

You can also find all the important links mentioned in this book on http://
botbook.com, along with mirrored copies of some files.

Insert the SD card into your computer. Most SD cards are FAT32 formatted at the factory, so
unless you’re using an SD card that you’ve formatted yourself, extracting the NOOBS zip to the
SD card is enough. After you unzip the file, make sure that the bootcode.bin file is in the root
(top-level) directory of the SD card.

If you need to format the SD card, use the formatting tool from the SD Card Association.

In modern versions of Linux, Windows, and Mac you can just double-click or right-click the
NOOBS zip file to extract it. For older versions of Windows, you can install 7zip to let you extract
zip files.

Connect Cables
Connecting the cables is easy, because each cable will fit only its correct socket. Plug the mouse
and the keyboard into the Raspberry Pi’s USB ports. If you’re using an HDMI monitor, connect
an HDMI cable between the monitor and Raspberry Pi. If you’re using an NTSC or PAL monitor,
use a composite video cable to connect the yellow plug on the Raspberry Pi to the monitor.

Next, connect the micro USB cable to Raspberry to supply power. Plug that cable into either a
computer’s USB port or a 5 volt USB charger that provides at least 700 mA.

3Chapter 1

Raspberry Pi from Zero to First Boot

Boot and Install Raspbian
As soon as you connect power to the Raspberry Pi, it boots. No power switch is needed.

If nothing appears on the screen, you may need to select the right output mode for
the Raspberry Pi. The default output mode is HDMI, but if you are connected via
HDMI and see nothing, try pressing 2 on the keyboard connected to your Raspberry
Pi to select HDMI Safe Mode. If you are connected via the composite (yellow) con-
nector, press 3 for a PAL monitor or television, or 4 for an NTSC monitor or television.

You are greeted with a graphical menu of different operating systems as well as language
and keyboard type. Choose “Raspbian [RECOMMENDED]” (Figure 1-2) and select your lan-
guage and type of keyboard you’ll be using.

Figure 1-2. Choosing an operating system

If you know any Debian, Mint or Ubuntu, you will feel at home with this choice; if you don’t,
read on and you’ll still feel at home! Raspbian takes a few minutes to finish installing
(Figure 1-3). After the installer completes, it will indicate that it installed the operating
system successfully. Press Enter or click OK to reboot.

4 Make: Sensors

Raspberry Pi from Zero to First Boot

Figure 1-3. Raspbian installs

The Raspberry Pi configuration utility opens. Use arrow keys and Tab to navigate, and press
Enter/Return to select an option, as shown in Figure 1-4.

Figure 1-4. Changing your password

You’ll want to enable the Boot to Desktop option. When you have finished changing settings,
use Tab to select Finish and reboot when asked.

5Chapter 1

Raspberry Pi from Zero to First Boot

After the Raspberry Pi reboots, it will start up in a graphical desktop and will log you in
automatically.

If you have chosen not to enable Boot to Desktop, you’ll always start in the command-line
interface. Log in as “raspberry” with password “pi” (unless you changed the password).
After you log in, type startx to start the X Window System, which is the graphical desktop.

Welcome to Linux! You have now installed Raspbian on Raspberry Pi (Figure 1-5).

Figure 1-5. Welcome to Linux

To turn off your Raspberry Pi, double-click the Shutdown icon on the desktop. After
it finishes the power down process, you should unplug the power.

Troubleshooting Your Raspberry Pi Installation
Here are some solutions to common problems.

Is your card FAT32 formatted?
If you’re having trouble booting from the SD card, it might not be formatted correctly.
On Linux, use the built-in graphical partition editor (type sudo gparted to run it).
Format the entire disk to FAT. You can run another tool with the command sudo pal
impsest (or sudo gnome-disks) and for advanced users, sudo parted will get you into
a classic command-line partitioning tool. On Windows and Mac, use the SD Association
formatter (https://www.sdcard.org/downloads/formatter_4/). On Windows, choose the
“format size adjustment” option in the formatter. On Mac, use “Overwrite Format.”

6 Make: Sensors

Raspberry Pi from Zero to First Boot

Red power LED (PWR) not lit?
Power LED dim or blinking? Power LED briefly on but then goes off? Raspberry Pi is not
getting enough power. Connect a USB power supply that can provide 5 volts and 1 amp or
more. If you’re powering the Pi via a laptop USB, switch to a desktop computer’s USB or use
a powerful mobile phone or tablet charger.

Black screen (but red PWR LED lit)?
It’s possible that the Raspberry Pi can’t read the bootloader from the SD card. Power down,
remove the SD card, and reinsert it firmly. Verify that the first file used in the boot sequence,
bootcode.bin, is on the top level of the SD card. If the problem persists, format the SD card
and extract the NOOBS zip on it again. If that doesn’t help, try a different SD card.

Four colored boxes on the screen?
The bootloader was read from the SD card, but the operating system kernel.img failed to
boot. Format the SD card and extract the NOOBS zip again, or try another SD card.

Boot fails with some error messages?
Try disconnecting all USB devices, such as keyboard, mouse, and WiFi adapter (if you con-
nected one). Leave only the SD card, display, and power. Remove and insert the SD card to
ensure that it makes proper contact. If the problem persists, reformat the SD card and
extract the NOOBS zip on it again.

Messed up your operating system?
If normal commands don’t work, your screen is full of garbage, or Raspberry Pi stops working
suddenly, don’t worry. Hold down the Shift key on boot, and choose the option to reinstall
Raspbian. This is quite fast and easy, but it deletes all data on the memory card. If it doesn’t
help, reformat the card, extract the NOOBS zip to it, and go through the installation process
again.

No Internet?
If you have connected an Ethernet cable before boot, it should work like a charm in a typical
network. Check that the link present (LNK) light is lit on the Raspberry Pi. If LNK is not lit,
this means the Raspberry Pi thinks that one end of the Ethernet cable is not connected.
Typically, you should see 100 (indicating a 100 Mbit/s or faster connection), and FDX (full
duplex) should be lit. If LNK is lit and you still have problems, you may need some more
advanced troubleshooting commands like the following: ifconfig (displays network
adapter configuration), route -n (displays the routing table for the network connection),
cat /etc/resolv.conf (shows the nameserver in use), and ping -c 1 google.com (tells
you whether you can reach Google over the network).

If you get any error messages not mentioned here, try typing the exact error message into a
Google search. Be sure to use the exact error message shown. If the message appears as the
system is booting, take a photo of the screen with your camera or cell phone and transcribe it.

7Chapter 1

Raspberry Pi from Zero to First Boot

Feeling at Home in Linux

Raspberry Pi is Linux. Well, it’s built on Linux. The name “Linux” is used to describe the
operating system kernel and the operating system itself. The Linux operating system is
composed of the kernel as well as thousands of utilities and applications from various
sources.

Raspberry Pi is not a workstation-class device. In terms of computing power, it’s more
comparable to an entry-level portable tablet or a mobile phone. So even if you boot to its
graphical desktop, don’t expect to dump your laptop or desktop computer just yet. Ex-
tremely low computing power combined with little memory means that applications like
LibreOffice and Mozilla Firefox won’t be usable.

Command-Line Interface is Everywhere, Forever
Are you ready to feel the power of the $ prompt?

The command line has stood the test of time, and it might be something you’ll teach your
grandchildren. The commands you use all the time, like pwd, ls, or cat, existed long before
Linux was invented. (Linux was written by a Finnish student in Helsinki, just five kilometers
from the botanical garden where I’m writing this.) Power users on both OS X and Windows
dive down into the command line when they need to do something they can’t do with a
mouse alone.

Most of the commands you’ll use with Raspberry Pi are the same you’d use on a Mac or
Linux computer, and are similar even to the command-line tools on Windows.

As you may know, most of the world’s servers run Linux. Google, Facebook, Amazon, and
most supercomputers run Linux. Web servers don’t run a graphical user interface, so that’s
why most programmers and system administrators must know how to use the command-
line interface (CLI). You can use these commands on a Linux desktop or laptop, too.

The CLI Really Is Everywhere

If your smartphone is like many smartphones, it
runs Linux, and you can run some of these com-
mands on your phone. Android supports a limi-
ted subset of commands even without jailbreak-
ing or rooting (you’ll need a shell environment

app such as ZShaolin). Like Apple’s computers,
the iPhone and iPad are based on a distant cousin
of Linux, BSD, and you can access the CLI on a
jailbroken iPhone.

The CLI is easy to automate. Whatever commands you can type on the command prompt
(also known as the shell), you can also turn into a program. You just put each command
into a text file, one command per line (we show you how to do this in the next section).
Then you can run that program with dash filename (on Raspberry Pi, the shell is named
dash). Whenever you realize you’re typing the same 10 commands over and over, it’s time
to turn them into a script.

8 Make: Sensors

Feeling at Home in Linux

Even though CLI scripts are so easy to write that they are good for quick-and-dirty one-off
scripts, they are also suitable for serious, mission-critical applications. For example, Linux uses
scripts for booting and controlling daemons (server applications that run in the background).

Looking Around
After you boot your Raspberry Pi into the graphical user interface, you can start up the
command-line interface by double-clicking the LXTerminal icon on your desktop.

Besides being great for browsing the Web, the Midori web browser is useful if you want
to copy and paste some sample code from http://botbook.com.

The prompt $ means Linux is waiting for your command. Type pwd to print your current working
directory (where you are in the file system). Linux answers with a path, such as /home/pi/.

To list the files in the working directory, type ls and press Return or Enter. These are the files you
can readily manipulate. Whenever you get an error like No such file or directory, just use pwd to
see where you are and ls to see what files are in the working directory.

You will always need to type Return or Enter after you type a shell command such as
ls. Before you press Return/Enter, you can use the Backspace and arrow keys to edit the
command.

To edit (or create) a file called foo.txt, use nano foo.txt. Type some text, then press Control-X
to save it (when prompted whether to save, type y. When asked for the filename, just press Enter
or Return). To edit the file some more, type the command nano foo.txt again.

Text Files for Configuration
In Linux, most things are text files. With just the commands listed in the previous section, along
with the sudo command, a skillful hacker can change many system settings. All configuration
in Linux is stored in text files. System-wide configuration files are in the /etc/ directory and per
user configuration is in the user’s home directory, /home/pi/.

Even the Pi’s input and output pins can be manipulated by editing text files under the /sys/
directory. Later in this book, you will learn to connect sensors and LEDs to Raspberry using GPIO
pins.

If you connected the Pi to the network with an Ethernet cable before booting, your Raspberry
Pi should already be connected to the Internet. Test this by typing ping www.google.com. You’ll
see a result every second. Kill the command after a while by typing Control-C. If the network is
working well, it should report a packet loss of 0%. You can also download whole web pages
with commands like curl botbook.com and wget botbook.com.

9Chapter 1

Feeling at Home in Linux

sudo Make Me a Sandwich
Linux is well known for its robust security model. The separation of user privileges is one of
its key features. Normal users can make changes only to files that affect their working
environment. This means that they can modify files only in their home directory (/home/
pi/) and in temporary working directories such as /tmp/.

The super user, or root user, is all-powerful and can change any file on the system. To use
root’s privileges, put sudo in front of a command. Putting sudo in front of the command
runs that commands under the privileges of the root user.

For example, Raspbian’s package manager makes it very easy to install additional software,
but you need to use root’s privileges to install anything. Before you install new software,
you need to update the list of what’s available with sudo apt-get update. This requires a
network connection because all the software packages are on a file server.

Many Linux and Unix systems (such as OS X) are configured such that you need to
type your user password when you use sudo. This is an extra safety step. By default,
Raspberry Pi’s Raspbian operating system does not ask for this. Be careful using
sudo, because you can easily make mistakes that would render the operating system
unbootable.

You can install any program from a repository by specifying its package name. To install
ipython (an interactive tool for experimenting with the Python language and data visual-
ization), use sudo apt-get -y install ipython. The -y parameter tells the package man-
ager to assume a “yes” answer to any questions it asks. The package manager (apt) does
everything for you.

After a moment, you can run the newly installed package by typing ipython. Any python
command will work here, but exit() will get you back to the command prompt (“$”), where
you can type shell commands.

Different prompts are one way of indicating which program you’re talking to. When
you see the shell, or command prompt ($), you can type the name of built-in shell
commands as well as programs installed on your Raspberry Pi. When you see
another prompt, such as the ipython prompt (In [1]:), you can type Python
commands.

Installing daemons (also known as servers) is just as easy. Try installing the most popular
web server in the planet, Apache, with this command: sudo apt-get -y install

apache2. When it finishes, you can pull down your web server’s raw home page with curl
localhost. To browse your Apache web server from another computer, determine your IP

10 Make: Sensors

Feeling at Home in Linux

address with the output of the ifconfig command and type that address into a web browser
on another computer connected to your network.

You will see at least two adapters listed in the output of ifconfig. Use the Ethernet
adapter’s (eth0) address, or if you’re using WiFi, use that adapter’s address.

Phew! That was a lot of command line if you are (were) a beginner. To give yourself a well-earned
break, power off the Raspberry Pi by typing the command sudo shutdown -P now. Just like you
do on your workstation, you must shut down properly so that data gets actually written to disk
before you power off. Once it shuts down, you can unplug it from the USB power source. When
you’re ready to use it again, plug it back in.

Still wondering what we’re talking about with the sudo sandwich? Try searching the Web for
“xkcd sudo sandwich.” You can use the rest of your break to read some of the other comics there.

See Appendix A for a cheat sheet of Linux commands.

One Handed Wonder

We sometimes ask Linux students to guess how
long it takes me to type “supercalifragilisticexpiali-
docious.foo.bar.txt.botbook.com.pdf.cc” with my
left hand. After some guesses, we’ll test it. As a prep-
aration, I create the file with this command (type it
all on one line with no space between foo. and
bar):

$ nano
supercalifragilisticexpialidocious.foo
.bar.txt.botbook.com.pdf.cc

I count down to three, and type this in less than five
seconds:

$ ls
supercalifragilisticexpialidocious.foo
.bar.txt.botbook.com.pdf.cc

In reality, I just need to type ls s and press Tab. The
shell will complete the word you’re typing after you
press Tab. You should use this feature all the time.
It’s weird how well Tab works. It can guess not only
directories and files but also network servers after
commands like ssh and ping. Because Tab com-
pletes only correct filenames, you won’t be making
many typos.

Connecting Electronics to Raspberry Pi Pins

The Pi’s GPIO (general-purpose input and output) pins let you connect electronic components
directly to the Raspberry Pi. These pins are called general purpose because you can decide what
purpose they serve, and you can even configure the same pin to be an input or an output at
different times. Throughout this book, you will learn the following:

• Digital output (turn an LED on and off)

• Digital resistance (detect whether a button is pressed or a sensor is active)

11Chapter 1

Connecting Electronics to Raspberry Pi Pins

• Digital input for very short pulses (used by sensors such as a distance sensor)

• Analog resistance (analog resistance sensors for pressure, light, temperature)

• Industry standard protocols, such as I2C and SPI (used by the Wii Nunchuk and analog-
to-digital converters)

Unlike most other tutorials available at the time of writing, we’ll teach you how to use
digital input and output without having to invoke root privileges all the time. This provides
security and stability benefits.

For digital input, you’ll learn to use the Pi’s internal pull-up resistor, so that your circuit uses
a minimum number of components.

For measuring analog resistance, you’ll use an external analog-digital converter chip.

Many components in everyday products communicate over industry standard protocols,
such as I2C and SPI. You will see examples of both protocols later in the book.

But first, let’s show you how to use the most basic form of digital output.

Hello GPIO, Blink an LED
In this “Hello GPIO World” example, you’ll attach a new LED to Raspberry Pi and blink it.

We start all of our projects with a “Hello World” on any platform, on any language. So
whenever you are about to build something more complicated, it’s a good idea to build
this “Hello GPIO World” first. This lets you confirm that the hardware and software are
functioning at the most basic level. If your “Hello World” example doesn’t work, you need
to fix it before trying something more complicated.

Parts needed:

• Raspberry Pi

• Female-to-male jumper wires, black and green or yellow color

• Solderless breadboard

• 470 Ohm resistor (yellow-violet-brown stripes)

• An LED

If you don’t have all the parts at hand, see “Troubleshooting” on page 17 for suggestions.
For wires, a female connector is one that has a receptacle and a male connector is one that
has an extending pin. You will often see female abbreviated as F and male abbreviated as
M, along with other characteristics of the connector, such as its length. The type of female-
to-male jumper wires you need are typically sold as “male to female breadboard jumper
wires.”

12 Make: Sensors

Connecting Electronics to Raspberry Pi Pins

GPIO pins are not protected against overcurrent (Figure 1-6). Unlike Arduino, Raspberry
Pi is not forgiving on user mistakes. Data pins can take only 3.3 V. Connecting a +5 V pin
to a data pin can easily break your Raspberry Pi, or at a minimum, render that pin un-
usable. Double-check anything that you build on a breadboard, and be very careful
where you place any test probes if you use a multimeter with the GPIO pins.

Figure 1-6. GPIO header

Building the Circuit
The circuit is simply an LED with a current limiting resistor, connected in series between GPIO
pin 27 and ground (Figure 1-7). Connect the short (negative) lead of the LED to the black wire,
and the long (positive) lead to the resistor. You should make these connections while the Rasp-
berry Pi is shut down and unplugged.

13Chapter 1

Connecting Electronics to Raspberry Pi Pins

Figure 1-7. LED hello breadboard

Build the circuit on the breadboard (Figure 1-8). Double-check all connections to avoid
breaking your Raspberry Pi. After you’re sure you’ve connected the wires correctly, you can
power up your Pi.

To learn about how the Raspberry Pi’s pins are numbered, read on.

Figure 1-8. Hello GPIO!

14 Make: Sensors

Connecting Electronics to Raspberry Pi Pins

Two Numbering Systems: Purpose and Location
Each GPIO pin has two numbers: purpose and physical location. To find the correct pin in the
GPIO header, you should learn to convert between the two numbering systems.

Locate the GPIO pin header on Raspberry Pi (Figure 1-6). When converting between purpose
and physical location numbers, use the numbering diagram (Figure 1-9).

Figure 1-9. GPIO numbering

The left side of the numbering diagram shows the purpose of the pins (GND, GPIO 27). The right
side of the numbering diagram shows the physical location (1 to 26).

The physical pin header has a running number, from 1 to 26. There is a tiny white box drawn
near pin one, and it is also labeled P1. This physical pin header number tells you where to insert
the jumper wire. These physical numbers are also known as board numbers.

There is also another, purpose-based numbering. The code you’ll be writing uses GPIO numbers,
such as GPIO 27, which corresponds to physical pin 13 (which is the pin you connected to the
resistor with a wire). Circuit diagrams are likely to refer to ground (GND), +5 V, and +3.3 V, and
Figure 1-9 will help you find them. Some pins can have multiple purposes. For example, GPIO
10 can be used for the SPI bus. These purpose-based numbers are also known as BCM numbers.

To help you get started, the two pins used here are listed in Table 1-1. For future projects, learn
to find these numbers in the numbering diagram (Figure 1-9).

Table 1-1. Pins used in Hello GPIO

GPIO pin (BCM, used in code) Physical location (Board)

GPIO 27 13

GND 6

15Chapter 1

Connecting Electronics to Raspberry Pi Pins

Controlling GPIO Pins from the CLI
Let’s see how to use the command-line interface to control the GPIO pins we just connec-
ted. First you’ll try it out as root, then advance to using it without needing to invoke sudo
privileges each time.

Text files control everything in Linux. The kernel GPIO driver (a piece of software that
controls how Linux talks to GPIO pins) makes the GPIO pins available to you through the
virtual /sys/ file system. To control GPIO, you simply edit or otherwise make changes to
these text files.

You don’t need a graphical user interface at this point, so we can do everything from the
LXTerminal command-line interface. Double-click its icon to launch it.

If you configured your Raspberry Pi to not start in the graphical interface, or if you’ve
used SSH to connect to it remotely from another computer, you don’t need to start
up the graphical desktop system to try this out.

To turn on the pin, you first export it, configure it for “out” mode, and write the number “1”
to it. All this is done by editing text files.

Writing to Files Without an Editor
Earlier, you saw how to modify the contents of a file with the nano text editor. Here’s how
you can modify files without needing the editor.

First, let’s look at how to display text. You can print text to the terminal using this command
(don’t type the $; it indicates the shell prompt):

$ echo "Hello BotBook"

Any text you display this way can also be redirected to overwrite a file (be careful using
this, and don’t overwrite anything important):

$ echo "Hello BotBook" > foo.txt

If the file foo.txt, did not exist, it will be created. If it existed, it was overwritten without
warning. You can use the > (redirection) operator to send the output of almost any com-
mand to a text file. You can see what’s inside that file with the cat command:

$ cat foo.txt

Hello BotBook

Couldn’t you just use nano foo.txt? Yes, of course you could. But it requires more typing,
and it’s not as easy to automate.

16 Make: Sensors

Connecting Electronics to Raspberry Pi Pins

Light Up the LED
We’ll use sudo the first time through lighting an LED. Does it feel wrong to use root for non-
administrative tasks? If not, it should; if you mistype a command with sudo, you can potentially
render your operating system unusable and will need to reinstall it.

Don’t worry, you’ll use sudo just to initially try it. Later, you’ll fix Linux’s file permissions and
interact with the files that control GPIOs as a normal user.

Type sudo -i to get a root shell. Use root shell only as long as required by this task, and type
exit when you’re done. You’ll notice that your prompt changes to a hash mark, #. Be careful
what you type as root, as mistakes can break your operating system.

After you start the root shell, export GPIO pin 27 to be able to manipulate it (remember, just
type the text to the right of the # shell prompt):

echo "27">/sys/class/gpio/export

This creates the new virtual file you’ll use to blink the LED. Next, set pin 27 to out mode, so that
you can turn it on and off.

echo "out" > /sys/class/gpio/gpio27/direction

Now turn on the pin:

echo "1" > /sys/class/gpio/gpio27/value

Your LED should light up now. Once you have enjoyed the light for a while, turn it off:

echo "0" > /sys/class/gpio/gpio27/value

Did your LED light up? Hello, GPIO world!

Once you are done with playing root, remember to type exit. Your prompt should return to
the dollar sign symbol $, indicating that you are working with the shell as a normal user.

Troubleshooting
If you had trouble setting things up, check out the following:

Lacking a 470 Ohm resistor?
Use any resistor in the hundreds of ohms range to take only a minor risk with your board.
The resistor is just used for limiting current through the LED, to avoid frying the LED or the
pins on the Raspberry Pi. If you don’t mind the LED being a bit too dim or slightly over-
worked, you can use any resistor value between 100 Ohm and just under 1 kOhm. (Such
resistors will have a brown third stripe; see “The Third Stripe Rule” on page 19.)

Can’t find female-male jumper wires?
You can use an old 40-wire IDE hard drive cable (not 80-wire). Put the female side of the
cable into GPIO header. Cut the other end. Pay attention to wire numbers. If you don’t need
all the wires, don’t strip them. If you strip them all, at least use tape to cover +5 V wire ends.
See http://bit.ly/1f0GWfV for a tutorial on using an old IDE cable. There are also many ready-

17Chapter 1

Connecting Electronics to Raspberry Pi Pins

made connectors available such as this one from Adafruit. MAKE’s Raspberry Pi Starter
Kit, which includes a Raspberry Pi, includes the cable and a breadboard-ready breakout
board.

My LED does not light
Did you insert it the right way? LEDs have polarity, and if you insert them backward,
they won’t light up. The long positive leg of the LED goes to GPIO 27 (through the
resistor). The negative side of the LED has a flattened area in the plastic body of the
lamp, and a shorter lead than the positive lead. The negative side of the LED goes to
ground. The arrow in Figure 1-10 is pointing to the cathode. You may need to look
closely to see the flattened part at the base of the LED package. If you have trouble
seeing it, grab an LED and check it out yourself.

Figure 1-10. LED polarity

Nothing happens when I type root commands
Don’t type the prompt (#); that is shown in the previous examples to show you what
you’ll see on your Raspberry Pi screen. The shell shows that prompt when it is waiting
for you to type a command while in a root shell. You wouldn’t type the normal user
prompt “$” either, would you? The hash symbol has special meaning to the shell: it
means that the rest of the line is a comment (a human-readable remark you leave in
a program), and is ignored by the shell.

18 Make: Sensors

Connecting Electronics to Raspberry Pi Pins

I can’t access the shell
Review the instructions in “Looking Around” on page 9.

I get an error message
Copy and paste the exact error message into a search engine like Google. Also try putting
quotes around your error message. You can try “Raspbian” or “Raspberry Pi” as additional
search terms. When you solve your problem, it’s a good idea to blog about it and include
the exact error message in your blog post so other people searching can find it.

The Third Stripe Rule

The third stripe trick identifies a resistor easily. You
can quickly find a resistor with approximately the
value you are looking for by looking at the multiplier
ring. The multiplier ring is usually the third one (with
five band resistors, the multiplier is the fourth ring).
In many connections, the exact value of resistor is
not important as long as it’s near enough.

For example, 10 kOhm resistor has kilo (thousand,

103) multiplier, 3: orange. A resistor from 10 MOhm

to 50 MOhm has mega (million, 106) multiplier, so
the third stripe is 6: blue.

For calculating all the color bands, search the Web
for “resistor color code calculator.” To double-check
your resistor identification, measure the resistance
with a multimeter.

GPIO Without Root

Avoiding root privileges will make the system more secure and more stable. For example, think
about a program that serves sensor data to web. Would you run a program that strangers can
connect to as root?

Before you begin, make sure that you can turn the LED on and off (“Light Up the LED” on page
17).

In modern versions of Linux, devices attached to your system are controlled by udev. Udev is a
rule-based system that can run scripts when devices are plugged in. If you have developed apps
for Android under Linux, you may have created a udev rule to modify permissions when your
cell phone is plugged into the computer. If you have developed with Arduino on Linux, you
have probably added yourself to the dialout group to get access to serial over USB.

Normally, the GPIO files in /sys/class/gpio/ are owned by the user “root” and the group “root.”
You’ll see how to write a udev rule to change the group to “dialout.” You’ll then allow that group
to read and write the files under /sys/class/gpio/. Finally, you’ll make the folders’ group sticky,
so that any newly created files and folders under it will also be owned by the “dialout” group.

All system-wide configuration in Linux is under /etc/. Not surprisingly, udev configuration is
in /etc/udev/. First, open an editor with sudoedit so you can create a new rule file:

$ sudoedit /etc/udev/rules.d/88-gpio-without-root.rules

19Chapter 1

GPIO Without Root

Add the text shown in Example 1-1 to the file. Be sure to type each line as shown (don’t
type the numeric symbols; those are there to explain to you what is going on in this file).
Udev rules are very sensitive to typos.

Example 1-1. 88-gpio-without-root.rules
/etc/udev/rules.d/88-gpio-without-root.rules - GPIO without root on Raspberry Pi #
Copyright 2013 http://BotBook.com

SUBSYSTEM=="gpio", RUN+="/bin/chown -R root.dialout /sys/class/gpio/"
SUBSYSTEM=="gpio", RUN+="/bin/chown -R root.dialout /sys/devices/virtual/gpio/"

SUBSYSTEM=="gpio", RUN+="/bin/chmod g+s /sys/class/gpio/"
SUBSYSTEM=="gpio", RUN+="/bin/chmod g+s /sys/devices/virtual/gpio/"

SUBSYSTEM=="gpio", RUN+="/bin/chmod -R ug+rw /sys/class/gpio/"
SUBSYSTEM=="gpio", RUN+="/bin/chmod -R ug+rw /sys/devices/virtual/gpio/"

This comment explains the purpose of the file.

Sets the owner of the two directories to be root, and the group to be dialout.

Sets the sticky bit flag on these two directories.

Configures the permissions on the directories to give members of the dialout group
read and write permission.

The rules are processed in numeric order, but this is probably the only rule affecting the
GPIO directories, so the number does not matter. In Morse code (CW), 88 is short for hugs
and kisses. We prefer it over the often-picked number 99, which means “get lost.”

To avoid typing and inevitable typos, you can download a copy of the 88-gpio-without-
root.rules file from http://botbook.com.

Save the file (Control-X, press y, and then press Enter).

To use your new rules, restart the udev daemon and trigger your new rule with these
commands:

$ sudo service udev restart
$ sudo udevadm trigger --subsystem-match=gpio

In modern Linux, all daemons (“servers”) are controlled with scripts. So you could
just as easily tell the Apache web server to reread its configuration with sudo ser
vice apache2 reload. Or you can make SSH server restart (stop and start) with
sudo service ssh restart.

Next, check whether the ownership is correct:

20 Make: Sensors

GPIO Without Root

$ ls -lR /sys/class/gpio/

The listing should mention the “dialout” group many times. The parameter -l means to display
a long listing (with owner, group, permissions), and -R means recursively list directory contents,
too.

Let’s try GPIO without root now. Notice that our prompt is a dollar sign ($), indicating that we’re
running as a normal user.

$ echo "27" > /sys/class/gpio/unexport
$ echo "27" > /sys/class/gpio/export
$ echo "out" > /sys/class/gpio/gpio27/direction
$ echo "1" > /sys/class/gpio/gpio27/value

The first command unexports the GPIO so that the export command doesn’t get an error.

The LED should be lit now. You can turn it off with this:

$ echo "0" > /sys/class/gpio/gpio27/value

Can you control the LED as a normal user? Well done!

This paves the way to use GPIO from almost any programming language.

Troubleshooting GPIO
File permissions have not changed

If ls -lR /sys/class/gpio/ does not show “dialout,” the most likely cause is a typo in the
rule file /etc/udev/rules.d/88-gpio-without-root.rules. Download the file from http://
botbook.com and move it to the right place (for example, sudo mv 88-gpio-without-
root.rules /etc/udev/rules.d/). To make Linux use the new rules, use sudo service udev
restart or reboot with sudo shutdown -r now.

The LED is not lit
Try it as root first (“Light Up the LED” on page 17) to make sure it works.

I get an error message
Write it down and search the Web for it.

GPIO in Python

You can use GPIO from Python by just writing and reading files in /sys/. This is the same method
you used earlier with the shell.

Hello Python
As always, start with a “Hello World” to test your environment. Using a text editor, create the
file:

21Chapter 1

GPIO in Python

$ nano hello.py

If you can’t save the file, you might have used the cd command to navigate to part
of the file system where you don’t have permissions. Type cd ~ to return to your
home directory and try it again.

The file needs only one line:

print "Hello world!"

Save the file (in nano, you save with Control-X, then type y and press Enter/Return).

Now run your program:

$ python hello.py

Hello world!

Running the python command without any parameters starts an interactive con-
sole. See also “The Python Console” on page 221.

Python GPIO
Let’s blink the LED connected to GPIO pin 27. Wire up the LED if you don’t still have it set
up from the earlier experiment (Figure 1-7). Save the code in Example 1-2 to a file called
led_hello.py on your Raspberry Pi and run it:

$ python led_hello.py

Blinking LED on GPIO 27 once...

Did your LED light up for two seconds? Hello, GPIO!

Any problems? Read on to code explanation and troubleshooting. “Hello World” is the
right place to solve these problems. Whenever you have problems with more complicated
code, make sure that you can still run this “Hello World.”

Example 1-2. led_hello.py
led_hello.py - light a LED using Raspberry Pi GPIO
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time #
import os

def writeFile(filename, contents): #
 with open(filename, 'w') as f: #
 f.write(contents)

22 Make: Sensors

GPIO in Python

main

print "Blinking LED on GPIO 27 once..." #

if not os.path.isfile("/sys/class/gpio/gpio27/direction"): #
 writeFile("/sys/class/gpio/export", "27") #

time.sleep(0.1)
writeFile("/sys/class/gpio/gpio27/direction", "out") #

writeFile("/sys/class/gpio/gpio27/value", "1") #
time.sleep(2) # seconds #
writeFile("/sys/class/gpio/gpio27/value", "0") #

Import the libraries you need. Each library has namespace with the same name as the
library, so all commands you use from time start with that word, like time.sleep(2).

Define a new helper function for writing files. The function only runs later, when it’s
called.

The modern way to access files in Python is the “with” syntax. That will automatically
handle closing the file in case of any exceptions. In open(), filename could be /sys/class/
gpio/gpio27/direction and w means to open it for writing. This creates a new file handle
f that we use for the actual file operations.

Even though you want to blink an LED, it’s a good idea to print something on the screen
to confirm that the program runs. In Python this is not critical, as Python can print quite
good traceback error messages that explain what went wrong.

Check that the pin is not already exported. Otherwise, the second run would result in
“IOError: [Errno 16] Device or resource busy.” This style of checking the conditions first
is sometimes called “asking for permission.” Another style, not used here, is to “ask for
forgiveness” and use try...except. We chose “asking for permission” here so that we
can use an if-clause and keep the program simple.

Export the pin. This creates all the files for controlling the pin, like direction and value.

Because you want to write to the pin to set it on or off, you set the direction to “out.” If
you want to read the value, you’d set the direction to “in.” If you are familiar with Arduino,
you might remember a similar Arduino command pinMode().

Set the value to “1” to light the LED. The value “1” means that the pin is set to 3.3 V, the
HIGH level of a Raspberry Pi GPIO pin.

Wait for two seconds. It’s a good idea to put units in comments at least once for each
function or variable so that others reading your code know what you were planning.
During this time, the pins are left in their current state. In this case, GPIO 27 is “1” and
lights the LED.

Set the value to “0” to turn off the LED.

23Chapter 1

GPIO in Python

Troubleshooting
You receive a permission denied error

If you get an error like IOError: [Errno 13] Permission denied or IOError: [Errno
2] No such file, you can live dangerously and try running as root:

$ sudo python led_hello.py # for testing only

If it works correctly as root, good! You can now fix the permissions on the GPIO virtual
files (“GPIO Without Root” on page 19). If you still have the same problem, reboot
Raspberry Pi by shutting down, unplugging power, and plugging it back in. If all goes
well, you can run it the correct way, as a normal user:

$ python led_hello.py

LED does not light, but the program doesn’t give any errors
Check the LED polarity and connections. Check that you have connected the jumper
wires to the correct pins on the GPIO header (Figure 1-9). If that doesn’t help, you can
use a multimeter to verify that you used the correct resistor (e.g., 470 Ohm). You can
test the LED with a circuit that just has a battery, the resistor, and the LED in series. This
will tell you whether the LED works.

What’s Next?
You have now set up your own $35 Linux environment. And you can even wire it directly
to hardware. This means you have combined the power of Linux and electronics.

The system administration techniques you have been practicing are leading you in the
right direction. It’s always good to use minimum (non-root) privileges whenever possible.

To keep playing with your Raspberry Pi, you can now move ahead to the sensor projects
in this book. The individual sensor examples teach you how to use digital input, analog
input, industry standard protocols, and to measure pulse length with an interrupt.

You can apply your new system administration and GPIO skills with all the sensors in this
book. Raspberry Pi usually shines with sensors that use more advanced protocols. This
advantage is clear with I2C sensors such as Wii Nunchuk, MPU 6050 accelerometer-gyro,
and the GY65 atmospheric pressure sensor.

Welcome to embedded Linux!

24 Make: Sensors

GPIO in Python

Arduino is a simple and robust development board (Figure 2-1). It’s one of the simplest options
available for making the electronics world programmable, and it’s extremely reliable as well.

Figure 2-1. Arduino connections

25

Arduino 2

It doesn’t take much to get started with Arduino. To make something interesting happen,
you just need an Arduino Uno and a USB cable; together, it shouldn’t cost more than $35
or $40 USD. The software is free (the source code is available for people to use, study,
modify, and share with others).

First, we’ll show you how to install the Arduino development environment (often called
IDE, or integrated development environment) on your computer. After that, you’ll plug in
a USB cable and upload your first program (called a sketch in Arduino parlance). There’s
only one program you install on the Arduino—the sketch that you’re running. Aside from
that, there’s nothing else to maintain because, unlike with Raspberry Pi, Arduino has no
operating system. It’s just you, your program, and the bare metal.

There’s one more piece, actually. Arduino has a bootloader that occupies a small
amount of the chip’s available storage. The bootloader is a small program that runs
briefly when you power up or reset the board, and lets you load programs over USB
without the need for a separate hardware programmer device.

The Arduino Uno is robust. It’s unlikely to suffer damage even if you were to connect a wire
the wrong way (but don’t get too careless because, with enough abuse, it is possible to fry
a pin on the Arduino).

It’s very easy to learn Arduino. Beginners can accomplish a lot of things just by turning pins
on and off. Unlike with Raspberry Pi, you can plug analog resistance sensors directly into
the Arduino without needing external hardware, because Arduino has a built-in analog-
to-digital converter.

Basic Arduino Setup

Here’s how to get set up with Arduino on Linux, Windows, and Mac.

Ubuntu Linux
Connect Arduino to your computer with a USB cable. Arduino draws power directly from
USB, so no external power supply is needed. Start the terminal application.

You can start the command-line terminal in many ways. You can open it in the main
menu with Applications→Accessories→Terminal (on Xubuntu and other XFCE-
based distributions such as Debian with XFCE). Super-T, also known as the ugly
key or Windows key, works on many desktops. If you are using Unity in the standard
Ubuntu distribution, search for “Terminal” in Dash (top-left corner).

26 Make: Sensors

Basic Arduino Setup

To install the Arduino IDE, install the arduino package. Here’s how you’d do it on Ubuntu Linux:

$ sudo apt-get update
$ sudo apt-get -y install arduino

Give yourself the permission to access the serial over USB port (this is required by the Arduino
development environment to function). The first command adds you to the dialout group, and
the second command switches you into that group without you needing to log out and back
in again:

$ sudo adduser $(whoami) dialout
$ newgrp dialout

Start Arduino:

$ arduino

The Arduino IDE opens.

After you have logged out and back in, you can also start Arduino IDE from the menus.

Now you’re ready to test your installation. See “Hello World” on page 28.

Windows 7 and Windows 8
Download the latest version of the Arduino Software from http://arduino.cc/en/Main/Software.
Unzip the file you downloaded to any location that you find suitable (your Desktop or Down-
loads directory for example).

Connect your Arduino Uno to your computer with a USB cable. Arduino draws power directly
from USB, so no external power supply is needed. Windows will start an automatic installation
process for the Arduino drivers. It may fail after a while and display an error dialog.

If it fails to install the driver:

1. Open Windows Explorer, right-click Computer, and choose Manage.

2. From Computer Management, choose Device Manager on the left. Locate Arduino Uno in
the device list, right-click it, and choose Update Driver Software.

3. Choose “Browse my computer for driver software.” Navigate to the Arduino folder you
extracted, open the drivers directory, choose arduino.inf, and click Next.

4. Windows will now install the driver.

Launch the Arduino IDE by double-clicking the Arduino icon inside the folder you unzipped.

Time to test your installation; see “Hello World” on page 28.

OS X
Download the latest version of the Arduino Software from http://arduino.cc/en/Main/Software.
Unzip the file you downloaded, and copy it to your /Applications folder.

27Chapter 2

Basic Arduino Setup

Connect your Arduino Uno to your computer with a USB cable. Arduino draws power
directly from USB, so no external power supply is needed. You don’t need to install a driver
for OS X.

Launch the Arduino IDE by double-clicking the Arduino icon in the /Applications folder.

Time to test your installation; see “Hello World” on page 28.

Hello World
Now that you have Arduino the IDE open, you can run the Arduino equivalent of “Hello
World.”

First, confirm that you have the correct board selected. The Arduino Uno is the default. If
you have another board, such as a Mega or a Leonardo, choose it from the Tools→Board
menu.

Now you need to load the Blink test program. Choose File→Examples→1.Basics→Blink. Click
the Upload button (or choose File→Upload) to compile and upload your program to
Arduino.

The first time you do this, Arduino may display an error popup: “Serial port COM1 not
found.” That’s because you haven’t chosen which serial port to use (the connection be-
tween your computer and Arduino is represented as a USB serial port). Select your serial
port from the drop-down menu. On Linux, it’s probably /dev/ttyACM0. On Mac, it may be
something like /dev/usbmodem1234, and on Windows, it’s one of the COM ports.

If you see a different error message instead of a request to choose a serial port,
choose your serial port from Tools→Port. If you can’t figure out which port Arduino
is connected to, pay attention to the ports listed, unplug the Arduino, and make a
note as to which port went away. That’s the Arduino port. OS X lists each port twice,
for example as /dev/cu.usbmodem1234 and /dev/tty.usbmodem1234. Either one
will work.

While the program is uploading, Arduino’s TX and RX (transmit and receive) lights blink
rapidly. Finally, when the program is running, the tiny light labeled “L” is blinking.

The L LED blinking means that everything was successfully installed, and you just got your
first sketch running.

Congratulations! Remember this simple procedure: if you ever get so stuck you are won-
dering whether Arduino is even running your code at all, return to this “Hello World” ex-
ample. Whenever you start a new program, start with a “Hello World” to make sure every-
thing is working.

28 Make: Sensors

Basic Arduino Setup

Anatomy of an Arduino Program
An Arduino program starts by executing the code inside the setup() function once. After that,
the code inside loop() is repeated forever (or until you disconnect the power). See Example 2-1.

Example 2-1. blink.ino
// blink.ino - blink L LED to test development environment
// (c) BotBook.com - Karvinen, Karvinen, Valtokari
void setup() { //
 pinMode(13, OUTPUT); //
}

void loop() { //
 digitalWrite(13, HIGH); //
 delay(1000); // ms //
 digitalWrite(13, LOW);
 delay(1000);
}

When Arduino boots, it executes setup() once.

Configures digital pin D13 to be in OUTPUT mode, so that you can control it from your
program.

After setup() has finished, Arduino calls loop(). After loop() finishes, it’s called again.
And again. Forever.

Sets D13 to be HIGH, which indicates Arduino is giving the pin +5 V.

During the delay, the pins stay as they are. Here, D13 stays HIGH, so the Arduino’s built-
in L LED stays lit. During the next delay, it’s LOW, so it’s off. On for one second (1000
milliseconds), and off for one second. Forever.

Shields Make It Easy and Robust
Shields are boards that attach on top of Arduino and extend its features or make it more usable
(Figure 2-2). There are many different shields available, from simple prototyping shields to more
complex shields such as an Ethernet or WiFi shield. One of the best things about shields is how
they reduce the need for extra wires; this is because they stack on top of the Arduino and use
pin-to-pin connections instead of jumper wires. Of course there won’t always be a shield for
your needs, but they are one good option to keep in mind.

Some shields don’t have any electronics on them, but are simply designed to help you proto-
type: these usually bring out the Arduino header pins so they are adjacent to a solderless
breadboard so you can easily connect jumper wires. Our all-time favorite is the priceless Screw-
Shield, which adds “wings” with terminal blocks to both sides of Arduino. This eliminates loose
wires, which is likely the most annoying thing about building prototypes.

29Chapter 2

Basic Arduino Setup

You can also consider building your own shields to make easy-to-use and robust Arduino
add-ons Figure 2-3. Just solder pin headers to a circuit board so that they match the pin
layout of Arduino.

Figure 2-2. Shields

Figure 2-3. Shields made by Andreas Zingerle

30 Make: Sensors

Basic Arduino Setup

How far is it? An ultrasonic distance sensor is one of the most popular
sensors in the embedded courses we teach. A robot must know when an
obstacle is near if it is to navigate around it. And isn’t it more convenient
to just wave your hand in the air instead of clicking a physical button?
A burglar alarm can detect an intruder by noticing change in distance
or heat pattern. Your home, office, or school probably has an alarm like
that.

The two most common ways to measure distance are sound echoes and light reflection. To
avoid annoying people with constant beeping and blinking, the sound frequency is usually so
high that humans can’t hear it, and the light frequency is so low humans can’t see it. The high-
frequency sound is ultrasonic, and the low-frequency light is infrared.

Even though infrared is invisible, we’ll show you how you can observe it with some com-
mon household items.

An ultrasonic sensor can provide exact distance readings. For example, it could tell you that the
distance to an object is 36 cm.

To detect the proximity of humans and other living things, sensors can detect the heat they
radiate. This lets you detect the presence of hot things in the measured area, but not their exact
distance. There are many ways for heat to move: conduction, convection, and radiation. A
passive infrared sensor measures radiated heat in the form of infrared light.

In contrast to passive infrared sensors, an active infrared distance sensor sends invisible light
and tests whether it reflects back. It can tell if something is closer than a given distance. For
example, an active infrared sensor could tell you that there is an object closer than 30 cm, but
it wouldn’t know if it’s 5 cm or 29 cm away. As a rare exception, some sensors estimate distance
from reflected infrared light.

31

Distance 3

A common use for active infrared is an automatic faucet and automatic hand dryer in a
public toilet. Some automatic trashes open their lids when you go near them. Infrared light
makes things more hygienic, as you don’t have to touch objects that many other people
have touched.

Long-distance range finders can use a laser beam to measure distance. Most of them are
based on factoring in the speed of light and the time it takes for a beam to be reflected.
Because light is very fast, the circuit must be able to do very precise timing. This makes
them quite expensive (prices start from $100 USD). They are far less commonly used for
prototyping with Arduino or Raspberry Pi than sound and IR.

Experiment: Measure Distance with Ultrasonic Sound
(PING)

Ping, 1, 2, 3… pong. An ultrasonic sensor sends a sound, and then measures the time for
the echo to return. Because you know that sound moves at about 330 meters per second,
your program can calculate the distance.

Nowadays, there are many cheap ultrasonic sensors inspired by the Ping sensor from Par-
allax (Figure 3-1). Later in this chapter, you’ll see some code for one of these cheap sensors,
the HC-SR04 (“HC-SR04 Ultrasonic Sensor” on page 38). To better understand all the other
ultrasonic sensors similar to Ping, it’s useful to be familiar with the original, so we’ll show
you some code for that next. Also, many universities, hackerspaces, and makerspaces al-
ready have Ping sensors in their collections, so it’s a good one to know.

To understand how an ultrasonic sensor measures distance, see “Echo Calculations
Explained” on page 42.

Ping is an older, popular sensor by Parallax. Compared with the alternatives, it’s a bit ex-
pensive, about $30 USD. If you need a lot of distance sensors, you might want something
cheaper, but if you’re just buying one, Ping is a great choice. The similar HC-SR04 costs only
a couple of dollars, and the only difference in configuration between the Ping and HC-SR04
is one pin. (HC-SR04 uses one pin to trigger sending a pulse and another to read the echo.)
The sensors have almost identical code.

32 Make: Sensors

Experiment: Measure Distance with Ultrasonic Sound (PING)

Figure 3-1. Ping sensor

Ping Code and Connections for Arduino
Figure 3-2 shows the wiring diagram for the Ping sensor and Arduino. Build the circuit, and then
compile and upload the code using the Arduino IDE.

You can download the example code from http://makesensors.botbook.com.

To see the readings, use the serial monitor (Arduino IDE→Tools→Serial Monitor). If you get gib-
berish instead of text, make sure that you specify the same speed (bit/s or “baud”) in both your
code (Serial.begin) and the Arduino Serial Monitor.

Even though there is a lot of code in this example, it’s easy to reuse it so you can measure distance
in your own projects. Just copy the supporting parts of the code (the distanceCm() function
and global variables) and paste them into your own code. You can then measure distance with
this line of code:

int d=distanceCm();

Because Ping works by listening to the echo of sound, its placement is quite important. If you
always get the same reading (such as 2 cm), make sure that the wide beam of sound isn’t

33Chapter 3

Experiment: Measure Distance with Ultrasonic Sound (PING)

bouncing off of something, like the edge of your breadboard or a table. If you put Ping
onto the edge of a breadboard, you’re not going to get reflections from it.

You can easily put Ping farther away from Arduino by using a servo extension cable, of the
male-female type. Ping has just three pins, so it fits this type of cable perfectly.

Example 3-1 shows the complete code for reading a Ping ultrasonic distance sensor.

Figure 3-2. Ping sensor circuit for Arduino

Example 3-1. distance_ping.ino
// distance_ping.ino - distance using ultrasonic ping sensor
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int pingPin = 2;
float v=331.5+0.6*20; // m/s //

void setup()
{
 Serial.begin(115200);
}

float distanceCm(){
 // send sound pulse
 pinMode(pingPin, OUTPUT); //
 digitalWrite(pingPin, LOW);
 delayMicroseconds(3); //
 digitalWrite(pingPin, HIGH);
 delayMicroseconds(5); //
 digitalWrite(pingPin, LOW);

 // listen for echo
 pinMode(pingPin, INPUT);
 float tUs = pulseIn(pingPin, HIGH); // microseconds //
 float t = tUs / 1000.0 / 1000.0 / 2; // s //
 float d = t*v; // m //

34 Make: Sensors

Experiment: Measure Distance with Ultrasonic Sound (PING)

 return d*100; // cm
}

void loop()
{
 int d=distanceCm(); //
 Serial.println(d, DEC); //
 delay(200); // ms //
}

Calculate the speed of sound v for temperature 20 C (if your ambient temperature is
significantly different, change 20 to the ambient temperature in C). The speed is about
340 meters per second or 1200 km/h.

Ping uses the same pin for input and output.

Wait for the pin to settle. 1 µs == 1 millionth of a second, or 1e-6 s == 0.000001 s

Send a very short beep. 5 µs, or 5e-6 s

Measure how long it takes for pingPin (D2) to go LOW, in microseconds.

Convert to SI (Système Internationale, metric) base units, seconds (see http://en.wikipe
dia.org/wiki/SI_base_unit). Notice we’re using a floating point divider (1000.0) instead of
integer 1000 so that we get a floating point result. This one-way time is half of the round
trip.

Distance is time multiplied by speed.

Measure distance and save it to a new variable, d. This is how you’d use it in your own
code.

Print the value of d to the Serial Monitor.

Always have some delay in your loops. If you run your sketch without pausing, you’ll be
taxing the Arduino CPU and wasting power (doing anything as fast as possible can take
100% of power on any single-core CPU).

Ping Code and Connections for Raspberry Pi
Build the circuit for Ping in Raspberry Pi as shown in Figure 3-3, and then run the code listed in
Example 3-2.

Be careful when connecting anything to the GPIO header. A wrong connection can easily
damage (at best) one pin or (at worst) your whole Raspberry Pi. You can avoid problems
by disconnecting power when making or changing connections, and double-checking
connections to the pins before powering up.

35Chapter 3

Experiment: Measure Distance with Ultrasonic Sound (PING)

Figure 3-3. Ping sensor circuit for Raspberry Pi

Example 3-2. distance_ping.py
distance_ping.py - print distance
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time #
import botbook_gpio as gpio #

def readDistanceCm():
 sigPin=22
 v=(331.5+0.6*20)

 gpio.interruptMode(sigPin, "both") #

 gpio.mode(sigPin, "out") #
 gpio.write(sigPin, gpio.LOW) #
 time.sleep(0.5) # s

 gpio.write(sigPin, gpio.HIGH) #
 time.sleep(1/1000.0/1000.0) #
 gpio.mode(sigPin, "in") #

 #Read high pulse width
 t = gpio.pulseInHigh(sigPin) # s #
 d = t*v
 d = d/2 #
 return d*100 # cm

36 Make: Sensors

Experiment: Measure Distance with Ultrasonic Sound (PING)

def main():
 d = readDistanceCm() #
 print "Distance is %.2f cm" % d #
 time.sleep(0.5)

if __name__ == "__main__":
 main()

Importing the time library creates a namespace of the same name (time) that contains
the library’s function, so this line lets you invoke time.sleep(1) later in your code.

To import your own libraries, they must be in the same directory. So make sure that
botbook_gpio.py is in the same directory as distance_ping.py. You can find this directory
in the sample code available from http://makesensors.botbook.com. (See “GPIO Without
Root” on page 19 for information on configuring your Raspberry Pi for GPIO access.)

The interrupt mode both means that pulseInHigh() will measure a whole pulse from
the signal’s rising edge (from 0 to 1) to the falling edge (from 1 back to 0).

With the Ping sensor, we switch the same pin between “out” and “in” mode as needed.
Other sensors, such as the HC-SR04, use separate pins for each function.

Turn off the pin and wait for the pin to settle. Half a second is a safe amount of time.

Start the pulse (rising edge). This is where the time-critical code starts.

Wait for a microsecond (1e-6 s), or one millionth of a second.

Set the pin to “in” mode. This has the side effect of turning off the pulse, creating the
falling edge of the short pulse.

Read the pulse width in seconds. gpio.pulseInHigh() measures the length of the whole
pulse, from start (rising edge) to finish (falling edge). Raspbian runs a whole operating
system, so timing is not as precise as with Arduino. Other programs running on the
system can affect the timing.

One-way distance is half of round trip.

This is the line you need for measuring distance in your own programs.

Print the distance to the terminal window that this program is running in. The “%.2f” is
part of the format string. It marks a place for the variable d. “%f” is floating point
(decimal), and “.2” means to show two decimal places. If you just used “print d,” you
would get a very long decimal number.

37Chapter 3

Experiment: Measure Distance with Ultrasonic Sound (PING)

HC-SR04 Ultrasonic Sensor

The HC-SR04 is just like the Ping but is available at a fraction of the cost. The code for this
sensor is almost the same as Ping code, except the HC-SR04 uses separate pins for trig-
gering the sound and listening for the echo. For detailed code explanations, see “Ping Code
and Connections for Arduino” on page 33 and “Ping Code and Connections for Raspberry
Pi” on page 35; the explanations in this section will focus on the differences.

To understand how an ultrasonic sensor measures distance, jump ahead to “Echo
Calculations Explained” on page 42.

Figure 3-4. HC-SR04 ultrasonic sensor

HC-SR04 Code and Connection for Arduino
Build the circuit as shown in Figure 3-5 and upload the code.

38 Make: Sensors

HC-SR04 Ultrasonic Sensor

Figure 3-5. HC-SR04 sensor circuit for Arduino

Example 3-3. hc-sr04.ino
// hc_sr04.ino - print distance to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int trigPin = 8;
int echoPin = 7;
float v=331.5+0.6*20; // m/s

void setup()
{
 Serial.begin(115200);
 pinMode(trigPin, OUTPUT); //
 pinMode(echoPin, INPUT); //
}

float distanceM(){
 // send sound pulse
 digitalWrite(trigPin, LOW);
 delayMicroseconds(3);
 digitalWrite(trigPin, HIGH);
 delayMicroseconds(5);
 digitalWrite(trigPin, LOW);

 // listen for echo
 float tUs = pulseIn(echoPin, HIGH); // microseconds
 float t = tUs / 1000.0 / 1000.0 / 2; // s
 float d = t*v; // m
 return d*100; // cm
}

void loop() //
{

39Chapter 3

HC-SR04 Ultrasonic Sensor

 int d=distanceM();
 Serial.println(d, DEC);
 delay(200); // ms
}

With the Ping, we didn’t follow the normal practice of setting pin modes in the
setup() function because we had to keep changing them (the Ping has one pin
used for both triggering a pulse and reading the reflection). HC-SR04 uses a pin
labeled Trig for triggering the sound.

The pin labeled Echo returns the time it took to read the reflected echo as a pulse
length.

Other than the changes to the setup, using HC-SR04 in your main program looks a
lot like the code you used for the Ping sensor.

HC-SR04 Code and Connections for Raspberry Pi
Build the circuit (Figure 3-6) and upload the code shown in Example 3-4. Take notice that
in addition to jumper wires, you also need to add two 10 kOhm resistors. (To identify
resistors, you can use the method described in “The Third Stripe Rule” on page 19.) The
code is very similar to Ping.

Example 3-4. hc-sr04.py
hc-sr04.py - print distance to object in cm
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio

def readDistanceCm():
 triggerPin = 22 #
 echoPin = 27

 v=(331.5+0.6*20) # m/s

 gpio.mode(triggerPin, "out")

 gpio.mode(echoPin, "in")
 gpio.interruptMode(echoPin, "both")

 gpio.write(triggerPin, gpio.LOW)
 time.sleep(0.5)

 gpio.write(triggerPin, gpio.HIGH)
 time.sleep(1/1000.0/1000.0)
 gpio.write(triggerPin, gpio.LOW)

 t = gpio.pulseInHigh(echoPin) # s

40 Make: Sensors

HC-SR04 Ultrasonic Sensor

 d = t*v
 d = d/2
 return d*100 # cm

def main():
 d = readDistanceCm() #
 print "Distance is %.2f cm" % d
 time.sleep(0.5)

if __name__ == "__main__":
 main()

The only difference from the Ping example is that HC-SR04 uses two pins (Trig and Echo).

You can read a result from the HC-SR04 just as you would with the Ping.

Figure 3-6. HC-SR04 sensor circuit for Raspberry Pi

41Chapter 3

HC-SR04 Ultrasonic Sensor

Why does the HC-SR04 need a resistor, but the Ping doesn’t? According to the HC-
SR04 data sheet, its output is TTL level, which means +5 V. The data sheet for Ping
promises compatibility with +3.3 V logic level. We verified these maximum values
by measuring the output. The Raspberry Pi’s GPIO pins’ maximum voltage is +3.3
V, and sending +5 V to it would damage the pins or the Raspberry Pi.

Echo Calculations Explained
Thunderstorm nearby? You can estimate the distance to where lightning is striking by
comparing the time between seeing lightning and hearing the thunder. Count the number
of seconds after you see a lightning flash. Each second corresponds to 330 meters to the
location of the strike (the actual number differs depending on the air temperature; we’ll
get into this shortly).

To play with the math, 330 meters/second * 3 seconds = 990 meters, so the sound moves
roughly one kilometer in 3 seconds (and roughly one mile in 5 seconds). We see light nearly
instantly, but the sound takes more time to reach us.

An ultrasonic sensor typically measures distances from 3 cm to 6 m. If you buy a distance
measuring tool (“ultrasonic tape measure”) from a hardware store, it can go farther, about
20 m (it uses a cone to project sound and a thermometer to calibrate the speed of sound
for the current air temperature).

The time it takes for sound to travel 1 centimeter is very short, just 30 microseconds: 30
millionths of a second. How to come up with this number?

For a difficult problem, especially one involving very small or very large numbers, it’s helpful
to model it as an analogous problem using familiar, everyday quantities. For example, if I
drive for two hours (t) at the speed (v) of 50 km per hour, isn’t that an annoyingly slow trip?
But with t and v, you can calculate the distance (d):

t = 2 h

v = 50 km/h

d = t*v = 2 h * 50 km / h =
 2*50 km * h/h = 100 km

That seemed easy. Now we know that two hours is equivalent to 100 km in this system.
Let’s try the exact same formula with a very short time (3.33 milliseconds), much faster
speed, and base units of meters and seconds. (A milli- prefix means one thousandth, so a
millisecond is one thousandth of a second.)

t = 3.33 ms = 0.00333 s

v = 330 m/s

d = t*v = 0.00333 s * 330 m/s = 1.10 m

42 Make: Sensors

HC-SR04 Ultrasonic Sensor

This is how you can measure distance in your program with the ultrasonic ping sensor: if it takes
3.33 milliseconds for the reflected sound to return to you, it’s traveled 1.1 m.

If you read code written by others, you might also see someone count a pace for sound. Instead
of noting meters per second, many examples count the inverse, seconds per meter, expressed
as milliseconds/meter here:

1/v = 1/(330 m/s) = 0.00303 s/m = 3.03 ms/m

It takes about 3 milliseconds for sound to move a meter.

Sound moves faster when it’s warm. Sound is the vibration of air, and the vibrations move better
if air molecules are already vibrating with heat. If you live in a warm place, we envy you because
you probably need less calibration. In the north of Finland, it might be +22 C inside and -40 C
outside, resulting in over 60 C difference in temperature. A change this big will clearly affect
measurements. Temperature (T) affects the speed of sound (r) according to the formula

v = (331.3+0.606*T) m/s

This formula gives the speed of sound in practice (343 m/s at 20 C). If you start getting fancy
with it, you could be calibrating for many factors. If you climb to a mountain or live in a sub-
marine, you must also take into account the change in air pressure. If you go from the Sahara
to a laundry room, calibrate for air humidity, too. That said, common commercial ultrasonic
distance measuring tools tend to calibrate for temperature only.

When you use these calculations in your code, just put them in the beginning of the code.
Arduino or Raspberry Pi can calculate them in an instant, and calculations outside loop() are
performed only once anyway. Be sure to comment these calculations, and you will thank your-
self when you can understand your code a week later.

Environment Experiment: Invisible Objects
You can easily fool an ultrasonic sensor so that it thinks there is nothing in front of it. Attach the
sensor to a helping hand tool (aka third hand tool) and point it at a solid, flat object. Upload the
code and open the serial monitor as you did earlier in this chapter. Now you should get a normal
distance reading.

Next, try putting a soft pillow or similar plush object between the sensor and the solid object
(see Figure 3-7). Check the serial monitor again. Is the solid object still there?

Inclined planes are another Achilles’ heel of ultrasonic sound sensors. Remove the soft object
and start tilting the solid flat object that is facing the sensor. Keep checking the serial monitor
as you tilt the object to a steeper angle.

Why does this happen? Soft objects (like our Monty Python killer rabbit in Figure 3-7) absorb
so much sound that there’s not enough echo. On the other hand, an inclined plane echoes the
sound, but in the wrong direction (not back at the sensor). This is similar to how a stealth aircraft
fools radar.

43Chapter 3

HC-SR04 Ultrasonic Sensor

Figure 3-7. Testing ping sensor with a soft object

Experiment: Detect Obstacles With Infrared (IR
Distance Sensor)

An infrared switch (Figure 3-8) is more reliable than an ultrasonic one, but less versatile.
You can’t fool it as easily as you fooled ultrasound in the experiment you did earlier. But
an infrared switch can tell you only if there is something present, not the distance to it.
And because the sun is a great big source of infrared light, it’s strong enough to blind an
infrared switch.

Figure 3-8. Image of infrared sensor switch

44 Make: Sensors

Experiment: Detect Obstacles With Infrared (IR Distance Sensor)

Figure 3-9. You can adjust the distance to which the sensor detects obstacles

IR Switch Code and Connections for Arduino
Figure 3-10 shows how to connect Arduino to the infrared sensor. The sketch is shown in
Example 3-5.

45Chapter 3

Experiment: Detect Obstacles With Infrared (IR Distance Sensor)

Figure 3-10. Infrared sensor connections on Arduino

Example 3-5. adjustable_infrared_sensor_switch.ino
// adjustable_infrared_sensor_switch.ino - print detection to serial and light LED.
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sensorPin = 8;
const int ledPin = 13;

//Sensor value
int switchState = 0;

void setup() {
 Serial.begin(115200); //
 pinMode(sensorPin, INPUT);
 pinMode(ledPin, OUTPUT);
}

void loop() {
 switchState = digitalRead(sensorPin); //
 Serial.println(switchState); //
 if(switchState == 0) {
 digitalWrite(ledPin, HIGH);
 Serial.println("Object detected!"); //
 } else {
 digitalWrite(ledPin, LOW);
 }
 delay(10); // ms //
}

Open the Arduino Serial Monitor (Tools→Serial Monitor). You must set the same
speed in your code and in the serial monitor. The fastest is 115,200 bit/second. If
you have an unreliable (or very long) USB cable, change this to 9,600 bit/second.

46 Make: Sensors

Experiment: Detect Obstacles With Infrared (IR Distance Sensor)

An infrared sensor switch is just like a button. This is the line that reads the sensor.

Print the sensor pin state for debugging purposes.

A state of 0 means that an object is detected. We turn Arduino’s built-in LED on to
indicate that an object was detected.

You should always have some, even tiny, delay in loop(). This will prevent the sketch
from using 100% of the Arduino’s CPU all the time.

IR Switch Code and Connections for Raspberry Pi
Figure 3-11 shows the wiring diagram for Raspberry Pi and the switch. The corresponding
Python code is in Example 3-6.

Figure 3-11. Infrared sensor connections on Raspberry Pi

Example 3-6. adjustable-infrared-sensor-switch.py
adjustable-infrared-sensor-switch.py - read infrared switch
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio #

def main():
 switchPin = 27
 gpio.mode(switchPin, "in") #
 x = gpio.read(switchPin) #
 if(x == gpio.LOW): #
 print "Something is inside detection range"

47Chapter 3

Experiment: Detect Obstacles With Infrared (IR Distance Sensor)

 else:
 print "There is nothing inside detection range"
 time.sleep(0.1)

if __name__ == "__main__":
 main()

Import the botbook_gpio library. It must be in the same directory as this code, so
make sure that botbook_gpio.py is in the same directory as adjustable-infrared-
sensor-switch.py. You can find this directory in the sample code available from http://
makesensors.botbook.com. (See “GPIO Without Root” on page 19 for information on
configuring your Raspberry Pi for GPIO access.)

Configure the pin that the switch is connected to; this puts it into input mode.

Read the state of the pin, and store it in the variable x.

If the pin is low, it means an object was detected in range.

Environment Experiment: How to See Infrared

As we mentioned earlier, infrared is outside the range of visible light. How could you see
it if you were determined to do so? You could use night-vision goggles or, if you don’t have
any of those handy, any cheap digital camera.

Try looking at an IR sensor through your smartphone’s camera. You should be able to see
a violet glow on the IR emitter Figure 3-12. Dim the lights and close the curtains to make
it even more visible. It’s not as cool as the night vision, but it is a quick and easy way to see
that the emitter is working.

What if you want to try this with an expensive SLR camera? Be aware that some cameras
have strong infrared filters that prevent unwanted wavelength from being part of your
photos (it works with cheaper cameras because the infrared filters aren’t as good, so some
infrared light manages to excite some of the sensors in your camera). If this is the case, you
can go to a dark room and set your camera to a very slow shutter speed (possibly many
seconds) and take a picture using a tripod. As the IR is the only light in the room, it will
eventually appear in the picture.

If you happen to have night-vision goggles, they are perfect for observing how IR sensors
work. Night-vision goggles amplify visible light, but they are especially greedy for infrared
spectrum. The cheapest models actually rely solely on an IR beam they produce them-
selves. If the model you’re using has an IR emitter, be sure to turn it off (or tape it over) in
order to see the weaker light from your IR distance sensor. The fun in using night-vision
goggles is not just seeing that your sensor works, but also the reflections that IR light
creates off of other objects (Figure 3-13).

48 Make: Sensors

Environment Experiment: How to See Infrared

Figure 3-12. How a phone’s camera sees IR sensors

Figure 3-13. The IR sensor seen through night-vision goggles

49Chapter 3

Environment Experiment: How to See Infrared

Experiment: Follow Movement with Infrared (IR
Compound Eye)

A compound eye has many infrared-sensitive transistors and LEDs. It can track movement
within 20 centimeters. Even though it’s one sensor, each of the infrared (IR) light-sensitive
transistors can be read separately. Ambient light correction is done by turning off the IR
LEDs and comparing values.

Figure 3-14. Image of IR Compound Eye

The exact name of this sensor is “IR Compound Eye.” If you ever start inventing and
selling sensors, please give them a unique code name in addition to such a general
name. A unique code will make it much easier to search for the component.

50 Make: Sensors

Experiment: Follow Movement with Infrared (IR Compound Eye)

Figure 3-15. Real compound eye

If you want to improve readings from your compound eye, you must calibrate it. Wait for the
night when there is no ambient IR light. Even closed window shades can pass IR light, so if you
can’t wait for the night, go to your cellar or a windowless room. Build the circuit shown in
Figure 3-16 so that you can measure values. Put paper in front of the sensor (about 20 cm away)
and see how much the values differ for each pin. Values should be almost the same (+/- 100)
with the paper. If one of the values is too high, you can block some of the IR light with opaque
tape or shrink wrap. If the value is too low, block some IR light going to other sensors.

When you use this sensor, you’re measuring analog resistance. For the simplest example
of reading analog resistance, see “Experiment: Potentiometer (Variable Resistor, Pot)” on
page 98.

Compound Eye Code and Connection for Arduino
Figure 3-16 shows the wiring diagram for Arduino and the compound eye. The Arduino sketch
is shown in Example 3-7.

51Chapter 3

Experiment: Follow Movement with Infrared (IR Compound Eye)

Figure 3-16. Compound eye connections on Arduino

Example 3-7. compound_eye.ino
// compound_eye.ino - print distance and direction values to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int irEnablePin = 8; //
const int irUpPin = 0;
const int irDownPin = 2;
const int irLeftPin = 1;
const int irRightPin = 3;

int distance = 0; //
int irUpValue = 0;
int irDownValue = 0;
int irLeftValue = 0;
int irRightValue = 0;

void setup() {
 Serial.begin(115200);
 pinMode(irEnablePin, OUTPUT);
}

void loop() {
 readSensor(); //
 Serial.print("Values: "); //
 Serial.print("irUpValue"); Serial.print(irUpValue); Serial.print(",");
 Serial.print("irDownValue"); Serial.print(irDownValue); Serial.print(",");
 Serial.print("irLeftValue"); Serial.print(irLeftValue); Serial.print(",");
 Serial.print("irRightValue"); Serial.print(irRightValue); Serial.print(",");
 Serial.print("distance"); Serial.println(distance);
 delay(100);
}

void readSensor() {
 digitalWrite(irEnablePin, HIGH); //

52 Make: Sensors

Experiment: Follow Movement with Infrared (IR Compound Eye)

 delay(5); // ms //
 irUpValue = analogRead(irUpPin);
 irDownValue = analogRead(irDownPin);
 irLeftValue = analogRead(irLeftPin);
 irRightValue = analogRead(irRightPin);

 int ambientLight = 0; //
 digitalWrite(irEnablePin, LOW); //
 delay(5);
 ambientLight = analogRead(irUpPin); //
 irUpValue = irUpValue - ambientLight; //

 ambientLight = analogRead(irDownPin);
 irDownValue = irDownValue - ambientLight;

 ambientLight = analogRead(irLeftPin);
 irLeftValue = irLeftValue - ambientLight;

 ambientLight = analogRead(irRightPin);
 irRightValue = irRightValue - ambientLight;

 distance = (irUpValue+irDownValue+irLeftValue+irRightValue) / 4; //
}

Pin numbers are declared constant (const), so you won’t be able to change them
elsewhere in your sketch (if you try to write code that reassigns them, even—perhaps
especially—by accident, you’ll get an error when you try to verify or upload the sketch).

Sensor values will be stored in global variables. Globals are available in all functions. In
C and C++ (which Arduino is based on), it’s good practice to initialize variables at the
same time you declare them (for example, int foo = 0;).

readSensor() will not return any values. Instead, it modifies some global variables. This
way, it can modify multiple values when you run it.

Print the results. Serial.print() doesn’t add a newline (but Serial.println() will).

Turn on the IR LED to illuminate the target for measurement.

Wait for the inputs to settle.

Start measuring ambient light (for example, the invisible IR light from the sun).

Turn off the IR LED. All light detected now is from ambient sources.

Use each of the IR-sensitive transistors to measure ambient light.

Remove the ambient light value from each of the sensors.

Calculate the average distance over all four IR-sensitive transistors.

53Chapter 3

Experiment: Follow Movement with Infrared (IR Compound Eye)

Compound Eye Code and Connections for Raspberry Pi
The IR compound eye contains eight infrared-sensitive sensors, which are connected in
pairs, so there is a total of four sensors you can read. Each IR sensor is read as an analog
resistance sensor.

The Raspberry Pi requires an external ADC (analog-to-digital converter) to read the IR
sensors. One MCP3002 chip can read two analog inputs. Because we need to read four
sensors, we use two MCP3002 chips.

This circuit (shown in Figure 3-17) has many things in it, but the principle is simple: there
are four analog resistance sensors, and you read them one by one. Build the circuit as
shown, and then run the code shown in Example 3-8.

Figure 3-17. Compound eye connections on Raspberry Pi

Example 3-8. compound_eye.py
compound_eye.py - read distance and direction.
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_gpio as gpio #
import botbook_mcp3002 as mcp #

irUpValue = 0 #
irDownValue = 0
irLeftValue = 0
irRightValue = 0

54 Make: Sensors

Experiment: Follow Movement with Infrared (IR Compound Eye)

distance = 0

def readCompoundEye():
 global irUpValue,irDownValue,irLeftValue,irRightValue,distance #
 ledPin = 25
 gpio.mode(ledPin, "out") #
 gpio.write(ledPin, gpio.HIGH)
 #Wait for sensors to get ready
 time.sleep(0.05) #

 irUpValue = mcp.readAnalog(0, 0) #
 irDownValue = mcp.readAnalog(1, 0)
 irLeftValue = mcp.readAnalog(0, 1)
 irRightValue = mcp.readAnalog(1, 1)

 ambientLight = 0
 gpio.write(ledPin, gpio.LOW) #
 time.sleep(0.05)
 ambientLight = mcp.readAnalog(0, 0) #
 irUpValue = irUpValue - ambientLight #
 ambientLight = mcp.readAnalog(1, 0) #
 irDownValue = irDownValue - ambientLight
 ambientLight = mcp.readAnalog(0, 1)
 irLeftValue = irLeftValue - ambientLight
 ambientLight = mcp.readAnalog(1, 1)
 irRightValue = irRightValue - ambientLight

 distance = (irUpValue+irDownValue+irLeftValue+irRightValue)/4 #

def main():
 global irUpValue,irDownValue,irLeftValue,irRightValue,distance
 while True: #
 readCompoundEye() #
 print "Values:"
 print "Up: %f" % irUpValue
 print "Down: %f" % irDownValue
 print "Left: %f" % irLeftValue
 print "Right: %f" % irRightValue
 print "Distance: %f" % distance
 time.sleep(0.5) # s #

if __name__ == "__main__":
 main()

Import gpio for turning digital pins (in this case, gpio25) on and off. The botbook_gpio.py
file from the book’s sample code must be in the same directory as this program
(compound_eye.py).

55Chapter 3

Experiment: Follow Movement with Infrared (IR Compound Eye)

Import the mcp3002 library for reading analog sensor values using MCP3002 analog-to-
digital converter chip (ADC). You’ll use it for reading values of each of the IR light sensitive
transistors. The botbook_mcp3002.py library file must be in the same directory as
compound_eye.py. You must also install the spidev library, which is imported by
botbook_mcp3002.py. See the comments in the beginning of botbook_mcp3002/
botbook_mcp3002.py or “Installing SpiDev” on page 56.

Declare global variables.

To use global variables inside a function, they must be listed at the beginning of the
function.

Turn on the gpio25 pin connected to IR LEDs. This will illuminate the target area for
measurement.

Wait for the pins to settle.

Read each of the IR-sensitive transistor values. As Raspberry Pi has no built-in analog-
digital conversion, we use the external MCP3002 chip.

To remove the effect of ambient light, we turn the IR LED off.

 The value from each IR-sensitive transistor is read again.

The ambient light value is removed from the actual measurement (which was made with
IR illumination).

The distance is the average of measurements from all four IR-sensitive transistors.

In embedded applications, while(True) is a common method to keep performing the
same action forever. Most embedded devices are supposed to keep doing their thing,
and are not expected to exit the program and stop functioning after a while. To kill a
program running in a while(True) loop, press Control-C in the same terminal session
you started it from.

The readSensor() function doesn’t need to return any values, as it modifies global
variables. In Python, you could alternatively return multiple values, as in a,b,c=foo().

When running a loop, a small delay ensures that this trivial loop doesn’t take 100% of
the CPU time.

The compound eye has quite a few connections by itself. Combined with the ADCs, this
means a lot of jumper wires.

Installing SpiDev
The MCP3002 analog-to-digital converter uses the SPI protocol. SPI is quite a complicated
protocol, but you can install the SpiDev library to handle the details.

The SpiDev library is required by all code that uses import spidev. This includes the po-
tentiometer code for Raspberry Pi, and every analog resistance sensor used in this book,
because SpiDev is imported by botbook_mcp3002.

56 Make: Sensors

Experiment: Follow Movement with Infrared (IR Compound Eye)

On your Raspberry Pi, open a terminal. First, install prerequisites:

$ sudo apt-get update
$ sudo apt-get -y install git python-dev

Download the latest version of SpiDev from its version control site:

$ git clone https://github.com/doceme/py-spidev.git
$ cd py-spidev/

And install it to your system:

$ sudo python setup.py install

Next, you need to enable the SPI module on the Raspberry Pi. First, make sure it is not disabled.
Edit the /etc/modprobe.d/raspi-blacklist.conf with the command sudoedit /etc/modprobe.d/
raspi-blacklist.conf and delete this line:

blacklist spi-bcm2708

Save the file: press Control-X, type y, and then press Enter or Return.

To allow access to SPI without root, copy the udev file from Example 3-9 (or from the example
code in the botbook_mcp3002 directory) into place:

$ sudo cp 99-spi.rules /etc/udev/rules.d/99-spi.rules

Example 3-9. 99-spi.rules
/etc/udev/rules.d/99-spi.rules - SPI without root on Raspberry Pi
Copyright 2013 http://BotBook.com

SUBSYSTEM=="spidev", MODE="0666"

Reboot your Raspberry Pi, open LXTerminal, and confirm that you can see the SPI devices and
that the ownership is correct:

$ ls -l /dev/spi*

The listing should show two files, and they should list permissions of crw-rw-rwT. If not, go over
the preceding steps again.

Now you can use MCP3002 chip and other SPI devices with Raspberry Pi.

Alternative Circuits for Raspberry Pi
The Raspberry Pi circuit for IR compound eye is quite complicated. Even though it’s not hard to
understand, it has a lot of wires to connect. To build a simpler system, you could either use a
another ADC or an Arduino (see “Pi + Arduino” on page 58).

To get by with just one ADC chip, you could use MCP3008 ADC, which has eight inputs. That
would require modifying the botbook_mcp3002 library, though. You could also look into using
Adafruit’s MCP3008 code (see https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code).

57Chapter 3

Experiment: Follow Movement with Infrared (IR Compound Eye)

Pi + Arduino

If you find the amount of jumpers excessive, an
alternative is to read the sensor from Arduino,
and send the result to the Raspberry Pi over a
USB-serial connection. Another option is the Pi a
la Mode, an Arduino-compatible board that

piggybacks on top of a Raspberry Pi to create the
ultimate hybrid.

See “Talking to Arduino from Raspberry Pi” on
page 337 for more details.

Test Project: Posture Alarm (Arduino)

Every geek knows this problem: the more intensely you work, the closer your head moves
to the computer screen. This is not quite how Mother Nature intended our posture. By
combining an IR distance sensor and a piezo beeper, you can easily build a gadget that
will warn you when you are too close to the screen (Figure 3-18).

Figure 3-18. Ready posture alarm

What You’ll Learn
In the Posture Alarm project, you’ll learn how to:

• Combine input, processing, and output.

• Play tones with a piezo beeper.

• Enclose your project.

58 Make: Sensors

Test Project: Posture Alarm (Arduino)

Piezo Beeper
A piezoelectric crystal changes shape when you apply voltage to it. By using alternating current
(AC) or a simple on-off square wave, you can make the piezo crystal vibrate. This makes the air
vibrate, and air vibration is sound. In this case, an annoying sound.

Figure 3-19. A piezo speaker

The most common piezo element beeps when you send it a square wave (Figure 3-19). A square
wave varies between HIGH (5 V for Arduino) and LOW (0 V).

You can easily create a square wave by repeatedly turning a data pin on and off with digital
Write. Alternatively, you could use the built-in tone() function that uses a more advanced and
complicated implementation to produce the same wave.

The piezoelectric phenomena also works the other way: you can generate electricity by
squeezing a piezoelectric crystal. Electric lighters often use the piezoelectric effect to
create a spark.

59Chapter 3

Test Project: Posture Alarm (Arduino)

Figure 3-20. Piezo beeper connected

Example 3-10. piezo_beep.ino
// piezo_beep.ino - beep on a given frequency with a piezo speaker
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int speakerPin = 10;

void wave(int pin, float frequency, int duration) //
{
 float period=1/frequency*1000*1000; // microseconds (us) //
 long int startTime=millis(); //
 while(millis()-startTime < duration) { //
 digitalWrite(pin, HIGH); //
 delayMicroseconds(period/2);
 digitalWrite(pin, LOW);
 delayMicroseconds(period/2);
 }
}

void setup()
{
 pinMode(speakerPin, OUTPUT);
}

void loop()
{
 wave(speakerPin, 440, 500); //
 delay(500);
}

60 Make: Sensors

Test Project: Posture Alarm (Arduino)

To use the wave function in your own projects, you just need to specify pin, note
frequency, and duration in milliseconds. The contents of the function are
implementation details: educational, but not required for using the function yourself.

Calculate the period T: how long does one wave (one HIGH + one LOW) take? It is the
inverse of frequency f: T = 1/f. For example, if you have 2 waves in one second (2 hertz,
which is 2 * 1/s), one wave will take half a second (1 / 2 Hz, or 1/(2 * 1/s), which
works out to 1/2 s). Note that hertz (number of cycles per second) is abbreviated Hz.

This is a common pattern used in code to perform something for set time: first, save the
starting time into a variable (millis gives the number of milliseconds since the Arduino
powered up)…

…and wait until it’s been more than the specified duration since the starting time.

Create one whole wave. First create the high part, then the low part.

This call is all you need for creating a beep in your own main program.

Alarm, Alarm!
It’s time to advance from a beep to a whole new world of notes: the alarm.

Example 3-11. piezo_alarmtone.ino
// piezo_alarmtone.ino - use piezospeaker to sound alarm sound
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int speakerPin = 10;

void wave(int pin, float frequency, int duration) //
{
 float period=1 / frequency * 1000 * 1000; // microseconds (us)
 long int startTime=millis();
 while(millis()-startTime < duration) {
 digitalWrite(pin, HIGH);
 delayMicroseconds(period/2);
 digitalWrite(pin, LOW);
 delayMicroseconds(period/2);
 }
}

void setup()
{
 pinMode(speakerPin, OUTPUT);
}

void loop()
{
 wave(speakerPin, 440, 40); //
 delay(25);
 wave(speakerPin, 300, 20);
 wave(speakerPin, 540, 40);

61Chapter 3

Test Project: Posture Alarm (Arduino)

 delay(25);
 wave(speakerPin, 440, 20);
 wave(speakerPin, 640, 40);
 delay(25);
 wave(speakerPin, 540, 20);
}

Use the exact same wave() function you used to generate a simple beep.

Play a note, wait for a very short time, play another… repeat forever.

Combining Piezo and IR Sensor
Build the posture alarm circuit (Figure 3-21). Upload the code and prepare for a life with
better posture—or endless alarm.

Figure 3-21. Posture alarm build

Example 3-12. posture_alarm.ino
// posture_alarm.ino - sound an alarm when IR switch detects bad posture
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int speakerPin = 10;
const int sensorPin = 2;
int switchState = 0;

void wave(int pin, float frequency, int duration) //

62 Make: Sensors

Test Project: Posture Alarm (Arduino)

{
 float period=1/frequency*1000*1000; // microseconds (us)
 long int startTime=millis();
 while(millis()-startTime < duration) {
 digitalWrite(pin, HIGH);
 delayMicroseconds(period/2);
 digitalWrite(pin, LOW);
 delayMicroseconds(period/2);
 }
}

void alarm() //
{
 wave(speakerPin, 440, 40);
 delay(25);
 wave(speakerPin, 300, 20);
 wave(speakerPin, 540, 40);
 delay(25);
 wave(speakerPin, 440, 20);
 wave(speakerPin, 640, 40);
 delay(25);
 wave(speakerPin, 540, 20);
}

void setup()
{
 pinMode(speakerPin, OUTPUT);
 Serial.begin(115200);
 pinMode(sensorPin, INPUT);
}

void loop()
{
 switchState = digitalRead(sensorPin);
 Serial.println(switchState,BIN);
 if (switchState==0) { //
 alarm(); //
 }
 delay(10);
}

Use the same wave() function you’ve used before for creating beep and alarm.

Use the same alarm() you used earlier.

Use the digitalRead() function to get a value from the infrared distance switch, like
you did before.

If something is detected in the monitor’s area, play the alarm. In practice, if you put your
head too close to the monitor, the alarm will sound.

63Chapter 3

Test Project: Posture Alarm (Arduino)

Putting Everything in a Neat Package
Prototypes are more impressive and robust when you put them inside an enclosure. We
used a box for Arduino made by SmartProjects, because it happened to be an exact fit for
this project. First we sprayed the whole thing black and made a hole for the infrared sensor
with a 19 mm drill bit (see Figure 3-22).

Figure 3-22. Hole for the infrared sensor

We removed the little hatch from the back of the chassis to make the sensor fit inside better
and to be able to adjust the distance screw later (see Figure 3-23).

We attached the sensor in place with the plastic nuts that are part of it. You can slide the
Arduino through the posts in the chassis, and it will stay put nicely, as shown in Figure 3-24.

64 Make: Sensors

Test Project: Posture Alarm (Arduino)

Figure 3-23. From the back of the chassis, you can adjust the distance screw

Figure 3-24. Insides of posture alarm

65Chapter 3

Test Project: Posture Alarm (Arduino)

Close the enclosure by pushing the top and bottom half together, and you’re ready to start
protecting your posture (see Figure 3-18). This box has a ready-made hole for the USB cable,
so now you actually have a neat-looking USB gadget to decorate your workspace.

You have now learned to measure distance using multiple methods. Your projects can
know if something is near or how far it is to objects nearby. With more than one sensor,
you can create more sophisticated behaviors. For example, combine two IR sensors with
a servo motor and make it turn toward the direction of the nearest detected object. This
way you would have a simple hand follower. Two IR receivers in a rover robot would enable
it to follow flame. How will you use distance sensors in your projects?

66 Make: Sensors

Test Project: Posture Alarm (Arduino)

BEEP BEEP BEEP! The loud noise of a fire alarm has saved many lives,
waking up residents before carbon monoxide lulls them into a perma-
nent sleep. Another gas sensor, an alcometer, has kept many drunk driv-
ers off the road and avoided lethal consequences.

When you start yawning at work or in an otherwise interesting class, the culprit could be carbon
dioxide (CO2). It’s the gas all animals (including humans) exhale. Sensors in a building’s venti-
lation/air conditioning system could notice an elevated CO2 level and send you some needed
fresh air.

The fire department can measure if there is hydrocarbon vapor in the air to avoid explosive
surprises. There is also a gas sensor inside your car engine, which measures the fuel-air ratio. A
correct fuel-air ratio ensures that all the gasoline burns in the cylinder—it wouldn’t be good if
there was gasoline dripping out of the exhaust pipe.

It’s easy and fun to prototype with inexpensive smoke and gas sensors. But there are strict
requirements, testing protocols, and certification programs for safety and security prod-
ucts. The projects in this chapter are no substitute for such products.

MQ is a series of inexpensive gas sensors. There are sensors for many gases, some of which are
listed in Table 4-1.

67

Smoke and Gas 4

Table 4-1. Some MQ gas sensors

MQ Sensor Gases detected

MQ-2 Flammable gas and smoke

MQ-3, MQ-303A Alcohol (ethanol)

MQ-4 Methane (CH4)

MQ-7 Carbon monoxide

MQ-8 Hydrogen

MQ-9 Carbon monoxide, methane, LPG (propane or butane)

Experiment: Detect Smoke (Analog Gas Sensor)

An MQ-2 smoke sensor reports smoke by the voltage level it puts out. The more smoke
there is, the higher the voltage. The MQ-2 we used has a built-in potentiometer for ad-
justing sensitivity (see Figure 4-1).

Figure 4-1. Analog gas sensor

68 Make: Sensors

Experiment: Detect Smoke (Analog Gas Sensor)

What is the most dangerous poison gas? If you measure danger by the number of victims,
it’s carbon monoxide (CO). In a fire, most victims die from smoke inhalation before the
flames get them.

Lethal CO is different from the mostly harmless carbon dioxide, CO2. The human body
creates CO2 when it produces energy, and blood is made for carrying CO2 to the lungs
where it’s exhaled.

CO is poisonous because it doesn’t want to leave. It sticks to blood hemoglobin, pre-
venting some blood from carrying oxygen and CO2 for hours. If all hemoglobin is stuck
with CO, tissues are not able to get oxygen, and death follows.

As the MQ-2 has three leads, it doesn’t need any pull-up or pull-down resistors. From the Arduino
point of view, the MQ-2 is like a potentiometer in a three-lead configuration.

The MQ-2 takes ground (black, 0 V) and +5 V (red). It measures smoke and sets its S pin voltage
higher (nearer to +5 V) when it detects smoke.

MQ-2 Code and Connection for Arduino
Arduino has a built-in analog-to-digital converter, so you can read the MQ-2 with a call to
analogRead(). Use the potentiometer on the breakout board to adjust its sensitivity.

Figure 4-2. MQ-2 sensor circuit for Arduino

Example 4-1. mq_x_smoke_sensor.ino
// mq_x_smoke_sensor.ino - print smoke level to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sensorPin = A0;
int smoke_level = -1; //

69Chapter 4

Experiment: Detect Smoke (Analog Gas Sensor)

void setup() {
 Serial.begin(115200); // bit/s
 pinMode(sensorPin, INPUT);
}

void loop() {
 smoke_level = analogRead(sensorPin); //
 Serial.println(smoke_level);
 if(smoke_level > 120) { //
 Serial.println("Smoke detected");
 }
 delay(100); // ms
}

Initialize smoke level to an impossible value to help debugging. If you ever see -1
in the output, you know it has never been replaced by a value read by analogRead().

The MQ-2 is a simple analog resistance sensor, so you can read the value with
analogRead(). This returns a value between 0 (0 V) and 1023 (+5 V).

Even though there is a cutoff value in the code, it’s best to adjust sensitivity with
the potentiometer on the sensor itself.

A fire alarm doesn’t have to be a dull box, as the Lento alarm designed by Paola
Suhonen proves (see Figure 4-3). A moth shape gives this everyday item a whole
new look. Keep this in mind while designing your own gadgets.

Figure 4-3. Lento alarm designed by Paola Suhonen

70 Make: Sensors

Experiment: Detect Smoke (Analog Gas Sensor)

MQ-2 Code and Connection for Raspberry Pi
The Raspberry Pi needs an external analog-to-digital converter (ADC) to read the MQ-2. Similar
to other analog resistance sensors (see “Compound Eye Code and Connections for Raspberry
Pi” on page 54), you can use a cheap MCP3002 chip for this conversion.

Figure 4-4. MQ-2 sensor circuit for Raspberry Pi

Example 4-2. mq_x_smoke_sensor.py
mq_x_smoke_sensor.py - print smoke level
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_mcp3002 as mcp #

smokeLevel = 0

def readSmokeLevel():

71Chapter 4

Experiment: Detect Smoke (Analog Gas Sensor)

 global smokeLevel
 smokeLevel = mcp.readAnalog() #

def main():
 while True: #
 readSmokeLevel() #
 print("Current smoke level is %i " % smokeLevel) #
 if smokeLevel > 120:
 print("Smoke detected")
 time.sleep(0.5) # s

if __name__ == "__main__":
 main()

The botbook.com library for MCP3002 saves a lot of coding and makes it easy to
read analog values. The library (botbook_mcp3002.py) must be in the same directory
as mq_x_smoke_sensor.py. You must also install the spidev library, which is imported
by botbook_mcp3002. For more information, see the comments in the beginning
of botbook_mcp3002/botbook_mcp3002.py or “Installing SpiDev” on page 56.

Read the voltage of the first device connected to the MCP3002 ADC. The parameters
in readAnalog(device=0, channel=0) are default values, so you could also leave
them out.

Repeating a program forever is common for embedded devices. When you use
while True, you should always add some delay at the end of the loop. You can kill
the program with Control-C when you are done.

It’s practical to wrap the primary task of your program inside its own function. The
purpose of readSmokeLevel() is obvious from reading its name, which helps when
you want to use it as a building block when you build bigger projects with many
sensors and outputs.

Create the string to be printed with a format string. The value of smokeLevel is
treated as an integer and replaces %i in the format string.

Environment Experiment: Smoke Goes Up
There is a good reason why fire alarms are attached to the ceiling instead of the floor. Smoke
is usually created by fire, so it’s warmer than the air around it. Warming makes gases less
dense or, in other words, lighter.

Why is warm air lighter than cool air? Warmth is movement: molecules are shaking
and bouncing against one another. The warmer it gets, the more molecules shake
and bounce. As they bounce, they push one another farther away. This makes the
gas less dense. Having fewer molecules in a liter of gas means it’s lighter. And sur-
rounded by heavier air, the lighter gas goes up.

72 Make: Sensors

Experiment: Detect Smoke (Analog Gas Sensor)

Figure 4-5. Smoke goes up

Use the smoke and gas sensor code and extinguish a match next to it. How high can you hold
the extinguished match and still get a reading? When you reach the same level with the sensor
you won’t likely see any difference to normal air. As the experiment title says: smoke goes up.
This is why there is nothing to measure if you let the warm smoke escape to heights above the
sensor.

73Chapter 4

Experiment: Detect Smoke (Analog Gas Sensor)

Experiment: Breathalyzer (Alcohol Sensor MQ-303A)
A Breathalyzer is used for checking whether a person has alcohol in his blood. More specif-
ically, ethanol, the alcohol found in wine, beer, and liquor.

The MQ-3 alcohol sensor looks a lot like the other MQ series gas sensors. (see Figure 4-6).

Figure 4-6. MQ-3 alcohol sensor

Before you call it a day and pour a glass of Castillo Montroy, at least have a look at
“Environment Experiment: Try It Without Drinking” on page 77.

Just as the gas exchange in lungs brings in oxygen and gets rid of carbon dioxide, some
blood alcohol is released in the air you exhale. This is the alcohol measured by an alcometer.

The more ethanol in your blood, the more there is in the air you exhale. Blood alcohol
content gives a good indication how drunk a person is.

Even though more alcohol in blood makes the same person more drunk, the drunkenness
differs from person to person. For making laws, a typical value is chosen as the limit. For
example, the limit for DUI charges in Finland is 0.5%.

Officially accepted alcometers are calibrated periodically to get reliable readings. Alcom-
eters use a built-in formula to estimate blood alcohol content from exhaled air alcohol
content.

74 Make: Sensors

Experiment: Detect Smoke (Analog Gas Sensor)

Figure 4-7 shows the Arduino circuit for the MQ-3, and the Arduino sketch is shown in
Example 4-3. You can find the Raspberry Pi circuit in Figure 4-8 and the Python code in
Example 4-4.

Figure 4-7. MQ-3 sensor circuit for Arduino

Example 4-3. mq_3_alcohol_sensor.ino
// mq_3_alcohol_sensor.ino - print alcohol value and limit digital info.
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int analogPin = A0;
const int digitalPin = 8;

int limit = -1;
int value = 0;

void setup() {
 Serial.begin(115200);
 pinMode(digitalPin,INPUT);
}

void loop()
{
 //Read analog value
 value = analogRead(analogPin);
 //Check if alcohol limit is breached
 limit = digitalRead(digitalPin);
 Serial.print("Alcohol value: ");
 Serial.print(value);
 Serial.print(" Limit: ");
 Serial.println(limit);
 delay(100);
}

75Chapter 4

Experiment: Detect Smoke (Analog Gas Sensor)

Figure 4-8. MQ-3 sensor circuit for Raspberry Pi

Example 4-4. mq_3_alcohol_sensor.py
mq_3_alcohol_sensor.py - read digital output from alcohol sensor
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_gpio as gpio

def readLimit():
 limitPin = 23
 gpio.setMode(limitPin,"in")
 return gpio.read(limitPin)

def main():
 while True:

76 Make: Sensors

Experiment: Detect Smoke (Analog Gas Sensor)

 if readLimit() == gpio.HIGH:
 print("Limit breached!")
 time.sleep(0.5)

if __name__ == "__main__":
 main()

Environment Experiment: Try It Without Drinking
Drinking alcohol while trying to learn electronics would be slightly counterproductive. The
good news is that you don’t need a bottle of whiskey to test your sensor. You can get impressive
readings by using other products that have alcohol in them. Mouthwash and liquor candy
worked really well for us.

Use the Breathalyzer code and open the serial monitor. Chew some candy or take a sip of
mouthwash (don’t swallow it) and breathe into the sensor. The readings should instantly jump
up. You can still get higher-than-normal levels from readings you take several minutes later.

77Chapter 4

Experiment: Detect Smoke (Analog Gas Sensor)

Test Project: Emailing Smoke Alarm

Get an email when your gadget detects smoke.

Figure 4-9. Ready emailing smoke alarm

What You’ll Learn
In this project, you’ll learn:

• How to react to environment changes with actions: if there’s smoke, send an email
warning.

• How to automatically send email from Raspberry Pi.

• The basics of sending email.

78 Make: Sensors

Test Project: Emailing Smoke Alarm

Python for Email and Social Media
This is an example of a project that’s easy with Raspberry Pi. Sending email automatically from
Raspberry Pi is no different from automatically emailing on any Linux system.

Python is known for having “batteries included,” in that there is a library for everything. Email
sending is trivial using existing libraries. Similarly, there are libraries for sending and receiving
data over the Web using the HTTP protocol.

What about social media? You could adapt the program to send messages to Twitter, Facebook,
or similar “social media” services. But all of these use protocols that though they are built on
open technologies, are proprietary and create lock-in to their services. Those giants have rules
on how they run their service—rules that could unilaterally change any day. For example, Twitter
could change the number of requests you’re permitted each day or remove the functionality
you’ve grown to depend on. Don’t build your sand castle on someone else’s private beach. Or
at least know the score before you make the decision.

Building It
Connect the MQ-2 smoke sensor to Raspberry Pi, as shown in “MQ-2 Code and Connection for
Raspberry Pi” on page 71. It’s a good idea to test the smoke sensor with just the sensor code
(Example 4-2) first.

Once you’re sure it works, you can advance to sending emails in your code. Test your email
credentials normally before using them in this program. For example, you could enter them
into a regular mail user agent (MUA) such as Thunderbird, KMail, Claws, or, in the worst case,
Outlook. Even though the example uses a Gmail account, any mail account will work.

Don’t use your personal email account for this kind of testing. If you make a mistake in
your code and send out too many email messages, your email server may interpret this
as an attempt at sending spam. It’s best to create an email account just for these purposes.
However, services like SendGrid and Amazon SES are designed for exactly this sort of
scenario, so consider using them if you need to send many messages.

How Does Email Work?
Do you still remember how email works? In the time of Gmail and other webmail clients, it’s too
easy to forget the basics.

Here we’ll describe the workings of email from the point of a mail user agent running on your
local computer, not webmail. To keep things simple, we’ll just show key points in an example
case.

It’s essential to remember that sending and receiving email involves two different servers (the
sender’s and the recipient’s). It’s common that the sending and receiving server are in different
networks, even on different continents.

79Chapter 4

Test Project: Emailing Smoke Alarm

When you click Send in your mail user agent, your computer contacts your SMTP server.
The SMTP can be in your local network, run by your ISP (such as smtp.verizon.net or
smtp.comcast.net) and may accept all connections originating within its network without
password or login. Or it could be run by your email provider (such as smtp.gmail.com,
mail.gmx.com), and require TLS/SSL encryption and login. When your email is accepted,
the SMTP server will deliver your message to the recipient.

When your recipient checks her mail, her mail user agent contacts an IMAP server. This is
run by her email provider (such as Gmail or GMX) or her ISP. Reading private email of course
requires a login and password, and common sense dictates that one should use encryption
(SSL/TLS) when connecting (most email providers require encryption). From the IMAP
server, a mail user agent can download message headers and full copies of messages. And
when someone sends you an email, the reverse happens: her mail user agent contacts her
SMTP server, delivers it to your mail server, and when you check your mail, you retrieve
your copy of the email from your IMAP server.

Messages are typically left on IMAP server, which is why you can check your mail
on your computer and mobile phone and see the same list of messages on both.

Could Arduino Send Email? Not Easily
A typical way to build a similar project with Arduino would use an external computer. The
Arduino would read the smoke sensor and communicate this value to a desktop computer
using serial over USB. On the desktop computer, a Python program could read serial (with
the pySerial API) and send the email just as shown in the next example.

But even with an Ethernet or WiFi shield, it would be difficult for you to send mail from
Arduino. Although the email protocol is, on its surface, fairly simple, there are enough
possible surprises when sending an email that it would be hard to write a reliable SMTP
library for Arduino (also, many servers require SSL, and the Arduino Uno and similar models
don’t support this).

Obviously, it is easier to do this project with Raspberry Pi, or a similarly capable microcon-
troller board such as the BeagleBone (or the Arduino/Linux hybrid Arduino Yún).

Code for Raspberry Pi

Example 4-5. smoke_alarm.py
smoke_alarm.py - send email every 5 minutes when smoke is detected
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_mcp3002 as mcp
import smtplib #
from email.mime.text import MIMEText #

80 Make: Sensors

Test Project: Emailing Smoke Alarm

Email addresses
email_to = 'example@gmail.com' #
email_from = 'example@gmail.com' #

SMTP email server settings
server = 'smtp.gmail.com' #
mail_port = 587
user = 'example@gmail.com' #
password = 'password' #
gracePeriod = 5 * 60 # seconds #

def sendEmail(subject, msg): #
 msg = MIMEText(msg) #
 msg['Subject'] = subject #
 msg['To'] = email_to #
 msg['From'] = email_from

 smtp = smtplib.SMTP(server,mail_port) #
 smtp.starttls()
 smtp.login(user, password) #
 smtp.sendmail(email_from, email_to, msg.as_string()) #
 smtp.quit() #

def main():
 while True:
 smokeLevel = mcp.readAnalog()
 print("Current smoke level is %i " % smokeLevel)
 if smokeLevel > 120:
 print("Smoke detected")
 sendEmail("Smoke","Smoke level was %i" % smokeLevel) #
 time.sleep(gracePeriod) #
 time.sleep(0.5) # s #

if __name__ == "__main__":
 main()

“Batteries included”: Python has a built-in library for SMTP communication. You don’t
have to do low-level socket programming on your own.

Email used to be plain text. Headers one per line, an empty line, and then the body. But
nowadays we expect localized, non-ASCII characters to work. That’s why an email body
is often MIME encoded, just as attachments are. Learn funny Finnish: ä (a with two dots)
is pronounced like a and e at the same time. Päivää!

The To address is the recipient of your email. You should probably use your own address
here to receive the smoke warning messages. These are global variables, visible to all
functions.

81Chapter 4

Test Project: Emailing Smoke Alarm

The From address in the email could theoretically be anything. But in the time of spam
filters, choosing a weird address could affect how well your mail goes through. You
should use your email address, because its domain name will usually match that of the
SMTP server you’re using.

The SMTP server is the sending server. As this program only sends email and never
receives any, the SMTP server is the only server needed.

Your SMTP login name. It could be your email address (example@gmail.com) or a shorter
login name (jdoe).

Your SMTP password should be the same you use for logging into webmail or connecting
from an email client.

Even when smoke is detected, you probably don’t want to get 60 emails every minute.
Trying to send email that fast would probably get your email blacklisted by the server.
That’s why you should add a grace period: the time program should wait after sending
an email. The grace period, 5 minutes, is converted to seconds by multiplying by 60
seconds per minute. (Write simple calculations into code instead of calculating magic
numbers on paper. Avoid the temptation to repeat the value in comment.)

The code that sends email is in its own function for clarity. Topic (email subject) and msg
(email body) come from function parameters.

The body of the message is MIME encoded to reliably handle non-ASCII characters. As
you can see from the capitalized first letter, MIMEText is a class. The constructor MIME
Text() returns a new object that’s stored into variable msg. MIMEText is just for creating
the message; it does not take care of connecting anywhere or sending anything.

To modify email headers, you can use the MIMEText object msg just like a dictionary data
type.

Recipient and sender come from global variables.

Create a new object of class SMTP. This will be used for connecting to the SMTP server.
The beginning part (smtplib) is the namespace, automatically created with “import
smtplib.”

Connect to the SMTP server, using the username and password from global variables.

Send the email, using the sendmail() method of the smtp object of the class
smtplib.SMTP. The smtp.sendmail() method expects to see string, so the msg object is
dumped to string with its built-in method.

Close the connection and clean up. The quit() function is a method of the smtp object.

Use a format string to create the msg, replacing “%i” with the value of smokeLevel.

Wait for 5 minutes after sending email before you send another email.

Avoid running the loop at maximum speed by sleeping half a second.

82 Make: Sensors

Test Project: Emailing Smoke Alarm

Packaging
We used a general-purpose enclosure for packaging our email smoke alarm (see Figure 4-10).
These boxes look ascetic but are available widely, and their rubber covered ready-made holes
make modifications fast and easy.

Figure 4-10. General-purpose enclosure

A hole for the smoke sensor is the only one you need to drill (see Figure 4-11). Others can be
made by carefully applying a sharp knife to the rubber-covered openings. Actually, you could
use those for the sensor also, but as they tend to look pretty rough we prefer to use them for
the cables only. A 19 mm drill bit was a perfect match for the sensor and we didn’t need any
adhesives to keep it in place, as shown in Figure 4-12.

83Chapter 4

Test Project: Emailing Smoke Alarm

Figure 4-11. Hole for the smoke sensor

Figure 4-12. Sensor in place

84 Make: Sensors

Test Project: Emailing Smoke Alarm

To prevent the Raspberry Pi from moving around inside the box, we secured it with Velcro to
the bottom, as shown in Figure 4-13. This way it’s easy to remove it for debugging or to use in
other projects.

Figure 4-13. Raspberry Pi’s Velcro attachement

We glued a mini breadboard to the bottom of the lid of the box (see Figure 4-14). Then, we used
a zip tie to keep the jumper wires in a neat bundle.

We made one large hole (~2 cm) to the side for the LAN and power cables (see Figure 4-15). We
wanted the smallest possible holes in the final gadget, so in our version we don’t have inlets
for the other cables (see Figure 4-16).

85Chapter 4

Test Project: Emailing Smoke Alarm

Figure 4-14. Mini breadboard with zip-tied wires

Figure 4-15. Hole for the cables

86 Make: Sensors

Test Project: Emailing Smoke Alarm

Figure 4-16. Cables attached

Now just close the lid and you’re ready for some testing as shown earlier in Figure 4-9. And while
placing your alarm, remember which way the smoke goes.

Your gadget now has an “electrical nose.” Using the family of MQ sensors, you can detect gases
that are poisonous (CO), flammable (hydrocarbons), explosive (hydrogen), or that reveal intox-
ication (ethanol in breath).

In the project, you wrote a Python program to react to changes in the environment. You can
adapt this program to react to events from other sensors. Alternatively, the reaction could be
things other than email, such as contacting a web service or activating an output.

Gas sensors detect things that are difficult or impossible for our human senses to see. In the
next chapter, you’ll sense a more visible phenomenon, touch.

87Chapter 4

Test Project: Emailing Smoke Alarm

Touch is the most common way to tell a device what to do. Flip a switch
to turn on the lights, press a button on a remote control, or click a key
on your keyboard.

In this chapter, you’ll meet a button, a squeeze sensor, and a capacitive touch sensor. You’ll learn
to use pull-up resistors to avoid floating pins. Finally, you’ll build a haunted bell to try your touch
skills in a project.

A button is the most basic sensor, so it’s also the most basic touch sensor. When a button is
pressed, its leads are connected, closing a circuit. A microswitch is a type of small, durable
button.

A FlexiForce sensor detects how much force is being put on it. You can use it to test the might
of your fingers or to detect when someone is sitting on a chair.

A touch sensor senses touch without any moving parts. And the weird part of a touch sensor
is that it doesn’t even require touch! You’ll learn to detect a hand placed on a table, through the
table.

Even though touch sensors serve a similar purpose in your projects, their methods of measuring
touch differ. A button simply connects two wires. The FlexiForce pressure sensor is based on
thin layers of pressure-sensitive ink. A touch sensor measures capacitance—the ability to store
electricity.

Experiment: Button

Light up an LED when a button is pressed.

A button (Figure 5-1) is the simplest sensor. Pressing the button down connects its leads, so
that the button acts as a wire. Releasing the button breaks the circuit. All digital switch sensors
(such as a reed switch or tilt switch) work like a button.

89

Touch 5

Figure 5-1. Push button

Buttons come in many sizes and forms. When using a breadboard, it’s convenient to use a
button with four leads. The leads are in pairs, so that two adjacent leads are always con-
nected to each other. When you turn the button upside-down, you can see which leads
are connected. There is a beveled line showing the connected leads (Figure 5-2).

Figure 5-2. Bottom of a push button

Pull-Up Resistor
To get a reading from a data pin, it must be connected somewhere. You should not read
an unconnected floating pin. A pull-up resistor pulls a pin HIGH when it’s not connected to
anything else, avoiding the floating state.

The state of a data pin can be read with commands such as digitalRead(), analog
Read(), botbook_gpio.read(), botbook_mcp2003.readAnalog().

90 Make: Sensors

Experiment: Button

A pin that’s connected to ground or HIGH is an obvious case: when you read its state, it’s clear
which state it’s in. If the pin is connected to ground (GND, 0 V), a digital read returns LOW. If the
pin is connected to HIGH (+5 V or +3.3 V), the read returns HIGH.

If you read an unconnected, floating data pin, you would get an undefined value. It could be
HIGH, it could be LOW, it could change every second or stay the same forever. Such an undefined
value is completely useless, so there is no point in reading a floating pin.

Consider a circuit with a button between a data pin and ground (Figure 5-3). When the button
is pressed, the data pin is connected to ground so it’s LOW.

What about when the button is up? You must use a pull-up resistor to bring the data pin HIGH.

The pull-up resistor is big. We often use one in the tens of thousands ohms range. This way,
when the button is pressed and the data pin is connected to both ground and the pull-up, there
is no short-circuit between +5 V and ground because the path of least resistance is between
the data pin and ground, rather than between +5 V and ground.

For convenience, the code below uses built-in pull-up resistors. For Arduino, you can enable
the onboard pull-up resistors with a line of code. For Raspberry Pi, you’ll use one of the pins
that has an always-on pull-up resistor.

Code and Connection for Arduino
Build the circuit shown in Figure 5-3 and upload the code shown in Example 5-1. Press the
button to light up the surface-mounted LED.

If pressing the button doesn’t affect the LED at all, check that you have connected the button
the right way.

Figure 5-3. Button circuit for Arduino

91Chapter 5

Experiment: Button

Example 5-1. button.ino
// button.ino - light an LED by pressing a button
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int buttonPin=2;
int ledPin=13;
int buttonStatus=-1;

void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(buttonPin, INPUT); //
 digitalWrite(buttonPin, HIGH); // internal pull-up //
}

void loop() {
 buttonStatus=digitalRead(buttonPin); //
 if (LOW==buttonStatus) { //
 digitalWrite(ledPin, HIGH); //
 } else {
 digitalWrite(ledPin, LOW);
 }
 delay(20); //
}

Put the pin in INPUT mode to be able to check its voltage with digitalRead() later.

Connect the D2 pin to GND with large (20 kilohm) internal resistor. This prevents
the pin from floating when the button is open. The internal pull-up resistors save
you the trouble of connecting an extra resistor to your breadboard. The latest
versions of Arduino offer a new option for pinMode(), INPUT_PULLUP, which allows
you to combine this line and the preceding line into a single command: pin
Mode(buttonPin, INPUT_PULLUP);. But the older method works fine and you will
still see it in many example programs written before the new mode was introduced.

Read the voltage of D2. HIGH means +5 V, LOW means 0 V, ground level.

If the button level is LOW (meaning the button is pressed down)…

…light up an LED. Data pin D13 is connected to surface mounted LED on the
Arduino.

Pause briefly to not overtax the CPU.

92 Make: Sensors

Experiment: Button

This code keeps the LED lit when the button is held down. If you want to instead toggle
the LED each time you press the button, you must debounce the input. For example,
creating a device where one click turns the LED on and the next turns it off requires
debouncing. You can find a debounce example program in the Arduino IDE under
File→Examples→2.Digital: Debounce.

Code and Connection for Raspberry Pi
Wire up the Raspberry Pi as shown in Figure 5-4 and run the Python program shown in
Example 5-2.

Figure 5-4. Button circuit for Raspberry Pi

Example 5-2. button.py
button.py - write to screen if button is down or up
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time

93Chapter 5

Experiment: Button

import botbook_gpio as gpio #

def main():
 buttonpin = 3 # has internal pull-up #
 gpio.mode(buttonpin, "in") #

 while (True): #
 buttonUp = gpio.read(buttonpin) #
 if(buttonUp == gpio.HIGH):
 print "Button is up"
 else:
 print "Button is pressed"
 time.sleep(0.3) # seconds #

if __name__ == "__main__":
 main()

Make sure there’s a copy of the botbook_gpio.py library in the same directory as this
program. You can download this library along with all the example code from http://
botbook.com. See “GPIO Without Root” on page 19 for information on configuring
your Raspberry Pi for GPIO access.

The gpio3 pin has an internal pull-up resistor—it’s connected to +3.3 V through an
1800 Ohm resistor.

Set gpio3 to “in” mode, for reading its voltage with gpio.read() later.

Keep running until the user kills the program with Control-C.

Read the value of the pin. It will be either True or False.

Sleep for a while to prevent the while(True) loop from taking 100% of the CPU.
Also, the short wait makes it much easier to read the printed text.

Experiment: Microswitch

A microswitch is a button (see Figure 5-5). When you press the button, the leads are con-
nected. This experiment writes “0” to the serial port when the microswitch is pressed.

You can use a microswitch just like a regular button (see “Experiment: Button” on page
89). Just as with a button, the specific model of microswitch doesn’t matter, and you can
use the same code and connection for any typical microswitch.

94 Make: Sensors

Experiment: Microswitch

Figure 5-5. Microswitch

Microswitches are popular because of their low price, small size, and durability. A typical mi-
croswitch will last more than a million presses. The clicky sound and the feel of the click come
from a tiny arm turning around a pivot.

This connection avoids floating pin by using a pull-up resistor (“Pull-Up Resistor” on page 90).

Microswitch Code and Connection for Arduino
Build the circuit shown in Figure 5-6 and upload the code shown in Example 5-3.

Figure 5-6. Microswitch circuit for Arduino

95Chapter 5

Experiment: Microswitch

Example 5-3. microswitch.ino
// microswitch.ino - print to serial if microswitch is down or up
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int switchPin = 2;
int switchState = -1; //

void setup() {
 Serial.begin(115200);
 pinMode(switchPin, INPUT);
 digitalWrite(switchPin, HIGH); // internal pull-up //
}

void loop() {
 switchState = digitalRead(switchPin);
 Serial.println(switchState); //
 delay(10);
}

Initialize to an impossible value.

Writing HIGH to INPUT pin connects it to +5 V with a large (20 kilohm) resistor.

If button is pressed, the D2 pin is directly connected to ground through the button,
and switchState is LOW. When D2 is directly connected to ground, the 20 kOhm
pull-up resistor’s resistance is so large that the pull-up doesn’t affect the state of
D2. If the button is not pressed, the internal pull-up resistor pulls it to HIGH (+5 V).

You can make simple feeler antennas for your robot from a microswitch just by hot
gluing a zip tie to it (Figure 5-7).

Figure 5-7. Feeler antenna from microswitch

96 Make: Sensors

Experiment: Microswitch

Microswitch Code and Connection for Raspberry Pi
Wire up the Raspberry Pi as shown in Figure 5-8 and run the Python program shown in
Example 5-4.

Figure 5-8. Microswitch circuit for Raspberry Pi

Example 5-4. microswitch.py
microswitch.py - write to screen if switch is pressed or not
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio #

97Chapter 5

Experiment: Microswitch

def main():
 switchpin = 3 # has internal pull-up #
 gpio.mode(switchpin, "in")

 while (True):
 switchState = gpio.read(switchpin) #
 if(switchState == gpio.LOW):
 print "Switch is pressed"
 else:
 print "Switch is up"
 time.sleep(0.3) # seconds

if __name__ == "__main__":
 main()

Make sure there’s a copy of the botbook_gpio.py library in the same directory as this
program. You can download this library along with all the example code from http://
botbook.com. See “GPIO Without Root” on page 19 for information on configuring
your Raspberry Pi for GPIO access.

gpio2 and gpio3 pins have always-on internal pull-up resistors.

When the button is pressed down, gpio3 is connected to ground and thus LOW.
The internal pull-up resistor’s resistance is so large that the pull-up resistor doesn’t
affect gpio3 state when gpio3 is directly connected to ground. When the button is
up, the pull-up resistor pulls it HIGH.

Experiment: Potentiometer (Variable Resistor, Pot)

In this experiment, you’ll control how quickly an LED blinks by turning a potentiometer.

A potentiometer is a variable resistor. You turn its knob to change its resistance.

A normal, non-variable resistor has just two leads. If you want to use a potentiometer in
place of a single resistor, use the middle lead and either of the side leads.

Why does a potentiometer (or pot) have three leads, then? When you read a data pin, the
pin must always be connected somewhere.

The easiest way to use a pot is to connect one side to positive (+5 V) and another side to
ground (GND). Then the middle lead of the pot is connected to data pin. The voltage of
the pot’s middle lead then changes between +5 V and GND as you turn it. This makes the
pot a voltage divider, which is a circuit that lowers a voltage by dividing it between two
resistors (one connected to positive voltage, the other to ground). In the case of a pot, the
resistances on either side of the pot’s wiper change as you turn the knob.

98 Make: Sensors

Experiment: Potentiometer (Variable Resistor, Pot)

You can see a diagram of a potentiometer in Figure 5-9. The green middle lead is connected to
a data pin that measures voltage. The side leads are connected to ground (black) and +5 V (red).
There is an arc-shaped, round resistor (red-black) from positive to negative.

Figure 5-9. Potentiometer diagram

By turning the knob, you choose where the wiper touches the resistor somewhere on its arc.
Positive is not short-circuited to ground, because there is always the long arc-shaped resistor
between positive and ground.

If you turn the pot to the minimum, the green wiper is touching black ground (GND). The data
pin connected to the wiper then reads 0 V. The entirety of the arc-shaped resistor separates the
wiper from the positive terminal.

If you turn the pot to the maximum, the green wiper touches the red positive terminal (+5 V).
The data pin connected to the wiper then reads +5 V.

As you turn the wiper on the arc-shaped resistor, you can select any voltage between 0 V and
+5 V.

This example is using Arduino’s +5 V. A pot works the same way in Raspberry Pi, but there
you must use +3.3 V or you will damage your data pin.

Potentiometer Code and Connection for Arduino
Figure 5-10 shows the connection diagram for Arduino. Set up your circuit as shown, and then
upload and run the sketch shown in Example 5-5.

99Chapter 5

Experiment: Potentiometer (Variable Resistor, Pot)

Figure 5-10. Potentiometer circuit for Arduino

Example 5-5. pot.ino
// pot.ino - control LED blinking speed with potentiometer
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int potPin=A0; //
int ledPin=13;
int x=0; // 0..1023

void setup() {
 pinMode(ledPin, OUTPUT);
 pinMode(potPin, INPUT);
}

void loop() {
 x=analogRead(potPin); //
 digitalWrite(ledPin, HIGH);
 delay(x/10); // ms //
 digitalWrite(ledPin, LOW);
 delay(x/10);
}

You must use analog pins to read analog resistance sensors.

Now x has a raw analogRead() value, from 0 (0 V) to 1023 (5 V).

Potentiometer resistance controls the blinking delay. The delay varies from 0 ms to
about 100 ms (1023/10).

100 Make: Sensors

Experiment: Potentiometer (Variable Resistor, Pot)

Potentiometer Code and Connection for Raspberry Pi
Figure 5-11 shows the circuit diagram for using a pot with Raspberry Pi. Wire it up as shown,
and run the program shown in Example 5-6.

Figure 5-11. Potentiometer circuit for Raspberry Pi

Unlike Arduino, Raspberry Pi doesn’t have a built-in analog-to-digital converter. This means that
all circuits using analog resistance sensors are more complicated with Raspberry Pi than with
Arduino.

A potentiometer is a very simple component, as you can see by looking at the Arduino code
for it. It’s taking that analog reading that’s a bit harder for Raspberry Pi.

In an earlier chapter, you took the easy way and read analog values with our bot-
book_mcp3002 library (“Compound Eye Code and Connections for Raspberry Pi” on page 54).
But did it make you wonder how the botbook_mcp3002 library itself works?

This Raspberry Pi code introduces the underlying code needed to talk to the MCP3002 analog-
to-digital converter. So instead of just having you use the library, this code shows you how to

101Chapter 5

Experiment: Potentiometer (Variable Resistor, Pot)

read values directly from that chip with the SPI interface, thus making it easier to under-
stand how that library works (should you decide to delve into its inner workings).

Other code examples use the library, making them much simpler.

Example 5-6. pot.py
pot.py - potentiometer with mcp3002
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import spidev # installation help in book and botbook_mcp3002.py #
import time

def readPotentiometer():
 spi = spidev.SpiDev() #
 spi.open(0, 0) #
 command = [1, 128, 0] #
 reply = spi.xfer2(command) #
 #Parse reply 10 bits from 24 bit package
 data = reply[1] & 31 #
 data = data << 6 #
 data = data + (reply[2] >> 2) #
 spi.close() #
 return data

def main():
 while True:
 potentiometer = readPotentiometer() #
 print("Current potentiometer value is %i " % potentiometer)
 time.sleep(0.5)

if __name__ == "__main__":
 main()

The spidev library makes it much easier to use SPI.

Create a new SpiDev object and store it to the variable spi.

Open the first channel of the first connected device.

The first channel is 128; the second is 128+64.

Transfer one byte and read the reply.

Now you have to parse the reply, and find the interesting 10 bits out of 24 bits. We
learned the format of the reply from the MCP3002 data sheet: take the second byte
(1) from the reply, and perform a bitwise AND with 31 (which in binary is 00011111,
which can also be written as 0b 0001 1111). After the operation, the data variable
contains the five rightmost bits of reply[1]. If you want to understand bitwise
operations in detail, see “Bitwise Operations” on page 221.

102 Make: Sensors

Experiment: Potentiometer (Variable Resistor, Pot)

Shift data six bits left. For example, 0b 0001 1001 becomes 0b 0110 0100 0000 (we
added spaces between digits to make it easier to read the long binary number).
Now the rightmost six bits are zeroes.

Fill the six rightmost bits with the third byte of data, data[2].

Release the SPI bus.

The main program doesn’t care about the implementation details we just described.
Here, the main program’s life is made simple with a call to readPotentiometer().

Look demanding? The rest of the code in this book uses the botbook_mcp3002 library, so you
can concentrate on the bigger picture and let the library deal with all the bitwise operations.

Experiment: Sense Touch Without Touch (Capacitive Touch
Sensor QT113)

The secret of a capacitive touch sensor is that it doesn’t sense touch at all. Instead, it measures
how long it takes to load a piece of wire electrically. If there is a human (a big sack of water)
nearby, it takes longer to load the wire.

Figure 5-12. QT113 capacitive touch sensor IC

The QT113 is an IC (integrated chip) for capacitive sensing. The protocol is simple: when a touch
is detected, the output pin goes LOW.

103Chapter 5

Experiment: Sense Touch Without Touch (Capacitive Touch Sensor QT113)

A good capacitive sensor needs some kind of surface. In this experiment, you’ll use a piece
of metal wire turned into a spiral. A piece of aluminum foil could also work. The circuit also
uses a 10-500 nF capacitor.

There are many ways to do capacitive sensing:

• A piece of wire and a simple timer

• A piece of wire and CapSense library

• A specialized chip (like QT113)

You may use a capacitive sensor every day; if you have a smartphone, its touchscreen is
probably capacitive.

Ground your sensor. This kind of capacitive sensing requires a real ground, and a battery
is not enough. For example, using an Arduino powered by a laptop doesn’t work reliably,
until you connect your laptop to main power.

QT113 Code and Connection for Arduino
Figure 5-13 shows the circuit for using the QT113 with Arduino. Hook it up as shown, and
then run the sketch shown in Example 5-7.

Figure 5-13. QT113 circuit for Arduino

Example 5-7. qt113.ino
// qt113.ino - qt113 touch sensor
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int sensorPin = 9;

void setup()
{

104 Make: Sensors

Experiment: Sense Touch Without Touch (Capacitive Touch Sensor QT113)

 pinMode(sensorPin, INPUT);
 Serial.begin(115200);
}

void loop()
{
 int touch = digitalRead(sensorPin); //
 if(touch == LOW) {
 Serial.println("Touch detected");
 } else {
 Serial.println("No Touch detected");
 }
 delay(100);
}

It’s a simple digital switch sensor.

QT113 Code and Connection for Raspberry Pi
Figure 5-14 shows the connections for using Raspberry Pi with the QT113. Wire it up and run
the program shown in Example 5-8.

Example 5-8. qt113.py
qt113.py - read touch information from QT113
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_gpio as gpio

def main():
 limitPin = 23
 gpio.setMode(limitPin, "in")
 while True:
 if gpio.read(limitPin) == gpio.LOW: #
 print("Touch detected!")
 time.sleep(0.5)

if __name__ == "__main__":
 main()

It’s a simple digital switch sensor.

105Chapter 5

Experiment: Sense Touch Without Touch (Capacitive Touch Sensor QT113)

Figure 5-14. QT113 circuit for Raspberry Pi

Environment Experiment: Sensing Touch Through Wood

When properly adjusted, a capacitive touch sensor can detect a hand through solid objects.
The result is very convincing, as it feels as though the object is the sensor (Figure 5-15). For
example, we made a bookshelf that changed the color of RGB LED lights when touched.

In reality, the wood does not affect capacitive sensing. The sensor behind the wood works
through wood almost as well as it does through air.

106 Make: Sensors

Environment Experiment: Sensing Touch Through Wood

Figure 5-15. For the user, the sensor looks like wood

To try this out, use the code and the connection for QT113 as you learned earlier. This time you’ll
need to modify the touch wire to amplify its capability to detect changes in the electromagnetic
field. Basically, you need a bigger chunk of metal on the other end the wire. Making a spiral or
attaching some aluminum foil has worked well for us (Figure 5-16).

Figure 5-16. Touch wire spiral, hidden from user

107Chapter 5

Environment Experiment: Sensing Touch Through Wood

Experiment: Feel the Pressure (FlexiForce)

The FlexiForce sensors measures squeeze (pressure) on its round head (Figure 5-17).

FlexiForce is a simple analog resistance sensor. The more you squeeze, the lower the re-
sistance. It has just two leads. The third lead in the middle is not connected, but is there
just to make connecting it easier. As it’s just a resistor, it has no polarity, and it doesn’t
matter which way you connect it. You can even test it with a multimeter that’s on the
resistance setting.

Our students have used FlexiForce for an alarm that silences only when you get out of bed,
a squeezing strong man competition, and for measuring squeezing precision. If you need
a larger area for stepping over, you can put a piece of wood over the FlexiForce.

Figure 5-17. FlexiForce

FlexiForce Code and Connection for Arduino
FlexiForce is an analog resistance sensor. As Arduino has a built-in analog-to-digital con-
verter, reading the value is a simple call to analogRead().

A 1 megaohm pull-up resistor is used to avoid a floating pin. For an explanation of pull-up
resistors, see “Pull-Up Resistor” on page 90. Figure 5-18 shows the wiring diagram, and
Example 5-9 shows the sketch. After you wire up the Arduino, load the sketch and run it.

108 Make: Sensors

Experiment: Feel the Pressure (FlexiForce)

Figure 5-18. FlexiForce connection for Arduino

Example 5-9. flexiforce_25.ino
// flexiforce_25.ino - send flexiforce squeeze values to computer serial monitor
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int squeezePin=A0; //
int x=-1; // 0..1023

void setup() {
 pinMode(squeezePin, INPUT);
 Serial.begin(115200); // bit/s
}

void loop() {
 x=analogRead(squeezePin); //
 Serial.println(x);
 delay(500); // ms
}

Arduino’s predefined constants (A0, A1, A2…) are the best way to refer to analog pins in
Arduino.

As with any analog resistance sensor, analogRead() returns the voltage of the pin, from
0 (0 V) to 1023 (+5 V).

FlexiForce Code and Connection for Raspberry Pi
The Raspberry Pi connection is similar to other analog resistance sensors (Figure 5-19). Because
Raspberry Pi doesn’t have a built-in analog-to-digital converter, we use an external MCP3002
chip. Because the FlexiForce has just two leads, we use a pull-up resistor to avoid having a
floating pin.

109Chapter 5

Experiment: Feel the Pressure (FlexiForce)

As the implementation details of MCP3002 analog converter are handled in the bot-
book_mcp3002 library, the main program itself is quite simple. Wire up the Raspberry Pi as
shown in Figure 5-19, and then run the code shown in Example 5-10.

Figure 5-19. FlexiForce connection for Raspberry Pi

Example 5-10. flexiforce.py
flexiforce.py - sense force and print value to screen.
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_mcp3002 as mcp #

def readFlexiForce():
 return mcp.readAnalog() #

def main():
 while True: #
 f = readFlexiForce() #
 print("Current force is %i " % f) #
 time.sleep(0.5) # s #

110 Make: Sensors

Experiment: Feel the Pressure (FlexiForce)

if __name__ == "__main__":
 main()

The botbook_mcp3002.py library file must be in the same directory as flexiforce.py. You
must also install the spidev library, which is imported by botbook_mcp3002. See the
comments in the beginning of botbook_mcp3002/botbook_mcp3002.py or “Installing
SpiDev” on page 56.

Read the first sensor connected to MCP3002. The device and channel parameters are
not needed when both are 0.

Embedded devices usually run as long as there is power. Use Control-C if you want to
kill the program. When running a long or infinite loop, remember to add delay() to the
end of the loop.

You can easily use readFlexiForce() in bigger projects when it’s in a separate function
like this. The function name explains what it does, so no comment is needed.

Print the force. The string printed is formatted with a format string, where the value of
f replaces %i.

Some delay is needed for the long loop (to avoid 100% CPU utilization) and also to allow
the user to read the printed text.

Experiment: Build Your Own Touch Sensor

If capacitive sensing is just measuring the time it takes to load an electrical charge, could you
build one yourself, and avoid using the QT113 chip? It’s possible to sense touch with just alu-
minum foil, a resistor, and good ground for your Arduino board.

Capacitive sensing is a practical matter. Even though the principle is simple, implementation is
precise business. In addition to good grounding, the measurements must use sliding averages
to smooth out any random fluctuation.

For reliable ground, the power source of Arduino must be connected to wall socket. If you are
using a laptop, connect the laptop power cord into a wall socket. If you’re using a desktop, it’s
of course always connected. You can also use a USB charger connected to wall socket.

The measuring part, aluminum foil, is connected between two data pins. Connecting something
between data pins like this is quite rare—you usually connect one wire to ground or +5 V and
the other to a data pin.

The code charges one data pin, and waits for however long it takes for the other data pin to
reach the same charge (same voltage). As capacitance is the ability to hold charge, a big object
like a human nearby will affect capacitance and result in a different charging time.

The smaller 10 kOhm resistor (brown-black-orange) helps protect against static electricity.

111Chapter 5

Experiment: Build Your Own Touch Sensor

The big 1 MOhm to 50 MOhm resistor selects the sensitivity. The bigger the resistor, the
farther away it detects a human. The trade-off for bigger detection distance is a slower
reading speed.

Figure 5-20 shows the connection diagram for the Arduino, and Example 5-11 shows the
sketch. Wire up the Arduino as shown, and then upload and run the code.

Figure 5-20. Capacity sensor connection for Arduino

Example 5-11. diy_capacitive_sensor.ino
// diy_capacitive_sensor.ino - measure touch
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sendPin = 4;
const int readPin = 6;

void setup() {
 Serial.begin(115200);
 pinMode(sendPin,OUTPUT);
 pinMode(readPin,INPUT);
 digitalWrite(readPin,LOW);
}

void loop() {
 int time = 0;

 digitalWrite(sendPin,HIGH);
 while(digitalRead(readPin) == LOW) time++;
 Serial.println(time);
 digitalWrite(sendPin,LOW);
 delay(100);
}

112 Make: Sensors

Experiment: Build Your Own Touch Sensor

Capsense Code and Connection for Raspberry Pi
Figure 5-21 shows the wiring diagram for Raspberry Pi. Wire it up as shown, and then run the
code shown in Example 5-12.

Figure 5-21. Capacity sensor connection for Raspberry Pi

Example 5-12. diy_capacity_sensor_simple.py
diy_capacity_sensor_simple.py - read touch from diy capacity sensor.
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio

def sample(count):
 sendPin = 23
 recievePin = 24
 gpio.mode(sendPin,"out")
 gpio.mode(recievePin,"in")
 gpio.write(sendPin,0)
 total = 0
 # set low
 for x in xrange(1,count):

113Chapter 5

Experiment: Build Your Own Touch Sensor

 time.sleep(0.01)
 gpio.write(sendPin,gpio.HIGH)
 while(gpio.read(recievePin) == False):
 total += 1
 gpio.write(sendPin,gpio.LOW)
 return total

def main():
 while True:
 touch = sample(30)
 print("Touch: %d" % touch)
 time.sleep(0.5)

if __name__ == "__main__":
 main()

Test Project: Haunted Ringing Bell

You enter a silent-looking reception desk. There is nobody in sight to check you in. You
reach for the bell on the desk (Figure 5-22), but before you touch it… it rings!

Figure 5-22. Haunted bell

114 Make: Sensors

Test Project: Haunted Ringing Bell

In this project we combine a capacitive touch sensor with an old-school ringing bell. The result
is a bell that makes a sound just before you touch it. Even the bell knob moves by itself, giving
this gadget a nice ghostly charm. You’ll also learn how to use a versatile new component, a
servo motor.

What You’ll Learn
In the Haunted Ringing Bell project, you’ll learn how to:

• Build a gadget that reacts to your hand before you touch it.

• Make things move with servo motors.

• Control servo motors.

• Package a project to look like an innocent, everyday object.

Servo Motors

Figure 5-23. Different servos

A servo is a motor you can precisely control (Figure 5-23). You can tell a standard servo to turn
to a specific angle, such as 90 degrees. There are also full rotation servos where you control just
the direction and rotation speed.

If you ever think you need a motor for your project, consider a servo first. The servo is in contrast
to common DC motors, which are difficult to control and require extra components just for

115Chapter 5

Test Project: Haunted Ringing Bell

changing direction. Most moving things in Arduino and Raspberry Pi prototyping projects
are done with servos.

A servo has three wires: black ground (0 V), red positive (+5 V), and control (yellow or white).
Arduino sends a continuous stream of pulses to control wire. The length of these pulses
tell the servo which angle to move to. The servo turns to this angle and then maintains it
as long as pulses keep coming from Arduino.

The square wave (the pulse) is easy to create by rapidly changing a digital output pin
between LOW and HIGH. To control the servo, Arduino must send 50 pulses a second, in
other words, at the rate of 50 Hz.

50/s = 50 * 1/s = 50 * Hz = 50 Hz

The pulses are about 1 ms to 2 ms long. The longer the pulse, the bigger the angle. The
pulse length between minimum and maximum angle centers the servo. Often, the center
is about 1.5 ms.

For most servos, it’s not easy to find data sheets. But the update frequency (pulses per
second) is usually the same, and it does not have to be exact.

The actual pulse length varies between servos, but it’s easy to find it out experimentally.
To get an idea of pulse length versus angle, see the example values in Table 5-1.

Table 5-1. Pulse length controls servo angle, example values

Pulse length ms Pulse length µs Angle Comment

0.5 ms 500 µs < -90 deg Trying to turn over range, ugly sound from gears

1 ms 1000 µs -90 deg Extreme left

1.5 ms 1500 µs 0% Centered

2 ms 2000 µs 90% Extreme right

2.5 ms 2500 µs > 90 deg Over range, ugly sound

Finding Servo Range
Even though you already know that servos use pulses from 1 ms to 2 ms, how does this
help with the specific servo you have? You can find out the servo range experimentally.
This code is essentially the “Hello World” for servos.

We always test a servo’s range when we buy new servos. Theoretically, the pulse length
information should be available on the manufacturer’s website somewhere. In practice,
many servos don’t have data sheets, or the correct data sheet is not easy to find.

We test every sensible pulse length from too small to too large (Example 5-13). As the code
prints the pulse length to screen, we notice the key points and write them down (Table 5-2).
The wiring diagram is shown in Figure 5-24.

Run the program. Open the serial monitor on Arduino IDE to see the pulse lengths printed
(Tools→Serial Monitor). Set the serial monitor to the same speed (“baud”, bit/s) that the
code uses.

116 Make: Sensors

Test Project: Haunted Ringing Bell

Table 5-2. Key pulse lengths for servo calibration

Pulse length µs Angle Comment

-90 deg Extreme left (test with code)

0 deg Middle, mean of extreme left and right

+90 deg Extreme right test with code)

First, the pulse is way too short; it’s asking the servo to turn past its range. The servo doesn’t
turn, but it might shake a bit and the gears could make a tiny but ugly noise. A short burst of
this ugly noise is not harmful to the servo. When the servo starts turning, notice the point on
the serial monitor. This is the -90 deg pulse length for extreme left.

When the servo stops turning, notice the pulse length. This is the pulse length for +90 degrees,
extreme right.

The pulse length for the middle is the mean of maximum left and right. For example, if the
extremes are 1 ms and 2 ms, the middle is 1.5 ms.

Some servos have a built-in potentiometer to set the center. If you have a servo like this, you
can send the pulse for middle and experiment with the pot.

Example 5-13. servo_range.ino
// servo_range.ino - turn servo and print values to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari
int servoPin=2;

void pulseServo(int servoPin, int pulseLenUs) //
{
 digitalWrite(servoPin, HIGH); //
 delayMicroseconds(pulseLenUs); //
 digitalWrite(servoPin, LOW); //
 delay(15); //
}

void setup()
{
 pinMode(servoPin, OUTPUT);
 Serial.begin(115200);
}

void loop()
{
 for (int i=500; i<=3000; i=i+2) { //
 pulseServo(servoPin, i); //
 Serial.println(i);
 }
}

117Chapter 5

Test Project: Haunted Ringing Bell

To send one short pulse, call pulseServo(). The function is not run here where it’s
defined, only when it’s called later. As the servo pin is given as a parameter, multiple
calls to this function can control multiple servos.

The pin is expected to be LOW first, meaning no pulse is being sent. Then you turn
it HIGH, and the pulse starts.

Wait for a very short time. As the variable name implies, the unit is microseconds
(µs), millionths of a second. Typical values are in Table 5-1. The purpose of this sketch
is to find the exact values for your servo.

Turn the pin LOW, ending the pulse.

Wait for a while. The 15 ms time is short for humans but about 10 times longer than
the length of the pulse. The pulses must be sent at least 50 times a second, so a
pulse must be sent every 1/50 s = 0.02 s = 20 ms. We chose to wait a bit less than
that.

Run the loop body with increasing pulse lengths. Start from the way-too-small 500
µs (0.5 ms), and end up at the way-too-high 3000 µs (3 ms). If you’ve forgotten how
for loops work, see “What For?”.

Send a short pulse to the servo. As a delay is included in pulseServo(), you don’t
need to wait in the main loop.

What For?

The for loop is an eloquent way to say “run this
code for a number of iterations.” Here is the syn-
tax:

for(initialization; condition;
afterthought)
{
 body
}

For example:

for(int i=0; i<3; i++) {
 Serial.print(i);
}

Only once, when the loop starts, is the initializa-
tion run. That’s also where you declare the loop
variable.

When loop is about to start, the condition is
checked. If the condition is false, the for loop ex-
its. If true, then the body of the loop is run.

Finally, the afterthought is run. Typically, the loop
counter is increased there. Then the condition is
checked again.

118 Make: Sensors

Test Project: Haunted Ringing Bell

Figure 5-24. Servo connected to D2 for servo_range.ino

It’s also possible to control servos with the built-in Arduino library, Servo.h. Servo.h comes
with the Arduino IDE and provides an object-oriented interface to servos. It lets you
control the servos by specifying degrees, like myservo.write(180). You could find it
handy when you need to control many standard servos. However, using the Arduino
Servo library disables the use of analogWrite() on pins 9 and 10, and we prefer to keep
that functionality enabled, so we don’t use the library. See http://arduino.cc/en/refer
ence/servo for more information.

Haunted Bell Code and Connection for Arduino
Connect the servo motor and capacitive touch sensor as in the earlier examples (see
Figure 5-25). Again you’ll need to use an 10-500 nF capacitor with QT113. The best value for us
was 300 nF.

119Chapter 5

Test Project: Haunted Ringing Bell

Figure 5-25. Haunted bell connections

Example 5-14. haunted_bell.ino
// haunted_bell.ino - bell rings just before you touch it
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int servoPin=2;
int sensorPin = 9;
int sensorPowerPin = 8;
int hasRang = 0; //

void pulseServo(int servoPin, int pulseLenUs) //
{
 digitalWrite(servoPin, HIGH);
 delayMicroseconds(pulseLenUs);
 digitalWrite(servoPin, LOW);
 delay(20);
}

void cling() //
{
 for (int i=0; i<=3; i++) { //
 pulseServo(servoPin, 2000);
 }
 for (int i=0; i<=100; i++) {
 pulseServo(servoPin, 1000);
 }

}

120 Make: Sensors

Test Project: Haunted Ringing Bell

void setup()
{
 pinMode(servoPin, OUTPUT);
 pinMode(sensorPowerPin, OUTPUT);
 digitalWrite(sensorPowerPin,HIGH);
 pinMode(sensorPin,INPUT);
}

void loop()
{
 int touch = digitalRead(sensorPin); //
 if(touch == HIGH) { //
 hasRang = 0;
 }
 if(touch == LOW && hasRang == 0) { //
 cling(); //
 hasRang = 1; //
 digitalWrite(sensorPowerPin,LOW);
 delay(1);
 digitalWrite(sensorPowerPin,HIGH);
 }
 delay(100);
}

The variable hasRang will be 1 if the bell has rung without the touch being removed.
This will help make sure the bell rings only once. (We used integer 1 for true and 0 for
false to avoid introducing a lot of Boolean logic, but feel free to use Bool in your programs
if you prefer.)

Servo control is explained in Example 5-13.

A function to ring the bell once. It’s in a separate function to make main loop() easier
to read, and because it’s one simple thing to do.

To give the servo some time to move and hit the bell, you must send multiple pulses.
As one pulseServo() takes about 20 ms, 100 iterations is 2 seconds. So one ring() runs
about two seconds.

SensorPin is LOW when there is touch.

If there is no touch (HIGH), reset hasRang. Now the bell will ring again if a hand comes
near.

If a hand is near and (&&) it has not rung for this touch yet…

…ring the bell once.

Remember that the bell has rung, to avoid ringing twice for the same near-touch.

121Chapter 5

Test Project: Haunted Ringing Bell

Attaching Servo to Ringing Bell
Use hot glue to attach the servo inside the ringing bell (Figure 5-26). Before gluing, make
sure that the servo arm pushes the moving part inside the bell so that it gives a solid sound.
Servo movement should also allow the bell button to move naturally. It might take a few
tries to get the servo attached exactly the right way. Now your haunted ringing bell is ready
to spook unsuspecting victims.

Figure 5-26. Servo inside the bell

You have now seen many kinds of touch and near-touch. You’ve played with buttons,
microswitches, touch switches, and even used touch sensors without touch. After you’ve
let the bell haunt your friends for a while, you can start applying this knowledge to your
own projects. Think of any electronic devices around you: most sense touch in one way or
another.

122 Make: Sensors

Test Project: Haunted Ringing Bell

As you walk to your yard, a light comes on automatically. It’s time to relax
a bit with your favorite gaming console (we prefer Ouya). To save your
ears, you turn down the volume.

Automatic garden lights detect the moving heat radiated by humans. Joysticks convert motion
to a change in resistance. A volume knob is a potentiometer, another kind of variable resistor.

Experiment: Which Way Is Up? (Tilt Ball Switch)

If you decide to build a pinball machine, you might want to detect excessive nudging and end
the player’s turn with a TILT alarm. Also, a burglar alarm could use a tilt sensor.

Figure 6-1. Tilt ball switch

123

Movement 6

Tilt Sensor Code and Connection for Arduino
Figure 6-2 shows the circuit diagram for an Arduino-based tilt sensor. Build it, and then run
the code shown in Example 6-1.

Figure 6-2. Tilt sensor circuit for Arduino

Example 6-1. tilt_sensor.ino
// tilt_sensor.ino - detect tilting and print to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int tiltPin = 8;
int tilted = -1;

void setup() {
 Serial.begin(115200);
 pinMode(tiltPin, INPUT);
 digitalWrite(tiltPin, HIGH);
}

void loop() {
 tilted = digitalRead(tiltPin); //
 if(tilted == 0) {
 Serial.println("Sensor is tilted");
 } else {
 Serial.println("Sensor is not tilted");
 }

 delay(100);
}

It’s a simple digital switch sensor.

124 Make: Sensors

Experiment: Which Way Is Up? (Tilt Ball Switch)

Tilt Sensor Code and Connection for Raspberry Pi
Figure 6-3 shows the connections for Raspberry Pi. Wire it up and run the program shown in
Example 6-2.

Figure 6-3. Tilt sensor circuit for Raspberry Pi

Example 6-2. tilt_sensor.py
tilt_sensor.py - print if sensor was tilted
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_gpio as gpio

def main():
 tiltpin = 3 # has internal pull-up #
 gpio.mode(tiltpin, "in")

125Chapter 6

Experiment: Which Way Is Up? (Tilt Ball Switch)

 while (True):
 isNotTilted = gpio.read(tiltpin) #
 if(isNotTilted == gpio.LOW):
 print "Sensor is tilted"
 else:
 print "Sensor is not tilted"
 time.sleep(0.3) # seconds

if __name__ == "__main__":
 main()

Raspberry Pi has internal pull-ups on gpio2 and gpio3. They are permanently
enabled.

A tilt sensor is a simple digital switch sensor.

Experiment: Good Vibes with Interrupt (Digital
Vibration Sensor)

A vibration sensor can detect tiny vibrations, like the ground shaking (Figure 6-4).

Figure 6-4. Vibration sensor

126 Make: Sensors

Experiment: Good Vibes with Interrupt (Digital Vibration Sensor)

Vibration Code and Connection for Arduino
The signal sent by a vibration sensor is very short. You must use an interrupt to catch it.

For most sensors, you could just poll them. Polling means that you check the state of the digital
pin, wait a while, and then check again.

With an interrupt, you can tell Arduino to run a function whenever some event happens. Inter-
rupts make it harder to follow the flow of the code you write, but they allow you to catch very
short-lived events, like a pin going up and then down quickly.

Figure 6-5 shows the circuit diagram for the vibration sensor. Wire it up as shown, and then run
the code shown in Example 6-3.

Figure 6-5. Vibration sensor circuit for Arduino

Example 6-3. vibration_sensor.ino
// vibration_sensor.ino - detect vibration using interrupt
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sensorPin = 0; //UNO,Mega pin 2, Leonardo pin 3
volatile int sensorState = -1;

void setup() {
 Serial.begin(115200);
 attachInterrupt(sensorPin, sensorTriggered, RISING); //
}

void loop() {
 if(sensorState == 1) { //
 Serial.println("Vibrations detected");
 delay(1); // ms
 sensorState = 0;
 }

127Chapter 6

Experiment: Good Vibes with Interrupt (Digital Vibration Sensor)

 delay(10);
}

void sensorTriggered() { //
 sensorState = 1; //
}

This tells Arduino to call sensorTriggered() when sensorPin goes from LOW to
HIGH. This is known as a callback. Notice that the name of the function in the
callback does not have parentheses after it. Without the parentheses, a function
name is a pointer to the function (whereas including the parentheses would cause
the function to be called once and return its value). After all, attachInterrupt()
needs to know about the function, and isn’t ready to run it yet.

The main loop can go on its merry way as slowly as it wants. It checks the value of
a global variable.

When the interrupt is triggered, sensorTriggered() is called. The interrupt reacts
very quickly.

The sensorTriggered() function simply sets a global variable, which can be read
at the main loop’s leisure.

Vibration Code and Connection for Raspberry Pi
Figure 6-6 shows the wiring diagram for the Raspberry Pi version of this sensor circuit. Wire
it up as shown and then run the program shown in Example 6-4.

Example 6-4. vibration_sensor.py
vibration_sensor.py - detect vibration
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio #

def main():
 vibPin = 3
 gpio.mode(vibPin, "in")
 while (True):
 vibrationInput = gpio.read(vibPin) #
 if(vibrationInput == gpio.LOW):
 print "Vibration"
 time.sleep(5) #
 time.sleep(0.01) # seconds #

if __name__ == "__main__":
 main()

128 Make: Sensors

Experiment: Good Vibes with Interrupt (Digital Vibration Sensor)

As with previous examples, this library must be in the same directory along with
vibration_sensor.py.

The vibration sensor is used like a digital switch sensor. You can read it like a button.

If vibration was detected, report it only once instead of filling the screen with “Vibration”
texts.

We use a very short 10 ms delay, so vibPin is polled 100 times a second (100 Hz).

Figure 6-6. Vibration sensor circuit for Raspberry Pi

Raspberry Pi code can’t detect as short vibrations as Arduino can. The code doesn’t use an
interrupt, because it would complicate the code, would still need fast looping, and still couldn’t
match Arduino. If you need very precise vibration detection in Raspberry Pi, you can connect
Arduino to Raspberry Pi (“Talking to Arduino from Raspberry Pi” on page 337).

129Chapter 6

Experiment: Good Vibes with Interrupt (Digital Vibration Sensor)

Experiment: Turn the Knob

A rotary encoder measures turning (see Figure 6-7). An absolute rotary encoder tells the
position (position is 83 deg), and relative rotary encoders tell the change (turned 23 deg
from previous position).

The rotary encoder we use here is a relative one. When you turn the knob, the encoder
sends clock pulses on the clock pin. On the rising edge (the clock goes from LOW to HIGH),
one data pulse comes on the data pin; another comes on the falling edge (HIGH to LOW
transition).

If the data pulse is HIGH, you’re turning right (clockwise, negative direction). If the data
pulse is LOW, you’re turning left.

Figure 6-7. Rotary encoder

Rotary Encoder Code and Connection for Arduino
This code uses interrupts, so it might look different from the Arduino codes you’ve worked
with before. Wire up the circuit as shown in Figure 6-8, and run the sketch shown in
Example 6-5.

130 Make: Sensors

Experiment: Turn the Knob

Figure 6-8. Rotary encoder circuit for Arduino

Example 6-5. rotary_encoder.ino
// rotary_encoder.ino - print encoder position
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int clkPin = 2;
const int dtPin = 4;

volatile unsigned int encoderPos = 0; //

void setup()
{
 Serial.begin(115200);
 pinMode(clkPin, INPUT);
 digitalWrite(clkPin, HIGH); // pull up //
 pinMode(dtPin, INPUT);
 digitalWrite(dtPin, HIGH); // pull up

 attachInterrupt(0, processEncoder, CHANGE); //
}

void loop()
{
 Serial.println(encoderPos);
 delay(100);
}

void processEncoder() //
{
 if(digitalRead(clkPin) == digitalRead(dtPin)) //
 {
 encoderPos++; // turning right
 } else {

131Chapter 6

Experiment: Turn the Knob

 encoderPos--;
 }
}

EncoderPos is marked as volatile, because it’s modified in the interrupt function.
The volatile keyword lets the Arduino compiler know that the value could change
“behind the back” of the main loop of the Arduino sketch.

Writing HIGH to an INPUT pin connects it to +5 V through a 20 kOhm pull-up resistor.
This is done to avoid a floating pin.

Anytime there is CHANGE (rising or falling edge), call the function processEncoder.
In Arduino Uno, interrupt 0 monitors digital pin 2. The callback function processEn
coder doesn’t have parentheses after it, because it’s not needed to run yet. It will
run later, when called by the interrupt (this happens behind the scenes).

Anything else is put on hold while the interrupt function runs.

When dtPin is in the same state as the clock pin, it indicates a right turn. Otherwise,
it’s a left turn.

Rotary Encoder Code and Connection for Raspberry Pi
Figure 6-9 shows the wiring diagram for using a rotary encoder with Raspberry Pi. Wire it
up as shown and then run the program shown in Example 6-6.

Example 6-6. rotary_encoder.py
rotary_encoder.py - read rotary encoder
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio #

def main():
 encoderClk = 3
 encoderDt = 2
 gpio.mode(encoderClk, "in")
 gpio.mode(encoderDt, "in")
 encoderLast = gpio.LOW
 encoderPos = 0
 lastEncoderPos = 0
 while True:
 clk = gpio.read(encoderClk)
 if encoderLast == gpio.LOW and clk == gpio.HIGH: #
 if(gpio.read(encoderDt) == gpio.LOW): #
 encoderPos += 1
 else:
 encoderPos -= 1
 encoderLast = clk
 if encoderPos != lastEncoderPos:
 print("Encoder position %d" % encoderPos)

132 Make: Sensors

Experiment: Turn the Knob

 lastEncoderPos = encoderPos
 time.sleep(0.001) # s #

if __name__ == "__main__":
 main()

Make sure there’s a copy of the botbook_gpio.py library in the same directory as this
program. You can download this library along with all the example code from http://
botbook.com. See “GPIO Without Root” on page 19 for information on configuring your
Raspberry Pi for GPIO access.

If a rising edge (LOW to HIGH) is detected…

…when data is LOW on the clock edge, the encoder is turning left (counterclockwise,
positive direction).

Sleep only 1 millisecond, so that we don’t miss any clicks.

Figure 6-9. Rotary encoder circuit for Raspberry Pi

133Chapter 6

Experiment: Turn the Knob

Even though the Raspberry Pi has more processing power, Arduino is much faster (as in
more real time). If you feel that Raspberry Pi is missing too many pulses when you turn fast
and run a lot of other software on your Raspberry, consider reading the pulses through an
Arduino. See “Talking to Arduino from Raspberry Pi” on page 337.

Experiment: Thumb Joystick (Analog Two-Axis Thumb
Joystick)

If you’ve played on any videogame consoles, you have used a joystick. In the old days, you
grabbed a big joystick with your strong hand. Modern gaming consoles like Xbox, Play-
Station, or Ouya use multiple thumb joysticks.

Figure 6-10. Two-axis thumb joystick

Typically, a joystick has two potentiometers (pots), which are variable resistors. Tilting the
joystick along the vertical y-axis changes the resistance of one pot. Tilting along the hori-
zontal x-axis changes the resistance of another pot.

134 Make: Sensors

Experiment: Thumb Joystick (Analog Two-Axis Thumb Joystick)

In many joysticks, the potentiometers are in three-lead configuration. They have one lead on
the ground, another on +5 V, and one in the middle, giving a varying voltage between 0 V and
+5 V. In this three-lead configuration, no pull-up or pull-down resistors are needed.

Mobile phones and Wii consoles can use accelerometers instead of joysticks. The device
attitude is measured against gravity and is used for controlling games. (See “Experiment:
Hacking Wii Nunchuk (with I2C)” on page 225.) Gravity has the same effect as acceleration.
To get precise attitude measurements, see Chapter 8.

Joystick Code and Connection for Arduino
Figure 6-11 shows the circuit design for using Arduino with a joystick. Wire it up and run the
sketch shown in Example 6-7.

Figure 6-11. Joystick circuit for Arduino

Example 6-7. ky_023_xyjoystick.ino
// ky_023_xyjoystick.ino - print joystick position to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int VRxPin = 0; //
const int VRyPin = 1;
const int SwButtonPin = 8;

int button = -1; // LOW or HIGH //
int x = -1; // 0..1023
int y = -1; // 0..1023

void readJoystick() { //

135Chapter 6

Experiment: Thumb Joystick (Analog Two-Axis Thumb Joystick)

 button = digitalRead(SwButtonPin); //
 x = analogRead(VRxPin);
 y = analogRead(VRyPin);
}

void setup() {
 pinMode(SwButtonPin, INPUT);
 digitalWrite(SwButtonPin, HIGH); // pull-up resistor //
 Serial.begin(115200);
}

void loop() {
 readJoystick(); //
 Serial.print("X: ");
 Serial.print(x);
 Serial.print(" Y: ");
 Serial.print(y);
 Serial.print(" Button: ");
 Serial.println(button);
 delay(10);
}

Store the pin numbers into global constants: a variable resistor for x, a variable
resistor for y, and a button.

These global variables store the state of the button and the tilt of the joystick along
y- and x-axes. We initialize these variables to impossible values (values that won’t
get generated by calls to analogRead or digitalRead) to help debugging. The
intended range of values is indicated in the comments.

readJoystick() doesn’t return a value (it’s said to be of a void type). In C++, which
Arduino is based on, functions can’t conveniently return multiple values. Instead,
readJoystick() updates global variables.

The button state is stored to the global variable button.

Enable the internal pull-up resistor to avoid having a floating pin.

Update the global variables that store the joystick state.

Joystick Code and Connection for Raspberry Pi
Figure 6-12 shows the circuit layout for Raspberry Pi and a joystick. Hook everything up as
shown, and then run the program shown in Example 6-8.

136 Make: Sensors

Experiment: Thumb Joystick (Analog Two-Axis Thumb Joystick)

Figure 6-12. Joystick circuit for Raspberry Pi

Example 6-8. xy_joystick.py
xy_joystick.py - print KY 023 joystick tilt and button status
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_mcp3002 as mcp #
import botbook_gpio as gpio #

def readX(): #
 return mcp.readAnalog(0, 0)

def readY():
 return mcp.readAnalog(0, 1) #

def readButton():
 buttonPin = 25
 gpio.mode(buttonPin, "in")
 return gpio.read(buttonPin)

def main():
 while True: #
 xAxel = readX() #
 yAxel = readY()
 button = readButton()

137Chapter 6

Experiment: Thumb Joystick (Analog Two-Axis Thumb Joystick)

 print("X: %i, Y: %i, Button: %r" % (xAxel, yAxel, button)) #
 time.sleep(0.5)

if __name__ == "__main__":
 main()

Import the library for the MCP3002 analog-to-digital converter chip. The library
botbook_mcp3002.py must be in the same directory as xy_joystick.py. You must also
install the spidev library, which is imported by botbook_mcp3002. See comments in
the beginning of botbook_mcp3002/botbook_mcp3002.py or “Installing SpiDev” on
page 56.

Use more convenient namespace to keep the code from getting too verbose. The
as keyword allows you to write gpio.read() instead of botbook_gpio.read().

Write functions according to their purpose. The purpose of readX() (read the state
of the x-axis) will look obvious in the main program.

Measure the voltage on the second channel (number 1).

Keep running until you hit Control-C to kill the program (or shut down the Raspberry
Pi).

Read the tilt along the x-axis and store it to new variable xAxel.

When using multiple variables in a format string, the variables must be in a tuple
(a group of values separated by commas). You can think of a tuple (1, 2, 3) as a
list [1, 2, 3] that you can’t modify.

Environment Experiment: Salvage Parts from an Xbox
Controller

If you have an old game console (Xbox, PlayStation, etc.) control pad lying around, you can
salvage two sensors from it and use them with your Arduino or Raspberry Pi (Figure 6-13).
Opening the controller is quite easy, but you’ll need to use a soldering iron to detach the
components from the circuit board.

For detaching components, you may also find these tools/supplies helpful: a des-
oldering pump, solder wick (also known as a braid), or even a flux pen.

Many controllers also have a simple force feedback system. For example, if a player takes
damage in a game, force feedback makes the controller shake. This is done with vibration
motors—eccentric DC motors that spin and shake when powered. Take these out, too, and
give them a new home in your own force feedback gadget (Figure 6-14).

138 Make: Sensors

Environment Experiment: Salvage Parts from an Xbox Controller

Figure 6-13. Thumb joysticks inside Xbox controller

Figure 6-14. Salvaged vibration motors

139Chapter 6

Environment Experiment: Salvage Parts from an Xbox Controller

Experiment: Burglar Alarm! (Passive Infrared Sensor)

A passive infrared (PIR) sensor is probably the most common burglar alarm. All warm ob-
jects radiate invisible infrared light. A PIR sensor reacts to changing infrared light. This
change is typically caused by a warm human moving.

Be sure to let your PIR sensor adapt to its environment first. Because a PIR only detects
change, it has to first know the heat pattern in the room when there is no burglar. After
you turn on the power, the PIR sensor needs 30 seconds to adapt to the environment. There
must be no movement or people in the watched area during the adaptation period.

You can use a box to limit the area watched by a PIR sensor. When you want to quickly test
a PIR sensor, put it in an upside-down box, so that it can only see upward. While the PIR
sensor learns what the environment looks like, you can keep writing code without needing
to be absolutely still. When you want to send an alarm to test your code, wave your hand
above the box.

The Parallax PIR has two modes of operation:

• H for stay High as long as there is movement

• L for return to Low after an alarm

So in L mode, the PIR just sends one pulse even if movement continues after it’s first
detected.

The PIR has a tiny jumper wire to choose the mode of operation. The jumper is a tiny
rectangular part covered in black plastic. In this project, set the jumper to H (stay High)
mode.

Burglar Alarm Code and Connection for Arduino
Figure 6-15 shows the circuit diagram for Arduino. Wire it up and run the sketch shown in
Example 6-9.

140 Make: Sensors

Experiment: Burglar Alarm! (Passive Infrared Sensor)

Figure 6-15. Parallax PIR sensor Rev A circuit for Arduino

Example 6-9. parallax_pir_reva.ino
// parallax_pir_reva.ino - print movement detection
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sensorPin = 8;
const int ledPin = 13;
const int learningPeriod = 30*1000; // ms //
int learningCompleted = 0;

void setup() {
 Serial.begin(115200);
 pinMode(sensorPin, INPUT);
 Serial.println("Starting to learn unmoving environment..."); //
 pinMode(ledPin, OUTPUT);
}

void loop() {
 if(millis() < learningPeriod) { //
 delay(20); // ms //
 return; //
 }
 if(learningCompleted == 0) { //
 learningCompleted = 1;
 Serial.println("Learning completed.");
 }

 if(digitalRead(sensorPin) == HIGH) { //
 Serial.println("Movement detected");
 digitalWrite(ledPin,HIGH);
 } else {
 Serial.println("No movement detected");

141Chapter 6

Experiment: Burglar Alarm! (Passive Infrared Sensor)

 digitalWrite(ledPin,LOW);
 }
 delay(100);
}

The PIR needs movement-free time to adapt. Here, we use 30,000 ms (30 seconds).
The value is stored into a global constant. Avoid the temptation to repeat the value
in the comment. Instead, use your comment to tell the unit (milliseconds) of the
variable. That way, if you change a value, you don’t need to change the comment.
Also, if the standard unit version of the value (seconds) is a result of a calculation
(number of seconds * 1000), write the calculation into code (30*1000).

Print instructions to serial. To open the serial monitor, use Tools→Serial Monitor.
Remember to choose the same speed (“baud”, bit/s) in both the serial monitor and
your code.

This is a common pattern to measure time in Arduino. The millis() function returns
milliseconds since last boot.

A short delay prevents repeated calls to loop() from consuming 100% of CPU time.

A return statement finishes the loop() function. As always, after loop() finishes, it’s
automatically called again.

The learningCompleted variable ensures that you print “Learning completed” only
once. Here, 1 and 0 are used like true and false.

When PIR detects warm movement, sensorPin goes HIGH.

Burglar Alarm Code and Connection for Raspberry Pi
Figure 6-16 shows the circuit for Raspberry Pi. Wire it up as shown, and then run the code
in Example 6-10.

142 Make: Sensors

Experiment: Burglar Alarm! (Passive Infrared Sensor)

Figure 6-16. Parallax PIR sensor Rev A circuit for Raspberry Pi

Example 6-10. parallax_pir_reva.py
parallax_pir_reva.py - write to screen when movement detected
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio

learningPeriod = 60

def main():
 pirPin = 14
 gpio.mode(pirPin, "in")
 #Learning period
 time.sleep(learningPeriod) #
 while (True):
 movement = gpio.read(pirPin) #
 if(movement == gpio.HIGH):
 print "Movement detected"
 else:
 print "No movement detected"

143Chapter 6

Experiment: Burglar Alarm! (Passive Infrared Sensor)

 time.sleep(0.3)

if __name__ == "__main__":
 main()

The sensors need movement-free time to adapt. Here we use 60 seconds, but you
can experiment with different times.

The pin goes HIGH when movement is detected.

Environment Experiment: Cheating an Alarm
Sometimes a penetration tester (a security expert who probes for vulnerabilities) must
move by alarms unnoticed. In this experiment, you can practice in the privacy of your home.
This way, you don’t have to worry about customers watching (if you are a professional
pentester) or a lifetime of free room and board with no way to check out (if you dream of
a criminal career).

Figure 6-17. Sometimes a penetration tester must bypass alarms

You can try cheating your PIR sensor, but as you will soon notice it’s not quite as easy as in
action films. We’ll use the same code as before but add a piezo beeper. This way, it’s easier
to know when movement is detected. Connect the piezo according to the circuit diagram
in Figure 6-18 and upload the code in Example 6-11.

144 Make: Sensors

Experiment: Burglar Alarm! (Passive Infrared Sensor)

Figure 6-18. Parallax PIR sensor Rev A circuit for Arduino with LED and speaker

Example 6-11. parallax_PIR_revA_cheating_pir.ino
// parallax_PIR_revA_cheating_pir.ino - light an LED when movement detected
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sensorPin = 8;
const int ledPin = 13;
int speakerPin = 10;
const int learningPeriod = 30*1000; // 30 seconds for learning period.
int learningCompleted = 0;

void setup() {
 Serial.begin(115200);
 pinMode(speakerPin, OUTPUT);
 pinMode(sensorPin, INPUT);
 Serial.println("Start learning for next 30 seconds.");
 pinMode(ledPin, OUTPUT);
}

void alarm()
{
 wave(speakerPin, 440, 40);
 delay(25);
 wave(speakerPin, 300, 20);
 wave(speakerPin, 540, 40);
 delay(25);
}

void wave(int pin, float frequency, int duration)

145Chapter 6

Experiment: Burglar Alarm! (Passive Infrared Sensor)

{
 float period=1/frequency*1000*1000; // microseconds (us)
 long int startTime=millis();
 while(millis()-startTime < duration) {
 digitalWrite(pin, HIGH);
 delayMicroseconds(period/2);
 digitalWrite(pin, LOW);
 delayMicroseconds(period/2);
 }
}

void loop() {
 if(millis() < learningPeriod) {
 return; // Sensor has not yet learned its environment.
 }
 if(learningCompleted == 0) {
 learningCompleted = 1;
 Serial.println("Learning completed.");
 }
 if(digitalRead(sensorPin) == HIGH) {
 Serial.println("Movement detected");
 alarm();
 digitalWrite(ledPin, HIGH);
 } else {
 Serial.println("No movement detected");
 digitalWrite(ledPin, LOW);
 }
 delay(100);
}

Now you should hear an alarm when you move your hand before the sensor. Try to ap-
proach the PIR from a few meters away without triggering it. You’ll have to move really
slowly, and even then, it’s hard. Using a bed sheet or a big towel makes it much easier. Fully
cover yourself, cartoon ghost style (no eye holes, though!) and slowly start moving toward
the sensor. Covering yourself limits the sensor’s ability to detect your body heat radiation.
This way, you could almost touch the sensor before it notices you.

In real-life physical pentesting, you must work with movement alarms that combine ul-
trasonic distance sensing to passive infrared. And of course, security cameras automatically
detect changes in the picture.

You already learned how to confuse an ultrasonic distance sensor in “Environment Experi-
ment: Invisible Objects” on page 43. Even though cameras can be difficult to cheat, you
can sneak in between cameras. Many cameras use active infrared illumination to see in the
dark. You learned how to see infrared light in “Environment Experiment: How to See In-
frared” on page 48.

146 Make: Sensors

Experiment: Burglar Alarm! (Passive Infrared Sensor)

Test Project: Pong

Detecting movement is much more interesting when you can actually present that information
to the user. In this project you’ll learn how to use sensor data to move objects on the screen. To
keep things simple, we use a joystick as an input for a Pong game in this example. What you
learn here can be easily adapted to other projects. Any sensor could be the input device, and
only your imagination limits what is shown on the screen.

Figure 6-19. Game on!

Pong, originally manufactured by Atari in 1972, is the classic game where you move a paddle
up and down. Your goal is to keep the ball out of your goal. See <<[pong-game>>.

This project introduces you to pyGame, one of the easiest libraries for programming games.
You’ll build your own game console and learn to use sensor input for moving things in the big
screen. For added effect, use a video projector for output.

This project is easy to do with Raspberry Pi, as you can connect your normal television or video
projector to Raspberry Pi’s HDMI connector. Doing the same in Arduino would not be as
straightforward.

That’s not to say it would be impossible. Pong comes from a time when CPUs were slower and
had less RAM than the Arduino. They would draw scan lines on a screen and perform their
computations during the horizontal and vertical blank. See http://bit.ly/1f0GgHt for a simple
Arduino Pong project. If you want to make all kinds of old-fashioned video games with Arduino,
check out the Video Game Shield from Wayne and Layne.

147Chapter 6

Test Project: Pong

Figure 6-20. Pong playfield

What You’ll Learn
In the Pong project, you’ll learn how to:

• Use data from a sensor to move objects on the screen.

• Display full high-def graphics with Raspberry Pi.

• Make Raspberry Pi react faster by drawing directly to screen, without going through
the desktop environment or the X Window System.

• Program a simple game with Python’s pyGame.

• Automatically start your program when Raspberry Pi boots.

Figure 6-21 shows the wiring diagram for the Pong project. Wire it up as shown, and then
run the program shown in Example 6-12. Be sure that the botbook_gpio.py library is in the
same directory as the pong.py program.

148 Make: Sensors

Test Project: Pong

Figure 6-21. Pong connection for Raspberry Pi

Example 6-12. pong.py
pong.py - play ball game classic with joystick and big screen
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import sys
import pygame
import botbook_gpio as gpio
from pygame.locals import *

print "Loading BotBook.com Pong..."
pygame.init() #

149Chapter 6

Test Project: Pong

width = pygame.display.Info().current_w #
height = pygame.display.Info().current_h

size = width, height #
background = 0, 0, 0 #
screen = pygame.display.set_mode(size,pygame.FULLSCREEN) #
normalSpeed = 512
ballrect = Rect(width/2, height/2, 16, 16) #
computerrect = Rect(width-20, 0, 20, 120) #
playerrect = Rect(0, 0, 20, 120) #
#movement is diff in x and y. ball can only move in 45 degree angles.
speed = [normalSpeed, normalSpeed] #
clock = pygame.time.Clock() #
pygame.mouse.set_visible(False)
mainloop = True

uppin = 2
downpin = 3
gpio.mode(uppin, "in")
gpio.mode(downpin, "in")

while mainloop: #
 seconds = clock.tick(30) / 1000.0 # seconds since last frame #

 # User input

 for event in pygame.event.get(): #
 if event.type == pygame.QUIT: mainloop = False #
 if (event.type == KEYUP) or (event.type == KEYDOWN):
 if event.key == K_ESCAPE: mainloop = False

 # Movement and collisions
 playerspeed = 0
 if gpio.read(uppin) == gpio.LOW:
 playerspeed = -normalSpeed
 if gpio.read(downpin) == gpio.LOW:
 playerspeed = normalSpeed
 ballrect.x += speed[0] * seconds #
 ballrect.y += speed[1] * seconds
 if ballrect.left < 0 or ballrect.right > width: #
 ballrect.x = width/2;
 if ballrect.top < 0 or ballrect.bottom > height:
 speed[1] = -speed[1]

 computerrect.y = round(ballrect.y) #
 playerrect.y += playerspeed * seconds #
 if playerrect.top < 0: playerrect.top = 0 #
 if playerrect.bottom > height: playerrect.bottom = height #
 if computerrect.colliderect(ballrect): #
 speed[0] = -normalSpeed

 if playerrect.colliderect(ballrect):
 speed[0] = normalSpeed

150 Make: Sensors

Test Project: Pong

 # Draw frame
 screen.fill(background)
 pygame.draw.circle(screen, (255, 255, 255), (int(round(ballrect.x+8)),
 int(round(ballrect.y+8))), 10) #
 pygame.draw.rect(screen, (255, 255, 255), computerrect) #
 pygame.draw.rect(screen, (255, 255, 255), playerrect)
 pygame.display.update() #

For pyGame to work, you must first initialize it.

PyGame uses predefined dimensions for canvas. This allows you to work with actual
pixels onscreen, instead of some intermediate units. These two lines retrieve the width
and height.

The canvas size is specified as a tuple: (width, height).

Colors in pyGame are red, green, and blue (RGB). You’ve probably worked with RGB
colors if you have ever specified colors for web pages. (0, 0, 0) is black.

screen is the object where the actual drawing will happen. It will be used near the end
of the main loop.

Create bounding rectangles for onscreen objects in the game: Rect(x, y, width,
height). The ball starts from the top-left corner (y==0, x==0). The ball’s bounding
rectangle size is 16 × 16 pixels.

This places the computer player’s paddle near the right edge of the canvas. The paddle
is 20 pixels (px) thick and 120 px tall.

The human player’s paddle starts from top left (0,0). Its dimensions are 20 × 120 pixels,
like the computer’s paddle.

The speed vector for the ball. Each second, the ball will move 64 pixels on the x-axis and
64 pixels on the y-axis.

Create a new Clock object, and store it into the newly declared variable clock. This will
be used for keeping the speed consistent even if you’ve overclocked your Raspberry Pi.

PyGame uses a main loop programming style. Main loop is a very common pattern in
games. Just like the typical Arduino loop() or the while(True) you’ve seen in Python
examples, the main loop starts over each time it completes. Typical game main loop
tasks include getting user input, moving objects on the screen, checking for collisions,
and finally, drawing one frame on the screen.

clock.tick() returns the time since its last call. When you call it once in a frame (once
every main loop run), you get the elapsed time since the last frame. The parameter 60
specifies a maximum frame rate of 60 Hz, that is, 60 frames per second. If the game is
going faster, tick() will wait before returning. For more human-friendly units, we
convert the milliseconds (1/1000 s) returned by tick() to seconds.

151Chapter 6

Test Project: Pong

Keyboard input is handled through the pygame.event object. The pygame.event.get()
returns an object of events that contains a collection of items that you can iterate over.
The “for ITEM in LIST” loop goes through the LIST one at a time. It sets ITEM to be the
first item in LIST in the first iteration, then the second in the list in the second iteration,
and so forth until it is finished.

Compare each individual event to predefined pyGame constants, and react if it matches.
For example, if the user performs a user interface action that would quit the game, the
QUIT event comes through, and it’s time to exit.

Move the ball. Because we account for elapsed time each frame, it will move at the same
64 pixels per second despite changes in frame rate.

If the ball hits the limits of playing field, bounce!

Move the computer paddle to exactly the same height as the ball. You have one tough
opponent here!

Move the player paddle vertically according to acceleration from the input keys. The
shorthand a+=2 means the same as a=a+2 .

If a player’s movement would take the paddle through the top of the canvas, just stay
on the top.

If a player’s movement would take the paddle through the bottom of the canvas, just
stay put.

Check to see if the ball collided with either paddle. If so, set the ball’s direction to a
direction away from the paddle it collided with.

Draw the ball at its calculated position.

The computer paddle is drawn at the location calculated earlier. As its shape is a
rectangle, the bounding box is exactly the same as the object itself.

Show everything in this frame, all at the same time.

Pong Packaging Tips
We used a drop-forged aluminum box to make a super robust casing with street credibility
for our game console (Figure 6-22). This construction makes an attractive alternative to
the flimsy plastic gadgets we usually see and use.

In the back of the box, we made a hole for power and HDMI cables (Figure 6-23). To make
a wide hole like ours, drill two large holes separately and then remove the metal in between
with a jigsaw blade.

152 Make: Sensors

Test Project: Pong

Figure 6-22. Pong case

Figure 6-23. Hole for power and HDMI

153Chapter 6

Test Project: Pong

A traditional arcade joystick makes a perfect match for the indestructible box (Figure 6-24).
To attach the joystick, you need three holes: two 5 mm to mount the frame and one 10
mm to get the actual stick through the cover (Figure 6-25).

Figure 6-24. Arcade joystick

154 Make: Sensors

Test Project: Pong

Figure 6-25. Arcade joystick taken apart

As we are going to control only up and down movement, we need to solder wires to two of the
joystick’s microswitches, as shown in Figure 6-26.

Figure 6-26. Soldering wires

155Chapter 6

Test Project: Pong

Raspberry Pi was attached simply by hot gluing the Raspberry Pi’s cover box bottom to
the bottom of our aluminum box (see Figure 6-27).

Figure 6-27. Everything inside

Automatically Start Your Game When Raspberry Pi Boots
Now that you have a beautifully packaged game console of your own, it’s time to have
another look at user experience. Wouldn’t it be nice if the game started on boot? Without
a keyboard, it’s difficult to type python pong.py each time you want to start the game.

To start the game as a normal user, you’ll set the system to log in as the user pi automatically.
Then you’ll configure things to start the game in the user’s login script. This way, the game
starts immediately when you boot Raspberry Pi.

Run Game on Login
When you log in, bash opens. Bash is your shell: it interprets the commands that you type
at the command prompt ($).

If your Raspberry Pi automatically boots into the graphical desktop (the default),
you should change it to start up in a text mode shell, because you need to run it
from text mode in order for it to run automatically on login. Open LXTerminal and
run sudo raspi-config. There you can choose Enable Boot To Desktop and choose
Console Text console.

156 Make: Sensors

Test Project: Pong

The first thing that bash does is to run scripts, such as .profile, .login, .bash_profile, and .bash_log-
in. Just like all per-user configuration files, they are hidden files in the user home directory. To
see them, you must use the -a flag with ls. If you’re not already in your home directory, you
can quickly change to it (/home/pi/) with cd without arguments. Here’s a set of commands (don’t
type the $, since that’s the shell prompt) that change to your home directory and list all the files
there:

$ cd
$ ls -a

The .bash_login file is a shell script: it has commands to run, one after another. Before you add
this command to the file, try it out on the command line:

$ python /home/pi/makesensors/pong/pong.py

Replace makesensors with the path where you have put the pong.py program. Press Esc to quit
the game. If everything worked OK, you can now open the .bash_login file with the nano editor:

$ nano .bash_login

Add the line python /home/pi/makesensors/pong/pong.py to .bash_login. If there are any other
lines already in the file, delete them. Example 6-13 shows what the .bash_login file should now
look like. Save the file by typing Control-X, then press y when prompted to Save, and finally
type Enter/Return to confirm the filename.

Example 6-13. bash_login
/home/pi/.bash_login - automatically start pong game on login

python /home/pi/makesensors/pong/pong.py

Log out:

$ exit

Next, log back in. The game starts automatically.

Automatic Login
Now it’s time to make your user “pi” log in automatically on boot. Because the game runs
immediately after “pi” logs in, this will start the game after you power up the Pi. If you’re still in
the game, press Esc to escape from it.

The init program controls system boot, so you will need to modify its settings. All system-wide
settings are in /etc/, and the configuration file usually starts with the name of the thing: /etc/
init* (in this case, /etc/inittab). Because logging users in is a process that requires full privileges,
you need to edit the file as root with the sudoedit command:

$ sudoedit /etc/inittab

157Chapter 6

Test Project: Pong

To edit text files as root, you use sudoedit instead of using nano with sudo. This way,
you won’t get errors about nano’s history file ownership when using nano as a
normal user later.

Modify the line that governs the first “virtual terminal” so that it automatically logs you in
(don’t add this line, modify the one that starts with 1:2345:respawn:/sbin/getty):

1:2345:respawn:/sbin/getty --noclear 38400 tty1 --autologin pi

Save with Control-X, answer y when asked about saving, and then press Enter or Return to
confirm the filename. You can see a complete, modified /etc/inittab in Example 6-14.

Shut down the Raspberry Pi:

$ sudo shutdown -P now

Then disconnect and reconnect USB power.

Relax as you are automatically logged in. The game starts, and your very own game console
is ready. Time to play Pong!

Example 6-14. inittab
/etc/inittab - automatically log in user pi on boot (also disable serial)

id:2:initdefault:
si::sysinit:/etc/init.d/rcS
~~:S:wait:/sbin/sulogin
l0:0:wait:/etc/init.d/rc 0
l1:1:wait:/etc/init.d/rc 1
l2:2:wait:/etc/init.d/rc 2
l3:3:wait:/etc/init.d/rc 3
l4:4:wait:/etc/init.d/rc 4
l5:5:wait:/etc/init.d/rc 5
l6:6:wait:/etc/init.d/rc 6
z6:6:respawn:/sbin/sulogin
ca:12345:ctrlaltdel:/sbin/shutdown -t1 -a -r now
pf::powerwait:/etc/init.d/powerfail start
pn::powerfailnow:/etc/init.d/powerfail now
po::powerokwait:/etc/init.d/powerfail stop
modified:
1:2345:respawn:/sbin/getty --noclear 38400 tty1 --autologin pi
2:23:respawn:/sbin/getty 38400 tty2
3:23:respawn:/sbin/getty 38400 tty3
4:23:respawn:/sbin/getty 38400 tty4
5:23:respawn:/sbin/getty 38400 tty5
6:23:respawn:/sbin/getty 38400 tty6
removed serial console, so that serial port can be used with sensors:
T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

158 Make: Sensors

Test Project: Pong

Run as normal user whenever possible. Only perform system administration (e.g., apt-
get, raspi-config) as root. It’s especially important that games run as a normal user
because they often need direct access to hardware, and programs that reach deeper into
your system can do more damage if they have a serious bug. That’s why you should use
autologin and login script to start the game (as described here), instead of simply putting
the game into a startup script such as rc.local (which always runs as root).

To stop playing and return to the command line, just press Esc.

You have now tested movement in many ways, starting from basic buttons and potentiometers.
These sensors are the archetypes of resistance sensors. The button is the simplest digital
(on/off or zero/infinite resistance) resistance sensor, and the potentiometer is the simplest an-
alog resistance sensor. You’ll be able to use similar circuits and code with many other sensors.

For more specialized sensors, you’ve detected touch—even through wood. And you’ve meas-
ured pressure, which could be useful in your projects to see if a bed or a seat is occupied, or just
to have a finger strength competition.

Next, you’ll measure a less tangible form of energy: light.

159Chapter 6

Test Project: Pong

A robot follows a complicated path, seemingly without difficulty. A closer
look shows a black line on the floor for the bot to follow. Later in the
evening, backyard lights light up automatically when darkness falls.

Because color is reflected light, sensors can detect the color of a surface. With some creatively
applied tubing, the direction of light can be detected, too. And if fire is the thing for your bot,
there is a sensor for flame.

Do you want to measure human movement with infrared (IR) light? See “Experiment:
Burglar Alarm! (Passive Infrared Sensor)” on page 140. Need to know if an object is nearer
than a given distance, using IR? See “Experiment: Detect Obstacles With Infrared (IR
Distance Sensor)” on page 44.

Experiment: Detecting Flame (Flame Sensor)

Flames emit a range of infrared light not very common in ambient light. The KY-026 flame sensor
reports the level of infrared light with a change of resistance (Figure 7-1).

The code you’ll write for flame detection is the same code you’d use for an analog resistance
sensor: you use analogRead() to read the voltage of a pin.

The KY-026 flame sensor provides two ways to measure flame: digitalRead() and analog
Read(). Even though the code in this experiment implements both, you can just use whichever
one you need in your own code.

Using digital mode only is especially convenient with Raspberry Pi, because Raspberry Pi doesn’t
have an analog-to-digital converter.

161

Light 7

Figure 7-1. Flame sensor

Figure 7-2. Flame-following robot prototype (robot workshop in Austria)

Flame Sensor Code and Connection for Arduino
Figure 7-3 shows the wiring diagram for the flame sensor with Arduino. Wire it up as shown,
and then run the sketch shown in Example 7-1.

162 Make: Sensors

Experiment: Detecting Flame (Flame Sensor)

Figure 7-3. Flame sensor circuit for Arduino

Example 7-1. ky_026_flame.ino
// ky_026_flame.ino - report level IR light from flame to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int analogPin = A0;
const int digitalPin = 8;
const int ledPin = 13;

void setup() {
 Serial.begin(115200);
 pinMode(digitalPin,INPUT);
 pinMode(ledPin,OUTPUT);
}

void loop()
{
 int threshold = -1; // HIGH or LOW
 int value = -1; // 0..1023
 value = analogRead(analogPin); //
 threshold = digitalRead(digitalPin); //
 Serial.print("Raw: ");
 Serial.print(value);
 Serial.print(" Over threshold: ");
 Serial.println(threshold);
 delay(10);
 if(threshold==HIGH) { //
 digitalWrite(ledPin, HIGH);
 } else {
 digitalWrite(ledPin, LOW);
 }
}

163Chapter 7

Experiment: Detecting Flame (Flame Sensor)

Get the raw voltage reading from A0. It is an integer from 0 (0 V) to 1023 (+5 V).

Read the voltage of D8: LOW (0 V) or HIGH (+5 V).

Turn on the built-in LED (D13) if you’ve detected a flame.

Flame Sensor Code and Connection for Raspberry Pi
Figure 7-4 shows the circuit for connecting the sensor to a Raspberry Pi. Wire it up and run
the program shown in Example 7-2.

Figure 7-4. Flame circuit for Raspberry Pi

Example 7-2. ky_026_flame.py
ky_026_flame.py - report presence of IR light from flame to serial
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_gpio as gpio #

def main():
 triggerPin = 25

164 Make: Sensors

Experiment: Detecting Flame (Flame Sensor)

 gpio.mode(triggerPin, "in") #
 flame = gpio.read(triggerPin) #
 if(flame == gpio.HIGH): #
 print "Flame detected"
 else:
 print "No flame detected"
 time.sleep(0.5)

if __name__ == "__main__":
 main()

Make sure there’s a copy of the botbook_gpio.py library in the same directory as this
program. You can download this library along with all the example code from http://
botbook.com. See “GPIO Without Root” on page 19 for information on configuring your
Raspberry Pi for GPIO access.

Pin is set to in mode to read its voltage in the next line of code.

Read the status of pin 23. The value is True for HIGH (+3.3 V) and False for LOW (0 V).

Note that a Boolean (true or false) value can be used in an if without a comparison
operator. That is, you can say if(b) instead of if(b==True).

Environment Experiment: Flame Precision

The flame sensor’s built-in sensitivity resistor is very useful. It is especially important to adjust
it so that ambient light won’t trigger the sensor constantly. It can also be used to set the flame
sensor to react to very specific level of flame.

Figure 7-5. Adjusting and testing flame sensor sensitivity

165Chapter 7

Environment Experiment: Flame Precision

First, put an extra LED between GND and pin 13 (see Figure 7-6). It’s easier to see a full-
sized LED than the onboard LED, so you’ll be more likely to notice when the sensor is
activated. Upload the flame sensor code (Example 7-1) to your Arduino. Turn the potenti-
ometer all the way right, then turn it left until the LED goes out. It’s probably a good idea
to close the curtains, as strong sunlight can overpower other light sources.

Figure 7-6. Flame sensor with LED

Now, light a match. The LED should light again. Try adjusting the sensitivity potentiometer
so that the sensor will react only to a full-size flame. Don’t get distracted watching the LED,
or you might burn your fingers as the match burns down!

Experiment: See the Light (Photoresistor, LDR)

A light-dependent resistor (LDR) changes its resistance according to the level of visible
light. Its resistance is lower in bright light. LDR is also known as a photoresistor (see
Figure 7-7).

Photoresistors can turn on the lights when it’s dark, detect if a dark box is opened in a lit
room, and help create robots that love light. With some creative use of heat shrink tubing,
an LDR can also detect the direction of light. When testing, you can simply put your finger
on an LDR to make darkness fall. If you want bright light, you can point a flashlight at the
LDR.

To test a light-seeking robot in your lab, try covering it with a blanket (see
Figure 7-8). This way, you don’t have to shut down the lights in the lab or run between
your lab and a dark room.

166 Make: Sensors

Experiment: See the Light (Photoresistor, LDR)

Figure 7-7. Photoresistor

Figure 7-8. Ambient light hideout (robot workshop in Austria)

167Chapter 7

Experiment: See the Light (Photoresistor, LDR)

LDR Code and Connection for Arduino
A photoresistor is just a two-legged variable resistor. With Arduino, it’s just a matter of
configuring the sensor with another resistor as a voltage divider (see “Experiment: Poten-
tiometer (Variable Resistor, Pot)” on page 98), then using analogRead(). In this way, a pho-
toresistor is similar to many other analog resistance sensors.

Wire up the LDR as shown in Figure 7-9, and then run the sketch shown in Example 7-3.

Figure 7-9. Photoresistor circuit for Arduino

Example 7-3. ldr_light_sensor.ino
// ldr_light_sensor.ino - report high level of light with built-in LED
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int lightPin = A0;
const int ledPin = 13;
int lightLevel = -1;

void setup() {
 Serial.begin(115200);
 pinMode(ledPin, OUTPUT);
}

void loop() {
 lightLevel = analogRead(lightPin); //
 Serial.println(lightLevel);
 if(lightLevel < 400) { //
 digitalWrite(ledPin, HIGH);
 } else {
 digitalWrite(ledPin, LOW);
 }
 delay(10);
}

168 Make: Sensors

Experiment: See the Light (Photoresistor, LDR)

To measure the voltage at A0, just use analogRead().

If printing the value to serial is not enough, you can also light an LED when the level of
light exceeds an experimentally chosen value.

LDR Code and Connection for Raspberry Pi
Connect the components as shown in Figure 7-10, and then run the code shown in Example 7-4.

Figure 7-10. Photoresistor circuit for Raspberry Pi

Example 7-4. ldr.py
ldr.py - sense light level and print to screen
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_mcp3002 as mcp

def main():
 while True:
 lightLevel = mcp.readAnalog()
 print("Current light level is %i " % lightLevel)

169Chapter 7

Experiment: See the Light (Photoresistor, LDR)

 time.sleep(0.5)

if __name__ == "__main__":
 main()

The library botbook_mcp3002.py must be in the same directory as this program.
You must also install the spidev library, which is imported by botbook_mcp3002.
See comments in the beginning of botbook_mcp3002/botbook_mcp3002.py or
“Installing SpiDev” on page 56.

Environment Experiment: One Direction

Would you like to know the direction that light is coming from, rather than just how bright
it is? A naked photoresistor reacts to light coming from around it so you can’t use it, for
example, to turn a robot toward the light source. There’s a very easy solution for this. Take
a piece of heat-shrink tubing and make a hood for the sensor, as shown in Figure 7-11. This
prevents it from uncontrollably seeing light from every direction. You can use a material
other than heat-shrink tubing as long as it blocks light coming in from the side (see
Figure 7-12).

Figure 7-11. Preventing light from reaching the sensor

170 Make: Sensors

Environment Experiment: One Direction

Figure 7-12. Photoresistors inside plastic cup blinkers (robot workshop in Austria)

When you have many photoresistors, it’s a good idea to put all three wires and the resistor
inside heat shrink tubing, as shown in Figure 7-13.

Figure 7-13. With heat shrink tubing, you can neatly package the wires

171Chapter 7

Environment Experiment: One Direction

Experiment: Follow the Line

Line following is an easy way to move a robot along a predefined path. The most common
use is creating “rails” with black tape. We have used line avoidance to keep our mind (EEG)
controlled robot inside its playground. Figure 7-14 shows a line detector.

Figure 7-14. Line tracking sensor

Line detectors light the surface below with light, usually infrared. The surface is considered
“white” if enough light is reflected back; anything else is considered a line. To know if your
bot is going off the line from left or right, you can use two or three line detectors side by
side (for example, if the center detector sees a line, but the other two see white, you know
you’re following the line). There are ready-made line detection sensors available that com-
bine multiple sensors into one.

Line Sensor Code and Connection for Arduino
Because you are using a line detector with three leads here, no pull-up resistor is needed.
One lead is for positive, another for signal, and the third for ground. The circuitry on the
board includes any resistors or other components needed.

Wire up the circuit as shown in Figure 7-15, and run the sketch shown in Example 7-5.

172 Make: Sensors

Experiment: Follow the Line

Figure 7-15. Line sensor circuit for Arduino

Example 7-5. line_sensor.ino
// line_sensor.ino - print to serial if we are on a line
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sensorPin = 2;
const int ledPin = 13;
int lineFound = -1;

void setup() {
 Serial.begin(115200);
 pinMode(sensorPin, INPUT);
 pinMode(ledPin, OUTPUT);
}

void loop() {
 lineFound = digitalRead(sensorPin); //
 if(lineFound == HIGH) {
 Serial.println("Sensor is on the line");
 digitalWrite(ledPin, HIGH);
 } else {
 Serial.println("Sensor is off the line");
 digitalWrite(ledPin, LOW);
 }
 delay(10);
}

digitalRead(8) returns HIGH if the sensor has gone over the line.

173Chapter 7

Experiment: Follow the Line

Line Sensor Code and Connection for Raspberry Pi
As a line sensor is a digital sensor, its connection to Raspberry Pi is a simple as with Arduino.
Figure 7-16 shows the circuit diagram. Wire it up as shown, and then run the code shown
in Example 7-6.

Figure 7-16. Line sensor circuit for Raspberry Pi

Example 7-6. line_sensor.py
line_sensor.py - print to serial if we are on a line
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import os
import botbook_gpio as gpio #

def main():
 linePin = 23

174 Make: Sensors

Experiment: Follow the Line

 gpio.mode(linePin, "in")
 while True:
 lineState = gpio.read(linePin) #
 if(lineState == gpio.HIGH):
 print "Sensor is on the line"
 else:
 print "Sensor is off the line"
 time.sleep(0.5)

if __name__ == "__main__":
 main()

Make sure there’s a copy of the botbook_gpio.py library in the same directory as this
program. You can download this library along with all the example code from http://
botbook.com. See “GPIO Without Root” on page 19 for information on configuring your
Raspberry Pi for GPIO access.

The digital value is read just like any other sensor.

Environment Experiment: Black is White

Figure 7-17. Believe it or not, everything you see here is white

As you already know, an infrared sensor sees the world differently than we do. Different materials
reflect light differently, and sometimes objects that appear dark can be so reflective that the

175Chapter 7

Environment Experiment: Black is White

sensor thinks they are white. If your line-following robot acts strange, it might be the
surface texture—not the code—that’s playing tricks on you.

Usually black is black and white is white, but the total opposite has happened to us. When
we presented our mind-controlled robot at Maker Faire, we brought tape and cardboard
in order to make a platform with black borders and white center. The idea was that our
robot would turn back when it saw black, keeping it on the platform. Surprisingly, the line
detector saw tape and cardboard in inverted colors, as one was very reflective and the
other very matte.

You can adjust the line follower sensitivity by adjusting its onboard potentiometer as
shown in Figure 7-18.

Figure 7-18. Adjusting line detector’s sensitivity

Upload the code shown in Example 7-7 to Arduino. We have changed the previous example
slightly so that now the serial monitor says BLACK or WHITE depending on what it sees.

Example 7-7. line_sensor_black_or_white.ino
// line_sensor_black_or_white.ino - line follow sensor. Signal low when over black line.
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sensorPin = 2;
const int ledPin = 13;
int lineFound = -1;

176 Make: Sensors

Environment Experiment: Black is White

void setup() {
 Serial.begin(115200);
 pinMode(sensorPin, INPUT);
 // No need for pull-up as sensor has this already.
 pinMode(ledPin, OUTPUT);
}

void loop() {
 lineFound = digitalRead(sensorPin);
 if(lineFound == 1) {
 Serial.println("BLACK");
 digitalWrite(ledPin, HIGH);
 } else {
 Serial.println("WHITE");
 digitalWrite(ledPin, LOW);
 }
 delay(50);
}

This code combines serial printing with the code shown in “Line Sensor Code and Connection
for Arduino” on page 172.

Try out different materials. Can you find one that’s black for humans but white for the sensor?

Experiment: All the Colors of the ’Bow

A color sensor measures the color of a surface and returns values for red, green, and blue
(Figure 7-19). For each basic color (red, green, blue), a color sensor has a color filter on top of a
photodiode. The sensor for each color is read like any analog resistance sensor.

Figure 7-19. Color sensor

177Chapter 7

Experiment: All the Colors of the ’Bow

The experiment prints RGB (red, green, blue) values of the light it sees, one value for each
color. You can use this sensor to build the Chameleon Dome (“Test Project: Chameleon
Dome” on page 182).

Colors are simply names for specific wavelengths of light. For example, 555 nanometers
(nm, which describes the light’s wavelength) or 540 terahertz (THz, its frequency) is green.
Some animals can see colors humans don’t see, like ones in the infrared or the ultraviolet
range.

The basic colors really are fundamental to humans. The only colors that the human eye
can see are red, green, and blue. There are three types of cone cells in the retina, one type
for each color.

Color Sensor Code and Connection for Arduino
Figure 7-20 shows the circuit diagram for the color sensor and Arduino. Wire it up as shown,
and then run the sketch shown in Example 7-8.

Figure 7-20. Color sensor circuit for Arduino

Example 7-8. color_sensor.ino
// color_sensor.ino - sense color with HDJD-S822-QR999 and print RGB value
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int gsr1Pin = 7; //
const int gsr0Pin = 6;
const int gsg1Pin = 5;
const int gsg0Pin = 4;
const int gsb1Pin = 3;

178 Make: Sensors

Experiment: All the Colors of the ’Bow

const int gsb0Pin = 2;

const int ledPin = 8; //

const int redPin = A0; //
const int greenPin = A1;
const int bluePin = A2;

int red = -1; //
int green = -1;
int blue = -1;

void setup() {
 Serial.begin(115200);
 pinMode(gsr1Pin, OUTPUT);
 pinMode(gsr0Pin, OUTPUT);
 pinMode(gsg1Pin, OUTPUT);
 pinMode(gsg0Pin, OUTPUT);
 pinMode(gsb1Pin, OUTPUT);
 pinMode(gsb0Pin, OUTPUT);
 pinMode(ledPin, OUTPUT);

 digitalWrite(ledPin, HIGH); //

 digitalWrite(gsr1Pin, LOW); //
 digitalWrite(gsr0Pin, LOW);
 digitalWrite(gsg1Pin, LOW);
 digitalWrite(gsg0Pin, LOW);
 digitalWrite(gsb1Pin, LOW);
 digitalWrite(gsb0Pin, LOW);
}

void loop() {
 int redValue = analogRead(redPin); //
 int greenValue = analogRead(greenPin);
 int blueValue = analogRead(bluePin);

 redValue = redValue * 10 / 1.0; //
 greenValue = greenValue * 10 / 0.75;
 blueValue = blueValue * 10 / 0.55;

 Serial.print(redValue); Serial.print(" "); //
 Serial.print(greenValue); Serial.print(" ");
 Serial.print(blueValue); Serial.println(" ");
 delay(100);
}

Specify the gain selection pins. To calibrate individual colors, you can later add gain to
red (gsr1Pin, gsr0Pin), green (gsg1Pin, gsg0Pin), or blue (gsb1Pin, gsb0Pin) if needed.
This way, you can increase sensitivity to individual colors as needed.

179Chapter 7

Experiment: All the Colors of the ’Bow

This LED illuminates the surface and is critical for the operation of this sensor. The
illuminating LED is built into the sensor.

Pins for reading red, green, and blue levels.

The variables for the values read from the sensor. The variables are initialized to
impossible values to help debugging (if you see those values later when the code is
running, then something’s wrong).

Turn on the sensor’s built-in LED for illuminating the surface.

Turn off gain selection for all colors. Each color has two bits (0 and 1), allowing for four
levels (including off) of gain selection.

Reading the values is a simple call to analogRead().

The elements for different colors have different sensitivity. On the other hand, you need
all of RGB in the same scale if you want to recreate the color. The conversion factors (10
red, 14 green, 17 blue) were deduced from “HDJD-S822-QR999 RGB Color Sensor
Datasheet.”

Print each of the RGB values to the serial monitor (Tools→Serial Monitor).

Color Sensor Code and Connection for Raspberry Pi
Figure 7-21 shows the circuit for Raspberry Pi. Hook it up as shown, and then run the code
shown in Example 7-9.

A Tangled Mess

Does the Raspberry Pi circuit for color sensor
make you want to scream? The number of wires
makes off-by-one mistakes and loose wires more
likely.

There are two basic solutions to this problem: ei-
ther simplify the circuit here and there, or com-
bine Arduino and Raspberry Pi. Our favorite sol-
ution is combining the two platforms.

You can read the sensor with Arduino, and then
send the RGB values to Raspberry Pi using USB-
Serial. With Arduino’s built-in analogRead(),
the circuit is simple (Figure 7-20). Then use USB
to connect Arduino to Raspberry Pi.

In Raspberry Pi, you can read serial-over-USB us-
ing pySerial. Make: Arduino Bots and Gadgets has
a tutorial project with pySerial (Chapter 7: “Re-
mote for a Smart Home”).

A third method that could slightly reduce wiring
is to use an ADC (analog-to-digital converter)
with more channels, such as MCP3008. To use
such a chip, you would have to modify the bot-
book_mcp3002 library.

If you never plan to use gain pins, you can try
connecting them to ground, thus keeping them
LOW and disabling all gains. This could also sim-
plify the connections.

180 Make: Sensors

Experiment: All the Colors of the ’Bow

Figure 7-21. Color sensor circuit for Raspberry Pi makes your head spin

Example 7-9. color_sensor.py
color_sensor.py - sense color and print RGB value to serial
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_mcp3002 as mcp #
import botbook_gpio as gpio

def initializeColorSensor():
 ledPin = 25
 gpio.mode(2,"out") #
 gpio.mode(3,"out")
 gpio.mode(14,"out")
 gpio.mode(17,"out")
 gpio.mode(22,"out")
 gpio.mode(27,"out")

 gpio.write(2,gpio.LOW)
 gpio.write(3,gpio.LOW)
 gpio.write(14,gpio.LOW)
 gpio.write(17,gpio.LOW)
 gpio.write(22,gpio.LOW)
 gpio.write(27,gpio.LOW)

 gpio.mode(ledPin,"out")
 gpio.write(ledPin, gpio.HIGH) #

def main():

181Chapter 7

Experiment: All the Colors of the ’Bow

 initializeColorSensor()
 while True: #
 redValue = mcp.readAnalog(0, 0)
 greenValue = mcp.readAnalog(0, 1)
 blueValue = mcp.readAnalog(1, 0) #

 redValue = redValue * 10 / 1.0; #
 greenValue = greenValue * 10 / 0.75;
 blueValue = blueValue * 10 / 0.55;

 print("R: %d, G: %d, B: %d" % (redValue,greenValue,blueValue)) #

 time.sleep(0.1) # s

if __name__ == "__main__":
 main()

Both libraries, botbook_mcp3002.py (analog) and botbook_gpio.py (digital), must be
in the same directory as this program (color_sensor.py). You must also install the
spidev library, which is imported by botbook_mcp3002. See the comments in the
beginning of botbook_mcp3002/botbook_mcp3002.py or “Installing SpiDev” on
page 56. You can download both libraries, along with all the example code, from
http://botbook.com. For configuring access to GPIO without needing to be root, see
“GPIO Without Root” on page 19.

Turn off all gains by putting the gain select (gs*) pins to 0 (LOW).

Light up the illuminating LED in the sensor. This light is needed for the sensor to
see the colors of the surface it’s measuring.

The program will keep running until you press Control-C.

Read the second (1, because we start counting at 0) MCP3002 chip on the first (0)
channel: readAnalog(device=1, channel=0). The preceding commands use a
different combination of chip and channel.

Equalize the color values according to the “HDJD-S822-QR999 RGB Color Sensor
Datasheet.” After equalization, all colors use the same scale.

Create the printable string with a format string. The format string takes only one
parameter, so multiple values are put inside a tuple, (a, b).

Test Project: Chameleon Dome

Our final project for this chapter is a dome that changes color to match the surface it’s
sitting on. We’ll use the color sensor code and display the color it senses with an RGB LED.
When the whole thing is built in a solid package, the result is very impressive.

182 Make: Sensors

Test Project: Chameleon Dome

What You’ll Learn
In the Chameleon Dome project, you’ll learn how to:

• Build a device that changes color like a chameleon.

• Show any color with an RGB LED.

• Use a moving average to filter out random noise.

• Use an easing function to map input values to output values.

RGB LED
An RGB LED (Figure 7-22) packages three LEDs into one package. It looks just like a single LED.
By mixing red, green, and blue, you can show any color.

The human eye has receptor cells for three colors: red, green, and blue. That’s why those colors
are used in televisions and other displays. Human perception has a strange feature (or a bug)
that it sees combinations of frequencies as another frequency. This means that you can mix red
light with green to get yellow.

An RGB LED typically has four leads: one lead for each color (red, green, blue) and one common
lead.

183Chapter 7

Test Project: Chameleon Dome

Figure 7-22. RGB LED

Contrary to what you might expect, in many RGB LEDs, the common lead is often positive.
A common positive lead is also called common anode. Because the common lead is positive,
you’ll have to take each color lead (red, green, blue) LOW (0 V or GND) to make each color
shine.

What About Common Cathode?

If your RGB LED is common cathode (common
lead negative), you’ll need to change the circuit
and your code. For the circuit, you’ll need to con-
nect the common lead to ground instead of +5
V. For the code, instead of reversing the light in-

tensity value with 255-color (for example 255-
red) with analogWrite(), you must remove the
255- part (for example analogWrite(redPin,
red)).

But how do you know which lead is the common anode, and which one is each color?

Finding the Leads of an RGB LED
You can find the leads experimentally.

Turn on Arduino by connecting it to USB. As you’ll just use +5 V and GND, it doesn’t matter
which code is running on the Arduino.

We are using a 5 V LED. If you only have a LED for lower voltage, you can use +3.3
V when testing for colors, and a resistor when connecting to Arduino.

184 Make: Sensors

Test Project: Chameleon Dome

On Arduino, connect a red wire to +5 V and a black wire to GND.

Connect the two wires to any adjacent leads on the RGB LED. Keep trying adjacent leads around
the LED until it lights up. Try a couple of other leads until you have lit the red, green, and blue
elements of the RGB LED separately. Note that in order to do this, one lead (for a common anode
LED, this would be the positive lead) had to stay connected to the red +5 V wire, while you had
to connect each of the other three leads in turn to the black GND wire. Mark the common anode
(positive) lead.

If you notice that the common lead is longer than the others, remember this fact so you can
find it later. Otherwise, mark the common lead with a small piece of tape and write something
on it (A for anode, + for positive, whatever helps you remember).

If instead, you kept a common lead connected to the black GND wire and had to connect
each of the other three leads in turn to the red +5 V wire, then you have a common
cathode LED. If that’s the case, see “What About Common Cathode?” on page 184.

Mark each of the remaining leads with their corresponding color (R, G, or B).

RGB Code and Connection for Arduino

Example 7-10. hellorgb.ino
 // hellorgb.ino - mix colors with RGB LED
 // (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int redPin=11; //
const int greenPin=10;
const int bluePin=9;

void setup()
{
 pinMode(redPin, OUTPUT);
 pinMode(greenPin, OUTPUT);
 pinMode(bluePin, OUTPUT);
}

void loop()
{
 setColor(255, 0, 0); //
 delay(1000);

 setColor(255, 255, 255);
 delay(1000);
}

void setColor(int red, int green, int blue)
{

185Chapter 7

Test Project: Chameleon Dome

 analogWrite(redPin, 255-red); //
 analogWrite(greenPin, 255-green);
 analogWrite(bluePin, 255-blue);
}

Like many RGB LEDs, this one has common positive lead. This means that all the
data pins will need to be taken negative (LOW, 0 V) to light up.

To light the RGB LED, just call setColor() with the color you want. The parameters
are R, G, and B, where each color is from (nothing) 0 to (maximum) 255.

Because you need to take a pin low to light a color, things are reversed from what
you’re used to. For example, when redPin is HIGH (255), the red LED is off. When
redPin is LOW (0), the red LED is at maximum brightness.

Figure 7-23. RGB LED connected to Arduino

186 Make: Sensors

Test Project: Chameleon Dome

Figure 7-24. Color-changing robot prototype made by students during two-day robot workshop

Do you just want to make your Chameleon Dome? Skip the math and jump to “Combining
Codes” on page 190.

Moving Average
The Chameleon Dome looks nice when it smoothly changes values. It would look ugly if it
erratically jumped from one color to another. But that’s one of the perils of working with sensors:
sometimes, for a blink of an eye, a red will look green for the sensor.

Random noise is a common problem in any measurement, and sensors are no exception.

Consider how I might measure the height of a tiny tree. I made multiple measurements to reduce
the chance of error. I got these values:

102 cm, 100 cm, 180 cm, 103 cm, 105 cm

Most of us would likely drop the 180 cm measurement as a typo. Luckily, a computer can do
that for you.

Initially, you might think of storing the values in an array, and then calculating the average for
the array on every round. Even though this would work, it would require a lot of code for such
a small thing: an array, a pointer, an average, and some calculation on each iteration.

187Chapter 7

Test Project: Chameleon Dome

Moving average to the rescue! You can calculate the average of current and previous value
to get some smoothing. To get more data points without using a table, you can use a
weighted moving average.

You could give 70% weight to new input, leaving 30% (100% minus 70%) for old values.

input = 0.7*input + 0.3*old
old = input

Because the old value is affected by the older data points, you don’t need to use an array
at all.

RGB LED Shows Any Color
To get a variety of colors, you’ll need to mix red, green, and blue at varying levels. If you
set all three of them to full brightness, you’ll get something pretty close to white light. If
you set all three of them to minimum brightness, you’ll get nothing.

Arduino isn’t capable of truly dimming an LED, because an LED can’t be dimmed effectively.
If you lower the voltage, the brightness will go down, but lower the voltage enough, and
it simply turns off (usually well before you get all the way down to 0 V).

To work around this, Arduino uses pulse width modulation (PWM). To make an LED look like
it’s at 10% brightness, PWM will use a duty cycle of 10%. This means that Arduino will keep
the LED on for 10% of the time, and off 90% of the time. But Arduino switches the LED on
and off so fast (each cycle takes 2 milliseconds or 2000 microseconds) that you don’t notice
the flicker. At a 10% duty cycle, Arduino will turn the LED on for 200 microseconds, leave
it off for 1800 microseconds, then start the on/off cycle again.

But in your code, you don’t have to worry about these details. You can pretend that you’re
just sending a range of voltage (from 0 to 255) that corresponds to different brightness
levels. Because the common lead is HIGH and each color lead is brightest when you take
the lead LOW, you’ll get the brightest red color with analogWrite(redPin, 0).

For any values between the minimum and the maximum, we use the value of the color
(such as red, r) subtracted from 255:

analogWrite(redPin, 255-r);

To get a feel for the basic colors, see Table 7-1.

Table 7-1. RGB LED colors and pin values

Name RGB color Data pin values Comment

Black (0,0,0) (255,255,255) All colors off

Red (255,0,0) (0,255,255)

Green (0,255,0) (255,0,255)

Blue (0,0,255) (255,255,0)

White (255,255,255) (0,0,0) Maximum brightness of all LEDs

(formula) (r,g,b) (255-r, 255-g, 255-b)

188 Make: Sensors

Test Project: Chameleon Dome

You can get all the colors of the rainbow. Just experiment with mixing red, green and blue light!

Easing Input to Output
Inputs and outputs can have different kinds of values. Your code must convert between these
values.

In the simplest case, output is just the input multiplied by a number. In that case, conversion is
just a matter of multiplication.

For example, Arduino’s analogRead() has range of 0 to 1023, but analogWrite() has a range of
0 to 255. To convert between the ranges, you must first calculate the percentage, p, of the
maximum input value, that a given input value (in) represents:

p = in/1023

Then, the mapped output is p percent of the maximum output value:

out = p*255

Arduino’s library even has a convenience function for this:

out = map(in, 0, 1023, 0, 255)

You can see some examples of linear conversion in Table 7-2.

Table 7-2. Linearly mapping input to output, using map()

Input analogRead() Percent Output analogWrite()

0 0.0 % 0.0

234 23 % 58

511 50 % 127

1023 100 % 255

However, some outputs don’t work well with an output that increases linearly, so you need to
use easing. The RGB LED in this project is a good example of an output that works better with
easing.

Most RGB LED color mixing needs to happen with low values. Near the upper range of output
values, everything becomes white, and individual colors are hard to discern.

An easing function maps inputs to outputs in non-linear fashion. For an RGB LED, an exponential
function is good. Otherwise, most values would just result in bright white light instead of colors
like orange or violet.

First, calculate the percentage for the input:

p = in/1023

Then create the output non-linearly. Both ends, bottom 0 and top 255, are still represented
along the range of possible values. The Chameleon Dome uses an exponent function for easing:

out = 255 * p4

189Chapter 7

Test Project: Chameleon Dome

Because percentage p has a maximum of 1.0 (100%), the exponent p4 values are always
between 0.0 (0%) and 1.0 (100%). The exponent function creates the classic hockey-stick
figure. You can see sample values mapped in Table 7-3.

Table 7-3. Easing with exponent function

p p**4 analogWrite() Comment

0% 0.0% 0 min

20% 0.2% 0

40% 2.6% 6

50% 6.2% 15

half 60% 13.0% 33

80% 41.0% 104

90% 65.6% 167

100% 100.0% 255

Easing functions are also used in animation. When objects slide and then stop into place,
the speed accelerates and decelerates according to an easing function.

Combining Codes
The Chameleon Dome combines an RGB LED with the color sensor you saw earlier in “Color
Sensor Code and Connection for Arduino” on page 178.

Connect the color sensor and RGB LED to Arduino as shown in Figure 7-27. DuPont con-
nector cables (see Figure 7-25) combined with a ScrewShield are a life-saver when you
need to use a lot of pins (see Figure 7-26).

Figure 7-25. DuPont connector cable

190 Make: Sensors

Test Project: Chameleon Dome

Figure 7-26. Color sensor and RGB LED connected

The sketch for the Chameleon Dome is shown in Example 7-11. After you make all the connec-
tions (Figure 7-27), run that sketch on your Arduino.

191Chapter 7

Test Project: Chameleon Dome

Figure 7-27. Chameleon Dome connections

Example 7-11. chameleon_cube.ino
// chameleon_dome.ino - cube changes color to match the surface
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int gsr1Pin = 7; //
const int gsr0Pin = 6;
const int gsg1Pin = 5;
const int gsg0Pin = 4;
const int gsb1Pin = 3;
const int gsb0Pin = 2;

const int ledPin = 8; //

const int redInput = A0; //
const int greenInput = A1;
const int blueInput = A2;

const int redOutput = 11; //
const int greenOutput = 10;
const int blueOutput = 9;

int red = -1; //
int green = -1;
int blue = -1;

192 Make: Sensors

Test Project: Chameleon Dome

const float newWeight = 0.7; //

void setup() {
 Serial.begin(115200);
 pinMode(gsr1Pin, OUTPUT);
 pinMode(gsr0Pin, OUTPUT);
 pinMode(gsg1Pin, OUTPUT);
 pinMode(gsg0Pin, OUTPUT);
 pinMode(gsb1Pin, OUTPUT);
 pinMode(gsb0Pin, OUTPUT);
 pinMode(ledPin, OUTPUT);
 pinMode(redOutput, OUTPUT);
 pinMode(greenOutput, OUTPUT);
 pinMode(blueOutput, OUTPUT);

 digitalWrite(ledPin, HIGH); //

 digitalWrite(gsr1Pin, LOW);
 digitalWrite(gsr0Pin, LOW);
 digitalWrite(gsg1Pin, LOW);
 digitalWrite(gsg0Pin, LOW);
 digitalWrite(gsb1Pin, LOW);
 digitalWrite(gsb0Pin, LOW);
}

void loop() {
 int redValue = analogRead(redInput); //
 int greenValue = analogRead(greenInput);
 int blueValue = analogRead(blueInput);

 redValue = redValue * 10 / 1.0;
 greenValue = greenValue * 10 / 0.75;
 blueValue = blueValue * 10 / 0.55;

 redValue = map(redValue, 0, 1023, 0, 255); //
 greenValue = map(greenValue, 0, 1023, 0, 255);
 blueValue = map(blueValue, 0, 1023, 0, 255);

 if(redValue > 255) redValue = 255; //
 if(greenValue > 255) greenValue = 255;
 if(blueValue > 255) blueValue = 255;

 red = runningAverage(redValue, red); //
 green = runningAverage(greenValue, green);
 blue = runningAverage(blueValue, blue);

 Serial.print(red); Serial.print(" ");
 Serial.print(green); Serial.print(" ");
 Serial.print(blue); Serial.println(" ");
 if(red < 200 || green < 180 || blue < 180) {
 green = green - red * 0.3; //
 blue = blue - red * 0.3;
 }

193Chapter 7

Test Project: Chameleon Dome

 red = easing(red); //
 green = easing(green);
 blue = easing(blue);

 setColor(red,green,blue); //

 delay(100);
}

int runningAverage(int input, int old) {
 return newWeight*input + (1-newWeight)*old; //
}

int easing(int input) { //
 float percent = input / 255.0f;
 return 255.0f * percent * percent * percent * percent;
}

int setColor(int r, int g, int b) { //
 analogWrite(redOutput, 255-r); //
 analogWrite(greenOutput, 255-g);
 analogWrite(blueOutput, 255-b);
}

These are the gain pins for each color. This code doesn’t use gain, but sets all gain
pins LOW. If you decide to use them, see Example 7-8 for more details.

This is the pin for the surface-illuminating LED in the sensor.

These are the input pins to read RGB values.

The output pins for the RGB LED.

Global variables to hold manipulated color values. They are initialized to impossible
values to make debugging easier (if you see these values appear later when the
code is running, you know something’s wrong).

The weighting value to apply to new input (see “Moving Average” on page 187).

Illuminate the surface before taking measurements.

Read the red color. analogRead() returns a raw integer value between 0 and 1023.

Map analogRead() values (0..1023) to analogWrite() values (0..255).

 Because color values are equalized (e.g., red is multiplied by 10), they could end up
higher than the maximum used in the map. This would result in a red value higher
than 255. But later you’ll be controlling the LED with analogWrite(), so you must
cap the value at 255.

Some aesthetic color changes, with values found experimentally.

194 Make: Sensors

Test Project: Chameleon Dome

Make colors change a little more slowly, instead of just immediately jumping from
red to green.

Set the RGB LED to a calculated color. Now the user can see the result.

A moving average allows you to smooth out random noise in the input. See “Moving
Average” on page 187.

Easing is an animation term. When Flash or JavaScript animations move things so
that they accelerate and decelerate like real objects, that’s often done with easing
functions. The function here makes values lower than 255 (100%) smaller. Smaller
values are affected more. The purpose is to make the output (RGB LED) change
slowly and smoothly.

Change the RGB LED color to the given RGB value. Parameters are integers in the
range of 0..255.

For common anode (common positive), the data pins are negative pins, and the
values must be inverted. See “RGB LED Shows Any Color” on page 188.

Dome Building Tips
We found a perfect casing for our Chameleon Dome from IKEA. With some minor hacking, the
Solvinden lamp is made for this. Obviously you can use any translucent box or dome that pleases
your eye. There are tons of different lamps to choose from, or you could even use a freezer food
storage container.

Start by opening Solvinden (Figure 7-28) and pry the bottom cover lid off (Figure 7-29). Remove
the original electronics to make space for our gadget as shown in Figure 7-30.

Figure 7-28. First, remove the dome

195Chapter 7

Test Project: Chameleon Dome

Figure 7-29. Pry the bottom cover lid off

Figure 7-30. Remove the electronics

There is a plastic stick in the center of the bottom; cut it off (see Figure 7-31). You need to
make two holes, one 19 mm for the sensor to see what’s below; and one 3 mm to attach
the Arduino and the RGB LED (Figure 7-32).

196 Make: Sensors

Test Project: Chameleon Dome

Figure 7-31. Cut the little stick off from the center

Figure 7-32. Drill a 19 mm hole for the sensor and 3 mm hole for a screw to hold the Arduino and RGB LED in
place

197Chapter 7

Test Project: Chameleon Dome

Use hot glue to attach the sensor pointing down, and make sure it’s in the center of the
hole as shown in Figure 7-33.

Figure 7-33. Cameleon Dome electronics attached

Use a 3 mm screw to secure Arduino in the bottom (see Figure 7-33). On the top of that
same screw holding Arduino, put the RGB LED. Our LED already had holes, but we needed
to drill one larger to fit in the 3 mm screw.

Now just put the battery in the clip, turn the power switch on, close the dome, and enjoy
your Chameleon Dome (see Figure 7-34).

198 Make: Sensors

Test Project: Chameleon Dome

Figure 7-34. Dome is ready with new electronics inside

Now your devices can see the light in many ways: detect the presence and direction of light,
measure its intensity, and even its color.

199Chapter 7

Test Project: Chameleon Dome

When you tilt your smartphone, the screen probably turns from portrait
to landscape. How did the phone know? Smartphones have a built-in
accelerometer, and gravity is indistinguishable from acceleration down-
ward, so the downward pull of gravity helps tell the phone which way
it’s oriented.

Some games are controlled by tilting a phone in the air, using the accelerometer. The popular
Wii game console uses an accelerometer for its controllers. In this chapter, you will hack a Wii
controller to use its sensors. We used a phone accelerometer for control in the Football Robot
from Make: Arduino Bots and Gadgets.

Hard disks found in laptops and desktops can now take a lot of punishment. Many are rated to
take a shock of 150 g (when off), an acceleration that would immediately kill any human. To
brace for impact, some drives will turn themselves off: when the hard disk accelerometer detects
it’s in free fall, it automatically moves the actuator arm away from the sensitive plates.

Have you ever tried to ride a self-balancing device, like a Segway or a Solowheel? After perhaps
a shaky start, it almost feels like a miracle that the device stays upright.

When a self-balancing device detects that it’s about to fall over forward, it quickly moves its
wheels forward, turning itself upright again. Self-balancers measure angular velocity with a
gyroscope. (An accelerometer would gather too many cumulative errors to work in a self-
balancing device.)

Acceleration vs. Angular Velocity

Acceleration is the rate at which an object’s velocity changes (when it’s slowing down or speed-
ing up). Angular velocity measures the rotational speed of an object, as well as the axis that it’s
rotating around. Depending on your project, you might need acceleration, angular velocity, or
even both.

201

Acceleration 8

Acceleration is measured in g, as a multiple of the acceleration caused by Earth’s gravity.
Another commonly used unit of acceleration is meters per second squared (m/s2). Free-
fall acceleration (1 g) is 9.81 m/s2.

Why are the seconds squared in acceleration? Acceleration is change in speed. If you’re
using meters per second (m/s) as a unit of speed, then the unit of acceleration (change of
speed) is meters per second per second, or m/s2.

Gyroscopes measure angular velocity, or how fast the sensor is rotating around an axis.
For example, a gyroscope might report it’s rotating at 10 degrees per second. They are
used in self-balancers and airplane gyrocompasses.

Table 8-1. Accelerometer vs. gyroscope

Sensor Measures Meaning Unit Gravity

Accelerometer Acceleration Change of velocity, speeding up or braking m/s / s = m/s2 Yes, 1 g down

Gyroscope Angular velocity Change of angle, spinning rad/s (SI), often deg/s or RPM Ignores gravity

Experiment: Accelerate with MX2125

MX2125 is a simple two-axis acceleration sensor (see Figure 8-1). It reports acceleration as
a pulse length, making the interface and code simple.

The real, physical world is three dimensional. Objects can go up and down (y), left and right
(x), and back and forth (z). A two-axis sensor only measures two of these axes.

The MX2125 only measures up to 3 g per axis. But some sensors can measure extreme
acceleration. For example, the maximum measured acceleration of the ADXL377
(200 g), is much more than would kill any human. Thus, it’s more than is experienced
in a shuttle launch or high-g maneuvers in fighter jets. It could measure an object
accelerating faster than a bullet fired from a pistol. When we made an early proto-
type for an Aalto-1 satellite sun sensor, even the satellite spec did not require ac-
celeration this tough.

It’s unlikely that you would need to measure such an extreme acceleration, and it
would probably not be possible with a breadboard setup (because the acceleration
needed to test would shake your project apart!). The cost is quite minimal, though.
However, the wider the area of measured acceleration (from -250 g to +250 g), the
less precise the device is.

202 Make: Sensors

Experiment: Accelerate with MX2125

Figure 8-1. MX2125 sensor

Decoding MX2125 Pulse Length
Usually, an accelerometer’s conversion formulas are found on data sheets. In this case, it required
some more searching.

Finding Data Sheets

Search for the data sheet. The obvious search query
is the code name of the component and the word
“datasheet.” But you may also find the data sheet on
the website where you bought the component
from (it’s usually on the product detail page for the
part).

For example, when we searched for “MX2125 data-
sheet,” we found the Parallax breakout board data-
sheet, but not the Memsic datasheet for the
MX2125 chip itself. The Parallax datasheet did not
contain the required information.

However, the pulse length to g force conversion
formula can be found on the Parallax Memsic 2125
Accelerometer Demo Kit document. And fortunate-
ly, when we later checked the Parallax page, we no-
ticed the data sheet for the actual chip there. We
were also able to find the data sheet using a slightly
different search term, “MXD2125,” which is the part
number of the chip on the board. The actual data
sheet contained a lot of information not found in
the other documents.

MX2125 works by heating a bubble of gas inside the device, and then measuring how the air
bubble moves.

203Chapter 8

Experiment: Accelerate with MX2125

When power is on, the MX2125 reports the acceleration on each axis, 100 pulses a second.
Consecutive HIGH and LOW signals form a 100 Hz square wave. The more acceleration
there is, the more time the wave spends in the HIGH portion, and the less time in the LOW
portion. You can read these pulses to determine acceleration.

One full wave contains one HIGH and one LOW. The time taken by one wave (HIGH+LOW)
is called period (T). Let’s call the time of HIGH part tHIGH (time of HIGH).

The duty cycle tells you how much of the wave is HIGH. The duty cycle is a percentage, for
example 50% (0.50) or 80% (0.80).

dutyCycle = tHIGH / T

According to the data sheet and other documents, the period T is set to 10 ms by default:

dutyCycle = tHIGH / 10 ms

Here’s the acceleration formula from the data sheet:

A = (tHIGH/T-0.50)/20%

Or, replacing tHIGH/T with dutyCycle and 20% with .2:

A = (dutyCycle-0.50)/.2

Now it can be written as follows (because x/.2 is 5*x):

A = 5*(dutyCycle-0.50)

or:

A = 5*(tHIGH/T-0.50)

When there is no acceleration (0 g), the duty cycle is 50%:

0 = 5*(dutyCycle-0.50)
0/5 = dutyCycle-0.50
0 = dutyCycle-0.50
.50 = dutyCycle

At the time we originally checked, the Parallax and Memsic documentation conflicted on
the multiplier: the Memsic documentation used 1/20% (5), and Parallax used 1/12.5% (8).
In our experiments, we found 1/12.5% (8) to give proper readings with the breakout board
from Parallax. And in fact, when we later examined the MXD2125 data sheet from Memsic
that was hosted on Parallax’s site, both agreed on 1/12.5%. This is why you need to be
careful with data sheets you find online: always verify the values with experimentation. So
we will use 8 as the multiplier:

A = 8*(tHIGH/T-0.50)

Because Arduino pulseIn() returns the pulse length in microseconds (1 µs = 0.001 ms =
1e-6 s), the formula could be modified to use microseconds:

A = 8 * (tHIGH/(10*1000) - 0.5)

The unit of A is then g, which equals 9.81 m/s2.

204 Make: Sensors

Experiment: Accelerate with MX2125

For example, if tHIGH is 5,000 µs (5 ms), the duty cycle is

dutyCycle = 5 ms / 10 ms = 0.50 = 50%

Which equals 0 g:

A = 8*(0.50-0.5) = 8*0 = 0 // g

To show another example, consider tHIGH of 6250 µs (6.25 ms)

A = 8*(6250/10000-0.5) = 8*(0.625-0.5) = 8*0.125 = 1 // g

Thus, a 6.25 ms pulse means 1 g acceleration.

Accelerometer Code and Connection for Arduino
Figure 8-2 shows the circuit diagram for Arduino. Wire it up as shown, and load the code from
Example 8-1.

Figure 8-2. MX2125 dual axis accelerometer circuit for Arduino

Example 8-1. mx2125.ino
// mx2125.ino - measure acceleration on two axes using MX2125 and print to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int xPin = 8;
const int yPin = 9;

void setup() {
 Serial.begin(115200);
 pinMode(xPin, INPUT);
 pinMode(yPin, INPUT);

205Chapter 8

Experiment: Accelerate with MX2125

}

void loop() {
 int x = pulseIn(xPin, HIGH); //
 int y = pulseIn(yPin, HIGH);
 int x_mg = ((x / 10) - 500) * 8; //
 int y_mg = ((y / 10) - 500) * 8;
 Serial.print("Axels x: ");
 Serial.print(x_mg);
 Serial.print(" y: ");
 Serial.println(y_mg);
 delay(10);
}

The length of the pulse tells you the acceleration. pulseIn() returns the pulse
length in microseconds (µs). 1 µs = 0.001 ms = 0.000001 s = 1e-6 s.

Convert output to millig, one-thousandth of the gravity constant g.

Accelerometer Code and Connection for Raspberry Pi
Figure 8-3 shows the wiring diagram for the Raspberry Pi. Hook everything up as shown,
and then run the code shown in Example 8-2.

Example 8-2. mx2125.py
mx2125.py - print acceleration axel values.
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio

xPin = 24
yPin = 23

def readAxel(pin):
 gpio.mode(pin, "in")
 gpio.interruptMode(pin, "both")
 return gpio.pulseInHigh(pin) #

def main():
 x_g = 0
 y_g = 0
 while True:
 x = readAxel(xPin) * 1000
 y = readAxel(yPin) * 1000
 if(x < 10): #
 x_g = ((x / 10) - 0.5) * 8 #
 if(y < 10):
 y_g = ((y / 10) - 0.5) * 8
 print ("Axels x: %fg, y: %fg" % (x_g, y_g)) #
 time.sleep(0.5)

206 Make: Sensors

Experiment: Accelerate with MX2125

if __name__ == "__main__":
 main()

Measure the length of pulse, the time when the pin is HIGH.

Ignore readings that are wildly out of range.

Calculate the acceleration along x axis in g. One g is the acceleration caused by the
gravity of earth, 9.81 meters per second squared.

Figure 8-3. MX2125 dual axis accelerometer circuit for Raspberry Pi

207Chapter 8

Experiment: Accelerate with MX2125

Experiment: Accelerometer and Gyro Together

When an accelerometer is not moving, it detects gravity and can tell where down is. A
gyroscope can tell the orientation reliably, even if you spin it around and around. A gyro-
scope ignores gravity, though.

Could we combine an accelerometer and gyroscope to get both benefits? Yes.

An IMU (inertial measurement unit) combines multiple sensors and (optionally) some logic
to get more precise and reliable motion information. In this experiment, you’ll work hands-
on with the basic features of the MPU 6050.

In general, IMUs are more expensive and more precise than plain accelerometers and gyros.
They also use more advanced protocols to communicate, such as I2C, instead of a simple
pulse width signaling protocol.

The MPU 6050 (Figure 8-4) has an accelerometer, gyro, and microcontroller on the same
chip. Even though space isn’t a premium when you’re in the breadboard prototyping stage,
it’s nice to know that all this functionality fits in a tiny surface-mounted component, just
in case you ever run short of circuit real estate. For example, an early prototype of a sun
sensor we designed barely fit into a box of about 10 × 10 × 10 cm. The final part had to fit
into a very flat 5 mm × 5 mm area on the satellite surface.

The MPU 6050 uses the I2C protocol. Thanks to the python-smbus library, Raspberry Pi code
is much simpler and easier than the equivalent Arduino code. In general, Raspberry Pi
handles complicated protocols in less code than Arduino.

Industry Standard Protocols

Most devices use one of the industry standard
protocols instead of inventing their own.

I2C is one of the easiest industry standard pro-
tocols. Because it’s strictly defined and the pro-
tocol includes how data should be encoded and
decoded, it’s usually the easiest to use. You can
find multiple examples of I2C in this chapter.

SPI is also a common industry standard protocol.
Because SPI leaves a lot of choices to the imple-
menter, it can be a daunting task to write an in-
terface to a new SPI component. On the other
hand, if there is a code example or a reference
implementation, it’s just a matter of copying and
pasting, since someone else has done the hard

work for you. You can find an example of using
an SPI component without a reference imple-
mentation in http://botbook.com/satellite.

Serial is often found in disguise: serial over USB,
serial over Bluetooth, serial over some jumper
wires. The good old serial port you have used
with Arduino Serial Monitor is surprisingly com-
mon. It solves only part of the problem: serial
defines how to send characters over wire, but the
implementer still has to decide how numbers are
encoded and decoded. You can find an example
of hacking serial over USB in our book Make a
Mind-Controlled Arduino Robot.

208 Make: Sensors

Experiment: Accelerometer and Gyro Together

Figure 8-4. The MPU 6050

MPU 6050 Code and Connection for Arduino
Figure 8-5 shows the wiring diagram for Arduino. Hook everything up, and then run the code
in Example 8-3.

209Chapter 8

Experiment: Accelerometer and Gyro Together

Figure 8-5. MPU 6050 (accelerometer+gyro) circuit for Arduino

Difficult code! The code for MPU 6050 contains more difficult programming con-
cepts than most other code examples in this book. If you find endianness, bit shifting,
and structs difficult, you can simply use the code and play with the values. You don’t
need to deeply understand the code to use it.

If you want to understand the code, see the explanations after the code, such as
“Hexadecimal, Binary, and Other Numbering Systems” on page 219 and “Bitwise Op-
erations” on page 221.

Example 8-3. mpu_6050.ino
// mpu_6050.ino - print acceleration (m/s**2) and angular velocity (gyro, deg/s)
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

#include <Wire.h> //

const char i2c_address = 0x68; //

const unsigned char sleep_mgmt = 0x6B; //
const unsigned char accel_x_out = 0x3B;

struct data_pdu //
{
 int16_t x_accel; //
 int16_t y_accel;
 int16_t z_accel;
 int16_t temperature; //
 int16_t x_gyro; //
 int16_t y_gyro;
 int16_t z_gyro;
};

210 Make: Sensors

Experiment: Accelerometer and Gyro Together

void setup() {
 Serial.begin(115200);
 Wire.begin(); //
 write_i2c(sleep_mgmt,0x00); //
}

int16_t swap_int16_t(int16_t value) //
{
 int16_t left = value << 8; //
 int16_t right = value >> 8; //
 right = right & 0xFF; //
 return left | right; //
}

void loop() {
 data_pdu pdu; //
 read_i2c(accel_x_out, (uint8_t *)&pdu, sizeof(data_pdu)); //

 pdu.x_accel = swap_int16_t(pdu.x_accel); //
 pdu.y_accel = swap_int16_t(pdu.y_accel);
 pdu.z_accel = swap_int16_t(pdu.z_accel);
 pdu.temperature = swap_int16_t(pdu.temperature); //
 pdu.x_gyro = swap_int16_t(pdu.x_gyro);
 pdu.y_gyro = swap_int16_t(pdu.y_gyro);
 pdu.z_gyro = swap_int16_t(pdu.z_gyro);

 float acc_x = pdu.x_accel / 16384.0f; //
 float acc_y = pdu.y_accel / 16384.0f;
 float acc_z = pdu.z_accel / 16384.0f;
 Serial.print("Accelerometer: x,y,z (");
 Serial.print(acc_x,3); Serial.print("g, "); //
 Serial.print(acc_y,3); Serial.print("g, ");
 Serial.print(acc_z,3); Serial.println("g)");

 int zero_point = -512 - (340 * 35); //
 double temperature = (pdu.temperature - zero_point) / 340.0; //
 Serial.print("Temperature (C): ");
 Serial.println(temperature,2);

 Serial.print("Gyro: x,y,z (");
 Serial.print(pdu.x_gyro / 131.0f); Serial.print(" deg/s, "); //
 Serial.print(pdu.y_gyro / 131.0f); Serial.print(" deg/s, ");
 Serial.print(pdu.z_gyro / 131.0f); Serial.println(" deg/s)");
 delay(1000);
}

void read_i2c(unsigned char reg, uint8_t *buffer, int size) //
{
 Wire.beginTransmission(i2c_address); //
 Wire.write(reg); //
 Wire.endTransmission(false); //
 Wire.requestFrom(i2c_address,size,true); //

211Chapter 8

Experiment: Accelerometer and Gyro Together

 int i = 0; //
 while(Wire.available() && i < size) { //
 buffer[i] = Wire.read(); //
 i++;
 }
 if(i != size) { //
 Serial.println("Error reading from i2c");
 }

}

void write_i2c(unsigned char reg, const uint8_t data) //
{
 Wire.beginTransmission(i2c_address); //
 Wire.write(reg);
 Wire.write(data);
 Wire.endTransmission(true);
}

Wire.h is the Arduino library for the I2C protocol. Wire.h comes with the Arduino
IDE, so you can just include the library in your code. You don’t need to separately
install the library or copy any library files manually.

The I2C address of the MPU 6050 sensor. One three-wire bus can have many slaves.
Each slave is recognized by its address. Typically, an I2C bus can have 128 (27) slaves.
The I2C wires can be only a couple of meters long, so that also puts a practical limit
to wire length. The number is represented in hexadecimal, see “Hexadecimal,
Binary, and Other Numbering Systems” on page 219 for an explanation of this
notation.

The registers for commands are from MPU 6050 documentation. If you need a
complete list of commands, search the Web for “MPU 6050 data sheet” and “MPU
6050 register map.” The numbers are in hex but could be expressed in decimal if
you prefer.

The struct for decoding the answer from the sensor. A struct combines multiple
values together. The C struct is only for data, and a struct can’t contain any functions.
This makes structs different from objects and classes you may be familiar with from
other languages. struct data_pdu declares a new data type, which you’ll later use
for declaring variables of type data_pdu. This struct has variables that are exactly
the same size as the data fields in the protocol used by the sensor. Later, you will
read bytes from the sensor directly into the struct. Then you’ll go through the
variables embedded in the struct to get at the values. Yes, it’s a neat trick!

212 Make: Sensors

Experiment: Accelerometer and Gyro Together

A variable for storing acceleration across the horizontal x-axis. The type int16_t is
a specifically sized integer defined by avr-libc (the C library used by the Arduino
compiler). It’s a signed (negative or positive) 16-bit (two-byte) integer. Because the
struct is used for decoding raw data from the sensor, the exact sized data types are
required.

The sensor also reports temperature. Even if you don’t need it, you must have a
variable for it so that the data_pdu struct ends up being the right size.

Angular velocity around x-axis (roll), read by the gyroscope portion of the MPU
6050.

Initialize I2C communication using the Wire.h library.

Wake up the sensor by writing the command 0 to the sleep management register
0x6B. The MPU 6050 starts out in sleep mode, so this is a required step.

Swap the two bytes in parameter value. MPU 6050 is big endian. Arduino is little
endian like most processors. The endianness must be converted between the
platforms. See “Endianness—Typically on the Small Side” on page 224 for more details.

This new two-byte (16 bit) variable left ends up being the rightmost byte of the
parameter value. After a one-byte (8 bit) left shift (<<), the leftmost byte of value
is dropped, as it doesn’t fit the two bytes of left. The right byte of left is filled with
zeroes in the bit shift.

This new two-byte (16 bit) variable right is now the leftmost byte of value. The
leftmost byte of right is zeroes.

Zero out the leftmost byte of right, just to make sure it’s empty. See also “Bit
Masking with Bitwise AND &” on page 223

Combine the left and right bytes. The variable left is actually two bytes (16 bits),
with the rightmost byte (8 bits) full of zeroes. See also “Bitwise OR |” on page 224

Create a new variable pdu of type data_pdu. This is the struct type you created earlier.

Fill the pdu struct with data from the sensor. The first parameter is the register to
read (accel_x_out, 0x3B). The second parameter is a reference to the pdu struct.
It is passed as a reference, so that the function can modify the struct itself instead
of returning a value. The last parameter is how many bytes to read. Conveniently,
you can use the size of the struct to specify the number of bytes to read.

Convert the number from the sensor’s big endian format to little endian used in
Arduino.

You can refer to the variables in the struct with structname.var, such as pdu.tem
perature.

The raw acceleration value is converted to the real-life unit g. The standard gravity
g is 9.81 m/s2. The conversion factor is from the data sheet. To get a floating point
(decimal) result, the divider must be floating point.

213Chapter 8

Experiment: Accelerometer and Gyro Together

Print the acceleration to the serial monitor. The unit is g, the acceleration from
gravity. 1 g = 9.81 m/s2.

Calculate the zero point for converting raw measurement to temperature in Celsius,
using information from the data sheet. The temperature is from -40 C to +85 C. A
raw value of -512 indicates 35 C. From that point, every 1 C change is represented
by a raw value change of 340. Thus, to find the 0 C point raw value, you take -512
and subtract the product 340 * 35 (deducting 35 C worth of raw values at 340 per
C). The calculation is -512 - (340 * 35), which is -12412. But instead of writing
the calculated value -12412, you should write the calculation from the datasheet
so that the code is more clear.

Convert raw measurement to temperature in Celsius, using the formula from the
data sheet.

Print angular velocity as measured by gyroscope. The raw to degree/s conversion
factor 1/131.0 is from the data sheet. To get a floating point (decimal) result, the
divider must be floating point, too.

A function to read size number of bytes from register point. The result is written
over the struct, which is represented by the *buffer pointer. Because of the pointer,
the actual value of the struct is modified, instead of returning a value.

Send the I2C command to the device (the MPU 6050 sensor in the address 0x69).

Specify the register address to read. In this program, read_i2c() is only used to
read from accel_x_out (0x3B).

Keep the connection open, so that you can read data on the next lines.

Request size bytes of data from the sensor. Earlier, you stated you want to start
from register accel_x_out (0x3B). The true parameter (the third argument, which
is named stop in the Arduino documentation) means that the connection is closed
after the read ends, which releases the I2C bus for future use.

Declare a new variable for the upcoming while loop. The loop variable i holds the
count of how many bytes have been read. This count i equals the number of
iterations the loop has run.

Enter the loop only if there are bytes available for reading and you have not yet
read all the bytes requested. In the way read_i2c() is called in this program, the
variable size will always be the length of data_pdu struct.

214 Make: Sensors

Experiment: Accelerometer and Gyro Together

Read a byte (8 bits) and store it into the buffer. Considering how read_i2c() is called
in this program, we can walk through the first iterations. The pointer *buffer points
to the first byte of pdu, which is of struct type data_pdu. On the first iteration, i is
0, so buffer[i] points to the first byte of pdu. Because pdu was passed to the
function with a pointer, the contents of the actual pdu (the variable in the main
program) are overwritten. No return is needed, so the type of read_i2c() is void.
On the second iteration, buffer[1] points to the second byte of pdu. This continues
for the whole buffer (pdu). When i == size, the while loop is not re-entered, and
execution continues with the code that comes after the while loop.

If not enough bytes were available, the loop variable i is less than size. As i was
declared outside the loop, it is available to you after the loop.

Write one byte data to register reg on the sensor.

The address of the sensor comes from the global variable i2c_address.

MPU 6050 Code and Connection for Raspberry Pi
Figure 8-6 shows the wiring diagram for Raspberry Pi. Hook it up as shown, and then run the
code from Example 8-4.

Figure 8-6. MPU 6050 six-axis accelerometer circuit for Raspberry Pi

215Chapter 8

Experiment: Accelerometer and Gyro Together

Example 8-4. mpu_6050.py
mpu_6050.py - print acceleration (m/s**2) and angular velocity (gyro, deg/s)
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import smbus # sudo apt-get -y install python-smbus #
import struct

i2c_address = 0x68 #
sleep_mgmt = 0x6B #
accel_x_out = 0x3B #

bus = None #
acc_x = 0
acc_y = 0
acc_z = 0
temp = 0
gyro_x = 0
gyro_y = 0
gyro_z = 0

def initmpu():
 global bus #
 bus = smbus.SMBus(1) #
 bus.write_byte_data(i2c_address, sleep_mgmt, 0x00) #

def get_data():
 global acc_x,acc_y,acc_z,temp,gyro_x,gyro_y,gyro_z
 bus.write_byte(i2c_address, accel_x_out) #
 rawData = ""
 for i in range(14): #
 rawData += chr(bus.read_byte_data(i2c_address,accel_x_out+i)) #
 data = struct.unpack('>hhhhhhh', rawData) #

 acc_x = data[0] / 16384.0 #
 acc_y = data[1] / 16384.0
 acc_z = data[2] / 16384.0
 zero_point = -512 - (340 * 35) #
 temp = (data[3] - zero_point) / 340.0 #

 gyro_x = data[4] / 131.0 #
 gyro_y = data[5] / 131.0
 gyro_z = data[6] / 131.0

def main():
 initmpu()
 while True: #
 get_data() #
 print("DATA:")
 print("Acc (%.3f,%.3f,%.3f) g, " % (acc_x, acc_y, acc_z)) #
 print("temp %.1f C, " % temp)

216 Make: Sensors

Experiment: Accelerometer and Gyro Together

 print("gyro (%.3f,%.3f,%.3f) deg/s" % (gyro_x, gyro_y, gyro_z))
 time.sleep(0.5) # s #

if __name__ == "__main__":
 main()

SMBus implements a subset of the I2C industry standard protocol. The SMBus library
makes the Raspberry Pi program much shorter than the Arduino equivalent. The python-
smbus package must be installed on Raspberry Pi (see “SMBus and I2C Without Root” on
page 218 for instructions).

The I2C address of MPU 6050 sensor, found on the data sheet. The number is represented
in hexadecimal (see “Hexadecimal, Binary, and Other Numbering Systems” on page 219).

The register address for commands. You can find the register map by searching the Web
for “MPU 6050 register map”.

The X acceleration register address is the starting address for the values you’re interested
in: acceleration, temperature, and angular velocity.

Make bus a global variable visible to all functions.

To modify the value of a global variable in a function, you must indicate that it’s global
in the beginning of the function.

Initialize the SMBus (I2C). Store the new object of the SMBus class into the global bus
variable.

MPU 6050 starts in sleep mode. Wake it up before doing anything with it. The commands
to the sensor are given over I2C (SMBus) with the device address, the register, and the
value to write to the register.

Request data, starting from the X acceleration address.

Repeat 14 times, with values of i, from 0 to 13.

Read the current byte, convert it to ASCII, and add it to rawData string.

Convert the rawData string to a Python tuple. The format string characters indicate little
endian <, short signed 2 byte (16 bit) integer h.

Convert raw acceleration to real-life g units. The standard gravity g is equal to 9.81 m/s2.

Calculate the temperature zero point. The Pi does it very quickly, and writing the whole
formula here makes code easier to read and typos less likely.

Convert raw temperature to Celsius. To get a floating point result, the divider must also
be floating point. Conversion formulas are from the data sheet (Google “MPU 6050 data
sheet”).

Convert raw angular velocity to real-life units (degrees per second).

The program runs until you press Control-C.

217Chapter 8

Experiment: Accelerometer and Gyro Together

get_data() updates global variables, so it doesn’t need to return values from the
function.

Print acceleration using the format string. The replacement %.3f indicates a floating
point value with three decimal places.

To let the user read the printed values and avoid taking 100% of CPU time, we add a
small delay here.

Find out what walking, running, or skipping does to readings. How about twitching or
squirming?

SMBus and I2C Without Root
The Raspberry Pi code uses the Python smbus library for I2C. Luckily, installing software in
Linux is a breeze. You can install any software to Raspbian just like you would install it in
Debian, Ubuntu, or Mint. Double-click the LXTerminal icon on the left side of your Raspbian
desktop. Then:

$ sudo apt-get update
$ sudo apt-get install python-smbus

To enable I2C support, you’ll need to enable the i2c modules. First, make sure they are not
disabled. Edit the /etc/modprobe.d/raspi-blacklist.conf with the command sudoedit /etc/
modprobe.d/raspi-blacklist.conf and delete this line:

blacklist i2c-bcm2708

Save the file: press Control-X, type y, and then press Enter or Return.

Next, edit the /etc/modules with the command sudoedit /etc/modules and add these two
lines:

i2c-bcm2708
i2c-dev

Save the file: press Control-X, type y, and then press Enter or Return.

To use I2C without needing to be root, create the udev rule file 99-i2c.rules (shown in
Example 8-5) and put it in place. (To avoid typing and inevitable typos, you can download
a copy of 99-i2c.rules file from http://botbook.com.)

$ sudo cp 99-i2c.rules /etc/udev/rules.d/99-i2c.rules

Example 8-5. 99-i2c.rules
/etc/udev/rules.d/99-i2c.rules - I2C without root on Raspberry Pi
Copyright 2013 http://BotBook.com

SUBSYSTEM=="i2c-dev", MODE="0666"

218 Make: Sensors

Experiment: Accelerometer and Gyro Together

Reboot your Raspberry Pi, open LXTerminal, and confirm that you can see the I2C devices and
that the ownership is correct:

$ ls -l /dev/i2c*

The listing should show two files, and they should list permissions of crw-rw-rwT. If not, go over
the preceding steps again.

Hexadecimal, Binary, and Other Numbering Systems
The same number can be represented multiple ways. For example, the decimal number 65 is
0x41 in hexadecimal and 0b1000001 in binary. You are probably most familiar with the normal
decimal system, where 5+5 is 10.

The different representations are marked with a prefix before the number. Normal decimal
numbers don’t have a prefix. Hexadecimal numbers start with 0x, binary numbers start with
0b, and octal numbers start with 0.

The different numbering systems are compared in Table 8-2.

Table 8-2. Number representations

Prefix Representation system Base Use Example Calculation

Decimal 10 The normal system 10 0*100 + 1*101

0x Hexadecimal 16 C and C++ code, datasheets 0xA 10*160

0b Binary 2 Low-level protocols, bit-banging 0b1010 0*20 + 1*21 + 0*22 + 1*23

0 Octal 8 Chmod permissions in Linux 012 2*80 + 1*81

Consider the number 42. It is the exact same number in any representation system, so

42 = 0x2a = 0b101010 = 052

Only the base number changes. With the familiar, normal decimal system, the base is 10. Starting
from the right, you first count ones and then tens.

2*1 + 4*10 = 42

If there is a big number, such as 1917, the ten is obvious. After ones, it’s tens (10), hundreds
(10*10) and thousands (10*10*10). You can easily write these numbers as powers:

10*10 = 102

10*10*10 = 103

What about ones? Any number to zeroth power is 1, so it’s:

100 = 1

Thus, the number 42 becomes:

42 = 4*101 + 2*100

The hex representation of 42 is 0x2A. In hex, numbers bigger than 9 are shown with letters:
A=10, B=11 … F=15. Starting from the right, note that A is 10 and count:

219Chapter 8

Experiment: Accelerometer and Gyro Together

0x2A = 10*1 + 2*16 = 10 + 32 = 42

To play with powers, this can be written

10*160 + 2*161 = 0x2A

Try some other numbers. To check your calculations, use the Python console (see “The
Python Console” on page 221 or Table 8-3). Can you apply your skills to convert to binary
numbers, too?

You can practice working with numbers in the Python console. The number representation
(1 == 0x1 == 0b1) is the same in Python, C, and C++. You can run any Python commands
in the console:

>>> print("Botbook.com")
Botbook.com
>>> 2+2
4

Any numbers you enter are converted to decimal system for display:

>>> 0x42
66
>>> 66
66
>>> 0b1000010
66

There are functions to convert any number to binary, hexadecimal, octal, and ASCII char-
acters:

>>> bin(3)
'0b11'
>>> hex(10)
'0xa'
>>> oct(8)
'010'
>>> chr(0x42)
'B'

Table 8-3. Example numbers in different representations

Decimal Hex Binary Octal ASCII

0 0x0 0b0 0 \0 NUL, terminates string

1 0x1 0b1 01

2 0x2 0b10 02

3 0x3 0b11 03

4 0x4 0b100 04 EOT, end of text, CTRL-D in Linux

5 0x5 0b101 05

6 0x6 0b110 06

7 0x7 0b111 07

220 Make: Sensors

Experiment: Accelerometer and Gyro Together

Decimal Hex Binary Octal ASCII

8 0x8 0b1000 010

9 0x9 0b1001 011

10 0xA 0b1010 012 \n newline

11 0xB 0b1011 013

16 0x10 0b10000 020

17 0x11 0b10001 021

32 0x20 0b100000 040 ' ' space, the first printable character

48 0x30 0b110000 060 0 ASCII zero is not number zero

65 0x41 0b1000001 0101 A

97 0x61 0b1100001 0141 a

126 0x7e 0b1111110 0176 ~ tilde is the last printable ASCII character

Type the command man ascii at the terminal to show a manual page showing an ASCII
chart in Linux or OS X. For example, you can see that ASCII character A is decimal number
65, hexadecimal 0x41, and octal number 0101. Manual pages are shown in the less
utility, so pressing space moves forward a page, pressing b moves back, and pressing q
quits.

The Python Console

The Python console is started by typing the python
command at the terminal. In Linux, the terminal
(bash, shell) is found in the bottom left Main menu:
Accessories→Terminal, or searching Dash for Termi-
nal. In Macintosh, terminal is /Applications/Utilities/
Terminal. In Windows, you can start terminal (Ap-
plications→Accessories→Command Prompt) or
open IDLE from the Start menu (if you’ve installed
Python).

The Python prompt >>> lets you know that your
commands will be interpreted as Python code. To
finish your Python session, type the exit() Python
command.

If you want a really neat Python console with tab
guessing and interactive help, try ipython.

Bitwise Operations
Some sensors send data as a bunch of bits that form a byte, such as 01010000. To work with
data in a binary representation, you must perform bitwise operations on them, in which you
manipulate a bunch of bits at the same time.

221Chapter 8

Experiment: Accelerometer and Gyro Together

A bit is 1 or 0. One bit can represent a truth value, 0-false or 1-true.

A byte is eight bits, such as 0b1010100. A byte can represent one ASCII character,
such as T, 3, or x. It can also represent a number, such as 256 or -127.

Bitwise operations are very low-level functions (you’re pretty much working with computer
memory in its native format), and it can be hard to read code that uses it, so you should
resort to it only when needed. On the other hand, we sometimes meet sensors where
binary arithmetic is required just to get the part working. The MPU 6050 integrated motion
unit is one such sensor.

The most common binary arithmetic operations are bit shifting and binary Boolean oper-
ations.

To get some confidence with bit operations, practice with them in the Python console
(“The Python Console” on page 221). Bit operations work the same way in C and C++
(Arduino), but these languages don’t have interactive consoles, so it’s easier to play around
in Python.

You might already know normal Boolean algebra. “AND” means that both conditions must
be true for the whole expression to be considered true. “OR” means either condition can
be true for the whole expression to be true.

>>> if (True): print "Yes"
...
Yes
>>> if (False): print "Yes"
... # nothing printed
>>> if (True and True): print "Yes"
...
Yes

In Python, True and False must have a capital first letter.

The truth values are there even without “if” construct:

>>> True
True
>>> False
False
>>> True and True
True

In most languages, 1 is True and 0 is False:

222 Make: Sensors

Experiment: Accelerometer and Gyro Together

>>> 1 and 1
1
>>> 1 and 0
0

With bitwise operations, you can do the same thing to every one and zero in a byte.

You can’t use the English words “and” or “or” for bitwise operations in Python. Use the
characters & (bitwise AND) and | (bitwise OR) instead.

>>> 0b0101 & 0b0110
4

Maybe the answer is easier to read in binary:

>>> bin(0b101 & 0b110)
'0b100'

The bitwise AND (&) simply takes each bit and applies the Boolean AND operation to each pair:

 0b0101
 0b0110
==========
& 0b0100

Starting from the left, 0-false and 0-false is 0-false. 1-true and 1-true is 1-true. 0-false and 1-true
is 0-false. 1-true and 0-false is 0-false.

Bit Masking with Bitwise AND &
Bit masking allows you to get just the bits you want. For example, you could get the four leftmost
digits of 0b 1010 1010 with the following operation:

>>> bin(0b10101010 & 0b11110000)
'0b10100000'

Here’s how it works:

0b 1010 1010 # a number
0b 1111 0000 # the mask
==========================
0b 1010 0000 # & (bitwise AND)

AND is true only when both inputs are true (Table 8-4).

Table 8-4. AND truth table

a b a AND b

0 0 0

1 0 0

0 1 0

1 1 1

223Chapter 8

Experiment: Accelerometer and Gyro Together

Bitwise OR |
If you build the left part and the right part of a byte separately, how do you put them back
together? In Python, you can use an OR (|) operation:

>>> left=0b10100000
>>> right=0b1111
>>> bin(left|right)
'0b10101111'

Looking at the bits in detail:

0b 1010 0000 # left, must have zeroes on the right
0b 1111 # right, zeroes on the left don't matter
=======================
0b 1010 1111 # bitwise OR |

Bitwise OR “|” is not the same as plus “+”. For example, consider 0b1 + 0b1.

Bit Shifting <<
Bit shifting moves bits to the right or left. You can try it in Python:

>>> bin(0b0011<<1)
'0b110'
>>> bin(0b0011<<2)
'0b1100'

Moving bits over the right edge drops the extra bits:

>>> bin(0b0011>>2)
'0b0'

Endianness—Typically on the Small Side
Most hardware is little endian, just like the numbers you’re used to working with every day.
Normal numbers are little endian: in the number 1991, thousands come first, then hun-
dreds, tens, and finally ones. The most significant number comes first.

Most computers are little endian too, so that the most significant byte comes first. Your
workstation and laptop likely run on x86, amd64, or x86_64 architechture, so they are little
endian. Arduino is based on the Atmel AVR, and it’s little endian. Both Raspberry Pi and
Android Linux (the leading smartphone platform) run on ARM in little endian mode.

The number 135 can be stored little endian (typical) or big endian:

0b 1000 0111 # little endian, typical, Arduino, Pi, workstation
0b 0111 1000 # big endian, MPU 6050

Some devices have atypical endianness. The MPU 6050 sensor is big endian, meaning that
the most significant bytes come last. When communicating between Arduino and the MPU
6050, the endianness must be swapped between little endian and big endian.

224 Make: Sensors

Experiment: Accelerometer and Gyro Together

The endianness only matters when doing low-level operations like working with bits and bytes.
In high-level programming, you can just assign a value to a floating point variable and get a
floating point back. In higher level programming, the environment handles endianness and
other details for you.

Experiment: Hacking Wii Nunchuk (with I2C)

Would you like to have an accelerometer, a joystick, and a button—all in a cheap package? Look
no further, because the Nunchuk controller for the Wii gaming console is all that. If you want
to go even cheaper, there are cheap compatible copies available, too.

The Wii Nunchuk also teaches an important hacking lesson: engineers are human. And just like
the rest of us humans, engineers want to work with tried and true protocols, where libraries
and tools are available. The Wii has its own proprietary connector, and originally, very little
documentation. But under the surface, it’s the standard I2C protocol. As you saw earlier (“In-
dustry Standard Protocols” on page 208), I2C is our favorite industry standard short-range
communication protocol.

Nintendo produces the Wii Nunchuk in large batches, which keeps quality up and prices down.
The wide availability of Nunchuk also means there is a lot of example code and documentation
available. You don’t even need to cut the cord, as there is even a WiiChuck adapter you can push
into Nunchuk’s connector to connect it to Arduino or a breadboard (Figure 8-7).

Figure 8-7. Nunchuk connected to Arduino with WiiChuck adapter

225Chapter 8

Experiment: Hacking Wii Nunchuk (with I2C)

The Wii Nunchuk can use the SMBus protocol to communicate. It is a simplified protocol,
by virtue of it being a subset of the industry standard I2C protocol, which makes it even
more clear how the communication should happen.

Nunchuk Code and Connection for Arduino
Figure 8-8 shows the connection diagram for Arduino. Wire things up as shown, and run
the sketch shown in Example 8-6.

Figure 8-8. WiiChuck circuit for Arduino

Example 8-6. wiichuck_adapter.ino
// wiichuck_adapter.ino - print joystick, accelerometer and button data to serial
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

#include <Wire.h>

const char i2c_address = 0x52;

unsigned long lastGet=0; // ms
int jx = 0, jy = 0, accX = 0, accY = 0, accZ = 0, buttonZ = 0, buttonC = 0; //

void setup() {
 Serial.begin(115200);
 Wire.begin();
 pinMode(A2, OUTPUT);

226 Make: Sensors

Experiment: Hacking Wii Nunchuk (with I2C)

 pinMode(A3, OUTPUT);
 digitalWrite(A2, LOW); //
 digitalWrite(A3, HIGH); //
 delay(100);
 initNunchuck(); //

}

void loop() {
 if(millis() - lastGet > 100) { //
 get_data(); //
 lastGet = millis(); //
 }
 Serial.print("Button Z: ");
 Serial.print(buttonZ); //
 Serial.print(" Button C: ");
 Serial.print(buttonC);
 Serial.print(" Joystick: (x,y) (");
 Serial.print(jx); //
 Serial.print(",");
 Serial.print(jy);
 Serial.print(") Acceleration (x,y,z) (");
 Serial.print(accX); //
 Serial.print(",");
 Serial.print(accY);
 Serial.print(",");
 Serial.print(accZ);
 Serial.println(")");

 delay(10); // ms
}

void get_data() {
 int buffer[6]; //
 Wire.requestFrom(i2c_address, 6); //
 int i = 0; //
 while(Wire.available()) { //
 buffer[i] = Wire.read(); //
 buffer[i] ^= 0x17; //
 buffer[i] += 0x17; //
 i++;
 }
 if(i != 6) { //
 Serial.println("Error reading from i2c");
 }
 write_i2c_zero(); //

 buttonZ = buffer[5] & 0x01; //
 buttonC = (buffer[5] >> 1) & 0x01; //
 jx = buffer[0]; //
 jy = buffer[1];
 accX = buffer[2];
 accY = buffer[3];
 accZ = buffer[4];

227Chapter 8

Experiment: Hacking Wii Nunchuk (with I2C)

}

void write_i2c_zero() {
 Wire.beginTransmission(i2c_address);
 Wire.write(0x00);
 Wire.endTransmission();
}

void initNunchuck()
{
 Wire.beginTransmission(i2c_address);
 Wire.write(0x40);
 Wire.write(0x00);
 Wire.endTransmission();
}

Declare global variables. Because Arduino functions can’t easily return multiple
values, data is passed from function to function using global variables.

Use analog pin A2 as ground (GND, 0 V, LOW). This way, WiiChuck can be pushed
into the Arduino pin header without needing any breadboard or jumper wires.

Use A3 as +5 V power (HIGH, positive, VCC).

Initialize the Wii Nunchuk by calling initNunchuck(), which sends 0x40 and 0x00
over I2C.

Get data every 100 ms. This is a common program pattern to perform something
every x milliseconds. The millis() function returns the Arduino’s uptime (how long
it’s been turned on) in milliseconds. The lastGet variable holds the time since the
last time get_data() was called, in milliseconds of uptime. (In the first iteration,
lastGet is 0). The difference between millis() and lastGet is the time since
get_data() was last called. If more time than 100 ms has passed, Arduino executes
the block below.

As get_data() updates globals, it doesn’t need to return a value.

Update the time of the last call to get_data().

Button states are 0-down, 1-up.

Both joystick axes (jx, jy) are raw values from 30 to 220.

All accelerometer axes (accX, accY, accZ) are raw values from 80 to 190.

Declare a new array of six integers.

Request six bytes of data from the Nunchuk.

The loop variable i will contain the number of bytes processed.

Enter the loop only if there are bytes to read.

228 Make: Sensors

Experiment: Hacking Wii Nunchuk (with I2C)

Read one byte and store it into the current cell in buffer[]. On the first iteration,
this is buffer[0]. On the last iteration, this is buffer[5].

Perform an XOR on the current value with 0x17, and replace the current value with
the result (this is called an in place operation). Exclusive or (XOR) is a Boolean
operation similar to OR, but it’s true only when either a or b is true, but not when
both are true.

Add 0x17 to the current value.

If the number of bytes read is not six, print a warning.

Ask for another reading by sending 0x00 over I2C.

Get the last bit of the last byte. The last byte is buffer[5]. The last bit is extracted
with bit masking; the code performs a bitwise AND on byte against 0b 0000 0000
0000 0001. See “Bit Masking with Bitwise AND &” on page 223 and Table 8-5. Button
state is 0-down, 1-up.

Get the second-to-last bit of the last byte. The second-to-last bit is moved last with
bit shifting >> 1. Then the last bit is extracted like in the previous line. See “Bit
Shifting <<” on page 224.

The jx joystick x axis is just a full byte. The rest of the joystick and accelerometer
axes are read in similar fashion.

Table 8-5. Nunchuk 6-byte data block

Byte Use

0 Joystick X

1 Joystick Y

2 Accelerometer X

3 Accelerometer Y

4 Accelerometer Z

5 ZCxxyyzz: Buttons “Z” and “C”, accelerometer precision

Nunchuk Code and Connection for Raspberry Pi
Figure 8-9 shows the connection diagram for Raspberry Pi. Hook it up, and run the program
shown in Example 8-7.

229Chapter 8

Experiment: Hacking Wii Nunchuk (with I2C)

Figure 8-9. WiiChuck circuit for Raspberry Pi

Example 8-7. wiichuck_adapter.py
wiichuck_adapter.py - print Wii Nunchuck acceleration and joystick
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import smbus # sudo apt-get -y install python-smbus #

bus = None
address = 0x52 #

z = 0 #
c = 0
joystick_x = 0
joystick_y = 0
ax_x = 0
ax_y = 0
ax_z = 0

def initNunchuck():
 global bus
 bus = smbus.SMBus(1) #

230 Make: Sensors

Experiment: Hacking Wii Nunchuk (with I2C)

 bus.write_byte_data(address, 0x40, 0x00) #

def send_request():
 bus.write_byte(address, 0x00) #

def get_data():
 global bus, z, c, joystick_x, joystick_y, ax_x, ax_y, ax_z
 data = [0]*6
 for i in range(len(data)): #
 data[i] = bus.read_byte(address)
 data[i] ^= 0x17
 data[i] += 0x17

 z = data[5] & 0x01 #
 c = (data[5] >> 1) & 0x01 #

 joystick_x = data[0]
 joystick_y = data[1]
 ax_x = data[2]
 ax_y = data[3]
 ax_z = data[4]
 send_request()

def main():
 initNunchuck()
 while True:
 get_data()
 print("Button Z: %d Button C: %d joy (x,y) (%d,%d) \
 acceleration (x,y,z) (%d,%d,%d)" \
 % (z,c,joystick_x,joystick_y,ax_x, ax_y, ax_z))
 time.sleep(0.1)

if __name__ == "__main__":
 main()

The python-smbus library must be installed on Raspberry Pi (see “SMBus and I2C Without
Root” on page 218).

The address of your Wii Nunchuk. The value is in hex. See “Hexadecimal, Binary, and
Other Numbering Systems” on page 219 for more information on hex values.

Global variable for one of the buttons.

Create a new object of class SMBus, and store it to the new variable bus. The constructor
SMBus() takes one parameter, the device number. Number 1 means the file /dev/
i2c-1. This device number is common with modern Raspberry Pi boards. If you have an
old revision 1 Raspberry Pi board, you might need to use number 0 for /dev/i2c-0
instead.

231Chapter 8

Experiment: Hacking Wii Nunchuk (with I2C)

The Nunchuk must be initialized with I2C commands. bus.write_byte_da

ta(addr=0x52, cmd=0x40, val=0x00) sends the Nunchuk the command 0x40 with value
0x00.

You can ask the Nunchuk for the next set of values with the null character 0x00, which
is equivalent to \0 or just 0.

Read six bytes of data. This contains the data block described in Table 8-5. The rest of
the function will decode the data.

Get “Z” button status: 1 for down, 0 for up. The bit mask is just one bit, 0b1. When used
with bitwise AND (&), it is the rightmost bit, and everything left of it is considered zero.
So bitwise AND with 0b1 simply returns the rightmost bit. See also “Bit Masking with
Bitwise AND &” on page 223.

Get the “C” button status, 1-down or 0-up. To get the second-to-last bit, move the
second-to-last bit to the last place (x >> 1) and use a bitmask to get just the last bit.

Test Project: Robot Hand Controlled by Wii Nunchuk

Control a robot hand with the Nunchuk. As you can already read acceleration and joystick
position, you can simply turn servos according to these numbers. Add mechanics, and
you’ve got a Nunchuk-controlled robot hand.

Figure 8-10. Nunchuk-controlled robot hand

232 Make: Sensors

Test Project: Robot Hand Controlled by Wii Nunchuk

What You’ll Learn
In the Robot Hand project, you’ll learn how to:

• Use the accelerometer and a mechanical joystick with outputs.

• Combine servos for complex movement.

You’ll also refresh your skills on servo control and filtering noise with running averages (see
“Servo Motors” on page 115 and “Moving Average” on page 187).

Start with just the servos (Figure 8-11). Once you get some movement, you can continue with
hand mechanics.

Figure 8-11. Nunchuk controls two servos with Arduino

Figure 8-12 shows the wiring diagram. Hook everything up as shown, and then run the code
shown in Example 8-8.

233Chapter 8

Test Project: Robot Hand Controlled by Wii Nunchuk

Figure 8-12. Claw circuit for Arduino

For more reading on Wii Nunchuk with Arduino, see “Nunchuk Code and Connection
for Arduino” on page 226.

Example 8-8. wiichuck_adapter_claw.ino
// wiichuck_adapter_claw.ino - control robot hand with Nunchuck
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

#include <Wire.h>

const int clawPin = 8;
const int armPin = 9;
int armPos=0, clawPos=0;
float wiiP = 0.0; //
float wiiPAvg = 0.0; //
int lastarmPos = 350;

const char i2c_address = 0x52;
int jx = 0, jy = 0, accX = 0, accY = 0, accZ = 0, buttonZ = 0, buttonC = 0;

void setup() {
 Serial.begin(115200);

 // Nunchuck
 Wire.begin();
 pinMode(A2, OUTPUT);
 pinMode(A3, OUTPUT);
 digitalWrite(A2, LOW);
 digitalWrite(A3, HIGH);

234 Make: Sensors

Test Project: Robot Hand Controlled by Wii Nunchuk

 delay(100);
 initNunchuck();

 // Servos
 pinMode(clawPin, OUTPUT);
 pinMode(armPin, OUTPUT);
}

void loop() {
 get_data(); //

 wiiP = (accZ-70.0)/(178.0-70.0); //
 if (accY>120 && accZ>100) wiiP=1;
 if (accY>120 && accZ<100) wiiP=0;
 if (wiiP>1) wiiP=1;
 if (wiiP<0) wiiP=0;
 wiiPAvg = runningAvg(wiiP, wiiPAvg); //
 armPos = map(wiiPAvg*10*1000, 0, 10*1000, 2200, 350);

 clawPos = map(jy, 30, 220, 1600, 2250); //

 pulseServo(armPin, armPos); //
 pulseServo(clawPin, clawPos);

 printDebug();
}

float runningAvg(float current, float old) {
 float newWeight=0.3;
 return newWeight*current + (1-newWeight)*old; //
}

// servo

void pulseServo(int servoPin, int pulseLenUs) //
{
 digitalWrite(servoPin, HIGH);
 delayMicroseconds(pulseLenUs);
 digitalWrite(servoPin, LOW);
 delay(15);
}

// i2c

void get_data() {
 int buffer[6];
 Wire.requestFrom(i2c_address,6);
 int i = 0;
 while(Wire.available()) {
 buffer[i] = Wire.read();
 buffer[i] ^= 0x17;
 buffer[i] += 0x17;
 i++;
 }

235Chapter 8

Test Project: Robot Hand Controlled by Wii Nunchuk

 if(i != 6) {
 Serial.println("Error reading from i2c");
 }
 write_i2c_zero();

 buttonZ = buffer[5] & 0x01;
 buttonC = (buffer[5] >> 1) & 0x01;
 jx = buffer[0];
 jy = buffer[1];
 accX = buffer[2];
 accY = buffer[3];
 accZ = buffer[4];

}

void write_i2c_zero() {
 Wire.beginTransmission(i2c_address);
 Wire.write((byte)0x00);
 Wire.endTransmission();
}

void initNunchuck()
{
 Wire.beginTransmission(i2c_address);
 Wire.write((byte)0x40);
 Wire.write((byte)0x00);
 Wire.endTransmission();
}

// debug

void printDebug()
{
 Serial.print("accZ:");
 Serial.print(accZ);
 Serial.print(" wiiP:");
 Serial.print(wiiP);
 Serial.print(" wiiPAvg:");
 Serial.print(wiiPAvg);
 Serial.print(" jy:");
 Serial.print(jy);
 Serial.print(" clawPos:");
 Serial.println(clawPos);
}

WiiP holds the Wii tilt as a percentage value. Back is 0.0 and forward is 1.0.

Running average of WiiP.

Reading the Wii Nunchuk through i2c requires a 20 ms delay between reads. The
two calls to pulseServo() later in loop() provide this delay.

236 Make: Sensors

Test Project: Robot Hand Controlled by Wii Nunchuk

Calculate a percentage from raw values read from Wii. This formula is similar to the
built-in map() function.

To filter out random spikes, use the average of a couple of the last samples for z-
axis acceleration.

Take the raw joystick value (30 to 220) and map it to servo pulse (1500 to 2400). For
example, the joystick value 30 maps to the servo pulse length of 1500 µs.

Send one pulse to the servo controlling the arm. To keep the servo turning, you
must send a continuous stream of these pulses to the servo.

To get a running average over multiple values, you use a weighted average. This
way, only one previous data point needs to be stored, but older values can still
affect the average.

Send one pulse to the servo. For reliable servo control, this function should be called
about 50 times a second. See “Servo Motors” on page 115.

Adding Hand Mechanics
You already know how to control servo motors with Wii Nunchuk, and it’s easy to adapt this to
commercial robot arms and hands. There are plenty of choices available, and if you have strong
mechanical skills you can even build your own. Our robot arm was purchased from http://
dx.com.

Whichever arm or hand you choose, it’s a good idea to mount it firmly on a solid base to keep
it upright and prevent it from tipping over. We attached our arm to a thick wood base with
screws (see Figure 8-13).

Figure 8-13. Robot arm screwed to base

237Chapter 8

Test Project: Robot Hand Controlled by Wii Nunchuk

All the code is finished already (see Example 8-8). Connect the servos so that you control
the gripper with the Nunchuk thumbstick, and arm movement with the accelerometer.
See Figure 8-14 for the final result.

You can now measure acceleration and angular velocity. You know how your device is
oriented and which way it’s spinning. You can measure just one of these, or use an inte-
grated mobile unit to measure both if this is required in your project.

To use any of the sensors, you probably noticed you can use code examples in a cookbook
fashion. But if you took the harder route and learned the bitwise operations to understand
how the code works, you can pat yourself on the back. These skills are useful if you work
in a new, difficult sensor without any code examples.

Figure 8-14. Robot arm controlled by Wii

If you can stop playing with your robot hand project for a moment, it’s time to identify
things. In the next chapter, you’ll learn to read fingerprints and RFID tags.

238 Make: Sensors

Test Project: Robot Hand Controlled by Wii Nunchuk

Who are you? What object is sitting on top of the sensor? Identification
sensors identify people and objects. In this chapter, you’ll learn to identify
objects with RFID and people with fingerprints and keypads.

RFID (radio frequency identification) has long been hailed as the next big thing in identification.
In reality, it’s slowly been becoming part of everyday life. RFID has largely replaced bar codes
in warehouses, but bar codes are still used with individual consumer packages of products. RFID
can be read from a distance, and it can store more data than a bar code. For example, a bar code
identifies a product as “1 liter of Foobar, Inc. milk.” An RFID tag can also tell you that this specific
carton was carton number 12,209,312, uniquely identifying it.

Biometric identification is getting commonplace. Many laptops have a fingerprint reader to
protect you from bystanders “shoulder-surfing” as you type your password. Most governments
want to store fingerprints and digitally readable facial images of every citizen with the excuse
of using them in passports. The digital passports also have a standard for storing an iris image,
even though that’s not used yet. DNA markers are already used for identifying criminals.

The benefit of biometric identification is that it’s always with you. The biggest downside is that
once it’s copied by the adversary, it’s not possible to change it. For example, you can’t change
your fingerprints. In practice, many cheap biometric sensors can be easily misled. There have
also been claims that even professional, manual fingerprint identification is not as reliable as
has been assumed.

Keypad is likely the most common method for identification. Just think how many times a week
you type your PIN into different devices.

239

Identity 9

Keypad

A keypad is a quick way to type in some numbers. If you used a cell phone when they still
had keypads, you might remember that keypads work well with one-handed use, and some
people could even type numbers (or text!) without looking at the phone. You have similar
keypads in television remote controls and microwave oven controls. Keypad are also used
for password entry. You have probably used one with an ATM, numeric door lock, or a
burglar alarm.

This experiment uses inexpensive numeric keypad, http://dx.com part number 149608,
“DIY 4 x 4 16-Key Numeric Keypad - Black,” shown in Figure 9-1. The wiring used is similar
to many other cheap number pads.

Figure 9-1. 16-key numeric keypad

For Raspberry Pi, you could just use a normal USB keyboard or a USB number pad.

Under each key, vertical and horizontal wires cross. When you press a key, it connects the
wires at each crossing.

240 Make: Sensors

Keypad

To find out which key is pressed, you need to take one of the vertical columns LOW, but leave
all the other columns HIGH. If one of the horizontal lines goes LOW, the key that was pressed is
the one where the HIGH lines cross. If there is no match, test the rest of the columns until you
find a key that was pressed. The code keeps testing columns, returning to the first column to
check for more keypresses.

Keypad Code and Connection for Arduino
Figure 9-2 shows the connections for the keypad and Arduino. Wire it up as shown, and run the
sketch shown in Example 9-1.

Figure 9-2. Keypad Arduino connections

Arduino has internal pull-up resistors. When a digital pin is in INPUT mode, digital-
Write(pin, HIGH) connects it to +5 V through 20 kOhm resistor.

Example 9-1. keypad.ino
// keypad.ino - read 16-key numeric keypad (dx.com sku 149608)
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int count = 4; //
char keymap[count][count] = { //
 {'1', '2', '3', 'A'},
 {'4', '5', '6', 'B'},
 {'7', '8', '9', 'C'},
 {'*', '0', '#', 'D'}
};

241Chapter 9

Keypad

const char noKey = 'n';
byte columns[count] = {9, 8, 7, 6}; //
byte rows[count] = {5, 4, 3, 2};
unsigned int lastReadTime;
unsigned int bounceTime = 30; // ms

void setup()
{
 Serial.begin(115200);
 lastReadTime = millis();

 for(int i = 0; i < count; i++)
 {
 pinMode(rows[i], INPUT);
 digitalWrite(rows[i], HIGH); // pull up //

 pinMode(columns[i], INPUT);
 }
}

void loop()
{
 char key = getKeyPress();
 if(key != noKey) {
 Serial.print(key);
 }
 delay(100);
}
// This does not support multiple presses. first one is
// returned
char getKeyPress()
{
 char foundKey = noKey;
 if((millis() - lastReadTime) > bounceTime) { //
 //Pulse columns and read row pins
 for(int c = 0; c < count; c++) {
 //Start pulse
 pinMode(columns[c], OUTPUT); //
 digitalWrite(columns[c], LOW);
 //Read rows
 for(int r = 0; r < count; r++) {
 if(digitalRead(rows[r]) == LOW) { //
 //Find right character
 foundKey = keymap[r][c]; //
 }
 }
 digitalWrite(columns[c], HIGH);
 pinMode(columns[c], INPUT); //
 if(foundKey != noKey)
 {
 break;
 }
 }
 lastReadTime = millis();

242 Make: Sensors

Keypad

 }
 return foundKey;
}

The count of keys vertically and horizontally. It’s a 4 by 4 keypad.

Map the position of the key (e.g., column 0, row 1) to the key number (“4”). The keymap
is a two-dimensional array.

Map columns (e.g., column 2) to Arduino digital pins (D7).

Pull up each row pin (D6, D7, D8, D9), so that when they are not connected, they go
HIGH. Using the internal pull-up saves you a bunch of external pull-up resistors!

Check that the difference between uptime, as measured by millis(), and the time of the
last read is more than 30 ms. This is the typical program pattern for checking that enough
time has passed. In this program, the main program loop() never calls this function more
often than once in 100 ms, due to the delay() in loop(). The check is useful when you
start using getKeyPress() in your own programs outside this example.

Turn the current (vertical) column LOW. Other columns are left HIGH.

If a row is LOW…

… then the pressed key is in the intersection of the column you set LOW and the row
that went LOW.

In our tests, a column in OUTPUT mode seemed to interfere with the readings. Setting
it to INPUT mode sets it to high impedance (off), thus allowing correct readings.

Keypad Code and Connection for Raspberry Pi
Figure 9-3 shows the wiring diagram for Raspberry Pi. Hook everything up as shown, and run
the program in Example 9-2.

Try USB keyboards and USB number pads with Raspberry Pi. Just like any keyboard, a
USB number pad works automatically when plugged in. You can use raw_input() or
pyGame to read keypresses, just like on your normal laptop or desktop.

243Chapter 9

Keypad

Figure 9-3. Keypad connected to Raspberry Pi

Example 9-2. keypad.py
keypad.py - read 16-key numeric keypad (dx.com sku 149608)
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_gpio as gpio #

keymap = []
keymap.append(['1', '2', '3', 'A']) #
keymap.append(['4', '5', '6', 'B'])
keymap.append(['7', '8', '9', 'C'])
keymap.append(['*', '0', '#', 'D'])

columns = [2, 3, 14, 15] #
rows = [18, 17, 27, 22]
lastReadTime = None
bounceTime = 0.03 # s

def initializeKeyPad():
 for x in range(len(rows)):
 gpio.mode(rows[x], 'in')

244 Make: Sensors

Keypad

 gpio.mode(columns[x], 'in')

def getKeyPress():
 global lastReadTime
 foundKey = None
 if((time.time() - lastReadTime) > bounceTime): #
 #pulse columns and read pins
 for c in range(len(columns)):
 gpio.mode(columns[c], 'out')
 gpio.write(columns[c], gpio.LOW) #

 for r in range(len(rows)):
 if gpio.read(rows[r]) == gpio.LOW: #
 foundKey = keymap[r][c] #

 gpio.write(columns[c], gpio.HIGH)
 gpio.mode(columns[c], 'in') #
 if not foundKey == None:
 break #
 lastReadTime = time.time()
 return foundKey

def main():
 global lastReadTime
 initializeKeyPad()
 lastReadTime = time.time()
 while True:
 key = getKeyPress()
 if not key == None:
 print(key)
 time.sleep(0.1) # s

if __name__ == "__main__":
 main()

Make sure there’s a copy of the botbook_gpio.py library in the same directory as this
program. You can download this library along with all the example code from http://
botbook.com. See “GPIO Without Root” on page 19 for information on configuring your
Raspberry Pi for GPIO access.

Map the key’s physical position (e.g., row 1, column 0) to a key label (“4”).

Map a column number (e.g., 2) to a gpio pin (gpio 14).

Check that the keypad is not read more often than once every 30 ms. The check is useful
when you start using getKeyPress() in your own programs. In this example, the main()
function calls getKeyPress() so rarely that the check is redundant. The time.time()
function returns the time as seconds since the Unix epoch, such as 1376839738.068395.
This is compared with the time of the last keypress read, also stored as seconds since
the epoch. The epoch is 00:00:00 UTC on January 1, 1970.

245Chapter 9

Keypad

Take one column (vertical) LOW. Others are left HIGH.

If a row became LOW, other rows are pulled HIGH by the physical pull-up resistor, as you
can see in Figure 9-3.

The key that was pressed is at the intersection of LOW column and LOW row.

Put the column back to "in" mode, so that it’s high impedance (off) and doesn’t affect
the measurements.

Break out of the for loop (because a pressed key was found).

Environment Experiment: Revealing Fingerprints

How can you bypass a keypad, short of breaking it?

You could try all the combinations, but that’s a lot of trial and error. For example, there are
a lot of three-character permutations in a 16-key pad.

16 * 16 * 16 = 16**3 = 4096

Can you see which keys are pressed most? In a keypad that’s been used a lot, the paint or
sticker on frequently used keys could be worn.

You probably have a new keypad. Press the same code a couple of times. Try, if you can, to
see grease on well-used keys by using bright light (Figure 9-4).

Figure 9-4. Try to see grease on well-used keys by using bright light

246 Make: Sensors

Environment Experiment: Revealing Fingerprints

What if you pulverize graphite from a pencil or take some beauty powder and spread that on
keys? What if you clean the keys before typing the combination? Does it matter if your fingers
are greasy?

Latent (hidden) fingerprints can be captured with cyanoacrylate superglue vapor. Even
though this is a very efficient technique for glass and plastic, cyanoacrylate fumes are
unhealthy and must be handled in a fume hood. Also, superglue annoyingly sticks to
everything.

Did you find the three most used keys? Now there are fewer to try, as you just have to find the
correct order of these three keys.

3 * 3 * 3 = 3**3 = 27

Fingerprint Scanner GT-511C3

A fingerprint scanner is a more sophisticated identification device than the keypad. It is unique
and won’t get lost or forgotten. Also you don’t have to worry about someone shoulder surfing
as you type in a password.

The GT-511C3 fingerprint scanner (Figure 9-5) uses serial pins to communicate with Arduino or
Raspberry Pi. Its protocol is described in the data sheet, available by searching the Web for
“GT-511C3 data sheet” and from the distributor’s (SparkFun) catalog page.

The scanner can store the fingerprints into its own memory, making it easier to use from Arduino.

The GT-511C3 fingerprint scanner communicates at 9600 bit/s over serial port. The scanner is
sometimes slow to respond, so you should configure the serial port for an extra-long timeout
with setTimeout(), as shown in the next example program.

The protocol consists of packages. This code stores fingerprint images in the scanner, so only
command packages are used (see Table 9-1). The header and device are always the same, and
checksum is always calculated the same way. The part that changes is your command and
parameter.

Table 9-1. Command package of the GT-511C3 fingerprint sensor

Purpose Example contents Comment

Header 0x55 0xAA Same for all command packages

Device ID 1 Always the same, fixed on device

Parameter 0 Turn off

Command 0x12 Control LED (CMD_LED)

Checksum Sum of bytes

247Chapter 9

Fingerprint Scanner GT-511C3

Figure 9-5. Fingerprint scanner GT-511C3

The microcontroller (master) sends a command package to the scanner (slave). Commands
include the following:

• Light up an LED.

• Delete all fingerprints from scanner memory.

• Enroll 1 (scan and store a new fingerprint to slot one).

• Identify (scan a fingerprint and tell if it’s one of the stored fingerprints).

The scanner responds with a command package. The response command is either ACK
(acknowledge, OK, success) or NACK (negative acknowledge, failure, error). The parameter
in the answer contains additional information, such as the following:

• ID of recognized fingerprint

• The fact that fingerprint is unknown

• Error code

The most common error codes are 100F (connection already opened) and 100A (memory
is empty).

You can get a lot done with the code in this chapter. But if you need more details about
the fingerprint sensor, search the Web for “GT-511C3 datasheet.”

248 Make: Sensors

Fingerprint Scanner GT-511C3

Fingerprint scanners are vulnerable to fake fingers. Gelatin, like that found in gummy
bears, is an easy material to get started with. Other materials include Scotch tape, Play-
Doh, and printed transparency with Blu-Tack. The choice of material for fake prints de-
pends on the technique used in the target fingerprint scanner. Chaos Computer Club has
published information on extracting fingerprints from objects and using them for cre-
ating fake fingerprints.

Fingerprint Sensor Code and Connection for Arduino Mega

Use the Arduino Mega for easier debugging. Mega has multiple serial ports, so you can
connect the fingerprint scanner to one serial and use another for USB code upload and
debugging.

If you want a cheaper option, try the Arduino Leonardo. Although it looks a lot like an
Arduino Uno, the Leonardo has the advantage of having two serial ports. Unlike the Uno,
the RX/TX pins (pins 0 and 1) and the USB/Serial port are not tied together. With the
Leonardo, Serial refers to the USB/Serial port, and Serial1 refers to pins 0 (RX) and 1
(TX). If you use the Leonardo instead of the Mega, you will need to change the example
code and the circuit wiring to use Serial1 (pins 0 and 1) for the fingerprint scanner instead
of Serial3 (pins 15 and 14).

Figure 9-6 shows the connection diagram for Arduino. Wire it up as shown, and then run the
sketch shown in Example 9-3.

Difficult code! This code is more difficult than some other code examples in this book: it
uses pointers to convert between a struct and a byte buffer. You don’t have to completely
understand it to use it. You could just build the circuit, upload the code, and enjoy your
fingerprint reader. But if you want to understand it, read on.

Arduino uses 5 V, but fingerprint sensor uses 3.3 V. Excessive voltage could destroy the sensor,
reduce its usable age, or cause incorrect readings. In this project, you’ll use a voltage divider to
reduce the voltage given by the Arduino TX pin. All you need are two resistors.

You don’t need a voltage divider on the sensor’s TX pin, because it has a maximum of 3.3 V—
much less than Arduino’s RX pin. Arduino will still recognize 3.3 V as HIGH, because it’s more
than half of 5 V.

249Chapter 9

Fingerprint Scanner GT-511C3

Figure 9-6. Connections for the fingerprint scanner with Arduino

Example 9-3. fingerprint_scanner.ino
// fingerprint_scanner.ino - learn and recognize fingerprints with GT-511C3
// (c) BotBook.com - Karvinen, Karvinen, Valtokari
// Requires Arduino Mega for extra serial port

const byte STX1 = 0x55; //
const byte STX2 = 0xAA;

const word CMD_OPEN = 0x01; //
const word CMD_CLOSE = 0x02;
const word CMD_LED = 0x12;
const word CMD_GET_ENROLL_COUNT = 0x20;
const word CMD_ENROLL_START = 0x22;
const word CMD_ENROLL_1 = 0x23;
const word CMD_ENROLL_2 = 0x24;
const word CMD_ENROLL_3 = 0x25;
const word CMD_IS_FINGER_PRESSED = 0x26;
const word CMD_DELETE_ALL = 0x41;
const word CMD_IDENTIFY = 0x51;
const word CMD_CAPTURE_FINGER = 0x60;

const word ACK = 0x30; //
const word NACK = 0x31; //Error

struct package { //
 byte header1;
 byte header2;
 word deviceID;
 unsigned long param;
 word cmd;
 word checksum;
};

const int SIZE_OF_PACKAGE = 12;

250 Make: Sensors

Fingerprint Scanner GT-511C3

/*
To calculate checksum we add all bytes in pdu together.
*/
word calcChecksum(struct package *pkg) { //
 word checksum = 0;
 byte *buffer = (byte*)pkg; //
 for(int i=0; i < (sizeof(struct package) - sizeof(word)); i++)
 {
 checksum += buffer[i];
 }
 return checksum;
}

int sendCmd(word cmd, int param) { //
 struct package pkg;
 pkg.header1 = STX1;
 pkg.header2 = STX2;
 pkg.deviceID = 1; //
 pkg.param = param;
 pkg.cmd = cmd;
 pkg.checksum = calcChecksum(&pkg);
 //Serial.println("Sending command");
 byte *buffer = (byte*)&pkg; //

 int bytesSent = Serial3.write(buffer, sizeof(struct package));

 if(bytesSent != sizeof(struct package)) {
 Serial.println("Error communicating");
 return -1;
 }

 int bytesReceived = 0;
 char recvBuffer[SIZE_OF_PACKAGE]; //
 struct package *recvPkg = (struct package*) recvBuffer; //

 bytesReceived = Serial3.readBytes(recvBuffer, sizeof(struct package)); //
 if(bytesReceived != SIZE_OF_PACKAGE) {
 Serial.println("Error communicating");
 return -1;
 }

 if(recvPkg->header1 != STX1 || recvPkg->header2 != STX2) { //
 Serial.println("Header error!");
 return -1;
 }

 if(recvPkg->checksum != calcChecksum(recvPkg)) {
 Serial.println("Checksum mismatch error!");
 return -1;
 }
 if(recvPkg->cmd == NACK) {
 Serial.println("NACK - Cmd error!");

251Chapter 9

Fingerprint Scanner GT-511C3

 Serial.print("Error: ");
 Serial.println(recvPkg->param,HEX);
 return -1;
 }

 return recvPkg->param;
}

//All custom codes here as they may use variables defined in protocol implementation.
void setup() {
 Serial.begin(115200); //
 Serial3.begin(9600); //
 Serial3.setTimeout(10*1000); // ms //
}

void flashLed(int time) {
 sendCmd(CMD_LED, 1);
 delay(time);
 sendCmd(CMD_LED, 0);

}

void loop() {
 Serial.println("Sending open command");
 sendCmd(CMD_OPEN, 0);
 //Delete all fingerprints on start for testing purpose only.
 if(sendCmd(CMD_DELETE_ALL, 0) >= 0) {
 //Flash LED 3 times for victory dance and to indicate that we are ready for enrolling.
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 flashLed(500);
 }

 Serial.println("Starting capture");

 int id = 0;
 id = sendCmd(CMD_GET_ENROLL_COUNT, 0); //
 sendCmd(CMD_LED, 1);
 sendCmd(CMD_ENROLL_START, id);
 Serial.println("Press finger to start enroll");
 int ret = 0;
 WaitForFinger(false);
 Serial.println("Capturing finger");
 ret = sendCmd(CMD_CAPTURE_FINGER, 1); //
 if(ret < 0) {
 EnrollFail();
 return;
 }
 Serial.println("Remove finger");

 sendCmd(CMD_ENROLL_1, 0);
 WaitForFinger(true);

252 Make: Sensors

Fingerprint Scanner GT-511C3

 Serial.println("Press finger again");

 WaitForFinger(false);
 ret = sendCmd(CMD_CAPTURE_FINGER, 1);
 if(ret < 0) {
 EnrollFail();
 return;
 }
 Serial.println("Remove finger");

 sendCmd(CMD_ENROLL_2, 0);
 WaitForFinger(true);
 Serial.println("Press finger again");

 WaitForFinger(false);
 ret = sendCmd(CMD_CAPTURE_FINGER, 1);
 if(ret < 0) {
 EnrollFail();
 return;
 }
 Serial.println("Remove finger");

 ret = sendCmd(CMD_ENROLL_3, 0);
 if(ret != 0) {
 EnrollFail();
 return;
 }
 WaitForFinger(true);
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 Serial.println("Enroll completed");
 Serial.println("Press finger for identify");
 sendCmd(CMD_LED, 1);

 // Identify
 WaitForFinger(false);
 ret = sendCmd(CMD_CAPTURE_FINGER, 1); //
 if(ret < 0) {
 IdentFail();
 return;
 }
 ret = sendCmd(CMD_IDENTIFY, 0); //
 if(ret >= 0 && ret < 200) {
 Serial.print("ID found: ");
 Serial.println(ret);
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 flashLed(500);

253Chapter 9

Fingerprint Scanner GT-511C3

 delay(500);
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 } else {
 Serial.println("ID not found");
 }
 sendCmd(CMD_CLOSE,0);
 delay(100000);

}

void WaitForFinger(bool bePressed) {
 delay(500);
 if(!bePressed) {

 while(sendCmd(CMD_IS_FINGER_PRESSED, 0) > 0) {
 delay(200);
 }
 } else {
 while(sendCmd(CMD_IS_FINGER_PRESSED, 0) == 0) {
 delay(200);
 }
 }
}
// Flash LED 3 times for failure
// and close device.
void IdentFail() {
 Serial.println("Ident failed!");
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 sendCmd(CMD_CLOSE, 0);
}
// Flash LED 4 times for failure
// and close device.
void EnrollFail() {
 Serial.println("Enroll failed!");
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 flashLed(500);
 delay(500);
 flashLed(500);
 sendCmd(CMD_CLOSE, 0);
}

254 Make: Sensors

Fingerprint Scanner GT-511C3

Command package header. As this code doesn’t read the fingerprint images, data
packets are not used.

Commands as described in the data sheet. 0x is the hexadecimal prefix (see
“Hexadecimal, Binary, and Other Numbering Systems” on page 219).

Possible return values: ACK (acknowledge) meaning success, NACK (negative
acknowledge) meaning failure.

Command package structure. The exact length of variables will come into play later,
when you use the struct to decode received data. See Table 9-1.

The checksum is the sum of all bytes.

To process every byte, the *pkg must be converted to a byte buffer.

sendCmd() sends one command and returns the parameter from the response. It returns
-1 for any errors.

The device ID is fixed on the device side. It must still be accounted for, so that the raw
bytes converted from this struct will be correct.

Convert the command package struct to raw bytes for transmitting.

The receive buffer is the exact same length as the command package struct.

The *recvPkg pointer sees the receive buffer as a struct. You can later use this pointer
to easily access the variables, as in recvPkg->cmd.

Fill the receive buffer with bytes, not worrying about what they mean yet.

Using the struct package pointer, the individual values of struct are easily accessible.
This would not have been possible with a plain byte buffer.

This first serial port is serial over USB. You can access it from within the Arduino IDE with
Tools→Serial Monitor. Debugging is much easier when you can send output to the serial
monitor.

The fingerprint scanner is connected to Serial3. This connection is available on Arduino
Mega but not on Arduino Uno.

The scanner is sometimes slow, so we extend the timeout to 10 seconds.

Find the first free slot.

Parameter 1-slow capture, 0-quick image.

Scan the finger to be identified.

Identify the last scanned finger. The return value of sendCmd() will be the id of the finger
(1, 2 or 3) or 0 for an unidentified finger.

Fingerprint Sensor Code and Connection for Raspberry Pi
To use the serial port in Raspberry Pi, you must first release it from use as a login terminal. See
“Enabling the Serial Port in Raspberry Pi” on page 320. Wire up the scanner as shown in
Figure 9-7, and then run the code in Example 9-4.

255Chapter 9

Fingerprint Scanner GT-511C3

To access the serial port from Python, you need to install the PySerial library by running
the command:

sudo apt-get update && sudo apt-get install python-serial

The connection for Raspberry Pi is simple—even simpler than the connection for Arduino.
Raspberry Pi uses 3.3 V for HIGH, the same as the fingerprint sensor. As the voltage is already
correct, you don’t need resistors to build a voltage divider with Raspberry Pi.

Figure 9-7. Fingerprint scanner connection diagram for Raspberry Pi

Example 9-4. fingerprint_scanner.py
fingerprint_scanner.py - learn and recognize fingerprints with GT-511C3
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import serial
import struct

256 Make: Sensors

Fingerprint Scanner GT-511C3

STX1 = 0x55 #
STX2 = 0xAA

CMD_OPEN = 0x01 #
CMD_CLOSE = 0x02
CMD_LED = 0x12
CMD_GET_ENROLL_COUNT = 0x20
CMD_ENROLL_START = 0x22
CMD_ENROLL_1 = 0x23
CMD_ENROLL_2 = 0x24
CMD_ENROLL_3 = 0x25
CMD_IS_FINGER_PRESSED = 0x26
CMD_DELETE_ALL = 0x41
CMD_IDENTIFY = 0x51
CMD_CAPTURE_FINGER = 0x60

ACK = 0x30 #
NACK = 0x31

port = None

def calcChecksum(package): #
 checksum = 0
 for byte in package:
 checksum += ord(byte)
 return int(checksum)

def sendCmd(cmd, param = 0): #
 package = chr(STX1)+chr(STX2)+struct.pack('<hih', 1, param, cmd) #
 checksum = calcChecksum(package)
 package += struct.pack('<h',checksum) #

 sent = port.write(package)

 if(sent != len(package)):
 print "Error communicating"
 return -1

 recv = port.read(sent) #
 recvPkg = struct.unpack('cchihh',recv) #

 if recvPkg[4] == NACK:
 print("error: %s" % recvPkg[3])
 return -2
 time.sleep(1)
 return recvPkg[3]

def startScanner():
 print("Open scanner communications")
 sendCmd(CMD_OPEN)

def stopScanner():
 print("Close scanner communications")

257Chapter 9

Fingerprint Scanner GT-511C3

 sendCmd(CMD_CLOSE)

def led(status = True):
 if status:
 sendCmd(CMD_LED,1)
 else:
 sendCmd(CMD_LED,0)

def enrollFail():
 print("Enroll failed")
 led(False)
 stopScanner()

def identFail():
 print("Ident failed")
 led(False)
 stopScanner()

def startEnroll(ident):
 sendCmd(CMD_ENROLL_START,ident)

def waitForFinger(state):
 if(state):
 while(sendCmd(CMD_IS_FINGER_PRESSED) == 0):
 time.sleep(0.1)
 else:
 while(sendCmd(CMD_IS_FINGER_PRESSED) > 0):
 time.sleep(0.1)

def captureFinger():
 return sendCmd(CMD_CAPTURE_FINGER)

def enroll(state):
 if state == 1:
 return sendCmd(CMD_ENROLL_1)
 if state == 2:
 return sendCmd(CMD_ENROLL_2)
 if state == 3:
 return sendCmd(CMD_ENROLL_3)

def identifyUser():
 return sendCmd(CMD_IDENTIFY)

def getEnrollCount():
 return sendCmd(CMD_GET_ENROLL_COUNT)

def removeAll():
 return sendCmd(CMD_DELETE_ALL)

def main():
 print("Remove all identities from scanner")
 startScanner()
 removeAll()

258 Make: Sensors

Fingerprint Scanner GT-511C3

 led()
 print("Start enroll")
 newID = getEnrollCount()
 print(newID)

 startEnroll(newID)
 print("Press finger to start enroll")
 waitForFinger(False)
 if captureFinger() < 0:
 enrollFail()
 return
 enroll(1)
 print("Remove finger")
 waitForFinger(True)

 print("Press finger again")
 waitForFinger(False)
 if captureFinger() < 0:
 enrollFail()
 return
 enroll(2)
 print("Remove finger")
 waitForFinger(True)

 print("Press finger again")
 waitForFinger(False)
 if captureFinger() < 0:
 enrollFail()
 return

 if enroll(3) != 0:
 enrollFail()
 return

 print("Remove finger")
 waitForFinger(True)

 print("Press finger again to identify")
 waitForFinger(False)
 if captureFinger() < 0: #
 identFail()
 return
 ident = identifyUser()
 if(ident >= 0 and ident < 200): #
 print("Identity found: %d" % ident)
 else:
 print("User not found")
 led(False)
 stopScanner()

if __name__ == "__main__":
 try:
 if port == None:

259Chapter 9

Fingerprint Scanner GT-511C3

 port = serial.Serial(
 "/dev/ttyAMA0",
 baudrate=9600,
 timeout=None) #
 main()
 except Exception, e:
 print e
 port.close()
 finally:
 port.close()

Command package header (see Table 9-1).

The commands from the data sheet. 0x indicates a hexadecimal number (see
“Hexadecimal, Binary, and Other Numbering Systems” on page 219 for more
information).

An ACK (acknowledge) reply means success.

Each command package has a checksum. The checksum is the sum of bytes.

The sendCmd() function sends a command package and reads the response. It
returns the parameter in the response, or a negative number for any errors.

Pack the Python variables into raw bytes for transmission. The header bytes STX1
and STX2 are concatenated. The param and cmd values are packed with struct.pack:
little endian (<), short signed two-byte integer (h), and normal four-byte integer (i).

The calculated checksum is appended to the raw bytes. The pack() function
converts checksum to little endian (<) and short signed two-byte integer (h).

Read the response. The command packages are always the same length, so you can
use the length sent as the number of bytes to read.

Unpack the raw data to a tuple. The parameters to struct.pack() are: normal one-
byte char (c), short int (h), and normal int (i).

Given the command CMD_CAPTURE_FINGER (0x60), the scanner returns a negative
return value for an error. No identification is attempted yet. The captureFinger()
function simply sends this command and returns its value.

The identifyUser() function returns the id for recognized finger (1, 2, 3) or a
negative number for unknown finger.

The scanner communicates at 9600 bits/second. In Linux, serial ports are raw device
files. The scanner can be slow to answer, so the timeout needs to be disabled (which
is what we did here) or set to a long value. The timeout is specified in seconds (you
can use floating point for fractions of seconds).

260 Make: Sensors

Fingerprint Scanner GT-511C3

RFID with ELB149C5M Electronic Brick

Radio frequency identification (RFID) offers cheap, unique object identification from a distance.
It’s already used a lot in warehouses, and as prices go down, it’s making its way to consumer
packages. Some pets have microchips in the neck so that they can be identified even if they
lose their collar tags. In Finland, some libraries use RFID instead of EAN bar codes.

Figure 9-8. The ELB149C5M brick

There are multiple RFID standards that differ on price, reading distance, security, amount of
stored data, and popularity. In this project, you’ll play with the ELB149C5M Electronic Brick. It
reads uem4100 standard tags at 125 kHz.

Once you’ve built the circuit and powered the sensor, hold the card to the sensor. A green light
blinks when the sensor reads the card.

The ELB149C5M sensor can use one of two protocols, serial port or Wiegand protocol. As serial
port is much more common and familiar, the experiment here uses serial port. You can find the
description of the protocol by searching for “ELB149C5M data sheet.”

261Chapter 9

RFID with ELB149C5M Electronic Brick

As of this writing, the ELB149C5M Electronic Brick was listed as being discontinued,
and it was getting difficult to find it for sale. However, Seeedstudio has released a
newer module, the Grove 125KHz RFID Reader. It includes a connector that is de-
signed for its Grove System, but you can connect the module directly to an Arduino
Mega with jumper wires: black goes to GND, red to +5 V, and yellow to RX3 (pin 15)
on the Mega. White should remain unconnected.

To select serial mode, the UW jumper on the sensor is set to U for UART serial port. The
serial port uses 9600 N81 TTL: 9600 bit/s speed with typical settings of no verify bit (N), 8
data bits (8), and one stop bit (1). The signal levels are TTL/UART, so you can just connect
it to the Arduino pins with jumper wire.

You can usually connect TTL directly to Arduino or Raspberry PI. RS232 connects to
serial port in older computers and should not be connected directly to Raspberry Pi
or Arduino.

TTL (transistor-transistor logic) uses LOW for 0 bit and HIGH for 1 bit. For TTL, LOW
is 0 V (GND) and HIGH is typically 3.3 V or 5 V.

The old-fashioned RS232 serial port uses voltages between -25 V and +25 V. To
connect RS232 to Arduino or Raspberry Pi, you would need a conversion chip like
the MAX 232.

The RFID reader initiates communication by sending a packet. The packet contains the
static identifying number of the RFID tag (see Table 9-2).

The RFID reader sends ASCII characters in an odd way, such that every pair of characters
represents a hexadecimal number. For example, the two byte string “3E” represents one
byte hex code 0x3E (62).

For more information on hexadecimal numbers, see “Hexadecimal, Binary, and
Other Numbering Systems” on page 219.

After the microcontroller verifies the packet checksum, you know you have a valid card
number that you can use. In this experiment, the program prints the number on the serial
monitor.

262 Make: Sensors

RFID with ELB149C5M Electronic Brick

Table 9-2. 14 character packet from Electronic Brick RFID reader

Purpose Length in ASCII chars Length in bytes Comment

Start 1 char not decoded 0x02 - STX, ASCII start of text

Card number 10 char 5 B 1 B manufacturer, 4 byte id

Checksum 2 char 1 B bitwise XOR between bytes

End 1 char not decoded 0x03 - ETX, ASCII end of text

RFID Code and Connection for Arduino Mega
For easier debugging, this project uses Arduino Mega. Mega has multiple serial ports, so you
can use the serial monitor (Tools→Serial Monitor in the Arduino IDE) at the same time the RFID
reader is attached. With the Uno, you would have only one serial port, which would make
prototyping extremely slow and frustrating. Our code example uses two serial ports and will
not work on Uno without modifications.

Wire up the Arduino as shown in Figure 9-9, then run the sketch listed in Example 9-5.

Figure 9-9. Connection diagram for Arduino and RFID reader

Example 9-5. rfid_reader.ino
// rfid_reader.ino - read 125 kHz RFID tags with ELB149C5M electronic brick
// (c) BotBook.com - Karvinen, Karvinen, Valtokari
// Requires Arduino Mega for extra serial port

int bytesRead = 0; //
char buffer[13]; //

void setup() {
 Serial.begin(115200); // computer
 Serial3.begin(9600); // RFID reader //
}

263Chapter 9

RFID with ELB149C5M Electronic Brick

void loop() {
 char recv;
 if(Serial3.available() > 0) { //
 recv = Serial3.read();
 if(recv == 0x02) { //
 bytesRead = 0;
 Serial.println("Start reading tag");
 } else if(bytesRead == 12 && recv == 0x03) { //
 Serial.println();
 String data = buffer;
 byte checksum = 0;
 byte chk = toLong(data.substring(10, 12));
 long id = toLong(data.substring(4, 10));
 for(int i = 0; i < 10; i=i+2) {
 checksum ^= toLong(data.substring(i, i+2)); //
 }
 Serial.print(id); //
 if(checksum == chk) { //
 Serial.println(" Card ok");
 } else {
 Serial.println(" Checksum error!");
 }
 } else {
 buffer[bytesRead] = recv;
 bytesRead++;
 Serial.print(recv);
 }
 }
 delay(10);
}

long toLong(String data) {
 char buf[20];
 data = "0x"+data;
 data.toCharArray(buf, 19);
 return strtol(buf, NULL, 0);

}

bytesRead will contain the number of bytes handled in the current packet. You’ll
use it to select the correct element within buffer[].

Initialize a 14-byte buffer for storing the packet from the reader. The count starts
from zero, buffer[0], buffer[1], … buffer[13].

The extra serial ports of the Arduino Mega make debugging convenient.

Try to read bytes from the serial stream only if there is actually some data available.

0x02 indicates the start of text. Ignore any existing content in the buffer and start
from the beginning. See Table 9-2.

0x03 indicates the end of the text. If we’ve read 12 bytes…

264 Make: Sensors

RFID with ELB149C5M Electronic Brick

…calculate the checksum. The checksum is calculated as a bitwise XOR of every
byte of the card id. The inplace bitwise XOR a ^= b means: a = a^b, where ^ is
bitwise exclusive OR.

Print the id to the serial port.

Indicate whether the calculated checksum matches the one in the packet.

RFID Code and Connection for Raspberry Pi
To use the serial port in Raspberry Pi, you must first release it from use as a login terminal. See
“Enabling the Serial Port in Raspberry Pi” on page 320. Figure 9-10 shows the connection diagram
for the RFID reader and Raspberry Pi. Wire it up as shown, and then run the code from
Example 9-6.

Figure 9-10. Raspberry Pi connections for the RFID reader

265Chapter 9

RFID with ELB149C5M Electronic Brick

Example 9-6. rfid_reader.py
rfid_reader.py - read 125 kHz RFID tags with ELB149C5M electronic brick
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import serial #
import struct

port = None

def main():
 global port
 bytesRead = -1 #
 buff = [0x00]*12 #
 print("Ready to receive tag")
 while True: #
 recv = port.read() #
 if(ord(recv) == 0x02): #
 bytesRead = 0
 print("Start reading tag")
 elif(bytesRead == 12 and ord(recv) == 0x03): #
 print("Checking tag")
 data = "" #
 checksum = 0x00
 for x in 0, 2, 4, 6, 8, 10:
 hexString = ''.join(buff[x : x+2]) #
 translatedByte = int(hexString, 16)
 data += chr(translatedByte) #
 checksum = checksum ^ translatedByte #
 cardData = struct.unpack(">cic", data) #

 if checksum != 0:
 print "Checksum calculation failed"
 print cardData[1] #
 else: #
 buff[bytesRead] = recv #
 bytesRead += 1

if __name__ == "__main__":
 if port == None:
 port = serial.Serial("/dev/ttyAMA0", baudrate=9600, timeout=None)
 port.flushInput()
 main()

Import the Python PySerial library.

Initialize bytesRead to an impossible value that will never come up if everything is
working right. This helps with debugging (if you see this value in your results, you
know something is wrong).

266 Make: Sensors

RFID with ELB149C5M Electronic Brick

Initialize buff to zeroes. The table multiplication creates a table of 12 elements with
a zero value in each element. The start of text character (0x2) and end of text
character (0x3) are not stored in the buffer. See Table 9-2.

The program will run until you press Control-C.

Read one byte from serial. The read() function is a blocking function, so it will
automatically wait until there is data available to read.

0x02 indicates the start of text; this means it’s time to discard any old data that was
previously read and start reading a new packet. See Table 9-2. The ord() function
returns the integer corresponding to the character supplied to it. For 8-bit
characters, this will map to its ASCII value.

0x03 indicates the end of text. If the length is 12, then we have read a whole tag.

The data variable will store the raw bytes.

Currently, buff contains ASCII representation of the hex codes of the bytes. For
example: buff = ['3', 'E', '0', '0', 'F', 'B', '7', '8', '8', 'D', '3',
'0']. Yes, that is weird. Each two-ASCII-character pair is converted to byte, e.g., the
string “3E” is converted to 0x3E (i.e., 62).

Append the byte data to variable data. It’s a common programming pattern to both
put the packet into a variable and calculate the checksum in the same loop so you
don’t have to perform a loop twice.

The checksum is each byte bitwise XOR’ed. There is a special trick for comparing
the calculated checksum to the checksum in the packet. The last XOR operation is
between the calculated checksum (e.g., 0x73) and the checksum in the packet
(hopefully 0x73). Any number XORed with itself is zero (0x73 XOR 0x73 == 0x0).
This way, you don’t need to convert the weird hex ASCII twice.

Unpack the values into a tuple. The values have different length in bytes, so un
pack() is needed. The parameters >cic for unpack are big endian (>), one byte char
(c), 4 byte signed integer (i) and another char (c).

Print the second cell of the tuple, which is the 10 byte card number.

If the byte we read is not the start or end byte, it’s probably the body, so…

…add the byte we just read to buff, which holds all the collected ASCII characters.

267Chapter 9

RFID with ELB149C5M Electronic Brick

Test Project: Ancient Chest from the Future

Marry a chest and fingerprint sensor. You’ll get a box that opens only with your finger. You
can even authorize your friends’ fingers, as well.

Figure 9-11. Ancient Chest from the Future

What You’ll Learn
In the Ancient Chest project, you’ll learn how to:

• Use the fingerprint sensor to control a lock.

• Split your code into multiple files.

• Build a simple lock with a servo.

• Package your project with ancient material for style.

Figure 9-16 shows the wiring diagram for the chest.

Operating the Chest
Are you authorized to open the box? The fingerprint scanner glows blue. Press your finger
on it, and—beep, whir—the lock opens. Enjoy the contents of the Ancient Chest from the
Future.

268 Make: Sensors

Test Project: Ancient Chest from the Future

Inside the chest, there are two buttons: add and reset. These buttons are needed only to change
who is authorized to open the box. While authorizing fingers, the chest communicates with
beeps.

Click the chest reset button to erase all trusted fingerprints. (The chest reset button is not the
same as the Arduino on-board reset button.)

Click add to authorize a finger. Your finger is scanned three times. If scanning fails, five beeps
tell you to press the add button and try again. The first successful scan makes one beep, the
second makes two beeps, and the third makes three beeps. Now that you’ve authorized your
finger, you can authorize more fingers or just go ahead and play with the box. To authorize
another finger, press the add button.

An authorized finger can lock the chest. Close the lid and press your finger on the blue finger-
print scanner. Beep, whir—the chest locks. Press your finger over the blue reader again, and—
beep, whir—the chest opens.

The Box
If you don’t happen to have a 19th century box to modify like we did, you’ll need to adjust these
instructions a little bit. First make a hole for the fingerprint sensor (see Figure 9-12). We did this
by drawing the sensor outline on the box, drilling holes in the corners of the outline, and filing
off the rest.

Figure 9-12. Hole for the sensor

We used a very simple locking mechanism. A servo arm in the bottom part locks the box by
going over a top bracket (see Figure 9-13). For the bracket, we used a part from a Meccano toy,
but any small L-bracket from the hardware store will do (see Figure 9-14).

269Chapter 9

Test Project: Ancient Chest from the Future

Figure 9-13. Lock servo

Figure 9-14. Lock bracket

270 Make: Sensors

Test Project: Ancient Chest from the Future

Figure 9-15. Everything packed inside the chest

Ancient Chest Code and Connection for Arduino
Figure 9-16 shows the wiring diagram for the Ancient Chest. Wire it up as shown, and then run
the sketch shown in Example 9-7.

Figure 9-16. Wiring up the Ancient Chest

271Chapter 9

Test Project: Ancient Chest from the Future

The fingerprint scanner is explained in “Fingerprint Scanner GT-511C3” on page 247, and
its Arduino code is in “Fingerprint Sensor Code and Connection for Arduino Mega” on page
249. Servo motors are explained in “Servo Motors” on page 115. The comments after
Example 9-7 just explain the new concepts introduced in this example.

Example 9-7. ancient_chest.ino
// ancient_chest.ino - fingerprint unlocks chest
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const byte STX1 = 0x55;
const byte STX2 = 0xAA;

const word CMD_OPEN = 0x01;
const word CMD_CLOSE = 0x02;
const word CMD_LED = 0x12;
const word CMD_GET_ENROLL_COUNT = 0x20;
const word CMD_ENROLL_START = 0x22;
const word CMD_ENROLL_1 = 0x23;
const word CMD_ENROLL_2 = 0x24;
const word CMD_ENROLL_3 = 0x25;
const word CMD_IS_FINGER_PRESSED = 0x26;
const word CMD_DELETE_ALL = 0x41;
const word CMD_IDENTIFY = 0x51;
const word CMD_CAPTURE_FINGER = 0x60;

const word ACK = 0x30;
const word NACK = 0x31;

struct package {
 byte header1;
 byte header2;
 word deviceID;
 unsigned long param;
 word cmd;
 word checksum;
};

const int SIZE_OF_PACKAGE = 12;

const int lockPin = 8;
const int resetButtonPin = 7;
const int addButtonPin = 6;
const int speakerPin = 10;

float lowPeep = 220;
float highPeep = 440;
int closed = 2000;
int opened = 1000;
int state = 0;

word calcChecksum(struct package *pkg) {

272 Make: Sensors

Test Project: Ancient Chest from the Future

 word checksum = 0;
 byte *buffer = (byte*)pkg;
 for(int i=0; i < (sizeof(struct package) - sizeof(word)); i++)
 {
 checksum += buffer[i];
 }
 return checksum;
}

int sendCmd(word cmd, int param) {
 struct package pkg;
 pkg.header1 = STX1;
 pkg.header2 = STX2;
 pkg.deviceID = 1;
 pkg.param = param;
 pkg.cmd = cmd;
 pkg.checksum = calcChecksum(&pkg);
 byte *buffer = (byte*)&pkg;

 int bytesSent = Serial3.write(buffer, sizeof(struct package));

 if(bytesSent != sizeof(struct package)) {
 Serial.println("Error communicating");
 return -1;
 }

 int bytesReceived = 0;
 char recvBuffer[SIZE_OF_PACKAGE];
 struct package *recvPkg = (struct package*) recvBuffer;

 bytesReceived = Serial3.readBytes(recvBuffer, sizeof(struct package));
 if(bytesReceived != SIZE_OF_PACKAGE) {
 Serial.println("Error communicating");
 return -1;
 }

 if(recvPkg->header1 != STX1 || recvPkg->header2 != STX2) {
 Serial.println("Header error!");
 return -1;
 }

 if(recvPkg->checksum != calcChecksum(recvPkg)) {
 Serial.println("Checksum mismatch error!");
 return -1;
 }
 if(recvPkg->cmd == NACK) {
 Serial.println("NACK - Cmd error!");
 Serial.print("Error: ");
 Serial.println(recvPkg->param,HEX);
 return -1;
 }

 return recvPkg->param;

273Chapter 9

Test Project: Ancient Chest from the Future

}

void wave(int pin, float frequency, int duration)
{
 float period=1/frequency*1000*1000; // microseconds (us)
 long int startTime=millis();
 while(millis()-startTime < duration) {
 digitalWrite(pin, HIGH);
 delayMicroseconds(period/2);
 digitalWrite(pin, LOW);
 delayMicroseconds(period/2);
 }
}

void pulseServo(int servoPin, int pulseLenUs)
{
 digitalWrite(servoPin, HIGH);
 delayMicroseconds(pulseLenUs);
 digitalWrite(servoPin, LOW);
 delay(15);
}

void peep(int count, float frequency)
{
 for(int i = 0; i < count; i++) {
 wave(speakerPin, frequency, 400);
 delay(400);
 }
}

void enrollFinger() {
 int id = 0;
 int ret = 0;
 id = sendCmd(CMD_GET_ENROLL_COUNT, 0);
 sendCmd(CMD_ENROLL_START, id);
 peep(1,lowPeep);
 WaitForFinger(false);
 ret = sendCmd(CMD_CAPTURE_FINGER, 1);
 if(ret < 0) {
 peep(5,highPeep);
 return;
 }
 sendCmd(CMD_ENROLL_1, 0);
 peep(1,highPeep);
 WaitForFinger(true);

 WaitForFinger(false);
 ret = sendCmd(CMD_CAPTURE_FINGER, 1);
 if(ret < 0) {
 peep(5,highPeep);
 return;
 }
 sendCmd(CMD_ENROLL_2, 0);
 peep(2,highPeep);

274 Make: Sensors

Test Project: Ancient Chest from the Future

 WaitForFinger(true);

 WaitForFinger(false);
 ret = sendCmd(CMD_CAPTURE_FINGER, 1);
 if(ret < 0) {
 peep(5,highPeep);
 return;
 }
 sendCmd(CMD_ENROLL_3, 0);
 peep(3,highPeep);
 WaitForFinger(true);
}

void WaitForFinger(bool bePressed) {
 delay(500);
 if(!bePressed) {

 while(sendCmd(CMD_IS_FINGER_PRESSED, 0) > 0) {
 delay(200);
 }
 } else {
 while(sendCmd(CMD_IS_FINGER_PRESSED, 0) == 0) {
 delay(200);
 }
 }
}

void setup() {
 Serial.begin(115200);
 Serial3.begin(9600);
 Serial3.setTimeout(10*1000);
 delay(100);
 sendCmd(CMD_OPEN, 0);
 sendCmd(CMD_LED, 1);
 pinMode(resetButtonPin, INPUT);
 pinMode(addButtonPin, INPUT);
 pinMode(lockPin, OUTPUT);
 pinMode(speakerPin, OUTPUT);
 digitalWrite(resetButtonPin, HIGH);
 digitalWrite(addButtonPin, HIGH);
 for(int i = 0; i < 20; i++) {
 pulseServo(lockPin, closed);
 }
}

void loop() {
 if (digitalRead(resetButtonPin) == LOW) { //
 if(sendCmd(CMD_DELETE_ALL, 0) >= 0) {
 peep(5,lowPeep);
 } else {
 peep(2,lowPeep); // Already empty
 }
 }
 if (digitalRead(addButtonPin) == LOW) { //

275Chapter 9

Test Project: Ancient Chest from the Future

 enrollFinger();
 }
 if(sendCmd(CMD_GET_ENROLL_COUNT, 0) == 0) //
 {
 delay(100);
 return;
 }

 if(sendCmd(CMD_IS_FINGER_PRESSED, 0) == 0) {
 sendCmd(CMD_CAPTURE_FINGER, 1);
 int ret = sendCmd(CMD_IDENTIFY, 0);
 if(ret >= 0 && ret < 200) { //
 if(state == 0) {
 peep(1,highPeep);
 for(int i = 0; i < 20; i++) {
 pulseServo(lockPin, opened); //
 }
 state = 1;
 Serial.println("Open");
 } else {
 Serial.println("Close");
 peep(1,lowPeep);
 for(int i = 0; i < 20; i++) {
 pulseServo(lockPin, closed);
 }
 state = 0;
 }
 } else {
 peep(5,lowPeep);
 }
 WaitForFinger(true);
 }
}

The chest reset button removes all stored fingerprints. The chest reset button is not
to be confused with the Arduino reset button.

The add button stores fingerprints that are allowed to open the chest.

If there are no fingerprints authorized, then there is no point in scanning and
checking fingers.

We found an authorized finger!

Open the lock. The opened is just a constant holding the value for a 1000 µs (1 ms)
pulse. When sent repeatedly, this pulse turns the servo to its minimum angle.

276 Make: Sensors

Test Project: Ancient Chest from the Future

Who or What Is It?

Now you know who (or what) your device is talking to: to identify objects, you can put an RFID
sticker on them. To identify people, you can use fingerprints.

As you close your secrets to the ancient chest, it’s time to move on to electromagnetism.

277Chapter 9

Who or What Is It?

Can you feel the power radiate through your body? Of course not, even
though electromagnetic radiation from power lines and cell phones is
all around you. Electricity powers all your gadgets, especially the ones
you build from this book.

Hall sensors detect a magnetic field. They come in different varieties: some just detect the
presence of a magnet, while others can tell you the strength of the magnetic field in teslas.

Voltage and current sensors work like a multimeter, measuring electricity passing through them.
They can easily measure power that would otherwise break a microcontroller’s analog input
pin.

An electronic compass can tell you where magnetic north is. Better ones combine an acceler-
ometer, so that they can point to north even when tilted.

The sun’s north and south poles change places about every 11 years. As of this writing,
we’re waiting for the flip to happen at any week now. However, you don’t have to worry
about the Earth’s poles flipping on you. The last time that happened was 780,000 years
ago.

Experiment: Voltage and Current

In this experiment, you’ll use the AttoPilot to measure voltage of a battery pack.

Are the batteries running out, and how much power is your robot’s motor draining? AttoPilot
Compact DC Voltage and Current Sense measures voltage and current. It measures big voltage
and current, and then reports it with analog output.

279

Electricity and
Magnetism 10

AttoPilot can measure a lot of power. The most powerful model is rated for 50 V and 180
A. Power (P) is a function of voltage (U) and current (I):

P = UI = 50 V * 180 A = 9000 VA = 9000 W = 9 kW

You are likely to also see this expressed with watts (W) as a function of voltage (V) and
current (A):

W = VA = 50 V * 180 A = 9000 W = 9 kW

The 50 V/ 180 A model of the AttoPilot sensor can handle 9 kilowatts. You can’t. Stay
safe and use only sensible voltages, like batteries and USB power.

Table 10-1. AttoPilot voltage and current sense, conversion factors

Model Voltage U, output/measured Current I, output/measured Comment

13.6 V / 45 A 242.3 mV / V 73.20 mV / A Used in this experiment

50 V / 90 A 63.69 mV / V 36.60 mV / A

50 V / 180 A 63.69 mV / V 18.30 mV / A 9 kW

Because such power can’t be safely handled in most projects, we used the 13 V / 45 A model
for this test.

P = UI = 13 V * 45 A = 585 W # model used here

The AttoPilot has two analog outputs. One reports current; the other reports voltage. The
maximum output is 3.3 V—considerably less than the maximum 50 V measured. The con-
version factors for the 13.6 V / 45 A model used here are calculated from the component’s
maximum specs. Using 13.6 V / 45 A model as an example, here’s the formula for current:

3.3 V output / 45 A measured = 73.3 mV output / A measured

But in your code, you’ll switch things around:

45 A measured/ 3.3 V output = 13.6363 A measured / V output

So when you want to calculate the measured current, you can multiply the voltage you
read from the current sense output by 13.6363:

0.05 V output * 13.6363 ≈ .6818 A = 681.8 mA

And here’s the formula for voltage:

3.3 V output / 13.6 V measured = 242.6 mV output / V measured

To express this in a way that’s useful for calculating measured voltage in your code, look
at it this way:

13.6 V measured / 3.3 V output = 4.1212 V measured / V output

When you want to calculate the measured voltage, you can multiply the voltage you read
on the voltage sense output by 4.1212:

280 Make: Sensors

Experiment: Voltage and Current

1.213 V output * 4.1212 ≈ 5 V

AttoPilot Code and Connection for Arduino
Figure 10-1 shows the connections for Arduino. Wire it up as shown, and then run the sketch
shown in Example 10-1.

Figure 10-1. AttoPilot connections for Arduino

Example 10-1. attopilot_voltage.ino
// attopilot_voltage.ino - measure current and voltage with Attopilot 13.6V/45A
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int currentPin = A0;
int voltagePin = A1;

void setup()
{
 Serial.begin(115200);
 pinMode(currentPin, INPUT);
 pinMode(voltagePin, INPUT);
}

float current()
{
 float raw = analogRead(currentPin);
 Serial.println(raw);
 float percent = raw/1023.0; //
 float volts = percent*5.0; //
 float sensedCurrent = volts * 45 / 3.3; // A/V //
 return sensedCurrent; // A //
}

281Chapter 10

Experiment: Voltage and Current

float voltage()
{
 float raw = analogRead(voltagePin);
 float percent = raw/1023.0;
 float volts = percent*5.0;
 float sensedVolts = volts * 13.6 / 3.3; // V/V //
 return sensedVolts; // V
}

void loop()
{
 Serial.print("Current: ");
 Serial.print(current(),4);
 Serial.println(" A");
 Serial.print("Voltage: ");
 Serial.print(voltage());
 Serial.println(" V");
 delay(200); // ms
}

The maximum reading of analogRead() is 1023, so we calculate the reading as a
percentage of that maximum.

Five volts is the maximum voltage of Arduino’s analogRead(). Five volts corresponds
to a raw value of 1023.

The conversion factor is 45 A measured / 3.3 V output ≈ 13.7 A/V. See also Table 10-1.

Return current in amperes. It’s always a good idea to include the unit in your
comments.

The voltage conversion factor is V measured max / V output max.

AttoPilot Code and Connection for Raspberry Pi
Figure 10-2 shows the connections for the Raspberry Pi and AttoPilot. Hook everything up
as shown, and then run the program in Example 10-2.

282 Make: Sensors

Experiment: Voltage and Current

Figure 10-2. Raspberry Pi connections for the AttoPilot

Example 10-2. attopilot_voltage.py
attopilot_voltage.py - measure current and voltage with Attopilot 13.6V/45A
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_mcp3002 as mcp #

def readVoltage():
 raw = mcp.readAnalog(0,1) #
 percent = raw / 1023.0 #
 volts = percent * 3.3 #
 sensedVolts = volts * 13.6 / 3.3 # V/V #
 return sensedVolts # V

def readCurrent():
 raw = mcp.readAnalog(0,0)
 percent = raw / 1023.0

283Chapter 10

Experiment: Voltage and Current

 volts = percent * 3.3
 sensedCurrent = volts * 45.0 / 3.3 # A/V #
 return sensedCurrent # A

def main():
 while True:
 voltage = readVoltage()
 current = readCurrent()
 print("Current %.2f A" % current)
 print("Voltage %.2f V" % voltage)
 time.sleep(0.5) # s

if __name__ == "__main__":
 main()

Import the library for the MCP3002 analog-to-digital converter chip. The library
botbook_mcp3002.py must be in the same directory as this program
(attopilot_voltage.py).

Read the second channel. The AttoPilot voltage and current sensing outputs are
connected to different channels.

1023 is the maximum value of readAnalog(). It corresponds to 3.3 V.

The maximum GPIO voltage for the Raspberry Pi 3.3 V.

Conversion factors are calculated just like with Arduino. The voltage conversion
factor is V measured max / V output max.

The conversion factor is 45 A measured / 3.3 V output ≈ 13.7 A/V. See also Table 10-1.

Experiment: Is It Magnetic?

A Hall effect sensor measures a magnetic field. Hall effect sensors are used in bike speed-
ometers, where a magnet on the wheel helps the sensor count revolutions.

A magnetic field causes electrons to divert from their straight path, causing a voltage
change in a conductor. This is the Hall effect.

The sensor reports a magnetic field as a voltage. This voltage can be read just like an analog
resistance sensor, using analogRead() or botbook_mcp3002.readAnalog().

This effect is implemented in sensors from a variety of manufacturers. We used the KY-024
Magnetic Detecting Sensor Module (part number 232563) from http://dx.com, shown in
Figure 10-3.

284 Make: Sensors

Experiment: Is It Magnetic?

Figure 10-3. The KY-024 magnet detecting sensor

Hall Effect Sensor Code and Connection for Arduino
Figure 10-4 shows the connections for Arduino. Wire it up as shown, and then run the sketch
shown in Example 10-3.

Figure 10-4. Arduino connections for the Hall effect sensor

285Chapter 10

Experiment: Is It Magnetic?

Example 10-3. hall_sensor.ino
// hall_sensor.ino - print raw value and magnets pole
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int hallPin = A0;
int rawMagneticStrength = -1; //
int zeroLevel = 527; //

void setup() {
 Serial.begin(115200);
 pinMode(hallPin, INPUT);
}

void loop() {
 rawMagneticStrength = analogRead(hallPin); //
 Serial.print("Raw strength: ");
 Serial.println(rawMagneticStrength);
 int zeroedStrength = rawMagneticStrength - zeroLevel;
 // If you know your Hall sensor's conversion from
 // voltage to gauss then you can do it here
 // zeroedStrength * conversion
 Serial.print("Zeroed strength: ");
 Serial.println(zeroedStrength);
 if(zeroedStrength > 0) {
 Serial.println("South pole");
 } else if(zeroedStrength < 0) {
 Serial.println("North pole");
 }
 delay(600); // ms
}

Initialize to a value that wouldn’t come up as a result from reading the sensor. That
way, you know that if you see this value in your running code, there’s a problem
you need to debug.

This is the raw analogRead() value when there is no magnetic field. Our sensor
reports 527 when there is no magnetic field. The manufacturer’s specification gives
500 (raw), presumably for 5 V logic level. If you see different values in the Arduino
Serial Monitor when you have no magnetic field, you may need to adjust the zero
Level variable.

The Hall sensor works just like an analog resistance sensor, even though it’s not a
resistor.

Hall Effect Sensor Code and Connection for Raspberry Pi
Figure 10-5 shows the connections for Raspberry Pi. Hook them up as shown, and then
run the code shown in Example 10-4.

286 Make: Sensors

Experiment: Is It Magnetic?

Figure 10-5. Raspberry Pi/Hall effect sensor connections

Example 10-4. hall_sensor.py
hall_sensor.py - print raw value and magnets pole
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_mcp3002 as mcp #

zeroLevel = 388 #

def main():
 while True:
 rawMagneticStrength = mcp.readAnalog()
 print("Raw strength: %i " % rawMagneticStrength)
 zeroedStrength = rawMagneticStrength - zeroLevel
 print("Zeroed strength: %i " % zeroedStrength)
 if(zeroedStrength > 0):
 print("South pole")

287Chapter 10

Experiment: Is It Magnetic?

 elif(zeroedStrength < 0):
 print("North pole")
 time.sleep(0.5)

if __name__ == "__main__":
 main()

The library (botbook_mcp3002.py) must be in the same directory as this program.
You must also install the spidev library, which is imported by botbook_mcp3002. See
the comments in the beginning of botbook_mcp3002/botbook_mcp3002.py or
“Installing SpiDev” on page 56.

zeroLevel is the raw output of readAnalog() when no magnetic field affects the
sensor. Our test gave us 388 for our sensor. The manufacturer’s specifications give
a raw value of 500 under a 5 V logic level, which would give a raw value of 330 for
zeroLevel at 3.3 V: 500 * (3.3/5) = 330. If you’re seeing a different raw value in
the program output when no magnet is present, you may need to change the value
of the zeroLevel variable.

Experiment: Magnetic North with LSM303 Compass-
Accelerometer

The LSM303 compass-accelerometer (Figure 10-6) gives you the direction of magnetic
north. With the accelerometer, it can correct this reading for its orientation.

If you have experience orienteering, you know to hold your compass horizontally when
setting the map or taking a bearing. But with this sensor, your device can find north even
sideways.

Compass sensors, such as LSM303, are sensitive to external interference. Keep the
compass away from power cables and big pieces of metal.

The LSM303 board we used doesn’t have any markings for north. To mark it yourself, turn
the board so that the text “SA0” is oriented so you can read it left to right. North is to the
right edge of the board when the text SA0 is properly oriented.

In the output values, a heading of 0 is north.

288 Make: Sensors

Experiment: Magnetic North with LSM303 Compass-Accelerometer

Figure 10-6. SparkFun’s LSM303 compass-accelerometer

Don’t have a compass handy? In the Northern Hemisphere, satellite dishes point south.
Most satellite dishes, like the ones for TV, are statically mounted. That means that they
point to geostationary satellites that orbit the earth at exactly the same speed the earth
is turning. So the satellites are orbiting east above the equator, and satellite dishes point
toward the equator.

Calibrate Your Module
The compass must be calibrated to get correct values. You can try it out without calibrating,
and you should see values. However, you’ll get correct values only after calibration.

Here are the calibration steps:

• Build the circuit for your chosen platform (Arduino or Raspberry Pi).

• Run the program to see that you get some values.

• Change runningMode = 0 in the code to put the device into calibration mode. In calibration
mode, the program will show only minimum and maximum values for each axis.

289Chapter 10

Experiment: Magnetic North with LSM303 Compass-Accelerometer

• Set maximum values initially to zero. For Raspberry Pi, change magMax[] and mag
Min[]. For Arduino, change each of the six magMax_x, magMax_y … magMin_z.

• Wave and turn the device around, maybe drawing a figure-eight shape in the air.
Continue until the values stop changing. If you can’t get any higher or lower value, you
have found min and max.

• Hard-code the values into your code. These are the same maximum values you zeroed
earlier, magMax[] and magMin[] or magMax_x…

Once the calibration is done, change runningMode = 1 to use the sensor normally and see
headings.

Try running the code and calibrating the device. Once you have played with the compass,
you can read about implementation details (if you want) in “LSM303 Protocol” on page 299.

LSM303 Code and Connection for Arduino
Figure 10-7 shows the circuit for Arduino. Hook everything up as shown in the figure, and
then run the sketch shown in Example 10-5.

Figure 10-7. LSM303 compass-accelerometer circuit for Arduino

Remember to calibrate the module (see “Calibrate Your Module” on page 289).

Example 10-5. lsm303.ino
// lsm303.ino - normal use and calibration of LSM303DLH compass-accelerometer
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

#include <Wire.h>

const char accelerometer_address = 0x30 >> 1; //

290 Make: Sensors

Experiment: Magnetic North with LSM303 Compass-Accelerometer

const char magnetometer_address = 0x3C >> 1;

const int runningMode = 0; //

float magMax_x = 0.1; float magMax_y = 0.1; float magMax_z = 0.1; //
float magMin_x = -0.1; float magMin_y = -0.1; float magMin_z = -0.1;

float acc_x = 0; float acc_y = 0; float acc_z = 0; //
float mag_x = 0; float mag_y = 0; float mag_z = 0;

int heading = 0;

void setup() {
 Serial.begin(115200);
 Wire.begin(); //
 Serial.println("Initialize compass");
 initializelsm(); //
 delay(100);
 Serial.println("Start reading heading");
}

void loop() {
 updateHeading(); //
 if(runningMode == 0) { //
 magMax_x = max(magMax_x, mag_x);
 magMax_y = max(magMax_y, mag_y);
 magMax_z = max(magMax_z, mag_z);
 magMin_x = min(magMin_x, mag_x);
 magMin_y = min(magMin_y, mag_y);
 magMin_z = min(magMin_z, mag_z);
 Serial.print("Max x y z: ");
 Serial.print(magMax_x); Serial.print(" ");
 Serial.print(magMax_y); Serial.print(" ");
 Serial.print(magMax_z); Serial.print(" ");
 Serial.print("Min x y z: ");
 Serial.print(magMin_x); Serial.print(" ");
 Serial.print(magMin_y); Serial.print(" ");
 Serial.print(magMin_z); Serial.println(" ");
 } else {
 calculateHeading();
 Serial.println(heading); //
 }
 delay(100); // ms
}

void initializelsm() {
 write_i2c(accelerometer_address, 0x20, 0x27); //
 write_i2c(magnetometer_address, 0x02, 0x00); //
}

void updateHeading() {
 updateAccelerometer();
 updateMagnetometer();

291Chapter 10

Experiment: Magnetic North with LSM303 Compass-Accelerometer

}

void updateAccelerometer() { //
 Wire.beginTransmission(accelerometer_address);
 Wire.write(0x28 | 0x80); //
 Wire.endTransmission(false);
 Wire.requestFrom(accelerometer_address, 6, true); //
 int i = 0;
 while(Wire.available() < 6) {
 i++;
 if(i > 1000) {
 Serial.println("Error reading from accelerometer i2c");
 return;
 }
 }
 uint8_t axel_x_l = Wire.read(); //
 uint8_t axel_x_h = Wire.read();
 uint8_t axel_y_l = Wire.read();
 uint8_t axel_y_h = Wire.read();
 uint8_t axel_z_l = Wire.read();
 uint8_t axel_z_h = Wire.read();

 acc_x = (axel_x_l | axel_x_h << 8) >> 4; //
 acc_y = (axel_y_l | axel_y_h << 8) >> 4;
 acc_z = (axel_z_l | axel_z_h << 8) >> 4;

}

void updateMagnetometer() { //
 Wire.beginTransmission(magnetometer_address);
 Wire.write(0x03);
 Wire.endTransmission(false);
 Wire.requestFrom(magnetometer_address, 6, true);
 int i = 0;
 while(Wire.available() < 6) {
 i++;
 if(i > 1000) {
 Serial.println("Error reading from magnetometer i2c");
 return;
 }
 }
 uint8_t axel_x_h = Wire.read();
 uint8_t axel_x_l = Wire.read();
 uint8_t axel_y_h = Wire.read();
 uint8_t axel_y_l = Wire.read();
 uint8_t axel_z_h = Wire.read();
 uint8_t axel_z_l = Wire.read();

 mag_x = (int16_t)(axel_x_l | axel_x_h << 8);
 mag_y = (int16_t)(axel_y_l | axel_y_h << 8);
 mag_z = (int16_t)(axel_z_l | axel_z_h << 8);
}
//Heading to north
void calculateHeading() {

292 Make: Sensors

Experiment: Magnetic North with LSM303 Compass-Accelerometer

 // Up unit vector
 float dot = acc_x*acc_x + acc_y*acc_y + acc_z*acc_z; //
 float magnitude = sqrt(dot); //
 float nacc_x = acc_x / magnitude; //
 float nacc_y = acc_y / magnitude;
 float nacc_z = acc_z / magnitude;

 // Apply calibration
 mag_x = (mag_x - magMin_x) / (magMax_x - magMin_x) * 2 - 1.0; //
 mag_y = (mag_y - magMin_y) / (magMax_y - magMin_y) * 2 - 1.0;
 mag_z = (mag_z - magMin_z) / (magMax_z - magMin_z) * 2 - 1.0;

 // East
 float ex = mag_y*nacc_z - mag_z*nacc_y; //
 float ey = mag_z*nacc_x - mag_x*nacc_z;
 float ez = mag_x*nacc_y - mag_y*nacc_x;
 dot = ex*ex + ey*ey + ez*ez; //
 magnitude = sqrt(dot);
 ex /= magnitude;
 ey /= magnitude;
 ez /= magnitude; //

 // Project
 float ny = nacc_z*ex - nacc_x*ez; //

 float dotE = -1 * ey; //
 float dotN = -1 * ny;

 // Angle
 heading = atan2(dotE, dotN) * 180 / M_PI; //

 heading = round(heading);
 if (heading < 0) heading +=360; //
}

void write_i2c(char address, unsigned char reg, const uint8_t data)
{
 Wire.beginTransmission(address);
 Wire.write(reg);
 Wire.write(data);
 Wire.endTransmission();
}

The addresses of the accelerometer and magnetometer need to be bit shifted (see
“Bitwise Operations” on page 221).

The normal operation of this sketch (printing compass headings) is runningMode=1. To
calibrate the compass, see “Calibrate Your Module” on page 289.

293Chapter 10

Experiment: Magnetic North with LSM303 Compass-Accelerometer

Initial calibration data helps you to get some readings even before you find the exact
values for your device (with runningMode=0).

Variables for the current heading are initialized to zero.

Wire.h is the standard I2C library for Arduino.

Call the initialization function.

This function updates global variables, so there is no return value needed.

Calibration mode prints only max and min.

Normal operation prints the acceleration- (tilt-) corrected heading.

Enable the accelerometer with default values. The values are taken from the data sheet
for this module.

Enable the magnetometer and set it to continuous conversion.

Read the sensor according to the protocol described in the data sheet, and then update
the global variables.

0x80 is 0b10000000: the most significant bit (MSB) is 1, and the other seven bits are zero.
A bitwise XOR of 0x80 and any other number results in the MSB being changed to 1.
0x28 is the OUT_X_L_A register, from the component’s data sheet.

Read in six bytes.

Each raw value is split over two bytes, the low part (axel_x_l) and the high, more
significant part (axel_x_h).

Each raw value is 8 + 4 = 12 bits. The high byte contains the most significant 8 bits. The
low part contains the last 4 bits. The last 4 bits of the low byte (axel_x_l) are ignored.
See also “Bitwise Operations” on page 221.

The magnetometer (compass) raw values are read similarly to updateAccelerometer().

Take a dot product of the vector…

…to calculate its magnitude (length).

Divide each dimension by length to get a vector whose length is one. So you have an
up-pointing vector (nacc_x, nacc_y, nacc_z).

Apply calibration data.

East is 90 degrees from north. It’s also 90 degrees from up. A cross product vector
calculation gives you the vector that’s perpendicular to these two other vectors.

East is normalized, just as you normalized up.

After normalization, the vector (ex, ey, ez) has a length of one and points east. The
meaning of the /= symbol is similar to +=. Saying foo /= 2 is the same as foo = foo/2.

Use a cross product to find the north vector in the gravity horizontal plane.

Project the north vector N from the NE plane to the XY plane.

294 Make: Sensors

Experiment: Magnetic North with LSM303 Compass-Accelerometer

Find the angle between the y-axis and projected N vector. Convert radians to degrees
(deg=rad/(2*pi)*360).

Wrap around, so that the compass heading is between 0 and 360 degrees.

LSM303 Code and Connection for Raspberry Pi
Figure 10-8 shows the circuit for Raspberry Pi. Hook everything up as shown, and then run the
code listed in Example 10-6.

Figure 10-8. LSM303 compass-accelerometer circuit for Raspberry Pi

Remember to calibrate the module (see “Calibrate Your Module” on page 289).

Example 10-6. lsm303.py
lsm303.py - normal use and calibration of LSM303DLH compass-accelerometer
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import smbus # sudo apt-get -y install python-smbus
import struct
import math

accelerometer_address = 0x30 >> 1
magnetometer_address = 0x3C >> 1

calibrationMode = True #

295Chapter 10

Experiment: Magnetic North with LSM303 Compass-Accelerometer

magMax = [0.1, 0.1, 0.1] #
magMin = [0.1, 0.1, 0.1]

acc = [0.0, 0.0, 0.0] #
mag = [0.0, 0.0, 0.0]

heading = 0

def initlsm():
 global bus
 bus = smbus.SMBus(1)
 bus.write_byte_data(accelerometer_address, 0x20, 0x27) #
 bus.write_byte_data(magnetometer_address, 0x02, 0x00) #

def updateAccelerometer():
 global acc #
 bus.write_byte(accelerometer_address, 0x28 | 0x80) #
 rawData = ""
 for i in range(6):
 rawData += chr(bus.read_byte_data(accelerometer_address, 0x28+i)) #

 data = struct.unpack('<hhh',rawData) #
 acc[0] = data[0] >> 4 #
 acc[1] = data[1] >> 4
 acc[2] = data[2] >> 4

def updateMagnetometer(): #
 global mag
 bus.write_byte(magnetometer_address, 0x03)
 rawData = ""
 for i in range(6):
 rawData += chr(bus.read_byte_data(magnetometer_address, 0x03+i))

 data = struct.unpack('>hhh',rawData)
 mag[0] = data[0]
 mag[1] = data[1]
 mag[2] = data[2]

def calculateHeading():
 global heading, acc, mag
 #normalize
 normalize(acc) #

 #use calibration data
 mag[0] = (mag[0] - magMin[0]) / (magMax[0] - magMin[0]) * 2.0 - 1.0 #
 mag[1] = (mag[1] - magMin[1]) / (magMax[1] - magMin[1]) * 2.0 - 1.0
 mag[2] = (mag[2] - magMin[2]) / (magMax[2] - magMin[2]) * 2.0 - 1.0

 e = cross(mag, acc) #
 normalize(e) #

 n = cross(acc,e) #

296 Make: Sensors

Experiment: Magnetic North with LSM303 Compass-Accelerometer

 dotE = dot(e,[0.0, -1.0, 0.0]) #
 dotN = dot(n,[0.0, -1.0, 0.0])

 heading = round(math.atan2(dotE, dotN) * 180.0 / math.pi) #
 if heading < 0: #
 heading += 360 #

def normalize(v): #
 magnitude = math.sqrt(dot(v,v))
 v[0] /= magnitude
 v[1] /= magnitude
 v[2] /= magnitude

def dot(v1, v2): #
 return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]

def cross(v1, v2): #
 vr = [0.0, 0.0, 0.0]
 vr[0] = v1[1] * v2[2] - v1[2] * v2[1]
 vr[1] = v1[2] * v2[0] - v1[0] * v2[2]
 vr[2] = v1[0] * v2[1] - v1[1] * v2[0]
 return vr

def main():
 initlsm()
 while True:
 updateAccelerometer() #
 updateMagnetometer()

 if calibrationMode: #
 magMax[0] = max(magMax[0], mag[0])
 magMax[1] = max(magMax[1], mag[1])
 magMax[2] = max(magMax[2], mag[2])
 magMin[0] = min(magMin[0], mag[0])
 magMin[1] = min(magMin[1], mag[1])
 magMin[2] = min(magMin[2], mag[2])
 print("magMax = [%.1f, %.1f, %.1f]" % (magMax[0], magMax[1], magMax[2]))
 print("magMin = [%.1f, %.1f, %.1f]" % (magMin[0], magMin[1], magMin[2]))
 else:
 calculateHeading() #
 print(heading)
 time.sleep(0.5)

if __name__ == "__main__":
 main()

When you set calibrationMode to True, it runs through the calibration process instead
of its normal operation. See “Calibrate Your Module” on page 289 for more information.

We provide you with sample calibration values, so you can try your compass without
calibration (but you should still calibrate it).

297Chapter 10

Experiment: Magnetic North with LSM303 Compass-Accelerometer

The most recently read and the calculated sensor values are stored in the global variables
acc, mag, and heading.

Enable the accelerometer using the control codes we learned from the data sheet.

Enable the magnetometer.

To update a global variable, it must be explicitly declared as global in the beginning of
a function.

Send a message where first bit is 1 (0x80 == 0b1000000) and the ending is OUT_X_L_A
register address (0x28 == 0b 10 1000). An exclusive OR (XOR) operation combines these
to 0b10101000. See “Bitwise Operations” on page 221 for more information on bitwise
operations.

Read six bytes, starting from the accelerometer address 0x28.

Unpack integer values from the bytes you read from the sensor (rawData). Unpack
parameters are the following: little endian (<), short (2 byte, 16 bit) integer (h). Struct.un
pack() is needed so that you can define the exact length of the integers you read in.

data[0] is 16 bits, where the value is the first 12 bits. The last 4 bits should be ignored.
Bit shifting to the right achieves this. See also “Bitwise Operations” on page 221.

updateMagnetometer() reads values similarly to updateAccelerometer().

Normalize the acceleration vector; that is, convert it to a unit vector. It points up, but
after normalization its length is one.

Apply calibration data.

East e is 90 degrees from north (mag) and 90 degrees from up (acc).

After normalization, e is a unit vector (length one), pointing East.

The new n vector is now perpendicular to both gravity up and east. At this point, NE
plane is aligned (exactly at level) with gravity horizontally. It’s not yet aligned with the
device’s horizontal XY plane.

Use a dot product to project the north vector to the device’s horizontal XY plane. East
vector is needed because the whole NE plane controls the projection.

The angle between Y and north is the heading. It’s converted from radian (where a whole
circle is 2*pi) to degrees (where a whole circle is 360 degrees) by simple division.

If the heading is below zero…

…wrap around, so that compass headings are always between 0 and 360 degrees.

Vector normalization creates a unit vector. The unit vector has length (magnitude) one,
and points to the same direction as the original vector.

The vector dot product formula is from a math textbook. This program uses dot product
to calculate the magnitude (length) of a vector. Magnitude mag of vector v is
sqrt(dot(v)).

298 Make: Sensors

Experiment: Magnetic North with LSM303 Compass-Accelerometer

Vector cross product formula is also from a math textbook. In this program, you use it
to find a vector perpendicular to two other vectors. That is, for c=cross(a,b), c is
perpendicular (90 degrees) from both a and b.

updateAccelerometer() and updateMagnetometer() work by modifying global values,
so they don’t return a value.

Setting calibrationMode to true causes the program to run through its calibration
process.

This is the normal operating mode, printing tilt corrected compass headings in degrees.

LSM303 Protocol

Before you get tempted to read this section, build the project first and run the code! You
can use the code without bothering with how it works. An elaborate way to say this is
“without spending time on the implementation details.” But when you’re curious, come
on back to this section.

To report measured values, LSM303 uses the industry standard I2C protocol. As I2C is quite
strictly defined, it’s usually easier than other similar protocols like SPI.

LSM303 is an I2C slave, so the microcontroller (Arduino or Raspberry Pi) is the master. The master
initiates communication by asking for values. I2C communication consists of simply sending
and reading values that are specified in the component’s data sheet. You can find the data sheet
for this component by searching the Web for “LSM303DLH data sheet.”

If you want to understand the protocol, I2C communication was explained in more detail in
Figure 8-3. Just like many I2C codes, the code for the compass uses hex codes (0xA == 10) and
bit shifting (0b01 << 1 == 0b10). These concepts are explained in the “Hexadecimal, Binary,
and Other Numbering Systems” on page 219 and “Bitwise Operations” on page 221.

Compass Heading Calculation
The sensor already knows where north is. It gives this value as a three-dimensional vector n =
[nx, ny, nz]. The compass sensor is really three-dimensional, and this north-pointing vector
is already correct. So why do you need to do this math?

Vector mathematics ahead. The sensor will work even if you don’t learn vectors, but
following the explanation requires some vector knowledge.

Humans usually want a compass heading, a number between 0 deg and 360 deg. A compass
heading is two dimensional. The compass heading tells how much we have turned right from
north. The turn is measured by degrees, growing clockwise, as you turn right.

299Chapter 10

Experiment: Magnetic North with LSM303 Compass-Accelerometer

To convert the three-dimensional north vector to degrees, you use the up vector from the
accelerometer.

All vectors are relative to the device, so that Y points in the device-forward direction. Thus,
the vector [0, 1, 0] would point directly device forward.

Table 10-2. Variables and definitions for LM330

Arduino Raspberry Pi Values Explanation

heading heading int, 0 deg .. 360 deg The angle between north and forward (y). How much have we turned
right?

mag_x, mag_y… mag[] signed integer, list of signed
integer

Three-dimensional vector pointing north

acc_x, acc_y… acc[] signed integer, list of signed
integer

Three-dimensional vector pointing up (gravity up)

[0, 0, 1] A vector pointing device up (Z up)

[0, 1, 0] A vector pointing forward (Y forward)

[1, 0, 0] A vector pointing to the right (X right)

Both Arduino and Raspberry Pi codes use the same kind of logic. For clarity, we’ll use Python
here, but the Arduino code works in the same way and uses similar variable names.

First, read up and north from the sensor. Get these vectors:

• acc (up gravitywise, 3d)

• mag (north, 3d)

The angle between these vectors can be anything.

Calibration is then applied to mag, the north-pointing vector.

Next you need to calculate the east vector. This vector is perpendicular to both of the
vectors mag and acc. So there is a 90-degree angle between acc (gravity up) and east, and
there is a 90-degree angle between mag and east. Thus, you can calculate the east vector
with a vector cross product.

e = cross(mag, acc)
e = normalize(e)

After normalization, e is a unit vector (length 1) pointing east. This east is perpendicular to
gravity up.

Now the north (n) vector and east (e) vector form an NE plane. This NE plane is likely still
in an angle to the device-horizontal XY plane.

To get the n and e planes aligned to gravity horizontal,

n = cross(acc, e)

Now you have north n and east e in the gravity-horizontal plane.

300 Make: Sensors

Experiment: Magnetic North with LSM303 Compass-Accelerometer

The compass heading must be calculated for the user. The heading tells how many degrees to
the right the device has turned from the north. From the device, a vector is projected to the NE
plane. Then you can calculate the angle between the projected vector and north:

dotE = dot(e,[0.0, -1.0, 0.0])
dotN = dot(n,[0.0, -1.0, 0.0])
headingRad = math.atan2(dotE, dotN)
headingDeg = headingRad / (2*math.pi) * 360

Finally, the user gets compass heading as degrees.

Experiment: Hall Switch

A Hall switch (Figure 10-9) detects if a magnet is nearby. They are often used in measuring how
fast a wheel spins. Before GPS, many bike speedometers used Hall switches.

As you bring a magnet near the Hall switch, the code in this experiment prints “switch triggered.”

There are many Hall switches available from different manufactures. We used an affordable and
robust Hall Magnetic Sensor (part number 141363) from http://dx.com. That sensor has a nice
built-in LED that lights up when a magnet is near. It has weird wire colors: black is data (yes,
black goes to D2 rather than the usual GND), blue is ground, and brown is +5 V.

Figure 10-9. Hall switch

301Chapter 10

Experiment: Hall Switch

Hall Switch Code and Connection for Arduino
Figure 10-10 shows the wiring diagram for Arduino. Wire it up as shown, and then run the
code shown in Example 10-7.

Figure 10-10. Arduino circuit for Hall switch

Example 10-7. hall_switch.ino
// hall_switch.ino - write to serial if magnet triggers the switch
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int switchPin=2;
void setup() {
 Serial.begin(115200);
 pinMode(switchPin, INPUT);
 digitalWrite(switchPin, HIGH);
}

void loop() {
 int switchState=digitalRead(switchPin); //
 if (switchState == LOW) {
 Serial.println("YES, magnet is near");
 } else {
 Serial.println("no");
 }
 delay(50);
}

It’s a simple digital switch, like a button.

302 Make: Sensors

Experiment: Hall Switch

Hall Switch Code and Connection for Raspberry Pi
Figure 10-11 shows the circuit for Raspberry Pi. Hook everything up as shown, and then run the
code shown in Example 10-8.

Figure 10-11. Raspberry Pi circuit for Hall switch

Example 10-8. hall_switch.py
hall_switch.py - write to screen if magnet triggers the switch
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_gpio as gpio #

def main():
 switchPin = 3 # has internal pull-up #
 gpio.mode(switchPin, "in")

303Chapter 10

Experiment: Hall Switch

 while (True):
 switchState = gpio.read(switchPin) #
 if(switchState == gpio.LOW):
 print "switch triggered"

 time.sleep(0.3)

if __name__ == "__main__":
 main()

Make sure there’s a copy of the botbook_gpio.py library in the same directory as this
program. You can download this library along with all the example code from http://
botbook.com. See “GPIO Without Root” on page 19 for information on configuring
your Raspberry Pi for GPIO access.

To avoid a floating pin, you need a pull-up resistor. Fortunately, pull-ups are
included on the Raspberry Pi’s GPIO pins 2 and 3.

A Hall switch is a simple digital switch sensor, so it works like a button.

Test Project: Solar Cell Web Monitor

Turn your Raspberry Pi into a web server and monitor the voltage of your solar cells re-
motely (Figure 10-12).

Figure 10-12. Solar cell power graph

304 Make: Sensors

Test Project: Solar Cell Web Monitor

What You’ll Learn
In the Solar Cell Web Monitor project, you’ll learn how to:

• Measure voltage of your solar cells, and then report it on your own web server.

• Turn the Raspberry Pi into a web server—using the most popular web server in the world!

• Create timed tasks using the cron scheduler that keep running even if Raspberry is rebooted.

• Draw graphs with Python matplotlib.

Big, public web servers use many of the same techniques you learn here. We teach Apache and
cron to Linux students who work on servers, so these techniques aren’t specific to embedded
systems or robots.

Connecting Solar Cells
Do you still remember IKEA’s Solvinden lamp, which we used to build Chameleon Dome? In this
project we’re going to use the leftover solar panels from it. If you didn’t use Solvinden in the
first place, just adjust these instructions to suit the solar cells you are using. First, desolder the
red wire marked in Figure 10-13.

Figure 10-13. Desolder red wire

305Chapter 10

Test Project: Solar Cell Web Monitor

You don’t need IKEA’s Solvinden lamp to build this. Just connect a solar cell according
to the circuit diagram Figure 10-17. Because you’re using a current sensor with a
maximum measured voltage of 13.6 V, make sure the solar cell or panel doesn’t put
out more than 13.6 V. If you’re using a different solar cell, it probably has power
leads, so you won’t need to follow the Solvinden disassembly steps.

Cut the jumper wires as shown in Figure 10-14 and solder them to the current sensor and
to the solar cells as shown in Figure 10-15. The final product is shown in Figure 10-16.

Figure 10-14. Jumper wires

306 Make: Sensors

Test Project: Solar Cell Web Monitor

Figure 10-15. Jumper wires soldered to solar cells

Figure 10-16. Everything connected

307Chapter 10

Test Project: Solar Cell Web Monitor

Use the AttoPilot Compact DC Voltage and Current Sense code you tried earlier to test that
your connection works. Use a flashlight to see how much current your solar panels collect.
We got from 1-3 V from ours.

Hook up the Raspberry Pi to the current sensor as shown in Figure 10-17.

Figure 10-17. Solar cells connected

Turn Raspberry Pi into Web Server
Apache is one of the most popular web servers on the planet. According to the Netcraft
web server survey, at many times in its lifetime, it has been more popular than all competing
web servers together.

308 Make: Sensors

Test Project: Solar Cell Web Monitor

These web server instructions have a lot of explanations. If you are well-versed in Linux,
you can just read the commands to get the job done in a couple of minutes.

To turn Raspberry Pi into a web server, you must install Apache. The steps to install Apache on
Raspberry Pi are exactly the same as you would use when installing Apache on a physical server,
virtual server, or a development laptop. If you are using Debian or Ubuntu on your laptop, you
can try the same steps there.

On your Raspbian desktop, open the command-line interface (LXTerminal; you’ll find the icon
on the left side of the desktop).

Update the list of available packages, and then install Apache:

$ sudo apt-get update
$ sudo apt-get -y install apache2

The web server is now installed and running. Try it out with a web browser, such as Midori. The
Midori icon is on the left side of the desktop. Browse to

http://localhost/

Do you see a web page? “It works”? Congratulations, you now run a web server:

Finding Your IP Address
To access your web server from other computers, check your IP address:

$ ifconfig

Look for inet addr in the output. It’s usually under the eth0 or wlan0 interface.

Your public IP address is not 127.0.0.1. That’s localhost address, and every computer refers
to itself as localhost.

You can try browsing to this address, too. Just open Midori, and type “http://” and the IP address
as the URL. For example, http://10.0.0.1. Obviously, you must use your own address.

This address can also work on your local network. You can try browsing to the address with
other computers on your network. Can you see your web server from your laptop or desktop?

Making Your Home Page on Raspberry Pi
It’s easy to set up and maintain a web page if you create it as a user home page. There are two
steps: enabling users to make home pages and making the home pages.

Allow users to make home pages. As this changes system-wide settings, you need to use sudo.
The following commands enable the Apache user directory module, and then restart Apache:

309Chapter 10

Test Project: Solar Cell Web Monitor

$ sudo a2enmod userdir
$ sudo service apache2 restart

Now it’s time to create your (pi) home page directory. This doesn’t require sudo privileges.
The name of your home page directory, public_html, consists of the word “public”, under-
score (“_”), and the word “html”. It must be written correctly.

$ cd /home/pi/
$ mkdir public_html

If you want, you can make a test page:

$ echo "botbook">/home/pi/public_html/hello.txt

Try it with the Midori web browser:

http://localhost/~pi/hello.txt

If you feel adventurous, try your IP address instead of localhost. You could even try visiting
your page from your desktop computer on the same network.

Well done—you have now turned Raspberry Pi into a web server! And you’ve already got
a home page there. Let’s look at the program, and then we’ll set it up to run periodically.

Solar Panel Monitor Code and Connection for Raspberry Pi
This code requires matplotlib, a great free Python library for mathematical graphing. Install
it with these commands:

$ sudo apt-get update
$ sudo apt-get -y install python-matplotlib

Another useful tool for data visualization is Plotly. You can see an example project
at Instructables.

Running voltage_record.py once records a new data point and creates one graph, and then
exits. No loop is needed, because you’ll see how to use cron to run the program every five
minutes.

The measurement history is kept in /home/pi/record.csv.

The generated plot file is put into /home/pi/public_html/history.png. Because you’ve al-
ready installed Apache, this file is published at the URL http://localhost/~pi/history.png. To
visit that page from another device, you need to replace localhost with your Raspberry Pi’s
IP address.

310 Make: Sensors

Test Project: Solar Cell Web Monitor

Example 10-9. voltage_record.py
voltage_record.py - record voltage from solar cell and print history to png
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import os
import matplotlib #
matplotlib.use("AGG") #
import matplotlib.pyplot as plt
import numpy
from datetime import datetime
from datetime import date
from datetime import timedelta
import attopilot_voltage #
import shelve

historyFile = "/home/pi/record" #
plotFile = "/home/pi/public_html/history.png" #

def measureNewDatapoint():
 return attopilot_voltage.readVoltage() #

def main():
 history = shelve.open(historyFile) #

 if not history.has_key("x"): #
 history["x"] = [] #
 history["y"] = []

 history["x"] += [datetime.now()] #
 history["y"] += [measureNewDatapoint()] #

 now = datetime.now() #
 sampleCount = 24 * 60 / 5
 history['x'] = history["x"][-sampleCount:]
 history['y'] = history["y"][-sampleCount:]

 plot = plt.figure() #
 plt.title('Solar cell voltage over last 24h')
 plt.ylabel('Voltage V')
 plt.xlabel('Time')
 plt.setp(plt.gca().get_xticklabels(), rotation=35)
 plt.plot(history["x"], history["y"], color='#4884ff') #
 plt.savefig(plotFile) #
 history.close() #

if __name__ == '__main__':
 main()

311Chapter 10

Test Project: Solar Cell Web Monitor

This library must be installed as directed earlier in this section.

AGG (Anti-Grain Geometry) is a good matplotlib backend for saving pixel graphics
(PNG).

The example you created earlier must be in an attopilot_voltage/ directory that’s
stored in the same directory as this program (voltage_record.py). See “Experiment:
Voltage and Current” on page 279.

This is the “shelve” file, where numerical data is stored. Python’s shelve function
(which you’ll see in a moment) makes it very easy to store values.

The plot (a PNG image) to be created. To publish it as a web page, we put it in a
folder that’s served up by the Apache web server.

This is the actual measurement command. To measure anything else, just change
this command.

Open the history file. The file is created automatically if needed.

If our variables aren’t in the shelve yet…

…create them. The shelve history is a dictionary. The keys x and y store one list
each.

Append timestamp to x. Notice how we don’t have to care about date formatting
or parsing.

Append measured value to y. The x and y dictionaries are completely different, but
values with the same index are related. For example, the data point stored in y[12]
is from the time stored in x[12].

This stanza drops records older than 24 hours. A simpler, alternative way would be
to just store 100 data points and cut after that.

Create a new matplotlib plot to draw on.

Draw the actual graph.

Save the whole plot as a PNG image.

Close the shelve to write our values to disk.

Timed Tasks with Cron
Cron is our favorite way of performing timed tasks. Even if your Raspberry Pi shuts down,
cron tasks are resumed after reboot.

First make sure that you can run the Python program on the command line, with full path.
Use the path to wherever you have downloaded or saved voltage_record.py (see
Example 10-9).

$ python /home/pi/voltage_record/voltage_record.py

312 Make: Sensors

Test Project: Solar Cell Web Monitor

Don’t you remember where you put voltage_record.py? Run this: cd /home/pi; find -
iname voltage_record.py.

If it executes normally, it’s time to add it as a timed task to cron. Edit your user cron file with this:

$ crontab -e

Add the following as the last lines of the file:

*/5 * * * * /home/pi/voltage_record/voltage_record.py
*/1 * * * * touch /tmp/botbook-cron

Save the file. If you edited it with nano, press Control-X, y, then Enter to save.

The first line tells cron to run the program whenever minutes are divisible by 5 (:00, :05…),
ignoring hour, day of month, month, and day of week.

The second line just creates an empty file /tmp/botbook-cron every minute. It’s for checking up
on cron, and you can delete this line later if you want. Wait for a minute, and then check if the
file is there:

$ ls /tmp/botbook*
/tmp/botbook-cron

Did ls show your file? Well done! You successfully added a timed task to cron.

Whenever you want Raspberry Pi to automatically do something, use cron. Even if the power
is cut, the timed tasks are run again when you boot up the Raspberry Pi.

If this cron job writes too much output to your logs, you can append >/dev/null to your
command in crontab. This hides (deletes) everything the command prints to standard
output.

What’s Next?

You have now played with electricity. Your gadgets can measure voltage and current, even at
levels that would break your microcontroller board if connected directly. Magnetic fields can
be detected simply, as a Hall switch detects a magnet, or in an advanced way as you did with
the three-dimensional, tilt-corrected compass.

The solar cell web monitor you built can be adapted to any sensor project. Simply by changing
the measurement function, you can store data from any sensor. In your project, you published
the graph to the Web. Try adding password protection or even use ssh to view the graph for
projects requiring more secrecy.

313Chapter 10

What’s Next?

In the next chapter, you move from electromagnetism to sound waves. It’s time to give
ears to your gadgets!

314 Make: Sensors

What’s Next?

Sound waves in the air are a compression and decompression of the
medium. This movement can be detected and analyzed.

Raspberry Pi can record and analyze sounds. In one project, you’ll use a fast Fourier transform
(FFT) to split sound into frequencies. This calculation can extract frequencies from any wave.
With Arduino, you’ll use a microphone to measure volume.

Experiment: Hearing Voices/Volume Level

A microphone can detect sound level. This first experiment simply reads and prints values from
a microphone.

For many projects, you probably want to manipulate the numbers read from the microphone.
You could set a threshold, apply a moving average, or detect minimum and maximum values.
Later examples in this chapter let you try setting a threshold for sound. The component we
used is the Breakout Board for Electret Microphone (BOB-09964) from Sparkfun. See Figure 11-1.

315

Sound 11

Figure 11-1. Microphone on a breakout board

Microphone Breakout Code and Connection for Arduino
Figure 11-2 shows the Arduino circuit for the microphone. Wire it up as shown, and then
run the code shown in Example 11-1.

Figure 11-2. Arduino circuit for microphone

316 Make: Sensors

Experiment: Hearing Voices/Volume Level

Example 11-1. microphone.ino
// microphone.ino - print audio volume level to serial. Print "Sound" on loud sound.
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int audioPin = A0;
const int sensitivity = 850;

void setup() {
 Serial.begin(115200);
}

void loop() {
 int soundWave = analogRead(audioPin); //
 Serial.println(soundWave);
 if (soundWave>sensitivity) { //
 Serial.println("Sound!");
 delay(500);
 }
 delay(10);
}

You can read the microphone breakout like any analog resistance sensor. analog
Read() returns raw values between 0 and 1023, where a bigger number means a louder
sound. The connection and the program are similar to a potentiometer connection.

Take action if it’s loud enough.

Microphone Breakout Code and Connection for Raspberry Pi
Figure 11-3 shows the wiring diagram for the Raspberry Pi. Hook everything up, and then run
the code shown in Example 11-2.

Example 11-2. microphone.py
microphone.py - read sound from analog and print it
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_mcp3002 as mcp #

def readSound(samples):
 buff = [] #
 for i in range(samples): #
 buff.append(mcp.readAnalog()) #
 return buff

def main():
 while True:
 sound = readSound(1024) #

317Chapter 11

Experiment: Hearing Voices/Volume Level

 print(sound)
 time.sleep(1) # s

if __name__ == "__main__":
 main()

The library (botbook_mcp3002.py) must be in the same directory as this program.
You must also install the spidev library, which is imported by botbook_mcp3002. See
the comments in the beginning of botbook_mcp3002/botbook_mcp3002.py or
“Installing SpiDev” on page 56.

Declare a new empty list.

Repeat the block below, so that i gets assigned each of the values. In this program,
this becomes: for i in [0, 1, 2 ... 1023]:

Read the value from the microphone. Append a new item to the list (buff).

Read 1024 samples, and get a list of values returned.

Figure 11-3. Raspberry Pi circuit for microphone

318 Make: Sensors

Experiment: Hearing Voices/Volume Level

Environment Experiment: Can You Hear a Pin Drop?

Can you hear a pin drop? Let’s solve this question once and for all with a sound sensor. Connect
the sensor to Arduino as you did in “Microphone Breakout Code and Connection for Arduino”
on page 316 and upload the code. Place the sensor on a solid plane such as a wooden table or
a floor so that the microphone part points in the direction where you are going to drop the pin.
Do all you can to minimize any background noise. Change the sensitivity value in the code so
that the “sound” message is not triggered when you don’t make any sound. Carefully find a
value that is just on the edge of reacting to sound without responding to silence.

Figure 11-4. Pin dropping on floor

Open the Serial Monitor in the Arduino IDE and drop a pin on the plane. Did you get the “sound”
message in the serial monitor? If yes, then you really can hear a pin drop. If you didn’t get any
reaction from the sensor, make sure that the room is as quiet as possible, drop the pin closer to
the sensor, and make sure that you have adjusted the sensitivity properly.

Sensitivity to quiet sounds depends on the background noise level. Try putting some loud music
on and readjust the sensitivity before dropping the pin. Can the sensor still hear it?

319Chapter 11

Environment Experiment: Can You Hear a Pin Drop?

Test Project: Visualize Sound over HDMI

Have you always wanted a 50” graphical equalizer? In this project, you’ll analyze sound
with Raspberry Pi and show the result on your television. Sound frequencies are shown as
a colorful, animated graph (Figure 11-5).

Figure 11-5. Animated graph on a big screen

What You’ll Learn
In the Visualize sound on HDMI project, you’ll learn how to:

• Analyze sound numerically.

• Do very fast calculations in Python, using SciPy.

• Extract frequencies with fast Fourier transform (FFT).

You’ll also refresh your skills on pyGame and drawing Full HD graphics to HDMI output,
like your television or a video projector (see “Test Project: Pong” on page 147).

Enabling the Serial Port in Raspberry Pi
To use the serial port in Raspberry Pi, you must release it first. Otherwise, it’s used by a login
shell that you can connect to over a serial cable:

$ sudoedit /etc/inittab

320 Make: Sensors

Test Project: Visualize Sound over HDMI

Comment out the last line that grabs the serial port. You can comment out a line by putting a
hash in front of it, which causes the line to be ignored.

T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

Reboot the Raspberry Pi.

Visualizer Code and Connection for Raspberry Pi
Install prerequisites. On your Raspberry Pi, open the terminal and run these commands:

$ sudo apt-get update
$ sudo apt-get -y install python-pygame python-numpy

Figure 11-6 shows the circuit diagram for Raspberry Pi. Hook it up, and then run the code shown
in Example 11-3.

Figure 11-6. Raspberry Pi microphone circuit for equalizer

321Chapter 11

Test Project: Visualize Sound over HDMI

Example 11-3. equalizer.py
equalizer.py - show equalizer based on microphone input
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import pygame # sudo apt-get -y install python-pygame
import math
import numpy # sudo apt-get -y install python-numpy

import microphone #
from pygame.locals import *

pygame.init()

width = 800
height = 640

size = width, height
background = 0, 0, 0

screen = pygame.display.set_mode(size, pygame.FULLSCREEN)
fullBar = pygame.image.load("equalizer-full-small4.jpg") #
emptyBar = pygame.image.load("equalizer-empty-small4.jpg")
clock = pygame.time.Clock()
pygame.mouse.set_visible(False)
mainloop = True

barHeight = 36
barWidth = 80
barGraphHeight = 327
barPos = [55, 130]

sampleLength = 16

def fftCalculations(data): #
 data2 = numpy.array(data) / 4 #
 fourier = numpy.fft.rfft(data2) #
 ffty = numpy.abs(fourier) #
 ffty = ffty / 256.0 #
 return ffty

while mainloop:
 buff = microphone.readSound(sampleLength) #

 barData = fftCalculations(buff) #

 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 mainloop = False

322 Make: Sensors

Test Project: Visualize Sound over HDMI

 if (event.type == KEYUP) or (event.type == KEYDOWN):
 if event.key == K_ESCAPE:
 mainloop = False
 screen.fill(background)
 # Draw data to pillars
 for i in range(8): #
 bars = barData[i+1] #
 bars = int(math.floor(bars*10)) #
 if bars > 10:
 bars = 10
 bars -= 1
 screen.blit(emptyBar, (barPos[0]+i*(barWidth+10), barPos[1]),
 (0, 0, barWidth, barHeight*(10-bars)))
 if bars >= 0:
 barStartPos = (barPos[0] + i * (barWidth + 10),
 barPos[1] + barGraphHeight - barHeight * bars + 6)
 barSourceBlit = (0, barGraphHeight - barHeight * bars+6,
 barWidth, barHeight*bars)
 screen.blit(fullBar, barStartPos, barSourceBlit) #
 pygame.display.update()

The microphone.py program from “Microphone Breakout Code and Connection for
Raspberry Pi” on page 317 must be in the same directory as this program (equalizer.py).

PyGame can load normal JPG images. You can draw them in any program, such as
Inkscape, Gimp, Photoshop, or Illustrator.

When this function is called from the main program, data will contain 16 samples, each
in the range of 0..1024.

Divide the samples to put them into the range 0..256.

Perform an FFT on the recorded sound samples. This gives the frequency ranges of the
samples. The rfft() function returns an array that has 16/2+1 (9) cells, each representing
a frequency.

Get rid of the imaginary part of the numbers, so that they can be plotted later. For
example, abs(1+1j) is approximately 1.4.

Convert the Fourier-transformed values to percentages (in the range 0.0 to 1.0).

Read 16 samples from the microphone, using the botbook.com microphone library.

Save the FFT of the sound sample to barData.

For each of the eight vertical bars (0 to 7)…

…get the frequency percentage. Because of the i+1 here, the first cell number (0) is
ignored. The first, ignored cell contains the DC component, the average value between
AC wave’s positive and negative peaks.

Count the number of bars needed (e.g., 1.0 (100 %) gets the maximum, nine bars).

Draw the full bars on screen.

323Chapter 11

Test Project: Visualize Sound over HDMI

Fast Fourier Transformation
An FFT extracts individual frequencies from a wave. It’s used for creating frequency dia-
grams in graphic equalizers, spectrum analyzers, and oscilloscopes.

Imagine playing two notes, one lower (5 Hz) and one higher (40 Hz). In real life, audible
sounds are from 20 Hz to 20,000 Hz, but we picked smaller numbers for this example.

In Figure 11-7, the horizontal time axis grows to the right. Vertical axis is amplitude, which
is compression and decompression of air.

Figure 11-7. A low note, 5 Hz sine wave

Figure 11-8. A higher note, 40 Hz sine wave

324 Make: Sensors

Test Project: Visualize Sound over HDMI

When they play at the same time, they form one wave. This combined wave is like a little ripple
on top of a big wave. The lower note, 5 Hz, forms the big wave. The small ripple is the higher
40 Hz frequency. The combined wave is just a sum of the two waves, combined = low + high.

Figure 11-9. Both notes combined

When you record sound, you get this kind of combined wave. So this is similar to the typical
starting material with sound samples, such as mp3, wav, or ogg. Given a combined wave like
this, how do you get the original two sine waves back? Fourier to the rescue!

Perform a fast Fourier transform of the combined wave. As you’ve seen in the code of this project,
you can simply call an FFT function, with the wave data as the parameter. See Figure 11-10.

Figure 11-10. FFT reveals the frequencies of the original notes

325Chapter 11

Test Project: Visualize Sound over HDMI

The FFT gave the frequencies of the original sine waves, 5 Hz and 40 Hz. You have now
broken a complex wave into frequencies. Figure 11-11 shows a sample equalizer display.

Figure 11-11. Equalizer

What Next?

You have now played with sound. With Arduino, you detected volume level and noticed a
volume over a certain threshold. With Raspberry Pi, you recorded sound and analyzed it
in real time. As you built the project, you improved your pyGame skills and used fast Fourier
transform to break a wave into components.

Next, it’s time to look at air on a bigger scale. You’ll measure weather and climate, from
local room temperature and humidity to predicting weather in your part of town.

326 Make: Sensors

What Next?

Weather is one of the few things we humans can’t control. Yet.

The immediately obvious components of weather include temperature and humidity. To fore-
cast weather, you can measure the atmospheric pressure.

Experiment: Is It Hot in Here?

An LM35 sensor reports temperature with varying voltage. Because it’s an analog resistance
sensor, it’s easy to use with Arduino. Using it with Raspberry Pi requires an analog-to-digital
converter chip.

The LM35 has three leads (Figure 12-1), similar to a potentiometer. The output lead voltage U
is converted to temperature T with a simple formula:

T = 100*U

Some example values are in Table 12-1. From the table, you can see that the LM35 can measure
temperatures between 2 C and 150 C. The output voltage varies from about 0 V to 1.5 V.

Do you need to measure subzero temperatures? Use LM36 or check for alternative con-
nection options on the LM35 data sheet.

Table 12-1. LM35 reports temperature with voltage

Temperature C Voltage V Comment

2 C 0.02 V Minimum measured temperature

20 C 0.2 V Room temperature

100 C 1.0 V Boiling water

150 C 1.5 V Maximum measured temperature

327

Weather and Climate 12

Figure 12-1. LM35

LM35 Code and Connection for Arduino
Figure 12-2 shows the wiring diagram for Arduino. Hook it up as shown, and then run the
code from Example 12-1.

Example 12-1. temperature_lm35.ino
// temperature_lm35.ino - measure temperature (Celsius) with LM35 and print it
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

int lmPin = A0;

void setup()
{
 Serial.begin(115200);
 pinMode(lmPin, INPUT);
}

float tempC()

328 Make: Sensors

Experiment: Is It Hot in Here?

{
 float raw = analogRead(lmPin); //
 float percent = raw/1023.0; //
 float volts = percent*5.0; //
 return 100.0*volts; //
}

void loop()
{
 Serial.println(tempC());
 delay(200); // ms
}

LM35 is just an analog resistance sensor, so you can measure its voltage with analog
Read(). It returns a raw value between 0 and 1023.

Convert the raw value (0 to 1023) to a percentage of the HIGH voltage (5 V). The per
cent variable will be a float between 0.0 and 1.0.

Convert percentage to volts (between 0 and 5 V).

Return the temperature in Celsius. The formula we used comes from the LM35’s data
sheet.

Figure 12-2. Arduino/LM35 connections

LM35 Code and Connection for Raspberry Pi
Figure 12-3 shows the connection diagram for the Raspberry Pi. Hook it up as shown, and then
run the code in Example 12-2.

329Chapter 12

Experiment: Is It Hot in Here?

Figure 12-3. Raspberry Pi connections for the LM35

Because the maximum output voltage of LM35 is 1.5 V at 150 C, there is no danger of going
over Raspberry Pi’s maximum safe input voltage level of 3.3 V.

Example 12-2. temperature_lm35.py
temperature_lm35.py - print temperature
(c) BotBook.com - Karvinen, Karvinen, Valtokari
import time
import botbook_mcp3002 as mcp #
#LM35 data pin voltage keeps under 2V so no
#level conversion needed
def main():
 while True:
 rawData = mcp.readAnalog() #
 percent = rawData / 1023.0 #
 volts = percent * 3.3 #
 temperature = 100.0 * volts #
 print("Current temperature is %.1f C " % temperature)
 time.sleep(0.5)

330 Make: Sensors

Experiment: Is It Hot in Here?

if __name__ == "__main__":
 main()

The botbook_mcp3002.py library file must be in the same directory as this program
(temperature_lm35.py). You must also install the spidev library, which is imported by
botbook_mcp3002. See the comments at the top of botbook_mcp3002/
botbook_mcp3002.py or “Installing SpiDev” on page 56.

Read voltage using MCP3002 analog-to-digital converter and botbook_mcp3002 library.
The raw value is an integer between 0 and 1023.

Convert the raw value to a percentage of 3.3 V.

Convert percent to a voltage (between 0 and 3.3 V).

Convert to Celsius using the formula we obtained from the component’s data sheet. See
examples in Table 12-1.

Environment Experiment: Changing Temperature

Air is a very good insulator. You’ll find that your patience will be tested if you take your LM35
temperature sensor (Figure 12-4) to the sauna, fridge, and balcony—it seems to change so
slowly.

Figure 12-4. Measuring cold temperatures

331Chapter 12

Environment Experiment: Changing Temperature

To get quick changes, press an ice cube directly against the LM35. Avoid wetting your wires,
microcontrollers, or breadboard. Now the heat is conducted away from LM35, and the
change of temperature is rapid.

Experiment: Is It Humid in Here?

DHT11 measures humidity and temperature (Figure 12-5).

Figure 12-5. DHT11 humidity sensor

The protocol that the DHT11 uses is weird. It sends bits as very short pulses very rapidly.
Arduino doesn’t have an operating system, so it’s more real-time than Raspberry Pi and
can easily read these pulses. But even Arduino needs to be coded in a special way, as even
the built-in pulseIn() function is not fast enough.

Raspberry Pi is less real-time and has a difficult time reading the pulses reliably. That’s why
you’ll connect Arduino to Raspberry Pi and use Arduino to do the actual reading of the
DHT11. The connection is made using serial over USB. If you want, you can easily apply this
technique to any other sensor.

332 Make: Sensors

Experiment: Is It Humid in Here?

The data pin is normally HIGH. To start reading, the microcontroller sends a LOW pulse of 18
milliseconds.

The DHT11 sends 5-byte packets. As each byte is 8 bits, the packet is 5 B * 8 bit/B = 40 bits.

How Humid Is Your Breath?
How can we change the measured humidity? Just buy an ultrasonic humidifier that uses a
piezoelectric transducer to create mist from water, or book a flight to Thailand. No, wait, there
is an easier way. You have a built-in humidifier in your lungs. Bring the sensor close to your
mouth and breathe (Figure 12-6). Keep checking to see how values change by watching the
Arduino Serial Monitor.

Figure 12-6. Breath to humidity sensor

333Chapter 12

Experiment: Is It Humid in Here?

DHT11 Code and Connection for Arduino
Figure 12-7 shows the connections for Arduino. Wire them up as shown, and then run the
code shown in Example 12-3.

Figure 12-7. DHT11 humidity sensor connected to Arduino

Example 12-3. dht11.ino
// dht11.ino - print humidity and temperature using DHT11 sensor
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int dataPin = 8;

int temperature = -1;
int humidity = -1;

void setup() {
 Serial.begin(115200);
}

int readDHT11() {
 uint8_t recvBuffer[5]; //
 uint8_t cnt = 7;
 uint8_t idx = 0;
 for(int i = 0; i < 5; i++) recvBuffer[i] = 0; //

 // Start communications with LOW pulse
 pinMode(dataPin, OUTPUT);
 digitalWrite(dataPin, LOW);
 delay(18);
 digitalWrite(dataPin, HIGH);

 delayMicroseconds(40); //
 pinMode(dataPin, INPUT);

334 Make: Sensors

Experiment: Is It Humid in Here?

 pulseIn(dataPin, HIGH); //
 // Read data packet
 unsigned int timeout = 10000; // loop iterations
 for (int i=0; i<40; i++) //
 {
 timeout = 10000;
 while(digitalRead(dataPin) == LOW) {
 if (timeout == 0) return -1;
 timeout--;
 }

 unsigned long t = micros(); //

 timeout = 10000;
 while(digitalRead(dataPin) == HIGH) { //
 if (timeout == 0) return -1;
 timeout--;
 }

 if ((micros() - t) > 40) recvBuffer[idx] |= (1 << cnt); //
 if (cnt == 0) // next byte?
 {
 cnt = 7; // restart at MSB
 idx++; // next byte!
 }
 else cnt--;
 }

 humidity = recvBuffer[0]; // % //
 temperature = recvBuffer[2]; // C
 uint8_t sum = recvBuffer[0] + recvBuffer[2];
 if(recvBuffer[4] != sum) return -2; //
 return 0;
}

void loop() {
 int ret = readDHT11();
 if(ret != 0) Serial.println(ret);
 Serial.print("Humidity: "); Serial.print(humidity); Serial.println(" %");
 Serial.print("Temperature: "); Serial.print(temperature); Serial.println(" C");
 delay(2000); // ms
}

The packet from DHT11 is 5 bytes (40 bits) in length.

Initialize the buffer with zeroes.

Wait a very short time for the DHT11 to start sending data.

Receive the DHT11’s response signal.

For each of the 40 bits, perform the operations inside the curly braces.

Uptime in microseconds (µs); this is stored to measure the duration of the pulse.

335Chapter 12

Experiment: Is It Humid in Here?

Measure the pulse with a loop.

If the pulse was longer than 40 µs, it was a 1. Otherwise, that bit is left as its initialized
value, 0. To toggle the corresponding bit in the corresponding byte, a new number is
created with bit shifting (e.g., 1<<2 == 0b100). This bit is then combined with the
previous byte value using a bitwise inplace OR. So if the value was already a 1, it stays
set at 1. If it was a zero, but the new number (0b100) was 1, then this sets it to 1. See
“Bitwise Operations” on page 221 for more details.

Humidity is the first byte of the received packet.

The checksum (byte 4) is the sum of humidity and temperature.

DHT11 Code and Connection for Raspberry Pi
Would you like to combine Arduino and Raspberry Pi to get the best of both worlds? We
hope so, because DHT11 doesn’t like the Raspberry Pi. This code shows you how you can
read data from Arduino, in a way you can easily adapt to other projects.

Even if it’s possible to use DHT11 from Raspberry Pi with complicated code, the result is
not satisfactory. Luckily, Arduino can be used for fast low-level tasks, letting Raspberry Pi
concentrate on the big picture.

After you have tried the code, you should read “Talking to Arduino from Raspberry Pi” on
page 337.

To use the serial port in Raspberry Pi, you must first release it from its default use as a login
terminal. See “Enabling the Serial Port in Raspberry Pi” on page 320 for instructions. Wire
them up as shown in Figure 12-8, and then run the code shown in Example 12-4.

Figure 12-8. Arduino connected to Raspberry Pi

336 Make: Sensors

Experiment: Is It Humid in Here?

Example 12-4. dht11_serial.py
dht11_serial.py - print humidity and temperature using DHT11 sensor
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import serial #

def main():
 port = serial.Serial("/dev/ttyACM0", baudrate=115200, timeout=None) #
 while True:
 line = port.readline() #
 arr = line.split() #
 if len(arr) < 3: #
 continue #
 dataType = arr[2]
 data = float(arr[1]) #
 if dataType == '%':
 print("Humidity: %.1f %%" % data)
 else:
 print("Temperature: %.1f C" % data)

 time.sleep(0.01)

if __name__ == "__main__":
 main()

You might need to run these commands to install this library: sudo apt-get update &&
sudo apt-get -y install python-serial.

Open the USB serial for reading. The Arduino program must use the same speed, 115,200
bit/s to communicate.

Read one line, until reaching a newline. The readline() function is a blocking function,
so it will wait here until it reads something in.

Split the text string into a list. This makes it easy to parse the human-readable input from
the Arduino. For example, "Humidity: 25 %".split() creates a convenient list: ['Hu
midity:', '25', '%'].

If the line length is incorrect…

…ignore this line and jump to the next iteration of the while loop.

Typecast (convert) the string (“25”) to a number (25.0).

Talking to Arduino from Raspberry Pi
Arduino is real-time, robust, and simple. Also, Arduino has a built-in ADC (analog-to-digital
converter). Raspberry Pi is high level, and runs a whole Linux operating system. Why not com-
bine the benefits?

337Chapter 12

Experiment: Is It Humid in Here?

You can use Arduino to directly interact with sensors and outputs, and control Arduino
from Raspberry Pi.

First, make the sensors work with Arduino, and print the readings to serial. Use your normal
desktop computer and Arduino IDE for this. You can write to serial with Serial.println().
Use the Serial Monitor (Tools→Serial Monitor) to see what your program prints. Only pro-
ceed to the Raspberry Pi part once you are happy with how the Arduino part of your project
works.

The connection between Arduino and Raspberry Pi is simple: just connect them with a
USB cable.

For a more intimate combination of the Arduino platform and Raspberry Pi, check
out the AlaMode for Raspberry Pi, which incorporates an Arduino-compatible mi-
crocontroller board into a Raspberry Pi expansion that snaps right on top of your
Pi. There’s no need to connect them by USB, since they use the Raspberry Pi’s ex-
pansion header.

Arduino communicates with serial over USB. To read serial from Raspberry Pi, use Python
and PySerial. For a complete example of using PySerial, see Figure 12-8 or Chapter 7 of
Make: Arduino Bots and Gadgets.

You’ll have Arduino print normal text, then extract the numbers with Python’s string han-
dling. In many prototyping applications, you don’t have to design a new low-level protocol.

For example, consider an Arduino program printing the following:

Humidity: 83 %

If you have read this into a Python string, use split() to separate the words into a list:

>>> s="Humidity: 83 %"
>>> s.split()
['Humidity:', '83', '%']

You can refer to items of the list with square brackets, []. The first item is number zero. This
prints the second item:

>>> x = s.split()[1]
>>> x
'83'

Finally, convert the string “83” into integer 83 so you can process it as a number. You can
perform sensible mathematical operations and comparisons with a number, but not with
a string.

>>> int(x)
83

You can use any Arduino-compatible sensor from Raspberry Pi this way.

338 Make: Sensors

Experiment: Is It Humid in Here?

Atmospheric Pressure GY65

Atmospheric pressure can help you forecast weather. High pressure means sunny, clear weather.
Low pressure means rainy, snowy, or cloudy weather.

Figure 12-9. The GY65 barometric pressure sensor

Normal air pressure is about 1,000 hPa (hectopascals). The exact value depends on your altitude.

1,000 hPa = 100,000 Pa = 1,000 mbar = 1 bar

The pressure doesn’t vary much, even in extreme weather. The world records are a high of 1,084
hPa and a low of 870 hPa (inside a typhoon). Typical changes in normal weather are a few
hectopascals.

Pressure changes in the lower atmosphere are tiny compared with other everyday pressure
changes. A hand-pumped bike tire has pressure of 4,000 hPa. Outside a passenger airplane over
30,000 feet, the pressure is less than 300 hPa.

So what level of atmospheric pressure is considered high, then? Meteorologists say that high
pressure is just relatively high, compared with the pressure of surrounding areas.

You can still predict weather with pressure over time. If pressure goes up, better weather is
coming. The faster it changes, the sunnier it will be.

339Chapter 12

Atmospheric Pressure GY65

For a simpler forecast, you can compare current pressure to expected pressure for your
altitude. You can find out your altitude with a GPS or Google Maps. According to SparkFun,
the distributor of the GY65 module we used, a difference of +2.5 hPa means great, sunny
weather. Conversely, low pressure of 2.5 hPa under the normal pressure means bad, rainy
weather.

GY65 is a breakout board for the BMP085 sensor. You can find the data sheet by searching
for “BMP085 digital pressure sensor data sheet.”

GY65 Code and Connection for Arduino
Figure 12-10 shows the connection diagram for Arduino. Hook it up as shown, and then
run the code shown in Example 12-5.

Figure 12-10. GY65 atmospheric pressure sensor connected to Arduino

Arduino code uses the gy_65 library from http://botbook.com. If you want an in-depth,
technical view how the I2C/SMBus protocol works, have a look at “GY65 Code and Con-
nection for Raspberry Pi” on page 346.

Example 12-5. gy_65.ino
// gy_65.ino - print altitude, pressure and temperature with GY-65 BMP085
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

#include <Wire.h>
#include <gy_65.h> //

void setup() {
 Serial.begin(115200);
 readCalibrationData(); //
}

void loop() {
 float temp = readTemperature();

340 Make: Sensors

Atmospheric Pressure GY65

 float pressure = readPressure(); //
 float altitude = calculateAltitude(pressure); //

 Serial.print("Altitude: ");
 Serial.print(altitude,2);
 Serial.println(" m");
 Serial.print("Pressure: ");
 Serial.print(pressure,2);
 Serial.println(" Pa");
 Serial.print("Temperature: ");
 Serial.print(temp,2);
 Serial.println("C");
 delay(1000);
}

The gy_65 library makes this sensor very easy to use. It hides the complicated I2C
protocol that’s behind the sensor. The library folder gy_65 must be in the same directory
as the main program, gy_65.ino.

Update global variables.

With the library, it’s trivial to retrieve the pressure in Pascals.

Air is thinner when you are higher, so pressure can also be used for altitude estimation.

Using Arduino Libraries
If you have a lot of code, it’s best to split it into multiple files. The Arduino code for GY65 is such
code. Also, you’ll use the same code again in “Test Project: E-paper Weather Forecast” on page
353.

The library is in a folder, within the same directory as the main program (you will probably also
encounter libraries that need to be installed into your Arduino sketch folder’s libraries subdir-
ectory). Here is the folder structure:

gy_65.ino # the main program
gy_65/ # folder that contains the library
gy_65/gy_65.cpp # code for the library
gy_65/gy_65.h # prototypes of each library function

The location of the main program, gy_65.ino, should seem normal to you. Every Arduino project
has one main program.

The library is in its own folder. The code for the library is in gy_65.cpp. This code looks similar to
other Arduino code you have seen.

The header file, gy_65.h, contains the prototypes of the functions in the cpp file. Prototypes are
just copies of the first line of each function in gy_65.cpp. For example, the header file has the
line:

float readTemperature();

341Chapter 12

Atmospheric Pressure GY65

GY65 Arduino Library Explained
You can use the GY65 without going through the implementation details of the library.
But if you want a detailed understanding of how communication with the GY65 works,
read on.

You can learn the communication protocol by studying the library itself, the Raspberry Pi
program (Figure 12-11), or both.

This section also introduces you to creating your own C++ libraries for Arduino. You should
also see Arduino’s documentation on Writing a Library for Arduino.

The header file gy_65.h (see Example 12-6) has prototypes for each function. It’s simply a
list of functions in the cpp file, which is where you’ll find the actual implementation of those
functions.

Example 12-6. gy_65.h
// gy_65.h - library for altitude, pressure and temperature with GY-65 BMP085
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

void readCalibrationData();
float readTemperature();
float readPressure();
float calculateAltitude(float pressure);

The implementation of the definitions from the h file are in a cpp file, gy_65.cpp
(Example 12-7). If some parts of this code seem demanding, you might want to review the
I2C code explanation in Figure 8-5, as well as “Hexadecimal, Binary, and Other Numbering
Systems” on page 219 and “Bitwise Operations” on page 221.

Example 12-7. gy_65.py
// gy_65.cpp - library for altitude, pressure and temperature with GY-65 BMP085
// (c) BotBook.com - Karvinen, Karvinen, Valtokari
#include <Arduino.h>
#include <Wire.h>
#include "gy_65.h"
const char i2c_address = 0x77;
int OSS = 0; // Oversampling
const long atmosphereSeaLevel = 101325; // Pa

struct calibration_data //
{
 int16_t ac1;
 int16_t ac2;
 int16_t ac3;
 int16_t ac4;
 int16_t ac5;
 int16_t ac6;

342 Make: Sensors

Atmospheric Pressure GY65

 int16_t b1;
 int16_t b2;
 int16_t mb;
 int16_t mc;
 int16_t md;
};

calibration_data caldata;

long b5;

int16_t swap_int16_t(int16_t value) //
{
 int16_t left = value << 8;
 int16_t right = value >> 8;
 right = right & 0xFF;
 return left | right ;
}

unsigned char read_i2c_unsigned_char(unsigned char address) //
{
 unsigned char data;
 Wire.beginTransmission(i2c_address);
 Wire.write(address);
 Wire.endTransmission();
 Wire.requestFrom(i2c_address,1);
 while(!Wire.available());
 return Wire.read();
}
void read_i2c(unsigned char point, uint8_t *buffer, int size)
{
 Wire.beginTransmission(i2c_address);
 Wire.write(point);
 Wire.endTransmission();

 Wire.requestFrom(i2c_address,size);

 int i = 0;

 while(Wire.available() && i < size) {
 buffer[i] = Wire.read();
 i++;
 }

 if(i != size) {
 Serial.println("Error reading from i2c");
 }

}

int read_i2c_int(unsigned char address) {
 int16_t data;
 read_i2c(address,(uint8_t *)&data,sizeof(int16_t));
 data = swap_int16_t(data);

343Chapter 12

Atmospheric Pressure GY65

 return data;
}

void readCalibrationData() //
{
 Wire.begin();
 read_i2c(0xAA,(uint8_t *)&caldata,sizeof(calibration_data)); //

 uint16_t *p = (uint16_t*)&caldata; //
 for(int i = 0; i < 11; i++) { //
 p[i] = swap_int16_t(p[i]);
 }
}

float readTemperature() { //
 // Read raw temperature
 Wire.beginTransmission(i2c_address);
 Wire.write(0xF4); // Register
 Wire.write(0x2E); // Value
 Wire.endTransmission();
 delay(5); //
 unsigned int rawTemp = read_i2c_int(0xF6);

 // Calculate true temperature
 long x1,x2;
 float t;
 x1 = (((long)rawTemp - (long)caldata.ac6) * (long)caldata.ac5) / pow(2,15);
 long mc = caldata.mc;
 int md = caldata.md;
 x2 = (mc * pow(2,11)) / (x1 + md);
 b5 = x1 + x2;
 t = (b5 + 8) / pow(2,4);
 t = t / 10;
 return t; // Celsius
}

long getRealPressure(unsigned long up){ //
 long x1, x2, x3, b3, b6, p;
 unsigned long b4, b7;
 int b1 = caldata.b1;
 int b2 = caldata.b2;
 long ac1 = caldata.ac1;
 int ac2 = caldata.ac2;
 int ac3 = caldata.ac3;
 unsigned int ac4 = caldata.ac4;

 b6 = b5 - 4000;
 x1 = (b2 * (b6 * b6) / pow(2,12)) / pow(2,11);
 x2 = (ac2 * b6) / pow(2,11);
 x3 = x1 + x2;

 b3 = (((ac1*4 + x3) << OSS) + 2) / 4;
 x1 = (ac3 * b6) / pow(2,13);
 x2 = (b1 * ((b6 * b6) / pow(2,12))) / pow(2,16);

344 Make: Sensors

Atmospheric Pressure GY65

 x3 = ((x1 + x2) + 2) / 4;
 b4 = (ac4 * (unsigned long)(x3 + 32768)) / pow(2,15);

 b7 = ((unsigned long)up - b3) * (50000 >> OSS);
 if (b7 < 0x80000000) p = (b7 * 2) / b4;
 else p = (b7 / b4) * 2;

 x1 = (p / pow(2,8)) * (p / pow(2,8));
 x1 = (x1 * 3038) / pow(2,16);
 x2 = (-7357 * p) / pow(2,16);
 p += (x1 + x2 + 3791) / pow(2,4);

 long temp = p;
 return temp;
}

float readPressure() { //
 // Read uncompensated pressure
 Wire.beginTransmission(i2c_address);
 Wire.write(0xF4); // Register
 Wire.write(0x34 + (OSS << 6)); // Value with oversampling setting.
 Wire.endTransmission();

 delay(2 + (3 << OSS));

 unsigned char msb,lsb,xlsb;
 unsigned long rawPressure = 0;
 msb = read_i2c_unsigned_char(0xF6);
 lsb = read_i2c_unsigned_char(0xF7);
 xlsb = read_i2c_unsigned_char(0xF8);

 rawPressure = (((unsigned long) msb << 16) |
 ((unsigned long) lsb << 8) |
 (unsigned long) xlsb) >> (8-OSS);

 return getRealPressure(rawPressure);
}

float calculateAltitude(float pressure) { //
 float pressurePart = pressure / atmosphereSeaLevel;
 float power = 1 / 5.255;
 float result = 1 - pow(pressurePart, power);
 float altitude = 44330*result;
 return altitude; // m
}

Global structs and variables. The calibration data will be read from the sensor’s non-
volatile (EEPROM) memory.

Take a two-byte integer, swap the left byte and the right byte. This is needed because
the sensor represents numbers differently than the Arduino does.

345Chapter 12

Atmospheric Pressure GY65

These are convenience functions: read_i2c_unsigned_char(), read_i2c(), and
read_i2c_int(). They are wrappers for functionality in Wire.h to make it easier to use in
this program.

Read the calibration data from the non-volatile EEPROM memory of the sensor. The
format is described on the BMP085 data sheet.

The trick is to use your own calibration_data struct to decode the EEPROM data. The
bytes from the device are overlaid on the struct residing in Arduino’s memory. The struct
is created so that each variable has a length that corresponds to each piece of data read
from the EEPROM. After this line, caldata is filled with bytes from the sensor, and each
piece of data is accessible through the struct.

As the sensor has different endianness than Arduino, you must swap the bytes of each
two-byte integer. First, get a two-byte pointer to the start of caldata…

…and then walk through caldata and swap the bytes. Notice how the two-byte (16 bit)
pointer correctly points to a new two-byte integer on each iteration, instead of naively
pointing to single bytes.

readTemperature() first reads the raw temperature using I2C. Then it calculates the
actual temperature, using a formula from the data sheet.

The datasheet specifies that a delay of at least 4.5 ms is needed.

getRealPressure() takes the raw temperature read by readPressure(), then returns
the result in Pascals (Pa). It uses the calibration data read by readCalibrationData(),
and applies the formula from page 13 of the BMP085 data sheet.

Read the raw pressure using I2C. The register values and data format are taken from the
data sheet.

Estimate altitude from pressure. The formula is from the international barometric
formula, available on the BMP085 data sheet, page 14.

GY65 Code and Connection for Raspberry Pi
This Raspberry Pi code is easy to use, and you should try running it before reading it in
detail. If you go through it line by line, you’ll see that the code can be quite demanding to
understand. With Raspberry Pi, the I2C communication with the GY65 sensor is not in a
separate file, so the code is longer than the Arduino example. The code uses some tech-
niques you have already seen, such as the ones described in “Hexadecimal, Binary, and
Other Numbering Systems” on page 219 and “Bitwise Operations” on page 221.

346 Make: Sensors

Atmospheric Pressure GY65

Figure 12-11. GY65 atmospheric pressure sensor connected to Raspberry Pi

Example 12-8. gy_65.py
gy_65.py - print altitude,pressure and temperature to serial
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import smbus # sudo apt-get -y install python-smbus #
import time
import struct

bus = None
address = 0x77
caldata = None

atmosphereSeaLevel = 101325.0
OSS = 0
b5 = 0

def readCalibrationData(): #
 global bus, caldata
 bus = smbus.SMBus(1)
 rawData = ""

 for i in range(22):
 rawData += chr(bus.read_byte_data(address, 0xAA+i)) #

347Chapter 12

Atmospheric Pressure GY65

 caldata = struct.unpack('>hhhhhhhhhhh', rawData) #

def readTemperature():
 global b5
 bus.write_byte_data(address, 0xF4, 0x2E) #
 time.sleep(0.005) #
 rawTemp = bus.read_byte_data(address, 0xF6) << 8 #
 rawTemp = rawTemp | bus.read_byte_data(address, 0xF7)
 x1 = ((rawTemp - caldata[5]) * caldata[4]) / 2**15
 x2 = (caldata[9] * 2**11) / (x1 + caldata[10])
 b5 = x1 + x2
 temp = (b5 + 8) / 2**4
 temp = temp / 10.0
 return temp

def readPressure(): #
 bus.write_byte_data(address, 0xF4, 0x34 + (OSS << 6))
 time.sleep(0.005)
 rawPressure = bus.read_byte_data(address, 0xF6) << 16
 rawPressure = rawPressure | bus.read_byte_data(address, 0xF7) << 8
 rawPressure = rawPressure | bus.read_byte_data(address, 0xF8)
 rawPressure = rawPressure >> (8 - OSS)

 #Calculate real pressure
 b6 = b5 - 4000

 x1 = (caldata[7] * ((b6 * b6) / 2**12)) / 2**11
 x2 = caldata[1] * b6 / 2**11
 x3 = x1 + x2
 b3 = (((caldata[0] * 4 + x3) << OSS) + 2) / 4
 x1 = caldata[2] * b6 / 2**13
 x2 = (caldata[6] * ((b6 * b6) / 2**12)) / 2**16
 x3 = ((x1 + x2) + 2) / 2*2
 b4 = (caldata[3] * (x3 + 32768)) / 2**15
 b4 = b4 + 2**16 # convert from signed to unsigned
 b7 = (rawPressure - b3) * (50000 >> OSS)
 if b7 < 0x80000000:
 p = (b7 * 2) / b4
 else:
 p = (b7 / b4) * 2
 x1 = (p / 2**8) * (p / 2**8)
 x1 = (x1 * 3038) / 2**16
 x2 = (-7357 * p) / 2**16
 p = p + (x1 + x2 + 3791) / 2**4
 return p

def calculateAltitude(pressure): #
 pressurePart = pressure / atmosphereSeaLevel;
 power = 1 / 5.255;
 result = 1 - pressurePart**power;
 altitude = 44330*result;
 return altitude

348 Make: Sensors

Atmospheric Pressure GY65

def main():
 readCalibrationData()
 while True:
 temperature = readTemperature()
 pressure = readPressure()
 altitude = calculateAltitude(pressure)
 print("Altitude %.2f m" % altitude)
 print("Pressure %.2f Pa" % pressure) #
 print("Temperature %.2f C" % temperature)
 time.sleep(10)

if __name__ == "__main__":
 main()

The SMBus standard is a subset of I2C. The smbus library makes it easy to use. The python-
smbus package must be installed on Raspberry Pi for this to work (see “SMBus and I2C
Without Root” on page 218).

The sensor ships with 176 bits of calibration data stored into its EEPROM.

Read data from address 0xAA, 0xAB, on up through 0xBF. Append these character values
to the string. The string ends up having 22 bytes (176 bits). You didn’t have to think
about how many bits the struct had in Arduino when you were doing this, because the
struct’s length is defined by the length of the variables that are inside it.

Unpack 11 big endian (>) short two-byte integers (h). This consumes all the bytes from
the string.

Write the command for “read temperature” (0x2E) to the sensor’s control register (0xF4).

Wait for the measurement to finish.

Read the answer, and start manipulating the raw number into a temperature in Celsius.
The formulas are from the data sheet.

The readPressure() function works just like readTemperature().

The higher you go, the lower the pressure. Based on this, the international barometric
formula can give you an estimate of your altitude.

100,000 Pa = 1 bar

349Chapter 12

Atmospheric Pressure GY65

Experiment: Does Your Plant Need Watering? (Build a
Soil Humidity Sensor)

A soil humidity sensor is a simple analog resistance sensor. Stick it in the soil to see if your
plant needs watering.

Normal tap water and groundwater contain diluted salts and other material. This makes
water conductive. The soil humidity sensor (Figure 12-12) simply measures that conduc-
tivity.

Figure 12-12. Soil humidity sensor

Some soil humidity sensors have a built-in circuit. The sensor used here doesn’t have built-
in electronics, so you could make your own from two pieces of metal (for the sensor probes)
and use Arduino or Raspberry Pi to measure the resistance. The circuit uses a 1 megohm
resistor (brown-black-green).

Soil Sensor Code and Connection for Arduino
Figure 12-13 shows the wiring diagram for Arduino. Hook it up as shown, and then run the
code from Example 12-9.

350 Make: Sensors

Experiment: Does Your Plant Need Watering? (Build a Soil Humidity Sensor)

Figure 12-13. Soil humidity sensor connected to Arduino

Example 12-9. soil_humidity_sensor.ino
// soil_humidity_sensor.ino - read soil humidity by measuring its resistance.
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

const int sensorPin = A0;
int soilHumidity = -1;

void setup() {
 Serial.begin(115200);
}

void loop() {
 soilHumidity = analogRead(sensorPin); //
 Serial.println(soilHumidity);
 delay(100);
}

It’s a simple analog resistance sensor.

Soil Sensor Code and Connection for Raspberry Pi
Figure 12-14 shows the connection diagram for Raspberry Pi. Hook it up as shown, and then
run the code from Example 12-10.

351Chapter 12

Experiment: Does Your Plant Need Watering? (Build a Soil Humidity Sensor)

Figure 12-14. Soil humidity sensor connected to Raspberry Pi

Example 12-10. soil_humidity_sensor.py
soil_humidity_sensor.py - read soil humidity by measuring its resistance.
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import time
import botbook_mcp3002 as mcp

def main():
 while True:
 h = mcp.readAnalog() #
 h = h / 1024 * 100 #
 print("Current humidity is %d %%" % h)
 time.sleep(5)

if __name__ == "__main__":
 main()

352 Make: Sensors

Experiment: Does Your Plant Need Watering? (Build a Soil Humidity Sensor)

It’s a simple analog resistance sensor. As with other analog resistance sensors in this
book, the botbook_mcp3002.py library must be in the same directory as this program.
You must also install the spidev library, which is imported by botbook_mcp3002. See the
comments at the top of botbook_mcp3002/botbook_mcp3002.py or “Installing SpiDev”
on page 56.

The raw value is converted to percentage of the maximum measurement. For display
purposes, h is actually 100 times percentage, e.g., .53 becomes 53 so it can be displayed
as 53%.

Test Project: E-paper Weather Forecast

Create your own weather forecast on e-paper. The weather forecast is based on changes in
atmospheric pressure. The e-paper display is quite special: you can see it well in bright light, it
looks a bit like paper, and the picture stays on without consuming electricity.

You’re reading the hardest project in the book. If you haven’t practiced with the easier
experiments and projects already, you might want to go back and complete some of
those first.

Figure 12-15. E-paper Weather Forecast

353Chapter 12

Test Project: E-paper Weather Forecast

What You’ll Learn
In the E-paper Weather Forecast project, you’ll learn how to:

• Build a box that shows a graphical weather forecast.

• Predict weather using atmospheric pressure.

• Display graphics on e-paper with zero energy consumption.

• Make Arduino sleep to conserve power.

Figure 12-16. E-paper display

Weather Forecast Code and Connection for Arduino
The code combines many techniques. You can just build it first, and then learn about the
implementation details once it works.

To create your own version, it’s not required that you understand all the code. After you
have your weather station running, have a look at drawScreen(). It’s the main function,
and quite high level. For example, you could start by changing pos, the location where the
plus sign is drawn:

int pos = 10;
drawCharacter(pos, 70, font,'+');

354 Make: Sensors

Test Project: E-paper Weather Forecast

Techniques used in this code:

• Reading data from the GY65 atmospheric pressure sensor (“Atmospheric Pressure GY65”
on page 339).

• Working with hexadecimal numbers, binary numbers, and bitwise operations. See (“Hex-
adecimal, Binary, and Other Numbering Systems” on page 219 and “Bitwise Operations”
on page 221).

• Making Arduino sleep to save power. This uses low-level commands to write to ATmega
(the chip that powers Arduino) registers.

• Drawing on e-paper display, using the EPD library.

• Storing images as header files (as in imagename.h). This is explained in detail in “Storing
Images in Header Files” on page 362.

This code uses the Arduino Mega. It would need modification to work on another board.

Figure 12-17 shows the connections for the Arduino Mega. Wire it up as shown, and then run
the code from Example 12-11.

Figure 12-17. Connections on Arduino Mega

Example 12-11. weather_station.ino
// weather_station.ino - print weather data to epaper
// (c) BotBook.com - Karvinen, Karvinen, Valtokari

#include <inttypes.h>
#include <ctype.h>

#include <SPI.h>

355Chapter 12

Test Project: E-paper Weather Forecast

#include <Wire.h>
#include <EPD.h> //
#include <gy_65.h> //
#include <avr/sleep.h>
#include <avr/power.h>

#include "rain.h" //
#include "sun.h"
#include "suncloud.h"
#include "fonts.h"

uint8_t imageBuffer[5808]; // 264 * 176 / 8

const int pinPanelOn = 2;
const int pinBorder = 3;
const int pinDischarge = 4;
const int pinPWM = 5;
const int pinReset = 6;
const int pinBusy = 7;
const int pinEPDcs = 8;

EPD_Class EPD(EPD_2_7,
 pinPanelOn,
 pinBorder,
 pinDischarge,
 pinPWM,
 pinReset,
 pinBusy,
 pinEPDcs,
 SPI);

float weatherDiff;
float temperature;

const int sleepMaxCount = 10; // min
volatile int arduinoSleepingCount = sleepMaxCount;

void setup() {
 Serial.begin(115200);
 pinMode(pinPanelOn, OUTPUT);
 pinMode(pinBorder, OUTPUT);
 pinMode(pinDischarge, INPUT);
 pinMode(pinPWM, OUTPUT);
 pinMode(pinReset, OUTPUT);
 pinMode(pinBusy, OUTPUT);
 pinMode(pinEPDcs, OUTPUT);

 digitalWrite(pinPWM, LOW);
 digitalWrite(pinReset, LOW);
 digitalWrite(pinPanelOn, LOW);
 digitalWrite(pinDischarge, LOW);
 digitalWrite(pinBorder, LOW);
 digitalWrite(pinEPDcs, LOW);

356 Make: Sensors

Test Project: E-paper Weather Forecast

 SPI.begin(); //
 SPI.setBitOrder(MSBFIRST); //
 SPI.setDataMode(SPI_MODE0); //
 SPI.setClockDivider(SPI_CLOCK_DIV4); //

 WDTCSR |= (1<<WDCE) | (1<<WDE); //
 WDTCSR = 1<<WDP0 | 1<<WDP3; //
 WDTCSR |= _BV(WDIE); //
 MCUSR &= ~(1 << WDRF); //

 for(int i = 0; i < 5808; i++) //
 imageBuffer[i] = 0;

 readCalibrationData(); //

}

char characterMap[14] = {'+', '-', 'C', 'd',
 '0', '1', '2', '3',
 '4', '5', '6', '7',
 '8', '9'}; //

void drawCharacter(int16_t x, int16_t y, const uint8_t *bitmap, char character) {
 int charIndex = -1;
 for(int i = 0; i < 14; i++) { //
 if(character == characterMap[i]) {
 charIndex = i;
 break;
 }
 }
 if(charIndex == -1) return;
 drawBitmap(x,y,bitmap,charIndex*25,0,25,27,350); //
}

void drawBitmap(int16_t x, int16_t y, const uint8_t *bitmap, int16_t x2,
 int16_t y2, int16_t w, int16_t h, int16_t source_width) { //

 int16_t i, j, byteWidth = source_width / 8;

 for(j=y2; j<y2+h; j++) { //
 for(i=x2; i<x2+w; i++) {
 byte b= pgm_read_byte(bitmap+j * byteWidth + i / 8);
 if(b & (128 >> (i & 7))) {
 drawPixel(x+i-x2, y+j-y2, true);
 }
 }
 }
}

void drawPixel(int x, int y, bool black) { //
 int bit = x & 0x07;
 int byte = x / 8 + y * (264 / 8);
 int mask = 0x01 << bit;

357Chapter 12

Test Project: E-paper Weather Forecast

 if(black == true) {
 imageBuffer[byte] |= mask;
 } else {
 imageBuffer[byte] &= ~mask;
 }
}

void drawBufferToScreen() { //
 for (uint8_t line = 0; line < 176 ; ++line) {
 EPD.line(line, &imageBuffer[line * (264 / 8)], 0, false, EPD_inverse);
 }
 for (uint8_t line = 0; line < 176 ; ++line) {
 EPD.line(line, &imageBuffer[line * (264 / 8)], 0, false, EPD_normal);
 }
}

void drawScreen() { //
 EPD.begin();
 EPD.setFactor(temperature);
 EPD.clear();
 if(weatherDiff > 250) { // Pa
 // Sunny
 drawBitmap(140,30,sun,0,0,117,106,117); //
 } else if ((weatherDiff <= 250) || (weatherDiff >= -250)) {
 // Partly cloudy
 drawBitmap(140,30,suncloud,0,0,117,106,117);
 } else if (weatherDiff < -250) {
 // Rain
 drawBitmap(140,30,rain,0,0,117,106,117);
 }
 //Draw temperature
 String temp = String((int)temperature);

 int pos = 10;
 drawCharacter(pos,70,font,'+'); //
 pos += 25;
 drawCharacter(pos,70,font,temp.charAt(0));
 pos += 25;
 if(abs(temperature) >= 10) {
 drawCharacter(pos,70,font,temp.charAt(1));
 pos += 25;
 }
 drawCharacter(pos,70,font,'d');
 pos += 25;
 drawCharacter(pos,70,font,'C');

 drawBufferToScreen(); //

 EPD.end();

 for(int i = 0; i < 5808; i++) //
 imageBuffer[i] = 0;
}

358 Make: Sensors

Test Project: E-paper Weather Forecast

void loop() {
 Serial.println(temperature); //
 if(arduinoSleepingCount >= sleepMaxCount) { //
 readWeatherData(); //
 drawScreen();
 arduinoSleepingCount = 0; //
 arduinoSleep(); //
 } else {
 arduinoSleep();
 }
}

const float currentAltitude = 40.00; // Installation altitude in meters
const long atmosphereSeaLevel = 101325; // Pa
const float expectedPressure = atmosphereSeaLevel * pow((1-currentAltitude / 44330), 5.255);

void readWeatherData(){
 temperature = readTemperature();
 float pressure = readPressure();
 weatherDiff = pressure - expectedPressure;
}

ISR(WDT_vect) //
{
 arduinoSleepingCount++;
}

void arduinoSleep() { //
 set_sleep_mode(SLEEP_MODE_PWR_DOWN);
 sleep_enable();
 sleep_mode(); //
 sleep_disable(); //
 power_all_enable();
} //

Library for e-paper display. You can download the library from https://github.com/repa
per/gratis/tree/master/Sketches/libraries. Follow the instructions at http://arduino.cc/en/
Guide/Libraries to install the library.

This is the botbook.com GY65 library. You used it earlier in “Atmospheric Pressure GY65”
on page 339. Copy the library directory into your sketch folder (if you downloaded the
sample code for this book, it will already be in there).

Images are saved as header files.

Prepare SPI before we talk to the e-paper display.

Configure SPI to have the most significant bit first (see “Bitwise Operations” on page 221).

359Chapter 12

Test Project: E-paper Weather Forecast

Configure SPI for SPI_MODE0: this sets the clock polarity to mode CPOL 0, and the clock
phase to mode CPHA 0. This means that data is captured on the clock’s rising edge (when
the clock signal goes from LOW to HIGH). Data is propagated on the falling edge (when
the clock signal goes from HIGH to LOW). Modes (SPI_MODE0) are listed in Arduino
documentation (Help→Reference→Libraries→SPI). The SPI settings for the sensor are on
its data sheet.

SPI_CLOCK_DIV4 sets the SPI clock to 1/4 of the Arduino CPU frequency. This project
uses Arduino Mega, so the SPI clock frequency is 16 MHz / 4 = 4 MHz.

Enable the watchdog timer. This is what will allow Arduino to go into a deep sleep. Set
WDCE (watch dog change enable) and WDE (watch dog enable) in WDTCSR (Watchdog
Timer Control Register). These registers are so low level that they are from ATmega
documentation (instead of being part of the core Arduino library). Arduino Mega uses
the ATmega 1280 chip, so you can find the documentation by searching for “ATmega
1280 data sheet.” The symbol |= is an inplace bitwise XOR (performs an XOR against the
variable’s current value and replaces the variable’s value with the result). The symbol <<
represents the bit shift operation. See “Bitwise Operations” on page 221.

Set the watchdog to wake up the Arduino every 8 seconds.

Enable the watchdog interrupt. WDIE is “watch dog interrupt enable.”

Clear the watchdog system reset flag (WDRF) from the microcontroller unit status
register (MCUSR).

Initialize the image buffer (where graphics are drawn before being displayed) with
zeroes.

For details about using the GY65 sensor, see the code explanations in “Atmospheric
Pressure GY65” on page 339.

List of the 14 characters that are in font.h, a large image that contains these characters.

Find the index of the character in the font.h image.

Draw a character to screen. In practice, the bitmap will contain a font, a big picture with
characters side by side. The calculation just selects one of these characters.

drawBitmap() takes a source bitmap, position, and dimensions. It then draws each pixel
of the picture to an intermediate image buffer (but does not yet display it on the e-
paper display).

Traverse the area two dimensionally to draw the bitmap one pixel at a time.

Draw one pixel to image buffer (but not yet to the e-paper display). The image is stored
one bit per pixel, so every byte (8 bits) contains 8 pixels. The width of the display is 264
pixels, so one line is stored in 264/8 = 33 bytes. The code then traverses over each bit,
changing it to 1 or 0 as needed.

360 Make: Sensors

Test Project: E-paper Weather Forecast

Blit the already drawn graphics from imageBuffer to screen. This uses the EPD library.
The display has 176 lines, 264 dots per line. As one bit represents one pixel, the display
has 264/8 (33) bytes per line. Blitting the image is a simple matter of drawing each byte
of imageBuffer, using EPD.line.

drawScreen() uses the GY65 library to measure environment, and the EPD library to
draw on the e-paper display. The larger the pressure difference, the worse the weather.
If you want to create your own version of the program, this drawScreen() function is
where you should begin your customizations.

Draw the image from sun.h to imageBuffer. To put your own images on the screen, use
this function. The parameters are drawBitmap(imageBufferX, imageBufferY, source
Image, sourceX, sourceY, sourceWidth, sourceHeight, totalSourceWidth). The
first two are the target position (imageBufferX, imageBufferY). The rest of the parameters
concern the source bitmap: the source bitmap (sourceImage), what to take from the
source bitmap (sourceX, sourceY, sourceWidth, sourceHeight). Finally, the total width of
the source bitmap is listed (totalSourceWidth).

Write a character to image buffer.

Blit the imageBuffer from memory to the e-paper display. Without this, none of the
images would be shown.

Clear the image buffer.

With an unfamiliar component such as a fancy e-paper display, it’s a good idea to confirm
sensor data separately by writing it to the serial console.

The watchdog wakes Arduino periodically. If enough time has passed…

…it’s time to run the meat of the program.

Then reset the sleep counter…

…and fall back to sleep to save power.

The ISR() Interrupt Service Routine is called automatically. ISR() runs every time Arduino
wakes up, just before anything else runs. This code wakes up Arduino every 8 seconds,
so ISR() runs every 8 seconds.

Make Arduino fall asleep to conserve power. As you saw earlier, this required quite some
preparation.

This command makes Arduino sleep and stop executing code. Nothing happens after
this—until the watchdog wakes up Arduino.

When the watchdog wakes Arduino, code flow continues on this line and wakeup starts.

You worked through all this difficult code? Pat yourself on the back—you’re on your way
to becoming a guru!

361Chapter 12

Test Project: E-paper Weather Forecast

Environment Experiment: Look Ma, No Power Supply

E-paper displays use power only to change the picture on the display. They don’t need any
energy to leave a picture on the screen.

You can try it yourself. Use Arduino to display something on your e-paper display. Then
power down Arduino, and even disconnect the e-paper display. The picture stays un-
changed. In fact, there is no visible difference at all between keeping e-paper connected
or disconnecting it (Figure 12-18).

Figure 12-18. The same image stays on an e-paper display even without power

Storing Images in Header Files

Your very own e-paper weather station can already show you the sun. What if you want to
draw your own graphics? You can draw your images in an image editing program like GIMP
or Photoshop, and then convert the saved BMP images to the C code headers we use in
the sketch.

First, use your favorite drawing program to draw an image. GIMP is a good, free choice for
this. Save your image in the BMP format. Put the image into the same folder with the other
images in this project (images/).

362 Make: Sensors

Environment Experiment: Look Ma, No Power Supply

Next, you’ll need to convert the BMP image (sun.bmp) to a C header file (sun.h). You can use the
included image2c-botbook.py script for this.

First, install the requirements: Python and Python Imaging Library. Windows users can down-
load a free installer for Python from http://python.org. Mac users will already have Python in-
stalled, but Mac and Windows users will need to download the Python Imaging Library from
http://www.pythonware.com/products/pil/. Linux users have it easier. For example, here’s how
to install the needed libraries:

$ sudo apt-get update
$ sudo apt-get -y install python python-imaging

If your source image is not called foo.bmp, change the filenames in the script. Then you’re ready
to convert. These commands work in all of Linux, Windows, and Mac. The dollar sign ($) repre-
sents the shell prompt, so don’t type that. Windows users probably have a different-looking
prompt. The first command assumes you’re in the subdirectory containing the example code
for this book. You can download the sample code from http://botbook.com.

$ cd arduino/weather_station/
$ python image2c-botbook.py
BMP (117, 106) 1

The file is now converted. With the ls or dir command, you can see that foo.h was created in
the current working directory. You have now converted your BMP image to a C header file.

In foo.h, your image is now C code:

// File generated with image2c-botbook.py
const unsigned char sun [] PROGMEM= {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ..
0x7F, 0xF0, 0x00, 0xFF, 0xC0, 0x00, 0x1F, 0xF8, 0x00, // ..

This format is convenient for programming. Each byte represents eight pixels, one pixel per bit.
For example, hex 0xFC is number 252. In bits, it’s 0b11111100. This means eight bits side by
side: black black black black, black black white white.

BMP to C Conversion Program
Image2c-botbook.py converts a BMP image to C header file.

If you need some “code golf” (see http://codegolf.com), try making it work with PNG source files.

This code uses hexadecimal numbers and bitwise operations. To review them, see “Hexadeci-
mal, Binary, and Other Numbering Systems” on page 219 and “Bitwise Operations” on page 221.

Example 12-12. Image to C header code
image2c-botbook - convert a BMP image to C for use in eInk and LCD displays
(c) BotBook.com - Karvinen, Karvinen, Valtokari

import Image #
import math
imageName = "images/foo.bmp" #

363Chapter 12

Storing Images in Header Files

outputName = "foo.h" #

im = Image.open(imageName) #
print im.format, im.size, im.mode

width, height = im.size
pixels = list(im.getdata()) #
length = int(math.floor(width * height / 8.0)) #
carray = length * [0x00] #
for y in xrange(0, height): #
 for x in xrange(0, width): #
 pixel = pixels[y * width + x] #

 bit = 7 - x & 0x07 #
 byte = x / 8 + y * (width / 8) #

 mask = 0x01 << bit #
 if pixel == 0:
 carray[byte] |= mask #
 else:
 carray[byte] &= ~mask

fileHandle = open(outputName, "w") #
index = 0
fileHandle.write("// File generated with image2c-botbook.py\n")
fileHandle.write("const unsigned char sun [] PROGMEM= {\n")
for b in carray:
 fileHandle.write("0x%02X, " % b) #
 index += 1
 if index > 15:
 fileHandle.write("\n")
 index = 0
fileHandle.write("};\n")

PIL, the Python Imaging Library, must be installed as described earlier.

The source image, saved in BMP format. Change this to match the name and
location of your file if needed.

Output filename. Change this to match the file you want to create.

PIL can open many formats.

Break the image into individual pixels. This is half of the work.

Length of the whole image in bytes (1 B == 8 bit)

Create the target C array, and initialize it with zeroes.

For each line…

…and for each pixel in the current line, perform the indented operations.

364 Make: Sensors

Storing Images in Header Files

The current pixel.

The index of bit in the current byte.

The current byte index.

Create the bit mask for current bit in current byte. For example, the mask
0b00000001 would be created to change the last bit of a byte to zero.

Change the bit.

C headers are just text files.

Write each of the bytes as a hex code.

Enclosure Tips

We used a plastic box made by Hammond for our weather forecaster. But how do you make an
odd-shaped hole like the one we need here? First draw the shape you want to cut out on the
box lid. Drill holes in each corner of the shape with a large drill bit (10-20 mm). Then start going
from corner to corner with a jigsaw blade. Finish the hole with file and sandpaper (see
Figure 12-19).

Figure 12-19. Hole for the screen

365Chapter 12

Enclosure Tips

Use hot glue to attach the screen to the box as shown in Figure 12-20.

Figure 12-20. Screen hot glued

On the back of the box, we made a pattern of small holes (see Figure 12-21). Without those,
air would not be able to get to the sensor. The finished gadget is shown in Figure 12-22.

Figure 12-21. Holes to let the air in

366 Make: Sensors

Enclosure Tips

Figure 12-22. The finished gadget

Congratulations, you now have your own weather prophet with e-paper display!

This might be the end of this book, but it’s just the beginning for your projects. Now that you
can work with so many sensors and many outputs too, what are you going to build?

Good luck with your projects!

367Chapter 12

Enclosure Tips

Table A-1 shows some useful and common Linux commands. Table A-2 shows the directories
you’ll be working in much of the time.

Table A-1. Some Linux commands

Command Meaning

pwd Prints your working directory

ls Lists files in working directory

cd Desktop Changes directory to the Desktop directory immediately under your current directory

cd ~/Desktop Changes directory to the Desktop directory immediately under your home directory

cd ~ Changes to your home directory

nano foo.txt Edits the text file foo.txt. Use Control-X, then type y followed by Enter or Return to save the file.

passwd Change your password (asks for the old one first, but doesn’t echo what you type to the screen)

startx Launch the graphical desktop from a command-line-only Linux session

sudo apt-get update Updates the list of software you can install (requires a network connection)

sudo apt-get install ipython Installs the program ipython

sudo shutdown -P now Prepares the Raspberry Pi to be powered off in a safe way

sudoedit /etc/motd Edits a file as root, with more safety checks than sudo nano /etc/motd

ifconfig Shows the Pi’s IP addresses (127.0.0.1 is localhost, which is used for connections between programs
running on the Pi; use the other one, which is your Ethernet or WiFi adapter)

sudo raspi-config Calls up the configuration menu of most common Raspberry Pi settings (you’ll usually need to
reboot after you run it)

mkdir bar/ Create a directory called bar

rm -r bar/ Remove the directory bar/ and its contents (there is no Undo)

ssh login@example.com Connects to remote computer example.com with user “login”

369

Raspberry Pi Linux Quick
Reference A

Command Meaning

exit Close the shell or ssh connection

less /var/log/syslog View a text file (press space for the next page, press q to quit)

tail -F /var/log/syslog Follows the specified text file as lines are added to it (use Control-C to kill the tail command and
return to the shell)

man ssh View the manual page (built-in documentation) of the command “ssh” (press space for the next
page, press q to quit)

Table A-2. The most important directories

Directory Purpose

/home/pi/ Your (you are the user named pi) home directory; contains all of your files on the Pi

/var/log/ Contains all the system-wide log files, such as /var/log/syslog and /var/log/auth.log

/etc/ Contains all the system-wide configuration files.

/sys/ A virtual file system for reading and modifying volatile data (things that change continuously as the system is running, such
as input and output pins)

/media/ Removable media, such as /media/cdrom/ or /media/usbdisk/

/ The root directory; contains every directory and file available on the system

370 Make: Sensors

Raspberry Pi Linux Quick Reference

Symbols
$ prompt, 8
> (redirection) operator, 16

A
acceleration

accelerometer uses, 201
accelerometers vs. gyro-

scopes, 202
MPU 6050 sensor, 208–225
MX2125 sensor, 202
Robot Hand Controlled by

Wii Nunchuk project,
232–238

vs. angular velocity, 201
Wii Nunchuk controller,

225–232
active infrared distance sensor,

31

alarms
emailing, 78–87
posture alarms, 61

alcohol detection, 74
alcometers, 74
Analog 2-axis Thumb Joystick,

134
Ancient Chest project, 268–

276
angular velocity, 201
Arduino

automatic emails from, 80
basic setup, 26
benefits of, 25
blink test, 28
bootloader program, 26
code/connection informa-

tion
AttoPilot Compact DC

sensor, 281
burglar alarms, 140
buttons, 91
capacity sensor, 112

color sensors, 178
DHT11 humidity sensor,

334
ELB149C5M sensor, 263
flame sensors, 162
FlexiForce sensor, 108
GT-511C3 sensor, 249
GY65 barometric pres-

sure sensor, 340
Hall effect sensors, 285
Hall switch, 302
HC-SR04 sensor, 38
IR Compound Eye, 51
IR distance sensor, 45
joysticks, 135
keypads, 241
LDR photoresistor, 168
line sensors, 172
LM35 temperature sen-

sor, 328
LSM303 compass-

accelerometer, 290

371Index

Index

microphone breakout
boards, 316

microswitches, 96
MPU 6050 sensor, 209
MQ-2 sensor, 69
MQ-3 sensor, 74
MX2125 accelerometer,

205
Ping sensor, 33
potentiometers, 99
QT113 sensor, 104
RGB LEDs, 184
rotary encoders, 130
servo motors, 119
soil humidity sensor, 350
tilt sensors, 124
vibration sensors, 127
weather forecast, 354
Wii controller, 226

communication with Rasp-
berry Pi, 337

OS X setup, 27
posture alarm test project,

58
program anatomy, 29
shields for, 29

atmospheric pressure, 339
AttoPilot Compact DC Volt-

age/Current Sense
Arduino code/connection,

281
overview of, 279
Raspberry Pi code/connec-

tion, 282
attributions, xix

B
barometric pressure sensors,

339
BCM numbers, 15
bicycle speedometers, 284,

301
big endian, 224
binary numbering system, 219

biometric identification, 239
bitmap images, 362
bitwise operations

bit masking, 223
bit shifting <<, 224
bitwise or |, 224
endianness and, 224
overview of, 221

boolean operations, 222
bootloader program, 26
Breathalyzer, 74
burglar alarm

adaptation period, 140
Arduino code/connection,

140
Raspberry Pi code/connec-

tion, 142
testing, 144
tilt sensors for, 123

buttons
Arduino code/connection,

91
pull-up resistors, 90
pushbuttons, 89
Raspberry Pi code/connec-

tion, 93

C
C header files, 362
capacitive touch sensors

building your own, 111
operation of, 103
protocol for, 103
QT113, 104
sensing through solid ob-

jects, 106
types of, 104

carbon monoxide (CO), 69
cat command, 16
Chameleon Dome project

casing for, 195
combining codes in, 190,

195
overview of, 182

random noise and, 187
RGB LEDs, 183

climate sensors (see weather/
climate)

code examples, permission to
use, xix

color sensors
Arduino code/connection,

178
overview of, 177
Raspberry Pi code/connec-

tion, 180
command-line interface (CLI)

controlling GPIO pins from,
16

in Linux, 8, 26
script automation, 8
starting in Raspberry Pi, 9
sudo command, 10

common anodes/cathodes,
184

compass heading calculation,
299

compass-accelerometers, 288
configuration files, 9
Control-X, 9
Cron, 312

D
daemons, installing, 11
data pins, reading state of, 90
data visualization, 10, 320
datasheets, 203
DHT11 humidity sensor, 332
digital vibration sensors, 126
distance

detecting infrared light, 48
detection methods, 31
echo calculations, 42
following movement, 50–

58
HC-SR04 ultrasonic sensor,

38–43

372 Index

measuring with ultrasonic
sound (PING), 32–37

obstacle detection, 44–48
soft objects and, 43
test project, 58–66

duty cycles, 188, 204

E
E-paper Weather Forecast

project
Arduino code/connection,

354
enclosure for, 365
image display/storage, 362
overview of, 353
power requirements, 362

easing, 189
echo calculations, 42
ELB149C5M sensor

Arduino code/connection,
263

protocols for, 261
Raspberry Pi code/connec-

tion, 265
Electret Microphone, 315
electricity/magnetism

detection methods, 279
Hall switches, 301–304
LSM303 compass-

accelerometer, 288–301
measuring magnetism,

284–288
measuring voltage and cur-

rent, 279–284
Solar Cell Web Monitor

project, 305–313
email

automatic alarm notifica-
tions, 78–87

basic operation of, 79
endianness, 224
ethanol detection, 74

F
FFT (fast Fourier transform),

324
files

creating, 9
displaying contents of, 16
Linux configuration files, 9
listing, 9
modifying without an edi-

tor, 16
overwriting, 16
saving, 9
sticky files, 19

fingerprints
artificially reproducing, 249
detecting, 246
sensors for, 247

flame sensors, 161
FlexiForce

Arduino code/connection,
108

protocol of, 108
Raspberry Pi code/connec-

tion, 109
floating pins, 90

G
gaming consoles, 134, 138,

147
gas sensors (see smoke/gas)
GPIO (General Purpose Input

and Output) pins
controlling from CLI, 16
in Python, 21
non-root privileges, 19
numbering diagram, 15
numbering systems, 15
overcurrent danger, 13
reading state of, 90
troubleshooting, 21
versatility of, 11

graphical equalizers, 320

graphing, 310
GT-511C3 fingerprint sensor

Arduino code/connection,
249

benefits of, 247
command package, 247
fake fingerprints, 249
Raspberry Pi code/connec-

tion, 255
GY65 barometric pressure sen-

sor, 340
gyroscopes/gyrocompasses,

202

H
Hall effect sensors, 284
Hall switches, 301
Haunted Ringing Bell project

Arduino code/connection,
119

attaching servo to bell, 122
overview of, 114
servo motors, 115

HC-SR04 ultrasonic sensor
Arduino code/connection,

38
benefits of, 38
echo calculations, 42
Raspberry Pi code/connec-

tion, 40
soft objects and, 43

HDMI, visualizing sound over,
320

header files, 362
Hello World (blink test), 28
hexadecimal numbering sys-

tem, 219
home pages, 309
humidity sensors, 332, 350
hydrocarbon vapor, 67

373Index

I
I2C protocol, 208, 218, 225,

299
identity

Ancient Chest project, 268–
276

detection methods, 239
fingerprint scanners, 247–

260
keypads, 240–247
RFID scanners, 261–267

images, 362
IMAP servers, 80
IMU (inertial measurement

unit), 208
infrared detectors, 48
infrared distance sensors, 31

(see also IR distance sen-
sors)

infrared light, 31
interrupts, 127
IP addresses, 309
ipython tool, 10
IR Compound Eye

Arduino code/connection,
51

calibrating, 51
Raspberry Pi alternate cir-

cuits, 57
Raspberry Pi code/connec-

tion, 54
SpiDev installation, 56
tracking movement with,

50
IR distance sensors

Arduino code/connections,
45

benefits of, 44
Raspberry Pi code/connec-

tions, 47

J
joysticks, 134–138

K
kernel GPIO driver, 16
keypads

Arduino code/connection,
241

common uses for, 240
detecting keypresses, 246
Raspberry Pi code/connec-

tion, 243
KY-024 magnet detecting sen-

sor, 284
KY-026 flame sensors, 161

L
LEDs

lighting with button press,
89

lighting/turning off, 17
RGB, 183

light
Chameleon Dome project,

182–199
color sensors, 177–180
detection methods, 161
determining directionality

of, 170
flame sensors, 161
line tracking sensors, 172
photoresistors, 166

light-dependent resistor (LDR),
166

line tracking sensors, 172
Linux

Arduino setup, 26
automatic emails in, 79
command-line interface

(CLI), 8
common commands, 369

configuration files, 9
file manipulation in, 9
important directories, 369
installation on Raspberry Pi,

2
sudo command, 10
system-wide configuration,

19
little endian, 224
LM35 temperature sensor, 327
ls command, 9
LSM303 compass-

accelerometer
Arduino code/connection,

290
calibrating, 289
compass heading calcula-

tion, 299
orienting north on, 288
protocol for, 299
Raspberry Pi code/connec-

tion, 295
LXTerminal, 9

M
magnetic field sensors, 284
magnetic north, 288
magnetism (see electricity/

magnetism)
master/slave devices, 299
mathematical graphing, 310
matplotlib library, 310
MCP3002 converter, 101
microcontroller projects

permission for code use, xix
microphones, 315
microswitches, 94
motors (see servo motors; vi-

bration motors)
movement

detection methods, 123
digital vibration sensors,

126

374 Index

passive infrared sensor,
140–146

Pong game project, 147–
159

rotary encoders, 130
thumb joysticks, 134–138
tilt ball switches, 123
tracking with IR compound

eye, 50
moving average, 187
MPU 6050 sensor

Arduino code/connection,
209

benefits of, 208
bitwise operations, 221
numbering systems and,

219
Raspberry Pi code/connec-

tion, 215
MQ sensors

Arduino code/connection,
69

available types, 67
detector placement, 72
MQ-2 smoke sensor, 68
MQ-3 alcohol sensor, 74
Raspberry Pi code/connec-

tion, 71
MX2125 acceleration sensor,

202

N
nano text editor, 9
NOOBS*.zip, 3
number representations, 219

O
obstacle detection, 44

P
Parallax PIR, 140
passive infrared sensors, 31,

140–146, 140
pentesting, 144
photoresistors, 166
physical pin header numbers,

15
piezo beeper, 59
pinball machines, 123
Ping sensor

Arduino code/connections,
33

measuring distance with,
32

Raspberry Pi code/connec-
tions, 35

polling, 127
Pong game

automatic login, 157
automatic start, 156
overview of, 147
packaging, 152
Raspberry Pi code/connec-

tion, 148
running on login, 156

posture alarm
alarm, 61
enclosure for, 64
overview of, 58
piezo and IR-sensor com-

bined, 62
piezo beeper, 59

potentiometers
Arduino code/connection,

99
connecting, 98
diagram of, 99
in joysticks, 134
Raspberry Pi code/connec-

tion, 101
programs

installing, 10

recognizing command
prompts, 10

protocols
for capacitive touch sen-

sors, 103
for FlexiForce sensor, 108
for LSM303 compass-

accelerometer, 299
for MPU 6050, 208
for QT113, 103
for Wii Nunchuk controller,

225
I2C, 208, 208, 225, 299
industry standard, 208
overview of, xiv
SPI, 56, 208
Wiegand, 261

proximity, detection of, 31
pull-up resistors, 90
pulse width modulation

(PWM), 188
purpose-based pin number-

ing, 15
pushbuttons, 89
pwd command, 9
pyGame library, 147
Python

automatic emails, 79
GPIO in, 21
ipython tool, 10
matplotlib library, 310
Python console, 221

python-smbus library, 208, 218

Q
QT113 capacitive touch sensor

alternatives to, 111
Arduino code/connection,

104
protocol for, 103
Raspberry Pi code/connec-

tion, 105

375Index

R
random noise, 187
range finders, 32
Raspberry Pi

basic set up, 2
booting, 4
cable connection, 3
code/connection informa-

tion
AttoPilot Compact DC

sensor, 282
burglar alarms, 142
buttons, 93
capacity sensor, 113
color sensors, 180
DHT11 humidity sensor,

336
ELB149C5M sensor, 265
flame sensors, 164
FlexiForce sensor, 109
GT-511Cs sensor, 255
Hall effect sensors, 286
Hall switch, 303
HC-SR04 sensor, 40
IR Compound Eye, 54, 57
IR distance sensor, 47
joysticks, 136
keypads, 243
LDR photoresistor, 169
line sensors, 174
LM35 temperature sen-

sor, 329
LSM303 compass-

accelerometer, 295
microphone breakout

boards, 317
microswitches, 97
MPU 6050 sensor, 215
MQ-2 sensor, 71
MQ-3 sensor, 74
MX2125 accelerometer,

206
Ping sensor, 35
Pong game, 148

potentiometers, 101
QT113 sensor, 105
rotary encoders, 132
soil humidity sensor, 351
solar panel monitor, 310
sound visualizers, 321
tilt sensor, 125
vibration sensor, 128
Wii controller, 229

communication with Ardui-
no, 337

connecting electronics to,
11

enabling serial port in, 320
GPIO pin numbering, 15
Linux installation, 2
making home page on, 309
model recommendation, 1
SD card formatting, 3
sending email from, 79
shutting down, 11
troubleshooting installa-

tion, 6
using as a web server, 308
using Linux operating sys-

tem, 8
Raspbian

installing, 4
software installation to, 218

redirection operator (>), 16
resistors

identifying, 19
photoresistors, 166
pull-up, 90
sensitivity, 165
variable, 98

RFID (radio frequency identifi-
cation)
benefits of, 239, 261
ELB149C5M Electronic

Brick, 261
Robot Hand Controlled by Wii

Nunchuk project
adding hand mechanics,

237
overview of, 232

root users, 10
rotary encoders, 130

S
ScrewShield, 29
scripts, 8
SD card formatting, 3
self-balancing devices, 202
sensitivity resistors, 165
sensors

active infrared distance, 31
Analog 2-axis Thumb Joy-

stick, 134
AttoPilot Compact DC Volt-

age/Current Sense, 279
barometric pressure sen-

sors, 339
color, 177–180
digital vibration sensors,

126
ELB149C5M, 261–267
fingerprint scanners, 247–

260
FlexiForce, 108
Hall effect, 284
humidity, 332
IR distance, 44
KY-026 flame sensors, 161
line tracking, 172
MPU 6050 sensor, 208–225
MQ sensors, 67
MX2125, 202
Parallax PIR, 140
passive infrared, 31, 140–

146
Ping, 32
QT113, 104
salvaging from game con-

soles, 138
soil humidity, 350
sound, 319
temperature, 327
tilt sensors, 123
ultrasonic, 38

376 Index

separation of user privileges,
10

servo motors
basic operation, 116
benefits of, 115
finding servo range, 116
Servo.h library, 119

shell, 8
shell commands, 9
shields, 29
smoke/gas

alcohol detection, 74
analog gas sensor, 68
detector placement, 72
emailing alarms, 78–87
MQ sensors for, 67

SMTP servers, 80
social media, 79
soil humidity sensors, 350
Solar Cell Web Monitor

project, 305–313
sound

analysis and measurement
of, 315

detecting volume level, 315
sensor sensitivity, 319
visualize sound over HDMI,

320
speedometers, 284, 301
SPI protocol, 56, 208
SpiDev library, 56
squeeze pressure, 108
sticky files, 19
sudo command, 10, 17
super users, 10

T
tab key, 11

tasks, performing timed, 312
temperature sensors, 327
teslas, 279
text, printing to terminal, 16
thumb joysticks, 134–138
tilt ball switches, 123
timed tasks, 312
touch

buttons, 89
detection methods, 89
microswitches, 94
potentiometers, 98
QT113 capacitive touch

sensor, 103
ringing bell project, 114–

122
sensing squeeze pressure,

108
sensing through solid ob-

jects, 106
troubleshooting

electronics connection, 17
GPIO, 21
GPIO in Python, 24
GPIO pin overcurrent, 13
Raspberry Pi installation, 6
sudo command, 10, 17

TTL level, 42

U
Ubuntu, 26
udev, 19
ugly key, 26
ultrasonic distance sensor, 38–

43
ultrasonic sound (PING), 31,

32, 38
user home pages, 309

user privileges, 10

V
variable resistors, 98
velocity, angular, 201
vibration motors, 138
vibration sensors, 126
videogame consoles, 134, 147
voice detection, 315

(see also sound)
voltage sensors, 279
volume, 315

(see also sound)

W
weather/climate

atmospheric pressure sen-
sors, 339–349

e-paper weather forecast
project, 353–367

humidity sensors, 332–338
soil humidity sensors, 350
temperature sensors, 327

weighted moving average,
187

Wii Nunchuk controller
Arduino code/connection,

226
I2C protocol base, 225
Raspberry Pi code/connec-

tion, 229
Windows 7/8, 27
Windows key, 26
working directory

listing files in, 9
printing, 9

377Index

About the Authors
Tero Karvinen teaches Linux and embedded systems in Haaga-Helia University of Applied
Sciences, where his work has also included curriculum development and research in wireless
networking. He previously worked as a CEO of a small advertising agency. Tero’s education
includes a Masters of Science in Economics.

Kimmo Karvinen works as a CEO in a leading company specializing in AV automation in
Finland. Before that, he worked as CTO for a hardware manufacturer that specializes in smart
building technology, as a marketing communications project leader, and as a creative director
and partner in an advertising agency. Kimmo’s education includes a Masters of Art, and he’s
currently working toward his D.Sc. at Helsinki University of Technology.

Ville Valtokari works as the head programmer for an automation hardware manufacturer.
Before that he designed and programmed cutting-edge AV systems. Countless personal
projects include game design and programming, building robots, and discovering how things
work.

Colophon
All photographs and the cover photo are by Kimmo Karvinen. The cover and header font is
BentonSans, the body font is Myriad Pro, and the code font is UbuntuMono.

	Copyright
	Table of Contents
	It’s About Your Ideas

	Preface
	How to Read This Book
	Input, Processing, Output
	Protocols
	Building Things Your Way
	Buying Components
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Raspberry Pi
	Raspberry Pi from Zero to First Boot
	Extract NOOBS*.zip
	Connect Cables
	Boot and Install Raspbian
	Troubleshooting Your Raspberry Pi Installation

	Feeling at Home in Linux
	Command-Line Interface is Everywhere, Forever
	Looking Around
	Text Files for Configuration
	sudo Make Me a Sandwich

	Connecting Electronics to Raspberry Pi Pins
	Hello GPIO, Blink an LED
	Building the Circuit
	Two Numbering Systems: Purpose and Location
	Controlling GPIO Pins from the CLI
	Writing to Files Without an Editor
	Light Up the LED
	Troubleshooting

	GPIO Without Root
	Troubleshooting GPIO

	GPIO in Python
	Hello Python
	What’s Next?

	Chapter 2. Arduino
	Basic Arduino Setup
	Ubuntu Linux
	Windows 7 and Windows 8
	OS X
	Hello World
	Anatomy of an Arduino Program
	Shields Make It Easy and Robust

	Chapter 3. Distance
	Experiment: Measure Distance with Ultrasonic Sound (PING)
	Ping Code and Connections for Arduino
	Ping Code and Connections for Raspberry Pi

	HC-SR04 Ultrasonic Sensor
	HC-SR04 Code and Connection for Arduino
	HC-SR04 Code and Connections for Raspberry Pi
	Echo Calculations Explained
	Environment Experiment: Invisible Objects

	Experiment: Detect Obstacles With Infrared (IR Distance Sensor)
	IR Switch Code and Connections for Arduino
	IR Switch Code and Connections for Raspberry Pi

	Environment Experiment: How to See Infrared
	Experiment: Follow Movement with Infrared (IR Compound Eye)
	Compound Eye Code and Connection for Arduino
	Compound Eye Code and Connections for Raspberry Pi
	Installing SpiDev
	Alternative Circuits for Raspberry Pi

	Test Project: Posture Alarm (Arduino)
	What You’ll Learn
	Piezo Beeper
	Alarm, Alarm!
	Combining Piezo and IR Sensor
	Putting Everything in a Neat Package

	Chapter 4. Smoke and Gas
	Experiment: Detect Smoke (Analog Gas Sensor)
	MQ-2 Code and Connection for Arduino
	MQ-2 Code and Connection for Raspberry Pi
	Environment Experiment: Smoke Goes Up
	Experiment: Breathalyzer (Alcohol Sensor MQ-303A)
	Environment Experiment: Try It Without Drinking

	Test Project: Emailing Smoke Alarm
	What You’ll Learn
	Python for Email and Social Media
	Building It
	How Does Email Work?
	Could Arduino Send Email? Not Easily
	Code for Raspberry Pi
	Packaging

	Chapter 5. Touch
	Experiment: Button
	Pull-Up Resistor
	Code and Connection for Arduino
	Code and Connection for Raspberry Pi

	Experiment: Microswitch
	Microswitch Code and Connection for Arduino
	Microswitch Code and Connection for Raspberry Pi

	Experiment: Potentiometer (Variable Resistor, Pot)
	Potentiometer Code and Connection for Arduino
	Potentiometer Code and Connection for Raspberry Pi

	Experiment: Sense Touch Without Touch (Capacitive Touch Sensor QT113)
	QT113 Code and Connection for Arduino
	QT113 Code and Connection for Raspberry Pi

	Environment Experiment: Sensing Touch Through Wood
	Experiment: Feel the Pressure (FlexiForce)
	FlexiForce Code and Connection for Arduino
	FlexiForce Code and Connection for Raspberry Pi

	Experiment: Build Your Own Touch Sensor
	Capsense Code and Connection for Raspberry Pi

	Test Project: Haunted Ringing Bell
	What You’ll Learn
	Servo Motors
	Haunted Bell Code and Connection for Arduino
	Attaching Servo to Ringing Bell

	Chapter 6. Movement
	Experiment: Which Way Is Up? (Tilt Ball Switch)
	Tilt Sensor Code and Connection for Arduino
	Tilt Sensor Code and Connection for Raspberry Pi

	Experiment: Good Vibes with Interrupt (Digital Vibration Sensor)
	Vibration Code and Connection for Arduino
	Vibration Code and Connection for Raspberry Pi

	Experiment: Turn the Knob
	Rotary Encoder Code and Connection for Arduino
	Rotary Encoder Code and Connection for Raspberry Pi

	Experiment: Thumb Joystick (Analog Two-Axis Thumb Joystick)
	Joystick Code and Connection for Arduino
	Joystick Code and Connection for Raspberry Pi

	Environment Experiment: Salvage Parts from an Xbox Controller
	Experiment: Burglar Alarm! (Passive Infrared Sensor)
	Burglar Alarm Code and Connection for Arduino
	Burglar Alarm Code and Connection for Raspberry Pi
	Environment Experiment: Cheating an Alarm

	Test Project: Pong
	What You’ll Learn
	Pong Packaging Tips
	Automatically Start Your Game When Raspberry Pi Boots
	Run Game on Login
	Automatic Login

	Chapter 7. Light
	Experiment: Detecting Flame (Flame Sensor)
	Flame Sensor Code and Connection for Arduino
	Flame Sensor Code and Connection for Raspberry Pi

	Environment Experiment: Flame Precision
	Experiment: See the Light (Photoresistor, LDR)
	LDR Code and Connection for Arduino
	LDR Code and Connection for Raspberry Pi

	Environment Experiment: One Direction
	Experiment: Follow the Line
	Line Sensor Code and Connection for Arduino
	Line Sensor Code and Connection for Raspberry Pi

	Environment Experiment: Black is White
	Experiment: All the Colors of the ’Bow
	Color Sensor Code and Connection for Arduino
	Color Sensor Code and Connection for Raspberry Pi

	Test Project: Chameleon Dome
	What You’ll Learn
	RGB LED
	Easing Input to Output
	Combining Codes
	Dome Building Tips

	Chapter 8. Acceleration
	Acceleration vs. Angular Velocity
	Experiment: Accelerate with MX2125
	Decoding MX2125 Pulse Length
	Accelerometer Code and Connection for Arduino
	Accelerometer Code and Connection for Raspberry Pi

	Experiment: Accelerometer and Gyro Together
	MPU 6050 Code and Connection for Arduino
	MPU 6050 Code and Connection for Raspberry Pi
	Hexadecimal, Binary, and Other Numbering Systems
	Bitwise Operations

	Experiment: Hacking Wii Nunchuk (with I2C)
	Nunchuk Code and Connection for Arduino
	Nunchuk Code and Connection for Raspberry Pi

	Test Project: Robot Hand Controlled by Wii Nunchuk
	What You’ll Learn
	Adding Hand Mechanics

	Chapter 9. Identity
	Keypad
	Keypad Code and Connection for Arduino
	Keypad Code and Connection for Raspberry Pi

	Environment Experiment: Revealing Fingerprints
	Fingerprint Scanner GT-511C3
	Fingerprint Sensor Code and Connection for Arduino Mega
	Fingerprint Sensor Code and Connection for Raspberry Pi

	RFID with ELB149C5M Electronic Brick
	RFID Code and Connection for Arduino Mega
	RFID Code and Connection for Raspberry Pi

	Test Project: Ancient Chest from the Future
	What You’ll Learn
	Operating the Chest
	The Box
	Ancient Chest Code and Connection for Arduino

	Who or What Is It?

	Chapter 10. Electricity and Magnetism
	Experiment: Voltage and Current
	AttoPilot Code and Connection for Arduino
	AttoPilot Code and Connection for Raspberry Pi

	Experiment: Is It Magnetic?
	Hall Effect Sensor Code and Connection for Arduino
	Hall Effect Sensor Code and Connection for Raspberry Pi

	Experiment: Magnetic North with LSM303 Compass-Accelerometer
	Calibrate Your Module
	LSM303 Code and Connection for Arduino
	LSM303 Code and Connection for Raspberry Pi
	LSM303 Protocol
	Compass Heading Calculation

	Experiment: Hall Switch
	Hall Switch Code and Connection for Arduino
	Hall Switch Code and Connection for Raspberry Pi

	Test Project: Solar Cell Web Monitor
	What You’ll Learn
	Connecting Solar Cells
	Turn Raspberry Pi into Web Server
	Finding Your IP Address
	Making Your Home Page on Raspberry Pi
	Solar Panel Monitor Code and Connection for Raspberry Pi
	Timed Tasks with Cron

	What’s Next?

	Chapter 11. Sound
	Experiment: Hearing Voices/Volume Level
	Microphone Breakout Code and Connection for Arduino
	Microphone Breakout Code and Connection for Raspberry Pi

	Environment Experiment: Can You Hear a Pin Drop?
	Test Project: Visualize Sound over HDMI
	What You’ll Learn
	Enabling the Serial Port in Raspberry Pi
	Visualizer Code and Connection for Raspberry Pi
	Fast Fourier Transformation

	What Next?

	Chapter 12. Weather and Climate
	Experiment: Is It Hot in Here?
	LM35 Code and Connection for Arduino
	LM35 Code and Connection for Raspberry Pi

	Environment Experiment: Changing Temperature
	Experiment: Is It Humid in Here?
	How Humid Is Your Breath?
	DHT11 Code and Connection for Arduino
	DHT11 Code and Connection for Raspberry Pi
	Talking to Arduino from Raspberry Pi

	Atmospheric Pressure GY65
	GY65 Code and Connection for Arduino
	Using Arduino Libraries
	GY65 Arduino Library Explained
	GY65 Code and Connection for Raspberry Pi

	Experiment: Does Your Plant Need Watering? (Build a Soil Humidity Sensor)
	Soil Sensor Code and Connection for Arduino
	Soil Sensor Code and Connection for Raspberry Pi

	Test Project: E-paper Weather Forecast
	What You’ll Learn
	Weather Forecast Code and Connection for Arduino

	Environment Experiment: Look Ma, No Power Supply
	Storing Images in Header Files
	BMP to C Conversion Program

	Enclosure Tips

	Appendix A. Raspberry Pi Linux Quick Reference
	Index
	About the Authors

