Principle of operation and environment
of the AVR Boot-loader
optiboot

Karl-Heinz Kiibbeler
kh kuebbeler@web.de

June 14, 2016

Contents

(1 Principle function of a boot-loader|

2 The Hard Fihe AVR 85 . ers
2.1 CPU and memory access| e
2.2 Input and Output function|.
2.3 The start of AVR micro-controllersl
2.4 Writing to the AVR memories] oo

[2.4.1 Parallel programming|. o o
2.42 serjal download with ISPl
[2.4.3 Selt programming with serial interfacel
[2.4.4 Diagnostic Tools|

[3 The optiboot boot-loader for AVR Micro-controllers|
[3.1 Changes and enhancements to the version 6.2
[3.2 Automatic size adaption in the optiboot Makefile|
[3.3 target selection for the optiboot Makefile|
[3.4 The Options for the optiboot Makefile|
[3.5 Usage of optiboot without a boot-loader areal.

Preface

My interest for the AVR boot-loaders begun, as some users had told me their interest to run the
transistor tester software at some boards of the Arduino family. Of course the transistor tester
software does not run as Arduino Sketch. The Arduino development environment Sketch is only
used to show the output of the serial interface. The transistor tester software do not use the Arduino
library. This is not necessary to use the boot-loader.

The boot-loader is a little program, which can receive program data from a serial interface from
a host (PC) and can put this data in the instruction storage (flash) of the micro-controller. Because
the transistor tester software use very much program storage, the boot-loader should use as less
program memory as possible for his program. The boot-loader should also be able to write data
to the nonvolatile data storage of the AVR, the EEprom. So the target was specified. I search a
boot-loader, which support the writing of flash and EEprom, but use only little space in the flash
memory for it’s own code.

Chapter 1

Principle function of a boot-loader

A boot-loader is a little program, which can receive program data from a interface and store this
data in the instruction memory of a processor. Typically the received program is also started at the
end of transmission. With this method a computer with writable instruction memory is able to run
any application program.

In principle the BIOS of a PC is also a boot-loader, but the BIOS is extended for the function to
select a interface to fetch the program data. You can select a chain of peripheral equipment, which
is tested for existence of program data. Often is a second stage of loader started, which can choose
more selections like different operating systems or boot options.

For the micro-controllers the function of a boot-loader is designed more simple. Only one interface
is preselected and there are no further options selectable during operation. A characteristic for the
mode of operation of a boot-loader is the type of instruction memory. If the instruction memory of
the computer is build with RAM (Random Access Memory), the boot-loader must be sure to start
any application program only, if it is loaded just before.

For a micro-controller with non-volatile instruction memory (flash), the boot-loader can assume,
that a application program has been loaded some time ago to the instruction memory. Therefore
the boot-loader try to start a application program every time after waiting for new program data a
appropriate time. It doesn’t matter, if new program data are received before or not. Even if there
was never loaded any application program, the result is not fatal. The facility to load a application
program later is still available. The lack of any application program let the boot-loader resume with
the next try to get program data from the serial interface.

The figure shows the principle function of boot-loaders, which receive their data from a serial
interface.

Prepare
Comunication
Port

\é

new
Data?

Time
limit
expired?

Y
A

Optional Read/Write
data from/to Memory
Send Answer to Host

Start
application
program

Figure 1.1. Principle function of a boot-loader

The transmitter process at the PC will reset the AVR target processor at the beginning of
transmission. If the reset is not done automatically, you must reset the AVR processor manually.
The PC tries to start the communication with the AVR processor by sending a data byte to the
serial output and wait for any serial response of the AVR processor. If the answer is not received
in a appropriate time, the procedure is repeated some times. The boot-loader program at the AVR

processor wait only a limited time for new data. If the wait time is exceeded, the boot-loader ties to
start a application program in the flash memory.

Chapter 2

The Hardware of the AVR 8-bit micro
controllers

2.1 CPU and memory access

You can find any thing at the chip of a AVR 8-bit micro-controller, what is needed to run a digital
computer. You find a clock generator, registers, data storage (RAM), program storage (flash), input
registers and output registers. The content of registers and data storage is loosed with every restart.
The content of the instruction memory (flash) and the often available additional nonvolatile data
storage (EEprom) is preserved for long time. The figure shows a simplified block diagram of a
8-bit AVR micro-controller.

|

Clock generator

to all peripheral devicesl 4—,

Register
Flash Address <*—®| RO-R31
Memory - AVR
Instruction
A Central —
[OR] [;x =
E - Processor <—e Memory
: J _
Page : Flash/EEprom Digital
RAM Controller = - -— I0
|
. Input-
’ | Output [_|Counters | - -
L] Register =T
EEprom
Memory <*— Analog
] Input
A
Interrupt
Watchdog - Controller
Controller Rese?

4
T—O 10 Register

Figure 2.1. Simplified block diagram of a AVR mikrocontroller

You can see at the diagram, that the CPU (Central Processor Unit) can access easy the resisters
R0O-R31 and the RAM memory. Also the access to the input and output resisters is easy possible.
But the access to the instruction memory (flash) is only possible with a special controller and more
complex.

Only the instruction engine can easy access the flash data for the selected program address. With
the Load Immediate (LDI) instruction you can transfer parts of the instruction word to the upper
registers (R16-R31). Also with the instructions ADIW, ANDI, CPI, ORI, SBCI, SBIW and SUBI
parts of the 16-bit instruction word are processed.

Usually after every instruction the program counter will be increased by one word or two words,
depending on the instruction length. A exception to this rule for the normal operation is only caused
by the conditional or unconditional jump instructions (RJMP, JMP, IJMP, RCALL, CALL, ICALL,
RET, RETI).

Also a reset event or interrupt event can be the reason for a discontinuity of the program counter
increase. A Reset will reset the whole processor and the program counter will be set to a previous
selected address. A interrupt will set the program counter to a associated address. Normally the
start address for the reset event is set to 0. For starting the boot-loader many AVR processors have
special configuration bits is fuses to select a different start address.

A random address to the instructing memory content is only possible with the flash-controller.
For that access you must tell the controller the requested byte address. Afterward the requested byte
can be read with a special instruction.

More complex is a write operation to the flash memory. The write access is only possible for a
total page of flash. The flash page must be erased before any write access and you must load load
the total page data to the controller buffer storage before you can select the write operation. You
can compare this method with printing a page with a stamp. The stamp can be configured with
replaceable letters before the next print. So you can print any text. But you need a empty sheet
of paper and you must configure the whole text for the page. Only if all is prepared right, you can
stamp a page.

Also the access to the nonvolatile data memory (EEprom) is only possible with the special con-
troller. The writing to the EEprom is more simple compared to the flash memory access, but you
need the controller access too. You can not use the EEprom and flash memory access together,
because some common parts of the controller is used.

2.2 Input and Output function

The CPU can access the external pins with [1O0-registers. The 10-register are organized with Byte
access, so that you can select up to 8 pins with one IO register. The figure shows the structure
of a port pin circuit.

AVCC
PUD
>—O/O—O Pull up
0!
|
1 to ADC Mux, ADC—Ports only
22 | i
- +—20
oo—0 0
01" Dbore |
19 |
|
PORTx PINx

Figure 2.2. Simplified circuit of every AVR Port pin

Every pin is associated with one port bit and can be used as output pin (PORT) or as input
pin (PIN). The 8 bits of the Data Direction Register (DDR) are used to select the mode of every
port bit. For every pin you will find a associated bit number in three different registers. The DDR
register is used to select the direction of the associated bits. The PIN register shows the voltage
level of the associated bits. If the voltage is below the half operating voltage, the PIN bit is switched
to 0 and above the half operating voltage the PIN bit is switched to 1. If the associated bit in the
DDR register is set to 1, the associated bit in the PORT register select the level of the output signal.
A 0 select a voltage level near to GND and a 1 select a voltage level near to the operating voltage
(VCCQ). If the output mode for one bit is deselected with a 0 in the DDR register, a setting of the
corresponding bit in the PORT register enables a Pull-Up resistor. But if the PUD bit in the MPU
configuration register MCUPR is set, all Pull-Up registers are deactivated. All associated registers
and bits of a group (8-bit) use always the same code letter. For the second group this letter is a B.
The output port of this group has the name PORTB, the input port can be accessed with the name
PINB and the register for the data direction has the name DDRB. For the identification of a single
bit a number between 0 and 7 will be appended. For example the bit 0 of the input port B would be
named PINBO. This terminology is used in the Atmel documentation and is used also with program
languages.

2.3 The start of AVR micro-controllers

With the factory set configuration of the AVR micro-controller a first pass over of the minimal
operating voltage will cause a reset of the processor. All IO-register are set to predefined values and
after waiting some time to stabilize the operating voltage the instruction unit is started with the
flash address 0. Normally all pins are set to input mode. Beside this reason for a reset event there
exist three other reasons for a reset of the processor. The reason for the reset event is saved in the

MCU status register (MCUSR) with four bits.

’ Name of Flag ‘

Reason for the Reset

PORF

Power-on Reset
This Reset is caused by switching on the operating voltage.
This reason can not be deactivated.

BORF

Brown-out Reset
This reason can only occur, if the function
is selected with the BODLEVEL bits of a Fuse
and no Brown-out Interrupt is selected.

EXTRF

External Reset
is caused by a 0 level at the Reset Pin,
if the fuse RSTDISBL is not activated.

WDRF

Watchdog Reset
can only be set, if the corresponding Interrupt
is not enabled.

Table 2.1. Different Reset reasons in the MCUSR register

By setting the right configuration bits in the fuses of the AVR micro-controller you can select
another start address as the usual 0. The figure [2.3] shows the options for a ATmegal68. This
processor has a total instruction memory (flash) capacity of 16384 Byte. The instruction interpreter
of the micro-controller can access a 16-bit parallel instruction code of the flash memory. So the
largest program counter is only 8190 for optiboot! It can not be 8192 because the counting begin
with 0, but it is one word less because the last word of the flash memory is used to hold the version

number of optiboot.

Top=0x3fff

0x3f00)I- : D BOOTSZ=3
o =T

, | 0x3e00 A1 BOOTSZ=2

/7y 0x3c00 BOOTSZ=1

S

N

2
Boot Loader

0x3800] . .BOOTSZ=0

/ / / / %
/ /
B 2
\ -
\\] E
\ > =
\ = on
\ E e
\ = o
\ g
\ .:
\ <
\ 2
\ —
® o
e &
\ % <
\
%
VA
L\
\
\
\
\
\
\
\
\
\
§ [Lox00

Atmegal 68 Memory

Figure 2.3. The different Start-Options for the ATmegal68

The ATmegal68 can select a boot-loader size of 256 bytes (BOOTSZ=3), 512 Bytes (BOOTSZ=2),
1024 Bytes (BOOTSZ=1) and 2048 Bytes (BOOTSZ=0). The application program would like to
use as many program space as possible, so the boot-loader space should be as low as possible. The
boot-loader code is placed at the highest starting address possible. The activating of Lock-bits of the
AVR micro-controller can protect the boot-loader area against overwrite. Once activated Lock-bits
can only be reset with a total erase of the AVR memories.

For this processor, also for the Mega48 and Mega88, the control bits for the boot-loader start are
located in the extended fuse (efuse). This is also true for the BOOTRST fuse, which can be used to
switch the start address from 0 to the boot-loader start. For most other AVR micro-controller, also
for the ATmega328, the same control bits are located in the high fuse (hfuse). The table shows
the memory sizes of different AVR-micro-controllers and additionally the options for the Boot-loader
area. The boot-loader options are located in the same bit numbers, whatever fuse is selected, the
high or extended fuse.

Processor | Flash | EEprom | RAM | UART | Boot BOOTSZ
Type size size size Config

Fuse | =3 ‘ =2 ‘ =1 ‘ =0
ATmegad8 | 4K 256 512 1 Ext. | 256 | 512 [1K | 2K

ATtiny84 8K 512 512 - - (N x 64)
ATmega8 8K 512 1K 1 High | 256 | 512 | 1K | 2K
ATmega88 8K 512 1K 1 Ext. | 256 | 512 | 1K | 2K
ATmegal6 16K 512 1K 1 High | 256 | 512 | 1K | 2K
ATmegal68 | 16K 512 1K 1 Ext. | 256 | 512 | 1K | 2K
ATmegal64 | 16K 512 1K 1 High | 256 | 512 | 1K | 2K
ATmega32 32K 1K 2K 1 High | 512 | 1K | 2K | 4K
ATmega328 | 32K 1K 2K 1 High | 512 | 1K | 2K | 4K
ATmega324 | 32K 1K 2K 2 High | 512 | 1K | 2K | 4K
ATmega644 | 64K 2K 4K 2 High | 1K | 2K | 4K | 8K
ATmega640 | 64K 4K 8K 4 High | 1K | 2K | 4K | 8K
ATmegal284 | 128K 4K 16K 2 High | 1K | 2K | 4K | 8K
ATmegal280 | 128K 4K 8K 4 High | 1K | 2K | 4K | 8K
ATmega2560 | 262K 4K 8K 4 High | 1K | 2K | 4K | 8K

Table 2.2. Boot-loader configurations for different micro-controllers

By the way the boot-loader will work for the first time, even if the BOOTRST fuse bit is not
activated. In this case the reset vector is still set to address 0, where usually the application program is
located. Because for the first time no application program is loaded, the CPU execute the instructions
in the cleared flash memory until it reach the boot-loader code. For the ATmegal68 this are less
than 8000 instructions, which executes the CPU in less than 1 ms with a 8 MHz clock. But if any
application program was loaded, the Reset will start the application program, if the BOOTRST bit
is not activated (still set). The boot-loader program can no longer work, because it is not addressed
by the reset.

2.4 Writing to the AVR memories

The AVR micro-controllers know three different nonvolatile memories. The most important is the
instruction memory, the so called Flash memory.

In addition there are some configuration bits, which can be used to select some features of the
processor. This configuration bits are organized in some bytes, the lfuse (low fuse), the hfuse (high
fuse), the efuse (extended fuse), the lock byte and the calibration byte. The calibration byte is used
to calibrate the frequency of the internal RC oscillator. The lock byte can be used to restrict the
access to the memories. Once activated lock bits can not be reset by rewriting the lock byte. The only
way to deactivate the lock bits is a complete clear of all memories. Note, that the lock function will

10

be activated by clearing the appropriate bits (write to 0). With the complete clear of all Memories
the lock bits will be set to 1 (full access). The layout of the configuration bits to the different fuse
bytes differ for the several AVR processor models and should be read in the specific data sheet. You
can select the way of clock generation, the delay of start and a monitoring of operating voltage with
the fuses.

Most AVR micro-controllers are also equipped with a nonvolatile data memory, the EEprom. This
memory type has no special function for the processor. It is just a way for a application program so
save data for the next program start.

2.4.1 Parallel programming

All three nonvolatile memory types can be written or read with different technique. Usually the
parallel programming method is rare used for writing the nonvolatile memories. Sometimes this
method is the only way to reactivate processors, which can not accessed with other methods. For
example you can not use the serial programming, if the fuse bit for the Reset pin usage is deactivated
(RSTDISBL=0). The voltage at the reset pit is raised to higher voltage level (12V) for this parallel
programming method. Therefore this method is also called HV-programming.

2.4.2 serial download with ISP

The normal way to program any non volatile memory is the serial programming. The Atmel doc-
umentation call this method also serial download. For that way a SPI (Serial Parallel Interface)
interface is used. The SPI interface is build with three signals, MOSI, MISO and SCK. Additionally
the Reset pin of the AVR processor must hold to 0V to force this special download mode. Together
with two additional power signals GND and VCC (about 2.7 to 5V) this four signals build a ISP (In
System Programming) interface, which is often integrated at many boards. The figure shows the
layout of two usual plugs, which are often integrated at boards with AVR micro-controllers.

MISO ‘ o o |vce Miso| @ @ | vee
SCK @ @ |MosI osCle @
Reset ‘ o ® | GND Reset @ o
ISP Plug sSck| & @
MOSI| ® @ | GND

Figure 2.4. Two different types of ISP Plugs

The 10-pin version of the ISP-plug can additionally support a clock signal OSC for feed-in a clock
signal to the AVR micro-controller. One of this two plug versions are usually required to program a
boot-loader in the flash memory of a AVR micro-controller. The program data for the flash memory
are usually created with a PC. To transfer the program data to the AVR micro-controller a ISP
programmer is required, which use often a USB interface to the host computer side. But the host
computer can also use a serial or parallel interface to connect a ISP programmer. The USB interface
has the advantage, that the power (5V or 3.3V) for the micro-controller can be taken easy from
the interface. You can choose some types of specific ISP programmers at the electronic market,

11

the manufactor of the controllers offer the Atmel AVR-ISP MK2 programmer for example. But
you can also use a Arduino UNO or a similar Arduino with a special program for the connected
ISP interface. T use a DIAMAX ALL-AVR, which is equipped with both plug types and has some
additional features.

2.4.3 Self programming with serial interface

Because the AVR processor can write flash and EEprom memories with special instructions, you can
write a little program to the flash memory with one of the two programming methods, which receive
data from a serial interface and can write this data to the flash or EEprom memory. Exactly this
is the feature of the boot-loader optiboot. Setting of fuses or lock bytes is often not possible with
this method and is not supported by the boot-loader. You must set the fuses and the lock byte with
one of the other methods. The STK500 Communication Protocol from Atmel is used for the serial
data transfer. Because up-to-date computers often has no more any serial interfaces, a USB - serial
converter like the FTDI chip of Future Technology Devices International Ltd is used. A module with
this chip is for example a UM232R.

The Chips PL2303 from Prolific Technology Inc. and CP2102 from Silicon Laboratories Inc.
satisfy the same purpose. Also a suitable programmed ATmegal6U2 can be used for the same
function. All of these chips have a selectable Baud-rate and a TTL level for the serial signals. You
have to add level converter to get real RS232 signals. But the AVR micro-controllers don’t need
RS232 signal level. One of these chips is integrated at any Arduino board with USB interface. For
a fast answer the serial interface should also connect the DTR signal of the converter with a serial
100nF capacitor to the Reset input pin of the AVR processor. The figure shows a typical way of
connection.

USB-serial o AVR
Modul 10k Mikrocontr.
[14
—>———ono—5V VvCC I VCC
USB i TX — RX
> - RX — TX
—»———GND DTR . \Hoom Reset
_|n L:)—‘ In|
1k
GND L L GND

Figure 2.5. Connection of a USB-serial converter to the micro-controller

You should select the right power voltage for the USB - serial converter. Most modules can select
a 3.3V or a 5V signal level with a jumper. If you have a Arduino UNO with a ATmega328p at
a socket, you can remove the ATmega328p and use the board as USB - serial converter. So you
can transfer program data to another AVR processor with a already installed boot-loader. If you
frequently use this serial interface, a separate USB - serial interface make sense.

You can select with the Arduino development tool Sketch with the menu entry "Tools - serial
Port” a detected serial port. Then you can open a monitor window with the menu entry "Tools -
Serial Monitor”, which can show you the serial output of your AVR micro-controller at the screen.
The Baud rate of the serial interface can be selected at the monitor window. Both 1 nF capacitors
at the RX-inputs removes spikes from the serial signals. The test of the software UART program
was only successfull with a little capacitor at the RX input of the AVR processor. The probe of a
scope was sufficient as "filter” for the spikes. The hardware UART tolerates the spikes without any
filter and runs proper with or without the capacitor.

The running Serial Monitor of the Arduino Sketch can disturb the program download with the
serial interface, if the same USB - serial module is used for download and the monitor program. But

12

you can insert a additional USB - serial module to the host computer and connect only the RX-Signal
to the TX-Port of the AVR micro-controller. This second serial input listen to the output of the
AVR without any problems for the serial communication of the program download, if you select this
second interface with the Serial Monitor tool.

2.4.4 Diagnostic Tools

At the Linux operating system you can install a tool with the strange name jpnevulator, which can
monitor two serial inputs at the same time. Any received data are shown in a hexadecimal format
and with the option -a also as ASCII characters. With the option —timing-print the system time
of the serial data packets are shown. To prevent any affect to the data communication, you should
select two separate USB - serial modules for this monitoring. You should connect the serial input
(RX) of one module to the TX signal and the serial input of the other module to the RX signal of
the AVR micro-controller. Together with the module for the program download there are three USB
- serial modules connected to the PC. Of course all three modules must be set to the same baud rate
(stty ... -F /dev/ttyUSB1). The full command line with the start of the protocol can be look like:

jpnevulator -a --timing-print --read --tty "/dev/ttyUSB1i" --tty "/dev/ttyUSB2"
2016-05-29 11:05:06.589614: /dev/ttyUSBO

30 20 0
2016-05-29 11:05:06.589722: /dev/ttyUSB1

14 10

2016-05-29 11:05:06.593593: /dev/ttyUSBO

41 81 20 A.
2016-05-29 11:05:06.594581: /dev/ttyUSB1

14 74 10 .t.
2016-05-29 11:05:06.597583: /dev/ttyUSBO

41 82 20 A.
2016-05-29 11:05:06.598574: /dev/ttyUSB1

14 02 10

2016-05-29 11:05:06.601586: /dev/ttyUSBO

42 86 00 00 01 01 01 01 O3 FF FF FF FF 00 80 04 B...............
00 00 00 80 0O 20 L.
2016-05-29 11:05:06.603608: /dev/ttyUSB1

14 10

2016-05-29 11:05:06.605639: /dev/ttyUSBO

45 05 04 D7 C2 00 20 E.....
2016-05-29 11:05:06.606576: /dev/ttyUSB1

14 10

13

Chapter 3

The optiboot boot-loader for AVR
Micro-controllers

The optiboot Boot-loader has been created with C language by Peter Knight and Bill Westfield.
I have used the version 6.2 as base for the here described revised Assembler version. I would like
to underline, that I did not reinvent the optiboot boot-loader. I have just done some optimizing.
Many adaptions to several target processors and special board level systems are present with the
version 6.2. The program use parts of the STK500 communication protocol, which is released with

AVRO061 [7] from Atmel.

3.1 Changes and enhancements to the version 6.2

Basically I have translated the total program in the assembler language and have adapted the Make-
file, that the program length will be processed automatically to select the start address of the boot-
loader and set the right fuses for the program length. The selected solution generates some small files
during some interim steps, which are required to solve the following steps to select the right start
address and the right fuses. The start address of the boot-loader for any target processor depends
on the present flash size, the flash requirement of the boot-loader code and the tile size, which is
supported by the target processor for bootlace. The tile size is the smallest boot-loader size, which
can be supported by the selected target processor.

For processors like the ATtiny84, which don’t support the boot-loader start function, the page
size of the flash memory is used for this calculation. For the ATtiny84 this are 64 Bytes. Therefore
the start address of the boot-loader is always located at the begin of a flash page.

For all other supported target processors the boot-loader area can be selected with the fuse bits
BOOTSZ1 and BOOTSZ0 (each with the values 0 and 1). If you put together the both bits, you
get a coded boot-loader size with values between 0 and 3. Always the value of 3 select the smallest
possible boot-loader area. A value of 2 select a double size, the value 1 the quadruple size and the
value 0 select a size of eight times the smallest size. The table at page [10] shows a overview for
the several target processors.

3.2 Automatic size adaption in the optiboot Makefile

The boot-loader start address and the required boot-loader size will be adapted automatically with
the Makefile. For the calculation some interim files are created, which is only possible together with
some Linux tools:

14

bc a simple calculator, which can operate with input and output- values in decimal and hexadecimal
values.

cat put the file content to the standard output.

cut can select part of lines of a text.

echo shows the specified text at standard output.

grep shows only lines of a text file which contain the specified string.

tr can replace or erase characters.

Until now this function of the Makefile is only tested with a Linux system. Probably a use with
the Windows system is only possible, if you install the Cygwin package.

You don’t handle the different interim files in normal case. Here I would like to refer the names
and the meaning:

BootPages.dat hold the count of required pages by the boot-loader. For processors which support
the boot-loader start feature, the value can be only 1, 2, 4, or 8 and specifies how many times
the minimum size of the boot-loader area (tile) is used. With the virtual boot-loader support
the number can be any value and specifies the count of required flash pages.

BOOTSZ.dat hold a number between 0 and 3 for selection of the BOOTSZ0 and BOOTSZ1 bits.

BL_ StartAdr.dat hold the start address of the boot-loaders with hexadecimal format. The start
address is computed with the flash size of the selected target processor and the count of required
page or tile size.

EFUSE.dat hold the value for the efuse in hexadecimal format. The Makefile determine depending
of the target processor type, if this file is used or not.

HFUSE.dat hold the value for the hfuse in hexadecimal format. The Makefile determine depending
of the target processor type, if this file is used or not.

3.3 target selection for the optiboot Makefile

The control of steps for generating the program data from the source code is defined in the Makefile.
Except the main Makefile there are three additional extension Makefiles, which are included by
the main Makefile: Makefile.1284, Makefile.atmel, and Makefile.extras . There can exist different
configurations for the same processor type. The table shows different basic configuration for
several target processors. In principle this list can be extended. You can select some parameters also
with the make call or by setting a environment variable of the shell.

15

Name MCU | AVR_ | total | Flash | BP_ | LFUSE | HFUSE | EFUSE
FREQ | Flash | page | LEN
size size
attiny84 t84 16M? 8K 64 (64) 62 DF FE
atmega8 ms 16M 8K 64 256 BF cC -
atmega88 m88 16M SK 64 256 FF DD 04
atmegal6 ml6 16M 16K 128 256 FF 9C -
atmegal68 m168 16M 16K | 128 | 256 FC DD 04
atmegal68p | m168p 16M 16K 128 256 FC DD 04
atmega3d2 m32 16M 16K | 128 | 256 BF CE -
atmega328 m328 16M | 32K 128 | 512 FF DE 05
atmega328p | m328p | 16M | 32K | 128 | 512 FF DE 05
atmegab644p | m644p 16M 64K | 256 512 F7 DE 05
atmegal284 | ml1284 | 16M | 128K | 256 | 512 F7 DE 05
atmegal284p | m1284p | 16M | 128K | 256 512 F7 DE 05
atmegal280 | m1280 16M | 128K | 256 1K FF DE 05

Table 3.1. Processor targets for optiboot Makefile

All size values are shown in byte units, the values for fuses are shown with hexadecimal values.
The frequency values must be specified in Hz units, 16M is the same as 16000000 Hz. The standard
baud rate of the serial interface is always 115200.

Additional to the universal processor configurations you can also select configurations for special

boards or operational environment. The table shows the different adjustments.

Name MCU | AVR_ | BP__ L H E BAUD__ | LED | SOFT__
FREQ | LEN | FUSE | FUSE | FUSE | RATE UART
luminet t84 1M 64v F7 DD 04 9600 Ox -
virboot8 m8 16M 64v
diecimila ml168 | (16M) E7 DD 04 3x -
lilypad m168 8SM E2 DD 04 - 3x -
pro8 m168 16M F7 C6 04 - 3x -
prol6 m168 16M F7 DD 04 - 3x -
pro20 m168 16M F7 DC 04 - 3x -
atmegal68p_ Ip m168 16M FF DD 04 - -
xplained168pb ml68 | (16M) 57600
virboot328 m328p 16M | 128v -
atmegad28 pro8 | m328p SM FF DE 05 - 3x -
xplained328pb ml68 | (16M) 57600
xplained328p ml68 | (16M) 57600
wildfire ml1284p | 16M - 3xB5
megal280 m1280 16M FF DE 05 - -

Table 3.2. configured targets for the optiboot Makefile

16

3.4 The Options for the optiboot Makefile

With the options you can select the feature of the optiboot boot-loader.

For example you can

select with the option SOFT UART, that a software solution is used for the serial communication.
Without this option a integrated hardware UART is used for serial communication. The pin TX
(Transmit) is used for serial output and the pin RX (Receive) is used for serial input. If more than
one UART is present at the target processor, the first interface with the number 0 is used. But you
can also select every other present UART by specify the number with the option UART (UART=1
for the second present UART). For the hardware UART interfaces the pins for transmit and receive
are fixed to the specific pins. For the serial communication with software you can select any pins,
which are able to do digital input and output. More details for the available options you can find in
the tables B.3] and [3.4]

Name of Example Function
the Option
F CPU F_CPU=8000000 | Tell the program the clock frequency of the processor.
The value is specified in Hz units (cycles per second).
The example specifies a frequency of 8 MHz.
BAUD RATE BAUD Specifies the baud-rate for the serial communication.
RATE=9600 Always 8 data bits without parity is used.
SOFT UART | SOFT UART=1 | Select a software solution for the serial communication.
UART_RX UART_RX=DO0 | Specifies the port and bit number used for the serial input.
The example select bit 0 of PIND as serial input.
You can use this option only with the software UART.
UART_ TX UART_TX=D1 | Specifies the port and bit number used for the serial output.
The example select bit 1 of PORTD as serial output.
You can use this option only with the software UART.
UART UART=1 Select a hardware UART used for the serial communication
You can only select a UART if more than one is present.
This option can not be used with the SOFT_UART Option.
LED_START | LED_ START | Select a repetition count of flashing cycles for the
FLASHES FLASHES=3 control LED.
LED LED=B3 Select a port and bit number for the control LED.
The example would select the bit number 3 of the
port B for the LED connection. With the option
LED START FLASHES this LED will flash the
specified count before the communication start.
With the option LED DATA_FLASH the LED will glow
during wait for serial input.
LED DATA LED DATA The control LED will glow during waiting for
FLASH FLASH=1 serial input data.

Table 3.3. Important options for the optiboot Makefile

More options are listed in table . Some of these options are only interesting for software
checks and for processors without the boot-loader support.

17

Name of Example Function
the Option
SUPPORT SUPPORT Select the EEprom read and write function for the
EEPROM EEPROM=1 | boot-loader. If the assembly language is selected as
source, the EEprom support is enabled without
this option, but can be switched off by setting
the SUPPORT _EEPROM Option to 0.
For the C-source the function must be switched
on (default = off).
C_SOURCE | C_SOURCE=1 | Select the C language as source instead of the
assembly language (option 0 = assembly).
The assembly version requires less program space.
BIGBOOT | BIGBOOT=512 | Select additional space usage for the compiled
program. This is used only for tests of the
automatic adaption to the program size.
VIRTUAL VIRTUAL Changes the interrupt vector table of a user program,
BOOT BOOT _ that the boot-loader is called with a Reset.
PARTITION PARTITION For the start of the user program another
interrupt vector is used.
save vect save vect Choose a interrupt vector number for the
num num=—4 VIRTUAL BOOT PARTITION method.

Table 3.4. More options for the optiboot Makefile

3.5 Usage of optiboot without a boot-loader area

For processors without a special boot-loader area in the flash memory, for example the ATtiny84,
a solution is selectable to use the optiboot anyway. This function can be selected with the VIR-
TUAL_BOOT_PARTITION option. To start the boot-loader first with every Reset of the proces-
sor, the interrupt vector table of the application program is changed. At the reset vector location a
jump to the optiboot program is registered. The original start address of the application program will
be moved to another interrupt vector the "replacement reset vector”. This interrupt vector should
not be used by the application program. If the boot-loader does not receive any data from the serial
interface within a appropriate time, the boot-loader jump to the location of the replacement reset
vector and start the application program. The figure [3.1| should illustrate these changes.

18

Flash data file Flash memory content

Start
dummy
srvl
srv2
) srvo
srv5
srv3
I I I I
| | | |
I I I I
| | | |
I I I I
| | | |
rjmp srv6 rjmp srv6
2 rjmp srvS rjmp srvS
g
< 4 rjmp dummy rjmp Start
3 rjmp srv3 rjmp srv3
2 rjmp srv2 rjmp srv2
1 rjmp srvl rjmp srvl
0 rjmp Start rjmp optiboot

Figure 3.1. Changes of program data by optiboot

At the left side the content of the program data file (.hex) is shown. Just to the right the content
of the flash memory is shown, as it is modified by the optiboot boot-loader. At two interrupt vector
addresses the content is changed. At the reset vector address 0 the jump is modified to select the
optiboot start address as jump target. At the "replacement vector address” 4 the original jump target
address of the application program’s reset vector is used as new jump target address of this vector.
One of the problems with this modification is, that usually the program data is verified by the host
after write is finished. To provide any error message by verify the program data, the optiboot return
the program data without its own modification, not the real content of the interrupt vector table.
The jump target address of the reset vector can be reconstructed with the content of the replacement
vector address. But the original content of the replacement vector would be lost because there is no
place to save the original content in the flash memory. Therefore optiboot use the last two places
of the EEprom memory to save this original content of the replacement vector. So the verify of the
program data is possible without errors, as long as the application program do not use one of the last
two EEprom locations. Even if the application program use one of the last two EEprom locations,
the boot-loader will be unaffected. Only the program verify by the host is no longer possible without

19

a error message. An error message will occur at the location of the replacement interrupt vector.

For processors with more than 8 kByte flash memory two instruction words are used for every
interrupt vector. Normally every of this double words hold one JMP instruction with the proper
jump target address. The optiboot program can respect these JMP vector table too. But if you
use the linker avr-ld with the option —relax, all JMP instructions are replaced by a RJMP; if this is
possible for the target address. This replacement of JMP instruction in the vector table by RJMP
is not respected by the optiboot program. The optiboot program assume, that all interrupt vector
numbers of a processor with more than 8 kByte flash hold a JMP instruction. For that reason a
optiboot program with the VIRTUAL_ BOOT __Partition option will not work with a application
program, which is linked with the —relax option. The same problem exist, if the application program
itself use a RJMP instruction in one of the two critical interrupt vector positions.

Further you should notice, that you don’t activate the BOOTRST fuse together with with the
usage of the VIRTUAL_ BOOT_PARTITION option. The reason is, that the start address of the
boot-loader can be located to other addresses with the VIRTUAL BOOT PARTITION option than
without this option. With the VIRTUAL BOOT PARTITION the start address can be placed to
every begin of a flash page. For the normal boot-loader support of the AVR the start address can
only respect the single, double, quadruple or octuple size of a minimum boot-loader size as shown in

figure [2.3] at page [9}

20

Bibliography

[10]

[11]

Atmel Corporation 8-bit AVR with 8KBytes In-System Programmable Flash - ATmega8(L),.
Manual, 2486 AA-AVR-02/13, 2013

Atmel Corporation 8-bit AVR with 16KBytes In-System Programmable Flash - ATmegalGA,.
Manual, 8154C-AVR-07/14, 2014

Atmel Corporation 8-bit AVR with 32KBytes In-System Programmable Flash - ATmega32(L),.
Manual, doc2503-AVR-07/11, 2011

Atmel Corporation 8-bit AVR with 4/8/16/32KBytes In-System Programmable Flash - AT-
mega48 - ATmega328,. Manual, 8271J-AVR-11/15, 2015

Atmel Corporation 8-bit AVR with 16/32/64/128K Bytes In-System Programmable Flash - AT-
megal64 - ATmegal284,. Manual, 8272G-AVR-01/15, 2015

Atmel Corporation 8-bit AVR with 2/4/8KBytes In-System Programmable Flash - ATtiny24-
ATtiny4-ATtiny84 ,. Manual, doc8006-AVR-10/10, 2010

Atmel Corporation STK500 Communication Protocol ,. Application Note, AVR061-04/03, 2003

http://en.wikibooks.org/wiki/LaTeX LaTeX documentation,. Guide to the LaTeX markup
language, 2012

http://www.xfig.org/userman Xfig documentation,. Documentation of the interactive drawing
tool xfig, 2009

http://www.cs.ou.edu/~fagg/classes/general/atmel/avrdude.pdf| AVRDUDE User-
guide,. A program for download/uploading AVR microcontroller flash and eeprom, by Brian S.
Dean 2006

http://www.mikrocontroller.net/articles/AVRDUDE Online Dokumentation des avrdude
programmer interface, Online Article, 2004-2011

21

http://en.wikibooks.org/wiki/LaTeX
http://www.xfig.org/userman
http://www.cs.ou.edu/~fagg/classes/general/atmel/avrdude.pdf
http://www.mikrocontroller.net/articles/AVRDUDE

	Principle function of a boot-loader
	The Hardware of the AVR 8-bit micro controllers
	CPU and memory access
	Input and Output function
	The start of AVR micro-controllers
	Writing to the AVR memories
	Parallel programming
	serial download with ISP
	Self programming with serial interface
	Diagnostic Tools

	The optiboot boot-loader for AVR Micro-controllers
	Changes and enhancements to the version 6.2
	Automatic size adaption in the optiboot Makefile
	target selection for the optiboot Makefile
	The Options for the optiboot Makefile
	Usage of optiboot without a boot-loader area

