
MELSEC iQ-F FX5 Series
Programming Manual
[Instructions, Standard Functions/Function Blocks]

1

SAFETY PRECAUTIONS
(Read these precautions before use.)

Before using the FX5 series PLCs, please read the manual supplied with each product and the relevant manuals introduced in

that manual carefully and pay full attention to safety to handle the product correctly.

Store this manual in a safe place so that it can be taken out and read whenever necessary. Always forward it to the end user.

INTRODUCTION
This manual describes the instructions and functions required for programming FX5 series systems. This manual and the

related manuals should be read and the functions and performance of the FX5 series PLC should be understood before

attempting to use the unit.

However, before using a program example introduced in this manual to the actual system, always confirm that it poses no

problem for control of the target system.

Regarding use of this product

 � This product has been manufactured as a general-purpose part for general industries, and has not been designed or

manufactured to be incorporated in a device or system used in purposes related to human life.

 � Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger

movement vehicles, consult with Mitsubishi Electric.

 � This product has been manufactured under strict quality control. However when installing the product where major

accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

Note

 � If in doubt at any stage during the installation of the product, always consult a professional electrical engineer who is

qualified and trained in the local and national standards. If in doubt about the operation or use, please consult the nearest

Mitsubishi Electric representative.

 � Since the examples indicated by this manual, technical bulletin, catalog, etc. are used as a reference, please use it after

confirming the function and safety of the equipment and system. Mitsubishi Electric will accept no responsibility for actual

use of the product based on these illustrative examples.

 � This manual content, specification etc. may be changed without a notice for improvement.

 � The information in this manual has been carefully checked and is believed to be accurate; however, if you have noticed a

doubtful point, an error, etc., please contact the nearest Mitsubishi Electric representative. When doing so, please provide

the manual number given at the end of this manual.

2

CONTENTS
SAFETY PRECAUTIONS .1

INTRODUCTION. .1

RELEVANT MANUALS .14

TERMS .14

HOW TO READ THIS MANUAL .16

PART 1 OVERVIEW

CHAPTER 1 OVERVIEW 20

1.1 Instruction Configuration . 20

1.2 Data Specification Method . 21

Bit data . 24

16-bit data (word data) . 25

32-bit data (double word data). 27

Real number data (floating-point data) . 30

Character string data . 32

1.3 Execution Condition . 33

1.4 Precautions on Programming . 34

Errors common to instructions. 34

Checking the ranges of instruction runtime devices and labels. 34

Operations arising when the OUT, SET/RST, and PLS/PLF instructions of the same device are used 35

PART 2 INSTRUCTION/FUNCTION LIST

CHAPTER 2 CPU MODULE INSTRUCTION 42

2.1 Sequence Instruction . 42

2.2 Basic instruction . 46

2.3 Application instruction . 60

2.4 Built-in Ethernet Function Instruction. 78

CHAPTER 3 MODULE SPECIFIC INSTRUCTION 79

3.1 High-speed Counter Instruction. 79

3.2 External Device I/O Instruction . 79

3.3 Positioning Instruction . 80

3.4 Inverter Communication Instruction . 81

3.5 MODBUS Communication Instruction. 81

3.6 BFM Device Read/ Write Instruction . 82

CHAPTER 4 STANDARD FUNCTIONS/FUNCTION BLOCKS 83

4.1 Standard Functions. 83

Type conversion functions . 83

Standard functions of one numeric variable . 89

Standard arithmetic functions . 90

Standard bit shift functions . 91

Standard bitwise boolean functions . 91

Standard selection functions . 91

3

C
O

N
T

E
N

T
S

Standard comparison functions . 92

Standard character string functions . 92

Time data functions . 93

4.2 Standard Function Blocks . 94

Bistable function blocks . 94

Edge detection function blocks . 94

Counter function blocks . 94

Timer function blocks. 95

PART 3 CPU MODULE INSTRUCTIONS

CHAPTER 5 SEQUENCE INSTRUCTIONS 98

5.1 Contact Instructions . 98

Operation start, series connection, parallel connection. 98

Pulse operation start, pulse series connection, pulse parallel connection . 100

Pulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection. 102

5.2 Association Instruction. 104

Ladder block series/parallel connection . 104

Storing/reading/clearing the operation result . 105

Inverting the operation result . 106

Converting the operation result into a pulse . 107

5.3 Output Instructions . 108

Out (excluding the timer, counter and annunciator). 108

Timer . 109

Counter . 111

Long counter . 112

Annunciator . 113

Setting devices (excluding annunciator) . 114

Resetting devices (excluding annunciator) . 115

Setting annunciator . 116

Resetting annunciator . 117

Setting annunciator (with check time) . 118

Resetting annunciator (smallest number reset). 119

Rising edge output. 120

Falling edge output . 122

Inverting the bit device output . 123

Inverting the bit device output . 124

5.4 Shift Instructions . 125

Shifting bit devices. 125

Shifting 16-bit data to the right by n bit(s) . 127

Shifting 16-bit data to the left by n bit(s) . 128

Shifting n-bit data to the right by 1 bit . 129

Shifting n-bit data to the left by 1 bit . 130

Shifting n-word data to the right by 1 word . 131

Shifting n-word data to the left by 1 word . 132

Shifting n-bit(s) data to the right by (n) bit(s) . 133

Shifting n-bit data to the left by n bit(s) . 134

Shifting n-word data to the right by n word(s) . 135

Shifting n-word data to the left by n word(s) . 136

5.5 Master Control Instruction . 137

4

Setting/resetting the master control. 137

5.6 Termination Instructions. 141

Ending the main routine program . 141

Ending the sequence program . 142

5.7 Stop Instruction . 143

Stopping the sequence program . 143

5.8 No Processing Instruction . 144

No operation . 144

CHAPTER 6 BASIC INSTRUCTIONS 145

6.1 Comparison Operation Instructions . 145

Comparing 16-bit binary data . 145

Comparing 32-bit binary data . 147

Comparison output 16-bit binary data . 149

Comparison output 32-bit binary data . 151

Comparing 16-bit binary data band . 153

Comparing 32-bit binary data band . 155

Comparing 16-bit binary block data. 157

Comparing 32-bit binary block data. 159

6.2 Arithmetic Operation Instructions . 161

Adding 16-bit binary data. 161

Subtracting 16-bit binary data . 165

Adding 32-bit binary data. 169

Subtracting 32-bit binary data . 173

Multiplying 16-bit binary data. 177

Dividing 16-bit binary data . 180

Multiplying 32-bit binary data. 183

Dividing 32-bit binary data . 187

Adding BCD 4-digit data . 190

Subtracting BCD 4-digit data . 192

Adding BCD 8-digit data . 194

Subtracting BCD 8-digit data . 196

Multiplying BCD 4-digit data . 198

Dividing BCD 4-digit data . 199

Multiplying BCD 8-digit data . 200

Dividing BCD 8-digit data . 201

Adding 16-bit binary block data . 202

Subtracting 16-bit binary block data . 204

Adding 32-bit binary block data . 206

Subtracting 32-bit binary block data . 209

Incrementing 16-bit binary data . 211

Decrementing 16-bit binary data . 212

Incrementing 32-bit binary data . 213

Decrementing 32-bit binary data . 214

6.3 Logical Operation Instructions . 215

Performing an AND operation on 16-bit data . 215

Performing an AND operation on 32-bit data . 217

Performing an AND operation on 16-bit block data . 219

Performing an OR operation on 16-bit data. 220

Performing an OR operation on 32-bit data. 222

5

C
O

N
T

E
N

T
S

Performing an OR operation on 16-bit block data . 224

Performing an XOR operation on 16-bit data . 225

Performing an XOR operation on 32-bit data . 227

Performing an XOR operation on 16-bit block data. 229

Performing an XNOR operation on 16-bit data . 230

Performing an XNOR operation on 32-bit data . 232

Performing an XNOR operation on 16-bit block data . 234

6.4 Bit Processing Instructions . 235

Setting a bit in the word device . 235

Resetting a bit in the word device . 236

Performing a 16-bit test . 237

Performing a 32-bit test . 238

Batch-resetting bit devices . 239

Batch-resetting devices . 240

6.5 Data Conversion Instructions . 242

Converting binary data to BCD 4-digit data . 242

Converting binary data to BCD 8-digit data . 244

Converting BCD 4-digit data to binary data . 246

Converting BCD 8-digit data to binary data . 248

Converting single-precision real number to 16-bit signed binary data. 250

Converting single-precision real number to 16-bit unsigned binary data. 251

Converting single-precision real number to 32-bit signed binary data. 252

Converting single-precision real number to 32-bit unsigned binary data. 253

Converting 16-bit signed binary data to 16-bit unsigned binary data . 254

Converting 16-bit signed binary data to 32-bit signed binary data . 255

Converting 16-bit signed binary data to 32-bit unsigned binary data . 256

Converting 16-bit unsigned binary data to 16-bit signed binary data . 257

Converting 16-bit unsigned binary data to 32-bit signed binary data . 258

Converting 16-bit unsigned binary data to 32-bit unsigned binary data . 259

Converting 32-bit signed binary data to 16-bit signed binary data . 260

Converting 32-bit signed binary data to 16-bit unsigned binary data . 261

Converting 32-bit signed binary data to 32-bit unsigned binary data . 262

Converting 32-bit unsigned binary data to 16-bit signed binary data . 263

Converting 32-bit unsigned binary data to 16-bit unsigned binary data . 264

Converting 32-bit unsigned binary data to 32-bit signed binary data . 265

Converting 16-bit binary data to Gray code. 266

Converting 32-bit binary data to Gray code. 267

Converting Gray code to 16-bit binary data. 268

Converting Gray code to 32-bit binary data. 269

Converting decimal ASCII to 16-bit binary data. 270

Converting decimal ASCII to 32-bit binary data. 272

Converting ASCII to HEX . 274

Converting character string to 16-bit binary data. 277

Converting character string to 32-bit binary data. 279

Two's complement of 16-bit binary data (sign inversion). 282

Two's complement of 32-bit binary data (sign inversion). 283

Decoding from 8 to 256 bits. 284

Encoding from 256 to 8 bits. 285

Separating 4 bits from 16-bit data . 286

Connecting 4 bits to 16-bit data . 287

Separating the specified number of bits . 288

6

Connecting the specified number of bits . 290

Separating data in byte units . 292

Connecting data in byte units . 294

6.6 Data Transfer Instructions . 296

Transferring 16-bit data . 296

Transferring 32-bit data . 297

Inverting and transferring 16-bit data. 298

Inverting and transferring 32-bit data. 299

Digit move . 300

Inverting and transferring 1-bit data. 302

Transferring 16-bit block data (65535 points maximum) . 303

Transferring identical 16-bit block data (65535 points maximum) . 305

Transferring identical 32-bit block data (65535 points maximum) . 306

Exchanging 16-bit data . 307

Exchanging 32-bit data . 308

Exchanging the upper and lower bytes of 16-bit data . 309

Exchanging the upper and lower bytes of 32-bit data . 310

Transferring 1-bit data . 311

Transferring octal bits (16-bit data) . 312

Transferring octal bits (32-bit data) . 314

Transferring n-bit data . 316

CHAPTER 7 APPLICATION INSTRUCTION 317

7.1 Rotation Instruction . 317

Rotating 16-bit data to the right . 317

Rotating 16-bit data to the left . 320

Rotating 32-bit data to the right . 322

Rotating 32-bit data to the left . 324

7.2 Program branch instruction . 326

Pointer branch . 326

Jump to END . 329

7.3 Program execution control instruction . 330

Disabling/enabling interrupt programs. 330

Disabling the interrupt program with specified priority or lower . 332

Interrupt program mask . 335

Disabling/enabling the specified interrupt pointer . 337

Returning from the interrupt program . 338

Resetting the watchdog timer . 339

7.4 Structuring instruction . 340

FOR to NEXT . 340

Forcibly terminating the FOR to NEXT instruction loop. 342

Calling a subroutine program . 344

Returning from the subroutine program. 348

Calling a subroutine program . 349

7.5 Data table operation instruction. 351

Reading the oldest data from the data table . 351

Reading the newest data from the data table . 353

Writing data to the data table. 355

Inserting data to the data table . 357

Deleting data from the data table . 359

7

C
O

N
T

E
N

T
S

7.6 Character string operation instruction . 361

Comparing character strings . 361

Concatenating character strings . 364

Transferring character strings . 368

Converting 16-bit binary data to decimal ASCII. 370

Converting 32-bit binary data to decimal ASCII. 372

Converting HEX code data to ASCII . 374

Converting 16-bit binary data to character string. 378

Converting 32-bit binary data to character string. 380

Converting single-precision real number to character string . 383

Detecting a character string length . 388

Extracting character string data from the right. 390

Extracting character string data from the left . 392

Storing the specified number of character strings . 394

Replacing the specified number of character strings. 396

Searching character string. 398

Inserting character string . 400

Deleting character string . 402

7.7 Real Number Instruction. 404

Comparing single-precision real numbers . 404

Single-precision real number comparison . 406

Single-precision real number data band comparison . 408

Adding single-precision real numbers . 410

Subtracting single-precision real numbers . 412

Adding single-precision real numbers . 414

Subtracting single-precision real numbers . 416

Multiplying single-precision real numbers . 418

Dividing single-precision real numbers . 420

Multiplying single-precision real numbers . 422

Dividing single-precision real numbers . 424

Converting 16-bit signed binary data to single-precision real number. 426

Converting 16-bit unsigned binary data to single-precision real number. 427

Converting 32-bit signed binary data to single-precision real number. 428

Converting 32-bit unsigned binary data to single-precision real number. 429

Converting character string to single-precision real number . 430

Converting binary floating point to decimal floating point . 433

Converting decimal floating point to binary floating point . 435

Inverting the sign of single-precision real number . 437

Transferring single-precision real number data . 438

Calculating the sine of single-precision real number . 439

Calculating the cosine of single-precision real number . 441

Calculating the tangent of single-precision real number . 443

Calculating the arc sine of single-precision real number . 445

Calculating the arc cosine of single-precision real number . 447

Calculating the arc tangent of single-precision real number . 449

Converting single-precision real number angle to radian . 451

Converting single-precision real number radian to angle . 452

Calculating the square root of single-precision real number . 453

Calculating the exponent of single-precision real number. 454

Calculating the natural logarithm of single-precision real number. 456

Calculating the exponentiation of single-precision real number . 458

8

Calculating the common logarithm of single-precision real number . 460

Searching the maximum value of single-precision real number . 461

Searching the minimum value of single-precision real number . 463

7.8 Random Number Instruction . 465

Generating random number . 465

7.9 Index register operation instruction . 466

Saving all data of the index register . 466

Returning all data of the index register . 468

Saving the selected data of the index register and long index register . 469

Returning the selected data of the index register and long index register. 471

7.10 Data control instruction . 472

Upper and lower limit control of 16-bit binary data . 472

Upper and lower limit control of 32-bit binary data . 474

Dead band control of 16-bit binary data . 476

Dead band control of 32-bit binary data . 478

Zone control of 16-bit binary data . 480

Zone control of 32-bit binary data . 482

Scaling 16-bit binary data (point coordinates) . 484

Scaling 32-bit binary data (point coordinates) . 487

Scaling 16-bit binary data (XY coordinates) . 490

Scaling 32-bit binary data (XY coordinates) . 493

7.11 Special timer instruction. 496

Teaching timer . 496

Special function timer . 498

7.12 Shortcut control instruction . 500

Rotary table shortest direction control . 500

7.13 Ramp signal instruction . 503

Ramp signal. 503

7.14 Pulse related instruction. 505

Measuring the density of 16 bit binary pulses . 505

Measuring the density of 32 bit binary pulses . 509

16 bit binary pulse output . 513

32 bit binary pulse output . 521

16 bit binary pulse width modulation . 529

32 bit binary pulse width modulation . 533

7.15 Drum sequence . 538

16-bit binary data absolute method . 538

32-bit binary data absolute method . 540

Relative method. 542

7.16 Check code . 544

Check code . 544

7.17 Data operation instruction . 547

Searching 16-bit data . 547

Searching 32-bit data . 549

Bit check of 16-bit data . 551

Bit check of 32-bit data . 552

Bit judgment of 16-bit data. 553

Bit judgment of 32-bit data. 554

Searching the maximum value of 16-bit data . 555

Searching the maximum value of 32-bit data . 556

Searching the minimum value of 16-bit data . 557

9

C
O

N
T

E
N

T
S

Searching the minimum value of 32-bit data . 558

Sorting 16-bit data . 559

16-bit data alignment 2 . 562

32-bit data alignment 2 . 565

Adding 16-bit data . 568

Adding 32-bit data . 569

Calculating the mean value of 16-bit data . 570

Calculating the mean value of 32-bit data . 571

Calculating the square root of 16-bit data . 572

Calculating the square root of 32-bit data . 573

CRC calculation. 574

7.18 Indirect address read instruction. 577

Reading the indirect address. 577

7.19 Clock instruction . 579

Reading clock data . 579

Writing clock data . 581

Adding clock data . 583

Subtracting clock data . 585

Converting time data from hour/minute/second to seconds in 16 bits . 587

Converting time data from hour/minute/second to seconds in 32 bits . 588

Converting time data from seconds to hour/minute/second in 16 bits. 589

Converting time data from seconds to hour/minute/second in 32 bits. 590

Comparing date data . 591

Comparing time data . 594

Comparing clock data . 597

Comparing clock data zones . 599

7.20 Timing check instruction . 601

Generating timing pulses. 601

Hour meter. 603

7.21 Module access instruction . 605

I/O refresh . 605

Reading 1-word/2-word data from another module . 607

Writing 1-word/2-word data to another module . 610

Reading 1-word/2-word data from another module . 613

Writing 1-word/2-word data to another module (32-bit specification) . 616

CHAPTER 8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS 619

8.1 Open/Close Processing Instructions. 619

Opening a connection . 619

Closing a connection . 622

8.2 Socket Communications Function Instructions. 624

Reading receive data during the END processing. 624

Sending data . 627

Reading connection information . 629

Reading socket communications receive data . 631

PART 4 MODULE DEDICATED INSTRUCTION

CHAPTER 9 HIGH-SPEED COUNTER INSTRUCTION 634

9.1 High-speed Processing Instruction . 634

10

Setting 32-bit data comparison . 634

Reset 32-bit data comparison . 636

Comparison of 32-bit data band . 638

Start/stop of the 16-bit data high-speed I/O function . 640

Start/stop of the 32-bit data high-speed I/O function . 642

9.2 High-speed Current Value Transfer Instruction . 644

High-speed current value transfer of 16-bit data . 644

High-speed current value transfer of 32-bit data . 646

CHAPTER 10 EXTERNAL DEVICE I/O INSTRUCTION 648

10.1 Serial Communication 2 . 648

CHAPTER 11 POSITIONING INSTRUCTION 650

11.1 Positioning Instruction . 650

Zero return(OPR) with 16-bit data DOG search . 650

Zero return(OPR) with 32-bit data DOG search . 652

16-bit data interrupt positioning . 653

32-bit data interrupt positioning . 655

Positioning by one table operation . 657

Positioning by multiple table operation . 659

Multiple axes concurrent drive positioning. 660

32-bit data ABS current value read . 662

16-bit data variable speed pulse . 663

32-bit data variable speed pulse . 665

16-bit data relative positioning. 667

32-bit data relative positioning. 669

16-bit data absolute positioning. 671

32-bit data absolute positioning. 673

CHAPTER 12 INVERTER COMMUNICATION INSTRUCTION 675

12.1 Inverter operation monitoring(Status check) . 675

12.2 Inverter operations control(Drive) . 676

12.3 Inverter parameter read . 677

12.4 Inverter parameter write . 678

12.5 Inverter parameter block write . 679

12.6 Inverter multi command . 680

CHAPTER 13 MODBUS COMMUNICATION INSTRUCTION 682

13.1 MODBUS Read/Write. 682

CHAPTER 14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION 684

14.1 Divided BFM Read. 684

14.2 Divided BFM write . 687

PART 5 STANDARD FUNCTIONS

CHAPTER 15 TYPE CONVERSION FUNCTIONS 690

15.1 Converting BOOL to WORD . 690

15.2 Converting BOOL to DWORD. 691

11

C
O

N
T

E
N

T
S

15.3 Converting BOOL to INT. 692

15.4 Converting BOOL to DINT . 693

15.5 Converting BOOL to TIME . 694

15.6 Converting BOOL to STRING . 695

15.7 Converting WORD to BOOL . 696

15.8 Converting WORD to DWORD . 697

15.9 Converting WORD to INT . 698

15.10 Converting WORD to DINT . 699

15.11 Converting WORD to TIME . 700

15.12 Converting DWORD to BOOL. 701

15.13 Converting DWORD to WORD . 702

15.14 Converting DWORD to INT . 704

15.15 Converting DWORD to DINT. 706

15.16 Converting DWORD to TIME. 707

15.17 Converting INT to BOOL. 708

15.18 Converting INT to WORD . 709

15.19 Converting INT to DWORD . 710

15.20 Converting INT to DINT . 711

15.21 Converting INT to BCD . 712

15.22 Converting INT to REAL . 714

15.23 Converting INT to TIME. 715

15.24 Converting INT to STRING . 716

15.25 Converting DINT to BOOL . 718

15.26 Converting DINT to WORD . 719

15.27 Converting DINT to DWORD. 721

15.28 Converting DINT to INT . 722

15.29 Converting DINT to BCD. 723

15.30 Converting DINT to REAL. 725

15.31 Converting DINT to TIME . 726

15.32 Converting DINT to STRING . 727

15.33 Converting BCD to INT . 729

15.34 Converting BCD to DINT. 731

15.35 Converting REAL to INT . 733

15.36 Converting REAL to DINT. 735

15.37 Converting REAL to STRING . 737

15.38 Converting TIME to BOOL . 740

15.39 Converting TIME to WORD . 741

15.40 Converting TIME to DWORD. 742

15.41 Converting TIME to INT. 743

15.42 Converting TIME to DINT . 744

15.43 Converting TIME to STRING. 745

15.44 Converting STRING to BOOL . 746

15.45 Converting STRING to INT . 747

15.46 Converting STRING to DINT . 749

15.47 Converting STRING to REAL . 751

15.48 Converting STRING to TIME. 754

15.49 Converting Bit Array to INT . 755

15.50 Converting Bit Array to DINT . 756

15.51 Converting INT to Bit Array . 757

15.52 Converting DINT to Bit Array . 758

15.53 Bit Array Copy . 759

12

15.54 Reading the Specified Bit of Word Label . 760

15.55 Writing the Specified Bit of Word Label . 761

15.56 Copying the Specified Bit of Word Label . 762

15.57 Unnecessary of Type Conversion . 763

CHAPTER 16 SINGLE NUMBER VARIABLE FUNCTIONS 764

16.1 Absolute Value. 764

16.2 Square Root . 766

16.3 Natural Logarithm Operation . 767

16.4 Calculating the Common Logarithm . 768

16.5 Exponential Operation . 770

16.6 Sine Operation. 771

16.7 Cosine Operation. 772

16.8 Tangent Operation. 773

16.9 Arc Sine Operation . 774

16.10 Arc Cosine Operation . 775

16.11 Arc Tangent Operation . 776

CHAPTER 17 ARITHMETIC OPERATION FUNCTIONS 777

17.1 Addition . 777

17.2 Multiplication . 779

17.3 Subtraction. 781

17.4 Division. 783

17.5 Remainder . 785

17.6 Exponentiation. 787

17.7 Move Operation . 789

CHAPTER 18 BIT SHIFT FUNCTIONS 791

18.1 n-bit Left Shift . 791

18.2 n-bit Right Shift . 793

18.3 n-bit Left Rotation . 795

18.4 n-bit Right Rotation . 797

CHAPTER 19 STANDARD BITWISE BOOLEAN FUNCTIONS 799

19.1 AND Operation, OR Operation, XOR Operation . 799

19.2 Logical Negation . 801

CHAPTER 20 SELECTION FUNCTIONS 802

20.1 Selection. 802

20.2 Selecting Maximum/Minimum Value . 804

20.3 Limit Control . 806

20.4 Multiplexer . 808

CHAPTER 21 COMPARISON FUNCTIONS 810

21.1 Compare . 810

21.2 Compare . 812

CHAPTER 22 CHARACTER STRING FUNCTIONS 814

22.1 Character String Length Detection . 814

22.2 Extracting Character String Data from the Left/Right . 815

13

C
O

N
T

E
N

T
S

22.3 Extract Mid String . 817

22.4 Link Character Strings . 819

22.5 Inserting Character String . 821

22.6 Deleting Character String . 823

22.7 Replacing Character String . 825

22.8 Searching Character String . 828

CHAPTER 23 TIME DATA FUNCTIONS 830

23.1 Addition . 830

23.2 Subtraction. 832

23.3 Multiplication . 834

23.4 Division. 836

PART 6 FUNCTION BLOCKS

CHAPTER 24 BISTABLE FUNCTION BLOCKS 840

24.1 Bistable Function Blocks (Set Priority) . 840

24.2 Bistable Function Blocks (Reset Priority). 842

CHAPTER 25 EDGE DETECTION FUNCTION BLOCKS 844

25.1 Rising Edge Detector . 844

25.2 Falling Edge Detector . 846

CHAPTER 26 COUNTER FUNCTION BLOCKS 848

26.1 Up Counter . 848

26.2 Down Counter . 850

26.3 Counter Function Block . 852

CHAPTER 27 TIMER FUNCTION BLOCKS 854

27.1 Timer Function Blocks . 854

APPENDICES 857

Appendix 1 Number of Instruction Steps. 857

INSTRUCTION INDEX 876

REVISIONS. .882

WARRANTY .883

TRADEMARKS .884

14

RELEVANT MANUALS

User’s manuals for the applicable modules

TERMS
Unless otherwise specified, this manual uses the following terms.

 �  indicates a variable portion used to collectively call multiple models or versions.

(Example) FX5U-32MR/ES, FX5U-32MT/ES  FX5U-32M/ES

 � For details of the FX3 series devices that can be connected with the FX5U series, refer to MELSEC iQ-F FX5U Series

User's Manual [Hardware].

Manual name <manual number> Description

MELSEC iQ-F FX5 Series User's Manual [Startup]

<JY997D58201>

Performance specifications, procedures before operation, and troubleshooting of the

CPU module.

MELSEC iQ-F FX5U Series User's Manual [Hardware]

<JY997D55301>

Describes the details of hardware of the FX5U series CPU module, including input/

output specifications, wiring, installation, and maintenance.

MELSEC iQ-F FX5 Series User's Manual [Application]

<JY997D55401>

Describes basic knowledge required for program design, functions of the CPU module,

devices/labels, and parameters.

MELSEC iQ-F FX5 Series Programming Manual [Program Design]

<JY997D55701>

Describes specifications of ladders, ST, and other programs and labels.

MELSEC iQ-F FX5 Series Programming Manual [Instructions,

Standard Functions/Function Blocks]

<JY997D55801> (This manual)

Describes specifications of instructions and functions that can be used in programs.

MELSEC iQ-F FX5 Series User's Manual [Serial Communication]

<JY997D55901>

Describes inverter communication and non-protocol communication.

MELSEC iQ-F FX5 Series User's Manual [MODBUS Communication]

<JY997D56101>

Describes MODBUS serial communication.

MELSEC iQ-F FX5 Series User's Manual [Ethernet Communication]

<JY997D56201>

Describes the functions of the built-in Ethernet port communication function.

MELSEC iQ-F FX5 Series User's Manual [SLMP]

<JY997D56001>

Explains methods for the device that is communicating with the CPU module by SLMP

to read and write the data of the CPU module.

MELSEC iQ-F FX5 Series User's Manual [Positioning Control]

<JY997D56301>

Describes the built-in positioning function.

GX Works3 Operating Manual

<SH-081215ENG>

System configuration, parameter settings, and online operations of GX Works3.

Terms Description

■Series name

FX5 series Abbreviation of FX5 series PLCs

FX3 series Generic term for FX3S, FX3G, FX3GC, FX3U, and FX3UC series PLCs

■Devices

CPU module Generic term for FX5U-32MR/ES, FX5U-32MT/ES, FX5U-32MT/ESS, FX5U-64MR/ES, FX5U-64MT/ES,

FX5U-64MT/ESS, FX5U-80MR/ES, FX5U-80MT/ES, and FX5U-80MT/ESS

Extension module Generic term for FX5 series extension modules and FX3 series extension modules

� FX5 series extension module Generic term for I/O modules, extension power supply modules, and FX5 series intelligent function modules

� FX3 series extension module Generic term for FX3 series extension power supply modules and special extension blocks

I/O module Generic term for input modules, output modules, and powered input/output modules

� Input module Generic term for FX5-8EX/ES and FX5-16EX/ES

� Output module Generic term for FX5-8EYR/ES, FX5-8EYT/ES, FX5-8EYT/ESS, FX5-16EYR/ES, FX5-16EYT/ES, and FX5-

16EYT/ESS

� Powered input/output module Generic term for FX5-32ER/ES, FX5-32ET/ES, and FX5-32ET/ESS

Extension power supply module Generic term for FX5-1PSU-5V and FX3U-1PSU-5V

Intelligent module The abbreviation for intelligent function modules

Intelligent function module Generic term for FX5 series intelligent function modules and FX3 series intelligent function modules

� FX5 series intelligent function module Generic term for FX5 series intelligent function modules

� FX3 series intelligent function module Generic term for FX3 series special extension blocks

15

Simple motion module Different name for FX5-40SSC-S

Expansion board Generic term for boards for FX5 series

� Communication board Generic term for FX5-232-BD, FX5-485-BD and FX5-422-BD-GOT

Expansion adapter Generic term for adapters for FX5 series

� Communication adapter Generic term for FX5-232ADP and FX5-485ADP

Bus conversion module Different name for FX5-CNV-BUS

Battery Different name for FX3U-32BL

Peripheral device Generic term for engineering tools and GOTs

GOT Generic term for Mitsubishi Graphic Operation Terminal GOT1000 and GOT2000 series

■Software package

Engineering tool Different name for GX Works3

GX Works3 Product name of MELSEC PLC software package for the MELSEC programmable controllers

■Manuals

User's manual Generic term for separate manuals

User's manual [Startup] Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Startup]

User's manual [Hardware] Abbreviation of MELSEC iQ-F FX5U Series User's Manual [Hardware]

User's manual [Application] Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Application]

Programming manual Generic term for MELSEC iQ-F FX5 Series Programming Manual [Program Design] and MELSEC iQ-F FX5

Series Programming Manual [Instructions, Standard Functions/Function Blocks]

Programming manual [Program Design] Abbreviation of MELSEC iQ-F FX5 Series Programming Manual [Program Design]

Programming manual [Instructions, Standard

Functions/Function Blocks]

Abbreviation of MELSEC iQ-F FX5 Series Programming Manual [Instructions, Standard Functions/Function

Blocks]

Communication manual Generic term for MELSEC iQ-F FX5 Series User's Manual [Serial Communication], MELSEC iQ-F FX5 Series

User's Manual [MODBUS Communication], and MELSEC iQ-F FX5 Series User's Manual [Ethernet

Communication], MELSEC iQ-F FX5 Series User's Manual [SLMP]

� Serial communication manual Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Serial Communication]

� MODBUS communication manual Abbreviation of MELSEC iQ-F FX5 Series User's Manual [MODBUS Communication]

� Ethernet communication manual Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Ethernet Communication]

� SLMP manual Abbreviation of MELSEC iQ-F FX5 Series User's Manual [SLMP]

Positioning control manual Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Positioning Control]

Terms Description

16

HOW TO READ THIS MANUAL
The following describes the page layout and symbols used in this manual.

How to read PART 3 and PART 4

The contents described in this section are provided only for explaining how to read this manual. Thus, the actual description

may differ.

















17

Indicates the instruction symbol.

 � The instruction symbol with brackets means multiple instructions. For example, "GRY(P)(_U)" means the GRY, GRYP,

GRY_U, and GRYP_U instructions.

 � The instruction symbol with "" means multiple instructions. For example, "LDDT" means the LDDT=, LDDT<>, LDDT>,

LDDT<=, LDDT<, and LDDT>= instructions.

Indicates the description format of the ladder language and ST (structured text) language.

Instruction symbols are input in each corresponding place surrounded in a square in the ladder diagram.

Indicates the description, setting range, data type, and data type (label) of each operand.

 � For the data type, refer to the following.

MELSEC iQ-F FX5 Series Programming Manual [Program Design]

Indicates the applicable devices for each operand. The following table describes the usage classification.

*1 For the description of each device, refer to the following.

MELSEC iQ-F FX5 Series User's Manual [Application]

*2 “” is described in positions where bit devices or nibble specification of bit devices is available.

*3 “” is described in positions where word device or bit specification of word device is available.

*4 When T, ST, C, and LC are used with an instruction other than the following instructions, they can be used only as word data. They

cannot be used as bit data.

[Instruction which can be used as bit data]

LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST, BKRST,

MOVB(P), CMLB(P)

*5 Devices which can be set are described in the "Others" column.

Depending on the instruction, the control data to set the operation of the instruction exists. When the "Set by" column is

"User", the value must be specified according to the setting range.

Indicates the function details of the instruction. When no details are described, the following programs correspond to

"Interrupt program".

 � Interrupt program using the interrupt pointer (I)

 � Event execution type program which is triggered by an interrupt by the interrupt pointer (I)

Indicates the cautions.

Indicates an error code (hexadecimal) which occurs at the execution and the error description when the instruction has a

specific operation error.

 � A device in which an error code is stored is described in the error code column. When an error code is stored in SD0/

SD8067, the error flag (SM0, SM1, SM56, SM8067) turns on.

Instruction symbol Description of symbol

Instruction symbol with "(P)" The instruction is executed on the rising edge.

Instruction symbol with "(_U)" The instruction handles 16-bit or 32-bit unsigned binary data.

Operand Bit Word Double word Indirect

specifi

cation

Constant Others
*5

X*2, Y*2, M*2,

L*2, SM*2, F*2,

B*2, SB*2

U¥G T, ST, C,

LC

T, ST, C,

D*3,W*3, SD*3,

SW*3, R*3

U¥G Z LC LZ K, H E $

Applicable

devices*1

X, Y, M, L, SM, F,

B, SB

U¥G T*4, ST*4,

C*4, LC*4

T, ST, C, D, W,

SD, SW, R

U¥G Z LC LZ @

@.

K, H E $ P, I, U,

N

18

How to read PART 5 and PART 6

The contents described in this section are provided only for explaining how to read this manual. Thus, the actual description

may differ.

Indicates function symbols.

When character strings in brackets are added to the end of the function symbol for standard functions and function blocks, the

function symbol indicates multiple functions. For example, "DINT_TO_INT(_E)" means "DINT_TO_INT" and

"DINT_TO_INT_E".

Indicates the description format of the ladder language and ST (structured text) language.

Function symbols are input in each corresponding place surrounded in a square in the ladder diagram.

Indicates the description, type and data type of each argument.

Indicates the functions of each standard function or function block.

Indicates an error code which occurs at the execution and the error description when the standard function or the function

block has a specific operation error.

A device in which an error code is stored is described in the error code column. When an error code is stored in SD0, the error

flag SM0 turns on.

Function symbol Description of symbol

Function symbol to which "(_E)" is added. Indicates that the description format with EN/ENO can be used in the standard function and function block.











19

P
A

R
T

 1

PART 1 OVERVIEW

Part 1 consists of the following chapter.

1 OVERVIEW

20
1 OVERVIEW

1.1 Instruction Configuration

1 OVERVIEW

1.1 Instruction Configuration

Many instructions available for CPU module are each divided into the instruction part and device part.

The instruction part and device part are used as follows.

 � Instruction part: Indicates the function of the relevant instruction.

 � Device part: Indicates the data used for the instruction.

The device part is further classified to source data, destination data, and numerical data.

Source (s)

Source is the data used in the operation.

Depending on the label or device specified in each instruction, the source becomes as follows.

Destination (d)

Data after operation is stored in the destination area.

However, some instructions require the data to be used in the operation to be stored before the operation.

Ex.

Binary 16-bit data addition instruction

A label or device to store data must be set for the destination.

Numerical values (n)

In an instruction which uses multiple devices or an instruction which specifies the number of repetitions, data to be processed,

and character strings, use numerical values to specify the number of devices, transfers, data, and character strings.

Ex.

Block transfer instruction

A numerical value from 0 to 65535 or 0 to 4294967295 can be set for the size such as the number of devices, transfers, or

characters.*1

Note, however, that when the size specification such as the number of devices, transfers, or characters is 0, the relevant

instruction results in non-processing.

*1 The setting range varies depending on the instruction. For details, refer to the description of each instruction.

Be careful when a large numerical value is used such as for the number of transfers. It delays the scan time.

Type Description

Constant The constant specifies a numerical value used in the operation.

It is set during program creation and cannot be changed during program execution.

Bit device

Word device

The user specifies the device where the data to be used in the operation is stored.

Necessary data must be thus stored in the specified device before operation execution.

By changing the data to be stored in the specified device during program execution, the data to be used by the

instruction can be changed.

ds2s1+ds+

The data required for operation is stored before the operation. Only the operation result is stored.

ndsBMOV

The number of transfers executed by the BMOV instruction is specified.

1 OVERVIEW

1.2 Data Specification Method 21

1
1.2 Data Specification Method

The following table lists the types of data that can be used for instructions in CPU modules.

Device data

*1 A constant can be used in the data specified for the source (s) or numerical data (n) by an instruction.

*2 For the specification method, refer to the detail page of each data type.

Data type Description Specifiable device/constant*1

Bit Bit data can be handled.

Page 24 Bit data

� Bit device

� Bit specification of word device

Word Word data can be handled.

Page 25 16-bit data (word data)

� Word device

� Nibble specification of bit devices (K1 to

K4)*2

� Decimal constant

� Hexadecimal constant

16-bit signed binary 16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

Page 25 16-bit data (word data)
16-bit unsigned binary

Double word Double-word data can be handled.

Page 27 32-bit data (double word data)

� Word device

� Double-word device

� Nibble specification of bit devices (K1 to

K8)*2

� Decimal constant

� Hexadecimal constant

32-bit signed binary Two consecutive sets of 32-bit data or 16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

Page 27 32-bit data (double word data)
32-bit unsigned binary

BCD 4-digit BCD 4-digit data can be handled.

16-bit data is divided by 4 digits and each digit is specified in 0 to 9.

� Word device

� Nibble specification of bit devices (K1 to

K4)*2

� Decimal constant

� Hexadecimal constant

BCD 8-digit BCD 8-digit data can be handled.

32-bit data is divided by 8 digits and each digit is specified in 0 to 9.

� Word device

� Double-word device

� Nibble specification of bit devices (K1 to

K8)*2

� Decimal constant

� Hexadecimal constant

Single-precision real

number

Single-precision real number data (single-precision floating-point data) can be

handled.

Page 30 Configuration of single-precision real number data

� Word device

� Double-word device

� Real constant

Character string ASCII code and Shift JIS code character string data can be handled.

Page 32 Character string data

� Word device

� Character string constant

Data used in devices and labels Bit data

16-bit data (word data) 16-bit signed binary data

16-bit unsigned binary data

32-bit signed binary data

32-bit unsigned binary data

Single-precision real number data

BCD 4-digit data

BCD 8-digit data

String

32-bit data (double-word data)

Real number data (floating-point data)

BCD data

String data

22
1 OVERVIEW

1.2 Data Specification Method

Label data

■Primitive data type

Data type (label) Specifiable label

Bit

(BOOL)

� Bit type label

� Bit-specified word [unsigned]/bit string [16 bits] type label

� Bit-specified word [signed] type label

� Timer/retentive timer/long timer/long retentive timer type label contact/coil

� Counter/ long counter type label contact/coil

Word [unsigned]/bit string [16 bits]

(WORD)

� Word [unsigned]/bit string [16 bits] type label

� Nibble specified bit type label (K1 to K4)

� Current value of timer/retentive timer type label

� Current value of counter type label

Double word [unsigned]/bit string [32 bits]

(DWORD)

� Double word [unsigned]/bit string [32 bits] type label

� Nibble specified bit type label (K1 to K8)

� Current value of long timer/long retentive timer type label

� Current value of long counter type label

Word [signed]

(INT)

� Word [signed] type label

� Nibble specified bit type label (K1 to K4)

� Current value of timer/retentive timer type label

� Current value of counter type label

Double word [signed]

(DINT)

� Double word [signed] type label

� Nibble specified bit type label (K1 to K8)

� Current value of long timer/long retentive timer type label

� Current value of long counter type label

Single-precision real number

(REAL)

� Single-precision real data type label

Time

(TIME)

� Time type label

Character string

(STRING)

� Character string type label

Timer

(TIMER)

� Timer type label

Retentive timer

(RETENTIVETIMER)

� Retentive timer type label

Counter

(COUNTER)

� Counter type label

Long counter

(LCOUNTER)

� Long counter type label

Pointer

(POINTER)

� Pointer type label

1 OVERVIEW

1.2 Data Specification Method 23

1

■Generic data type

*1 Can also be used as an array.

■Generic data type (array)
For the following generic data type, define the number of array elements.

Data type (label) Specifiable label

ANY*1 Bit, word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],

single-precision real number, hour, character string, structure

ANY_BITADDR*1 Bit

ANY_BOOL Bit

ANY_ELEMENTARY Bit, word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],

single-precision real number, hour, character string

ANY_WORDADDR Word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],

single-precision real number, hour, character string

Any 16-bit data (ANY16) Word [signed], word [unsigned]/bit string [16 bits]

ANY16_S Word [signed]

ANY16_U Word [unsigned]/bit string [16 bits]

Any 32-bit data (ANY32) Double word [signed], double word [unsigned]/bit string [32 bits], hour

ANY32_S Double word [signed], hour

ANY32_U Double word [unsigned]/bit string [32 bits]

ANY_REAL Single-precision real number

ANYREAL_32 Single-precision real number

ANY_STRING Character string

ANYSTRING_SINGLE Character string

ANY_STRUCT*1 Structures

ANY_DT Word [signed], word [unsigned]/bit string [16 bits]

ANY_TM Word [signed], word [unsigned]/bit string [16 bits]

STRUCT Structures

ANY16_OR_STRING_SINGLE Word [signed], word [unsigned]/bit string [16 bits], character string

Data type (label) Specifiable label

ANYBIT_ARRAY Bit

ANYWORD_ARRAY Word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],

single-precision real number, hour, character string

ANY16_ARRAY Word [signed], word [unsigned]/bit string [16 bits]

ANY16_S_ARRAY Word [signed]

ANY16_U_ARRAY Word [unsigned]/bit string [16 bits]

ANY32_ARRAY Double word [signed], double word [unsigned]/bit string [32 bits]

ANY32_S_ARRAY Double word [signed]

ANY32_U_ARRAY Double word [unsigned]/bit string [32 bits]

ANY_REAL_ARRAY Single-precision real number

ANY_REAL_32_ARRAY Single-precision real number

ANY_STRING_ARRAY Character string

ANY_STRING_SINGLE_ARRAY Character string

STRUCT_ARRAY Structures

24
1 OVERVIEW

1.2 Data Specification Method

Bit data

Data size and data range

Bit data is handled in increments of bits such as contacts and coils.

Handling bit data with bit devices and labels

Bit data of one point per point can be handled.

Handling bit data with bit word devices

By specifying a bit number for a word device, bit data of the specified bit number can be handled.

The notation for bit number specification is as follows.

A bit number can be specified in hexadecimal in the range from 0 to F.

For example, bit 5 (b5) of D0 is specified as D0.5, and bit 10 (b10) of D0 is specified as D0.A.

The following word devices support bit specification.

Handling bit data with word type labels

By specifying a bit number for a word [unsigned]/bit string [16 bits] type label or word [signed] type label, bit data of the

specified bit number can be handled.

The notation for bit number specification is as follows.

Data name Data size Value range

Bit data 1 bit 0, 1

Item Device

Word devices which support bit specification � Data register (D)

� Link register (W)

� Link special register (SW)

� Special register (SD)

� Module access device (U\G)

� File register (R)

.Word device number Bit number

. Bit numberLabel name

1 OVERVIEW

1.2 Data Specification Method 25

1

16-bit data (word data)

Data size and data range

16-bit data includes signed and unsigned 16-bit data.

In signed 16-bit data, a negative number is represented in two's complement.

Handling 16-bit data with bit devices

A bit device can be handled as 16-bit data by performing nibble specification.

Handling 16-bit data with bit type array labels

A bit type array label can be handled as 16-bit data by performing nibble specification.

The following table shows the notation for handling a bit type array label as 16-bit data by nibble specification.

Data name Data size Value range

Decimal notation Hexadecimal notation

Signed 16-bit data 16 bits (1 word) -32768 to 32767 0000H to FFFFH

Unsigned 16-bit data 0 to 65535

Item Notation Example

Bit device K4X10

K2M113

Item Notation Example

Bit type array label K1L_BOOL

K� Bit device start number

Number of digits: Specify the number within the range from 1 to 4.

K�

Number of digits: Specify a number within the range of 1 to 4.

Label name

26
1 OVERVIEW

1.2 Data Specification Method

Nibble specification range

The following table lists the range of 16-bit data for each nibble specification.

Ex.

When nibble specification is made for X0, the applicable number of points is as follows.

 � K1X04 points from X0 to X3

 � K2X08 points from X0 to X7

 � K3X012 points from X0 to X13

 � K4X016 points from X0 to X17

■Specifying a bit device with nibble specification in the source (s)
When a bit device with nibble specification is specified in the source of an instruction, 0 is stored in the bits, which follow the

bit for which nibble specification is made in the source, in the word device of the destination.

■Specifying a bit device with nibble specification in the destination (d)
When a nibble specification is made in the destination of an instruction, the number of points by the nibble specification is

applicable in the destination.

The bit devices after the number of points specified by nibble remain unchanged.

Nibble

specification

Decimal notation Hexadecimal notation

K1 0 to 15 0H to FH

K2 0 to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 Signed 16-bit data: -32768 to 32767

Unsigned 16-bit data: 0 to 65535

0000H to FFFFH

Ladder example Processing

� 16-bit data instruction

Ladder example Processing

� When the source data is a word device

� � � �X17 X14 X13 X10 X7 X4 X3 X0

K1 specification
 range
(4 points)

K2 specification
range
(8 points)

K3 specification
range
(12 points)

K4 specification
range
(16 points)

X10

MOV K1X0 D0

Source (s)
b0b15 ∙∙∙ b3b4 b2 b1

X000 00 0 0 0 0 0 0 0 0 X3 X2 X1

X0X3 X2 X1K1X0

D0

Filled with 0s.

X10

MOV D0 K2M100

Destination (d)

M100M115 ∙∙∙ ∙∙∙M107M108

11 0 0 1 1 1 0K2M100

b0b15 ∙∙∙ b7b8 ∙∙∙

111 01 1 0 1 0 1 0 0 1 1 1 0D0

The data remain the same.

1 OVERVIEW

1.2 Data Specification Method 27

1

Handling 16-bit data with word devices/labels

■Word device
One point of word device can handle 16-bit data.

■Word type label
One point of word type label can handle 16-bit data.

32-bit data (double word data)

Data size and data range

32-bit data includes signed and unsigned 32-bit data.

In signed 32-bit data, a negative number is represented in two's complement.

Handling 32-bit data with bit devices

A bit device can be handled as 32-bit data by performing nibble specification.

Handling 32-bit data with bit type array labels

A bit type array label can be handled as 32-bit data by performing nibble specification.

The following table shows the notation for handling a bit type array label as 32-bit data by nibble specification.

Data name Data size Value range

Decimal notation Hexadecimal notation

Signed 32-bit data 32 bits (2 word) -2147483648 to 2147483647 00000000H to FFFFFFFFH

Unsigned 32-bit data 0 to 4294967295

Item Notation Example

Bit device K8X80

K6B018

Item Notation Example

Bit type array label K8L_BOOL

K� Bit device start number

Number of digits: Specify the number within the range from 1 to 8.

K�

Number of digits: Specify a number within the range of 1 to 8.

Label name

28
1 OVERVIEW

1.2 Data Specification Method

Nibble specification range

The following table lists the range of 32-bit data for each nibble specification.

Ex.

When nibble specification is made for X0, the applicable number of points is as follows.

 � K1X04 points from X0 to X3

 � K2X08 points from X0 to X7

 � K3X012 points from X0 to X13

 � K4X016 points from X0 to X17

 � K5X020 points from X0 to X23

 � K6X024 points from X0 to X27

 � K7X028 points from X0 to X33

 � K8X032 points from X0 to X37

Nibble

specification

Decimal notation Hexadecimal notation

K1 0 to 15 0H to FH

K2 0 to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 0 to 65535 0000H to FFFFH

K5 0 to 1048575 00000H to FFFFFH

K6 0 to 16777215 000000H to FFFFFFH

K7 0 to 268435455 0000000H to FFFFFFFH

K8 Signed 32-bit data: -2147483648 to 2147483647

Unsigned 32-bit data: 0 to 4294967295

00000000H to FFFFFFFFH

X37 X34 X33 X30X27 X24X23 X20X17 X14X13 X10 X7 X4X3 X0��������

K2 specification range

(8 points)

K1
specification
range

(4 points)

K3 specification range

(12 points)

K4 specification range

(16 points)

K5 specification range

(20 points)

K6 specification range

(24 points)

K7 specification range

(28 points)

K8 specification range

(32 points)

1 OVERVIEW

1.2 Data Specification Method 29

1

■Specifying a bit device with nibble specification in the source (s)
When a bit device with nibble specification is specified in the source of an instruction, 0 is stored in the bits, which follow the

bit for which nibble specification is made in the source, in the word device of the destination.

■Specifying a bit device with nibble specification in the destination (d)
When a nibble specification is made in the destination of an instruction, the number of points by the nibble specification is

applicable in the destination.

The bit devices after the number of points specified by nibble remain unchanged.

Handling 32-bit data with word devices/labels

■Word device
Two points of word device can handle 32-bit data.

Note, however, that one point of the following devices can handle 32-bit data.

 � Long counter (LC)

 � Long index register (LZ)

■Double word type label
One point of double word device can handle 32-bit data.

Ladder example Processing

� 32-bit data instruction

Ladder example Processing

� When the source data is a word device

X10

DMOV K1X0 D0

Source (s)
b0b15

b16b31

∙∙∙

∙∙∙

b3b4 b2 b1

X000 00 0 0 0 0 0 0 0 0 X3 X2 X1

X0X3 X2 X1K1X0

D0

000 00 0 0 0 0 0 0 0 0 0 0 0D1

Filled with 0s.

Filled with 0s.

X10

DMOV D0 K5M10

Destination (d)

M10M25 ∙∙∙ ∙∙∙M17M18

10 1 0 1 1 1 001 1 1 0 0 1 0

M26M41 ∙∙∙ ∙∙∙M29M30

10 1 1

b0b15 ∙∙∙ b7b8 ∙∙∙

110 00 1 1 0 1 0 0 0 1 0 1 1D1

b0b15 ∙∙∙ b7b8 ∙∙∙

101 01 1 0 0 1 0 1 0 1 1 1 0D0

The data remain the same.

30
1 OVERVIEW

1.2 Data Specification Method

Real number data (floating-point data)

Data size and data range

Real number data includes single-precision 32-bit real number data.

Real number data can be stored only in devices other than bit devices or in single-precision real data type labels.

Configuration of single-precision real number data

Single-precision real number data consists of a sign, mantissa, and exponent, and is expressed as shown below.

The following figure shows the bit configuration of the internal expression of single-precision real number data and the

meaning of each part.

■Sign (1 bit)
This bit represents the positive or negative sign of a numerical value. "0" indicates a positive number or 0. "1" Indicates a

negative number.

■Mantissa (23 bits)
A mantissa means XXXXX of 1.XXXXX2N representing a single-precision real number in binary.

■Exponent (8 bits)
An exponent means N of 1.XXXXX2N representing a single-precision real number in binary. The following table shows the

relationships between the exponent value and N of a single-precision real number.

Precautions

■When setting an input value of single-precision real number from the engineering tool
The number of significant digits is about 7 because the engineering tool processes single precision real number data in 32-bit

single precision.

When the input value of single-precision real number data exceeds 7 digits, the 8th digit is rounded off.

Therefore, if the rounded-off value goes out of the range from -2147483648 to 2147483647, it will not be an intended value.

Ex.

When "2147483647" is set as an input value, it is handled as "2147484000" because 8th digit "6" is rounded off.

Ex.

When "E1.1754943562" is set as an input value, it is handled as "E1.175494" because 8th digit "3" is rounded off.

Data name Data size Value range

Single-precision real number data (single-precision

floating-point data)

Positive

number

32 bits (2 word) 2-126 real number<2128

Zero 0

Negative

number

-2128<real number-2-126

Exponent (b24 to b30) FFH FEH FDH  81H 80H 7FH 7EH  02H 01H 00H

N Not used 127 126  2 1 0 -1  -125 -126 Not used

1. × 2MantissaSign

Exponent

b31 b30 ∙∙∙ b23 b22 b16∙∙∙ b15 b0∙∙∙

Sign Exponent Mantissa

1 OVERVIEW

1.2 Data Specification Method 31

1
The monitor function of the engineering tool can monitor real number data of CPU modules.

To represent "0" in real number data, set all numbers in each of the following range to 0.

 � Single-precision real number data: b0 to b31

The setting range of real number data is as follows.

 � Single precision real number data: -2128<single precision real number data]-2-126, 0, 2-126[single

precision real number data]<2128

Do not specify "-0" (only the most significant bit is 1) in real number data. Performing a real number operation

using -0 results in an operation error.

32
1 OVERVIEW

1.2 Data Specification Method

Character string data

Format of character string data

The following table lists the types of character string data, each of which ends with a NULL code to be handled as a character

string.

Character string data is stored in devices or an array in ascending order of device numbers or array element numbers.

Data range

The following table summarizes the ranges of character string data.

*1 When specifying a character string in the program, enclose it in single quotes (').

Number of words required for storing data

Character string data can be stored in word devices.

The following table lists the numbers of words required for storing character string data.

Character string data storage location

An image of the character string data storage location is shown below.

■Character strings
In each character string storage image, "NULL" indicates a NULL code (00H).

Type Character code Last character

Character string ASCII code NULL(00H)

Type Maximum number of character strings*1 Maximum number of character strings that can

be handled in the program

Character string 255 single-byte characters (excluding the last NULL

character)

16383 characters (excluding the last NULL character)

Number of character string bytes Number of words required for storing character strings

0 byte 1 [word]

Odd number of bytes (Number of character string bytes+1) 2 [words]

Even number of bytes (Number of character string bytes2) +1 [words]

Character string

to be stored

Image of storing character string data from D0 Image of storing character string data from word type

label array arrayA[0]

' ' (null character

string)

'ABC'

'ABCD'

ABC ∙∙∙ XYZ

'ABC ∙∙∙ XYZ'

Device number

or array element

number
Lower Upper

Null code
Character

code string

D0 NULL NULL arrayA[0] NULL NULL

D0

D1

B

NULL

A

C

arrayA[0]

arrayA[1]

B

NULL

A

C

D2

B

D

A

C

NULL NULL

D0

D1

arrayA[0]

arrayA[1]

arrayA[2]

B

D

A

C

NULL NULL

1 OVERVIEW

1.3 Execution Condition 33

1
1.3 Execution Condition

Types of execution conditions

The following are the five types of execution conditions of the instructions and functions of CPU module.

■On
An instruction is executed during on. It is executed only while the precondition of the instruction is on. When the precondition

is off, the instruction is not executed.

■Rising edge
An instruction is executed one time when turned on. It is executed only once on the rising edge (off to on) of the precondition

of the instruction and is no longer executed later even when the condition turns on.

■Off
An instruction is executed during off. It is executed only while the precondition of the instruction is off. When the precondition

is on, the instruction is not executed.

■Falling edge
An instruction is executed one time when turned off. It is executed only once on the falling edge (on to off) of the precondition

of the instruction and is no longer executed later even when the condition turns off.

■Always
An instruction is always executed regardless of whether the precondition of the instruction is on or off. When the precondition

is off, the instruction performs off processing.

Execution condition of each instruction

The execution condition varies depending on the instruction. The following table lists the execution conditions of individual

instructions.

Execution condition Applicable instruction

On All instructions except for the following

Rising edge � Instruction followed by symbol (P)

� PLS

Off -

Falling edge PLF

Always LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, ANB, ORB, MPS,

MRD, MPP, INV, MEP, MEF, OUT, OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST, OUT C, OUT LC, MC, MCR, FEND,

END, NOP, LD, AND, OR, LD_U, AND_U, OR_U, LDD, ANDD, ORD, LDD_U, ANDD_U, ORD_U, JMP, DI,

EI, IMASK, SIMASK, IRET, FOR, NEXT, RET, LD$, AND$, OR$, LDE, ANDE, ORE, STMR, LDDT, ANDDT,

ORDT, LDTM, ANDTM, ORTM

34
1 OVERVIEW

1.4 Precautions on Programming

1.4 Precautions on Programming

Errors common to instructions

The following table lists the conditions under which an error occurs when the instruction is executed.

*1 For a contact instruction, an error is not detected but the operation result becomes no continuity.

Checking the ranges of instruction runtime devices and labels

Checking the ranges of devices and labels

When a device or label is specified in an instruction, range check is performed. If a range exceeding that of the relevant

device or label is specified, an error occurs.

The same applies when a label assigned to a device is specified in an instruction in the program.

Create such a program that the operation result falls within the range of the relevant device or label.

Ex.

When a global device is specified

Error content*1 Error code

An I/O number which corresponds to no module is specified. 2801

� An I/O number which is out of range (0 to 1777(Octal number)) is specified.

� The device or label specified by the instruction exceeds the available range.

2820

The range of the buffer memory of the module specified by the instruction is exceeded. 2823

(1) The transfer destination is in the range corresponding to D1023 to D1032. Because D1024 to D1032 do not exist, the data are written only to D1023.

D1023 K10D0BMOV

(1) D0



D1022

D1023

W0



W0007

W03FF



Data are written to these areas.

Device assignment image in

the device/label memory

1 OVERVIEW

1.4 Precautions on Programming 35

1

Operations arising when the OUT, SET/RST, and PLS/PLF
instructions of the same device are used

If two or more OUT, SET/RST, and PLS/PLF instructions are executed using the same device during one scan, they operate

as described in this section.

For OUT instructions of the same device

More than one OUT instruction of the same device must not be issued during one scan.

Otherwise, the specified device turns on or off, depending on the operation result up to each OUT instruction while it is in

execution.

In this case, the device may turn on/off during one scan because the on/off state of the specified device is determined during

execution of each OUT instruction.

The following figure shows the behavior arising when a circuit turning on/off the same internal relay (M0) is created with input

X0 and X1.

If output (Y) is specified using an OUT instruction, the on/off state of the last OUT instruction executed during the one scan will

be output.

(1) Since X0 is on, M0 turns on.

(2) Since X1 is off, M0 turns off.

(3) Since X1 is off, M0 remains off.

(4) Since X1 is on, M0 turns on.

X1 M0

X0 M0

OFF OFF

X1X1

X0X0

M0

X1

X0

ENDENDEND

ON ON

OFF OFF

ON ON

ON ON

OFF OFF

M0

M0

M0

M0

(1)

(2)

(3)

(4)

36
1 OVERVIEW

1.4 Precautions on Programming

If SET/RST instructions of the same device are used

■For SET instructions
The SET instruction turns on the specified device if the execution command is on, and causes no operation if it is off.

Thus, if two or more SET instructions of the same device are executed during one scan, the specified device turns on even if

one execution command is on.

■For RST instructions
The RST instruction turns on the specified device if the execution command is off, and causes no operation if it is off.

Thus, if two or more RST instructions of the same device are executed during one scan, the specified device turns on even if

one execution command is off.

■If the SET and RST instructions of the same device exist in one scan
If the SET and RST instructions of the same device exist in one scan, the SET instruction turns on the specified device if the

execution command is on, and turns off the specified device if it is on.

If both the SET and RST instructions are off, the on/off state of the specified device will be unchanged.

If output (Y) is specified using a SET/RST instruction, the on/off state of the last SET/RST instruction executed during the one

scan will be output.

(1) Since X0 is on, M0 turns on.

(2) Since X1 is off, M0 remains on. (The RST instruction results in non-processing.)

(3) Since X0 is off, M0 remains on. (The SET instruction results in non-processing.)

(4) Since X1 is on, M0 turns off.

RST

SET

M0

X1

X0

M0

ON

X1

X0

RST M0

SET M0

RST M0

X1

X0

SET

ON

OFF OFF

OFF

M0

X1

X0

ENDENDEND

ON

(1)

(2)

(3)

(4)

OFF OFF

M0

1 OVERVIEW

1.4 Precautions on Programming 37

1

If PLS instructions of the same device are used

The PLS instruction turns on the specified device when the execution command specifies an off-to-on change. The specified

device is turned off unless the execution command specifies an off-to-on change (i.e. off to off, on to on, on to off).

Thus, if two or more PLS instructions of the same device are issued during one scan, the specified device is turned on when

the execution command of each PLS instruction specifies an off-to-on change. The specified device is turned off unless the

execution command specifies an off-to-on change.

Thus, if two or more PLS instructions are issued during one scan, the device turned on by a PLS instruction may not turn on

for one scan.

 � If X0 and X1 differs in the on/off timing (i.e. the specified device does not turn on for one scan)

(1) Since X0 turns on, M0 turns on.

(2) Since X1 is other than turning on, M0 turns off.

(3) Since X0 is other than turning on, M0 remains off.

(4) Since X1 turns on, M0 turns on.

PLS M0

PLS

X1

X0

M0

ON

ON

X1

X0

PLS M0

PLS M0

PLS M0

X1

X0

PLS

ON

OFF OFF

OFF

M0

X1

X0

ENDENDEND

ON

(1)

(2)

(3)

(4)

OFF OFF

M0

38
1 OVERVIEW

1.4 Precautions on Programming

 � If the off-to-on changes of X0 and X1 are at the same timing

If output (Y) is specified using a PLS instruction, the on/off state of the last PLS instruction executed during the one scan will

be output.

(1) Since X0 turns on, M0 turns on.

(2) Since X1 turns on, M0 remains on.

(3) Since X0 is other than turning on, M0 turns off.

(4) Since X1 is other than turning on, M0 remains off.

ON

X1

X0

PLS M0

PLS M0

PLS M0

X1

X0

PLS

ON

OFF OFF

OFF

M0

X1

X0

ENDENDEND

ON

(1)

(2)

(3)

(4)

OFF OFF

M0

1 OVERVIEW

1.4 Precautions on Programming 39

1

If PLF instructions of the same device are used

The PLF instruction turns on the specified device when the execution command specifies an off-to-on change. The specified

device is turned off unless the execution command specifies an on-to-off change (i.e. off to off, off to on, on to on).

Thus, if two or more PLS instructions of the same device are issued during one scan, the specified device is turned on when

the execution command of each PLS instruction specifies an on-to-off change. The specified device is turned off unless the

execution command specifies an on-to-off change.

Thus, if two or more PLF instructions are issued during one scan, the device turned on by a PLF instruction may not turn on

for one scan.

 � If X0 and X1 differs in the on/off timing (i.e. the specified device does not turn on for one scan)

(1) Since X0 turns off, M0 turns on.

(2) Since X1 is other than turning off, M0 turns off.

(3) Since X0 is other than turning off, M0 remains off.

(4) Since X1 is other than turning off, M0 remains off.

PLF M0

PLF

X1

X0

M0

ON

X1

X0

PLF M0

PLF M0

PLF M0

X1

X0

PLF

ON

OFF OFF

OFF

M0

X1

X0

ENDENDEND

ON

(1)

(2)

(3)

(4)

OFF

M0

40
1 OVERVIEW

1.4 Precautions on Programming

 � If the on-to-off changes of X0 and X1 are at the same timing

If output (Y) is specified using a PLF instruction, the on/off state of the last PLF instruction executed during the one scan will

be output.

(1) Since X0 turns off, M0 turns on.

(2) Since X1 turns off, M0 remains on.

(3) Since X0 is other than turning off, M0 turns off.

(4) Since X1 is other than turning off, M0 remains off.

ON

ON ON

X1

X0

PLF M0

PLF M0

PLF M0

X1

X0

PLF

OFF OFF

OFF

M0

X1

X0

ENDENDEND

ON

(1)

(2)

(3)

(4)

OFF

M0

41

P
A

R
T

 2

PART 2 INSTRUCTION/
FUNCTION LIST

This part consists of the following chapters.

2 CPU MODULE INSTRUCTION

3 MODULE SPECIFIC INSTRUCTION

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

42
2 CPU MODULE INSTRUCTION

2.1 Sequence Instruction

2 CPU MODULE INSTRUCTION

2.1 Sequence Instruction

Contact instruction

■Operation start, series connection, parallel connection

■Pulse operation start, pulse series connection, pulse parallel connection

■Pulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection

Association instruction

■Ladder block series/parallel connection

■Storing/reading/clearing the operation result

■Inverting the operation result

Instruction symbol Description Reference

LD Starts logical operation (Starts NO contact logical operation) Page 98

LDI Starts logical NOT operation (Starts NC contact logical operation)

AND Logical AND (NO contact series connection)

ANI Logical NAND (NC contact series connection)

OR Logical OR (NO contact parallel connection)

ORI Logical NOR (NC contact parallel connection)

Instruction symbol Description Reference

LDP Starts rising edge pulse operation Page 100

LDF Starts falling edge pulse operation

ANDP Rising edge pulse series connection

ANDF Falling edge pulse series connection

ORP Rising edge pulse parallel connection

ORF Falling edge pulse parallel connection

Instruction symbol Description Reference

LDPI Starts rising edge pulse NOT operation Page 102

LDFI Starts falling edge pulse NOT operation

ANDPI Rising edge pulse NOT series connection

ANDFI Falling edge pulse NOT series connection

ORPI Rising edge pulse NOT parallel connection

ORFI Falling edge pulse NOT parallel connection

Instruction symbol Description Reference

ANB AND between logical blocks (series connection between logical blocks) Page 104

ORB OR between logical blocks (parallel connection between logical blocks)

Instruction symbol Description Reference

MPS Stores the operation result Page 105

MRD Reads the operation result stored by MPS

MPP Reads and resets of the operation result stored by MPS

Instruction symbol Description Reference

INV Inversion of the operation result Page 106

2 CPU MODULE INSTRUCTION

2.1 Sequence Instruction 43

2

■Converting the operation result into a pulse

Output instruction

■Out (excluding the timer, counter and annunciator)

■Timer (low-speed, high-speed, low-speed retentive, high-speed retentive)

■Counter, long counter

■Annunciator

■Setting devices (excluding annunciator)

■Resetting devices (excluding annunciator)

■Setting/resetting annunciator

■Rising/falling edge output

■Inverting the bit device output

Instruction symbol Description Reference

MEP Conversion of operation result to rising edge pulse Page 107

MEF Conversion of operation result to falling edge pulse

Instruction symbol Description Reference

OUT Device output Page 108

Instruction symbol Description Reference

OUT T Low-speed timer Page 109

OUTH T Timer

OUTHS T High-speed timer

OUT ST Low-speed retentive timer

OUTH ST Retentive timer

OUTHS ST High-speed retentive timer

Instruction symbol Description Reference

OUT C Counter Page 111

OUT LC Long counter Page 112

Instruction symbol Description Reference

OUT F Annunciator Page 113

Instruction symbol Description Reference

SET Sets devices Page 114

Instruction symbol Description Reference

RST Resets devices Page 115

Instruction symbol Description Reference

SET F Sets annunciator Page 116

RST F Resets annunciator Page 117

ANS Sets annunciator (with evaluation time) Page 118

ANR Resets annunciator (smallest number reset) Page 119

ANRP

Instruction symbol Description Reference

PLS Generates a pulse for 1 cycle of a program at the rising edge of the input signal. Page 120

PLF Generates a pulse for 1 cycle of a program at the falling edge of the input signal. Page 122

Instruction symbol Description Reference

FF Inversion of device output Page 123

ALT Page 124

ALTP

44
2 CPU MODULE INSTRUCTION

2.1 Sequence Instruction

Shift instruction

■Shifting bit devices

■Shifting 16-bit data to the right/left by n bit (s)

■Shifting n-bit data to the right/left by 1 bit

■Shifting n-word data to the right/left by 1 word

Instruction symbol Description Reference

SFT 1 bit shift of the device Page 125

SFTP

Instruction symbol Description Reference

SFR Page 127

SFRP

SFL Page 128

SFLP

Instruction symbol Description Reference

BSFR Page 129

BSFRP

BSFL Page 130

BSFLP

Instruction symbol Description Reference

DSFR Page 131

DSFRP

DSFL Page 132

DSFLP

b0bn bn-1b15

b0b15

0···0

Carry flag
(SM700, SM8022)

b0bn+1 bnb15

b0b15

0···0

Carry flag
(SM700, SM8022)

(d)

(n)

0

Carry flag
(SM700)

(d)

(n)

0

Carry flag
(SM700)

(d)

(n)

0

(d)

(n)

0

2 CPU MODULE INSTRUCTION

2.1 Sequence Instruction 45

2

■Shifting n-bit data to the right/left by n bit (s)

■Shifting n-word data to the right/left by n word (s)

Master control instruction

■Setting/resetting the master control

Termination instruction

■Ending the main routine program

■Ending the sequence program

Stop instruction

■Stopping the sequence program

Instruction symbol Description Reference

SFTR Page 133

SFTRP

SFTL Page 134

SFTLP

Instruction symbol Description Reference

WSFR Page 135

WSFRP

WSFL Page 136

WSFLP

Instruction symbol Description Reference

MC Starts master control Page 137

MCR Releases master control

Instruction symbol Description Reference

FEND Ends the main routine program Page 141

Instruction symbol Description Reference

END Ends the sequence program Page 142

Instruction symbol Description Reference

STOP Stops the sequence operation after input conditions are met.

Executes the sequence program, upon setting the RUN/STOP/RESET switch to RUN again.

Page 143

(d)

(n1)

(n2)

(s)

(n2)

(s)

(n2)

(d)

(n1)

(n2)

(d)

(n1)

(n2)

(s)

(n2)

(d)

(n1)

(n2)

(s)

(n2)

46
2 CPU MODULE INSTRUCTION

2.2 Basic instruction

No operation instruction

■No operation

2.2 Basic instruction

Comparison operation instruction

■Comparing 16-bit binary data

■Comparing 32-bit binary data

■Comparison output 16-bit binary data

Instruction symbol Description Reference

NOP No processing (for deletion of instruction or for space) Page 144

Instruction symbol Description Reference

LD=, AND=, OR= (s1)=(s2): Conductive

(s1)(s2): Non-Conductive

Page 145

LD=_U, AND=_U, OR=_U

LD<>, AND<>, OR<> (s1)(s2): Conductive

(s1)=(s2): Non-Conductive
LD<>_U, AND<>_U, OR<>_U

LD>, AND>, OR> (s1)>(s2): Conductive

(s1)(s2): Non-Conductive
LD>_U, AND>_U, OR>_U

LD<=, AND<=, OR<= (s1)(s2): Conductive

(s1)>(s2): Non-Conductive
LD<=_U, AND<=_U, OR<=_U

LD<, AND<, OR< (s1)<(s2): Conductive

(s1)(s2): Non-Conductive
LD<_U, AND<_U, OR<_U

LD>=, AND>=, OR>= (s1)(s2): Conductive

(s1)<(s2): Non-Conductive
LD>=_U, AND>=_U, OR>=_U

Instruction symbol Description Reference

LDD=, ANDD=, ORD= [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)]  [(s2)+1, (s2)]: Non-Conductive

Page 147

LDD=_U, ANDD=_U, ORD=_U

LDD<>, ANDD<>, ORD<> [(s1)+1, (s1)]  [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)] = [(s2)+1, (s2)]: Non-Conductive
LDD<>_U, ANDD<>_U,

ORD<>_U

LDD>, ANDD>, ORD> [(s1)+1, (s1)] > [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)]  [(s2)+1, (s2)]: Non-Conductive
LDD>_U, ANDD>_U, ORD>_U

LDD<=, ANDD<=, ORD<= [(s1)+1, (s1)]  [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)] > [(s2)+1, (s2)]: Non-Conductive
LDD<=_U, ANDD<=_U,

ORD<=_U

LDD<, ANDD<, ORD< [(s1)+1, (s1)] < [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)]  [(s2)+1, (s2)]: Non-Conductive
LDD<_U, ANDD<_U, ORD<_U

LDD>=, ANDD>=, ORD>= [(s1)+1, (s1)]  [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)] < [(s2)+1, (s2)]: Non-Conductive
LDD>=_U, ANDD>=_U,

ORD>=_U

Instruction symbol Description Reference

CMP (s1)>(s2): (d) is on

(s1)=(s2): (d) +1 is on

(s1)<(s2): (d) +2 is on

Page 149

CMPP

CMP_U

CMPP_U

2 CPU MODULE INSTRUCTION

2.2 Basic instruction 47

2

■Comparison output 32-bit binary data

■Comparing 16-bit binary data band

■Comparing 32-bit binary data band

■Comparing 16-bit binary block data

■Comparing 32-bit binary block data

Instruction symbol Description Reference

DCMP [(s1)+1, (s1)] > [(s2)+1, (s2)]: (d) is on

[(s1)+1, (s1)] = [(s2)+1, (s2)]: (d) + 1 is on

[(s1)+1, (s1)] < [(s2)+1, (s2)]: (d) + 2 is on

Page 151

DCMPP

DCMP_U

DCMPP_U

Instruction symbol Description Reference

ZCP (s1)>(s3): (d) is on

(s1)(s3)(s2): (d) + 1 is on

(s3)>(s2): (d) + 2 is on

Page 153

ZCPP

ZCP_U

ZCPP_U

Instruction symbol Description Reference

DZCP [(s1)+1, (s1)] > [(s3)+1, (s3)]: (d) is on

[(s1)+1, (s1)][(s3)+1, (s3)][(s2)+1, (s2)]: (d) + 1 is on

[(s3)+1, (s3)]>[(s2)+1, (s2)]: (d) + 2 is on

Page 155

DZCPP

DZCP_U

DZCPP_U

Instruction symbol Description Reference

BKCMP=, BKCMP<>, BKCMP>,

BKCMP<=, BKCMP<, BKCMP>=

Compares the 16-bit binary data in the device area ((n) points) from (s1) with the 16-bit binary

data in the device area ((n) points) from (s2), and stores the result in the device area ((n)

points) from (d).

Page 157

BKCMP=P, BKCMP<>P,

BKCMP>P, BKCMP<=P,

BKCMP<P, BKCMP>=P

BKCMP=_U, BKCMP<>_U,

BKCMP>_U, BKCMP<=_U,

BKCMP<_U, BKCMP>=_U

BKCMP=P_U, BKCMP<>P_U,

BKCMP>P_U, BKCMP<=P_U,

BKCMP<P_U, BKCMP>=P_U

Instruction symbol Description Reference

DBKCMP=, DBKCMP<>,

DBKCMP>, DBKCMP<=,

DBKCMP<, DBKCMP>=

Compares the 32-bit binary data in the device area ((n) points) from (s1) with the 32-bit binary

data in the device area ((n) points) from (s2), and stores the result in the device area ((n)

points) from (d).

Page 159

DBKCMP=P, DBKCMP<>P,

DBKCMP>P, DBKCMP<=P,

DBKCMP<P, DBKCMP>=P

DBKCMP=_U, DBKCMP<>_U,

DBKCMP>_U, DBKCMP<=_U,

DBKCMP<_U, DBKCMP>=_U

DBKCMP=P_U, DBKCMP<>P_U,

DBKCMP>P_U, DBKCMP<=P_U,

DBKCMP<P_U, DBKCMP>=P_U

48
2 CPU MODULE INSTRUCTION

2.2 Basic instruction

Arithmetic operation instruction

■Adding/subtracting 16-bit binary data

Instruction symbol Description Reference

+ (d)+(s)  (d) Page 161

+P

+_U

+P_U

+ (s1)+(s2)  (d) Page 162

+P

+_U

+P_U

ADD (s1)+(s2)  (d) Page 163

ADDP

ADD_U

ADDP_U

- (d)-(s)  (d) Page 165

-P

-_U

-P_U

- (s1)-(s2)  (d) Page 166

-P

-_U

-P_U

SUB (s1)-(s2)  (d) Page 167

SUBP

SUB_U

SUBP_U

2 CPU MODULE INSTRUCTION

2.2 Basic instruction 49

2

■Adding/subtracting 32-bit binary data

■Multiplying/dividing 16-bit binary data

Instruction symbol Description Reference

D+ [(d)+1, (d)] + [(s)+1, (s)]  [(d)+1, (d)] Page 169

D+P

D+_U

D+P_U

D+ [(s1)+1, (s1)] + [(s2)+1, (s2)]  [(d)+1, (d)] Page 170

D+P

D+_U

D+P_U

DADD [(s1)+1, (s1)] + [(s2)+1, (s2)]  [(d)+1, (d)] Page 171

DADDP

DADD_U

DADDP_U

D- [(d)+1, (d)] - [(s)+1, (s)]  [(d)+1, (d)] Page 173

D-P

D-_U

D-P_U

D- [(s1)+1, (s1)] - [(s2)+1, (s2)]  [(d)+1, (d)] Page 174

D-P

D-_U

D-P_U

DSUB [(s1)+1, (s1)] - [(s2)+1, (s2)]  [(d)+1, (d)] Page 175

DSUBP

DSUB_U

DSUBP_U

Instruction symbol Description Reference

* (s1)  (s2)  [(d)+1, (d)] Page 177

*P

*_U

*P_U

MUL (s1)  (s2)  [(d)+1, (d)] Page 178

MULP

MUL_U

MULP_U

/ (s1)  (s2)  quotient (d), remainder (d)+1 Page 180

/P

/_U

/P_U

DIV (s1)  (s2)  quotient (d), remainder (d)+1 Page 181

DIVP

DIV_U

DIVP_U

50
2 CPU MODULE INSTRUCTION

2.2 Basic instruction

■Multiplying/dividing 32-bit binary data

■Adding/subtracting BCD 4-digit data

■Adding/subtracting BCD 8-digit data

■Multiplying/dividing BCD 4-digit data

■Multiplying/dividing BCD 8-digit data

Instruction symbol Description Reference

D* [(s1)+1, (s1)]  [(s2)+1, (s2)]  [(d)+3, (d)+2, (d)+1, (d)] Page 183

D*P

D*_U

D*P_U

DMUL [(s1)+1, (s1)]  [(s2)+1, (s2)]  [(d)+3, (d)+2, (d)+1, (d)] Page 185

DMULP

DMUL_U

DMULP_U

D/ [(s1)+1, (s1)]  [(s2)+1, (s2)]  quotient [(d)+1, (d)], remainder [(d)+3, (d)+2] Page 187

D/P

D/_U

D/P_U

DDIV [(s1)+1, (s1)]  [(s2)+1, (s2)]  quotient [(d)+1, (d)], remainder [(d)+3, (d)+2] Page 188

DDIVP

DDIV_U

DDIVP_U

Instruction symbol Description Reference

B+ (d) + (s)  (d) Page 190

B+P

B+ (s1) + (s2)  (d) Page 191

B+P

B- (d) - (s)  (d) Page 192

B-P

B- (s1) - (s2)  (d) Page 193

B-P

Instruction symbol Description Reference

DB+ [(d)+1, (d)] + [(s)+1, (s)]  [(d)+1, (d)] Page 194

DB+P

DB+ [(s1)+1, (s1)] + [(s2)+1, (s2)]  [(d)+1, (d)] Page 195

DB+P

DB- [(d)+1, (d)] - [(s)+1, (s)]  [(d)+1, (d)] Page 196

DB-P

DB- [(s1)+1, (s1)] - [(s2)+1, (s2)]  [(d)+1, (d)] Page 197

DB-P

Instruction symbol Description Reference

B* (s1)  (s2)  [(d)+1, (d)] Page 198

B*P

B/ (s1)  (s2)  quotient (d), remainder (d)+1 Page 199

B/P

Instruction symbol Description Reference

DB* [(s1)+1, (s1)]  [(s2)+1, (s2)]  [(d)+3, (d)+2, (d)+1, (d)] Page 200

DB*P

DB/ [(s1)+1, (s1)]  [(s2)+1, (s2)]  quotient [(d)+1, (d)], remainder [(d)+3, (d)+2] Page 201

DB/P

2 CPU MODULE INSTRUCTION

2.2 Basic instruction 51

2

■Adding/subtracting 16-bit binary block data

■Adding/subtracting 32-bit binary block data

■Incrementing/decrementing 16-bit binary data

■Incrementing/decrementing 32-bit binary data

Instruction symbol Description Reference

BK+ Adds the 16-bit binary bit data in the device area ((n) points) from (s1) and the data or constants in

the device area ((n) points) from (s2) at once, and stores the result in the device area ((n) points)

from (d).

Page 202

BK+P

BK+_U

BK+P_U

BK- Subtracts the 16-bit binary bit data in the device area ((n) points) from (s1) and the data or

constants in the device area ((n) points) from (s2) at once, and stores the result in the device area

((n) points) from (d).

Page 204

BK-P

BK-_U

BK-P_U

Instruction symbol Description Reference

DBK+ Adds the 32-bit binary bit data in the device area ((n) points) from (s1) and the 32-bit data or

constants in the device area ((n) points) from (s2), and stores the result in the device area specified

by (d) and later.

Page 206

DBK+P

DBK+_U

DBK+P_U

DBK- Subtracts the 32-bit binary bit data in the device area ((n) points) from (s1) and the 32-bit data or

constants in the device area ((n) points) from (s2) and later, and stores the result in the device area

specified by (d) and later.

Page 209

DBK-P

DBK-_U

DBK-P_U

Instruction symbol Description Reference

INC (d) + 1  (d) Page 211

INCP

INC_U

INCP_U

DEC (d) - 1  (d) Page 212

DECP

DEC_U

DECP_U

Instruction symbol Description Reference

DINC [(d)+1, (d)] + 1  [(d)+1, (d)] Page 213

DINCP

DINC_U

DINCP_U

DDEC [(d)+1, (d)] -1  [(d)+1, (d)] Page 214

DDECP

DDEC_U

DDECP_U

52
2 CPU MODULE INSTRUCTION

2.2 Basic instruction

Logical operation instruction

■Performing an AND operation on 16-bit/32-bit data

■Performing an AND operation on 16-bit block data

■Performing an OR operation on 16-bit/32-bit data

■Performing an OR operation on 16-bit block data

■Performing an XOR operation on 16-bit/32-bit data

■Performing an XOR operation on 16-bit block data

Instruction symbol Description Reference

WAND (d)(s)  (d) Page 215

WANDP

WAND (s1) (s2)  (d) Page 216

WANDP

DAND [(d)+1, (d)] [(s)+1, (s)]  [(d)+1, (d)] Page 217

DANDP

DAND [(s1)+1, (s1)] [(s2)+1, (s2)]  [(d)+1, (d)] Page 218

DANDP

Instruction symbol Description Reference

BKAND Page 219

BKANDP

Instruction symbol Description Reference

WOR (d)(s)  (d) Page 220

WORP

WOR (s1) (s2)  (d) Page 221

WORP

DOR [(d)+1, (d)]  [(s)+1, (s)]  [(d)+1, (d)] Page 222

DORP

DOR [(s1)+1, (s1)]  [(s2)+1, (s2)]  [(d)+1, (d)] Page 223

DORP

Instruction symbol Description Reference

BKOR Page 224

BKORP

Instruction symbol Description Reference

WXOR (d)  (s)  (d) Page 225

WXORP

WXOR (s1)  (s2)  (d) Page 226

WXORP

DXOR [(d)+1, (d)]  [(s)+1, (s)]  [(d)+1, (d)] Page 227

DXORP

DXOR [(s1)+1, (s1)]  [(s2)+1, (s2)]  [(d)+1, (d)] Page 228

DXORP

Instruction symbol Description Reference

BKXOR Page 229

BKXORP

(s1) (s2) (d)

(n)

(s1) (s2) (d)

(n)

(s1) (s2) (d)

(n)

2 CPU MODULE INSTRUCTION

2.2 Basic instruction 53

2

■Performing an XNOR operation on 16-bit/32-bit data

■Performing an XNOR operation on 16-bit block data

Bit processing instruction

■Setting/resetting a bit in the word device

■Performing a bit test

■Batch-resetting bit devices

Instruction symbol Description Reference

WXNR Page 230

WXNRP

WXNR Page 231

WXNRP

DXNR Page 232

DXNRP

DXNR Page 233

DXNRP

Instruction symbol Description Reference

BKXNR Page 234

BKXNRP

Instruction symbol Description Reference

BSET Page 235

BSETP

BRST Page 236

BRSTP

Instruction symbol Description Reference

TEST Page 237

TESTP

DTEST Page 238

DTESTP

Instruction symbol Description Reference

BKRST Page 239

BKRSTP

(s) (d)(d)

(s2) (d)(s1)

[(d)+1, (d)] [(s)+1, (s)] [(d)+1, (d)]

[(s1)+1, (s1)] [(s2)+1, (s2)] [(d)+1, (d)]

(s1) (s2) (d)

(n)

b0bn

1

b15
(d)

b0bn

0

b15
(d)

(d)b0b15
(s1)

···

Bits specified by (s2)

(d)b0b31
(s1)

···

Bits specified by (s2)

OFF
OFF

OFF
OFF

OFF
ON (d)(d)

(n)

ON
ON

Reset

54
2 CPU MODULE INSTRUCTION

2.2 Basic instruction

■Batch-resetting devices

Data conversion instruction

■Converting binary data to BCD 4-digit/8-digit data

■Converting BCD 4-digit/8-digit data to binary data

■Converting single-precision real number to 16-bit/32-bit signed binary data

■Converting single-precision real number to 16-bit/32-bit unsigned binary data

■Converting 16-bit signed binary data to 16-bit/32-bit unsigned binary data

Instruction symbol Description Reference

ZRST Page 240

ZRSTP

Instruction symbol Description Reference

BCD Page 242

BCDP

DBCD Page 244

DBCDP

Instruction symbol Description Reference

BIN Page 246

BINP

DBIN Page 248

DBINP

Instruction symbol Description Reference

FLT2INT Page 250

FLT2INTP

FLT2DINT Page 251

FLT2DINTP

Instruction symbol Description Reference

FLT2UINT Page 252

FLT2UINTP

FLT2UDINT Page 253

FLT2UDINTP

Instruction symbol Description Reference

INT2UINT Converts 16-bit signed data in the device specified by (s) to 16-bit unsigned data, and stores the

converted data in the device specified by (d).

Page 254

INT2UINTP

INT2UDINT Converts 16-bit signed data in the device specified by (s) to 32-bit unsigned data, and stores the

converted data in the device specified by (d).

Page 255

INT2UDINTP

(d2)

(d1)+2 (d1)+1 (d1)

(d1)+2

(d2)

(d1)+1 (d1)

(d1), (d2) are bit devices: Writes off (reset) from (d1) to (d2)

(d1), (d2) are word devices: Writes K0 from (d1) to (d2)

(s) (d)

BIN (0 to 9999)

Conversion to BCD

(s+1, s) (d+1, d)

BIN (0 to 99999999)

Conversion to BCD

(s) (d)

BCD (0 to 9999)

Conversion to binary data

(s+1, s) (d+1, d)

BCD (0 to 99999999)

Conversion to binary data

(s+1, s) (d)

Real number (-32768 to +32767)

Conversion to binary data

(s+1, s) (d+1, d)

Real number (-2147483648 to +2147483647)

Conversion to binary data

(s+1, s) (d)

Real number (0 to 65535)

Conversion to binary data

(s+1, s) (d+1, d)

Real number (0 to 4294967295)

Conversion to binary data

2 CPU MODULE INSTRUCTION

2.2 Basic instruction 55

2

■Converting 16-bit signed binary data to 32-bit signed binary data

■Converting 16-bit unsigned binary data to 16-bit/32-bit signed binary data

■Converting 16-bit unsigned binary data to 32-bit unsigned binary data

■Converting 32-bit signed binary data to 16-bit signed binary data

■Converting 32-bit signed binary data to 16-bit/32-bit unsigned binary data

■Converting 32-bit unsigned binary data to 16-bit/32-bit signed binary data

■Converting 32-bit unsigned binary data to 16-bit unsigned binary data

Instruction symbol Description Reference

INT2DINT Converts 16-bit signed data in the device specified by (s) to 32-bit signed data, and stores the

converted data in the device specified by (d).

Page 256

INT2DINTP

Instruction symbol Description Reference

UINT2INT Converts 16-bit unsigned data in the device specified by (s) to 16-bit signed data, and stores the

converted data in the device specified by (d).

Page 257

UINT2INTP

UINT2DINT Converts 16-bit unsigned data in the device specified by (s) to 32-bit signed data, and stores the

converted data in the device specified by (d).

Page 258

UINT2DINTP

Instruction symbol Description Reference

UINT2UDINT Converts 16-bit unsigned data in the device specified by (s) to 32-bit unsigned data, and stores the

converted data in the device specified by (d).

Page 259

UINT2UDINTP

Instruction symbol Description Reference

DINT2INT Converts 32-bit signed data in the device specified by (s) to 16-bit signed data, and stores the

converted data in the device specified by (d).

Page 260

DINT2INTP

Instruction symbol Description Reference

DINT2UINT Converts 32-bit signed data in the device specified by (s) to 16-bit unsigned data, and stores the

converted data in the device specified by (d).

Page 261

DINT2UINTP

DINT2UDINT Converts 32-bit signed data in the device specified by (s) to 32-bit unsigned data, and stores the

converted data in the device specified by (d).

Page 262

DINT2UDINTP

Instruction symbol Description Reference

UDINT2INT Converts 32-bit unsigned data in the device specified by (s) to 16-bit signed data, and stores the

converted data in the device specified by (d).

Page 263

UDINT2INTP

UDINT2DINT Converts 32-bit unsigned data in the device specified by (s) to 32-bit signed data, and stores the

converted data in the device specified by (d).

Page 264

UDINT2DINTP

Instruction symbol Description Reference

UDINT2UINT Converts 32-bit unsigned data in the device specified by (s) to 16-bit unsigned data, and stores the

converted data in the device specified by (d).

Page 265

UDINT2UINTP

56
2 CPU MODULE INSTRUCTION

2.2 Basic instruction

■Converting 16-bit/32-bit binary data to Gray code

■Converting Gray code to 16-bit/32-bit binary data

■Converting decimal ASCII to 16-bit/32-bit binary data

■Converting ASCII to HEX

Instruction symbol Description Reference

GRY Page 266

GRYP

GRY_U

GRYP_U

DGRY Page 267

DGRYP

DGRY_U

DGRYP_U

Instruction symbol Description Reference

GBIN Page 268

GBINP

GBIN_U

GBINP_U

DGBIN Page 269

DGBINP

DGBIN_U

DGBINP_U

Instruction symbol Description Reference

DABIN Converts a 5-digit decimal ASCII value in the device specified by (s) to a 1 word binary value, and

stores the converted data in the word device number specified by (d).

Page 270

DABINP

DABIN_U

DABINP_U

DDABIN Converts a 10-digit decimal ASCII value in the device specified by (s) to a 2 word binary value, and

stores the converted data in the word device number specified by (d).

Page 272

DDABINP

DDABIN_U

DDABINP_U

Instruction symbol Description Reference

HEXA Converts the ASCII data stored in the number of characters specified by (n) starting from device

specified in (s), and stores the converted data in the device specified by (d) onwards.

Page 274

HEXAP

(s) (d)

BIN (-32768 to 32767)

Conversion to gray code

(s) (d)

BIN (0 to 65535)

Conversion to gray code

(s+1, s) (d+1, d)

BIN (-2147483648 to 2147483647)

Conversion to gray code

(s+1, s) (d+1, d)

BIN (0 to 4294967295)

Conversion to gray code

(s) (d)

Gray code (-32768 to +32767)

Conversion to binary data

(s) (d)

Gray code (0 to 65535)

Conversion to binary data

(s+1, s) (d+1, d)

Gray code (-2147483648 to +2147483647)

Conversion to binary data

(s+1, s) (d+1, d)

Gray code (0 to 4294967295)

Conversion to binary data

2 CPU MODULE INSTRUCTION

2.2 Basic instruction 57

2

■Converting character string to 16-bit/32-bit binary data

■Two's complement of 16-bit/32-bit binary data (sign inversion)

■Decoding from 8 to 256 bits

■Encoding from 256 to 8 bits

■Separating 4 bits from 16-bit data

■Connecting 4 bits to 16-bit data

■Separating/connecting the specified number of bits

■Separating/connecting data in byte units

Instruction symbol Description Reference

VAL Converts a character string including decimal point in the device specified by (s) to a 1 word binary

value and number of decimal fraction digits, and stores the converted data in the devices specified

by (d1) and (d2).

Page 277

VALP

VAL_U

VALP_U

DVAL Converts a character string including decimal point in the device specified by (s) to a 2 words

binary value and number of decimal fraction digits, and stores the converted data in the devices

specified by (d1) and (d2).

Page 279

DVALP

DVAL_U

DVALP_U

Instruction symbol Description Reference

NEG Page 282

NEGP

DNEG Page 283

DNEGP

Instruction symbol Description Reference

DECO Page 284

DECOP

Instruction symbol Description Reference

ENCO Page 285

ENCOP

Instruction symbol Description Reference

DIS Separates the 16-bit data specified by (s) into 4-bit units and stores in the lower 4 bits of (n) points

from (d). (n < 4)

Page 286

DISP

Instruction symbol Description Reference

UNI Connects the lower 4 bits of (n) points from the device specified by (s), and stores the result in the

device specified by (d). (n < 4)

Page 287

UNIP

Instruction symbol Description Reference

NDIS Separates the data in the devices starting from the one specified by (s1) into bits specified by the

devices from (s2), and stores them to the devices starting from the one specified by (d).

Page 288

NDISP

NUNI Connects the data in the devices starting from the one specified by (s1) with bits specified by the

devices from (s2), and stores them to the devices starting from the one specified by (d).

Page 290

NUNIP

Instruction symbol Description Reference

WTOB Breaks (n) points of 16 bit data from the device specified by (s) into 8-bit units, and stores in the

devices starting from the one specified by (d).

Page 292

WTOBP

BTOW Connects the lower 8 bits of 16-bit data of (n) points from the device specified by (s) into 16-bit

units, and stores in the devices starting from the one specified by (d).

Page 294

BTOWP

(d) (d)

BIN

(d+1, d) (d+1, d)

BIN

(d)
(s)

(n)

Decode

2(n) bits

(s)
(d)

(n)2(n) bits

Encode

58
2 CPU MODULE INSTRUCTION

2.2 Basic instruction

Data transfer instruction

■Transferring 16-bit/32-bit data

■Inverting and transferring 16-bit/32-bit data

■Shift move

■Inverting and transferring 1-bit data

■Transferring 16-bit block data (65535 points maximum)

■Transferring identical 16-bit block data (65535 points maximum)

■Transferring identical 32-bit block data (65535 points maximum)

Instruction symbol Description Reference

MOV Page 296

MOVP

DMOV Page 297

DMOVP

Instruction symbol Description Reference

CML Page 298

CMLP

DCML Page 299

DCMLP

Instruction symbol Description Reference

SMOV Shifts the specified no. of digits from the word device specified by (s), and store in (d). Page 300

SMOVP

Instruction symbol Description Reference

CMLB Inverts the bit data specified by (s), and store in (d). Page 302

CMLBP

Instruction symbol Description Reference

BMOV

(n) = 1 to 65535

Page 303

BMOVP

Instruction symbol Description Reference

FMOV

(n) = 1 to 65535

Page 305

FMOVP

Instruction symbol Description Reference

DFMOV

(n) = 1 to 65535

Page 306

DFMOVP

(s) (d)

(s+1, s) (d+1, d)

(s) (d)

(s+1, s) (d+1, d)

(n)

(s) (d)

(s)
(d)

(n)

(s+1, s)

(d+1, d)

(n)

2 CPU MODULE INSTRUCTION

2.2 Basic instruction 59

2

■Exchanging 16-bit/32-bit data

■Exchanging the upper and lower bytes of 16-bit data

■Exchanging the upper and lower bytes of 32-bit data

■Transferring 1-bit data

■Parallel run (octal mode) (16-bit data)

■Parallel run (octal mode) (32-bit data)

■Transferring n-bit data

Instruction symbol Description Reference

XCH Page 307

XCHP

DXCH Page 308

DXCHP

Instruction symbol Description Reference

SWAP Page 309

SWAPP

Instruction symbol Description Reference

DSWAP Page 310

DSWAPP

Instruction symbol Description Reference

MOVB Stores the bit data specified by (s) in (d). Page 311

MOVBP

Instruction symbol Description Reference

PRUN Handles device number specified by (s) in nibble specification and (d) as octal, and stores into (d)

from (s).

Page 312

PRUNP

Instruction symbol Description Reference

DPRUN Handles device number specified by (s) in nubble specification and (d) as octal, and stores into (d)

from (s).

Page 314

DPRUNP

Instruction symbol Description Reference

BLKMOVB Block transfers bit data for (n) points from (s) to bit data for (n) points from (d). Page 316

BLKMOVBP

(d1) (d2)

(d1+1, d1) (d2+1, d2)

b0b15 b8 b7

b0b15 b8 b7

(d)

(d)
··· ···

··· ···
8 bits 8 bits

8 bits 8 bits

b0b15 b8 b7

b0b15 b8 b7

(d)+1

(d)+1
··· ···

··· ··· b0b15 b8 b7

b0b15 b8 b7

(d)

(d)
··· ···

··· ···
8 bits 8 bits

8 bits 8 bits

8 bits 8 bits

8 bits 8 bits

60
2 CPU MODULE INSTRUCTION

2.3 Application instruction

2.3 Application instruction

Rotation instruction

■Rotating 16-bit data to the right

■Rotating 16-bit data to the left

■Rotating 32-bit data to the right

■Rotating 32-bit data to the left

Instruction symbol Description Reference

ROR Page 317

RORP

RCR

RCRP

Instruction symbol Description Reference

ROL Page 320

ROLP

RCL

RCLP

Instruction symbol Description Reference

DROR Page 322

DRORP

DRCR

DRCRP

Instruction symbol Description Reference

DROL Page 324

DROLP

DRCL

DRCLP

(d) b0b15

(n) bit right rotation

Carry flag (SM700, SM8022)

(d) b0b15

(n) bit right rotation

Carry flag (SM700, SM8022)

(d) b0b15

(n) bit left rotation

Carry flag (SM700, SM8022)

(d) b0b15

(n) bit left rotation

Carry flag (SM700, SM8022)

b0b31 b16 b15
(d+1) (d)

··· ···

(n) bit right rotation

Carry flag (SM700, SM8022)

b0b31 b16 b15
(d+1) (d)

··· ···

(n) bit right rotation

Carry flag (SM700, SM8022)

b0b31 b16 b15
(d+1) (d)

··· ···

(n) bit left rotation

Carry flag (SM700, SM8022)

b0b31 b16 b15
(d+1) (d)

··· ···

(n) bit left rotation

Carry flag (SM700, SM8022)

2 CPU MODULE INSTRUCTION

2.3 Application instruction 61

2

Program branch instruction

■Pointer branch

■Jumping to END

Program execution control instruction

■Disabling/enabling interrupt programs

■Disabling the interrupt program with specified priority or lower

■Interrupt program mask

■Disabling/enabling the specified interrupt pointer

■Returning from the interrupt program

■Resetting the watchdog timer

Structuring instruction

■Performing the FOR to NEXT instruction loop

■Forcibly terminating the FOR to NEXT instruction loop

Instruction symbol Description Reference

CJ When the input condition is met, jump to pointer (P) Page 326

CJP

Instruction symbol Description Reference

GOEND When the input condition is met, jump to END instruction Page 329

Instruction symbol Description Reference

DI Disables the execution of interrupt programs. Page 330

EI Releases the execution disabled state of interrupt program.

Instruction symbol Description Reference

DI Disables the execution of the interrupt program with a priority specified by (s) or lower until the EI

instruction is executed.

Page 332

Instruction symbol Description Reference

IMASK Interrupt disable/enable settings Page 335

Instruction symbol Description Reference

SIMASK Disables/enables the interrupt pointer specified by (I) Page 337

Instruction symbol Description Reference

IRET Returns from the interrupt program to the sequence program Page 338

Instruction symbol Description Reference

WDT Resets the watchdog timer (WDT) in the program Page 339

WDTP

Instruction symbol Description Reference

FOR Execute the instructions between FOR instruction and NEXT instruction (n) times Page 340

NEXT

Instruction symbol Description Reference

BREAK Forcibly end execution between FOR instruction and NEXT instruction, and jump to pointer (P) Page 342

BREAKP

62
2 CPU MODULE INSTRUCTION

2.3 Application instruction

■Calling a subroutine program

■Returning from the subroutine program

■Calling a subroutine program

Data table operation instruction

■Reading the oldest data from the data table

■Reading the newest data from the data table

■Writing data to the data table

Instruction symbol Description Reference

CALL Executes a subroutine program specified by (P) when the input condition is met. Page 344

CALLP

Instruction symbol Description Reference

RET Returns from the subroutine program. Page 348

SRET

Instruction symbol Description Reference

XCALL Executes a subroutine program specified by (P) when the input condition is met.

Carry out non-execution processing for the subroutine program (P), when input conditions are not

met.

Page 349

Instruction symbol Description Reference

SFRD Page 351

SFRDP

Instruction symbol Description Reference

POP Page 353

POPP

Instruction symbol Description Reference

SFWR Page 355

SFWRP

(s)

(s)+1

(d)

(s)Pointer Pointer -1

(s)

(d)

(s) Pointer -1Pointer

(d)

(s)

(d) Pointer Pointer + 1

2 CPU MODULE INSTRUCTION

2.3 Application instruction 63

2

■Deleting/inserting data from/to the data table

Character string operation instruction

■Comparing character strings

*1 The following shows comparison conditions for comparing character strings.

- Match: All characters in the strings must match

- Larger string: In case of different character strings, character string with the larger character code

(If character string lengths are different, the longer character string)

- Smaller string: In case of different character strings, character string with the smaller character code

(If character string lengths are different, the shorter character string)

■Concatenating character strings

■Transferring character strings

Instruction symbol Description Reference

FINS Page 357

FINSP

FDEL Page 359

FDELP

Instruction symbol Description Reference

LD$=, AND$=, OR$= Compares the character string (s1) with the character string (s2) one character at a time.*1

[Character string (s1)] = [Character string (s2)]: Conductive state

[Character string (s1)]  [Character string (s2)]: Non-Conductive state

Page 361

LD$<>, AND$<>, OR$<> Compares the character string (s1) with the character string (s2) one character at a time.*1

[Character string (s1)]  [Character string (s2)]: Conductive state

[Character string (s1)] = [Character string (s2)]: Non-Conductive state

LD$>, AND$>, OR$> Compares the character string (s1) with the character string (s2) one character at a time.*1

[Character string (s1)] > [Character string (s2)]: Conductive state

[Character string (s1)]  [Character string (s2)]: Non-Conductive state

LD$<=, AND$<=, OR$<= Compares the character string (s1) with the character string (s2) one character at a time.*1

[Character string (s1)]  [Character string (s2)]: Conductive state

[Character string (s1)] > [Character string (s2)]: Non-Conductive state

LD$<, AND$<, OR$< Compares the character string (s1) with the character string (s2) one character at a time.*1

[Character string (s1)] < [Character string (s2)]: Conductive state

[Character string (s1)]  [Character string (s2)]: Non-Conductive state

LD$>=, AND$>=, OR$> Compares the character string (s1) with the character string (s2) one character at a time.*1

[Character string (s1)]  [Character string (s2)]: Conductive state

[Character string (s1)] < [Character string (s2)]: Non-Conductive state

Instruction symbol Description Reference

$+ � In case of 2 operands

Connect the character string specified by (s) to the end of the character string specified by (d), and

store in (d).

Page 364

$+P

$+ � In case of 3 operands

Connect the character string specified by (s2) to the end of the character string specified by (s1),

and store in (d).

Page 366

$+P

Instruction symbol Description Reference

$MOV Transfer the character strings specified by (s) to the devices specified by (d) onwards. Page 368

$MOVP

(d)

(s)

(d) Number of stored data Number of stored data +1

Specify by (n)

(d)

(s)

(d)Number of stored data Number of stored data -1

Specify by (n)

64
2 CPU MODULE INSTRUCTION

2.3 Application instruction

■Converting 16-bit/32-bit binary data to decimal ASCII

■Converting HEX code data to ASCII

■Converting 16-bit/32-bit binary data to character string

■Converting single-precision real number to character string

■Detecting a character string length

■Extracting character string data from the right/left

Instruction symbol Description Reference

BINDA Converts the 1 word binary value specified by (s) to 5 digits decimal ASCII value, and stores in the

word device specified by (d).

Page 370

BINDAP

BINDA_U

BINDAP_U

DBINDA Converts the 2 word binary value specified by (s) to 10 digits decimal ASCII value, and stores in the

word device area specified by (d) onwards.

Page 372

DBINDAP

DBINDA_U

DBINDAP_U

Instruction symbol Description Reference

ASCI Converts the (n) characters within the HEX code data specified by (s) to ASCII, and stores in the

device area specified by (d) onwards.

Page 374

ASCIP

Instruction symbol Description Reference

STR Converts the 1 word binary value specified by (s2) to the decimal character string with total number

of digits and the number of digits in the decimal fraction part as specified in (s1), and stores this in

the device specified by (d).

Page 378

STRP

STR_U

STRP_U

DSTR Convert the 2 word binary value specified by (s2) to the decimal character string with total number

of digits and the number of digits in the decimal fraction part as specified in (s1), and stores this in

the device specified by (d).

Page 380

DSTRP

DSTR_U

DSTRP_U

Instruction symbol Description Reference

ESTR Converts the single-precision real number data specified by (s1) to a character string, and store

this in the device specified by (d).

Page 383

ESTRP

DESTR

DESTRP

Instruction symbol Description Reference

LEN Stores the length of the character string data stored in the device specified by (s) in the device

specified by (d).

Page 388

LENP

Instruction symbol Description Reference

RIGHT Stores the (n) characters from the last character of the character string specified by (s) in the

device specified by (d).

Page 390

RIGHTP

LEFT Stores the (n) characters from the first character of the character string specified by (s) in the

device specified by (d).

Page 392

LEFTP

2 CPU MODULE INSTRUCTION

2.3 Application instruction 65

2

■Storing/replacing the specified number of character strings

■Searching character string

■Inserting character string

■Deleting character string

Real number instruction

■Comparing single-precision real numbers

■Adding/subtracting single-precision real numbers

Instruction symbol Description Reference

MIDR Stores the specified number of characters from the position specified by (s2) of the character string

(s1) into the device specified by (d).

Page 394

MIDRP

MIDW Stores the specified number of characters from the character string (s1) into the location specified

by (s2) of the character string (d).

Page 396

MIDWP

Instruction symbol Description Reference

INSTR Searches the character string in the device specified by (s2), starting from the (s3)th character, for

the character string in the device specified by (s1), and stores the matching location in the device

specified by (d).

Page 398

INSTRP

Instruction symbol Description Reference

STRINS Inserts the character string data specified in (s1) at the position (s2)(Insert position) from the

beginning of the character string data specified by (d).

Page 400

STRINSP

Instruction symbol Description Reference

STRDEL From the head of the character string data specified in (d), delete (n2) characters from the location

specified as the character number (n1) (deletion start location).

Page 402

STRDELP

Instruction symbol Description Reference

LDE=, ANDE=, ORE= [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)]  [(s2)+1, (s2)]: Non-Conductive

Page 404

LDE<>, ANDE<>, ORE<> [(s1)+1, (s1)]  [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)] = [(s2)+1, (s2)]: Non-Conductive

LDE>, ANDE>, ORE> [(s1)+1, (s1)] > [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)]  [(s2)+1, (s2)]: Non-Conductive

LDE<=, ANDE<=, ORE<= [(s1)+1, (s1)]  [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)] > [(s2)+1, (s2)]: Non-Conductive

LDE<, ANDE<, ORE< [(s1)+1, (s1)] < [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)]  [(s2)+1, (s2)]: Non-Conductive

LDE>=, ANDE>=, ORE> [(s1)+1, (s1)]  [(s2)+1, (s2)]: Conductive

[(s1)+1, (s1)] < [(s2)+1, (s2)]: Non-Conductive

DECMP This instruction compares two data values (single-precision real numbers), and outputs the result

(larger, smaller or equal) to three bit devices.

Page 406

DECMPP

DEZCP This instruction compares two data values (single-precision real numbers), and outputs the result

(larger, smaller or data band) to three bit devices.

Page 408

DEZCPP

Instruction symbol Description Reference

E+ � In case of 2 operands

[(d)+1, (d)] + [(s)+1, (s)]  [(d)+1, (d)]

Page 410

E+P

E+ � In case of 3 operands

[(s1)+1, (s1)] + [(s2)+1, (s2)]  [(d)+1, (d)]

Page 411

E+P

DEADD Page 414

DEADDP

E- � In case of 2 operands

[(d)+1, (d)] - [(s)+1, (s)]  [(d)+1, (d)]

Page 412

E-P

66
2 CPU MODULE INSTRUCTION

2.3 Application instruction

■Multiplying/dividing single-precision real numbers

■Converting 16-bit/32-bit signed binary data to single-precision real number

■Converting 16-bit/32-bit unsigned binary data to single-precision real number

■Converting character string to single-precision real number

■Converting binary floating point to decimal floating point

■Converting decimal floating point to binary floating point

■Inverting the sign of single-precision real number

E- � In case of 3 operands

[(s1)+1, (s1)] - [(s2)+1, (s2)]  [(d)+1, (d)]

Page 413

E-P

DESUB Page 416

DESUBP

Instruction symbol Description Reference

E* [(s1)+1, (s1)]  [(s2)+1, (s2)]  [(d)+1, (d)] Page 418

E*P

DEMUL Page 422

DEMULP

E/ [(s1)+1, (s1)]  [(s2)+1, (s2)]  quotient [(d)+1, (d)] Page 420

E/P

DEDIV Page 424

DEDIVP

Instruction symbol Description Reference

INT2FLT Converts the 16-bit signed binary data in the device specified by (s) to single-precision real

number, and stores the converted data in the device specified by (d).

Page 426

INT2FLTP

DINT2FLT Converts the 32-bit signed binary data in the device specified by (s) to single-precision real

number, and stores the converted data in the device specified by (d).

Page 428

DINT2FLTP

Instruction symbol Description Reference

UINT2FLT Converts the 16-bit unsigned binary data in the device specified by (s) to single-precision real

number, and stores the converted data in (d).

Page 427

UINT2FLTP

UDINT2FLT Converts the 32-bit unsigned binary data in the device specified by (s) to single-precision real

number, and stores the converted data in (d).

Page 429

UDINT2FLTP

Instruction symbol Description Reference

EVAL Converts the character string specified by (s) to a single-precision real number, and stores the

converted data in (d).

Page 430

EVALP

DEVAL

DEVALP

Instruction symbol Description Reference

DEBCD Converts the binary floating point specified by (s) into decimal floating point, and stores in (d). Page 433

DEBCDP

Instruction symbol Description Reference

DEBIN Converts the decimal floating point specified by (s) into binary floating point, and stores in (d). Page 435

DEBINP

Instruction symbol Description Reference

ENEG Page 437

ENEGP

DENEG

DENEGP

Instruction symbol Description Reference

(d+1, d) (d+1, d)

Real number

2 CPU MODULE INSTRUCTION

2.3 Application instruction 67

2

■Transferring single-precision real number data

■Calculating the sine of single-precision real number

■Calculating the cosine of single-precision real number

■Calculating the tangent of single-precision real number

■Calculating the arc sine of single-precision real number

■Calculating the arc cosine of single-precision real number

■Calculating the arc tangent of single-precision real number

Instruction symbol Description Reference

EMOV Page 438

EMOVP

DEMOV

DEMOVP

Instruction symbol Description Reference

SIN Sin [(s)+1, (s)]  [(d)+1, (d)] Page 439

SINP

DSIN

DSINP

Instruction symbol Description Reference

COS Cos [(s)+1, (s)]  [(d)+1, (d)] Page 441

COSP

DCOS

DCOSP

Instruction symbol Description Reference

TAN Tan [(s)+1, (s)]  [(d)+1, (d)] Page 443

TANP

DTAN

DTANP

Instruction symbol Description Reference

ASIN Sin-1 [(s)+1, (s)]  [(d)+1, (d)] Page 445

ASINP

DASIN

DASINP

Instruction symbol Description Reference

ACOS Cos-1 [(s)+1, (s)]  [(d)+1, (d)] Page 447

ACOSP

DACOS

DACOSP

Instruction symbol Description Reference

ATAN Tan-1 [(s)+1, (s)]  [(d)+1, (d)] Page 449

ATANP

DATAN

DATANP

(s+1, s) (d+1, d)

Real number

68
2 CPU MODULE INSTRUCTION

2.3 Application instruction

■Converting single-precision real number angle to radian

■Converting single-precision real number radian to angle

■Calculating the square root of single-precision real number

■Calculating the exponent of single-precision real number

■Calculating the natural logarithm of single-precision real number

■Calculating the exponentiation of single-precision real number

■Calculating the common logarithm of single-precision real number

■Searching the maximum value of single-precision real number

Instruction symbol Description Reference

RAD Page 451

RADP

DRAD

DRADP

Instruction symbol Description Reference

DEG Page 452

DEGP

DDEG

DDEGP

Instruction symbol Description Reference

DESQR Page 453

DESQRP

Instruction symbol Description Reference

EXP e[(s)+1, (s)]  [(d)+1, (d)] Page 454

EXPP

DEXP

DEXPP

Instruction symbol Description Reference

LOG Loge[(s)+1, (s)]  [(d)+1, (d)] Page 456

LOGP

DLOGE

DLOGEP

Instruction symbol Description Reference

POW [(s1)+1, (s1)][(s2)+1, (s2)]  [(d)+1, (d)] Page 458

POWP

Instruction symbol Description Reference

LOG10 log10[(s)+1, (s)]  [(d)+1, (d)] Page 460

LOG10P

DLOG10

DLOG10P

Instruction symbol Description Reference

EMAX These instructions search for the maximum value in the (n) points of single-precision real number

block data specified by the device starting from the one specified by (s), and store the maximum

value in the device area specified by (d).

Page 461

EMAXP

(s+1, s) (d+1, d)

Converts from degrees to radians

(s+1, s) (d+1, d)

Converts from radians to degrees

(s+1, s) (d+1, d)

2 CPU MODULE INSTRUCTION

2.3 Application instruction 69

2

■Searching the minimum value of single-precision real number

Random number instruction

■Generating random number

Index register operation instruction

■Saving/returning all data of the index register

■Saving/returning the selected data of the index register and long index register

Data control instruction

■Upper and lower limit control of 16-bit/32-bit binary data

Instruction symbol Description Reference

EMIN These instructions search for the minimum value in the (n) points of single-precision real number

block data specified by the device starting from the one specified by (s), and store the minimum

value in the device areas specified by (d).

Page 463

EMINP

Instruction symbol Description Reference

RND Generates a random number from 0 to 32767, and stores this in the device specified by (d). Page 465

RNDP

Instruction symbol Description Reference

ZPUSH Saves the contents of index registers to the devices specified by (d) onwards. Page 466

ZPUSHP

ZPOP Reads the data in devices specified by (d) onwards to the index registers. Page 468

ZPOPP

Instruction symbol Description Reference

ZPUSH Saves the contents of the index registers and long index registers in the range specified by (s) to

devices specified by (d) onwards.

Page 469

ZPUSHP

ZPOP Reads data in the devices specified by (d) onwards to the index registers and long index registers. Page 471

ZPOPP

Instruction symbol Description Reference

LIMIT (s3) < (s1): The (s1) value is stored in (d)

(s1)  (s3)  (s2): The (s3) value is stored in (d)

(s2) < (s3): The (s2) value is stored in (d)

Page 472

LIMITP

LIMIT_U

LIMITP_U

DLIMIT [(s3)+1, (s3)] < [(s1)+1, (s1)]: The [(s1)+1, (s1)] value is stored in [(d)+1, (d)]

[(s1)+1, (s1)]  [(s3)+1, (s3)]  [(s2)+1, (s2)]: The [(s3)+1, (s3)] value is stored in [(d)+1, (d)]

[(s2)+1, (s2)] < [(s3)+1, (s3)]: The [(s2)+1, (s2)] value is stored in [(d)+1, (d)]

Page 474

DLIMITP

DLIMIT_U

DLIMITP_U

70
2 CPU MODULE INSTRUCTION

2.3 Application instruction

■Dead band control of 16-bit/32-bit binary data

■Zone control of 16-bit/32-bit binary data

■Scaling 16-bit/32-bit binary data (point coordinates)

■Scaling 16-bit/32-bit binary data (XY coordinates)

Instruction symbol Description Reference

BAND When (s1)  (s3)  (s2): 0  (d)

When (s3) < (s1): (s3) - (s1)  (d)

When (s2) < (s3): (s3) - (s2)  (d)

Page 476

BANDP

BAND_U

BANDP_U

DBAND When [(s1)+1, (s1)]  [(s3)+1, (s3)]  [(s2)+1, (s2)]: 0  (d+1, d)

When [(s3)+1, (s3)] < [(s1)+1, (s1)]: [(s3)+1, (s3)] - [(s1)+1, (s1)]  [(d)+1, (d)]

When [(s2)+1, (s2)] < [(s3)+1, (s3)]: [(s3)+1, (s3)] - [(s2)+1, (s2)]  [(d)+1, (d)]

Page 478

DBANDP

DBAND_U

DBANDP_U

Instruction symbol Description Reference

ZONE When (s3) = 0: 0  (d)

When (s3) > 0: (s3) + (s2)  (d)

When (s3) < 0: (s3) + (s1)  (d)

Page 480

ZONEP

ZONE_U

ZONEP_U

DZONE When [(s3)+1, (s3)] = 0: 0  [(d)+1, (d)]

When [(s3)+1, (s3)] > 0: [(s3)+1, (s3)] + [(s2)+1, (s2)]  [(d)+1, (d)]

When [(s3)+1, (s3)] < 0: [(s3)+1, (s3)] + [(s1)+1, (s1)]  [(d)+1, (d)]

Page 482

DZONEP

DZONE_U

DZONEP_U

Instruction symbol Description Reference

SCL Executes scaling using the scaling conversion data (16-bit data units) specified by (s2) for the input

value specified by (s1), and then stores the result in the device specified by (d).

The scaling conversion is executed based on the scaling conversion data stored in the device

specified by (s2) onwards.

Page 484

SCLP

SCL_U

SCLP_U

DSCL Executes scaling using the scaling conversion data (32-bit data units) specified by (s2) for the input

value specified by (s1), and then stores the result in the device specified by (d).

The scaling conversion is executed based on the scaling conversion data stored in the device

specified by (s2) onwards.

Page 487

DSCLP

DSCL_U

DSCLP_U

Instruction symbol Description Reference

SCL2 Executes scaling using the scaling conversion data (16-bit data units) specified by (s2) for the input

value specified by (s1), and then stores the result in the device specified by (d).

The scaling conversion is executed based on the scaling conversion data stored in the device

specified by (s2) onwards.

Page 490

SCL2P

SCL2_U

SCL2P_U

DSCL2 Executes scaling using the scaling conversion data (32-bit data units) specified by (s2) for the input

value specified by (s1), and then stores the result in the device specified by (d).

The scaling conversion is executed based on the scaling conversion data stored in the device

specified by (s2) onwards.

Page 493

DSCL2P

DSCL2_U

DSCL2P_U

2 CPU MODULE INSTRUCTION

2.3 Application instruction 71

2

Special timer instruction

■Teaching timer

■Special function timer

Shortcut control instruction

■Rotary table shortest direction control

Ramp signal instruction

■Ramp signal

Pulse related instruction

■Measuring the density of 16 bit binary/32 bit binary pulses

■16 bit binary/32 bit binary pulse output

■16 bit binary/32 bit binary pulse width modulation

Drum sequence

■16-bit binary data absolute method

Instruction symbol Description Reference

TTMR Page 496

Instruction symbol Description Reference

STMR The 4 points from the bit device specified by (d) operate as shown below, depending on the ON/

OFF status of the input conditions for the STMR instruction:

(d)+0: Off delay timer output

(d)+1: One shot after off timer output

(d)+2: One shot after on timer output

(d)+3: On delay and off delay timer output

Page 498

Instruction symbol Description Reference

ROTC Rotates a rotary table with (n1) divisions from the stop position to the position specified by (s)+1 in

the shortest direction.

Page 500

Instruction symbol Description Reference

RAMPF Shifts the value from the one specified by (s1) to the one specified by (s2) in (n) scans.

The current value is stored in the device specified by (d1)+0.

Page 503

Instruction symbol Description Reference

SPD Counts the pulse input from the device specified by (s1) for the duration of time specified by (s2),

and stores the count in the device specified by (d).

Page 505

DSPD Page 509

Instruction symbol Description Reference

PLSY � When an FX3 series-compatible operand is specified

This instruction outputs a pulse at a frequency specified by (s) for the number of times specified by

(n) from the output number (Y) specified by (d).

� When an FX5 series-compatible operand is specified

This instruction outputs a pulse at a frequency specified by (s) for the number of times specified by

(n), from the output number (axis number) specified by (d).

Page 513

DPLSY Page 521

Instruction symbol Description Reference

PWM Outputs the pulse of the cycle specified by (s2), for the ON time on specified by (s1), to the output

number specified by (d).

Page 529

DPWM Page 533

Instruction symbol Description Reference

ABSD Creates many output patterns corresponding to the current value of a counter. Page 538

(s)=0:1, (s)=1:10, (s)=2:100

(On time of TTMR)  (s) (d)

72
2 CPU MODULE INSTRUCTION

2.3 Application instruction

■32-bit binary data absolute method

■Relative method

Check code

■Check code

Data operation instruction

■Searching 16-bit/32-bit data

■Bit check of 16-bit/32-bit data

■Bit judgment of 16-bit data/32-bit data

Instruction symbol Description Reference

DABSD Creates many output patterns corresponding to the current value of a counter. Page 540

Instruction symbol Description Reference

INCD This instruction compares the current value of a counter with the data table having (n) lines starting

from (s1) (which occupies (n) lines  1 device). If the counter value is equivalent to the table data,

the current output is reset, and the ON/OFF status of the specified sequential outputs is controlled.

Page 542

Instruction symbol Description Reference

CCD This instruction calculates the sum data and horizontal parity value of data stored in (s) to (s)+(n)-1.

The sum data is stored in (d), and the horizontal parity value is stored in (d)+1.

Page 544

CCDP

Instruction symbol Description Reference

SERMM Page 547

SERMMP

DSERMM Page 549

DSERMMP

Instruction symbol Description Reference

SUM Page 551

SUMP

DSUM Page 552

DSUMP

Instruction symbol Description Reference

BON Page 553

BONP

DBON Page 554

DBONP

(s2)
(s1)

(n)

(d) to (d)+4: Search result

Searches for data same as (s2) in (s1).

(s2)
(s1)

(n)

(d)+1, (d) to (d)+9, (d)+8: Search result

32 bits
Searches for data same as (s2) in (s1).

b15 b0
(s)
···

(d): Total number of 1s

(s)(s+1)

(d): Total number of 1s

b15 b0
(s)
······

b(n) ON  (d)=On
b(n) OFF  (d)=Off

b31 b0
(s)
······

b(n) ON  (d)=On
b(n) OFF  (d)=Off

2 CPU MODULE INSTRUCTION

2.3 Application instruction 73

2

■Searching the maximum value of 16-bit/32-bit data

■Searching the minimum value of 16-bit/32-bit data

■Sorting 16-bit data

■16-bit/32-bit data alignment 2

■Adding 16-bit data

■Adding 32-bit data

Instruction symbol Description Reference

MAX This instruction searches the data of (n) points from the device specified by (s) in 16-bit units, and

stores the maximum value in the device specified by (d).

Page 555

MAXP

MAX_U

MAXP_U

DMAX This instruction searches the data of (n) points from the device specified by (s) in 32-bit units, and

stores the maximum value in the device specified by (d).

Page 556

DMAXP

DMAX_U

DMAXP_U

Instruction symbol Description Reference

MIN This instruction searches the data of (n) points from the device specified by (s) in 16-bit units, and

stores the minimum value in the device specified by (d).

Page 557

MINP

MIN_U

MINP_U

DMIN This instruction searches the data of (n) points from the device specified by (s) in 32-bit units, and

stores the minimum value in the device specified by (d).

Page 558

DMINP

DMIN_U

DMINP_U

Instruction symbol Description Reference

SORTTBL In the data table (sorting source) having ((m1)(m2)) points specified by (s), sorts the data lines in

the ascending order based on the group data in the column number (n), and stores the result in the

data table (sorting result) having ((m1)(m2)) points specified by (d).

Page 559

SORTTBL_U

Instruction symbol Description Reference

SORTTBL2 In the data table (sorting source) of 16-bit binary data having (m1m2) points specified by (s), sorts

the data lines in the ascending order based on the group data in the column number (n), and stores

the result in the data table (sorting result) of 16-bit binary data having ((m1)(m2)) points specified

by (d).

Page 562

SORTTBL2_U

DSORTTBL2 In the data table (sorting source) of 32-bit binary data having (m1m2) points specified by (s), sorts

the data lines in the ascending order based on the group data in the column number (n), and stores

the result in the data table (sorting result) of 32-bit binary data having ((m1)(m2)) points specified

by (d).

Page 565

DSORTTBL2_U

Instruction symbol Description Reference

WSUM These instructions add the (n) points of 16-bit binary data in the device starting from the one

specified by (s), and store the result in the device specified by (d).

Page 568

WSUM_U

WSUMP

WSUMP_U

Instruction symbol Description Reference

DWSUM These instructions add the (n) points of 32-bit binary data in the device starting from the one

specified by (s), and store the result in the device specified by (d).

Page 569

DWSUM_U

DWSUMP

DWSUMP_U

74
2 CPU MODULE INSTRUCTION

2.3 Application instruction

■Calculating the mean value of 16-bit/32-bit data

■Calculating the square root of 16-bit/32-bit data

■CRC calculation

File register operation instruction

■Reading the indirect address

Clock instruction

■Reading clock data

■Writing clock data

Instruction symbol Description Reference

MEAN These instructions calculate the mean value of (n) points (16-bit binary data) in the devices starting

from the one specified by (s), and store the result in the device specified by (d).

Page 570

MEANP

MEAN_U

MEANP_U

DMEAN These instructions calculate the mean value of (n) points (32-bit binary data) in the devices starting

from the one specified by (s), and store the result in the device specified by (d).

Page 571

DMEANP

DMEAN_U

DMEANP_U

Instruction symbol Description Reference

SQRT Page 572

SQRTP

DSQRT Page 573

DSQRTP

Instruction symbol Description Reference

CRC This instruction generates a CRC value for (n) 8-bit data (unit: byte) starting from the device

specified by (s), and stores the CRC value to (d).

Page 574

CRCP

Instruction symbol Description Reference

ADRSET Page 577

ADRSETP

Instruction symbol Description Reference

TRD Page 579

TRDP

Instruction symbol Description Reference

TWR Page 581

TWRP

(s)  (d)

(s)+1,(s)  (d)+1,(d)

(s) (d)

Indirect address of the specified device

Device name

(d)+0
+1
+2
+3
+4
+5
+6

(Clock element) Year
Month
Day
Hour

Minute
Seconds

Day of week

(d)+0
+1
+2
+3
+4
+5
+6

(Clock element)Year
Month
Day
Hour

Minute
Seconds

Day of week

2 CPU MODULE INSTRUCTION

2.3 Application instruction 75

2

■Adding clock data

■Subtracting clock data

■Converting time data from hour/minute/second to seconds in 16 bits/32 bits

■Converting time data from seconds to hour/minute/second in 16 bits/32 bits

■Comparing date data

Instruction symbol Description Reference

TADD Page 583

TADDP

Instruction symbol Description Reference

TSUB Page 585

TSUBP

Instruction symbol Description Reference

HTOS Page 587

HTOSP

DHTOS Page 588

DHTOSP

Instruction symbol Description Reference

STOH Page 589

STOHP

DSTOH Page 590

DSTOHP

Instruction symbol Description Reference

LDDT=, ANDDT=, ORDT= Page 591

LDDT<>, ANDDT<>,

ORDT<>

LDDT>, ANDDT>, ORDT>

LDDT<=, ANDDT<=,

ORDT<=

LDDT<, ANDDT<, ORDT<

LDDT>=, ANDDT>=,

ORDT>=

(s1) (s2) (d)

+

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

(s1) (s2) (d)

-

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

(d)(s)

Seconds
Hour

Minute
Seconds

(d)(d)+1(s)

Seconds
Hour

Minute
Seconds

(d)(s)

Seconds

Hour

Minute

Seconds

(s)(s)+1 (d)

Seconds
Hour

Minute
Seconds

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1=
Year Year

Day
Month

Day
Month Result

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1< >
Year Year

Day
Month

Day
Month Result

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1>
Year Year

Day

Month

Day

Month Result

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1<=
Year Year

Day
Month

Day
Month Result

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1<
Year Year

Day
Month

Day
Month Result

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1>=
Year Year

Day
Month

Day
Month Result

76
2 CPU MODULE INSTRUCTION

2.3 Application instruction

■Comparing time data

■Comparing clock data

■Comparing clock data zones

Timing check instruction

■Generating timing pulses

Instruction symbol Description Reference

LDTM=, ANDTM=, ORTM= Page 594

LDTM<>, ANDTM<>,

ORTM<>

LDTM>, ANDTM>, ORTM>

LDTM<=, ANDTM<=,

ORTM<=

LDTM<, ANDTM<, ORTM<

LDTM>=, ANDTM>=,

ORTM>=

Instruction symbol Description Reference

TCMP Page 597

TCMPP

Instruction symbol Description Reference

TZCP Page 599

TZCPP

Instruction symbol Description Reference

DUTY Page 601

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1= Result

Hour
Minute

Seconds

Hour
Minute

Seconds

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1< > Result

Hour
Minute

Seconds

Hour
Minute

Seconds

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1> Result

Hour
Minute

Seconds

Hour
Minute

Seconds

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1<= Result

Hour
Minute

Seconds

Hour
Minute

Seconds

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1< Result

Hour
Minute

Seconds

Hour
Minute

Seconds

(s1)

(s1)+2

(s1)+1

(s2)

(s2)+2

(s2)+1>= Result

Hour
Minute

Seconds

Hour
Minute

Seconds

(s1)

(s3)

(s2)

(s4)

(s4)+2

(s4)+1> (d) = ON

(s1)

(s3)

(s2)

(s4)

(s4)+2

(s4)+1= (d)+1 = ON

(s1)

(s3)

(s2)

(s4)

(s4)+2

(s4)+1< (d)+2 = ON

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

(s3)

(s3)+2

(s3)+1

(s1)

(s1)+2

(s1)+1

(s1)

(s1)+2

(s1)+1

(s3)

(s3)+2

(s3)+1> (d) = ON

(s3)

(s3)+2

(s3)+1≤ (d)+1 = ON

(s2)

(s2)+2

(s2)+1> (d)+2 = ON

(s2)

(s2)+2

(s2)+1≤

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

Hour
Minute

Seconds

(d)

(n1) scans (n2) scans

SM420 to SM424, SM2330 to SM2334

2 CPU MODULE INSTRUCTION

2.3 Application instruction 77

2

■Hour meter

Module access instruction

■Performing I/O refresh

■Reading 1-word/2-word data from another module (16-bit specification)

■Writing 1-word/2-word data to another module (16-bit specification)

■Reading 1-word/2-word data from another module (32-bit specification)

■Writing 1-word/2-word data to another module (32-bit specification)

Instruction symbol Description Reference

HOURM This instruction adds the time during which the input contact is ON in units of 1 hour, turns ON the

device specified by (d2) when the total ON time exceeds the time specified by (s) (16-bit binary

data), and stores the current value in units of 1 hour (16-bit binary data) to (d1), and the current

value that is less than one hour (16-bit binary data) to (d1)+1 in units of seconds.

Page 603

DHOURM This instruction adds the time during which the input contact is ON in units of 1 hour, turns ON the

device specified by (d2) when the total ON time exceeds the time specified by (s) (32-bit binary

data), and stores the current value in units of 1 hour (32-bit binary data) to (d1), and the current

value that is less than one hour (16-bit binary data) to (d1)+2 in units of seconds.

Page 604

Instruction symbol Description Reference

REF This instruction refreshes the relevant I/O area during a scan. Page 605

REFP

RFS

RFSP

Instruction symbol Description Reference

FROM These instructions read the (n) word data from the buffer memory of the intelligent function module. Page 607

FROMP

DFROM These instructions read the (n)2 word data from the buffer memory of the intelligent function

module.
DFROMP

Instruction symbol Description Reference

TO These instructions write the (n) word data to the buffer memory of the intelligent function module. Page 610

TOP

DTO These instructions write the (n)2 word data to the buffer memory of the intelligent function module.

DTOP

Instruction symbol Description Reference

FROMD These instructions read the (n) word data from the buffer memory of the intelligent function module. Page 613

FROMDP

DFROD These instructions read the (n)2 word data from the buffer memory of the intelligent function

module.
DFRODP

Instruction symbol Description Reference

TOD These instructions write the (n) word data to the buffer memory of the intelligent function module. Page 616

TODP

DTOD These instructions write the (n)2 word data to the buffer memory of the intelligent function module.

DTODP

78
2 CPU MODULE INSTRUCTION

2.4 Built-in Ethernet Function Instruction

2.4 Built-in Ethernet Function Instruction

Socket communication function instruction

■Opening a connection

■Closing a connection

■Reading receive data during the END processing

■Sending data

■Reading connection information

■Reading socket communication receive data

Instruction symbol Description Reference

SP.SOCOPEN This instruction opens the connection specified by (s1). Page 619

Instruction symbol Description Reference

SP.SOCCLOSE This instruction closes the connection specified by (s1). (Closing a connection) Page 622

Instruction symbol Description Reference

SP.SOCRCV This instruction reads the received data of the connection specified by (s1) from the socket

communication receive data area, during the END processing.

Page 624

Instruction symbol Description Reference

SP.SOCSND This instruction sends the data set in (s3) to the target device of the connection specified by (s1). Page 627

Instruction symbol Description Reference

SP.SOCCINF This instruction reads the connection information of the connection specified by (s1). Page 629

Instruction symbol Description Reference

S.SOCRDATA This instruction reads the data of the number of words specified in (n) from the socket

communication receive data area of the connection specified by (s1), and stores it to the device

specified by (d) onwards.

Page 631

SP.SOCRDATA

3 MODULE SPECIFIC INSTRUCTION

3.1 High-speed Counter Instruction 79

3

3 MODULE SPECIFIC INSTRUCTION

3.1 High-speed Counter Instruction

High-speed processing instruction

■Setting 32-bit data comparison

■Reset 32-bit data comparison

■Comparison of 32-bit data band

■Start/stop of the 16-bit/32-bit data high-speed I/O function

High-speed current value transfer instruction

■High-speed current value transfer of 16-bit/32-bit data

3.2 External Device I/O Instruction

Serial communication 2

Instruction symbol Description Reference

DHSCS Turns ON the bit device of (d) when the current value of the high-speed counter of CH specified by

(s2) is changed to the value specified by (s1).

Page 634

Instruction symbol Description Reference

DHSCR Turns OFF the bit device of (d) when the current value of the high-speed counter of CH specified

by (s2) is changed to the value specified by (s1).

Page 636

Instruction symbol Description Reference

DHSZ Compares whether the current value of the high-speed counter is within or outside the value range

specified by (s1) or (s2).

Page 638

Instruction symbol Description Reference

HIOEN Start or stop high-speed I/O for the specified CH. Page 640

HIOENP

DHIOEN Page 642

DHIOENP

Instruction symbol Description Reference

HCMOV Transfers the current value of the high-speed I/O. Page 644

HCMOVP

DHCMOV Page 646

DHCMOVP

Instruction symbol Description Reference

RS2 Sends/receives data by non-protocol communication. Page 648

80
3 MODULE SPECIFIC INSTRUCTION

3.3 Positioning Instruction

3.3 Positioning Instruction

Positioning instruction

■Zero return(OPR) with 16-bit/32- bit data DOG search

■16-bit/32-bit data interrupt positioning

■Positioning by one table operation

■Positioning by multiple table operation

■Multiple axes concurrent drive positioning

■32-bit data ABS current value read

■16-bit/32-bit data variable speed pulse

■16-bit/32-bit data relative positioning

Instruction symbol Description Reference

DSZR � When FX3 series-compatible operand is specified

Specifies the proximity dog signal, zero signal and device (Y). Outputs a pulse with the specified

device (Y) to perform the zero return operation.

� When FX5 series operand is specified

Specifies the original position return speed, creep speed and axis number. Outputs a pulse with the

specified axis to perform the zero return operation.

Page 650

DDSZR Page 652

Instruction symbol Description Reference

DVIT � When FX3 series-compatible operand is specified

Performs interrupt positioning with the specified travel distance, speed, and device (Y).

� When FX5 series operand is specified

Performs interrupt positioning with the specified travel distance, speed, and axis number.

Page 653

DDVIT Page 655

Instruction symbol Description Reference

TBL � When FX3 series-compatible operand is specified

Outputs 1 table operation from the table set by the parameter as pulse with specified device (Y).

� When FX5 series operand is specified

Outputs 1 table operation from the table set by the parameter as pulse with specified axis number.

Page 657

Instruction symbol Description Reference

DRVTBL Outputs continuous multiple table operations from the table set by the parameter as pulse with

specified axis number.

Page 659

Instruction symbol Description Reference

DRVMUL Outputs the table set by the parameter as pulse with specified multiple axes. Page 660

Instruction symbol Description Reference

DABS Reads the absolute position data of the servo amplifier. Page 662

Instruction symbol Description Reference

PLSV � When FX3 series-compatible operand is specified

Specifies the command speed and output device (Y) and uses the specified device (Y) to perform

pulse output.

� When FX5 series operand is specified

Specifies the command speed and performs pulse output with the specified axis number.

Page 663

DPLSV Page 665

Instruction symbol Description Reference

DRVI � When FX3 series-compatible operand is specified

Specifies the travel distance from the current position, speed and performs pulse output with the

specified device (Y).

� When FX5 series operand is specified

Specifies the travel distance from the current position, speed and performs pulse output with the

specified axis number.

Page 667

DDRVI Page 669

3 MODULE SPECIFIC INSTRUCTION

3.4 Inverter Communication Instruction 81

3

■16-bit/32-bit data absolute positioning

3.4 Inverter Communication Instruction

Inverter operation monitoring (Status check)

Inverter operations control (Drive)

Inverter parameter read

Inverter parameter write

Inverter parameter block write

Inverter multi command

3.5 MODBUS Communication Instruction

MODBUS read/write

Instruction symbol Description Reference

DRVA � When FX3 series-compatible operand is specified

Specifies the travel distance from the reference position, speed and performs pulse output with the

specified device (Y).

� When FX5 series operand is specified

Specifies the travel distance from the reference position, speed and performs pulse output with the

specified axis number.

Page 671

DDRVA Page 673

Instruction symbol Description Reference

IVCK Reads the contents of the corresponding instruction code from the specified inverter station

number.

Page 675

Instruction symbol Description Reference

IVDR Writes the contents of the corresponding instruction code to the specified inverter station number. Page 676

Instruction symbol Description Reference

IVRD Reads a parameter from the specified inverter station number. Page 677

Instruction symbol Description Reference

IVWR Writes a parameter to the specified inverter station number. Page 678

Instruction symbol Description Reference

IVBWR Writes the range of the specified data tables to the specified inverter station number in batch. Page 679

Instruction symbol Description Reference

IVMC Sends/receives data corresponding to the send/receive data type to/from the specified inverter

station number.

Page 680

Instruction symbol Description Reference

ADPRW Sends the function code from the master to the slave of the MODBUS serial communication and

reads or writes the data.

Page 682

82
3 MODULE SPECIFIC INSTRUCTION

3.6 BFM Device Read/ Write Instruction

3.6 BFM Device Read/ Write Instruction

Divided BFM Read

Divided BFM Write

Instruction symbol Description Reference

RBFM Divides and reads data from the continuous buffer memory in the intelligent module.

(This instruction cannot be used with the FX5 series intelligent module.)

Page 684

Instruction symbol Description Reference

WBFM Divides and writes data to the continuous buffer memory in the intelligent module.

(This instruction cannot be used with the FX5 series intelligent module.)

Page 687

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions 83

4

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Type conversion functions

Converting BOOL to WORD/DWORD

Converting BOOL to INT/DINT

Converting BOOL to TIME

Converting BOOL to STRING

Converting WORD to BOOL

Converting WORD to DWORD

Function symbol Description Reference

BOOL_TO_WORD Converts BOOL type data to WORD type data. Page 690

BOOL_TO_WORD_E

BOOL_TO_DWORD Converts BOOL type data to DWORD type data. Page 691

BOOL_TO_DWORD_E

Function symbol Description Reference

BOOL_TO_INT Converts BOOL type data to INT type data. Page 692

BOOL_TO_INT_E

BOOL_TO_DINT Converts BOOL type data to DINT type data. Page 693

BOOL_TO_DINT_E

Function symbol Description Reference

BOOL_TO_TIME Converts BOOL type data to TIME type data. Page 694

BOOL_TO_TIME_E

Function symbol Description Reference

BOOL_TO_STRING Converts BOOL type data to STRING type data. Page 695

BOOL_TO_STRING_E

Function symbol Description Reference

WORD_TO_BOOL Converts WORD type data to BOOL type data. Page 696

WORD_TO_BOOL_E

Function symbol Description Reference

WORD_TO_DWORD Converts WORD type data to DWORD type data. Page 697

WORD_TO_DWORD_E

84
4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Converting WORD to INT/DINT

Converting WORD to TIME

Converting DWORD to BOOL

Converting DWORD to WORD

Converting DWORD to INT/DINT

Converting DWORD to TIME

Converting INT to BOOL

Converting INT to WORD/DWORD

Function symbol Description Reference

WORD_TO_INT Converts WORD type data to INT type data. Page 698

WORD_TO_INT_E

WORD_TO_DINT Converts WORD type data to DINT type data. Page 699

WORD_TO_DINT_E

Function symbol Description Reference

WORD_TO_TIME Converts WORD type data to TIME type data. Page 700

WORD_TO_TIME_E

Function symbol Description Reference

DWORD_TO_BOOL Converts DWORD type data to BOOL type data. Page 701

DWORD_TO_BOOL_E

Function symbol Description Reference

DWORD_TO_WORD Converts DWORD type data to WORD type data. Page 702

DWORD_TO_WORD_E

Function symbol Description Reference

DWORD_TO_INT Converts DWORD type data to INT type data. Page 704

DWORD_TO_INT_E

DWORD_TO_DINT Converts DWORD type data to DINT type data. Page 706

DWORD_TO_DINT_E

Function symbol Description Reference

DWORD_TO_TIME Converts DWORD type data to TIME type data. Page 707

DWORD_TO_TIME_E

Function symbol Description Reference

INT_TO_BOOL Converts INT type data to BOOL type data. Page 708

INT_TO_BOOL_E

Function symbol Description Reference

INT_TO_WORD Converts INT type data to WORD type data. Page 709

INT_TO_WORD_E

INT_TO_DWORD Converts INT type data to DWORD type data. Page 710

INT_TO_DWORD_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions 85

4

Converting INT to DINT

Converting INT to BCD

Converting INT to REAL

Converting INT to TIME

Converting INT to STRING

Converting DINT to BOOL

Converting DINT to WORD/DWORD

Converting DINT to INT

Function symbol Description Reference

INT_TO_DINT Converts INT type data to DINT type data. Page 711

INT_TO_DINT_E

Function symbol Description Reference

INT_TO_BCD Converts INT type data to BCD type data. Page 712

INT_TO_BCD_E

Function symbol Description Reference

INT_TO_REAL Converts INT type data to REAL type data. Page 714

INT_TO_REAL_E

Function symbol Description Reference

INT_TO_TIME Converts INT type data to TIME type data. Page 715

INT_TO_TIME_E

Function symbol Description Reference

INT_TO_STRING Converts INT type data to STRING type data. Page 716

INT_TO_STRING_E

Function symbol Description Reference

DINT_TO_BOOL Converts DINT type data to BOOL type data. Page 718

DINT_TO_BOOL_E

Function symbol Description Reference

DINT_TO_WORD Converts DINT type data to WORD type data. Page 719

DINT_TO_WORD_E

DINT_TO_DWORD Converts DINT type data to DWORD type data. Page 721

DINT_TO_DWORD_E

Function symbol Description Reference

DINT_TO_INT Converts DINT type data to INT type data. Page 722

DINT_TO_INT_E

86
4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Converting DINT to BCD

Converting DINT to REAL

Converting DINT to TIME

Converting DINT to STRING

Converting BCD to INT/DINT

Converting REAL to INT/DINT

Converting REAL to STRING

Converting TIME to BOOL

Function symbol Description Reference

DINT_TO_BCD Converts DINT type data to BCD type data. Page 723

DINT_TO_BCD_E

Function symbol Description Reference

DINT_TO_REAL Converts DINT type data to REAL type data. Page 725

DINT_TO_REAL_E

Function symbol Description Reference

DINT_TO_TIME Converts DINT type data to TIME type data. Page 726

DINT_TO_TIME_E

Function symbol Description Reference

DINT_TO_STRING Converts DINT type data to STRING type data. Page 727

DINT_TO_STRING_E

Function symbol Description Reference

BCD_TO_INT Converts BCD type data to INT type data. Page 729

BCD_TO_INT_E

BCD_TO_DINT Converts BCD type data to DINT type data. Page 731

BCD_TO_DINT_E

Function symbol Description Reference

REAL_TO_INT Converts REAL type data to INT type data. Page 733

REAL_TO_INT_E

REAL_TO_DINT Converts REAL type data to DINT type data. Page 735

REAL_TO_DINT_E

Function symbol Description Reference

REAL_TO_STRING Converts REAL type data to STRING type data (exponent format). Page 737

REAL_TO_STRING_E

Function symbol Description Reference

TIME_TO_BOOL Converts TIME type data to BOOL type data. Page 740

TIME_TO_BOOL_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions 87

4

Converting TIME to WORD/DWORD

Converting TIME to INT/DINT

Converting TIME to STRING

Converting STRING to BOOL

Converting STRING to INT/DINT

Converting STRING to REAL

Converting STRING to TIME

Converting bit array to INT/DINT

Function symbol Description Reference

TIME_TO_WORD Converts TIME type data to WORD type data. Page 741

TIME_TO_WORD_E

TIME_TO_DWORD Converts TIME type data to DWORD type data. Page 742

TIME_TO_DWORD_E

Function symbol Description Reference

TIME_TO_INT Converts TIME type data to INT type data. Page 743

TIME_TO_INT_E

TIME_TO_DINT Converts TIME type data to DINT type data. Page 744

TIME_TO_DINT_E

Function symbol Description Reference

TIME_TO_STRING Converts TIME type data to STRING type data. Page 745

TIME_TO_STRING_E

Function symbol Description Reference

STRING_TO_ BOOL Converts STRING type data to BOOL type data. Page 746

STRING_TO_ BOOL_E

Function symbol Description Reference

STRING_TO_INT Converts STRING type data to INT type data. Page 747

STRING_TO_INT_E

STRING_TO_DINT Converts STRING type data to DINT type data. Page 749

STRING_TO_DINT_E

Function symbol Description Reference

STRING_TO_REAL Converts STRING type data to REAL type data. Page 751

STRING_TO_REAL_E

Function symbol Description Reference

STRING_TO_TIME Converts STRING type data to TIME type data. Page 754

STRING_TO_TIME_E

Function symbol Description Reference

BITARR_TO_INT Converts a bit array to INT type data for a specified number of bits. Page 755

BITARR_TO_INT_E

BITARR_TO_DINT Converts a bit array to DINT type data for a specified number of bits. Page 756

BITARR_TO_DINT_E

88
4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Converting INT/DINT to bit array

Bit array copy

Reading the specified bit of word label

Writing the specified bit of word label

Copying the specified bit of word label

Unnecessary of type conversion

Function symbol Description Reference

INT_TO_BITARR Outputs low-order (n) bits of INT type data to a bit array. Page 757

INT_TO_BITARR_E

DINT_TO_BITARR Outputs low-order (n) bits of DINT type data to a bit array. Page 758

DINT_TO_BITARR_E

Function symbol Description Reference

CPY_BITARR Copies specified number of bits of a bit array. Page 759

CPY_BITARR_E

Function symbol Description Reference

GET_BIT_OF_INT Reads a value of a specified bit of INT type data. Page 760

GET_BIT_OF_INT_E

Function symbol Description Reference

SET_BIT_OF_INT Writes a value to a specified bit of INT type data. Page 761

SET_BIT_OF_INT_E

Function symbol Description Reference

CPY_BIT_OF_INT Copies a specified bit of INT type data to a specified bit of another INT type data. Page 762

CPY_BIT_OF_INT_E

Function symbol Description Reference

GET_BOOL_ADDR Converts a data type to the BOOL type. Page 763

GET_INT_ADDR Converts a data type to the INT type.

GET_WORD_ADDR Converts a data type to the WORD type.

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions 89

4

Standard functions of one numeric variable

Absolute value

Square root

Natural logarithm operation

Calculating the common logarithm

Exponential operation

Sine operation

Cosine operation

Tangent operation

Arc sine operation

Function symbol Description Reference

ABS Outputs the absolute value of an input value. Page 764

ABS_E

Function symbol Description Reference

SQRT Outputs the square root of an input value. Page 766

SQRT_E

Function symbol Description Reference

LN Outputs the natural logarithm operation result of an input value. Page 767

LN_E

Function symbol Description Reference

LOG Outputs the operation result of the common logarithm (the logarithm whose base is 10) of an input

value.

Page 768

LOG_E

Function symbol Description Reference

EXP Outputs the exponential operation result of an input value. Page 770

EXP_E

Function symbol Description Reference

SIN Outputs the sine of the angle of an input value. Page 771

SIN_E

Function symbol Description Reference

COS Outputs the cosine of the angle of an input value. Page 772

COS_E

Function symbol Description Reference

TAN Outputs the tangent of the angle value of an input value. Page 773

TAN_E

Function symbol Description Reference

ASIN Outputs the arc sine value of an input value. Page 774

ASIN_E

90
4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Arc cosine operation

Arc tangent operation

Standard arithmetic functions

Addition

Multiplication

Subtraction

Division

Remainder

Exponentiation

Move operation

Function symbol Description Reference

ACOS Outputs the arc cosine value of an input value. Page 775

ACOS_E

Function symbol Description Reference

ATAN Outputs the arc tangent value of an input value. Page 776

ATAN_E

Function symbol Description Reference

ADD Outputs the sum of input values ((s1) + (s2) + ... + (s28)). Page 777

ADD_E

Function symbol Description Reference

MUL Outputs the product of input values ((s1)  (s2)  ...  (s28)). Page 779

MUL_E

Function symbol Description Reference

SUB Outputs the difference of input values ((s1) - (s2)). Page 781

SUB_E

Function symbol Description Reference

DIV Outputs the quotient of input values ((s1)  (s2)). Page 783

DIV_E

Function symbol Description Reference

MOD Outputs the remainder of input values ((s1)  (s2)). Page 785

MOD_E

Function symbol Description Reference

EXPT Outputs the exponentiation of an input value. Page 787

EXPT_E

Function symbol Description Reference

MOVE Assigns an input value to (d). Page 789

MOVE_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions 91

4

Standard bit shift functions

Shifting n-bit data to left/right

Rotating n-bit data to left/right

Standard bitwise boolean functions

AND operation, OR operation, XOR operation, NOT operation

Standard selection functions

Selection

Selecting Maximum/Minimum Value

Limit Control

Function symbol Description Reference

SHL Shifts an input value leftward by (n) bits and outputs the result. Page 791

SHL_E

SHR Shifts an input value rightward by (n) bits and outputs the result. Page 793

SHR_E

Function symbol Description Reference

ROL Rotates an input value leftward by (n) bits and outputs the result. Page 795

ROL_E

ROR Rotates an input value rightward by (n) bits and outputs the result. Page 797

ROR_E

Function symbol Description Reference

AND Outputs the logical product of input values. Page 799

AND_E

OR Outputs the logical sum of input values.

OR_E

XOR Outputs the exclusive logical sum of input values.

XOR_E

NOT Outputs the logical negation of input values. Page 801

NOT_E

Function symbol Description Reference

SEL Outputs a selected input value. Page 802

SEL_E

Function symbol Description Reference

MAX Outputs the maximum value of an input value. Page 804

MAX_E

MIN Outputs the minimum value of an input value.

MIN_E

Function symbol Description Reference

LIMIT Outputs an input value controlled with the upper and lower limits. Page 806

LIMIT_E

92
4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Multiplexer

Standard comparison functions

Compare

Standard character string functions

Character string length detection

Extracting character string data from the left/right

Extract mid string

String concatenation

Function symbol Description Reference

MUX Outputs one of multiple input values. Page 808

MUX_E

Function symbol Description Reference

GT Outputs the data comparison result of input values. Page 810

GT_E

GE

GE_E

EQ

EQ_E

LE

LE_E

LT

LT_E

NE Page 812

NE_E

Function symbol Description Reference

LEN Detects the length of an input character string and outputs the result. Page 814

LEN_E

Function symbol Description Reference

LEFT Outputs specified number of characters from the left of input character string data. Page 815

LEFT_E

RIGHT Outputs specified number of characters from the right of input character string data.

RIGHT_E

Function symbol Description Reference

MID Outputs specified number of characters from an arbitrary position of an input character string. Page 817

MID_E

Function symbol Description Reference

CONCAT Concatenates character strings and output the result. Page 819

CONCAT_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions 93

4

Inserting character string

Deleting character string

Replacing character string

Searching character string

Time data functions

Addition

Subtraction

Multiplication

Division

Function symbol Description Reference

INSERT Inserts a character string into another character string and output the result. Page 821

INSERT_E

Function symbol Description Reference

DELETE Deletes an arbitrary range of a character string and outputs the result. Page 823

DELETE_E

Function symbol Description Reference

REPLACE Replaces an arbitrary range of a character string and outputs the result. Page 825

REPLACE_E

Function symbol Description Reference

FIND Searches for a character string and outputs the result. Page 828

FIND_E

Function symbol Description Reference

ADD_TIME Outputs the sum of input values (time data) ((s1) + (s2)). Page 830

ADD_TIME_E

Function symbol Description Reference

SUB_TIME Outputs the difference of input values (time data) ((s1) - (s2)). Page 832

SUB_TIME_E

Function symbol Description Reference

MUL_TIME Outputs the product of input values (time data) ((s1)  (s2)). Page 834

MUL_TIME_E

Function symbol Description Reference

DIV_TIME Outputs the quotient of input values (time data) ((s1)  (s2)). Page 836

DIV_TIME_E

94
4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.2 Standard Function Blocks

4.2 Standard Function Blocks

Bistable function blocks

Bistable function blocks (set priority)

Bistable function blocks (reset priority)

Edge detection function blocks

Rising edge detector

Falling edge detector

Counter function blocks

Up counter

Down counter

Counter function block

Function block symbol Description Reference

SR Judges two input values and outputs 1 (TRUE) or 0 (FALSE). (Set priority) Page 840

SR_E

Function block symbol Description Reference

RS Judges two input values and outputs 1 (TRUE) or 0 (FALSE). (Reset priority) Page 842

RS_E

Function block symbol Description Reference

R_TRIG Detects the rising edge of a signal, and outputs a pulse signal. Page 844

R_TRIG_E

Function block symbol Description Reference

F_TRIG Detects the falling edge of a signal, and outputs a pulse signal. Page 846

F_TRIG_E

Function block symbol Description Reference

CTU Counts up the number of times of rising of a signal. Page 848

CTU_E

Function block symbol Description Reference

CTD Counts down the number of times of rising of a signal. Page 850

CTD_E

Function block symbol Description Reference

COUNTER_FB_M Counts up the number of times of rising of a signal from (s3) to (s2). Page 852

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.2 Standard Function Blocks 95

4

Timer function blocks

Timer function blocks

Function block symbol Description Reference

TIMER_1_FB_M When the execution condition is established, these function blocks start the timer count to the set

time.

Page 854

TIMER_10_FB_M

TIMER_100_FB_M

TIMER_CONT_FB_M

TIMER_CONTHS_FB_M

96
4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.2 Standard Function Blocks

MEMO

97

P
A

R
T

 3

PART 3 CPU MODULE
INSTRUCTIONS

This part consists of the following chapters.

5 SEQUENCE INSTRUCTIONS

6 BASIC INSTRUCTIONS

7 APPLICATION INSTRUCTION

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

98
5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions

5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions

Operation start, series connection, parallel connection

LD, LDI, AND, ANI, OR, ORI

 � LD: NO contact operation start instruction/LDI: NC contact operation start instruction

These instructions capture the ON/OFF information of the device specified by (s), and use that as the operation result.

 � AND: NO contact series connection instruction/ANI: NC contact series connection instruction

These instructions capture the ON/OFF information of the device specified by (s), AND with the operation result so far, and

use the result as the operation result.

 � OR: NO contact parallel connection instruction/ORI: NC contact parallel instruction

These instructions capture the ON/OFF information of the device specified by (s), OR with the operation result so far, and use

the result as the operation result.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

This becomes a assignment statement, operator, control syntax, etc.

In the ST language, there are sometimes no instructions (symbols) that

directly correspond to contacts such as LD, AND, and OR.

When programming using assignment statements, express as shown in the

following example.

Example

Y1:=(X0 OR X1) AND X2 AND NOT X3;

Y2:=NOT X4 OR NOT X5;

Operand Remarks Range Data type Data type (label)

(s) Device used as contact  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DX)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(s)

(s)

(s)

(s)

(s)

(s)

LD

LDI

AND

ANI

OR

ORI

5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions 99

5

Processing details

■LD, LDI
 � The LD instruction is the NO contact operation start instruction, and the LDI instruction is the NC contact operation start

instruction. These instructions capture the ON/OFF information*1 of the specified device, and use the result as the

operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.

■AND, ANI
 � The AND instruction is NO contact series connection instruction and the ANI instruction is NC contact series connection

instruction. These instructions capture the ON/OFF information*1 of the specified bit device, AND with the operation result

so far, and use the result as the operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.

 � There is no limitation to the number of series contacts. Any number of contacts can use this instructions consecutively.

 � Output to other coils through contacts after the OUT instruction is called cascade output, and these outputs can be

repeated any number of times as long as their order is correct.

■OR, ORI
 � The OR instruction is NO contact parallel connection and the ORI instruction is NC contact parallel connection. These

instructions capture the ON/OFF information*1 of the specified device, OR with the operation result so far, and use the

result as the operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.

 � These instructions are connected in parallel from the step with this instruction to the previous step with the LD and LDI

instruction.

 � There is no limitation in the number of parallel connections.

 � When bits of word devices are specified, bits are specified in hexadecimal. (For example, b11 of D0 is

specified by "D0.B".)

Operation error

There is no operation error.

100
5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions

Pulse operation start, pulse series connection, pulse parallel
connection

LDP, LDF, ANDP, ANDF, ORP, ORF

 � LDP: Rising edge pulse operation start instruction

This becomes conductive (ON) only at the rising edge (OFF to ON) of the bit device specified by (s).

 � LDF: Falling edge pulse operation start instruction

This becomes conductive (ON) only at the falling edge (ON to OFF) of the bit device specified by (s).

 � ANDP: Rising edge pulse series connection instruction/ANDF: Falling edge pulse series connection instruction

This instruction ANDs the bit device specified by (s) with the operation result so far, and uses the result as the operation

result.

 � ORP: Rising edge pulse parallel connection/ORF: Falling edge pulse parallel connection

This instruction ORs the bit device specified by (s) with the operation result so far, and uses the result as the operation result.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=LDP(EN,s);

ENO:=LDF(EN,s);

ENO:=ANDP(EN,s);

ENO:=ANDF(EN,s);

ENO:=ORP(EN,s);

ENO:=ORF(EN,s);

Operand Remarks Range Data type Data type (label)

(s) Device used as contact  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DX)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(s)

(s)

(s)

(s)

(s)

(s)

LDP

LDF

ANDP

ANDF

ORP

ORF

5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions 101

5

Processing details

■LDP, LDF
 � The LDP instruction is the rising edge pulse operation start instruction, and becomes conductive (ON) only at the rising

edge (OFF to ON) of the specified bit device. When word devices are specified by bits, this instruction becomes conductive

(ON) only when the status of the specified bit changes to 01. When only the LDP instruction is programmed, operation is

the same as the conversion of the instruction under execution to pulse instruction (P).

 � The LDF instruction is the falling edge pulse operation start instruction, and becomes conductive (ON) at the falling edge

(ON to OFF) of the specified bit device. When word devices are specified by bits, this instruction becomes conductive only

when the status of the specified bit changes to 10.

■ANDP, ANDF
 � The ANDP instruction is the rising edge pulse series connection instruction, and the ANDF instruction is the falling edge

pulse series connection. These instructions AND with the operation result so far, and uses the result as the operation result.

The table below shows the ON/OFF information used by these instructions.

■ORP, ORF
 � The ORP instruction is the rising edge pulse parallel connection instruction, and the ORF instruction is the falling edge

pulse parallel connection instruction. These instructions OR with the operation result so far, and use the result as the

operation result. The table below shows the ON/OFF information used by these instructions.

Operation error

There is no operation error.

Device specified by ANDP, ANDF ANDP status ANDF status

Bit device Bit specification of word

device

OFF to ON 01 ON OFF

OFF 0 OFF OFF

ON 1 OFF OFF

ON to OFF 10 OFF ON

Device specified by ORP, ORF ORP status ORF status

Bit device Bit specification of word

device

OFF to ON 01 ON OFF

OFF 0 OFF OFF

ON 1 OFF OFF

ON to OFF 10 OFF ON

D0

X0

X0

X0

X0

M0

MOVP K0D0MOV K0

PLS M0

Circuit using LDP instruction Circuit not using LDP instruction

102
5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions

Pulse NOT operation start, pulse NOT series connection, pulse
NOT parallel connection

LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI

 � LDPI: Rising edge pulse NOT operation start instruction

This instruction becomes conductive (ON) at OFF, ON and the falling edge (ON to OFF) of the bit device specified by (s).

 � LDFI: Falling edge pulse NOT operation start instruction

This instruction becomes conductive (ON) at the rising edge (OFF to ON), OFF and ON of the bit device specified by (s).

 � ANDPI: Rising edge pulse NOT series connection instruction/ANDFI: Falling edge pulse NOT series connection instruction

This instruction ANDs the bit devices specified by (s) with the operation result so far, and uses the result as the operation

result.

 � ORPI: Rising edge pulse NOT parallel connection instruction/ORFI: Falling edge pulse NOT parallel connection instruction

This instruction ORs the bit devices specified by (s) with the operation result so far, and uses the result as the operation result.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=LDPI(EN,s);

ENO:=LDFI(EN,s);

ENO:=ANDPI(EN,s);

ENO:=ANDFI(EN,s);

ENO:=ORPI(EN,s);

ENO:=ORFI(EN,s);

Operand Remarks Range Data type Data type (label)

(s) Device used as contact  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DX)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(s)

(s)

(s)

(s)

(s)

(s)

LDPI

LDFI

ANDPI

ANDFI

ORPI

ORFI

5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions 103

5

Processing details

■LDPI, LDFI
 � The LDPI instruction is the rising edge pulse NOT operation start instruction, and becomes conductive (ON) at OFF, ON

and the falling edge (ON to OFF) of the specified bit device. When word devices are specified by bits, this instruction

becomes conductive when the status of the specified bit is 0, 1, and when it changes 10.

 � The LDFI instruction is the falling edge pulse NOT operation start instruction, and becomes conductive (ON) at the rising

edge (OFF to ON), OFF and ON of the specified bit device. When word devices are specified by bits, this instruction

becomes conductive (ON) when the status of the specified bit is 0, 1, and when it changes 01. The table below shows the

ON/OFF information used by these instructions.

■ANDPI, ANDFI
 � The ANDPI instruction is the rising edge pulse NOT series connection instruction, and the ANDFI instruction is the falling

edge pulse NOT series connection instruction. These instructions AND with the operation result so far, and use the result

as the operation result. The table below shows the ON/OFF information used by these instructions.

■ORPI, ORFI
 � The ORPI instruction is the rising edge pulse NOT parallel connection instruction, and the ORFI instruction is the falling

edge pulse NOT parallel connection instruction. These instructions OR with the operation result so far, and use the result

as the operation result. The table below shows the ON/OFF information used by these instructions.

Operation error

There is no operation error.

Device specified by LDPI, LDFI LDPI status LDFI status

Bit device Bit specification of word

device

OFF to ON 01 OFF ON

OFF 0 ON ON

ON 1 ON ON

ON to OFF 10 ON OFF

Device specified by ANDPI, ANDFI ANDPI status ANDFI status

Bit device Bit specification of word

device

OFF to ON 01 OFF ON

OFF 0 ON ON

ON 1 ON ON

ON to OFF 10 ON OFF

Device specified by ORPI, ORFI ORPI status ORFI status

Bit device Bit specification of word

device

OFF to ON 01 OFF ON

OFF 0 ON ON

ON 1 ON ON

ON to OFF 10 ON OFF

104
5 SEQUENCE INSTRUCTIONS

5.2 Association Instruction

5.2 Association Instruction

Ladder block series/parallel connection

ANB, ORB

These instructions AND or OR the A and B blocks, and use the result as the operation result.

Processing details

■ANB
 � This instruction ANDs the A and B blocks, and uses the result as the operation result.

 � The symbol of this instruction is not NO contact symbol but a connection symbol.

■ORB
 � This instruction ORs the A and B blocks, and uses the result as the operation result.

 � This instruction connects the ladder blocks of two contacts or more in parallel. For parallel connection of only one contact,

use the OR and ORI instructions; there is no need to use this instruction.

 � The symbol of this instruction is not NO contact symbol but a connection symbol.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported.

ANB

ORB

A block B block

A block

B block

5 SEQUENCE INSTRUCTIONS

5.2 Association Instruction 105

5

Storing/reading/clearing the operation result

MPS, MRD, MPP

 � MPS: This instruction stores the preceding operation result (ON/OFF) to memory.

 � MRD, MPP: These instructions read the operation result stored by the MPS instruction, and executes operations from the

next step using that operation result.

Processing details

■MPS
 � This instruction stores the preceding operation result (ON/OFF) to memory.

 � This instruction can be used up to 16 times consecutively. When MPP instruction is used in between, the number of uses of

MPS instruction is decremented by 1.

■MRD
 � This instruction reads the operation result stored by the MPS instruction to memory, and executes operations from the next

step using that operation result.

■MPP
 � This instruction reads the operation result stored by the MPS instruction to memory, and executes operations from the next

step using that operation result.

 � This instruction clears the operation result stored by the MPS instruction from memory.

 � The number of uses of MPS instruction is decremented by 1.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=MPS(EN);

ENO:=MRD(EN);

ENO:=MPP(EN);

MRD

MPS

MPP

106
5 SEQUENCE INSTRUCTIONS

5.2 Association Instruction

Inverting the operation result

INV

This instruction inverts the operation result up to this instruction.

Processing details

 � This instruction inverts the operation result up to this instruction.

Operation error

There is no operation error.

 � This instruction operates using the operation result so far. Hence, use it at the same position as the AND

instruction. This instruction cannot be used at positions where the LD and OR instructions are programmed.

 � If a ladder block is used, the operation result is inverted within the range of the ladder block. When

operating a ladder with this instruction and the ANB instruction, pay attention to the inversion range.

For details ANB instruction, refer to the following.

Page 104 ANB, ORB

Ladder diagram Structured text

ENO:=INV(EN);

Operation result up to the INV

instruction

Operation result after execution of

INV instruction

OFF ON

ON OFF

M0

ANB
M10

Y10

END

M1 M2

M20

Range of inversion

5 SEQUENCE INSTRUCTIONS

5.2 Association Instruction 107

5

Converting the operation result into a pulse

MEP, MEF

 � MEP: This instruction turns ON at the rising edge of the operation result up to the MEP instruction and turns OFF in other

instances.

 � MEF: This instruction turns ON at the falling edge of the operation result up to the MEF instruction and turns OFF in other

instances.

Processing details

■MEP
 � This instruction turns ON (conductive state) at the rising edge (OFF to ON) of the operation result up to this instruction. This

instruction turns OFF (non-conductive state) in instances other than the rising edge of the operation result up to this

instruction.

 � Use of this instruction makes conversion to pulse easier when multiple contacts are connected in series.

■MEF
 � This instruction turns ON (conductive state) at the falling edge (ON to OFF) of the operation result up to this instruction.

This instruction turns OFF (non-conductive state) in instances other than the falling edge of the operation result up to this

instruction.

 � Use of this instruction makes conversion to pulse easier when multiple contacts are connected in series.

Operation error

There is no operation error.

 � If an indexed contact is converted to pulse by the subroutine program and the FOR to NEXT instructions,

etc., these instructions may not function properly.

 � These instructions operate using the operation result so far. Hence, use them at the same position as the

AND instruction. These instructions cannot be used at positions where the LD and OR instructions are

programmed.

Ladder diagram Structured text

ENO:=MEP(EN);

ENO:=MEF(EN);MEP

MEF

108
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

5.3 Output Instructions

Out (excluding the timer, counter and annunciator)

OUT

This instruction outputs the operation result up to this instruction to the specified device.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 When using F, refer to Page 113 OUT F.

*2 Only the FX5 series intelligent function module can be specified.

*3 When using T, ST, refer to Page 109 OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST.

When using C, refer to Page 111 OUT C.

When using LC, refer to Page 112 OUT LC.

*4 T, ST, C cannot be used.

Processing details

 � This instruction outputs the operation result up to this instruction to the specified device.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=OUT(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Number of the device that turns ON/OFF  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DY)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d) *1 *2 *3 *4         

Condition Operation result Coil/specified bit

When bit device is used OFF OFF

ON ON

When bit of word device is specified OFF 0

ON 1

(d)

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions 109

5

Timer

OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST

The timer counts up to the set value when the operation result up to the OUT instruction is ON and the coil of the timer/

retentive timer specified by (d) turns ON. When the timer times up, NO contact becomes conductive and NC contact becomes

non conductive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only T and ST can be used.

*2 T, ST, C cannot be used.

*3 Indirect specification cannot be entered for the timer set value.

*4 Only decimal constant (K) can be used.

Processing details

 � These instructions count up to the set value when the operation result up to the OUT instruction is ON and the coil of the

timer/retentive timer specified by (d) turns ON. When the timer reaches the end of its count (current value  set value), NO

contact becomes conductive and NC contact becomes non-conductive.

 � Operation is as follows when the operation result up to the OUT instruction changes from ON to OFF.

 � After the timer times up, clear the current value of the retentive timer and turn the contact off by the RST instruction.

 � When the set value is 0, the timer times up when the OUT instruction is executed.

 � The following processing is executed when the OUT instruction is executed:

 � When the OUT T instruction is skipped using the CJ instruction, etc. while the OUT T and OUT ST instructions are ON,

these instructions do not update the current value or turn ON/OFF the contacts.

 � When the same OUT T and OUT ST instructions are executed in the same scan twice or more, these instructions update

the current value for the same number of times of execution.

Ladder diagram Structured text

ENO:=OUT_T(EN,d,set value);

ENO:=OUTH(EN,d,set value);

ENO:=OUTHS(EN,d,set value);

Operand Remarks Range Data type Data type (label)

(d) Timer Number  Bit ANY_BOOL

(Set value) Timer set value 0 to 32767 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)   *1          

(Set value)    *2     *3 *4   

Timer type Timer coil Current timer

value

Before time-out After time-out

NO contact NC contact NO contact NC contact

Timer off 0 Non-Conductive

state

Conductive state Non-Conductive

state

Conductive state

Retentive timer off Holds current value Non-Conductive

state

Conductive state Conductive state Non-Conductive

state

� The coil in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions turns ON/OFF

� The contact in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions turns ON/OFF

� The current value in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions changes

(d) (Set value)

OUT T0 @D0

110
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

Values used for timers can be set in the range 1 to 32767. Actual timer constants are as follows since the

OUT, OUTH, and OUTHS instructions operate as 100 ms, 10 ms, and 1 ms timers, respectively.

 � OUT instruction: 0.1 to 3276.7 seconds

 � OUTH instruction: 0.01 to 327.67 seconds

 � OUTHS instruction: 0.001 to 32.767 seconds

For the counting method, refer to the following.

MELSEC iQ-F FX5 Series User's Manual [Application]

Precautions

When creating a program for measuring another timer at a timer contact, program in order starting with the timer to be

measured later on. In the following instance, all timers turn on in the same scan when the program is created in the

measurement order.

 � When the set value is shorter than the scan time

 � When the set value is 1

Ex.

When the T0 to T2 timers are programmed in order from the timer that is measured later

Ex.

When the T0 to T2 timers are programmed in measurement order

Operation error

(1) The T2 timer starts measurement from the scan following the scan where the T1

contact turns ON.

(2) The T1 timer starts measurement from the scan following the scan where the T0

contact turns ON.

(3) The T0 timer starts measurement when X0 turns ON.

(1) The T0 timer starts measurement when X0 turns ON.

(2) The contacts of the T1 and T2 timers also turn on when the contact of T0 turns ON.

Error code

(SD0/SD8067)

Remarks

3405 A negative value is specified for the timer value.

T1

T0

X0

(1)

(2)

(3)

T2OUT K1

T1OUT K1

T0OUT K1

X0

T0

T1

(1)

(2)

T0OUT K1

T1OUT K1

T2OUT K1

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions 111

5

Counter

OUT C

This instruction increments the current value of the counter specified by (d) by 1 when the operation result up to OUT

instruction changes from OFF to ON, and when the counter reaches the end of its count, NO contact becomes conductive and

NC contact becomes non-conductive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only C can be used.

*2 T, ST, C cannot be used.

*3 Indirect specification cannot be entered for the counter set value.

*4 Only decimal constant (K) can be used.

Processing details

 � This instruction increments the current value of the counter specified by (d) by 1 when the operation result up to OUT

instruction changes from OFF to ON, and when the counter reaches the end of its count (current value  set value), NO

contact becomes conductive and NC contact becomes non-conductive.

 � The counter does not count while the operation result remains on. (Count input does not need to be converted to pulses.)

 � After a count up, the count value and contact status do not change until the RST instruction is executed.

 � When the set value is 0, the same processing as for set value 1 is performed.

Operation error

Ladder diagram Structured text

ENO:=OUT_C(EN,d,set value);

Operand Remarks Range Data type Data type (label)

(d) Counter Number  Bit ANY_BOOL

(Set value) Counter set value 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)   *1          

(Set value)    *2     *3 *4   

Error code

(SD0/SD8067)

Remarks

3405 A negative value is specified for the set value.

(d) (Set value)

OUT C0 @D0

112
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

Long counter

OUT LC

This instruction increments the current value of the long counter specified by (d) by 1 when the operation result up to the OUT

instruction changes from OFF to ON, and when the counter reaches the end of its count, NO contact becomes conductive and

NC contact becomes non-conductive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only LC can be used.

*2 T, ST, C cannot be used.

*3 Indirect specification cannot be entered for the long counter set value.

*4 Only decimal constant (K) can be used.

Processing details

 � This instruction increments the current value of the long counter specified by (d) by 1 when the operation result up to the

OUT instruction changes from OFF to ON, and when the counter reaches the end of its count (current value  set value),

NO contact becomes conductive and NC contact becomes non-conductive.

 � The counter does not count while the operation result remains on. (Count input does not need to be converted to pulses.)

 � After a count up, the count value and contact status do not change until the RST instruction is executed.

 � When the set value is 0, the same processing as for set value 1 is performed.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=OUT_C(EN,d,set value);

Operand Remarks Range Data type Data type (label)

(d) Long counter number  Bit ANY_BOOL

(Set value) Long counter set value 0 to 4294967295 32-bit unsigned binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)   *1          

(Set value)    *2     *3 *4   

(d) (Set value)

OUT LC0 @D0

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions 113

5

Annunciator

OUT F

This instruction outputs the operation result up to the OUT F instruction to the specified annunciator.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only F can be used.

Processing details

 � This instruction outputs the operation result up to the OUT F instruction to the specified annunciator.

 � Operation is as follows when annunciator (F) is turned ON by the OUT F instruction.

 � When the content of SD63 is 16 (16 annunciators are already on), the annunciator number that turns ON is not stored in

SD64 to SD79 even if a new annunciator turns ON.

 � Operation is as follows when annunciator (F) is turned OFF by the OUT F instruction:

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=OUT(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Annunciator number that turns ON  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d) *1            

� The annunciator number (F number) that turns ON is stored in special registers (SD64 to SD79).

� The content of SD63 is incremented by 1.

� The coil turns OFF, but the contents of SD64 to SD79 do not change.

� To delete an annunciator that has turned OFF by the OUT F instruction from SD64 to SD79, use the RST F instruction.

(d)

114
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

Setting devices (excluding annunciator)

SET

The status of the device specified by (d) changes as follows when the execution command turns ON.

 � Bit device: Turns the coils and contacts ON.

 � Bit specification of word device: Set the specified bit to 1.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 When using F, refer to Page 116.

*2 Only the FX5 series intelligent function module can be used.

*3 T, ST, C cannot be used.

Processing details

 � The status of the specified device changes as follows when the execution command turns ON.

 � A device that is turned ON is held on even if the execution command turns OFF. Devices that are turned ON by the SET

instruction can be turned OFF by the RST instruction.

 � When the execution command is OFF, the device status does not change.

Precautions

When the SET and RST instructions are executed on the same output relay (Y), the result of the instruction nearer the END

instruction (end of program) is output.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=SET(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Bit device number/ Bit specification of word device to be

set (turns ON)

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DY)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d) *1 *2  *3         

Device Device status

Bit devices Turns coils and contacts ON.

Bit specification of word device Sets the specified bit to 1.

(d)

SET Y10

RST Y10

X5

X7

X5 OFF

X7 OFF

Y10 OFF

ON

ON

ONCommand

Command

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions 115

5

Resetting devices (excluding annunciator)

RST

The status of the device specified by (d) changes as follows when the RST input turns ON.

 � Bit devices: Turns the coils and contacts OFF.

 � Timers, counters: Sets the current value to 0, and turns coils and contacts OFF.

 � Bit specification of word device: Sets the specified bit to 0.

 � Word devices, module access devices, index registers: Sets content to 0.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 When using F, refer to Page 117.

*2 Only the FX5 series intelligent function module can be used.

*3 T, ST, C cannot be used.

Processing details

 � The status of the specified device changes as follows when the execution command turns ON.

 � When the execution command is OFF, the device status does not change.

 � Function when a word device is specified by the RST instruction is the same as the following circuit.

Precautions

When the RST instruction for a timer or counter is executed by a program containing a jump or by a subroutine program or

interrupt program, the timer or counter is held in a reset state, and the timer or counter may not work normally.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=RST(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Bit device number/ bit specification of word device to be

reset, or word device number to be reset

 Bit/word/double word ANY_ELEMENTARY

Operand Bit Word Double word Indirect

specification

Constant Others

(DY)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d) *1 *2  *3         

Device Device status

Bit devices Turns coils and contacts OFF.

Timers, counters Sets the current value to 0, and turns coils and contacts OFF.

Bit specification of word device Set the specified bit to 0.

Word devices, module access device, index registers Sets content to 0.

(d)

X10 X10

RST D50 MOV K0 D50

CommandCommand

Device number Device number

116
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

Setting annunciator

SET F

This instruction turns ON the specified annunciator.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only F can be used.

Processing details

 � This instruction turns ON the annunciator specified by (d) when the execution command turns ON.

 � Operation is as follows when annunciator (F) is turned ON.

 � When the content of SD63 is 16 (16 annunciators are already ON), the annunciator number that turns ON is not stored in

SD64 to SD79 even if a new annunciator turns ON.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=SET(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Annunciator number (F number) that is set  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d) *1            

� The annunciator number (F number) that turns ON is stored in special registers (SD64 to SD79).

� The content of SD63 is incremented by 1.

(d)

SD63

SD64

SD65

SD66

SD78

SD79

SD63

SD64

SD65

SD66

SD78

SD79

16

233

90

700

145

1027

16

233

90

700

145

1027

Does not change.

F30 is turned ON.

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions 117

5

Resetting annunciator

RST F

This instruction turns OFF the specified annunciator.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only F can be used.

Processing details

 � This instruction turns OFF the annunciator specified by (d) when the execution command turns ON.

 � An annunciator number (F number) that turns OFF is deleted from special registers (SD64 to SD79) and the content of

SD63 is decremented by 1.

 � When the content of SD63 is 16, annunciator numbers are deleted from SD64 to SD79 by the RST instruction. Also, if an

annunciator not registered in SD64 to SD79 turns ON, its number is registered. When there are two or more unregistered

numbers, this instruction adds the numbers starting from the smallest annunciator number. SD63 is not decremented by 1

when the numbers not registered in SD64 to SD79 are turned OFF.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=RST(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Annunciator number (F number) that is reset  Bit ANY_ELEMENTARY

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d) *1            

(d)

SD63

SD64

SD65

SD66

SD78

SD79

SD63

SD64

SD65

SD77

SD78

SD79

16

233

90

700

145

1027

16 or 15

233

700

SD67

SD66

28

28

145

1027

F number of SD67 is stored.

F90 is reset.

Not registered F number or 0 is stored.

When F number that is not registered in SD79 is
stored, this remains as 16.
When SD79 is 0, the number is decremented by -1
to become 15.

The F number in SD66 is shifted to this area.

118
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

Setting annunciator (with check time)

ANS

This instruction sets the annunciator (F device).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only T can be used.

*2 Only F can be used.

Processing details

 � This instruction sets (d) when the command input remains ON continuously for the evaluation time [(m)100 ms, (s)] or

more. This instruction resets the current value of (s) evaluation timer and does not set (d) when the command time is less

than the evaluation time [(m)100 ms]. Also, this instruction resets the evaluation timer when the command input turns

OFF.

■Related devices

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=ANS(EN,s,m,d);

Operand Remarks Range Data type Data type (label)

(s) Timer number for evaluation time  16-bit signed binary ANY16

(m) Evaluation time data 1 to 32767 16-bit unsigned binary ANY16_U

(d) Annunciator device to be set  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(m)             

(d) *2            

Device Name Remarks

SM8049 ON status annunciator smallest number

enabled

When SM8049 is turned ON, SM8048 and SD8049 are enabled.

SM8048 Annunciator operation When one of the F devices is operating, SM8048 turns ON.

SD8049 ON status annunciator smallest number The smallest number of the F devices that are operating is stored.

(s) (m) (d)

ANS (s) (m) (d)

(d)

Command input
Command input

((m)  less than 100 ms) ((m)  100 ms or more)

Equivalent to or longer
than the evaluation time

Less than the evaluation
time

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions 119

5

Resetting annunciator (smallest number reset)

ANR(P)

This instruction resets the lowest number annunciator (F device) in the ON status.

Processing details

 � Annunciator (F device) that is operating (in ON status) is reset when the command input turns ON.

This instruction resets the annunciator with the smallest number when multiple annunciators are ON. If the command input is

turned ON again, this instruction resets the annunciator with the next smallest number among annunciators (F devices) that

are operating.

■Related devices

Precautions

 � When ANR instruction is used, annunciators in the ON status are reset in turn in each operation cycle.

 � This is executed for only 1 operation cycle (only once) when the ANRP instruction is used.

Operation error

There is no error.

Ladder diagram Structured text

ENO:=ANR(EN);

ENO:=ANRP(EN);

Device Name Remarks

SM8049 On status annunciator smallest number

enabled

When SM8049 is turned ON, SM8048 and SD8049 are enabled.

SM8048 Annunciator operation When one of the F devices is operating, SM8048 turns ON.

SD8049 On status annunciator smallest number The smallest number of the F devices that are operating is stored.

ANR

Command input

120
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

Rising edge output

PLS

This instruction turns ON the device specified by (d) for one scan when the PLS command turns from OFF to ON, and turns

OFF in other cases.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only the FX5 series intelligent function module can be used.

*2 T, ST, C cannot be used.

Processing details

 � This instruction turns ON the specified device for one scan when the PLS command turns from OFF to ON, and turns OFF

in other cases. When there is one PLS instruction programmed for the device specified by (d) during a scan, the specified

device turns ON for one scan.

 � If the RUN/STOP/RESET switch is changed from RUN to STOP after execution of the PLS instruction, the PLS instruction

will not be executed even if the switch is set to RUN again.

Ladder diagram Structured text

ENO:=PLS(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Device to be converted to pulse  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DY)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)  *1  *2         

(1) 1 scan of PLS M0

(2) CPU module operation stop time

(3) Set the RUN/STOP/RESET switch on the CPU module to RUNSTOP.

(4) Set the RUN/STOP/RESET switch on the CPU module to STOPRUN.

(d)

PLS M0

X5
X5 OFF

M0 OFF

ON

ON

1 scan 1 scan

PLS M0

X0

X0 OFF

M0 OFF

ON

PLS M0

LD X0

END0END
PLS M0

LD X0

END
PLS M0

LD X0

0

ON

(1)

(3)
(4)

(3)(4)

(2)(2)

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions 121

5

Precautions

 � When write during RUN is completed for a circuit including a rising edge instruction (LDP/ANDP/ORP instruction), the

instruction is not executed regardless of the ON/OFF status of the target device of the rising edge instruction. Also, in the

case of a rising edge instruction (PLS instruction), the instruction is not executed regardless of the ON/OFF status of the

device that is set as the operation condition. The instruction is executed when the target device and the device in the

operation conditions is set from OFF to ON again.

 � Note that the device specified by (d) sometimes turns ON for one scan or more when the PLS instruction is made to jump

by the CJ instruction or the executed subroutine program was not called by the CALL(P) instruction.

Operation error

There is no operation error.

122
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

Falling edge output

PLF

This instruction turns ON the device specified by (d) for one scan when the PLF command turns from ON to OFF, and turns

OFF in other cases.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only the FX5 series intelligent function module can be used.

*2 T, ST, C cannot be used.

Processing details

 � This instruction turns ON the specified device for one scan when the PLF command turns OFF from ON, and turns OFF in

other cases. When there is one PLF instruction programmed for the device specified by (d) during a scan, the specified

device turns ON for one scan.

 � If the RUN/STOP/RESET switch is changed from RUN to STOP after execution of the PLF instruction, the PLF instruction

will not be executed even if the switch is set to RUN again.

Precautions

 � When write during RUN is completed for a circuit including a falling edge instruction (LDF/ANDF/ORF instruction), the

instruction is not executed regardless of the ON/OFF status of the target device of the falling edge instruction. Also, in the

case of a falling edge instruction (PLF instruction), the instruction is not executed regardless of the ON/OFF status of the

device that is set as the operation condition. The instruction is executed when the target device and the device in the

operation conditions is set from ON to OFF again.

 � Note that the device specified by (d) sometimes turns ON for one scan or more when the PLF instruction is made to jump

by the CJ instruction or the executed subroutine program was not called by the CALL(P) instruction.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=PLF(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Device to be converted to pulse  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DY)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)  *1  *2         

(d)

PLF M0

X5
X5 OFF

M0 OFF

ON

ON

1 scan 1 scan

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions 123

5

Inverting the bit device output

FF

This instruction reverses the output status of the device specified by (d) when the execution command changes from OFF to

ON.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only the FX5 series intelligent function module can be used.

*2 T, ST, C cannot be used.

Processing details

 � This instruction reverses the state of the device specified by (d) when the execution command changes from OFF to ON.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=FF(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Device number to be reversed  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DY)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)  *1  *2         

Device Device status

Before execution of FF

instruction

After execution of FF

instruction

Bit devices OFF ON

ON OFF

Bit specification of word device 0 1

1 0

(d)

124
5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

Inverting the bit device output

ALT(P)

These instructions reverse (ON  OFF) bit devices when input turns ON.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only the FX5 series intelligent function module can be used.

*2 T, ST, C cannot be used.

Processing details

■Alternating output (1-step)
The bit device specified by (d) is reversed ON  OFF each time the command input changes from OFF to ON.

■Division output (according to alternating output (2-step))
The ALTP instruction can be used in multiple combinations to perform division output.

Precautions

When the CPU module is programmed with the ALT instruction, reversal operation is performed at every operation cycle. To

perform reversal operation by command ON/OFF, either use the ALTP instruction (pulse execution type) or set a command

contact as LDP etc. (pulse execution type).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=ALT(EN,d);

ENO:=ALTP(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Bit device number whose output is alternated  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)  *1  *2         

(d)

ALTP

ONON

ON ON ON

(d)

(d)
Command input Command input

ON

ONON

ON ON ON

ON

ALTP M0

ALTP M1
M0

M0 (d)

M1 (d)

(d)

(d)

1st step

2nd step

Command input

Command input

Specify the same device

5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions 125

5

5.4 Shift Instructions

Shifting bit devices

SFT(P)

 � In case of bit device:

These instructions shift the ON/OFF status of the device before the device specified by (d) to the device specified by (d).

 � When bit of word device is specified:

These instructions shift the 1/0 status of the bit before the bit specified by (d) to the bit specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

■In case of bit device
 � This instruction shifts the ON/OFF status of the device before the device specified by (d) to the device specified by (d). The

device before the device specified by (d) turns OFF.

Ex.

When M11 is specified by the SFTP instruction and the SFTP instruction is executed, the ON/OFF status of M10 is shifted to

M11 and M10 is turned OFF.

 � Turn ON the first device to be shifted by the SET instruction.

 � When the SFT(P) instruction is used consecutively, create the program to start from the device with the largest number.

Ladder diagram Structured text

ENO:=SFT(EN,d);

ENO:=SFTP(EN,d);

Operand Remarks Range Data type Data type (label)

(d) Device number to receive shift  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

(DY)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)    *1         

(d)

00

M15 M14

0

M13

0

M12

0

M11

1

M10

1

M9

0

M8

00 1 0 0 0 1 0

00 0 0 1 0 1 0

00 0 1 0 0 1 0

00 0 1 0 1 1 0

00 1 0 1 0 1 0

10 0 1 0 0 1 0

0

0

0

0

0

M0

M14SFTP

M13SFTP

M12SFTP

M11SFTP

M10SET

X2

Shift input

First device of shift

Shift range

(1) X2 ON

(3) After the 2nd shift input

(2) After the 1st shift input

(4) X2 ON

(5) After the 3rd shift input

(7) After the 5th shift input

(6) After the 4th shift input

126
5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions

■When bit of word device is specified:
 � This instruction shifts the 1/0 status of the bit before the bit specified by (d) to the bit specified by (d). The bit before the bit

specified by (d) becomes 0.

Ex.

When D0.5 (bit 5 (b5) of D0) is specified by the SFT(P) instruction and the SFT(P) instruction is executed, the 1/0 status of b4

of the D0 is shifted to b5 and b4 is set to 0.

Operation error

Error code

(SD0/SD8067)

Remarks

2820 The device specified by (d) exceeds the corresponding device range.

0000000

b15 b5b4 b0

0

11111000 1

0001000 10111000 1

… …

D0

Before shift
execution

After shift
execution

5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions 127

5

Shifting 16-bit data to the right by n bit(s)

SFR(P)

These instructions shift the 16-bit data in the device specified by (d) to the right by (n) bit(s).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction shifts the 16-bit data in the device specified by (d) to the right by (n) bit(s) from the most significant bit. The

(n) bit(s) from the most significant bit is/are filled with 0(s).

 � When (d) is a bit device, bits are shifted to the right within the device range specified by nibble specification.

 � Specify any value between 0 and 15 for (n). If a value 16 or larger is specified for (n), bits are shifted to the right by the

remainder value of (n)16. For example, when (n) is 18, data is shifted by 2 bits to the right because 18 divided by 16

equals 1 with a remainder of 2.

■Related devices

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=SFR(EN,n,d);

ENO:=SFRP(EN,n,d);

Operand Remarks Range Data type Data type (label)

(d) Head device number where the shift-target data is stored  16-bit signed binary ANY16

(n) Number of shifts 0 to 15 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

Device Name Remarks

SM700 Carry ON/OFF according to the status (1/0) of the (n-1)th bit.

SM8022

(d) (n)

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

0 0 0 0 0 0 1 1 1 0 1 1 1 0 1 1

b15 b8 b0b7

b0b7b15 b8

1

b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

(d)

(d)

Carry flag (SM700, SM8022)

These bits become "0".

When (n)=6

1 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 1 0 1 0 1 0 1 0

Y20 Y10Y17

Y10Y17Y20

1

Y23 Y14 Y13

Y23 Y14 Y13

··· ··· ···

··· ··· ··· Carry flag (SM700, SM8022)

When (n)=4

These bits become "0".

128
5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions

Shifting 16-bit data to the left by n bit(s)

SFL(P)

These instructions shift the 16-bit data in the device specified by (d) to the left by (n) bit(s).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions shift the 16-bit data in the device specified by (d) to the left by (n) bit(s) from the least significant bit. (n)

bits from the least significant bit are filled with "0".

 � When (d) is a bit device, bit(s) are shifted to the left within the device range specified by nibble specification.

 � Specify any value between 0 and 15 for (n). If a value 16 or larger is specified for (n), bit(s) are shifted to the left by the

remainder value of (n)16. For example, when (n) is 18, data is shifted by 2 bits to the left because 18 divided by 16 equals

1 with a remainder of 2.

■Related devices

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=SFL(EN,n,d);

ENO:=SFLP(EN,n,d);

Operand Remarks Range Data type Data type (label)

(d) Head device number where the shift-target data is stored  16-bit signed binary ANY16

(n) Number of shifts 0 to 15 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

Device Name Remarks

SM700 Carry ON/OFF according to the status (1/0) of the (n-1)th bit.

SM8022

(d) (n)

1 1 1 1 0 0 1 1 0 0 0 0 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0

b15 b8 b0b7

b0b7b15 b8

1

b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

(d)

(d)

Carry flag (SM700, SM8022)

These bits become "0".

When (n)=8

0 0 1 1 0 0 1 1

1 0 0 1 1 0 0 0

X14 X13

X13X14

1

X17 X10

X17 X10X12

··· ···

··· ···Carry flag (SM700, SM8022)

These bits become "0".

When (n)=3

5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions 129

5

Shifting n-bit data to the right by 1 bit

BSFR(P)

These instructions shift (n) point(s) of data to the right by 1 bit from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions shift (n) point(s) of data to the right by 1 bit from the device specified by (d).

 � The value of the device specified by (d) + (n-1) becomes 0.

■Related devices

Operation error

Ladder diagram Structured text

ENO:=BSFR(EN,n,d);

ENO:=BSFRP(EN,n,d);

Operand Remarks Range Data type Data type (label)

(d) Head device number to be shifted  Bit ANY_BOOL

(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)    *1         

(n)             

Device Name Remarks

SM700 Carry ON/OFF according to the status (1/0) of the (d) bit.

Error code

(SD0/SD8067)

Remarks

2820 The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

(d) (n)

0

1 1 0 1 1 0

0 1 1 0 1 1

(n)

(d)+2 (d)+1 (d)

(d)+1 (d)(d)+(n-1) (d)+(n-2) (d)+(n-3)

(d)+(n-1) (d)+(n-2) (d)+(n-3)

(d)+2···

··· Carry flag (SM700)

These bits become "0".

130
5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions

Shifting n-bit data to the left by 1 bit

BSFL(P)

These instructions shift (n) point(s) of data to the left by 1 bit from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions shift (n) point(s) of data to the left by 1 bit from the device specified by (d).

 � The value of the device specified by (d) becomes 0.

■Related devices

Operation error

Ladder diagram Structured text

ENO:=BSFL(EN,n,d);

ENO:=BSFLP(EN,n,d);

Operand Remarks Range Data type Data type (label)

(d) Head device number to be shifted  Bit ANY_BOOL

(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)    *1         

(n)             

Device Name Remarks

SM700 Carry ON/OFF according to the status (1/0) of the (d) bit.

Error code

(SD0/SD8067)

Remarks

2820 The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

(d) (n)

1

1 1 0 0 1 1

1 0 0 1 1 0

(n)

(d)+1 (d)(d)+(n-1) (d)+(n-2) (d)+(n-3) (d)+2···

(d)+2 (d)+1 (d)(d)+(n-1) (d)+(n-2) (d)+(n-3) ···Carry flag (SM700)

These bits become "0".

5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions 131

5

Shifting n-word data to the right by 1 word

DSFR(P)

These instructions shift (n) point(s) of data to the right by 1 word from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions shift (n) point(s) of data to the right by 1 word from the device specified by (d).

 � The value of the device specified by (d) + (n-1) becomes 0.

Operation error

Ladder diagram Structured text

ENO:=DSFR(EN,n,d);

ENO:=DSFRP(EN,n,d);

Operand Remarks Range Data type Data type (label)

(d) Head device number to be shifted  Word ANY16

(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

Error code

(SD0/SD8067)

Remarks

2820 The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

(d) (n)

555 212 325 100 50 40

0 555 212 325 100 50

(n)

(d)+1 (d)(d)+(n-1) (d)+(n-2) (d)+(n-3) (d)+2···

(d)+1 (d)(d)+(n-1) (d)+(n-2) (d)+(n-3) (d)+(n-4) ···

These bits become "0".

132
5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions

Shifting n-word data to the left by 1 word

DSFL(P)

These instructions shift (n) point(s) of data to the left by 1 word from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions shift (n) point(s) of data to the left by 1 word from the device specified by (d).

 � The value of the device specified by (d) becomes 0.

Operation error

Ladder diagram Structured text

ENO:=DSFL(EN,n,d);

ENO:=DSFLP(EN,n,d);

Operand Remarks Range Data type Data type (label)

(d) Head device number to be shifted  Word ANY16

(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

Error code

(SD0/SD8067)

Remarks

2820 The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

(d) (n)

555 120 325 100 50 40

120 325 100 50 40 0

(n)

(d)+1 (d)(d)+(n-1) (d)+(n-2) (d)+(n-3) (d)+2···

(d)+1 (d)(d)+(n-1) (d)+(n-2) (d)+3 (d)+2···

These bits become "0".

5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions 133

5

Shifting n-bit(s) data to the right by (n) bit(s)

SFTR(P)

These instructions shift (n1) bits of data to the right by (n2) bit(s) from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

*1 Set so that n2n1.

■Applicable devices

*1 T, ST, C cannot be used.

*2 Only 0 or 1 can be used.

Processing details

 � These instructions shift (n1) bits of data to the right by (n2) bit(s) from the device specified by (d). After the shift, (n2) points

from (s) are set into (n2) points from (d)+(n1-n2).

 � When K0 is specified for (s), set 0s for (n2) points of bits from (d)+(n1-n2) after the shift.

 � When K1 is specified for (s), set 1s for (n2) points of bits from (d)+(n1-n2) after the shift.

Operation error

Ladder diagram Structured text

ENO:=SFTR(EN,s,n1,n2,d);

ENO:=SFTRP(EN,s,n1,n2,d);

Operand Remarks Range Data type Data type (label)

(s) Head device number stored to the shift data after the shift  Bit ANY_BOOL

(d) Head device number to be shifted  Bit ANY_BOOL

(n1)*1 Data length of shift data 0 to 65535 16-bit unsigned binary ANY16_U

(n2)*1 Number of shifts 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1      *2   

(d)    *1         

(n1)             

(n2)             

Error code

(SD0/SD8067)

Remarks

2820 The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821 The transfer source data (s) overlaps with shift device (d).

3405 A constant other than K0 or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

(s) (d) (n1) (n2)

(n1)
(n2)

(d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)

0 0 0 0 1 1 1 0 1 1

1 1 1 0 1 1 1 1 0 0

(s)+3 (s)+2 (s)+1 (s) (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)

When (s)=K0, it is 0.

134
5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions

Shifting n-bit data to the left by n bit(s)

SFTL(P)

These instructions shift (n1) bits of data to the left by (n2) bit(s) from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

*1 Set so that n2n1.

■Applicable devices

*1 T, ST, C cannot be used.

*2 Only 0 or 1 can be used.

Processing details

 � These instructions shift (n1) bits of data to the left by (n2) bit(s) from the device specified by (d). After the shift, (n2) points

from (s) are set into (n2) points from (d).

 � When K0 is specified for (s), set 0s for (n2) points of bits from (d) after the shift.

 � When K1 is specified for (s), set 1s for (n2) points of bits from (d) after the shift.

Operation error

Ladder diagram Structured text

ENO:=SFTL(EN,s,n1,n2,d);

ENO:=SFTLP(EN,s,n1,n2,d);

Operand Remarks Range Data type Data type (label)

(s) Head device number stored to the shift data after the shift  Bit ANY_BOOL

(d) Head device number to be shifted  Bit ANY_BOOL

(n1)*1 Data length of shift data 0 to 65535 16-bit unsigned binary ANY16_U

(n2)*1 Number of shifts 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1      *2   

(d)    *1         

(n1)             

(n2)             

Error code

(SD0/SD8067)

Remarks

2820 The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821 The transfer source data (s) overlaps with shift device (d).

3405 A constant other than K0 or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

(s) (d) (n1) (n2)

1 1 0 1 1 1 1 0 1

1 1 0 1 0 0 0 0 0

0

1

(n1)
(n2)

(d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)

(d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (s)+4 (s)+3 (s)+2 (s)+1 (s)

When (s)=K0, it is 0.

5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions 135

5

Shifting n-word data to the right by n word(s)

WSFR(P)

This instruction shifts (n1) words of data to the right by (n2) word(s) from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

*1 Set so that n2n1.

■Applicable devices

Processing details

 � This instruction shifts (n1) words of data to the right by (n2) word(s) from the device specified by (d). After the shift, (n2)

points from (s) are set into (n2) points from (d)+(n1-n2).

 � This instruction sets the specified value for (n2) points of devices from (d) + (n1-n2) after the shift when K is specified for

(s).

 � When the value specified for (n1) or (n2) is 0, the processing is not performed.

Operation error

Ladder diagram Structured text

ENO:=WSFR(EN,s,n1,n2,d);

ENO:=WSFRP(EN,s,n1,n2,d);

Operand Remarks Range Data type Data type (label)

(s) Head device number stored to the shift data after the shift  Word ANY16

(d) Head device number to be shifted  Word ANY16

(n1)*1 Data length of shift data 0 to 65535 16-bit unsigned binary ANY16_U

(n2)*1 Number of shifts 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n1)             

(n2)             

Error code

(SD0/SD8067)

Remarks

2820 The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821 The transfer source data (s) overlaps with shift device (d).

3405 A constant other than K0 or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

(s) (d) (n1) (n2)

(n1)
(n2)

(d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)

(s)+3 (s)+2 (s)+1 (s) (d)+4 (d)+3 (d)+2 (d)+1 (d)

30FH 1EH 100H 0H 1FFH 10H 1FH 7FFH 2AH

0H 0H 0H 0H 30FH 1EH 100H 0H 1FFH

136
5 SEQUENCE INSTRUCTIONS

5.4 Shift Instructions

Shifting n-word data to the left by n word(s)

WSFL(P)

This instruction shifts (n1) words of data to the left by (n2) word(s) from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

*1 Set so that n2n1.

■Applicable devices

Processing details

 � This instruction shifts (n1) words of data to the left by (n2) word(s) from the device specified by (d). After the shift, (n2)

points from (s) are set into (n2) points from (d).

 � This instruction sets the specified value for (n2) points of devices from (d) + (n1-n2) after the shift when K is specified for

(s).

 � When the value specified for (n1) or (n2) is 0, the processing is not performed.

Operation error

Ladder diagram Structured text

ENO:=WSFL(EN,s,n1,n2,d);

ENO:=WSFLP(EN,s,n1,n2,d);

Operand Remarks Range Data type Data type (label)

(s) Head device number stored to the shift data after the shift  Word ANY16

(d) Head device number to be shifted  Word ANY16

(n1)*1 Data length of shift data 0 to 65535 16-bit unsigned binary ANY16_U

(n2)*1 Number of shifts 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n1)             

(n2)             

Error code

(SD0/SD8067)

Remarks

2820 The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821 The transfer source data (s) overlaps with shift device (d).

3405 A constant other than K0 or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

(s) (d) (n1) (n2)

10H 0H 7FFH 3AH 1FH 30H 0H FFH1FFH

0H 0H0H0H3AH 1FH 30H 0H FFH

(n1)
(n2)

(d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)

(d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (s)+3 (s)+2 (s)+1 (s)

5 SEQUENCE INSTRUCTIONS

5.5 Master Control Instruction 137

5

5.5 Master Control Instruction

Setting/resetting the master control

MC, MCR

 � MC: This instruction starts master control.

 � MCR: This instruction ends master control.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=MC(EN,N,d);

ENO:=MCR(EN,N);

Operand Remarks Range Data type Data type (label)

(N) Nesting 0 to 14 Device name ANY16_S

(d) Number of device to be turned ON  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $ N

(N)             

(d)    *1         

MC

MCR

(d)(N)

(N) (d)

(N)

Master control ladder

138
5 SEQUENCE INSTRUCTIONS

5.5 Master Control Instruction

Processing details

These instructions create program with efficient ladder switching by opening/closing common buses in ladders.

Ladder using master control is illustrated below.

■MC
 � When the execution command of the MC instruction turns ON at the start of master control, the operation result between

the MC and MCR instructions is as per the instructions (according to ladder). When the execution command of MC

instruction turns OFF, the operation result between the MC and MCR instructions becomes as follows.

When an instruction (e.g. FOR to NEXT instructions etc.) not requiring NO contact instruction is programmed

in a ladder using master control, the CPU module executes that instruction regardless of the execution

command of this instruction.

 � With this instruction, the same nesting (N) number can be used as many times as necessary by changing the device

specified by (d).

 � When this instruction is ON, the coil of the device specified by (d) turns ON. Also, the coil becomes a double coil when the

same device is used by the OUT instruction, for example. So, do not use the device specified by (d) in other instructions.

■MCR
 � This instruction indicates the end of the master control range by the master control release instruction.

 � Do not prefix this instruction with NO contact instruction.

 � Use these (MC and MCR) instructions with same nesting number as a pair. Note, however, that when this instruction is

nested at a single location, all master controls can be ended by just one (N) number, the smallest number. (Refer to

Caution.)

(1) Executed only when X0 is on

Device Device status

Timer The count value becomes 0, and both coils and contacts turn OFF.

Counters, retentive timers Coils turn OFF but the current status of both count values and contacts is

maintained.

Devices in OUT instruction Forcibly turned OFF.

Devices in SET and RST instructions

Devices in SFT(P) instruction

Devices in basic instructions and

applied instructions

Current status is maintained.

X0

X1

M0N1

X3 M7

Y20

MC

M5

Y30

X6 X4

N1MCR

X10

Y40

M0N1

X0

X1

M0N1

X3 M7

Y20

MC

M5

Y30

X6 X4

N1MCR

X10

Y40

M0N1

(1)

Display of engineering tool Actual operation ladder

5 SEQUENCE INSTRUCTIONS

5.5 Master Control Instruction 139

5

Master control instructions can be used in a nested fashion. Each master control section is distinguished by

nesting (N). Nesting is available within the range N0 to N14.

A nested structure allows you to create a ladder for successively restricting program execution conditions.

A nested structure ladder is illustrated as follows:

(1) Executed when A is ON

(2) Executed when A and B are ON

(3) Executed when A, B, and C are ON

(4) Regardless of A, B, and C

MC N0 M15

MC N1 M16

MC N2 M17

MCR N2

MCR N1

MCR N0

N0 M15

N1 M16

N2 M17

A

B

C

MC N0 M15

MC N1 M16

MC N2 M17

MCR N2

MCR N1

MCR N0

N0 M15

N1 M16

N2 M17

A

B

C

(1)

(2)

(3)

(2)

(1)

(4)

Display of engineering tool Actual operation circuit

140
5 SEQUENCE INSTRUCTIONS

5.5 Master Control Instruction

Precautions

 � If an instruction (e.g. LD, LDI) to be connected to the bus is not programmed following the MC instruction, a ladder error

(error code: 33E0) occurs.

 � These instructions cannot be used in FOR to NEXT, P to RET (SRET), and I to IRET. Also, do not block by I, IRET, FEND,

END, RET (SRET), etc. Addition by write during RUN mode results in an error.

 � Nesting up to 15 levels (N0 to N14) is possible. When nesting instructions, the MC instruction is used starting from the

smallest (N) number and the MCR instruction is started starting from the biggest number. Programming in reverse order

does not produce a nested structure and hence the CPU module cannot execute operations properly.

 � When the MCR instruction is nested at a single location, all master controls can be ended by just one nesting (N) number,

the smallest number.

Operation error

There is no operation error.

MC N0 M15

MC N1 M16

MC N2 M17

MCR N2

MCR N0

N0 M15

N1 M16

N2 M17

X1

X2

X3

MCR N1

MC N0 M15

MC N1 M16

MC N2 M17

MCR N0

N0 M15

N1 M16

N2 M17

X1

X2

X3

5 SEQUENCE INSTRUCTIONS

5.6 Termination Instructions 141

5

5.6 Termination Instructions

Ending the main routine program

FEND

This instruction is used to branch operation of the sequence program by the CJ instruction or to divide the main routine

program into a subroutine program or an interrupt program.

Processing details

 � This instruction branches operation of the sequence program by the CJ instruction or dividing the main routine program into

subroutine programs and interrupt programs.

 � When this instruction is executed, program execution returns to the program at step 0 after output processing, input

processing and refreshing of the watchdog timer.

 � The sequence program from this instruction onwards can also be displayed as ladder by the engineering tool.

Operation error

Ladder diagram Structured text

ENO:=FEND(EN);

(1) Operation when the CJ instruction is not executed

(2) Jump by the CJ instruction

(3) Operation when the CJ instruction has been executed

Error code

(SD0/SD8067)

Remarks

3340 The FEND instruction is executed before the NEXT instruction after the FOR instruction is executed.

3381 The FEND instruction is executed before the RET instruction after the CALL(P) instruction is executed.

33E3 The FEND instruction is programmed between FOR-NEXT.

33E4 The FEND instruction is programmed between MC-MCR.

33E7 The FEND instruction is programmed between I-IRET.

3100 The FEND instruction is programmed in standby type program.

The FEND instruction is programmed in FB file.

CJ

FEND

FEND

END

0

P**

P**CALL

FEND

END

(2)

(3)(1)

P**

P**

I**

Main routine
program

Main routine
program

When the CJ instruction is used(a)

Main routine
program

Subroutine program

Interrupt Program

(b)

Main routine
program

When there are subroutine programs
and interrupt programs

142
5 SEQUENCE INSTRUCTIONS

5.6 Termination Instructions

Ending the sequence program

END

This instruction indicates the end of a program.

Processing details

 � This instruction indicates the end of all programs including the main routine program, subroutine program, and interrupt

program. When this instruction is executed, the CPU module ends execution of the currently executing program.

 � The first time the RUN is started, execution begins from this instruction.

 � This instruction cannot be programmed midway during the main sequence program. When this processing is required

midway during the program, use the FEND instruction.

 � When programming is performed using the engineering tool in ladder edit mode, the END instruction is automatically input

and cannot be edited.

 � The following illustrates how the END and FEND instructions are used properly when a program contains a main routine

program, subroutine program, and interrupt program.

The END instruction executed while a program is divided into multiple program blocks indicates the end of a

program block.

The END instruction executed for END processing is executed at the end of the last executed program

registered in the program settings.

Operation error

Ladder diagram Structured text

Not supported.

Error code

(SD0/SD8067)

Remarks

3340 The END instruction is executed before the NEXT instruction after the FOR instruction is executed.

3381 The END instruction is executed before the RET instruction after the CALL(P) instruction is executed.

33E3 The END instruction is programmed between FOR-NEXT.

33E4 The END instruction is programmed between MC-MCR.

33E7 The END instruction is programmed between I-IRET.

END

0

Sequence program

FEND

END

Main routine program

Interrupt Program

Main sequence
program area

Subroutine program

(FEND instruction is required.)

(END instruction is required.)

5 SEQUENCE INSTRUCTIONS

5.7 Stop Instruction 143

5

5.7 Stop Instruction

Stopping the sequence program

STOP

This instruction resets outputs (Y) and stops operation of the CPU module when the execution command turns ON. (This

operation is the same as setting the switch to STOP.)

Processing details

 � This instruction resets outputs (Y) and stops operation of the CPU module when the execution command turns ON. (This

operation is the same as setting the switch to STOP.)

 � To restart operation of the CPU module after this instruction is executed, return the switch from RUNSTOP and set it to

RUN again.

Operation error

Ladder diagram Structured text

ENO:=STOP(EN);

Error code

(SD0/SD8067)

Remarks

3340 The STOP instruction is executed before the NEXT instruction is executed after the FOR instruction is executed.

3381 The STOP instruction is executed before the RET instruction is executed after the CALL(P) or XCALL(P) instruction is executed.

3582 The STOP instruction is executed before the IRET instruction is executed in the interruption program.

144
5 SEQUENCE INSTRUCTIONS

5.8 No Processing Instruction

5.8 No Processing Instruction

No operation

NOP

This instruction is used, for example, to insert a space for debugging the program.

Processing details

■NOP
 � Execution of the no processing instruction does not affect operation.

 � This instruction is used in the following instances:

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported.

� To insert a space for debugging the program.

� To delete an instruction without altering the number of steps. (The instruction is overwritten with this instruction.)

� To temporarily delete an instruction.

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions 145

6

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Comparing 16-bit binary data

LD(_U), AND(_U), OR(_U)

These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the 16-

bit binary data in the device specified by (s2). (Devices are used as NO contacts.)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

( is to be replaced by any of the following: =(_U), <>(_U), >(_U), <=(_U),

<(_U), >=(_U).)

Not supported

Operand Description Range Data type Data type (label)

(s1) LD, AND,

OR

Comparison data or device where the

comparison data is stored

-32768 to +32767 16-bit signed binary ANY16

LD_U,

AND_U,

OR_U

0 to 65535 16-bit unsigned binary ANY16_U

(s2) LD, AND,

OR

Comparison data or device where the

comparison data is stored

-32768 to +32767 16-bit signed binary ANY16

LD_U,

AND_U,

OR_U

0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

LD

AND

OR

(s1) (s2)

(s1) (s2)

(s1) (s2)

146
6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Processing details

 � These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the

16-bit binary data in the device specified by (s2). (Devices are used as NO contacts.)

 � The following table lists the comparison operation result of each instruction.

Precautions

 � When the most significant bit is "1" in the data stored in (s1) or (s2), it is regarded as a negative binary value for

comparison. (Excluding unsigned operation)

Operation error

There is no operation error.

Instruction symbol Condition Result

=(_U) (s1) = (s2) Conductive state

<>(_U) (s1)  (s2)

>(_U) (s1) > (s2)

<=(_U) (s1)  (s2)

<(_U) (s1) < (s2)

>=(_U) (s1)  (s2)

=(_U) (s1)  (s2) Non-conductive state

<>(_U) (s1) = (s2)

>(_U) (s1)  (s2)

<=(_U) (s1) > (s2)

<(_U) (s1)  (s2)

>=(_U) (s1) < (s2)

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions 147

6

Comparing 32-bit binary data

LDD(_U), ANDD(_U), ORD(_U)

These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the 32-

bit binary data in the device specified by (s2). (Devices are used as NO contacts.)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

( is to be replaced by any of the following: D=(_U), D<>(_U), D>(_U),

D<=(_U), D<(_U), D>=(_U).)

Not supported

Operand Description Range Data type Data type (label)

(s1) LDD,

ANDD, ORD

Comparison data or head device where the

comparison data is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

LDD_U,

ANDD_U,

ORD_U

0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) LDD,

ANDD, ORD

Comparison data or head device where the

comparison data is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

LDD_U,

ANDD_U,

ORD_U

0 to 4294967295 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

LD

AND

OR

(s1) (s2)

(s1) (s2)

(s1) (s2)

148
6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Processing details

 � These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the

32-bit binary data in the device specified by (s2). (Devices are used as NO contacts)

 � The following table lists the comparison operation results of each instruction.

Precautions

 � When the most significant bit is "1" in the data stored in (s1) or (s2), it is regarded as a negative binary value for

comparison. (Excluding unsigned operation)

 � For comparison of 32-bit counter (LC), specify an instruction (LDD=, etc.) that handles 32-bit data. If an instruction (LD=,

etc.) that handles 16-bit data is specified, a program error or operation error occurs. (Same applies for index device (LZ) as

well.)

Operation error

There is no operation error.

Instruction symbol Condition Result

D=(_U) (s1) = (s2) Conductive state

D<>(_U) (s1)  (s2)

D>(_U) (s1) > (s2)

D<=(_U) (s1)  (s2)

D<(_U) (s1) < (s2)

D>=(_U) (s1)  (s2)

D=(_U) (s1)  (s2) Non-conductive state

D<>(_U) (s1) = (s2)

D>(_U) (s1)  (s2)

D<=(_U) (s1) > (s2)

D<(_U) (s1)  (s2)

D>=(_U) (s1) < (s2)

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions 149

6

Comparison output 16-bit binary data

CMP(P)(_U)

These instructions perform a comparison operation between the 16-bit binary data in the devices specified by (s1) and (s2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the

16-bit binary data in the device specified by (s2) and according to the result (small, equal, large), (d), (d) + 1, or (d) + 2 is

turned ON.

 � (s1) and (s2) are handled as binary values within the range of above data setting.

 � Large and small comparison is executed algebraically.

Ladder diagram Structured text

ENO:=CMP(EN,s1,s2,d);

ENO:=CMPP(EN,s1,s2,d);

ENO:=CMP_U(EN,s1,s2,d);

ENO:=CMPP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) CMP(P) Comparison value data or the device where the

comparison value data is stored

-32768 to +32767 16-bit signed binary ANY16

CMP(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) CMP(P) Comparison source data or the device where

the comparison source data is stored

-32768 to +32767 16-bit signed binary ANY16

CMP(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) The starting bit device to which the comparison

result is output

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)    *1         

� With sign… -10 (FFF6H) < 2 (0002H)

� Without sign… 32767 (7FFFH) < 65280 (FF00H)

(s1) (s2) (d)

(d)CMP

48

49

50

51(s1) (s2)

(d)
(s2)

(d)

(s1)

(d)+1

(d)+2 (d)+1

(d)+2

Command input Command input

Latched

Latched

Latched

Turns ON in the case of (s1)>(s2).

Turns ON in the case of (s1)=(s2).

Turns ON in the case of (s1)<(s2).

Even if the command input turns OFF and the CMP instruction is not executed, (d) to (d)+2 latches the status
just before the command input turns from ON to OFF.

150
6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Precautions

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation error

Error code

(SD0/SD8067)

Description

2820 The range of 3 points of data starting from the device specified by (d) exceeds said device.

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions 151

6

Comparison output 32-bit binary data

DCMP(P)(_U)

These instructions perform a comparison operation between the 32-bit binary data in the devices specified by (s1) and (s2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the

32-bit binary data in the device specified by (s2) and according to the result (small, equal, large), (d), (d) + 1, or (d) + 2 is

turned ON.

 � (s1) and (s2) are handled as binary values within the range of above data setting.

 � Large and small comparison is executed algebraically.

Ladder diagram Structured text

ENO:=DCMP(EN,s1,s2,d);

ENO:=DCMPP(EN,s1,s2,d);

ENO:=DCMP_U(EN,s1,s2,d);

ENO:=DCMPP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DCMP(P) Comparison value data or the head device

where the comparison value data is stored

-2147483647 to +2147483647 32-bit signed binary ANY32

DCMP(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DCMP(P) Comparison source data or the head device

where the comparison source data is stored

-2147483647 to +2147483647 32-bit signed binary ANY32

DCMP(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) The starting bit device to which the comparison

result is output

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)    *1         

� With sign… -125400 (FFFE1628H) < 224566 (00036D36H)

� Without sign… 16776690 (00FFFDF2H) < 4294967176 (FFFFFF88H)

(s1) (s2) (d)

(d)DCMP

(d)+1

(d)+2

48

49

50

51

(d)+1

(d)+2

(s1) (s2)

(d)
(s2)

(d)

(s1)

Command input Command input

Latched

Latched

Latched

Turns ON in the case of (s1)>(s2).

Turns ON in the case of (s1)=(s2).

Turns ON in the case of (s1)<(s2).

Even if the command input turns OFF and the DCMP instruction is not executed, (d) to (d)+2 latches the status
just before the command input turns from ON to OFF.

152
6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Precautions

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation error

Error code

(SD0/SD8067)

Description

2820 The range of 3 points of data starting from the device specified by (d) exceeds said device.

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions 153

6

Comparing 16-bit binary data band

ZCP(P)(_U)

These instructions perform a comparison operation on the 16-bit binary data in the device specified by (s1) and the 16-bit

binary data in the device specified by (s2) with the 16-bit binary data in the device specified by comparison source (s3), and

output the comparison result (below, within zone, above) to the device specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=ZCP(EN,s1,s2,s3,d);

ENO:=ZCPP(EN,s1,s2,s3,d);

ENO:=ZCP_U(EN,s1,s2,s3,d);

ENO:=ZCPP_U(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) ZCP(P) Lower limit comparison data or the device

where the comparison data is stored

-32768 to +32767 16-bit signed binary ANY16

ZCP(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) ZCP(P) Upper limit comparison data or the device

where the comparison data is stored

-32768 to +32767 16-bit signed binary ANY16

ZCP(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s3) ZCP(P) Comparison source data or the device where

the comparison source data is stored

-32768 to +32767 16-bit signed binary ANY16

ZCP(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) The starting bit device to which the comparison

result is output

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)    *1         

(s1) (s2) (s3) (d)

154
6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Processing details

 � These instructions perform a comparison operation on the 16-bit binary data in the device specified by (s1) and the 16-bit

binary data in the device specified by (s2) with the 16-bit binary data in the device specified by comparison source (s3), and

according to the comparison result (below, within zone, above), (d), (d) + 1, or (d) + 2 is turned ON. (s1), (s2), and (s3) are

handled as binary values within the range of above data setting. Large and small comparison is executed algebraically.

 � Large and small comparison is executed algebraically.

Precautions

 � Set (s1) to a value less than (s2).

 � Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation error

� With sign… -10 (FFF6H) < 2 (0002H) < 10 (000AH)

� Without sign… 0 (0000H) < 32767 (7FFFH) < 40000 (9C40H)

Error code

(SD0/SD8067)

Description

2820 The range of the 3 points of data starting from the device specified by (d) exceeds said device.

ZCP (d)(s1) (s2) (s3)

(d)+1

(d)+2

(d)
Turns ON in the case of (s1)>(s3).

Turns ON in the case of (s3)>(s2).

Turns ON in the case of (s1)≤(s3)≤(s2).

Command input

Even if the command input turns OFF and the ZCP instruction is not executed, (d) to (d)+2 latches the status
just before the command input turns from ON to OFF.

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions 155

6

Comparing 32-bit binary data band

DZCP(P)(_U)

These instructions perform a comparison operation on the 32-bit binary data in the device specified by (s1) and the 32-bit

binary data in the device specified by (s2) with the 32-bit binary data in the device specified by comparison source (s3), and

output the comparison result (below, within zone, above) to the device specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=DZCP(EN,s1,s2,s3,d);

ENO:=DZCPP(EN,s1,s2,s3,d);

ENO:=DZCP_U(EN,s1,s2,s3,d);

ENO:=DZCPP_U(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) DZCP(P) Lower limit comparison data or the head device

where the comparison data is stored

-2147483647 to +2147483647 32-bit signed binary ANY32

DZCP(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DZCP(P) Upper limit comparison data or the head device

where the comparison data is stored

-2147483647 to +2147483647 32-bit signed binary ANY32

DZCP(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s3) DZCP(P) Comparison source data or the head device

where the comparison source data is stored

-2147483647 to +2147483647 32-bit signed binary ANY32

DZCP(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) The starting bit device to which the comparison

result is output

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)    *1         

(s1) (s2) (s3) (d)

156
6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Processing details

 � These instructions perform a comparison operation on the 32-bit binary data in the device specified by (s1) and the 32-bit

binary data in the device specified by (s2) with the 32-bit binary data in the device specified by comparison source (s3), and

according to the comparison result (below, within zone, above), (d), (d) + 1, or (d) + 2 is turned ON. (s1), (s2), and (s3) are

handled as binary values within the range of above data setting.

 � Large and small comparison is executed algebraically.

Precautions

 � Set (s1) to a value less than (s2).

 � Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation error

� With sign… -125400 (FFFE1628H) < 22466 (000057C2H) < 1015444 (000F7E94H)

� Without sign… 0 (00000000H) < 2147483647 (7FFFFFFFH) < 4026531840 (F0000000H)

Error code

(SD0/SD8067)

Description

2820 The range of the 3 points of data starting from the device specified by (d) exceeds said device.

DZCP (d)(s1) (s2) (s3)

(d)+1

(d)+2

(d)
Turns ON in the case of (s1)>(s3).

Turns ON in the case of (s3)>(s2).

Turns ON in the case of (s1)≤(s3)≤(s2).

Command input

Even if the command input turns OFF and the DZCP instruction is not executed, (d) to (d)+2 latches the status
just before the command input turns from ON to OFF.

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions 157

6

Comparing 16-bit binary block data

BKCMP(P)(_U)

These instructions perform a comparison operation between (n) point(s) of 16-bit binary data in the device starting from the

one specified by (s1) and (n) point(s) of 16-bit binary data in the device starting from the one specified by (s2), and store the

operation result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions perform a comparison operation between (n) point(s) of 16-bit binary data in the device starting from the

one specified by (s1) and (n) point(s) of 16-bit binary data in the device starting from the one specified by (s2), and store the

comparison result in (n) point(s) of data starting from the device specified by (d).

 � The relevant devices of (n) point(s) of data starting from the device specified by (d) are turned ON when the comparison

conditions are met and turned OFF when the comparison conditions are not met.

 � Comparison operation is performed in units of 16 bits.

Ladder diagram Structured text

( is to be replaced by any of the following: BKCMP=(P)(_U),

BKCMP<>(P)(_U), BKCMP>(P)(_U)< BKCMP<=(P)(_U), BKCMP<(P)(_U),

BKCMP>=(P)(_U).)

Not supported

Operand Description Range Data type Data type (label)

(s1) BKCMP(P) Comparison data or the device where the

comparison data is stored

-32768 to +32767 16-bit signed binary ANY16

BKCMP(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) BKCMP(P) Device where the comparison source data is

stored

 16-bit signed binary ANY16

BKCMP(P)_U  16-bit unsigned binary ANY16_U

(d) Head device storing comparison result  Bit ANY_BOOL

(n) Number of data to be compared 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)    *1         

(n)             

(s1) (s2) (d) (n)

∙∙∙

>

OFF

ON

OFF

ON

1234 (BIN)

5678 (BIN)

5000 (BIN)

7777 (BIN)

4321 (BIN)

(n) (n) (n)

5321 (BIN)

3399 (BIN)

5678 (BIN)

6543 (BIN)

1200 (BIN)

(0)

(1)

(0)

(1)

ON (1)

(s1)

(s1)+1

(s1)+(n-2)

(s1)+(n-1)

(s1)+2

∙∙∙

(s2)

(s2)+1

(s2)+(n-2)

(s2)+(n-1)

(s2)+2

∙∙∙

(d)

(d)+1

(d)+(n-2)

(d)+(n-1)

(d)+2

b15 b0∙∙∙b15 b0∙∙∙ Operation result

158
6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

 � A constant can be directly specified in (s1).

 � The following table lists the comparison operation result of each instruction.

 � When the comparison operation result is all ON (1) in all (n) point(s) starting from (d), SM704 and SM8090 (block

comparison signal) turns ON.

Operation error

Instruction symbol Condition Result

BKCMP=(P)(_U) (s1) = (s2) On(1)

BKCMP<>(P)(_U) (s1)  (s2)

BKCMP>(P)(_U) (s1) > (s2)

BKCMP<=(P)(_U) (s1)  (s2)

BKCMP<(P)(_U) (s1) < (s2)

BKCMP>=(P)(_U) (s1)  (s2)

BKCMP=(P)(_U) (s1)  (s2) Off(0)

BKCMP<>(P)(_U) (s1) = (s2)

BKCMP>(P)(_U) (s1)  (s2)

BKCMP<=(P)(_U) (s1) > (s2)

BKCMP<(P)(_U) (s1)  (s2)

BKCMP>=(P)(_U) (s1) < (s2)

Error code

(SD0/SD8067)

Description

2820 The (n) point(s) starting from the device specified by (s1), (s2), and (d) exceeds said device.

2821 When (d) specifies "D.b", the data register of (d) and the (n) point(s) of data starting from the device specified by (s1) overlap.

When (d) specifies "D.b", the data register of (d) and the (n) point(s) of data starting from the device specified by (s2) overlap.

=

ON

OFF

ON

OFF

32000 (BIN) (n) (n)

32000 (BIN)

4321 (BIN)

32000 (BIN)

1234 (BIN)

5678 (BIN)

(1)

(0)

(1)

(0)

OFF (0)

(s1)

∙∙∙

(s2)

(s2)+1

(s2)+(n-2)

(s2)+(n-1)

(s2)+2

∙∙∙

(d)

(d)+1

(d)+(n-2)

(d)+(n-1)

(d)+2

b15 b0∙∙∙ Operation result

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions 159

6

Comparing 32-bit binary block data

DBKCMP(P)(_U)

These instructions perform a comparison operation between the (n) point(s) of 32-bit binary data starting from the device

specified by (s1) and the (n) point(s) of 32-bit binary data starting from the device specified by (s2), and store the operation

result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions perform a comparison operation between (n) point(s) of 32-bit binary data starting from the device

specified by (s1) and (n) point(s) of 32-bit binary data starting from the device specified by (s2), and store the comparison

result in (n) point(s) of data starting from the device specified by (d).

 � The relevant (n) point(s) of data starting from the device specified by (d) are turned ON when the comparison conditions are

met and turned OFF when the comparison conditions are not met.

 � Comparison operation is performed in units of 32 bits.

Ladder diagram Structured text

( is to be replaced by any of the following: DBKCMP=(P)(_U),

DBKCMP<>(P)(_U), DBKCMP>(P)(_U), DBKCMP<=(P)(_U),

DBKCMP<(P)(_U), DBKCMP>=(P)(_U).)

Not supported

Operand Description Range Data type Data type (label)

(s1) DBKCMP(P) Comparison data or the head device where the

comparison data is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

DBKCMP(P)_

U

0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DBKCMP(P) Head device where the comparison source

data is stored

 32-bit signed binary ANY32

DBKCMP(P)_

U

 32-bit unsigned binary ANY32_U

(d) Head device storing comparison result  Bit ANY_BOOL

(n) Number of data to be compared 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)    *1         

(n)             

(s1) (s2) (d) (n)

···

··
·

··
·

··
·

··
·

··
·

=

OFF

OFF

ON

ON

(n)

1090 (BIN)

2080 (BIN)

5060 (BIN)

1106 (BIN)

(n)

b31 b0

1000 (BIN)

2000 (BIN)

5060 (BIN)

1106 (BIN)

(0)

(0)

(1)

(1)

(n)

b31 b0

(s1)(s1)+1,

(s1)+2

(s1)+(2n-2)(s1)+(2n-1),

(s1)+4

(s1)+3,

(s1)+5,

(s2)(s2)+1,

(s2)+2

(s2)+(2n-2)(s2)+(2n-1),

(s2)+4

(s2)+3,

(s2)+5,

(d)

(d)+1

(d)+2

(d)+(n-1)

··· Operation result

160
6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

 � A constant can be directly specified in (s1).

 � (d) is specified outside the device range of (n) point(s) of data starting from the one specified by (s1) and outside the device

range of (n) point(s) of data starting from the one specified by (s2).

 � The following table lists the comparison operation result of each instruction.

 � When the comparison operation result is all ON (1) in all (n) point(s) starting from (d), SM704 and SM8090 (block

comparison signal) turns ON.

Precautions

If a 32-bit counter (high-speed counter included) is used, make sure to compare using the 32-bit operation (DBKCMP=,

DBKCMP>, DBKCMP<, etc.).

Operation error

When bit is specified for word device, devices other than the bit-specified word devices where operation result

is stored will not change.

Instruction symbol Condition Result

DBKCMP=(P)(_U) (s1) = (s2) On(1)

DBKCMP<>(P)(_U) (s1)  (s2)

DBKCMP>(P)(_U) (s1) > (s2)

DBKCMP<=(P)(_U) (s1)  (s2)

DBKCMP<(P)(_U) (s1) < (s2)

DBKCMP>=(P)(_U) (s1)  (s2)

DBKCMP=(P)(_U) (s1)  (s2) Off(0)

DBKCMP<>(P)(_U) (s1) = (s2)

DBKCMP>(P)(_U) (s1)  (s2)

DBKCMP<=(P)(_U) (s1) > (s2)

DBKCMP<(P)(_U) (s1)  (s2)

DBKCMP>=(P)(_U) (s1) < (s2)

Error code

(SD0/SD8067)

Description

2820 The (n)  2 points of data starting from the device specified by (s1) and (s2) or the (n) point(s) of data starting from the device specified by

(d) exceeds said device.

2821 When (d) specifies "D.b", the (n) point(s) of data starting from the device specified by (d) and the device range of the (n)  2 points of

data starting from the device specified by (s1) overlap.

When (d) specifies "D.b", the (n) point(s) of data starting from the device specified by (d) and the device range of the (n)  2 points of

data starting from the device specified by (s2) overlap.

··
·

··
·

··
·

ON

OFF

ON

OFF

(n)

32700 (BIN)

40000 (BIN)

32800 (BIN)

2147400 (BIN)

(1)

(0)

(1)

(0)

(n)

b31

b0

(s2)(s2)+1,

(s2)+2

(s2)+(2n-2)(s2)+(2n-1),

(s2)+4

(s2)+3,

(s2)+5,

(d)

(d)+1

(d)+2

(d)+(n-1)

···

32800 (BIN)

b31 ···

b0

(s1)+1, (s1) >=

Operation result

D10.F D10.0

0 0 1 0 1 1 1 1 1 0 0 1 1 0 0 0

D10.F D10.0

0 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 161

6

6.2 Arithmetic Operation Instructions

Adding 16-bit binary data

+(P)(_U) instruction and ADD(P)(_U) instruction can be used for addition of 16-bit binary data.

+(P)(_U) [using two operands]

These instructions add the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device specified by

(s), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the 16-bit binary data in the device specified by (s) to the 16-bit binary data in the device specified

by (d), and store the addition result in the device specified by (d).

 � When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) +(P) Addend data or the device where the data that

is added to another is stored

-32768 to +32767 16-bit signed binary ANY16_S

+(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) +(P) Device where the data to which another is

added is stored

-32768 to +32767 16-bit signed binary ANY16_S

+(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

b15 b0

5678 (BIN)

(d) (s) (d)

1234 (BIN) 6912 (BIN)+

··· b15 b0··· b15 b0···

+ →

+ →

+ →

K-32768 K-2 K32766

K65535 K2 K1

K32767 K2 K-32767

(FFFFH) (0002H) (0001H)

(7FFFH) (0002H) (8001H)

(FFFEH) (7FFEH)(8000H)

In case of +(P)

Because the highest bit is 1, the value is negative.

In case of +(P)(_U)

Because the highest bit is 0, the value is positive.

162
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

+(P)(_U) [using three operands]

These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device

specified by (s2), and store the addition result in the device specified by (d).

 � When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=PLUS(EN,s1,s2,d);

ENO:=PLUSP(EN,s1,s2,d);

ENO:=PLUS_U(EN,s1,s2,d);

ENO:=PLUSP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) +(P) Augend data or the device where the data to

which another is added is stored

-32768 to +32767 16-bit signed binary ANY16_S

+(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) +(P) Addend data or the device where the data that

is added to another is stored

-32768 to +32767 16-bit signed binary ANY16_S

+(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) +(P) Device for storing the operation result  16-bit signed binary ANY16_S

+(P)_U  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

b15 b0

5678 (BIN)

(s1) (s2) (d)

1234 (BIN) 6912 (BIN)+

··· b15 b0··· b15 b0···

+ →

+ →

+ →

K-32768 K-2 K32766

K65535 K2 K1

K32767 K2 K-32767

(FFFFH) (0002H) (0001H)

(7FFFH) (0002H) (8001H)

(FFFEH) (7FFEH)(8000H)

In case of +(P)

Because the highest bit is 1, the value is negative.

In case of +(P)(_U)

Because the highest bit is 0, the value is positive.

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 163

6

ADD(P)(_U)

These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

*1 The ADD instruction is not supported by the ST language. Use ADD of the standard function.

Page 777 ADD(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device

specified by (s2), and store the addition result in the device specified by (d).

■Relationship between the flag operation and the sign (positive or negative) of a numeric value

Ladder diagram Structured text*1

ENO:=ADDP(EN,s1,s2,d); ENO:=ADD_U(EN,s1,s2,d);

ENO:=ADDP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) ADD(P) Addend data or the device where the data that

is added to another is stored

-32768 to +32767 16-bit signed binary ANY16_S

ADD(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) ADD(P) Addend data or the device where the data that

is added to another is stored

-32768 to +32767 16-bit signed binary ANY16_S

ADD(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) ADD(P) Device for storing the operation result  16-bit signed binary ANY16_S

ADD(P)_U  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.

SM8020 Zero When the operation result is 0, the zero flag is turned ON.

SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.

(s1) (s2) (d)

b15 b0

5678 (BIN)

(s1) (s2) (d)

1234 (BIN) 6912 (BIN)+

··· b15 b0··· b15 b0···

Zero Flag

Borrow flag

Zero Flag

Carry flag

Zero Flag

-2, -1, 0, -32768 32767, 0, 1, 2-1, 0, 1

The most significant
bit of data becomes "1".

The most significant
bit of data becomes "0".

164
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Precautions

■When specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the addition result

changes in every operation cycle if a continuous operation type ADD instruction is used.

■Difference between ADD(P) instruction, +(P) instruction, and INC(P) instruction in a program

for adding "+1"
When ADD(P) instruction is used to add 1 to the contents of D0 every time X1 turns from OFF to ON, ADD(P) instruction is

similar to +(P) instruction and INC(P) instruction described later except for the contents shown in the table below

Operation error

There is no operation error.

ADD(P) instruction +(P) instruction, INC(P) instruction

Flag (zero, borrow or carry) Operates Does not operate

Operation result (s)+1=(d) +32767  0  +1  +2 … +32767  -32768  -32767 …

ADD D0 K25 D0
X1

(D0)+25 → (D0)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 165

6

Subtracting 16-bit binary data

-(P)(_U) instruction and SUB(P)(_U) instruction can be used for subtraction of 16-bit binary data.

-(P)(_U) [using two operands]

These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device

specified by (s), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device

specified by (s), and store the subtraction result in the device specified by (d).

 � When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) -(P) Subtrahend data or the device where the data

to be subtracted from another is stored

-32768 to +32767 16-bit signed binary ANY16_S

-(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) -(P) Device where the data from which another is to

be subtracted is stored

-32768 to +32767 16-bit signed binary ANY16_S

-(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

b15 b0

5678 (BIN)

(d) (s) (d)

1234 (BIN) 4444 (BIN)-

··· b15 b0··· b15 b0···

-

-

-

- →

→

→K0 K65535 K1

(0000H) (FFFFH) (0001H)

→

K32767 K-2 K-32767

K0 K1 K65535

K32768 K2 K32766

(0000H) (0001H) (FFFFH)

(8000H) (0002H) (7FFEH)

(FFFEH) (8001H)(7FFFH)

In case of -(P)

Because the highest bit is 1, the value is negative.

In case of -(P)(_U)

Because the highest bit is 0, the value is positive.

166
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

-(P)(_U) [using three operands]

These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device

specified by (s2), and store the subtraction result in the device specified by (d).

 � When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=MINUS(EN,s1,s2,d);

ENO:=MINUSP(EN,s1,s2,d);

ENO:=MINUS_U(EN,s1,s2,d);

ENO:=MINUSP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) -(P) Minuend data or the device where the data

from which another is to be subtracted is

stored

-32768 to +32767 16-bit signed binary ANY16_S

-(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) -(P) Subtrahend data or the device where the data

to be subtracted from another is stored

-32768 to +32767 16-bit signed binary ANY16_S

-(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) -(P) Device for storing the operation result  16-bit signed binary ANY16_S

-(P)_U  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

b15 b0

5678 (BIN)

(s1) (s2) (d)

1234 (BIN) 4444 (BIN)-

··· b15 b0··· b15 b0···

-

-

-

- →

→

→K0 K65535 K1

(0000H) (FFFFH) (0001H)

→

K32767 K-2 K-32767

K0 K1 K65535

K-32768 K2 K32766

(0000H) (0001H) (FFFFH)

(8000H) (0002H) (7FFEH)

(FFFEH) (8001H)(7FFFH)

In case of -(P)

Because the highest bit is 1, the value is negative.

In case of -(P)(_U)

Because the highest bit is 0, the value is positive.

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 167

6

SUB(P)(_U)

These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

*1 The SUB instruction is not supported by the ST language. Use SUB of the standard function.

Page 781 SUB(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device

specified by (s2), and store the subtraction result in the device specified by (d).

■Relationship between the flag operation and the sign (positive or negative) of a numeric value

Ladder diagram Structured text*1

ENO:=SUBP(EN,s1,s2,d); ENO:=SUB_U(EN,s1,s2,d);

ENO:=SUBP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) SUB(P) Subtrahend data or the device where the data

to be subtracted from another is stored

-32768 to +32767 16-bit signed binary ANY16_S

SUB(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) SUB(P) Subtrahend data or the device where the data

to be subtracted from another is stored

-32768 to +32767 16-bit signed binary ANY16_S

SUB(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) SUB(P) Device for storing the operation result  16-bit signed binary ANY16_S

SUB(P)_U  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.

SM8020 Zero When the operation result is 0, the zero flag is turned ON.

SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.

(s1) (s2) (d)

b15 b0

5678 (BIN)

(s1) (s2) (d)

1234 (BIN) 4444 (BIN)-

··· b15 b0··· b15 b0···

Zero Flag

Borrow flag

Zero Flag

Carry flag

Zero Flag

-2, -1, 0, -32768 32767, 0, 1, 2-1, 0, 1

The most significant
bit of data becomes "1".

The most significant
bit of data becomes "0".

168
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Precautions

■When specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the subtraction result

changes in every operation cycle if a continuous operation type SUB instruction is used.

■Difference between SUB(P) instruction, -(P) instruction, and DEC(P) instruction in a program

for subtracting "-1"
When SUB(P) instruction is used to subtract 1 from the contents of D0 every time X1 turns from OFF to ON, SUB(P)

instruction is similar to -(P) instruction and DEC(P) instruction described later except for the contents shown in the table below

Operation error

There is no operation error.

SUB(P) instruction -(P) instruction, DEC(P) instruction

Flag (zero, borrow or carry) Operates Does not operate

Operation result (s)-1=(d) -32768  0  -1  -2 … -32768  +32767  +32766 …

SUB D0 K25 D0
X1

(D0)-25 → (D0)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 169

6

Adding 32-bit binary data

D+(P)(_U) instruction and DADD(P)(_U) instruction can be used for addition of 32-bit binary data.

D+(P)(_U) [using two operands]

These instructions add the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device specified by

(s), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device specified

by (s), and store the addition result in the device specified by (d).

 � When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) D+(P) Addend data or the head device where the

data that is added to another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

D+(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) D+(P) Head device where the data to which another

is added is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

D+(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

b0

567890 (BIN)

(d)

123456 (BIN) 691346 (BIN)+

··· ···

(d)+1 (s)(s)+1 (d)(d)+1

b31 b16 b15 b0··· ···b31 b16 b15 b0··· ···b31 b16 b15

+ →

+ →

+ →

K-2147483648 K-2 K2147483646

K4294967295 K2 K1

K2147483647 K2 K-2147483647

(FFFFFFFFH) (00000002H) (00000001H)

(7FFFFFFFH) (00000002H) (80000001H)

(FFFFFFFEH) (7FFFFFFEH)(80000000H)

In case of D+(P)

Because the highest bit is 1, the value is negative.

In case of D+(P)(_U)

Because the highest bit is 0, the value is positive.

170
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

D+(P)(_U) [using three operands]

These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the addition result in the device specified by (d).

 � When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DPLUS(EN,s1,s2,d);

ENO:=DPLUSP(EN,s1,s2,d);

ENO:=DPLUS_U(EN,s1,s2,d);

ENO:=DPLUSP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) D+(P) Augend data or the head device where the

data to which another is added is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

D+(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) D+(P) Addend data or the head device where the

data that is added to another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

D+(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) D+(P) Head device for storing the operation result  32-bit signed binary ANY32_S

D+(P)_U  32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

b0

567890 (BIN)

(s1)

123456 (BIN) 691346 (BIN)+

··· ···

(s1)+1 (s2)(s2)+1 (d)(d)+1

b31 b16 b15 b0··· ···b31 b16 b15 b0··· ···b31 b16 b15

+ →

+ →

+ →

K-2147483648 K-2 K2147483646

K4294967295 K2 K1

K2147483647 K2 K-2147483647

(FFFFFFFFH) (00000002H) (00000001H)

(7FFFFFFFH) (00000002H) (80000001H)

(FFFFFFFEH) (7FFFFFFEH)(80000000H)

In case of D+(P)

Because the highest bit is 1, the value is negative.

In case of D+(P)(_U)

Because the highest bit is 0, the value is positive.

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 171

6

DADD(P)(_U)

These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the addition result in the device specified by (d).

■Relationship between the flag operation and the sign (positive or negative) of a numeric value

Ladder diagram Structured text

ENO:=DADD(EN,s1,s2,d);

ENO:=DADDP(EN,s1,s2,d);

ENO:=DADD_U(EN,s1,s2,d);

ENO:=DADDP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DADD(P) Addend data or the head device where the

data that is added to another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

DADD(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DADD(P) Addend data or the head device where the

data that is added to another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

DADD(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) DADD(P) Head device for storing the operation result  32-bit signed binary ANY32_S

DADD(P)_U  32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.

SM8020 Zero When the operation result is 0, the zero flag is turned ON.

SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.

(s1) (s2) (d)

b0

567890 (BIN)

(s1)

123456 (BIN) 691346 (BIN)+

··· ···

(s1)+1 (s2)(s2)+1 (d)(d)+1

b31 b16 b15 b0··· ···b31 b16 b15 b0··· ···b31 b16 b15

Zero Flag

-2, -1, 0, -2147483648

Borrow flag

Zero Flag

2147483647, 0, 1, 2

Carry flagZero Flag

 -1, 0, 1

The most significant
bit of data becomes "1".

The most significant
bit of data becomes "0".

172
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Precautions

■When DADD instruction is used
When specifying word devices, a device for the lower-order 16-bits is specified first, and then a word device with the next

device number is set for the higher-order 16 bits. To prevent number overlap, it is recommended to always specify an even

number.

■When specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the addition result

changes in every operation cycle if a continuous operation type ADD instruction is used.

■Difference between DADD(P) instruction, D+(P) instruction, and DINC(P) instruction in a

program for adding "+1"
When DADD(P) instruction is used to add 1 to the contents of D0 every time X1 turns from OFF to ON, DADD(P) instruction is

similar to D+(P) instruction and DINC(P) instruction described later except for the contents shown in the table below.

Operation error

There is no operation error.

DADD(P) instruction D+(P) instruction, DINC(P) instruction

Flag (zero, borrow or carry) Operates Does not operate

Operation

result

(s)+1=(d) +2147483647  0  +1  +2 … +2147483647  -2147483648  -2147483647 …

DADD D0 K25 D0
X1

(D0)+25 → (D0)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 173

6

Subtracting 32-bit binary data

D-(P)(_U) instruction and DSUB(P)(_U) instruction can be used for subtraction of 32-bit binary data.

D-(P)(_U) [using two operands]

These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device

specified by (s), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device

specified by (s), and store the subtraction result in the device specified by (d).

 � When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) D-(P) Subtrahend data or the head device where the

data to be subtracted from another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

D-(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) D-(P) Head device where the data from which

another is to be subtracted is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

D-(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

b0

567890 (BIN)

(d)

123456 (BIN) 444434 (BIN)-

··· ···

(d)+1 (s)(s)+1 (d)(d)+1

b31 b16 b15 b0··· ···b31 b16 b15 b0··· ···b31 b16 b15

- →

- →

- →K0 K4294967295 K1

(00000000H) (FFFFFFFFH) (00000001H)

- →

K2147483647 K-2 K-2147483647

K0 K1 K4294967295

K-2147483648 K2 K2147483646

(00000000H) (00000001H) (FFFFFFFFH)

(80000000H) (00000002H) (7FFFFFFEH)

(FFFFFFFEH) (80000001H)(7FFFFFFFH)

In case of D-(P)

Because the highest bit is 1, the value is negative.

In case of D-(P)(_U)

Because the highest bit is 0, the value is positive.

174
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

D-(P)(_U) [using three operands]

These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the subtraction result in the device specified by (d).

 � When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DMINUS(EN,s1,s2,d);

ENO:=DMINUSP(EN,s1,s2,d);

ENO:=DMINUS_U(EN,s1,s2,d);

ENO:=DMINUSP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) D-(P) Minuend data or the head device where the

data from which another is to be subtracted is

stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

D-(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) D-(P) Subtrahend data or the head device where the

data to be subtracted from another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

D-(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) D-(P) Head device for storing the operation result  32-bit signed binary ANY32_S

D-(P)_U  32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

b0

567890 (BIN)

(s1)

123456 (BIN) 444434 (BIN)-

··· ···

(s1)+1 (s2)(s2)+1 (d)(d)+1

b31 b16 b15 b0··· ···b31 b16 b15 b0··· ···b31 b16 b15

- →

- →

- →K0 K4294967295 K1

(00000000H) (FFFFFFFFH) (00000001H)

- →

K2147483647 K-2 K-2147483647

K0 K1 K4294967295

K-2147483648 K2 K2147483646

(00000000H) (00000001H) (FFFFFFFFH)

(80000000H) (00000002H) (7FFFFFFEH)

(FFFFFFFEH) (80000001H)(7FFFFFFFH)

In case of D-(P)

Because the highest bit is 1, the value is negative.

In case of D-(P)(_U)

Because the highest bit is 0, the value is positive.

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 175

6

DSUB(P)(_U)

These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the subtraction result in the device specified by (d).

■Relationship between the flag operation and the sign (positive or negative) of a numeric value

Ladder diagram Structured text

ENO:=DSUB(EN,s1,s2,d);

ENO:=DSUBP(EN,s1,s2,d);

ENO:=DSUB_U(EN,s1,s2,d);

ENO:=DSUBP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DSUB(P) Subtrahend data or the head device where the

data to be subtracted from another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

DSUB(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DSUB(P) Subtrahend data or the head device where the

data to be subtracted from another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

DSUB(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) DSUB(P) Head device for storing the operation result  32-bit signed binary ANY32_S

DSUB(P)_U  32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.

SM8020 Zero When the operation result is 0, the zero flag is turned ON.

SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.

(s1) (s2) (d)

b0

567890 (BIN)

(s1)

123456 (BIN) 444434 (BIN)-

··· ···

(s1)+1 (s2)(s2)+1 (d)(d)+1

b31 b16 b15 b0··· ···b31 b16 b15 b0··· ···b31 b16 b15

Zero Flag

-2, -1, 0, -2147483648

Borrow flag

Zero Flag

2147483647, 0, 1, 2

Carry flagZero Flag

 -1, 0, 1

The most significant
bit of data becomes "1".

The most significant
bit of data becomes "0".

176
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Precautions

■When the DSUB instruction is used
When specifying word devices, a device is specified for the lower-order 16-bits first, and then a word device with the next

device number is set for the higher-order 16 bits. To prevent number overlap, it is recommended to always specify an even

number.

■When specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the subtraction result

changes in every operation cycle if a continuous operation type SUB instruction is used.

■Difference between DSUB(P) instruction, D-(P) instruction, and DDEC(P) instruction in a

program for subtracting "-1"
When DSUB(P) instruction is used to subtract 1 from the contents of D0 every time X1 turns from OFF to ON, SUB(P)

instruction is similar to D-(P) instruction and DDEC(P) instruction described later except for the contents shown in the table

below:

Operation error

There is no operation error.

DSUB(P) instruction D-(P) instruction, DDEC(P) instruction

Flag (zero, borrow or carry) Operates Does not operate

Operation

result

(s)-1=(d) -2147483648  0  -1  -2 … -2147483648  +2147483647  +2147483646 …

DSUB D0 K25 D0
X1

(D0)-25 → (D0)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 177

6

Multiplying 16-bit binary data

*(P)(_U) instruction and MUL(P)(_U) instruction can be used for multiplication of 16-bit binary data.

*(P)(_U)

These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the multiplication result in the device specified by (d).

 � When (d) is a bit device, lower-order bit is specified first.

Ex.

Multiplication result when (d) is a bit device

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) *(P) Multiplicand data or the device where the data

to be multiplied by another is stored

-32768 to +32767 16-bit signed binary ANY16

*(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) *(P) Multiplier data or the device where the data by

which another is to be multiplied is stored

-32768 to +32767 16-bit signed binary ANY16

*(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) *(P) Head device for storing the operation result  32-bit signed binary ANY32

*(P)_U 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

� K1 ... Lower 4 bits (b0 to b3)

� K4 ... Lower 16 bits (b0 to b15)

� K8 ... Lower 32 bits (b0 to b31)

Error code

(SD0/SD8067)

Description

2820 The range of the device specified by (d) exceeds said device range.

(s1) (s2) (d)

b15 b0

5678 (BIN)

(s1) (s2)

1234 (BIN) 7006652 (BIN)×

··· b15 b0···

(d)(d)+1

b0··· ···b31 b16 b15

178
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

MUL(P)(_U)

These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

*1 The MUL instruction is not supported by the ST language. Use MUL of the standard function.

Page 779 MUL(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the multiplication result in the device specified by (d).

Ladder diagram Structured text*1

ENO:=MULP(EN,s1,s2,d); ENO:=MUL_U(EN,s1,s2,d);

ENO:=MULP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) MUL(P) Multiplicand data or the device where the data

to be multiplied by another is stored

-32768 to +32767 16-bit signed binary ANY16_S

MUL(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) MUL(P) Multiplier data or the device where the data by

which another is to be multiplied is stored

-32768 to +32767 16-bit signed binary ANY16_S

MUL(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) MUL(P) Head device for storing the operation result  32-bit signed binary ANY32_S

MUL(P)_U 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

b15 b0

5678 (BIN)

(s1) (s2)

1234 (BIN) 7006652 (BIN)×

··· b15 b0···

(d)(d)+1

b0··· ···b31 b16 b15

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 179

6

 � Nibble can be specified ranging from K1 to K8 for (d).

Ex.

For example, when K2 is specified, only the lower-order 8 bits can be obtained out of the product (32 bits).

■Related flag

Operation error

Device Name Description

SM8304 Zero When the operation result is 0, the zero flag is turned ON.

Error code

(SD0/SD8067)

Description

2820 The range of the device specified by (d) exceeds said device range.

MUL K53 K15 K2Y0

×

K15(000FH)

K53(0035H)

K795(031BH)

0 0 0 … 0 0 1 1 0 0 0 1 1 0 1 1

 Y27 Y26 Y25 … Y13 Y12 Y11 Y10 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

(d)(s2)(s1)

(s1)

(s2)

(d)

Command
input

When command contact is ON

K2Y0 operation result is output.Not output

Sign bit (0: Positive, 1: Negative)

180
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Dividing 16-bit binary data

/(P)(_U) instruction and DIV(P)(_U) instruction can be used for division of 16-bit binary data.

/(P)(_U)

These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the division result in the device specified by (d).

 � For the division result, 32-bit is used for word device to store the quotient and remainder and 16-bit is used for bit device to

store quotient only.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) /(P) Dividend data or the device where the data to

be divided by another is stored

-32768 to +32767 16-bit signed binary ANY16

/(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) /(P) Divisor data or the device where the data by

which another is to be divided is stored

-32768 to +32767 16-bit signed binary ANY16

/(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) /(P) Head device for storing the operation result  32-bit signed binary ANY16_S_ARRAY

(Number of elements:

2)

/(P)_U 32-bit unsigned binary ANY16_U_ARRAY

(Number of elements:

2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

� Quotient…… Stored in the lower 16 bits.

� Remainder…… Stored in the upper 16 bits. (This data can be stored for word device only.)

Error code

(SD0/SD8067)

Description

2820 The range of the device specified by (d) exceeds the range of said device.

3400 0 is specified for (s2) value.

3403 The operation result exceeds 32767, in case of signed operation.

(s1) (s2) (d)

b15 b0

5678 (BIN)

(s1) (s2)

1234 (BIN) 4 (BIN) 742 (BIN)÷

··· b15 b0···

(d)

b0··· ···b15 b0 b15

(d)+1

Quotient Remainder

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 181

6

DIV(P)(_U)

These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

*1 The DIV instruction is not supported by the ST language. Use DIV of the standard function.

Page 783 DIV(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the division result in the device specified by (d).

 � Two devices in total starting from the one specified by (d) are used to store the division result. Make sure that these two

devices are not used for another control.

■Related flag

Ladder diagram Structured text*1

ENO:=DIVP(EN,s1,s2,d); ENO:=DIV_U(EN,s1,s2,d);

ENO:=DIVP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DIV(P) Dividend data or the device where the data to

be divided by another is stored

-32768 to +32767 16-bit signed binary ANY16_S

DIV(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) DIV(P) Divisor data or the device where the data by

which another is to be divided is stored

-32768 to +32767 16-bit signed binary ANY16_S

DIV(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) DIV(P) Head device for storing the operation result

(quotient, remainder)

 32-bit signed binary ANY16_S_ARRAY

(Number of elements:

2)

DIV(P)_U 32-bit unsigned binary ANY16_U_ARRAY

(Number of elements:

2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

� Quotient…… Stored in the lower 16 bits.

� Remainder…… Stored in the upper 16 bits.

Device Name Description

SM700 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.

SM8304 Zero When the operation result is 0, the zero flag is turned ON.

SM8306 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.

(s1) (s2) (d)

b15 b0

5678 (BIN)

(s1) (s2)

1234 (BIN) 4 (BIN) 742 (BIN)÷

··· b15 b0···

(d)

b0··· ···b15 b0 b15

(d)+1

Quotient Remainder

182
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Precautions

■Operation result
 � The most significant bit of the quotient and remainder indicates the sign (positive: 0, negative: 1), respectively.

 � The quotient is negative when either (s1) or (s2) is negative. The remainder is negative when the (s1) is negative.

■Device specified by (d)
 � The remainder is not obtained when a bit device is specified with nibble specification.

Operation error

Error code

(SD0/SD8067)

Description

2820 The range of the device specified by (d) exceeds the range of said device.

3400 0 is specified for (s2) value.

3403 The data type of the data setting is signed data and the operation result exceeds 32767.

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 183

6

Multiplying 32-bit binary data

D*(P)(_U) instruction and DMUL(P)(_U) instruction can be used for multiplication of 32-bit binary data.

D*(P)(_U)

These instructions multiply the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions multiply the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device

specified by (s2), and store the multiplication result in the device specified by (d).

 � When (d) is a bit device, only the lower 32 bits of the multiplication result are stored and the upper 32 bits cannot be

specified. If the upper 32 bits data of the multiplication operation result are required, temporarily store the result in a word

device, and transfer the data stored in word device ((d)+2) and ((d)+3) to the specified bit devices.

Ex.

Multiplication result when (d) is a bit device

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) D*(P) Multiplicand data or the head device where the

data to be multiplied by another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

D*(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) D*(P) Multiplier data or the head device where the

data by which another is to be multiplied is

stored

-2147483648 to +2147483647 32-bit signed binary ANY32

D*(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) D*(P) Head device for storing the operation result  64-bit signed binary ANY32_S_ARRAY

(Number of elements:

2)

D*(P)_U 64-bit unsigned binary ANY32_U_ARRAY

(Number of elements:

2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

� K1 ... Lower 4 bits (b0 to b3)

� K4 ... Lower 16 bits (b0 to b15)

� K8 ... Lower 32 bits (b0 to b31)

(s1) (s2) (d)

b0

567890 (BIN)

(s1)

123456 (BIN) 70109427840 (BIN)×

··· ···

(s1)+1 (s2)(s2)+1 (d)+2(d)+3

b31 b16 b15 b0··· ···b31 b16 b15 b32··· ···b63 b48 b47

(d)(d)+1

b0··· ···b31 b16 b15

184
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Operation error

Error code

(SD0/SD8067)

Description

2820 The range of the device specified by (d) exceeds the range of said device.

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 185

6

DMUL(P)(_U)

These instructions multiply the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions multiply the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device

specified by (s2), and store the multiplication result in the device specified by (d).

 � When nibble is specified ranging from K1 to K8 for (d), the result is obtained only for the lower-order 32 bits, and is not

obtained for the higher-order 32 bits. Transfer the data to word devices once, then execute the operation.

■Related flag

Ladder diagram Structured text

ENO:=DMUL(EN,s1,s2,d);

ENO:=DMULP(EN,s1,s2,d);

ENO:=DMUL_U(EN,s1,s2,d);

ENO:=DMULP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DMUL(P) Multiplicand data or the head device where the

data to be multiplied by another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

DMUL(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DMUL(P) Multiplier data or the head device where the

data by which another is to be multiplied is

stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

DMUL(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) DMUL(P) Head device for storing the operation result  64-bit signed binary ANY32_S_ARRAY

(Number of elements:

2)

DMUL(P)_U 64-bit unsigned binary ANY32_U_ARRAY

(Number of elements:

2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

SM8304 Zero When the operation result is 0, the zero flag is turned ON.

(s1) (s2) (d)

b0

567890 (BIN)

(s1)

123456 (BIN) 70109427840 (BIN)×

··· ···

(s1)+1 (s2)(s2)+1 (d)+2(d)+3

b31 b16 b15 b0··· ···b31 b16 b15 b32··· ···b63 b48 b47

(d)(d)+1

b0··· ···b31 b16 b15

DMUL D50 K150 D100
(D51,D50) (D103,D102,D101,D100)
K100 × K150 → K15000

DMOV D100 K8Y0
D100 → Y17 to Y0

DMOV D102 K8Y40
D102 → Y57 to Y40

(s2) (d)(s1)
Command
input

D101 → Output to Y37 to Y20

D103 → Output to Y77 to Y60

186
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Precautions

 � Even if word devices are used, the operation result (64 bits binary data) cannot be monitored at one time. In such a case, a

floating point operation is recommended.

Operation error

Error code

(SD0/SD8067)

Description

2820 The range of the device specified by (d) exceeds the range of said device.

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 187

6

Dividing 32-bit binary data

D/(P)(_U) instruction and DDIV(P)(_U) instruction can be used for division of 32-bit binary data.

D/(P)(_U)

These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device

specified by (s2), and store the division result in the device specified by (d).

 � For the division result of word device, 64-bit binary is used to store the quotient and remainder. For bit device, 32-bit binary

is used to store quotient only.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) D/(P) Dividend data or the head device where the

data to be divided by another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

D/(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) D/(P) Divisor data or the head device where the data

by which another is to be divided is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

D/(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) D/(P) Head device for storing the operation result  64-bit signed binary ANY32_ARRAY

(Number of elements:

2)
D/(P)_U 64-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Error code

(SD0/SD8067)

Description

2820 The range of the device specified by (d) exceeds the range of said device.

3400 0 is specified for (s2) value.

3403 Signed operation is performed and the operation result exceeds 2147483647.

(s1) (s2) (d)

567890 (BIN) 123456 (BIN) 4 (BIN)÷

(d)(d)+1

b0··· ···b31 b16 b15

(s2)(s2)+1

b0··· ···b31 b16 b15

(s1)(s1)+1

b0··· ···b31 b16 b15

74066 (BIN)

(d)+2(d)+3

b0··· ···b31 b16 b15

188
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

DDIV(P)(_U)

These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device

specified by (s2), and store the division result in the device specified by (d).

■Related flag

Precautions

■Operation result
 � The most significant bit of the quotient and remainder indicates the sign (positive: 0, negative: 1), respectively.

 � The quotient is negative when either (s1) or (s2) is negative. The remainder is negative when the (s1) is negative.

■Device specified by (d)
 � The remainder is not obtained when a bit device is specified with nibble specification.

Ladder diagram Structured text

ENO:=DDIV(EN,s1,s2,d);

ENO:=DDIVP(EN,s1,s2,d);

ENO:=DDIV_U(EN,s1,s2,d);

ENO:=DDIVP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DDIV(P) Dividend data or the head device where the

data to be divided by another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

DDIV(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DDIV(P) Divisor data or the head device where the data

by which another is to be divided is stored

-2147483648 to +2147483647 32-bit signed binary ANY32_S

DDIV(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) DDIV(P) Head device for storing the operation result  64-bit signed binary ANY32_S_ARRAY

(Number of elements:

2)

DDIV(P)_U 64-bit unsigned binary ANY32_U_ARRAY

(Number of elements:

2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

SM700 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.

SM8304 Zero When the operation result is 0, the zero flag is turned ON.

SM8306 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.

(s1) (s2) (d)

567890 (BIN) 123456 (BIN) 4 (BIN)÷

(d)(d)+1

b0··· ···b31 b16 b15

(s2)(s2)+1

b0··· ···b31 b16 b15

(s1)(s1)+1

b0··· ···b31 b16 b15

74066 (BIN)

(d)+2(d)+3

b0··· ···b31 b16 b15

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 189

6

Operation error

Error code

(SD0/SD8067)

Description

2820 The range of the device specified by (d) exceeds the range of said device.

3400 0 is specified for (s2) value.

3403 Signed operation is performed and the operation result exceeds 2147483647.

190
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Adding BCD 4-digit data

B+(P) [using two operands]

These instructions add the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified by

(s), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified

by (s), and store the addition result in the device specified by (d).

 � If the addition result exceeds 9999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Addend data or the device where the data that is added to

another is stored

0 to 9999 BCD 4-digit ANY16

(d) Device where the data to which another is added is stored 0 to 9999 BCD 4-digit ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD/SD8067)

Description

3405 BCD data in the device specified by (s) is outside of the valid range (0 to 9999).

BCD data in the device specified by (d) is outside of the valid range (0 to 9999).

(s) (d)

(d) (s) (d)

5 6 7 8 1 2 3 4 6 9 1 2+

6 4 3 2 3 5 8 3 0 0 1 5+

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 191

6

B+(P) [using three operands]

These instructions add the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device specified by

(s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device specified

by (s2), and store the addition result in the device specified by (d).

 � If the addition result exceeds 9999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

Operation error

Ladder diagram Structured text

ENO:=BPLUS(EN,s1,s2,d);

ENO:=BPLUSP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Augend data or the device where the data to which

another is added is stored

0 to 9999 BCD 4-digit ANY16

(s2) Addend data or the device where the data that is added to

another is stored

0 to 9999 BCD 4-digit ANY16

(d) Device for storing the operation result 0 to 9999 BCD 4-digit ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Error code

(SD0/SD8067)

Description

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

(s1) (s2) (d)

(s1) (s2) (d)

5 6 7 8 1 2 3 4 6 9 1 2+

6 4 3 2 3 5 8 3 0 0 1 5+

192
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Subtracting BCD 4-digit data

B-(P) [using two operands]

These instructions subtract the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified

by (s), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the BCD 4-digit data in the device specified by (s) and the BCD 4-digit data in the device

specified by (d), and store the subtraction result in the device specified by (d).

 � If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Subtrahend data or the device where the data to be

subtracted from another is stored

0 to 9999 BCD 4-digit ANY16

(d) Device where the data from which another is to be

subtracted is stored

0 to 9999 BCD 4-digit ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3405 BCD data in the device specified by (s) is outside of the valid range (0 to 9999).

BCD data in the device specified by (d) is outside of the valid range (0 to 9999).

(s) (d)

(d) (s) (d)

0 6 7 8 0 2 3 4 0 4 4 4-

0 is entered.

0 0 0 1 0 0 0 3 9 9 9 8-

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 193

6

B-(P) [using three operands]

These instructions subtract the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device

specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device

specified by (s2), and store the subtraction result in the device specified by (d).

 � If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

Operation error

Ladder diagram Structured text

ENO:=BMINUS(EN,s1,s2,d);

ENO:=BMINUSP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Minuend data or the device where the data from which

another is to be subtracted is stored

0 to 9999 BCD 4-digit ANY16

(s2) Subtrahend data or the device where the data to be

subtracted from another is stored

0 to 9999 BCD 4-digit ANY16

(d) Device for storing the operation result 0 to 9999 BCD 4-digit ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Error code

(SD0/SD8067)

Description

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

(s1) (s2) (d)

(s1) (s2) (d)

0 6 7 8 0 2 3 4 0 4 4 4-

0 is entered.

0 0 0 1 0 0 0 3 9 9 9 8-

194
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Adding BCD 8-digit data

DB+(P) [using two operands]

These instructions add the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified by

(s), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified

by (s), and store the addition result in the device specified by (d).

 � If the addition result exceeds 99999999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Addend data or the head device where the data that is

added to another is stored

0 to 99999999 BCD 8-digit ANY32

(d) Head device where the data to which another is added is

stored

0 to 99999999 BCD 8-digit ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3405 BCD data in the device specified by (s) is outside of the valid range (0 to 99999999).

BCD data in the device specified by (d) is outside of the valid range (0 to 99999999).

(s) (d)

(d)(d)+1 (s)(s)+1 (d)(d)+1

+ 00 3 2 3 4 5 690 8 7 1 0 6 8 01 1 9 4 5 2 4

0 is entered.

(Upper 4 digits) (Lower 4 digits)(Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits)

10 6 5 4 3 2 199 0 0 0 0 0 0 00 6 5 4 3 2 1+

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 195

6

DB+(P) [using three operands]

These instructions add the BCD 8-digit data in the device specified by (s1) and the BCD 8-digit data in the device specified by

(s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the BCD 8-digit data in the device specified by (s1) and the BCD 8-digit data in the device specified

by (s2), and store the addition result in the device specified by (d).

 � If the addition result exceeds 99999999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

Operation error

Ladder diagram Structured text

ENO:=DBPLUS(EN,s1,s2,d);

ENO:=DBPLUSP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Augend data or the head device where the data to which

another is added is stored

0 to 99999999 BCD 8-digit ANY32

(s2) Addend data or the head device where the data that is

added to another is stored

0 to 99999999 BCD 8-digit ANY32

(d) Head device for storing the operation result 0 to 99999999 BCD 8-digit ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Error code

(SD0/SD8067)

Description

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

(s1) (s2) (d)

(s1)(s1)+1 (s2)(s2)+1 (d)(d)+1

+ 10 2 3 4 5 6 765 7 8 9 1 2 3 85 0 2 3 6 9 0

0 is entered.

(Upper 4 digits) (Lower 4 digits)(Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits)

10 6 5 4 3 2 199 0 0 0 0 0 0 00 6 5 4 3 2 1+

196
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Subtracting BCD 8-digit data

DB-(P) [using two operands]

These instructions subtract the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified

by (s), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the BCD 8-digit data specified by (d) and the BCD 8-digit data specified by (s), and store the

results in the device specified by (d).

 � If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Subtrahend data or the device where the data to be

subtracted from another is stored

0 to 99999999 BCD 8-digit ANY32

(d) Minuend data or the device where the data from which

another is to be subtracted is stored

0 to 99999999 BCD 8-digit ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3405 BCD data in the device specified by (s) is outside of the valid range (0 to 99999999).

BCD data in the device specified by (d) is outside of the valid range (0 to 99999999).

(s) (d)

(d)(d)+1 (s)(s)+1 (d)(d)+1

- 00 3 2 3 4 5 690 8 7 1 0 6 8 90 5 4 7 6 1 2

0 is entered.

(Upper 4 digits) (Lower 4 digits)(Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits)

21 3 4 5 6 7 921 3 4 5 6 7 8 99 9 9 9 9 9 9-

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 197

6

DB-(P) [using three operands]

These instructions subtract the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the

results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the

results in the device specified by (d).

 � If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

Operation error

Ladder diagram Structured text

ENO:=DBMINUSP(EN,s1,s2,d);

ENO:=DBMINUS(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Minuend data or the head device where the data from

which another is to be subtracted is stored

0 to 99999999 BCD 8-digit ANY32

(s2) Subtrahend data or the head device where the data to be

subtracted from another is stored

0 to 99999999 BCD 8-digit ANY32

(d) Head device for storing the operation result 0 to 99999999 BCD 8-digit ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Error code

(SD0/SD8067)

Description

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

(s1) (s2) (d)

(s1)(s1)+1 (s2)(s2)+1 (d)(d)+1

- 10 2 3 4 5 6 765 7 8 9 1 2 3 55 5 5 4 5 5 6

0 is entered.

(Upper 4 digits) (Lower 4 digits)(Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits)

21 3 4 5 6 7 921 3 4 5 6 7 8 99 9 9 9 9 9 9-

198
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Multiplying BCD 4-digit data

B*(P)

These instructions multiply the BCD 4-digit data specified by (s1) and the BCD 4-digit data specified by (s2), and store the

results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions multiply the BCD 4-digit data specified by (s1) and the BCD 4-digit data specified by (s2), and store the

multiplication results in the device specified by (d).

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Multiplicand data or the device where the data to be

multiplied by another is stored

0 to 9999 BCD 4-digit ANY16

(s2) Multiplier data or the device where the data by which

another is to be multiplied is stored

0 to 9999 BCD 4-digit ANY16

(d) Head device for storing the operation result  BCD 8-digit ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Error code

(SD0/SD8067)

Description

2820 Device specified by (d) exceeds the allowable device range

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

(s1) (s2) (d)

(s1) (s2)

5 6 7 8 0 8 7 6 0×

(d)+1

4 9 7

(d)

3 9 2 8

0 is entered.

(Upper 4 digits) (Lower 4 digits)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 199

6

Dividing BCD 4-digit data

B/(P)

These instructions divide the BCD 4-digit data specified by (s1) by the BCD 4-digit data specified by (s2), and store the results

in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions divide the BCD 4-digit data specified by (s1) by the BCD 4-digit data specified by (s2), and store the

results of division in the device specified by (d).

 � The results of division are stored as quotient and remainder using 32 bit(s).

 � If (d) is specified by bit device, remainder of division results is not stored.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Dividend data or the device where the data to be divided

by another is stored

0 to 9999 BCD 4-digit ANY16

(s2) Divisor data or the device where the data by which

another is to be divided is stored

0 to 9999 BCD 4-digit ANY16

(d) Head device for storing the operation result  BCD 8-digit ANY16_ARRAY

(Number of elements:

2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

� Quotient (BCD 4-digit): Stored in lower 16 bit(s).

� Remainder (BCD 4-digit): Stored in upper 16 bit(s).

Error code

(SD0/SD8067)

Description

2820 Device specified by (d) exceeds the allowable device range

3400 0 is specified for (s2) value.

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

(s1) (s2) (d)

(s1) (s2)

5 6 7 8 0 8 7 6 0÷

(d)

0 0 6 0 4 2 2

(d)+1

0 is entered.

Quotient Remainder

200
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Multiplying BCD 8-digit data

DB*(P)

These instructions multiply the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the

results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions multiply the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the

multiplication results in the device specified by (d).

 � When (d) is a bit device, only the lower 8 nibbles (32 bits) of the multiplication result are stored, and the higher 8 nibbles (32

bits) cannot be specified.

Ex.

Multiplication result when (d) is a bit device

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Multiplicand data or the head device where the data to be

multiplied by another is stored

0 to 99999999 BCD 8-digit ANY32

(s2) Multiplier data or the head device where the data by which

another is to be multiplied is stored

0 to 99999999 BCD 8-digit ANY32

(d) Head device for storing the operation result  BCD 16-digit ANY32_ARRAY

(Number of elements:

2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

� K1 ... Lower 1 nibble (b0 to b3)

� K4 ... Lower 4 nibbles (b0 to b15)

� K8 ... Lower 8 nibbles (b0 to b31)

Error code

(SD0/SD8067)

Description

2820 Device specified by (d) exceeds the allowable device range

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

(s1) (s2) (d)

(s1)+1

9 9 9 9

(s1)

9 9 9

(s2)+1

99 9 9

(s2)

9 9 9 99 ×

(d)+1

0 0 0 0

(d)

0 0 0 1

(d)+3

9 9 9 9

(d)+2

9 9 9 8

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 201

6

Dividing BCD 8-digit data

DB/(P)

These instructions divide the BCD 8-digit data specified by (s1) by the BCD 8-digit data specified by (s2), and store the results

in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions divide the BCD 8-digit data specified by (s1) by the BCD 8-digit data specified by (s2), and store the

results of division in the device specified by (d).

 � The results of division are stored as quotient and remainder using 64 bit(s) binary.

 � If (d) is specified by bit device, remainder of division results is not stored.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Dividend data or the head device where the data to be

divided by another is stored

0 to 99999999 BCD 8-digit ANY32

(s2) Divisor data or the head device where the data by which

another is to be divided is stored

0 to 99999999 BCD 8-digit ANY32

(d) Head device for storing the operation result  BCD 16-digit ANY32_ARRAY

(Number of elements:

2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

� Quotient (BCD 8-digit): Stored in lower 32 bit(s).

� Remainder (BCD 8-digit): Stored in upper 32 bit(s).

Error code

(SD0/SD8067)

Description

2820 Device specified by (d) exceeds the allowable device range

3400 0 is specified for (s2) value.

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

(s1) (s2) (d)

(s1)+1

5 6 7 8

(s1)

9 1 2

(s2)+1

10 2 3

(s2)

4 5 6 73 ÷

0 1 2 3 3 6 0 8

(d)+1

0 0 0 0

(d)

0 0 4 5

(d)+3 (d)+2

0 is entered.

(Lower 4 digits)(Upper 4 digits)(Lower 4 digits)(Upper 4 digits) RemainderQuotient

202
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Adding 16-bit binary block data

BK+(P)(_U)

These instructions add (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit binary

data from the device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) BK+(P) Head device where the data to which another

data is added is stored

-32768 to +32767 16-bit signed binary ANY16

BK+(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) BK+(P) Addend data or the head device where the

data that is added to another is stored

-32768 to +32767 16-bit signed binary ANY16

BK+(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) BK+(P) Head device for storing the operation result  16-bit signed binary ANY16

BK+(P)_U  16-bit unsigned binary ANY16_U

(n) Number of addition data 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(n)             

(s1) (s2) (d) (n)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 203

6

Processing details

 � These instructions add (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit binary

data from the device specified by (s2), and store the results of addition in the device specified by (d).

 � Block addition is performed in units of 16-bits.

Ex.

If device is specified for (s2) (signed)

If constant is specified for (s2) (signed)

 � If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.

Operation error

If signed is specified If unsigned is specified

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s2) and (d).)

··
· +

1234 (BIN)

4567 (BIN)

-2000 (BIN)

-1234 (BIN)

4000 (BIN)

(n) (n) (n)

4000 (BIN)

1234 (BIN)

-1234 (BIN)

5000 (BIN)

4321 (BIN)

5234 (BIN)

5801 (BIN)

-3234 (BIN)

3766 (BIN)

8321 (BIN)

(s1)

(s1)+1

(s1)+(n-2)

(s1)+(n-1)

(s1)+2

··
·

(s2)

(s2)+1

(s2)+(n-2)

(s2)+(n-1)

(s2)+2

··
·

(d)

(d)+1

(d)+(n-2)

(d)+(n-1)

(d)+2

···b15 b0 ···b15 b0 b15 b0···

··
·

1234 (BIN)

4567 (BIN)

-2000 (BIN)

-1234 (BIN)

4000 (BIN)

(n) (n)

5555 (BIN)

8888 (BIN)

2321 (BIN)

3087 (BIN)

8321 (BIN)

(s1)

(s1)+1

(s1)+(n-2)

(s1)+(n-1)

(s1)+2

··
·

(d)

(d)+1

(d)+(n-2)

(d)+(n-1)

(d)+2

···b15 b0

···b15 b0

b15 b0···

4321 (BIN)(s2)+

K32767
(7FFFH)

K2
(0002H)

K-32767
(8001H)

K-32767
(8001H)

K-2
(FFFEH)

+

+
K32767
(7FFFH)

K65535
(FFFFH)

K1
(0001H)

K0
(0000H)

+

204
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Subtracting 16-bit binary block data

BK-(P)(_U)

These instructions subtract (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit

binary data from the device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) BK-(P) Head device where the data from which

another is to be subtracted is stored

-32768 to +32767 16-bit signed binary ANY16

BK-(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(s2) BK-(P) Subtrahend data or the head device where the

data to be subtracted from another is stored

-32768 to +32767 16-bit signed binary ANY16

BK-(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) BK-(P) Head device for storing the operation result  16-bit signed binary ANY16

BK-(P)_U  16-bit unsigned binary ANY16_U

(n) Number of subtraction data 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(n)             

(s1) (s2) (d) (n)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 205

6

Processing details

 � These instructions subtract (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit

binary data from the device specified by (s2), and store the subtraction results in the device specified by (d).

 � Block subtraction is performed in 16-bit units.

Ex.

If device has been specified for (s2)

If constant is specified for (s2)

 � If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.

Operation error

If signed is specified If unsigned is specified

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s2) and (d).)

··
· -

8765 (BIN)

8888 (BIN)

9325 (BIN)

5000 (BIN)

4352 (BIN)

(n) (n) (n)

1234 (BIN)

5678 (BIN)

9876 (BIN)

4321 (BIN)

4000 (BIN)

7531 (BIN)

3210 (BIN)

-551 (BIN)

679 (BIN)

352 (BIN)

(s1)

(s1)+1

(s1)+(n-2)

(s1)+(n-1)

(s1)+2

··
·

(s2)

(s2)+1

(s2)+(n-2)

(s2)+(n-1)

(s2)+2

··
·

(d)

(d)+1

(d)+(n-2)

(d)+(n-1)

(d)+2

···b15 b0 ···b15 b0 b15 b0···

··
· -

8765 (BIN)

8888 (BIN)

9325 (BIN)

5000 (BIN)

4352 (BIN)

(n) (n)

-115 (BIN)

8 (BIN)

445 (BIN)

-3880 (BIN)

-4528 (BIN)

(s1)

(s1)+1

(s1)+(n-2)

(s1)+(n-1)

(s1)+2

··
·

(d)

(d)+1

(d)+(n-2)

(d)+(n-1)

(d)+2

···b15 b0 b15 b0···

···b15 b0

8880 (BIN)(s2)

K-32767
(8001H)

K2
(0002H)

K32766
(7FFEH)

K32767
(7FFFH)

K-2
(FFFEH)

-

-
K-32767
(8001H)

K0
(0000H)

K1
(0001H)

K65535
(FFFFH)

-

206
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Adding 32-bit binary block data

DBK+(P)(_U)

These instructions add (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit binary

data from the device specified by (s2), and store the results of addition in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) DBK+(P) Head device where the data to which another

is added is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

DBK+(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DBK+(P) Addend data or the head device where the

data that is added to another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

DBK+(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) DBK+(P) Head device for storing the operation result  32-bit signed binary ANY32

DBK+(P)_U  32-bit unsigned binary ANY32_U

(n) Number of addition data 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(n)             

(s1) (s2) (d) (n)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 207

6

Processing details

 � These instructions add (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit binary

data from the device specified by (s2), and store the results of addition in the device specified by (d).

 � Block addition is performed in 32-bit units.

Ex.

If device is specified for (s2) (signed)

If constant is specified for (s2) (signed)

 � Operation is enabled when (s1) or (s2) have been specified by same device as (d) (perfect match). An error occurs if the

device range of (n) point(s) from (s1) or (s2) partially matches (overlaps) the device range of (n) point(s) from (d).

Ex.

If 4 points of the device from (s2) and (d) match

If 4 points of the device from (s2), (d) match partially

 � If the value specified for (n) is 0, processing is not performed.

 � If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.

(1) Because it is a perfect match, operation is possible.

(1) An operation error occurs if they partially match.

If signed is specified If unsigned is specified

···

··
·

··
·

··
·

··
·

··
·

+

20000

60000

-60000

40000

(n)

-30000 (BIN)

40000 (BIN)

-50000 (BIN)

60000 (BIN)

(n)

b31 b0

50000 (BIN)

20000 (BIN)

-10000 (BIN)

-20000 (BIN)

(BIN)

(BIN)

(BIN)

(BIN)

(n)

b31 b0

(s1)(s1)+1,

(s1)+2

(s1)+(2n-1), (s1)+(2n-2)

(s1)+4

(s1)+3,

(s1)+5,

(s2)(s2)+1,

(s2)+2

(s2)+(2n-1), (s2)+(2n-2)

(s2)+4

(s2)+3,

(s2)+5,

··
·

(d)

(d)+2

(d)+4

(d)+1,

(d)+3,

(d)+5,

(d)+(2n-1), (d)+(2n-2)

··· b31 b0···

∙∙∙

∙∙∙ ∙∙∙ ∙∙∙

+

20000

90000

0

110000

(n)

-30000 (BIN)

40000 (BIN)

-50000 (BIN)

60000 (BIN)

(n)

b31 b0

(BIN)

(BIN)

(BIN)

(BIN)

(s1)(s1)+1,

(s1)+2

(s1)+(2n-2)(s1)+(2n-1),

(s1)+4

(s1)+3,

(s1)+5, (s2)+1, (s2)

∙∙∙

(d)

(d)+2

(d)+(2n-2)

(d)+4

(d)+1,

(d)+3,

(d)+5,

(d)+(2n-1),

b31 b0∙∙∙

∙∙∙b31 b0

50000 (BIN)

W1, W0

b31 b0

W3, W2

W5, W4

W7, W6

D1, D0

b31 ······ ···b0

D3, D2

D5, D4

D7, D6

b31

(1)

b0

W1, W0

b31 b0

W3, W2

W5, W4

W7, W6

D1, D0

b31 ······

···

b0

D3, D2

D5, D4

D7, D6

D9, D8

b31

(1)

b0

K2147483647
(7FFFFFFFH)

K2
(00000002H)

K-2147483647
(80000001H)

K-2147483647
(80000001H)

K-2
(FFFFFFFEH)

+

+
K2147483647
(7FFFFFFFH)

K4294967295
(FFFFFFFFH)

K1
(00000001H)

K0
(00000000H)

+

208
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Operation error

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s2) and (d).)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 209

6

Subtracting 32-bit binary block data

DBK-(P)(_U)

These instructions subtract (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit

binary data from the device specified by (s2), and store the results of subtraction in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit

binary data from the device specified by (s2), and store the results of subtraction in the device specified by (d).

 � Block subtraction is performed in 32-bit units.

Ex.

If device is specified for (s2) (signed)

If constant is specified for (s2) (signed)

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) DBK-(P) Head device where the data from which

another is to be subtracted is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

DBK-(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(s2) DBK-(P) Subtrahend data or the head device where the

data to be subtracted from another is stored

-2147483648 to +2147483647 32-bit signed binary ANY32

DBK-(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) DBK-(P) Head device for storing the operation result  32-bit signed binary ANY32

DBK-(P)_U  32-bit unsigned binary ANY32_U

(n) Number of subtraction data 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(n)             

(s1) (s2) (d) (n)

···

··
·

··
·

··
·

··
·

··
·

-

-1000000

30000

54444

1234

(n)

-55555 (BIN)

33333 (BIN)

44444 (BIN)

13579 (BIN)

(n)

b31 b0

44445 (BIN)

3333 (BIN)

-10000 (BIN)

12345 (BIN)

(BIN)

(BIN)

(BIN)

(BIN)

(n)

b31 b0

(s1)(s1)+1,

(s1)+2

(s1)+(2n-2)(s1)+(2n-1),

(s1)+4

(s1)+3,

(s1)+5,

(s2)(s2)+1,

(s2)+2

(s2)+(2n-2)(s2)+(2n-1),

(s2)+4

(s2)+3,

(s2)+5,

··
·

(d)

(d)+2

(d)+(2n-2)

(d)+4

(d)+1,

(d)+3,

(d)+5,

(d)+(2n-1),

··· b31 b0···

∙∙∙

∙∙∙ ∙∙∙ ∙∙∙

-

-109998

90000

69998

70000

(n)

-99999 (BIN)

99999 (BIN)

-59999 (BIN)

79999 (BIN)

(n)

b31 b0

(BIN)

(BIN)

(BIN)

(BIN)

(s1)(s1)+1,

(s1)+2

(s1)+(2n-2)(s1)+(2n-1),

(s1)+4

(s1)+3,

(s1)+5, (s2)+1, (s2)

∙∙∙

(d)

(d)+2

(d)+(2n-2)

(d)+4

(d)+1,

(d)+3,

(d)+5,

(d)+(2n-1),

b31 b0∙∙∙

∙∙∙b31 b0

9999 (BIN)

210
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

 � Operation is enabled when (s1) or (s2) have been specified by same device as (d) (perfect match). An error occurs if the

device range of (n) point(s) from (s1) or (s2) partially matches (overlaps) the device range of (n) point(s) from (d).

Ex.

If 4 points of the device from (s2) and (d) match

If 4 points of the device from (s2), (d) match partially

 � If the value specified for (n) is 0, processing is not performed.

 � If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.

Operation error

(1) Because it is a perfect match, operation is

possible.

(1) An operation error occurs if they partially

match.

If signed is specified If unsigned is specified

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s2) and (d).)

W1, W0

b31 b0

W3, W2

W5, W4

W7, W6

D1, D0

b31 ······ ···b0

D3, D2

D5, D4

D7, D6

b31

(1)

b0

W1, W0

b31 b0

W3, W2

W5, W4

W7, W6

D1, D0

b31 ······

···

b0

D3, D2

D5, D4

D7, D6

D9, D8

b31

(1)

b0

K2147483647
(7FFFFFFFH)

K2
(00000002H)

K-2147483647
(80000001H)

K-2147483647
(80000001H)

-

-
K2147483647
(7FFFFFFFH)

K-2
(FFFFFFFEH)

K4294967295
(FFFFFFFFH)

K1
(00000001H)

-
K0
(00000000H)

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 211

6

Incrementing 16-bit binary data

INC(P)(_U)

These instructions add +1 to the device (16-bit binary data) specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add +1 to the device (16-bit binary data) specified by (d).

 � If INC(P) instruction is executed when contents of device specified by (d) is 32767, -32768 is stored in the device specified

by (d). (If signed is specified)

 � If INC(P)_U instruction is executed when contents of device specified by (d) is 65535, 0 is stored in the device specified by

(d). (If unsigned is specified)

 � Flags (zero, carry and borrow) are not activated at this time.

Precautions

Note that data is incremented in every operation cycle in a continuous operation type (INC) instruction.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=INC(EN,d);

ENO:=INCP(EN,d);

ENO:=INC_U(EN,d);

ENO:=INCP_U(EN,d);

Operand Description Range Data type Data type (label)

(d) INC(P) Device to be incremented by +1 -32768 to +32767 16-bit signed binary ANY16_S

INC(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

(d) (d)

5678 (BIN) 5679 (BIN)+1

b15 b0··· b15 b0···

212
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Decrementing 16-bit binary data

DEC(P)(_U)

These instructions subtract 1 from the device (16-bit binary data) specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions decrement device (16-bit binary data) specified by (d) by 1.

 � If DEC(P) instruction is executed when contents of device specified by (d) is -32768, 32767 is stored in the device specified

by (d). (If signed is specified)

 � If DEC(P)_U instruction is executed when contents of device specified by (d) is 0, 65535 is stored in the device specified by

(d). (If unsigned is specified)

 � Flags (zero, carry and borrow) are not activated at this time.

Precautions

Note that data is decremented in every operation cycle in a continuous operation type (DEC) instruction.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DEC(EN,d);

ENO:=DECP(EN,d);

ENO:=DEC_U(EN,d);

ENO:=DECP_U(EN,d);

Operand Description Range Data type Data type (label)

(d) DEC(P) Device to be decremented by -1 -32768 to +32767 16-bit signed binary ANY16_S

DEC(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

(d) (d)

5678 (BIN) 5677 (BIN)-1

b15 b0··· b15 b0···

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions 213

6

Incrementing 32-bit binary data

DINC(P)(_U)

These instructions add +1 to the device (32-bit binary data) specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add +1 to the contents of device (32-bit binary data) specified by (d).

 � If DINC(P) instruction is executed when contents of device specified by (d) is 2147483647, -2147483648 is stored in the

device specified by (d). (If signed is specified)

 � If DINC(P)_U instruction is executed when contents of device specified by (d) is 4294967295, 0 is stored in the device

specified by (d). (If unsigned is specified)

 � Flags (zero, carry and borrow) are not activated at this time.

Precautions

Note that data is incremented in every operation cycle in a continuous operation type instruction.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DINC(EN,d);

ENO:=DINCP(EN,d);

ENO:=DINC_U(EN,d);

ENO:=DINCP_U(EN,d);

Operand Description Range Data type Data type (label)

(d) DINC(P) Head device to be incremented by +1 -2147483648 to +2147483647 32-bit signed binary ANY32_S

DINC(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

73500 (BIN) 73501 (BIN)+1

b0

(d)

··· ···

(d)+1 (d)(d)+1

b31 b16 b15 b0··· ···b31 b16 b15

214
6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Decrementing 32-bit binary data

DDEC(P)(_U)

These instructions subtract 1 from the device (32-bit binary data) specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions decrement contents of device (32-bit binary data) specified by (d) by 1.

 � If DDEC(P) instruction is executed when contents of device specified by (d) is 0, -1 is stored in the device specified by (d).

(If signed is specified)

 � If DDEC(P)_U instruction is executed when contents of device specified by (d) is 0, 4294967295 is stored in the device

specified by (d). (If unsigned is specified)

 � Flags (zero, carry and borrow) are not activated at this time.

Precautions

Note that data is decremented in every operation cycle in a continuous operation type (DDEC) instruction.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DDEC(EN,d);

ENO:=DDECP(EN,d);

ENO:=DDEC_U(EN,d);

ENO:=DDECP_U(EN,d);

Operand Description Range Data type Data type (label)

(d) DDEC(P) Head device to be decremented by 1 -2147483648 to +2147483647 32-bit signed binary ANY32_S

DDEC(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

73500 (BIN) 73499 (BIN)-1

b0

(d)

··· ···

(d)+1 (d)(d)+1

b31 b16 b15 b0··· ···b31 b16 b15

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 215

6

6.3 Logical Operation Instructions

Performing an AND operation on 16-bit data

WAND(P) [using two operands]

These instructions AND each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary data from

device specified by (s), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions AND each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary data from

device specified by (s), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data for AND or device where the data is stored -32768 to +32767 16-bit signed binary ANY16

(d) Device for storing AND results -32768 to +32767 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(d)

(s)

···

···

···

···

···

···

b15

b15

b15

b8

b8

b8

b7

b7

b7 b0

b0

b0

AND

1 1 1 11 1 1 1 0 00 0 1 1 1 1

0 0 0 01 0 1 0 0 10 1 0 1 0 0

0 0 0 01 0 1 0 0 00 0 0 1 0 0

216
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

WAND(P) [using three operands]

These instructions AND each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary data from

device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions AND each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary data

from device specified by (s2), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=WAND(EN,s1,s2,d);

ENO:=WANDP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data for AND or device where the data is stored -32768 to +32767 16-bit signed binary ANY16

(s2) Data for AND or device where the data is stored -32768 to +32767 16-bit signed binary ANY16

(d) Device for storing AND results  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

(s1)

(d)

(s2)

···

···

···

···

···

···

b15

b15

b15

b8

b8

b8

b7

b7

b7 b0

b0

b0

AND

1 1 1 11 1 1 1 0 00 0 1 1 1 1

0 0 0 01 0 1 0 0 10 1 0 1 0 0

0 0 0 01 0 1 0 0 00 0 0 1 0 0

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 217

6

Performing an AND operation on 32-bit data

DAND(P) [using two operands]

These instructions AND each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary data from

device specified by (s), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions AND each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary data from

device specified by (s), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data for AND or head device where the data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device for storing AND results -2147483648 to +2147483647 32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(d)

(s)

···

···

···

···

···

···

b31

b31

b31

b16

b16

b16

b15

b15

b15 b0

b0

b0

AND

1 1 1 1 1 1 0 0 11 0 0 1 1

0 1 0 1 1 0 0 1 10 0 0 0 1

0 1 0 1 1 0 0 0 10 0 0 0 1

(d)+1 (d)

(s)+1 (s)

(d)+1 (d)

218
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

DAND(P) [using three operands]

These instructions AND each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary data from

device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions AND each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary data

from device specified by (s2), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DAND(EN,s1,s2,d);

ENO:=DANDP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data for AND or head device where the data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Data for AND or head device where the data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device for storing AND results  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

···

···

···

···

···

···

b31

b31

b31

b16

b16

b16

b15

b15

b15 b0

b0

b0

AND

1 1 1 1 1 1 0 0 11 0 0 1 1

0 1 0 1 1 0 0 1 10 0 0 0 1

0 1 0 1 1 0 0 0 10 0 0 0 1

(d)+1 (d)

(s2)+1 (s2)

(s1)+1 (s1)

(s1)

(d)

(s2)

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 219

6

Performing an AND operation on 16-bit block data

BKAND(P)

These instructions AND contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device specified by

(s2), and store the results in the devices specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

Processing details

 � These instructions AND contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device specified

by (s2), and store the results in the devices specified by (d) onwards.

Operation error

Ladder diagram Structured text

ENO:=BKAND(EN,s1,s2,n,d);

ENO:=BKANDP(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Head device that stores data for AND -32768 to +32767 16-bit signed binary ANY16

(s2) Data for AND or head device where the data is stored -32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing AND results  16-bit signed binary ANY16

(n) Number of data 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)*1             

(s2)*1             

(d)*1             

(n)             

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 Device range of (n) point(s) from (s1) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s1) and (d).)

Device range of (n) point(s) from (s2) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s2) and (d).)

(s1) (s2) (d) (n)

0 0 0 0 0 0 0 0… 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 01 1 1 1 0 0 0 0

b7

1 1 0 0 0 0 0 01 1 0 0 0 0 0 0

1 1 0 0 0 0 1 11 1 0 0 0 0 1 11 1 0 0 1 1 0 01 1 0 0 1 1 0 0

0 0 1 1 0 0 1 11 1 0 0 1 1 0 01 1 1 1 0 0 0 01 1 1 1 0 0 0 0 …

… 0 0 0 0 0 0 0 01 1 0 0 1 1 0 01 1 0 0 0 0 0 01 1 0 0 0 0 0 0

b8 b0b1 … …b7b8 b0b1 … …b7b8 b0b1 … …

AND

(s1)+1 (s1)(s1)+(n-1)

(s2)(s2)+1(s2)+(n-1)

(d)(d)+1(d)+(n-1)

5 5 5

220
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

Performing an OR operation on 16-bit data

WOR(P) [using two operands]

These instructions OR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary data from

device specified by (s), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions OR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary data from

device specified by (s), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data for OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing the OR results -32768 to +32767 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(d)

(s)

···

···

···

···

···

···

b15

b15

b15

b8

b8

b8

b7

b7

b7 b0

b0

b0

OR

0 1 0 11 1 1 1 0 00 0 0 0 1 1

1 0 0 11 1 0 0 1 01 0 1 1 0 0

1 1 0 11 1 1 1 1 01 0 1 1 1 1

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 221

6

WOR(P) [using three operands]

These instructions OR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary data from

device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions OR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary data from

device specified by (s2), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=WOR(EN,s1,s2,d);

ENO:=WORP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data for OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16

(s2) Data for OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing the OR results  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

(s1)

(d)

(s2)

···

···

···

···

···

···

b15

b15

b15

b8

b8

b8

b7

b7

b7 b0

b0

b0

OR

1 1 0 00 0 0 0 1 11 1 0 0 0 0

0 0 0 10 1 0 0 1 01 0 0 0 1 1

1 1 0 10 1 0 0 1 11 1 0 0 1 1

222
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

Performing an OR operation on 32-bit data

DOR(P) [using two operands]

These instructions OR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary data from

device specified by (s), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions OR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary data from

device specified by (s), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data for OR or head device where data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device for storing the OR results -2147483648 to +2147483647 32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

···

···

···

···

···

···

b31

b31

b31

b16

b16

b16

b15

b15

b15 b0

b0

b0

OR

1 1 1 1 0 0 0 0 00 0 0 1 1

1 0 0 1 0 0 0 1 11 0 0 1 1

1 1 1 1 0 0 0 1 11 0 0 1 1

(d)+1 (d)

(s)+1 (s)

(d)+1 (d)

(d)

(d)

(s)

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 223

6

DOR(P) [using three operands]

These instructions OR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary data from

device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions OR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary data from

device specified by (s2), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DOR(EN,s1,s2,d);

ENO:=DORP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data for OR or head device where data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Data for OR or head device where data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device for storing the OR results  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

···

···

···

···

···

···

b31

b31

b31

b16

b16

b16

b15

b15

b15 b0

b0

b0

OR

0 0 1 1 0 0 1 1 00 1 1 0 0

0 0 1 0 1 1 0 0 00 1 1 1 1

0 0 1 1 1 1 1 1 00 1 1 1 1

(d)+1 (d)

(s2)+1 (s2)

(s1)+1 (s1)

(s1)

(d)

(s2)

224
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

Performing an OR operation on 16-bit block data

BKOR(P)

These instructions OR contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device specified by

(s2), and store the results in the devices specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

Processing details

 � These instructions seek OR of contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device

specified by (s2), and store the results in the devices specified by (d) onwards.

Operation error

Ladder diagram Structured text

ENO:=BKOR(EN,s1,s2,n,d);

ENO:=BKORP(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Head device where the logical operation data is stored -32768 to +32767 16-bit signed binary ANY16

(s2) Logical operation data or the head device where the

logical operation data is stored

-32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing the operation result  16-bit signed binary ANY16

(n) Number of data 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)*1             

(s2)*1             

(d)*1             

(n)             

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 Device range of (n) point(s) from (s1) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s1) and (d).)

Device range of (n) point(s) from (s2) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s2) and (d).)

(s1) (s2) (d) (n)

0 0 0 0 0 0 0 0… 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 01 1 1 1 0 0 0 0

b7

1 1 1 1 1 1 0 01 1 1 1 1 1 0 0

1 1 0 0 0 0 1 11 1 0 0 0 0 1 11 1 0 0 1 1 0 01 1 0 0 1 1 0 0

0 0 1 1 0 0 1 11 1 0 0 1 1 0 01 1 1 1 0 0 0 01 1 1 1 0 0 0 0 …

… 0 0 1 1 0 0 1 11 1 1 1 1 1 1 11 1 1 1 0 0 1 11 1 1 1 0 0 1 1

b8 b0b1 … …b7b8 b0b1 … …b7b8 b0b1 … …

OR

(s1)+1 (s1)(s1)+(n-1)

(s2)(s2)+1(s2)+(n-1)

(d)(d)+1(d)+(n-1)

5 5 5

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 225

6

Performing an XOR operation on 16-bit data

WXOR(P) [using two operands]

These instructions exclusive OR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary

data from device specified by (s), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions exclusive OR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary

data from device specified by (s), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data for exclusive OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing exclusive OR results -32768 to +32767 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(d)

(s)

···

···

···

···

···

···

b15

b15

b15

b8

b8

b8

b7

b7

b7 b0

b0

b0

XOR

1 0 1 10 0 1 0 1 10 0 1 0 1 0

0 0 0 11 0 1 1 1 11 1 0 0 0 0

1 0 1 01 0 0 1 0 01 1 1 0 1 0

226
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

WXOR(P) [using three operands]

These instructions exclusive OR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary

data from device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions exclusive OR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary

data from device specified by (s2), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=WXOR(EN,s1,s2,d);

ENO:=WXORP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data for exclusive OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16

(s2) Data for exclusive OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing exclusive OR results  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

(s1)

(d)

(s2)

···

···

···

···

···

···

b15

b15

b15

b8

b8

b8

b7

b7

b7 b0

b0

b0

XOR

0 0 0 10 1 1 1 1 11 1 0 0 0 0

0 1 0 01 1 0 1 0 01 1 0 1 0 1

0 1 0 11 0 1 0 1 10 0 0 1 0 1

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 227

6

Performing an XOR operation on 32-bit data

DXOR(P) [using two operands]

These instructions exclusive OR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary

data from device specified by (s), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions exclusive OR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary

data from device specified by (s), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data for exclusive OR or head device where data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device for storing exclusive OR results -2147483648 to +2147483647 32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

···

···

···

···

···

···

b31

b31

b31

b16

b16

b16

b15

b15

b15 b0

b0

b0

XOR

0 1 0 1 0 1 0 1 10 0 1 0 1

0 1 1 0 0 1 1 0 01 0 1 1 0

0 0 1 1 0 0 1 1 11 0 0 1 1

(d)+1 (d)

(s)+1 (s)

(d)+1 (d)

(d)

(d)

(s)

228
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

DXOR(P) [using three operands]

These instructions exclusive OR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary

data from device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions exclusive OR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary

data from device specified by (s2), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DXOR(EN,s1,s2,d);

ENO:=DXORP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data for exclusive OR or head device where data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Data for exclusive OR or head device where data is stored -2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device for storing exclusive OR results  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

···

···

···

···

···

···

b31

b31

b31

b16

b16

b16

b15

b15

b15 b0

b0

b0

XOR

1 1 1 1 0 0 0 0 00 1 1 1 1

1 1 1 1 1 0 1 0 01 1 1 0 0

0 0 0 0 1 0 1 0 01 0 0 1 1

(d)+1 (d)

(s2)+1 (s2)

(s1)+1 (s1)

(s1)

(d)

(s2)

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 229

6

Performing an XOR operation on 16-bit block data

BKXOR(P)

These instructions seek exclusive OR of contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the

device specified by (s2), and store the results in the devices specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

Processing details

 � These instructions exclusive OR contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device

specified by (s2), and store the results in the devices specified by (d) onwards.

Operation error

Ladder diagram Structured text

ENO:=BKXOR(EN,s1,s2,n,d);

ENO:=BKXORP(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Data for exclusive OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16

(s2) Data for exclusive OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing the operation result  16-bit signed binary ANY16

(n) Number of data 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)*1             

(s2)*1             

(d)*1             

(n)             

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 Device range of (n) point(s) from (s1) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s1) and (d).)

Device range of (n) point(s) from (s2) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s2) and (d).)

(s1) (s2) (d) (n)

0 0 0 0 0 0 0 0… 1 1 1 1 1 1 1 1

1 1 1 1 0 0 0 01 1 1 1 0 0 0 0

b7

0 0 1 1 1 1 0 00 0 1 1 1 1 0 0

1 1 0 0 0 0 1 11 1 0 0 0 0 1 11 1 0 0 1 1 0 01 1 0 0 1 1 0 0

0 0 1 1 0 0 1 11 1 0 0 1 1 0 01 1 1 1 0 0 0 01 1 1 1 0 0 0 0 …

… 0 0 1 1 0 0 1 10 0 1 1 0 0 1 10 0 1 1 0 0 1 10 0 1 1 0 0 1 1

b8 b0… …b7b8 b0b … …b7b8 b0b1 … …

XOR

(s1)+1 (s1)(s1)+(n-1)

(s2)(s2)+1(s2)+(n-1)

(d)(d)+1(d)+(n-1)

5 15 b15

230
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

Performing an XNOR operation on 16-bit data

WXNR(P) [using two operands]

These instructions exclusive NOR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary

data from device specified by (s), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions exclusive NOR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit

binary data from device specified by (s), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data for exclusive NOR or head device where data is

stored

-32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing exclusive NOR results -32768 to +32767 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(d)

(s)

b15

b15

b15

b8

b8

b8

b7

b7

b7 b0

b0

b0

XNOR

1 0 1 10 0 1 0 1 10 0 1 0 0 1

1 1 1 01 0 0 0 0 00 0 0 1 1 0

1 0 1 00 1 0 1 0 01 1 0 0 0 0

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 231

6

WXNR(P) [using three operands]

These instructions exclusive NOR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary

data from device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions exclusive NOR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit

binary data from device specified by (s2), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=WXNR(EN,s1,s2,d);

ENO:=WXNRP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data for exclusive NOR or head device where data is

stored

-32768 to +32767 16-bit signed binary ANY16

(s2) Data for exclusive NOR or head device where data is

stored

-32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing exclusive NOR results  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

(s1)

(d)

(s2)

b15

b15

b15

b8

b8

b8

b7

b7

b7 b0

b0

b0

XNOR

1 1 1 01 0 0 0 1 11 1 0 0 0 0

0 0 1 11 1 0 0 0 10 1 0 0 1 1

0 0 1 01 0 1 1 0 10 1 1 1 0 0

232
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

Performing an XNOR operation on 32-bit data

DXNR(P) [using two operands]

These instructions exclusive NOR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary

data from device specified by (s), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions exclusive NOR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit

binary data from device specified by (s), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data for exclusive NOR or head device where data is

stored

-2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device for storing exclusive NOR results -2147483648 to +2147483647 32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

b31

b31

b31

b16

b16

b16

b15

b15

b15 b0

b0

b0

XNOR

1 1 0 0 0 0 0 0 00 0 0 1 1

1 1 1 1 0 0 0 0 11 1 1 0 0

1 1 0 0 1 1 1 1 00 0 0 0 0

(d)+1 (d)

(s)+1 (s)

(d)+1 (d)

(d)

(d)

(s)

6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions 233

6

DXNR(P) [using three operands]

These instructions exclusive NOR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary

data from device specified by (s2), and store the results in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions exclusive NOR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit

binary data from device specified by (s2), and store the results in the device specified by (d).

 � Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DXNR(EN,s1,s2,d);

ENO:=DXNRP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data for exclusive NOR or head device where data is

stored

-2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Data for exclusive NOR or head device where data is

stored

-2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device for storing exclusive NOR results  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

b31

b31

b31

b16

b16

b16

b15

b15

b15 b0

b0

b0

XNOR

0 0 1 1 0 0 1 1 11 0 0 1 1

0 1 0 1 0 1 0 1 10 0 1 0 1

1 0 0 1 1 0 0 1 10 1 0 0 1

(d)+1 (d)

(s2)+1 (s2)

(s1)+1 (s1)

(s1)

(d)

(s2)

234
6 BASIC INSTRUCTIONS

6.3 Logical Operation Instructions

Performing an XNOR operation on 16-bit block data

BKXNR(P)

These instructions exclusive NOR contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device

specified by (s2), and store the results in the devices specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

Processing details

 � These instructions exclusive NOR contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device

specified by (s2), and store the results in the devices specified by (d) onward.

Operation error

Ladder diagram Structured text

ENO:=BKXNR(EN,s1,s2,n,d);

ENO:=BKXNRP(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Head device where the logical operation data is stored -32768 to +32767 16-bit signed binary ANY16

(s2) Logical operation data or the head device where the

logical operation data is stored

-32768 to +32767 16-bit signed binary ANY16

(d) Head device for storing the operation result  16-bit signed binary ANY16

(n) Number of data 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)*1             

(s2)*1             

(d)*1             

(n)             

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 Device range of (n) point(s) from (s1) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s1) and (d).)

Device range of (n) point(s) from (s2) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s2) and (d).)

(s1) (s2) (d) (n)

0 0 0 0 0 0 0 01 1 1 1 1 1 1 1

1 1 1 1 0 0 0 01 1 1 1 0 0 0 0

b7

1 1 0 0 0 0 1 11 1 0 0 0 0 1 1

1 1 0 0 0 0 1 11 1 0 0 0 0 1 11 1 0 0 1 1 0 01 1 0 0 1 1 0 0

0 0 1 1 0 0 1 11 1 0 0 1 1 0 01 1 1 1 0 0 0 01 1 1 1 0 0 0 0

1 1 0 0 1 1 0 01 1 0 0 1 1 0 01 1 0 0 1 1 0 01 1 0 0 1 1 0 0

b8 b0b7b8 b0b7b8 b0b1

XNOR

(s1)+1 (s1)(s1)+(n-1)

(s2)(s2)+1(s2)+(n-1)

(d)(d)+1(d)+(n-1)

5 b15 b15

6 BASIC INSTRUCTIONS

6.4 Bit Processing Instructions 235

6

6.4 Bit Processing Instructions

Setting a bit in the word device

BSET(P)

These instructions set (to 1) (n)th bit of word device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions set (to 1) (n)th bit of word device specified by (d).

 � If (n) exceeds 15, the processing will be done based on the lower 4 bits of (n).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=BSET(EN,n,d);

ENO:=BSETP(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Head device for which bit is to be set  16-bit signed binary ANY16

(n) Number of bit(s) to be set 0 to 15 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

(d) (n)

K6D10BSETP

D10 1 1 0 10 0 1 1 0 10 1 1 0 1 1

··· ···b15 b6 b0b1

D10 1 1 0 10 0 1 1 0 11 1 1 0 1 1

··· ···b15 b6 b0b1

These bits become "1".

236
6 BASIC INSTRUCTIONS

6.4 Bit Processing Instructions

Resetting a bit in the word device

BRST(P)

These instructions reset (to 0) (n)th bit of word device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions reset (to 0) (n)th bit of word device specified by (d).

 � If (n) exceeds 15, the processing will be done based on the lower 4 bits of (n).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=BRST(EN,n,d);

ENO:=BRSTP(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Head device for which bit is to be reset  16-bit signed binary ANY16

(n) Number of bit(s) to be reset 0 to 15 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

(d) (n)

K11D10BRSTP

D10 1 1 0 10 0 1 1 0 10 1 1 0 1 1

··· ···b15 b11 b0b1

D10 1 1 0 00 0 1 1 0 10 1 1 0 1 1

··· ···b15 b11 b0b1

These bits become "0".

6 BASIC INSTRUCTIONS

6.4 Bit Processing Instructions 237

6

Performing a 16-bit test

TEST(P)

These instructions take bit data at position specified by (s2) from device specified by (s1) and write to bit device specified by

(d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions take bit data at position specified by (s2) from device specified by (s1) and write to bit device specified

by (d).

 � If relevant bit is "0", device specified by (d) is turned OFF, and if it is "1", device is turned ON.

 � For (s2) specify the bit position (0 to 15) of word data. If 16 or more is specified for (s2), the value of the remainder of

(s2)16 is the bit position.

Ex.

For (s2) = 18, the remainder for 1816 is "2", so it becomes data of b2.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=TEST(EN,s1,s2,d);

ENO:=TESTP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Device number where bit data to be extracted is stored  16-bit signed binary ANY16

(s2) Position of bit data to be extracted 0 to 15 16-bit unsigned binary ANY16

(d) Bit device number where extracted bit data is to be stored  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

(s1)

··· ···b15 b5 b0

(d)

(s2) bit (When (s2)=5)

238
6 BASIC INSTRUCTIONS

6.4 Bit Processing Instructions

Performing a 32-bit test

DTEST(P)

These instructions take bit data at position specified by (s2) from device specified by (s1) and write to bit device specified by

(d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions take bit data at position specified by (s2) from device specified by (s1), (s1) +1 and write to bit device

specified by (d).

 � If relevant bit is "0", device specified by (d) is turned OFF, and if it is "1", device is turned ON.

 � For (s2) specify the bit position (0 to 31) of double word data. If 32 or more is specified for (s2), the value of the remainder

of (s2)32 is the bit position.

Ex.

For (s2) = 34, the remainder for 3432 is "2", so it becomes data of b2.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DTEST(EN,s1,s2,d);

ENO:=DTESTP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Device number where bit data to be extracted is stored  32-bit signed binary ANY32

(s2) Position of bit data to be extracted 0 to 31 16-bit unsigned binary ANY16

(d) Bit device number where extracted bit data is to be stored  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

··· ··· ···b31 b15b16 b0

(d)(s1)

b21

(s1)+1

(s2) bit (When (s2)=21)

6 BASIC INSTRUCTIONS

6.4 Bit Processing Instructions 239

6

Batch-resetting bit devices

BKRST(P)

These instructions reset (n) point(s) bit devices from the bit device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions reset (n) point(s) bit devices from the bit device specified by (d).

 � Reset status of bit device is as follows.

 � If specified devices are OFF, device status remains unchanged.

Operation error

Ladder diagram Structured text

ENO:=BKRST(EN,n,d);

ENO:=BKRSTP(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Head device to be reset  Bit ANY_BOOL

(n) Number of devices to be reset  16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

Device Status

Annunciator (F) � (n) point(s) from annunciator (F) number specified by (d) are turned OFF.

� Annunciator numbers from SD64 to SD79 that were turned OFF are deleted and the subsequent numbers are

shifted forward.

� The number of annunciators stored in SD64 to SD79 is stored in SD67.

Timer (T), Counter (C) � Current value of (n) point(s) from timer (T) or counter (C) number specified by (d) is set to 0, and coil contact is

turned OFF.

Bit devices other than given above � Coils and contacts of (n) point(s) from the device specified by (d) are turned OFF.

Error code

(SD0/SD8067)

Description

2820 (n) point(s) of data starting from the device specified by (d) exceed the corresponding device range.

(d) (n)

240
6 BASIC INSTRUCTIONS

6.4 Bit Processing Instructions

Batch-resetting devices

ZRST(P)

These instructions reset all data among devices of same type specified by (d1) and (d2). Use these instructions for restarting

operation from the beginning after pause or after resetting control data.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions reset all data among devices of same type specified by (d1) and (d2).

 � OFF (reset) is written to the entire range of devices from (d1) to (d2) all at once if (d1) and/or (d2) are bit devices.

 � K0 is written to the entire range of devices from (d1) to (d2) all at once if (d1) and/or (d2) are word devices.

 � As a reset instruction for individual devices, the RST instruction can be used for bit devices and word devices.

Ladder diagram Structured text

ENO:=ZRST(EN, d1, d2);

ENO:=ZRSTP(EN, d1, d2);

Operand Description Range Data type Data type (label)

(d1) Head bit or word device number to be reset  16-bit signed binary ANY_ELEMENTARY

(d2) Last bit or word device number to be reset  16-bit signed binary ANY_ELEMENTARY

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d1)             

(d2)             

(d1) (d2)

(d2)

OFF

(d1)+9 (d1)+8 (d1)+7 (d1)+6 (d1)+5 (d1)+4 (d1)+3 (d1)+2 (d1)+1 (d1)

OFF OFF OFF OFF OFF OFF OFF OFF OFF OFF

OFF

(d2)

K0 K0

K0

(d1)+9 (d1)+8 (d1)+7 (d1)+6 (d1)+5 (d1)+4 (d1)+3 (d1)+2 (d1)+1 (d1)

K0 K0 K0 K0 K0 K0 K0 K0 K0

RST

X1

RST

RST

M0

T0

D0

M0 is reset.

The current value of T0 is reset.

D0 is reset.

6 BASIC INSTRUCTIONS

6.4 Bit Processing Instructions 241

6

 � The FMOV(P) instruction is a batch write instruction for a constant (K0 for example) that can write "0" for word devices

(including nibble specification of bit devices).

Precautions

 � Specify the same type of device for (d1) and (d2) so that (d1) number is less than (d2) number. If the (d1) number(d2)

number, only the device specified by (d1) is reset.

 � The ZRST(P) instruction is a 16-bit instruction, but long counter (LC) and long index register (LZ) can be specified for (d1)

and (d2).

Operation error

Error code

(SD0/SD8067)

Description

2820 The number of devices to be reset is 32768 or more when module access device has been specified for (d1) and/or (d2).

3405 Device type specified by (d1) differs from type specified by (d2).

Module number for (d1) and (d2) differ when module access device is specified.

FMOV

X2

K0 D0 K100 K0 is written to D0 to D99.

ZRST

ZRST

C180 C199

LC0 LC10

Command input

242
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

6.5 Data Conversion Instructions

Converting binary data to BCD 4-digit data

BCD(P)

These instructions convert the binary data in the device specified by (s) to BCD data, and store the converted data in the

device specified by (d).

Binary data is used in operations in CPU module. Use this instruction to display numeric values on seven-segment display

unit equipped with BCD decoder.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit binary data (0 to 9999) in the device specified by (s) to BCD 4-digit data, and store the

converted data in the device specified by (d).

 � Data specified by (s) can be converted if it is within the range from K0 to K9999 BCD (decimal).

 � The table below shows nibble specification for the data in the device specified by (s) and (d).

Ladder diagram Structured text

ENO:=BCD(EN,s,d);

ENO:=BCDP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Binary data or the head device where the binary data is

stored

0 to 9999 16-bit signed binary ANY16

(d) Head device for storing the BCD data  BCD 4-digit ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

BIN 9999

BCD 9999

-32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1

1 10 0 0 0 0 00 01 1

111 11 1 11

1 1 11

0 0 0 0 0 0 0 0

(s)

(d)

Thousands place Hundreds place Tens place Ones place

Make sure to set them to "0". BCD conversion

BCD (s) (d)
BIN

BCD

Command
input

When "K4Y000" is specified

CPU module BCD

Y14 to

Y17

Y10 to

Y13

Y4 to

Y7

Y0 to

Y3

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 243

6

Precautions

 � Binary data is used in all operations in CPU module including arithmetic operations (+-), increment and decrement

instructions. When receiving digital switch information in binary-coded decimal (BCD) format into a CPU module, use the

BIN(P) instructions (for converting BCD data into binary data). Furthermore, to output data to seven-segment display unit

handling binary-coded decimal (BCD) data, use the BCD(P) instructions (for converting binary data into BCD data).

Operation error

(d) Number of digits Data range

K1Y0 1-digit 0 to 9

K2Y0 2-digit 00 to 99

K3Y0 3-digit 000 to 999

K4Y0 4-digit 0000 to 9999

Error code

(SD0/SD8067)

Description

3401 Data in the device specified by (s) is out of the valid range (0 to 9999).

244
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting binary data to BCD 8-digit data

DBCD(P)

These instructions convert the binary data in the device specified by (s) to BCD data, and store the converted data in the

device specified by (d).

Binary data is used in operations in CPU module. Use this instruction to display numeric values on seven-segment display

unit equipped with BCD decoder.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert 32-bit binary data (0 to 99999999) in device specified by (s) to BCD 8-digit data, and store the

converted data in the device specified by (d).

 � Data specified by (s) can be converted if it is within the range from K0 to K99999999 BDC (decimal).

 � The table below shows nibble specification for the data in the device specified by (s) and (d).

Ladder diagram Structured text

ENO:=DBCD(EN,s,d);

ENO:=DBCDP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Binary data or the head device where the binary data is

stored

0 to 99999999 32-bit signed binary ANY32

(d) Head device for storing the BCD data  BCD 8-digit ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(s)

(d)

0 BIN 99999999 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0 BCD 99999999 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

4 8 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

×107 ×106 ×105 ×104 ×103 ×102 ×101 ×100

231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

(s)+1 (Upper 16 bits) (s) (Lower 16 bits)

(d)+1 (Upper 4 digits) (d) (Lower 4 digits)

Ten-millions
place

Millions
place

Hundred-
thousands place

Ten-thousands
place

Thousands
place

Hundreds
place

Tens place Ones place

Make sure to set them to "0".
(Upper 5 bits)

BCD conversion

DBCD (s) (d)
BIN

BCD

Command
input

When "K8Y0" is specified
Y34 to

Y37

Y30 to

Y33

Y24 to

Y27

Y20 to

Y23

Y14 to

Y17

Y10 to

Y13

Y4 to

Y7

Y0 to

Y3

CPU module DBCD

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 245

6

Precautions

 � When using the SEGL instruction, because BCDbinary conversion is automatically executed, the BCD(P) instruction do

not have to be used.

 � Binary data is used in all operations in CPU module including arithmetic operations (+-), increment and decrement

instructions. When receiving digital switch information in binary-coded decimal (BCD) format into a CPU module, use the

BIN(P) instructions (for converting BCD data into binary data). Furthermore, to output data to seven-segment display unit

handling binary-coded decimal (BCD) data, use the BCD(P) instructions (for converting binary data into BCD data).

Operation error

(d)+1, (d) Number of digits Data range

K1Y0 1-digit 0 to 9

K2Y0 2-digit 00 to 99

K3Y0 3-digit 000 to 999

K4Y0 4-digit 0000 to 9999

K5Y0 5-digit 00000 to 99999

K6Y0 6-digit 000000 to 999999

K7Y0 7-digit 0000000 to 9999999

K8Y0 8-digit 00000000 to 99999999

Error code

(SD0/SD8067)

Description

3401 Data in the device specified by (s) is out of the valid range (0 to 99999999).

246
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting BCD 4-digit data to binary data

BIN(P)

These instructions convert the binary-coded decimal data in the device specified by (s) to binary data, and store the converted

data in the device specified by (d).

Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into binary (BIN)

data and to receive the converted binary data so that the data can be handled in operations in CPU module.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the BCD 4-digit data (0 to 9999) in the device specified by (s) to 16-bit binary data, and store the

converted data in the device specified by (d).

 � The data in the device specified by (s) can be converted if it is in the range from 0 to 9999 (BCD).

 � The table below shows nibble specification for the data in the device specified by (s) and (d).

Ladder diagram Structured text

ENO:=BIN(EN,s,d);

ENO:=BINP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Binary-coded decimal data or the head device where the

binary-coded decimal data is stored

0 to 9999 BCD 4-digit ANY16

(d) Head device for storing the binary data  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

BIN 9999

BCD 9999

32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1

1 10 0 0 0 0 00 01 1

111 11 1 11

1 1 11

0 0 0 0 0 0 0 0(s)

(d)

Thousands place Hundreds place Tens place Ones place

Always becomes "0".

Binary conversion

BIN (s) (d)
BCD

BIN

97 86

BIN CPU module

Command
input

In case of K4X0

X14 to

X17

X10 to

X13

X4 to

X7
X0 to

X3

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 247

6

Precautions

 � Binary data is used in all operations in CPU module including arithmetic operations (+-), increment and decrement

instructions. When receiving digital switch information in binary-coded decimal (BCD) format into a CPU module, use the

BIN(P) instructions (for converting BCD data into binary data). Furthermore, to output data to seven-segment display unit

handling binary-coded decimal (BCD) data, use the BCD(P) instructions (for converting binary data into BCD data).

Operation error

(d) Number of digits Data range

K1X0 1-digit 0 to 9

K2X0 2-digit 00 to 99

K3X0 3-digit 000 to 999

K4X0 4-digit 0000 to 9999

Error code

(SD0/SD8067)

Description

3401 The value of each digit of the device specified by (s) is other than 0 to 9. (The data is not binary-coded decimal data.)

248
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting BCD 8-digit data to binary data

DBIN(P)

These instructions convert the binary-coded decimal data in the device specified by (s) to binary data, and store the converted

data in the device specified by (d).

Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into binary (BIN)

data and to receive the converted binary data so that the data can be handled in operations in CPU module.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the BCD 8-digit data (0 to 99999999) in the device specified by (s) to 32-bit binary data, and

store the converted data in the device specified by (d).

 � The data in the device specified by (s) can be converted if it is in the range from 0 to 99999999 (BCD).

 � The table below shows nibble specification for the data in the device specified by (s) and (d).

Ladder diagram Structured text

ENO:=DBIN(EN,s,d);

ENO:=DBINP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Binary-coded decimal data or the head device where the

binary-coded decimal data is stored

0 to 99999999 BCD 8-digit ANY32

(d) Head device for storing the binary data  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(s)

(d) 0 BIN 99999999 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

0 BCD 99999999 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

4 8 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1 8 4 2 1

107 106 105 104 103 102 101 100

231 230 229 228 227 226 225 224 223 222 221 220 219 218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

(s)+1 (s)

(d)+1 (d)

Always becomes "0".

Binary conversion

Ten-millions
place

millions
place

Hundred-
thousands

place

Ten-
thousands

place

Thousands
place

Hundreds
place

Tens
place

Ones
place

DBIN (s) (d)
BCD

BIN

97 8653 42

X34 to

X37

X30 to

X33

X24 to

X27

X20 to

X23

X14 to

X17

X10 to

X13

X4 to

X7

X0 to

X3

In case of K8X0

DBIN
CPU module

Command

input

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 249

6

Precautions

 � Binary data is used in all operations in CPU module including arithmetic operations (+-), increment and decrement

instructions. When receiving digital switch information in binary-coded decimal (BCD) format into a CPU module, use the

BIN instruction (for converting BCD data into binary data). Furthermore, to output data to seven-segment display unit

handling binary-coded decimal (BCD) data, use the BCD instruction (for converting binary data into BCD data).

Operation error

(s)+1, (s) Number of digits Data range

K1X0 1-digit 0 to 9

K2X0 2-digit 00 to 99

K3X0 3-digit 000 to 999

K4X0 4-digit 0000 to 9999

K5X0 5-digit 00000 to 99999

K6X0 6-digit 000000 to 999999

K7X0 7-digit 0000000 to 9999999

K8X0 8-digit 00000000 to 99999999

Error code

(SD0/SD8067)

Description

3401 The value of each digit of the device specified by (s) is other than 0 to 9. (The data is not binary-coded decimal data.)

250
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting single-precision real number to 16-bit signed binary
data

FLT2INT(P)

These instructions convert the single-precision real number in the device specified by (s) to 16-bit signed binary data, and

store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-

precision real number is rounded off.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the single-precision real number in the device specified by (s) to 16-bit signed binary data, and

store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-

precision real number is rounded off.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion -32768 to +32767 Single-precision real

number

ANYREAL_32

(d) Data after conversion  16-bit signed binary ANY16_S

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3401 The single-precision real number in the device specified by (s) is out of the valid range (-32768 to +32767).

3402 When the contents of the specified device are outside the following range:

0, 2-126|specified value (stored value)|<2128

The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

SM402

(s) (d)

EMOVP E-1234.5 D0

M0

(d)

(-1235)

FB2DH

b15 b0

D100

(s) b31 b16

(-1234.5)

5000HC49AH

b15 b0

D1, D0

∙∙∙ ∙∙∙∙∙∙

FLT2INT D0 D100

After conversionBefore conversion

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 251

6

Converting single-precision real number to 16-bit unsigned
binary data

FLT2UINT(P)

These instructions convert the single-precision real number in the device specified by (s) to 16-bit unsigned binary data, and

store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-

precision real number is rounded off.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the single-precision real number in the device specified by (s) to 16-bit unsigned binary data,

and store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the

single-precision real number is rounded off.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion 0 to 65535 Single-precision real

number

ANYREAL_32

(d) Data after conversion  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3401 The single-precision real number in the device specified by (s) is out of the valid range (0 to 65535).

3402 When the contents of the specified device are outside the following range:

0, 2-126|specified value (stored value)|<2128

The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

SM402

M0

(d)

(1235)

04D3H

b15 b0

D100

(s)
b31 b16

(1234.5)

5000H449AH

b15 b0

D1, D0

∙∙∙ ∙∙∙ ∙∙∙
(s) (d)

EMOVP E-1234.5 D0

FLT2UINT D0 D100

After conversionBefore conversion

252
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting single-precision real number to 32-bit signed binary
data

FLT2DINT(P)

These instructions convert the single-precision real number in the device specified by (s) to 32-bit signed binary data, and

store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-

precision real number is rounded off.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the single-precision real number in the device specified by (s) to 32-bit signed binary data, and

store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-

precision real number is rounded off.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion -2147483648 to +2147483647 Single-precision real

number

ANYREAL_32

(d) Data after conversion  32-bit signed binary ANY32_S

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3401 The single-precision real number in the device specified by (s) is out of the valid range (-2147483648 to +2147483647).

3402 When the contents of the specified device are outside the following range:

0, 2-126|specified value (stored value)|<2128

The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

SM402

M0

(d)(s)
b31 b16

(-123456.7)

205AHC7F1H

b15 b0

D1, D0

b31 b16

(-123457)

1DBFHFFFEH

b15 b0

D101, D100

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
(s) (d)

EMOVP E-123456.7 D0

FLT2DINT D0 D100

After conversionBefore conversion

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 253

6

Converting single-precision real number to 32-bit unsigned
binary data

FLT2UDINT(P)

These instructions convert the single-precision real number in the device specified by (s) to 32-bit unsigned binary data, and

store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-

precision real number is rounded off.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the single-precision real number in the device specified by (s) to 32-bit unsigned binary data,

and store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the

single-precision real number is rounded off.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion 0 to 4294967295 Single-precision real

number

ANYREAL_32

(d) Data after conversion  32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3401 The single-precision real number in the device specified by (s) is out of the valid range (0 to 4294967295).

3402 When the contents of the specified device are outside the following range:

0, 2-126|specified value (stored value)|<2128

The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

SM402

M0

(d)(s)
b31 b16

(123456.7)

205AH47F1H

b15 b0

D1, D0

b31 b16

(123457)

E241H0001H

b15 b0

D101, D100

∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙
(s) (d)

EMOVP E-123456.7 D0

FLT2UDINT D0 D100

After conversionBefore conversion

254
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting 16-bit signed binary data to 16-bit unsigned binary
data

INT2UINT(P)

These instructions convert the 16-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and store

the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and

store the result in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  16-bit signed binary ANY16_S

(d) Data after conversion  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

(s) (d)

MOVP HC000 D0

INT2UINT D0 D100

M0

(d)

(49152)

C000HD100

(s) b15 b0

(-16384)

C000HD0

b15 b0∙∙∙ ∙∙∙

After conversion

Stores as is

Before conversion

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 255

6

Converting 16-bit signed binary data to 32-bit signed binary data

INT2DINT(P)

These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit signed binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit signed binary data, and store

the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  16-bit signed binary ANY16_S

(d) Data after conversion  32-bit signed binary ANY32_S

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0
(-20480)

b31 b16

(-20480)

B000H B000HFFFFHD0

(s)

D101, D100

(d)

b15 b0b15 b0∙∙∙ ∙∙∙ ∙∙∙

(s) (d)

MOVP H0B000 D0

INT2DINT D0 D100

Before conversion After conversion

Stores in lower 16 bits

Fills with the most significant

bit value prior to conversion.

256
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting 16-bit signed binary data to 32-bit unsigned binary
data

INT2UDINT(P)

These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  16-bit signed binary ANY16_S

(d) Data after conversion  32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0
(-24576)

b31 b16

(40960)

A000H A000H0000HD0

(s)

D101, D100

(d)

b15 b0b15 b0∙∙∙ ∙∙∙ ∙∙∙

(s) (d)

MOVP H0A000 D0

INT2UDINT D0 D100

"0" is stored.

Before conversion After conversion

Stores in lower 16 bits

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 257

6

Converting 16-bit unsigned binary data to 16-bit signed binary
data

UINT2INT(P)

These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  16-bit unsigned binary ANY16_U

(d) Data after conversion  16-bit signed binary ANY16_S

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

(d)

(-8192)

E000HD100

(s) b15 b0

(57344)

E000HD0

b15 b0∙∙∙ ∙∙∙

(s) (d)

MOVP H0E000 D0

UINT2INT D0 D100

After conversion

Stores as is

Before conversion

258
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting 16-bit unsigned binary data to 32-bit signed binary
data

UINT2DINT(P)

These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  16-bit unsigned binary ANY16_U

(d) Data after conversion  32-bit signed binary ANY32_S

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0
(53248)

b31 b16

(53248)

D000H D000H0000HD0

(s)

D101, D100

(d)

b15 b0b15 b0∙∙∙ ∙∙∙ ∙∙∙

(s) (d)

MOVP H0D000 D0

UINT2DINT D0 D100

"0" is stored.

Before conversion After conversion

Stores in lower 16 bits

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 259

6

Converting 16-bit unsigned binary data to 32-bit unsigned binary
data

UINT2UDINT(P)

These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit unsigned binary data, and

store the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit unsigned binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  16-bit unsigned binary ANY16_U

(d) Data after conversion  32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0
(61440)

b31 b16

(61440)

F000H F000H0000HD0

(s)

D101, D100

(d)

b15 b0b15 b0∙∙∙ ∙∙∙ ∙∙∙

(s) (d)

MOVP H0F000 D0

UINT2UDINT D0 D100

"0" is stored.

Before conversion After conversion

Stores in lower 16 bits

260
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting 32-bit signed binary data to 16-bit signed binary data

DINT2INT(P)

These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit signed binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit signed binary data, and store

the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  32-bit signed binary ANY32_S

(d) Data after conversion  16-bit signed binary ANY16_S

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

b31 b16

(-1737075662)

5432H9876HD1, D0

(d)b15 b0

(21554)

5432HD100

(s) b15 b0∙∙∙ ∙∙∙ ∙∙∙

(s) (d)

DMOVP H98765432 D0

DINT2INT D0 D100

Before conversion After conversion

Stores in lower 16 bits

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 261

6

Converting 32-bit signed binary data to 16-bit unsigned binary
data

DINT2UINT(P)

These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  32-bit signed binary ANY32_S

(d) Data after conversion  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

b31 b16

(-2023406815)

4321H8765HD1, D0

(d)b15 b0

(17185)

4321HD100

(s) b15 b0∙∙∙ ∙∙∙ ∙∙∙

(s) (d)

DMOVP H87654321 D0

DINT2UINT D0 D100

Before conversion After conversion

Stores in lower 16 bits

262
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting 32-bit signed binary data to 32-bit unsigned binary
data

DINT2UDINT(P)

These instructions convert the 32-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  32-bit signed binary ANY32_S

(d) Data after conversion  32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

(s) (d)

DMOVP H76543210 D0

DINT2UDINT D0 D100

M0

b31 b16

(-2309737968)

3210H7654HD1, D0

b15 b0(s) b31 b16

(1985229328)

3210H7654HD101, D100

b15 b0(d)∙∙∙ ∙∙∙ ∙∙∙ ∙∙∙

Before conversion After conversion

Stores as is

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 263

6

Converting 32-bit unsigned binary data to 16-bit signed binary
data

UDINT2INT(P)

These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  32-bit unsigned binary ANY32_U

(d) Data after conversion  16-bit signed binary ANY16_S

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

b31 b16

(1450744508)

9ABCH5678HD1, D0

(d)b15 b0

(-25924)

9ABCHD100

(s) b15 b0∙∙∙ ∙∙∙ ∙∙∙

(s) (d)

DMOVP H56789ABC D0

UDINT2INT D0 D100

Before conversion After conversion

Stores in lower 16 bits

264
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting 32-bit unsigned binary data to 16-bit unsigned binary
data

UDINT2UINT(P)

These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit unsigned binary data, and

store the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit unsigned binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  32-bit unsigned binary ANY32_U

(d) Data after conversion  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

b31 b16

(1164413355)

89ABH4567HD1, D0

(d)b15 b0

(35243)

89ABHD100

(s) b15 b0∙∙∙ ∙∙∙ ∙∙∙

(s) (d)

DMOVP H456789AB D0

UDINT2UINT D0 D100

Before conversion After conversion

Stores in lower 16 bits

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 265

6

Converting 32-bit unsigned binary data to 32-bit signed binary
data

UDINT2DINT(P)

These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and store

the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion  32-bit unsigned binary ANY32_U

(d) Data after conversion  32-bit signed binary ANY32_S

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

b31 b16

(2147549185)

0001H8001HD1, D0

b15 b0(s) b31 b16

(-2147418111)

0001H8000HD101, D100

b15 b0(d)

(s) (d)

DMOVP H80010001 D0

UDINT2DINT D0 D100

Before conversion After conversion

Stores as is

266
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting 16-bit binary data to Gray code

GRY(P)(_U)

These instructions convert the 16-bit binary data in the device specified by (s) to 16-bit binary gray code data, and store the

converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit binary data in the device specified by (s) to 16-bit binary gray code data, and store the

converted data in the device specified by (d).

Precautions

The data conversion speed depends on the scan time of the CPU module.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=GRY(EN,s,d);

ENO:=GRYP(EN,s,d);

ENO:=GRY_U(EN,s,d);

ENO:=GRYP_U(EN,s,d);

Operand Description Range Data type Data type (label)

(s) GRY(P) Binary data or the head device where the binary

data is stored

0 to 32767 16-bit signed binary ANY16_S

GRY(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) GRY(P) Head device for storing the gray code data after

conversion

 16-bit signed binary ANY16_S

GRY(P)_U 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(s) BIN

(d) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 011 11

1 1 11

1 1 1

1

1

1234

1234

b15

b15

b0

b0

···

Gray code

16 bits

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 267

6

Converting 32-bit binary data to Gray code

DGRY(P)(_U)

These instructions convert the 32-bit binary data in the device specified by (s) to 32-bit binary gray code data, and store the

converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit binary data in the device specified by (s) to 32-bit binary gray code data, and store the

converted data in the device specified by (d).

Precautions

The data conversion speed depends on the scan time of the CPU module.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DGRY(EN,s,d);

ENO:=DGRYP(EN,s,d);

ENO:=DGRY_U(EN,s,d);

ENO:=DGRYP_U(EN,s,d);

Operand Description Range Data type Data type (label)

(s) DGRY(P) Binary data or the head device where the binary

data is stored

0 to 2147483647 32-bit signed binary ANY32_S

DGRY(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) DGRY(P) Head device for storing the gray code data after

conversion

 32-bit signed binary ANY32_S

DGRY(P)_U 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(s) BIN

(d)

0305419896 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0

b31 b16 b0b15

0305419896 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0

(d)+1

b31 b16 b0b15

(d)

···

···

···

···

Gray code

(s)+1 (Upper 16 bits) (s) (Lower 16 bits)

268
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting Gray code to 16-bit binary data

GBIN(P)(_U)

These instructions convert the 16-bit binary gray code data in the device specified by (s) to 16-bit binary data, and store the

converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit binary gray code data in the device specified by (s) to 16-bit binary data, and store the

converted data in the device specified by (d).

Precautions

When an input relay (X) is specified as (s), the response delay will be "Scan time of CPU module + Input filter constant".

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=GBIN(EN,s,d);

ENO:=GBINP(EN,s,d);

ENO:=GBIN_U(EN,s,d);

ENO:=GBINP_U(EN,s,d);

Operand Description Range Data type Data type (label)

(s) GBIN(P) Gray code data or head device storing the gray

code data

0 to 32767 16-bit signed binary ANY16_S

GBIN(P)_U 0 to 65535 16-bit unsigned binary ANY16_U

(d) GBIN(P) Head device for storing the binary data after

conversion

 16-bit signed binary ANY16_S

GBIN(P)_U 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d) BIN

(s) 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 011 11

1 1 11

1 1 1

1

1

1234

1234

b15

b15

b0

b0

···

···

Gray code

16 bits

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 269

6

Converting Gray code to 32-bit binary data

DGBIN(P)(_U)

These instructions convert the 32-bit binary gray code data in the device specified by (s) to 32-bit binary data, and store the

converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit binary gray code data in the device specified by (s) to 32-bit binary data, and store the

converted data in the device specified by (d).

Precautions

When an input relay (X) is specified as (s), the response delay will be "Scan time of CPU module + Input filter constant".

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DGBIN(EN,s,d);

ENO:=DGBINP(EN,s,d);

ENO:=DGBIN_U(EN,s,d);

ENO:=DGBINP_U(EN,s,d);

Operand Description Range Data type Data type (label)

(s) DGBIN(P) Gray code data or head device storing the gray

code data

0 to 2147483647 32-bit signed binary ANY32_S

DGBIN(P)_U 0 to 4294967295 32-bit unsigned binary ANY32_U

(d) DGBIN(P) Head device for storing the binary data after

conversion

 32-bit signed binary ANY32_S

DGBIN(P)_U 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d) BIN

(s)

0305419896 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0

b31 b16 b0b15

0305419896 0 0 1 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 1 0 0

(d)+1

b31 b16 b0b15

(d)

···

···

···

···

Gray code

(s)+1 (Upper 16 bits) (s) (Lower 16 bits)

270
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting decimal ASCII to 16-bit binary data

DABIN(P)(_U)

These instructions convert the decimal ASCII data in the device areas specified by (s) and later to 16-bit binary data, and

store the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions convert the decimal ASCII data in the device areas specified by (s) and later to 16-bit binary data, and

store the converted data in the device specified by (d).

Ex.

When the ASCII data, -25108 (signed), is specified by (s)

 � The ASCII data that can be specified by (s) to (s)+2 is -32768 to +32767 for signed data, and 0 to 65535 for unsigned data.

 � As signed data, "20H" is stored if the ASCII data is positive, and "2DH" is stored if the data is negative. (If a value other than

"20H" and "2DH" is set, the data will be processed as positive data.) (DABIN(P))

 � A value "30H" to "39H" can be set in the each place of the ASCII code.

 � If a value "20H" or "00H" is set, the value will be processed as "30H".

Ladder diagram Structured text

ENO:=DABIN(EN,s,d);

ENO:=DABINP(EN,s,d);

ENO:=DABIN_U(EN,s,d);

ENO:=DABINP_U(EN,s,d);

Operand Description Range Data type Data type (label)

(s) ASCII data or the head device where the ASCII

data is stored

 Character string ANYSTRING_SINGLE

(d) DABIN(P) Head device for storing the converted data  16-bit signed binary ANY16_S

DABIN(P)_U 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)    *1         

(s) (d)

(s)

(s)+1

(s)+2

b15 b0··· ···b7b8

b0···b15

(d)

ASCII code for the ten-thousands place

ASCII code for the hundreds place

ASCII code for ones place

ASCII code for sign

ASCII code for the thousands place

ASCII code for the tens place
16-bit binary data

(s)

(s)+1

(s)+2

b15 b0··· ···b7b8

b0···b15

(d) - 2 5 1 0 8

32H (2)

31H (1)

38H (8)

2DH (-)

35H (5)

30H (0)

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 271

6

Operation error

Error code

(SD0/SD8067)

Description

2820 The device specified by (s) exceeds the corresponding device range.

3401 The signed data is other than 20H, 2DH.

A value specified by (s) to (s)+2 for each place of the ASCII code is other than "30H" to "39H", "20H", and "00H".

The ASCII data in the device specified by (s) to (s)+2 is out of the valid range (-32768 to +32767) (when a signed data is specified).

The ASCII data in the device specified by (s) to (s)+2 is out of the valid range (0 to 65535) (when unsigned data is specified).

272
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting decimal ASCII to 32-bit binary data

DDABIN(P)(_U)

These instructions convert the decimal ASCII data in the device numbers specified by (s) and later to 32-bit binary data, and

store the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions convert the decimal ASCII data in the device numbers specified by (s) and later to 32-bit binary data,

and store the converted data in the device specified by (d).

Ex.

When the ASCII data, -1234543210 (signed), is specified by (s)

 � The ASCII data that can be specified by (s) to (s)+5 is -2147483648 to +2147483647 for signed data, and 0 to 429496729

for unsigned data. The data stored in the high-order byte of (s)+5 is ignored.

 � As signed data, "20H" is stored if the ASCII data is positive, and "2DH" is stored if the data is negative. (If a value other than

"20H" and "2DH" is set, the data will be processed as positive data.) (DABIN(P))

 � A value "30H" to "39H" can be set in the each place of the ASCII code.

 � If a value "20H" or "00H" is set, the value will be processed as "30H".

Ladder diagram Structured text

ENO:=DDABIN(EN,s,d);

ENO:=DDABINP(EN,s,d);

ENO:=DDABIN_U(EN,s,d);

ENO:=DDABINP_U(EN,s,d);

Operand Description Range Data type Data type (label)

(s) ASCII data or the head device where the ASCII

data is stored

 Character string ANYSTRING_SINGLE

(d) DDABIN(P) Head device for storing the converted data  32-bit signed binary ANY32_S

DDABIN(P)_

U

32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)    *1         

(s) (d)

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

b15 b0··· ···b7b8

b0··· ···b31 b16 b15
(d)+1 (d)

ASCII code for the billions place

ASCII code for the ten-millions place

ASCII code for the hundred-thousands place

ASCII code for sign

ASCII code for billions place

ASCII code for the millions place

ASCII code for the thousands place

ASCII code for the tens place

(Ignore.)

ASCII code for the ten-thousands place

ASCII code for the hundreds place

ASCII code for ones place

32-bit binary data

Upper 16 bits Lower 16 bits

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

b15 b0··· ···b7b8

(d)+1 (d)

31H (1)

33H (3)

35H (5)

2DH (-)

32H (2)

34H (4)

33H (3)

31H (1)

34H (4)

32H (2)

30H (0)

1 2 3 4 3 2 1 05 4-

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 273

6

Operation error

Error code

(SD0/SD8067)

Description

2820 The device specified by (s) exceeds the corresponding device range.

3401 The signed data is other than 20H, 2DH.

A value specified by (s) to (s)+2 for each place of the ASCII code is other than "30H" to "39H", "20H", and "00H".

The ASCII data in the device specified by (s) to (s)+5 is out of the valid range (-2147483648 to +2147483647) (when a signed data is

specified).

The ASCII data in the device specified by (s) to (s)+5 is out of the valid range (0 to 4294967295) (when unsigned data is specified).

274
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Converting ASCII to HEX

HEXA(P)

These instructions convert the ASCII data stored in the number of characters specified by (n) in the device numbers specified

by (s) and later to HEX code data, and store the converted data in the device numbers specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions convert the ASCII data stored in the number of characters specified by (n) in the device numbers

specified by (s) and later to HEX code data, and store the converted data in the device numbers specified by (d) and later.

16-bit conversion mode and 8-bit conversion mode options are available for these instructions. For operation in each mode,

refer to the succeeding pages.

Ladder diagram Structured text

ENO:=HEXA(EN,s,n,d);

ENO:=HEXAP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device for storing the ASCII data to be converted to

hexadecimal code

 Character string ANYSTRING_SINGLE

(d) Head device for storing the hexadecimal code after

conversion

 16-bit signed binary ANY16

(n) Number of characters (number of bytes) of ASCII data to

be converted

1 to 16383 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)             

(n)             

� 16-bit conversion mode (while SM8161 is OFF)

The ASCII data stored in high-order 8 bits and low-order 8 bits (byte) of the device specified by (s) is converted to hexadecimal code, and transferred to

the device specified by (d) in units of 4 digits. The number of characters to be converted is specified by (n).

SM8161 is also used for the RS2, ASCI(P), CCD(P), and CRC(P) instructions. When using the 16-bit conversion mode, set SM8161 to normally OFF.

SM8161 is cleared when the CPU module mode is changed from RUN to STOP.

Moreover, when using the 16-bit conversion mode, the ASCII data must also be stored in high-order 8 bits of the device specified by (s).

In the following program, conversion is executed as follows:

(s) (d) (n)

HEXA D200

SM8161

SM400

X10

D100 K4

16-bit conversion mode

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 275

6

Conversion source data

(s) ASCII data Hexadecimal code

D200 low-order 30H 0

D200 high-order 41H A

D201 low-order 42H B

D201 high-order 43H C

D202 low-order 31H 1

D202 high-order 32H 2

D203 low-order 33H 3

D203 high-order 34H 4

D204 low-order 35H 5

Number of specified characters and conversion result "" indicates "0".

� 8-bit conversion mode (while SM8161 is on)

The ASCII data stored in low-order 8 bits of the device specified by (s) is converted to hexadecimal code, and transferred to the device specified by (d) in

units of 4 digits.

The number of characters to be converted is specified by (n).

SM8161 is also used for the RS2, ASCI(P), CCD(P), and CRC(P) instructions. When using the 8-bit conversion mode, set SM8161 to normally on.

SM8161 is cleared when the CPU module mode is changed from RUN to STOP.

In the following program, conversion is executed as follows:

Conversion source data

(s) ASCII data Hexadecimal code

D200 30H 0

D201 41H A

D202 42H B

D203 43H C

D204 31H 1

D205 32H 2

D206 33H 3

D207 34H 4

D208 35H 5

(n)

(d)

D102 D101 D100

1

2

3

4

5

6

7

8

9

D200

0 0 0 0 1 0 1 0 1 0 0 01 1 11

0 A B C

0 1 0 0 0 0 1 0 00 0

0 1 0 0 0 0 1 0 00 0

D201

D100

1 1 10 0

0 110 0

0AHDoes not change

43H to "C" 42H to "B"

0H

0ABH

0ABCH

ABC1H

BC12H

C123H

1234H

2345H

0AH

0H

0ABH

0ABCH

ABC1H

30H to "0"41H to "A"

When (n)=K4

0H

HEXA D200

SM8161

SM400

X10

D100 K4

8-bit conversion mode 16 bits

Source data

Ignored Lower 8 bits

276
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Precautions

 � Make sure that only ASCII codes "0" to "9" and "A" to "F" are stored in the device specified by (s).

 � If ASCII data is not stored in the device specified for (s) by the HEXA(P) instructions, an operation error occurs and

conversion into hexadecimal code is disabled. Especially, note that when SM8161 is OFF (16-bit conversion mode), ASCII

code should be stored in high-order 8 bits of the device specified by (s).

 � The number of points occupied by the device specified by (d) varies depending on the ON/OFF status of SM8161. When

SM8161 is on (8-bit conversion mode), as many points as the number of characters are occupied, and when SM8161 is

OFF (16-bit conversion mode) as many points as the (number of characters 2) are occupied.

 � The SM8161 flag is also used for the RS2, ASCI(P), CCD(P) and CRC(P) instructions. When using these instructions and

the HEXA(P) instructions in the same program, make sure to set SM8161 to ON or OFF just before each instruction so that

SM3161 does not affect another instruction.

Operation error

Number of specified characters and conversion result "." indicates "0".

Error code

(SD0/SD8067)

Description

2820 The (n) number of devices specified by (s) and (d) exceeds the corresponding device range.

2821 The range specified by (s) and (d) overlaps.

3401 An ASCII code other than 30H to 39H, and 41H to 46H is set in the device specified by (s).

3405 The value specified in (n) is outside the range specified below.

1 to 16383

(n)

(d)

D102 D101 D100

1

2

3

4

5

6

7

8

9

D200

0 0 0 0 0 0

0 A

0 00 0

0 00 0

D201

D100

1 10 0

110 0

0 0 0 0 1 0 1 000

0AHDoes not change

0H

0ABH

0ABCH

ABC1H

BC12H

C123H

1234H

2345H

0AH

0H

0ABH

0ABCH

ABC1H

30H to "0"

41H to "A"

When (n)=K2

0H

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 277

6

Converting character string to 16-bit binary data

VAL(P)(_U)

These instructions convert the character string in the device numbers specified by (s) and later to 16-bit binary data, and store

the number of digits in the device specified by (d1) and the binary data in the device specified by (d2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions convert the character string in the device numbers specified by (s) and later to 16-bit binary data, and

store the number of digits in the device specified by (d1) and the binary data in the device specified by (d2). When

converting a character string into binary data, the data from the device number specified by (s) to a device number storing

"00H" is handled as a character string.

 � The total number of digits stored in (d1) is the total number of characters (including the sign and decimal point) representing

the numeric value. The number of digits in the decimal part stored in (d1)+1 is the number of characters representing the

decimal part after 2EH (.). The 16-bit binary data stored in (d2) is binary value converted from a character string with the

decimal point ignored.

Ladder diagram Structured text

ENO:=VAL(EN,s,d1,d2);

ENO:=VALP(EN,s,d1,d2);

ENO:=VAL_U(EN,s,d1,d2);

ENO:=VALP_U(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Character string to be converted to binary data,

or head device for storing the character string.

 Character string ANYSTRING_SINGLE

(d1) VAL(P) Head device for storing the number of digits of

the binary data after conversion

 16-bit signed binary ANY16_S_ARRAY

VAL(P)_U 16-bit unsigned binary ANY16_U_ARRAY

(d2) VAL(P) Head device for storing the binary data after

conversion

 16-bit signed binary ANY16_S

VAL(P)_U 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d1)             

(d2)             

(s) (d1) (d2)

(s)

(s)+1

(s)+2

(s)+3

(s)+4

b15 b0··· ···b7b8
(d1)

(d1)+1

.

00H

(d2)-

ASCII code for 1st character

ASCII code for 3rd character

ASCII code for the 5th character

ASCII code for sign

ASCII code for 2nd character

ASCII code for the 4th character

ASCII code for the 7th character ASCII code for the 6th character

Total number of digits

16-bit binary data
Sign

1st character

2nd character 7th character

Indicates the end of character string.

···

Integer value in which the
decimal point is ignored

Number of digits of
the decimal part

278
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Ex.

When the character string "-123.45" (signed) is specified by (s) and later

 � The total number of characters of the character string specified by (s) is 2 to 8 characters.

 � In the character string specified by (s), the number of characters that form the decimal part is 0 to 5 characters. However,

be sure to specify "Total number of digits - 3" or below.

 � The range of the character string of the numeric value that can be converted to a binary value is -32768 to +32767 for a

signed value with the decimal point ignored, and 0 to 65535 for an unsigned value. A character string of a numeric value

excluding the sign and decimal point can be specified only within the range of 30H to 39H. (Value with the decimal point

ignored ... "-12345.6" becomes "-123456".)

 � When representing a positive numeric value, 20H is set in the sign, and when representing a negative numeric value, 2DH

is set.

 � 2EH is set in the decimal point.

 � When "20H (space)" or "30H (0)" exists between the sign and the first non-zero number in a character string specified by

(s), "20H" or "30H" is ignored during conversion to a binary value.

Ex.

When "20H" exists between the sign and the first non-zero number (a signed value is specified)

Ex.

When "30H" exists between the sign and the first non-zero number

Precautions

 � Store signed data, "space (20H)" or "- (2DH)" only in the 1st byte (low-order 8 bits of the head device set in (s)). Only the

ASCII data "0 (30H)" to "9 (39H)", "space (20H)" and "decimal point (2EH)" can be stored from the 2nd byte to the "00H" at

the end of the character string in (s). If "- (2DH)" is stored in the 2nd byte or later, an operation error occurs.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device specified by (d1) exceeds the corresponding device range.

When "00H" is not set in the corresponding device range after the device specified in (s).

3401 The number of characters of the character string specified by (s) is other than 2 to 8 characters.

The number of characters of the decimal part of the character string specified by (s) is other than 0 to 5 characters.

The relationship between the total number of characters specified by (s) and the number of characters of the decimal part is other than

that described below.

Total number of characters - 3Number of characters in the decimal part

An ASCII code other than 20H, 2DH is set in the sign. (a signed value is specified)

An ASCII code other than 30H to 39H, and 2EH (decimal point) is set in the digits of each number

Two or more decimal points are set.

The converted binary value exceeds the range that can be converted by each instruction.

Signed operation: -32768 to +32767, unsigned operation: 0 to 65535

(s)

(s)+1

(s)+2

(s)+3

b15 b0··· ···b7b8 (d1)

(d1)+1

. (d2)

7

2

- 1 2 3 4 5- 1 2 3 4 5

31H (1)

33H (3)

34H (4)

2DH (-)

32H (2)

2EH (.)

00H 35H (5)

1 2 3 . 4 5-

1 2 3

8

2

4 5-

Total number of digits

Number of digits of the decimal part

16-bit binary data

Ignore

0 . 0 0 1 2

7

4

12

Total number of digits

Number of digits of the decimal part

16-bit binary data

Ignore

Sign

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 279

6

Converting character string to 32-bit binary data

DVAL(P)(_U)

These instructions convert the character string in the device numbers specified by (s) and later to 32-bit binary data, and store

the number of digits in the device specified by (d1) and the binary data in the device specified by (d2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=DVAL(EN,s,d1,d2);

ENO:=DVALP(EN,s,d1,d2);

ENO:=DVAL_U(EN,s,d1,d2);

ENO:=DVALP_U(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Character string to be converted to binary data,

or head device for storing the character string.

 Character string ANYSTRING_SINGLE

(d1) DVAL(P) Head device for storing the number of digits of

the binary data after conversion

 16-bit signed binary ANY16_S_ARRAY

DVAL(P)_U 16-bit unsigned binary ANY16_U_ARRAY

(d2) DVAL(P) Head device for storing the binary data after

conversion

 32-bit signed binary ANY32_S

DVAL(P)_U 32-bit unsigned binary ANY32_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d1)             

(d2)             

(s) (d1) (d2)

280
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Processing details

 � These instructions convert the character string in the device numbers specified by (s) and later to 32-bit binary data, and

store the number of digits in the device specified by (d1) and the binary data in the device specified by (d2). When

converting a character string into binary data, the data from the device number specified by (s) to a device number storing

"00H" is handled as a character string.

 � The total number of digits stored in (d1) is the total number of characters (including the sign and decimal point) representing

the numeric value. The number of digits in the decimal part stored in (d1)+1 is the number of characters representing the

decimal part after 2EH (.). The 32-bit binary data stored in (d2) is binary value converted from a character string with the

decimal point ignored.

Ex.

When the character string "-12345.678" (signed) is specified by (s) and later

 � The total number of characters of the character string specified by (s) is 2 to 13 characters.

 � In the character string specified by (s), the number of characters that form the decimal part is 0 to 10 characters. However,

be sure to specify "Total number of digits - 3" or below.

 � The range of the character string of the numeric value that can be converted to a binary value is -2147483648 to

2147483647 for a signed value with the decimal point ignored, and 0 to 4294967295 for an unsigned value. A character

string of a numeric value excluding the sign and decimal point can be specified only within the range of 30H to 39H. (Value

with the decimal point ignored ... "-12345.6" becomes "-123456".)

 � When representing a positive numeric value, 20H is set in the sign, and when representing a negative numeric value, 2DH

is set.

 � Set 2EH in the decimal point.

 � When "20H (space)" or "30H (0)" exists between the sign and the first non-zero number in a character string specified by

(s), "20H" or "30H" is ignored during conversion to a binary value.

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

b15 b0∙∙∙ ∙∙∙b7b8

00H

- .

(d2)+1 (d2)

(d1)

(d1)+1

∙∙∙

ASCII code for 1st character

ASCII code for 3rd character

ASCII code for the 5th character

ASCII code for sign

ASCII code for 2nd character

ASCII code for the 4th character

ASCII code for the 7th character ASCII code for the 6th character

ASCII code for the 9th character ASCII code for the 8th character

ASCII code for the 11th character ASCII code for the 10th character

ASCII code for the 12th character

Sign

1st character

2nd character 12th character

Indicates the end of character string.

Total number of digits

Integer value in which the decimal point is ignored

32-bit binary data

Number of digits of
the decimal part

00H

10

3

- 42 3 .51 86 7 -12345678

···

31H (1)

33H (3)

35H (5)

36H (6)

38H (8)

2DH (-)

32H (2)

34H (3)

2EH (.)

37H (7)

b7 b0···b15 b8

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(d1)

(d1)+1

(d2)+1 (d2)

··· b0b15··· b16b31

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 281

6

Ex.

When "20H" exists between the sign and the first non-zero number (a signed value is specified)

Ex.

When "30H" exists between the sign and the first non-zero number

Precautions

 � Store sign data, "space (20H)" or "- (2DH)" in the 1st byte (low-order 8 bits of the head device set in (s)). Only the ASCII

data "0 (30H)" to "9 (39H)", "space (20H)" and "decimal point (2EH)" can be stored from the 2nd byte to the "00H" at the

end of the character string in (s). If "- (2DH)" is stored in the 2nd byte or later, an operation error occurs.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device specified by (d1) exceeds the corresponding device range.

When "00H" is not set in the corresponding device range after the device specified in (s).

3401 The number of characters of the character string specified by (s) is other than 2 to 13 characters.

The number of characters of the decimal part of the character string specified by (s) is other than 0 to 10 characters.

The relationship between the total number of characters specified by (s) and the number of characters of the decimal part is other than

that described below.

Total number of characters - 3Number of characters in the decimal part

An ASCII code other than 20H, 2DH is set in the sign.

Two or more decimal points are set.

The converted binary value exceeds the range that can be converted by each instruction.

Signed operation: -2147483648 to +2147483647, unsigned operation: 0 to 4294967295

6 5 4 3 . 2 1

12

2

6 5 4 3 2 1

-

-

Total number of digits

Number of digits of the decimal part

32-bit binary data

Ignore

0 0 0 0 5 4 3 2 1

11

8.

5 4 3 2 1

Total number of digits

Number of digits of the decimal part

32-bit binary data

Ignore

Sign

282
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Two's complement of 16-bit binary data (sign inversion)

NEG(P)

These instructions invert the sign of the 16-bit binary data in the device specified by (d), and store the resultant data in the

device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions invert the sign of the 16-bit binary data in the device specified by (d), and store the resultant data in the

device specified by (d).

 � They are used when a positive or negative sign is to be inverted.

Precautions

Note that data is inverted in every operation cycle in a continuous operation type (NEG) instruction.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=NEG(EN,d);

ENO:=NEGP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device for storing the data that performs two's

complement

-32768 to +32767 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

1

(d)

(d)

···b15 b0

1 0 1 10 0 1 0 1 10 0 1 0 1 0

···b15 b0

0 1 0 01 1 0 1 0 01 1 0 1 1 0

1 0 1 10 0 1 0 1 10 0 1 0 1 0

0 0 0 00 0 0 0 0 00 0 0 0 0 0

-

··· -21846

··· 21846

Before execution

Sign conversion

After execution

16 bits

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 283

6

Two's complement of 32-bit binary data (sign inversion)

DNEG(P)

These instructions invert the sign of the 32-bit binary data in the device specified by (d), and store the resultant data in the

device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions invert the sign of the 32-bit binary data in the device specified by (d), and store the resultant data in the

device specified by (d).

 � They are used when a positive or negative sign is to be inverted.

Precautions

Note that data is inverted in every operation cycle in a continuous operation type (DNEG) instruction.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DNEG(EN,d);

ENO:=DNEGP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device for storing the data that performs two's

complement

-2147483648 to +2147483647 32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

1

(d)

(d)

···b31 b0

1 1 1 11 1 1 10 0 0 1 0 0

···b31 b0

0 0 0 00 0 0 01 1 1 1 0 0

1 1 1 11 1 1 10 0 0 1 0 0

0 0 0 00 0 0 00 0 0 0 0 0

-

··· -218460

··· 218460

Before execution

Sign conversion

After execution

32 bits

284
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Decoding from 8 to 256 bits

DECO(P)

These instructions decode the lower-order (n) bits of the device specified by (s), and store the result in the 2 (to the power (n))

bit from the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions turn ON the bit position of the device specified by (d) in correspondence to the BIN value specified by

the lower-order (n) bits of (s).

 � When (n) is 0, no processing is performed, and the contents of the device specified by (d) do not change.

 � The bit device is handled as a device storing one-bit data and the word device is handled as a device storing 16-bit data.

Operation error

Ladder diagram Structured text

ENO:=DECO(EN,s,n,d);

ENO:=DECOP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Decode data or device number for storing the decode data  Bit/16-bit signed binary ANY_ELEMENTARY

(d) Head device for storing the decode result  Bit/word ANY_ELEMENTARY

(n) Valid bit length 1 to 8 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The device specified by (s) exceeds the corresponding device range.

The device specified by (d) exceeds the corresponding device range.

3401 (d) is specified as a bit device and (n) is other than 0 to 8.

(d) is specified as a word device and (n) is other than 0 to 4.

(s) (d) (n)

7

0 1

ON

0 0 0 0 0 0

1 1 0

6 5 4 3 2 1 0

n=3

(d)

(s) (Binary value = 6)

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 285

6

Encoding from 256 to 8 bits

ENCO(P)

These instructions encode the 2(n) bits of data from the device specified by (s), and store it in (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions store into (d) the binary value corresponding to the bit whose value is 1 in the data with 2(n) bits.

 � When (n) is 0, no processing is performed, and the contents of the device specified by (d) do not change.

 � The bit device is handled as a device storing one-bit data and the word device is handled as a device storing 16-bit data.

 � If two or more bits are 1, the higher bit position is processed.

Operation error

Ladder diagram Structured text

ENO:=ENCO(EN,s,n,d);

ENO:=ENCOP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device for storing the encode data  Bit/word ANY_ELEMENTARY

(d) Device number for storing the encoding result  16-bit signed binary ANY16

(n) Valid bit length 1 to 8 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The device specified by (s) exceeds the corresponding device range.

3401 The entire data from (s) to 2(n) number of bits is 0.

(s) is specified as a bit device and (n) is other than 0 to 8.

(s) is specified as a word device and (n) is other than 0 to 4.

(s) (d) (n)

1 1 0(d)

7

0

8 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0(s)

(Binary value = 6)

286
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Separating 4 bits from 16-bit data

DIS(P)

These instructions store the data equivalent of the (n) nibbles (1-nibble/ 4-bits) of the 16-bit binary data specified by (s) in to

the lower-order 4 bits of (n) number of devices starting from the one specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions store the data equivalent of the (n) nibbles (1-nibble/ 4-bits) of the 16-bit binary data specified by (s) in to

the lower-order 4 bits of (n) number of devices starting from the one specified by (d).

 � The higher-order 12 bits of (n) number of devices starting from the one specified by (s) becomes 0.

 � When (n) is 0, no processing is performed, and the contents of the (n) number of devices starting from the one specified by

(d) do not change.

Operation error

Ladder diagram Structured text

ENO:=DIS(EN,s,n,d);

ENO:=DISP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device for storing the data to be separated  16-bit signed binary ANY16

(d) Head device storing separated data  16-bit signed binary ANY16

(n) Number of separations (0 indicates no processing is

performed)

1 to 4 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The range of (n) number of points from (d) exceed the corresponding device range.

3401 (n) is other than 0 to 4.

(s) (d) (n)

······b3 b0···b7 b4···b11 b8···b15 b12 b0b3··· b4b15

(s) (d)

(d)+1

(d)+2

(d)+3

(n)

Storage areaThese bits
become "0".

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 287

6

Connecting 4 bits to 16-bit data

UNI(P)

These instructions link the lower-order 4 bits of the 16-bit binary data of the (n) number of devices starting from the one

specified by (s) to the device storing 16-bit binary data specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions link the lower-order 4 bits of the 16-bit binary data of the (n) number of devices starting from the one

specified by (s) to the device storing 16-bit binary data specified by (d).

 � The higher-order (4-n) nibble bits of the device specified by (d) becomes 0.

 � When (n) is 0, no processing is performed, and the contents of the device specified by (d) do not change.

Operation error

Ladder diagram Structured text

ENO:=UNI(EN,s,n,d);

ENO:=UNIP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device for storing the data to be linked  16-bit signed binary ANY16

(d) Head device for storing the linked data  16-bit signed binary ANY16

(n) Number of links 1 to 4 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The range of (n) number of points from (d) exceed the corresponding device range.

3401 (n) is other than 0 to 4.

(s) (d) (n)

···

···b3 b0···b7 b4···b11 b8···b15 b12

b0b3··· b4b15

(d)

(s)

(s)+1

(s)+2

(s)+3

Ignored Merged data

288
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Separating the specified number of bits

NDIS(P)

These instructions separate each bit of the data in the device numbers specified by (s1) onwards into bit units specified by

(s2), and store the separated data in the device number specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=NDIS(EN,s1,s2,d);

ENO:=NDISP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Head device for storing the data to be separated  16-bit signed binary ANY16

(d) Head device for storing the separated data  16-bit signed binary ANY16

(s2) Head device for storing the separation unit  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(d)             

(s2)             

(s1) (d) (s2)

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 289

6

Processing details

 � These instructions separate each bit of the data in the device numbers specified by (s1) and later into bit units specified by

(s2), and store the separated data in the device numbers starting from the one specified by (d).

 � The number of separation bits specified by (s2) can be specified within the range of 1 to 16 bits.

 � The number of bits specified in devices from the device number specified by (s2) up to the device number in which "0" is

stored are processed as the number of separation bits.

 � If the device numbers specified by (s1), (s2), (d) are partially overlapping, an operation error occurs.

Operation error

Error code

(SD0/SD8067)

Description

2820 The usage range of the device specified by (s1) or (d) exceeds the corresponding device range due to the specification of the number of

separation bits specified by (s2).

2821 The (s1), (s2) devices are overlapping.

The (s1), (d) devices are overlapping.

The (s2), (d) devices are overlapping.

3401 The specification of the number of separation bits specified by (s2) is not set within the range of 1 to 16 bits.

0 is not set in the range between the device specified by (s2) up to the corresponding device range.

(s2)

(s2)+1

(s2)+2

(s2)+3

(s2)+4

(s2)+5

(s2)+6

(s2)+7

(s1)

(s1)+1

(s1)+2

6

8

6

4

8

10

3

0

b0···b6 b5···b13b15b14

b0······b8 b7 b4 b3···b15

b0···b9b10···b12

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)+6

··· b0

··· b0b7

··· b0b7

··· b0b9

b5

··· b0b5

··· b0b3

··· b0b2

For the bits specified by (s2)+1

For the bits specified by (s2)+2

For the bits specified by (s2)+3

For the bits specified by (s2)+4

For the bits specified by (s2)+5

For the bits specified by (s2)+6

Specifies the number of separating bits

Specifies the setting end

For the bits specified by (s2)

290
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Connecting the specified number of bits

NUNI(P)

These instructions link each bit of the data in the device numbers specified by (s1) onwards into bit units specified by (s2), and

store the connected data in the device number specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=NUNI(EN,s1,s2,d);

ENO:=NUNIP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Head device for storing the data to be linked  16-bit signed binary ANY16

(d) Head device for storing the linked data  16-bit signed binary ANY16

(s2) Head device for storing the link unit size  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(d)             

(s2)             

(s1) (d) (s2)

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 291

6

Processing details

 � These instructions link each bit of the data in the device numbers specified by (s1) onwards into bit units specified by (s2),

and store the linked data in the device number specified by (d).

 � The number of link bits specified by (s2) can be specified within the range of 1 to 16 bits.

 � The number of bits specified in devices from the device number specified by (s2) up to the device number in which "0" is

stored are processed as the number of connection bits.

 � If the device numbers specified by (s1), (s2), (d) are partially overlapping, an operation error occurs.

Operation error

Error code

(SD0/SD8067)

Description

2820 The usage range of the device specified by (s1) or (d) exceeds the corresponding device range due to the specification of the number of

link bits specified by (s2).

2821 The (s1), (s2) devices are overlapping.

The (s1), (d) devices are overlapping.

The (s2), (d) devices are overlapping.

3401 The specification of the number of link bits specified by (s2) is not set within the range of 1 to 16 bits.

0 is not set in the range between the device specified by (s2) up to the corresponding device range.

(s2)

(s2)+1

(s2)+2

(s2)+3

(s2)+4

(s2)+5

(s2)+6

(s2)+7

(s1)

(s1)+2

(s1)+5

6

8

6

4

8

10

3

0

b0b5 b0b6 b5b13b15b14

(s1)+1

b0b7

b0b5

b0b3

b0b8 b7 b4 b3b15

(s1)+3

b0b7

(s1)+4

b0b9 b0b10b12

(s1)+6

b0b2

(d)

(d)+1

(d)+2

For the bits specified by (s2)+1

For the bits specified by (s2)+2

For the bits specified by (s2)+3

For the bits specified by (s2)+4

For the bits specified by (s2)+5

For the bits specified by (s2)+6

Specifies the number of linked bits

Specifies the setting end

For the bits specified by (s2)

292
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Separating data in byte units

WTOB(P)

These instructions separate the 16-bit binary data in the device numbers starting from the one specified by (s) onwards into

(n) byte units, and store the separated data in the device number specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions separate the 16-bit binary data in the device numbers starting from the one specified by (s) onwards into

(n) byte units, and store the separated data in the device number specified by (d) onwards.

*1 Values after the decimal point are rounded up.

Ladder diagram Structured text

ENO:=WTOB(EN,s,n,d);

ENO:=WTOBP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device where the separation target data is stored  16-bit signed binary ANY16

(d) Head device for storing the result of separation in byte unit  16-bit signed binary ANY16

(n) Number of byte units 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

(s)+1

(s)

(s)+(-1)*1
2
n

··· b0b7··· b8b15 ··· b0b7··· b8b15

(d)

(d)+1

(d)+2

(d)+3

(d)+(n-2)

(d)+(n-1)

00H

00H

00H

00H

00H

00H

··
·

··
·

··
·

(n)

Lower byte data

Upper byte data

Lower byte data

Upper byte data

Lower byte data

Upper byte data

Upper byte

Upper byte

Upper byte

Lower byte

Lower byte

Lower byte

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 293

6

Ex.

For example, when (n) is 5, data starting from (s) to the lower 8 bits of (s)+2 is stored into (d) through (d)+4.

 � Setting the number of bytes by (n) automatically determines the 16-bit binary data range specified by (s) and the device

range specified by (d) for storing the separated byte data.

 � If (n) is 0, no processing is performed.

 � In the upper byte of the devices specified by (d) to hold byte data, 00Hs are automatically stored.

Ex.

To store data in D12 to D14 into the lower 8 bits of D11 to D16

 � Even if the device range of the data to be separated and the device range for storing the separated data overlap, the

processing is performed normally.

Operation error

Device range where the data to be separated is stored Device range for storing the separated data

(d)+0 to (d)+(n)-1

Error code

(SD0/SD8067)

Description

2820 The range of no. of bytes specified in (n) from the device number specified in (s) onwards exceed the corresponding device range.

The range of (n) points of devices from the device number specified in (d) onwards exceed the corresponding device range.

(d)+1

(d)+2

(d)+3

(d)+4

(d)

··· b0b7··· b8b15 ··· b0b7··· b8b15

(s)

(s)+1

(s)+2

00H

00H

00H

00H

00H

39H

12H

78H

56H

DCH

39H

78H

DCH

12H

56H

FEH When (n)=5

(n)=5 is ignored.

D13

D14

D12

··· b0b7··· b8b15 ··· b0b7··· b8b15

D11

D12

D13

D14

D15

D16

00H

00H

00H

00H

00H

31H

32H

33H

34H

00H 35H

36H

32H

34H

36H

31H

33H

35H

00H is stored.

(s) to (s)+(-1)
2
n

294
6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions

Connecting data in byte units

BTOW(P)

These instructions link the lower-order 8 bits of the 16-bit binary data of (n) number of bytes stored in the device numbers

starting from the one specified by (s) onwards into word units, and store the linked data in the device numbers starting from

the one specified by (d) onwards.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions link the lower-order 8 bits of the 16-bit binary data of (n) number of bytes stored in the device numbers

starting from the one specified by (s) onwards, and store the linked data in the device numbers starting from the one

specified by (d) onwards.

 � The higher-order 8 bits of the data of (n) words stored in device numbers starting from the one specified by (s) are ignored.

If (n) is an odd number, 0 is stored in the higher-order 8 bits of the device for storing the data of the (n)th byte.

*1 Values after the decimal point are rounded up.

Ladder diagram Structured text

ENO:=BTOW(EN,s,n,d);

ENO:=BTOWP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device for storing the data to be linked in byte units  16-bit signed binary ANY16

(d) Head device storing data acquired by combination in byte

units

 16-bit signed binary ANY16

(n) Number of byte data to be linked 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

(d)+1

(d)

(d)+(-1)*1
2
n

b0b7b8b15 b0b7b8b15

(s)

(s)+1

(s)+2

(s)+3

(s)+(n-1)

(n)

Data of the 1st byte

Data of the 2nd byte

Data of the 3rd byte

Data of the 4th byte

Data of the nth byte

Data of the 1st byteData of the 2nd byte

Data of the 3rd byteData of the 4th byte

Data of the nth byte Data of the (n-1)th byte

Higher order bytes are ignored.

6 BASIC INSTRUCTIONS

6.5 Data Conversion Instructions 295

6

Ex.

For example, when (n) is 5, lower 8 bits of data from (s) through (s+4) is stored into (d) through (d)+2.

 � Setting the number of bytes by (n) automatically determines the byte data range specified by (s) and the device range

specified by (d) for storing the linked data.

 � If (n) is 0, no processing is performed.

 � The higher-order 8 bits of the device specified by (s) for storing byte data are ignored, and only the lower-order 8 bits are

applicable.

Ex.

To store data in lower 8 bits of D11 to D16 into D12 to D14

 � Even if the device range of the data to be linked and the device range for storing the linked data overlap, the processing is

performed normally.

Operation error

Device range where the data to be linked is stored Device range for storing the linked data

(s)+0 to (s)+(n)-1

Error code

(SD0/SD8067)

Description

2820 The range of (n) points of devices from the device number specified in (s) onwards exceed the corresponding device range.

The range of no. of bytes specified in (n) from the device number specified in (d) onwards exceed the corresponding device range.

(d)+1

(d)+2

(d)

··· b0b7··· b8b15··· b0b7··· b8b15

(s)

(s)+1

(s)+2

(s)+3

(s)+4

00H

00H

00H

00H

00H

12H

34H

56H

78H

FEH

34H

78H

00H

12H

56H

FEH

These bits become "00H".

When
(n)=5

D12

D13

D11

··· b0b7··· b8b15 ··· b0b7··· b8b15

D11

D12

D13

D14

D15

D16

D14

D15

D16

00H

32H

34H

36H

00H

31H

31H

33H

35H

00H 35H

36H

31H

32H

33H

34H

35H

36H

00H

00H

00H

00H

00H

00H

(d) to (d)+(-1)
2
n

296
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

6.6 Data Transfer Instructions

Transferring 16-bit data

MOV(P)

These instructions transfer the 16-bit binary data in the device specified by (s) to the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions transfer the 16-bit binary data in the device specified by (s) to the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=MOV(EN,s,d);

ENO:=MOVP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Transfer source data or device number for storing data -32768 to +32767 16-bit signed binary ANY16

(d) Transfer destination device number  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(s)

···

···

b15

b15 b0

b0

1 0 1 01 1 0 0 0 11 1 0 0 1 0

1 0 1 01 1 0 0 0 11 1 0 0 1 0

Transferred

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 297

6

Transferring 32-bit data

DMOV(P)

These instructions transfer the 32-bit binary data in the device specified by (s) to the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions transfer the 32-bit binary data in the device specified by (s) to the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DMOV(EN,s,d);

ENO:=DMOVP(EN,s,d)

Operand Description Range Data type Data type (label)

(s) Transfer source data or device number for storing data -2147483648 to +2147483647 32-bit signed binary ANY32

(d) Transfer destination device number  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(s)

···

···

···

···

b15

b15

b0

b0

b15

b15 b0

b0

1 0 1 1 1 0 0 0 11 1 0 0 1 0

1 0 1 1 1

0

0 0 0 0 11 1 0 0 1 0

(d)+1 (d)

(s)+1 (s)

Transferred

298
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Inverting and transferring 16-bit data

CML(P)

These instructions invert each bit of the 16-bit binary data in the device specified by (s), and transfer the result to the device

specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions invert each bit of the 16-bit binary data in the device specified by (s), and transfer the result to the device

specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=CML(EN,s,d);

ENO:=CMLP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Data to be inverted or device number in which data is

stored

-32768 to +32767 16-bit signed binary ANY16

(d) Device number for storing the inversion result  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(s)

···

···

b15

b15 b0

b0

1 0 1 01 1 0 0 0 11 1 0 0 1 0

0 1 0 10 0 1 1 1 00 0 1 1 0 1

Inversion

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 299

6

Inverting and transferring 32-bit data

DCML(P)

These instructions invert each bit of the 32-bit binary data in the device specified by (s), and transfer the result to the device

specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions invert each bit of the 32-bit binary data in the device specified by (s), and store the result in the device

specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DCML(EN,s,d);

ENO:=DCMLP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Data to be inverted or device number in which data is

stored

-2147483648 to +2147483647 32-bit signed binary ANY32

(d) Device number for storing the inversion result  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(d)

(s)

···

···

···

···

b15

b15

b0

b0

b15

b15 b0

b0

1 0 1 1 1 0 0 0 11 1 0 0 1 0

0 1 0 0 0

0

1 1 1 1 00 0 1 1 0 1

(d)+1 (d)

(s)+1 (s)

Inversion

300
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Digit move

SMOV(P)

These instructions distribute and compose data in units of nibble (4 bits).

Setting data

■Descriptions, ranges, and data types

*1 Set so that m2m1, m2n.

■Applicable devices

Processing details

These instructions distribute and compose data in units of nibble (4 bits). The contents of the transfer source (s) and transfer

destination (d) are converted into 4-digit BCD (0000 to 9999). (m2) nibbles starting from the (m1)th nibble are transferred to

the transfer destination (d) starting from the (n)th nibble, converted into binary, and then stored to the transfer destination (d).

■Extension function
When SM8168 is set to ON first and then SMOV instruction is executed, conversion from binary to BCD is not executed. Data

is moved in units of 4 bits.

Ladder diagram Structured text

ENO:=SMOV(EN,s,m1,m2,n,d);

ENO:=SMOVP(EN,s,m1,m2,n,d);

Operand Description Range Data type Data type (label)

(s) Word device number storing data whose nibbles will be

moved

 16-bit signed binary ANY16

(m1)*1 Head nibble position to be moved 1 to 4 16-bit unsigned binary ANY16_U

(m2)*1 Number of nibbles to be moved 1 to 4 16-bit unsigned binary ANY16_U

(d) Word device number storing data whose nibbles are

moved

 16-bit signed binary ANY16

(n)*1 Head digit position of movement destination 1 to 4 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(m1)             

(m2)             

(d)             

(n)             

� While the command input is OFF, the transfer destination (d) does not change.

� When the command input turns ON, only the specified digits in the transfer destination (d) are changed. The transfer source (s) and unspecified digits in the

transfer destination (d) do not change.

(1): (s) is converted from binary to  BCD data.

(2): (m2) digits starting from the (m1)th digit are transferred (combined) to

(d)' starting from the (n)th digit. The first and fourth digits of (d)' are not

affected even if data is transferred from (s)'.

(3): The combined data (BCD) is converted into binary, and stored to (d).

(s) (m1) (m2) (d) (n)

10 010 110 210 3

10 010 110 210 3

(s)

(s) '

(d) '

(d)

4th nibble 1st nibble2nd nibble3rd nibble

Do not change.

(16-bit binary data)

(4-digit BCD data)

Nibbles are moved(2)

(4-digit BCD data)

(16-bit binary data)

In the case of "m1 = 4, m2 = 2, n = 3".

When command input turns ON

 Data is automatically
converted(1)

 Data is automatically
converted(3)

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 301

6

Operation error

Error code

(SD0/SD8067)

Description

3405 Any one of (m1), (m2), (n) is 0.

Either (s) or (d) is other than 0 to 9999 when SM8168 is OFF.

Either (m1) or (n) is larger than 4.

(m2) is larger than (m1) or (n).

302
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Inverting and transferring 1-bit data

CMLB(P)

These instructions invert the bit data in the device specified by (s), and transfer the result into the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

These instructions invert the bit data in the device specified by (s), and transfer the result in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=CMLB(EN,s,d);

ENO:=CMLBP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Transfer-source data  Bit ANY_BOOL

(d) Transfer-destination data  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)    *1         

(s) (d)

1 1

0 1

(d) (s)

∙∙∙

∙∙∙

Before transfer

After transfer

Bit inverted transfer

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 303

6

Transferring 16-bit block data (65535 points maximum)

BMOV(P)

These instructions block transfer the 16-bit binary data of (n) number of devices starting from the one specified by (s) to the

device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=BMOV(EN,s,n,d);

ENO:=BMOVP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device for storing the data to be transferred  16-bit signed binary/

32-bit signed binary

ANY16

(d) Head number of the transfer-destination device  16-bit signed binary/

32-bit signed binary

ANY16

(n) Number of transfers 1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

304
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Processing details

 � These instructions block transfer the 16-bit binary data of (n) number of devices starting from the one specified by (s) to the

device specified by (d).

 � If the device number range is exceeded, data is transferred within the possible range.

 � Data can be transferred even when the device range of the transfer-source device and transfer-destination device is

overlapping. To transfer data to a device having a smaller device number, transfer from (s), and to transfer data to a device

having a larger device number, transfer from (s)+(n)-1.

Ex.

When transferring data to a device having a smaller device number

When transferring data to a device having a larger device number

Precautions

 � To perform nibble specification of bit device for both (s) and (d), be sure to set the same number of nibbles for (s) and (d).

 � To use a module access device for (s) and (d), specify either (s) or (d).

Operation error

Error code

(SD0/SD8067)

Description

3405 The number of nibbles of the nibble specification of bit device of (s) and (d) is different.

3420 A module access device is specified for both (s) and (d).

··
·

··
·

(n)

1234H

5678H

7FF0H

6FFFH

1234H

5678H

7FF0H

6FFFH

553FH 553FH

(n)

b15 b0

(s)

(s)+1

(s)+(n-2)

(s)+(n-1)

(s)+2

(d)

(d)+1

(d)+2

(d)+(n-2)

(d)+(n-1)

··· b15 b0···

Block move

1)

2)

3)

D9

D10

D11

D10

D11

D12

X1
BMOV D10 D9 K3

3)

2)

1)

D11

D12

D13

D10

D11

D12

X2
BMOV D10 D11 K3

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 305

6

Transferring identical 16-bit block data (65535 points maximum)

FMOV(P)

These instructions transfer (n) point(s) of data identical to the 16-bit binary data in the device specified by (s) to the devices

specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions transfer (n) point(s) of data identical to the 16-bit binary data in the device specified by (s) to the device

specified by (d).

 � If the number of points specified by (n) exceeds the device number range, data is transferred within the possible range.

 � When a constant (K) is specified as the transfer source (s), it is automatically converted into binary.

Precautions

When the value specified in (n) is 0, an operation error does not occur, but no processing is performed,

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=FMOV(EN,s,n,d);

ENO:=FMOVP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Data to be transferred or the head device for storing the

data to be transferred

-32748 to +32767 16-bit signed binary ANY16

(d) Head device of the transfer-destination  16-bit signed binary ANY16

(n) Number of transfers 1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)
··

·

(n)

3456H

3456H

3456H

3456H

3456H

3456H

b15 b0

(s)

(d)

(d)+1

(d)+2

(d)+(n-2)

(d)+(n-1)

···

b15 b0···

Transferred

306
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Transferring identical 32-bit block data (65535 points maximum)

DFMOV(P)

These instructions transfer (n) point(s) of data identical to the 32-bit binary data in the device specified by (s) to the devices

specified by (d).

(65535 points maximum)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions transfer (n) point(s) of data identical to the 32-bit binary data in the device specified by (s) to the device

specified by (d).

 � If the number of points specified by (n) exceeds the device number range, data is transferred within the possible range.

 � When a constant (K) is specified as the transfer source (s), it is automatically converted into binary.

Precautions

When the value specified in (n) is 0, an operation error does not occur, but no processing is performed,

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DFMOV(EN,s,n,d);

ENO:=DFMOVP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Data to be transferred or the head device for storing the

data to be transferred

-2147483648 to +2147483647 32-bit signed binary ANY32

(d) Head device of the transfer-destination  32-bit signed binary ANY32

(n) Number of transfers 1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)
··

·

··
·

1234567H

1234567H

1234567H

1234567H

(n)

b31

b0

(d)(d)+1,

(d)+2

(d+2n-2)(d+2n-1),

(d)+4

(d)+3,

(d)+5,

···

1234567H

b31 ···

b0

(s1)+1, (s)

Transferred

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 307

6

Exchanging 16-bit data

XCH(P)

These instructions exchange 16-bit binary data of (d1) and (d2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

These instructions exchange 16-bit binary data of (d1) and (d2).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=XCH(EN,d1,d2);

ENO:=XCHP(EN,d1,d2);

Operand Description Range Data type Data type (label)

(d1) Head device for storing the data to be exchanged  16-bit signed binary ANY16

(d2) Head device for storing the data to be exchanged  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d1)             

(d2)             

(d1) (d2)

······b15 b8b7 b0

0 1 1 01 0 0 0 0 00 0 0 1 1 1

······b15 b8b7 b0

1 1 1 01 0 0 0 1 11 1 0 0 0 0

······b15 b8b7 b0

1 1 1 01 0 0 0 1 11 1 0 0 0 0

······b15 b8b7 b0

0 1 1 01 0 0 0 0 00 0 0 1 1 1

(d2)

(d2)

(d1)

(d1)

308
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Exchanging 32-bit data

DXCH(P)

These instructions exchange 32-bit binary data of (d1) and (d2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

These instructions exchange 32-bit binary data of (d1), (d1)+1 and (d2), (d2)+1

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DXCH(EN,d1,d2);

ENO:=DXCHP(EN,d1,d2);

Operand Description Range Data type Data type (label)

(d1) Head device for storing the data to be exchanged  32-bit signed binary ANY32

(d2) Head device for storing the data to be exchanged  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d1)             

(d2)             

(d1) (d2)

······b31 b16b15 b0 ······b31 b16 b15 b0

······b31 b16b15 b0 ······b31 b16 b15 b0

(d2)+1(d1)+1

1 1 1 1 1 1 11 110000

1 1 1 0 0 0 00 001111 1 1 1 1 1 1 11 110000

1 1 1 0 0 0 00 001111

(d1)

(d1)+1 (d1)

(d2)

(d2)+1 (d2)

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 309

6

Exchanging the upper and lower bytes of 16-bit data

SWAP(P)

These instructions swap the value of 8 bits of the upper and lower bytes of the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

These instructions swap the value of 8 bits of the upper and lower bytes of the device specified by (d).

Precautions

If a continuous operation type instruction is used, swap is done in each operation cycle.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=SWAP(EN,d);

ENO:=SWAPP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device for storing the data to be swapped  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

(d)

(d)

∙∙∙∙∙∙ ∙∙∙∙∙∙

b15 ∙∙∙∙∙∙ ∙∙∙∙∙∙ b4b7b8b11b12 b0b3

01 01 01 01 10 10 10 10

0 001 01 01 11 10 10 10

b15 b4b7b8b11b12 b0b3

310
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Exchanging the upper and lower bytes of 32-bit data

DSWAP(P)

These instructions swap the value of 8 bits of the upper and lower bytes of the word devices specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

These instructions swap the value of each of the upper and lower 8 bits of the device specified by (d) and (d)+1.

Precautions

If a continuous operation type instruction is used, swap is done in each operation cycle.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DSWAP(EN,d);

ENO:=DSWAPP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device for storing the data to be swapped  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

(d)+1

(d)+1

∙∙∙∙∙∙ ∙∙∙∙∙∙

∙∙∙∙∙∙ ∙∙∙∙∙∙

01 01 01 01 10 10 10 10

0 001 01 01 11 10 10 10 (d)

(d)

∙∙∙∙∙∙ ∙∙∙∙∙∙

∙∙∙∙∙∙ ∙∙∙∙∙∙

01 01 01 01 10 10 10 10

0 001 01 01 11 10 10 10

b15 b4b7b8b11b12 b0b3

b15 b4b7b8b11b12 b0b3

b15 b4b7b8b11b12 b0b3

b15 b4b7b8b11b12 b0b3

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 311

6

Transferring 1-bit data

MOVB(P)

These instructions store bit data specified by (s) to (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions transfer bit data specified by (s) to (d).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=MOVB(EN,s,d);

ENO:=MOVBP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device for storing the transfer-source data  Bit ANY_BOOL

(d) Head device for storing the transfer-destination data  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)    *1         

(s) (d)

0 1

1 1

(d) (s)

∙∙∙

∙∙∙

(d) (s)

Before transfer

After transfer

Bit transfer

312
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Transferring octal bits (16-bit data)

PRUN(P)

These instructions handle the device number of (s) and (d) with nibble specification as octal numbers, and transfer data.

Setting data

■Descriptions, ranges, and data types

*1 Make sure that the least significant digit of a specified device number is "0".

■Applicable devices

*1 B, SB cannot be used.

Processing details

 � Octal bit device  Decimal bit device

 � Decimal bit device  Octal bit device

Ladder diagram Structured text

ENO:=PRUN(EN,s,d);

ENO:=PRUNP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Nibble specification*1  16-bit signed binary ANY16

(d) Device number of transfer destination*1  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s) *1            

(d) *1            

(s) (d)

PRUN K4X0 K4M0

(s) (d)

X17 X16 X15 X14 X13 X12 X11 X10 X7 X6 X5 X4 X3 X2 X1 X0

M15 M14 M13 M12 M11 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0M17 M16 M10

Octal bit device (X)

Do not change.

Decimal bit device (M)

X0 to X17  M0 to M7, M10 to M17

Command
input

PRUN K4M0 K4Y0

(s) (d)

Y17 Y16 Y15 Y14 Y13 Y12 Y11 Y10 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

M15 M14 M13 M12 M11 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0M17 M16 M10

Octal bit device (X)

Decimal bit device (M)

Not transferred

M0 to M7, M10 to M17  Y0 to Y17

Command
input

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 313

6

Operation error

Error code

(SD0/SD8067)

Description

2820 The devices specified by (s) and (d) exceed the range of the corresponding device.

314
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Transferring octal bits (32-bit data)

DPRUN(P)

These instructions handle the device number of (s) and (d) with nibble specification as octal numbers, and transfer data.

Setting data

■Descriptions, ranges, and data types

*1 Make sure that the least significant digit of a specified device number is "0".

■Applicable devices

*1 B, SB cannot be used.

Processing details

 � Octal bit device  Decimal bit device

 � Decimal bit device  Octal bit device

Ladder diagram Structured text

ENO:=DPRUN(EN,s,d);

ENO:=DPRUNP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Nibble specification*1  32-bit signed binary ANY32

(d) Device number of transfer destination*1  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s) *1            

(d) *1            

(s) (d)

DPRUN K6X0 K6M0

(s) (d)

X27 X20 X17 X10 X7 X6 X5 X4 X3 X2 X1 X0

M19 M18 M17 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0M27 M10M20

Do not change.

X0 to X27  M0 to M7, M10 to M17,M20 to M27

Octal bit device (X)

Decimal bit device (M)

Command
input

DPRUN K6M0 K6Y0

Y27 Y20 Y17 Y10 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

M19 M18 M17 M9 M8 M7 M6 M5 M4 M3 M2 M1 M0M27 M20 M10

(s) (d)

Octal bit device (X)

Decimal bit device (M)

Not transferred

M0 to M7, M10 to M17,M20 to M27  Y0 to Y27

Not transferred

Command
input

6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions 315

6

Operation error

Error code

(SD0/SD8067)

Description

2820 The devices specified by (s) and (d) exceed the range of the corresponding device.

316
6 BASIC INSTRUCTIONS

6.6 Data Transfer Instructions

Transferring n-bit data

BLKMOVB(P)

These instructions block transfer the bit data of (n) point(s) from the device specified by (s) to the bit data of (n) point(s) from

(d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions block transfer the bit data of (n) point(s) from the device specified by (s) to the bit data of (n) point(s)

from the device specified by (d).

 � Data can be transferred even when the device range of the transfer-source device and transfer-destination device is

overlapping.

Operation error

Ladder diagram Structured text

ENO:=BLKMOVB(EN,s,n,d);

ENO:=BLKMOVBP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device for storing the transfer-source bit data  Bit ANY_BOOL

(d) Head device for storing the transfer-destination bit data  Bit ANY_BOOL

(n) Number of transfers 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)    *1         

(n)             

Error code

(SD0/SD8067)

Description

2820 The range of (n) point(s) of data starting from the device specified by (s) and (d) exceed the corresponding device range.

(s) (d) (n)

1 0 1

1 0 1

1

1

(n)

(n)

(s+n-1) (s+2) (s+1) (s)

(d+n-1) (d+2) (d+1) (d)

7 APPLICATION INSTRUCTION

7.1 Rotation Instruction 317

7

7 APPLICATION INSTRUCTION

7.1 Rotation Instruction

Rotating 16-bit data to the right

ROR(P), RCR(P)

 � ROR(P): These instructions rotate the 16-bit binary data in the device specified by (d) to the right by (n) bit(s) (not including

the carry flag).

 � RCR(P): These instructions rotate the 16-bit binary data in the device specified by (d) to the right by (n) bit(s) (including the

carry flag).

*1 The ROR instruction is not supported by the ST language. Use ROR of the standard function.

Page 797 ROR(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text*1

ENO:=RORP(EN,n,d);

ENO:=RCR(EN,n,d);

ENO:=RCRP(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Head device number where the rotation target data is stored  16-bit signed binary ANY16

(n) Number of rotations 0 to 15 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

(d) (n)

318
7 APPLICATION INSTRUCTION

7.1 Rotation Instruction

Processing details

■ROR(P)
 � These instructions rotate the 16-bit binary data in the device specified by (d) to the right by (n) bit(s) (not including the carry

flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

 � When (d) is a bit device, bits are rotated to the right within the device range specified by nibble specification. The number of

bits actually to be rotated is the remainder of (n)(specified number of bits). For example, when (n) is 15 and the specified

number of bits is 12, 3 bits are rotated because 15 divided by 12 equals 1 with a remainder of 3.

 � Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are rotated by the remainder value of

n16. For example, when (n) is 18, 2 bits are rotated because 18 divided by 16 equals 1 with a remainder of 2.

1(d) 0

(d) 1

(d) 0

(d)

00 01 0 0 0 0 0 0 0 0 100 0

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

01 00 0 0 0 0 0 0 0 0 000 1

00 00 0 0 0 0 0 0 0 0 0 1 0

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

Value of b0

Value of b(n-1)

Value of b0

Value of b(n-1)

Rotating 1-bit data to the right

Value of b0
Value of b0

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Rotating n-bit data to the right

Rotating 1-bit data
to the right

7 APPLICATION INSTRUCTION

7.1 Rotation Instruction 319

7

■RCR(P)
 � These instructions rotate the 16-bit binary data in the device specified by (d) to the right by (n) bit(s) (including the carry

flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

 � When (d) is a bit device, bits are rotated to the right within the device range specified by digit specification. The number of

bits actually to be rotated is the remainder of (n)(specified number of bits). For example, when (n) is 15 and the specified

number of bits is 12, 3 bits are rotated because 15 divided by 12 equals 1 with a remainder of 3.

 � Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are rotated by the remainder value of

n16. For example, when (n) is 18, 2 bits are rotated because 18 divided by 16 equals 1 with a remainder of 2.

Precautions

 � Do not set a negative value to the number of bits to be rotated (n).

 � In the case of continuous operation type instructions (ROR and RCR), note that shift and rotation are executed in every

scan time (operation cycle).

Operation error

There is no operation error.

1(d) 0

(d) 1

(d) 0

(d)

01 00 0 0 0 0 0 0 0 0 100 0

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

00 00 0 0 0 0 0 0 0 0 000 1

00 00 0 0 0 0 0 0 0 0 0 1 0

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

Value of b0

Value of b(n-1)

Carry flag value Rotating 1-bit data to the right

Value of b0
Carry flag value

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Rotating n-bit data to the right

Rotating 1-bit data
to the right

320
7 APPLICATION INSTRUCTION

7.1 Rotation Instruction

Rotating 16-bit data to the left

ROL(P), RCL(P)

 � ROL(P): These instructions rotate the 16-bit binary data in the device specified by (d) to the left by (n) bit(s) (not including

the carry flag).

 � RCL(P): These instructions rotate the 16-bit binary data in the device specified by (d) to the left by (n) bit(s) (including the

carry flag).

*1 The ROL instruction is not supported by the ST language. Use ROL of the standard function.

Page 795 ROL(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

■ROL(P)
 � These instructions rotate the 16-bit binary data in the device specified by (d) to the left by (n) bit(s) (not including the carry

flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

Ladder diagram Structured text*1

ENO:=ROLP(EN,n,d);

ENO:=RCL(EN,n,d);

ENO:=RCLP(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Head device number where the rotation target data is stored  16-bit signed binary ANY16

(n) Number of rotations 0 to 15 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

(d) (n)

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

001 00 1 0 0 0 0 0 0 0 0 0 0

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

100 01 0 0 0 0 0 0 0 0 0 0 0

0

1

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

001 00 0 0 0 0 0 0 0 0 0 0 10

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

(d)

(d)

(d)

(d)

Value of b15

Rotating n-bit data to the left

Rotating 1-bit data to the left

Rotating 1-bit data to the left

Value of b15Value of b15

Value of b(16-n)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Value of b(16-n)

Value of b15

7 APPLICATION INSTRUCTION

7.1 Rotation Instruction 321

7

 � When (d) is a bit device, bits are rotated to the left within the device range specified by nibble specification. The number of

bits actually to be rotated is the remainder of (n)(specified number of bits). For example, when (n) is 15 and the specified

number of bits is 12, 3 bits are rotated because 15 divided by 12 equals 1 with a remainder of 3.

 � Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are rotated by the remainder value of

n16. For example, when (n) is 18, 2 bits are rotated because 18 divided by 16 equals 1 with a remainder of 2.

■RCL(P)
 � These instructions rotate the 16-bit binary data in the device specified by (d) to the left by (n) bit(s) (including the carry flag).

The carry flag is on or off depending on the status prior to the execution of the instruction.

 � When (d) is a bit device, bits are rotated to the left within the device range specified by nibble specification. The number of

bits actually to be rotated is the remainder of (n)(specified number of bits). For example, when (n) is 15 and the specified

number of bits is 12, 3 bits are rotated because 15 divided by 12 equals 1 with a remainder of 3.

 � Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are rotated by the remainder value of

n16. For example, when (n) is 18, 2 bits are rotated because 18 divided by 16 equals 1 with a remainder of 2.

Precautions

 � Do not set a negative value to the number of bits to be rotated (n).

 � In the case of continuous operation type instructions (ROL and RCL), note that shift and rotation are executed in every scan

time (operation cycle).

Operation error

There is no operation error.

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

001 00 1 0 0 0 0 0 0 0 0 0 0

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

000 01 0 0 0 0 0 0 0 0 0 0 0

0

1

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

101 00 0 0 0 0 0 0 0 0 0 0 00

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

(d)

(d)

(d)

(d)

Rotating n-bit data to the left

Rotating 1-bit data to the left

Rotating 1-bit data to the left

Carry flag value

Carry flag valueValue of b15

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Carry flag (SM700, SM8022)

Value of b(16-n)

Value of b15

322
7 APPLICATION INSTRUCTION

7.1 Rotation Instruction

Rotating 32-bit data to the right

DROR(P), DRCR(P)

 � DROR(P): These instructions rotate the 32-bit binary data in the device specified by (d) to the right by (n) bit(s) (not

including the carry flag).

 � DRCR(P): These instructions rotate the 32-bit binary data in the device specified by (d) to the right by (n) bit(s) (including

the carry flag).

*1 The DROR instruction is not supported by the ST language. Use ROR of the standard function.

Page 797 ROR(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

■DROR(P)
 � These instructions rotate the 32-bit binary data in the device specified by (d) to the right by (n) bit(s) (not including the carry

flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

 � When (d) is a bit device, bits are rotated to the right within the device range specified by nibble specification. The number of

bits actually to be rotated is the remainder of (n)(specified number of bits). For example, when (n) is 31 and the specified

number of bits is 24, 7 bits are rotated because 31 divided by 24 equals 1 with a remainder of 7.

 � Specify any value between 0 and 31 for (n). If a value 32 or bigger is specified, bits are rotated by the remainder value of

n32. For example, when (n) is 34, 2 bits are rotated because 34 divided by 32 equals 1 with a remainder of 2.

■DRCR(P)
 � These instructions rotate the 32-bit binary data in the device specified by (d) to the right by (n) bit(s) (including the carry

flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

 � When (d) is a bit device, bits are rotated to the right within the device range specified by nibble specification. The number of

bits actually to be rotated is the remainder of (n)(specified number of bits). For example, when (n) is 31 and the specified

number of bits is 24, 7 bits are rotated because 31 divided by 24 equals 1 with a remainder of 7.

Ladder diagram Structured text*1

ENO:=DRORP(EN,n,d);

ENO:=DRCR(EN,n,d);

ENO:=DRCRP(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Head device number where the rotation target data is stored  32-bit signed binary ANY32

(n) Number of rotations 0 to 31 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

(d) (n)

b0b15b31 b16b30 b29 b28 b27 b18 b17 b14 b5 b4 b3 b2 b1

(d)+1 (d)

Carry flag (SM700, SM8022)

Rotating n-bit data to the right

b0b15b31 b16b30 b29 b28 b27 b18 b17 b14 b5 b4 b3 b2 b1

(d)+1 (d)

Carry flag (SM700, SM8022)

Rotating n-bit data to the right

7 APPLICATION INSTRUCTION

7.1 Rotation Instruction 323

7

 � Specify any value between 0 and 31 for (n). If a value 32 or bigger is specified, bits are rotated by the remainder value of

n32. For example, when (n) is 34, 2 bits are rotated because 34 divided by 32 equals 1 with a remainder of 2.

Precautions

 � Do not set a negative value to the number of bits to be rotated (n).

 � In the case of continuous operation type instructions (DROR and DRCR), note that shift and rotation are executed in every

scan time (operation cycle).

Operation error

There is no operation error.

324
7 APPLICATION INSTRUCTION

7.1 Rotation Instruction

Rotating 32-bit data to the left

DROL(P), DRCL(P)

 � DROL(P): These instructions rotate the 32-bit binary data in the device specified by (d) to the left by (n) bit(s) (not including

the carry flag).

 � DRCL(P): These instructions rotate the 32-bit binary data in the device specified by (d) to the left by (n) bit(s) (including the

carry flag).

*1 The DROL instruction is not supported by the ST language. Use ROL of the standard function.

Page 795 ROL(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

■DROL(P)
 � These instructions rotate the 32-bit binary data in the device specified by (d) to the left by (n) bit(s) (not including the carry

flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

 � When (d) is a bit device, bits are rotated to the left within the device range specified by nibble specification. The number of

bits actually to be rotated is the remainder of (n)(specified number of bits). For example, when (n) is 31 and the specified

number of bits is 24, 7 bits are rotated because 31 divided by 24 equals 1 with a remainder of 7.

 � Specify any value between 0 and 31 for (n). If a value 32 or bigger is specified, bits are rotated by the remainder value of

n32. For example, when (n) is 34, 2 bits are rotated because 34 divided by 32 equals 1 with a remainder of 2.

■DRCL(P)
 � These instructions rotate the 32-bit binary data in the device specified by (d) to the left by (n) bit(s) (including the carry flag).

The carry flag is on or off depending on the status prior to the execution of the instruction.

 � When (d) is a bit device, bits are rotated to the left within the device range specified by nibble specification. The number of

bits actually to be rotated is the remainder of (n)(specified number of bits). For example, when (n) is 31 and the specified

number of bits is 24, 7 bits are rotated because 31 divided by 24 equals 1 with a remainder of 7.

Ladder diagram Structured text*1

ENO:=DROLP(EN,n,d);

ENO:=DRCL(EN,n,d);

ENO:=DRCLP(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Head device number where the rotation target data is stored  32-bit signed binary ANY32

(n) Number of rotations 0 to 31 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

(d) (n)

b0b15b31 b16b30 b29 b28 b27 b18 b17 b14 b5 b4 b3 b2 b1

(d)+1 (d)

Rotating n-bit data to the left

Carry flag
(SM700, SM8022)

b0b15b31 b16b30 b29 b28 b27 b18 b17 b14 b5 b4 b3 b2 b1

(d)+1 (d)

Rotating n-bit data to the left

Carry flag
(SM700, SM8022)

7 APPLICATION INSTRUCTION

7.1 Rotation Instruction 325

7

 � Specify any value between 0 and 31 for (n). If a value 32 or bigger is specified, bits are rotated by the remainder value of

n32. For example, when (n) is 34, 2 bits are rotated because 34 divided by 32 equals 1 with a remainder of 2.

Precautions

 � Do not set a negative value to the number of bits to be rotated (n).

 � In the case of continuous operation type instructions (DROL and DRCL), note that shift and rotation are executed in every

scan time (operation cycle).

Operation error

There is no operation error.

326
7 APPLICATION INSTRUCTION

7.2 Program branch instruction

7.2 Program branch instruction

Pointer branch

CJ(P)

These instructions execute the program specified by the pointer number within the same program file when the jump

command is on.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

■CJ(P)
 � These instructions execute the program specified by the pointer number when the execution command is on.

 � When the execution command is off, the program in the next step is executed.

Precautions

 � If the timer with its coil on is skipped by these instructions, time cannot be measured correctly.

 � If the OUT instruction is skipped by these instructions, the scan time will be shortened.

 � If these instructions specify and jump to a later step, the scan time will be shortened.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(P) Pointer number of the jump destination  Device name ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(P)             

(P)

CJ

CJP

ON

OFF
Execution command

Each scan is executed.

One scan is executed.

7 APPLICATION INSTRUCTION

7.2 Program branch instruction 327

7

 � These instructions can specify and jump from the current step to a smaller step number. In this case, consider a method to

exit a loop so that the watchdog timer does not time out.

 � The value in the device skipped with these instructions remains the same.

 � A label (P) occupies two steps.

 � Only the pointer numbers within the same program file can be specified.

 � During skip operation, if the program jumps to the pointer number within the skip range, the programs of the jump

destination pointer number and later are executed.

 � The figure below shows programming of a label. When creating a circuit program, move the cursor to the left side of the bus

line in the ladder diagram, and input a label (P) at the head of the circuit block.

 � A label can be programmed in a smaller number step than CJ instruction. However, note that a watchdog timer error occurs

when the scan time exceeds 200 ms (default setting).

(1) While X3 is on, the loop is repeated.

(2) To exit the loop, turn on X7.

When X2 turns on, the program jumps to the label, P19.

Y4 and Y5 remain the same even if X2 and X4 turn on/off during the

execution of the CJ instruction.

(1) A label occupies two steps.

(1)

P8
Label

Label

X0

X7

X3

X6P9

CJ P9

P8CJ

Y5 (2)

Y4

X7

X2

P19

P19CJ

X2

X4

Label

Y4

Y5

Y6

(1)

23

29

M36

X5

X2

19

15

10

P9

P9CJ

M3

X3

Label

Y2

Y5

Y6

Y7

X32

X30

P20CJ

X31
Y10

Y11

Bus line

Label

Label
P20

P10CJ

Label
P10

328
7 APPLICATION INSTRUCTION

7.2 Program branch instruction

 � When the pointer number in operands is same and there is one label, the following operation is caused:

 � When a label number (including labels for CALL instructions described later) is used two or more times, an error is caused.

 � No label can be shared by CALL instruction and CJ instruction.

 � Because SM400/SM8000 is normally ON while a PLC is operating, unconditional jump is applied when SM400 is used as

shown in the following example:

Operation error

(1) When X20 turns ON, the program execution jumps from CJ

instruction corresponding to X20 to the label P9.

(2) When X20 turns OFF and X21 turns ON, the program execution

jumps from CJ instruction corresponding to X21 to the label P9.

Error code

(SD0/SD8067)

Description

3380 A pointer number which is not used as a label in the same program file is specified.

P9CJ

P9CJ

X20

X21
(2)

(1)

Label
P9

P9CJ

P9CJ

X20

X30

END

User program

User program

Label
P9

Label
P9

P15CJ

P15CALL

X1

RET

X2

C0

K10

FEND

SM400

X0

User program

Program a label (P)

after FEND instruction.

Subroutine program

dedicated to CALL

instructionLabel
P15

RUN Monitor

P5CJ

SM400

User program

RUN Monitor

Label
P5

User program

(It is skipped, and is not executed.)

7 APPLICATION INSTRUCTION

7.2 Program branch instruction 329

7

Jump to END

GOEND

This instruction moves the program execution to the FEND or END instruction in the same program file.

Processing details

 � This instruction moves the program execution to the FEND or END instruction in the same program file.

Precautions

 � When a GOEND instruction is executed by invalid jump during interrupt program execation, it becomes the same operation

as the IRET instruction.

Operation error

Ladder diagram Structured text

ENO:=GOEND(EN);

Error code

(SD0/SD8067)

Description

3340 After the FOR instruction is executed, the GOEND instruction is executed before the NEXT instruction is executed.

3381 After the CALL(P) or XCALL instruction is executed, the GOEND instruction is executed before the RET instruction is executed.

330
7 APPLICATION INSTRUCTION

7.3 Program execution control instruction

7.3 Program execution control instruction

Disabling/enabling interrupt programs

DI, EI

Interrupts are usually disabled in CPU module. These instructions enable interrupts in CPU module (EI instruction) or disable

interrupts again (DI instruction).

 � DI: Disables the execution of the interrupt program.

 � EI: Releases the execution disabled state of interrupt programs.

Processing details

■DI
 � This instruction disables the execution of the interrupt program until the EI instruction is executed, even if the interrupt

cause occurs.

 � When the power is turned on or the CPU module is reset, the state in which the DI instruction is executed is applied.

 � For the operation of the DI instruction (DI instruction without an argument) when using the interrupt disable instruction with

a specified priority or lower (DI instruction with an argument), refer to Page 332 Disabling the interrupt program with

specified priority or lower.

■EI
 � This instruction releases the execution disabled state of interrupt programs when the DI instruction is executed, and

enables the execution of the interrupt program with the interrupt pointer number enabled by the IMASK instruction.

 � For the operation of the EI instruction when using the interrupt disable instruction with a specified priority or lower (DI

instruction with an argument), refer to Page 332 Disabling the interrupt program with specified priority or lower.

 � An interrupt pointer occupies two steps. (In (1) below, I10 is the step 50, X2 is the step 52, and Y10 is the

step 54.)

 � If the master control contains the EI or DI instruction, such an instruction is executed regardless of the

execution of the MC instruction.

Ladder diagram Structured text

ENO:=DI(EN);

ENO:=EI(EN);

Even though an interrupt occurs between

the DI and EI instructions, the execution of

the interrupt is held until the processing

between the instructions ends.

DI

EI

In

FEND

Sequence program

Sequence program

Interrupt Program

I10

50

56

60

X2

X5

Y10

Y30

IRET

(1)

7 APPLICATION INSTRUCTION

7.3 Program execution control instruction 331

7

Precautions

Interrupts (requests) that are generated after the DI instruction execution, are processed after the EI instruction is executed.

Operation error

Error code

(SD0/SD8067)

Description

3362 Nesting of the DI instruction exceeds 16 levels.

332
7 APPLICATION INSTRUCTION

7.3 Program execution control instruction

Disabling the interrupt program with specified priority or lower

DI

This instruction disables the execution of the interrupt program with a priority specified by (s) or lower until the EI instruction is

executed, even if the interrupt cause occurs.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction disables the execution of the interrupt program of the interrupt pointer number with an interrupt priority

specified by (s) or lower.

Ladder diagram Structured text

ENO:=DI(EN,s);

Operand Description Range Data type Data type (label)

(s) Priority for disabling interrupts 1 to 3 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(1) Interrupt-disabled section for the priority 3 or lower

(Interrupt-enabled section for the priority 2 or higher)

(2) Can be executed because of the priority 2.

(3) Cannot be executed because of the priority 3.

(s)

2

3

I No.

I01

I02

I01

I02

DI K3

FEND

IRET

IRET

(3)

(2)

(1)

Interrupt priority setting

Priority

Sequence program

Interrupt Program

Interrupt Program

7 APPLICATION INSTRUCTION

7.3 Program execution control instruction 333

7

 � By executing the EI instruction, the interrupt with the priority disabled by the counterpart DI instruction is enabled. However,

when interrupts are disabled only with the DI instruction without an argument, interrupts with all the priorities are enabled by

executing the EI instruction once.

 � Interrupts (requests) that are generated after the DI instruction are processed after the EI instruction is executed.

 � When multiple DI instructions are executed and the argument has a priority higher than the currently disabled priority,

interrupts with a priority lower than that of the argument are disabled.

 � When multiple DI instructions are executed and the argument has a priority lower than the currently disabled priority, the

interrupt disabled state is not changed.

 � The DI instruction can be nested in up to 16 levels.

 � The interrupt priority of the interrupt pointer can be set with parameters. (MELSEC iQ-F FX5 Series User's Manual

[Application])

 � The interrupt-disabled priority can be checked with SD758 (interrupt-disabling priority setting value).

 � The following shows the interrupt-disabled section when the DI or EI instruction is executed.

(1) Interrupt-enabled section for all priority

(2) Interrupt-disabled section for the priority 3 or lower

(Interrupt-enabled section for the priority 2 or higher)

(3) Interrupt-disabled section for the priority 2 or lower

(Interrupt-enabled section for the priority 1 or higher)

(4) Interrupt-disabled section for the priority 3 or lower

(Interrupt-enabled section for the priority 2 or higher)

(5) Interrupt-enabled section for all priority

� When multiple DI instructions are executed (when interrupts with a priority higher than the currently disabled priority are specified and disabled)

(1) Interrupt-enabled section for all priority

(2) Interrupt-disabled section for the priority 3 or lower (interrupt-enabled section for the priority 2 or higher)

(3) Interrupt-disabled section for the priority 2 or lower (interrupt-enabled section for the priority 1 or higher)

� When multiple DI instructions are executed (when interrupts with a priority lower than the currently disabled priority are specified and disabled)

(1) Interrupt-enabled section for all priority

(2) Interrupt-disabled section for the priority 2 or lower (interrupt-enabled section for the priority 1 or higher)

(3) Because interrupts with the priority 2 or lower are already disabled, the interrupt-disabling priority is not changed.

EI

DI K2

DI K3

EI

EI

(3)

(1)

(2)

(5)

(4)

Sequence program

Sequence program

Sequence program

Sequence program

Sequence program

EI, which is the
counterpart of [DI K2]

EI, which is the
counterpart of [DI K3]

EI DI K2DI K3 EI EI

(3)(1) (2) (1)(2)

Time

Scan execution type

program

EI DI K3DI K2 EI EI

(1) (2) (1)

(3)

Time

Scan execution type

program

334
7 APPLICATION INSTRUCTION

7.3 Program execution control instruction

Operation error

� When the DI instruction is executed in an interrupt program

(1) Interrupt-enabled section for all priority

(2) Interrupt-disabled section for the priority 3 or lower (interrupt-enabled section for the priority 2 or higher)

(3) Interrupt-disabled section for the priority 2 or lower (interrupt-enabled section for the priority 1 or higher)

� When the DI instruction without an argument is executed

(1) Interrupt-enabled section for all priority

(2) Interrupt-disabled section for the priority 1 or lower (where all the interrupts are disabled)

(3) Because interrupts are disabled with the DI instruction without an argument, interrupts with all the priorities are enabled by executing the EI instruction

once.

� When the DI instructions with and without an argument are executed (Execution order is DI instruction with an argument  DI instruction without an

argument)

(1) Interrupt-enabled section for all priority

(2) Interrupt-disabled section for the priority 2 or lower (interrupt-enabled section for the priority 1 or higher)

(3) Interrupt-disabled section for the priority 1 or lower (where all the interrupts are disabled)

� When the DI instructions with and without an argument are executed (Execution order is DI instruction without an argument  DI instruction with an

argument)

(1) Interrupt-enabled section for all priority

(2) Interrupt-disabled section for the priority 1 or lower (where all the interrupts are disabled)

Error code

(SD0/SD8067)

Description

3405 The value specified by (s) is other than the following.

1 to 3

3362 Nesting of the DI instruction exceeds 16 levels.

EIEI

DI K2

DI K3

EI IRET

(3)(1) (2) (1)(2)

Time

Scan execution type

program

Interrupt Program

EI DIDI DI EI

(1) (2) (1)

(3)

Time

Scan execution type

program

EIEIDIEI DI K2 EI

(1) (3) (1)(2)(2)

DI

Time

Scan execution type

program

DI EIEI DI K2

(1) (2) (1)

DI EI

Time

Scan execution type

program

7 APPLICATION INSTRUCTION

7.3 Program execution control instruction 335

7

Interrupt program mask

IMASK

This instruction enables or disables the execution of the interrupt program with the specified interrupt pointer number

according to the 16-point bit pattern starting from the device specified in (s).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction enables or disables the execution of the interrupt program with the specified interrupt pointer number

according to the 16-point bit pattern starting from the device specified in (s).

 � The following shows the assignment of the interrupt pointer numbers to each bit.

 � When the power is turned on or the CPU module is reset, execution status of the interrupt programs of I0 to I177 is applied.

 � The states of the device (s) to (s)+15 are stored in SD1400 to SD1415 (IMASK instruction mask pattern).

Ladder diagram Structured text

ENO:=IMASK(EN,s);

Operand Description Range Data type Data type (label)

(s) Head device number where the interrupt mask data is stored

The device specified in (s) and following 15 devices are used.

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

� 1 (ON): The execution of interrupt programs is enabled.

� 0 (OFF): The execution of interrupt programs is disabled.

(s)

(s)+1

(s)

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

(s)+7

(s)+8

(s)+9

(s)+10

(s)+11

(s)+12

(s)+13

(s)+14

(s)+15

b0b7b15 b8b14 b13 b12 b11 b10 b9 b6 b5 b4 b3 b2 b1

I0I7I15 I8I14 I13 I12 I11 I10 I9 I6 I5 I4 I3 I2 I1

I16I23I31 -I30 I29 I28 - - - I22 I21 I20 I19 I18 I17

--- -- - - - - - - - - - - -

-I55I63 I56I62 I61 I60 I59 I58 I57 I54 I53 I52 I51 I50 -

I64I71I79 I72I78 I77 I76 I75 I74 I73 I70 I69 I68 I67 I66 I65

I80I87I95 I88I94 I93 I92 I91 I90 I89 I86 I85 I84 I83 I82 I81

I96I103I111 I104I110 I109 I108 I107 I106 I105 I102 I101 I100 I99 I98 I97

--- -- - - - - - - - - - - -

I112I119I127 I120I126 I125 I124 I123 I122 I121 I118 I117 I116 I115 I114 I113

I128I135I143 I136I142 I141 I140 I139 I138 I137 I134 I133 I132 I131 I130 I129

I144I151I159 I152I158 I157 I156 I155 I154 I153 I150 I149 I148 I147 I146 I145

I160I167I175 I168I174 I173 I172 I171 I170 I169 I166 I165 I164 I163 I162 I161

I176-- -- - - - - - - - - - - I177

--- -- - - - - - - - - - - -

--- -- - - - - - - - - - - -

--- -- - - - - - - - - - - -

336
7 APPLICATION INSTRUCTION

7.3 Program execution control instruction

The IMASK instruction can enable or disable the interrupt pointers I0 to I177 in a batch.

Operation error

Error code

(SD0/SD8067)

Description

2820 The 16-point range starting from the device specified by (s) exceeds the corresponding device range.

7 APPLICATION INSTRUCTION

7.3 Program execution control instruction 337

7

Disabling/enabling the specified interrupt pointer

SIMASK

This instruction enables or disables the interrupt pointer number specified by (I) according to the value of (s).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction enables or disables the execution of the interrupt program with the interrupt pointer number specified by (I)

according to the data specified by (s)

 � When 1 is set in (s): The execution of the interrupt program is enabled.

 � When 0 is set in (s): The execution of the interrupt program is disabled.

 � When the power is turned on or the CPU module is reset, the execution status of the interrupt programs of I0 to I177 is

applied.

 � The execution-enabled/disabled states of interrupt pointers are stored in SD1400 to 1415 (IMASK instruction mask

pattern).

Indexing is available for (I). By using the SIMASK instruction with indexing, the execution of the interrupt

pointers I0 to I177 can be enabled or disabled.

Operation error

Ladder diagram Structured text

ENO:=SIMASK(EN,I,s);

Operand Description Range Data type Data type (label)

(I) Interrupt pointer number for which interrupts are enabled or disabled I0 to I177 Device name ANY16

(s) Enabled or disabled state of the specified interrupt pointer number 0: Disabled

1: Enabled

16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(I)             

(s)             

Error code

(SD0/SD8067)

Description

3405 The interrupt pointer number specified by (I) exceeds the range of the interrupt pointer number (I0 to I177).

The value in (s) is other than the interrupt disabled (0) or interrupt enabled (1).

(I) (s)

338
7 APPLICATION INSTRUCTION

7.3 Program execution control instruction

Returning from the interrupt program

IRET

This instruction indicates an end of the processing of an interrupt program.

Processing details

When an interrupt (input or timer) is generated while the main program is executing, the program execution jumps to an

interrupt (I) routine. The IRET instruction returns the program execution to the main routine.

The table below shows two types of jump to an interrupt routine.

Operation error

Ladder diagram Structured text

Not supported

Function Interrupt No. Description

Interrupt from inputs (including

counter)

I0 to I23 Interrupt pointer used for the CPU built-in functions (such as input interrupt, high-speed comparison

match interrupt)

Internal timer interrupt I28 to I31 Interrupt pointer used for fixed-cycle interrupts of the internal timer

Error code

(SD0/SD8067)

Description

33E6 The IRET instruction is executed in the main program.

7 APPLICATION INSTRUCTION

7.3 Program execution control instruction 339

7

Resetting the watchdog timer

WDT(P)

These instructions reset the watchdog timer in a program.

Processing details

 � These instructions reset the watchdog timer in a program.

 � These instructions are used when the scan time exceeds the value set for the watchdog timer depending on the condition.

If the scan time exceeds the value set for the watchdog timer every scan, change the setting of the watchdog timer in the

parameter setting of the engineering tool.

 � Design a program so that t1 from the step 0 to the WDT(P) instruction and t2 from the WDT(P) instruction to the END

(FEND) instruction do not exceed the setting value of the watchdog timer.

 � The WDT(P) instruction can be used more than once in one scan. However, note that turning off the output takes some time

if an error occurs.

Precautions

 � The time of the watchdog timer can be changed in the [RAS] tab of [CPU Parameter]. The default value is 200 ms.

 � By overwriting the contents of SD8000 (watchdog timer time), the watchdog timer detection time can be changed using a

program. When the program shown below is input, the sequence program will be monitored with the new watchdog timer

time.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=WDT(EN);

ENO:=WDTP(EN);

WDT
END (FEND)

t1 t2

Step 0

SD8000K300MOV

WDT

SM402

Watchdog timer time: 300 ms

Initial pulse

Refreshes the watchdog timer.

If the WDT instruction is not programmed, the value of

SD8000 is valid during END processing.

340
7 APPLICATION INSTRUCTION

7.4 Structuring instruction

7.4 Structuring instruction

FOR to NEXT

FOR, NEXT

When the processing between the FOR and NEXT instructions is executed (n) times without any condition, the processing of

the step following the NEXT instruction is executed.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � When the processing between the FOR and NEXT instructions is executed (n) times without any condition, the processing

of the step following the NEXT instruction is executed.

 � In (n), any of 1 to 32767 can be specified. If any of -32768 to 0 is specified, the processing of (n)=1 is applied.

 � To skip the processing between the FOR and NEXT instructions, jump the program execution with the CJ instruction.

 � Up to 16 FOR instructions can be nested.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(n) Number of repetitions of the loop between FOR and NEXT

instructions

1 to 32767 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(n)             

FOR

NEXT

(n)

Repetition program

7 APPLICATION INSTRUCTION

7.4 Structuring instruction 341

7

Precautions

 � The FOR-NEXT loop can be nested up to 16 levels.

 � The FOR-NEXT loop cannot be interrupted by the I, IRET, SRET, RET, FEND, or END instruction.

 � When FOR-NEXT loop is repeated many times, the operation cycle is too long, and a watchdog timer error may occur. In

such a case, change the watchdog timer time or reset the watchdog timer.

 � The following programs are regarded as errors.

Operation error

 � To terminate the FOR to NEXT instruction loop halfway, use the BREAK instruction. (Page 342

Forcibly terminating the FOR to NEXT instruction loop)

When the NEXT instruction is located before FOR No NEXT instruction

When the number of FOR instructions is not equivalent to the number of

NEXT instructions

When the NEXT instruction is located after the FEND or END instruction

Error code

(SD0/SD8067)

Description

3340 After the FOR instruction is executed, the END or GOEND instruction is executed before the NEXT instruction is executed.

3361 When the FOR instruction is nested, the 17th level is executed.

FOR

FOR

FOR

NEXT

NEXT

NEXT

FOR

FOR

FOR

NEXT

NEXT

NEXT

3rd level

2nd level

1st level

2nd level

1st level

1st level

FOR

NEXT FOR

NEXT Not programmed

FOR

NEXT

NEXT

FOR

Not programmed

FOR

NEXT

FEND

NEXT

END

342
7 APPLICATION INSTRUCTION

7.4 Structuring instruction

Forcibly terminating the FOR to NEXT instruction loop

BREAK(P)

This instruction forcibly terminates the FOR to NEXT instruction loop and shifts the program execution to the pointer specified

by (P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction forcibly terminates the FOR to NEXT instruction loop and shifts the program execution to the pointer

specified by (P). Only the pointer numbers within the same program file can be specified in (P). If a pointer in another

program is specified in (P), an operation error occurs.

 � In (d), the number of remaining FOR to NEXT instruction loops at the forced termination is stored. Note that the number

includes the loop when the BREAK(P) instructions are executed.

 � The BREAK(P) instructions can be used only between the FOR and NEXT instructions.

 � The BREAK(P) instructions can be used for only one nesting level. To forcibly terminate multiple nesting levels, execute as

many BREAK(P) instructions as the number of nesting levels.

Precautions

 � If the branch pointer number of the BREAK instruction outside two nesting levels or more is specified, an operation error

occurs and the program execution stops when the BREAK instruction is executed.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(d) Device number storing the number of remaining loops  16-bit signed binary ANY16

(P) Pointer number of the branch destination when the loop is

forcibly terminated

 Device name ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(P)             

When the BREAK instruction is

not executed, the program

execution returns to the FOR

instruction as many times as

specified by the FOR

instruction.

(d) (P)

BREAK

NEXT

(d) (P)

FOR K**

(P)

When the forced termination
condition is satisfied

Forced
termination
condition

7 APPLICATION INSTRUCTION

7.4 Structuring instruction 343

7

Operation error

Error code

(SD0/SD8067)

Description

3340 The branch pointer number outside two nesting levels or more is specified.

3342 The BREAK(P) instructions are used other than between the FOR and NEXT instructions.

3380 The destination pointer specified by (P) does not exist.

A pointer in other program file is specified in (P).

344
7 APPLICATION INSTRUCTION

7.4 Structuring instruction

Calling a subroutine program

CALL(P)

This instruction executes the subroutine program specified by (P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � When the CALL(P) instructions are executed, the subroutine program specified by the pointer (P) is executed. The

CALL(P) instructions can execute a subroutine program specified by a pointer in the same program file or by a common

pointer.

 � While the command input is ON, the CALL instruction is executed and the program execution jumps to a step with a label

(Pn). Then, a subroutine program with the label (Pn) is executed. When the RET (SRET) instruction is executed, the

program execution returns to the step following the CALL instruction. At the end of the main program, put FEND instruction.

Put a label (Pn) for the CALL instruction after the FEND instruction.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(P) Start pointer number of the subroutine program  Device name ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(P)             

(P)

CALL (P)

END

(P)

RET(SRET)

Subroutine programMain routine program

PnCALL

FEND

RET

SM400

Command

User program

User program

User program

Main program

Subroutine program

Program area from the step 0 to FEND instruction

Program area from a label Pn to RET instruction

Label
Pn

RUN Monitor
(normally on)

7 APPLICATION INSTRUCTION

7.4 Structuring instruction 345

7

 � The CALL(P) instructions can be nested up to 16 levels. However, the 16 levels are the total of the CALL(P) and XCALL

instructions.

Precautions

 � In the CALL instruction, the same number can be used two or more times in operands (P). However, do not use a label (P)

and number used in another instruction (CJ instruction).

 � In a subroutine (or interrupt routine), use timers for routine programs. These timers count when a coil instruction or END

instruction is executed. After a timer reaches the set value, the output contact is activated when the coil instruction or END

instruction is executed. Because general timers count only when the coil instruction is executed, they do not count if they

are used in subroutines in which the coil instruction is executed only under some conditions.

 � If a retentive type 1 ms timer is used in a subroutine (interrupt routine), note that the output contact is activated when the

first coil instruction (or subroutine) is executed after the timer reaches its set value.

 � Devices which were set to ON in a subroutine (or interrupt routine) are latched in the ON status even after the subroutine is

finished. (Refer to the program example shown below). When the RST instruction for a timer or counter is executed, the

reset status of the timer or counter is latched also. For turning OFF such a device latched in the ON status or for canceling

such a timer or counter latched in the reset status, reset such a device in the main program after the subroutine is finished,

or program a sequence for resetting such a device or for deactivating the RST instruction in the subroutine. (Refer to the

program example shown below).
Example in which outputs are latched

In the following program example, the counter C0 is provided to count X1. When X0 is input, the subroutine P0 is executed only in one scan, and then the

counter is reset and Y7 is output.

P0CALL

FEND RET RET RET

END

P0 P10 P20

CALL P10 CALL P20

P9CJ

P9CALLP

X20

X30

User programLabel
P9

X0

P0

P0CALLP

Y7

RET

X1

C0

K10

FEND

X0

C0RST

[Program example]

346
7 APPLICATION INSTRUCTION

7.4 Structuring instruction

Example in which latched outputs are reset (countermeasures)

RST
C0

Y7

X1

1

2

3

[Timing chart]

Subroutine is executed.

Remains reset

Y7 being output

Outputs are latched.

Because the C0 reset instruction is valid,
the current value of C0 remains
unchanged even if a pulses are input.

Execution of subroutine
P0 triggered by X0

Counter
reset

Current
value of
C0

X0

P0

P0CALLP

RET

X1

C0

K10

FEND

X0

C0 ARST

C0RST

Y7

X2

Y7RST

B

SM401

[Program example]

RUN Monitor
(normally OFF)

Program to reset Y7 at
an arbitrary timing

Program to reset the preceding C0
reset instruction inside the subroutine

7 APPLICATION INSTRUCTION

7.4 Structuring instruction 347

7

Operation error

Error code

(SD0/SD8067)

Description

3360 The 17th level of the nesting is executed.

3380 The subroutine program specified by the pointer in the CALL(P) instructions do not exist.

3381 After the CALL(P) instructions are executed, the END, FEND, GOEND, or STOP instruction is executed before the RET (SRET)

instruction is executed.

3382 The RET (SRET) instruction is executed before the CALL(P) instructions are executed.

X2

Y7

X1

1

2

3

1

2

3

4

RST
C0

[Timing chart]

Subroutine is executed.

Execution of subroutine
P0 triggered by X0

Counter reset instruction is
deactivated (part in
above program).

Resets Y7.

B
Counter is reset
(part in above
program).

A

Current
value of
C0

348
7 APPLICATION INSTRUCTION

7.4 Structuring instruction

Returning from the subroutine program

RET/SRET

These instructions indicate an end of a subroutine program.

The RET instruction can be used as SRET.

Processing details

 � These instructions indicate an end of a subroutine program.

 � When the RET instruction is executed, the program execution returns to the step following the CALL(P) or XCALL

instruction that called the subroutine program.

Precautions

 � If the RET (SRET) instruction is executed in a user interrupt program (I-IRET), a compiling error occurs.

Operation error

Ladder diagram Structured text

Not supported

Error code

(SD0/SD8067)

Description

3381 The END, FEND, GOEND, or STOP instruction is executed before the RET instruction is executed.

3382 While the number of nesting levels is decreased by the return instruction, the result becomes negative.

(The number of RET (SRET) instructions is larger than that of the CALL instructions.)

CALL (P)

END

(P)

RET(SRET)

Subroutine programMain routine program

7 APPLICATION INSTRUCTION

7.4 Structuring instruction 349

7

Calling a subroutine program

XCALL

This instruction executes CALL for (turns on and executes) the subroutine program specified by (P) when the execution

condition is established. When the condition is turned off, this instruction executes FCALL for (turns off and terminates) the

subroutine program.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � The XCALL instruction controls the execution and non-execution processing of subroutine programs.

 � The following table lists the operation result of each coil instruction after the non-execution processing. Regardless of the

status of the condition contact, the following result is applied.

 � The following shows the operation of the XCALL instruction.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(P) Start pointer number of the subroutine program  Device name ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(P)             

� In the execution of subroutine programs, each coil instruction is operated according to the ON/OFF status of the condition contact.

� In the non-execution processing of subroutine programs, each coil instruction is operated with the OFF status of the condition contact applied.

Device used for operation Operation result (device status)

1 ms timer, 10 ms timer, 100 ms timer 0

1 ms retentive timer, 10 ms retentive timer, 100 ms retentive timer, counter The current status is held.

Device in the OUT instruction Forcibly turned off.

Device in the SET, RST, or SFT(P) instruction or basic/applied instruction The current status is held.

PLS instruction, pulse instruction (P) Same as when the condition contact is off

(1) Rising edge of X0 (OFF  ON): The subroutine program of P1 is executed.

(2) While X0 is on: The subroutine program of P1 is executed. (The rising edge of X0 is not included.)

(3) Falling edge of X0 (ON  OFF): The non-execution processing of the subroutine program of P1 is executed.

(P)

X0
OFF

(1)

X0

M0

XCALL P1

FEND

M1

RET

P1 (2)
(3)

ON

350
7 APPLICATION INSTRUCTION

7.4 Structuring instruction

 � The XCALL instruction can be nested up to 16 levels. However, the 16 levels are the total of the CALL(P) and XCALL

instructions.

Operation error

Error code

(SD0/SD8067)

Description

3360 The 17th level of the nesting is executed.

3380 The subroutine program specified by the pointer in the XCALL instruction does not exist.

3381 After the XCALL instruction is executed, the END, FEND, GOEND, or STOP instruction is executed before the RET instruction is

executed.

P0 X0XCALL

FEND RET RET RET

END

P0 P10 P20

P10 X10XCALL P20 X20XCALL

7 APPLICATION INSTRUCTION

7.5 Data table operation instruction 351

7

7.5 Data table operation instruction

Reading the oldest data from the data table

SFRD(P)

These instructions read data for first-in first-out control.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=SFRD(EN,s,n,d);

ENO:=SFRDP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Start number of the word device storing the data

(The start is a pointer. The data is stored starting from (s)+1.)

 16-bit signed binary ANY16

(d) Word device number storing data taken out first  16-bit signed binary ANY16

(n) Number of stored points plus "1". "+1" is required for the pointer. 2 to 32768 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

352
7 APPLICATION INSTRUCTION

7.5 Data table operation instruction

Processing details

 � These instructions transfer (read) (s)+1, which was sequentially written by the SFWR instruction, to (d), and shift the word

data of (n)-1 points starting from (s)+1 upward by 1 word. Then, these instructions decrease the number of data points

stored in (s) by 1.

 � The data of (s)+1 is transferred (read) to (d). Accompanied by this transfer, the contents of the pointer (s) decrease, and the

data is shifted upward by 1 word. (When the continuous operation type SFRD instruction is used, the contents are stored in

turn in each operation cycle. Use the pulse operation type SFRDP instruction in programming.)

Precautions

 � The contents of (s)+(n) do not change by reading.

 � When the continuous operation type (SFRD) instruction is used, data is read in turn in each scan time (operation cycle), but

the contents of (s)+(n) do not change.

 � When 0 is set in the pointer (s), no processing is executed and the contents of (d) do not change.

Operation error

Error code

(SD0/SD8067)

Description

2820 The number of device points (n) from (s) exceed the device range.

3405 The value set in (n) is other than the following.

2(n)32768

In (s), a negative value is specified.

(d)

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

(s)+7

(s)+8

(s)+9

(s)+10

(s)+(n)

(n)

(s) = (n)

(d)

(s)

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

(s)+7

(s)+8

(s)+9

(s)+10

(s)+(n)

(s)+(n)

(s)+1

(s)-1  (s)

(d)

(s)

(s)+3

(s)+4

(s)+5

(s)+6

(s)+7

(s)+8

(s)+9

(s)+10

(s)+(n)

(s)+(n)

(s)+(n)

(s)+2

(s)-1 → (s)

Pointer Pointer

Executed at the 2nd time

Pointer

Word data is
shifted.

Word data is
shifted.

Executed at
the 1st time

7 APPLICATION INSTRUCTION

7.5 Data table operation instruction 353

7

Reading the newest data from the data table

POP(P)

These instructions read the latest data written by a shift write (SFWR) instruction for FIFO/FILO control.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=POP(EN,s,n,d);

ENO:=POPP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device number storing the first-in data (including pointer

data) (start number of the word device storing the data)

 16-bit signed binary ANY16

(d) Device number storing last-out data  16-bit signed binary ANY16

(n) Length of data array

(Add "1" because pointer data is also included.)

2 to 32768 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

354
7 APPLICATION INSTRUCTION

7.5 Data table operation instruction

Processing details

 � Every time the instruction is executed for the word devices (s) to (s)+(n)-1, a device "(s) + Pointer data (s)" is read to (d).

(The last data entry written by the shift write (SFWR) instruction for first-in first-out control is read to (d).) Specify any value

between 2 and 32767 for (n).

 � Subtract "1" from the value of the pointer data (s).

Precautions

 � If programed in the continuous operation type, the POP(P) instructions are executed in every operation cycle. As a result,

expected operation may not be achieved. Usually, program the POP(P) instructions in the "pulse operation type", or let

them be executed by a "pulsed command contact".

 � When the current value of the pointer (s) is "0", the zero flag SM8020 turns ON and the POP(P) instructions are not

executed.

 � When the current value of the pointer (s) is "1", "0" is written to (s) and the zero flag SM8020 turns ON.

Operation error

Data for FILO control

Description

(s) Pointer data (amount of data stored)

(s)+1 Data area

(First-in data written by shift write (SFWR) instruction)
(s)+2

(s)+3



(s)+(n)-3

(s)+(n)-2

(s)+(n)-1

Error code

(SD0/SD8067)

Description

2820 The device range (s)+(n)-1 exceeds the device.

3405 (s) is larger than (n)-1.

(s) is smaller than 0.

The value set in (n) is other than the following.

2(n)32768

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

(s)+(n)-2

(s)+(n)-1

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

(s)+(n)-2

(s)+(n)-1

K4  K3
(d)

Data area

Pointer

K4

Pointer

No data area

7 APPLICATION INSTRUCTION

7.5 Data table operation instruction 355

7

Writing data to the data table

SFWR(P)

These instructions write data for first-in first-out (FIFO) and last-in first-out (LIFO) control.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=SFWR(EN,s,n,d);

ENO:=SFWRP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Word device number storing data to be put in first  16-bit signed binary ANY16

(d) Start word device number storing and shifting data

(The start is a pointer. The data is stored starting from (d)+1.)

 16-bit signed binary ANY16

(n) Number of stored points plus "1". 2 to 32768 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

356
7 APPLICATION INSTRUCTION

7.5 Data table operation instruction

Processing details

 � The contents of (s) are written to "(n)-1" devices from (d)+1, and "1" is added to the number of data stored in (d). For

example, for (d)=0, the contents are written to (d)+1, and for (d)=1, to (d)+2.

 � At the first execution, the contents of (s) are stored in (d)+1.

 � When the contents of (s) are changed and then the instruction is executed again, the new contents of (s) are stored to

(d)+2. So the contents of +2 become equivalent to (s). (When the continuous operation type SFWR instruction is used, the

contents are stored in each operation cycle. Use the pulse operation type SFWRP instruction in programming.) Data is

stored from the right end in the same way, and the number of stored data is specified by the contents of the pointer (d).

Precautions

 � In the case of the continuous operation type instruction (SFWR), note that data is stored (overwritten) in every scan time

(operation cycle).

Operation error

Error code

(SD0/SD8067)

Description

2820 The number of device points (n) from (d) exceeds the device range.

3405 The value set in (n) is other than the following.

2(n)32768

In (d), a negative value is specified.

(s)

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)+6

(d)+7

(d)+8

(d)+9

(d)+10

(d)+(n)-1

(n)

((d) = 0)

(s)

(d)

(s)

(d)+2

(d)+3

(d)+4

(d)+5

(d)+6

(d)+7

(d)+8

(d)+9

(d)+10

(d)+(n)-1

(s)

(d)

(s)

(s)

(d)+3

(d)+4

(d)+5

(d)+6

(d)+7

(d)+8

(d)+9

(d)+10

(d)+(n)-1

(d)+1  (d)

 (K1) (K2)

Pointer

Executed at the 2nd time

Pointer
(d)+1  (d)

 (K0) (K1)

Pointer

Executed at
the 1st time

7 APPLICATION INSTRUCTION

7.5 Data table operation instruction 357

7

Inserting data to the data table

FINS(P)

These instructions insert 16-bit data specified by (s) to the data table specified by (d) as the (n)th data.

After these instructions are executed, the data after the (n)th data in the data table is moved down by one data point.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions insert 16-bit binary data specified by (s) to the data table specified by (d) as the (n)th data. After these

instructions are executed, the data after the (n)th data in the data table is moved down by one data point.

Precautions

 � The device range used in a data table should be controlled by the user.

 � The data table has (d) number of stored data starting from ((d)+1).

Ladder diagram Structured text

ENO:=FINS(EN,s,n,d);

ENO:=FINSP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device number where the insertion-target data is stored  16-bit signed binary ANY16

(d) Start number of the table  Word ANY16

(n) Data insertion position in the table 1 to 32767 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

When 2 is set in (n), the data is inserted

in (d)+2.

(s) (d) (n)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)

(s)

(d)+1

(d)+2

(d)+3

(d)+5

(d)+4

(d)

5432

1234

3

-123

0

0

4444

0

5432

4444

4

1234

-123

0

0

Data table Data table

Data table range

Number of stored data

358
7 APPLICATION INSTRUCTION

7.5 Data table operation instruction

Operation error

Error code

(SD0/SD8067)

Description

2820 When the FINS(P) instructions are executed, the data table range exceeds the corresponding device range.

3405 When the FINS(P) instructions are executed, the value (n) exceeds the corresponding device range of the table (d).

When the FINS(P) instructions are executed, the table position (n) where the data is inserted exceeds "the number of stored data points +

1".

The value set in (n) is other than the following.

2(n)32767

7 APPLICATION INSTRUCTION

7.5 Data table operation instruction 359

7

Deleting data from the data table

FDEL(P)

These instructions remove the (n)th data in the data table specified by (d) and store the data in the device specified by (s).

After these instructions are executed, the data after the (n)+1th data in the data table is moved up by one data point.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions remove the (n)th data in the data table specified by (d) and store the data in the device specified by (s).

After these instructions are executed, the data after the (n)+1th data in the data table is moved up by one data point.

Precautions

 � The device range used in a data table should be controlled by the user.

 � The data table has (d) number of stored data starting from ((d)+1).

Ladder diagram Structured text

ENO:=FDEL(EN,s,n,d);

ENO:=FDELP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device number for storing the data to be deleted  16-bit signed binary ANY16

(d) Start number of the table  Word ANY16

(n) Position of the data to be deleted in the table 1 to 32767 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)

(s)

(d)+1

(d)+2

(d)+3

(d)+5

(d)+4

(d)

5432

3333

4

4444

1234

0

4444

0

5432

3333

3

1234

0

0

0

Data table Data table

When (n) is 3, (d)+3 is the target.

"0" is stored.

360
7 APPLICATION INSTRUCTION

7.5 Data table operation instruction

Operation error

Error code

(SD0/SD8067)

Description

2820 When the FDEL(P) instructions are executed, the data table range exceeds the corresponding device range.

3405 When the FDEL(P) instructions are executed, the value (n) exceeds the corresponding device range of the table (d).

When 0 is set in (d), and the FDEL(P) instructions are executed.

When the FDEL(P) instructions are executed, the table position (n) where the data to be deleted is stored exceeds the number of stored

data points.

The value set in (n) is other than the following.

2(n)32767

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 361

7

7.6 Character string operation instruction

Comparing character strings

LD$, AND$, OR$
These instructions perform a comparison operation between the character string data in the device specified by (s1) and later

and the character string data in the device specified by (s2) and later. (Devices are used as a normally open contact.)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions perform a comparison operation between the character string data specified by (s1) and the character

string data specified by (s2). (Devices are used as a normally open contact.)

 � In the comparison operation, the ASCII codes of the character strings are compared one by one from the start of the

strings.

 � Character strings in the devices specified by (s1) and (s2) to a device that stores 00H are compared.

Ladder diagram Structured text

($=, $<>, $>, $<=, $<, or $>= enters .)

Not supported

Operand Description Range Data type Data type (label)

(s1) Comparison data or head device number where the comparison

data is stored

 Character string Character string

(s2) Comparison data or head device number where the comparison

data is stored

 Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

� When all the character strings match, the comparison is considered as matched.

LD

AND

OR

(s1) (s2)

(s1) (s2)

(s1) (s2)

b15

(s1)

(s1)+1

(s1)+2

42H (B)

b8

41H (A)

b7 b0

43H (C)44H (D)

45H (E)00H

"ABCDE"

b15

(s2)

(s2)+1

(s2)+2

42H (B)

b8

41H (A)

b7 b0

43H (C)44H (D)

45H (E)00H

"ABCDE"

362
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

 � When the length of the character strings specified by (s1) and (s2) is different, the longer character string is considered as

the large one.

 � If the character string specified by (s1) or (s2) has more than 16383 characters, the operation result is the non-conductive

state.

Instruction symbol in  Result Instruction symbol in  Result

$= Conductive state $<= Conductive state

$<> Non-conductive state $< Non-conductive state

$> Conductive state $>= Conductive state

� When the character strings are different, the string with a large character code is considered as the large one.

Instruction symbol in  Result Instruction symbol in  Result

$= Non-conductive state $<= Non-conductive state

$<> Conductive state $< Non-conductive state

$> Conductive state $>= Conductive state

� When the character strings are different, the magnitude relation between them is determined based on the size of the first different character code.

Instruction symbol in  Result Instruction symbol in  Result

$= Non-conductive state $<= Conductive state

$<> Conductive state $< Conductive state

$> Non-conductive state $>= Non-conductive state

Instruction symbol in  Result Instruction symbol in  Result

$= Non-conductive state $<= Non-conductive state

$<> Conductive state $< Non-conductive state

$> Conductive state $>= Conductive state

b15

(s1)

(s1)+1

(s1)+2

42H (B)

b8

41H (A)

b7 b0

43H (C)44H (D)

45H (F)00H

"ABCDF"

b15

(s2)

(s2)+1

(s2)+2

42H (B)

b8

41H (A)

b7 b0

43H (C)44H (D)

45H (E)00H

"ABCDE"

b15

(s1)

(s1)+1

(s1)+2

32H (2)

b8

31H (1)

b7 b0

33H (3)34H (4)

35H (5)00H

"12345"

b15

(s2)

(s2)+1

(s2)+2

32H (2)

b8

31H (1)

b7 b0

33H (4)33H (3)

35H (5)00H

"12435"

b15

(s1)

(s1)+1

(s1)+2

(s1)+3

32H (2)

b8

31H (1)

b7 b0

33H (3)34H (4)

35H (5)

37H (7)

36H (6)

00H

b15 b0

00H

"1234567"

(s2)

(s2)+1

(s2)+2

(s2)+3

32H (2)

b8

31H (1)

b7

33H (3)34H (4)

35H (5)

00H

36H (6)

"123456"

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 363

7

Precautions

 � In character string comparison operation, if the target device range does not have "00H", the values until the last number of

the device are retrieved. Thus, even if the target device range does not have "00H", a comparison operation result is output

when a mismatch between the acquired character strings is detected.

 � For the data specified by (s1) and (s2) as shown above, the second character is different between them. Thus, the

operation result is non-conductive.

Operation error

There is no operation error.

LD$= D7998

(s1) (s2)

D10 M0

D7998

D7999

42H(B) 41H(A)

44H(D) 43H(C)

D10

D11

5A(Z) 41H(A)

00H 43H(C)

[Example]

Data of (s1) Data of (s2)

364
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Concatenating character strings

$+(P) [For 2 operands]

These instructions concatenate the character string data stored in the device specified by (s) and later to the end of the

character string data stored in the device specified by (d) and later, and store the concatenated string in the device specified

by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions concatenate the character string data stored in the device specified by (s) and later to the end of the

character string data stored in the device specified by (d) and later, and store the concatenated string in the device

specified by (d) and later.

 � Character strings in the devices specified by (s) and (d) up to a device that stores 00H are concatenated.

 � When character strings are concatenated, 00H indicating an end of the character string specified by (d) is ignored and the

character string specified by (s) is concatenated to the last character of (d).

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Head device number storing data to be concatenated or data, or

directly specified character string

 Character string Character string

(d) Head device number storing data to which another data is

concatenated

 Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)    *1         

(s) (d)

"ABCDE123456"

+

b15

(d)

(d)+1

(d)+2

42H (B)

b8

41H (A)

b7 b0

43H (C)44H (D)

45H (E)00H

"ABCDE"

b15 b0

(s)

(s)+1

(s)+2

(s)+3

32H (2)

b8

31H (1)

b7

33H (3)34H (4)

35H (5)

0000H

36H (6)

"123456"

b15 b0

00H

(d)+1

(d)

(d)+2

(d)+3

(d)+4

(d)+5

42H (B)

b8

41H (A)

b7

43H (C)44H (D)

45H (E)31H (1)

32H (2)33H (3)

34H (4)

36H (6)

35H (5)

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 365

7

Operation error

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range after the device specified by (s), "00H" does not exist.

In the corresponding device range after the device specified by (d), "00H" does not exist.

3406 The whole concatenated character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

The number of characters of the character string in the device specified by (s)+(d) exceeds 16383..

3405 The character string specified by (s) has more than 16383 characters.

The character string specified by (d) has more than 16383 characters.

366
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

$+(P) [For 3 operands]

These instructions concatenate the character string data stored in the device specified by (s2) and later to the end of the

character string data stored in the device specified by (s1) and later, and store the concatenated string in the device specified

by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions concatenate the character string data stored in the device specified by (s2) and later to the end of the

character string data stored in the device specified by (s1) and later, and store the concatenated string in the device

specified by (d) and later.

 � Character strings in the devices specified by (s1) and (s2) up to a device that stores 00H are concatenated.

 � When character strings are concatenated, 00H indicating an end of the character string specified by (s1) is ignored and the

character string specified by (s2) is concatenated to the last character of (s1).

 � After two character strings are connected, "00H" is automatically added at the end. When the number of characters after

the concatenation is odd, 00H is stored in the upper byte of the device storing the last character. When the number is even,

0000H is stored in the device after the last character.

Precautions

 � For direct specification, up to 32 characters can be specified (input). When word devices are specified in (s1) or (s2), this

restriction (up to 32 characters) is not applicable.

 � When the values in both (s1) and (s2) start from "00H" (that is, when the number of characters is "0"), "0000H" is stored in

(d).

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Head device number storing data to which another data is

concatenated or data, or directly specified character string

 Character string Character string

(s2) Head device number storing data to be concatenated or data, or

directly specified character string

 Character string Character string

(d) Head device number for storing the concatenated data  Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(d)    *1         

(s1) (s2) (d)

+

b15

(s1)

(s1)+1

(s1)+2

46H (F)

b8

48H (H)

b7 b0

41H (A)2DH (-)

00H

b15

35H (5)

b8

31H (1)

b7 b0

33H (3)39H (9)

41H (A)00H

(s2)

(s2)+1

(s2)+2

b15 b0

(d)+1

(d)

(d)+2

(d)+3

(d)+4

46H (F)

b8

48H (H)

b7

41H (A)2DH (-)

31H (1)35H (5)

00H

33H (3)39H (9)

41H (A)

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 367

7

Operation error

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range after the device specified by (s1), "00H" does not exist.

In the corresponding device range after the device specified by (s2), "00H" does not exist.

2821 The numbers of the character string-storing devices specified by (s1), (s2), and (d) overlap.

3405 The character string specified by (s1) has more than 16383 characters.

The character string specified by (s2) has more than 16383 characters.

3406 The character string specified by (d) has more than 16383 characters.

The whole concatenated character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

368
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Transferring character strings

$MOV(P)

These instructions transfer the character string data specified by (s) to the device specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions transfer the character string data specified by (s) to the device specified by (d) and later. A character

string enclosed with double quotation marks and specified by (s) or stored in the devices from the device specified by (s) to

the device storing 00H is transferred in a batch.

 � Even though the device range of the data to be transferred (s) to (s)+n and the device range for storing the transferred data

(d) to (d)+n overlap, the processing is performed normally. For example, when a character string stored in D10 to D13 is

transferred to D11 to D14, the transfer is executed as shown below:

 � When "00H" is stored in the lower byte of (s)+n, "00H" is stored to both the upper byte and lower byte of (d)+n.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Character string to be transferred (up to 255 characters) or head

device number storing a character string

 Character string Character string

(d) Head device number storing transferred character string  Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)    *1         

(s) (d)

(s)

(s)+1

(s)+2

(s)+n

b15 b0b7b8

00H

(d)

(d)+1

(d)+2

(d)+n

b15 b0b7b8

00H

Indicates the end of the character string.

2nd character

4th character

1st character

3rd character

5th character

"n"th character

6th character

2nd character

4th character

1st character

3rd character

5th character

"n"th character

6th character

b15 b0

D11

D10

D12

D13

D14

32H (2)

b8

31H (1)

b7

33H (3)34H (4)

35H (5)36H (6)

0000H

b15 b0

D11

D10

D12

D13

D14

32H (2)

b8

31H (1)

32H (2) 31H (1)

b7

33H (3)34H (4)

35H (5)36H (6)

0000H

It is the same as the character string before transfer.

b15

42H (B)

b8 b7 b0

44H (D)

41H (A)

43H (C)

00H45H (E)

(s)

(s)+1

(s)+2

b15 b0

00H

(d)+1

(d)

(d)+2

42H (B)

b8

41H (A)

b7

43H (C)44H (D)

00H

It is the same as the character string before transfer.

The high-order byte is not transferred. "00H" is automatically stored in the high-order byte.

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 369

7

Operation error

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.

3405 The character string specified by (s) has more than 16383 characters.

3406 The whole specified character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

370
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Converting 16-bit binary data to decimal ASCII

BINDA(P)(_U)

These instructions convert 16-bit binary data specified by (s) into decimal ASCII codes, and store the converted data in the

device specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions convert 16-bit binary data specified by (s) into decimal ASCII codes, and store the converted data in the

device specified by (d) and later.

Ex.

When -12345 is specified in (s) (when signed data is specified)

 � The following shows the operation result to be stored in (d).

Precautions

 � The number of occupied points of (d) is 3 when SM701 is on, and 4 when SM701 is off.

Ladder diagram Structured text

ENO:=BINDA(EN,s,d);

ENO:=BINDAP(EN,s,d)

ENO:=BINDA_U(EN,s,d);

ENO:=BINDAP_U(EN,s,d)

Operand Description Range Data type Data type (label)

(s) BINDA(P) Binary data to be converted into ASCII codes -32768 to +32767 16-bit signed binary ANY16

BINDA(P)_U 0 to 65535 16-bit unsigned binary ANY16

(d) Head device number storing conversion result  Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)    *1         

� As sign data, "20H" is stored if the 16-bit binary data is positive, and "2DH" is stored if the data is negative.

� "20H" is stored for "0" on the left side of the valid digits (zero suppression). For "00325", 20H is stored for "00", and the number of digits is 3 based on

"325".

� In the device specified by (d)+3, 0 is stored when SM701 (output character number selector signal) is off, and the original data remains when SM701 is

on.

(s) (d)

(d)

(d)+1

(d)+2

(d)+3

b15 b0b7b8

b0b15

(s)

0

ASCII code for ten-thousands place

ASCII code for hundreds place

ASCII code for ones place

ASCII code for sign

ASCII code for thousands place

ASCII code for tens place

16-bit binary data "0" is stored only

when SM701 is off.

(d)

(d)+1

(d)+2

(d)+3

b15 b0b7b8

b0b15

(s)

31H (1) 2DH (-)

33H (3) 32H (2)

34H (4)35H (5)

0000H

- 1 2 3 4 5

16-bit binary data

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 371

7

Operation error

Error code

(SD0/SD8067)

Description

2820 The device specified by (d) exceeds the corresponding device range.

372
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Converting 32-bit binary data to decimal ASCII

DBINDA(P)(_U)

These instructions convert 32-bit binary data specified by (s) into decimal ASCII codes, and store the converted data in the

device specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions convert 32-bit binary data specified by (s) into decimal ASCII codes, and store the converted data in the

device specified by (d) and later.

Ex.

When -12345678 is specified in (s) (when signed data is specified)

 � The following shows the operation result to be stored in (d).

Ladder diagram Structured text

ENO:=DBINDA(EN,s,d);

ENO:=DBINDAP(EN,s,d);

ENO:=DBINDA_U(EN,s,d);

ENO:=DBINDAP_U(EN,s,d);

Operand Description Range Data type Data type (label)

(s) DBINDA(P) Binary data to be converted into ASCII codes -2147483648 to +2147483647 32-bit signed binary ANY32

DBINDA(P)_U 0 to 4294967295 32-bit unsigned binary ANY32

(d) Head device number storing conversion result  Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)    *1         

� As sign data, "20H" is stored if the 16-bit binary data is positive, and "2DH" is stored if the data is negative.

� "20H" is stored for "0" on the left side of the valid digits (zero suppression). For "0012034560", 20H is stored for "00", and the number of digits is 8

based on "12034560".

� In the upper 8 bits of the device specified by (d)+5, 0 is stored when SM701 (output character number selector signal) is off, and 20H is stored when

SM701 is on.

(s) (d)

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

b15 b0b7b8

(s)+1 (s)

ASCII code for billions place

ASCII code for ten-millions place

ASCII code for hundred-thousands place

ASCII code for sign

ASCII code for hundred-millions place

ASCII code for millions place

ASCII code for thousands place

ASCII code for tens place

0 or 20H

ASCII code for ten-thousands place

ASCII code for hundreds place

ASCII code for ones place

32-bit binary data

high-order 16 bits Low-order 16 bits

When SM701 is off: 0, when SM701 is on: 20H

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

b15 b0b7b8

(s)+1 (s)

1 2 3 4 5 6 7 8-

2DH (-)

31H (1)

32H (2)33H (3)

35H (5) 34H (4)

37H (7) 36H (6)

38H (8)

20H (space)

00H or 20H

20H (space)

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 373

7

Precautions

 � (d) occupies six points.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device specified by (d) exceeds the corresponding device range.

374
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Converting HEX code data to ASCII

ASCI(P)

These instructions convert the (n) characters (digits) within the hexadecimal code data specified by (s) to ASCII, and store the

converted data in the device specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=ASCI(EN,s,n,d);

ENO:=ASCIP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device number storing hexadecimal code to be converted  16-bit signed binary ANY16

(d) Head device number storing converted ASCII code  Character string Character string

(n) Number of characters (digits) of hexadecimal code to be

converted

1 to 32767 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)    *1         

(n)             

(s) (d) (n)

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 375

7

Processing details

 � These instructions convert the (n) characters (digits) within the hexadecimal code data specified by (s) to ASCII, and store

the converted data in the device specified by (d) and later.

 � The 16-bit mode and 8-bit mode options are available for the ASCI(P) instructions. For the operation in each mode, refer to

the proceeding pages.
� 16-bit conversion mode (while SM8161 is OFF)

Each digit of hexadecimal data stored in the device specified by (s) and later is converted into ASCII code, and transferred to the upper 8 bits and lower 8

bits of each device specified by (d) and later. SM8161 must always be off in the 16-bit conversion mode.

In the following program, conversion is executed as follows:

Devices specified by (s) and later

(D100)=0ABCH

(D101)=1234H

(D102)=5678H

Number of specified digits (characters) and conversion result

Bit configuration when (n) is K4

ASCI D100

SM8161

SM400

X10

D200 K4

16-bit mode

(n)

(d)

K1 K2 K3 K4 K5 K6 K7 K8 K9

D200

D200

D201

D201

D202

D202

D203

D203

D204

"C"

"C"

"C"

"C"

"C"

"C"

"C"

"C"

"C"

"B"

"B"

"B"

"B"

"B"

"B"

"B"

"B"

"A"

"A"

"A"

"A"

"A"

"A"

"A"

"0"

"0"

"0"

"0"

"0"

"0"

"4"

"4"

"4"

"4"

"4"

"3"

"3"

"3"

"3"

"2"

"2"

"2" "1"

"1" "8"lowest-order byte

highest-order byte

lowest-order byte

highest-order byte

lowest-order byte

highest-order byte

lowest-order byte

highest-order byte

lowest-order byte

Do not change

D100 = 0ABCH

D200

D201

0 0 0 0 1 0 1 0 1 0 0 01 1 11

0 A B C

0 1 0 0 0 0 0 1 0 0 0 01 0 01

0 1 0 0 0 0 1 1 0 1 1 00 0 00

ASCII code

"0" = 30H "1" = 31H "5" = 35H

"A" = 41H "2" = 32H "6" = 36H

"B" = 42H "3" = 33H "7" = 37H

"C" = 43H "4" = 34H "8" = 38H

"A"  41H "0"  30H

"C"  43H "B"  42H

376
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

� 8-bit conversion mode (while SM8161 is ON)

Each digit of hexadecimal data stored in the device specified by (s) and later is converted into ASCII code, and transferred to the lower 8 bits of each

device specified by (d) and later. SM8161 must always be on in the 8-bit conversion mode.

In the following program, conversion is executed as follows:

Devices specified by (s) and later

(D100)=0ABCH

(D101)=1234H

(D102)=5678H

Number of specified digits (characters) and conversion result

Bit configuration when (n) is K2

ASCI

0

D100

SM8161

SM400

X10

D200 K4

Low-order 8 bits

16 bits

8-bit mode

When SM8161 is set to on, the 8-bit mode is selected.
The conversion processing is executed as follows.

Destination

(n)

(d)

K1 K2 K3 K4 K5 K6 K7 K8 K9

D200

D201

D202

D203

D204

D205

D206

D207

D208

Do not change

"C"

"C"

"C"

"C"

"C"

"C"

"C"

"C"

"C"

"B"

"B"

"B"

"B"

"B"

"B"

"B"

"B"

"A"

"A"

"A"

"A"

"A"

"A"

"A"

"0"

"0"

"0"

"0"

"0"

"0"

"4"

"4"

"4"

"4"

"4"

"3"

"3"

"3"

"3"

"2"

"2"

"2" "1"

"1" "8"

D100 = 0ABCH

0 0 0 0 1 0 1 0 1 0 0 01 1 11

0 A B C

0 0 0 0 0 0 0 0 0 1 1 00 0 00

4 2

4 3

0 0 0 0 0 0 0 0 0 1 1 10 0 00

D200 = ASCII code of B = 42H

ASCII code

"0" = 30H "1" = 31H "5" = 35H

"A" = 41H "2" = 32H "6" = 36H

"B" = 42H "3" = 33H "7" = 37H

"C" = 43H "4" = 34H "8" = 38H
D201 = ASCII code of C = 34H

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 377

7

Precautions

 � When outputting data in the BCD format for a printer, for example, it is necessary to convert binary data into BCD data

before executing the ASCI(P) instructions.

 � Whether NULL (00H) is stored after the last character or not depends on the ON/OFF status of the output character number

selector signal SM701. When SM701 is off, NULL (00H) is stored. When SM701 is on, the original data remains.

 � Depending on the ON/OFF status of SM701 and SM8161, the number of devices occupied by (d) differs.

 � When RS2, HEX, or CCD is used, the extension flag SM8161 is common to other instructions. When using an instruction

described above and the ASCI(P) instructions in the same program, make sure to set SM8161 to ON or OFF just before

each instruction so that SM8161 does not apply to another instruction.

Operation error

SM701 SM8161 Number of devices occupied by (d)

ON ON Number of letters

ON OFF Number of letters  2

OFF ON Number of letters  1

OFF OFF (Number of letters  2) + 1

Error code

(SD0/SD8067)

Description

2820 The device specified by (s) or (d) exceeds the corresponding device range.

3405 The value specified by (s) is other than any of 1 to 32767.

378
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Converting 16-bit binary data to character string

STR(P)(_U)

These instructions add a decimal point to the 16-bit binary data in the device specified by (s2) at the location specified by (s1),

convert the data to character string data, and store the converted data in the device areas specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions add a decimal point to the 16-bit binary data in the device specified by (s2) at the location specified by

(s1), convert the data to character string data, and store the converted data in the device areas specified by (d) and later.

 � The total number of digits that can be specified by (s1) is 2 to 8.

 � The number of digits in the decimal part that can be specified by (s1)+1 is 0 to 5. Note that the number of digits in the

decimal part must be smaller than or equal to the total number of digits minus 3.

Ladder diagram Structured text

ENO:=STR(EN,s1,s2,d);

ENO:=STRP(EN,s1,s2,d);

ENO:=STR_U(EN,s1,s2,d);

ENO:=STRP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) STR(P) Head device number where the number of digits of the

conversion target data is stored

 16-bit signed binary ANY16

STR(P)_U 16-bit unsigned binary

(s2) STR(P) Conversion target data -32768 to +32767 16-bit signed binary ANY16

STR(P)_U 0 to 65535 16-bit unsigned binary

(d) Head device number for storing the converted data  Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)    *1         

(s1) (s2) (d)

(s1)+1
b15 b8 b7 b0

0000H

.

(d)+4

(d)+3

(d)+2

(d)+1

(d)

(s2)

(s1) Total number of digits

"0000H" is automatically stored at the end of the character string.

ASCII code for sign

For specifying number of all digits

16-bit binary data

Sign

Number of digits of
decimal part ASCII code in "(Value

specifying number of
all digits - 1)"th digit

ASCII code in "(Value
specifying number of
all digits - 3)"th digit

ASCII code in "(Value
specifying number of
all digits - 2)"th digit

ASCII code in "(Value
specifying number of
all digits - 5)"th digit

ASCII code in "(Value
specifying number of
all digits - 4)"th digit

ASCII code in "(Value
specifying number of
all digits - 7)"th digit

ASCII code in "(Value
specifying number of
all digits - 6)"th digit

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 379

7

 � The converted character string data are stored in the device areas specified by (d) and later as shown below.

Operation error

� As sign data, "20H" (space) is stored if the 16-bit binary data is positive, and "2DH" (-) is stored if the data is negative.

� If the number of digits in the decimal part is set to other than 0, "2EH" (.) is automatically stored at the position before the specified number of digits. If

the number of digits in the decimal part is 0, "2EH" (.) is not stored.

� If the specified number of digits in the decimal part is greater than the number of digits of the 16-bit binary data, 0(s) is automatically added and the data

is regarded as "0.".

� If the total number of digits excluding the sign and the decimal point is greater than the number of digits of the 16-bit binary data, "20H" (space) is stored

between the sign and the numeric value. If the number of digits of the 16-bit binary data is greater, an error occurs.

� The value "00H" is automatically stored at the end of the converted character string.

� When the number of all digits is even, "0000H" is stored in the device after the last character. When the number of all digits is odd, "00H" is stored in the

upper byte (8 bits) of the device storing the final character.

Error code

(SD0/SD8067)

Description

3401 The number of digits specified by (s1) is smaller than the number of digits plus 2 of the 16-bit binary data in the device specified by (s2).

(The additional 2 digits indicate the sign (+/-) and the decimal point.)

The total number of digits specified by (s1) is out of the valid range (2 to 8).

The number of digits in the decimal part specified by (s1)+1 is out of the valid range (0 to 5).

The relationship between the total number of digits specified by (s1) and the number of digits in the decimal part specified by (s1)+1 does

not satisfy the following.

(Total number of digits)-3  Number of digits in the decimal part

3406 The device areas storing the character string specified by (d) exceed the corresponding device range.

2820 The device range specified by (s1) exceeds the corresponding device range.

1 2 3 4

2

6

1 2 . 3 4

Total number of digits

16-bit binary data Number of digits of decimal part

Added automatically

Number of digits of decimal part

1 2

3

6

0 . 0 1 2

Total number of digits

Number of digits of decimal part

16-bit binary data

Added automatically

- 1 2 3

1

8

1 2 . 3-

Total number of digits

Number of digits of decimal part

16-bit binary data "20H (space)" is stored.

380
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Converting 32-bit binary data to character string

DSTR(P)(_U)

These instructions add a decimal point to the 32-bit binary data in the device specified by (s2) at the location specified by (s1),

convert the data to character string data, and store the converted data in the device areas specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=DSTR(EN,s1,s2,d);

ENO:=DSTRP(EN,s1,s2,d);

ENO:=DSTR_U(EN,s1,s2,d);

ENO:=DSTRP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DSTR(P) Head device number where the number of digits

of the conversion target data is stored

 16-bit signed binary ANY16

DSTR(P)_U 16-bit unsigned binary

(s2) DSTR(P) Conversion target data -2147483648 to +2147483647 16-bit signed binary ANY32

DSTR(P)_U 0 to 4294967295 16-bit unsigned binary

(d) Head device number for storing the converted

data

 Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)    *1         

(s1) (s2) (d)

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 381

7

Processing details

 � These instructions add a decimal point to the 32-bit binary data in the device specified by (s2) at the location specified by

(s1), convert the data to character string data, and store the converted data in the device areas specified by (d) and later.

 � The total number of digits that can be specified by (s1) is 2 to 13.

 � The number of digits in the decimal part that can be specified by (s1)+1 is 0 to 10. Note that the number of digits in the

decimal part must be smaller than or equal to the total number of digits minus 3.

 � The converted character string data are stored in the device areas specified by (d) and later as shown below.
� As sign data, "20H" (space) is stored if the 32-bit binary data is positive, and "2DH" (-) is stored if the data is negative.

� If the number of digits in the decimal part is set to other than 0, "2EH" (.) is automatically stored at the position before the specified number of digits. If

the number of digits in the decimal part is 0, "2EH" (.) is not stored.

� If the specified number of digits in the decimal part is greater than the number of digits of the 32-bit binary data, 0(s) is automatically added and the data

is regarded as "0.".

� If the total number of digits excluding the sign and the decimal point is greater than the number of digits of the 32-bit binary data, "20H" (space) is stored

between the sign and the numeric value. If the number of digits of the 32-bit binary data is greater, an error occurs.

� The value "00H" is automatically stored at the end of the converted character string.

� When the number of all digits is even, "0000H" is stored in the device after the last character. When the number of all digits is odd, "00H" is stored in the

upper byte (8 bits) of the device storing the final character.

(s1)+1
b15 b8 b7 b0

00H

(d)+4

(d)+3

(d)+6

(d)+5

(d)+2

(d)+1

(d)

(d)+4

(d)+3

(d)+2

(d)+1

(d)

(s1)

b15 b8 b7 b0

8

3

.6 5 4 3 2 1

6- 5 4 3 2 1

(s2)+1 (s2)

-

(s1)+1

(s1)

2DH (-)

34H (4)

36H (6)

35H (5)

2EH (.)33H (3)

32H (2)31H (1)

0000H

b0b31

When -654.321 is specified in (s2)



b16 b15
(s2)+1 (s2)

.

Total number of digits

Number of digits of decimal part

"00H" is automatically stored at the end of the character string.

ASCII code for sign

Sign

32-bit binary data

high-order 16 bits Low-order 16 bits

32-bit binary data

ASCII code in "(Value

specifying number of

all digits - 1)"th digit

ASCII code in "(Value

specifying number of

all digits - 3)"th digit

ASCII code in "(Value

specifying number of

all digits - 2)"th digit

ASCII code in "(Value

specifying number of

all digits - 5)"th digit

ASCII code in "(Value

specifying number of

all digits - 4)"th digit

ASCII code in "(Value

specifying number of

all digits - 7)"th digit

ASCII code in "(Value

specifying number of

all digits - 6)"th digit

ASCII code in "(Value

specifying number of

all digits - 9)"th digit

ASCII code in "(Value

specifying number of

all digits - 8)"th digit

ASCII code in "(Value

specifying number of

all digits - 11)"th digit

ASCII code in "(Value

specifying number of

all digits - 10)"th digit

ASCII code in "(Value

specifying number of

all digits - 12)"th digit

For specifying

number of all

digits

3

10

1 2 3 4 5 . 6 7 8

2 3 4 5 6 871

Total number of digits

Number of digits of decimal part

32-bit binary data Number of digits of decimal part

Added automatically

10

13

0 . 0 0 0 0 0 5 4 3 2 1

5 4 3 2 1

Total number of digits

Number of digits of decimal part

32-bit binary data
Added automatically

2

13

5- 4 3 2 01

5- 4 3 2 . 1 0

Total number of digits

Number of digits of decimal part

32-bit binary data
"20H (space)" is stored.

382
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Operation error

Error code

(SD0/SD8067)

Description

3401 The number of digits specified by (s1) is smaller than the number of digits plus 2 of the 16-bit binary data in the device specified by (s2).

(The additional 2 digits indicate the sign (+/-) and the decimal point.)

The total number of digits specified by (s1) is out of the valid range (2 to 13).

The number of digits in the decimal part specified by (s1)+1 is out of the valid range (0 to 10).

The relationship between the total number of digits specified by (s1) and the number of digits in the decimal part specified by (s1)+1 does

not satisfy the following.

(Total number of digits)-3  Number of digits in the decimal part

3406 The device areas storing the character string specified by (d) exceed the corresponding device range.

2820 The device range specified by (s1) exceeds the corresponding device range.

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 383

7

Converting single-precision real number to character string

ESTR(P)/DESTR(P)

These instructions convert the single-precision real number data stored in the device specified by (s1) into a character string

according to the display specification stored in the device specified by (s2) and later, and store the string in the device

specified by (d) and later.

The ESTR(P) instructions can also be used as DESTR(P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions convert the single-precision real number data stored in the device specified by (s1) into a character

string according to the display specification stored in the device specified by (s2) and later, and store the string in the device

specified by (d) and later. A real number can be directly specified as (s1).

 � The data after conversion varies depending on the display specification stored in (s2).

Ladder diagram Structured text

ENO:=ESTR(EN,s1,s2,d);

ENO:=ESTRP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Single-precision real number data to be converted or the start

number of the device where data is stored

0, 2-126<|(s1)|<2128 Single-precision real

number

Single-precision real

number

(s2) Head device number storing the display specification of a

numeric value to be converted

The device specified in (s2) and following 2 devices are used.

 16-bit signed binary ANY16

(d) Head device number for storing the converted data  Character string Character string

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)    *1         

(s1) (s2) (d)

(s2)+1

(s2)+2

(s2)

Total number of digits

0: Decimal part format
1: Exponent format

Number of digits of decimal part

2 to 24 can be set.

384
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

■Decimal point format
 � When 0 is specified in (s2), the decimal point format is applied.

 � When the number of decimal part digits is 0, the number of digits that can be specified by (s2)+1 is "the number of digits (24

at a maximum)  2". For other than 0, the number of digits that can be specified by (s2)+1 is "the number of digits (24 at a

maximum)  (the number of decimal point digits + 3)".

 � The number of digits in the decimal part that can be specified by (s2)+2 is 0 to 7. Note that the number of digits in the

decimal part must be smaller than the total number of digits minus 3.

 � For example, when the total number of digits is "8", the number of digits of the decimal part is "3", and "-1.23456" is

specified, data is stored in (d) and later as shown below:

(s2)+1

(s2)+2
b15 b8 b7 b0

0000H(d)+4

(d)+3

(d)+2

(d)+1

(d)

(s2)

.

(s1)+1 (s1)

Total number of digits

"0000H" is automatically stored at the end of the character string.

ASCII code for sign

Sign

Single-precision real number

Decimal point format

Number of digits of
decimal part

ASCII code in "(Value
specifying number of all digits
- 1)"th digit

ASCII code in "(Value
specifying number of all digits
- 3)"th digit

ASCII code in "(Value
specifying number of all digits
- 2)"th digit

ASCII code in "(Value
specifying number of all digits
- 5)"th digit (decimal part)

ASCII code (2EH) for decimal
point (.)

ASCII code in "(Value
specifying number of all digits
- 7)"th digit (decimal part)

ASCII code in "(Value
specifying number of all digits
- 6)"th digit (decimal part)

1- . 2 3

1- . 2 3 4 5 6

5

(s1)+1 (s1)

(s2)+1

(s2)+2

(s2) 0

8

3
b15 b8 b7 b0

(d)+4

(d)+3

(d)+2

(d)+1

(d)

0000H

2DH(-)

31H(1)

32H(2)

35H(5)

2EH(.)

33H(3)

Total number of digits

"0000H" is automatically stored at the end of the character string.

Sign

Single-precision real number

20H (space)

20H (space)

Number of digits
of decimal part

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 385

7

 � The converted character string data are stored in the device areas specified by (d) and later as shown below.

■Exponent format
 � When 1 is specified in (s2), the exponent format is applied.

 � When the number of decimal part digits is 0, the number of digits that can be specified by (s2)+1 is "the number of digits (24

at a maximum)  6". For other than 0, the number of digits that can be specified by (s2)+1 is "the number of digits (24 at a

maximum) > (the number of decimal point digits + 7)".

 � The number of digits in the decimal part that can be specified by (s2)+2 is 0 to 7. Note that the number of digits in the

decimal part must be equal to or smaller than the total number of digits minus 7.

� As sign data, "20H" (space) is stored if the single-precision real number is positive, and "2DH" (-) is stored if the data is negative.

� If the decimal part of the single-precision real number data cannot be accommodated in the number of digits of the decimal part, lower digits of the

decimal part are rounded off.

� If the number of digits in the decimal part is set to other than 0, "2EH" (.) is automatically stored at the position before the specified number of digits. If

the number of digits in the decimal part is 0, "2EH" (.) is not stored.

� When the total number of digits subtracted by the digits for sign, decimal point, and decimal part is larger than the integer part of the single-precision

real number data, "20H (space)" is stored between the sign and the integer part.

� The value "00H" is automatically stored at the end of the converted character string.

1- . 2 3

1- . 2 3 4 5 6

4 5 6

(s1)+1 (s1)

(s2)+1

(s2)+2

(s2) 0

8

2

These digits are rounded off.Number of digits of decimal part

Total number of digits

1- . 2 3

1- . 2 3 4 5 6

(s1)+1 (s1)

(s2)+1

(s2)+2

(s2) 0

8

2

Number of digits of decimal part

Total number of digits

Added automatically

1- . 2 3

1- . 2 3 4 5 6

(s1)+1 (s1)

(s2)+1

(s2)+2

(s2) 0

8

2

Number of digits of decimal part

Total number of digits

"20H (space)" is stored.

(s2)+1

(s2)+2

b15 b8 b7 b0

0000H

(d)+4

(d)+3

(d)+6

(d)+5

(d)+2

(d)+1

(d)

(s2)

(s1)+1 (s1)

. E

45H (E)

Total number of digits

Exponent format

"0000H" is automatically stored at the end of the character string.

Single-precision real number

Sign (integer part) Sign (exponent part)

Added automatically

Number of digits of
decimal part

ASCII code in "(Value
specifying number of all digits
- 1)"th digit

ASCII code in "(Value
specifying number of all digits
- 5)"th digit (decimal part)

ASCII code in "(Value
specifying number of all digits
- 4)"th digit (decimal part)

ASCII code in "(Value
specifying number of all digits
- 7)"th digit

ASCII code in "(Value
specifying number of all digits
- 6)"th digit

ASCII code in "(Value
specifying number of all digits
- 11)"th digit (exponent)

ASCII code in "(Value
specifying number of all digits
- 10)"th digit (exponent)

ASCII code (2EH) for decimal
point (.)

ASCII code in "(Value
specifying number of all digits
- 2)"th digit

ASCII code for sign (exponent)

ASCII code for sign
(integral part)

386
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

 � For example, when the total number of digits is "12", the number of digits of the decimal part is "4", and "-12.34567" is

specified, data is stored in (d) and later as shown below:

 � The converted character string data are stored in the device areas specified by (d) and later as shown below.
� As sign data of the integral part, "20H" (space) is stored if the single-precision real number is positive, and "2DH" (-) is stored if the data is negative.

� The integer part is fixed to 1 digit. "20H (space)" is stored between the integer part and the sign.

� If the decimal part of the single-precision real number data cannot be accommodated in the number of digits of the decimal part, lower digits of the

decimal part are rounded.

� If the number of digits in the decimal part is set to other than 0, "2EH" (.) is automatically stored at the position before the specified number of digits. If

the number of digits in the decimal part is 0, "2EH" (.) is not stored.

� For the sign of the exponent part, "2BH (+)" is stored when the exponent is positive, and "2DH (-)" is stored when the exponent is negative.

� The exponent part is fixed to 2 digits. When the exponent part is 1 digit, "30H (0)" is stored after the sign of the exponent part.

� The value "00H" is automatically stored at the end of the converted character string.

b15 b8 b7 b0

0000H

(d)+4

(d)+3

(d)+6

(d)+5

(d)+2

(d)+1

(d)

E

45H (E)

(s2)+1

(s2)+2

(s2) 1

12

4

1- . 2 3 4 5 6

(s1)+1 (s1)

7

1- . 2 3 4 6 + 10

2DH(-)

31H(1) 2EH(.)

33H(3) 32H(2)

34H(4) 36H(6)

2BH(+)

31H(1) 30H(0)

Total number of digits

"0000H" is automatically stored at the end of the character string.

Single-precision real number

Sign (integer part) Sign (exponent part)

20H (space)

Fixed to 2 digit

Number of digits
of decimal part

12

4

1

2 3 4 6 E + 0 11- .

1- 2 . 3 4 5 6 7

(s2)+1

(s2)+2

(s2)

(s1)+1 (s1)

Fixed to 1 digit

Total number of digits

"20H (space)" is stored.

12

4

1

1- 2 . 3 4 5 6 7

(s2)+1

(s2)+2

(s2)

(s1)+1 (s1)

2 3 4 6 6 7 E +1 . 0 1-

Total number of digits

Number of digits of decimal part These values are rounded down.

12

4

1

1- 2 . 3 4 5 6 7

(s2)+1

(s2)+2

(s2)

(s1)+1 (s1)

2 3 4 6 E + 0 11- .

Total number of digits

Number of digits of decimal part

Added automatically

12

4

1

2 3 4 6 E + 0 11- .

1- 2 . 3 4 5 6 7

(s2)+1

(s2)+2

(s2)

(s1)+1 (s1)

Total number of digits

"30H (0)" is stored.

Fixed to 2 digit

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 387

7

Operation error

Error code

(SD0/SD3067)

Description

2820 The device specified by (s2) exceeds the corresponding device range.

3401 The number of total digits specified by (s1)+1 exceeds 24.

The format specified by (s2) is any value other than "0" or "1".

The total number of digits specified by (s2)+1 is not within the following range in the decimal point format.

When the number of digits of the decimal part is "0": Total number of digits  2

When the number of digits of the decimal part is any value other than "0": Total number of digits  (Number of digits of decimal part + 3)

The total number of digits specified by (s2)+1 is not within the following range in the exponent format.

When the number of digits of the decimal part is "0": Total number of digits  6

When the number of digits of the decimal part is any value other than "0": Total number of digits  (Number of digits of decimal part + +7)

The number of digits of the decimal part specified by (s2)+2 is not within the following range.

In the decimal part format  (Total number of digits - 3)

In the exponent format  (Total number of digits - 7)

When the conversion result exceeds the specified total number of digits

3402 (s1) is not within the following range

0, 2-126  (s1) < 2128

The specified device value is denormalized number, NaN (not a number), or .

3405 The number of digits of the decimal part specified by (s2)+2 is not within the following range.

0 to 7

3406 The device areas that store the character string specified by (d) exceed the corresponding device range.

388
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Detecting a character string length

LEN(P)

These instructions detect the length of the character string specified by (s), and store the length in the device specified by (d)

and later.

These instructions handle data stored in the device specified by (s) to the device storing 00H as a character string.

*1 The LEN instruction is not supported by the ST language. Use LEN of the standard function.

Page 814 LEN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions detect the length of the character string specified by (s), and store the length in the device specified by

(d) and later.

 � These instructions handle data stored in the device specified by (s) to the device storing 00H as a character string.

Ex.

When "ABCDEFGHI" is stored in (s) and later

Ladder diagram Structured text*1

ENO:=LENP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Character string or head device number storing a character string  Character string Character string

(d) Device number storing the detected character string length  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)             

(s) (d)

00H

b15 b0b7b8

b15 b0

(d)

(s)

(s)+1

(s)+2

(s)+n

1st character2nd character

3rd character4th character

5th character6th character

"n"th character

Indicates the end of the character string.

Character string length

b15 b0b7b8

b15 b0

(d)

(s)

(s)+1

(s)+2

(s)+3

(s)+4

41H (A)42H (B)

43H (C)44H (D)

45H (E)46H (F)

47H (G)48H (H)

49H (I)00H

"ABCDEFGHI"
9

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 389

7

Precautions

The LEN(P) instructions can handle character codes other than ASCII codes, but the character string length is handled in byte

units (8 bits). Accordingly, in the case of character codes in which 2 bytes express 1 character such as shift JIS codes, the

length of 1 character is detected as "2".

Operation error

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.

3405 The character string specified by (s) has more than 16383 characters.

390
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Extracting character string data from the right

RIGHT(P)

These instructions extract "n" characters of the character string data stored in the device specified by (s) and later from the

right end (from the end), and store the extracted characters in the device specified by (d) and later.

*1 The RIGHT instruction is not supported by the ST language. Use RIGHT of the standard function.

Page 815 LEFT(_E), RIGHT(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions extract "n" characters of the character string data stored in the device specified by (s) and later from the

right end (from the end), and store the extracted characters in the device specified by (d) and later.

 � A character string stored in (s) indicates data stored in devices from the specified device until "00H" is first detected in units

of 1 byte.

Ladder diagram Structured text*1

ENO:=RIGHTP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Character string or head device number storing a character string  Character string Character string

(d) Head device number for storing "n" characters extracted from the

right of the device specified by (s)

 Character string Character string

(n) Number of characters to be extracted 1 to 16383 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)    *1         

(n)             

(s) (d) (n)

00H

00H

b15 b0b7b8

b15 b0b7b8

(s)

(s)+1
(d)

(d)+1

ASCII code for 1st characterASCII code for 2nd character

ASCII code for 3rd characterASCII code for 4th character

ASCII code for "(last
character -n+2)"th character

ASCII code for "(last
character -n+2)"th character

ASCII code for "(last
character -n+1)"th character

ASCII code for "(last
character -n+4)"th character

ASCII code for "(last
character -n+3)"th character

ASCII code for "(last
character -1)"th character

ASCII code for "(last
character -2)"th character
ASCII code for the last
character

ASCII code for "(last
character -n+1)"th character

ASCII code for "(last
character -n+4)"th character

ASCII code for "(last
character -1)"th character

ASCII code for "(last
character -2)"th character

ASCII code for the last
character

ASCII code for "(last
character -n+3)"th character

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 391

7

Ex.

When 5 is specified in (n)

 � A NULL code (00H), which indicates an end of a character string, is automatically added at the end of the character string

data.

 � When the number of extracted characters is odd, "00H" is stored in the upper byte of a device storing the last character.

When the number of extracted characters is even, "0000H" is stored in the device after the last character.

 � When the number of characters specified by (n) is 0, a NULL code (00H) is stored in (d).

Precautions

When handling character codes other than ASCII codes, note the following points:

 � The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes

express 1 character such as shift JIS codes, 1 character is detected as "2".

 � When extracting characters from a character string including character codes in which 2 bytes express 1 character such as

shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the

expected character code is not retrieved if only 1 byte is extracted out of a 2-byte character code.

Operation error

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.

3405 (n) is not within the following range

0 to 16383

The character string specified by (s) has more than 16383 characters.

"n" exceeds the number of characters specified by (s)

3406 The (n) points of data in the device starting from the one specified by (d) exceed the corresponding device range.

41H (A)42H (B)

43H (C)44H (D)
31H (1)32H (2)

33H (3)34H (4)
45H (E)46H (F)

31H (1)32H (2)

33H (3)34H (4)

35H (5)00H

35H (5)00H

"ABCDEF12345"

"12345"

b15 b0b7b8
b15 b0b7b8

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(d)

(d)+1

(d)+2

ASCII code for 5th character

392
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Extracting character string data from the left

LEFT(P)

These instructions extract "n" characters of the character string data stored in the device specified by (s) and later from the left

end (from the start), and store the extracted characters in the device specified by (d) and later.

*1 The LEFT instruction is not supported by the ST language. Use LEFT of the standard function.

Page 815 LEFT(_E), RIGHT(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions extract "n" characters of the character string data stored in the device specified by (s) and later from the

left end (from the start), and store the extracted characters in the device specified by (d) and later.

 � A character string stored in (s) indicates data stored in devices from the specified device until "00H" is first detected in units

of 1 byte.

Ladder diagram Structured text*1

ENO:=LEFTP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Character string or head device number storing a character string  Character string Character string

(d) Head device number for storing "n" characters extracted from the

left of the device specified by (s)

 Character string Character string

(n) Number of characters to be extracted 1 to 16383 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)    *1         

(n)             

(s) (d) (n)

00H 00H

b15 b0b7b8

b15 b0b7b8

(s)

(s)+1
(d)

(d)+1

ASCII code for 1st characterASCII code for 2nd character

ASCII code for 3rd characterASCII code for 4th character

ASCII code for 1st characterASCII code for 2nd character

ASCII code for 3rd characterASCII code for 4th characterASCII code for (n-1) th
character

ASCII code for (n-2) th
character

ASCII code for (n-1) th
character

ASCII code for (n-2) th
character

ASCII code for (n) th
character

ASCII code for (n+1) th
character

ASCII code for (n) th
character

ASCII code for the last
character

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 393

7

Ex.

When 7 is specified in (n)

 � A NULL code (00H), which indicates an end of a character string, is automatically added at the end of the character string

data.

 � When the number of extracted characters is odd, "00H" is stored in the upper byte of a device storing the last character.

When the number of extracted characters is even, "0000H" is stored in the device after the last character.

 � When the number of characters specified by (n) is 0, a NULL code (00H) is stored in (d).

Precautions

When handling character codes other than ASCII codes, note the following points:

 � The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes

express 1 character such as shift JIS codes, 1 character is detected as "2".

 � When extracting characters from a character string including character codes in which 2 bytes express 1 character such as

shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the

expected character code is not retrieved if only 1 byte is extracted out of a 2-byte character code.

Operation error

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.

3405 (n) is not within the following range

0 to 16383

The character string specified by (s) has more than 16383 characters.

"n" exceeds the number of characters specified by (s)

3406 The (n) points of data in the device starting from the one specified by (d) exceed the corresponding device range.

41H (A)42H (B)

43H (C)44H (D)
41H (A)42H (B)

43H (C)44H (D)

45H (E)46H (F)
45H (E)46H (F)

31H (1)32H (2)

33H (3)34H (4)

35H (5)00H

31H (1)00H

"ABCDEF12345"

"ABCDEF1"

b15 b0b7b8
b15 b0b7b8

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(d)

(d)+1

(d)+2

(d)+3

ASCII code for 7th character

394
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Storing the specified number of character strings

MIDR(P)

These instructions extract the number of characters specified by (s2)+1 of the character string data stored in the device

specified by (s1) and later from the position specified by (s2), and store the extracted characters in the device specified by (d)

and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions extract the number of characters specified by (s2)+1 of the character string data stored in the device

specified by (s1) and later from the position specified by (s2), and store the extracted characters in the device specified by

(d) and later.

 � A character string stored in (s1) indicates data stored in devices from the specified device until "00H" is first detected in

units of byte.

 � A NULL code (00H), which indicates an end of a character string, is automatically added at the end of the character string

data.

 � When the number of extracted characters "(s2)+1" is odd, "00H" is stored in the upper byte of a device storing the last

character. When the number of extracted characters "(s2)+1" is even, "0000H" is stored in the device after the last

character.

 � If the number of characters specified by (s2)+1 is 0, no processing is performed.

Ladder diagram Structured text

ENO:=MIDR(EN,s1,s2,d);

ENO:=MIDRP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Character string or head device number storing a character string  Character string Character string

(d) Head device number for storing the character string data of the

operation result

 Character string Character string

(s2) Head device number for storing the number of characters and position

of the start character

(s2)+0: Position of the start character, (s2)+1: Number of characters

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(d)    *1         

(s2)             

(s1) (d) (s2)

41H (A)42H (B)

43H (C)44H (D)
45H (E)46H (F)

47H (G)48H (H)
45H (E)46H (F)

47H (G)48H (H)

49H (I)4AH (J)

4BH (K)00H

49H (I)00H

"ABCDEFGHIJK"

"EFGHI"

b15 b0b7b8
b15 b0b7b8

(s1)

(s1)+1

(s1)+2

(s1)+3

(s1)+4

(s1)+5

(d)

(d)+1

(d)+2

5

5

(s2)

(s2)+1

ASCII code for 5th character (s2)+1

5th character position
(s2)

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 395

7

 � When (s2)+1 (the number of characters to be extracted) is "-1", the entire character string stored in (s1) and later is stored

to (d) and later.

Precautions

When handling character codes other than ASCII codes, note the following points:

 � The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes

express 1 character such as shift JIS codes, 1 character is detected as "2".

 � When extracting characters from a character string including character codes in which 2 bytes express 1 character such as

shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the

expected character code is not retrieved if only 1 byte is extracted out of a 2-byte character code.

Operation error

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s1) and later, "00H" does not exist.

3405 The value stored in a device specified in (s2)+1 is -2 or lower.

The value stored in a device specified in (s2) exceeds the number of characters of (s1).

A negative value is specified in (s2).

The value stored in a device specified in (s2)+1 exceeds the number of characters of (s1).

The character string specified by (s1) has more than 16383 characters.

The total of the values stored in devices specified in (s2) and (s2)+1 exceeds the number of characters of (s1).

3406 The number of characters from the position specified by (d) to (s2)+1 exceeds the corresponding device range.

41H (A)42H (B)

43H (C)44H (D)
45H (E)46H (F)

47H (G)48H (H)
45H (E)46H (F)

47H (G)48H (H)

49H (I)4AH (J)

4BH (K)00H

49H (I)4AH (J)

4BH (K)00H

"ABCDEFGHIJK"

"EFGHIJK"

b15 b0b7b8
b15 b0b7b8

(s1)

(s1)+1

(s1)+2

(s1)+3

(s1)+4

(s1)+5

(d)

(d)+1

(d)+2

(d)+3

5

-1

(s2)

(s2)+1

5th character position
(s2)

396
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Replacing the specified number of character strings

MIDW(P)

These instructions extract the number of characters specified by (s2)+1 from the character string data stored in the device

specified by (s1) and later, and store the extracted data in the position specified by (s2) and later of the character string data

stored in the device specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions extract the number of characters specified by (s2)+1 from the character string data stored in the device

specified by (s1) and later, and store the extracted data in the position specified by (s2) and later of the character string

data stored in the device specified by (d) and later.

 � A character string stored in (s1) or (d) indicates data stored in devices from the specified device until "00H" is first detected

in units of 1 byte.

 � A NULL code (00H), which indicates an end of a character string, is automatically added at the end of the character string

data.

Ladder diagram Structured text

ENO:=MIDW(EN,s1,s2,d);

ENO:=MIDWP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Character string or head device number storing a character string  Character string Character string

(d) Head device number for storing the character string data of the

operation result

 Character string Character string

(s2) Head device number for storing the number of characters and

position of the start character

(s2)+0: Position of the start character, (s2)+1: Number of characters

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(d)    *1         

(s2)             

(s1) (d) (s2)

30H (0)31H (1)

32H (2)33H (3)

34H (4)35H (5)

36H (6)37H (7)

38H (8)00H

b15 b0b7b8

(s1)

(s1)+1

(s1)+2

(s1)+3

(s1)+4

(s2)

(s2)+1

"012345678"

"ABCDEFGHI"

"AB012345I"

3

6

41H (A)42H (B)

43H (C)44H (D)

45H (E)46H (F)

47H (G)48H (H)

49H (I)00H

b15 b0b7b8

(d)

(d)+1

(d)+2

(d)+3

(d)+4

41H (A)42H (B)

30H (0)31H (1)

32H (2)33H (3)

34H (4)35H (5)

49H (I)00H

b15 b0b7b8

(d)

(d)+1

(d)+2

(d)+3

(d)+4

Before execution

After execution

Position from the left end in the character string
stored in (d) and later
Number of characters from the left end in the
character string stored in (s1) and later

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 397

7

 � If the number of characters specified by (s2)+1 is 0, no processing is performed.

 � When the number of characters specified by (s2)+1 exceeds the last character of the character string specified by (d), data

is stored up to the last character of (d).

 � When (s2)+1 (the number of characters to be extracted) is "-1", the entire character string stored in (s1) and later is stored

to (d) and later.

Precautions

When handling character codes other than ASCII codes, note the following points:

 � The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes

express 1 character such as shift JIS codes, 1 character is detected as "2".

 � When extracting characters from a character string including character codes in which 2 bytes express 1 character such as

shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the

expected character code is not retrieved if only 1 byte is extracted out of a 2-byte character code.

Operation error

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s1) and later, "00H" does not exist.

The device specified by (d) exceeds the corresponding device range.

3405 The value stored in a device specified in (s2)+1 is -2 or lower.

The value stored in a device specified in (s2) exceeds the number of characters of (d).

The value stored in a device specified in (s2)+1 exceeds the number of characters of (s1).

The character string specified by (s1) has more than 16383 characters.

The character string specified by (d) has more than 16383 characters.

30H (0)31H (1)

32H (2)33H (3)

34H (4)35H (5)

36H (6)37H (7)

38H (8)00H

b15 b0b7b8

(s1)

(s1)+1

(s1)+2

(s1)+3

(s1)+4

(s2)

(s2)+1

"012345678"

"ABCDEFGHI"

"ABCD01234"

5

8

41H (A)42H (B)

43H (C)44H (D)

45H (E)46H (F)

47H (G)48H (H)

49H (I)00H

b15 b0b7b8

(d)

(d)+1

(d)+2

(d)+3

(d)+4

41H (A)42H (B)

43H (C)44H (D)

30H (0)31H (1)

32H (2)33H (3)

34H (4)00H

b15 b0b7b8

(d)

(d)+1

(d)+2

(d)+3

(d)+4

Before execution

After execution

"35H (5)" to "37H (7)" are not stored.

Position from the left end in the character
string stored in (d) and later
Number of characters from the left end in the
character string stored in (s1) and later

30H (0)31H (1)

32H (2)33H (3)

34H (4)35H (5)

0000H

b15 b0b7b8

(s1)

(s1)+1

(s1)+2

(s1)+3

(s2)

(s2)+1

"012345" "ABCDEFGHIJK"

"A012345HIJK"

2

-1

41H (A)42H (B)

43H (C)44H (D)

45H (E)46H (F)

47H (G)48H (H)

49H (I)4AH (J)

4BH (K)00H

b15 b0b7b8

b15 b0b7b8

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

41H (A)30H (0)

31H (1)32H (2)

33H (3)34H (4)

35H (5)48H (H)

49H (I)4AH (J)

4BH (K)00H

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

Before execution

After execution

Position from the left end in the character
string stored in (d) and later

Number of characters from the left end in the
character string stored in (s1) and later

398
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Searching character string

INSTR(P)

These instructions search the character string data stored in the device specified by (s2) and later starting from the (s3)th

character from the left, for the character string data stored in the device specified by (s1) and later and store the search result

in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions search the character string data stored in the device specified by (s2) and later starting from the (s3)th

character from the left, for the character string data stored in the device specified by (s1) and later and store the search

result in the device specified by (d). The search result stores the position where the first detected character is located from

the start character in the character string data stored in (s2).

 � If no matched character string data is found, 0 is stored in (d).

 � When the search start position "s3" is a negative number or "0", search processing is not executed.

Ladder diagram Structured text

ENO:=INSTR(EN,s1,s2,s3,d);

ENO:=INSTRP(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) Character string to be searched for or head device number

storing a character string to be searched for

 Character string Character string

(s2) Character string to be searched or head device number storing a

character string to be searched

 Character string Character string

(d) Head device number storing search result  16-bit signed binary ANY16

(s3) Search start position 1 to 16383 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(d)             

(s3)             

(s1) (s2) (d) (s3)

41H (A)42H (B)

43H (C)44H (D)

45H (E)46H (F)

47H (G)48H (H)

45H (E)46H (F)

47H (G)48H (H)

49H (I)4AH (J)

4BH (K)00H

00H

"ABCDEFGHIJK"

"EFGH"

b15 b0b7b8 b15 b0b7b8

(s2)

(s2)+1

(s2)+2

(s2)+3

(s2)+4

(s2)+5

(s1)

(s1)+1

(s1)+2

3(s3) 5(d)

Search start position (s3):
3rd character
Fifth character from the
head character

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 399

7

 � A character string can be directly specified in the character string (s1).

Operation error

Error code

(SD0/SD8067)

Description

2820 No NULL code (00H) exists in the corresponding device range of the device specified by (s1) and later.

No NULL code (00H) exists in the corresponding device range of the device specified by (s2) and later.

3405 The value stored in a device specified in (s3) exceeds the number of characters of (s2).

The character string specified by (s1) has more than 16383 characters.

The character string specified by (s2) has more than 16383 characters.

31H (1)32H (2)

33H (3)34H (4)

41H (A)42H (B)

35H (5)36H (6)

41H (A)42H (B)

00H

"1234AB56AB"

"AB"

b15 b0b7b8

(s2)

(s2)+1

(s2)+2

(s2)+3

(s2)+4

(s2)+5

3(s3)

5(d)

Search start position (s3): 3rd character

Fifth character from the head character

Character string to be searched for (s1)

400
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Inserting character string

STRINS(P)

These instructions insert the character string specified by (s1) at the (s2)th character from the start of the character string

specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=STRINS(EN,s1,s2,d);

ENO:=STRINSP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Character string to be inserted or head device number storing the

character string to be inserted

 Character string Character string

(d) Head device number storing a character string to which another

character string is inserted

 Character string Character string

(s2) Insertion position (in units of bytes) 1 to 16383 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(d)    *1         

(s2)             

(s1) (d) (s2)

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 401

7

Processing details

 � These instructions insert the character string specified by (s1) at the (s2)th character from the start of the character string

specified by (d).

 � When the number of characters after insertion, (s1)+(d), is even, a NULL code (00H) is stored in the device (1 word) after

the last device storing the character string.

 � When the number of characters after insertion, (s1)+(d), is odd, a NULL code (00H) is stored in the last device (upper 8

bits) of the character string.

 � If the number of characters exceeding (d) by one character is specified in (s2), the character string in (s1) is added to the

end of the character string in (d).

Operation error

Error code

(SD0/SD8067)

Description

2820 No NULL code (00H) exists in the corresponding device range of the device specified by (s1) and later.

No NULL code (00H) exists in the corresponding device range of the device specified by (d) and later.

2821 A device of the character strings (s1) and (d) overlaps.

The device storing the character string after insertion, (s1)+(d), overlaps with the character string-storing device of (s1).

3405 The character string specified by (s1) has more than 16383 characters.

The character string specified by (d) has more than 16383 characters.

(s2) is not within the range (1(s2)16383)

The value specified by (s2) exceeds "the number of characters of the character string (d) + 1".

3406 The character string after insertion, (s1)+(d), has more than 16383 characters.

The character string after insertion, (s1)+(d), exceeds the corresponding device range.

41H (A)42H (B)

43H (C)44H (D)

45H (E)46H (F)

47H (G)48H (H)

62H (b)

64H (d)

66H (f)

61H (a)

63H (c)

65H (e)

0000H

30H (0)31H (1)

32H (2)33H (3)

34H (4)00H
41H (A)42H (B)

30H (0)31H (1)

32H (2)33H (3)

34H (4)43H (C)

44H (D)45H (E)

47H (G)

00H

66H (f)

46H (F)

48H (H)

65H (e)
(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)+6

(d)+7

(s1)

(s1)+1

(s1)+2

3(s2)

b15 b0b7b8

b15 b0b7b8

b15 b0b7b8

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)+6

(d)+7

The character string data of the

3rd character and later is

shifted leftward by 5 characters,

and "01234" is inserted.

Insertion start position (s2):

3rd character

The inserted
character
string data (s1)

The character string data of (d)+5 and

later before insertion is overwritten for the

number of character to be inserted.

402
7 APPLICATION INSTRUCTION

7.6 Character string operation instruction

Deleting character string

STRDEL(P)

These instructions delete (n) characters starting from the (s)th character (deletion start position) from the start of the character

string data specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions delete (n) characters starting from the (s)th character (deletion start position) from the start of the

character string data specified by (d).

 � When the number of characters after deletion, (d), is even, a NULL code (00H) is stored in the device after the last device

storing the character string.

 � When the number of characters after deletion, (d), is odd, a NULL code (00H) is stored in the last device (upper 8 bits) of

the character string.

 � The character string after the deleted character string is shifted by (n) characters, a NULL code (00H) is stored in vacant

devices.

Ladder diagram Structured text

ENO:=STRDEL(EN,s,n,d);

ENO:=STRDELP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(d) Head device number storing a character string having characters

to be deleted

 Character string Character string

(s) Deletion start position 1 to 16383 16-bit unsigned binary ANY16

(n) Number of characters to be deleted 0 to 16384 - (n1) 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)    *1         

(s)             

(n)             

(d) (s) (n)

41H (A)42H (B)

48H (H)49H (I)

4AH (J)4BH (K)

4CH (L)00H

0000H

0000H

0000H

31H (1) 30H (0)

33H (3) 32H (2)

35H (5) 34H (4)

41H (A)42H (B)

49H (I)

48H (H)

4AH (J)

4CH (L) 4BH (K)

0000H

31H (1) 30H (0)

33H (3) 32H (2)

35H (5) 34H (4)

41H (A)42H (B)

43H (C)44H (D)

45H (E)46H (F)

48H (H) 47H (G)

4AH (J) 49H (I)

4CH (L) 4BH (K)

0000H

31H (1) 30H (0)

33H (3) 32H (2)

35H (5) 34H (4)

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)+6

(d)+7

(d)+8

(d)+9

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)+6

(d)+7

(d)+8

(d)+9

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+5

(d)+6

(d)+7

(d)+8

(d)+9

b15 b0b7b8 b15 b0b7b8 b15 b0b7b8

3(s)

Number of
characters to be
deleted (n): 5

Deletion start
position (s):
3rd character

The character string data of the deleted character

and later is shifted rightward by 5 characters.

After shifting, "00H" is stored

in the vacant device.

The character string data of (d)+7

and later does not change.

7 APPLICATION INSTRUCTION

7.6 Character string operation instruction 403

7

Operation error

Error code

(SD0/SD8067)

Description

2820 No NULL code (00H) exists in the corresponding device range of the device specified by (d) and later.

3405 The character string specified by (d) has more than 16383 characters.

(s) is not within the range (1(s)16383)

The value specified by (s) exceeds the number of characters of the character string (d).

The value specified by (n) exceeds the number of characters from (s) to the last of the character string (d).

404
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

7.7 Real Number Instruction

Comparing single-precision real numbers

LDE, ANDE, ORE
These instructions perform a comparison operation between the single-precision real number in the device specified by (s1)

and the single-precision real number in the device specified by (s2). (Devices are used as a normally open contact.)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions perform a comparison operation between the single-precision real number in the device specified by

(s1) and the single-precision real number in the device specified by (s2). (Devices are used as a normally open contact.)

 � The following table lists the comparison operation results of each instruction.

 � When an input value is set from the engineering tool, a rounding error may occur.

Ladder diagram Structured text

(E=, E<>, E>, E<=, E<, or E>= enters .)

Not supported

Operand Description Range Data type Data type (label)

(s1) Comparison data or the head device number where the

comparison data is stored

0, 2-126<|(s1)|<2128 Single-precision real number Single-precision real number

(s2) Comparison data or the head device number where the

comparison data is stored

0, 2-126<|(s2)|<2128 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

Instruction symbol Condition Result Instruction symbol Condition Result

E= (s1)=(s2) Conductive state E= (s1)(s2) Non-conductive state

E<> (s1)(s2) E<> (s1)=(s2)

E> (s1)>(s2) E> (s1)<(s2)

E<= (s1)<(s2) E<= (s1)>(s2)

E< (s1)<(s2) E< (s1)>(s2)

E>= (s1)>(s2) E>= (s1)<(s2)

LD

AND

OR

(s1) (s2)

(s1) (s2)

(s1) (s2)

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 405

7

Operation error

There is no operation error.

When the E= instruction is used, note that values in the devices may not be equal.

X0

M0

EMOV E1.23 D0

E* D0 E4.56 D2

E/ D2 E4.56 D2

E= D0 D2

Values in the devices may not be equal.

406
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Single-precision real number comparison

DECMP(P)

These instructions compare two data values (single-precision real number), and output the result (larger, same or smaller) to

three consecutive bit devices.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions compare the comparison value (s1) with the comparison source (s2) as floating point data, and one of

the bits among (d), (d)+1, and (d)+2 turns on according to the result (smaller, same or larger).

 � When the constant (K or H) is specified the device specified by (s1) and (s2), these instructions convert the binary value

into single-precision real number automatically.

Precautions

 � Three devices ((d), (d)+1, and (d)+2) specified by (d) are occupied. Note that these devices are not used for any other

purpose.

Ladder diagram Structured text

ENO:=DECMP(EN,s1,s2,d);

ENO:=DECMPP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Comparison data or the number of the device where the

comparison data is stored

0, 2-126|(s1)|<2128 Single-precision real number Single-precision real number

(s2) Comparison data or the number of the device where the

comparison data is stored

0, 2-126|(s2)|<2128 Single-precision real number Single-precision real number

(d) Start bit device number to which comparison result is output

(Three devices are occupied).

 Bit Bit

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

DECMP (s1) (s2) (d)

(d)

X0

(d+1)

(d+2)

Turns on in the case of [(s1)+1, (s1)] > [(s2)+1, (s2)]

Turns on in the case of [(s1)+1, (s1)] = [(s2)+1, (s2)]

Turns on in the case of [(s1)+1, (s1)] < [(s2)+1, (s2)]

Even if the command input X0 turns off before the DECMP instruction is fully executed, (d) to (d)+2 hold the status.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 407

7

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified by (d) exceeds the corresponding device range.

3402 The specified device value is denormalized number, NaN (not a number), or .

408
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Single-precision real number data band comparison

DEZCP(P)

These instructions compare the comparison range of two points, upper and lower, with the binary floating point, and output the

result to three consecutive bit devices in accordance with the larger, smaller, and band.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions compare the comparison values (s1) and (s2) with the comparison source (s3) as floating point data,

and one of the bits among (d), (d)+1, and (d)+2 turns on according to the result (smaller, within the range or larger).

 � When the constant (K or H) is specified the device specified by (s1), (s2) and (s3), these instructions convert the binary

value into single-precision real number automatically.

Precautions

 � Three devices ((d), (d)+1, and (d)+2) specified by (d) are occupied. Note that these devices are not used for any other

purpose.

 � The size relationship of the comparison data should be [(s1)+1, (s1)]  [(s2)+1, (s2)]. If the relationship is [(s1)+1, (s1)] >

[(s2)+1, (s2)], the value of [(s2)+1, (s2)] is regarded as the same as that of [(s1)+1, (s1)], and is compared.

Ladder diagram Structured text

ENO:= DEZCP (EN, s1, s2, s3, d);

ENO:= DEZCPP(EN, s1, s2, s3, d);

Operand Description Range Data type Data type (label)

(s1) Comparison data or the number of the device where the

comparison data is stored

0, 2-126|(s1)|<2128 Single-precision real number Single-precision real number

(s2) Comparison data or the number of the device where the

comparison data is stored

0, 2-126|(s2)|<2128 Single-precision real number Single-precision real number

(s3) Comparison data or the number of the device where the

comparison data is stored

0, 2-126|(s3)|<2128 Single-precision real number Single-precision real number

(d) Start bit device number to which comparison result is output

(Three devices are occupied).

 Bit Bit

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)             

(s1) (s2) (s3) (d)

DEZCP (s1) (s2) (s3) (d)

(d)

X0

(d+1)

(d+2)

Turns on in the case of [(s1)+1, (s1)] > [(s3)+1, (s3)]

Turns on in the case of [(s1)+1, (s1)] ≤ [(s3)+1, (s3)] ≤ [(s2)+1, (s2)]

Turns on in the case of [(s3)+1, (s3)] > [(s2)+1, (s2)]

Even if the command input X0 turns off before the DECMP instruction is fully executed, (d) to (d)+2 hold the status.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 409

7

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified by (d) exceeds the corresponding device range.

3402 The specified device value is denormalized number, NaN (not a number), or .

410
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Adding single-precision real numbers

E+(P) [For 2 operands]

These instructions add the single-precision real number in the device specified by (s) to the single-precision real number in

the device specified by (d), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the single-precision real number in the device specified by (s) to the single-precision real number in

the device specified by (d), and store the result in the device specified by (d).

 � Values in the devices specified (stored) by (s) and (d) should be 0 or 2-126 |specified value (stored value)| <2128.

 � When an input value is set from the engineering tool, a rounding error may occur.

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Addend data or the head device number where the data that

is added to another is stored

0, 2-126|(s)|<2128 Single-precision real number Single-precision real number

(d) Head device number where the data to which another is

added is stored

 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

The value stored in specified device is outside the following range

0, 2-126|Specified device value|<2128

(s) (d)

+

(d)(d)+1 (s)(s)+1 (d)(d)+1

Single-precision real number Single-precision real number Single-precision real number

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 411

7

E+(P) [For 3 operands]

These instructions add the single-precision real number in the device specified by (s2) to the single-precision real number in

the device specified by (s1), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the single-precision real number in the device specified by (s2) to the single-precision real number

in the device specified by (s1), and store the result in the device specified by (d).

 � Values in the devices specified (stored) by (s1), (s2), and (d) should be 0 or 2-126 |specified value (stored value)|2128.

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Augend data or the head device number where the data to

which another is added is stored

0, 2-126|(s1)|<2128 Single-precision real number Single-precision real number

(s2) Addend data or the head device number where the data that

is added to another is stored

0, 2-126|(s2)|<2128 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the

operation result  2128

The value of (d) is the maximum value (2128) of 32-bit real numbers and the carry

flag SM700 turns on.

SM8020 Zero The operation result is true

"0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the

operation result < 2-126

The value of (d) is the minimum value (2-126) of 32-bit real numbers and the borrow

flag SM8021 turns on.

SM8022 Carry The absolute value of the

operation result  2128

The value of (d) is the maximum value (2128) of 32-bit real numbers and the carry flag

SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

The value stored in specified device is outside the following range

0, 2-126|specified device value|<2128

(s1) (s2) (d)

+

(s1)(s1)+1 (s2)(s2)+1 (d)(d)+1

Single-precision real number Single-precision real number Single-precision real number

412
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Subtracting single-precision real numbers

E-(P) [For 2 operands]

These instructions subtract the single-precision real number in the device specified by (s) from the single-precision real

number in the device specified by (d), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the single-precision real number in the device specified by (s) from the single-precision real

number in the device specified by (d), and store the result in the device specified by (d).

 � Values in the devices specified (stored) by (s) and (d) should be 0 or 2-126 |specified value (stored value)| <2128.

 � When an input value is set from the engineering tool, a rounding error may be occur.

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Subtrahend data or the head device number where the data

to be subtracted from another is stored

0, 2-126|(s)|<2128 Single-precision real number Single-precision real number

(d) Head device number where the data from which another is

to be subtracted is stored

 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

The value stored in specified device is outside the following range

0, 2-126|specified device value|<2128

(s) (d)

-

(d)(d)+1 (s)(s)+1 (d)(d)+1

Single-precision real number Single-precision real number Single-precision real number

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 413

7

E-(P) [For 3 operands]

These instructions subtract the single-precision real number in the device specified by (s2) from the single-precision real

number in the device specified by (s1), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the single-precision real number in the device specified by (s2) from the single-precision real

number in the device specified by (s1), and store the result in the device specified by (d).

 � Values in the devices specified (stored) by (s1), (s2), and (d) should be 0 or 2-126 |specified value (stored value)|2128.

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Minuend data or head device number where the data from

which another is to be subtracted is stored

0, 2-126|(s1)|<2128 Single-precision real number Single-precision real number

(s2) Subtrahend data or head device number where the data to

be subtracted from another is stored

0, 2-126|(s2)|<2128 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

The value stored in specified device is outside the following range

0, 2-126|specified device value|<2128

(s1) (s2) (d)

-

(s1)(s1)+1 (s2)(s2)+1 (d)(d)+1

Single-precision real number Single-precision real number Single-precision real number

414
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Adding single-precision real numbers

DEADD(P)

These instructions add the single-precision real number in the device specified by (s2) to the single-precision real number in

the device specified by (s1), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the single-precision real number in the device specified by (s2) to the single-precision real number

in the device specified by (s1), and store the result in the device specified by (d).

 � When the constant (K or H) is specified in (s1) and (s2), these instructions convert values into single-precision real number

automatically.

 � The table below shows the related devices.

Ladder diagram Structured text

ENO:=DEADD(EN,s1,s2,d);

ENO:=DEADDP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Augend data or head device number where the data to

which another is added is stored

0, 2-126|(s1)|2128 Single-precision real number Single-precision real number

(s2) Addend data or head device number where the data that is

added to another is stored

0, 2-126|(s2)|2128 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s1) (s2) (d)

(s1)+1 (s1) (d)(d)+1

+

(s2)+1 (s2)

Single-precision real number Single-precision real number Single-precision real number

(s1)+1 (s1) (d)(d)+1

+ [K2346]

Single-precision real number Single-precision real numberConverted into a single-precision
real number automatically.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 415

7

Precautions

The same device number can be specified for (s1), (s2), and (d). In this case, note that the addition result changes in every

operation cycle when the continuous operation type instruction (DEADD) is used.

Operation error

Error code

(SD0/SD8067)

Description

3402 The specified device value is denormalized number, NaN (not a number), or .

416
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Subtracting single-precision real numbers

DESUB(P)

These instructions subtract the single-precision real number in the device specified by (s2) from the single-precision real

number in the device specified by (s1), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the single-precision real number in the device specified by (s2) from the single-precision real

number in the device specified by (s1), and store the result in the device specified by (d).

 � When the constant (K or H) is specified in (s1) and (s2), these instructions convert values into single-precision real number

automatically.

 � The table below shows the related devices.

Ladder diagram Structured text

ENO:=DSUB(EN,s1,s2,d);

ENO:=DSUBP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Minuend data or head device number where the data from

which another is subtracted is stored

0, 2-126|(s1)|2128 Single-precision real number Single-precision real number

(s2) Minuend data or head device number where the data that is

subtracted another is stored

0, 2-126|(s2)|2128 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s1) (s2) (d)

(s1)+1 (s1) (d)(d)+1

-

(s2)+1 (s2)

Single-precision real number Single-precision real number Single-precision real number

(s1)+1 (s1) (d)(d)+1

- [K2346]

Single-precision real number Single-precision real numberConverted into a single-precision
real number automatically.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 417

7

Precautions

The same device number can be specified for (s1), (s2), and (d). In this case, note that the subtraction result changes in every

operation cycle when the continuous operation type instruction (DESUB) is used.

Operation error

Error code

(SD0/SD8067)

Description

3402 The specified device value is denormalized number, NaN (not a number), or .

418
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Multiplying single-precision real numbers

E*(P)

These instructions multiply the single-precision real number in the device specified by (s2) to the single-precision real number

in the device specified by (s1), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions multiply the single-precision real number in the device specified by (s2) to the single-precision real

number in the device specified by (s1), and store the result in the device specified by (d).

 � Values in the devices specified (stored) by (s1), (s2), and (d) should be 0 or 2-126 |specified value (stored value)|2128.

 � When an input value is set from the engineering tool, a rounding error may occur.

 � The table below shows the related devices.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Multiplicand data or head device number where the data to

be multiplied by another is stored

0, 2-126|(s1)|<2128 Single-precision real number Single-precision real number

(s2) Multiplier data or head device number where the data by

which another is to be multiplied is stored

0, 2-126|(s2)|<2128 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s1) (s2) (d)



(s1)(s1)+1 (s2)(s2)+1 (d)(d)+1

Single-precision real number Single-precision real number Single-precision real number

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 419

7

Operation error

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

The value stored in specified device is outside the following range

0, 2-126|specified device value|<2128

420
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Dividing single-precision real numbers

E/(P)

These instructions divide the single-precision real number in the device specified by (s1) by the single-precision real number

in the device specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions divide the single-precision real number in the device specified by (s1) by the single-precision real

number in the device specified by (s2), and store the result in the device specified by (d).

 � Values in the devices specified (stored) by (s1), (s2), and (d) should be 0 or 2-126<|specified value (stored value)|2128.

 � When an input value is set from the engineering tool, a rounding error may occur.

 � The table below shows the related devices.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Dividend data or head device number where the data which

is divided by another is stored.

0, 2-126|(s1)|<2128 Single-precision real number Single-precision real number

(s2) Divisor data or head device number where the data that

divides another is stored.

0, 2-126|(s2)|<2128 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s1) (s2) (d)



(s1)(s1)+1 (s2)(s2)+1 (d)(d)+1

Single-precision real number Single-precision real number Single-precision real number

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 421

7

Operation error

Error code

(SD0/SD8067)

Description

3400 The divisor is 0.

3402 The specified device value is denormalized number, NaN (not a number), or .

The value stored in specified device is outside the following range

0, 2-126|specified device value|<2128

422
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Multiplying single-precision real numbers

DEMUL(P)

These instructions multiply the single-precision real number in the device specified by (s2) to the single-precision real number

in the device specified by (s1), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions multiply the single-precision real number in the device specified by (s2) to the single-precision real

number in the device specified by (s1), and store the result in the device specified by (d).

 � When the constant (K or H) is specified in (s1) and (s2), these instructions convert values into single-precision real number

automatically.

 � The table below shows the related devices.

Ladder diagram Structured text

ENO:=DEMUL(EN,s1,s2,d);

ENO:=DEMULP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Multiplicand data or head device number where the data to

be multiplied by another is stored

0, 2-126|(s1)|2128 Single-precision real number Single-precision real number

(s2) Multiplier data or head device number where the data by

which another is to be multiplied is stored

0, 2-126|(s2)|2128 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s1) (s2) (d)



(s1)(s1)+1 (s2)(s2)+1 (d)(d)+1

Single-precision real number Single-precision real number Single-precision real number



(s1)(s1)+1 (d)(d)+1

[K2346]

Single-precision real number Single-precision real numberConverted into a single-precision
real number automatically.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 423

7

Operation error

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

The value stored in specified device is outside the following range

0, 2-126|specified device value|<2128

424
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Dividing single-precision real numbers

DEDIV(P)

These instructions divide the single-precision real number in the device specified by (s1) by the single-precision real number

in the device specified by (s2), and store the result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions divide the single-precision real number in the device specified by (s1) by the single-precision real

number in the device specified by (s2), and store the result in the device specified by (d).

 � When the constant (K or H) is specified in (s1) and (s2), these instructions convert values into single-precision real number

automatically.

 � The table below shows the related devices.

Ladder diagram Structured text

ENO:=DEDIV(EN,s1,s2,d);

ENO:=DEDIVP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Dividend data or head device number where the data which

is divided by another is stored.

 Single-precision real number Single-precision real number

(s2) Divisor data or head device number where the data that

divides another is stored.

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s1) (s2) (d)



(s1)(s1)+1 (s2)(s2)+1 (d)(d)+1

Single-precision real number Single-precision real number Single-precision real number



(s1)(s1)+1 (d)(d)+1

[K2346]

Single-precision real number Single-precision real numberConverted into a single-precision
real number automatically.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 425

7

Operation error

Error code

(SD0/SD8067)

Description

3400 The divisor is 0.

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

The value stored in specified device is outside the following range

0, 2-126|specified device value|<2128

426
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Converting 16-bit signed binary data to single-precision real
number

INT2FLT(P)

These instructions convert the 16-bit signed binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit signed binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion -32768 to +32767 16-bit signed binary ANY16

(d) Data after conversion  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

INT2FLT D0 D100

(s) (d)

MOVP K-1234 D0

M0

(d)
b31 b16

(-1234.0)

4000HC49AH

b15 b0

D101, D100

(s)

(-1234)

FB2EH

b15 b0

D0

After conversionBefore conversion

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 427

7

Converting 16-bit unsigned binary data to single-precision real
number

UINT2FLT(P)

These instructions convert the 16-bit unsigned binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 16-bit unsigned binary data in the device specified by (s) to single-precision real number,

and store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion 0 to 65535 16-bit unsigned binary ANY16

(d) Data after conversion  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

(d)
b31 b16

(1234.0)

4000H449AH

b15 b0

D101, D100

(s)

(1234)

04D2H

b15 b0

D0
UINT2FLT D0 D100

(s) (d)

MOVP K1234 D0
After conversionBefore conversion

428
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Converting 32-bit signed binary data to single-precision real
number

DINT2FLT(P)

These instructions convert the 32-bit signed binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit signed binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion -2147483648 to +2147483647 32-bit signed binary ANY32

(d) Data after conversion  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

(d)
b31 b16

(-123456.0)

2000HC7F1H

b15 b0

D101, D100

(s)
b31 b16

(-123456)

1DC0HFFFEH

b15 b0

D1, D0
DINT2FLT D0 D100

(s) (d)

DMOVP K-123456 D0
After conversionBefore conversion

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 429

7

Converting 32-bit unsigned binary data to single-precision real
number

UDINT2FLT(P)

These instructions convert the 32-bit unsigned binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the 32-bit unsigned binary data in the device specified by (s) to single-precision real number,

and store the converted data in the device specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s) Data before conversion 0 to 4294967295 32-bit unsigned binary ANY32

(d) Data after conversion  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

SM402

M0

(d)
b31 b16

(123456.0)

2000H47F1H

b15 b0

D101, D100

(s)
b31 b16

(123456)

E240H0001H

b15 b0

D1, D0
UDINT2FLT D0 D100

(s) (d)

DMOVP K123456 D0
After conversionBefore conversion

430
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Converting character string to single-precision real number

EVAL(P)/DEVAL(P)

These instructions convert the character strings in the device areas specified by (s) and later to single-precision real number,

and store the converted data in the device specified by (d).

The EVAL(P) instructions can also be used as DEVAL(P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions convert the character strings in the device areas specified by (s) and later to single-precision real

number, and store the converted data in the device specified by (d).

 � A specified character string may be in the decimal point format or exponent format. A character string in either format can

be converted into single-precision real number.

 � A character string can consist of up to 24 characters. 20H (space) and 30H (0) in a character string are counted as one

character each.

■Decimal point format
 � When the character string specified by (s) is decimal point format, the operation is executed as follows.

Ladder diagram Structured text

ENO:=EVAL(EN,s,d);

ENO:=EVALP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Character string data to be converted to single-precision

real number or head device number where the character

string data is stored

 Character string Character string

(d) Head device number storing converted single-precision real

number

 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)             

(s) (d)

(s)

(s)+1

(s)+2

(s)+3

(s)+4

b15 b0b7b8

00H

(d)(d)+1

ASCII code for 1st character

ASCII code for 3rd character

ASCII code for 5th character

ASCII code for sign

ASCII code for 2nd character

ASCII code for 4th character

ASCII code for 7th character ASCII code for 6th character

Indicates the end of the character string.

Single-precision real number

(s)

(s)+1

(s)+2

(s)+3

(s)+4

b15 b0b7b8

00H

(d)(d)+1

31H (1)

30H (0)

38H (8)

2DH (-)

2EH (.)

37H (7)

32H (2) 31H (1)

0 7 8 1 2.1-

71- . 0 8 1 2

Single-precision real number

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 431

7

 � With regard to character string, six digits excluding the sign, decimal point and exponent part are valid, and the 7th and later

digits are discarded during conversion.

 � When 2BH (+) is specified as the sign in the floating point format or when the sign is omitted, a character string is converted

into a positive value. It is handled as negative value during conversion when the sign is set to 2DH (-).

 � When 20H (space) or 30H (0) exists between numbers except the first 0 in a character string specified by (s), 20H or 30H is

ignored during conversion.

■Exponent format
 � When the character string specified by (s) is in exponent format, the operation is executed as follows.

 � With regard to character string, six digits excluding the sign, decimal point and exponent part are valid, and the 7th and later

digits are discarded during conversion.

(d)(d)+1
31H (1)

33H (3)

31H (1)

2DH (-)

2EH (.)

36H (6)

31H (1)

30H (0)

35H (5)

38H (8)

32H (2)

-

01- . 3 61 5

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

b15 b0b7b8

00H

1 . 3 0 1 5 6 8 1 2

Single-precision real number

These values are discarded.

20H (space)

20H (space)

(s)

(s)+1

(s)+2

(s)+3

(s)+4

b15 b0b7b8

00H

(d)(d)+131H (1)

32H (2)

2DH (-)

30H (0)

2EH (.)

31H (1) 33H (3)

1 . 2 3 10-

1- . 2 3 1

Single-precision real number

20H (space)

Ignored

(d)(d)+1
2EH (.)

32H (2)

31H (1)

2DH (-)

33H (3)

2BH (+)

30H (0)

30H (0)

45H (E)

31H (1)

-

021- . 3 11 +

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

b15 b0b7b8

00H

1 . 3 2 0 1 E + 1 0

31H (1)

E 0

Single-precision real number

20H (space)

(d)(d)+1
2EH (.)

35H (5)

33H (3)

31H (1)

45H (E)

-

01- . 3 5 E - 23 4

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

(s)+7

b15 b0b7b8

30H (0)

00H

- 53.1 0 3 4 1 2 E - 0 2

2DH (-)

33H (3)

30H (0)

34H (4)

32H (2)

2DH (-)

32H (2)

31H (1)

Single-precision real number

These values are discarded.

20H (space)

432
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

 � String data in the exponent format is handled as positive value during conversion when the sign of the exponent part is set

to 2BH (+) or when the sign is omitted. When 2DH (-) is specified as the sign, a character string is converted into a negative

value.

 � When 20H (space) or 30H (0) exists between numbers except the first 0 in a character string specified by (s), 20H or 30H is

ignored during conversion.

 � When 30H (0) exists between a number and "E" in a character string in the exponent format, 30H is ignored during

conversion.

Operation error

Error code

(SD0/SD8067)

Description

2820 00H does not exist in the corresponding device range starting from (s)

3401 Characters other than 30 (0) to 39 (9) exist in a character string specified by (s)

2EH (.) exists in two or more positions in a character string specified by (s)

Any character other than 45H (E), 2BH (+), or 2DH (-) exists in the exponent part specified by (s), or two or more exponent parts exist

3405 The number of characters after (s) is 0 or more than 24

(d)(d)+1
2EH (.)

34H (4)

33H (3)

2DH (-)

30H (0)

2BH (+)

33H (3)

35H (5)

45H (E)

30H (0)

-

401- . +5 E

(s)

(s)+1

(s)+2

(s)+3

(s)+4

(s)+5

(s)+6

b15 b0b7b8

00H

31H (1)

3 3

1 . 0 4 5 3 E + 0 3

Single-precision real number

20H (space)

Ignored

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 433

7

Converting binary floating point to decimal floating point

DEBCD(P)

These instructions convert the binary floating point specified by (s) to decimal floating point, and store the converted data in

the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the binary floating point specified by (s) to decimal floating point, and store the converted data in

the device specified by (d).

Precautions

In floating point operations, all data is handled in binary floating point. Because binary floating point is difficult to understand

(requiring a dedicated monitoring method), it is converted into scientific notation (decimal floating point) so that monitoring can

be easily executed by peripheral equipment.

Ladder diagram Structured text

ENO:=DEBCD(EN,s,d);

ENO:= DEBCDP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device number storing binary floating point data  Single-precision real number

(binary)

Single-precision real number

(binary)

(d) Device number storing converted decimal floating point  Single-precision real number

(decimal)

Single-precision real number

(decimal)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

10

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

(s)+1 (s)

(d)+1 (d)

(d)
(d)+1

High order Low order

Mantissa part (23 bits)

Low orderHigh order

Mantissa partExponent part

Exponent part (8 bits)

Sign (1 bit)

434
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Operation error

Error code

(SD0/SD8067)

Description

3402 The specified device value is denormalized number, NaN (not a number), or .

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 435

7

Converting decimal floating point to binary floating point

DEBIN(P)

These instructions convert the decimal floating point specified by (s) to the binary floating point, and store the converted data

in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the decimal floating point specified by (s) to the binary floating point, and store the converted

data in the device specified by (d).

 � The table below shows the related devices.

Ladder diagram Structured text

ENO:=DEBIN(EN,s,d);

ENO:= DEBINP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device number storing decimal floating-point data  Single-precision real number

(decimal)

Single-precision real number

(decimal)

(d) Device number storing converted binary floating-point data  Single-precision real number

(binary)

Single-precision real number

(binary)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s) (d)

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

10

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

(d)+1 (d)

(s)+1 (s)

(s)
(s)+1

High order Low order

Mantissa part (23 bits)

Low orderHigh order

Mantissa partExponent part

Exponent part (8 bits)

Sign (1 bit)

436
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Operation error

There is no operation error.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 437

7

Inverting the sign of single-precision real number

ENEG(P)/DENEG(P)

These instructions invert the sign of the single-precision real number specified by (d), and store the data of the device

specified by (d).

The ENEG(P) instructions can also be used as DENEG(P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions invert the sign of the single-precision real number specified by (d), and store the data in the device

specified by (d).

 � Use these instructions for inverting the positive and negative sign.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=ENEG(EN,d);

ENO:=ENEGP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device number storing single-precision real number

whose sign is to be inverted

 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

(d)+1 (d)

1.2345

(d)+1 (d)

-1.2345

Single-precision real number Single-precision real number

438
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Transferring single-precision real number data

EMOV(P)/DEMOV(P)

These instructions transfer the single-precision real number data stored in the device specified by (s) to the device specified

by (d).

The EMOV(P) instructions can also be used as DEMOV(P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions transfer the single-precision real number data stored in the device specified by (s) to the device

specified by (d).

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=EMOV(EN,s,d);

ENO:=EMOVP(EN,s,d)

Operand Description Range Data type Data type (label)

(s) Data to be transferred or head device number where the

data to be transferred is stored

0, 2-126<|(s)|<2128 Single-precision real number Single-precision real number

(d) Device number storing the data in transfer destination  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) (d)

(s)+1 (s)

4.23542

(d)+1 (d)

4.23542

Single-precision real number Single-precision real number

Transfer

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 439

7

Calculating the sine of single-precision real number

SIN(P)/DSIN(P)

These instructions calculate the sine of the angle specified by (s), and store the operation result in the device specified by (d).

The SIN(P) instructions can also be used as DSIN(P).

*1 The SIN instruction is not supported by the ST language. Use SIN of the standard function.

Page 771 SIN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the sine of the angle specified by (s), and store the operation result in the device specified by

(d).

 � Set the angle data in radians (angle180).

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text*1

ENO:=SINP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Angle data or head device number where the angle data is

stored

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

(s)+1 (s) (d)+1 (d)

SIN ()

Single-precision real number Single-precision real number

440
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

For the angleradian conversion, refer to the DRAD(P) and DDEG(P) instructions.

(Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision

real number radian to angle)

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 441

7

Calculating the cosine of single-precision real number

COS(P)/DCOS(P)

These instructions calculate the cosine of the angle specified by (s), and store the operation result in the device specified by

(d).

The COS(P) instructions can also be used as DCOS(P).

*1 The COS instruction is not supported by the ST language. Use COS of the standard function.

Page 772 COS(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the cosine of the angle specified by (s), and store the operation result in the device specified

by (d).

 � Set the angle data in radians (angle180).

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text*1

ENO:=COSP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Angle data or head device number where the angle data is

stored

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

(s)+1 (s) (d)+1 (d)

COS ()

Single-precision real number Single-precision real number

442
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

For the angleradian conversion, refer to the DRAD(P) and DDEG(P) instructions.

(Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision

real number radian to angle)

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 443

7

Calculating the tangent of single-precision real number

TAN(P)/DTAN(P)

These instructions calculate the tangent of the angle specified by (s), and store the operation result in the device specified by

(d).

The TAN(P) instructions can also be used as DTAN(P).

*1 The TAN instruction is not supported by the ST language. Use TAN of the standard function.

Page 773 TAN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the tangent of the angle specified by (s), and store the operation result in the device specified

by (d).

 � Set the angle data in radians (angle180).

 � The table below shows the related devices.

Precautions

When the angle specified by (s) is /2 radian or (3/2) radian, no error occurs because an operation error occurs in a radian

value.

Ladder diagram Structured text*1

ENO:=TANP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Angle data or head device number where the angle data is

stored

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s) (d)

(s)+1 (s) (d)+1 (d)

TAN ()

Single-precision real number Single-precision real number

444
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Operation error

For the angleradian conversion, refer to the DRAD(P) and DDEG(P) instructions.

(Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision

real number radian to angle)

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 445

7

Calculating the arc sine of single-precision real number

ASIN(P)/DASIN(P)

These instructions calculate the angle from the sine of the angle specified by (s), and store the operation result in the word

device specified by (d).

The ASIN(P) instructions can also be used as DASIN(P).

*1 The ASIN instruction is not supported by the ST language. Use ASIN of the standard function.

Page 774 ASIN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the angle from the sine of the angle specified by (s), and store the operation result in the

device specified by (d).

 � The sine value specified by (s) can be set ranging from -1.0 to 1.0.

 � The angle (operation result) stored in (d) is expressed in radians (from (-/2) to (/2)).

 � The table below shows the related devices.

Ladder diagram Structured text*1

ENO:=ASINP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) A sine value used in SIN-1 (arc sine) operation or head

device number storing the sine value

-1.0 to +1.0 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result -/2 to +/2 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s) (d)

(s)+1 (s) (d)+1 (d)

SIN-1 ()

Single-precision real number Single-precision real number

446
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Operation error

For the radianangle conversion, refer to the DRAD(P) and DDEG(P) instructions.

(Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision

real number radian to angle)

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

3405 A value specified in (s) is outside the range from -1.0 to 1.0.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 447

7

Calculating the arc cosine of single-precision real number

ACOS(P)/DACOS(P)

These instructions calculate the angle from the cosine of the angle specified by (s), and store the operation result in the word

device specified by (d).

The ACOS(P) instructions can also be used as DACOS(P).

*1 The ACOS instruction is not supported by the ST language. Use ACOS of the standard function.

Page 775 ACOS(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the angle from the cosine of the angle specified by (s), and store the operation result in the

device specified by (d).

 � The cosine value specified by (s) can be set ranging from -1.0 to 1.0

 � The angle (operation result) stored in (d) is expressed in radians (0 to ).

 � The table below shows the related devices.

Ladder diagram Structured text*1

ENO:=ACOSP(EN,s,d)

Operand Description Range Data type Data type (label)

(s) A cosine value used in COS-1 (arc cosine) operation or

head device number storing the cosine value

-1.0 to +1.0 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result 0 to  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real numbers

and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real numbers

and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real numbers

and the carry flag SM8022 turns on.

(s) (d)

(s)+1 (s) (d)+1 (d)

COS-1 ()

Single-precision real number Single-precision real number

448
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Operation error

For the radianangle conversion, refer to the DRAD(P) and DDEG(P) instructions.

(Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision

real number radian to angle)

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

3405 A value specified in (s) is outside the range from -1.0 to 1.0.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 449

7

Calculating the arc tangent of single-precision real number

ATAN(P)/DATAN(P)

These instructions calculate the angle from the tangent of the angle specified by (s), and store the operation result in the word

device specified by (d).

The ATAN(P) instructions can also be used as DATAN(P).

*1 The ATAN instruction is not supported by the ST language. Use ATAN of the standard function.

Page 776 ATAN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the angle from the tangent of the angle specified by (s), and store the operation result in the

device specified by (d).

 � The angle (operation result) stored in (d) is expressed in radians (from -/2 to /2).

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text*1

ENO:=ATANP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) A tangent value used in the TAN-1 (arc tangent) operation or

head device number storing the tangent value

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result -/2 to +/2 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

(s)+1 (s) (d)+1 (d)

TAN-1 ()

Single-precision real number Single-precision real number

450
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

For the radianangle conversion, refer to the DRAD(P) and DDEG(P) instructions.

(Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision

real number radian to angle)

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 451

7

Converting single-precision real number angle to radian

RAD(P)/DRAD(P)

These instructions convert a unit of angle from degrees (DEG.) specified by (s) into radians, and store the converted angle in

the device specified by (d).

The RAD(P) instructions can also be used as DRAD(P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert a unit of angle from degrees (DEG.) specified by (s) into radians, and store the converted angle

in the device specified by (d).

 � The conversion from degrees into radians is executed as follows:

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text

ENO:=RAD(EN,s,d);

ENO:=RADP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) A value in degrees to be converted into a value in radians or

the start number storing the value in degrees

 Single-precision real number Single-precision real number

(d) Head device number storing a value in radians acquired by

conversion

 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

(s)+1 (s) (d)+1 (d)

() () rad

Single-precision real number Single-precision real number

Radians = Degrees 
180



452
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Converting single-precision real number radian to angle

DEG(P)/DDEG(P)

These instructions convert a unit of angle from radians specified by (s) into degrees (DEG.), and store the converted angle in

the device specified by (d). The DEG(P) instructions can also be used as DDEG(P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert a unit of angle from radians specified by (s) into degrees (DEG.), and store the converted angle

in the device specified by (d).

 � The conversion from radians into degrees is executed as follows:

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text

ENO:=DEG(EN,s,d);

ENO:=DEGP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) A value in radians to be converted into a value in degrees or

the head device number storing a value in radians

 Single-precision real number Single-precision real number

(d) Head device number storing a value in degrees acquired by

conversion

 Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

(s)+1 (s) (d)+1 (d)

()() rad

Single-precision real number Single-precision real number

Degrees = Radians 
180


7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 453

7

Calculating the square root of single-precision real number

DESQR(P)

These instructions calculate the square root of a value specified by (s), and store the operation result in the device specified

by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the square root of a value specified by (s), and store the operation result in the device specified

by (d).

 � Only a positive value can be set in (s). (The square root operation cannot be executed for a negative value).

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text

ENO:=DESQR(EN,s,d);

ENO:=DESQRP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Data whose square root is calculated or head device

number where the data is stored

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is denormalized number, NaN (not a number), or .

3405 The value stored in a device specified in (s) is negative.

(s) (d)

(s)+1 (s) (d)+1 (d)

()

Single-precision real number Single-precision real number

454
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Calculating the exponent of single-precision real number

EXP(P)/DEXP(P)

These instructions calculate the exponent of a value specified by (s), and store the operation result in the device specified by

(d).

The EXP(P) instructions can also be used as DEXP(P).

*1 The EXP instruction is not supported by the ST language. Use EXP of the standard function.

Page 770 EXP(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the exponent of a value specified by (s), and store the operation result in the device specified

by (d).

 � In the exponential operation, the base (e) is set to "2.71828".

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text*1

ENO:=EXPP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Data whose exponent is calculated or head device number

where the data is stored

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is -0, denormalized number, NaN (not a number), or .

(s) (d)

(s)+1 (s) (d)+1 (d)

e ()

Single-precision real number Single-precision real number

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 455

7

 � The EXP(P) instructions execute operations in natural logarithm. For obtaining a value in common

logarithm, specify a common logarithm value divided by 0.4342945 in (s).

10X = e 0.4342945

X

456
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Calculating the natural logarithm of single-precision real number

LOG(P)/DLOGE(P)

These instructions calculate the logarithm whose base is natural logarithm e of a value specified by (s), and store the

operation result in the device specified by (d).

The LOG(P) instructions can also be used as DLOGE(P).

*1 The LOG instruction is not supported by the ST language. Use LOG of the standard function.

Page 768 LOG(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the logarithm whose base is natural logarithm e of a value specified by (s), and store the

operation result in the device specified by (d).

 � Only a positive value can be set in (s). (The natural logarithm operation cannot be executed for a negative value).

 � The table below shows the related devices.

Ladder diagram Structured text*1

ENO:=LOGP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Data whose natural logarithm is calculated or head device

number where the data is stored

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

(s) (d)

(s)+1 (s) (d)+1 (d)

log ()

Single-precision real number Single-precision real number

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 457

7

Operation error

Error code

(SD0/SD8067)

Description

3402 The specified device value is denormalized number, NaN (not a number), or .

3405 The value stored in a device specified in (s) is negative.

The value stored in a device specified in (s) is 0.

458
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Calculating the exponentiation of single-precision real number

POW(P)

These instructions raise float (single precision) data stored in a device specified by (s1) by the single-precision real number

specified by (s2), and store the operation result in a device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions raise float (single precision) data stored in a device specified by (s1) by the single-precision real number

specified by (s2), and store the operation result in a device specified by (d).

 � Values in the devices specified (stored) by (s1) and (s2) should be 0 or 2 -126|specified value (stored value)| <2128.

 � When the operation result is -0 or underflow occurs, the operation result is regarded as 0.

 � When the operation result is within the following range, the operation result is regarded as 2128, and the carry flag SM716

turns on.

 � When an input value is set from the engineering tool, a rounding error may be occur.

Ladder diagram Structured text

ENO:=POW(EN,s1,s2,d);

ENO:=POWP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data to be raised, or head device number which stores such

data

0, 2-126|(s1)|<2128 Single-precision real number Single-precision real number

(s2) Power data, or head device number which stores such data 0, 2-126|(s2)|<2128 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

2128 |operation result|

(s1) (s2) (d)

(s2)+1 (s2)

(s1)+1 (s1)

(s1)+1 (s1)

(d)+1 (d)

(s2)+1 (s2)

Single-precision real number Single-precision real number

Data to be raised

Power data

to th power.The instruction raises

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 459

7

Operation error

Error code

(SD0/SD8067)

Description

3402 The value specified by (s1) or (s2) is outside the following range.

0, 2-126|specified value (stored value)|<2128

The specified device value is -0, denormalized number, NaN (not a number), or .

3403 The operation result is within the following range. (An overflow has occurred.)

2128 |operation result|

460
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Calculating the common logarithm of single-precision real
number

LOG10(P)/DLOG10(P)

These instructions calculate the common logarithm (the logarithm whose base is 10) of a value specified by (s), and store the

operation result in the device specified by (d).

The LOG10(P) instructions can also be used as DLOG10(P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the common logarithm (the logarithm whose base is 10) of a value specified by (s), and store

the operation result in the device specified by (d).

 � Only a positive value can be set in (s). (The common logarithm operation cannot be executed for a negative value).

 � The table below shows the related devices.

Operation error

Ladder diagram Structured text

ENO:=LOG10(EN,s,d);

ENO:=LOG10P(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Data whose common logarithm is calculated or head device

number where the data is stored

 Single-precision real number Single-precision real number

(d) Head device number for storing the operation result  Single-precision real number Single-precision real number

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Device Name Description

Condition Operation

SM700 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM700 turns on.

SM8020 Zero The operation result is true "0".

(The mantissa part is "0").

The zero flag SM8020 turns on.

SM8021 Borrow The absolute value of the operation result < 2-126 The value of (d) is the minimum value (2-126) of 32-bit real

numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result  2128 The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

Error code

(SD0/SD8067)

Description

3402 The specified device value is denormalized number, NaN (not a number), or .

3405 The value stored in a device specified in (s) is negative.

The value stored in a device specified in (s) is 0.

(s) (d)

log10 ()(s)+1 (s) (d)+1 (d)

Single-precision real number Single-precision real number

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 461

7

Searching the maximum value of single-precision real number

EMAX(P)

These instructions search for the maximum value in the (n) point(s) of single-precision real number block data in the device

starting from the one specified by (s), and store the maximum value in the device areas specified by (d) and (d)+1.

These instructions also store the location of the first maximum value from (s) in the device specified by (d)+2 and the number

of maximum values in the device specified by (d)+3.

*1 The EMAX instruction is not supported by the ST language. Use MAX of the standard function.

Page 804 MAX(_E), MIN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions search for the maximum value in the (n) point(s) of single-precision real number block data in the device

starting from the one specified by (s), and store the maximum value in the device areas specified by (d). These instructions

also store the location of the first maximum value from (s) in the device specified by (d)+2 and the number of maximum

values in the device specified by (d)+3.

 � The start of the block data in the device specified by (s) is counted as 1st point when the location is counted.

 � The following values are stored in (d).

 � When (n) is 0, the processing is not performed.

Ladder diagram Structured text*1

ENO:=EMAXP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Search target data  Single-precision real number Single-precision real number

(d) Search result  Single-precision real number Single-precision real number

(n) Number of search target data points  16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Data type Description

(d) Single-precision real number Maximum value

(d)+1

(d)+2 16-bit data Maximum value position

(d)+3 16-bit data Number of maximum values

(s) (d) (n)

1.2345

123.45

-1.2345

-12.345

-123.45

(s)+1, (s)

(s)+3, (s)+2

(s)+5, (s)+4

(d)+1, (d)

(d)+2

(d)+3(s)+7, (s)+6

(s)+9, (s)+8

(n)

123.45

2

1

Maximum value

Position

Number of data

462
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Operation error

Error code

(SD0/SD8067)

Description

2820 The device areas specified by (s) exceed the corresponding device range.

The device areas specified by (d) exceed the corresponding device range.

3402 The block data in the device areas specified by (s) includes a value other than single-precision real number.

7 APPLICATION INSTRUCTION

7.7 Real Number Instruction 463

7

Searching the minimum value of single-precision real number

EMIN(P)

These instructions search for the minimum value in the (n) point(s) of single-precision real number block data in the device

starting from the one specified by (s), and store the minimum value in the device areas specified by (d) and (d)+1.

These instructions also store the location of the first minimum value from (s) in the device specified by (d)+2 and the number

of minimum values in the device specified by (d)+3.

*1 The EMIN instruction is not supported by the ST language. Use MIN of the standard function.

Page 804 MAX(_E), MIN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions search for the minimum value in the (n) point(s) of single-precision real number block data in the device

starting from the one specified by (s), and store the minimum value in the device areas specified by (d) and (d)+1. These

instructions also store the location of the first minimum value from (s) in the device specified by (d)+2 and the number of

minimum values in the device specified by (d)+3.

 � The start of the block data in the device specified by (s) is counted as 1st point when the location is counted.

 � The following values are stored in (d).

 � When (n) is 0, the processing is not performed.

Ladder diagram Structured text*1

ENO:=EMINP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Search target data  Single-precision real number Single-precision real number

(d) Search result  Single-precision real number Single-precision real number

(n) Number of search target data points  16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Data type Description

(d) Single-precision real number Minimum value

(d)+1

(d)+2 16-bit data Minimum value position

(d)+3 16-bit data Number of minimum values

(s) (d) (n)

1.2345

123.45

-1.2345

-12.345

-123.45

(s)+1, (s)

(s)+3, (s)+2

(s)+5, (s)+4

(d)+1, (d)

(d)+2

(d)+3(s)+7, (s)+6

(s)+9, (s)+8

(n)

-123.45

2

1

Minimum value

Position

Number of data

464
7 APPLICATION INSTRUCTION

7.7 Real Number Instruction

Operation error

Error code

(SD0/SD8067)

Description

2820 The device areas specified by (s) exceed the corresponding device range.

The device areas specified by (d) exceed the corresponding device range.

3402 The block data in the device areas specified by (s) includes a value other than single-precision real number.

7 APPLICATION INSTRUCTION

7.8 Random Number Instruction 465

7

7.8 Random Number Instruction

Generating random number

RND(P)

These instructions generate a pseudo-random number ranging from 0 to 32767, and store it as a random number to a device

specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions generate a pseudo-random number ranging from 0 to 32767, and store it as a random number to a

device specified by (d).

 � In the pseudo-random number sequence, the source value of a random number is calculated every time, and this

instruction calculates a pseudo-random number using the source value.

*1 To (SD8311, SD8310), write a non-negative value (0 to 2,147,483,647) only once when the CPU module mode switches from STOP to

RUN. (K1 is written to (SD8311, SD8310) as the initial value when the power is restored.)

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=RND(EN,d);

ENO:=RNDP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device number storing a random number  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

Pseudo-random number calculation equation:

(SD8311, SD8310)=(SD8311, SD8310)*11103515245+12345

(d) ="([SD8311, SD8310]>>16)&<logical product>00007FFFh"

(d)

466
7 APPLICATION INSTRUCTION

7.9 Index register operation instruction

7.9 Index register operation instruction

Saving all data of the index register

ZPUSH(P)

These instructions save the contents of index registers and long index registers in the devices specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions save the contents of index registers and long index registers in the devices specified by (d) and later.

 � When the contents of index registers are saved, "1" is added to (d).

 � These instructions save the contents of index registers and long index registers for 24 words regardless of the assignment

of the number of the registers. Thus, when the number of index registers is 0, the contents of long index registers are saved

for 12 points.

 � The ZPOP(P) instructions are used to return the data. The ZPUSH(P) and ZPOP(P) instructions are used in pairs, and by

using the same device in (d) a nesting structure can be adopted. (Page 468 Returning all data of the index register)

 � When a nesting structure is adopted, the areas to be used are added to (d) and later every time the ZPUSH(P) instructions

are used. Check the number of index registers and long index registers by SD300 and SD302, and secure the areas for the

number of instructions to be used in advance.

 � The following shows the areas of (d) and later to be used.

Ladder diagram Structured text

ENO:=ZPUSH(EN,d);

ENO:=ZPUSHP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device number for saving the data of index registers and

long index registers

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(d)

(d)+0

+1

+2

+24

+25

+26

Z0

Z1

Z0

Z1

Z23

Number of times of batch-storage

1st nesting (24 words for one nesting)

2nd nesting

7 APPLICATION INSTRUCTION

7.9 Index register operation instruction 467

7

Precautions

 � When a nesting structure is not adopted, clear (d) before executing the ZPUSH(P) instructions.

 � When a nesting structure is adopted, clear (d) before executing the first ZPUSH(P) instructions.

 � When the ZPOP(P) instructions are used to return the data of index registers, use the ZPOP(P) instructions corresponding

to the ZPUSH(P) instructions that were used for saving the data.

 � Secure the areas so that the save destination specified by (d) do not exceed the device range.

Operation error

ZPUSH(P) (One setting data)  ZPOP(P) (One setting data)

ZPUSH(P) (Two setting data)  ZPOP(P) (Two setting data)

Error code

(SD0/SD8067)

Description

2820 The range of points used in (d) or later exceeds the range of the target device/label area.

3405 (d) is negative.

468
7 APPLICATION INSTRUCTION

7.9 Index register operation instruction

Returning all data of the index register

ZPOP(P)

These instructions read the data saved in the devices specified by (d) and later to index registers and long index registers.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions read the data saved in the devices specified by (d) and later to index registers and long index registers.

 � When the saved contents of the index registers and long index registers are read, "1" is subtracted from (d).

 � The ZPUSH(P) instructions are used to temporarily save the data. The ZPUSH(P) and ZPOP(P) instructions are used in

pairs.

Operation error

Ladder diagram Structured text

ENO:=ZPOP(EN,d);

ENO:=ZPOPP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device number for returning the data of index registers  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

Error code

(SD0/SD8067)

Description

2820 The range of points used in (d) or later exceeds the range of the target device/label area.

3405 (d) is 0 or negative.

(d)

7 APPLICATION INSTRUCTION

7.9 Index register operation instruction 469

7

Saving the selected data of the index register and long index
register

ZPUSH(P)

These instructions save the contents of index registers and long index registers within the range specified by (s) in the devices

specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions save the contents of index registers and long index registers within the range specified by (s) in the

devices specified by (d) and later. The type of the index register or long index register saved is stored in the end of the

saved data.

 � When the contents of the index registers and long index registers are saved, "1" is added to (d).

 � The following shows values specified by (s) and the index register or long index register to be saved.

 � The selected data of index register/long index register return instructions (ZPOP(P) instructions) are used to return the

data. The selected data of index register/long index register save instructions (ZPUSH(P) instructions) and the selected

data of index register/long index register return instructions (ZPOP(P) instructions) can be used in pairs and to adopt a

nesting structure. (Page 471 Returning the selected data of the index register and long index register)

 � When a nesting structure is adopted, the areas to be used are added to (d) and later every time the selected data of index

register/long index register save instructions (ZPUSH(P) instructions) are executed. Check the number of index registers

and long index registers by SD300 and SD302, and secure the areas for the number of instructions to be used in advance.

Ladder diagram Structured text

ENO:=ZPUSH_2(EN,s,d);

ENO:=ZPUSHP_2(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Type of the index register or long index register to be saved 0 to 2 16-bit unsigned binary ANY16

(d) Head device number for saving the data of index registers  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(s) value Z or LZ to be saved

0 Z, LZ (whole range)

1 Z (whole range)

2 LZ (whole range)

(s) (d)

470
7 APPLICATION INSTRUCTION

7.9 Index register operation instruction

 � The following shows the areas of (d) and later used for the instructions (when Z0 to 13 and LZ0 to 4 are used).

Precautions

 � When a nesting structure is not adopted, clear (d) before executing the ZPUSH(P) instructions.

 � When a nesting structure is adopted, clear (d) before executing the first ZPUSH(P) instructions.

 � When the ZPOP(P) instructions are used to return the data of index registers, use the ZPOP(P) instructions corresponding

to the ZPUSH(P) instructions that were used for saving the data.

 � Do not change the values of (d)+1 and (d)+2 because they are used by the system. Do not change the values of the Z and

LZ save types stored in the devices specified by (d) and later because they are used by the system.

 � Secure the areas so that the save destination specified by (d) does not exceed the device range.

Operation error

ZPUSH(P) (One setting data)  ZPOP(P) (One setting data)

ZPUSH(P) (Two setting data)  ZPOP(P) (Two setting data)

Error code

(SD0/SD8067)

Description

2820 The range of points used in (d) or later exceeds the range of the target device/label area.

3405 A value other than 0 to 2 is specified in (s).

When the number of index registers is 0, "1" is specified in (s).

When the number of long index registers is 0, "2" is specified in (s).

Z0

Z1

Z13

LZ0

LZ1

LZ4

LZ0

LZ4

(d)

(d)+1

(d)+2

(d)+3

(d)+4

(d)+16

(d)+17

(d)+18

(d)+19

(d)+20

(d)+25

(d)+26

(d)+27

(d)+28

(d)+29

(d)+36

(d)+37

(d)+38

ZPUSH K0 D0

ZPUSH K2 D0

Number of times of batch-storage

Reserved by the system

(2 words)

1st nesting
(25 words for one nesting)

Z, LZ save type = 0

Z, LZ save type = 2

2nd nesting
(11 words for two nesting)

3rd nesting

(Save the whole range
of Z and LZ)

(Save the whole range
of LZ)

7 APPLICATION INSTRUCTION

7.9 Index register operation instruction 471

7

Returning the selected data of the index register and long index
register

ZPOP(P)

These instructions read the data saved in the devices specified by (d) and later to index registers and long index registers.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions read the data saved in the devices specified by (d) and later to index registers and long index registers.

 � When the saved contents of the index registers and long index registers are read, "1" is subtracted from (d).

 � The data specified by (s) is regarded as dummy data and ignored.

Operation error

Ladder diagram Structured text

ENO:=ZPOP_2(EN,s,d);

ENO:=ZPOPP_2(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Dummy  16-bit unsigned binary ANY16

(d) Head device number for returning the data of index

registers

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

2820 The range of points used in (d) or later exceeds the range of the target device/label area.

3405 (d) is 0 or negative.

(s) (d)

472
7 APPLICATION INSTRUCTION

7.10 Data control instruction

7.10 Data control instruction

Upper and lower limit control of 16-bit binary data

LIMIT(P)(_U)

These instructions control the output value to be stored in the device specified by (d) by checking the input value (16-bit binary

data) in the device specified by (s3) with the upper and lower limit values specified by (s1) and (s2).

*1 The LIMIT_U instruction is not supported by the ST language. Use LIMIT of the standard function.

Page 806 LIMIT(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text*1

ENO:=LIMIT(EN,s1,s2,s3,d);

ENO:=LIMITP(EN,s1,s2,s3,d);

ENO:=LIMITP_U(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) LIMIT(P) Lower limit value (minimum output value) -32768 to 32767 16-bit signed binary ANY16

LIMIT(P)_U 0 to 65535 16-bit unsigned binary

(s2) LIMIT(P) Upper limit value (maximum output value) -32768 to 32767 16-bit signed binary ANY16

LIMIT(P)_U 0 to 65535 16-bit unsigned binary

(s3) LIMIT(P) Input value controlled by the upper and lower limit values -32768 to 32767 16-bit signed binary ANY16

LIMIT(P)_U 0 to 65535 16-bit unsigned binary

(d) LIMIT(P) Head device number storing the output value controlled by

the upper and lower limit values

 16-bit signed binary ANY16

LIMIT(P)_U 16-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)             

(s1) (s2) (s3) (d)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 473

7

Processing details

 � These instructions control the output value to be stored in the device specified by (d) by checking the input value (16-bit

binary data) in the device specified by (s3) with the upper and lower limit values specified by (s1) and (s2). The output value

is controlled as follows.

 � To control the input value only with the upper limit, set the minimum value within the setting range in (s1).

 � To control the input value only with the lower limit, set the maximum value within the setting range in (s2).

Operation error

Condition Output value

Lower limit value (s1) > Input value (s3) Lower limit value (s1)

Upper limit value (s2) < Input value (s3) Upper limit value (s2)

Lower limit value (s1)  Input value (s3)  Upper limit value (s2) Input value (s3)

Error code

(SD0/SD8067)

Description

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s2).

0

Output value (d)

Input value (s3)
Lower limit value (s1)

Upper limit value (s2)

474
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Upper and lower limit control of 32-bit binary data

DLIMIT(P)(_U)

These instructions control the output value to be stored in the device specified by (d) by checking the input value (32-bit binary

data) in the device specified by (s3) with the upper and lower limit values specified by (s1) and (s2).

*1 The DLIMIT(_U) instructions are not supported by the ST language. Use LIMIT of the standard function.

Page 806 LIMIT(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions control the output value to be stored in the device specified by (d) by checking the input value (32-bit

binary data) in the device specified by (s3) with the upper and lower limit values specified by (s1) and (s2). The output value

is controlled as follows.

 � To control the input value only with the upper limit, set the minimum value within the setting range in (s1).

 � To control the input value only with the lower limit, set the maximum value within the setting range in (s2).

Ladder diagram Structured text*1

ENO:=DLIMITP(EN,s1,s2,s3,d); ENO:=DLIMITP_U(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) DLIMIT(P) Lower limit value (minimum output value) -2147483648 to +2147483647 32-bit signed binary ANY32

DLIMIT(P)_U 0 to 4294967295 32-bit unsigned binary

(s2) DLIMIT(P) Upper limit value (maximum output value) -2147483648 to +2147483647 32-bit signed binary ANY32

DLIMIT(P)_U 0 to 4294967295 32-bit unsigned binary

(s3) DLIMIT(P) Input value controlled by the upper and lower

limit values

-2147483648 to +2147483647 32-bit signed binary ANY32

DLIMIT(P)_U 0 to 4294967295 32-bit unsigned binary

(d) DLIMIT(P) Head device number storing the output value

controlled by the upper and lower limit values

 32-bit signed binary ANY32

DLIMIT(P)_U 32-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)             

Condition Output value

Lower limit value ((s1), (s1)+1) > Input value ((s3), (s3)+1) Lower limit value ((s1), (s1)+1)

Upper limit value ((s2), (s2)+1) < Input value ((s3), (s3)+1) Upper limit value ((s2), (s2)+1)

Lower limit value ((s1), (s1)+1)  Input value ((s3), (s3)+1)  Upper limit value ((s2), (s2)+1) Input value ((s3), (s3)+1)

(s1) (s2) (s3) (d)

0

Output value (d+1, d)

Input value (s3+1, s3)

Lower limit value (s1+1, s1)

Upper limit value (s2+1, s2)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 475

7

Operation error

Error code

(SD0/SD8067)

Description

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s2).

476
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Dead band control of 16-bit binary data

BAND(P)(_U)

These instructions control the output value to be stored in the device specified by (d) by checking the input value (16-bit binary

data) in the device specified by (s3) with the upper and lower limit values of the dead band specified by (s1) and (s2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions control the output value to be stored in the device specified by (d) by checking the input value (16-bit

binary data) in the device specified by (s3) with the upper and lower limit values of the dead band specified by (s1) and (s2).

The output value is controlled as follows.

 � When the output value to be stored in the device specified by (d) is a 16-bit signed binary value and the operation result

exceeds the range of -32768 to 32767, the output value is calculated as follows.

Ladder diagram Structured text

ENO:=BAND(EN,s1,s2,s3,d);

ENO:=BANDP(EN,s1,s2,s3,d);

ENO:=BAND_U(EN,s1,s2,s3,d);

ENO:=BANDP_U(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) BAND(P) Lower limit value of the dead band (no-output band) -32768 to +32767 16-bit signed binary ANY16

BAND(P)_U 0 to 65535 16-bit unsigned binary

(s2) BAND(P) Upper limit value of the dead band (no-output band) -32768 to +32767 16-bit signed binary ANY16

BAND(P)_U 0 to 65535 16-bit unsigned binary

(s3) BAND(P) Input value controlled by the dead band -32768 to +32767 16-bit signed binary ANY16

BAND(P)_U 0 to 65535 16-bit unsigned binary

(d) BAND(P) Head device number for storing the output value controlled

by the dead band

 16-bit signed binary ANY16

BAND(P)_U 16-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)             

Condition Output value

Lower limit value of the dead band (s1) > Input value (s3) Input value (s3) - Lower limit value of the dead band (s1)

Upper limit value of the dead band (s2) < Input value (s3) Input value (s3) - Upper limit value of the dead band (s2)

Lower limit value of the dead band (s1)  Input value (s3)  Upper limit value of the dead band (s2) 0

(s1) (s2) (s3) (d)

0

Output value (d)

Input value (s3)

Lower limit value of
the dead band (s1)

Upper limit value of
the dead band (s2)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 477

7

Ex.

When (s1) is 10 and (s3) is -32768: Output value = -32768-10 = 8000H-000AH = 7FFFH = 32758

 � When the output value to be stored in the device specified by (d) is a 16-bit unsigned binary value and the operation result

exceeds the range of 0 to 65535, the output value is calculated as follows.

Ex.

When (s1) is 100 and (s3) is 50: Output value = 50-100 = 0032H-0064H = FFCEH = 65486

Operation error

Error code

(SD0/SD8067)

Description

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s2).

478
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Dead band control of 32-bit binary data

DBAND(P)(_U)

These instructions control the output value to be stored in the device specified by (d) by checking the input value (32-bit binary

data) in the device specified by (s3) with the upper and lower limit values of the dead band specified by (s1) and (s2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions control the output value to be stored in the device specified by (d) by checking the input value (32-bit

binary data) in the device specified by (s3) with the upper and lower limit values of the dead band specified by (s1) and (s2).

The output value is controlled as follows.

 � When the output value to be stored in the device specified by (d) is a 32-bit signed binary value and the operation result

exceeds the range of -2147483648 to 2147483647, the output value is calculated as follows.

Ladder diagram Structured text

ENO:=DBAND(EN,s1,s2,s3,d);

ENO:=DBANDP(EN,s1,s2,s3,d);

ENO:=DBAND_U(EN,s1,s2,s3,d);

ENO:=DBANDP_U(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) DBAND(P) Lower limit value of the dead band (no-output

band)

-2147483648 to +2147483647 32-bit signed binary ANY32

DBAND(P)_U 0 to 4294967295 32-bit unsigned binary

(s2) DBAND(P) Upper limit value of the dead band (no-output

band)

-2147483648 to +2147483647 32-bit signed binary ANY32

DBAND(P)_U 0 to 4294967295 32-bit unsigned binary

(s3) DBAND(P) Input value controlled by the dead band -2147483648 to +2147483647 32-bit signed binary ANY32

DBAND(P)_U 0 to 4294967295 32-bit unsigned binary

(d) DBAND(P) Head device number for storing the output value

controlled by the dead band

 32-bit signed binary ANY32

DBAND(P)_U 32-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)             

Condition Output value

Lower limit value of the dead band ((s1), (s1)+1) > Input value ((s3), (s3)+1) Input value ((s3), (s3)+1) - Lower limit value of the dead

band ((s1), (s1)+1)

Upper limit value of the dead band ((s2), (s2)+1) < Input value ((s3), (s3)+1) Input value ((s3), (s3)+1) - Upper limit value of the dead

band ((s2), (s2)+1)

Lower limit value of the dead band ((s1), (s1)+1)  Input value ((s3), (s3)+1)  Upper limit value of

the dead band ((s2), (s2)+1)

0

(s1) (s2) (s3) (d)

0

Output value (d+1, d)

Input value (s3+1, s3)

Lower limit value of the
dead band (s1+1, s1)

Upper limit value of the
dead band (s2+1, s2)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 479

7

Ex.

When (s1) and (s1)+1 are 1000, and (s3) and (s3)+1 are -2147483648: Output value = -2147483648-1000 = 80000000H-

000003E8H = 7FFFFC18H = 2147482648

 � When the output values to be stored in the devices specified by (d) and (d)+1 are 32-bit unsigned binary values and the

operation result exceeds the range of 0 to 4294967295, the output value is calculated as follows.

Ex.

When (s1) and (s1)+1 are 100, and (s3) and (s3)+1 are 50: Output value = 50-100 = 00000032H-00000064H = FFFFFFCEH

= 4294967246

Operation error

Error code

(SD0/SD8067)

Description

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s2).

480
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Zone control of 16-bit binary data

ZONE(P)(_U)

These instructions add the bias value specified by (s1) or (s2) to the input value specified by (s3), and store the operation

result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the bias value specified by (s1) or (s2) to the input value (16-bit binary data) specified by (s3), and

store the operation result in the device specified by (d). The bias value is controlled as follows.

 � When the output value to be stored in the device specified by (d) is a 16-bit signed binary value and the operation result

exceeds the range of -32768 to 32767, the output value is calculated as follows.

Ladder diagram Structured text

ENO:=ZONE(EN,s1,s2,s3,d);

ENO:=ZONEP(EN,s1,s2,s3,d);

ENO:=ZONE_U(EN,s1,s2,s3,d);

ENO:=ZONEP_U(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) ZONE(P) Negative bias value to be added to the input value -32768 to +32767 16-bit signed binary ANY16

ZONE(P)_U 0 to 65535 16-bit unsigned binary

(s2) ZONE(P) Positive bias value to be added to the input value -32768 to +32767 16-bit signed binary ANY16

ZONE(P)_U 0 to 65535 16-bit unsigned binary

(s3) ZONE(P) Input value for performing the zone control -32768 to +32767 16-bit signed binary ANY16

ZONE(P)_U 0 to 65535 16-bit unsigned binary

(d) ZONE(P) Head device number storing the output value controlled by

the zone

 16-bit signed binary ANY16

ZONE(P)_U 16-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)             

Condition Output value

Input value (s3) < 0 Input value (s3) + Negative bias value (s1)

Input value (s3) = 0 0

Input value (s3) > 0 Input value (s3) + Positive bias value (s2)

(s1) (s2) (s3) (d)

0

Output value (d)

Input value (s3)

Negative bias value (s1)

Positive bias value (s2)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 481

7

Ex.

When (s1) is -100 and (s3) is -32768: Output value = -32768+(-100) = 8000H-FF9CH = 7F9CH = 32668

 � When the output value to be stored in the device specified by (d) is a 16-bit unsigned binary value and the operation result

exceeds the range of 0 to 65535, the output value is calculated as follows.

Ex.

When (s2) is 100 and (s3) is 65535: Output value =65535+100 = FFFFH-0064H = 0063H = 99

 � When the ZONE(P)_U instructions are used, (s1) is regarded as dummy data and ignored.

Operation error

There is no operation error.

482
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Zone control of 32-bit binary data

DZONE(P)(_U)

These instructions add the bias value specified by (s1) or (s2) to the input value specified by (s3), and store the operation

result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the bias value specified by (s1) or (s2) to the input value (32-bit binary data) specified by (s3), and

store the operation result in the device specified by (d). The bias value is controlled as follows.

 � When the output values to be stored in the devices specified by (d) and (d)+1 are 32-bit signed binary values and the

operation result exceeds the range of -2147483648 to 2147483647, the output value is calculated as follows.

Ladder diagram Structured text

ENO:=DZONE(EN,s1,s2,s3,d);

ENO:=DZONEP(EN,s1,s2,s3,d);

ENO:=DZONE_U(EN,s1,s2,s3,d);

ENO:=DZONEP_U(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) DZONE(P) Negative bias value to be added to the input

value

-2147483648 to +2147483647 32-bit signed binary ANY32

DZONE(P)_U 0 to 4294967295 32-bit unsigned binary

(s2) DZONE(P) Positive bias value to be added to the input value -2147483648 to +2147483647 32-bit signed binary ANY32

DZONE(P)_U 0 to 4294967295 32-bit unsigned binary

(s3) DZONE(P) Input value for performing the zone control -2147483648 to +2147483647 32-bit signed binary ANY32

DZONE(P)_U 0 to 4294967295 32-bit unsigned binary

(d) DZONE(P) Head device number storing the output value

controlled by the zone

 32-bit signed binary ANY32

DZONE(P)_U 32-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)             

Condition Output value

Input value ((s3), (s3)+1) < 0 Input value ((s3), (s3)+1) + Negative bias value (s1), (s1)+1

Input value ((s3), (s3)+1) = 0 0

Input value ((s3), (s3)+1) > 0 Input value ((s3), (s3)+1) + Positive bias value (s2), (s2)+1

(s1) (s2) (s3) (d)

0

Output value (d+1, d)

Input value (s3+1, s3)

Negative bias value (s1+1, s1)

Positive bias value (s2+1, s2)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 483

7

Ex.

When (s1) and (s1)+1 are -1000, and (s3) and (s3)+1 are -2147483648: Output value = -2147483648+(-1000) = 80000000H-

FFFFFC18H = 7FFFFC18H = 2147482648

 � When the output values to be stored in the devices specified by (d) and (d)+1 are 32-bit unsigned binary values and the

operation result exceeds the range of 0 to 4294967295, the output value is calculated as follows.

Ex.

When (s2) and (s2)+1 are 1000, and (s3) and (s3)+1 are 4294967295: Output value =4294967295+1000 = FFFFFFFFH-

00003E8H = 000003E7H = 999

 � When the DZONE(P)_U instructions are used, (s1) and (s1)+1 are regarded as dummy data and ignored.

Operation error

There is no operation error.

484
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Scaling 16-bit binary data (point coordinates)

SCL(P)(_U)

These instructions process the scaling conversion data (in 16-bit data units) specified by (s2) by scaling it based on the input

value specified by (s1), and store the operation result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

*1 The number of coordinate points of (s2) is 16-bit unsigned binary data.

■Applicable devices

Processing details

 � These instructions process the scaling conversion data (in 16-bit data units) specified by (s2) by scaling it based on the

input value specified by (s1), and store the operation result in the device number specified by (d). The scaling conversion is

performed based on the scaling conversion data stored in the device specified by (s2) and later.

Ladder diagram Structured text

ENO:=SCL(EN,s1,s2,d);

ENO:=SCLP(EN,s1,s2,d);

ENO:=SCL_U(EN,s1,s2,d);

ENO:=SCLP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) SCL(P) Input value used in scaling or head device number storing

the input value

-32768 to +32767 16-bit signed binary ANY16

SCL(P)_U 0 to 65535 16-bit unsigned binary

(s2) SCL(P) Head device number where the scaling conversion data is

stored

 16-bit signed binary*1 ANY16

SCL(P)_U 16-bit unsigned binary*1

(d) SCL(P) Head device number storing the output value controlled by

scaling

 16-bit signed binary ANY16

SCL(P)_U 16-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Setting item ("n" indicates the number of coordinate points

specified by (s2).)

Device assignment

Number of coordinate points (s2)

Point 1 X coordinate (s2)+1

Y coordinate (s2)+2

Point 2 X coordinate (s2)+3

Y coordinate (s2)+4



Point n X coordinate (s2)+2n-1

Y coordinate (s2)+2n

(s1) (s2) (d)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 485

7

 � If the operation result is not an integer, the number in the first decimal place is rounded off.

 � Set the X coordinate data of the scaling conversion data in the ascending order.

 � Set (s1) within the scaling conversion data range (device value of (s2)).

 � If the same X coordinate is specified by multiple points, the Y coordinate value of the point whose number is the largest is

output.

 � Set the number of coordinate points for the scaling conversion data within the range of 1 to 65535.

 � Setting example of the conversion table for scaling
In the case of the conversion characteristics for scaling shown in the figure below, set each value as shown in the following data table.

Setting item Setting device and setting contents Remarks

When R0 is specified in (s2) Setting details

Number of coordinate points (s2) R0 K10

Point 1 X coordinate (s2)+1 R1 K5

Y coordinate (s2)+2 R2 K7

Point 2 X coordinate (s2)+3 R3 K20

Y coordinate (s2)+4 R4 K30

Point 3 X coordinate (s2)+5 R5 K50

Y coordinate (s2)+6 R6 K100

Point 4 X coordinate (s2)+7 R7 K200 When coordinates are specified using three points in this way,

the output value can be set to an intermediate value.

In this example, the output value (intermediate value) is

specified by the Y coordinate of the point 5.

Even if the X coordinate is the same at three points or more, the

value at the second point is output.

Y coordinate (s2)+8 R8 K25

Point 5 X coordinate (s2)+9 R9 K200

Y coordinate (s2)+10 R10 K70

Point 6 X coordinate (s2)+11 R11 K200

Y coordinate (s2)+12 R12 K250

Point 7 X coordinate (s2)+13 R13 K250

Y coordinate (s2)+14 R14 K90

Point 8 X coordinate (s2)+15 R15 K350 When coordinates are specified using two points in this way, the

output value is the Y coordinate at the next point.

In this example, the output value is specified by the Y

coordinate of the point 9.

Y coordinate (s2)+16 R16 K90

Point 9 X coordinate (s2)+17 R17 K350

Y coordinate (s2)+18 R18 K30

Point 10 X coordinate (s2)+19 R19 K400

Y coordinate (s2)+20 R20 K7

Y

X

Output value (d)

Input value (s1)

Point 2
Point 3

Point n-1

Point n
Point 1

Operation range Operation errorOperation error

X

Y

Point 1 (5, 7)
Point 10 (400, 7)

Point 2

Point 3

(50, 100)

Point 4 (200, 25)

Point 5

(200, 70)

Point 6 (200, 250)

Point 7

(250, 90) Point 8 (350, 90)

Point 9

(350, 30)

(20, 30)

486
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Operation error

Error code

(SD0/SD8067)

Description

3405 The Xn data is not set in the ascending order in the data table.

However, the instructions before the occurrence of an error are executed.

The input value specified by (s1) is out of the range for the set scaling conversion data.

The value in the middle of operation exceeds the 32-bit data range.

In this case, verify that the distance between points is not "65535" or more.

If the distance is "65535" or more, reduce the distance between points.

The number of coordinate points from the device specified by (s2) is 0 or less.

7 APPLICATION INSTRUCTION

7.10 Data control instruction 487

7

Scaling 32-bit binary data (point coordinates)

DSCL(P)(_U)

These instructions process the scaling conversion data (in 32-bit data units) specified by (s2) by scaling it based on the input

value specified by (s1), and store the operation result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

*1 The numbers of coordinate points of (s2)+1 and (s2) are 32-bit unsigned binary data.

■Applicable devices

Processing details

 � These instructions process the scaling conversion data (in 32-bit data units) specified by (s2) by scaling it based on the

input value specified by (s1), and store the operation result in the device number specified by (d). The scaling conversion is

performed based on the scaling conversion data stored in the device specified by (s2) and later.

Ladder diagram Structured text

ENO:=DSCL(EN,s1,s2,d);

ENO:=DSCLP(EN,s1,s2,d);

ENO:=DSCL_U(EN,s1,s2,d);

ENO:=DSCLP_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DSCL(P) Input value used in scaling or head device

number storing the input value

-2147483648 to +2147483647 32-bit signed binary ANY32

DSCL(P)_U 0 to 4294967295 32-bit unsigned binary

(s2) DSCL(P) Head device number where the scaling

conversion data is stored

 32-bit signed binary*1 ANY32

DSCL(P)_U 32-bit unsigned binary*1

(d) DSCL(P) Head device number storing the output value

controlled by scaling

 32-bit signed binary ANY32

DSCL(P)_U 32-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Setting item ("n" indicates the number of coordinate points

specified by (s2).)

Device assignment

Number of coordinate points (s2)+1, (s2)

Point 1 X coordinate (s2)+3, (s2)+2

Y coordinate (s2)+5, (s2)+4

Point 2 X coordinate (s2)+7, (s2)+6

Y coordinate (s2)+9, (s2)+8



Point n X coordinate (s2)+4n-1, (s2)+4n-2

Y coordinate (s2)+4n+1, (s2)+4n

(s1) (s2) (d)

488
7 APPLICATION INSTRUCTION

7.10 Data control instruction

 � If the operation result is not an integer, the number in the first decimal place is rounded off.

 � Set the X coordinate data of the scaling conversion data in the ascending order.

 � Set (s1) within the scaling conversion data range (device values of (s2) and (s2)+1).

 � If the same X coordinate is specified by multiple points, the Y coordinate value of the point whose number is the largest is

output.

 � Set the number of coordinate points for the scaling conversion data within the range of 1 to 4294967295.

 � Setting example of the conversion table for scaling
In the case of the conversion characteristics for scaling shown in the figure below, set each value as shown in the following data table.

Setting item Setting device and setting contents Remarks

When R0 is specified in (s2) Setting details

Number of coordinate points (s2)+1, (s2) R1, R0 K10

Point 1 X coordinate (s2)+3, (s2)+2 R3, R2 K5

Y coordinate (s2)+5, (s2)+4 R5, R4 K7

Point 2 X coordinate (s2)+7, (s2)+6 R7, R6 K20

Y coordinate (s2)+9, (s2)+8 R9, R8 K30

Point 3 X coordinate (s2)+11, (s2)+10 R11, R10 K50

Y coordinate (s2)+13, (s2)+12 R13, R12 K100

Point 4 X coordinate (s2)+15, (s2)+14 R15, R14 K200 When coordinates are specified using three points in this way,

the output value can be set to an intermediate value.

In this example, the output value (intermediate value) is

specified by the Y coordinate of the point 5.

Even if the X coordinate is the same at three points or more, the

value at the second point is output.

Y coordinate (s2)+17, (s2)+16 R17, R16 K25

Point 5 X coordinate (s2)+19, (s2)+18 R19, R18 K200

Y coordinate (s2)+21, (s2)+20 R21, R20 K70

Point 6 X coordinate (s2)+23, (s2)+22 R23, R22 K200

Y coordinate (s2)+25, (s2)+24 R25, R24 K250

Point 7 X coordinate (s2)+27, (s2)+26 R27, R26 K250

Y coordinate (s2)+29, (s2)+28 R29, R28 K90

Point 8 X coordinate (s2)+31, (s2)+30 R31, R30 K350 When coordinates are specified using two points in this way, the

output value is the Y coordinate at the next point.

In this example, the output value is specified by the Y

coordinate of the point 9.

Y coordinate (s2)+33, (s2)+32 R33, R32 K90

Point 9 X coordinate (s2)+35, (s2)+34 R35, R34 K350

Y coordinate (s2)+37, (s2)+36 R37, R36 K30

Point 10 X coordinate (s2)+39, (s2)+38 R39, R38 K400

Y coordinate (s2)+41, (s2)+40 R41, R40 K7

Y

X

Output value (d)

Input value (s1)

Point 2

Point n-1

Point n
Point 1

Operation range Operation errorOperation error

X

Y

Point 1 (5, 7)
Point 10 (400, 7)

Point 2

Point 3

(50, 100)

Point 4 (200, 25)

Point 5

(200, 70)

Point 6 (200, 250)

Point 7

(250, 90) Point 8 (350, 90)

Point 9

(350, 30)

(20, 30)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 489

7

Operation error

Error code

(SD0/SD8067)

Description

3405 The Xn data is not set in the ascending order in the data table.

However, the instructions before the occurrence of an error are executed.

The input value specified by (s1) is out of the range for the set scaling conversion data.

The value in the middle of operation exceeds the 32-bit data range.

In this case, verify that the distance between points is not "65535" or more.

If the distance is "65535" or more, reduce the distance between points.

The number of coordinate points from the device specified by (s2) is 0 or less.

490
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Scaling 16-bit binary data (XY coordinates)

SCL2(P)(_U)

These instructions process the scaling conversion data (in 16-bit data units) specified by (s2) by scaling it based on the input

value specified by (s1), and store the operation result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

*1 The number of coordinate points of (s2) is 16-bit unsigned binary data.

■Applicable devices

Processing details

 � These instructions process the scaling conversion data (in 16-bit data units) specified by (s2) by scaling it based on the

input value specified by (s1), and store the operation result in the device number specified by (d). The scaling conversion is

performed based on the scaling conversion data stored in the device specified by (s2) and later.

Ladder diagram Structured text

ENO:=SCL2(EN,s1,s2,d);

ENO:=SCL2P(EN,s1,s2,d);

ENO:=SCL2_U(EN,s1,s2,d);

ENO:=SCL2P_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) SCL2(P) Input value used in scaling or head device number storing

the input value

-32768 to +32767 16-bit signed binary ANY16

SCL2(P)_U 0 to 65535 16-bit unsigned binary

(s2) SCL2(P) Head device number where the scaling conversion data is

stored

 16-bit signed binary*1 ANY16

SCL2(P)_U 16-bit unsigned binary*1

(d) SCL2(P) Head device number storing the output value controlled by

scaling

 16-bit signed binary ANY16

SCL2(P)_U 16-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Setting item ("n" indicates the number of coordinate points specified by (s2).) Device assignment

Number of coordinate points (s2)

X coordinate Point 1 (s2)+1

Point 2 (s2)+2

 

Point n (s2)+n

Y coordinate Point 1 (s2)+n+1

Point 2 (s2)+n+2

 

Point n (s2)+2n

(s1) (s2) (d)

7 APPLICATION INSTRUCTION

7.10 Data control instruction 491

7

 � If the operation result is not an integer, the number in the first decimal place is rounded off.

 � Set the X coordinate data of the scaling conversion data in the ascending order.

 � Set (s1) within the scaling conversion data range (device value of (s2)).

 � If the same X coordinate is specified by multiple points, the Y coordinate value of the point whose number is the largest is

output.

 � Set the number of coordinate points for the scaling conversion data within the range of 1 to 65535.

 � Setting example of the conversion table for scaling
In the case of the conversion characteristics for scaling shown in the figure below, set each value as shown in the following data table.

Y

X

Output value (d)

Input value (s1)

Point 2

Point 3

Point n-1

Point nPoint 1

Operation range Operation errorOperation error

X

Y

Point 1 (5, 7)
Point 10 (400, 7)

Point 2

Point 3

(50, 100)

Point 4 (200, 25)

Point 5

(200, 70)

Point 6 (200, 250)

Point 7

(250, 90) Point 8 (350, 90)

Point 9

(350, 30)

(20, 30)

492
7 APPLICATION INSTRUCTION

7.10 Data control instruction

*1 When coordinates are specified using three points as shown in the points 4, 5 and 6, the output value can be set to an intermediate

value.

In this example, the output value (intermediate value) is specified by the Y coordinate of the point 5.

Even if the X coordinate is the same at three points or more, the value at the second point is output.

*2 When coordinates are specified using two points as shown in the points 8 and 9, the output value is the Y coordinate at the next point.

In this example, the output value is specified by the Y coordinate of the point 9.

Operation error

Setting item Setting device and setting contents Remarks

When R0 is specified in (s2) Setting details

Number of coordinate points (s2) R0 K10

X coordinate Point 1 (s2)+1 R1 K5

Point 2 (s2)+2 R2 K20

Point 3 (s2)+3 R3 K50

Point 4 (s2)+4 R4 K200 Refer to *1.

Point 5 (s2)+5 R5 K200

Point 6 (s2)+6 R6 K200

Point 7 (s2)+7 R7 K250

Point 8 (s2)+8 R8 K350 Refer to *2.

Point 9 (s2)+9 R9 K350

Point 10 (s2)+10 R10 K400

Y coordinate Point 1 (s2)+11 R11 K7

Point 2 (s2)+12 R12 K30

Point 3 (s2)+13 R13 K100

Point 4 (s2)+14 R14 K25 Refer to *1.

Point 5 (s2)+15 R15 K70

Point 6 (s2)+16 R16 K250

Point 7 (s2)+17 R17 K90

Point 8 (s2)+18 R18 K90 Refer to *2.

Point 9 (s2)+19 R19 K30

Point 10 (s2)+20 R20 K7

Error code

(SD0/SD8067)

Description

3405 The Xn data is not set in the ascending order in the data table.

However, the instructions before the occurrence of an error are executed.

The input value specified by (s1) is out of the range for the set scaling conversion data.

The value in the middle of operation exceeds the 32-bit data range.

In this case, verify that the distance between points is not "65535" or more.

If the distance is "65535" or more, reduce the distance between points.

The number of coordinate points from the device specified by (s2) is 0 or less.

7 APPLICATION INSTRUCTION

7.10 Data control instruction 493

7

Scaling 32-bit binary data (XY coordinates)

DSCL2(P)(_U)

These instructions process the scaling conversion data (in 32-bit data units) specified by (s2) by scaling it based on the input

value specified by (s1), and store the operation result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

*1 The numbers of coordinate points of (s2)+1 and (s2) are 32-bit unsigned binary data.

■Applicable devices

Ladder diagram Structured text

ENO:=DSCL2(EN,s1,s2,d);

ENO:=DSCL2P(EN,s1,s2,d);

ENO:=DSCL2_U(EN,s1,s2,d);

ENO:=DSCL2P_U(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) DSCL2(P) Input value used in scaling or head device

number storing the input value

-2147483648 to +2147483647 32-bit signed binary ANY32

DSCL2(P)_U 0 to 4294967295 32-bit unsigned binary

(s2) DSCL2(P) Head device number where the scaling

conversion data is stored

 32-bit signed binary*1 ANY32

DSCL2(P)_U 32-bit unsigned binary*1

(d) DSCL2(P) Head device number storing the output value

controlled by scaling

 32-bit signed binary ANY32

DSCL2(P)_U 32-bit unsigned binary

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

494
7 APPLICATION INSTRUCTION

7.10 Data control instruction

Processing details

 � These instructions process the scaling conversion data (in 32-bit data units) specified by (s2) by scaling it based on the

input value specified by (s1), and store the operation result in the device number specified by (d). The scaling conversion is

performed based on the scaling conversion data stored in the device specified by (s2) and later.

 � If the operation result is not an integer, the number in the first decimal place is rounded off.

 � Set the X coordinate data of the scaling conversion data in the ascending order.

 � Set (s1) within the scaling conversion data range (device values of (s2) and (s2)+1).

 � If the same X coordinate is specified by multiple points, the Y coordinate value of the point whose number is the largest is

output.

 � Set the number of coordinate points for the scaling conversion data within the range of 1 to 4294967295.

Setting item ("n" indicates the number of coordinate points specified by (s2).) Device assignment

Number of coordinate points (s2)+1, (s2)

X coordinate Point 1 (s2)+3, (s2)+2

Point 2 (s2)+5, (s2)+4

 

Point n (s2)+2n+1, (s2)+2n

Y coordinate Point 1 (s2)+2n+3, (s2)+2n+2

Point 2 (s2)+2n+5, (s2)+2n+4

 

Point n (s2)+4n+1, (s2)+4n

Y

X

Output value (d)

Input value (d)

Point 2

Point n-1 Point n

Point 1

Operation range Operation errorOperation error

7 APPLICATION INSTRUCTION

7.10 Data control instruction 495

7

 � Setting example of the conversion table for scaling

*1 When coordinates are specified using three points as shown in the points 4, 5 and 6, the output value can be set to an intermediate

value.

In this example, the output value (intermediate value) is specified by the Y coordinate of the point 5.

Even if the X coordinate is the same at three points or more, the value at the second point is output.

*2 When coordinates are specified using two points as shown in the points 8 and 9, the output value is the Y coordinate at the next point.

In this example, the output value is specified by the Y coordinate of the point 9.

Operation error

In the case of the conversion characteristics for scaling shown in the figure below, set each value as shown in the following data table.

Setting item Setting device and setting contents Remarks

When R0 is specified in (s2) Setting details

Number of coordinate points (s2)+1, (s2) R1, R0 K10

X coordinate Point 1 (s2)+3, (s2)+2 R3, R2 K5

Point 2 (s2)+5, (s2)+4 R5, R4 K20

Point 3 (s2)+7, (s2)+6 R7, R6 K50

Point 4 (s2)+9, (s2)+8 R9, R8 K200 Refer to *1.

Point 5 (s2)+11, (s2)+10 R11, R10 K200

Point 6 (s2)+13, (s2)+12 R13, R12 K200

Point 7 (s2)+15, (s2)+14 R15, R14 K250

Point 8 (s2)+17, (s2)+16 R17, R16 K350 Refer to *2.

Point 9 (s2)+19, (s2)+18 R19, R18 K350

Point 10 (s2)+21, (s2)+20 R21, R20 K400

Y coordinate Point 1 (s2)+23, (s2)+22 R23, R22 K7

Point 2 (s2)+25, (s2)+24 R25, R24 K30

Point 3 (s2)+27, (s2)+26 R27, R26 K100

Point 4 (s2)+29, (s2)+28 R29, R28 K25 Refer to *1.

Point 5 (s2)+31, (s2)+30 R31, R30 K70

Point 6 (s2)+33, (s2)+32 R33, R32 K250

Point 7 (s2)+35, (s2)+34 R35, R34 K90

Point 8 (s2)+37, (s2)+36 R37, R36 K90 Refer to *2.

Point 9 (s2)+39, (s2)+38 R39, R38 K30

Point 10 (s2)+41, (s2)+40 R41, R40 K7

Error code

(SD0/SD8067)

Description

3405 The Xn data is not set in the ascending order in the data table.

However, the instructions before the occurrence of an error are executed.

The input value specified by (s1) is out of the range for the set scaling conversion data.

The value in the middle of operation exceeds the 32-bit data range.

In this case, verify that the distance between points is not "65535" or more.

If the distance is "65535" or more, reduce the distance between points.

The number of coordinate points from the device specified by (s2) is 0 or less.

X

Y

Point 1 (5, 7)
Point 10 (400, 7)

Point 2

Point 3

(50, 100)

Point 4 (200, 25)

Point 5

(200, 70)

Point 6 (200, 250)

Point 7

(250, 90) Point 8 (350, 90)

Point 9

(350, 30)

(20, 30)

496
7 APPLICATION INSTRUCTION

7.11 Special timer instruction

7.11 Special timer instruction

Teaching timer

TTMR

This instruction measures the period of time in which TTMR instruction is ON.

Use this instruction to adjust the set value of a timer by a pushbutton switch.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

■Control data

Processing details

 � This instruction measures the period of time to press and hold the command input (pushbutton switch) in 1-second units,

multiplies the measured value by the magnification (10s) which is specified by (s), and stores it in the device specified by

(d).

 � The table below shows the actual value indicated by (d) depending on the magnification specified by (s) and the pressing

and holding time 0.

Ladder diagram Structured text

ENO:=TTMR(EN,s,d);

Operand Description Range Data type Data type (label)

(d) Device storing the teaching data  16-bit signed binary ANY16

(s) Magnification applied to the teaching data 0 to 2 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(s)             

Operand: (d)

Device Description Setting range Set by

+0 Teaching time  System

+1 Current value of the pressing and holding time  System

(s) Magnification (d)

K0 0 (d)1

K1 100 (d)10

K2 1000 (d)100

(d) (s)

0

(d)+1
(d)

(d)+1

(d)

0

Pressing and holding time Pressing and holding time

Execution

command

7 APPLICATION INSTRUCTION

7.11 Special timer instruction 497

7

Precautions

 � When the command contact turns from on to off, the current value (d)+1 of the pressing and holding time is cleared, and the

teaching time (d) will not change any more.

 � Two devices are occupied from a device specified as the teaching time (d). Make sure that such devices are not used in

other controls for the machine.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified by (d) exceeds the corresponding device range.

3405 The value specified by (s) is outside the following range.

0 to 2

498
7 APPLICATION INSTRUCTION

7.11 Special timer instruction

Special function timer

STMR

This instruction uses the four devices from the device specified by (d) to perform four types of timer output.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only T can be used.

■Control data

Ladder diagram Structured text

ENO:=STMR(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Used timer number (operates as a 100 ms timer)  Device name ANY16

(s2) Timer set value 1 to 32767 16-bit unsigned binary ANY16

(d) Start bit number to be output  Bit Bit

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)             

(d)             

Operand: (d)

Device Description Setting range Set by

+0 Off delay timer output:

Turns on at the rising edge of the command of the STMR instruction and turns off when the time specified by

(s2) elapses after the falling edge.

 System

+1 One-shot timer output after turning off:

Turns on at the falling edge of the command of the STMR instruction and turns off when the time specified by

(s2) elapses.

 System

+2 One-shot timer output after turning on

Turns on at the rising edge of the command of the STMR instruction and turns off when the command of the

STMR instruction is turned off or when the time specified by (s2) elapses.

 System

+3 On delay timer + Off delay timer output:

Turns on at the falling edge of the timer coil and turns off when the time specified by (s2) elapsed after the falling

edge of the command of the STMR instruction.

 System

(s1) (s2) (d)

7 APPLICATION INSTRUCTION

7.11 Special timer instruction 499

7

Processing details

 � This instruction uses the four devices from the device specified by (d) to perform four types of timer output.

 � The flickering effect is produced using (d)+1 and (d)+2 with the following program, which turns on/off at the normally closed

contact of (d)+3 (T10 is assigned to (s1), K100 is assigned to (s2), and M0 is assigned to (d)).

 � A value in the range of 0 to 32767 (0 to 3276.7 seconds) can be specified in (s2).

Precautions

 � The timer number specified in this instruction cannot be used in other general circuits (such as OUT instruction). If the timer

number is used in other general circuits, the timer malfunctions.

 � The timer specified by (s1) starts counting as a 100 ms timer on the rising edge of the command contact.

 � Four devices are occupied from a device specified in (d). Make sure that such devices are not used in other controls for the

machine.

 � If the command contact is turned off, (d), (d)+1, and (d)+3 turn off when the set time elapses. (d)+2 and the timer (s1) are

immediately reset.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified by (d) exceeds the corresponding device range.

3405 The value specified by (s2) is outside the following range.

1 to 32767

(d)+0

(d)+1

(d)+2

(d)+3

Off delay timer

One-shot timer after turning off

One-shot timer after turning on

On delay timer + Off delay timer

Command of the

STMR instruction

Setting value

specified by (s2)

Setting value

specified by (s2)

Setting value

specified by (s2)

Setting value

specified by (s2)

STMR T10 K100 M0

M3

(s1) (s2) (d)
(d)+3

M2((d+2))

M1((d+1))

10S 10S 10S

10S 10S 10S

Command

input

Command

input

Flicker (NO contact) which turns on and off

repeatedly at the interval of timer set value

Flicker (NC contact) which turns on and off

repeatedly at the interval of timer set value

500
7 APPLICATION INSTRUCTION

7.12 Shortcut control instruction

7.12 Shortcut control instruction

Rotary table shortest direction control

ROTC

This instruction is suitable for efficient control of the rotary table for putting/taking a product on/off the rotary table.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=ROTC(EN,s,n1,n2,d);

Operand Description Range Data type Data type (label)

(s) Registers specifying

the calling condition

(Set them in advance

using the transfer

instruction.)

(s)+0: Works as a register for counting.  16-bit signed binary ANY16

(s)+1: Sets the station No. to be called.

(s)+2: Sets the product No. to be

called.

(n1) Number of divisions 2 to 32767 16-bit signed binary ANY16

(n2) Number of low-speed sections 0 to 32767 16-bit signed binary ANY16

(d) Registers (bit devices)

specifying the calling

condition (Construct an

internal contact circuit

in advance which is

driven by the input

signal (X).)

(d): A phase signal  Bit Bit

(d)+1: B phase signal

(d)+2: Zero point detection signal

(d)+3: Forward rotation at high-speed

(d)+4: Forward rotation at low-speed

(d)+5: Stop

(d)+6: Backward rotation at low-speed

(d)+7: Backward rotation at high-

speed

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(n1)             

(n2)             

(d)             

(s) (n1) (n2) (d)

7 APPLICATION INSTRUCTION

7.12 Shortcut control instruction 501

7

Processing details

 � The table rotation is controlled by conditions of "n2", (s), and (d) so that a product can be efficiently put on or taken off the

rotary table divided into "n1" (=10) sections as shown in the figure below. When the following conditions are specified,

forward/backward rotation and high-speed/low-speed/stop are output to (d)+3 to (d)+7.

 � Provide a 2-phase switch (X0 and X1) for detecting the rotation direction (forward or backward) of the table and the switch

X2 which turns ON when the product No. 0 reaches the station No. 0. X0 to X2 are replaced with internal contacts of (d) to

(d)+2. Any head device number can be specified by X or (d).

 � The counter (s) detects which product number is located at the station No. 0.

 � Set the station No. to be called in (s)+1.

 � Set the product No. to be called in (s)+2.

 � Specify the number of divisions (n1) of the table, and number of low-speed sections (n2).

Precautions

 � When the command input is set to ON and this instruction is executed, the result will be automatically output to (d)+3 to

(d)+7. When the command input is set to OFF, (d)+3 to (d)+7 are set to OFF accordingly.

 � For example, when the rotation detection signal ((d) to (d)+2) is activated 10 times in one division, set a value multiplied by

"10" to each division, station No. to be called and product No. to be called. As a result, an intermediate value of the division

number can be set to a low-speed section.

 � When the zero point detection signal (M2) turns ON while the command input is ON, the contents of the register for

counting (s) are cleared to "0". This clear operation should be executed before starting the operation.

 � Up to four ROTC instructions can be used simultaneously.

2

1

3
4

5

6

7
8

9

0

X0(M0)

X2(M2)

X1(M1)

Rotary table

Station No. 0

Station No. 1

Zero point detection
Product

Detection
Switches

Forward
rotation

X0

M0

X1
M1

X2

M2

(d)

(d)+1

(d)+2

2-phase switch

A phase

Up-counting signal during forward rotation

B phase

Zero point detection switch

502
7 APPLICATION INSTRUCTION

7.12 Shortcut control instruction

Operation error

Error code

(SD0/SD8067)

Description

1811 The number of the ROTC instructions which are used simultaneously exceeds four.

2820 The device range specified by (s) exceeds the corresponding device range.

The device range specified by (d) exceeds the corresponding device range.

3405 The value specified by (n1) is outside the following range.

2 to 32767

The value specified by (n2) is outside the following range.

0 to 32767

The value specified by (n1) or (n2) is in the following condition.

(n1) < (n2)

Either (s), (s)+1, or (s)+2 is negative.

Either (s), (s)+1, or (s)+2 is equal to (n1) or larger.

7 APPLICATION INSTRUCTION

7.13 Ramp signal instruction 503

7

7.13 Ramp signal instruction

Ramp signal

RAMPF

This instruction obtains the data which changes between the start value (initial value) and the end value (target value) over the

specified "n" times.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � When the start value (s1) and the end value (s2) have been specified and the command input is set to ON, the value

obtained by adding a value divided equally by "n" times to (s1) in the next operation cycle is stored to (d). By combining this

instruction and an analog output, the cushion start/stop command can be output.

 � The number of scans ("0" to "n") is stored in (d)+1.

 � The time from start to the end value is the operation cycle multiplied by "n" times.

 � If the command input is set to OFF in the middle of operation, execution is paused. (The current value stored in (d) is held,

and the number of scans stored in (d)+1 is cleared.) When the command input is set to ON again, (d) is cleared, and the

operation is started from (s1).

Ladder diagram Structured text

ENO:=RAMPF(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Initial value of ramp  16-bit signed binary ANY16

(s2) Target value of ramp  16-bit signed binary ANY16

(d) (d)+0: Current value  16-bit signed binary ANY16

(d)+1: Number of scans

(n) Ramp transfer time (scan) 1 to 32767 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(n)             

(s1) (s2) (d) (n)

(s1)

(s2)

(d)
(s2)

(d)

(s1)

(n) scans(n) scans

(s1) > (s2)

Number of scans (d)+1 Number of scans (d)+1

(s1) < (s2)

504
7 APPLICATION INSTRUCTION

7.13 Ramp signal instruction

 � After transfer is completed, the instruction execution complete flag SM8029 turns ON, and the (d) value is returned to the

(s1) value.

 � When the operation result is acquired at a constant time interval (constant scan mode), write a prescribed scan time (which

is longer than the actual scan time) to SD8039 and set SM8039 to ON. For example, when "20 ms" is written to SD8039

and "n" is set to 100, the (d) value will change from (s1) to (s2) in 2 seconds.

 � The value used in the constant scan mode can be set in the parameter setting of an engineering tool (constant scan

execution interval setting of CPU parameter).

 � The contents of (d) are changed as follows depending on the ON/OFF status of the mode flag SM8026.

Precautions

To specify a latched (battery backed) type device as (d) when setting the CPU module to the RUN mode while the command

input is ON, clear (d) in advance.

Operation error

For details on the constant scan, refer to  MELSEC iQ-F FX5 Series User's Manual [Application].

For details on the engineering tool, refer to  GX Works3 Operating Manual.

Error code

(SD0/SD8067)

Description

2820 The device range specified by (d) exceeds the corresponding device range.

3405 The value specified by (n) is outside the following range.

1 to 32767

(s2)

(s1)

(SM8029)

(d)

Command

(s2)

(s1)

(SM8029)

(d)

(s2)

(s1)
(d)

(SM8029)

CommandCommand

When SM8026 is onWhen SM8026 is off

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 505

7

7.14 Pulse related instruction

Measuring the density of 16 bit binary pulses

SPD

This instruction counts the number of times the device input specified by (s1) turns off  on only for the time (in 16-bit data

units) specified by (s2)  1ms and stores the operation result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 When a bit device is specified, specify one of X0 to X17.

Only X can be used for a bit device.

The nibble of a bit device cannot be specified.

*2 When a word device is specified, specify one of the channel numbers (CH1 to CH8).

Processing details

 � This instruction counts the number of times the device input specified by (s1) turns off  on only for the time (in 16-bit data

units) specified by (s2)  1ms and stores the operation result in the device specified by (d).

 � The channel number of the high-speed counter specified by (s1) interlocks with the channel number in which parameters

are set.

Ladder diagram Structured text

ENO:=SPD(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Pulse input  Bit/16-bit unsigned

binary

Bit/ANY16

(s2) Measurement time (Unit: ms) -32768 to +32767 16-bit signed binary ANY16

(d) Head device number for storing the measurement result  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1) *1   *2         

(s2)             

(d)             

(s1) (s2) (d)

ON

OFF

OFF

(s2)ms (s2)ms

ON

(s1)

Counting start

The elapsed time is judged using
the 1ms interrupt and the counted
result is stored in (d).

The elapsed time is judged using
the 1ms interrupt and the counted
result is stored in (d).

Execution
command

506
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � When a word device is specified by (s1), this instruction counts the number of pulses by the high-speed counter setting of

the channel number corresponding to each word device.

 � When a bit device is specified by (s1), the following input assignment devices (shaded area) are valid.

U/D(A)

U/D(A)

U/D(A)

U/D(A)

P E

U/D(A)

U/D(A)

U/D(A)

U/D(A)

P E

P E

P E

P E

P E

P E

P E

X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

CH1

CH2

CH3

CH4

CH5

CH6

CH7

CH8

General-purpose input assignment of the 1-phase 1-input counter (switching S/W up or down)

U/D: UP/DOWN pulse input, P: Preset input (reset), E: Enable input (start)

If one of X10 to X17 is specified as a device, an error occurs.

X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

CH1 C(A)

CH2

CH3

CH4

CH5

CH6

CH7

CH8

P E

P E

P E

P E

P E

P E

P E

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

C(A)

C(A)

C(A)

C(A)

C(A)

C(A)

C(A)

General-purpose input assignment of the 1-phase 1-input counter (switching H/W up or down)

C: Pulse input, D: Direction input, P: Preset input (reset), E: Enable input (start)

If one of X1, X3, X5, X7, X11, X13, X15, X17 is specified as a device, an error occurs.

X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

CH1 U(A)

CH2

U(A)

U(A)

U(A)

CH3

CH4

CH5

CH6

CH7

CH8

P E

U(A)

U(A)

U(A)

U(A)

P E

P E

P E

P E

P E

P E

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

General-purpose input assignment of the 1-phase 2-input counter

U: UP pulse input, D: DOWN pulse input, P: Preset input (reset), E: Enable input (start)

If one of X1, X3, X5, X7, X11, X13, X15, X17 is specified as a device, an error occurs.

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 507

7

 � The table below shows the related devices.

 � The table below shows the related device update timing.

Precautions

 � The maximum input frequency of turning the inputs ON and OFF is shown below:

 � When the SPD instruction is used, the UP/DOWN pulse input, preset input and enable input operate in accordance with the

contents set by the parameters of the high-speed counter.

 � When the measurement time is changed while the SPD instruction is executed, the changed time is applied every time the

measurement time ends.

 � When the SPD instruction is started, the high-speed counter and pulse density measurement are started simultaneously.

When the SPD instruction is stopped, only the pulse density measurement is stopped and the high-speed counter is not

stopped.

 � When the current value of the high-speed counter is overwritten, a preset input is executed, or the high-speed counter is

reset by the DHCMOV instruction while the SPD instruction is executed, the operation continues, but the pulse density

cannot be measured normally.

 � When the SPD instruction is used, pulses per unit time which exceeds the ring length of the high-speed counter cannot be

input.

Function CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8

Monitor in operation SM4500 SM4501 SM4502 SM4503 SM4504 SM4505 SM4506 SM4507

High-speed counter pulse

density

SD4507,

SD4506

SD4537,

SD4536

SD4567,

SD4566

SD4597,

SD4596

SD4627,

SD4626

SD4657,

SD4656

SD4687,

SD4686

SD4717,

SD4716

Measurement unit time SD4517,

SD4516

SD4547,

SD4546

SD4577,

SD4576

SD4607,

SD4606

SD4637,

SD4636

SD4667,

SD4666

SD4697,

SD4696

SD4727,

SD4726

Function R/W Update timing Clear

Monitor in operation R � When the SPD instruction is executed

� When the HIOEN instruction is executed

� Power-on

� Reset

High-speed counter pulse density R � When the measurement time is finished � Power-on

� Reset

Measurement unit time R/W � When the SPD instruction is executed � Power-on

� Reset

FX5U-32M CPU module

Used input number Maximum input frequency

X0 to X5 200 kHz

X6, X7 10 kHz

FX5U-64M/FX5U-80M CPU module

Used input number Maximum input frequency

X0 to X7 200 kHz

X10 to X17 10 kHz

A

A

A

A

P E

A

A

A

A

P E

P E

P E

P E

P E

P E

B

B

B

B

B

B

B

B

CH1

CH2

CH3

CH4

CH5

CH6

CH7

CH8

X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

General-purpose input assignment of the 2-phase 2-input counter

A: A phase pulse input, B: B phase pulse input, P: Preset input (reset), E: Enable input (start)

If one of X1, X3, X5, X7, X11, X13, X15, X17 is specified as a device, an error occurs.

508
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � The measurement time specified by (S2) overwrites the value stored in the SD device specified for the measurement unit

time.

 � When the measurement time specified by (S2) is outside the range from 1 to 2,147,483,647, the specified measurement

time is rounded into “1” with the sign.

Operation error

Error code

(SD0/SD8067)

Description

3600 The channel number or device number in which parameters are not set in (s1) is specified.

3405 An unavailable bit device is set in (s1).

A channel number other than 1 to 8 is specified in (s1).

1810 The input specified in (s1) is already used by another instruction.

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 509

7

Measuring the density of 32 bit binary pulses

DSPD

This instruction counts the number of times the device input specified by (s1) turns off  on only for the time (in 32-bit data

units) specified by (s2)  1ms and stores the operation result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 When a bit device is specified, specify one of X0 to X17.

Only X can be used for a bit device.

The nibble of a bit device cannot be specified.

*2 When a word device is specified, specify one of the channel numbers (CH1 to CH8).

Processing details

 � This instruction counts the number of times the device input specified by (s1) turns off  on only for the time (in 32-bit data

units) specified by (s2)  1ms and stores the operation result in the device specified by (d).

 � The channel number of the high-speed counter specified by (s1) interlocks with the channel number in which parameters

are set.

 � When a word device is specified by (s1), this instruction counts the number of pulses by the high-speed counter setting of

the channel number corresponding to each word device.

Ladder diagram Structured text

ENO:=DSPD(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Pulse input  Bit/32-bit unsigned

binary

Bit/ANY32

(s2) Measurement time (Unit: ms) -2147483648 to

+2147483647

32-bit signed binary ANY32

(d) Head device number for storing the measurement result  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1) *1   *2         

(s2)             

(d)             

(s1) (s2) (d)

ON

OFF

OFF

(s2)+1,(s2)ms (s2)+1,(s2)ms

ON

(s1)

Counting start

The elapsed time is judged using

the 1ms interrupt and the counted

result is stored in (d)+1 and (d).

The elapsed time is judged using

the 1ms interrupt and the counted

result is stored in (d)+1 and (d).

Execution

command

510
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � When a bit device is specified by (s1), the following input assignment devices (shaded area) are valid.

U/D(A)

U/D(A)

U/D(A)

U/D(A)

P E

U/D(A)

U/D(A)

U/D(A)

U/D(A)

P E

P E

P E

P E

P E

P E

P E

X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

CH1

CH2

CH3

CH4

CH5

CH6

CH7

CH8

General-purpose input assignment of the 1-phase 1-input counter (switching S/W up or down)

U/D: UP/DOWN pulse input, P: Preset input (reset), E: Enable input (start)

If one of X10 to X17 is specified as a device, an error occurs.

X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

CH1 C(A)

CH2

CH3

CH4

CH5

CH6

CH7

CH8

P E

P E

P E

P E

P E

P E

P E

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

C(A)

C(A)

C(A)

C(A)

C(A)

C(A)

C(A)

General-purpose input assignment of the 1-phase 1-input counter (switching H/W up or down)

C: Pulse input, D: Direction input, P: Preset input (reset), E: Enable input (start)

If one of X1, X3, X5, X7, X11, X13, X15, X17 is specified as a device, an error occurs.

X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

CH1 U(A)

CH2

U(A)

U(A)

U(A)

CH3

CH4

CH5

CH6

CH7

CH8

P E

U(A)

U(A)

U(A)

U(A)

P E

P E

P E

P E

P E

P E

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

D(B)

General-purpose input assignment of the 1-phase 2-input counter

U: UP pulse input, D: DOWN pulse input, P: Preset input (reset), E: Enable input (start)

If one of X1, X3, X5, X7, X11, X13, X15, X17 is specified as a device, an error occurs.

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 511

7

 � The table below shows the related devices.

 � The table below shows the related device update timing.

Precautions

 � The maximum input frequency of turning the inputs ON and OFF is shown below:

 � When the DSPD instruction is used, the UP/DOWN pulse input, preset input and enable input operate in accordance with

the contents set by the parameters of the high-speed counter.

 � When the measurement time is changed while the DSPD instruction is executed, the changed time is applied every time

the measurement time ends.

 � When the DSPD instruction is started, the high-speed counter and pulse density measurement are started simultaneously.

When the DSPD instruction is stopped, only the pulse density measurement is stopped and the high-speed counter is not

stopped.

 � When the current value of the high-speed counter is overwritten, a preset input is executed, or the high-speed counter is

reset by the DHCMOV instruction while the SPD instruction is executed, the operation continues, but the pulse density

cannot be measured normally.

 � When the DSPD instruction is used, pulses per unit time which exceeds the ring length of the high-speed counter cannot be

input.

Function CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH8

Monitor in operation SM4500 SM4501 SM4502 SM4503 SM4504 SM4505 SM4506 SM4507

High-speed counter pulse

density

SD4507,

SD4506

SD4537,

SD4536

SD4567,

SD4566

SD4597,

SD4596

SD4627,

SD4626

SD4657,

SD4656

SD4687,

SD4686

SD4717,

SD4716

Measurement unit time SD4517,

SD4516

SD4547,

SD4546

SD4577,

SD4576

SD4607,

SD4606

SD4637,

SD4636

SD4667,

SD4666

SD4697,

SD4696

SD4727,

SD4726

Function R/W Update timing Clear

Monitor in operation R � When the DSPD instruction is executed

� When the DHIOEN instruction is executed

� Power-on

� Reset

High-speed counter pulse density R � When the measurement time is finished � Power-on

� Reset

Measurement unit time R/W � When the DSPD instruction is executed � Power-on

� Reset

FX5U-32M CPU module

Used input number Maximum input frequency

X0 to X5 200 kHz

X6, X7 10 kHz

FX5U-64M/FX5U-80M CPU module

Used input number Maximum input frequency

X0 to X7 200 kHz

X10 to X17 10 kHz

A

A

A

A

P E

A

A

A

A

P E

P E

P E

P E

P E

P E

B

B

B

B

B

B

B

B

CH1

CH2

CH3

CH4

CH5

CH6

CH7

CH8

X0 X1 X2 X3 X4 X5 X6 X7 X10 X11 X12 X13 X14 X15 X16 X17

General-purpose input assignment of the 2-phase 2-input counter

A: A phase pulse input, B: B phase pulse input, P: Preset input (reset), E: Enable input (start)

If one of X1, X3, X5, X7, X11, X13, X15, X17 is specified as a device, an error occurs.

512
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � The measurement time specified by (S2) overwrites the value stored in the SD device specified for the measurement unit

time.

 � When the measurement time specified by (S2) is outside the range from 1 to 2,147,483,647, the specified measurement

time is rounded into “1” with the sign.

Operation error

Error code

(SD0/SD8067)

Description

3600 The channel number or device number in which parameters are not set in (s1) is specified.

3405 An unavailable bit device is set in (s1).

A channel number other than 1 to 8 is specified in (s1).

1810 The input specified in (s1) is already used by another instruction.

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 513

7

16 bit binary pulse output

PLSY [For the FX3 Series-compatible operand specification]

This instruction outputs 16-bit pulse trains specified by the command speed (s) from the device specified by the output (d) for

the amount of 16-bit pulses specified by the positioning address (n).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Y0 to Y3 can be used.

Processing details

 � This instruction outputs 16-bit pulse trains specified by the command speed (s) from the device specified by the output (d)

for the amount of 16-bit pulses specified by the positioning address (n).

 � Set the value from 0 to 65535 (in user unit) to the command speed (s), so that the command speed is 200 kpps or less

when the command speed is converted to frequency.

 � Set the value from 0 to 65535 (in user unit) to the positioning address (n), so that the positioning address is within the range

from 0 to 2147483647 when the positioning address is converted to number of pulses.

 � Specify the Y device number (Y0 to Y3) in (d).

Ladder diagram Structured text

ENO:=PLSY(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Command speed or word device number storing data 0 to 65535 16-bit unsigned binary ANY16

(n) Positioning address or word device number storing data 0 to 65535 16-bit unsigned binary ANY16

(d) Bit device number from which pulses are to be output 0 to 3 bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(n)             

(d) *1            

(s) (n) (d)

(s)

(n) Positioning address

Command speed

514
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � The following tables show the special relays and special registers related to the PLSY instruction.

[Special relays]

*1 Because the PLSY instruction does not have the acceleration/deceleration function, the operation is stopped immediately even though

the pulse deceleration stop command is turned on.

[Special registers]

[Special relays (FX3 compatible area)]

[Special registers (FX3 compatible area)]

Axis number Name Descriptions

1 2 3 4

SM5500 SM5501 SM5502 SM5503 Positioning instruction

activation

ON: During activation, OFF: Not activated

SM5516 SM5517 SM5518 SM5519 Pulse output monitor ON: During output, OFF: During stop

SM5532 SM5533 SM5534 SM5535 Positioning error occurrence On: Error occurred, OFF: Error not occurred

SM5628 SM5629 SM5630 SM5631 Pulse output stop command ON: Stop command is on, OFF: Stop command is off

SM5644 SM5645 SM5646 SM5647 Pulse deceleration stop

command*1

ON: Deceleration stop command is on, OFF:

Deceleration stop command is off

SM5660 SM5661 SM5662 SM5663 Forward limit ON: Forward limit is on, OFF: Forward limit is off

SM5676 SM5677 SM5678 SM5679 Reverse limit ON: Reverse limit is on, OFF: Reverse limit is off

Axis number Name

1 2 3 4

SD5500

SD5501

SD5540

SD5541

SD5580

SD5581

SD5620

SD5621

Current address (in user unit)

SD5502

SD5503

SD5542

SD5543

SD5582

SD5583

SD5622

SD5623

Current address (in pulse unit)

SD5504

SD5505

SD5544

SD5545

SD5584

SD5585

SD5624

SD5625

Current speed (in user unit)

SD5510 SD5550 SD5590 SD5630 Positioning error error code

Axis number Name

1 2 3 4

SM8029 Instruction execution complete flag

SM8329 Instruction execution abnormal end flag

SM8340 SM8350 SM8360 SM8370 Pulse output monitoring

SM8348 SM8358 SM8368 SM8378 Positioning instruction activation

Axis number Name

1 2 3 4

SD8136

SD8137

  Total number of outputs for axis 1 and 2 of PLSY instruction

SD8140

SD8141

SD8142

SD8143

  Total number of output pulses of PLSY instruction

SD8340

SD8341

SD8350

SD8351

SD8360

SD8361

SD8370

SD8371

Current address (in user unit)

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 515

7

Precautions

 � The operation cannot be performed normally in an environment such as user program where the instruction cannot be

executed at each scan or if the instruction is jumped by the CJ(P) instruction. However, the pulse output is continued.

 � The same devices as the ones of position instruction, PMW output or general-purpose output cannot be used for the output

in the PLSY instruction.

 � The following table shows how to stop the pulse output. The operation is stopped immediately in any stopping method by

the PLSY instruction. Note that the motor is stopped without deceleration and this may damage the system.

 � If the positioning address is 0 when the PLSY instruction is activated, pulses are output without limitation.

 � Overwrite the positioning address during the pulse output to change the positioning address in operation. The written value

is reflected at the first time that the instruction is executed after the device is overwritten. The positioning address becomes

invalid if it is changed from 0 to a value other than 0 or from a value other than 0 to 0 during positioning operation.

 � When the positioning address is changed during the pulse output, the operation is stopped immediately if the changed

value is the number of pulses which have already been output or less.

 � Overwrite the command speed during the pulse output to change the command speed in operation. The written value is

reflected at the first time that the instruction is executed after the device is overwritten.

 � When the numbers of pulses (by the pulses conversion) of the command speed and positioning address exceed the 32-bit

range, an error occurs and the operation cannot be performed.

 � The PLSY instruction always increases the current address because the setting of rotation direction is disabled due to the

absence of direction.

 � When the output mode is CW/CCW mode, output is always performed from the device set to CW.

 � If reverse limit is used, it operates as forward limit.

 � Do not set the value of 200 kpps or more by the frequency conversion when changing the command speed during the pulse

output.

 � If the command speed is set to 0 when the PLSY instruction is activated, the operation ends with an error and stops pulse

output.

 � If the command speed is changed to 0 during operation, the operation does not end with errors but is immediate stop.

 � The command speed is changed to negative value during operation, it is the operation ends with an error.

 � The following table shows the operation timing of the complete flag and abnormal end flag of the PLSY instruction.

*1 When pulses are being output without limitation, instruction execution complete flag is not turned on.

*2 The flag turns on only during one scan time when the activation contact of the instruction turns off and on.

Operation Whether to decelerate or not Abnormal end flag

Turn off the drive contact. Stops immediately. OFF

All outputs disable (Turn on the special relay.) ON

Pulse output stop command (Turn on the special relay.) ON

Pulse deceleration stop command (Turn on the special relay.) ON

Forward limit (Turn on the special relay.) ON

Reverse limit (Turn on the special relay.) ON

Set 0 for the command speed specified by (s2). OFF

Complete flag (SM8029)*1 Abnormal end flag (SM8329)

ON condition From when the output of the specified positioning address is completed until the

drive contact is turned off

From the following stops until the drive contact is

turned off

� The specified axis is already used*2

� Pulse output stop command

� Pulse deceleration stop command

� Forward limit

� Reverse limit

� All outputs disabled

� Positioning address error

� Command speed 0 (when the PLSY instruction is

activated)

ONOFF condition � When the drive contact is turned off � When the drive contact is turned off

516
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

Operation error

Error code

(SD0/SD8067)

Description

Axis 1 Axis 2 Axis 3 Axis 4

SD5510 SD5550 SD5590 SD5630

1810 The axis number specified by (d) is used by another instruction.

2820 The value specified by (s) is outside the following range.

0 to 65535

The value specified by (n) is outside the following range.

0 to 65535

The value specified by (d) is outside the following range.

0 to 3

3600 The axis number specified by (d) is not set by parameters.

A function which is set to be not used by parameters (such as interrupt input signal 1 and zero return

relations) is used.

3631 3632 3633 3634 The numbers of pulses (by the pulses conversion) of the positioning address specified by (n) exceed the 32-

bit range.

3641 3642 3643 3644 The numbers of pulses (by the pulses conversion) of the command speed specified by (s) exceed the 32-bit

range.

3651 3652 3653 3654 The operation decelerates and stops by the forward limit or reverse limit during the pulse output or at the

activating of the positioning.

3661 3662 3663 3664 The operation decelerates and stops by the pulse output stop command or special relay whose all outputs

are disabled during the pulse output or at the activating of the positioning.

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 517

7

PLSY [For the FX5 Series operand specification]

This instruction outputs 16-bit pulse trains specified by the command speed (s) from the device specified by the output (d) for

the amount of 16-bit pulses specified by the positioning address (n).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction outputs 16-bit pulse trains specified by the command speed (s) from the device specified by the output (d)

for the amount of 16-bit pulses specified by the positioning address (n).

 � Set the value from 0 to 65535 (in user unit) in the command speed (s), so that the command speed is 200 kpps or less

when the command speed is converted to frequency.

 � Set the value from 0 to 65535 (in user unit) in the positioning address (n), so that the positioning address is within the range

from 0 to 2147483647 when the positioning address is converted to number of pulses.

 � Specify the axis number (K1 to K4) in which positioning parameters exist in (d).

Ladder diagram Structured text

ENO:=PLSY(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Command speed or word device number storing data 0 to 65535 16-bit unsigned binary ANY16

(n) Positioning address or word device number storing data 0 to 65535 16-bit unsigned binary ANY16

(d) Axis number from which pulses are to be output 1 to 4 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(n)             

(d)             

(s) (n) (d)

(s)

(n) Positioning address

Command speed

518
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � The following tables show the special relays and special registers related to the PLSY instruction.

[Special relays]

*1 Because the PLSY instruction does not have the acceleration/deceleration function, the operation is stopped immediately even though

the pulse deceleration stop command is turned on.

[Special registers]

[Special relays (FX3 compatible area)]

[Special registers (FX3 compatible area)]

Axis number Name Descriptions

1 2 3 4

SM5500 SM5501 SM5502 SM5503 Positioning instruction

activation

ON: During activation, OFF: Not activated

SM5516 SM5517 SM5518 SM5519 Pulse output monitor ON: During output, OFF: During stop

SM5532 SM5533 SM5534 SM5535 Positioning error occurrence On: Error occurred, OFF: Error not occurred

SM5628 SM5629 SM5630 SM5631 Pulse output stop command ON: Stop command is on, OFF: Stop command is off

SM5644 SM5645 SM5646 SM5647 Pulse deceleration stop

command*1

ON: Deceleration stop command is on, OFF:

Deceleration stop command is off

SM5660 SM5661 SM5662 SM5663 Forward limit ON: Forward limit is on, OFF: Forward limit is off

SM5676 SM5677 SM5678 SM5679 Reverse limit ON: Reverse limit is on, OFF: Reverse limit is off

Axis number Name

1 2 3 4

SD5500

SD5501

SD5540

SD5541

SD5580

SD5581

SD5620

SD5621

Current address (in user unit)

SD5502

SD5503

SD5542

SD5543

SD5582

SD5583

SD5622

SD5623

Current address (in pulse unit)

SD5504

SD5505

SD5544

SD5545

SD5584

SD5585

SD5624

SD5625

Current speed (in user unit)

SD5510 SD5550 SD5590 SD5630 Positioning error error code

Axis number Name

1 2 3 4

SM8029 Instruction execution complete flag

SM8329 Instruction execution abnormal end flag

SM8340 SM8350 SM8360 SM8370 Pulse output monitoring

SM8348 SM8358 SM8368 SM8378 Positioning instruction activation

Axis number Name

1 2 3 4

SD8136

SD8137

  Total number of outputs for axis 1 and 2 of PLSY instruction

SD8140

SD8141

SD8142

SD8143

  Total number of output pulses of PLSY instruction

SD8340

SD8341

SD8350

SD8351

SD8360

SD8361

SD8370

SD8371

Current address (in user unit)

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 519

7

Precautions

 � The operation cannot be performed normally in an environment such as user program where the instruction cannot be

executed at each scan or if the instruction is jumped by the CJ(P) instruction. However, the pulse output is continued.

 � The same devices as the ones of position instruction, PMW output or general-purpose output cannot be used for the output

in the PLSY instruction.

 � The following table shows how to stop the pulse output. The operation is stopped immediately in any stopping method by

the PLSY instruction. Note that the motor is stopped without deceleration and this may damage the system.

 � If the positioning address is 0 when the PLSY instruction is activated, pulses are output without limitation.

 � Overwrite the positioning address during the pulse output to change the positioning address in operation. The written value

is reflected at the first time that the instruction is executed after the device is overwritten. The positioning address becomes

invalid if it is changed from 0 to a value other than 0 or from a value other than 0 to 0 during positioning operation.

 � When the positioning address is changed during the pulse output, the operation is stopped immediately if the changed

value is the number of pulses which have already been output or less.

 � Overwrite the command speed during the pulse output to change the command speed in operation. The written value is

reflected at the first time that the instruction is executed after the device is overwritten.

 � When the numbers of pulses (by the pulses conversion) of the command speed and positioning address exceed the 32-bit

range, an error occurs and the operation cannot be performed.

 � The PLSY instruction always increases the current address because the setting of rotation direction is disabled due to the

absence of direction.

 � When the output mode is CW/CCW mode, output is always performed from the device set to CW.

 � If reverse limit is used, it operates as forward limit.

 � Do not set the value of 200 kpps or more by the frequency conversion when changing the command speed during the pulse

output.

 � If the command speed is set to 0 when the PLSY instruction is activated, the operation ends with an error and stops pulse

output.

 � If the command speed is changed to 0 during operation, the operation does not end with errors but is immediate stop.

 � The command speed is changed to negative value during operation, it is the operation ends with an error.

 � The following table shows the operation timing of the complete flag and abnormal end flag of the PLSY instruction.

*1 When pulses are being output without limitation, instruction execution complete flag is not turned on.

*2 The flag turns on only during one scan time when the activation contact of the instruction turns off and on.

Operation Whether to decelerate or not Abnormal end flag

Turn off the drive contact. Stops immediately. OFF

All outputs disable (Turn on the special relay.) ON

Pulse output stop command (Turn on the special relay.) ON

Pulse deceleration stop command (Turn on the special relay.) ON

Forward limit (Turn on the special relay.) ON

Reverse limit (Turn on the special relay.) ON

Set 0 for the command speed specified by (s2). OFF

Complete flag (SM8029)*1 Abnormal end flag (SM8329)

ON condition From when the output of the specified positioning address is completed until

the drive contact is turned off

From the following stops until the drive contact is

turned off

� The specified axis is already used*2

� Pulse output stop command

� Pulse deceleration stop command

� Forward limit

� Reverse limit

� All outputs disabled

� Positioning address error

� Command speed 0 (when the PLSY instruction is

activated)

ONOFF condition � When the drive contact is turned off � When the drive contact is turned off

520
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

Operation error

Error code

(SD0/SD8067)

Description

Axis 1 Axis 2 Axis 3 Axis 4

SD5510 SD5550 SD5590 SD5630

1810 The axis number specified by (d) is used by another instruction.

2820 The value specified by (s) is outside the following range.

0 to 65535

The value specified by (n) is outside the following range.

0 to 65535

The value specified by (d) is outside the following range.

0 to 3

3600 The axis number specified by (d) is not set by parameters.

A function which is set to be not used by parameters (such as interrupt input signal 1 and zero return

relations) is used.

3631 3632 3633 3634 The numbers of pulses (by the pulses conversion) of the positioning address specified by (n) exceed the 32-

bit range.

3641 3642 3643 3644 The numbers of pulses (by the pulses conversion) of the command speed specified by (s) exceed the 32-bit

range.

3651 3652 3653 3654 The operation decelerates and stops by the forward limit or reverse limit during the pulse output or at the

activating of the positioning.

3661 3662 3663 3664 The operation decelerates and stops by the pulse output stop command or special relay whose all outputs

are disabled during the pulse output or at the activating of the positioning.

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 521

7

32 bit binary pulse output

DPLSY [For the FX3 Series-compatible operand specification]

This instruction outputs 32-bit pulse trains specified by the command speed (s) from the device specified by the output (d) for

the amount of 32-bit pulses specified by the positioning address (n).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Y0 to Y3 can be used.

Processing details

 � This instruction outputs 32-bit pulse trains specified by the command speed (s) from the device specified by the output (d)

for the amount of 32-bit pulses specified by the positioning address (n).

 � Set the value from 0 to 2147483647 (in user unit) to the command speed (s), so that the command speed is 200 kpps or

less when the command speed is converted to frequency.

 � Set the value from 0 to 2147483647 (in user unit) to the positioning address (n), so that the positioning address is within the

range from 0 to 2147483647 when the positioning address is converted to number of pulses.

 � Specify the Y device number (Y0 to Y3) in (d).

Ladder diagram Structured text

ENO:=DPLSY(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Command speed or word device number storing data 0 to 2147483647 32-bit unsigned binary ANY32

(n) Positioning address or word device number storing data 0 to 2147483647 32-bit unsigned binary ANY32

(d) Bit device number from which pulses are to be output 0 to 3 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(n)             

(d) *1            

(s) (n) (d)

[(s)+1, (s) Command speed]

[(n)+1, (n) Positioning address]

522
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � The following tables show the special relays and special registers related to the DPLSY instruction.

[Special relays]

*1 Because the DPLSY instruction does not have the acceleration/deceleration function, the operation is stopped immediately even though

the pulse deceleration stop command is turned on.

[Special registers]

[Special relays (FX3 compatible area)]

[Special registers (FX3 compatible area)]

Axis number Name Descriptions

1 2 3 4

SM5500 SM5501 SM5502 SM5503 Positioning instruction

activation

ON: During activation, OFF: Not activated

SM5516 SM5517 SM5518 SM5519 Pulse output monitor ON: During output, OFF: During stop

SM5532 SM5533 SM5534 SM5535 Positioning error occurrence On: Error occurred, OFF: Error not occurred

SM5628 SM5629 SM5630 SM5631 Pulse output stop command ON: Stop command is on, OFF: Stop command is off

SM5644 SM5645 SM5646 SM5647 Pulse deceleration stop

command*1

ON: Deceleration stop command is on, OFF:

Deceleration stop command is off

SM5660 SM5661 SM5662 SM5663 Forward limit ON: Forward limit is on, OFF: Forward limit is off

SM5676 SM5677 SM5678 SM5679 Reverse limit ON: Reverse limit is on, OFF: Reverse limit is off

Axis number Name

1 2 3 4

SD5500

SD5501

SD5540

SD5541

SD5580

SD5581

SD5620

SD5621

Current address (in user unit)

SD5502

SD5503

SD5542

SD5543

SD5582

SD5583

SD5622

SD5623

Current address (in pulse unit)

SD5504

SD5505

SD5544

SD5545

SD5584

SD5585

SD5624

SD5625

Current speed (in user unit)

SD5510 SD5550 SD5590 SD5630 Positioning error error code

Axis number Name

1 2 3 4

SM8029 Instruction execution complete flag

SM8329 Instruction execution abnormal end flag

SM8340 SM8350 SM8360 SM8370 Pulse output monitoring

SM8348 SM8358 SM8368 SM8378 Positioning instruction activation

Axis number Name

1 2 3 4

SD8136

SD8137

  Total number of outputs for axis 1 and 2 of PLSY instruction

SD8140

SD8141

SD8142

SD8143

  Total number of output pulses of PLSY instruction

SD8340

SD8341

SD8350

SD8351

SD8360

SD8361

SD8370

SD8371

Current address (in user unit)

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 523

7

Precautions

 � The operation cannot be performed normally in an environment such as user program where the instruction cannot be

executed at each scan or if the instruction is jumped by the CJ(P) instruction. However, the pulse output is continued.

 � The same devices as the ones of position instruction, PMW output or general-purpose output cannot be used for the output

in the DPLSY instruction.

 � The following table shows how to stop the pulse output. The operation is stopped immediately in any stopping method by

the DPLSY instruction. Note that the motor is stopped without deceleration and this may damage the system.

 � If the positioning address is 0 when the DPLSY instruction is activated, pulses are output without limitation.

 � Overwrite the positioning address during the pulse output to change the positioning address in operation. The written value

is reflected at the first time that the instruction is executed after the device is overwritten. The positioning address becomes

invalid if it is changed from 0 to a value other than 0 or from a value other than 0 to 0 during positioning operation.

 � When the positioning address is changed during the pulse output, the operation is stopped immediately if the changed

value is the number of pulses which have already been output or less.

 � Overwrite the command speed during the pulse output to change the command speed in operation. The written value is

reflected at the first time that the instruction is executed after the device is overwritten.

 � When the numbers of pulses (by the pulses conversion) of the command speed and positioning address exceed the 32-bit

range, an error occurs and the operation cannot be performed.

 � The DPLSY instruction always increases the current address because the setting of rotation direction is disabled due to the

absence of direction.

 � When the output mode is CW/CCW mode, output is always performed from the device set to CW.

 � If reverse limit is used, it operates as forward limit.

 � Do not set the value of 200 kpps or more by the frequency conversion when changing the command speed during the pulse

output.

 � If the command speed is set to 0 when the DPLSY instruction is activated, the operation ends with an error and stops pulse

output.

 � If the command speed is changed to 0 during operation, the operation does not end with errors but is immediate stop.

 � The command speed is changed to negative value during operation, it is the operation ends with an error.

 � The following table shows the operation timing of the complete flag and abnormal end flag of the DPLSY instruction.

*1 When pulses are being output without limitation, instruction execution complete flag is not turned on.

*2 The flag turns on only during one scan time when the activation contact of the instruction turns off and on.

Operation Whether to decelerate or not Abnormal end flag

Turn off the drive contact. Stops immediately. OFF

All outputs disable (Turn on the special relay.) ON

Pulse output stop command (Turn on the special relay.) ON

Pulse deceleration stop command (Turn on the special relay.) ON

Forward limit (Turn on the special relay.) ON

Reverse limit (Turn on the special relay.) ON

Set 0 for the command speed specified by (s2). OFF

Complete flag (SM8029)*1 Abnormal end flag (SM8329)

ON condition From when the output of the specified positioning address is completed until the

drive contact is turned off

From the following stops until the drive contact is

turned off

� The specified axis is already used*2

� Pulse output stop command

� Pulse deceleration stop command

� Forward limit

� Reverse limit

� All outputs disabled

� Positioning address error

� Command speed 0 (when the DPLSY instruction

is activated)

ONOFF condition � When the drive contact is turned off � When the drive contact is turned off

524
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

Operation error

Error code

(SD0/SD8067)

Description

Axis 1 Axis 2 Axis 3 Axis 4

SD5510 SD5550 SD5590 SD5630

1810 The axis number specified by (d) is used by another instruction.

2820 The value specified by (s) is outside the following range.

0 to 65535

The value specified by (n) is outside the following range.

0 to 65535

The value specified by (d) is outside the following range.

0 to 3

3600 The axis number specified by (d) is not set by parameters.

A function which is set to be not used by parameters (such as interrupt input signal 1 and zero return

relations) is used.

3631 3632 3633 3634 The numbers of pulses (by the pulses conversion) of the positioning address specified by (n) exceed the 32-

bit range.

3641 3642 3643 3644 The numbers of pulses (by the pulses conversion) of the command speed specified by (s) exceed the 32-bit

range.

3651 3652 3653 3654 The operation decelerates and stops by the forward limit or reverse limit during the pulse output or at the

activating of the positioning.

3661 3662 3663 3664 The operation decelerates and stops by the pulse output stop command or special relay whose all outputs

are disabled during the pulse output or at the activating of the positioning.

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 525

7

DPLSY [For the FX5 Series operand specification]

This instruction outputs 32-bit pulse trains specified by the command speed (s) from the device specified by the output (d) for

the amount of 32-bit pulses specified by the positioning address (n).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction outputs 32-bit pulse trains specified by the command speed (s) from the device specified by the output (d)

for the amount of 32-bit pulses specified by the positioning address (n).

 � Set the value from 0 to 2147483647 (in user unit) to the command speed (s), so that the command speed is 200 kpps or

less when the command speed is converted to frequency.

 � Set the value from 0 to 2147483647 (in user unit) to the positioning address (n), so that the positioning address is within the

range from 0 to 2147483647 when the positioning address is converted to number of pulses.

 � Specify the axis number (K1 to K4) in which positioning parameters exist in (d).

Ladder diagram Structured text

ENO:=DPLSY(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Command speed or word device number storing data 0 to 2147483647 32-bit unsigned binary ANY32

(n) Positioning address or word device number storing data 0 to 2147483647 32-bit unsigned binary ANY32

(d) Axis number from which pulses are to be output 1 to 4 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(n)             

(d)             

(s) (n) (d)

[(s)+1, (s) Command speed]

[(n)+1, (n) Positioning address]

526
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � The following tables show the special relays and special registers related to the DPLSY instruction.

[Special relays]

*1 Because the DPLSY instruction does not have the acceleration/deceleration function, the operation is stopped immediately even though

the pulse deceleration stop command is turned on.

[Special registers]

[Special relays (FX3 compatible area)]

[Special registers (FX3 compatible area)]

Axis number Name Descriptions

1 2 3 4

SM5500 SM5501 SM5502 SM5503 Positioning instruction

activation

ON: During activation, OFF: Not activated

SM5516 SM5517 SM5518 SM5519 Pulse output monitor ON: During output, OFF: During stop

SM5532 SM5533 SM5534 SM5535 Positioning error occurrence On: Error occurred, OFF: Error not occurred

SM5628 SM5629 SM5630 SM5631 Pulse output stop command ON: Stop command is on, OFF: Stop command is off

SM5644 SM5645 SM5646 SM5647 Pulse deceleration stop

command*1

ON: Deceleration stop command is on, OFF:

Deceleration stop command is off

SM5660 SM5661 SM5662 SM5663 Forward limit ON: Forward limit is on, OFF: Forward limit is off

SM5676 SM5677 SM5678 SM5679 Reverse limit ON: Reverse limit is on, OFF: Reverse limit is off

Axis number Name

1 2 3 4

SD5500

SD5501

SD5540

SD5541

SD5580

SD5581

SD5620

SD5621

Current address (in user unit)

SD5502

SD5503

SD5542

SD5543

SD5582

SD5583

SD5622

SD5623

Current address (in pulse unit)

SD5504

SD5505

SD5544

SD5545

SD5584

SD5585

SD5624

SD5625

Current speed (in user unit)

SD5510 SD5550 SD5590 SD5630 Positioning error error code

Axis number Name

1 2 3 4

SM8029 Instruction execution complete flag

SM8329 Instruction execution abnormal end flag

SM8340 SM8350 SM8360 SM8370 Pulse output monitoring

SM8348 SM8358 SM8368 SM8378 Positioning instruction activation

Axis number Name

1 2 3 4

SD8136

SD8137

  Total number of outputs for axis 1 and 2 of DPLSY instruction

SD8140

SD8141

SD8142

SD8143

  Total number of output pulses of DPLSY instruction

SD8340

SD8341

SD8350

SD8351

SD8360

SD8361

SD8370

SD8371

Current address (in user unit)

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 527

7

Precautions

 � The operation cannot be performed normally in an environment such as user program where the instruction cannot be

executed at each scan or if the instruction is jumped by the CJ(P) instruction. However, the pulse output is continued.

 � The same devices as the ones of position instruction, PMW output or general-purpose output cannot be used for the output

in the DPLSY instruction.

 � The following table shows how to stop the pulse output. The operation is stopped immediately in any stopping method by

the DPLSY instruction. Note that the motor is stopped without deceleration and this may damage the system.

 � If the positioning address is 0 when the DPLSY instruction is activated, pulses are output without limitation.

 � Overwrite the positioning address during the pulse output to change the positioning address in operation. The written value

is reflected at the first time that the instruction is executed after the device is overwritten. The positioning address becomes

invalid if it is changed from 0 to a value other than 0 or from a value other than 0 to 0 during positioning operation.

 � When the positioning address is changed during the pulse output, the operation is stopped immediately if the changed

value is the number of pulses which have already been output or less.

 � Overwrite the command speed during the pulse output to change the command speed in operation. The written value is

reflected at the first time that the instruction is executed after the device is overwritten.

 � When the numbers of pulses (by the pulses conversion) of the command speed and positioning address exceed the 32-bit

range, an error occurs and the operation cannot be performed.

 � The PLSY instruction always increases the current address because the setting of rotation direction is disabled due to the

absence of direction.

 � When the output mode is CW/CCW mode, output is always performed from the device set to CW.

 � If reverse limit is used, it operates as forward limit.

 � Do not set the value of 200 kpps or more by the frequency conversion when changing the command speed during the pulse

output.

 � If the command speed is set to 0 when the PLSY instruction is activated, the operation ends with an error and stops pulse

output.

 � If the command speed is changed to 0 during operation, the operation does not end with errors but is immediate stop.

 � The command speed is changed to negative value during operation, it is the operation ends with an error.

 � The following table shows the operation timing of the complete flag and abnormal end flag of the DPLSY instruction.

*1 When pulses are being output without limitation, instruction execution complete flag is not turned on.

*2 The flag turns on only during one scan time when the activation contact of the instruction turns off and on.

Operation Whether to decelerate or not Abnormal end flag

Turn off the drive contact. Stops immediately. OFF

All outputs disable (Turn on the special relay.) ON

Pulse output stop command (Turn on the special relay.) ON

Pulse deceleration stop command (Turn on the special relay.) ON

Forward limit (Turn on the special relay.) ON

Reverse limit (Turn on the special relay.) ON

Set 0 for the command speed specified by (s2). OFF

Complete flag (SM8029)*1 Abnormal end flag (SM8329)

ON condition From when the output of the specified positioning address is completed until

the drive contact is turned off

From the following stops until the drive contact is

turned off

� The specified axis is already used*2

� Pulse output stop command

� Pulse deceleration stop command

� Forward limit

� Reverse limit

� All outputs disabled

� Positioning address error

� Command speed 0 (when the DPLSY instruction is

activated)

ONOFF condition � When the drive contact is turned off � When the drive contact is turned off

528
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

Operation error

Error code

(SD0/SD8067)

Description

Axis 1 Axis 2 Axis 3 Axis 4

SD5510 SD5550 SD5590 SD5630

1810 The axis number specified by (d) is used by another instruction.

2820 The value specified by (s) is outside the following range.

0 to 65535

The value specified by (n) is outside the following range.

0 to 65535

The value specified by (d) is outside the following range.

0 to 3

3600 The axis number specified by (d) is not set by parameters.

A function which is set to be not used by parameters (such as interrupt input signal 1 and zero return

relations) is used.

3631 3632 3633 3634 The numbers of pulses (by the pulses conversion) of the positioning address specified by (n) exceed the 32-

bit range.

3641 3642 3643 3644 The numbers of pulses (by the pulses conversion) of the command speed specified by (s) exceed the 32-bit

range.

3651 3652 3653 3654 The operation decelerates and stops by the forward limit or reverse limit during the pulse output or at the

activating of the positioning.

3661 3662 3663 3664 The operation decelerates and stops by the pulse output stop command or special relay whose all outputs

are disabled during the pulse output or at the activating of the positioning.

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 529

7

16 bit binary pulse width modulation

PWM

This instruction outputs the pulse (in 16-bit data units) of the ON time (in 16-bit data units) specified by (s1) and the period

specified by (s2) to the output destination specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 When a bit device is specified, specify one of Y0 to Y7.

Only Y can be used for a bit device.

If Y is specified, outputs are enabled when there is an unused channel number in the parameter setting and the specified Y number is

not used.

The nibble of a bit device cannot be specified.

*2 When a word device or constant is specified, specify one of the channel numbers.

Processing details

 � This instruction outputs the pulse of the ON time specified by (s1) and the period specified by (s2) to the output destination

specified by (d).

 � Time with a unit selected on the parameter setting screen (s or ms) can be specified by (s1) and (s2).

 � The pulse output destination channel number selected on the parameter setting screen can be specified by (d).

 � This instruction store the number of pulses, pulse width, and period output from each channel to an SD device. The pulse

width and period are stored in the units set by the parameters. When 0 is specified in the pulse output, pulses are output

without any limitation.

Ladder diagram Structured text

ENO:=PWM(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) ON time or the device number storing the ON time 1 to 65535 16-bit unsigned binary ANY16

(s2) Period or the device number storing the period 1 to 65535 16-bit unsigned binary ANY16

(d) Channel number or device number from which pulses are to be

output

 Bit/16-bit unsigned

binary

Bit/ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d) *1   *2 *2 *2    *2   

Pulse output

destination channel

Number of output pulses R/W Initial

value

Timing of reflection on

operation

Timing of clearing to initial

value

CH1 SD5301, SD5300 R/W 0 � When the DHCMOV

instruction is executed*1

� When the PWM instruction is

executed

� END processing

STOP/PAUSERUN

CH2 SD5317, SD5316

CH3 SD5333, SD5332

CH4 SD5349, SD5348

(s1) (s2) (d)

(s1)

(s2)

OFF

ON

530
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

*1 When the DHCMOV instruction is used, the latest value can be read. A writable device can be updated immediately.

*2 Parameter setting values are set to an SD device at STOP to RUN.

*3 When this instruction is executed, the pulse width and period specified (s1) and (s2) are set to an SD device.

 � After the pulse output is started from each channel, the pulse output monitor turns on.

 � This instruction stores the number of pulses output from each channel.

 � The number of output pulses set to an SD device is valid for this instruction as well. The setting values are always read and

updated.

 � When the specified number of output pulses is equal to or less than the number of pulses which have already been output,

pulse output stops after outputting pulses which are being output.

 � When the specified number of output pulses is larger than the number of pulses which have already been output, pulse

output stops after outputting set number of pulses.

 � When the number of output pulses is set from the no limitation output setting (number of output pulses is 0), the number of

output pulses is not updated (because outputting pulses continues or stops in the no limitation output).

 � The maximum number of output pulses which can be output when the PWM instruction is executed once (= maximum

value which can be set to an SD device) is “2,147,483,647”.

 � The ON time and period can be set during the pulse output. Setting values are always read and updated.

 � When the number of output pulses is 0 (no limitation output setting), the monitor of the current number of output pulses is

set to 0.

 � When the number of output pulses is specified, the output pulses are monitored. When the PWM output is executed several

times, the monitor of the number of output pulses is an integrated value.

 � The monitor of the current number of output pulses can be changed during the pulse output.

 � The monitor of the current number of output pulses is updated when the number of pulses is counted at the falling edge of

pulses in the positive logic and at the rising edge of pulses in the negative logic.

 � When the output always remains ON or OFF, the monitor of the current number of output pulses does not change.

 � The maximum value of the monitor of the current number of output pulses is “FFFFFFFFH”. After the current number of

output pulses reaches the maximum value, the monitor of the current number of output pulses starts to count again from

“0”.

Pulse output

destination channel

ON time R/W Initial

value

Timing of reflection on

operation

Timing of clearing to initial

value

CH1 SD5303, SD5302 R/W 0*2 � When the DHCMOV

instruction is executed*1

� When this instruction is

executed*3

� END processing

STOP/PAUSERUN

CH2 SD5319, SD5318

CH3 SD5335, SD5334

CH4 SD5351, SD5350

Pulse output

destination channel

Period R/W Initial

value

Timing of reflection on

operation

Timing of clearing to initial

value

CH1 SD5305, SD5304 R/W 0*2 � When the DHCMOV

instruction is executed*1

� When this instruction is

executed*3

� END processing

STOP/PAUSERUN

CH2 SD5321, SD5320

CH3 SD5337, SD5336

CH4 SD5353, SD5352

Pulse output

destination channel

Pulse output monitor R/W Initial

value

ON timing OFF timing

CH1 SM5300 R OFF � When the HIOEN instruction is

executed

� When this instruction is

executed

� Power on

� Reset

� RUNSTOP/PAUSE

� When the specified number of

pulses are output.

� The drive contact is turned off

CH2 SM5301

CH3 SM5302

CH4 SM5303

Pulse output

destination channel

Monitoring the current

number of output pulses

R/W Initial

value

Timing of reflection on

operation

Timing of clearing to initial

value

CH1 SD5307, SD5306 R/W 0 � When the DHCMOV

instruction is executed

 An SD device is updated

� When the PWM instruction is

executed

� END processing

� Power-on

� Reset

� STOP/PAUSERUN
CH2 SD5323, SD5322

CH3 SD5339, SD5338

CH4 SD5355, SD5354

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 531

7

Precautions

 � Specify the ON time by (s1) and the period by (s2) so that [(s2)-(s1)] is equal to or larger than 3 s.

 � Specify 2 s or more in Y0 to Y3 and 200 s or more in Y4 to Y7 for the ON time specified by (s1), and specify 5 s or more

in Y0 to Y3 and 400 s or more in Y4 to Y7 for the period specified by (s2).

 � When a channel number that is not selected for the PMW output in the parameter setting is specified for (d), this instruction

is not executed. An operation error occurs.

 � Operations when the PMW output is stopped (while the output pulse is on)

Period

Output stop command

If an output stop command is issued while the ON
time setting is 5 s or less, outputting pulses
stops after the set ON time elapses.

When the ON time setting is 5s or more and 5 s or
less time has elapsed when an output stop command is
issued, outputting pulses stops in 5 s from the stop
command.

ON time
setting is 5 s

or less

ON time
setting is 5 s

or more

ON time
setting is 5 s

or more

ON time
setting is 5 s

or more

ON time
setting is 5 s

or more

ON time
setting is 5 s

or less

5 s
or less

Output stop command is issued
within 5 s of the ON width time.

5 s or
more

Output stop command is issued in
5 s or more of the ON width time.

When the ON time setting is 5 s or more and 5 s or
more time has elapsed when an output stop command is
issued, outputting pulses stops with the stop command.

Period

Period

532
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � Operations when the PMW output is stopped (while the output pulse is off)

 � The PMW output stops when SM8034 is on, and starts when SM8034 is off.

 � When the pulse output for positioning is driven, the PMW output does not stop.

 � When specifying the number of output pulses, executing the PWM instruction, and then outputting pulses again after the

pulse output stops due to the completion of output of the specified number of pulses, turn OFF the contact which drove the

PWM instruction. If the PWM instruction was driven by the HIOEN instruction, stop the HIOEN instruction.

 � When the period setting is equivalent to the ON time setting, the output always remains ON. The output ON state continues

even after “Period x Number of output pulses” is finished in this condition.

Operation error

Error code

(SD0/SD8067)

Description

1810 The output destination specified by (d) is already used by another instruction (positioning instruction).

(The PMW output is not executed.)

A Y device is specified as the output destination specified by (d), and there is no unused channel number in the parameter setting.

3405 Y10 or later is specified as the output destination specified by (d).

(The PMW output stops.)

3600 A channel number that is not selected in the parameter setting are specified for the output destination specified by (d).

(The PMW output is not executed.)

3611(CH1)

3612(CH2)

3613(CH3)

3614(CH4)

The ON time specified by (s1) is larger than the period specified by (s2).

(The PMW output stops.)

The ON time or period is less than “1”.

The SD device specified for the number of output pulses stores a value outside the available range (0 to 2,147,483,647).

OFF time setting
is 5 s or more

OFF time setting
is 5 s or more

OFF time setting
is 5 s or more

OFF time setting
is 5 s or more

OFF time setting
is 5 s or less

OFF time setting
is 5 s or less

Output stop command is issued
within 5 s of the OFF width time.

5 s or
less

5 s or
more

Output stop command is issued in 5 s
or more of the OFF width time.

When the OFF time setting is 5 s or more and 5 s or
more time has elapsed when an output stop command is
issued, outputting pulses stops with the stop command.

When the OFF time setting is 5 s or more and 5 s or
less time has elapsed when an output stop command is
issued, outputting pulses stops in 5 s from the stop
command.

If an output stop command is issued while the OFF
time setting is 5 s or less, outputting pulses stops
after the set OFF time elapses.

Output stop command

Period

Period

Period

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 533

7

32 bit binary pulse width modulation

DPWM

This instruction outputs the pulse (in 32-bit data units) of the ON time (in 32-bit data units) specified by (s1) and the period

specified by (s2) to the output destination specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 When a bit device is specified, specify one of Y0 to Y7.

Only Y can be used for a bit device.

If Y is specified, outputs are enabled when there is an unused channel number in the parameter setting and the specified Y number is

not used.

The nibble of a bit device cannot be specified.

*2 When a word device or constant is specified, specify one of the CH numbers.

Processing details

 � This instruction outputs the pulse of the ON time specified by (s1) and the period specified by (s2) to the output destination

specified by (d).

 � Time with a unit selected on the parameter setting screen (s or ms) can be specified by (s1) and (s2).

 � The pulse output destination channel number selected on the parameter setting screen can be specified by (d).

 � This instruction stores the number of pulses, pulse width, and period output from each channel to an SD device. The pulse

width and period are stored in the units set by the parameters. When 0 is specified in the pulse output, pulses are output

without any limitation.

Ladder diagram Structured text

ENO:=DPWM(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) ON time or the device number storing the ON time 1 to 2147483647 32-bit unsigned binary ANY32

(s2) Period or the device number storing the period 1 to 2147483647 32-bit unsigned binary ANY32

(d) Channel number or device number from which pulses are to be

output

 Bit/16-bit unsigned

binary

Bit/ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d) *1   *2 *2 *2    *2   

Pulse output

destination channel

Number of output pulses R/W Initial

value

Timing of reflection on

operation

Timing of clearing to initial

value

CH1 SD5301, SD5300 R/W 0 � When the DHCMOV

instruction is executed*1

� When the DPWM instruction is

executed

� END processing

STOP/PAUSERUN

CH2 SD5317, SD5316

CH3 SD5333, SD5332

CH4 SD5349, SD5348

(s1) (s2) (d)

(s1)

(s2)

OFF

ON

534
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

*1 When the DHCMOV instruction is used, the latest value can be read. A writable device can be updated immediately.

*2 Parameter setting values are set to an SD device at STOP to RUN.

*3 When this instruction is executed, the pulse width and period specified (s1) and (s2) are set to an SD device.

 � After the pulse output is started from each channel, the pulse output monitor turns on.

 � This instruction stores the number of pulses output from each channel.

 � The number of output pulses set to an SD device is valid for this instruction as well. The setting values are always read and

updated.

 � When the specified number of output pulses is equal to or less than the number of pulses which have already been output,

pulse output stops after outputting pulses which are being output.

 � When the specified number of output pulses is larger than the number of pulses which have already been output, pulse

output stops after outputting set number of pulses.

 � When the number of output pulses is set from the no limitation output setting (number of output pulses is 0), the number of

output pulses is not updated (because outputting pulses continues or stops in the no limitation output).

 � The maximum number of output pulses which can be output when the DPWM instruction is executed once (= maximum

value which can be set to an SD device) is “2,147,483,647”

 � The ON time and period can be set during the pulse output. Setting values are always read and updated.

 � When the number of output pulses is 0 (no limitation output setting), the monitor of the current number of output pulses is

set to 0.

 � When the number of output pulses is specified, the output pulses are monitored. When the DPWM output is executed

several times, the monitor of the number of output pulses is an integrated value.

 � The monitor of the current number of output pulses can be changed during the pulse output.

 � The monitor of the current number of output pulses is updated when the number of pulses is counted at the falling edge of

pulses in the positive logic and at the rising edge of pulses in the negative logic.

 � When the output always remains ON or OFF, the monitor of the current number of output pulses does not change.

 � The maximum value of the monitor of the current number of output pulses is “FFFFFFFFH”. After the current number of

output pulses reaches the maximum value, the monitor of the current number of output pulses starts to count again from

“0”.

Pulse output

destination channel

ON time R/W Initial

value

Timing of reflection on

operation

Timing of clearing to initial

value

CH1 SD5303, SD5302 R/W 0*2 � When the DHCMOV

instruction is executed*1

� When the DPWM instruction is

executed*3

� END processing

STOP/PAUSERUN

CH2 SD5319, SD5318

CH3 SD5335, SD5334

CH4 SD5351, SD5350

Pulse output

destination channel

Period R/W Initial

value

Timing of reflection on

operation

Timing of clearing to initial

value

CH1 SD5305, SD5304 R/W 0*2 � When the DHCMOV

instruction is executed*1

� When the DPWM instruction is

executed*3

� END processing

STOP/PAUSERUN

CH2 SD5321, SD5320

CH3 SD5337, SD5336

CH4 SD5353, SD5352

Pulse output

destination channel

Pulse output monitor R/W Initial

value

ON timing OFF timing

CH1 SM5300 R OFF � When the HIOEN instruction is

executed

� When the DPWM instruction is

executed

� Power on

� Reset

� RUNSTOP/PAUSE

� When the specified pulse

number output is terminated

� The drive contact is turned off

CH2 SM5301

CH3 SM5302

CH4 SM5303

Pulse output

destination channel

Monitoring the current

number of output pulses

R/W Initial

value

Timing of reflection on

operation

Timing of clearing to initial

value

CH1 SD5307, SD5306 R/W 0 � When the DHCMOV

instruction is executed

 An SD device is updated

� When the DPWM instruction is

executed

� END processing

� Power-on

� Reset

� STOP/PAUSERUN
CH2 SD5323, SD5322

CH3 SD5339, SD5338

CH4 SD5355, SD5354

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 535

7

Precautions

 � Specify the ON time by (s1) and the period by (s2) so that [(s2)-(s1)] is equal to or larger than 3 s.

 � When a negative value is specified for the ON time by (s1) and the period by (s2), an operation error occurs. (In 16-bit

instruction PWM, no error occurs.)

 � Specify 2 s or more in Y0 to Y3 and 200 s or more in Y4 to Y7 for the ON time specified by (s1), and specify 5 s or more

in Y0 to Y3 and 400 s or more in Y4 to Y7 for the period specified by (s2).

 � When a channel number that is not selected for the PMW output in the parameter setting is specified for (d), this instruction

is not executed. An operation error occurs.

 � Operations when the PMW output is stopped (while the output pulse is on)

Period

Output stop command

If an output stop command is issued while the ON
time setting is 5 s or less, outputting pulses
stops after the set ON time elapses.

When the ON time setting is 5s or more and 5 s or
less time has elapsed when an output stop command is
issued, outputting pulses stops in 5 s from the stop
command.

ON time
setting is 5 s

or less

ON time
setting is 5 s

or more

ON time
setting is 5 s

or more

ON time
setting is 5 s

or more

ON time
setting is 5 s

or more

ON time
setting is 5 s

or less

5 s
or less

Output stop command is issued
within 5 s of the ON width time.

5 s or
more

Output stop command is issued in
5 s or more of the ON width time.

When the ON time setting is 5 s or more and 5 s or
more time has elapsed when an output stop command is
issued, outputting pulses stops with the stop command.

Period

Period

536
7 APPLICATION INSTRUCTION

7.14 Pulse related instruction

 � Operations when the PMW output is stopped (while the output pulse is off)

 � The PMW output stops when SM8034 is on, and starts when SM8034 is off.

 � When the pulse output for positioning is driven, the PMW output does not stop.

 � When specifying the number of output pulses, executing the PWM instruction, and then outputting pulses again after the

pulse output stops due to the completion of output of the specified number of pulses, turn OFF the contact which drove the

PWM instruction. If the PWM instruction was driven by the HIOEN instruction, stop the HIOEN instruction.

 � When the period setting is equivalent to the ON time setting, the output always remains ON. The output ON state continues

even after “Period x Number of output pulses” is finished in this condition.

OFF time setting
is 5 s or more

OFF time setting
is 5 s or more

OFF time setting
is 5 s or more

OFF time setting
is 5 s or more

OFF time setting
is 5 s or less

OFF time setting
is 5 s or less

Output stop command is issued
within 5 s of the OFF width time.

5 s or
less

5 s or
more

Output stop command is issued in 5 s
or more of the OFF width time.

When the OFF time setting is 5 s or more and 5 s or
more time has elapsed when an output stop command is
issued, outputting pulses stops with the stop command.

When the OFF time setting is 5 s or more and 5 s or
less time has elapsed when an output stop command is
issued, outputting pulses stops in 5 s from the stop
command.

If an output stop command is issued while the OFF
time setting is 5 s or less, outputting pulses stops
after the set OFF time elapses.

Output stop command

Period

Period

Period

7 APPLICATION INSTRUCTION

7.14 Pulse related instruction 537

7

Operation error

Error code

(SD0/SD8067)

Description

1810 The output destination specified by (d) is already used by another instruction (positioning instruction).

(The PMW output is not executed.)

A Y device is specified as the output destination specified by (d), and there is no unused channel number in the parameter setting

3405 Y10 or later is specified as the output destination specified by (d).

(The PMW output stops.)

3600 A channel number that is not selected in the parameter setting are specified for the output destination specified by (d).

(The PMW output is not executed.)

3611(CH1)

3612(CH2)

3613(CH3)

3614(CH4)

The ON time specified by (s1) is larger than the period specified by (s2).

(The PMW output stops.)

In (s1) and (s2), a negative value is specified.

(The PMW output stops.)

Values of an SD device for setting pulse width and period of this instruction are incorrect.

(The PMW output stops.)

The ON time or period is less than “1”.

The SD device specified for the number of output pulses stores a value outside the available range (0 to 2,147,483,647).

538
7 APPLICATION INSTRUCTION

7.15 Drum sequence

7.15 Drum sequence

16-bit binary data absolute method

ABSD

This instruction creates many output patterns corresponding to the current value (16-bit binary data) of a counter.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only C can be used.

*2 T, ST, C cannot be used.

Processing details

 � In this example, outputs are controlled to on or off by one table rotation (0 to 360 using the rotation angle signal of 1/

pulse).

 � The current value (s2) of the counter is compared with the data table with "n" lines starting from (s1) (which occupies "n"

lines  2 devices), and consecutive "n" outputs starting from (d) are controlled to on or off during one rotation.

Ladder diagram Structured text

ENO:=ABSD(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Head device number storing the data table (with rising and falling

point data)

 16-bit signed binary ANY16

(s2) Counter number for monitoring the current value compared with

the data table

 16-bit signed binary ANY16

(d) Head bit device number to be output  Bit Bit

(n) Number of lines in the table and the number of output bit devices 1 to 64 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)    *1         

(d)    *2         

(n)             

(s1) (s2) (d) (n)

ABSD

RST

X1
(s2)

K360

(s2)

(s1) (s2) (d) (n)

(s2) X1

Rotation angle signal of 1°/pulse

Command
input

7 APPLICATION INSTRUCTION

7.15 Drum sequence 539

7

 � Write the following data to (s1) to (s1)+2(n)-1 in advance by a transfer instruction: For example, store 16-bit rising point data

in even-numbered devices and 16-bit falling point data in odd-numbered devices.

 � The following figure shows the output patterns for device points (n) starting from (d) when the command input is set to on.

Each rising point/falling point can be changed by overwriting the data in (s1) to (s1)+2(n)-1.

Precautions

 � When specifying the nibble of a bit device to (s1), specify a multiple of 16 (0, 16, 32, 64 ...) as a device number and always

specify K4 for the number of digits.

 � The value of (n) determines the number of target outputs (1  (n)  64).

 � Even if the command input is set to OFF, the ON/OFF status of outputs does not change.

Operation error

Rising point Falling point Target output

 Data value (example)  Data value (example)

(s1) 40 (s1)+1 140 (d)

(s1)+2 100 (s1)+3 200 (d)+1

(s1)+4 160 (s1)+5 60 (d)+2

(s1)+6 240 (s1)+7 280 (d)+3

    

(s1)+2(n)-2 (s1)+2(n)-1 (d)+n-1

Error code

(SD0/SD8067)

Description

2820 The number of device points specified by (s1) or (d) is insufficient.

3405 The value specified by (n) is outside the following range.

1 to 64

40 140

100 200

160

240 280

180 360

60

0

(d)+3

(d)+2

(d)+1

(d)

540
7 APPLICATION INSTRUCTION

7.15 Drum sequence

32-bit binary data absolute method

DABSD

This instruction creates many output patterns corresponding to the current value (32-bit binary data) of a counter.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only C (32 bits) can be used.

*2 T, ST, C cannot be used.

Processing details

 � In this example, outputs are controlled to on or off by one table rotation (0 to 360 using the rotation angle signal of 1/

pulse).

 � The current value (s2) of the counter is compared with the data table with "n" lines starting from (s1) (which occupies "n"

lines  4 devices), and consecutive "n" outputs starting from (d) are controlled to on or off during one rotation.

Ladder diagram Structured text

ENO:=DABSD(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Head device number storing the data table (with rising and falling

point data)

 32-bit signed binary ANY32

(s2) Counter number for monitoring the current value compared with

the data table

 32-bit signed binary ANY32

(d) Head bit device number to be output  Bit Bit

(n) Number of lines in the table and the number of output bit devices 1 to 64 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)    *1         

(d)    *2         

(n)             

(s1) (s2) (d) (n)

DABSD

RST

X1
(s2)

K360

(s2)

(s1) (s2) (d) (n)

(s2) X1

Rotation angle signal of 1°/pulse

Command
input

7 APPLICATION INSTRUCTION

7.15 Drum sequence 541

7

 � Write the following data to (s1), (s1)+1 to (s1)+4(n)-2, and (s1)+4(n)-1 in advance by a transfer instruction: For example,

store 32-bit rising point data in even-numbered devices and 32-bit falling point data in odd-numbered devices.

 � The following figure shows the output patterns for device points (n) starting from (d) when the command input is set to on.

Each rising point/falling point can be changed by overwriting the data in (s1) to (s1)+2(n)-1.

Precautions

 � The DABSD instruction can specify a high-speed counter. When the high-speed counter is specified, the output pattern

contains response delay caused by the scan cycle with regard to the current value of a counter.

 � When specifying the nibble of a bit device to (s1), specify a multiple of 16 (0, 16, 32, 64 ...) as a device number and always

specify K8 for the number of digits.

 � The value of (n) determines the number of target outputs (1  (n)  64).

 � Even if the command input is set to OFF, the ON/OFF status of outputs does not change.

Operation error

Rising point Falling point Target output

 Data value (example)  Data value (example)

(s1)+1, (s1) 40 (s1)+3, (s1)+2 140 (d)

(s1)+5, (s1)+4 100 (s1)+7, (s1)+6 200 (d)+1

(s1)+9, (s1)+8 160 (s1)+11, (s1)+10 60 (d)+2

(s1)+13, (s1)+12 240 (s1)+15, (s1)+14 280 (d)+3

    

(s1)+4(n)-3, (s1)+4(n)-4 (s1)+4(n)-1, (s1)+4(n)-2 (d)+n-1

Error code

(SD0/SD8067)

Description

2820 The number of device points specified by (s1) or (d) is insufficient.

3405 The value specified by (n) is outside the following range.

1 to 64

40 140

100 200

160

240 280

180 360

60

0

(d)+3

(d)+2

(d)+1

(d)

542
7 APPLICATION INSTRUCTION

7.15 Drum sequence

Relative method

INCD

This instruction creates many output patterns using a pair of counters.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only C can be used.

*2 T, ST, C cannot be used.

Processing details

 � The current value of a counter is compared with the data table having "n" lines starting from (s1) (which occupies "n" lines 

1 device). When the value is equivalent to the table data, the current output is reset, and the next output is controlled. In this

way, the ON/OFF status of specified outputs is controlled in turn.

■Operation example
 � The following ladder example shows the operation. (s2) occupies two points. In the following timing chart, C0 and C1

correspond to the two points.

 � Suppose that the following data is written in advance by a transfer instruction:

Ladder diagram Structured text

ENO:=INCD(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Head word device number storing the set value  32-bit signed binary ANY32

(s2) Head counter number for monitoring current value is monitored  32-bit signed binary ANY32

(d) Head bit device number to be output  Bit Bit

(n) Number of output bit devices 1 to 64 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)    *1         

(d)    *2         

(n)             

Device storing data Output

 Data value (example)  Example

(s1) D300=20 (d) M0

(s1)+1 D301=30 (d)+1 M1

(s1)+2 D302=10 (d)+2 M2

(s1)+3 D303=40 (d)+3 M3

   

(s1)+(n)-1  (d)+(n)-1 

(s1) (s2) (d) (n)

INCD

SM412

C0

K9999

D300 C0 M0 K4

X0

1 sec clock

7 APPLICATION INSTRUCTION

7.15 Drum sequence 543

7

 � Timing chart

 � When the command contact turns on, the output M0 turns on.

 � When the current value of C0 reaches the comparison value D300, the output M0 is reset, "1" is added to the count value of

the process counter C1, and the current value of the counter C0 is reset.

 � The next output M1 turns ON.

 � When the current value of C0 reaches the comparison value D301, the output M1 is reset, "1" is added to the count value of

the process counter C1, and the current value of the counter C0 is reset.

 � The current value is compared for up to "n (K4)" outputs in the same way (1  (n)  64).

 � When the final process specified by (n) is finished, the execution complete flag SM8029 turns on and remains on for one

operation cycle. SM8029 is used for many instructions as the instruction execution complete flag. Use SM8029 as a contact

just after a corresponding instruction.

 � The program execution returns to the beginning, and outputs are repeated.

Precautions

When specifying the nibble of a bit device to (s1), specify a multiple of 16 (0, 16, 32, 64 ...) as a device number.

Operation error

Error code

(SD0/SD8067)

Description

2820 The number of device points specified by (s1), (s2), or (d) is insufficient.

3405 The value specified by (n) is outside the following range.

1 to 64

X0

C1

M0

M1

M2

M3

SM8029

20

30

10

40

20

0

20C0

1
2

3

0
1

0
1

Complete flag

Current
Value

Current
Value

544
7 APPLICATION INSTRUCTION

7.16 Check code

7.16 Check code

Check code

CCD(P)

These instructions calculate the horizontal parity value and sum check value in the error check methods used in

communication. There is another check method, called CRC (cyclic redundancy check). For obtaining CRC value, use the

CRC(P) instructions.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=CCD(EN,s,n,d);

ENO:=CCDP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device number of applicable device  16-bit signed binary ANY16

(d) Head device number storing the calculated data  16-bit signed binary ANY16

(n) Number of data 1 to 32767 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)    *1         

(n)             

(s) (d) (n)

7 APPLICATION INSTRUCTION

7.16 Check code 545

7

Processing details

 � These instructions calculate the addition data and horizontal parity value of data stored in (s) to (s)+(n)-1. The addition data

is stored to (d), and the horizontal parity value is stored to (d)+1. The 16-bit mode and 8-bit mode are available for these

instructions. For the operation in each mode, refer to the proceeding pages.
� 16-bit conversion mode (while SM8161 is OFF)

With regard to (n) data points starting from (s), the addition data and horizontal parity data of high-order 8 bits and low-order 8 bits are stored to (d) and

(d)+1 respectively.

SM8161 is shared with the RS2, ASCI(P), HEX(P), and CRC(P) instructions. SM8161 must always be off in the 16-bit mode.

SM8161 is cleared when the CPU module mode is changed from RUN to STOP.

In the following program, conversion is executed as follows:

(s)

D100 K100 = 0 1 1 0 0 1 0 0

D100 K111 = 0 1 1 0 1 1 1

D101 K100 = 0 1 1 0 0 1 0 0

D101 K 98 = 0 1 1 0 0 0 1 0

D102 K123 = 0 1 1 1 1 0 1

D102 K 66 = 0 1 0 0 0 0 1 0

D103 K100 = 0 1 1 0 0 1 0 0

D103 K 95 = 0 1 0 1 1 1 1

D104 K210 = 1 1 0 1 0 0 1 0

D104 K 88 = 0 1 0 1 1 0 0 0

 K1091

1 0 0 0 0 1 0

CCD D100 D0 K10

SM400

SM8161

X10









0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 D0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 D1

Example of data contents

lowest-order byte

highest-order byte (1)

lowest-order byte

highest-order byte

lowest-order byte (1)

highest-order byte

lowest-order byte

highest-order byte (1)

lowest-order byte

highest-order byte

Total

Horizontal parity (1)

16-bit conversion mode

When the number of "1" is odd, the horizontal parity is "1".

When the number of "1" is even, the horizontal parity is "0".

1091 in BCD.

Horizontal parity

546
7 APPLICATION INSTRUCTION

7.16 Check code

Operation error

� 8-bit conversion mode (while SM8161 is ON)

With regard to (n) data points starting from (s), the addition data and horizontal parity data of only low-order 8 bits are stored to (d) and (d)+1 respectively.

SM8161 is shared with the RS2, ASCI(P), HEX(P), and CRC(P) instructions. SM8161 must always be on in the 8-bit mode.

SM8161 is cleared when the CPU module mode is changed from RUN to STOP.

In the following program, conversion is executed as follows:

Error code

(SD0/SD8067)

Description

2820 The device range specified by (s) or (d) exceeds the corresponding device range.

3405 The value specified by (n) is outside the following range.

1 to 32767

(s)

D100 K100 = 0 1 1 0 0 1 0 0

K111 = 0 1 1 0 1 1 1

D105

D106

D107

D109

D108

D101

K100 = 0 1 1 0 0 1 0 0

K 98 = 0 1 1 0 0 0 1 0

D102

D103

D104 K123 = 0 1 1 1 1 0 1

K 66 = 0 1 0 0 0 0 1 0

K100 = 0 1 1 0 0 1 0 0

K 95 = 0 1 0 1 1 1 1

K210 = 1 1 0 1 0 0 1 0

K 88 = 0 1 0 1 1 0 0 0

 K1091

1 0 0 0 0 1 0

CCD D100 D0 K10

SM400

SM8161

X10









0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 D0

0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 D1

Example of data contents

(1)

(1)

(1)

Total

Horizontal parity (1)

8-bit conversion mode

When the number of "1" is odd, the horizontal parity is "1".

When the number of "1" is even, the horizontal parity is "0".

1091 in BCD.

Horizontal parity

Ignored Low-order 8 bits

16 bits

Source data

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 547

7

7.17 Data operation instruction

Searching 16-bit data

SERMM(P)

These instructions search for the same data, maximum value and minimum value in a data table.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions search the same data as the 16-bit binary data of (s2) in (n) data starting from (s1), and store the search

result in (d) to (d)+4.

 � When the same data exists, five devices starting from (d) store the number of same data, first position, last position,

maximum value position and minimum value position.

 � When the same data does not exist, five devices starting from (d) store the number of same data, first position, last position,

maximum value position and minimum value position. In this case, however, 0 is stored in three devices starting from (d)

(which store the number of same data, first position and last position).

Ladder diagram Structured text

ENO:=SERMM(EN,s1,s2,n,d);

ENO:=SERMMP(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Head device number in which same data, maximum value and

minimum value are searched

 16-bit signed binary ANY16

(s2) Data to be searched for or device number storing data  16-bit signed binary ANY16

(d) Head device number storing number of same data, maximum

value and minimum value detected by search

 16-bit signed binary ANY16

(n) Number of data in which same data, maximum value and

minimum value are searched

1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(n)             

(s1) (s2) (d) (n)

548
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

 � The following table shows example of search result table configuration and data. (n=10)

 � The following table shows example of search result table.

Precautions

 � Comparison is executed algebraically. (-10<2)

 � When there are two or more maximum or minimum values in the searched data, the last position of the max/min is stored

respectively.

 � When these instructions are driven, five devices ((d), (d)+1, (d)+2, (d)+3, and (d)+4) are occupied for storing the search

result (d). Make sure that these devices are not used in other controls for the machine.

Operation error

Searched device

(s1)

Searched data

(s1) value (example)

Comparison data

(s2) value (example)

Data position Search result

Maximum

value (d)+4

Same (d) Minimum

value (d)+3

(s1) K100 K100 0  (First time)

(s1)+1 K111 1

(s1)+2 K100 2 

(s1)+3 K98 3

(s1)+4 K123 4

(s1)+5 K66 5 

(s1)+6 K100 6  (Last)

(s1)+7 K95 7

(s1)+8 K210 8 

(s1)+9 K88 9

Device number Description Search result item

(d) 3 Number of same data

(d)+1 0 Same data position (first position)

(d)+2 6 Same data position (last position)

(d)+3 5 Minimum value position (last position)

(d)+4 8 Maximum value position (last position)

Error code

(SD0/SD8067)

Description

2820 The device range specified by (s1) or (d) exceeds the corresponding device range.

3405 The value stored in a device specified by (n) is 0.

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 549

7

Searching 32-bit data

DSERMM(P)

These instructions search for the same data, maximum value and minimum value in a data table.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions search the same data as the 32-bit binary data of (s2)+1 and (s2) in (n) data starting from (s1)+1 and

(s1), and store the search result in (d)+1, (d) to (d)+9, and (d)+8.

 � When the same data exists, five 32-bit binary data devices starting from (d)+1 and (d) store the number of same data, first

position, last position, maximum value position and minimum value position.

 � When the same data does not exist, five 32-bit binary data devices starting from (d)+1 and (d) store the number of same

data, first position, last position, maximum value position and minimum value position. In this case, however, 0 is stored in

three 32-bit devices starting from (d)+1 and (d) (which store the number of same data, first position and last position).

 � The following table shows example of search result table configuration and data. (n=10)

Ladder diagram Structured text

ENO:=DSERMM(EN,s1,s2,n,d);

ENO:=DSERMMP(EN,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(s1) Head device number in which same data, maximum value and

minimum value are searched

 32-bit signed binary ANY32

(s2) Data to be searched for or device number storing data  32-bit signed binary ANY32

(d) Head device number storing number of same data, maximum

value and minimum value detected by search

 32-bit signed binary ANY32

(n) Number of data in which same data, maximum value and

minimum value are searched

1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(n)             

Searched device

(s1)

Searched data

(s1) value

(example)

Comparison data

(s2) value

(example)

Data position Search result

Maximum value

(d)+9, (d)+8

Same (d) Minimum value

(d)+7, (d)+6

(s1)+1, (s) K100000 K100000 0  (First time)

(s1)+3, (s1)+2 K110100 1

(s1)+5, (s1)+4 K100000 2 

(s1)+7, (s1)+6 K98000 3

(s1)+9, (s1)+8 K123000 4

(s1)+11, (s1)+10 K66000 5 

(s1)+13, (s1)+12 K100000 6  (Last)

(s1)+15, (s1)+14 K95000 7

(s1)+17, (s1)+16 K910000 8 

(s1)+19, (s1)+18 K910000 9 

(s1) (s2) (d) (n)

550
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

 � The following table shows example of search result table.

Precautions

 � Comparison is executed algebraically. (-10<2)

 � When there are two or more maximum or minimum values in the searched data, the last position of the max/min is stored

respectively.

 � When these instructions are driven, five devices ([(d)+1,(d)], [(d)+3, (d)+2], [(d)+5, (d)+4], [(d)+7, (d)+6], and [(d)+9, (d)+8])

are occupied for storing the these result (d). Make sure that these devices are not used in other controls for the machine.

Operation error

Device number Description Search result item

(d)+1, (d) 3 Number of same data

(d)+3, (d)+2 0 Same data position (first position)

(d)+5, (d)+4 6 Same data position (last position)

(d)+7, (d)+6 5 Minimum value position (last position)

(d)+9, (d)+8 9 Maximum value position (last position)

Error code

(SD0/SD8067)

Description

2820 The device range specified by (s1) or (d) exceeds the corresponding device range.

3405 The value stored in a device specified by (n) is 0.

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 551

7

Bit check of 16-bit data

SUM(P)

These instructions store the total bits of 1 in the binary 16-bit data of the device specified by (s) to the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions store the total bits of 1 in the binary 16-bit data of the device specified by (s) to the device specified by

(d).

 � When all binary 16-bit data of the device specified by (s) are 0 (off), the zero flag M8020 turns on.

Precautions

While the command input is off, the instruction is not executed. The output of the number of bits in the on status is latched in

the previous status.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=SUM(EN,s,d);

ENO:=SUMP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device number that counts the total bits of 1  16-bit signed binary ANY16

(d) Head device number storing the total bits  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

The total of 1 is stored in the binary data. (In the example shown on the left, the total is 8.)

(s) (d)

(s)

b15 b8b7 b0

1 1 0 10 0 1 1 0 10 1 0 0 0 1

(d)

b15 b8b7 b0

0 0 0 00 0 0 0 0 00 0 1 0 0 0

Total of 1

552
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Bit check of 32-bit data

DSUM(P)

These instructions store the total bits of 1 in the binary 32-bit data of the device specified by (s) to the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions store the total bits of 1 in the binary 32-bit data of the device specified by (s) to the device specified by

(d).

 � When all binary 32-bit data of the device specified by (s) are 0 (off), the zero flag M8020 turns on.

Precautions

While the command input is off, the instruction is not executed. The output of the number of bits in the on status is latched in

the previous status.

Operation error

There is no operation error.

Ladder diagram Structured text

ENO:=DSUM(EN,s,d);

ENO:=DSUMP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device number that counts the total bits of 1  32-bit signed binary ANY32

(d) Head device number storing the total bits  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

The total of 1 is stored in the binary data. (In the example shown on the left, the

total is 16.)

(s) (d)

b31 b16

1 0 0 11 1 0 0 1 10 0 0 1 1 1

b15 b0

0 0 0 01 0 0 0 1 11 1 0 1 1 0

(d)

b15 b8b7 b0

0 0 0 00 0 0 0 0 00 1 0 0 0 0

(s)+1 (s)

Total of 1

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 553

7

Bit judgment of 16-bit data

BON(P)

These instructions check whether (n) bit(s) of binary 16-bit data of the device specified by (s) are on or off, and output the

result to the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions check whether (n) bit(s) of binary 16-bit data of the device specified by (s) are on or off, and output the

result to the device specified by (d).

 � When the result above is on, these instructions turn (d) on. When the result above is off, these instructions turn (d) off.

 � When a constant (K) is specified in the device specified by (s), it is automatically converted into binary.

Operation error

Ladder diagram Structured text

ENO:=BON(EN,s,n,d);

ENO:=BONP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Word device number storing the data  16-bit signed binary ANY16

(d) Bit device number to be driven  Bit Bit

(n) Bit position to be checked 0 to 15 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)    *1         

(n)             

Error code

(SD0/SD8067)

Description

3405 The value specified by (n) is outside the following range.

0 to 15

(s) (d) (n)

(n)

(s)

b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

0 1 0 0 1 1 1 11 0 1 0 10 00

K4K5K6K7 K0K1K2K3K8K9K10K11K12K13K14K15

0

1

(n)=5

(n)=8
(OFF)

(ON)

(d) Bit device

554
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Bit judgment of 32-bit data

DBON(P)

These instructions check whether (n) bit(s) of binary 32-bit data of the device specified by (s) are on or off, and output the

result to the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions check whether (n) bit(s) of binary 32-bit data of the device specified by (s) are on or off, and output the

result to the device specified by (d).

 � When the result above is on, these instructions turn (d) on. When the result above is off, these instructions turn (d) off.

 � When a constant (K) is specified in the device specified by (s), it is automatically converted into binary.

Operation error

Ladder diagram Structured text

ENO:=DBON(EN,s,n,d);

ENO:=DBONP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Word device number storing the data  32-bit signed binary ANY32

(d) Bit device number to be driven  Bit Bit

(n) Bit position to be checked 0 to 31 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)    *1         

(n)             

Error code

(SD0/SD8067)

Description

3405 The value specified by (n) is outside the following range.

0 to 31

(s) (d) (n)

(n)

0

1

b0b1b2b3b4b5b6b7b8b9b10b11b12b13b14b15

0 1 0 0 1 1 1 11 0 1 0 10 00

K4K5K6K7 K0K1K2K3K8K9K10K11K12K13K14K15

b16b17…b29b30b31

0 1 … 1 11

…K29K30 K16K17K31

(n)=29

(n)=5
(OFF)

(ON)

(s)+1, (s)

(d) Bit device

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 555

7

Searching the maximum value of 16-bit data

MAX(P)(_U)

These instructions search the maximum value from the (n) point(s) of 16-bit binary data in the device starting from the one

specified by (s), and store the maximum value in the device specified by (d).

*1 The MAX(_U) instructions are not supported by the ST language. Use MAX of the standard function.

Page 804 MAX(_E), MIN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions search the maximum value from the (n) point(s) of 16-bit binary data in the device starting from the one

specified by (s), and store the maximum value in the device specified by (d). These instructions start searching from the

device specified by (s), and store the location from (s) of the first maximum value in (d)+1 and the number of maximum

values in (d)+2.

Operation error

Ladder diagram Structured text*1

ENO:=MAXP(EN,s,n,d); ENO:=MAXP_U(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) MAX(P) Head device number where the maximum value is searched  16-bit signed binary ANY16

MAX(P)_U 16-bit unsigned binary

(d) MAX(P) Head device number for storing the maximum value  16-bit signed binary ANY16

MAX(P)_U 16-bit unsigned binary

(n) Number of data to be searched 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The (n) point(s) of data in the device starting from the one specified by (s) exceed the corresponding device range.

The device specified by (d) exceeds the corresponding device range.

(s) (d) (n)

1234 (BIN)

5678 (BIN)

5678 (BIN)

-5214 (BIN)

5555 (BIN)

(n)

(s)

(s)+1

(s)+(n-2)

(s)+(n-1)

(s)+2
5678 (BIN)

2

2

(d)

(d)+1

(d)+2

Maximum value

Position

Number of data

556
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Searching the maximum value of 32-bit data

DMAX(P)(_U)

These instructions search the maximum value from the (n) point(s) of 32-bit binary data in the device starting from the one

specified by (s), and store the maximum value in the device specified by (d).

*1 The DMAX(_U) instructions are not supported by the ST language. Use MAX of the standard function.

Page 804 MAX(_E), MIN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions search the maximum value from the (n) point(s) of 32-bit binary data in the device starting from the one

specified by (s), and store the maximum value in the device specified by (d) and (d)+1. These instructions start searching

from the device specified by (s), and store the location from (s) of the first minimum value in (d)+2 and the number of

maximum values in (d)+3.

Operation error

Ladder diagram Structured text*1

ENO:=DMAXP(EN,s,n,d); ENO:=DMAXP_U(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) DMAX(P) Head device number where the maximum value is searched  32-bit signed binary ANY32

DMAX(P)_U 32-bit unsigned binary

(d) DMAX(P) Head device number for storing the maximum value  32-bit signed binary ANY32

DMAX(P)_U 32-bit unsigned binary

(n) Number of data to be searched 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The (n) point(s) of data in the device starting from the one specified by (s) exceed the corresponding device range.

The device specified by (d) exceeds the corresponding device range.

(s) (d) (n)

54321000 (BIN)

4321000 (BIN)

3254000 (BIN)

54321000 (BIN)

12345678 (BIN)

(n)

54321000 (BIN)

1

2

(s)+1, (s)

(s)+9, (s)+8

(s)+3, (s)+2

(s)+5, (s)+4

(s)+7, (s)+6

(d)+1, (d)

(d)+2

(d)+3

Maximum value

Position

Number of data

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 557

7

Searching the minimum value of 16-bit data

MIN(P)(_U)

These instructions search the minimum value from the (n) point(s) of 16-bit binary data in the device starting from the one

specified by (s), and store the minimum value in the device specified by (d).

*1 The MIN(_U) instructions are not supported by the ST language. Use MIN of the standard function.

Page 804 MAX(_E), MIN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions search the minimum value from the (n) point(s) of 16-bit binary data in the device starting from the one

specified by (s), and store the minimum value in the device specified by (d). These instructions start searching from the

device specified by (s), and store the location from (s) of the first minimum value in (d)+1 and the number of minimum

values in (d)+2.

Operation error

Ladder diagram Structured text*1

ENO:=MINP(EN,s,n,d); ENO:=MINP_U(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) MIN(P) Head device number where the minimum value is searched  16-bit signed binary ANY16

MIN(P)_U 16-bit unsigned binary

(d) MIN(P) Head device number for storing the minimum value  16-bit signed binary ANY16

MIN(P)_U 16-bit unsigned binary

(n) Number of data to be searched 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The (n) point(s) of data in the device starting from the one specified by (s) exceed the corresponding device range.

The device specified by (d) exceeds the corresponding device range.

(s) (d) (n)

5015 (BIN)

6192 (BIN)

5571 (BIN)

5015 (BIN)

5571 (BIN)

(n)

(s)

(s)+1

(s)+(n-2)

(s)+(n-1)

(s)+2
5015 (BIN)

1

2

(d)

(d)+1

(d)+2

Minimum value

Position

Number of data

558
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Searching the minimum value of 32-bit data

DMIN(P)(_U)

These instructions search the minimum value from the (n) point(s) of 32-bit binary data in the device starting from the one

specified by (s), and store the minimum value in the device specified by (d).

*1 The DMIN(_U) instructions are not supported by the ST language. Use MIN of the standard function.

Page 804 MAX(_E), MIN(_E)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions search the minimum value from the (n) point(s) of 32-bit binary data in the device starting from the one

specified by (s), and store the minimum value in the device specified by (d) and (d)+1. These instructions start searching

from the device specified by (s), and store the location from (s) of the first minimum value in (d)+2 and the number of

minimum values in (d)+3.

Operation error

Ladder diagram Structured text*1

ENO:=DMINP(EN,s,n,d); ENO:=DMINP_U(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) DMIN(P) Head device number where the minimum value is searched  32-bit signed binary ANY32

DMIN(P)_U 32-bit unsigned binary

(d) DMIN(P) Head device number for storing the minimum value  32-bit signed binary ANY32

DMIN(P)_U 32-bit unsigned binary

(n) Number of data to be searched 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The (n) point(s) of data in the device starting from the one specified by (s) exceed the corresponding device range.

The device specified by (d) exceeds the setting area in the device/label memory.

(s) (d) (n)

22342001 (BIN)

37282010 (BIN)

22342001 (BIN)

59872019 (BIN)

(n)

22342001 (BIN)

1

2

(s)+1, (s)

(s)+7, (s)+6

(s)+3, (s)+2

(s)+5, (s)+4

(d)+1, (d)

(d)+2

(d)+3

Minimum value

Position

Number of data

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 559

7

Sorting 16-bit data

SORTTBL(_U)

These instructions sort data lines in the data table (sorting source) having ((m1)(m2)) points specified by (s) in the ascending

order based on the group data in the column number (n), and store the result in the data table (sorting result) having

((m1)(m2)) points specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions sort data lines in the data table (sorting source) having ((m1)(m2)) points specified by (s) in the

ascending order based on the group data in the column number (n), and store the result in the data table (sorting result)

having (m1m2) points specified by (d).

 � The data table configuration is explained in an example in which the sorting source data table has 3 lines and 4 columns

(m1 = K3, m2 = K4). For the sorting result data table, understand (s) as (d).

 � When the command input turns on, data sorting is started. Data sorting is completed after (m1) scans, and the instruction

execution complete flag SM8029 is set to on.

Ladder diagram Structured text

ENO:=SORTTBL(EN,s,m1,m2,n,d);

ENO:= SORTTBL_U(EN,s,m1,m2,n,d);

Operand Description Range Data type Data type (label)

(s) SORTTBL Head device number storing the data table  16-bit signed binary ANY16

SORTTBL_U 16-bit unsigned binary

(m1) Number of data (lines) 1 to 32 16-bit unsigned binary ANY16

(m2) Number of group data (columns) 1 to 6 16-bit unsigned binary ANY16

(d) SORTTBL Head device number for storing the operation result  16-bit signed binary ANY16

SORTTBL_U 16-bit unsigned binary

(n) Column number of group data (column) used as the basis of

sorting

 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(m1)             

(m2)             

(d)             

(n)             

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

Number of data (m1) = 3 Line No. 1 (s) (s)+3 (s)+6 (s)+9

Line No. 2 (s)+1 (s)+4 (s)+7 (s)+10

Line No. 3 (s)+2 (s)+5 (s)+8 (s)+11

(s) (m1) (m2) (d) (n)

560
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

 � The following table shows an operation example based on the sorting source data below. It is recommended to put a serial

number such as a control number in the first column so that the original line number can be estimated based on the

contents.

 � Sorting result when the instructions are executed with (n) = K2 (column No. 2)

 � Sorting result when the instructions are executed with (n) = K3 (column No. 3)

Precautions

 � Do not change the contents of operands and data during operation.

 � To execute these instructions again, set the command input to off once, then on again.

 � These instructions can only be used once in any program.

 � When specifying the same device in (s) and (d), the source data is overwritten by the data acquired by sorting. Take special

care so that the contents of (s) are not changed until execution is completed.

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

Number of data (m1) = 5 Line No. 1 (s) (s)+5 (s)+10 (s)+15

1 150 45 20

Line No. 2 (s)+1 (s)+6 (s)+11 (s)+16

2 180 50 40

Line No. 3 (s)+2 (s)+7 (s)+12 (s)+17

3 160 70 30

Line No. 4 (s)+3 (s)+8 (s)+13 (s)+18

4 100 20 8

Line No. 5 (s)+4 (s)+9 (s)+14 (s)+19

5 150 50 45

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

8020014

Line No. 2

02540511

Line No. 3

54050515

Line No. 4

03070613

Line No. 5

04050812

Number of data (m1) = 5 Line No. 1

(d)+17

(d)+2

(d)+7 (d)+12(d)+1

(d)+6

(d)+11

(d)+16

(d)+3 (d)+8 (d)+13 (d)+18

(d)+4 (d)+9 (d)+14 (d)+19

(d) (d)+5

(d)+10

(d)+15

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

8020014

Line No. 2

02540511

Line No. 3

04050812

Line No. 4

54050515

Line No. 5

03070613

Number of data (m1) = 5 Line No. 1

(d)+17

(d)+1

(d)+2 (d)+7 (d)+12

(d)+6 (d)+11 (d)+16

(d)+8(d)+3 (d)+18(d)+13

(d)+9(d)+4 (d)+14 (d)+19

(d) (d)+5 (d)+10 (d)+15

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 561

7

Operation error

Error code

(SD0/SD8067)

Description

1811 These instructions are used more than once.

2820 The device range specified by (s) exceeds the corresponding device range.

The device range specified by (d) exceeds the corresponding device range.

3405 The value specified by (m1) is outside the following range.

1 to 32

The value specified by (m2) is outside the following range.

1 to 6

The value specified by (n) is outside the following range.

1 to (m2)

562
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

16-bit data alignment 2

SROTTBL2(_U)

These instructions sort data lines in the data table (sorting source) of 16-bit binary data having (m1m2) points specified by (s)

in the ascending order or descending order based on the group data in the column number (n), and store the result in the data

table (sorting result) of 16-bit binary data having ((m1)(m2)) points specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions sort data lines in the data table (sorting source) of 16-bit binary data having (m1m2) points specified by

(s) in the ascending order or descending order based on the group data in the column number (n), and store the result in

the data table (sorting result) of 16-bit binary data having ((m1)(m2)) points specified by (d).

 � The data table configuration is explained in an example in which the sorting source data table has 3 lines and 4 columns

(m1 = K3, m2 = K4). For the sorting result data table, understand (s) as (d).

 � Set the sorting order by setting SM703 to on or off.

Ladder diagram Structured text

ENO:=SROTTBL2(EN,s,m1,m2,n,d);

ENO:=SROTTBL2_U(EN,s,m1,m2,n,d);

Operand Description Range Data type Data type (label)

(s) SROTTBL2 Head device number storing the data table  16-bit signed binary ANY16

SROTTBL2_U 16-bit unsigned binary

(m1) Number of data (lines) 1 to 32 16-bit unsigned binary ANY16

(m2) Number of group data (columns) 1 to 6 16-bit unsigned binary ANY16

(d) SROTTBL2 Head device number for storing the operation result  16-bit signed binary ANY16

SROTTBL2_U 16-bit unsigned binary

(n) Column number of group data (column) used as the basis of

sorting

 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(m1)             

(m2)             

(d)             

(n)             

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

Number of data (m1) = 3 Line No. 1 (s) (s)+1 (s)+2 (s)+3

Line No. 2 (s)+4 (s)+5 (s)+6 (s)+7

Line No. 3 (s)+8 (s)+9 (s)+10 (s)+11

Sorting order

SM703 = ON Descending order

SM703 = OFF Ascending order

(s) (m1) (m2) (d) (n)

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 563

7

 � When the command input turns on, data sorting is started. Data sorting is completed after (m1) scans, and the instruction

execution complete flag SM8029 is set to on.

 � The following table shows an operation example based on the sorting source data below. It is recommended to put a serial

number such as a control number in the first column so that the original line number can be estimated based on the

contents.

 � Sorting result when the instructions are executed with (n) = K2 (column No. 2) (in the case of ascending order

SM703=OFF)

 � Sorting result when the instructions are executed with (n) = K3 (column No. 3) (in the case of descending order

SM703=ON)

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

Number of data (m1) = 5 Line No. 1 (s) (s)+1 (s)+2 (s)+3

1 150 45 20

Line No. 2 (s)+4 (s)+5 (s)+6 (s)+7

2 180 50 40

Line No. 3 (s)+8 (s)+9 (s)+10 (s)+11

3 160 70 30

Line No. 4 (s)+12 (s)+13 (s)+14 (s)+15

4 100 20 8

Line No. 5 (s)+16 (s)+17 (s)+18 (s)+19

5 150 50 45

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

Number of data (m1) = 5

8020014

Line No. 2

02540511

Line No. 3

54050515

Line No. 4

03070613

Line No. 5

04050812

Line No. 1 (d) (d)+3(d)+1 (d)+2

(d)+4 (d)+5 (d)+7(d)+6

(d)+8 (d)+9 (d)+10 (d)+11

(d)+12 (d)+13 (d)+14 (d)+15

(d)+16 (d)+17 (d)+18 (d)+19

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

03070613

04050812

54050515

02540511

8020014

Number of data (m1) = 5

Line No. 2

Line No. 3

Line No. 4

Line No. 5

Line No. 1 (d) (d)+3(d)+2

(d)+4 (d)+5 (d)+7(d)+6

(d)+8 (d)+9 (d)+10 (d)+11

(d)+12 (d)+13 (d)+14 (d)+15

(d)+16 (d)+17 (d)+18 (d)+19

(d)+1

564
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Precautions

 � Do not change the contents of operands and data during operation.

 � To execute these instructions again, set the command input to off once, then on again.

 � These instructions can be used up to twice in any program.

 � When specifying the same device in (s) and (d), the source data is overwritten by the data acquired by sorting. Take special

care so that the contents of (s) are not changed until execution is completed.

 � Ensure that the sorted data does not overlap with the source data.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified by (s) exceeds the corresponding device range.

The device range specified by (d) exceeds the corresponding device range.

3405 The value specified by (m1) is outside the following range.

1 to 32

The value specified by (m2) is outside the following range.

1 to 6

The value specified by (n) is outside the following range.

1 to (m2)

D10 D30

D2 D22

D10 D30

D20 D40

D10 D30

D10 D30

D10 D30

D35 D55

D50 D70

D20 D40

Source Data

Sorted Data

Source Data

Sorted Data

Source Data

Sorted Data

Source Data

Sorted Data

Source Data

Sorted Data

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 565

7

32-bit data alignment 2

DSORTTBL2(_U)

These instructions sort data lines in the data table (sorting source) of 32-bit binary data having (m1m2) points specified by (s)

in the ascending order or descending order based on the group data in the column number (n), and store the result in the data

table (sorting result) of 32-bit binary data having ((m1)(m2)) points specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions sort data lines in the data table (sorting source) of 32-bit binary data having (m1m2) points specified by

(s) in the ascending order or descending order based on the group data in the column number (n), and store the result in

the data table (sorting result) of 32-bit binary data having ((m1)(m2)) points specified by (d).

 � The data table configuration is explained in an example in which the sorting source data table has 3 lines and 4 columns

(m1 = K3, m2 = K4). For the sorting result data table, understand (s) as (d).

 � Set the sorting order by setting SM703 to on or off.

Ladder diagram Structured text

ENO:=DSORTTBL2(EN,s,m1,m2,n,d);

ENO:= DSORTTBL2_U(EN,s,m1,m2,n,d);

Operand Description Range Data type Data type (label)

(s) DSORTTBL2 Head device number storing the data table  32-bit signed binary ANY32

DSORTTBL2_U 32-bit unsigned binary

(m1) Number of data (lines) 1 to 32 16-bit unsigned binary ANY16

(m2) Number of group data (columns) 1 to 6 16-bit unsigned binary ANY16

(d) DSORTTBL2 Head device number for storing the operation result  32-bit signed binary ANY32

DSORTTBL2_U 32-bit unsigned binary

(n) Column number of group data (column) used as the basis

of sorting

 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(m1)             

(m2)             

(d)             

(n)             

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

Number of data (m1) = 3 Line No. 1 (s)+1, (s) (s)+3, (s)+2 (s)+5, (s)+4 (s)+7, (s)+6

Line No. 2 (s)+9, (s)+8 (s)+11, (s)+10 (s)+13, (s)+12 (s)+15, (s)+14

Line No. 3 (s)+17, (s)+16 (s)+19, (s)+18 (s)+21, (s)+20 (s)+23, (s)+22

Sorting order

SM703 = ON Descending order

SM703 = OFF Ascending order

(s) (m1) (m2) (d) (n)

566
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

 � When the command input turns on, data sorting is started. Data sorting is completed after (m1) scans, and the instruction

execution complete flag SM8029 is set to on.

 � The following table shows an operation example based on the sorting source data below. It is recommended to put a serial

number such as a control number in the first column so that the original line number can be estimated based on the

contents.

 � Sorting result when the instructions are executed with (n) = K2 (column No. 2) (in the case of ascending order

SM703=OFF)

 � Sorting result when the instructions are executed with (n) = K3 (column No. 3) (in the case of descending order

SM703=ON)

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

Number of data (m1) = 5 Line No. 1 (s)+1, (s) (s)+3, (s)+2 (s)+5, (s)+4 (s)+7, (s)+6

1 150 45 20

Line No. 2 (s)+9, (s)+8 (s)+11, (s)+10 (s)+13, (s)+12 (s)+15, (s)+14

2 180 50 40

Line No. 3 (s)+17, (s)+16 (s)+19, (s)+18 (s)+21, (s)+20 (s)+23, (s)+22

3 160 70 30

Line No. 4 (s)+25, (s)+24 (s)+27, (s)+26 (s)+29, (s)+28 (s)+31, (s)+30

4 100 20 8

Line No. 5 (s)+33, (s)+32 (s)+35, (s)+34 (s)+37, (s)+36 (s)+39, (s)+38

5 150 50 45

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

Number of data (m1) = 5

8020014

Line No. 2

02540511

Line No. 3

54050515

Line No. 4

03070613

Line No. 5

04050812

Line No. 1

(d)+19, (d)+18

(d)+1, (d) (d)+3, (d)+2 (d)+5, (d)+4 (d)+7, (d)+6

(d)+9, (d)+8 (d)+11, (d)+10 (d)+13, (d)+12 (d)+15, (d)+14

(d)+17, (d)+16 (d)+23, (d)+22(d)+21, (d)+20

(d)+25, (d)+24 (d)+27, (d)+26 (d)+29, (d)+28 (d)+31, (d)+30

(d)+33, (d)+32 (d)+35, (d)+34 (d)+37, (d)+36 (d)+39, (d)+38

Number of groups (m2 = K4)

Column No. 1 Column No. 2 Column No. 3 Column No. 4

Control number Height Weight Age

03070613

04050812

54050515

02540511

8020014

Number of data (m1) = 5

Line No. 2

Line No. 3

Line No. 4

Line No. 5

Line No. 1

(d)+19, (d)+18

(d)+1, (d) (d)+3, (d)+2 (d)+5, (d)+4 (d)+7, (d)+6

(d)+9, (d)+8 (d)+11, (d)+10 (d)+13, (d)+12 (d)+15, (d)+14

(d)+17, (d)+16 (d)+23, (d)+22(d)+21, (d)+20

(d)+25, (d)+24 (d)+27, (d)+26 (d)+29, (d)+28 (d)+31, (d)+30

(d)+33, (d)+32 (d)+35, (d)+34 (d)+37, (d)+36 (d)+39, (d)+38

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 567

7

Precautions

 � Do not change the contents of operands and data during operation.

 � To execute these instructions again, set the command input to off once, then on again.

 � These instructions can be used up to or twice in any program.

 � When specifying the same device in (s) and (d), the source data is overwritten by the data acquired by sorting. Take special

care so that the contents of (s) are not changed until execution is completed.

 � Ensure that the sorted data does not overlap with the source data.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified by (s) exceeds the corresponding device range.

The device range specified by (d) exceeds the corresponding device range.

3405 The value specified by (m1) is outside the following range.

1 to 32

The value specified by (m2) is outside the following range.

1 to 6

The value specified by (n) is outside the following range.

1 to (m2)

D10 D30

D2 D22

D10 D30

D20 D40

D10 D30

D10 D30

D10 D30

D35 D55

D50 D70

D20 D40

Source Data

Sorted Data

Source Data

Sorted Data

Source Data

Sorted Data

Source Data

Sorted Data

Source Data

Sorted Data

568
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Adding 16-bit data

WSUM(P)(_U)

These instructions add the (n) point(s) of 16-bit binary data in the device starting from the one specified by (s), and store the

result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the (n) point(s) of 16-bit binary data in the device starting from the one specified by (s), and store the

result in the device specified by (d).

Operation error

Ladder diagram Structured text

ENO:=WSUM(EN,s,n,d);

ENO:=WSUMP(EN,s,n,d);

ENO:=WSUM_U(EN,s,n,d);

ENO:=WSUMP_U(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) WSUM(P) Head device number where the addition target data are

stored

 16-bit signed binary ANY16

WSUM(P)_U 16-bit unsigned binary

(d) WSUM(P) Head device number storing sum  32-bit signed binary ANY32

WSUM(P)_U 32-bit unsigned binary

(n) Number of data  16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The device range specified by (d) exceeds the corresponding device range.

The (n) point(s) of data in the device starting from (s) exceed the corresponding device range.

3405 The data stored in a device specified by (n) is 0.

(s) (d) (n)

(s)

(s)+1

(s)+4

(s)+5

(s)+2

(s)+3

4444 (BIN)

3333 (BIN)

1234 (BIN)

-5426 (BIN)

329 (BIN)

10000 (BIN)

13914 (BIN)(n) (d)+1, (d)

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 569

7

Adding 32-bit data

DWSUM(P)(_U)

These instructions add the (n) point(s) of 32-bit binary data in the device starting from the one specified by (s), and store the

result in the device specified by (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the (n) point(s) of 32-bit binary data in the device starting from the one specified by (s), and store the

result in the device specified by (d).

Precautions

In the 32-bit operation, the acquired sum is 64-bit data. The FX5 series CPU module cannot handle 64-bit data. When the sum

is within the numeric range of 32-bit data (K-2147483648 to K2147483647), however, the FX5 series CPU module can handle

the low-order 32 bits of 32-bit data as the sum while ignoring the high-order 32 bits.

Operation error

Ladder diagram Structured text Structured text

ENO:=DWSUM(EN,s,n,d);

ENO:=DWSUMP(EN,s,n,d);

ENO:=DWSUM_U(EN,s,n,d);

ENO:=DWSUMP_U(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) DWSUM(P) Head device number where the addition target data are

stored

 32-bit signed binary ANY32

DWSUM(P)_U 32-bit unsigned binary

(d) DWSUM(P) Head device number storing sum  64-bit signed binary Array of any 32-bit data

(0..1)
DWSUM(P)_U 64-bit unsigned binary

(n) Number of data  16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

2820 The device range specified by (d) exceeds the corresponding device range.

The (n) point(s) of data in the device starting from (s) exceed the corresponding device range.

3405 The data stored in a device specified by (n) is 0.

(s) (d) (n)

(s)+1, (s)

(s)+3, (s)+2

(s)+9, (s)+8

(s)+5, (s)+4

(s)+7, (s)+6

32767000 (BIN)

6000 (BIN)

35392000 (BIN)

-11870000 (BIN)

12345000 (BIN)

68640000 (BIN)(n) (d)+3 to (d)

570
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Calculating the mean value of 16-bit data

MEAN(P)(_U)

These instructions calculate the mean value of the (n) point(s) of 16-bit data units starting from the one specified by (s), and

store the operation result in (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the mean value of the (n) point(s) of 16-bit data starting from the one specified by (s), and store

the operation result in a device specified by (d).

 � The sum is obtained as algebraic sum, and divided by (n).

 � The remainder is ignored.

Precautions

When a device number is exceeded, (n) is handled as a smaller value in the possible range.

Operation error

Ladder diagram Structured text

ENO:=MEAN(EN,s,n,d);

ENO:=MEANP(EN,s,n,d);

ENO:=MEAN_U(EN,s,n,d);

ENO:=MEANP_U(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) MEAN(P) Head device number where the mean value target data are

stored

 16-bit signed binary ANY16

MEAN(P)_U 16-bit unsigned binary

(d) MEAN(P) Head device number storing mean value  16-bit signed binary ANY16

MEAN(P)_U 16-bit unsigned binary

(n) Number of data or the device number storing the number of

data

1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

3405 The value stored in a device specified by (n) is 0.

(s) (d) (n)

(n)

(d)

(s)

(s)+1

(s)+2

(s)+(n-1)

Mean

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 571

7

Calculating the mean value of 32-bit data

DMEAN(P)(_U)

These instructions calculate the mean value of the (n) point(s) of 32-bit data units starting from the one specified by (s), and

store the operation result in (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the mean value of the (n) point(s) of 32-bit data starting from the one specified by (s), and store

the operation result in a device specified by (d).

 � The sum is obtained as algebraic sum, and divided by (n).

 � The remainder is ignored.

Precautions

When a device number is exceeded, (n) is handled as a smaller value in the possible range.

Operation error

Ladder diagram Structured text

ENO:=DMEAN(EN,s,n,d);

ENO:=DMEANP(EN,s,n,d);

ENO:=DMEAN_U(EN,s,n,d);

ENO:=DMEANP_U(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) DMEAN(P) Head device number where the mean value target data are

stored

 32-bit signed binary ANY32

DMEAN(P)_U 32-bit unsigned binary

(d) DMEAN(P) Head device number storing mean value  32-bit signed binary ANY32

DMEAN(P)_U 32-bit unsigned binary

(n) Number of data or the device number storing the number of

data

1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

Error code

(SD0/SD8067)

Description

3405 The value stored in a device specified by (n) is 0.

(s) (d) (n)

(n)

(d)+1, (d)
(s)+1, (s)

(s)+3, (s)+2

(s)+(2n-1), (s)+(2n-2)

Mean

572
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Calculating the square root of 16-bit data

SQRT(P)

These instructions calculate the square root of binary 16-bit data specified by (s1), and store the operation result in (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the square root of binary 16-bit data specified by (s1), and store the operation result in (d).

Precautions

 � The obtained square root is an integer because the decimal point is ignored. When the calculated decimal value is ignored,

SM8021 (borrow flag) turns on.

 � When the operation result is true 0, SM8020 (zero flag) turns on.

Operation error

Ladder diagram Structured text

ENO:=SQRT(EN,s,d);

ENO:=SQRTP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Device where the data whose square root is operated is

calculated

 16-bit signed binary ANY16

(d) Device for storing the calculated square root  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3405 In (s), a negative value is specified.

(s) (d)

(s) (d)

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 573

7

Calculating the square root of 32-bit data

DSQRT(P)

These instructions calculate the square root of binary 32-bit data specified by (s1), and store the operation result in (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions calculate the square root of binary 32-bit data specified by (s1), and store the operation result in (d).

Precautions

 � The obtained square root is an integer because the decimal point is ignored. When the calculated decimal value is ignored,

SM8021 (borrow flag) turns on.

 � When the operation result is true 0, SM8020 (zero flag) turns on.

Operation error

Ladder diagram Structured text

ENO:=DSQRT(EN,s,d);

ENO:=DSQRTP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Device where the data whose square root is operated is

calculated

 32-bit signed binary ANY32

(d) Device for storing the calculated square root  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

3405 In (s), a negative value is specified.

(s) (d)

(s)+1, (s) (d)+1, (d)

574
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

CRC calculation

CRC(P)

These instructions calculate the CRC (cyclic redundancy check) value which is an error check method used in

communication. In addition to CRC value, parity check and sum check are available. For obtaining the horizontal parity value

and sum check value, the CCD(P) instruction is available. For the generation of CRC value (CRC-16), these instructions use

"X16 + X15 + X2 + 1" in a polynomial.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=CRC(EN,s,n,d);

ENO:=CRCP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Head device number storing data for which the CRC value is

generated

 16-bit unsigned binary ANY16

(d) Device number storing the generated CRC value  16-bit unsigned binary ANY16

(n) Number of 8-bit (1-byte) data for which the CRC value is

generated or the device number storing the number of data

1 to 32767 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

7 APPLICATION INSTRUCTION

7.17 Data operation instruction 575

7

Processing details

 � These instructions generate CRC value for (n) 8-bit data (unit: byte) starting from a device specified in (s), and store to (d).

The 16-bit conversion mode and 8-bit conversion mode are available for these instructions. For the operation in each

mode, refer to the proceeding pages.
� 16-bit conversion mode (while SM8161 is OFF)

In this mode, the operation is executed for high-order 8 bits (1 byte) and low-order 8 bits (1 byte) of a device specified in (s). The operation result is stored

to one 16-bit device specified in (d).

In the following program, conversion is executed as follows:

Example) (s) = D100, (d) = D0, (n) = 6

Device Contents of target data

8 bits 16 bits

Device storing data

for which the CRC

value is generated

(s) Low-order byte Low-order bits of D100 01H 0301H

High-order byte High-order bits of D100 03H

(s)+1 Low-order byte Low-order bits of D101 03H 0203H

High-order byte High-order bits of D101 02H

(s)+2 Low-order byte Low-order bits of D102 00H 1400H

High-order byte High-order bits of D102 14H

  

(s)+(n)/2-1 Low-order byte 

High-order byte

Device storing the

generated CRC value

(d) Low-order byte Low-order bits of D0 E4H 41E4H

High-order byte High-order bits of D0 41H

� 8-bit conversion mode (while SM8161 is ON)

In this mode, the operation is executed only for low-order 8 bits (low-order 1 byte) of a device specified by (s). With regard to the operation result, low-

order 8 bits (1 byte) are stored to a device specified by (d), and high-order 8 bits (1 byte) are stored to a device specified by (d)+1.

In the following program, conversion is executed as follows:

Example) (s) = D100, (d) = D0, (n) = 6

Device Contents of target data

Device storing data for

which the CRC value

is generated

(s) Low-order byte Low-order bits of D100 01H

(s)+1 Low-order byte Low-order bits of D101 03H

(s)+2 Low-order byte Low-order bits of D102 03H

(s)+3 Low-order byte Low-order bits of D103 02H

(s)+4 Low-order byte Low-order bits of D104 00H

(s)+5 Low-order byte Low-order bits of D105 14H

 

(s)+(n)-1 Low-order byte 

Device storing the

generated CRC value

(d) Low-order byte Low-order bits of D0 E4H

(d)+1 High-order byte High-order bits of D0 41H

CRC (s) (d) (n)

SM400

SM8161

Command
input

16-bit conversion mode

CRC (s) (d) (n)

SM400

SM8161

Command
input

8-bit conversion mode

576
7 APPLICATION INSTRUCTION

7.17 Data operation instruction

Precautions

 � In these instructions, "X16+X15+X2+1" is used in a polynomial for generating the CRC value (CRC-16). There are many

other standard polynomials for generating the CRC value. Note that the CRC value completely differs if an adopted

polynomial is different. Major polynomials for generating the CRC value are shown below.

Operation error

There is no operation error.

Name Polynomial

CRC-12 X12 + X11 + X3 + X2 + X + 1

CRC-16 X16 + X15 + X2 + 1

CRC-32 X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 + X8 + X7 + X5 + X4 + X2 + X + 1

CRC-CCITT X16 + X12 + X5 + 1

7 APPLICATION INSTRUCTION

7.18 Indirect address read instruction 577

7

7.18 Indirect address read instruction

Reading the indirect address

ADRSET(P)

These instructions store the indirect address of the device specified by (s) to the device specified by (d).

The addresses stored in the device specified by (d)+0 and (d)+1 are used by the program to execute the indirect address of

the device.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � These instructions store the indirect address of the device specified by (s) to the device specified by (d). The addresses

stored in the device specified by (d)+0 and (d)+1 are used by the program to execute the indirect address of the device.

 � The nibble of a bit device, and the bit of a word device cannot be specified in (s).

Ladder diagram Structured text

ENO:=ADRSET(EN,s,d);

ENO:=ADRSETP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Device number for reading the indirect address  Device name ANY16

(d) Device number for storing the indirect address of the device

specified by (s)

 32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d)             

(1) Stores the address of W100 to D100

and D101.

(2) Specifies the content of D100 and

D101 (address of W100).

(3) Writes "1234" to W100.

(s) (d)

D0

D1

D101

D100

W100 1234

ADRSET W100 D100 (1)

(3)

(2)

MOV K1234 @D100

Device area

Address of

W100

578
7 APPLICATION INSTRUCTION

7.18 Indirect address read instruction

Precautions

 � In the indirect specification, the device address used in sequence program is specified with a word device of 2 words (2-

word devices). Use the indirect specification as an index when index register is insufficient.

 � In the indirect specification, the device which specify the address of the specified device is specified by "@+(word device

number)". For example, when "@D100" is specified, and the content of D101 and D100 becomes the device address.

Operation error

There is no operation error.

MOV K50 Z0

DMOV K10000 D150

DMOV D100Z0 D110

ADRSET D100 D0

DMOV K50 W0

DMOV K10000 D150

D+ D0 W0 D10

MOV @D10 D110Specification of D(100+50) = D150

[When the index register is used]

Specification of the address of D150

[When the indirect specification is used]

Stores the address
of D100 to D0.

(Address of D100) + 50
= (Address of D150)

7 APPLICATION INSTRUCTION

7.19 Clock instruction 579

7

7.19 Clock instruction

Reading clock data

TRD(P)

These instructions read the clock data from the built-in real time clock in the CPU module.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions read the clock data (SD210 to SD216) from the built-in real time clock in the CPU module to the device

numbers (d) to (d)+6 in the following format.

 � The table below shows the related devices. The clock data stored in these special registers is updated during the END

processing.

Ladder diagram Structured text

ENO:=TRD(EN,d);

ENO:=TRDP(EN,d);

Operand Description Range Data type Data type (label)

(d) Head device number where the read clock data is stored  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

Device Item Clock data Device Item

Special

registers

SD210 Year 1980 to 2079 (year, four digits)  D0 Year

SD211 Month 1 to 12  D1 Month

SD212 Day 1 to 31  D2 Day

SD213 Hour data 0 to 23  D3 Hour data

SD214 Minute data 0 to 59  D4 Minute data

SD215 Second data 0 to 59  D5 Second data

SD216 Day-of-the-week data 0 (Sunday) to 6 (Saturday)  D6 Day-of-the-week data

Device Name Description

Binary code

SD210 Binary clock data (year) The year data in the clock data is stored as a four-digit binary code.

SD211 Binary clock data (month) The month data in the clock data is stored as a binary code.

SD212 Binary clock data (day) The day data in the clock data is stored as a binary code.

SD213 Binary clock data (hour) The hour data in the clock data is stored as a binary code.

SD214 Binary clock data (minute) The minute data in the clock data is stored as a binary code.

SD215 Binary clock data (second) The second data in the clock data is stored as a binary code.

SD216 Binary clock data (day of the week) The day-of-a-week data in the clock data (0: Sunday, 1: Monday, ..., 6: Saturday) is stored as a binary code.

Binary code (FX3 compatible area)

SD8013 Binary clock data (second) The second data in the clock data is stored as a binary code.

SD8014 Binary clock data (minute) The minute data in the clock data is stored as a binary code.

SD8015 Binary clock data (hour) The hour data in the clock data is stored as a binary code.

SD8016 Binary clock data (day) The day data in the clock data is stored as a binary code.

SD8017 Binary clock data (month) The month data in the clock data is stored as a binary code.

(d)

580
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Precautions

 � These instructions occupy seven points of device starting from device number specified by (d). Make sure that these

devices are not used by other machine controls.

Operation error

SD8018 Binary clock data (year) The year data in the clock data is stored as a four-digit binary code.

SD8019 Binary clock data (day of the week) The day-of-a-week data in the clock data (0: Sunday, 1: Monday, ..., 6: Saturday) is stored as a binary code.

Error code

(SD0/SD8067)

Description

2820 The device range specified by (d) exceeds the corresponding device range.

Device Name Description

7 APPLICATION INSTRUCTION

7.19 Clock instruction 581

7

Writing clock data

TWR(P)

This instruction writes the clock data to the built-in CPU module real time clock.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions write the clock data stored in device numbers (s) to (s)+6 to the clock data area (SD210 to SD216 and

SD8013 to SD8019) of the built-in real time clock in the CPU module.

 � Executing these instructions immediately changes the real time clock data. Therefore, transfer the clock data of a few

minutes ahead the current time to the clock data area (s) to (s)+6 in advance. Execute the instruction when the actual time

matches the clock data time.

 � When using these instructions to set the clock data (i.e., performing time adjustment), control of special relay SM8015

(clock stop/adjustment) is not required.

 � If incorrect values (i.e., values out of range) are set to the write source area, the clock data will not be updated. In this case,

correct the clock data in the write source area and execute the instruction.

 � Day of the week (SD216 and SD8019) is automatically corrected.

Ladder diagram Structured text

ENO:=TWR(EN,s);

ENO:=TWRP(EN,s);

Operand Description Range Data type Data type (label)

(s) Head device number where the clock write source data is stored  16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

Time setting data Special registers

Device Item Clock data Device Item

(s) Year 1980 to 2079 (year, four digits)  SD210, SD8018 Year

(s)+1 Month 1 to 12  SD211, SD8017 Month

(s)+2 Day 1 to 31  SD212, SD8016 Day

(s)+3 Hour data 0 to 23  SD213, SD8015 Hour data

(s)+4 Minute data 0 to 59  SD214, SD8014 Minute data

(s)+5 Second data 0 to 59  SD215, SD8013 Second data

(s)+6 Day-of-the-week data 0 (Sunday) to 6 (Saturday)  SD216, SD8019 Day-of-the-week data

(s)

582
7 APPLICATION INSTRUCTION

7.19 Clock instruction

 � The table below shows the related devices.

Precautions

 � These instructions occupy seven points of device starting from device number specified by (s). Make sure that these

devices are not used by other machine controls.

Operation error

Device Name Description

SM8019 Real time clock error This special data register turns on when the clock data value in the special register is exceeding the setting

range.

Binary code

SD210 Binary clock data (year) The year data in the clock data is stored as a four-digit binary code.

SD211 Binary clock data (month) The month data in the clock data is stored as a binary code.

SD212 Binary clock data (day) The day data in the clock data is stored as a binary code.

SD213 Binary clock data (hour) The hour data in the clock data is stored as a binary code.

SD214 Binary clock data (minute) The minute data in the clock data is stored as a binary code.

SD215 Binary clock data (second) The second data in the clock data is stored as a binary code.

SD216 Binary clock data (day of the week) The day-of-a-week data in the clock data (0: Sunday, 1: Monday, ..., 6: Saturday) is stored as a binary code.

Binary code (FX3 compatible area)

SD8013 Binary clock data (second) The second data in the clock data is stored as a binary code.

SD8014 Binary clock data (minute) The minute data in the clock data is stored as a binary code.

SD8015 Binary clock data (hour) The hour data in the clock data is stored as a binary code.

SD8016 Binary clock data (day) The day data in the clock data is stored as a binary code.

SD8017 Binary clock data (month) The month data in the clock data is stored as a binary code.

SD8018 Binary clock data (year) The year data in the clock data is stored as a four-digit binary code.

SD8019 Binary clock data (day of the week) The day-of-a-week data in the clock data (0: Sunday, 1: Monday, ..., 6: Saturday) is stored as a binary code.

Error code

(SD0/SD8067)

Description

2820 The device range specified by (s) exceeds the corresponding device range.

7 APPLICATION INSTRUCTION

7.19 Clock instruction 583

7

Adding clock data

TADD(P)

These instructions add the time data stored in the device number specified by (s2) and later to the clock data stored in the

device number specified by (s1) and later, and store the result to the device number specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions add the time data stored in the device numbers starting from (s2) to the clock data stored in the device

numbers starting from (s1), and store the result to the device numbers starting from (d).

Ex.

When adding 7:48:10 to 6:32:40

 � If the sum of two values exceeds 24:00:00, the carry flag turns on, and the result will be the sum minus 24:00:00. For

example, if a time value of 20:20:20 is added to another time value of 14:30:30, the sum is 34:40:50. However, the actual

addition result will be 10:40:50.

 � If the result is 0 (0:00:00), the zero flag turns on.

 � If 1 second is added to 23:59:59, the result will be 0:00:00. This turns on both the carry flag and the zero flag.

 � The table below shows the related devices.

Ladder diagram Structured text

ENO:=TADD(EN,s1,s2,d);

ENO:=TADDP(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Head device number where the clock data to be added is stored.  16-bit signed binary ANY16

(s2) Head device number where the adding time value (or clock data

value) is stored.

 16-bit signed binary ANY16

(d) Head device number where the resultant clock data (or time

value) is stored.

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

SM700 Carry If the result exceeds the maximum value of the time data, 23:59:59, this special relay turns on.

(s1) (s2) (d)

(s1)

(s1)+1

(s1)+2

+

(s2)

(s2)+1

(s2)+2

(d)

(d)+1

(d)+2

Data range

(0 to 23)

(0 to 59)

(0 to 59)

Hour

Minute

Second

Data range

(0 to 23)

(0 to 59)

(0 to 59)

Hour

Minute

Second

Data range

(0 to 23)

(0 to 59)

(0 to 59)

Hour

Minute

Second

(s1)

(s1)+1

(s1)+2

+

(s2)

(s2)+1

(s2)+2

(d)

(d)+1

(d)+2

6

32

40

7

48

10

14

20

50

(s1)

(s1)+1

(s1)+2

+

(s2)

(s2)+1

(s2)+2

(d)

(d)+1

(d)+2

14

20

30

20

20

20

10

40

50

584
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Precautions

 � These instructions occupy three points for each of three devices starting from device number specified by (s1), (s2), and (d)

respectively. Make sure that these devices are not used by other machine controls.

 � When using the time value (hour, minute, second) of the built-in real time clock in the CPU module for the operation, use

the TRD(P) operation to read the special register values first. Then specify the word devices where the read values are

stored to each operand.

Operation error

SM8020 Zero If the result is 0:00:00, this special relay turns on.

SM8022 Carry If the result exceeds the maximum value of the time data, 23:59:59, this special relay turns on.

Error code

(SD0/SD8067)

Description

2820 The device range specified by (s1), (s2), and (d) exceeds the corresponding device range.

3405 Any of values specified by (s1) and (s2) is outside the following range.

0 to 23

Any of values specified by (s1)+1, (s2)+1, (s1)+2, and (s2)+2 is outside the following range.

0 to 59

Device Name Description

7 APPLICATION INSTRUCTION

7.19 Clock instruction 585

7

Subtracting clock data

TSUB(P)

These instructions subtract the time data stored in the device numbers starting from (s2) from the clock data stored in the

device numbers starting from (s1), and store the result to the device numbers starting from (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions subtract the time data stored in the device numbers starting from (s2) from the clock data stored in the

device numbers starting from (s1), and store the result to the device numbers starting from (d).

Ex.

When subtracting 3:50:10 from 10:40:20

 � If the remainder is a negative time value, the borrow flag turns on. The actual result will be the remainder plus 24:00:00. For

example, if a time value of 10:42:12 is subtracted from another time value of 4:50:32, the remainder is -6:08:20. However,

the actual subtraction result will be 18:08:20.

 � If the result is 0 (0:00:00), the zero flag turns on.

 � The table below shows the related devices.

Ladder diagram Structured text

Not supported

Operand Description Range Data type Data type (label)

(s1) Head device number where the clock data that is subtracted is stored  16-bit signed binary ANY16

(s2) Head device number where the subtracting time value (or clock data

value) is stored

 16-bit signed binary ANY16

(d) Head device number where the resultant clock data (or time value) is

stored

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

Device Name Description

SM8020 Zero If the result is 0:00:00, this special relay turns on.

SM8021 Borrow If the execution result of the TSUB(P) instruction is less than 0:00:00, this special relay turns on.

(s1) (s2) (d)

(s1)

(s1)+1

(s1)+2

-

(s2)

(s2)+1

(s2)+2

(d)

(d)+1

(d)+2

Data range

(0 to 23)

(0 to 59)

(0 to 59)

Hour

Minute

Second

Data range

(0 to 23)

(0 to 59)

(0 to 59)

Hour

Minute

Second

Data range

(0 to 23)

(0 to 59)

(0 to 59)

Hour

Minute

Second

(s1)

(s1)+1

(s1)+2

-

(s2)

(s2)+1

(s2)+2

(d)

(d)+1

(d)+2

10

40

20

3

50

10

6

50

10

(s1)

(s1)+1

(s1)+2

-

(s2)

(s2)+1

(s2)+2

(d)

(d)+1

(d)+2

4

50

32

10

42

12

18

8

20

586
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Precautions

 � These instructions occupy three points for each of three devices starting from device number specified by (s1), (s2), and (d)

respectively. Make sure that these devices are not used by other machine controls.

 � When using the time value (hour, minute, second) of the built-in real time clock in the CPU module for the operation, use

the TRD(P) operation to read the special register values first. Then specify the word devices where the read values are

stored to each operand.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified by (s1), (s2), and (d) exceeds the corresponding device range.

3405 Any of values specified by (s1) and (s2) is outside the following range.

0 to 23

Any of values specified by (s1)+1, (s2)+1, (s1)+2, and (s2)+2 is outside the following range.

0 to 59

7 APPLICATION INSTRUCTION

7.19 Clock instruction 587

7

Converting time data from hour/minute/second to seconds in 16
bits

HTOS(P)

These instructions convert the time data stored in the device numbers starting from (s) to the time value in seconds, and store

the converted data in the device numbers starting from (d) as 16-bit binary.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the time data stored in the device numbers starting from (s) to the time value in seconds, and

store the converted data in the device numbers starting from (d).

Ex.

When specifying 4 hours 29 minutes 31 seconds in (s)

Operation error

Ladder diagram Structured text

ENO:=HTOS(EN,s,d);

ENO:=HTOSP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device number where the clock data before conversion is

stored

 16-bit signed binary ANY16

(d) Head device number where the clock data after conversion is

stored

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

2820 Any of the device area ranges specified in (s) and (d) exceed the corresponding device range.

3403 The result is outside the following range.

0 to 32767

3405 A value specified by (s) is outside the following range.

0 to 9

Any of values specified by (s)+1 and (s)+2 is outside the following range.

0 to 59

(s) (d)

(s)

(s)+1

(s)+2

(d)
Data range

(0 to 9)

(0 to 59)

(0 to 59)

Hour

Minute

Second

Second

(d)

16171

(s)

(s)+1

(s)+2

4

29

31

588
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Converting time data from hour/minute/second to seconds in 32
bits

DHTOS(P)

These instructions convert the time data stored in the device numbers starting from (s) to the time value in seconds, and store

the converted data in the device numbers starting from (d) as 32-bit binary.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the time data stored in the device numbers starting from (s) to the time value in seconds, and

store the converted data in the device numbers starting from (d).

Ex.

When specifying 35 hours 10 minutes 58 seconds in (s)

Operation error

Ladder diagram Structured text

ENO:=DHTOS(EN,s,d);

ENO:=DHTOSP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device number where the clock data before conversion is

stored

 16-bit signed binary ANY16

(d) Head device number where the clock data after conversion is

stored

 32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

2820 Any of the device area ranges specified in (s) and (d) exceed the corresponding device range.

3405 A value specified by (s) is outside the following range.

0 to 32767

Any of values specified by (s)+1 and (s)+2 is outside the following range.

0 to 59

(s) (d)

(s)

(s)+1

(s)+2

(d)+1 (d)
Data range

(0 to 32767)

(0 to 59)

(0 to 59)

Hour

Minute

Second

Second

(d)+1 (d)

126658

(s)

(s)+1

(s)+2

35

10

58

7 APPLICATION INSTRUCTION

7.19 Clock instruction 589

7

Converting time data from seconds to hour/minute/second in 16
bits

STOH(P)

These instructions convert the 16-bit time value in seconds stored in the device numbers starting from (s) to the time value in

the HHMMDD format, and store the converted data in the device numbers starting from (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the time value in seconds stored in the device numbers starting from (s) to the time value in

HHMMDD format, and store the converted data in the device numbers starting from (d).

Ex.

When specifying 29011 seconds in (s)

Operation error

Ladder diagram Structured text

ENO:=STOH(EN,s,d);

ENO:=STOHP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device number where the clock data before conversion is

stored

 16-bit signed binary ANY16

(d) Head device number where the clock data after conversion is

stored

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

2820 The specified device area exceeds the corresponding device range.

3405 The value specified by (s) is outside the range.

(s) (d)

(d)

(d)+1

(d)+2

(s)
Data range

(0 to 9)

(0 to 59)

Data range

(0 to 32767)

(0 to 59)

Hour

Minute

Second

Second

(s)

29011

(d)

(d)+1

(d)+2

8

3

31

590
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Converting time data from seconds to hour/minute/second in 32
bits

DSTOH(P)

These instructions convert the 32-bit time value in seconds stored in the device numbers starting from (s) to the time value in

the HHMMDD format, and store the converted data in the device numbers starting from (d).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions convert the time value in seconds stored in the device numbers starting from (s) to the time value in

HHMMDD format, and store the converted data in the device numbers starting from (d).

Ex.

When specifying 45325 seconds in (s)

Operation error

Ladder diagram Structured text

ENO:=DSTOH(EN,s,d);

ENO:=DSTOHP(EN,s,d);

Operand Description Range Data type Data type (label)

(s) Head device number where the clock data before conversion is

stored

 32-bit signed binary ANY32

(d) Head device number where the clock data after conversion is

stored

 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

Error code

(SD0/SD8067)

Description

2820 The specified device area exceeds the corresponding device range.

3405 The value specified by (s) is outside the range.

(s) (d)

(d)

(d)+1

(d)+2

(s)+1 (s)
Data range

(0 to 32767)

(0 to 59)

Data range

(0 to 117964799)

(0 to 59)

Hour

Minute

Second

Second

(s)+1 (s)

45325

(d)

(d)+1

(d)+2

12

35

25

7 APPLICATION INSTRUCTION

7.19 Clock instruction 591

7

Comparing date data

LDDT, ANDDT, ORDT
These instructions compare the date data in the devices specified by (s1) and (s2). Or, these instructions compare the date

data in the device specified by (s1) with the current date.

Set the comparison target by (s3).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions compare the date data in the devices specified by (s1) and (s2), or compare the date data in the device

specified by (s1) with the current date. Set the comparison target by (s3).

Ladder diagram Structured text

( indicates T=, DT<>, DT>, DT<=, DT<, or DT>=.)

Not supported

Operand Description Range Data type Data type (label)

(s1) Head device number where the comparison data is stored  16-bit signed binary ANY16

(s2) Head device number where the comparison data is stored  16-bit signed binary ANY16

(s3) Comparison target setting value or the number of comparison

target data

0001H to 0007H,

8001H to 8007H

16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

� Comparing two specified date data

These instructions compare the date data in the device specified by (s1) with the date data in the device specified by (s2) in accordance with the

conditions set by (s3). (Devices are used as a normally open contact.)

� Comparing the specified date data with the current date

These instructions compare the date data in the device specified by (s1) with the current date data in accordance with the conditions set by (s3).

(Devices are used as a normally open contact.) The date data in the device specified by (s2) is regarded as dummy data and ignored.

LD

AND

OR

(s1) (s2) (s3)

(s1) (s2) (s3)

(s1) (s2) (s3)

(s1)

(s1)+1

(s1)+2

(s2)

(s2)+1

(s2)+2

Year

Month

Day

Year

Month

Day

(1980 to 2079)

Data range

(1 to 12)

(1 to 31)

(1980 to 2079)

Data range

(1 to 12)

(1 to 31)

Relational
operator

Comparison
operation

result

(s1)

(s1)+1

(s1)+2

Relational
operator

Year

Month

Day

(1980 to 2079)

Data range

(1 to 12)

(1 to 31)

Comparison
operation

result

Current date
(Year/month/day)

592
7 APPLICATION INSTRUCTION

7.19 Clock instruction

 � Set each data in binary.

 � Set the 4 digit "year" data in the devices specified by (s1) and (s2) within the range 1980 to 2079.

 � Set the "month" data in the devices specified by (s1)+1 and (s2)+1 within the range 1 to 12.

 � Set the "date" data in the devices specified by (s1)+2 and (s2)+2 within the range 1 to 31.

 � Set the following in (s3) as comparison target setting values. The following shows the bit configuration of (s3).

 � When 0 is set to the 0 to 2 bits, the date data are not compared. When 1 is set, the entire date data (year, month, and day)

are compared.

 � When 0 is set to the 15 bit, the data in the device specified by (s1) and the date data in the device specified by (s2) are

compared. When 1 is set, the data in the device specified by (s1) is compared with the current date. The date data in the

device specified by (s2) is ignored.

 � The following table lists processing details of each bit.

 � If the comparison target data in the device are not recognized as date data, SM709 turns on after the instruction is executed

and the operation result will be non-continuity. Even if the data are not recognized as date data, SM709 does not turn on if

the data are within the setting range. If the device areas specified by (s1) to (s1)+2 or (s2) to (s2)+2 exceed the

corresponding device range, SM709 turns on after the instruction is executed and the operation result will be non-continuity

as well. Once SM709 turns on, the on state is held until the CPU module is powered off or reset. Turn off SM 709 as

needed.

 � The following table lists the comparison operation results of each instruction.

(1) Set "day" as comparison target.

(2) Set "month" as comparison target.

(3) Set "year" as comparison target.

(4) Set 0. If a value other than 0 is set, the operation result will be non-

continuity.

(5) When 1 is set to the 15 bit, the data in the device specified by (s1)

is compared with the current date in accordance with the conditions

set in the 0 to 2 bits.

(s3) value when

comparing two

specified date data

(s3) value when

comparing the

specified date data

with the current date

Comparison

target

Contents of processing

0001H 8001H Day Only data in the device specified by (s1)+2 is compared.

0002H 8002H Month Only data in the device specified by (s1)+1 is compared.

0003H 8003H Month, day Data in the device areas specified by (s1)+2 and (s1)+2 are compared.

0004H 8004H Year Only data in the device specified by (s1) is compared.

0005H 8005H Year, day Data in the device areas specified by (s1) and (s1)+2 are compared.

0006H 8006H Year, month Data in the device areas specified by (s1) and (s1)+1 are compared.

0007H 8007H Year, month, day The entire date data in the device areas specified by (s1), (s1)+1, and (s1)+2

are compared.

Other than 0001H to 0007H, 8001H to 8007H None The entire date data in the device areas specified by (s1), (s1)+1, and (s1)+2

are not compared. (The operation result will be non-continuity.)

Instruction symbol Condition Result Instruction symbol Condition Result

DT= (s1)=(s2) Conductive state DT= (s1)(s2) Non-conductive state

DT<> (s1)(s2) DT<> (s1)=(s2)

DT> (s1)>(s2) DT> (s1)(s2)

DT<= (s1)(s2) DT<= (s1)>(s2)

DT< (s1)<(s2) DT< (s1)(s2)

DT>= (s1)(s2) DT>= (s1)<(s2)

b15 b14 b3 b2 b1 b0

0/1 0 0/1 0/1 0/1

(5) (4) (3) (2) (1)

7 APPLICATION INSTRUCTION

7.19 Clock instruction 593

7

Ex.

The date data A, B, and C are compared.

 � The following table lists the comparison operation results between A, B, and C. Even when the data are compared under

the same conditions, the results differ depending on the comparison target data.

 � Even though the specified date does not exist, the comparison operation is performed in accordance with the conditions in

the following table as long as the date data are within the valid range.

Operation error

There is no operation error.

: Continuity, : Non-continuity

Comparison target data Condition

A<B B<C A<C

Day   

Month   

Month, day   

Year   

Year, day   

Year, month   

Year, month, day   

None   

� Date A: 2006/02/30 (Even though the date does not exist, this date can be set.)

� Date B: 2007/03/29

� Date A: 2008/02/31 (Even though the date does not exist, this date can be set.)

: Continuity, : Non-continuity

Comparison target data Condition

A<B B<C A<C

Day   

Month   

Month, day   

Year   

Year, day   

Year, month   

Year, month, day   

None   

A

(2006/9/22)

B

(2007/6/23)

C

(2008/8/8)

2009/1/12008/1/12007/1/12006/1/1

594
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Comparing time data

LDTM, ANDTM, ORTM
These instructions compare the time data in the devices specified by (s1) and (s2). Or, these instructions compare the time

data in the device specified by (s1) with the current time.

Set the comparison target by (s3).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions compare the time data in the devices specified by (s1) and (s2), or compare the time data in the device

specified by (s1) with the current time. Set the comparison target by (s3).

Ladder diagram Structured text

( indicates, TM=, TM<>, TM>, TM<=, TM<, TM>=.)

Not supported

Operand Description Range Data type Data type (label)

(s1) Head device number where the comparison data is stored  16-bit signed binary ANY16

(s2) Head device number where the comparison data is stored  16-bit signed binary ANY16

(s3) Comparison target setting value or the number of comparison

target data

0001H to 0007H,

8001H to 8007H

16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

� Comparing two specified time data

These instructions compare the time data in the device specified by (s1) with the time data in the device specified by (s2) in accordance with the

conditions set by (s3). (Devices are used as a normally open contact.)

� Comparing specified time data with current time data

These instructions compare the time data in the device specified by (s1) with the current time data in accordance with the conditions set by (s3).

(Devices are used as a normally open contact.) The time data in the device specified by (s2) is regarded as dummy data and ignored.

LD

AND

OR

(s1) (s2) (s3)

(s1) (s2) (s3)

(s1) (s2) (s3)

(s1)

(s1)+1

(s1)+2

(s2)

(s2)+1

(s2)+2

Hour

Minute

Second

Hour

Minute

Second

(0 to 23)

Data range

(0 to 59)

(0 to 59)

(0 to 23)

Data range

(0 to 59)

(0 to 59)

Relational
operator

Comparison
operation

result

(s1)

(s1)+1

(s1)+2

Comparison
operation

result

Hour

Minute

Second

(0 to 23)

Data range

(0 to 59)

(0 to 59)

Current time
(Hour/minute/second)

Relational
operator

7 APPLICATION INSTRUCTION

7.19 Clock instruction 595

7

 � Set each data in binary.

 � Set the "hour" data as in the 24-hour clock in the devices specified by (s1) and (s2) within the range 0 to 23.

 � Set the "minute" data in the devices specified by (s1)+1 and (s2)+1 within the range 0 to 59.

 � Set the "second" data in the devices specified by (s1)+2 and (s2)+2 within the range 0 to 59.

 � Set the following in (s3) as comparison target setting values. The following shows the bit configuration of (s3).

 � When 0 is set to the 0 to 2 bits, the time data (hour, minute, and second) are not compared. When 1 is set, the entire time

data (hour, minute, and second) are compared.

 � When 0 is set to the 15 bit, the data in the device specified by (s1) and the time data in the device specified by (s2) are

compared. When 1 is set, the data in the device specified by (s1) is compared with the current time. The time data in the

device specified by (s2) is ignored.

 � The following table lists processing details of each bit.

 � If the comparison target data in the device are not recognized as time data, SM709 turns on after the instruction is executed

and the operation result will be non-continuity. If the device areas specified by (s1) to (s1)+2 or (s2) to (s2)+2 exceed the

corresponding device range, SM709 turns on after the instruction is executed and the operation result will be non-continuity

as well. Once SM709 turns on, the on state is held until the CPU module is powered off or reset. Turn off SM709 as

needed.

 � The following table lists the comparison operation results of each instruction.

(1) Set "second" as comparison target.

(2) Set "minute" as comparison target.

(3) Set "hour" as comparison target.

(4) Set 0. If a value other than 0 is set, the operation result will be non-

continuity.

(5) When 1 is set to the 15 bit, the data in the device specified by (s1)

is compared with the current time in accordance with the conditions

set in the 0 to 2 bits.

(s3) value when

comparing two

specified time data

(s3) value when

comparing the

specified time data

with the current time

Comparison

target

Contents of processing

0001H 8001H Second data Only data in the device specified by (s1)+2 is compared.

0002H 8002H Minute data Only data in the device specified by (s1)+1 is compared.

0003H 8003H Minute and

second data

Data in the device areas specified by (s1)+2 and (s1)+2 are compared.

0004H 8004H Hour data Only data in the device specified by (s1) is compared.

0005H 8005H Hour and second

data

Data in the device areas specified by (s1) and (s1)+2 are compared.

0006H 8006H Hour and minute

data

Data in the device areas specified by (s1) and (s1)+1 are compared.

0007H 8007H Hour, minute, and

second data

The entire time data in the device areas specified by (s1), (s1)+1, and (s1)+2

are compared.

Other than 0001H to 0007H, 8001H to 8007H None The entire time data in the device areas specified by (s1), (s1)+1, and (s1)+2

are not compared. (The operation result will be non-continuity.)

Instruction symbol Condition Result Instruction symbol Condition Result

TM= (s1)=(s2) Conductive state TM= (s1)(s2) Non-conductive state

TM<> (s1)(s2) TM<> (s1)=(s2)

TM> (s1)>(s2) TM> (s1)(s2)

TM<= (s1)(s2) TM<= (s1)>(s2)

TM< (s1)<(s2) TM< (s1)(s2)

TM>= (s1)(s2) TM>= (s1)<(s2)

b15 b14 b3 b2 b1 b0

0/1 0 0/1 0/1 0/1

(5) (4) (3) (2) (1)

596
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Ex.

The time data A, B, and C are compared.

 � The following table lists the comparison operation results between A, B, and C. Even when the data are compared under

the same conditions, the results differ depending on the comparison target data.

Operation error

There is no operation error.

: Continuity, : Non-continuity

Comparison target data Condition

A<B B<C A<C

Second data   

Minute data   

Minute and second data   

Hour data   

Hour and second data   

Hour and minute data   

Hour, minute, and second data   

None   

BA C

14:08:5904:50:55 22:47:05

0:0018:0012:006:000:00

7 APPLICATION INSTRUCTION

7.19 Clock instruction 597

7

Comparing clock data

TCMP(P)

These instructions compare the time specified by (s1), (s2), and (s3) with the time data specified by (s4), and turn on/off the

bit device specified by (d) depending on the size match.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � These instructions compare the time specified by (s1), (s2), and (s3) with the time data specified by (s4), and turn on/off the

bit device specified by (d) depending on the size match.

 � (d), (d)+1, and (d)+2 hold the state before the command contact is turned off even if, the TCMP instruction is not executed

by switching on  off the command contact.

Ladder diagram Structured text

ENO:=TCMP(EN,s1,s2,s3,s4,d);

ENO:=TCMPP(EN,s1,s2,s3,s4,d);

Operand Description Range Data type Data type (label)

(s1) Specify the "hour" of the time comparison 0 to 23 16-bit signed binary ANY16

(s2) Specify the "minute" of the time comparison 0 to 59 16-bit signed binary ANY16

(s3) Specify the "second" of the time comparison 0 to 59 16-bit signed binary ANY16

(s4) Specify the time data (hour, minute, and second)  16-bit signed binary ANY16

(d) Specify the Bit device that turns on/off depending on the

comparison result

 Bit Bit

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(s4)             

(d)             

(s1) (s2) (s4)(s3) (d)

(s1) (s4)

(s2) (s4)+1

(s3)


(s4)+2

(d) = ON

(s1) (s4)

(s2) (s4)+1

(s3)

=

(s4)+2

(d) +1 = ON

(s1) (s4)

(s2) (s4)+1

(s3) (s4)+2

(d) +2 = ON 

Data range Data range

Hour (0 to 23) Hour

Minute Minute

Second Second

Data range Data range

Hour Hour

Minute Minute

Second Second

Data range Data range

Hour Hour

Minute Minute

Second Second

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

598
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Precautions

 � Three devices are occupied by (s4) and (d). Make sure that these devices are not used by other machine controls.

 � Specify each operand of the word device after reading the value of the special register used in the TRD(P) instruction when

the time (hour, minute, second) of the clock data of the built-in real time clock in the CPU module is used.

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified exceeds the corresponding device range.

3405 The value specified by (s1) and (s4) is outside the following range.

0 to 23

The value specified by (s2), (s3), (s4)+1, and (s4)+2 is outside the following range.

0 to 59

7 APPLICATION INSTRUCTION

7.19 Clock instruction 599

7

Comparing clock data zones

TZCP(P)

This instruction compares two comparison time (comparison time zone) specified by (s1) and (s2) with the time data specified

by (s3), and turns on or off the specified bit devices (d) according to the comparison results.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction compares two comparison time (comparison time zone) specified by (s1) and (s2) with the time data

specified by (s3), and turns on or off the specified bit devices (d) according to the comparison results.

 � Even if the command contact turns off from on and the TZCP instruction is not executed, (d), (d)+1, and (d)+2 hold the

status before the command contact turned off.

Ladder diagram Structured text

ENO:=TZCP(EN,s1,s2,s3,d);

ENO:=TZCP(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) Specify the lower limit of time comparison (hour, minute, and

second).

 16-bit signed binary ANY16

(s2) Specify the upper limit of time comparison (hour, minute, and

second).

 16-bit signed binary ANY16

(s3) Specify the time data (hour, minute, and second).  16-bit signed binary ANY16

(d) Specify the Bit device that turns on/off depending on the

comparison result

 Bit Bit

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)             

(s1) (s2) (s3) (d)

(s1) (s3)

(s1)+1 (s3)+1

(s1)+2 (s3)+2

(d) = ON

(s1) (s3) (s2)

(s1)+1 (s3)+1 (s2)+1

(s1)+2 (s3)+2 (s2)+2

(d) +1 = ON

(d) +2 = ON
(s3) (s2)

(s3)+1 (s2)+1

(s3)+2 (s2)+2





 

Data range

Hour

Minute

Second

Data range

Hour

Minute

Second

Data range

Hour

Minute

Second

Data range

Hour

Minute

Second

Data range

Hour

Minute

Second

Data range

Hour

Minute

Second

Data range

Hour

Minute

Second

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

(0 to 23)

(0 to 59)

(0 to 59)

600
7 APPLICATION INSTRUCTION

7.19 Clock instruction

Precautions

 � Three devices are occupied by (s1), (s2), (s3), and (d). Make sure that these devices are not used by other machine

controls.

 � When the time (hour, minute, second) of the clock data of the real time clock built in the CPU module is used, read the

values of special registers by the TRD instruction, and then specify those word devices as the operands.

 � Make (s1)  (s2).

Operation error

Error code

(SD0/SD8067)

Description

2820 The device range specified exceeds the corresponding device range.

3405 The value specified by (s1), (s2), and (s3) is outside the following range.

0 to 23

The value specified by (s1)+1, (s2)+1, (s3)+1, (s1)+2, (s2)+2, and (s3)+2 is outside the following range.

0 to 59

7 APPLICATION INSTRUCTION

7.20 Timing check instruction 601

7

7.20 Timing check instruction

Generating timing pulses

DUTY

This instruction sets user timing clock output destinations (SM420 to SM424 and SM8330 to SM8334) specified by (d) to on

for the number of scans specified by (n1) and to off for the number of scans specified by (n2).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only SM can be used.

Processing details

 � This instruction sets user timing clock output destinations (SM420 to SM424 and SM8330 to SM8334) specified by (d) to on

for the number of scans specified by (n1) and to off for the number of scans specified by (n2).

 � Specify SM420 to SM424 (SM8330 to SM8334) in the special relay of the timing clock output destination specified by (d).

 � In SM420 to SM424 (SM8330 to SM8334), when one device is turned on, another device is also turned on at the same

time.

 � The counted number of scans is stored among SD8330 to SD8334 in accordance with the special relay of the timing clock

output destination specified by (d).

 � The counted number of scans stored among SD8330 to SD8334 is reset when the counted value reaches "(n1)+(n2)" or

when the command input (instruction) is set to on.

Ladder diagram Structured text

ENO:=DUTY(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(n1) Number of scans to be turned on 0 to 65535 16-bit unsigned binary ANY16

(n2) Number of scans to be turned off 0 to 65535 16-bit unsigned binary ANY16

(d) Special relay of the timing clock output destination (SM420 to SM424,

SM8330 to SM8334)

Bit Bit

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(n1)             

(n2)             

(d) *1            

Special relay (d) for outputting the timing clock Scan counting device

SM420(SM8330) SD8330

SM421(SM8331) SD8331

SM422(SM8332) SD8332

SM423(SM8333) SD8333

SM424(SM8334) SD8334

(n1) (n2) (d)

OFF

ON

(n1) scans (n2) scans

SM420 to SM424

602
7 APPLICATION INSTRUCTION

7.20 Timing check instruction

 � When the command input is set to ON, the operation is started. The special relay of the timing clock output destination is

set to ON or OFF by the END instruction. Even if the command input is set to OFF, the operation is not stopped. In the

STOP mode, the operation is stopped. When the power to the CPU module is turned OFF, the operation is stopped.

 � When (n1) and (n2) are set to "0", the status is as shown below:

 � The table below shows the related devices.

Precautions

 � The DUTY instruction can be used up to 5 times (points). It is not permitted, however, to use the same timing clock output

destination device for two or more DUTY instructions.

Operation error

Status of (n1) and (n2) ON/OFF status of (d)

(n1)=0, (n2)0 (d)= Fixed to OFF

(n1)>0, (n2)=0 (d)= Fixed to ON

Special relay Name Description

SM420(SM8330) Timing clock output 1 Timing clock output in the DUTY instruction

SM421(SM8331) Timing clock output 2

SM422(SM8332) Timing clock output 3

SM423(SM8333) Timing clock output 4

SM424(SM8334) Timing clock output 5

Special register Name Description

SD8330 Counted number of scans for timing clock output 1 Counted number of scans for timing clock output 1 in the DUTY

instruction

SD8331 Counted number of scans for timing clock output 2 Counted number of scans for timing clock output 2 in the DUTY

instruction

SD8332 Counted number of scans for timing clock output 3 Counted number of scans for timing clock output 3 in the DUTY

instruction

SD8333 Counted number of scans for timing clock output 4 Counted number of scans for timing clock output 4 in the DUTY

instruction

SD8334 Counted number of scans for timing clock output 5 Counted number of scans for timing clock output 5 in the DUTY

instruction

Error code

(SD0/SD8067)

Description

2820 The device specified by (d) is out of the range from SM420 to SM424 (SM8330 to SM8334).

7 APPLICATION INSTRUCTION

7.20 Timing check instruction 603

7

Hour meter

HOURM

This instruction measures the on time of the input contact in units of hour.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction measures the period of time for which the input contact is on in units of hour, and turns on the device

specified by (d2) when the accumulated ON time exceeds the time (16-bit binary data) specified in (s).

 � In (s), specify the period of time until the device specified by (d2) is turned on in units of hour.

 � The measured current value in units of hour is stored in (d1).

 � The measured current value of less than one hour (in units of second) is stored in (d1)+1.

 � (d2) is set to on when the current value in (d1) exceeds the time specified by (s).

 � Specify a latched (battery backed) type data register as (d1) so that the current value data can be continuously used even

after the power to CPU module turns off. If a general data type register is used, the current value data is cleared when the

power to the CPU module is turned OFF or when the controller mode switches from STOP to RUN.

 � Even after the alarm output specified by (d2) turns ON, the measurement is continued.

 � When the current value reaches the maximum value of 16-bit data, the measurement is stopped. For continuing the

measurement, clear the current value stored in (d1) to (d1)+1.

Precautions

 � Two devices are occupied by (d1). Make sure that these devices are not used by other machine controls.

Operation error

Ladder diagram Structured text

ENO:=HOURM(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Time after which the alarm (d2) is set to on (unit: hour)  16-bit signed binary ANY16

(d1) Device for storing the measured current value (latched (battery

backed) type data register)

 16-bit signed binary ANY16

(d2) Device to be turned on when timeout occurs (alarm output)  Bit Bit

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d1)             

(d2)             

Error code

(SD0/SD8067)

Description

2820 The device areas specified by (d1) exceed the corresponding device range.

3405 The value of (s) is negative.

(s) (d1) (d2)

604
7 APPLICATION INSTRUCTION

7.20 Timing check instruction

DHOURM

This instruction measures the on time of the input contact in units of hour.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction measures the period of time for which the input contact is on in units of hour, and turns on the device

specified by (d2) when the accumulated ON time exceeds the time (32-bit binary data) specified in (s).

 � In (s)+1 and (s), specify the period of time until the device specified by (d2) is turned on in units of hour.

 � The measured current value in units of hour is stored in (d1)+1 and (d1). ((d1)+1: highest-order, (d1): lowest-order)

 � The measured current value of less than one hour (in units of second) is stored in (d1)+2.

 � (d2) is set to on when the current value in (d1)+1 and (d1) exceeds the time specified by (s).

 � Specify a latched (battery backed) type data register as (d1) so that the current value data can be continuously used even

after the power to CPU module turns off. If a general data type register is used, the current value data is cleared when the

power to the CPU module is turned OFF or when the controller mode switches from STOP to RUN.

 � Even after the alarm output specified by (d2) turns ON, the measurement is continued.

 � When the current value reaches the maximum value of 32-bit data, the measurement is stopped. For continuing the

measurement, clear the current value stored in (d1) to (d1)+2.

Precautions

 � Three devices are occupied by (d1). Make sure that these devices are not used by other machine controls.

Operation error

Ladder diagram Structured text

ENO:=DHOURM(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Time after which the alarm (d2) is set to on (unit: hour)  32-bit signed binary ANY32

(d1) Device for storing the measured current value (latched (battery

backed) type data register)

 32-bit signed binary ANY32

(d2) Device to be turned on when timeout occurs (alarm output)  Bit Bit

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d1)             

(d2)             

Error code

(SD0/SD8067)

Description

2820 The device areas specified by (d1) exceed the corresponding device range.

3405 The value of (s) is negative.

(s) (d1) (d2)

7 APPLICATION INSTRUCTION

7.21 Module access instruction 605

7

7.21 Module access instruction

I/O refresh

REF(P)/RFS(P)

These instructions refresh the (n) points of devices starting from the device specified by (s), and receive an external input or

generate an output.

The REF(P) instructions can also be used as RFS(P).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only X and Y can be used.

Processing details

 � This function refreshes only the corresponding devices in the middle of a scan and receives an external input or generates

an output.

 � Since the input receptions and external outputs are performed at one time only after the END instruction is executed in the

program, a pulse signal cannot be output externally in the middle of a scan. The execution of the I/O refresh instruction

forcibly refreshes the corresponding input (X) or output (Y) in the middle of program execution, and then a pulse signal can

be output externally in the middle of a scan.

 � To refresh an input (X) or an output (Y) in 1 point units, use the direct access input (DX) or the direct access output (DY).

Ladder diagram Structured text

ENO:=REF(EN,s,n);

ENO:=REFP(EN,s,n);

Operand Description Range Data type Data type (label)

(s) Head device number to be refreshed  Bit Bit

(n) Number of devices to be refreshed 0 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s) *1            

(n)             

(s) (n)

X0

DX0

REF X0 K1

REF Y20 K1

Y20

DY20

[Program based on the REF instruction]

Command

Command

Refreshes X0.

Refreshes Y20.

[Program based on direct access input and direct access output]

Direct access input Direct access output

606
7 APPLICATION INSTRUCTION

7.21 Module access instruction

Operation error

Error code

(SD0/SD8067)

Description

2820 The (n) points of device range starting from the device specified by (s) exceed the range of proximal I/O.

7 APPLICATION INSTRUCTION

7.21 Module access instruction 607

7

Reading 1-word/2-word data from another module

FROM(P), DFROM(P)

 � FROM(P)

These instructions read (n) words of data from the buffer memory specified by (s) in intelligent function module specified by

(U/H), and store the data to the device specified by (d) and later (d).

 � DFROM(P)

These instructions read the (n)  2 words of data from the buffer memory specified by (s) intelligent function module specified

by (U/H), and store the data to the device specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only the DFROM(P) instruction can be used.

Ladder diagram Structured text

ENO:=FROM(EN,UnHn,s,n,d);

ENO:=FROMP(EN,UnHn,s,n,d);

ENO:=DFROM(EN,UnHn,s,n,d);

ENO:=DFROMP(EN,UnHn,s,n,d);

Operand Description Range Data type Data type (label)

(U/H) Unit number H1 to H10 16-bit unsigned binary ANY16

(s) Start address of the buffer memory where the read-target data is

stored

0 to 65535 16-bit unsigned binary ANY16

(d) FROM(P) Head device number for storing the read data  16-bit signed binary ANY16

DFROM(P) 32-bit signed binary ANY32

(n) Number of read data 1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U/H)             

(s)             

(d)       *1 *1     

(n)             

(U/H) (s) (d) (n)

608
7 APPLICATION INSTRUCTION

7.21 Module access instruction

Processing details

■FROM(P)
 � These instructions read (n) words of data from the buffer memory specified by (s) in intelligent function module specified by

(U/H), and store the data to the device specified by (d) and later.

■DFROM(P)
 � These instructions read the (n)  2 words of data from the buffer memory specified by (s) in intelligent function module

specified by (U/H), and store the data to the device specified by (d) and later.

Precautions

 � For the nibble of a bit device specified by (d), specify K1 to K4 in the FROM(P) instruction and K1 to K8 in the DFROM(P)

instruction.

 � When a number greater than 65535 is specified as the buffer memory specified by (s), use the FROMD(P) instruction or

use U\G in the MOV(P) instruction. The following shows the program to transfer the buffer memory #70000 in the

intelligent function module No. 1 to D0.

Operation error

Error code

(SD0/SD8067)

Description

2441 Updating procedure with the unit was not properly completed during the execution of the instruction.

2801 The unit number specified by (U/H) does not exist.

2823 The buffer memory number specified by (s) exceeds the buffer memory area.

The buffer memory number specified by (s) + the number of transfer points specified by (n) exceeds the buffer memory area.

2820 The device number specified by (d) + the number of read data specified by (n) exceeds the corresponding device range.

3056 Timeout occurred while communicating with the connected units during the execution of the instruction.

3060 Signal error is detected while accessing the connected units during the execution of the instruction.

3580 The instruction that is disabled in the interrupt routine program is used.

(s) (d)

Buffer memory CPU module

(n) points(n) words

(s) (d)

CPU module

(n)2 points(n)2 words

Buffer memory

MOV U1\G70000 D0

SM400

buffer memory #70000

Module No. 1

Transfer
source

Transfer
destination

7 APPLICATION INSTRUCTION

7.21 Module access instruction 609

7

Common items among the FROM(P), DFROM(P), TO(P), and DTO(P) (details)

 � Use the module number to specify which Intelligent function module the instruction works for. The setting range is from H1

to H10 (K1 to K16).

 � A module number is automatically assigned to each intelligent function module connected to a CPU module. The module

number is assigned in the way "No. 1  No. 2  No. 3 ..." starting from the equipment nearest the CPU module.

 � 16-bit RAM memories are built in an intelligent function module, and they are called buffer memories. The contents of buffer

memories vary depending on the purpose of control of each Intelligent function module, and the setting range is from K0 to

K65535.

 � The number of read data is specified by (n), and the setting range is from K1 to K65535.

Module

No. 1

Module

No. 2
Module

No. 3

Module

No. 4

Module

No. 5

Intelligent

function

module

Extension

power

supply unit

Intelligent

function

module

Intelligent

function

module

Bus

conversion

module

Intelligent

function

module

CPU

module

I/O

module
I/O

module

D100
D101
D102
D103
D104

BFM#5

#6
#7
#8
#9

n = 5

Specified device Specified BFM

610
7 APPLICATION INSTRUCTION

7.21 Module access instruction

Writing 1-word/2-word data to another module

TO(P), DTO(P)

 � TO(P)

These instructions write the (n) points of data in the device starting from the one specified by (s2) to the buffer memory

address specified by (s1) in intelligent function module specified by (U/H).

 � DTO(P)

These instructions write the (n)  2 points of data in the device starting from the one specified by (s2) to the buffer memory

address specified by (s1) in intelligent function module specified by (U/H).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only the DTO(P) instruction can be used.

Ladder diagram Structured text

ENO:=TO(EN,m1,m2,s,n);

ENO:=TOP(EN,m1,m2,s,n);

ENO:=DTO(EN,m1,m2,s,n);

ENO:=DTOP(EN,m1,m2,s,n);

Operand Description Range Data type Data type (label)

(U/H) Unit number H1 to H10 16-bit unsigned binary ANY16

(s1) Start address of the buffer memory for writing the data 0 to 65535 16-bit unsigned binary ANY16

(s2) TO(P) Write data, or head device number which stores the write data  16-bit signed binary ANY16

DTO(P)  32-bit signed binary ANY32

(n) Number of write data 1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U/H)             

(s1)             

(s2)       *1 *1     

(n)             

(U/H) (s1) (s2) (n)

7 APPLICATION INSTRUCTION

7.21 Module access instruction 611

7

Processing details

■TO(P)
 � These instructions write the (n) points of data in the device starting from the one specified by (s2) to the buffer memory

address specified by (s1) in intelligent function module specified by (U/H).

 � When a constant is specified in (s2), (n) words of the same data (the value specified by (s2)) is written starting from the

specified buffer memory address.

(s2) (s1)

CPU module Buffer memory

(n) points (n) words

(s2)

(s1)

0

5

5

5

5

CPU module Buffer memory

(n) words (The same data is written.)

612
7 APPLICATION INSTRUCTION

7.21 Module access instruction

■DTO(P)
 � These instructions write the (n)  2 points of data in the device starting from the one specified by (s2) to the buffer memory

address specified by (s1) in intelligent function module specified by (U/H).

 � When a constant is specified in (s2), (n) x 2 words of the same data (the value specified by (s2)) is written starting from the

specified buffer memory address.

Precautions

 � For the nibble of a bit device specified by (s2), specify K1 to K4 in the TO(P) instruction and K1 to K8 in the DTO(P)

instruction.

 � When a number greater than 65535 is specified as the buffer memory specified by (s1), use the TOD(P) instruction or use

U\G in the MOV(P) instruction.

Operation error

Error code

(SD0/SD8067)

Description

2441 Updating procedure with the unit was not properly completed during the execution of the instruction.

2801 The unit number specified by (U/H) does not exist.

2823 The buffer memory number specified by (s1) exceeds the buffer memory area.

The buffer memory number specified by (s1) + the number of transfer points specified by (n) exceeds the buffer memory

area.

2820 The device number specified by (s2) + the number of write data specified by (n) exceeds the corresponding device range.

3056 Timeout occurred while communicating with the connected units during the execution of the instruction.

3060 Signal error is detected while accessing the connected units during the execution of the instruction.

3580 The instruction that is disabled in the interrupt routine program is used.

(s2) (s1)

(n)2 words(n)2 points

CPU module Buffer memory

(s2) (s1)

70000

70000

70000

70000

CPU module Buffer memory

(n)2 words (The same data is written.)

7 APPLICATION INSTRUCTION

7.21 Module access instruction 613

7

Reading 1-word/2-word data from another module

FROMD(P), DFROD(P)

 � FROMD(P)

These instructions read (n) words of data from the buffer memory specified by (s) in intelligent function module specified by

(U/H), and store the data to the device specified by (d) and later.

 � DFROMD(P)/DFROD(P)

These instructions read the (n)  2 words of data from the buffer memory specified by (s) in intelligent function module

specified by (U/H), and store the data to the device specified by (d) and later.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only the DFROD(P) instruction can be used.

Ladder diagram Structured text

ENO:=FROMD(EN,UnHn,s,n,d);

ENO:=FROMDP(EN,UnHn,s,n,d);

ENO:=DFROD(EN,UnHn,s,n,d);

ENO:=DFRODP(EN,UnHn,s,n,d);

Operand Description Range Data type Data type (label)

(U/H) Unit number H1 to H10 16-bit unsigned binary ANY16

(s) Start address of the buffer memory where the read-target data is

stored

0 to 4294967295 32-bit unsigned binary ANY32

(d) FROMD(P) Head device number for storing the read data  16-bit signed binary ANY16

DFROD(P) 32-bit signed binary ANY32

(n) Number of read data 1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U/H)             

(s)             

(d)       *1 *1     

(n)             

(U/H) (s) (d) (n)

614
7 APPLICATION INSTRUCTION

7.21 Module access instruction

Processing details

■FROMD(P)
 � These instructions read (n) words of data from the buffer memory specified by (s) in intelligent function module specified by

(U/H), and store the data to the device specified by (d) and later.

■DFROD(P)
 � These instructions read the (n)  2 words of data from the buffer memory specified by (s) in intelligent function module

specified by (U/H), and store the data to the device specified by (d) and later.

Precautions

 � For the nibble of a bit device specified by (d), specify K1 to K4 in the FROMD(P) instruction and K1 to K8 in the DFROD(P)

instruction.

Operation error

Error code

(SD0/SD8067)

Description

2441 Updating procedure with the unit was not properly completed during the execution of the instruction.

2801 The unit number specified by (U/H) does not exist.

2823 The buffer memory number specified by (s) exceeds the buffer memory area.

The buffer memory number specified by (s) + the number of transfer points specified by (n) exceeds the buffer memory area.

2820 The device number specified by (d) + the number of read data specified by (n) exceeds the corresponding device range.

3056 Timeout occurred while communicating with the connected units during the execution of the instruction.

3060 Signal error is detected while accessing the connected units during the execution of the instruction.

3580 The instruction that is disabled in the interrupt routine program is used.

(s) (d)

Buffer memory CPU module

(n) points(n) words

(s) (d)

Buffer memory CPU module

(n)2 points(n)2 words

7 APPLICATION INSTRUCTION

7.21 Module access instruction 615

7

Common items among the FROMD(P), DFROD(P), TOD(P), and DTOD(P) (details)

 � Use the module number to specify which intelligent function module the instruction works for. The setting range is from H1

to H10 (K1 to K16).

 � A module number is automatically assigned to each intelligent function module connected to a CPU module. The module

number is assigned in the way "No. 1  No. 2  No. 3 ..." starting from the equipment nearest the CPU module.

 � 16-bit RAM memories are built in an intelligent function module, and they are called buffer memories. The contents of buffer

memories vary depending on the purpose of control of each intelligent function module, and the setting range is from K0 to

K4294967295.

 � The number of read data is specified by (n), and the setting range is from K1 to K65535.

Module

No. 1

Module

No. 2
Module

No. 3

Module

No. 4

Module

No. 5

Intelligent

function

module

Extension

power

supply unit

Intelligent

function

module

Intelligent

function

module

Bus

conversion

module

Intelligent

function

module

CPU

module

I/O

module
I/O

module

D100
D101
D102
D103
D104

BFM#5
#6
#7
#8
#9

n = 5

Specified device Specified BFM

616
7 APPLICATION INSTRUCTION

7.21 Module access instruction

Writing 1-word/2-word data to another module (32-bit
specification)

TOD(P), DTOD(P)

 � TOD(P)

These instructions write the (n) points of data in the device starting from the one specified by (s2) to the buffer memory

address specified by (s1) in intelligent function module specified by (U/H).

 � DTOD(P)

These instructions write the (n)  2 points of data in the device starting from the one specified by (s2) to the buffer memory

address specified by (s1) in intelligent function module specified by (U/H).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only the DTOD(P) instruction can be used.

Ladder diagram Structured text

ENO:=TOD(EN,UnHn,s1,s2,n);

ENO:=TODP(EN,UnHn,s1,s2,n);

ENO:=DTOD(EN,UnHn,s1,s2,n);

ENO:=DTODP(EN,UnHn,s1,s2,n);

Operand Description Range Data type Data type (label)

(U/H) Unit number H1 to H10 16-bit unsigned binary ANY16

(s1) Start address of the buffer memory for writing the data 0 to 4294967295 32-bit unsigned binary ANY32

(s2) TOD(P) Write data, or head device number which stores the write data  16-bit signed binary ANY16

DTOD(P)  32-bit signed binary ANY32

(n) Number of write data 1 to 65535 16-bit unsigned binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U/H)             

(s1)             

(s2)       *1 *1     

(n)             

(U/H) (s1) (s2) (n)

7 APPLICATION INSTRUCTION

7.21 Module access instruction 617

7

Processing details

■TOD(P)
 � These instructions write the (n) points of data in the device starting from the one specified by (s2) to the buffer memory

address specified by (s1) in intelligent function module specified by (U/H).

 � When a constant is specified in (s2), (n) words of the same data (the value specified by (s2)) is written starting from the

specified buffer memory address.

(s2) (s1)

CPU module Buffer memory

(n) points (n) words

(s2)

(s1)

0

5

5

5

5

CPU module Buffer memory

(n) words (The same data is written.)

618
7 APPLICATION INSTRUCTION

7.21 Module access instruction

■DTOD(P)
 � These instructions write the (n)  2 points of data in the device starting from the one specified by (s2) to the buffer memory

address specified by (s1) in intelligent function module specified by (U/H).

 � When a constant is specified in (s2), (n) x 2 words of the same data (the value specified by (s2)) is written starting from the

specified buffer memory address.

Precautions

 � For the nibble of a bit device specified by (s2), specify K1 to K4 in the TOD(P) instruction and K1 to K8 in the DTOD(P)

instruction.

Operation error

Error code

(SD0/SD8067)

Description

2441 Updating procedure with the unit was not properly completed during the execution of the instruction.

2801 The unit number specified by (U/H) does not exist.

2823 The buffer memory number specified by (s1) exceeds the buffer memory area.

The buffer memory number specified by (s1) + the number of transfer points specified by (n) exceeds the buffer memory area.

2820 The device number specified by (s2) + the number of write data specified by (n) exceeds the corresponding device range.

3056 Timeout occurred while communicating with the connected units during the execution of the instruction.

3060 Signal error is detected while accessing the connected units during the execution of the instruction.

3580 The instruction that is disabled in the interrupt routine program is used.

(s2) (s1)

(n)2 words(n)2 points

CPU module Buffer memory

(s2) (s1)

70000

70000

70000

70000

CPU module Buffer memory

(n)2 words (The same data is written.)

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.1 Open/Close Processing Instructions 619

8

8 BUILT-IN ETHERNET FUNCTION

INSTRUCTIONS

8.1 Open/Close Processing Instructions

Opening a connection

SP.SOCOPEN

This instruction opens a connection.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=SP_SOCOPEN(EN,U,s1,s2,d);

Operand Description Range Data type Data type (label)

(U) Dummy  Character string ANYSTRING_SINGLE

(s1) Connection number 1 to 8 16-bit unsigned binary ANY16

(s2) Head device number for storing the control data Refer to Control data

(Page 620)

Word ANY16_ARRAY

(Number of elements:

10)

(d) Head device number which turns ON when the execution of

the instruction is completed and remains ON for 1 scan.

If the instruction is completed with an error, (d)+1 is also

turned on.

 Bit ANYBIT_ARRAY

(Number of elements: 2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U)             

(s1)             

(s2)             

(d)    *1         

(U) (s1) (s2) (d)

620
8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.1 Open/Close Processing Instructions

■Control data

*1 The contents in the "Set by" column mean as follows:

User: Data to be set before the execution of the SP.SOCOPEN instruction

System: The CPU module stores the execution result of the SP.SOCOPEN instruction.

*2 When Unpassive open is selected, the target device IP address and target device port number are ignored.

*3 Of the host station port numbers, 0001H to 03FFH are generally reserved port numbers and F000H to FFFEH are used by other

communication functions. Thus, using 0400H to 15ACH and 15C2H to EFFFH as the port numbers is recommended. Do not specify

15ADH to 15C1H since they are used by the system.

Device Item Description Setting range Set by*1

(s2)+0 Execution type/

completion type

Specify whether to use the parameter value set using the engineering

tool or to use the set values of the control data (s2)+2 to (s2)+9 during

the open processing of the connection.

0000H:

The open processing is performed with the settings configured using

"External Device Configuration" of the engineering tool.

8000H:

The open processing is performed with the set values of the control

data (s2)+2 to (s2)+9.

0000H

8000H

User

(s2)+1 Completion status The status at the completion of the instruction is stored.

0000H: Completed successfully

Other than 0000H: Completed with an error (error code)

For error codes, refer to  Built-in Ethernet communication manual.

 System

(s2)+2 Application setting area

[1] Communication method (protocol)

0: TCP/IP

1: UDP/IP

[2] Means for communication

1: Use the socket communication function (fixed)

[3] 0 (fixed)

[4] Open method

00: Active open or UDP/IP

10: Unpassive open

11: Fullpassive open

As shown on the left User

(s2)+3 Host station port number Specify the host station port number. 0001H to 15ACH,

15C2H to FFFEH*3

(s2)+4

(s2)+5

Target device IP

address*2

Specify the IP address of the target device. 00000001H to DFFFFFFEH

(FFFFFFFFH: Simultaneous

broadcast)

(s2)+6 Target device port

number*2
Specify the port number of the target device. 0001H to FFFFH

(FFFFH: Simultaneous

broadcast)

(s2)+7 to

(s2)+9

 Use prohibited  System

[4]

b15b14 b13 b11 b10 b9 b8 b7 b0to to

0 0[2] [1][3](s2)+2

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.1 Open/Close Processing Instructions 621

8

Processing details

This instruction performs the open processing for the connection specified by (s1).

The setting value used by the open processing is selected by (s2)+0.

The completion of the SP.SOCOPEN instruction can be checked using the completion devices (d)+0 and (d)+1.

 � Completion device (d)+0: Turns ON during the END processing for the scan in which the SP.SOCOPEN instruction is

completed, and turns OFF during the next END processing.

 � Completion device (d)+1: Turns ON or OFF depending on the status of when the SP.SOCOPEN instruction is completed.

 � The connection in which no protocol is set with the parameter can be opened and used. In this case, specify 8000H in

(s2)+0 and the contents of the open processing in (s2)+2 to (s2)+9.

For details, refer to  Built-in Ethernet communication manual.

Operation error

Status Description

When completed normally The device does not change (remains OFF).

When completed with an error The device turns ON during the END processing for the scan in which the SP.SOCOPEN instruction is completed, and

turns OFF during the next END processing.

Error code

(SD0/SD8067)

Description

3405 The connection number specified by (s1) is other than 1 to 8.

2820 The device number specified by (s2) or (d) is outside the range of the number of device points.

2822 Device that cannot be specified is specified.

3582 When an instruction which cannot be used in interruption routine program is used.

Program

END processing END processing END processing

When failed

OFF

ON

ON
Completion device (d)+0

SP.SOCOPEN instruction

Execute SP.SOCOPEN instruction

OFF
Completion device (d)+1

1 scan when

normally completed
Connection

open

622
8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.1 Open/Close Processing Instructions

Closing a connection

SP.SOCCLOSE

This instruction closes a connection.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

■Control data

*1 The contents in the "Set by" column mean as follows:

System: The CPU module stores the execution result of the SP.SOCCLOSE instruction.

Ladder diagram Structured text

ENO:=SP_SOCCLOSE(EN,U,s1,s2,d);

Operand Description Range Data type Data type (label)

(U) Dummy  Character string ANYSTRING_SINGLE

(s1) Connection number 1 to 8 16-bit unsigned binary ANY16

(s2) Head device number for storing the control data Refer to Control data

(Page 622)

Word ANY16_ARRAY

(Number of elements: 2)

(d) Head device number which turns on when the execution of

the instruction is completed and remains on for 1 scan.

If the instruction is completed with an error, (d)+1 is also

turned on.

 Bit ANYBIT_ARRAY

(Number of elements: 2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U)             

(s1)             

(s2)             

(d)    *1         

Device Item Description Setting range Set by*1

(s2)+0 System area   

(s2)+1 Completion status The status at the completion of the instruction is stored.

0000H: Completed successfully

Other than 0000H: Completed with an error (error code)

For error codes, refer to  Built-in Ethernet communication manual.

 System

(U) (s1) (s2) (d)

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.1 Open/Close Processing Instructions 623

8

Processing details

This instruction performs the close processing for the connection specified by (s1). (Connection disconnection)

The completion of the SP.SOCCLOSE instruction can be checked using the completion devices (d)+0 and (d)+1.

 � Completion device (d)+0: Turns ON during the END processing for the scan in which the SP.SOCCLOSE instruction is

completed, and turns OFF during the next END processing.

 � Completion device (d)+1: Turns ON or OFF depending on the status when the SP.SOCCLOSE instruction is completed.

For details, refer to  Built-in Ethernet communication manual.

Operation error

Do not execute the SP.SOCCLOSE instruction when Passive open is selected. Since the open completion

signal and open request signal of the corresponding connection turn OFF and close processing is executed,

the communication is disabled.

Status Description

When completed normally The device does not change (remains OFF).

When completed with an error The device turns ON during the END processing for the scan in which the SP.SOCCLOSE instruction is completed, and

turns OFF during the next END processing.

Error code

(SD0/SD8067)

Description

3405 The connection number specified by (s1) is other than 1 to 8.

2820 The device number specified by (s2) or (d) is outside the range of the number of device points.

2822 Device that cannot be specified is specified.

3582 When an instruction which cannot be used in interruption routine program is used.

Program

END processing END processing END processing

When failed

OFF

ON

ON
Completion device (d)+0

SP.SOCCLOSE instruction

Execute SP.SOCCLOSE instruction

OFF
Completion device (d)+1

1 scan when normally

completed
Connection

closed

624
8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions

8.2 Socket Communications Function Instructions

Reading receive data during the END processing

SP.SOCRCV

This instruction reads the receive data. (Reading during END processing)

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

■Control data

*1 The contents in the "Set by" column mean as follows:

System: The CPU module stores the execution result of the SP.SOCRCV instruction.

Ladder diagram Structured text

ENO:=SP_SOCRCV(EN,U,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(U) Dummy  Character string ANYSTRING_SINGLE

(s1) Connection number 1 to 8 16-bit unsigned binary ANY16

(s2) Head device number for specifying the control data Refer to Control data

(Page 624)

Word ANY16_ARRAY

(Number of elements: 2)

(d1) Head device number for storing the receive data  Word ANY16

(d2) Head device number which turns ON when the execution of

the instruction is completed and remains ON for 1 scan.

If the instruction is completed with an error, (d2)+1 is also

turned on.

 Bit ANYBIT_ARRAY

(Number of elements: 2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U)             

(s1)             

(s2)             

(d1)             

(d2)    *1         

Device Item Description Setting range Set by*1

(s2)+0 System area   

(s2)+1 Completion status The status at the completion of the instruction is stored.

0000H: Completed successfully

Other than 0000H: Completed with an error (error code)

For error codes, refer to  Built-in Ethernet communication manual.

 System

(d1)+0 Receive data length The data length of the data read from the socket communication

receive data area is stored. (Number of bytes)

0 to 2046 System

(d1)+1 to

(d1)+n

Receive data The data read from the socket communication receive data area is

sequentially stored.

 System

(U) (s1) (s2) (d1) (d2)

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions 625

8

 � When the SP.SOCRCV instruction is executed, reading data from the socket communication receive data

area is executed with the END processing. Thus, executing the SP.SOCRCV instruction extends the scan

time.

 � When the data of odd-number of bytes is received, invalid data is stored in the higher byte of the device

where the last receive data is stored.

Processing details

In the END processing after the execution of the SP.SOCRCV instruction, the receive data of the connection specified by (s1)

is read from the socket communication receive data area.

The completion of the SP.SOCRCV instruction can be checked using the completion devices (d2)+0 and (d2)+1.

 � Completion device (d2)+0: Turns ON during the END processing for the scan in which the SP.SOCRCV instruction is

completed, and turns OFF during the next END processing.

 � Completion device (d2)+1: Turns ON or OFF depending on the status when the SP.SOCRCV instruction is completed.

The following figure shows the timing of the receive processing with the SP.SOCRCV instruction.

For details, refer to  Built-in Ethernet communication manual.

Status Description

When completed normally The device does not change (remains OFF).

When completed with an error The device turns ON during the END processing for the scan in which the SP.SOCRCV instruction is completed, and turns

OFF during the next END processing.

��

(d1)+0

(d1)+1

(d1)+2

(d1)+n

CPU module

Receive data
length

SP.SOCRCV

(reading

receive data)

Socket communications

receive data storage area

Connection number

specified by (s1)

Receive data

Receive data

Receive data

External device

Receiving

data

Sequence program

END processing END processing

When failed

SP.SOCRCV instruction

ON

OFF

ON

OFF

ON

OFF

1 scan

END processing

Execute SP.SOCRCV instruction

ON

OFF

ON

OFF

Completion device (d2)+0

Completion device (d2)+1

Open completion signal
(SD10680.n)

Receive state signal
(SD10682.n)

Send
data

Open
processing

Data reading
processing

Data
reception

Data
reading

processing
ACK

(Only TCP)

626
8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions

Operation error

Error code

(SD0/SD8067)

Description

3405 The connection number specified by (s1) is other than 1 to 8.

2820 The size of the receive data exceeds the size of the receive data storage device.

The device number specified by (s2), (d1), or (d2) is outside the range of the number of device points.

2822 Device that cannot be specified is specified.

3582 When an instruction which cannot be used in interruption routine program is used.

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions 627

8

Sending data

SP.SOCSND

This instruction sends data.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

■Control data

*1 The contents in the "Set by" column mean as follows:

User: Data to be set before the execution of the SP.SOCSND instruction

System: The CPU module stores the execution result of the SP.SOCSND instruction.

When TCP is used, specify send data length that is smaller than the maximum window size of the target

device (Receive data buffer of TCP). Data whose size exceeds the maximum window size of the target device

cannot be sent.

Ladder diagram Structured text

ENO:=SP_SOCSND(EN,U,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(U) Dummy  Character string ANYSTRING_SINGLE

(s1) Connection number 1 to 8 16-bit unsigned binary ANY16

(s2) Head device number for specifying the control data Refer to Control data

(Page 627)

Word ANY16_ARRAY

(Number of elements: 2)

(s3) Head device number for storing the send data  Word ANY16

(d) Head device number which turns ON when the execution of

the instruction is completed and remains on for 1 scan.

If the instruction is completed with an error, (d)+1 is also

turned on.

 Bit ANYBIT_ARRAY

(Number of elements: 2)

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U)             

(s1)             

(s2)             

(s3)             

(d)    *1         

Device Item Description Setting range Set by*1

(s2)+0 System area   

(s2)+1 Completion status The status at the completion of the instruction is stored.

0000H: Completed successfully

Other than 0000H: Completed with an error (error code)

For error codes, refer to  Built-in Ethernet communication manual.

 System

(s3)+0 Send data length Specifies the send data length. (Number of bytes) 1 to 2046 User

(s3)+1 to

(s3)+n

Send data Specifies the send data.  User

(U) (s1) (s2) (s3) (d)

628
8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions

Processing details

This instruction send the data set by (s3) to the target device of the connection specified by (s1).

The completion of the SP.SOCSND instruction can be checked using the completion devices (d)+0 and (d)+1.

 � Completion device (d)+0: Turns ON during the END processing for the scan in which the SP.SOCSND instruction is

completed, and turns OFF during the next END processing.

 � Completion device (d)+1: Turns ON or OFF depending on the status when the SP.SOCSND instruction is completed.

The following figure shows the timing of the send processing with the SP.SOCSND instruction.

For details, refer to  Built-in Ethernet communication manual.

Operation error

Status Description

When completed normally The device does not change (remains OFF).

When completed with an error The device turns ON during the END processing for the scan in which the SP.SOCSND instruction is completed, and turns

OFF during the next END processing.

Error code

(SD0/SD8067)

Description

3405 The connection number specified by (s1) is other than 1 to 8.

2820 The device number specified by (s2), (s3), or (d) is outside the range of the number of device points.

2822 Device that cannot be specified is specified.

3582 When an instruction which cannot be used in interruption routine program is used.

CPU module

Send data length

Send data

Send data

Send data

(s3)+0

(s3)+1

(s3)+2

(s3)+n

External device
SP.SOCSND

(Sending data)

Sequence program

END processing END processing

When failed

SP.SOCSND instruction

Completion device (d)+0

Completion device (d)+1

Execute SP.SOCSND instruction

ON

OFF

ON

OFF

ON

OFF

1 scan

<Sending control method>

END processing

Send
data

Open
processing

*1

Data send
processing

Data
transmission
(send) *1

Open completion signal
(SD10680.n)

Even after completion device
turns ON, data transmission
may continue.

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions 629

8

Reading connection information

SP.SOCCINF

This instruction reads the connection information.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Ladder diagram Structured text

ENO:=SP_SOCCINF(EN,U,s1,s2,d);

Operand Description Range Data type Data type (label)

(U) Dummy  Character string ANYSTRING_SINGLE

(s1) Connection number 1 to 8 16-bit unsigned binary ANY16

(s2) Head device number for storing the control data Refer to Control data

(Page 630)

Word ANY16_ARRAY

(Number of elements: 2)

(d) Head device number for storing the connection information  Word ANY16_ARRAY

(Number of elements: 5)

Operand Bit Word Double word Indirect

specification

Constant Others

(DY)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U)             

(s1)             

(s2)             

(d)             

(U) (s1) (s2) (d)

630
8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions

■Control data

*1 The contents in the "Set by" column mean as follows:

System: The CPU module stores the execution result of the SP.SOCCINF instruction.

*2 When the instruction is executed for a connection that is not open, 0H is returned.

*3 Of the host station port numbers, 0001H to 03FFH are generally reserved port numbers and F000H to FFFEH are used by other

communication functions. Thus, using 0400H to 15ACH and 15C2H to EFFFH as the port numbers is recommended. Do not specify

15ADH to 15C1H since they are used by the system.

Processing details

This instruction reads the connection information of the connection specified by (s1).

For details, refer to  Built-in Ethernet communication manual.

Operation error

Device Item Description Setting range Set by*1

(s2)+0 System area   

(s2)+1 Completion status The status at the completion of the instruction is stored.

0000H: Completed successfully

Other than 0000H: Completed with an error (error code)

For error codes, refer to  Built-in Ethernet communication manual.

 System

(d)+0

(d)+1

Target device IP address The IP address of the target device is stored. 00000001H to DFFFFFFEH*2 System

(d)+2 Target device port

number

The port number of the target device is stored. 0001H to FFFEH*2

(d)+3 Host station port number The host station port number is stored. 0001H to 15ACH,

15C2H to FFFEH*2*3

(d)+4 Application setting area

[1] Communication method (protocol)

0: TCP/IP

1: UDP/IP

[2] Procedure of the socket communication function

1: Non-protocol method

[3] Open method

00: Active open or UDP/IP

10: Unpassive open

11: Fullpassive open

As shown on the left*2

Error code

(SD0/SD8067)

Description

3405 The connection number specified by (s1) is other than 1 to 8.

2820 The device number specified by (s2) or (d) is outside the range of the number of device points.

2822 Device that cannot be specified is specified.

[3](d)+4

b15b14b13 b10 b9 b8 b7 b0to to

0 0[2] [1]

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions 631

8

Reading socket communications receive data

S(P).SOCRDATA

This instruction reads the data in the socket communication receive data area.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

■Control data

*1 The contents in the "Set by" column mean as follows:

System: The CPU module stores the execution results of the S(P).SOCRDATA instructions.

Ladder diagram Structured text

ENO:=S_SOCRDATA(EN,U,s1,s2,n,d);

ENO:=SP_SOCRDATA(EN,U,s1,s2,n,d);

Operand Description Range Data type Data type (label)

(U) Dummy  Character string ANYSTRING_SINGLE

(s1) Connection number 1 to 8 16-bit unsigned binary ANY16

(s2) Head device number for storing the control data Refer to Control data

(Page 631)

Word ANY16_ARRAY

(Number of elements: 2)

(d) Head device number for storing the read data  Word ANY16

(n) Number of the read data (1 to 1024 words) 1 to 1024 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U)             

(s1)             

(s2)             

(d)             

(n)             

Device Item Description Setting range Set by*1

(s2)+0 System area   

(s2)+1 Completion status The status at the completion of the instruction is stored.

0000H: Completed successfully

Other than 0000H: Completed with an error (error code)

For error codes, refer to  Built-in Ethernet communication manual.

 System

(U) (s1) (s2) (d) (n)

632
8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

8.2 Socket Communications Function Instructions

Processing details

These instructions read the data for the number of words specified by (n) from the socket communication receive data area of

the connection specified by (s1) to the devices from the device specified by (d) onwards. No processing is performed when (n)

is 0.

 � When (n) is 1, the receive data length can be read. By doing this, the device for storing the receive data can

be changed when the SP.SOCRCV instruction is executed.

For details, refer to  Built-in Ethernet communication manual.

Precautions

 � Even when the S(P).SOCRDATA instructions are executed, the socket communication receive data area is not cleared and

the receiving status signal does not change. Therefore, the next receive data is not stored in the socket communication

receive data area.

 � To update receive data, use the SP.SOCRCV instruction to read the receive data.

Operation error

Error code

(SD0/SD8067)

Description

3405 The connection number specified by (s1) is other than 1 to 8.

2820 The device number specified by (s2), (d), or (n) is outside the range of the number of device points.

2822 Device that cannot be specified is specified.

633

P
A

R
T

 4

PART 4 MODULE DEDICATED
INSTRUCTION

This part consists of the following chapters.

9 HIGH-SPEED COUNTER INSTRUCTION

10 EXTERNAL DEVICE I/O INSTRUCTION

11 POSITIONING INSTRUCTION

12 INVERTER COMMUNICATION INSTRUCTION

13 MODBUS COMMUNICATION INSTRUCTION

14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION

634
9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction

9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction

Setting 32-bit data comparison

DHSCS

This instruction compares the value counted by a high-speed counter with a specified value, and immediately sets a bit device

if the two values are equivalent to each other.

*1 When the interrupt pointer (I) is specified in operand (d) by structured text, use the DHSCS_I instruction.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

*2 I16 to I23 can be used.

Processing details

 � When the current value of a high-speed counter of the channel specified in (s2) becomes the comparison value (s1) (for

example, when the current value changes from "199" to "200" or from "201" to "200" if the comparison value is K200), the

bit device (d) is set to ON regardless of the scan time. In this instruction, the comparison processing is executed after the

count processing in the high-speed counter. For details, refer to  User's manual [Application].

Use DHSCS if the output should be given when the counting result becomes equivalent to the comparison

value regardless of the scan time of the CPU module.

When the number of instructions that can be simultaneously used is exceeded, use a general-purpose

comparison instruction.

Ladder diagram Structured text*1

ENO:=DHSCS(EN,s1,s2,d);

ENO:=DHSCS_I(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data to be compared with the current value of a high-speed

counter or word device number storing the data to be compared

-2147483648 to

+2147483647

32-bit signed binary ANY32

(s2) Channel number of a high-speed counter K1 to 8 32-bit signed binary ANY32

(d) DHSCS Bit device number to be set to ON when the compared two values

are equivalent to each other

 Bit ANY_BOOL

DHSCS_I  POINTER

Operand Bit Word Double word Indirect

specification

Constant Others

(I)X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)    *1         *2

(s1) (s2) (d)

DHSCS = (s1) (s2) (d) (s1) (s2) (d)

Set
Comparison

value
Comparison

source
Output

destination
Command

input

9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction 635

9

Precautions

The value specified in (s2) should only be the channel of high-speed counter number (1 to 8) set by the parameter. If a

channel which is not set by the parameter or a value other than K1 to K8 is specified, an operation error occurs.

For other precautions, refer to  User's manual [Application].

Operation error

Error code

(SD0/SD8067)

Description

3780 The DHSCS, DHSCR, and DHSZ instructions are used exceeding the maximum limit of the number of these instructions.

3405 A channel number outside the range or the device (I) number is specified.

3600 A channel number for which the channel setting is not set is specified in the operand for channel number specification of the high-speed

counter.

636
9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction

Reset 32-bit data comparison

DHSCR

This instruction compares the value counted by a high-speed counter with a specified value, and immediately resets a bit

device if the two values are equivalent to each other, or resets the high speed counter.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � When the current value of a high-speed counter of the channel specified in (s2) becomes the comparison value (s1) (for

example, when the current value changes from "199" to "200" or from "201" to "200" if the comparison value is K200), the

bit device (d) is reset to OFF regardless of the scan time. For details, refer to  User's manual [Application].

Use DHSCR if the output should be given when the counting result becomes equivalent to the comparison

value regardless of the scan time of the CPU module.

When the number of instructions that can be simultaneously used is exceeded, use a general-purpose

comparison instruction.

Ladder diagram Structured text

ENO:=DHSCR(EN,s1,s2,d);

Operand Description Range Data type Data type (label)

(s1) Data to be compared with the current value of a high-speed

counter or word device number storing the data to be compared

-2147483648 to

+2147483647

32-bit signed binary ANY32

(s2) Channel number of a high-speed counter K1 to 8 32-bit signed binary ANY32

(d) Bit device number to be reset (set to OFF) when both values

become equivalent to each other, or channel number of self-reset

high speed counter

 Bit/32-bit signed

binary

ANY_ELEMENTARY

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d)             

(s1) (s2) (d)

DHSCR = (s1) (s2) (d) (s1) (s2) (d)

Reset
Comparison

value
Comparison

source
Output

destination
Command

input

9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction 637

9

Precautions

The value specified in (s2) should only be the channel of high-speed counter number (1 to 8) set by the parameter. If a

channel which is not set by the parameter or a value other than K1 to K8 is specified, an operation error occurs.

For other precautions, refer to  User's manual [Application].

Operation error

Error code

(SD0/SD8067)

Description

3780 The DHSCS, DHSCR, and DHSZ instructions are used exceeding the maximum limit of the in number of these instructions.

3405 A channel number outside the range is specified.

3600 A channel number for which the channel setting is not set is specified in the operand in channel number specification of the high-speed

counter.

638
9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction

Comparison of 32-bit data band

DHSZ

This instruction compares the current value of a high-speed counter with two values (one zone), and outputs the comparison

result (refresh).

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � The current value of a high-speed counter specified in (s3) is compared with two comparison points (comparison value 1

and comparison value 2). Based on the zone comparison result, "smaller than the lower comparison value", "inside the

comparison zone" or "larger than the upper comparison value", one among (d), (d)+1 and (d)+2 is set to ON regardless of

the scan time. For details, refer to  User's manual [Application].

 � Make sure that the comparison value 1 and the comparison value 2 have the following relationship: [Comparison value 1] 

[Comparison value 2]. When the setting differs from the above, an operation error occurs and the DHSZ instruction will not

perform any operation.

Ladder diagram Structured text

ENO:=DHSZ(EN,s1,s2,s3,d);

Operand Description Range Data type Data type (label)

(s1) Data to be compared with the current value of a high-speed

counter or word device number storing data to be compared

(comparison value 1)

-2147483648 to

+2147483647

32-bit signed binary ANY32

(s2) Data to be compared with the current value of a high-speed

counter or word device number storing data to be compared

(comparison value 2)

-2147483648 to

+2147483647

32-bit signed binary ANY32

(s3) Channel number of a high-speed counter or the device number of

the current value of a high-speed counter

K1 to 8 32-bit signed binary ANY32

(d) Head bit device number to which the comparison result is output

based on the comparison value 1 and the comparison value 2

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

(d)    *1         

(s1) (s2) (s3) (d)

DHSZ



  



+1

+2

(s1) (s2) (d)(s3)

(s1)

(s1)

(s3)

(s3)

(s3)

(s2)

(s2)

(d)

(d)

(d)

Comparison
value 1 Set

Comparison
value 2

Comparison
source

Output
destination

Command
input

9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction 639

9

 � When the current value of the high-speed counter CH1 changes (counts) as shown below, the comparison result is turn on

to one of the outputs Y0, Y1 or Y2.

It is used when the output should be given when the counting result becomes equivalent to the comparison

value regardless of the scan time of the CPU module.

When the number of instructions that can be simultaneously used is exceeded, use a general-purpose

comparison instruction.

Precautions

 � If a channel which is not set to (s) by the parameter or a value other than K1 to 8 is specified, an operation error occurs.

 � Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

 � For other precautions, refer to  User's manual [Application].

Operation error

Comparison pattern Current value of CH1 (s3) Change of output contact (Y)

Y0 Y1 Y2

(s1) > (s3) 1000>(s3) ON OFF OFF

9991000 ONOFF OFFON OFF

1000999 OFFON ONOFF OFF

(s1)  (s3)  (s2) 9991000 ONOFF OFFON OFF

1000999 OFFON ONOFF OFF

1000  (s3)  2000 OFF ON OFF

20002001 OFF ONOFF OFFON

20012000 OFF OFFON ONOFF

(s3) > (s2) 20002001 OFF ONOFF OFFON

20012000 OFF OFFON ONOFF

(s3) > 2000 OFF OFF ON

Error code

(SD0/SD8067)

Description

3780 The DHSCS, DHSCR, and DHSZ instructions are used exceeding the maximum limit of the number of these instructions.

3405 A channel number outside the range or the device (I) number is specified.

The comparison value 1 is greater than the comparison value 2.

2820 The number of devices is insufficient.

3600 A channel number for which the channel setting is not set is specified in the operand for channel number specification of the high-speed

counter.

SM400

DHSZ K1000 K2000 Y0K1 Y0

Y1

Y2

 K1000 K2000

K1000

 K2000





ON

RUN monitor CH1 current value

CH1 current value

CH1 current value

Comparison
value 1

Comparison
value 2

Comparison
source

Output
destination

640
9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction

Start/stop of the 16-bit data high-speed I/O function

HIOEN(P)

These instructions control the start and stop operations of a high-speed I/O function.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

Specify the number of the function to be started or stopped in (s1), the bit of the channel to be started in (s2), and the bit of the

channel to be stopped in (s3).

The following table shows the function numbers which can be specified in (s1).

*1 When high-speed counter (function number: 0) is stopped during function operation, the function continues to operate, but nothing will

be processed.

*2 When multi-output high-speed comparison table (function number: 30) is stopped, high-speed counter of the same ch is also stopped.

The following table shows the values which can be specified in (s2) and (s3) for each function number.

Function number 0

The counting start and stop of a high-speed counter can be controlled for each channel of high-speed counter.

Ex.

To start CH3, set 04H in (s2). To stop it, set 04H in (s3).

To start CH1, CH4, and CH5, set 19H in (s2). To stop them, set 19H in (s3).

To start CH1 and CH4 and to stop CH5, set 09H in (s2) and set 10H in (s3).

Ladder diagram Structured text

ENO:=HIOEN(EN,s1,s2,s3);

ENO:=HIOENP(EN,s1,s2,s3);

Operand Description Range Data type Data type (label)

(s1) Function number to be started or stopped K0 to 50 16-bit signed binary ANY16

(s2) Set the bit of the channel number where the function is started. -32768 to +32767 16-bit signed binary ANY16

(s3) Set the bit of the channel number where the function is stopped. -32768 to +32767 16-bit signed binary ANY16

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

Function

number

Function name

0 High-speed counter

10*1 Pulse density/rotation speed measurement

30*1*2 Multi-output high-speed comparison table

40 Pulse width measurement

50 PWM

Bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1

(s1) (s2) (s3)

9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction 641

9

Function number 10

The measuring start and stop of the pulse density (rotation speed measurement) can be controlled for each channel of the

high-speed counter.

Function number 30

For the multi-output high-speed comparison table, specification of a channel is not required. To start the multi-output high-

speed comparison table, set 01H in (s2). To stop it, set 01H in (s3).

Function numbers 40 and 50

The measuring start and stop of pulse width measurement and PWM can be controlled for each channel.

Precautions

 � When values that turn on the same channel are set for start and stop, the stop operation is prioritized.

 � To start the multi-output high-speed comparison table (function number: 30), the high-speed counter must be started using

the HIOEN instruction in advance.

 � The high-speed input/output instructions operate according to the following parameters.

Operation error

Bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1

Bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 Valid

Bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 CH4 CH3 CH2 CH1

Function

number

Function specified by the HIOEN instruction Parameter setting

0 High-speed counter Channel setting of the high-speed counter

10 Pulse density (rotation speed measurement) Channel setting of the pulse density/rotation speed measurement

High-speed counter

30 Multi-output high-speed comparison table Output setting of the high-speed counter

40 Pulse width measurement Channel setting of the pulse width measurement

50 PWM Channel setting of PWM

Error code

(SD0/SD8067)

Description

1810 A channel number which is used in another instruction is specified.

3405 An invalid function number is specified in (s).

3600 A channel number which is not selected in the parameter setting is executed.

642
9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction

Start/stop of the 32-bit data high-speed I/O function

DHIOEN(P)

These instructions control the start and stop operations of a high-speed I/O function.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

Specify the number of the function to be started or stopped in (s1), the bit of the channel to be started in (s2), and the bit of the

channel to be stopped in (s3).

The following table shows the function numbers which can be specified in (s1).

*1 When high-speed counter (function number: 0) is stopped during function operation, the function continues to operate, but nothing will

be processed.

*2 When multi-output high-speed comparison table (function number: 30) is stopped, high-speed counter of the same ch is also stopped.

The following table shows the values which can be specified in (s2) and (s3) for each function number.

Function number 0

The counting start and stop of a high-speed counter can be controlled for each channel of the high-speed counter.

Ex.

To start CH3, set 04H in (s2). To stop it, set 04H in (s3).

To start CH1, CH4, and CH5, set 19H in (s2). To stop them, set 19H in (s3).

To start CH1 and CH4 and to stop CH5, set 09H in (s2) and set 10H in (s3).

Ladder diagram Structured text

ENO:=DHIOEN(EN,s1,s2,s3);

ENO:=DHIOENP(EN,s1,s2,s3);

Operand Description Range Data type Data type (label)

(s1) Function number to be started or stopped K0 to 50 16-bit signed binary ANY16

(s2) Set the bit of the channel number where the function is started. -2147483648 to

+2147483647

32-bit signed binary ANY32

(s3) Set the bit of the channel number where the function is stopped. -2147483648 to

+2147483647

32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(s3)             

Function

number

Function name

0 High-speed counter

10*1 Pulse density/rotation speed measurement

20*1 High-speed comparison table

30*1*2 Multi-output high-speed comparison table

40 Pulse width measurement

50 PWM

Bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1

(s1) (s2) (s3)

9 HIGH-SPEED COUNTER INSTRUCTION

9.1 High-speed Processing Instruction 643

9

Function number 10

The measuring start and stop of the pulse density (rotation speed measurement) can be controlled for each channel of the

high-speed counter.

Function number 20

Set the value to turn on the bit of the high-speed comparison table number which is to be started or stopped.

Function number 30

For the multi-output high-speed comparison table, specification of a channel is not required. To start the multi-output high-

speed comparison table, set 01H in (s2). To stop it, set 01H in (s3).

Function numbers 40 and 50

The measuring start and stop of pulse width measurement and PWM can be controlled for each channel.

Precautions

 � When the same channel is simultaneously turned on for start and stop, the stop operation is prioritized.

 � When the high-speed comparison table is used with the DHIOEN instruction, the total number of high-speed comparisons,

including the DHSCS instruction, DHSCR instruction, DHSZ instruction, and interrupt input of built-in positioning, must be 4

or less.

 � To start the multi-output high-speed comparison table (function number: 30), start the high-speed counter using the

(D)HIOEN instruction in advance.

 � The high-speed input/output instructions operate according to the following parameters.

Operation error

Bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 CH8 CH7 CH6 CH5 CH4 CH3 CH2 CH1

Low-order bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 4 3 2 1

High-order bit position

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16



Bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 Valid

Bit position

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

 CH4 CH3 CH2 CH1

Function

number

Function specified by the DHIOEN instruction Parameter setting

0 High-speed counter Channel setting of the high-speed counter

10 Pulse density (rotation speed measurement) Channel setting of the pulse density/rotation speed measurement

High-speed counter

20 High-speed comparison table Output setting of the high-speed counter

30 Multi-output high-speed comparison table Output setting of the high-speed counter

40 Pulse width measurement Channel setting of the pulse width measurement

50 PWM Channel setting of PWM

Error code

(SD0/SD8067)

Description

1810 A channel number which is used in another instruction is specified.

3405 An invalid function number is specified in (s).

3600 A channel number which is not selected in the parameter setting is executed.

644
9 HIGH-SPEED COUNTER INSTRUCTION

9.2 High-speed Current Value Transfer Instruction

9.2 High-speed Current Value Transfer Instruction

High-speed current value transfer of 16-bit data

HCMOV(P)

These instructions read and write (updates) special register for high-speed counter, pulse width measurement, PWM, and

positioning.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

These instructions transfer the data in the device specified by (s) to the device specified by (d). At this time, if the value of (n)

is K0, the value of (s) is not cleared. If the value of (n) is K1, the value of (s) is cleared to "0" after the transfer. The value is

cleared only for special devices supporting high-speed transfer.

When (s) is a device supporting high-speed transfer

 � When the HCMOV instruction is executed, the latest value is acquired such as the current value of a high-

speed counter and transferred to (d).

When (d) is a device supporting high-speed transfer

 � When the HCMOV instruction is executed, value such as the current value of a high-speed counter is

changed.

■Effect of HCMOV instruction
 � By using both input interrupt and HCMOV instruction, the current value of a high-speed counter can be received at the

rising edge or falling edge of an external input.

 � When HCMOV instruction is used just before a comparison instruction (CMP, ZCP or comparison contact instruction), the

latest value of the high-speed counter is used in comparison.

Ladder diagram Structured text

ENO:=HCMOV(EN,s,n,d);

ENO:=HCMOVP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Transfer source device number  Bit/16-bit signed binary ANY_ELEMENTARY

(d) Transfer destination device number  Bit/16-bit signed binary ANY_ELEMENTARY

(n) Specification to clear the device value of the transfer source after the transfer K0, K1 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

9 HIGH-SPEED COUNTER INSTRUCTION

9.2 High-speed Current Value Transfer Instruction 645

9

Precautions

 � When it is necessary to execute comparison and outputting as soon as the current value of a high-speed counter changes,

use the high-speed comparison table, multi-output high-speed comparison table, or one of the DHSCS, DHSCR, and DHSZ

instructions.

 � If 32-bit binary data special device which supports the high-speed transfer (such as the current value of a high-speed

counter) is read using the HCMOV instruction, the operation is the same as that when the MOV instruction is used.

 � Do not overwrite the current value of a high-speed counter using the HCMOV instruction while executing the pulse density

(rotation speed measurement) or the SPD instruction.

The HCMOV instruction is mainly used to read the current value of the high-speed counter/pulse width

measurement and change the current address (in the user units) or the current address (in the pulse unit) of

positioning.

Operation error

Error code

(SD0/SD8067)

Description

3405 A value outside the data range is set in (n).

646
9 HIGH-SPEED COUNTER INSTRUCTION

9.2 High-speed Current Value Transfer Instruction

High-speed current value transfer of 32-bit data

DHCMOV(P)

These instructions read and write (updates) special register for high-speed counter, pulse width measurement, PWM, and

positioning.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

These instructions transfer the data in the device specified by (s) to the device specified by (d). At this time, if the value of (n)

is K0, the value of (s) is not cleared. If the value of (n) is K1, the value of (s) is cleared to "0" after the transfer. The value is

cleared only for special devices supporting high-speed transfer.

When (s) is a device supporting high-speed transfer

 � When the DHCMOV instruction is executed, the latest value is acquired such as the current value of a high-

speed counter and transferred to (d).

When (d) is a device supporting high-speed transfer

 � When the DHCMOV instruction is executed, value such as the current value of a high-speed counter is

changed.

■Effect of DHCMOV instruction
 � By using both input interrupt and DHCMOV instruction, the current value of a high-speed counter can be received at the

rising edge or falling edge of an external input.

 � When DHCMOV instruction is used just before a comparison instruction (DCMP, DZCP or comparison contact instruction),

the latest value of the high-speed counter is used in comparison.

Ladder diagram Structured text

ENO:=DHCMOV(EN,s,n,d);

ENO:=DHCMOVP(EN,s,n,d);

Operand Description Range Data type Data type (label)

(s) Transfer source device number  Bit/32-bit signed

binary

ANY_ELEMENTARY

(d) Transfer source device number  Bit/32-bit signed

binary

ANY_ELEMENTARY

(n) Specification to clear the device value of the transfer source after the transfer K0, K1 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d)             

(n)             

(s) (d) (n)

9 HIGH-SPEED COUNTER INSTRUCTION

9.2 High-speed Current Value Transfer Instruction 647

9

Precautions

 � When it is necessary to execute comparison and outputting as soon as the current value of a high-speed counter changes,

use the high-speed comparison table, multi-output high-speed comparison table, or one of the DHSCS, DHSCR, and DHSZ

instructions.

 � Do not overwrite the current value of a high-speed counter using the DHCMOV instruction while executing the pulse density

(rotation speed measurement) or the DSPD instruction.

The DHCMOV instruction is mainly used to read the current value of the high-speed counter/pulse width

measurement and change the current address (in the user units) or the current address (in the pulse unit) of

positioning.

Operation error

Error code

(SD0/SD8067)

Description

3405 A value outside the data range is set in (n).

648
10 EXTERNAL DEVICE I/O INSTRUCTION

10.1 Serial Communication 2

10 EXTERNAL DEVICE I/O INSTRUCTION

10.1 Serial Communication 2

RS2

This instruction sends or receives data by non-protocol communication via serial ports of RS-232C or RS-485.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction sends or receives data by non-protocol communication via built-in RS-485 port or serial ports of RS-232C or

RS-485 provided by add-on modules. This instruction specifies the head device storing the sent data from the CPU module,

amount of data, head device storing the received data and the maximum allowable amount of received data. For details, refer

to  Serial communication manual.

Precautions

 � It is not permitted to use instructions for external device I/O, MODBUS communication, and inverter communication on the

same port.

 � While this instruction is being driven, the communication format cannot be changed. Set this instruction to OFF before

changing the communication format.

 � When using the header and terminator, set them before driving this instruction. Do not change the values of the header and

terminator while this instruction is being driven.

Ladder diagram Structured text

ENO:=RS2(EN,s,m,n1,n2,d);

Operand Description Range Data type Data type (label)

(s) Head device storing send data  16-bit signed binary/

character string

ANY16

(m) Number of send data 0 to 4096 16-bit unsigned binary ANY16_U

(d) Head device storing receive data  16-bit signed binary/

character string

ANY16

(n1) Amount of received data 0 to 4096 16-bit unsigned binary ANY16_U

(n2) Communication channel K1 to 4 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(m)             

(d)    *1         

(n1)             

(n2)             

(s) (m) (d) (n1) (n2)

10 EXTERNAL DEVICE I/O INSTRUCTION

10.1 Serial Communication 2 649

10

Operation error

For communication errors, refer to  Serial communication manual.

Error code

(SD0/SD8067)

Description

2822 Device that cannot be specified by this instruction is specified.

3405 Data outside the allowable range was input.

2820 The device specified by (s) and (d) exceeds the corresponding device range.

1810 Channel number which is used in another instruction is specified.

3600 Channel number specified by (n2) is not set by parameters.

650
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

Zero return(OPR) with 16-bit data DOG search

DSZR [For the FX3 Series-compatible operand specification]

This instruction executes mechanical zero return.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 When using X, always specify a device that has been set by parameter.

*2 Specify the device set with a parameter or same as the one set in (s1).

*3 Only Y can be used.

*4 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

Processing details

This instruction executes mechanical zero return. The values of special devices are applied as the zero return speed and

creep speed. With the forward limit or reverse limit, zero return with the dog search function can be executed.

 � For (s1), specify the near-point dog signal input device number.

 � For (s2), specify the zero-phase signal input device number.

 � For (d1), specify the device from which pulses are output. Only the output devices (Y) having positioning parameters can

be specified.

 � For (d2), specify the bit device from which the rotation direction signal is output. Only the device specified with a parameter

or general-purpose outputs can be specified. When the output devices (Y) is executed by another function (PWM,

positioning PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DSZR(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Bit device number to which the near-point dog signal is input  Bit ANY_ELEMENTARY

(s2) Bit device number to which the zero-phase signal is input  Bit ANY_ELEMENTARY

(d1) Bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1) *1            

(s2) *1*2            

(d1) *3            

(d2) *4            

� When an X device is specified : The near-point dog signal functions follow the logic set by parameter.

� When other than X device is specified : The device functions follow the positive logic.

� When an X device is specified : The zero-phase signal functions follow the logic set by parameter.

� When other than X device is specified : The device functions follow the positive logic.

(s2) (d1) (d2)(s1)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 651

11

DSZR [For the FX5 Series operand specification]

This instruction executes mechanical zero return.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes mechanical zero return. The near-point dog signal and zero-phase signal function follow the device

set with parameters. With the forward limit or reverse limit, zero return with the dog search function can be executed.

 � For (s1), specify the zero return speed in the user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (s2), specify the creep speed in the user units. Set the creep speed equal to or slower than the zero return speed set in

(s1). (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number for which zero return is performed.

 � For (d2), specify the bit device of the zero return complete flag or abnormal end flag.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DSZR(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Zero return speed 1 to 65535 16-bit unsigned binary ANY_ELEMENTARY

(s2) Creep speed 1 to 65535 16-bit unsigned binary ANY_ELEMENTARY

(d1) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the zero return complete flag or abnormal end flag  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1)             

(d2)    *1         

(s2) (d1) (d2)(s1)

652
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

Zero return(OPR) with 32-bit data DOG search

DDSZR

This instruction executes mechanical zero return.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes mechanical zero return. The near-point dog signal and zero-phase signal function follow the device

set with parameters. With the forward limit or reverse limit, zero return with the dog search function can be executed.

 � For (s1), specify the zero return speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (s2), specify the creep speed in user units. Set the creep speed equal to or slower than the zero return speed set in

(s1). (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number for which zero return is performed.

 � For (d2), specify the bit device of the zero return complete flag or abnormal end flag.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DDSZR(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Zero return speed 1 to 2147483647 32-bit signed binary ANY32

(s2) Creep speed 1 to 2147483647 32-bit signed binary ANY32

(d1) Axis number from which pulses are to be output K1 to 4 32-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the zero return complete flag or abnormal end flag  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1)             

(d2)    *1         

(s2) (d1) (d2)(s1)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 653

11

16-bit data interrupt positioning

DVIT [For the FX3 Series-compatible operand specification]

This instruction executes interrupt 1-speed constant quantity feed.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

*2 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

*3 T, ST, C cannot be used.

Processing details

This instruction executes interrupt 1-speed constant quantity feed.

 � For (s1), specify the transfer distance that is output after an interrupt, in user units. (The distance must be within the range

of -2147483647 to +2147483647 number of pulses.)

 � For (s2), specify the speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the device from which pulses are output. Only the output devices (Y) having positioning parameters can

be specified.

 � For (d2), specify the device from which the rotation direction signal is output. Only the device specified with a parameter or

general-purpose outputs can be specified. When the output devices (Y) is executed by another function (PWM, positioning

PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DVIT(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address after an interrupt input -32768 to +32767 16-bit signed binary ANY16

(s2) Command speed 1 to 65535 16-bit unsigned binary ANY16

(d1) Bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1) *1            

(d2) *2   *3         

(s2) (d1) (d2)(s1)

654
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

DVIT [For the FX5 Series operand specification]

This instruction executes interrupt 1-speed constant quantity feed.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes interrupt 1-speed constant quantity feed.

 � For (s1), specify the transfer distance that is output after an interrupt, in user units. (The distance must be within the range

of -2147483647 to +2147483647 number of pulses.)

 � For (s2), specify the speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number from which pulses are output.

 � For (d2), specify the bit device of the normal complete flag or abnormal end flag for the DVIT instruction.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DVIT(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address after an interrupt input -32768 to +32767 16-bit signed binary ANY16

(s2) Command speed 1 to 65535 16-bit unsigned binary ANY16

(d1) Specify the axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the positioning complete flag or abnormal end flag  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1)             

(d2)    *1         

(s2) (d1) (d2)(s1)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 655

11

32-bit data interrupt positioning

DDVIT [For the FX3 Series-compatible operand specification]

This instruction executes interrupt 1-speed constant quantity feed.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

*2 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

*3 T, ST, C cannot be used.

Processing details

This instruction executes interrupt 1-speed constant quantity feed.

 � For (s1), specify the transfer distance that is output after an interrupt, in user units. (The distance must be within the range

of -2147483647 to +2147483647 in the number of pulses.)

 � For (s2), specify the speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the device from which pulses are output. Only the output devices (Y) having positioning parameters can

be specified.

 � For (d2), specify the device from which the rotation direction signal is output. Only the device specified with a parameter or

general-purpose outputs can be specified. When the output devices (Y) is executed by another function (PWM, positioning

PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DDVIT(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address after an interrupt input -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Command speed 1 to 2147483647 32-bit signed binary ANY32

(d1) Bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1) *1            

(d2) *2   *3         

(s2) (d1) (d2)(s1)

656
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

DDVIT [For the FX5 Series operand specification]

This instruction executes interrupt 1-speed constant quantity feed.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes interrupt 1-speed constant quantity feed.

 � For (s1), specify the transfer distance that is output after an interrupt, in user units. (The distance must be within the range

of -2147483647 to +2147483647 number of pulses.)

 � For (s2), specify the speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number from which pulses are output.

 � For (d2), specify the bit device of the normal complete flag or abnormal end flag for the DDVIT instruction.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DDVIT(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address after an interrupt input -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Command speed 1 to 2147483647 32-bit signed binary ANY32

(d1) Specify the axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the positioning complete flag or

abnormal end flag

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1)             

(d2)    *1         

(s2) (d1) (d2)(s1)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 657

11

Positioning by one table operation

TBL [For the FX3 Series-compatible operand specification]

This instruction executes one specified table operation from the instructions set in the data table using the engineering tool

etc.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

Processing details

This instruction operates one table of the positioning table that is set with parameters in the engineering tool.

 � For (d), specify the device from which pulses are output. Only the output devices (Y) having positioning parameters can be

specified.

 � For (n), specify the table number to be executed according to the output specified in (d).

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=TBL(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(n) Table number to be executed 1 to 100 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d) *1            

(n)             

(d) (n)

658
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

TBL [For the FX5 Series operand specification]

This instruction executes one specified table operation from the instructions set in the data table using the engineering tool

etc.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

This instruction operates one table of the positioning table that is set with parameters in the engineering tool.

 � For (d), specify the axis number from which pulses are output.

 � For (n), specify the table number to be executed according to the output specified in (d).

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=TBL(EN,n,d);

Operand Description Range Data type Data type (label)

(d) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(n) Table number to be executed 1 to 100 16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d)             

(n)             

(d) (n)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 659

11

Positioning by multiple table operation

DRVTBL

This instruction executes positioning operation set in multiple data tables with the engineering tool in continuous operation or

stepping operation. To execute such operation, this instruction needs to be executed only once.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes positioning operation set in multiple data tables with the engineering tool in the continuous operation

or stepping operation. To execute such operation, this instruction needs to be executed only once.

 � For (d1), specify the axis number from which pulses are output.

 � For (n1), specify the start table to be executed according to the output specified in (d1).

 � For (n2), specify the last table. When (n1) and (n2) are the same, only one table is executed. The table operation keeps

executing until the last table or a table that is not set with parameters is executed.

 � For (n3), specify the table execution method. (K0 = Stepping operation, K1 = Continuous operation)

 � For (d2), specify the bit device of the normal complete flag or abnormal end flag.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DRVTBL(EN,n1,n2,n3,d1,d2);

Operand Description Range Data type Data type (label)

(d1) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY16

(n1) Start table number to be executed 1 to 100 16-bit unsigned binary ANY16_U

(n2) Last table number to be executed 1 to 100 16-bit unsigned binary ANY16_U

(n3) Table execution method K0, K1 16-bit unsigned binary ANY16_U

(d2) Bit device number of the positioning complete flag or abnormal end flag  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(d1)             

(n1)             

(n2)             

(n3)             

(d2)    *1         

(d1) (n1) (n3)(n2) (d2)

660
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

Multiple axes concurrent drive positioning

DRVMUL

This instruction executes tables of multiple axes of one module simultaneously.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Ladder diagram Structured text

ENO:=DRVMUL(EN,n1,n2,n3,n4,n5,d);

Operand Description Range Data type Data type (label)

(n1) Start axis number K1 16-bit unsigned binary ANY16_U

(n2) Table number of the axis 1 K0 to 100 16-bit unsigned binary ANY16_U

(n3) Table number of the axis 2 K0 to 100 16-bit unsigned binary ANY16_U

(n4) Table number of the axis 3 K0 to 100 16-bit unsigned binary ANY16_U

(n5) Table number of the axis 4 K0 to 100 16-bit unsigned binary ANY16_U

(d) Bit device number of the positioning complete flag or abnormal end flag  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(n1)             

(n2)             

(n3)             

(n4)             

(n5)             

(d)    *1         

(n2) (n3) (n4) (n5) (d)(n1)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 661

11

Processing details

This instruction executes tables of multiple axes of one module simultaneously.

 � For (n1), specify the start axis number. When the built-in positioning function of the CPU module is used, the start axis is

the axis 1. Thus, specify K1.

 � For (n2), specify the table number that is executed with the axis (n1). When not executing the axis (n1), specify K0.

 � For (n3), specify the table number that is executed with the axis (n1)+1. When not executing the axis (n1)+1, specify K0.

 � For (n4), specify the table number that is executed with the axis (n1)+2. When not executing the axis (n1)+2, specify K0.

 � For (n5), specify the table number that is executed with the axis (n1)+3. When not executing the axis (n1)+3, specify K0.

 � For (d), specify the device of the instruction execution complete flag for each axis. Eight devices are occupied from (d), and

function as follows.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Eight devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Device Description

(d) Instruction execution complete flag for the axis (n1)

(d)+1 Instruction execution abnormal end flag for the axis (n1)

(d)+2 Instruction execution complete flag for the axis (n1)+1

(d)+3 Instruction execution abnormal end flag for the axis (n1)+1

(d)+4 Instruction execution complete flag for the axis (n1)+2

(d)+5 Instruction execution abnormal end flag for the axis (n1)+2

(d)+6 Instruction execution complete flag for the axis (n1)+3

(d)+7 Instruction execution abnormal end flag for the axis (n1)+3

662
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

32-bit data ABS current value read

DABS

This instruction reads the absolute position (ABS) data when a servo amplifier (equipped with the absolute position detection

function) is connected. The data is converted into pulse when read.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction reads the absolute position (ABS) data when a servo amplifier (equipped with the absolute position detection

function) is connected. The data is converted into pulse when being read.

 � For (s), specify the head device number that inputs the output signal for absolute position (ABS) data from the servo

amplifier.

 � For (d1), specify the head device number that outputs the absolute position (ABS) data control signal to the servo amplifier.

Be sure to use transistor outputs for the CPU module outputs.

 � For (d2), specify the device that stores the absolute position (ABS) data read from the servo amplifier.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Three devices are occupied from the device specified in (s) and (d1). Make sure that these devices are not used in other

controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DABS(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Head device number that inputs the output signal for absolute position

(ABS) data from the servo amplifier

 Bit ANY_BOOL

(d1) Head device number that outputs the absolute position (ABS) data

control signal to the servo amplifier

 Bit ANY_BOOL

(d2) Absolute position (ABS) data (32-bit value)  32-bit signed binary ANY32

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)    *1         

(d1)    *1         

(d2)             

(s) (d1) (d2)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 663

11

16-bit data variable speed pulse

PLSV [For the FX3 Series-compatible operand specification]

This instruction outputs variable speed pulses with an assigned rotation direction output.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

*2 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

*3 T, ST, C cannot be used.

Processing details

This instruction outputs variable speed pulses with an assigned rotation direction output.

 � For (s), specify the command speed to be output. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the device from which pulses are output. Only the output devices (Y) having positioning parameters can

be specified.

 � For (d2), specify the device from which the rotation direction signal is output. Only the device specified with the parameter

or general-purpose outputs can be specified. When the output devices (Y) is executed by another function (PWM,

positioning PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=PLSV(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Command speed -32768 to +32767 16-bit signed binary ANY16

(d1) Bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d1) *1            

(d2) *2   *3         

(s) (d1) (d2)

664
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

PLSV [For the FX5 Series operand specification]

This instruction outputs variable speed pulses with an assigned rotation direction output.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction outputs variable speed pulses with an assigned rotation direction output.

 � For (s), specify the command speed to be output. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number from which pulses are output.

 � For (d2), specify the bit device of the abnormal end flag for the PLSV instruction. (This device does not have the normal

complete status, and only has the abnormal end status ((d2)+1).

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=PLSV(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Command speed -32768 to +32767 16-bit signed binary ANY16

(d1) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the positioning complete flag or abnormal end flag  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d1)             

(d2)    *1         

(s) (d1) (d2)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 665

11

32-bit data variable speed pulse

DPLSV [For the FX3 Series-compatible operand specification]

This instruction outputs variable speed pulses with an assigned rotation direction output.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

*2 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

*3 T, ST, C cannot be used.

Processing details

This instruction outputs variable speed pulses with an assigned rotation direction output.

 � For (s), specify the command speed to be output. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the device from which pulses are output. Only the output devices (Y) having positioning parameters can

be specified.

 � For (d2), specify the device from which the rotation direction signal is output. Only the device specified with the parameter

or general-purpose outputs can be specified. When the output devices (Y) is executed by another function (PWM,

positioning PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DPLSV(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Command speed -2147483648 to +2147483647 32-bit signed binary ANY32

(d1) Bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d1) *1            

(d2) *2   *3         

(s) (d1) (d2)

666
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

DPLSV [For the FX5 Series operand specification]

This instruction outputs variable speed pulses with an assigned rotation direction output.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction outputs variable speed pulses with an assigned rotation direction output.

 � For (s), specify the command speed to be output. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number from which pulses are output.

 � For (d2), specify the bit device of the abnormal end flag for the DPLSV instruction. (This device does not have the normal

complete status, and only has the abnormal end status ((d2)+1).

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DPLSV(EN,s,d1,d2);

Operand Description Range Data type Data type (label)

(s) Command speed -2147483648 to +2147483647 32-bit signed binary ANY32

(d1) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the positioning complete flag or

abnormal end flag

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s)             

(d1)             

(d2)    *1         

(s) (d1) (d2)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 667

11

16-bit data relative positioning

DRVI [For the FX3 Series-compatible operand specification]

This instruction executes one-speed positioning by incremental drive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

*2 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

*3 T, ST, C cannot be used.

Processing details

This instruction executes one-speed positioning by incremental drive. Specify the positioning address in the incremental

system, in which the transfer direction and transfer distance from the current position (relative address) are specified for

positioning.

 � For (s1), specify the relative positioning address in user units. (The address must be within the range of -2147483647 to

+2147483647 number of pulses.)

 � For (s2), specify the command speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the device from which pulses are output. Only the Y devices having positioning parameters can be

specified.

 � For (d2), specify the bit device from which the rotation direction signal is output. Only the device specified with the

parameter or general-purpose outputs can be specified. When the output devices (Y) is executed by another function

(PWM, positioning PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DRVI(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address -32768 to +32767 16-bit signed binary ANY16

(s2) Command speed 1 to 65535 16-bit unsigned binary ANY16

(d1) Output bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1) *1            

(d2) *2   *3         

(s2) (d1) (d2)(s1)

668
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

DRVI [For the FX5 Series operand specification]

This instruction executes one-speed positioning by incremental drive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes one-speed positioning by incremental drive. Specify the positioning address in the incremental

system, in which the transfer direction and transfer distance from the current position (relative address) are specified for

positioning.

 � For (s1), specify the relative positioning address in user units. (The address must be within the range of -2147483647 to

+2147483647 number of pulses.)

 � For (s2), specify the command speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number from which pulses are output.

 � For (d2), specify the bit device of the normal complete flag or abnormal end flag for the DRVI instruction.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DRVI(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address -32768 to +32767 16-bit signed binary ANY16

(s2) Command speed 1 to 65535 16-bit unsigned binary ANY16

(d1) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the positioning complete flag or abnormal end flag  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1)             

(d2)    *1         

(s2) (d1) (d2)(s1)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 669

11

32-bit data relative positioning

DDRVI [For the FX3 Series-compatible operand specification]

This instruction executes one-speed positioning by incremental drive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

*2 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

*3 T, ST, C cannot be used.

Processing details

This instruction executes one-speed positioning by incremental drive. Specify the positioning address in the incremental

system, in which the transfer direction and transfer distance from the current position (relative address) are specified for

positioning.

 � For (s1), specify the relative positioning address in user units. (The address must be within the range of -2147483647 to

+2147483647 number of pulses.)

 � For (s2), specify the command speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the device from which pulses are output. Only the Y devices having positioning parameters can be

specified.

 � For (d2), specify the device from which the rotation direction signal is output. Only the device specified with the parameter

or general-purpose outputs can be specified. When the output devices (Y) is executed by another function (PWM,

positioning PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DDRVI(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Command speed 1 to 2147483647 32-bit signed binary ANY32

(d1) Output bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1) *1            

(d2) *2   *3         

(s2) (d1) (d2)(s1)

670
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

DDRVI [For the FX5 Series operand specification]

This instruction executes one-speed positioning by incremental drive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes one-speed positioning by incremental drive. Specify the positioning address in the incremental

system, in which the transfer direction and transfer distance from the current position (relative address) are specified for

positioning.

 � For (s1), specify the relative positioning address in user units. (The address must be within the range of -2147483647 to

+2147483647 number of pulses.)

 � For (s2), specify the command speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number from which pulses are output.

 � For (d2), specify the bit device of the normal complete flag or abnormal end flag for the DDRVI instruction.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DDRVI(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Command speed 1 to 2147483647 32-bit signed binary ANY32

(d1) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the positioning complete flag or

abnormal end flag

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1)             

(d2)    *1         

(s2) (d1) (d2)(s1)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 671

11

16-bit data absolute positioning

DRVA [For the FX3 Series-compatible operand specification]

This instruction executes one-speed positioning by absolute drive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

*2 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

*3 T, ST, C cannot be used.

Processing details

This instruction executes one-speed positioning by absolute drive. Specify the positioning address in the absolute system, in

which the transfer distance from the origin (absolute address) is specified for positioning.

 � For (s1), specify the absolute positioning address in user units. (The address must be within the range of -2147483647 to

+2147483647 number of pulses.)

 � For (s2), specify the command speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the device from which pulses are output. Only the Y devices having positioning parameters can be

specified.

 � For (d2), specify the bit device from which the rotation direction signal is output. Only the device specified with the

parameter or general-purpose outputs can be specified. When the output devices (Y) is executed by another function

(PWM, positioning PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DRVA(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address -32768 to +32767 16-bit signed binary ANY16

(s2) Command speed 1 to 65535 16-bit unsigned binary ANY16

(d1) Output bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1) *1            

(d2) *2   *3         

(s2) (d1) (d2)(s1)

672
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

DRVA [For the FX5 Series operand specification]

This instruction executes one-speed positioning by absolute drive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes one-speed positioning by absolute drive. Specify the positioning address in the absolute system, in

which the transfer distance from the origin (absolute address) is specified for positioning.

 � For (s1), specify the absolute positioning address in user units. (The address must be within the range of -2147483647 to

+2147483647 number of pulses.)

 � For (s2), specify the command speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number from which pulses are output.

 � For (d2), specify the bit device of the normal complete flag or abnormal end flag for the DRVA instruction.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DRVA(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address -32768 to +32767 16-bit signed binary ANY16

(s2) Command speed 1 to 65535 16-bit unsigned binary ANY16

(d1) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the positioning complete flag or abnormal end flag  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1)             

(d2)    *1         

(s2) (d1) (d2)(s1)

11 POSITIONING INSTRUCTION

11.1 Positioning Instruction 673

11

32-bit data absolute positioning

DDRVA [For the FX3 Series-compatible operand specification]

This instruction executes one-speed positioning by absolute drive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 Only Y can be used.

*2 When the output mode is CW/CCW, specify the CCW axis. When the output mode is PULSE/SIGN and using Y, only the SIGN output or

general-purpose output of the self-axis can be specified.

*3 T, ST, C cannot be used.

Processing details

This instruction executes one-speed positioning by absolute drive. Specify the positioning address in the absolute system, in

which the transfer distance from the origin (absolute address) is specified for positioning.

 � For (s1), specify the absolute positioning address in user units. (The address must be within the range of -2147483647 to

+2147483647 number of pulses.)

 � For (s2), specify the command speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the device from which pulses are output. Only the Y devices having positioning parameters can be

specified.

 � For (d2), specify the bit device from which the rotation direction signal is output. Only the device specified with the

parameter or general-purpose outputs can be specified. When the output devices (Y) is executed by another function

(PWM, positioning PULSE axis, or CW/CCW axis etc.), the device does not function and causes an error.

For details on the function, precautions, and error code, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DDRVA(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Command speed 1 to 2147483647 32-bit signed binary ANY32

(d1) Output bit device number (Y) from which pulses are output 0 to 3 Bit ANY_ELEMENTARY

(d2) Bit device number from which the rotation direction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1) *1            

(d2) *2   *3         

(s2) (d1) (d2)(s1)

674
11 POSITIONING INSTRUCTION

11.1 Positioning Instruction

DDRVA [For the FX5 Series operand specification]

This instruction executes one-speed positioning by absolute drive.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes one-speed positioning by absolute drive. Specify the positioning address in the absolute system, in

which the transfer distance from the origin (absolute address) is specified for positioning.

 � For (s1), specify the absolute positioning address in user units. (The address must be within the range of -2147483647 to

+2147483647 number of pulses.)

 � For (s2), specify the command speed in user units. (The speed must be 200 Kpps or lower in frequency.)

 � For (d1), specify the axis number from which pulses are output.

 � For (d2), specify the bit device of the normal complete flag or abnormal end flag for the DDRVA instruction.

For details on the function and error code, refer to  Built-in positioning manual.

Precautions

Two devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

For other precautions, refer to  Built-in positioning manual.

Ladder diagram Structured text

ENO:=DDRVA(EN,s1,s2,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Positioning address -2147483648 to +2147483647 32-bit signed binary ANY32

(s2) Command speed 1 to 2147483647 32-bit signed binary ANY32

(d1) Axis number from which pulses are to be output K1 to 4 16-bit signed binary ANY_ELEMENTARY

(d2) Bit device number of the positioning complete flag or

abnormal end flag

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)             

(s2)             

(d1)             

(d2)    *1         

(s2) (d1) (d2)(s1)

12 INVERTER COMMUNICATION INSTRUCTION

12.1 Inverter operation monitoring(Status check) 675

12

12 INVERTER COMMUNICATION INSTRUCTION

12.1 Inverter operation monitoring(Status check)

IVCK

This instruction reads the operation status of an inverter to the CPU module.

Setting data

■Descriptions, ranges, and data types

*1  Refer to Serial communication manual or respective inverter manual.

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

The operation status corresponding to the instruction code specified in (s2) of an inverter connected to the channel to be used

(n) whose station number is specified in (s1) is read and transferred to (d1). For details, refer to  Serial communication

manual. (For the instruction codes, refer to the each inverter manual.)

Precautions

Three devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

Operation error

For communication errors, refer to  Serial communication manual.

Ladder diagram Structured text

ENO:=IVCK(EN,s1,s2,n,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Inverter station number K0 to 31 16-bit signed binary ANY16

(s2) Inverter instruction codes *1 16-bit signed binary ANY16

(d1) Device number storing the read value  16-bit signed binary ANY16

(n) Channel to be used K1 to 4 16-bit unsigned binary ANY16_U

(d2) Head bit device to which the execution status of the instruction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(d1)             

(n)             

(d2)    *1         

Error code

(SD0/SD8067)

Description

1810 Channel number specified by (d) is used by another instruction.

2820 The specified device exceeds the range of the corresponding device.

3405 The value specified by (s1) is other than any of K0 to 31.

The value specified by (n) is other than any of K1 to 4.

3600 Channel number specified by (d) is not set by parameters.

(s1) (s2) (d1) (n) (d2)

676
12 INVERTER COMMUNICATION INSTRUCTION

12.2 Inverter operations control(Drive)

12.2 Inverter operations control(Drive)

IVDR

This instruction writes a control value necessary for inverter operation to a CPU module using the computer link operation

function of the inverter.

Setting data

■Descriptions, ranges, and data types

*1  Refer to Serial communication manual or respective inverter manual.

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

The control value specified in (s3) is written to the instruction code specified in (s2) of an inverter connected to the channel to

be used (n) whose station number is specified in (s1). For details, refer to  Serial communication manual. (For the

instruction codes, refer to the each inverter manual.)

Precautions

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation error

For communication errors, refer to  Serial communication manual.

Ladder diagram Structured text

ENO:=IVDR(EN,s1,s2,s3,n,d);

Operand Description Range Data type Data type (label)

(s1) Inverter station number K0 to 31 16-bit signed binary ANY16

(s2) Inverter instruction codes *1 16-bit signed binary ANY16

(s3) Set value to be written to the inverter parameter or device number storing the

data to be set

 16-bit signed binary ANY16

(n) Channel to be used K1 to 4 16-bit unsigned binary ANY16_U

(d) Head bit device to which the execution status of the instruction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(s3)             

(n)             

(d)    *1         

Error code

(SD0/SD8067)

Description

1810 Channel number specified by (d) is used by another instruction.

2820 The specified device exceeds the range of the corresponding device.

3405 The value specified by (s1) is other than any of K0 to 31.

The value specified by (n) is other than any of K1 to 4.

3600 Channel number specified by (d) is not set by parameters.

(s1) (s2) (s3) (n) (d)

12 INVERTER COMMUNICATION INSTRUCTION

12.3 Inverter parameter read 677

12

12.3 Inverter parameter read

IVRD

This instruction reads a parameter of an inverter to the CPU module.

Setting data

■Descriptions, ranges, and data types

*1  Refer to Serial communication manual or respective inverter manual.

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

The value of the parameter (s2) is read from an inverter connected to the channel to be used (n) whose station number is (s1),

and output to (d1). For details, refer to  Serial communication manual. (For the parameter numbers, refer to the each

inverter manual.)

Precautions

Three devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

Operation error

For communication errors, refer to  Serial communication manual.

Ladder diagram Structured text

ENO:=IVRD(EN,s1,s2,n,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Inverter station number K0 to 31 16-bit signed binary ANY16

(s2) Inverter parameter number *1 16-bit signed binary ANY16

(d1) Device number storing the read value  16-bit signed binary ANY16

(n) Channel to be used K1 to 4 16-bit unsigned binary ANY16_U

(d2) Head bit device to which the execution status of the instruction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(d1)             

(n)             

(d2)    *1         

Error code

(SD0/SD8067)

Description

1810 Channel number specified by (d) is used by another instruction.

2820 The specified device exceeds the range of the corresponding device.

3405 The value specified by (s1) is other than any of K0 to 31.

The value specified by (s2) is outside the allowable range. (Less than K0, K3000 to 9999, or K13000 to 32767)

The value specified by (n) is other than any of K1 to 4.

3600 Channel number specified by (d) is not set by parameters.

(s1) (s2) (d1) (n) (d2)

678
12 INVERTER COMMUNICATION INSTRUCTION

12.4 Inverter parameter write

12.4 Inverter parameter write

IVWR

This instruction writes a parameter of an inverter from the CPU module.

Setting data

■Descriptions, ranges, and data types

*1  Refer to Serial communication manual or respective inverter manual.

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

A value specified in (s3) is written to a parameter (s2) in an inverter connected to the channel to be used (n) whose station

number is (s1). For details, refer to  Serial communication manual. (For the parameter numbers, refer to the each inverter

manual.)

Precautions

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation error

For communication errors, refer to  Serial communication manual.

Ladder diagram Structured text

ENO:=IVWR(EN,s1,s2,s3,n,d);

Operand Description Range Data type Data type (label)

(s1) Inverter station number K0 to 31 16-bit signed binary ANY16

(s2) Inverter parameter number *1 16-bit signed binary ANY16

(s3) Set value to be written to the inverter parameter or device number storing the

data to be set

 16-bit signed binary ANY16

(n) Channel to be used K1 to 4 16-bit unsigned binary ANY16_U

(d) Head bit device to which the execution status of the instruction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(s3)             

(n)             

(d)    *1         

Error code

(SD0/SD8067)

Description

1810 Channel number specified by (d) is used by another instruction.

2820 The specified device exceeds the range of the corresponding device.

3405 The value specified by (s1) is other than any of K0 to 31.

The value specified by (s2) is outside the allowable range. (Less than K0, K3000 to 9999, or K13000 to 32767)

The value specified by (n) is other than any of K1 to 4.

3600 Channel number specified by (d) is not set by parameters.

(s1) (s2) (s3) (n) (d)

12 INVERTER COMMUNICATION INSTRUCTION

12.5 Inverter parameter block write 679

12

12.5 Inverter parameter block write

IVBWR

This instruction writes parameters of an inverter from the CPU module in a batch.

Setting data

■Descriptions, ranges, and data types

*1  Refer to Serial communication manual or respective inverter manual.

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

A data table specified in (s2) and (s3) is written to an inverter connected to the channel to be used (n) whose station number

is (s1) in batch. For details, refer to  Serial communication manual. (For the parameter numbers, refer to the each inverter

manual.)

Precautions

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation error

For communication errors, refer to  Serial communication manual.

Ladder diagram Structured text

ENO:=IVBWR(EN,s1,s2,s3,n,d);

Operand Description Range Data type Data type (label)

(s1) Inverter station number K0 to 31 16-bit signed binary ANY16

(s2) Number of parameters in an inverter to be written at one time *1 16-bit signed binary ANY16

(s3) Start device of a parameter table to be written to an inverter  16-bit signed binary ANY16

(n) Channel to be used K1 to 4 16-bit unsigned binary ANY16_U

(d) Head bit device to which the execution status of the instruction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(s3)             

(n)             

(d)    *1         

Error code

(SD0/SD8067)

Description

1810 Channel number specified by (d) is used by another instruction.

2820 The specified device exceeds the range of the corresponding device.

3405 The value specified by (s1) is other than any of K0 to 31.

The value specified by (s2) is K0 or less.

The value specified by (s3) is outside the allowable range. (Less than K0, K3000 to 9999, or K13000 to 32767)

The value specified by (n) is other than any of K1 to 4.

3600 Channel number specified by (d) is not set by parameters.

(s1) (s2) (s3) (n) (d)

680
12 INVERTER COMMUNICATION INSTRUCTION

12.6 Inverter multi command

12.6 Inverter multi command

IVMC

This instruction writes 2 types of settings (operation command and set frequency) to the inverter, and reads 2 types of data

(inverter status monitor, output frequency, etc.) from the inverter at the same time.

Setting data

■Descriptions, ranges, and data types

*1  Refer to Serial communication manual.

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

This instruction executes multiple commands of an inverter connected to the channel to be used (n) whose station number is

specified in (s1). Specify the send/receive data type using (s2), the head device which stores data to be written to the inverter

using (s3), and the head device which stores values to be read from the inverter using (d1). For details, refer to  Serial

communication manual.

Ladder diagram Structured text

ENO:=IVMC(EN,s1,s2,s3,n,d1,d2);

Operand Description Range Data type Data type (label)

(s1) Inverter station number K0 to 31 16-bit signed binary ANY16

(s2) Multiple instructions for inverter: Send/receive data type specification *1 16-bit signed binary ANY16

(s3) Head device which stores data to be written to the inverter  16-bit signed binary ANY16

(d1) Head device which stores values to be read from the inverter  16-bit signed binary ANY16

(n) Channel to be used K1 to 4 16-bit unsigned binary ANY16_U

(d2) Head bit device to which the execution status of the instruction is output  Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(s3)             

(d1)             

(n)             

(d2)    *1         

(s1) (s2) (s3) (d1) (n) (d2)

12 INVERTER COMMUNICATION INSTRUCTION

12.6 Inverter multi command 681

12

Precautions

 � If a device number outside the range due to indexing, etc. is specified in (d1), the receive data from the inverter is not stored

in (d1). However, values set in (s3) and (s3)+1 may be written to the inverter.

 � If any unspecified value is set in (s2), unexpected data may be written to and read from the inverter, and values of (d1) and

(d1)+1 may be updated.

 � The IVMC instruction reads the inverter status at the time of communication with the inverter, and stores it in (d1).

Accordingly, the inverter status written by the IVMC instruction can be read when the next reading instruction (IVCK, IVMC,

etc.) is executed.

 � Two devices are occupied from the device specified in (s3) and (d1). Make sure that these devices are not used in other

controls.

 � Three devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

Operation error

For communication errors, refer to  Serial communication manual.

Error code

(SD0/SD8067)

Description

1810 Channel number specified by (d) is used by another instruction.

2820 The specified device exceeds the range of the corresponding device.

3405 The value specified by (s1) is other than any of K0 to 31.

The value specified by (n) is other than any of K1 to 4.

3600 Channel number specified by (d) is not set by parameters.

682
13 MODBUS COMMUNICATION INSTRUCTION

13.1 MODBUS Read/Write

13 MODBUS COMMUNICATION INSTRUCTION

13.1 MODBUS Read/Write

ADPRW

This instruction allows the MODBUS Master to communicate (read/write data) with the Slaves.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

*1 T, ST, C cannot be used.

Processing details

 � Function code (s2) is operated on Slave node address (s1) according to Parameters (s3), (s4), and (s5)/(d1). Use 0 as the

Slave Node Address for Broadcast commands. For details, refer to  MODBUS communication manual.

 � The communication execution status (d2) is output according to the status of the ADPRW instruction such as

communicating/completed normally/completed with an error.

Precautions

Three devices are occupied from the device specified in (d2). Make sure that these devices are not used in other controls.

Ladder diagram Structured text

ENO:=ADPRW(EN,s1,s2,s3,s4,s5d1,d2);

Operand Description Range Data type Data type (label)

(s1) Slave node address 0 to 20H 16-bit signed binary ANY16

(s2) Function code 01H to 06H, 0FH, 10H 16-bit signed binary ANY16

(s3) Function parameters depending on the function code 0 to FFFFH 16-bit signed binary ANY16

(s4) Function parameters depending on the function code 1 to 2000 16-bit signed binary ANY16

(s5)/(d1) Function parameters depending on the function code  Bit/16-bit signed binary ANY_ELEMENTARY

(d2) Head bit device number to which the execution status of

the communication is output

 Bit ANY_BOOL

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(s1)    *1         

(s2)    *1         

(s3)    *1         

(s4)    *1         

(s5)/(d1)    *1         

(d2)    *1         

(s1) (s2) (s3) (s4) (s5)/(d1) (d2)

13 MODBUS COMMUNICATION INSTRUCTION

13.1 MODBUS Read/Write 683

13

Operation error

For communication errors, refer to  MODBUS communication manual.

Error code

(SD0/SD8067)

Description

1810 Channel used by the instruction is used by other instruction.

3600 Invalid parameter setup.

2822 Device that cannot be used by this instruction is specified.

3405 Data outside the allowable range was input.

2820 The specified device exceeds the range of the corresponding device.

684
14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION

14.1 Divided BFM Read

14 DIVIDED DATA READ/WRITE FROM/TO BFM

INSTRUCTION

14.1 Divided BFM Read

RBFM

This instruction reads data from continuous buffer memory areas in an FX3 series intelligent function module

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction reads (n1) points of buffer memory starting from (s) inside the intelligent function module number (U/H) to

(d) in the CPU module. When (n1) exceeds 64 points, it divides and reads by several scans. (64 points are read in one

scan)

 � When this instruction is finished normally, instruction execution complete flag (SM8029) turns on. When this instruction is

finished abnormally, instruction execution abnormal end flag (SM8329) turns on.

 � When this instruction or the WBFM instruction is executed in the same scan, instruction non-execution flag (SM8328) is set

to on, and execution of such an instruction is paused. When execution of the other target instruction is complete, the

paused instruction resumes.

Ladder diagram Structured text

ENO:=RBFM(EN,UnHn,s,n1,n2,d);

Operand Description Range Data type Data type (label)

(U/H) Module number K1 to 16 16-bit unsigned binary ANY16_U

(s) Head buffer memory number 0 to 32767 16-bit unsigned binary ANY16_U

(d) Head device number storing data to be read from buffer memory  16-bit signed binary ANY16

(n1) Number of all buffer memory areas to be read 1 to 32768 16-bit unsigned binary ANY16_U

(n2) Not used  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U/H)             

(s)             

(d)             

(n1)             

(n2)             

(U/H) (s) (n1)(d) (n2)

M
SM8029

RBFM (U/H) (s) (n1) (n2)

SM8328

M

BFM#(s)

BFM#((s)+(n1)-1) (d)+(n1)-1

SM8329

M

(d)

(d)

Instruction execution complete flag

Instruction non-execution flag

Module number (U/H) CPU module

Read

Instruction execution abnormal end flag

Command
input

14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION

14.1 Divided BFM Read 685

14

■Related devices

Precautions

 � Do not stop the instruction while it is being executed. If driving is stopped, the buffer memory reading processing is

suspended, but the data that is already read is stored in (d) onwards. Stop the instruction after execution completes as in

the following program.

 � When indexing is executed, the contents of index registers at the beginning of execution are used. Even if the contents of

index registers are changed after the instruction, such changes do not affect the process of the instruction.

 � The contents of (n1) points starting from (d) update (change) every scan while this instruction is executed. Use the data

after the instruction is completed.

 � Do not update (change) the contents of (n1) buffer memory areas starting from the buffer memory (s) while this instruction

is executed. If the contents are updated, the intended data may not be read.

 � This instruction cannot be used in FX5 series intelligent function modules.

 � This instruction cannot be used while a interrupt routine program is being executed.

Operation error

Device Name Description

SM8029 Instruction execution complete Turns ON when an instruction is finished normally.

SM8328 Instruction non-execution Turns ON when the RBFM instruction or WBFM instruction in another step is executed for

the same module number.

SM8329 Instruction execution abnormal end Turns ON when an instruction is finished abnormally.

Error code

(SD0/SD8067)

Description

2441 Communication procedure with module is not completed correctly when this instruction is executed.

2801 Module with the module number specified by (U/H) does not exist.

2823 The number of transfer points specified by (n1) and the buffer memory number specified by (s) is beyond the buffer memory area range.

2820 The number of transfer points specified by (n1) and the device number specified by (d) is beyond the specified device range.

3580 Instructions that cannot be used in an interrupt routine program are being used.

SET

SM8029
RST

RBFM (U/H) (s) (n1) (n2)
M

M

M

(d)

Instruction execution complete flag

Command
input

686
14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION

14.1 Divided BFM Read

Common items between RBFM instruction and WBFM instruction

■Specification of module number of FX3 series intelligent function module and buffer memory
For FX3 series intelligent function module connection method, number of connectable FX3 series intelligent function modules

and handling of I/O numbers, refer to  manuals of the CPU module and FX3 series intelligent function modules.

 � Module number of FX3 series intelligent function module

Use the module number to specify for which equipment the RBFM/WBFM instruction is used. (Setting range: K1 to K16)

A module number is automatically assigned to each intelligent function module connected to the CPU module. The module

number is assigned as No.1  No.2  No.3… starting from the equipment nearest the CPU module.

 � Buffer memory number

The intelligent function module incorporates a RAM memory. The RAM memory is called buffer memory. Buffer memory

numbers range from #0 to #32767 and their contents vary depending on the function of the extension equipment. (Setting

range: K0 to K32767)

For the contents of buffer memory areas, refer to  manuals of intelligent function modules.

Module

No. 1

Module

No. 2

Module

No. 3

CPU module I/O module
Bus

conversion

module

Intelligent

function

module

Intelligent

function

module

14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION

14.2 Divided BFM write 687

14

14.2 Divided BFM write

WBFM

This instruction writes data to continuous buffer memory areas in an FX3 series intelligent function module.

Setting data

■Descriptions, ranges, and data types

■Applicable devices

Processing details

 � This instruction writes (n1) points of buffer memory starting from (s1) inside the intelligent function module number (U/H) to

(s2) in the CPU module. When (n1) exceeds 64 points, it divides and writes by several scans. (64 points are read in one

scan)

 � When this instruction is finished normally, instruction execution complete flag (SM8029) turns on. When this instruction is

finished abnormally, instruction execution abnormal end flag (SM8329) turns on.

 � When this instruction or the RBFM instruction is executed in the same scan, instruction non-execution flag (SM8328) is set

to on, and execution of such an instruction is paused. When execution of the other target instruction is complete, the

paused instruction resumes.

Ladder diagram Structured text

ENO:=WBFM(EN,UnHn,s1,s2,n1,n2);

Operand Description Range Data type Data type (label)

(U/H) Module number K1 to 16 16-bit unsigned binary ANY16_U

(s1) Head buffer memory number 0 to 32767 16-bit unsigned binary ANY16_U

(s2) Head device number storing data to be written to buffer memory  16-bit signed binary ANY16

(n1) Number of all buffer memory areas to be written 1 to 32768 16-bit unsigned binary ANY16_U

(n2) Not used  16-bit unsigned binary ANY16_U

Operand Bit Word Double word Indirect

specification

Constant Others

X, Y, M, L,

SM, F, B, SB

U\G T, ST,

C, LC

T, ST, C, D,

W, SD, SW, R

U\G Z LC LZ K, H E $

(U/H)             

(s1)             

(s2)             

(n1)             

(n2)             

(U/H) (s1) (n1)(s2) (n2)

M
SM8029

WBFM (U/H) (s1) (n1) (n2)

SM8328

M

BFM#(s1)

BFM#((s1)+(n1)-1)(s2)+(n1)-1

SM8329

M

(s2)

(s2)

Instruction execution complete flag

Instruction non-execution flag

Module number (U/H)CPU module

Write

Instruction execution abnormal end flag

Command
input

688
14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION

14.2 Divided BFM write

■Related devices

Precautions

 � Do not stop the instruction while it is being executed. If driving is stopped, the buffer memory write processing is

suspended, but the data that is already written is stored in (m2) onwards.

 � When indexing is executed, the contents of index registers at the beginning of execution are used. Even if the contents of

index registers are changed after the instruction, such changes do not affect the process of the instruction.

 � Do not update (change) the contents of (n1) points starting from (s2) while this instruction is executed. If the contents are

updated, the intended data may not be written to the buffer memory areas.

 � This instruction cannot be used in FX5 series intelligent function modules.

 � This instruction cannot be used while a interrupt routine program is being executed.

Operation error

Device Name Description

SM8029 Instruction execution complete Turns ON when an instruction is finished normally.

SM8328 Instruction non-execution Turns ON when the RBFM instruction or WBFM instruction in another step is executed for

the same module number.

SM8329 Instruction execution abnormal end Turns ON when an instruction is finished abnormally.

Error code

(SD0/SD8067)

Description

2441 Communication procedure with module is not completed correctly when this instruction is executed.

2801 Module with the module number specified by (U/H) does not exist or the specified module is not an FX series module.

2823 The number of transfer points specified by (n1) and the buffer memory number specified by (s1) is beyond the buffer memory range.

2820 The number of transfer points specified by (n1) and the device number specified by (s2) is beyond the specified device range.

3580 Instructions that cannot be used in an interrupt routine program are being used.

689

P
A

R
T

 5

PART 5 STANDARD FUNCTIONS

This part consists of the following chapters.

15 TYPE CONVERSION FUNCTIONS

16 SINGLE NUMBER VARIABLE FUNCTIONS

17 ARITHMETIC OPERATION FUNCTIONS

18 BIT SHIFT FUNCTIONS

19 STANDARD BITWISE BOOLEAN FUNCTIONS

20 SELECTION FUNCTIONS

21 COMPARISON FUNCTIONS

22 CHARACTER STRING FUNCTIONS

23 TIME DATA FUNCTIONS

690
15 TYPE CONVERSION FUNCTIONS

15.1 Converting BOOL to WORD

15 TYPE CONVERSION FUNCTIONS

15.1 Converting BOOL to WORD

BOOL_TO_WORD(_E)

These functions convert BOOL type data to WORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the BOOL type data input to (s) to WORD type data and output from (d).

 � When the input value is "FALSE", these functions output 0H as the WORD type data value.

 � When the input value is "TRUE", these functions output 1H as the WORD type data value.

 � A value input to (s) is the BOOL type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BOOL_TO_WORD(s);

[With EN/ENO]

d:=BOOL_TO_WORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable WORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

BOOL

TRUE

FALSE

WORD

1H

0H

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.2 Converting BOOL to DWORD 691

15

15.2 Converting BOOL to DWORD

BOOL_TO_DWORD(_E)

These functions convert BOOL type data to DWORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the BOOL type data input to (s) to DWORD type data and output from (d).

 � When the input value is "FALSE", these functions output 0H as the DWORD type data value.

 � When the input value is "TRUE", these functions output 1H as the DWORD type data value.

 � A value input to (s) is the BOOL type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BOOL_TO_DWORD(s);

[With EN/ENO]

d:=BOOL_TO_DWORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DWORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

BOOL

TRUE

FALSE

DWORD

1H

0H

(s) (d)

692
15 TYPE CONVERSION FUNCTIONS

15.3 Converting BOOL to INT

15.3 Converting BOOL to INT

BOOL_TO_INT(_E)

These functions convert BOOL type data to INT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the BOOL type data input to (s) to INT type data and output from (d).

 � When the input value is "FALSE", these functions output 0 as the INT type data value.

 � When the input value is "TRUE", these functions output 1 as the INT type data value.

 � A value input to (s) is the BOOL type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BOOL_TO_INT(s);

[With EN/ENO]

d:=BOOL_TO_INT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

BOOL

TRUE

FALSE

INT

1

0

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.4 Converting BOOL to DINT 693

15

15.4 Converting BOOL to DINT

BOOL_TO_DINT(_E)

These functions convert BOOL type data to DINT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the BOOL type data input to (s) to DINT type data and output from (d).

 � When the input value is "FALSE", these functions output 0 as the DINT type data value.

 � When the input value is "TRUE", these functions output 1 as the DINT type data value.

 � A value input to (s) is the BOOL type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BOOL_TO_DINT(s);

[With EN/ENO]

d:=BOOL_TO_DINT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DINT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

BOOL

TRUE

FALSE

DINT

1

0

(s) (d)

694
15 TYPE CONVERSION FUNCTIONS

15.5 Converting BOOL to TIME

15.5 Converting BOOL to TIME

BOOL_TO_TIME(_E)

These functions convert BOOL type data to TIME type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the BOOL type data input to (s) to TIME type data and output from (d).

 � When the input value is "FALSE", these functions output 0 as the TIME type data value.

 � When the input value is "TRUE", these functions output 1 as the TIME type data value.

 � A value input to (s) is the BOOL type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BOOL_TO_TIME(s);

[With EN/ENO]

d:=BOOL_TO_TIME_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

BOOL

TRUE

FALSE

TIME

T#1ms

0

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.6 Converting BOOL to STRING 695

15

15.6 Converting BOOL to STRING

BOOL_TO_STRING(_E)

These functions convert BOOL type data to STRING type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the BOOL type data input to (s) to STRING type data and output from (d).

 � When the input value is "FALSE", these functions output 0 as the STRING type data value.

 � When the input value is "TRUE", these functions output 1 as the STRING type data value.

 � A value input to (s) is the BOOL type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BOOL_TO_STRING(s);

[With EN/ENO]

d:=BOOL_TO_STRING_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

BOOL

TRUE

FALSE

STRING

"1"

"0"

(s) (d)

696
15 TYPE CONVERSION FUNCTIONS

15.7 Converting WORD to BOOL

15.7 Converting WORD to BOOL

WORD_TO_BOOL(_E)

These functions convert WORD type data to BOOL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the WORD type data input to (s) to BOOL type data and output from (d).

 � When the input value is 0H, these functions output "FALSE".

 � When the input value is any value other than 0H, these functions output "TRUE".

 � A value input to (s) is the WORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=WORD_TO_BOOL(s);

[With EN/ENO]

d:=WORD_TO_BOOL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable WORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

WORD

1567H

0H

BOOL

TRUE

FALSE

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.8 Converting WORD to DWORD 697

15

15.8 Converting WORD to DWORD

WORD_TO_DWORD(_E)

These functions convert WORD type data to DWORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the WORD type data input to (s) to DWORD type data and output from (d).

 � Each of high-order 16 bits becomes "0" after data conversion.

 � A value input to (s) is the WORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=WORD_TO_DWORD(s);

[With EN/ENO]

d:=WORD_TO_DWORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable WORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DWORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

WORD

5678H

DWORD

00005678H

(s) (d)

698
15 TYPE CONVERSION FUNCTIONS

15.9 Converting WORD to INT

15.9 Converting WORD to INT

WORD_TO_INT(_E)

These functions convert WORD type data to INT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the WORD type data input to (s) to INT type data and output from (d).

 � A value input to (s) is the WORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=WORD_TO_INT(s);

[With EN/ENO]

d:=WORD_TO_INT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable WORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

WORD

5678H

INT

22136

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.10 Converting WORD to DINT 699

15

15.10 Converting WORD to DINT

WORD_TO_DINT(_E)

These functions convert WORD type data to DINT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the WORD type data input to (s) to DINT type data and output from (d).

 � Each of high-order 16 bits becomes "0" after data conversion.

 � A value input to (s) is the WORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=WORD_TO_DINT(s);

[With EN/ENO]

d:=WORD_TO_DINT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable WORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DINT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

WORD

5678H

DINT

22136

5678H 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0

00000000000000000 1 0 1 0 1 1 0 0 1 1 1 1 0 0 022136

Data conversion

(s) (d)

Each of high-order 16 bits becomes
"0" after data conversion.

700
15 TYPE CONVERSION FUNCTIONS

15.11 Converting WORD to TIME

15.11 Converting WORD to TIME

WORD_TO_TIME(_E)

These functions convert WORD type data to TIME type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the WORD type data input to (s) to TIME type data and output from (d).

 � A value input to (s) is the WORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=WORD_TO_TIME(s);

[With EN/ENO]

d:=WORD_TO_TIME_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable WORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

WORD

1234H

0H

TIME

T#1s234ms

T#0ms

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.12 Converting DWORD to BOOL 701

15

15.12 Converting DWORD to BOOL

DWORD_TO_BOOL(_E)

These functions convert DWORD type data to BOOL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DWORD type data input to (s) to BOOL type data and output from (d).

 � When the input value is 0H, these functions output "FALSE".

 � When the input value is any value other than 0H, these functions output "TRUE".

 � A value input to (s) is the DWORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DWORD_TO_BOOL(s);

[With EN/ENO]

d:=DWORD_TO_BOOL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DWORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DWORD

12345678H

0H

BOOL

TRUE

FALSE

(s) (d)

702
15 TYPE CONVERSION FUNCTIONS

15.13 Converting DWORD to WORD

15.13 Converting DWORD to WORD

DWORD_TO_WORD(_E)

These functions convert DWORD type data to WORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DWORD type data input to (s) to WORD type data and output from (d).

 � The information stored in high-order 16 bits of an input value is discarded.

 � A value input to (s) is the DWORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

When DWORD_TO_WORD(_E) is executed, the information stored in high-order 16 bits of the DWORD type

data value input from (s) is discarded.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DWORD_TO_WORD(s);

[With EN/ENO]

d:=DWORD_TO_WORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DWORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable WORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DWORD

The information stored in high-order 16 bits is discarded.

12345678H

WORD

5678H

12345678H

5678H

0

0

001011000100100

1 2 3 4 5 6 7 8

0 1

1

0

0

1

1

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

0

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.13 Converting DWORD to WORD 703

15

Operation error

There is no operation error.

704
15 TYPE CONVERSION FUNCTIONS

15.14 Converting DWORD to INT

15.14 Converting DWORD to INT

DWORD_TO_INT(_E)

These functions convert DWORD type data to INT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DWORD type data input to (s) to INT type data and output from (d).

 � The information stored in high-order 16 bits of an input value is discarded.

 � A value input to (s) is the DWORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

When DWORD_TO_INT(_E) is executed, the information stored in high-order 16 bits of the DWORD type

data value input from (s) is discarded.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DWORD_TO_INT(s);

[With EN/ENO]

d:=DWORD_TO_INT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DWORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DWORD

The information stored in high-order 16 bits is discarded.

BC614EH

INT

24910

BC614EH

24910

0

0

0011110100000000 1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

0

0

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.14 Converting DWORD to INT 705

15

Operation error

There is no operation error.

706
15 TYPE CONVERSION FUNCTIONS

15.15 Converting DWORD to DINT

15.15 Converting DWORD to DINT

DWORD_TO_DINT(_E)

These functions convert DWORD type data to DINT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DWORD type data input to (s) to DINT type data and output from (d).

 � A value input to (s) is the DWORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DWORD_TO_DINT(s);

[With EN/ENO]

d:=DWORD_TO_DINT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DWORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DINT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DWORD

BC614EH

DINT

12345678

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.16 Converting DWORD to TIME 707

15

15.16 Converting DWORD to TIME

DWORD_TO_TIME(_E)

These functions convert DWORD type data to TIME type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DWORD type data input to (s) to TIME type data and output from (d).

 � A value input to (s) is the DWORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DWORD_TO_TIME(s);

[With EN/ENO]

d:=DWORD_TO_TIME_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DWORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DWORD

1234567H

0H

TIME

T#20m34s567ms

T#0ms

(s) (d)

708
15 TYPE CONVERSION FUNCTIONS

15.17 Converting INT to BOOL

15.17 Converting INT to BOOL

INT_TO_BOOL(_E)

These functions convert INT type data to BOOL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the INT type data input to (s) to BOOL type data and output from (d).

 � When the input value is 0, these functions output "FALSE".

 � When the input value is any value other than 0, these functions output "TRUE".

 � A value input to (s) is the INT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_BOOL(s);

[With EN/ENO]

d:=INT_TO_BOOL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

INT

1567

0

BOOL

TRUE

FALSE

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.18 Converting INT to WORD 709

15

15.18 Converting INT to WORD

INT_TO_WORD(_E)

These functions convert INT type data to WORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the INT type data input to (s) to WORD type data and output from (d).

 � A value input to (s) is the INT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_WORD(s);

[With EN/ENO]

d:=INT_TO_WORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable WORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

INT

22136

WORD

5678H

(s) (d)

710
15 TYPE CONVERSION FUNCTIONS

15.19 Converting INT to DWORD

15.19 Converting INT to DWORD

INT_TO_DWORD(_E)

These functions convert INT type data to DWORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the INT type data input to (s) to DWORD type data and output from (d).

 � Each of high-order 16 bits becomes "0" after data conversion.

 � A value input to (s) is the INT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_DWORD(s);

[With EN/ENO]

d:=INT_TO_DWORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DWORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

INT

-325

DWORD

0000FEBBH

-325 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1

10000000000000000 1 1 1 1 1 1 0 1 0 1 1 1 0 1 10000FEBBH

Data conversion

(s) (d)

Each of high-order 16 bits becomes
"0" after data conversion.

15 TYPE CONVERSION FUNCTIONS

15.20 Converting INT to DINT 711

15

15.20 Converting INT to DINT

INT_TO_DINT(_E)

These functions convert INT type data to DINT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the INT type data input to (s) to DINT type data and output from (d).

 � A value input to (s) is the INT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_DINT(s);

[With EN/ENO]

d:=INT_TO_DINT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DINT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

INT

1234

DINT

1234

(s) (d)

712
15 TYPE CONVERSION FUNCTIONS

15.21 Converting INT to BCD

15.21 Converting INT to BCD

INT_TO_BCD(_E)

These functions convert INT type data to BCD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the INT type data input to (s) to BCD type data and output from (d).

 � A value input to (s) is the INT type data value and within the range from 0 to 9999.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_BCD(s);

[With EN/ENO]

d:=INT_TO_BCD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable WORD

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

INT

Thousands place Hundreds place Tens place Ones place

9999

BCD

9999H

9999 0

1

1

1

1

0

1

0

0

1

0

1

1

0

0

0

0

1

0

0

0

0

0

1

1

1

1

0

1

0

1

19999H

Conversion to Binary Coded DecimalMake sure to set them to "0".

8000 4000

3276816384

2000

8192

1000

4096

800

2048

400

1024

200

512

100

256

80

128

40

64

20

32

10

16

8

8

4

4

2

2

1

1

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.21 Converting INT to BCD 713

15

Operation error

Error code

(SD0/SD8067)

Description

3401 Data in the device specified by (s) is out of the valid range (0 to 9999).

714
15 TYPE CONVERSION FUNCTIONS

15.22 Converting INT to REAL

15.22 Converting INT to REAL

INT_TO_REAL(_E)

These functions convert INT type data to REAL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the INT type data input to (s) to REAL type data and output from (d).

 � A value input to (s) is the INT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_REAL(s);

[With EN/ENO]

d:=INT_TO_REAL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

1234

REAL

1234.0

(d)(s)

INT

15 TYPE CONVERSION FUNCTIONS

15.23 Converting INT to TIME 715

15

15.23 Converting INT to TIME

INT_TO_TIME(_E)

These functions convert INT type data to TIME type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the INT type data input to (s) to TIME type data and output from (d).

 � A value input to (s) is the INT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_TIME(s);

[With EN/ENO]

d:=INT_TO_TIME_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

INT

1234

TIME

T#1s234ms

(s) (d)

716
15 TYPE CONVERSION FUNCTIONS

15.24 Converting INT to STRING

15.24 Converting INT to STRING

INT_TO_STRING(_E)

These functions convert INT type data to STRING type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the INT type data input to (s) to STRING type data and output from (d).

 � A value input to (s) is the INT type data value.

 � In "Sign data", 20H (space) is stored when the input value is positive, and 2DH (-) is stored when the input value is

negative.

 � 20H (space) is stored in high-order digits when the number of significant figures is small.

Ex.

When "-123" is input

 � 00H is stored at the end (4th word) of the character string when SM701 (output character number selector signal) is off.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_STRING(s);

[With EN/ENO]

d:=INT_TO_STRING_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(6)

s d EN ENO

ds

INT

ASCII code for hundreds place ASCII code for thousands place

ASCII code for ones place ASCII code for tens place

00H

ASCII code for ten-thousands place Sign data

2nd word

3rd word

4th word

1st word of the character string

High-order byte Low-order byte

"00H" is stored when "SM701" (output character number selector) is off.

(s)

(d)

INT

31H (1)
-123

20H (space)

33H (3) 32H (2)

00H

20H (space) 2DH (-)

2nd word

3rd word

4th word

1st word of the character string

High-order byte Low-order byte

(s)

(d)

15 TYPE CONVERSION FUNCTIONS

15.24 Converting INT to STRING 717

15

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s) and later, "0000H" does not exist.

3405 The character string specified by (s) has more than 16383 characters.

3406 The whole specified character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

718
15 TYPE CONVERSION FUNCTIONS

15.25 Converting DINT to BOOL

15.25 Converting DINT to BOOL

DINT_TO_BOOL(_E)

These functions convert DINT type data to BOOL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DINT type data input to (s) to BOOL type data and output from (d).

 � When the input value is 0, these functions output "FALSE".

 � When the input value is any value other than 0, these functions output "TRUE".

 � A value input to (s) is the DINT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_BOOL(s);

[With EN/ENO]

d:=DINT_TO_BOOL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DINT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DINT

12345678

0

BOOL

TRUE

FALSE

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.26 Converting DINT to WORD 719

15

15.26 Converting DINT to WORD

DINT_TO_WORD(_E)

These functions convert DINT type data to WORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DINT type data input to (s) to WORD type data and output from (d).

 � The information stored in high-order 16 bits of an input value is discarded.

 � A value input to (s) is the DINT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

When DINT_TO_WORD(_E) is executed, the information stored in high-order 16 bits of the DINT type data

value input from (s) is discarded.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_WORD(s);

[With EN/ENO]

d:=DINT_TO_WORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DINT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable WORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DINT

The information stored in high-order 16 bits is discarded.

12345678

WORD

614EH

12345678

614EH

0

0

0011110100000000 1

1

1

1

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

0

0

1

1

1

1

1

1

0

0

(s) (d)

720
15 TYPE CONVERSION FUNCTIONS

15.26 Converting DINT to WORD

Operation error

There is no operation error.

15 TYPE CONVERSION FUNCTIONS

15.27 Converting DINT to DWORD 721

15

15.27 Converting DINT to DWORD

DINT_TO_DWORD(_E)

These functions convert DINT type data to DWORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DINT type data input to (s) to DWORD type data and output from (d).

 � A value input to (s) is the DINT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_DWORD(s);

[With EN/ENO]

d:=DINT_TO_DWORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DINT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DWORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DINT

12345678

DWORD

BC614EH

(s) (d)

722
15 TYPE CONVERSION FUNCTIONS

15.28 Converting DINT to INT

15.28 Converting DINT to INT

DINT_TO_INT(_E)

These functions convert DINT type data to INT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DINT type data input to (s) to INT type data and output from (d).

 � A value input to (s) is the DINT type data value.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_INT(s);

[With EN/ENO]

d:=DINT_TO_INT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DINT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3401 The 32-bit signed binary data in the device specified by (s) is out of the valid range (-32768 to 32767).

s d EN ENO

ds

DINT

1234

INT

1234

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.29 Converting DINT to BCD 723

15

15.29 Converting DINT to BCD

DINT_TO_BCD(_E)

These functions convert DINT type data to BCD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DINT type data input to (s) to BCD type data and output from (d).

 � A value input to (s) is the DINT type data value. When (d) is WORD, the input value is within the range from 0 to 9999.

When (d) is DWORD, the input value is within the range from 0 to 99999999.

 � WORD or DWORD can be specified to (d). BOOL cannot be specified.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_BCD(s);

[With EN/ENO]

d:=DINT_TO_BCD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DINT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_BIT

s d EN ENO

ds

DINT

Tens place Ones place

99999999

BCD

99999999H

99999999 11010111110100000 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

11001100110011001

8 4 2 1 8 4 2 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 199999999H

Conversion to Binary Coded DecimalMake sure to set them to "0".

×
1

0
7

2
3

1

2
3

0

2
2

9

2
2

8

2
2

7

2
2

6

2
2

5

2
2

4

2
2

3

2
2

2

2
2

1

2
2

0

2
1

9

2
1

8

2
1

7

2
1

6

2
1

5

2
1

4

2
1

3

2
1

2

2
1

1

2
1

0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

×
1

0
6

8 4 2 1

×
1

0
5

8 4 2 1

×
1

0
4

8 4 2 1

×
1

0
3

8 4 2 1

×
1

0
2

8 4 2 1

×
1

0
1

8 4 2 1

×
1

0
0

(s) (d)

Ten-millions
place

Hundred-
thousands

place

Ten-
thousands

place

Thousands
place

Hundreds
place

Millions
place

724
15 TYPE CONVERSION FUNCTIONS

15.29 Converting DINT to BCD

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � When (d) is WORD

 � When (d) is DWORD

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3401 The 32-bit signed binary data in the device specified by (s) is out of the valid range (-32768 to 32767).

Data in the device specified by (s) is out of the valid range (0 to 9999).

Error code

(SD0/SD8067)

Description

3401 Data in the device specified by (s) is out of the valid range (0 to 99999999).

15 TYPE CONVERSION FUNCTIONS

15.30 Converting DINT to REAL 725

15

15.30 Converting DINT to REAL

DINT_TO_REAL(_E)

These functions convert DINT type data to REAL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DINT type data input to (s) to REAL type data and output from (d).

 � A value input to (s) is the DINT type data value.

 � The number of significant figures of the REAL type data is approximately 7 since the data is processed in 32-bit single

precision.

 � The converted data includes an error (rounding error) if an integer value is outside the range of -16777216 to 16777215.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_REAL(s);

[With EN/ENO]

d:=DINT_TO_REAL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DINT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DINT

16543521

REAL

16543521.0

(s) (d)

726
15 TYPE CONVERSION FUNCTIONS

15.31 Converting DINT to TIME

15.31 Converting DINT to TIME

DINT_TO_TIME(_E)

These functions convert DINT type data to TIME type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DINT type data input to (s) to TIME type data and output from (d).

 � A value input to (s) is the DINT type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_TIME(s);

[With EN/ENO]

d:=DINT_TO_TIME_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DINT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

DINT

1234

TIME

T#1s234ms

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.32 Converting DINT to STRING 727

15

15.32 Converting DINT to STRING

DINT_TO_STRING(_E)

These functions convert DINT type data to STRING type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the DINT type data input to (s) to STRING type data and output from (d).

 � A value input to (s) is the DINT type data value.

 � In "Sign data", 20H (space) is stored when the input value is positive, and 2DH (-) is stored when the input value is

negative.

 � 20H (space) is stored in high-order digits when the number of significant figures is small.

Ex.

When "-123456" is input

 � 00H is stored at the end (high-order byte of the 6th word) of the character string when SM701 (output character number

selector signal) is off.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_STRING(s);

[With EN/ENO]

d:=DINT_TO_STRING_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable DINT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(11)

s d EN ENO

ds

DINT

ASCII code for ten-millions place ASCII code for hundred-millions place

ASCII code for hundred-thousands place ASCII code for millions place

ASCII code for thousands place ASCII code for ten-thousands place

ASCII code for tens place ASCII code for hundreds place

00H ASCII code for ones place

2nd word

3rd word

4th word

5th word

6th word

1st word of the character string

High-order byte Low-order byte

ASCII code for billions place Sign data

"00H" is stored when "SM701" (output character number selector) is off.

(s)

(d)

DINT

20H (space)
-123456

20H (space)

31H (1) 20H (space)

33H (3) 32H (2)

35H (5) 34H (4)

00H 36H (6)

20H (space) 2DH (-)

2nd word

3rd word

4th word

5th word

6th word

1st word of the character string

High-order byte Low-order byte

(s)

(d)

728
15 TYPE CONVERSION FUNCTIONS

15.32 Converting DINT to STRING

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

15 TYPE CONVERSION FUNCTIONS

15.33 Converting BCD to INT 729

15

15.33 Converting BCD to INT

BCD_TO_INT(_E)

These functions convert BCD type data to INT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the BCD type data input to (s) to INT type data and output from (d).

 � A value input to (s) is the WORD type data value and within the range from 0H to 9999H (from 0 to 9 for each digit).

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BCD_TO_INT(s);

[With EN/ENO]

d:=BCD_TO_INT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable WORD

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

s d EN ENO

ds

BCD

Thousands place Hundreds place Tens place Ones place

9999H

INT

9999

9999 0

1

1

1

1

0

1

0

0

1

0

1

1

0

0

0

0

1

0

0

0

0

0

1

1

1

1

0

1

0

1

19999H

INT conversion

Always becomes "0".

8000 4000

3276816384

2000

8192

1000

4096

800

2048

400

1024

200

512

100

256

80

128

40

64

20

32

10

16

8

8

4

4

2

2

1

1

(s) (d)

730
15 TYPE CONVERSION FUNCTIONS

15.33 Converting BCD to INT

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3401 A value other than 0 to 9 exists in each digit of (s).

15 TYPE CONVERSION FUNCTIONS

15.34 Converting BCD to DINT 731

15

15.34 Converting BCD to DINT

BCD_TO_DINT(_E)

These functions convert BCD type data to DINT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the BCD type data input to (s) to DINT type data and output from (d).

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BCD_TO_DINT(s);

[With EN/ENO]

d:=BCD_TO_DINT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY_BIT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DINT

� When WORD is specified to (s)

� When DWORD is specified to (s)

s d EN ENO

ds

WORD

9999H

DINT

9999

9999 00000000000000000 0 1 0 0 1 1 1 0 0 0 0 1 1 1 1

Conversion into DINT data

Always becomes "0".

2
3

1

2
3

0

2
2

9

2
2

8

2
2

7

2
2

6

2
2

5

2
2

4

2
2

3

2
2

2

2
2

1

2
2

0

2
1

9

2
1

8

2
1

7

2
1

6

2
1

5

2
1

4

2
1

3

2
1

2

2
1

1

2
1

0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 19999H

8 4 2 1

×
1

0
3

8 4 2 1

×
1

0
2

8 4 2 1

×
1

0
1

8 4 2 1

×
1

0
0

(s) (d)

Thousands
place

Hundreds
place

Tens
place

Ones
place

DWORD

99999999H

DINT

99999999

99999999 11010111110100000 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1

Conversion into DINT data

Always becomes "0".

2
3

1

2
3

0

2
2

9

2
2

8

2
2

7

2
2

6

2
2

5

2
2

4

2
2

3

2
2

2

2
2

1

2
2

0

2
1

9

2
1

8

2
1

7

2
1

6

2
1

5

2
1

4

2
1

3

2
1

2

2
1

1

2
1

0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

11001100110011001

8 4 2 1 8 4 2 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 199999999H

×
1

0
7

×
1

0
6

8 4 2 1

×
1

0
5

8 4 2 1

×
1

0
4

8 4 2 1

×
1

0
3

8 4 2 1

×
1

0
2

8 4 2 1

×
1

0
1

8 4 2 1

×
1

0
0

(s) (d)

Tens place Ones placeTen-millions
place

Hundred-
thousands

place

Ten-
thousands

place

Thousands
place

Hundreds
place

Millions
place

732
15 TYPE CONVERSION FUNCTIONS

15.34 Converting BCD to DINT

 � A value input to (s) is within the range from 0H to 9999H (from 0 to 9 for each digit) for the WORD type data value and from

0H to 99999999H (from 0 to 9 for each digit) for the DWORD type data value.

 � WORD or DWORD can be specified to (s). BOOL cannot be specified.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � When (s) is WORD

 � When (s) is DWORD

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3401 A value other than 0 to 9 exists in each digit of (s).

Error code

(SD0/SD8067)

Description

3401 A value other than 0 to 9 exists in each digit of (s).

15 TYPE CONVERSION FUNCTIONS

15.35 Converting REAL to INT 733

15

15.35 Converting REAL to INT

REAL_TO_INT(_E)

These functions convert REAL type data to INT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the REAL type data input to (s) to INT type data and output from (d).

 � A value input to (s) is the REAL type data value and within the range from -32768 to 32767.

 � After conversion, the first digit after the decimal point of the REAL type data value is rounded off.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=REAL_TO_INT(s);

[With EN/ENO]

d:=REAL_TO_INT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

REAL

1234.0

INT

1234

(s) (d)

734
15 TYPE CONVERSION FUNCTIONS

15.35 Converting REAL to INT

Operation error

Error code

(SD0/SD8067)

Description

3401 The single-precision real number in the device specified by (s) is out of the valid range (-32768 to 32767).

3402 � A special number is set to (s).

� The set single-precision real number is not located within the following range.

0, 2-126 |(s)|< 2128

� The set device or label value is -0, denormalized number, NaN (not a number), or .

15 TYPE CONVERSION FUNCTIONS

15.36 Converting REAL to DINT 735

15

15.36 Converting REAL to DINT

REAL_TO_DINT(_E)

These functions convert REAL type data to DINT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the REAL type data input to (s) to DINT type data and output from (d).

 � A value input to (s) is the REAL type data value and within the range from -2147483648 to 2147483647.

 � After conversion, the first digit after the decimal point of the REAL type data value is rounded off.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=REAL_TO_DINT(s);

[With EN/ENO]

d:=REAL_TO_DINT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DINT

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

REAL

16543521.0

DINT

16543521

(s) (d)

736
15 TYPE CONVERSION FUNCTIONS

15.36 Converting REAL to DINT

Operation error

Error code

(SD0/SD8067)

Description

3401 The single-precision real number in the device specified by (s) is out of the valid range (-2147483648 to 2147483647).

3402 A special number is set to (s).

� The set single-precision real number is not located within the following range.

0, 2-126 |(s)|< 2128

� The set device or label value is -0, denormalized number, NaN (not a number), or .

15 TYPE CONVERSION FUNCTIONS

15.37 Converting REAL to STRING 737

15

15.37 Converting REAL to STRING

REAL_TO_STRING(_E)

These functions convert REAL type data to STRING type data (exponent format).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the REAL type data input to (s) to STRING type (exponent format) data and output from (d).

 � A value input to (s) is the REAL type data value.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=REAL_TO_STRING(s);

[With EN/ENO]

d:=REAL_TO_STRING_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(13)

s d EN ENO

ds

Sign (integer part) Sign (exponent part)

REAL 1st word of the character string

2nd word

3rd word

4th word

5th word

6th word

7th word

High-order byte Low-order byte

20H (space)

2EH (.)

45H (E)

(d)

(s)

00H (NUL)

E.

ASCII code for ones
place of exponent part

ASCII code for tens
place of exponent part

Sign data
(exponent part)

Added

automatically

ASCII code for
5th decimal place

ASCII code for
3rd decimal place

ASCII code for
4th decimal place

ASCII code for
1st decimal place

ASCII code for 2nd
decimal place

ASCII code for
integer part

Sign data
(integer part)

738
15 TYPE CONVERSION FUNCTIONS

15.37 Converting REAL to STRING

 � The string data obtained by conversion is output from (d) as follows:

 � "00H" is automatically stored at the end (7th word) of the character string.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

� The number of digits is fixed respectively for the integer part, decimal part and exponent part as follows: Integer part: 1, decimal part: 5, exponent part: 2

� "20H (space)" is stored in the 2nd byte, "2EH (.)" is stored in the 4th byte, and "45H (E)" is stored in the 10th byte automatically.

� In "Sign data (integer part)", "20H (space)" is stored when the input value is positive, and "2DH (-)" is stored when the input value is negative.

� The 6th and later digits of the decimal part are rounded.

� "30H (0)" is stored in the decimal part when the number of significant figures is small.

� In "Sign data (exponent part)", "2BH (+)" is stored when the input value is positive, and "2DH (-)" is stored when the input value is negative.

� "30H (0)" is stored in the tens place of the exponent part when the exponent part consists of 1 digit.

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

REAL

-12.3456

"2EH (.)" is stored.

"45H (E)" is stored.

Total number of digits (13 digits)

5432.1- 6 E + 0 1

(d)

(s)

"20H (space)" is stored.

Exponent part
(2 digits)

Decimal part
(5 digits)

Integer part
(1 digit)

REAL

-12.345678

These digits are rounded off.

Total number of digits (13 digits)

5432.1- 66

7

7 8 E + 0 1

(d)

(s)

Number of digits of
decimal part (5)

REAL

-12.34

"30H (0)" is stored.

Total number of digits (13 digits)
(d)

(s)

0432.1- 0 E + 0 1

Number of digits of
decimal part (5)

REAL

-12.3456

"30H (0)" is stored.

Total number of digits (13 digits)

(d)

(s)

5432.1- 6 E + 0 1

Number of digits of
exponent part (2)

15 TYPE CONVERSION FUNCTIONS

15.37 Converting REAL to STRING 739

15

Operation error

Error code

(SD0/SD8067)

Description

3402 (s) is not located within the following range

� 0, 2-126|specified device value|<2128

� (s) is -0, denormalized number, NaN (not a number), or .

3406 The whole converted character string cannot be stored in the devices from the device specified by (d) to the last device of the target

device.

740
15 TYPE CONVERSION FUNCTIONS

15.38 Converting TIME to BOOL

15.38 Converting TIME to BOOL

TIME_TO_BOOL(_E)

These functions convert TIME type data to BOOL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the TIME type data input to (s) to BOOL type data and output from (d).

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=TIME_TO_BOOL(s);

[With EN/ENO]

d:=TIME_TO_BOOL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable TIME

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

TIME

T#20m34s567ms

T#0ms

BOOL

TRUE

FALSE

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.39 Converting TIME to WORD 741

15

15.39 Converting TIME to WORD

TIME_TO_WORD(_E)

These functions convert TIME type data to WORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the TIME type data input to (s) to WORD type data and output from (d).

 � A value input to (s) is the TIME type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=TIME_TO_WORD(s);

[With EN/ENO]

d:=TIME_TO_WORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable TIME

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable WORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

TIME

T#1s234ms

WORD

1234H

(s) (d)

742
15 TYPE CONVERSION FUNCTIONS

15.40 Converting TIME to DWORD

15.40 Converting TIME to DWORD

TIME_TO_DWORD(_E)

These functions convert TIME type data to DWORD type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the TIME type data input to (s) to DWORD type data and output from (d).

 � A value input to (s) is the TIME type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=TIME_TO_DWORD(s);

[With EN/ENO]

d:=TIME_TO_DWORD_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable TIME

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DWORD

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

TIME

T#20m34s567ms

DWORD

1234567H

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.41 Converting TIME to INT 743

15

15.41 Converting TIME to INT

TIME_TO_INT(_E)

These functions convert TIME type data to INT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the TIME type data input to (s) to INT type data and output from (d).

 � A value input to (s) is the TIME type data value.

 � When the data is converted to INT, the TIME type data stored in high-order 16 bits (1 word) are ignored.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=TIME_TO_INT(s);

[With EN/ENO]

d:=TIME_TO_INT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable TIME

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

TIME

T#1s234ms

INT

1234

(s) (d)

744
15 TYPE CONVERSION FUNCTIONS

15.42 Converting TIME to DINT

15.42 Converting TIME to DINT

TIME_TO_DINT(_E)

These functions convert TIME type data to DINT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the TIME type data input to (s) to DINT type data and output from (d).

 � A value input to (s) is the TIME type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=TIME_TO_DINT(s);

[With EN/ENO]

d:=TIME_TO_DINT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable TIME

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DINT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

TIME

T#20m34s567ms

DINT

1234567

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.43 Converting TIME to STRING 745

15

15.43 Converting TIME to STRING

TIME_TO_STRING(_E)

These functions convert TIME type data to STRING type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the TIME type data input to (s) to STRING type data and output from (d).

 � A value input to (s) is the TIME type data value.

 � 00H is stored at the end of the character string when SM701 (output character number selector signal) is off.

 � The following shows the operation result to be stored in the output.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=TIME_TO_STRING(s);

[With EN/ENO]

d:=TIME_TO_STRING_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable TIME

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(11)

� As the 1st character, "20H" (space) is stored if the binary data is positive, and "2DH" (-) is stored if the data is negative.

� "20H" (space) is stored on the left side of the effective digits.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

TIME

T#20m34s567ms

STRING

" 1234567"

(s) (d)

TIME

T#-20m34s567ms

STRING

"- 1234567"

(s) (d)

746
15 TYPE CONVERSION FUNCTIONS

15.44 Converting STRING to BOOL

15.44 Converting STRING to BOOL

STRING_TO_BOOL(_E)

These functions convert STRING type data to BOOL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the STRING type (in the decimal format or exponent format) data input to (s) to BOOL type data

and output from (d).

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=STRING_TO_ BOOL(s);

[With EN/ENO]

d:=STRING_TO_ BOOL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(1)

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

STRING

' 1 '

' 0 '

BOOL

TRUE

FALSE

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.45 Converting STRING to INT 747

15

15.45 Converting STRING to INT

STRING_TO_INT(_E)

These functions convert STRING type data to INT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the STRING type data input to (s) to INT type data and output from (d).

 � A value input to (s) is the STRING type data value and within the following range.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=STRING_TO_INT(s);

[With EN/ENO]

d:=STRING_TO_INT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(6)

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

� Within the range of "30H" to "39H", "20H", "2DH", and "00H" in ASCII code

� Within the range of "-32768" to "32767" as the STRING type data value

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

INT

ASCII code for hundreds place ASCII code for thousands place

ASCII code for ones place ASCII code for tens place

00H (Indicates the end of the character string.)

ASCII code for ten-thousands place Sign data

2nd word

3rd word

4th word

1st word of the character string

High-order byte Low-order byte

(s)

(d)

748
15 TYPE CONVERSION FUNCTIONS

15.45 Converting STRING to INT

Operation error

Error code

(SD0/SD8067)

Description

3401 Invalid data which cannot be converted to (s) are input.

� Values for each place of the ASCII code are other than "30H" to "39H", "20H", and "00H".

� Values for the ASCII data are other than "-32768" to "32767" when STRING_TO_INT(_E) is used.

15 TYPE CONVERSION FUNCTIONS

15.46 Converting STRING to DINT 749

15

15.46 Converting STRING to DINT

STRING_TO_DINT(_E)

These functions convert STRING type data to DINT type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the STRING type data input to (s) to DINT type data and output from (d).

 � A value input to (s) is the STRING type data value and within the following range.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=STRING_TO_DINT(s);

[With EN/ENO]

d:=STRING_TO_DINT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(11)

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable DINT

� Within the range of "30H" to "39H", "20H", "2DH", and "00H" in ASCII code

� Within the range of "-2147483648" to "2147483647" as the STRING type data value

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

s d EN ENO

ds

DINT

ASCII code for ten-millions place ASCII code for hundred-millions place

ASCII code for hundred-thousands place ASCII code for millions place

ASCII code for thousands place ASCII code for ten-thousands place

ASCII code for tens place

00H

ASCII code for hundreds place

ASCII code for ones place

ASCII code for billions place Sign data

2nd word

3rd word

4th word

5th word

6th word

1st word of the character string

High-order byte Low-order byte

(Indicates the end of the character string.)

(s)

(d)

750
15 TYPE CONVERSION FUNCTIONS

15.46 Converting STRING to DINT

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3401 Invalid data which cannot be converted to (s) are input.

� Values for each place of the ASCII code are other than "30H" to "39H", "20H", and "00H".

� Values for the ASCII data are other than "-2147483648" to "2147483647" when STRING_TO_DINT(_E) is used.

15 TYPE CONVERSION FUNCTIONS

15.47 Converting STRING to REAL 751

15

15.47 Converting STRING to REAL

STRING_TO_REAL(_E)

These functions convert STRING type data to REAL type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the STRING type (in the decimal format or exponent format) data input to (s) to REAL type data

and output from (d).

 � The conversion source STRING type data can be in the decimal format or exponent format.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=STRING_TO_REAL(s);

[With EN/ENO]

d:=STRING_TO_REAL_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(24)

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

� Decimal point format

s d EN ENO

ds

REAL

ASCII code for 3rd character ASCII code for 2nd character

ASCII code for 5th character ASCII code for 4th character

ASCII code for 7th character ASCII code for 6th character

ASCII code for 9th character

ASCII code for 11th character

00H (Indicates the end of the character string.)

ASCII code for 8th character

ASCII code for 10th character

ASCII code for 1st character Sign data

2nd word

3rd word

4th word

5th word

6th word

7th word

1st word of the character string

High-order byte Low-order byte
(s)

(d)

REAL

33H (3) 2EH (.)

30H (0) 35H (5)

34H (4) 33H (3)

00H

31H (1) 2DH (-)

2nd word

3rd word

4th word

5th word

1st word of the character string

High-order byte Low-order byte

-1.35034

3053.1- 4

(s)

(d)

752
15 TYPE CONVERSION FUNCTIONS

15.47 Converting STRING to REAL

 � With regard to STRING type data, six digits excluding the sign, decimal point and exponent part are valid, and the 7th and

later digits are discarded during conversion.

 � When 2BH (+) is specified as the sign in the floating point format or when the sign is omitted, a character string is converted

into a positive value. It is handled as negative value during conversion when the sign is set to 2DH (-).

 � String data in the exponent format is handled as positive value during conversion when the sign of the exponent part is set

to 2BH (+) or when the sign is omitted. When 2DH (-) is specified as the sign, a character string is converted into a negative

value.

 � When 20H (space) or 30H (0) exists between numbers except the first 0 in STRING type data, 20H or 30H is ignored during

conversion.

 � When 30H (0) exists between a number and "E" in STRING type data (exponent format), 30H is ignored during conversion.

 � When 20H (space) is contained in character string, 20H is ignored during conversion.

 � Up to 24 characters can be input as STRING type data. 20H (space) and 30H (0) in a character string are counted as one

character respectively.

 � A value input to (s) is the STRING type data value and within the following range.

� Exponent format

� Decimal point format

� Exponent format

� Decimal point format

� Exponent format

� Within the range of "30H" to "39H", "45H", "2BH", "2DH", "2EH", "20H" and "00H" in ASCII code

REAL

33H (3) 2EH (.)

30H (0) 35H (5)

34H (4) 33H (3)

2DH (-) 45H (E)

30H (0) 31H (1)

00H

31H (1) 2DH (-)

2nd word

3rd word

4th word

5th word

6th word

7th word

1st word of the character string

High-order byte Low-order byte

-1.35034E-10

E43053.1- - 1 0

(s)

(d)

REAL

-1.35034

These values are discarded.

30531- 4 1 2 0 2 3.

REAL

-1.35034E-10

These values are discarded.

3053.1- 4 1 2 E - 1 0

REAL

-1.35034

Ignored

53.10- 0 3 4

REAL

-1.35034E-1053.10- 0 3 4 E - 1 0

Ignored

REAL

-1.35034E-253.1- 0 3 4 E - 0 2

Ignored

15 TYPE CONVERSION FUNCTIONS

15.47 Converting STRING to REAL 753

15

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 00H does not exist in the corresponding device range starting from (s)

3401 Invalid data which cannot be converted to (s) are set.

� Any character other than "30(0)" to "39(9)" exists in the integer part or decimal part.

� 2EH (.) exists in two or more positions in the specified character string.

� Any character other than 45H (E), 65(e), 2B(+) , or 2D(-) exists in the specified exponent part.

� Two or more exponent parts of 45H (E) or 65(e) exist in the specified character string.

� Three or more digits of numerical values in the exponent parts are described in the specified character string.

� Two or more signs of exponent parts of 2B(+) or 2D(-) exist in the specified character string.

� Two or more signs of 2B(+) or 2D(-) exist in the integral part for the decimal point format and exist in the mantissa part for the exponent

format in the specified character string.

� The number of characters after (s) is 0 or more than 24

3403 (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

754
15 TYPE CONVERSION FUNCTIONS

15.48 Converting STRING to TIME

15.48 Converting STRING to TIME

STRING_TO_TIME(_E)

These functions convert STRING type data to TIME type data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the STRING type data input to (s) to TIME type data and output from (d).

 � A value input to (s) is the STRING type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=STRING_TO_TIME(s);

[With EN/ENO]

d:=STRING_TO_TIME_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(11)

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3401 Values for each place of the ASCII code for input are other than "30H" to "39H", "20H", and "00H".

Value of the ASCII code for input are outside the following range.

-2147483648 to 4147483647

s d EN ENO

ds

STRING

'01234567'

'00000000'

TIME

T#20m34s567ms

T#0ms

(s) (d)

15 TYPE CONVERSION FUNCTIONS

15.49 Converting Bit Array to INT 755

15

15.49 Converting Bit Array to INT

BITARR_TO_INT(_E)

These functions convert a bit array to INT type data for a specified number of bits.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the data for bits specified by (n) starting from the bit array element input to (s) to ANY 16 type data

and output from (d).

 � "0" is set to output bits beyond the specified number of bits.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BITARR_TO_INT(s,n);

[With EN/ENO]

d:=BITARR_TO_INT_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input (Variables are available for element specification.) Input variable BOOL array element

n Only a constant 4, 8, 12 or 16 can be specified. Input variable INT

ENO Output status (TRUE: Normal , FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY16

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d

n

EN ENO

s d

n

756
15 TYPE CONVERSION FUNCTIONS

15.50 Converting Bit Array to DINT

15.50 Converting Bit Array to DINT

BITARR_TO_DINT(_E)

These functions convert a bit array to DINT type data for a specified number of bits.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions convert the data for bits specified by (n) starting from the bit array element input to (s) to ANY 32 type data

and output from (d).

 � "0" is set to output bits beyond the specified number of bits.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=BITARR_TO_DINT(s,n)

[With EN/ENO]

d:=BITARR_TO_DINT_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input (Variables are available for element specification.) Input variable BOOL array element

n Only a constant 4, 8, 12, 16, 20, 24, 28 or 32 can be specified. Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY32

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d

n

EN ENO

s d

n

15 TYPE CONVERSION FUNCTIONS

15.51 Converting INT to Bit Array 757

15

15.51 Converting INT to Bit Array

INT_TO_BITARR(_E)

These functions output low-order (n) bits of INT type data to a bit array.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output low-order (n) bits of ANY 16 type data specified to (s).

 � Output bits beyond the specified number of bits are not changed.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INT_TO_BITARR(s,n);

[With EN/ENO]

d:=INT_TO_BITARR_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY16

n Only a constant 4, 8, 12 or 16 can be specified. Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output (Variables are available for element specification.) Output variable BOOL array element

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d

n

EN ENO

s d

n

758
15 TYPE CONVERSION FUNCTIONS

15.52 Converting DINT to Bit Array

15.52 Converting DINT to Bit Array

DINT_TO_BITARR(_E)

These functions output low-order (n) bits of DINT type data to a bit array.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output low-order (n) bits of ANY 32 type data specified to (s) to (d).

 � Output bits beyond the specified number of bits are not changed.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DINT_TO_BITARR(s,n);

[With EN/ENO]

d:=DINT_TO_BITARR_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY32

n Only a constant 4, 8, 12, 16, 20, 24, 28 or 32 can be specified. Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output (Variables are available for element specification.) Output variable BOOL array element

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d

n

EN ENO

s d

n

15 TYPE CONVERSION FUNCTIONS

15.53 Bit Array Copy 759

15

15.53 Bit Array Copy

CPY_BITARR(_E)

These functions copy specified number of bits of a bit array.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output (n) bits of a bit array specified to (s) to (d).

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=CPY_BITARR(s,n);

[With EN/ENO]

d:=CPY_BITARR_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable BOOL array element

n Only a constant 4, 8, 12, 16, 20, 24, 28 or 32 can be specified. Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL array element

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d

n

EN ENO

s d

n

760
15 TYPE CONVERSION FUNCTIONS

15.54 Reading the Specified Bit of Word Label

15.54 Reading the Specified Bit of Word Label

GET_BIT_OF_INT(_E)

These functions reads the specified bit of the word label

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output (n)th bit of (s).

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=GET_BIT_OF_INT(s,n);

[With EN/ENO]

d:=GET_BIT_OF_INT_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY16

n Only a constant 0 to 15 can be specified. Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d

n

EN ENO

s d

n

15 TYPE CONVERSION FUNCTIONS

15.55 Writing the Specified Bit of Word Label 761

15

15.55 Writing the Specified Bit of Word Label

SET_BIT_OF_INT(_E)

These functions writes the specified bit of the word label.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions write the BOOL value specified by (s) in the (n)th bit of (d).

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=SET_BIT_OF_INT(s,n);

[With EN/ENO]

d:=SET_BIT_OF_INT_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable BOOL

n Only a constant 0 to 15 can be specified. Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY16

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d

n

EN ENO

s d

n

762
15 TYPE CONVERSION FUNCTIONS

15.56 Copying the Specified Bit of Word Label

15.56 Copying the Specified Bit of Word Label

CPY_BIT_OF_INT(_E)

These functions copy the specified bit of the word label to the one of another word label.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These function copy the value of the (n1)th bit of the word specified by (s) to the (n2)th bit of (d).

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=CPY_BIT_OF_INT(s,n1,n2);

[With EN/ENO]

d:=CPY_BIT_OF_INT_E(EN,ENO,s,n1,n2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY16

n1 Bit specification of input variable (Only a constant 0 to 15 can be

specified.)

Input variable INT

n2 Bit specification of output variable (Only a constant 0 to 15 can be

specified.)

Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY16

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d

n1

n2

EN ENO

ds

n1

n2

15 TYPE CONVERSION FUNCTIONS

15.57 Unnecessary of Type Conversion 763

15

15.57 Unnecessary of Type Conversion

GET_BOOL_ADDR, GET_INT_ADDR, GET_WORD_ADDR

These functions output the input variable as the output variable type.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output the input data variable as the output variable type according to the following table.

■Operation result
The operation processing is executed. The operation output value is output from (d).

Operation error

There is no operation error.

Ladder diagram Structured text

d:=GET_BOOL_ADDR(s)

d:=GET_INT_ADDR(s);

d:=GET_WORD_ADDR(s);

Argument Description Type Data type

s Input Input variable ANY

d Output Output variable BOOL/INT/WORD

General function Input data type Output data type

GET_BOOL_ADDR BOOL

ARRAY OF BOOL

BOOL

GET_INT_ADDR INT

DINT

WORD

REAL

TIME

STRING

ARRAY OF INT

ARRAY OF DINT

ARRAY OF WORD

ARRAY OF DWORD

ARRAY OF REAL

ARRAY OF TIME

INT

GET_WORD_ADDR WORD

s d

764
16 SINGLE NUMBER VARIABLE FUNCTIONS

16.1 Absolute Value

16 SINGLE NUMBER VARIABLE FUNCTIONS

16.1 Absolute Value

ABS(_E)

These functions output the absolute value of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output the absolute value of the INT, DINT, or REAL type data input to (s) in the same data type as (s) from

(d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � A value input to (s) is the INT, DINT, or REAL type data value.

 � When -32768 is input while the data type of (s) is INT, -32768 is output from (d).

 � When -2147483648 is input while the data type of (s) is DINT, -2147483648 is output from (d). (An operation error does not

occur. "ABS_E" outputs "TRUE" from output variable ENO.)

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=ABS(s);

[With EN/ENO]

d:=ABS_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY_NUM

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_NUM

B=|A|

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

16 SINGLE NUMBER VARIABLE FUNCTIONS

16.1 Absolute Value 765

16

Operation error

 � When (s) is REAL

Error code

(SD0/SD8067)

Description

3402 The data specified by (s) is -0, denormalized number, NaN (not a number), or .

3403 (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

766
16 SINGLE NUMBER VARIABLE FUNCTIONS

16.2 Square Root

16.2 Square Root

SQRT(_E)

These functions output the square root of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output the square root of the REAL type data input to (s) from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � A value input to (s) is the REAL type data value and within the positive value range.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=SQRT(s);

[With EN/ENO]

d:=SQRT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3405 A negative value is input.

s d EN ENO

ds

B= A

16 SINGLE NUMBER VARIABLE FUNCTIONS

16.3 Natural Logarithm Operation 767

16

16.3 Natural Logarithm Operation

LN(_E)

These functions output the natural logarithm operation result of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the logarithm whose base is "e" of the REAL type data input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � In the natural logarithm operation, the base "e" is set to "2.71828".

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=LN(s);

[With EN/ENO]

d:=LN_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=logeA

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3405 A negative value is input.

The data after conversion is other than -3.40282+38 to -1.17549-38, 0, or 1.17549-38 to 3.40282+38.

s d EN ENO

ds

768
16 SINGLE NUMBER VARIABLE FUNCTIONS

16.4 Calculating the Common Logarithm

16.4 Calculating the Common Logarithm

LOG(_E)

These functions output the operation result of the common logarithm (the logarithm whose base is 10) of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the logarithm whose base is "10" of the REAL type data input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � A value input to (s) is the REAL type data value.

 � Only a positive value can be set in (s). (The logarithm operation cannot be executed for a negative value).

 � When the operation result is -0 or underflow occurs, the operation result is regarded as 0.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=LOG(s);

[With EN/ENO]

d:=LOG_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output condition (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=log10A

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

16 SINGLE NUMBER VARIABLE FUNCTIONS

16.4 Calculating the Common Logarithm 769

16

Operation error

 � When (s) is REAL

Error code

(SD0/SD8067)

Description

3402 The value specified in (s) is -0, denormalized number, NaN (not a number), or .

3403 The value of (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

3405 Data outside the allowable range was set to (s).

� A negative value is specified.

� "0" is specified.

770
16 SINGLE NUMBER VARIABLE FUNCTIONS

16.5 Exponential Operation

16.5 Exponential Operation

EXP(_E)

These functions output the exponential operation result of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the exponent of the REAL type data input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � In the exponential operation, the base "e" is set to "2.71828".

 � A value input to (s) is the REAL type data value.

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=EXP(s);

[With EN/ENO]

d:=EXP_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=eA

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3403 The data after conversion is not -3.40282+38 to -1.17549-38, or 1.17549-38 to 3.40282+38.

s d EN ENO

ds

16 SINGLE NUMBER VARIABLE FUNCTIONS

16.6 Sine Operation 771

16

16.6 Sine Operation

SIN(_E)

These functions output the sine of the angle of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the sine of the angle of the REAL type data input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � A value (angle) input to (s) is the REAL type data value. Input a value in radians (angle/180).

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=SIN(s);

[With EN/ENO]

d:=SIN_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=SIN A

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 A negative value is input.

s d EN ENO

ds

772
16 SINGLE NUMBER VARIABLE FUNCTIONS

16.7 Cosine Operation

16.7 Cosine Operation

COS(_E)

These functions output the cosine of the angle of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the cosine of the angle of the REAL type data input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � A value (angle) input to (s) is the REAL type data value. Input a value in radians (angle/180).

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=COS(s);

[With EN/ENO]

d:=COS_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=COS A

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 A negative value is input.

s d EN ENO

ds

16 SINGLE NUMBER VARIABLE FUNCTIONS

16.8 Tangent Operation 773

16

16.8 Tangent Operation

TAN(_E)

These functions output the tangent of the angle of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the tangent of the angle data of the REAL type data (angle) input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � Even when the input value is /2 radian or (3/2)  radian, no error occurs because an operation error occurs in a radian

value.

 � A value (angle) input to (s) is the REAL type data value. Input a value in radians (angle/180).

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=TAN(s);

[With EN/ENO]

d:=TAN_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=TAN A

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 A negative value is input.

s d EN ENO

ds

774
16 SINGLE NUMBER VARIABLE FUNCTIONS

16.9 Arc Sine Operation

16.9 Arc Sine Operation

ASIN(_E)

These functions output the arc sine value of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the arc sine of the REAL type data input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � A value input to (s) is the REAL type data value and within the following range.

 � A value (angle) in radians (angle/180) is output from (d).

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=ASIN(s);

[With EN/ENO]

d:=ASIN_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=SIN-1 A

ASIN(_E): -1.0 to 1.0

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 A negative value is input.

3405 A value input by these functions is other than -1.0 to 1.0.

s d EN ENO

ds

16 SINGLE NUMBER VARIABLE FUNCTIONS

16.10 Arc Cosine Operation 775

16

16.10 Arc Cosine Operation

ACOS(_E)

These functions output the arc cosine value of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the arc cosine of the REAL type data input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � A value input to (s) is the REAL type data value and within the following range.

 � A value (angle) in radians (angle/180) is output from (d).

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=ACOS(s);

[With EN/ENO]

d:=ACOS_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=COS-1 A

ACOS(_E): -1.0 to 1.0

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 A negative value is input.

3405 A value input by these functions is other than -1.0 to 1.0.

s d EN ENO

ds

776
16 SINGLE NUMBER VARIABLE FUNCTIONS

16.11 Arc Tangent Operation

16.11 Arc Tangent Operation

ATAN(_E)

These functions output the arc tangent value of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the arc tangent value of the REAL type data input to (s), and output from (d).

 � These functions are expressed as follows when the input value is "A" and the output operation result is "B".

 � A value input to (s) is the REAL type data value and within the following range.

 � A value (angle) in radians (angle/180) is output from (d).

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=ATAN(s);

[With EN/ENO]

d:=ATAN_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable REAL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

B=TAN-1 A

ATAN(_E): 1.17549-38 to 3.40282+38

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 -0 is input.

s d EN ENO

ds

17 ARITHMETIC OPERATION FUNCTIONS

17.1 Addition 777

17
17 ARITHMETIC OPERATION FUNCTIONS

17.1 Addition

ADD(_E)

These functions output the sum of input values ((s1) + (s2) + ... + (s28)).

*1 The input variable "s" can be changed in the range of 2 to 28.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions add the INT, DINT, or REAL type data ((s1) + (s2) + ... + (s28)) input to (s1) to (s28), and output from (d) in

the same data type as (s).

Ex.

Data type is the INT type

 � A value input to (s1) to (s28) is the INT, DINT, or REAL type data value.

 � If an underflow and an overflow occur in the operation result, the result will be output as follows from (d).

 � When the operation result is 0, the zero flag (SM8020) turns on.

Ladder diagram*1 Structured text*1

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=ADD(s1,s2);

[With EN/ENO]

d:=ADD_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 to s28 Input Input variable ANY_NUM

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_NUM

Data type is INT Data type is DINT Data type is REAL

� Even if underflow or overflow occurs in the

operation result, it is not regarded as an

operation error. "ADD_E" outputs "TRUE" from

ENO.

[Example 1]

32767+2=1

(7FFFH)+(0002H)=0001H

The most significant bit becomes 0, and the carry

flags (SM716 and SM8022) turn on.

[Example 2]

-32768+(-2)=-1

(8000H)+(FFFEH)=(FFFFH)

The most significant bit becomes 1, and the borrow

flag (SM8021) turns on.

� Even if underflow or overflow occurs in the

operation result, it is not regarded as an

operation error. "ADD_E" outputs "TRUE" from

ENO.

[Example 1]

2147483647+2=1

(7FFFFFFFH)+(0002H)=(00000001H)

The most significant bit becomes 1, and the carry

flags (SM716 and SM8022) turn on.

[Example 2]

-2147483648+(-2)=-1

(80000000H)+(FFFEH)=(7FFFFFFFH)

The most significant bit becomes 1, and the borrow

flag (SM8021) turns on.

An operation error occurs and an undefined value

is output.

s1 d

s2

EN ENO

ds1

s2

INT

1234

INT

5678

INT

6912

(s1) (s2) (d)

778
17 ARITHMETIC OPERATION FUNCTIONS

17.1 Addition

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � (s1) to (s28) are REAL

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 The data specified by (s1) to (s28) is -0, denormalized number, NaN (not a number), or .

3403 (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

17 ARITHMETIC OPERATION FUNCTIONS

17.2 Multiplication 779

17
17.2 Multiplication

MUL(_E)

These functions output the product input values ((s1)(s2) ... (s28)).

*1 The input variable "s" can be changed in the range of 2 to 28.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions multiply the INT, DINT, or REAL type data input to (s1) to (s28) ((s1)(s2) ...(s28)), and output the

operation result from (d) in the same data type as (s).

Ex.

Data type is INT

 � A value input to (s1) to (s28) is the INT, DINT, or REAL type data value.

 � If an underflow occurs in the operation result, the result will be output as follows from (d).

 � When the operation result is 0, the zero flag (SM8020) turns on.

Ladder diagram*1 Structured text*1

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=MUL(s1,s2);

[With EN/ENO]

d:=MUL_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 to s28 Input Input variable ANY_NUM

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_NUM

Data type is INT Data type is DINT Data type is REAL

� Even if underflow or overflow occurs in the

operation result, it is not regarded as an operation

error. "MUL_E" outputs "TRUE" from ENO.

� Even when the operation result exceeds the INT

type data range, the INT type data is output. (The

operation result is the DINT type, however, the

output data is the INT type data with high-order 16

bits deleted.)

� When the operation result exceeds the INT type

data, convert an input value into the DINT type

data by INT_TO_DINT then perform the

operation.

� Even if underflow or overflow occurs in the

operation result, it is not regarded as an

operation error. "MUL_E" outputs "TRUE" from

ENO.

� Even when the operation result exceeds the

DINT type data range, the DINT type data is

output. (The operation result is the 64-bit data,

however, the output data is the DINT type data

with high-order 32 bits deleted.)

� When the operation result exceeds the DINT

type data, convert an input value into the REAL

type data by DINT_TO_REAL then perform the

operation.

An operation error occurs and an undefined value

is output.

s1 d

s2

EN ENO

ds1

s2

INT

100 

INT

15

INT

1500

(s1) (s2) (d)

780
17 ARITHMETIC OPERATION FUNCTIONS

17.2 Multiplication

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

When the operation result exceeds the data type range, convert the data type of an input value then perform

the operation.

Operation error

 � (s1) to (s28) are REAL

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 The data specified by (s1) to (s28) is -0, denormalized number, NaN (not a number), or .

3403 (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

17 ARITHMETIC OPERATION FUNCTIONS

17.3 Subtraction 781

17
17.3 Subtraction

SUB(_E)

These functions output the difference of input values ((s1) - (s2)).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions subtract the INT, DINT, or REAL type data input to (s1) and (s2) ((s1)-(s2)), and output the operation result

from (d) in the same data type as (s).

Ex.

Data type is INT

 � A value input to (s1) and (s2) is the INT, DINT, or REAL type data value.

 � If an underflow and an overflow occur in the operation result, the result will be output as follows from (d).

 � When the operation result is 0, the zero flag (SM8020) turns on.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=SUB(s1,s2);

[With EN/ENO]

d:=SUB_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1, s2 Input Input variable ANY_NUM

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_NUM

Data type is INT Data type is DINT Data type is REAL

� Even if underflow or overflow occurs in the

operation result, it is not regarded as an

operation error. "SUB_E" outputs "TRUE" from

ENO.

[Example 1]

32767-(-2)=1

(7FFFH)-(0002H)=(0001H)

The most significant bit becomes 1, and the carry

flags (SM716 and SM8022) turn on.

[Example 2]

-32768-2=-1

(8000H)-(0002H)=(FFFFH)

The most significant bit becomes 0, and the borrow

flag (SM8021) turns on.

� Even if underflow or overflow occurs in the

operation result, it is not regarded as an

operation error. "SUB_E" outputs "TRUE" from

ENO.

[Example 1]

2147483647-(-2)=-2147483647

(7FFFFFFFH)-(FFFEH)=(80000001H)

The most significant bit becomes 1, and a negative

value is output.

[Example 2]

-2147483648-2=2147483646

(80000000H)-(0002H)=(7FFFFFFEH)

The most significant bit becomes 0, and a positive

value is output.

An operation error occurs and an undefined value

is output.

s1 d

s2

EN ENO

ds1

s2

INT

12345 -

INT

6789

INT

5556

(s1) (s2) (d)

782
17 ARITHMETIC OPERATION FUNCTIONS

17.3 Subtraction

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � (s1) and (s2) are REAL

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3402 The data specified by (s1) is -0, denormalized number, NaN (not a number), or .

The data specified by (s2) is -0, denormalized number, NaN (not a number), or .

3403 (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

17 ARITHMETIC OPERATION FUNCTIONS

17.4 Division 783

17
17.4 Division

DIV(_E)

These functions output the quotient of input values ((s1)  (s2)).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions divide the INT, DINT, or REAL type data input to (s1) and (s2) ((s1)  (s2)), and output the operation result

from (d) in the same data type as (s).

Ex.

Data type is INT

 � A value input to (s1) and (s2) is the INT, DINT, or REAL type data value. (However, input other than 0 to (s2).)

 � When the operation result is 0, the zero flag (SM8020) turns on. When the operation result exceeds "32,767" (16-bit

operation) or "2,147,483,647" (32-bit operation), the carry flag (SM8022) turns on.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DIV(s1,s2);

[With EN/ENO]

d:=DIV_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Dividend Input variable ANY_NUM

s2 Divisor Input variable ANY_NUM

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_NUM

s1 d

s2

EN ENO

ds1

s2

INT

5 

INT

2

INT

2

Not output

1

(Quotient) (Remainder)(s1) (s2)

(d)

784
17 ARITHMETIC OPERATION FUNCTIONS

17.4 Division

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � (s1) and (s2) are INT

 � (s1) and (s2) are DINT

 � (s1) and (s2) are REAL

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3400 The value (divisor) specified by (s2) is 0.

Error code

(SD0/SD8067)

Description

3400 The value (divisor) specified by (s2) is 0.

Error code

(SD0/SD8067)

Description

3400 The value (divisor) specified by (s2) is 0.

3402 The data specified by (s1) is -0, denormalized number, NaN (not a number), or .

The data specified by (s2) is -0, denormalized number, NaN (not a number), or .

3403 (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

17 ARITHMETIC OPERATION FUNCTIONS

17.5 Remainder 785

17
17.5 Remainder

MOD(_E)

These functions output the remainder of input values ((s1)  (s2)).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions divide the INT or DINT type data input to (s1) and (s2) ((s1)  (s2)), and output the remainder from (d) in

the same data type as (s).

Ex.

Data type is INT

 � A value input to (s1) and (s2) is the INT and DINT type data value. (However, input other than 0 to (s2).)

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=MOD(s1,s2);

[With EN/ENO]

d:=MOD_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Dividend Input variable ANY_INT

s2 Divisor Input variable ANY_INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_INT

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s1 d

s2

EN ENO

ds1

s2

INT

5 

INT

2

INT

2

Not output

1

(Quotient) (Remainder)

(d)

(s2)(s1)

786
17 ARITHMETIC OPERATION FUNCTIONS

17.5 Remainder

Operation error

 � (s1) and (s2) are INT

 � (s1) and (s2) are DINT

Error code

(SD0/SD8067)

Description

3400 The value (divisor) specified by (s2) is 0.

Error code

(SD0/SD8067)

Description

3400 The value (divisor) specified by (s2) is 0.

17 ARITHMETIC OPERATION FUNCTIONS

17.6 Exponentiation 787

17
17.6 Exponentiation

EXPT(_E)

These functions output the exponentiation of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions raise the REAL type data input to (s1) by INT, DINT, or REAL specified by (s2), and output the operation

result from (d).

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=EXPT(s1,s2);

[With EN/ENO]

d:=EXPT_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Cardinal number Input variable REAL

s2 Exponent Input variable ANY_NUM

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable REAL

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s1 d

s2

EN ENO

ds1

s2

REAL

4.0

INT

2

REAL

16.0

(s2)

(s1) (d)

788
17 ARITHMETIC OPERATION FUNCTIONS

17.6 Exponentiation

Operation error

 � (s1) is the REAL type and (s2) is the INT type

 � (s1) is the REAL type and (s2) is the DINT type

 � (s1) and (s2) are REAL

Error code

(SD0/SD8067)

Description

3402 The value of (s1) is outside the following range.

0, 2-126|(s1)|<2128

The data specified by (s1) is -0, denormalized number, NaN (not a number), or .

3403 The operation result is within the following range.

2128 |operation result|

Error code

(SD0/SD8067)

Description

3402 The value of (s1) is outside the following range.

0, 2-126|(s1)|<2128

The data specified by (s1) is -0, denormalized number, NaN (not a number), or .

3403 The operation result is within the following range.

2128 |operation result|

Error code

(SD0/SD8067)

Description

3402 The value of (s1) is outside the following range.

0, 2-126|(s1)|<2128

The data specified by (s1) is -0, denormalized number, NaN (not a number), or .

The value of (s2) is outside the following range.

0, 2-126|(s2)|<2128

The data specified by (s2) is -0, denormalized number, NaN (not a number), or .

3403 The operation result is within the following range.

2128 |operation result|

17 ARITHMETIC OPERATION FUNCTIONS

17.7 Move Operation 789

17
17.7 Move Operation

MOVE(_E)

These functions output the assignment of input values.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions assign the value of variable specified to (s) to the variable specified to (d).

 � BOOL, INT, DINT, WORD, DWORD, REAL, STRING, TIME, structure, or array type can be specified for (s) and (d). Specify

the same data type for (s) and (d).

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=MOVE(s);

[With EN/ENO]

d:=MOVE_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY

s d EN ENO

ds

INT

12

INT

12

(s) (d)

DINT

2147483647

DINT

2147483647

(s) (d)

WORD

65535

WORD

65535

(s) (d)

DWORD

4294967295

DWORD

4294967295

(s) (d)

REAL

3.402823+38

REAL

3.402823+38

(s) (d)

790
17 ARITHMETIC OPERATION FUNCTIONS

17.7 Move Operation

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.

3405 The character string specified by (s) has more than 16383 characters.

3406 The whole specified character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

18 BIT SHIFT FUNCTIONS

18.1 n-bit Left Shift 791

18

18 BIT SHIFT FUNCTIONS

18.1 n-bit Left Shift

SHL(_E)

These functions shift an input value leftward by (n) bits and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions shift the WORD or DWORD type data input to (s) left by (n) bits and output the result in the same data type

as (s) from (d).

 � The number input in (n) is used as the number of left-shift bits.

Ex.

When the data type of (s) is WORD and 8 is input in (n)

 � "0" is set to "n" bits from the least significant bit.

 � A value input to (n) is the WORD or DWORD type data value.

 � A value input to (n) (Number of shift bits) is the INT type data value and within the following range.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=SHL(s,n);

[With EN/ENO]

d:=SHL_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY_BIT

n Number of shift bits Input variable ANY_BIT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_BIT

When the data type of (s) is WORD When the data type of (s) is DWORD

A value in (n) is within 0 to 15.

The lower 4-bit data of the value in (n) is used.

[Example]

When the input value is 6: 6

When the input value is 22: 6

A value in (n) is within 0 to 31.

The lower 5-bit data of the value in (n) is used.

[Example]

When the input value is 6: 6

When the input value is 22: 22

s d

n

EN ENO

s d

n

IN (WORD)

270FH F00H

WORD

010 0100 0 111 0 0 1 1 1270FH

01 110 1000 0 0 0 0 0 0 0F00H

These bits become "0".

792
18 BIT SHIFT FUNCTIONS

18.1 n-bit Left Shift

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

18 BIT SHIFT FUNCTIONS

18.2 n-bit Right Shift 793

18

18.2 n-bit Right Shift

SHR(_E)

These functions shift an input value rightward by (n) bits and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions shift the WORD or DWORD type data input to (s) right by (n) bits and output the result in the same data

type as (s) from (d).

 � The number input in (n) is used as the number of right-shift bits.

Ex.

When the data type of (s) is WORD and 8 is input in (n)

 � "0" is set to "n" bits from the most significant bit.

 � A value input to (n) is the WORD or DWORD type data value.

 � A value input to (n) (Number of shift bits) is the INT type data value and within the following range.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=SHR(s,n);

[With EN/ENO]

d:=SHR_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY_BIT

n Number of shift bits Input variable ANY_BIT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_BIT

When the data type of (s) is WORD When the data type of (s) is DWORD

A value in (n) is within 0 to 15.

The lower 4-bit data of the value in (n) is used.

[Example]

When the input value is 6: 6

When the input value is 22: 6

A value in (n) is within 0 to 31.

The lower 5-bit data of the value in (n) is used.

[Example]

When the input value is 6: 6

When the input value is 22: 22

s d

n

EN ENO

s d

n

IN (WORD)

270FH 27H

WORD

010 0100 0 111 0 0 1 1 1270FH

0 1 110 1000 00 0 00 0 027H

These bits become "0".

794
18 BIT SHIFT FUNCTIONS

18.2 n-bit Right Shift

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

18 BIT SHIFT FUNCTIONS

18.3 n-bit Left Rotation 795

18

18.3 n-bit Left Rotation

ROL(_E)

These functions rotate an input value leftward by (n) bits and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions rotate the WORD or DWORD type data input to (s) left by (n) bits and output the result in the same data

type as (s) from (d).

 � The number input in (n) is used as the number of left-rotation bits.

Ex.

When the data type of (s) is WORD and 3 is input in (n) (The bits are rotated left by 3 bits.)

 � A value input to (n) is the WORD or DWORD type data value.

 � A value input to (n) (Number of shift bits) is the INT type data value and within the following range.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=ROL(s,n);

[With EN/ENO]

d:=ROL_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY_BIT

n Number of shift bits Input variable ANY_BIT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_BIT

When the data type of (s) is WORD When the data type of (s) is DWORD

A value in (n) is within 0 to 15.

The lower 4-bit data of the value in (n) is used.

[Example]

When the input value is 6: 6

When the input value is 22: 6

A value in (n) is within 0 to 31.

The lower 5-bit data of the value in (n) is used.

[Example]

When the input value is 6: 6

When the input value is 22: 22

s d

n

EN ENO

s d

n

n-bit rotation

WORD, DWORD

Data of 1)

IN (WORD)

270FH 3879H

WORD

010 0100 0 111 0 0 1 1 1270FH

0 1 111 11 1 100 0 0 00 03879H

Data of 2)

1) 2)

796
18 BIT SHIFT FUNCTIONS

18.3 n-bit Left Rotation

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

18 BIT SHIFT FUNCTIONS

18.4 n-bit Right Rotation 797

18

18.4 n-bit Right Rotation

ROR(_E)

These functions rotate an input value rightward by (n) bits and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions rotate the WORD or DWORD type data input to (s) right by (n) bits and output the result in the same data

type as (s) from (d).

 � The number input in (n) is used as the number of right-rotation bits.

Ex.

When the data type of (s) is WORD and 3 is input in (n) (The bits are rotated right by 3 bits.)

 � A value input to (n) is the WORD or DWORD type data value.

 � A value input to (n) (Number of shift bits) is the INT type data value and within the following range.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=ROR(s,n);

[With EN/ENO]

d:=ROR_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY_BIT

n Number of shift bits Input variable ANY_BIT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_BIT

When the data type of (s) is WORD When the data type of (s) is DWORD

A value in (n) is within 0 to 15.

The lower 4-bit data of the value in (n) is used.

[Example]

When the input value is 6: 6

When the input value is 22: 6

A value in (n) is within 0 to 31.

The lower 5-bit data of the value in (n) is used.

[Example]

When the input value is 6: 6

When the input value is 22: 22

s d

n

EN ENO

s d

n

n-bit rotation

WORD, DWORD

Data of 1)

IN (WORD)

270FH E4E1H

WORD

010 0100 0 111 0 0 1 1 1270FH

01 1111 1 1 100 0 0 0 00E4E1H

Data of 2)

1)2)

798
18 BIT SHIFT FUNCTIONS

18.4 n-bit Right Rotation

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

19 STANDARD BITWISE BOOLEAN FUNCTIONS

19.1 AND Operation, OR Operation, XOR Operation 799

19

19 STANDARD BITWISE BOOLEAN FUNCTIONS

19.1 AND Operation, OR Operation, XOR Operation

AND(_E), OR(_E), XOR(_E)

 � AND(_E): Outputs the logical product of input values.

 � OR(_E): Outputs the logical sum of input values.

 � XOR(_E): Outputs the exclusive logical sum of input values.

*1 The input variable "s" can be changed in the range of 2 to 28.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing

1. AND(_E)

 � These functions perform the logical AND on the BOOL, WORD, or DWORD type data input in (s1) to (s28) bit by bit, and

output the operation result from (d) in the same data type as (s).

Ex.

When the data type is WORD

Ladder diagram*1 Structured text*1

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=AND(s1,s2);

d:=OR(s1,s2);

d:=XOR(s1,s2);

[With EN/ENO]

d:=AND_E(EN,ENO,s1,s2);

d:=OR_E(EN,ENO,s1,s2);

d:=XOR_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 to s28 Input Input variable ANY_BIT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_BIT

s1 d

s2

EN ENO

ds1

s2

001001000 0 1 1 0 1 0 0

001001000 0 0 0 0 1 0 0

011111111 0 0 0 1 1 1 1

Logical Word AND

AND

(s1)

(s2)

(d)

800
19 STANDARD BITWISE BOOLEAN FUNCTIONS

19.1 AND Operation, OR Operation, XOR Operation

2. OR(_E)

 � These functions perform the logical OR on the BOOL, WORD, or DWORD type data input in (s1) to (s28) bit by bit, and

output the operation result from (d) in the same data type as (s).

Ex.

When the data type is WORD

3. XOR(_E)

 � These functions perform the exclusive logical OR on the BOOL, WORD, or DWORD type data input in (s1) to (s28) bit by

bit, and output the operation result from (d) in the same data type as (s).

Ex.

When the data type is WORD

 � When three or more variables (s) exist, XOR is performed between (s1) and (s2) first, and XOR is successively performed

between the result and (s3). When the expression includes (s4), XOR is performed between the result of XOR with (s3) and

(s4). In this manner, XOR is repeated by the number of variables (s) in the order with (s5), (s6), and so on.

Ex.

When the data type is BOOL

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

001000000 0 1 1 0 1 0 0

011110011 0 1 1 1 1 1 1

011110011 0 0 0 1 1 1 1

Logical Word OR

OR

(s1)

(s2)

(d)

111011000 1 1 1 0 0 0 0

010001101 1 0 1 1 0 1 0

101010101 0 1 0 1 0 1 0

Logical Exclusive OR

XOR

(s1)

(s2)

(d)

XOR

TRUE

TRUE

FALSE

Result

XOR

TRUE

FALSE

TRUE

Result

XOR

TRUE

TRUE

FALSE

Result

XOR

TRUE

FALSE

TRUE

Result

For 3 INs For 4 INs For 5 INs

(s1)

(s2) (s3) (s4) (s5)

XOR is repeated by the
number of variables (s).

19 STANDARD BITWISE BOOLEAN FUNCTIONS

19.2 Logical Negation 801

19

19.2 Logical Negation

NOT(_E)

These functions output the logical negation of input values.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions calculate the logical negation for each bit of the BOOL, WORD, or DWORD type data input in (s), and

output the operation result from (d) in the same data type as (s).

Ex.

When the data type is WORD

 � A value input to (s) is the BOOL, WORD, or DWORD type data value.

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=NOT(s);

[With EN/ENO]

d:=NOT_E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable ANY_BIT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_BIT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

100101001 1 1 1 0 0 0 0

011010110 0 0 0 1 1 1 1

NOT

(d)

(s)

802
20 SELECTION FUNCTIONS

20.1 Selection

20 SELECTION FUNCTIONS

20.1 Selection

SEL(_E)

These functions output a selected input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output a value input to (s2) and (s3) according to a value input to (s1) in the same data type as (s2) and

(s3) from (d).

 � When FALSE(=0) is input to (s1), these functions output an input value of (s2) from (d).

 � When TRUE(=1) is input to (s1), these functions output an input value of (s3) from (d).

Ex.

The data type of (s2) and (s3) is the INT type ((s2) and (s3) of an argument correspond to the bit value of (s1) (0 or 1).)

 � A value input to (s1) is the BOOL type data value.

 � A data value of the BOOL, INT, DINT, WORD, DWORD, REAL, STRING, TIME, structure, or array type can be input to (s2)

and (s3).

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=SEL(s1,s2,s3);

[With EN/ENO]

d:=SEL_E(EN,ENO,s1,s2,s3);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Output condition (TRUE: Output s3, FALSE: Output s2) Input variable BOOL

s2 Input Input variable ANY

s3

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY

s1 d

s2

s3

EN ENO

ds1

s2

s3

SEL

_G

_IN0

_IN1

OUT

FALSE

1234

5678

INT

INT

1234

INT

BOOL

(s2) to (s3)

(s1) (d)

20 SELECTION FUNCTIONS

20.1 Selection 803

20

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � (s2) and (s3) are the STRING type

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 "00H" is not set to a label specified by (s2) or devices from the device number to end device number of corresponding device.

"00H" is not set to a label specified by (s3) or devices from the device number to the end device number of corresponding device.

3406 The specified character string cannot be stored in a label specified by (d) or devices from the device number to the end device number of

corresponding device.

804
20 SELECTION FUNCTIONS

20.2 Selecting Maximum/Minimum Value

20.2 Selecting Maximum/Minimum Value

MAX(_E), MIN(_E)

 � MAX(_E): These functions output the maximum value of an input value.

 � MIN(_E): These functions output the minimum value of an input value.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � MAX(_E)

Ex.

Data type is INT

 � MIN(_E)

Ex.

Data type is INT

 � A data value of the BOOL, INT, DINT, WORD, DWORD, REAL, STRING, or TIME type can be input to (s1) to (s28).

 � The number of pins for (s) can be changed in the range of 2 to 28.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=MAX(s1,s2);

d:=MIN(s1,s2);

[With EN/ENO]

d:=MAX_E(EN,ENO,s1,s2);

d:=MIN_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 to s28 Input Input variable ANY_SIMPLE

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_SIMPLE

These functions output the maximum value of the BOOL, INT, DINT, WORD, DWORD, DWORD, REAL, STRING, or TIME type data input to (s1) to (s28) in

the same data type as (s) from (d).

These functions output the minimum value of the BOOL, INT, DINT, WORD, DWORD, DWORD, REAL, STRING, or TIME type data input to (s1) to (s28) in

the same data type as (s) from (d).

s1 d

s2

EN ENO

ds1

s2

MAX

_IN1

_IN2

OUT

1234

5678

INT

INT 5678

INT

(s1) to (s28)

(d)MAX

_IN1

_IN2

OUT

1234

5678

INT

INT 5678

INT

(s1) to (s28)

(d)

MIN

_IN1

_IN2

OUT

1234

5678

INT

INT 5678

INT

(s1) to (s28)

(d)MIN

_IN1

_IN2

OUT

1234

5678

INT

INT 5678

INT

(s1) to (s28)

(d)

20 SELECTION FUNCTIONS

20.2 Selecting Maximum/Minimum Value 805

20

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � (s1) to (s28) are STRING

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s1) to (s28) and later, "00H" does not exist.

3405 The character string specified by (s1) to (s28) has more than 16383 characters.

3406 The whole specified character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

806
20 SELECTION FUNCTIONS

20.3 Limit Control

20.3 Limit Control

LIMIT(_E)

These functions output an input value controlled with the upper and lower limits.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output an input value according to the BOOL, INT, DINT, WORD, DWORD, REAL, STRING, or TIME type

data input to (s1), (s2), and (s3) in the same data type as (s1), (s2), and (s3) from (d).

Ex.

Data type is INT

 � A data value of the BOOL, INT, DINT, WORD, DWORD, REAL, STRING, or TIME type can be input to (s1), (s2), and (s3).

(The input value of (s1) must be smaller than the one of (s3).)

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=LIMIT(s1,s2,s3);

[With EN/ENO]

d:=LIMIT_E(EN,ENO,s1,s2,s3);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Lower limit value (minimum output threshold value) Input variable ANY_SIMPLE

s2 Input value to be controlled with the upper and lower limits Input variable ANY_SIMPLE

s3 Upper limit value (maximum output threshold value) Input variable ANY_SIMPLE

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY_SIMPLE

� When the input value of (s2) is larger than the one of (s3), these functions output the input value of (s3) from (d).

� When the input value of (s2) is smaller than the one of (s1), these functions output the input value of (s1) from (d).

� When the input value of (s1)  the input value of (s2)  the input value of (s3), these functions output the input value of (s2) from (d).

s1 d

s2

s3

EN ENO

ds1

s2

s3

LIMIT

_MN

_IN

_MX

OUT

-100

120

100

INT

INT

100

INT

Output value

Input value

INT

(s1)

(s2)

(s3)

(d) Minimum

input value

Maximum

input value

20 SELECTION FUNCTIONS

20.3 Limit Control 807

20

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � (s1), (s2), and (s3) are INT or WORD

 � (s1), (s2), and (s3) are DINT, DWORD, or TIME

 � (s1), (s2), and (s3) are BOOL

 � (s1), (s2), and (s3) are the REAL type

 � (s1), (s2), and (s3) are STRING

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s2).

Error code

(SD0/SD8067)

Description

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s2).

Error code

(SD0/SD8067)

Description

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s3).

Error code

(SD0/SD8067)

Description

3402 The value of (s1) is outside the following range.

0, 2-126|(s1)|<2128

The data specified by (s1) is -0, denormalized number, NaN (not a number), or .

The value of (s2) is outside the following range.

0, 2-126|(s2)|<2128

The data specified by (s2) is -0, denormalized number, NaN (not a number), or .

The value of (s3) is outside the following range.

0, 2-126|(s3)|<2128

The data specified by (s3) is -0, denormalized number, NaN (not a number), or .

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s3).

Error code

(SD0/SD8067)

Description

2820 "00H" is not set to a label specified by (s1), (s2), and (s3) or devices from specified device number to the end device number of

corresponding device.

3405 The lower limit value specified by (s1) is greater than the upper limit value specified by (s3).

The character strings specified by (s1), (s2), and (s3) have more than 16383 characters.

3406 The specified character string cannot be stored in a label specified by (d) or devices from specified device number to the end device

number of corresponding device.

808
20 SELECTION FUNCTIONS

20.4 Multiplexer

20.4 Multiplexer

MUX(_E)

These functions output one of multiple input values.

*1 The input variable "s" can be changed in the range of 2 to 28.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output one of values input to (s1) to (s28) according to the input value of (n) in the same data type as (s)

from (d).

 � When 0 is input to (n), these functions output a value input to (s1) from (d).

 � When (n)-1 is input to (n), these functions output a value input to (sn) from (d).

Ex.

Data type is INT

 � When a value input to (n) is outside the pin number range for (s), these functions output an indefinite value from (d). (An

operation error does not occur. "MUX_E" outputs "FALSE" from ENO).

 � A value input to (n) is the INT type data value and within the range from 0 to 27. (The value must be in the pin number

range for (s).)

 � A data value of the BOOL, INT, DINT, WORD, DWORD, REAL, STRING, TIME, structure, or array type can be input to (s).

Ladder diagram*1 Structured text*1

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=MUX(n,s1,s2);

[With EN/ENO]

d:=MUX_E(EN,ENO,n,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

n Output value selection Input variable INT

s1 to s28 Input Input variable ANY

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable ANY

n d

s1

s2

EN ENO

dn

s1

s2

MUX

_K

_IN0

_IN1

OUT

0

1234

5678

INT

INT

1234

INT

INT

(s1) to (s28)

n (d)

20 SELECTION FUNCTIONS

20.4 Multiplexer 809

20

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � (s1) to (s28) are STRING

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s1) to (s28) and later, "00H" does not exist.

3405 The character string specified by (s1) to (s28) has more than 16383 characters.

3406 The whole specified character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

810
21 COMPARISON FUNCTIONS

21.1 Compare

21 COMPARISON FUNCTIONS

21.1 Compare

GT(_E), GE(_E), EQ(_E), LE(_E), LT(_E)

These functions output the data comparison result of input values.

*1 The input variable "s" can be changed in the range of 2 to 28.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions perform a comparison operation of input values of (s) and output operation results from (d) in the BOOL

type.

 � A data value of the INT, DINT, REAL, BOOL, WORD, DWORD, TIME, or STRING type can be input to (s).

Ladder diagram*1 Structured text*1

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=GT(s1,s2);

d:=GE(s1,s2);

d:=EQ(s1,s2);

d:=LE(s1,s2);

d:=LT(s1,s2);

[With EN/ENO]

d:=GT_E(EN,ENO,s1,s2);

d:=GE_E(EN,ENO,s1,s2);

d:=EQ_E(EN,ENO,s1,s2);

d:=LE_E(EN,ENO,s1,s2);

d:=LT_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 to s28 Input Input variable ANY_SIMPLE

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output (TRUE: True value, FALSE: False value) Output variable BOOL

� GT(_E): These functions compare [(s1)>(s2)]&[(s2)>(s3)]&&[(s)(n-1)>(s)(n)].

� When all the operation results are (s)(n-1)>(s)(n), these functions output TRUE.

� When any of the operation results is (s)(n-1)(s)(n), these functions output FALSE.

� GE(_E): These functions compare [(s1)(s2)]&[(s2)(s3)]&&[(s)(n-1)(s)(n)].

� When all the operation results are (s)(n-1)(s)(n), these functions output TRUE.

� When any of the operation result is (s)(n-1)<(s)(n), these functions output FALSE.

� EQ(_E): These functions compare [(s1)=(s2)]&[(s2)=(s3)]&&[(s)(n-1)=(s)(n)].

� When all the operation results are (s)(n-1)=(s)(n), these functions output TRUE.

� When any of the operation results is (s)(n-1)(s)(n), these functions output FALSE.

� LE(_E): These functions compare [(s1)(s2)]&[(s2)(s3)]&&[(s)(n-1)(s)(n)].

� When all the operation results are (s)(n-1)(s)(n), these functions output TRUE.

� When any of the operation result is (s)(n-1)>(s)(n), these functions output FALSE.

� LT(_E): These functions compare [(s1)<(s2)]&[(s2)<(s3)]&&[(s)(n-1)<(s)(n)].

� When all the operation results are (s)(n-1)<(s)(n), these functions output TRUE.

� When any of the operation results is (s)(n-1)(s)(n), these functions output FALSE.

s1 d

s2

EN ENO

ds1

s2

21 COMPARISON FUNCTIONS

21.1 Compare 811

21

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

 � (s1) to (s28) are the STRING type

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s1) to (s28) and later, "00H" does not exist.

3405 The character string specified by (s1) to (s28) has more than 16383 characters.

3406 The whole specified character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

812
21 COMPARISON FUNCTIONS

21.2 Compare

21.2 Compare

NE(_E)

These functions output the data comparison result of input values.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions perform a comparison operation of input values of (s) and output operation results from (d) in the BOOL

type.

 � A data value of the INT, DINT, REAL, BOOL, WORD, DWORD, TIME, or STRING type can be input to (s).

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=NE(s1,s2);

[With EN/ENO]

d:=NE_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1, s2 Input Input variable ANY_SIMPLE

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output (TRUE: True value, FALSE: False value) Output variable BOOL

� NE(_E): These functions compare [(s1)(s2)].

� When (s1)(s2), these functions output TRUE.

� These functions output FALSE when (s1)=(s2).

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

s1 d

s2

EN ENO

ds1

s2

21 COMPARISON FUNCTIONS

21.2 Compare 813

21

Operation error

 � (s1) and (s2) are the STRING type

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.

3405 The character string specified by (s) has more than 16383 characters.

3406 The whole specified character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

814
22 CHARACTER STRING FUNCTIONS

22.1 Character String Length Detection

22 CHARACTER STRING FUNCTIONS

22.1 Character String Length Detection

LEN(_E)

These functions detect the length of an input character string and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions detect the length of a character string input to (s) and output the result from (d).

 � A value input to (s) is the STRING type data value and within the range from 0 to 255 byte(s).

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=LEN(s);

[With EN/ENO]

d:=LEN _E(EN,ENO,s);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(255)

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

s d EN ENO

ds

INT

ASCII code for 4th character

ASCII code for 1st character

ASCII code for 6th character ASCII code for 5th character

ASCII code for 3rd character

(Indicates the end of the character string.)

ASCII code for (n)th character

ASCII code for 2nd character

2nd word

3rd word

nth word

STRING 1st word

High-order byte Low-order byte

Character string length

00H

22 CHARACTER STRING FUNCTIONS

22.2 Extracting Character String Data from the Left/Right 815

22

22.2 Extracting Character String Data from the Left/
Right

LEFT(_E), RIGHT(_E)

 � LEFT(_E): These functions output specified number of characters from the left of input character string data.

 � RIGHT(_E): These functions output specified number of characters from the right of input character string data.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � LEFT(_E)

Ex.

When the value input to (n) is 7

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=LEFT(s,n);

d:=RIGHT(s,n);

[With EN/ENO]

d:=LEFT_E(EN,ENO,s,n);

d:=RIGHT_E(EN,ENO,s,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(255)

n Specification of number of characters to be extracted Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(255)

These functions output the data for the specified number of characters from the left of a character string input to (s) from (d).

The value input to (n) specifies the number of characters to be extracted.

s d

n

EN ENO

s d

n

42H (B) 41H (A)

44H (D) 43H (C)

46H (F) 45H (E)

32H (2) 31H (1)

34H (4) 33H (3)

00H 35H (5)

2nd word

3rd word

4th word

5th word

6th word

1st word

2nd word

4th word

3rd word

1st word42H (B) 41H (A)

44H (D) 43H (C)

00H

46H (F)

31H (1)

45H (E)

High-order byte Low-order byte High-order byte Low-order byte

"ABCDEF12345" "ABCDEF1"

Number of
characters to be
extracted (L): 7

816
22 CHARACTER STRING FUNCTIONS

22.2 Extracting Character String Data from the Left/Right

 � RIGHT(_E)

Ex.

When the value input to (n) is 5

 � A value input to (s) is the STRING type data value and within the range from 0 to 255 byte(s).

 � A value input to (n) is the INT type data value and within the range from 0 to 255. (However, the value must be within the

number of characters of the character string to be input to (s).)

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

These functions output the data for the specified number of characters from the right of a character string input to (s) from (d).

The value input to (n) specifies the number of characters to be extracted.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

42H (B) 41H (A)

44H (D) 43H (C)

46H (F) 45H (E)

32H (2) 31H (1)

34H (4) 33H (3)

00H 35H (5)

2nd word

3rd word

4th word

5th word

6th word

1st word

2nd word

3rd word

1st word32H (2) 31H (1)

34H (4) 33H (3)

00H 35H (5)

High-order byte Low-order byte High-order byte Low-order byte

"ABCDEF12345" "12345"

Number of
characters to be
extracted (L): 5

22 CHARACTER STRING FUNCTIONS

22.3 Extract Mid String 817

22

22.3 Extract Mid String

MID(_E)

These functions output the specified number of characters from an arbitrary position of an input character string.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions output the data for the specified number of characters from an arbitrary position of a character string input

to (s).

 � The value input to (n1) specifies the number of characters to be extracted.

 � The value input to (n2) specifies the number of the head character position of a character string to be extracted.

Ex.

When the value input to (n1) and (n2) is 5

 � A value input to (s) is the STRING type data value and within the range from 0 to 255 byte(s).

 � A value input to (n1) is the INT type data value and within the range from 0 to 255. (However, the value must be within the

number of characters of the character string to be input to (s).)

 � A value input to (n2) is the INT type data value and within the range from 1 to 255. (However, the value must be within the

number of characters of the character string to be input to (s).)

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=MID(s,n1,n2);

[With EN/ENO]

d:=MID_E(EN,ENO,s,n1,n2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(255)

n1 Specification of number of characters to be extracted Input variable INT

n2 Specification of head character position of a character string to be

extracted

Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(255)

s d

n1

n2

EN ENO

ds

n1

n2

42H (B) 41H (A)

44H (D) 43H (C)

46H (F) 45H (E)

32H (2) 31H (1)

34H (4) 33H (3)

00H 35H (5)

2nd word

3rd word

4th word

5th word

6th word

1st word

2nd word

3rd word

1st word46H (F) 45H (E)

32H (2) 31H (1)

00H 33H (3)

High-order byte Low-order byte High-order byte Low-order byte

"ABCDEF12345" "EF123"

(s) (d)

Head character
position of a
character string to
be extracted n2:
5th character

Number of characters
to be extracted n1: 5

818
22 CHARACTER STRING FUNCTIONS

22.3 Extract Mid String

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.

3405 The character string specified by (s) has more than 16383 characters.

Data outside the allowable range was set to (n1) and (n2).

� The value stored in a device specified in (n1) and (n2) is 0 or less.

� The value stored in a device specified in (n2) is any value other than an effective value (-1, 0, 1, or more).

� The value stored in a device specified in (n1) exceeds the number of characters of (s).

� The total of the values stored in devices specified in (n1) and (n2) exceeds the number of characters of (s).

22 CHARACTER STRING FUNCTIONS

22.4 Link Character Strings 819

22

22.4 Link Character Strings

CONCAT(_E)

These functions concatenate character strings and output the result.

*1 The input variable "s" can be changed in the range of 2 to 28.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions concatenate the character string input to the input variables (s2) to (s28) after the one input to (s1) and

output the result from (d).

 � When character strings are concatenated, 00H indicating an end of the character string specified by (s1) is ignored and the

character string specified by (s2) to (s28) is concatenated.

 � When the concatenated character string exceeds 255 bytes, these functions output a character string within 255 bytes.

 � A value input to the input variables (s1) and (s2) to (s28) is the STRING type data value and within the range from 0 to 255

byte(s).

Ladder diagram*1 Structured text*1

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=CONCAT(s1,s2);

[With EN/ENO]

d:=CONCAT_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 to s28 Input Input variable STRING(255)

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(255)

s1 d

s2

EN ENO

ds1

s2

32H (2) 31H (1)

34H (4) 33H (3)

36H (6)

00H

35H (5)

High-order byte Low-order byte

"123456"

42H (B) 41H (A)

44H (D) 43H (C)

31H (1) 45H (E)

33H (3) 32H (2)

35H (5) 34H (4)

00H 36H (6)

2nd word

3rd word

4th word

5th word

6th word

1st word

2nd word

3rd word

4th word

1st word42H (B) 41H (A)

44H (D) 43H (C)

00H 45H (E)

High-order byte Low-order byte

"ABCDE"

2nd word

3rd word

1st word

High-order byte Low-order byte

"ABCDE123456"

(s1) (s2) (d)

32H (2) 31H (1)

34H (4) 33H (3)

36H (6)

00H

35H (5)

High-order byte Low-order byte

"123456"

2nd word

3rd word

4th word

5th word

6th word

1st word

2nd word

3rd word

4th word

1st word

00H 36H (6)

35H (5) 34H (4)

33H (3) 32H (2)

00H 31H (1) 45H (E)

44H (D) 43H (C)44H (D) 43H (C)

42H (B) 41H (A)42H (B) 41H (A)

45H (E)

High-order byte Low-order byte

"ABCDE"

2nd word

3rd word

1st word

High-order byte Low-order byt

"ABCDE123456"

(s1) (s2) (d)

e

820
22 CHARACTER STRING FUNCTIONS

22.4 Link Character Strings

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s1) to (s28) and later, "00H" does not exist.

3406 The whole concatenated character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

22 CHARACTER STRING FUNCTIONS

22.5 Inserting Character String 821

22

22.5 Inserting Character String

INSERT(_E)

These functions insert a character string into another character string and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions insert the character string input to (s2) at the (n)th character from the start of the character string input to

(s1) (head position of the insertion) and output from (d).

 � After the character string specified by (s2) is inserted to the one specified by (s1), 00H indicating an end of the character

string specified by (s2) is ignored.

 � When the inserted character string exceeds 255 bytes, these functions output a character string within 255 bytes.

Ex.

When the value input to (n) is 4

 � A value input to (s1) and (s2) is the STRING type data value and within the range from 0 to 255 byte(s).

 � A value input to (n) is the INT type data value and within the range from 1 to 255. (However, the value must be within the

number of characters of the character string to be input to (s1).)

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=INSERT(s1,s2,n);

[With EN/ENO]

d:=INSERT_E(EN,ENO,s1,s2,n);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1, s2 Input Input variable STRING(255)

n Specification of head character position of a character string to be

inserted

Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(255)

s1 d

s2

n

EN ENO

ds1

s2

n

"ABCDE"

42H (B) 41H (A)

31H (1) 43H (C)

33H (3) 32H (2)

35H (5) 34H (4)

44H (D) 36H (6)

00H 45H (E)

2nd word

3rd word

4th word

5th word

6th word

1st word

32H (2) 31H (1)

34H (4) 33H (3)

36H (6)

00H

35H (5)

High-order byte Low-order byte

"123456"

2nd word

3rd word

4th word

1st word

42H (B) 41H (A)

44H (D) 43H (C)

00H 45H (E)

High-order byte Low-order byte

2nd word

3rd word

1st word

High-order byte Low-order byte

"ABC123456DE"

Value input to (s2)

Value input to (s1) Output value

(d)

Head character
position of a character
string to be inserted n:
4th character

822
22 CHARACTER STRING FUNCTIONS

22.5 Inserting Character String

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 In the corresponding device range of the device specified by (s1) to (s28) and later, "00H" does not exist.

3406 The whole concatenated character string cannot be stored in the devices from the device specified by (d) to the last device in the

corresponding device range.

22 CHARACTER STRING FUNCTIONS

22.6 Deleting Character String 823

22

22.6 Deleting Character String

DELETE(_E)

These functions delete an arbitrary range of a character string and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions delete the data for the specified number of characters from an arbitrary position of a character string input

to (s) and output the remaining character strings from (d).

 � The value input to (n1) specifies the number of characters to be deleted.

 � The value input to (n2) specifies the number of the head character position of a character string to be deleted.

Ex.

When the value input to (n1) and (n2) is 5

 � A value input to (s) is the STRING type data value and within the range from 0 to 255 byte(s).

 � A value input to (n1) is the INT type data value and within the range from 0 to 255. (However, the value must be within the

number of characters of the character string to be input to (s).)

 � A value input to (n2) is the INT type data value and within the range from 1 to 255. (However, the value must be within the

number of characters of the character string to be input to (s).)

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DELETE(s,n1,n2);

[With EN/ENO]

d:=DELETE_E(EN,ENO,s,n1,n2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Input Input variable STRING(255)

n1 Specification of number of characters to be deleted Input variable INT

n2 Specification of head character position of a character string to be

deleted

Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(255)

s d

n1

n2

EN ENO

ds

n1

n2

42H (B) 41H (A)

44H (D) 43H (C)

46H (F) 45H (E)

32H (2) 31H (1)

34H (4) 33H (3)

00H 35H (5)

2nd word

3rd word

4th word

5th word

6th word

1st word

2nd word

3rd word

4th word

1st word42H (B) 41H (A)

44H (D) 43H (C)

35H (5) 34H (4)

00H

High-order byte Low-order byte High-order byte Low-order byte

"ABCDEF12345" "ABCD45"
(s) (d)

Head character
position of a
character string to
be deleted n2: 5th
character

Number of characters
to be deleted n1: 5

824
22 CHARACTER STRING FUNCTIONS

22.6 Deleting Character String

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

2820 "00H" is not set to devices from the device number specified by (s) to the end device number of corresponding device.

3405 The character strings specified by (s) have more than 255 characters.

The device value specified by (n1) is out of the valid range (0 to 255).

The device value specified by (n2) is out of the valid range (1 to 255).

(n1) exceeds the number of characters of a character string specified by (s).

(n2) exceeds the number of characters of a character string specified by (s).

3406 The whole deleted character string cannot be stored in the devices from the device specified by (d) to the last device of the target device.

22 CHARACTER STRING FUNCTIONS

22.7 Replacing Character String 825

22

22.7 Replacing Character String

REPLACE(_E)

These functions replace an arbitrary range of a character string and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions replace the data for the specified number of characters from an arbitrary position of a character string input

to (s1) with a character string input to (s2) and output from (d).

 � The value input to (n1) specifies the number of characters to be replaced.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=REPLACE(s1,s2,n1,n2);

[With EN/ENO]

d:=REPLACE_E(EN,ENO,s1,s2,n1,n2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1, s2 Input Input variable STRING(255)

n1 Specification of number of characters to be replaced Input variable INT

n2 Specification of head character position of a character string to be

replaced

Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable STRING(255)

s1 d

s2

n1

n2

EN ENO

s1

s2

d

n1

n2

826
22 CHARACTER STRING FUNCTIONS

22.7 Replacing Character String

 � The value input to (n2) specifies the number of the head character position of a character string to be replaced.

Ex.

When the value input to (n1) and (n2) is 5

 � A value input to (s1) and (s2) is the STRING type data value and within the range from 0 to 255 byte(s).

 � A value input to (n1) is the INT type data value and within the range from 0 to 255. (However, the value must be within the

number of characters of the character string to be input to (s1).)

 � A value input to (n2) is the INT type data value and within the range from 1 to 255. (However, the value must be within the

number of characters of the character string to be input to (s1).)

■Operation result

1. Function without EN/ENO

The following table lists the operation results.

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation result (d)

No operation error occurred Operation output value

An operation error occurred Indefinite value

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE (Operation error did not occur) Operation output value

FALSE (Operation error occurred)*1 Indefinite value

FALSE (Stops operation) FALSE*1 Indefinite value

"ABCDEFGH123"

42H (B) 41H (A)

44H (D) 43H (C)

32H (2) 31H (1)

34H (4) 33H (3)

32H (2) 35H (5)

00H 33H (3)

2nd word

3rd word

4th word

5th word

6th word

1st word

32H (2) 31H (1)

34H (4) 33H (3)

36H (6)

00H

35H (5)

High-order byte Low-order byte

"123456"

2nd word

3rd word

4th word

1st word

42H (B) 41H (A)

44H (D) 43H (C)

46H (F) 45H (E)

48H(H) 47H(G)

32H (2) 31H (1)

00H 33H (3)

High-order byte Low-order byte

2nd word

3rd word

4th word

5th word

6th word

1st word

High-order byte Low-order byte

"ABCD1234523"

 Value to be input to (s2)

 Value to be input to (s1) Output value

(d)

Number of
characters to be
replaced n1: 5

Head character
position of a character
string to be replaced
n2: 5th character

22 CHARACTER STRING FUNCTIONS

22.7 Replacing Character String 827

22

Operation error

Error code

(SD0/SD8067)

Description

2820 "00H" is not set to devices from the device number specified by (s1) to the end device number of corresponding device.

"00H" is not set to devices from the device number specified by (s2) to the end device number of corresponding device.

3405 The character strings specified by (s1) have more than 255 characters.

The character strings specified by (s2) have more than 255 characters.

The device value specified by (n1) is out of the valid range (0 to 255).

The device value specified by (n2) is out of the valid range (1 to 255).

(n1) exceeds the number of characters of a character string specified by (s2).

(n2) exceeds the number of characters of a character string specified by (s1).

3406 The whole deleted character string cannot be stored in the devices from the device specified by (d) to the last device of the target device.

828
22 CHARACTER STRING FUNCTIONS

22.8 Searching Character String

22.8 Searching Character String

FIND(_E)

These functions search for a character string and output the result.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions search for a character string input to (s2) from the start of the character string input to (s1) and output the

result from (d).

 � This function outputs the head character position of the searched character string detected first as the search result.

 � If a character string specified by (s2) cannot be searched from the one specified by (s1), these functions output "0".

 � A value input to (s1) and (s2) is the STRING type data value and within the range from 0 to 255 byte(s).

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=FIND(s1,s2);

[With EN/ENO]

d:=FIND_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1, s2 Input Input variable STRING(255)

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable INT

s1 d

s2

EN ENO

ds1

s2

"ABCD1234567"

32H (2) 31H (1)

34H (4) 33H (3)

00H

High-order byte Low-order byte

"1234"

2nd word

3rd word

1st word

42H (B) 41H (A)

44H (D) 43H (C)

32H (2) 31H (1)

34H (4) 33H (3)

36H (6) 35H (5)

00H 37H (7)

High-order byte Low-order byte

2nd word

3rd word

4th word

5th word

6th word

1st word

Value to be input to IN2

Value to be input to IN1 Output value

INT

5

Search of
character string

22 CHARACTER STRING FUNCTIONS

22.8 Searching Character String 829

22

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

830
23 TIME DATA FUNCTIONS

23.1 Addition

23 TIME DATA FUNCTIONS

23.1 Addition

ADD_TIME(_E)

These functions output the sum of input values (TIME data) ((s1) + (s2)).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions add the TIME type data input to (s1) and (s2) ((s1) + (s2)), and output the operation result from (d) as TIME

type data.

Ex.

When a value input to (s1) and (s2) is T#1d2h33m44s55ms (1 day 2 hours 33 minutes 44 seconds 55 milliseconds) and

T#2ms (2 milliseconds)

 � A value input to (s1) and (s2) is the TIME type data value.

 � Even if underflow or overflow occurs in the operation result, it is not regarded as an operation error. The data is output from

(d) as follows: "ADD_TIME_E" outputs "TRUE" from the output variable ENO.

Ex.

Overflow

The most significant bit becomes 1, and a negative time is output.

Ex.

Underflow

The most significant bit becomes 0, and a positive time is output.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=ADD_TIME(s1,s2);

[With EN/ENO]

d:=ADD_TIME_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1, s2 Input Input variable TIME

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

s1 d

s2

EN ENO

ds1

s2

TIME

T#1d2h33m44s55ms

TIME

T#1d2h33m44s57ms

(d)

TIME

T#2ms

(s2)(s1)

(7FFFFFFFH)

T#24d20h31m23s647ms

(80000001H)

T#-24d20h31m23s647ms

(00000002H)

T#2ms

(80000000H)

T#-24d20h31m23s648ms

(7FFFFFFEH)

T#24d20h31m23s646ms

(FFFFFFFEH)

T#-2ms

23 TIME DATA FUNCTIONS

23.1 Addition 831

23

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

832
23 TIME DATA FUNCTIONS

23.2 Subtraction

23.2 Subtraction

SUB_TIME(_E)

These functions output the difference of input values (TIME data) ((s1) - (s2)).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions subtract the TIME type data input to (s1) and (s2) ((s1) - (s2)), and output the operation result from (d) as

TIME type data.

Ex.

When a value input to (s1) and (s2) is T#1d2h33m44s55ms (1 day 2 hours 33 minutes 44 seconds 55 milliseconds) and

T#2ms (2 milliseconds)

 � A value input to (s1) and (s2) is the TIME type data value.

 � Even if underflow or overflow occurs in the operation result, it is not regarded as an operation error. The data is output from

(d) as follows: "SUB_TIME_E" outputs "TRUE" from the output variable ENO.

Ex.

Overflow

The most significant bit becomes 1, and a negative time is output.

Ex.

Underflow

The most significant bit becomes 0, and a positive time is output.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=SUB_TIME(s1,s2);

[With EN/ENO]

d:=SUB_TIME_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1, s2 Input Input variable TIME

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

s1 d

s2

EN ENO

ds1

s2

TIME

T#1d2h33m44s55ms

TIME

T#1d2h33m44s53ms

(d)

TIME

T#2ms

(s2)(s1)

-

(7FFFFFFFH)

T#24d20h31m23s647ms

(80000001H)

T#-24d20h31m23s647ms

(FFFFFFFEH)

T#-2ms-

(80000000H)

T#-24d20h31m23s648ms

(7FFFFFFEH)

T#24d20h31m23s646ms

(00000002H)

T#2ms-

23 TIME DATA FUNCTIONS

23.2 Subtraction 833

23

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

834
23 TIME DATA FUNCTIONS

23.3 Multiplication

23.3 Multiplication

MUL_TIME(_E)

These functions output the multiplication of input values (TIME) ((s1)  (s2)).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions multiply the TIME type data input to (s1) and (s2) ((s1)  (s2)), and output the operation result from (d) as

TIME type data.

Ex.

When a value input to (s1) and (s2) is T#1d2h33m44s55ms (1 day 2 hours 33 minutes 44 seconds 55 milliseconds) and 2

 � A value input to (s1) is the TIME type data value.

 � A value input to (s2) is the INT, DINT, or REAL type.

 � Even if underflow or overflow occurs in the operation result, it is not regarded as an operation error. The data is output from

(d) as follows: "MUL_TIME_E" outputs "TRUE" from the output variable ENO. (The operation result is the 64-bit data,

however, the output data is the time type data with high-order 32 bits deleted.)

Ex.

Overflow

The most significant bit becomes 1, and a negative time is output.

Ex.

Underflow

The most significant bit becomes 0, and a positive time is output.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=MUL_TIME(s1,s2);

[With EN/ENO]

d:=MUL_TIME_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Input Input variable TIME

s2 Input Input variable ANY_NUM

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

s1 d

s2

EN ENO

ds1

s2

TIME

T#1d2h33m44s55ms

TIME

T#2d5h7m28s110ms

(d)

INT

2

(s2)(s1)



(7FFFFFFFH)

T#24d20h31m23s647ms

(FFFFFFFEH)

T#-2ms

(00000002H)

2

(80000000H)

T#-24d20h31m23s648ms

(00000000H)

T#0ms

(00000002H)

2

23 TIME DATA FUNCTIONS

23.3 Multiplication 835

23

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

836
23 TIME DATA FUNCTIONS

23.4 Division

23.4 Division

DIV_TIME(_E)

These functions output the quotient of input values (TIME data) ((s1)  (s2)).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � These functions divide the TIME type data input to (s1) and (s2) ((s1)  (s2)), and output the operation result from (d) as

TIME type data. The remainder is ignored.

Ex.

When a value input to (s1) and (s2) is T#1d2h33m44s55ms (1 day 2 hours 33 minutes 44 seconds 55 milliseconds) and 2

 � A value input to (s1) is the TIME type data value.

 � A value input to (s2) is the INT, DINT, or REAL type. (However, input other than 0 to (s2).)

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

d:=DIV_TIME(s1,s2);

[With EN/ENO]

d:=DIV_TIME_E(EN,ENO,s1,s2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Input Input variable TIME

s2 Input Input variable ANY_NUM

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable TIME

s1 d

s2

EN ENO

ds1

s2

TIME

T#1d2h33m44s55ms

TIME

T#13h16m52s27ms

(d)

INT

2

(s2)(s1)



(Quotient) (Remainder)

T#1ms

Ignored

23 TIME DATA FUNCTIONS

23.4 Division 837

23

■Operation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).

2. Function with EN/ENO

The following table lists the execution conditions and operation results.

*1 When FALSE is output from ENO, data output from (d) is undefined. In that case, modify a program so that the data output from (d) is

not used.

Operation error

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE*1 Indefinite value

Error code

(SD0/SD8067)

Description

3400 A value input to (s2) is 0. (Zero division)

838
23 TIME DATA FUNCTIONS

23.4 Division

MEMO

839

P
A

R
T

 6

PART 6 FUNCTION BLOCKS

This part consists of the following chapters.

24 BISTABLE FUNCTION BLOCKS

25 EDGE DETECTION FUNCTION BLOCKS

26 COUNTER FUNCTION BLOCKS

27 TIMER FUNCTION BLOCKS

840
24 BISTABLE FUNCTION BLOCKS

24.1 Bistable Function Blocks (Set Priority)

24 BISTABLE FUNCTION BLOCKS

24.1 Bistable Function Blocks (Set Priority)

SR(_E)

These function blocks judge two input values and output 1 (TRUE) or 0 (FALSE).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � When (s1) turns ON, (d) is set. If (s2) is turned ON when (s1) is OFF, (d) is reset.

 � If (s2) is turned ON when (s1) is ON, (d) is not reset.

■Operation result

1. Function block without EN/ENO

The operation processing is executed. The operation output value is output from (d).

 � Timing chart

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

SR_1(S1:=s1,R:=s2,Q1:=d);

[With EN/ENO]

SR_E_1(EN:=EN,ENO:=ENO S1:=s1,R:=s2,Q1:=d);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Set instruction Input variable BOOL

s2 Reset instruction Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

s1 d

s2

EN ENO

ds1

s2

OFF OFF

ON

OFF OFF OFF

ON ON ON ON ON

(s1) OFF

OFF OFF

ON

OFF OFF OFF

ON ON ON ON ON

OFF

OFF

ON ON ON ON ON

(s2)

(d)

When (s1) is on,

(d) is on.

When (s1) is off and (s2) is on,

(d) is off.

24 BISTABLE FUNCTION BLOCKS

24.1 Bistable Function Blocks (Set Priority) 841

24

2. Function block with EN/ENO

The following table lists the execution conditions and operation results.

 � Timing chart

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE Previous output value

ON ON ON ON ON

EN

OFF OFF

ON

OFF OFF OFF

ON ON ON ON ON

(s1) OFF

OFF

ON ON

(s2)

ENO

OFF

ON

OFF OFF

ON ON

(d)

When EN and (s1) are

on, (d) is on.

When EN, (s1), and (s2) are

on, (d) is off.

842
24 BISTABLE FUNCTION BLOCKS

24.2 Bistable Function Blocks (Reset Priority)

24.2 Bistable Function Blocks (Reset Priority)

RS(_E)

These function blocks judge two input values and output 1 (TRUE) or 0 (FALSE).

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � When (s1) turns ON, (d) is set. When (s2) is turned ON, (d) is reset.

 � If (s1) is turned ON when (s2) is ON, (d) is not reset.

■Operation result

1. Function block without EN/ENO

The operation processing is executed. The operation output value is output from (d).

 � Timing chart

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

RS_1(S:=s1,R1:=s2,Q1:=d);

[With EN/ENO]

RS_E_1(EN:=EN, ENO:=ENO S:=s1,R1:=s2,Q1:=d);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Set instruction Input variable BOOL

s2 Reset instruction Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

s1 d

s2

EN ENO

ds1

s2

OFF

ON ON ON ON ON ON

(s1)

OFF OFF

ON

OFF

ON ON ON

OFF

ON

OFF

ON ON

(s2)

OFF OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON ON

(d)

When (s1) is on

and (s2) is off,

(d) turns on.

When (s2) is on,

(d) turns off.

24 BISTABLE FUNCTION BLOCKS

24.2 Bistable Function Blocks (Reset Priority) 843

24

2. Function block with EN/ENO

The following table lists the execution conditions and operation results.

 � Timing chart

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE Previous output value

ON ON ON ON ON

EN

OFF

ON ON

(s1)

OFF OFF

ON

OFF

ON

(s2)

ENO

OFF OFF

ON

OFF

ON

(d)

When EN and (s1) are on

and (s2) is off, (d) turns on.

When EN and (s2) are on,

(d) turns off.

844
25 EDGE DETECTION FUNCTION BLOCKS

25.1 Rising Edge Detector

25 EDGE DETECTION FUNCTION BLOCKS

25.1 Rising Edge Detector

R_TRIG(_E)

These functions detect the rising edge of a signal, and output a pulse signal.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
When (s) turns ON, (d) is turned ON only for one scan.

■Operation result

1. Function block without EN/ENO

The operation processing is executed. The operation output value is output from (d).

 � Timing chart

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

R_TRIG_1(CLK:=s,Q:=d);

[With EN/ENO]

R_TRIG_E_1(EN:=EN, ENO:=ENO CLK:=s,Q:=d);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Rising edge detector input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

s d EN ENO

ds

OFF

ON ON

(s)

OFF OFF

ON

OFF

ON

ON

OFF

ON

ON

OFF

ON

ON

OFF

ON

ON

OFF

ON

(d)

On the rising

edge of (s),

(d) turns on.

At the next scan,

(d) turns off.

25 EDGE DETECTION FUNCTION BLOCKS

25.1 Rising Edge Detector 845

25

2. Function block with EN/ENO

The following table lists the execution conditions and operation results.

 � Timing chart

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE Previous output value

ON ON ON ON

EN

OFF

ON ON ON ON

(s)

OFFENO

OFF

ON

OFF

ON

OFF

ON ON

(d)

When EN is off, (d) holds the output

of the previous scan.

When EN is on and on

the rising edge of (s),

(d) turns on.

At the next scan,

(d) turns off.

846
25 EDGE DETECTION FUNCTION BLOCKS

25.2 Falling Edge Detector

25.2 Falling Edge Detector

F_TRIG(_E)

These function blocks detect the falling edge of a signal, and output a pulse signal.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
When (s) turns OFF, (d) is turned ON only for one scan.

■Operation result

1. Function block without EN/ENO

The operation processing is executed. The operation output value is output from (d).

 � Timing chart

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

F_TRIG_1(CLK:=s,Q:=d);

[With EN/ENO]

F_TRIG_E_1(EN:=EN, ENO:=ENO CLK:=s,Q:=d);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s Falling edge detector input Input variable BOOL

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d Output Output variable BOOL

s d EN ENO

ds

OFF OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

(s)

OFF

ON ON ON ON

OFF

ON ON

(d)

On the falling edge of (s),

(d) turns on.

At the next scan,

(d) turns off.

25 EDGE DETECTION FUNCTION BLOCKS

25.2 Falling Edge Detector 847

25

2. Function block with EN/ENO

The following table lists the execution conditions and operation results.

 � Timing chart

Operation error

There is no operation error.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE Previous output value

OFF

ON ON ON ON ON

EN

OFF OFF

ON

OFF

ON

OFF

ON

OFF

ONON ON

(s)

OFF

ON ON ON ON ON

ENO

OFF OFF

ON

OFF

ON

OFF

ON

(d)

When EN is on and on

the falling edge of (s),

(d) turns on.

When EN is off, (d) holds the output

of the previous scan.

At the next scan,

(d) turns off.

848
26 COUNTER FUNCTION BLOCKS

26.1 Up Counter

26 COUNTER FUNCTION BLOCKS

26.1 Up Counter

CTU(_E)

These function blocks count up the number of times of rising of a signal.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing

1. Count up

 � These function blocks count up (add "1" to) the value of (d2) when (s1) turns ON from OFF.

 � When the value of (d2) reaches the value of (n) of the counter, (d1) turns ON and the function blocks stop counting up.

 � Set the maximum value of the counter for (n). When (s2) is turned ON, (d1) turns OFF and (d2) is set to 0.

2. Count maximum value

The effective setting range of (n) is from 0 to 32767.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

CTU_1(CU:=s1,R:=s2,PV:=n,Q:=d1,CV:=d2);

[With EN/ENO]

CTU_E_1(EN:=EN, ENO:=ENO CU:=s1,R:=s2,PV:=n,Q:=d1,CV:=d2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Count signal input Input variable BOOL

s2 Count value reset Input variable BOOL

n Count maximum value Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d1 Count end Output variable BOOL

d2 Count value Output variable INT

s1 d1

d2s2

n

EN ENO

d1

d2

s1

s2

n

26 COUNTER FUNCTION BLOCKS

26.1 Up Counter 849

26

■Operation result

1. Function block without EN/ENO

The operation processing is executed. The operation output value is output from (d1) and (d2).

 � Timing chart

2. Function block with EN/ENO

The following table lists the execution conditions and operation results.

 � Timing chart

Operation error

There is no operation error.

When 3 is specified in n

Execution condition Operation result

EN ENO (d1), (d2)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE Previous output value

When 3 is specified in n

OFF OFF

ON

OFF

ON ON ON

OFF

ON

OFF

ON ON ON

(s1)

OFF OFF

ON

(s2)

OFF

20 1 3 20 1

OFF

ON

(d1)

(d2)

When (s2) is on,

(d2) is cleared to 0.

When (s1) is on,

(d2) counts up.

OFF OFF

ON

OFF

ON

(s1)

ON ON

OFF

ON

OFF

ON ON ON

OFF OFF

ON

(s2)

OFF OFF

ON

(d1)

(d2)

OFF

ON ON

20 1 3 0 1

ENO

ON ON ON

When EN and (s1) are on,

(d2) turns on.

When (s2) is on,

(d2) is cleared to 0.

850
26 COUNTER FUNCTION BLOCKS

26.2 Down Counter

26.2 Down Counter

CTD(_E)

These function blocks count down the number of times of rising of a signal.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing

1. Count down

 � These function blocks count down (subtract "-1" from) the value of (d2) when (s1) turns ON from OFF.

 � When the value of (d2) is 0, (d1) turns ON and the function blocks stop counting down.

 � Set the count start value for (n). When (s2) is turned ON, (d1) turns OFF and (n) is set for (d2).

2. Count start value

The effective setting range of (n) is from 0 to 32767.

Ladder diagram Structured text

[Without EN/ENO] [With EN/ENO] [Without EN/ENO]

CTD_1(CD:=s1,LD:=s2,PV:=n,Q:=d1,CV:=d2);

[With EN/ENO]

CTD_E_1(EN:=EN, ENO:=ENO CD:=s1,LD:=s2,PV:=n,Q:=d1,CV:=d2);

Argument Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s1 Count signal input Input variable BOOL

s2 Count value set Input variable BOOL

n Count start value Input variable INT

ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d1 Count end Output variable BOOL

d2 Count value Output variable INT

s1 d1

d2s2

n

EN ENO

d1

d2

s1

s2

n

26 COUNTER FUNCTION BLOCKS

26.2 Down Counter 851

26

■Operation result

1. Function block without EN/ENO

The operation processing is executed. The operation output value is output from (d1) and (d2).

 � Timing chart

2. Function block with EN/ENO

The following table lists the execution conditions and operation results.

 � Timing chart

Operation error

There is no operation error.

When 3 is specified in n

Execution condition Operation result

EN ENO (d1), (d2)

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE Previous output value

When 3 is specified in n

OFF OFF

ON

OFF

ON

(s1) OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

30 32 1 0 2 1

OFF

ON

ON

OFF

ON

(s2)

OFF

ON

OFF(d1)

(d2)

When (s2) is on,

(d2) is initialized.

On the falling edge of (s1),

(d2) counts down.

OFF

ON ON

EN

ON ON ON ON ON ON

OFF OFF

ON

OFF

ON

(s1) OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF OFF

ON

OFF

ON

(s2)

OFFENO

30 2 1 0 -1 -2 -3

OFF

ON

(d1)

(d2)

ON

OFF

When EN and (s2) are on,

(d2) is initialized.

When EN is on and on the falling edge of (s1),

(d2) counts down.

852
26 COUNTER FUNCTION BLOCKS

26.3 Counter Function Block

26.3 Counter Function Block

COUNTER_FB_M

When the execution condition is established, this function block starts counting up.

Setting data

■Descriptions, types, and data types

Processing details

■Operation processing
 � The counter starts counting when detecting the rising edge (from OFF to ON) of (s1). It does not start counting if (s1)

remains ON. The counting is started from the value of (s3). When the count value reaches the value of (s2), (d2) turns ON.

The current count value is stored in (d1).

 � A value in the range of 0 to 32767 can be specified for (s2).

 � A value in the range of -32768 to 32767 can be specified for (s3). However, when a negative value is specified, the initial

value is set to 0.

 � To reset the current value of the counter (d1), reset (s1) of FB directly.

Ex.

When the label name is TIMER_CONT_FB_M_1

Ladder diagram Structured text

COUNTER_FB_M_1(Coil:=s1,Preset:=s2,ValueIn:=s3,ValueOut:=d1,Status:=d2);

Argument Description Type Data type

s1 Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s2 Counter set value Input variable INT

s3 Counter initial value Input variable INT

d1 Counter current value Output variable ANY16

d2 Output Output variable BOOL

[Ladder]

[ST]

RST(M0,TIMER_CONT_FB_M_1.Coil)

[Ladder example]

[Timing chart]

s1 d1

d2s2

s3

ENO

d

RST

ENM0

TIMER_CONT_FB_M_1.Coll

Preset ValueOut

StatusValueIn

COUNTER_FB_M

Coll

1

10

M0

M10

D10

OFF

OFF

M0

D10

M10

10

ON

ON

2 31

26 COUNTER FUNCTION BLOCKS

26.3 Counter Function Block 853

26

Operation error

There is no error.

854
27 TIMER FUNCTION BLOCKS

27.1 Timer Function Blocks

27 TIMER FUNCTION BLOCKS

27.1 Timer Function Blocks

TIMER__M

When the execution condition is established, these function blocks start the timer count to the set time.

Setting data

■Descriptions, types, and data types

Processing details

■TIMER_1_FB_M
 � When the execution condition of (s1) turns on, counting the current value starts. The timer starts counting from "(s3)  1

ms". When it counts up to "(s2)  1 ms", (d2) turns on. The current measurement value is output into (d1).

 � When the execution condition of (s1) turns off, the current value is reset to (s3) and (d2) turns off.

 � A value in the range of 0 to 32767 can be specified for (s2).

 � A value in the range of -32768 to 32767 can be specified for (s3). However, when a negative value is specified, the initial

value is set to 0.

Ex.

[Ladder example]

[Timing chart]

Ladder diagram Structured text

( indicates TIMER_1_FB_M, TIMER_10_FB_M, TIMER_100_FB_M,

TIMER_CONT_FB_M, TIMER_CONTHS_FB_M.)

TIMER_1_FB_M_1(Coil:=s1,Preset:=s2,ValueIn:=s3,ValueOut:=d1,Status:=d2);

TIMER_10_FB_M_1(Coil:=s1,Preset:=s2,ValueIn:=s3,ValueOut:=d1,Status:=d2);

TIMER_100_FB_M_1(Coil:=s1,Preset:=s2,ValueIn:=s3,ValueOut:=d1,Status:=d2);

TIMER_CONT_FB_M_1(Coil:=s1,Preset:=s2,ValueIn:=s3,ValueOut:=d1,Status:=d2);

TIMER_CONTHS_FB_M_1(Coil:=s1,Preset:=s2,ValueIn:=s3,ValueOut:=d1,Status:=

d2);

Argument Description Type Data type

s1 Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

s2 Timer set value Input variable INT

s3 Timer initial value Input variable INT

d1 Timer current value Output variable ANY16

d2 Output Output variable BOOL

s1 d1

d2s2

s3

Preset ValueOut

StatusValueIn

TIMER_1_FB_M

Coll

1

10

M0

M10

D10

OFF

OFF

M0

Value of D10

M10

10

9 ms

ON

1

27 TIMER FUNCTION BLOCKS

27.1 Timer Function Blocks 855

27

■TIMER_10_FB_M
 � When the execution condition of (s1) turns on, counting the current value starts. The timer starts counting from "(s3)  10

ms". When it counts up to "(s2)  10 ms", (d2) turns on. The current measurement value is output into (d1).

 � When the execution condition of (s1) turns off, the current value is reset to (s3) and (d2) turns off.

 � A value in the range of 0 to 32767 can be specified for (s2).

 � A value in the range of -32768 to 32767 can be specified for (s3). However, when a negative value is specified, the initial

value is set to 0.

Ex.

[Ladder example]

[Timing chart]

■TIMER_100_FB_M
 � When the execution condition of (s1) turns on, counting the current value starts. The timer starts counting from "(s3)  100

ms". When it counts up to "(s2)  100 ms", (d2) turns on. The current measurement value is output into (d1).

 � When the execution condition of (s1) turns off, the current value is reset to (s3) and (d2) turns off.

 � A value in the range of 0 to 32767 can be specified for (s2).

 � A value in the range of -32768 to 32767 can be specified for (s3). However, when a negative value is specified, the initial

value is set to 0.

Ex.

[Ladder example]

[Timing chart]

Preset ValueOut

StatusValueIn

TIMER_10_FB_M

Coll

1

10

M0

M10

D10

OFF

OFF

M0

Value of D10

M10

10

90 ms

ON

1

Preset ValueOut

StatusValueIn

TIMER_100_FB_M

Coll

1

10

M0

M10

D10

OFF

OFF

M0

Value of D10

M10

10

90 ms

ON

1

856
27 TIMER FUNCTION BLOCKS

27.1 Timer Function Blocks

■TIMER_CONT_FB_M
 � This is a retentive timer that counts the time when the variable is on. When the execution condition of (s1) turns on,

counting the current value starts. There are two retentive timers: low-speed (TIMER_CONT_FB_M) and highspeed

(TIMER_CONTHS_FB_M) retentive timers.

 � The timer starts counting from "(s3)  100 ms"(or 1ms if the high-speed retentive timer is used). When it counts up to "(s2)

 100 ms"(or 1ms if the high-speed retentive timer is used), (d2) turns on. The current measurement value is output into

(d1).

 � The on/off status of (d1) and (d2) is maintained even if the execution condition of (s1) turns off. When the execution

condition of (s1) turns on, the timer resume counting from the measurement it holds.

 � A value in the range of 0 to 32767 can be specified for (s2).

 � A value in the range of -32768 to 32767 can be specified for (s3). However, when a negative value is specified, the initial

value is set to 0.

 � To reset (d1) of the retentive timer, reset (s1) of FB directly.

Ex.

Operation error

There is no error.

For label name TIMER_CONT_FB_M_1

[Ladder program]

[ST]

RST(M0,TIMER_CONT_FB_M_1.Coil)

[Ladder example]

[Timing chart]

ENO

d

RST

ENM0

TIMER_CONT_FB_M_1.Coll

Preset ValueOut

StatusValueIn

TIMER_CNT_FB_M

Coll

0

200

X0

M10

D10

OFF

OFF

X0

Value of _D10

M10

15 sec 5 sec

150 151 to 200

ON

ON

10 to

APPENDIX

Appendix 1 Number of Instruction Steps 857

A
APPENDICES
Appendix 1 Number of Instruction Steps

The number of instruction steps are shown below.

The number of steps may increase depending on the contents of the source and destination (such as specification of BFM or

character string), bit specification of word device, nibble specification of bit devices, indexing etc.

Instruction name Number of minimum steps

LD 2

LDI 2

AND 2

ANI 2

OR 2

ORI 2

LDP 4

LDF 4

ANDP 4

ANDF 4

ORP 4

ORF 4

LDPI 4

LDFI 4

ANDPI 4

ANDFI 4

ORPI 4

ORFI 4

ANB 1

ORB 1

MPS 1

MRD 1

MPP 1

INV 1

MEP 3

MEF 3

OUT 2

OUT T/ST 5

OUTH T/ ST 5

OUTHS T/ST 5

OUT C 5

OUT LC 5

OUT F 3

SET 2

RST 2

SET F 3

RST F 3

ANS 7

ANR 1

ANRP 1

PLS 3

PLF 3

FF 3

ALT 3

858
APPENDIX

Appendix 1 Number of Instruction Steps

ALTP 3

SFT 3

SFTP 3

SFR 4

SFRP 4

SFL 4

SFLP 4

BSFR 4

BSFRP 4

BSFL 4

BSFLP 4

DSFR 4

DSFRP 4

DSFL 4

DSFLP 4

SFTR 6

SFTRP 6

SFTL 6

SFTLP 6

WSFR 6

WSFRP 6

WSFL 6

WSFLP 6

MC 5

MCR 3

FEND 1

END 1

STOP 1

NOP 1

LD= 4

LD<> 4

LD> 4

LD<= 4

LD< 4

LD>= 4

AND= 4

AND<> 4

AND> 4

AND<= 4

AND< 4

AND>= 4

OR= 4

OR<> 4

OR> 4

OR<= 4

OR< 4

OR>= 4

LD=_U 4

LD<>_U 4

LD>_U 4

LD<=_U 4

LD<_U 4

LD>=_U 4

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 859

A
AND=_U 4

AND<>_U 4

AND>_U 4

AND<=_U 4

AND<_U 4

AND>=_U 4

OR=_U 4

OR<>_U 4

OR>_U 4

OR<=_U 4

OR<_U 4

OR>=_U 4

LDD= 4

LDD<> 4

LDD> 4

LDD<= 4

LDD< 4

LDD>= 4

ANDD= 4

ANDD<> 4

ANDD> 4

ANDD<= 4

ANDD< 4

ANDD>= 4

ORD= 4

ORD<> 4

ORD> 4

ORD<= 4

ORD< 4

ORD>= 4

LDD=_U 4

LDD<>_U 4

LDD>_U 4

LDD<=_U 4

LDD<_U 4

LDD>=_U 4

ANDD=_U 4

ANDD<>_U 4

ANDD>_U 4

ANDD<=_U 4

ANDD<_U 4

ANDD>=_U 4

ORD=_U 4

ORD<>_U 4

ORD>_U 4

ORD<=_U 4

ORD<_U 4

ORD>=_U 4

CMP 5

CMPP 5

CMP_U 5

CMPP_U 5

DCMP 5

Instruction name Number of minimum steps

860
APPENDIX

Appendix 1 Number of Instruction Steps

DCMPP 5

DCMP_U 5

DCMPP_U 5

ZCP 6

ZCPP 6

ZCP_U 6

ZCPP_U 6

DZCP 6

DZCPP 6

DZCP_U 6

DZCPP_U 6

BKCMP= 6

BKCMP<> 6

BKCMP> 6

BKCMP<= 6

BKCMP< 6

BKCMP>= 6

BKCMP=P 6

BKCMP<>P 6

BKCMP>P 6

BKCMP<=P 6

BKCMP<P 6

BKCMP>=P 6

BKCMP=_U 6

BKCMP<>_U 6

BKCMP>_U 6

BKCMP<=_U 6

BKCMP<_U 6

BKCMP>=_U 6

BKCMP=P_U 6

BKCMP<>P_U 6

BKCMP>P_U 6

BKCMP<=P_U 6

BKCMP<P_U 6

BKCMP>=P_U 6

DBKCMP= 6

DBKCMP<> 6

DBKCMP> 6

DBKCMP<= 6

DBKCMP< 6

DBKCMP>= 6

DBKCMP=P 6

DBKCMP<>P 6

DBKCMP>P 6

DBKCMP<=P 6

DBKCMP<P 6

DBKCMP>=P 6

DBKCMP=_U 6

DBKCMP<>_U 6

DBKCMP>_U 6

DBKCMP<=_U 6

DBKCMP<_U 6

DBKCMP>=_U 6

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 861

A
DBKCMP=P_U 6

DBKCMP<>P_U 6

DBKCMP>P_U 6

DBKCMP<=P_U 6

DBKCMP<P_U 6

DBKCMP>=P_U 6

+ (s) (d) 5

+P (s) (d) 5

+ (s1) (s2) (d) 5

+P (s1) (s2) (d) 5

+_U (s) (d) 5

+P_U (s) (d) 5

+_U (s1) (s2) (d) 5

+P_U (s1) (s2) (d) 5

ADD 5

ADDP 5

ADD_U 5

ADDP_U 5

- (s) (d) 5

-P (s) (d) 5

- (s1) (s2) (d) 5

-P (s1) (s2) (d) 5

-_U (s) (d) 5

-P_U (s) (d) 5

-_U (s1) (s2) (d) 5

-P_U (s1) (s2) (d) 5

SUB 5

SUBP 5

SUB_U 5

SUBP_U 5

D+ (s) (d) 5

D+P (s) (d) 5

D+ (s1) (s2) (d) 5

D+P (s1) (s2) (d) 5

D+_U (s) (d) 5

D+P_U (s) (d) 5

D+_U (s1) (s2) (d) 5

D+P_U (s1) (s2) (d) 5

DADD 5

DADDP 5

DADD_U 5

DADDP_U 5

D- (s) (d) 5

D-P (s) (d) 5

D- (s1) (s2) (d) 5

D-P (s1) (s2) (d) 5

D-_U (s) (d) 5

D-P_U (s) (d) 5

D-_U (s1) (s2) (d) 5

D-P_U (s1) (s2) (d) 5

DSUB 5

DSUBP 5

DSUB_U 5

Instruction name Number of minimum steps

862
APPENDIX

Appendix 1 Number of Instruction Steps

DSUBP_U 5

* 7

*P 7

*_U 7

*P_U 7

MUL 7

MULP 7

MUL_U 7

MULP_U 7

/ 7

/P 7

/_U 7

/P_U 7

DIV 7

DIVP 7

DIV_U 7

DIVP_U 7

D* 7

D*P 7

D*_U 7

D*P_U 7

DMUL 7

DMULP 7

DMUL_U 7

DMULP_U 7

D/ 7

D/P 7

D/_U 7

D/P_U 7

DDIV 7

DDIVP 7

DDIV_U 7

DDIVP_U 7

B+ (s) (d) 4

B+P (s) (d) 4

B+ (s1) (s2) (d) 5

B+P (s1) (s2) (d) 5

B- (s) (d) 4

B-P (s) (d) 4

B- (s1) (s2) (d) 5

B-P (s1) (s2) (d) 5

DB+ (s) (d) 4

DB+P (s) (d) 4

DB+ (s1) (s2) (d) 5

DB+P (s1) (s2) (d) 5

DB- (s) (d) 4

DB-P (s) (d) 4

DB- (s1) (s2) (d) 5

DB-P (s1) (s2) (d) 5

B* 7

B*P 7

B/ 7

B/P 7

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 863

A
DB* 7

DB*P 7

DB/ 7

DB/P 7

BK+ 6

BK+P 6

BK+_U 6

BK+P_U 6

BK- 6

BK-P 6

BK-_U 6

BK-P_U 6

DBK+ 6

DBK+P 6

DBK+_U 6

DBK+P_U 6

DBK- 6

DBK-P 6

DBK-_U 6

DBK-P_U 6

INC 3

INCP 3

INC_U 3

INCP_U 3

DEC 3

DECP 3

DEC_U 3

DECP_U 3

DINC 3

DINCP 3

DINC_U 3

DINCP_U 3

DDEC 3

DDECP 3

DDEC_U 3

DDECP_U 3

WAND (s) (d) 5

WANDP (s) (d) 5

WAND (s1) (s2) (d) 5

WANDP (s1) (s2) (d) 5

DAND (s) (d) 5

DANDP (s) (d) 5

DAND (s1) (s2) (d) 5

DANDP (s1) (s2) (d) 5

BKAND 6

BKANDP 6

WOR (s) (d) 5

WORP (s) (d) 5

WOR (s1) (s2) (d) 5

WORP (s1) (s2) (d) 5

DOR (s) (d) 5

DORP (s) (d) 5

DOR (s1) (s2) (d) 5

Instruction name Number of minimum steps

864
APPENDIX

Appendix 1 Number of Instruction Steps

DORP (s1) (s2) (d) 5

BKOR 6

BKORP 6

WXOR (s) (d) 5

WXORP (s) (d) 5

WXOR (s1) (s2) (d) 5

WXORP (s1) (s2) (d) 5

DXOR (s) (d) 5

DXORP (s) (d) 5

DXOR (s1) (s2) (d) 5

DXORP (s1) (s2) (d) 5

BKXOR 6

BKXORP 6

WXNR (s) (d) 5

WXNRP (s) (d) 5

WXNR (s1) (s2) (d) 5

WXNRP (s1) (s2) (d) 5

DXNR (s) (d) 5

DXNRP (s) (d) 5

DXNR (s1) (s2) (d) 5

DXNRP (s1) (s2) (d) 5

BKXNR 6

BKXNRP 6

BSET 4

BSETP 4

BRST 4

BRSTP 4

TEST 5

TESTP 5

DTEST 5

DTESTP 5

BKRST 4

BKRSTP 4

ZRST 4

ZRSTP 4

BCD 4

BCDP 4

DBCD 4

DBCDP 4

BIN 4

BINP 4

DBIN 4

DBINP 4

FLT2INT 4

FLT2INTP 4

FLT2UINT 4

FLT2UINTP 4

FLT2DINT 4

FLT2DINTP 4

FLT2UDINT 4

FLT2UDINTP 4

INT2UINT 4

INT2UINTP 4

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 865

A
INT2DINT 4

INT2DINTP 4

INT2UDINT 4

INT2UDINTP 4

UINT2INT 4

UINT2INTP 4

UINT2DINT 4

UINT2DINTP 4

UINT2UDINT 4

UINT2UDINTP 4

DINT2INT 4

DINT2INTP 4

DINT2UINT 4

DINT2UINTP 4

DINT2UDINT 4

DINT2UDINTP 4

UDINT2INT 4

UDINT2INTP 4

UDINT2UINT 4

UDINT2UINTP 4

UDINT2DINT 4

UDINT2DINTP 4

GRY 4

GRYP 4

GRY_U 4

GRYP_U 4

DGRY 4

DGRYP 4

DGRY_U 4

DGRYP_U 4

GBIN 4

GBINP 4

GBIN_U 4

GBINP_U 4

DGBIN 4

DGBINP 4

DGBIN_U 4

DGBINP_U 4

DABIN 4

DABINP 4

DABIN_U 4

DABINP_U 4

DDABIN 4

DDABINP 4

DDABIN_U 4

DDABINP_U 4

HEXA 5

HEXAP 5

VAL 5

VALP 5

VAL_U 5

VALP_U 5

DVAL 5

Instruction name Number of minimum steps

866
APPENDIX

Appendix 1 Number of Instruction Steps

DVALP 5

DVAL_U 5

DVALP_U 5

NEG 3

NEGP 3

DNEG 3

DNEGP 3

DECO 5

DECOP 5

ENCO 5

ENCOP 5

DIS 5

DISP 5

UNI 5

UNIP 5

NDIS 5

NDISP 5

NUNI 5

NUNIP 5

WTOB 5

WTOBP 5

BTOW 5

BTOWP 5

MOV 4

MOVP 4

DMOV 4

DMOVP 4

CML 4

CMLP 4

DCML 4

DCMLP 4

SMOV 7

SMOVP 7

CMLB 4

CMLBP 4

BMOV 5

BMOVP 5

FMOV 5

FMOVP 5

DFMOV 5

DFMOVP 5

XCH 4

XCHP 4

DXCH 4

DXCHP 4

SWAP 3

SWAPP 3

DSWAP 3

DSWAPP 3

MOVB 4

MOVBP 4

PRUN 5

PRUNP 5

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 867

A
DPRUN 5

DPRUNP 5

BLKMOVB 5

BLKMOVBP 5

ROR 4

RORP 4

RCR 4

RCRP 4

DROR 4

DRORP 4

DRCR 4

DRCRP 4

ROL 4

ROLP 4

RCL 4

RCLP 4

DROL 4

DROLP 4

DRCL 4

DRCLP 4

CJ 3

CJP 3

GOEND 1

DI 1

DI (s) 3

EI 1

IMASK 3

SIMASK 5

IRET 1

WDT 1

WDTP 1

FOR 3

NEXT 1

BREAK 5

BREAKP 5

CALL 3

CALLP 3

RET 1

SRET 1

XCALL 3

SFRD 5

SFRDP 5

POP 5

POPP 5

SFWR 5

SFWRP 5

FINS 5

FINSP 5

FDEL 5

FDELP 5

LD$= 4

LD$<> 4

LD$> 4

Instruction name Number of minimum steps

868
APPENDIX

Appendix 1 Number of Instruction Steps

LD$<= 4

LD$< 4

LD$>= 4

AND$= 4

AND$<> 4

AND$> 4

AND$<= 4

AND$< 4

AND$>= 4

OR$= 4

OR$<> 4

OR$> 4

OR$<= 4

OR$< 4

OR$>= 4

$+ (s) (d) 4

$+P (s) (d) 4

$+ (s1) (s2) (d) 5

$+P (s1) (s2) (d) 5

$MOV 4

$MOVP 4

BINDA 4

BINDAP 4

BINDA_U 4

BINDAP_U 4

DBINDA 4

DBINDAP 4

DBINDA_U 4

DBINDAP_U 4

ASCI 5

ASCIP 5

STR 5

STRP 5

STR_U 5

STRP_U 5

DSTR 5

DSTRP 5

DSTR_U 5

DSTRP_U 5

ESTR 5

ESTRP 5

DESTR 5

DESTRP 5

LEN 4

LENP 4

RIGHT 5

RIGHTP 5

LEFT 5

LEFTP 5

MIDR 5

MIDRP 5

MIDW 5

MIDWP 5

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 869

A
INSTR 6

INSTRP 6

STRINS 5

STRINSP 5

STRDEL 5

STRDELP 5

LDE= 4

LDE<> 4

LDE> 4

LDE<= 4

LDE< 4

LDE>= 4

ANDE= 4

ANDE<> 4

ANDE> 4

ANDE<= 4

ANDE< 4

ANDE>= 4

ORE= 4

ORE<> 4

ORE> 4

ORE<= 4

ORE< 4

ORE>= 4

DECMP 5

DECMPP 5

DEZCP 6

DEZCPP 6

E+ (s) (d) 4

E+P (s) (d) 4

E+ (s1) (s2) (d) 5

E+P (s1) (s2) (d) 5

DEADD 5

DEADDP 5

E- (s) (d) 4

E-P (s) (d) 4

E- (s1) (s2) (d) 5

E-P (s1) (s2) (d) 5

DESUB 5

DESUBP 5

E* 5

E*P 5

DEMUL 5

DEMULP 5

E/ 5

E/P 5

DEDIV 5

DEDIVP 5

INT2FLT 4

INT2FLTP 4

UINT2FLT 4

UINT2FLTP 4

DINT2FLT 4

Instruction name Number of minimum steps

870
APPENDIX

Appendix 1 Number of Instruction Steps

DINT2FLTP 4

UDINT2FLT 4

UDINT2FLTP 4

EVAL 4

EVALP 4

DEVAL 4

DEVALP 4

DEBCD 4

DEBCDP 4

DEBIN 4

DEBINP 4

ENEG 3

ENEGP 3

DENEG 3

DENEGP 3

EMOV 4

EMOVP 4

DEMOV 4

DEMOVP 4

SIN 4

SINP 4

DSIN 4

DSINP 4

COS 4

COSP 4

DCOS 4

DCOSP 4

TAN 4

TANP 4

DTAN 4

DTANP 4

ASIN 4

ASINP 4

DASIN 4

DASINP 4

ACOS 4

ACOSP 4

DACOS 4

DACOSP 4

ATAN 4

ATANP 4

DATAN 4

DATANP 4

RAD 4

RADP 4

DRAD 4

DRADP 4

DEG 4

DEGP 4

DDEG 4

DDEGP 4

DESQR 4

DESQRP 4

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 871

A
EXP 4

EXPP 4

DEXP 4

DEXPP 4

LOG 4

LOGP 4

DLOGE 4

DLOGEP 4

POW 5

POWP 5

LOG10 4

LOG10P 4

DLOG10 4

DLOG10P 4

EMAX 5

EMAXP 5

EMIN 5

EMINP 5

RND 3

RNDP 3

ZPUSH (d) 3

ZPUSHP (d) 3

ZPUSH (s) (d) 4

ZPUSHP (s) (d) 4

ZPOP (d) 3

ZPOPP (d) 3

ZPOP (s) (d) 4

ZPOPP (s) (d) 4

LIMIT 6

LIMITP 6

LIMIT_U 6

LIMITP_U 6

DLIMIT 6

DLIMITP 6

DLIMIT_U 6

DLIMITP_U 6

BAND 6

BANDP 6

BAND_U 6

BANDP_U 6

DBAND 6

DBANDP 6

DBAND_U 6

DBANDP_U 6

ZONE 6

ZONEP 6

ZONE_U 6

ZONEP_U 6

DZONE 6

DZONEP 6

DZONE_U 6

DZONEP_U 6

SCL 5

Instruction name Number of minimum steps

872
APPENDIX

Appendix 1 Number of Instruction Steps

SCLP 5

SCL_U 5

SCLP_U 5

DSCL 5

DSCLP 5

DSCL_U 5

DSCLP_U 5

SCL2 5

SCL2P 5

SCL2_U 5

SCL2P_U 5

DSCL2 5

DSCL2P 5

DSCL2_U 5

DSCL2P_U 5

TTMR 4

STMR 7

ROTC 6

RAMPF 6

SPD 5

DSPD 5

PLSY 5

DPLSY 5

PWM 5

DPWM 5

ABSD 9

DABSD 9

INCD 9

CCD 5

CCDP 5

SERMM 6

SERMMP 6

DSERMM 6

DSERMMP 6

SUM 4

SUMP 4

DSUM 4

DSUMP 4

BON 5

BONP 5

DBON 5

DBONP 5

MAX 5

MAXP 5

MAX_U 5

MAXP_U 5

DMAX 5

DMAXP 5

DMAX_U 5

DMAXP_U 5

MIN 5

MINP 5

MIN_U 5

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 873

A
MINP_U 5

DMIN 5

DMINP 5

DMIN_U 5

DMINP_U 5

SORTTBL 7

SORTTBL_U 7

SORTTBL2 7

SORTTBL2_U 7

DSORTTBL2 7

DSORTTBL2_U 7

WSUM 7

WSUMP 7

WSUM_U 7

WSUMP_U 7

DWSUM 7

DWSUMP 7

DWSUM_U 7

DWSUMP_U 7

MEAN 5

MEANP 5

MEAN_U 5

MEANP_U 5

DMEAN 5

DMEANP 5

DMEAN_U 5

DMEANP_U 5

SQRT 4

SQRTP 4

DSQRT 4

DSQRTP 4

CRC 5

CRCP 5

ADRSET 4

ADRSETP 4

TRD 3

TRDP 3

TWR 3

TWRP 3

TADD 5

TADDP 5

TSUB 5

TSUBP 5

HTOS 4

HTOSP 4

DHTOS 4

DHTOSP 4

STOH 4

STOHP 4

DSTOH 4

DSTOHP 4

LDDT= 5

LDDT<> 5

Instruction name Number of minimum steps

874
APPENDIX

Appendix 1 Number of Instruction Steps

LDDT> 5

LDDT<= 5

LDDT< 5

LDDT>= 5

ANDDT= 5

ANDDT<> 5

ANDDT> 5

ANDDT<= 5

ANDDT< 5

ANDDT>= 5

ORDT= 5

ORDT<> 5

ORDT> 5

ORDT<= 5

ORDT< 5

ORDT>= 5

LDTM= 5

LDTM<> 5

LDTM> 5

LDTM<= 5

LDTM< 5

LDTM>= 5

ANDTM= 5

ANDTM<> 5

ANDTM> 5

ANDTM<= 5

ANDTM< 5

ANDTM>= 5

ORTM= 5

ORTM<> 5

ORTM> 5

ORTM<= 5

ORTM< 5

ORTM>= 5

TCMP 7

TCMPP 7

TZCP 6

TZCPP 6

DUTY 5

HOURM 5

DHOURM 5

REF 4

REFP 4

RFS 4

RFSP 4

FROM 6

FROMP 6

DFROM 6

DFROMP 6

TO 6

TOP 6

DTO 6

DTOP 6

Instruction name Number of minimum steps

APPENDIX

Appendix 1 Number of Instruction Steps 875

A
FROMD 6

FROMDP 6

DFROD 6

DFRODP 6

TOD 6

TODP 6

DTOD 6

DTODP 6

SP.SOCOPEN 10

SP.SOCCLOSE 10

SP.SOCRCV 12

SP.SOCSND 12

SP.SOCCINF 10

S.SOCRDATA 12

SP.SOCRDATA 12

DHSCS 5

DHSCR 5

DHSZ 6

HIOEN 5

HIOENP 5

DHIOEN 5

DHIOENP 5

HCMOV 5

HCMOVP 5

DHCMOV 5

DHCMOVP 5

RS2 7

DSZR 6

DDSZR 6

DVIT 6

DDVIT 6

TBL 4

DRVTBL 7

DRVMUL 13

DABS 5

PLSV 5

DPLSV 5

DRVI 6

DDRVI 6

DRVA 6

DDRVA 6

IVCK 7

IVDR 7

IVRD 7

IVWR 7

IVBWR 7

IVMC 13

ADPRW 13

RBFM 7

WBFM 7

Instruction name Number of minimum steps

876

INSTRUCTION INDEX

Symbols

-(P)(_U) . 165,166
*(P)(_U) . 177
/(P)(_U) . 180
+(P)(_U). 161,162
$+(P) . 364,366
$MOV(P) . 368

A

ABS(_E) . 764
ABSD . 538
ACOS(_E) . 775
ACOS(P) . 447
ADD(_E) . 777
ADD(P)(_U) . 163
ADD_TIME(_E). 830
ADPRW . 682
ADRSET(P) . 577
ALT(P) . 124
ANB . 104
AND . 98
AND(_E) . 799
AND<(_U) . 145
AND<=(_U) . 145
AND<>(_U) . 145
AND=(_U) . 145
AND>(_U) . 145
AND>=(_U) . 145
AND$<. 361
AND$<=. 361
AND$<>. 361
AND$=. 361
AND$>. 361
AND$>=. 361
ANDD<(_U) . 147
ANDD<=(_U) . 147
ANDD<>(_U) . 147
ANDD=(_U) . 147
ANDD>(_U) . 147
ANDD>=(_U) . 147
ANDDT< . 591
ANDDT<= . 591
ANDDT<> . 591
ANDDT= . 591
ANDDT> . 591
ANDDT>= . 591
ANDE< . 404
ANDE<= . 404
ANDE<> . 404
ANDE= . 404
ANDE> . 404
ANDE>= . 404
ANDF . 100
ANDFI . 102
ANDP . 100
ANDPI . 102
ANDTM< . 594
ANDTM<= . 594
ANDTM<> . 594
ANDTM= . 594

ANDTM> .594
ANDTM>= .594
ANI .98
ANR(P) .119
ANS .118
ASCI(P) .374
ASIN(_E) .774
ASIN(P) .445
ATAN(_E) .776
ATAN(P) .449

B

B-(P) . 192,193
B*(P) .198
B/(P) .199
B+(P) . 190,191
BAND(P)(_U) .476
BCD(P) .242
BCD_TO_DINT(_E) .731
BCD_TO_INT(_E) .729
BIN(P) .246
BINDA(P)(_U) .370
BITARR_TO_DINT(_E)756
BITARR_TO_INT(_E) .755
BK-(P)(_U). .204
BK+(P)(_U) .202
BKAND(P) .219
BKCMP<(P)(_U). .157
BKCMP<=(P)(_U) .157
BKCMP<>(P)(_U) .157
BKCMP=(P)(_U). .157
BKCMP>(P)(_U). .157
BKCMP>=(P)(_U) .157
BKOR(P) .224
BKRST(P) .239
BKXNR(P) .234
BKXOR(P) .229
BLKMOVB(P). .316
BMOV(P) .303
BON(P) .553
BOOL_TO_DINT(_E) .693
BOOL_TO_DWORD(_E)691
BOOL_TO_INT(_E) .692
BOOL_TO_STRING(_E)695
BOOL_TO_TIME(_E) .694
BOOL_TO_WORD(_E)690
BREAK(P) .342
BRST(P) .236
BSET(P) .235
BSFL(P) .130
BSFR(P) .129
BTOW(P). .294

C

CALL(P) .344
CCD(P) .544
CJ(P) .326
CML(P) .298
CMLB(P) .302
CMP(P)(_U) .149

877

I

CONCAT(_E) . 819
COS(_E) . 772
COS(P) . 441
COUNTER_FB_M. 852
CPY_BITARR(_E). 759
CPY_BIT_OF_INT(_E) 762
CRC(P) . 574
CTD(_E) . 850
CTU(_E) . 848

D

D-(P)(_U) . 173,174
D*(P)(_U) . 183
D/(P)(_U) . 187
D+(P)(_U) . 169,170
DABIN(P)(_U). 270
DABS . 662
DABSD . 540
DACOS(P) . 447
DADD(P)(_U) . 171
DAND(P) . 217,218
DASIN(P) . 445
DATAN(P) . 449
DB-(P) . 196,197
DB*(P) . 200
DB/(P) . 201
DB+(P) . 194,195
DBAND(P)(_U) . 478
DBCD(P) . 244
DBIN(P) . 248
DBINDA(P)(_U) . 372
DBK-(P)(_U). 209
DBK+(P)(_U) . 206
DBKCMP<(P)(_U). 159
DBKCMP<=(P)(_U) . 159
DBKCMP<>(P)(_U) . 159
DBKCMP=(P)(_U). 159
DBKCMP>(P)(_U). 159
DBKCMP>=(P)(_U) . 159
DBON(P) . 554
DCML(P) . 299
DCMP(P)(_U) . 151
DCOS(P) . 441
DDABIN(P)(_U) . 272
DDEC(P)(_U) . 214
DDEG(P) . 452
DDIV(P)(_U). 188
DDRVA . 673,674
DDRVI . 669,670
DDSZR . 652
DDVIT . 655,656
DEADD(P) . 414
DEBCD(P) . 433
DEBIN(P) . 435
DEC(P)(_U) . 212
DECMP(P) . 406
DECO(P) . 284
DEDIV(P) . 424
DEG(P) . 452
DELETE(_E) . 823
DEMOV(P) . 438
DEMUL(P) . 422
DENEG(P) . 437
DESQR(P) . 453
DESTR(P) . 383

DESUB(P .416
DEVAL(P) .430
DEXP(P) .454
DEZCP(P) .408
DFMOV(P). .306
DFROD(P) . 613,615
DFROM(P). 607,609
DGBIN(P)(_U) .269
DGRY(P)(_U). .267
DHCMOV .646
DHIOEN(P) .642
DHOURM .604
DHSCR .636
DHSCS .634
DHSZ .638
DHTOS(P) .588
DI . 330,332
DINC(P)(_U) .213
DINT2FLT(P) .428
DINT2INT(P) .260
DINT2UDINT(P) .262
DINT2UINT(P) .261
DINT_TO_BCD(_E) .723
DINT_TO_BITARR(_E)758
DINT_TO_BOOL(_E) .718
DINT_TO_DWORD(_E) 721
DINT_TO_INT(_E) .722
DINT_TO_REAL(_E). .725
DINT_TO_STRING(_E).727
DINT_TO_TIME(_E) .726
DINT_TO_WORD(_E).719
DIS(P) .286
DIV(_E) .783
DIV(P)(_U). .181
DIV_TIME(_E) .836
DLIMIT(P)(_U) .474
DLOG10(P) .460
DLOGE(P) .456
DMAX(P)(_U). .556
DMEAN(P)(_U) .571
DMIN(P)(_U) .558
DMOV(P). .297
DMUL(P)(_U) .185
DNEG(P) .283
DOR(P) . 222,223
DPLSV . 665,666
DPLSY . 521,525
DPRUN(P) .314
DPWM .533
DRAD(P) .451
DRCL(P) .324
DRCR(P) .322
DROL(P) .324
DROR(P) .322
DRVA . 671,672
DRVI . 667,668
DRVMUL .660
DRVTBL .659
DSCL(P)(_U) .487
DSCL2(P)(_U) .493
DSERMM(P) .549
DSFL(P) .132
DSFR(P) .131
DSIN(P). .439
DSORTTBL2(_U) .565
DSPD .509

878

DSQRT(P) . 573
DSTOH(P) . 590
DSTR(P)(_U) . 380
DSUB(P)(_U) . 175
DSUM(P) . 552
DSWAP(P) . 310
DSZR . 650,651
DTAN(P) . 443
DTEST(P) . 238
DTO(P) . 609,610
DTOD(P) . 615,616
DUTY . 601
DVAL(P)(_U) . 279
DVIT . 653,654
DWORD_TO_BOOL(_E) 701
DWORD_TO_DINT(_E). 706
DWORD_TO_INT(_E) 704
DWORD_TO_TIME(_E). 707
DWORD_TO_WORD(_E) 702
DWSUM(P)(_U) . 569
DXCH(P) . 308
DXNR(P) . 232,233
DXOR(P) . 227,228
DZCP(P)(_U) . 155
DZONE(P)(_U) . 482

E

E-(P) . 412,413
E*(P) . 418
E/(P) . 420
E+(P). 410,411
EI . 330
EMAX(P) . 461
EMIN(P). 463
EMOV(P) . 438
ENCO(P) . 285
END . 142
ENEG(P) . 437
EQ(_E) . 810
ESTR(P) . 383
EVAL(P) . 430
EXP(_E) . 770
EXP(P) . 454
EXPT(_E). 787

F

FDEL(P) . 359
FEND . 141
FF . 123
FIND(_E) . 828
FINS(P) . 357
FLT2DINT(P) . 252
FLT2INT(P) . 250
FLT2UDINT(P) . 253
FLT2UINT(P) . 251
FMOV(P) . 305
FOR . 340
FROM(P) . 607,609
FROMD(P . 613
FROMD(P) . 615
F_TRIG(_E) . 846

G

GBIN(P)(_U) .268
GE(_E) .810
GET_BIT_OF_INT(_E)760
GET_BOOL_ADDR .763
GET_INT_ADDR .763
GET_WORD_ADDR .763
GRY(P)(_U) .266
GT(_E) .810

H

HCMOV. .644
HEXA(P) .274
HIOEN(P) .640
HOURM .603
HTOS(P) .587

I

IMASK. .335
INC(P)(_U). .211
INCD .542
INSERT(_E). .821
INSTR(P). .398
INT2DINT(P) .255
INT2FLT(P) .426
INT2UDINT(P) .256
INT2UINT(P) .254
INT_TO_BCD(_E) .712
INT_TO_BITARR(_E) .757
INT_TO_BOOL(_E) .708
INT_TO_DINT(_E) .711
INT_TO_DWORD(_E).710
INT_TO_REAL(_E) .714
INT_TO_STRING(_E) .716
INT_TO_TIME(_E) .715
INT_TO_WORD(_E) .709
INV .106
IRET .338
IVBWR .679
IVCK .675
IVDR .676
IVMC. .680
IVRD .677
IVWR .678

L

LD. .98
LD<(_U) .145
LD<=(_U). .145
LD<>(_U). .145
LD=(_U) .145
LD>(_U) .145
LD>=(_U). .145
LD$< .361
LD$<= .361
LD$<> .361
LD$= .361
LD$> .361
LD$>= .361
LDD<(_U) .147
LDD<=(_U) .147
LDD<>(_U) .147

879

I

LDD=(_U) . 147
LDD>(_U) . 147
LDD>=(_U). 147
LDDT<. 591
LDDT<= . 591
LDDT<> . 591
LDDT=. 591
LDDT>. 591
LDDT>= . 591
LDE< . 404
LDE<= . 404
LDE<> . 404
LDE= . 404
LDE> . 404
LDE>= . 404
LDF . 100
LDFI . 102
LDI . 98
LDP . 100
LDPI . 102
LDTM< . 594
LDTM<= . 594
LDTM<> . 594
LDTM= . 594
LDTM> . 594
LDTM>= . 594
LE(_E) . 810
LEFT(_E) . 815
LEFT(P) . 392
LEN(_E). 814
LEN(P) . 388
LIMIT(_E). 806
LIMIT(P)(_U) . 472
LN(_E) . 767
LOG(_E) . 768
LOG(P) . 456
LOG10(P) . 460
LT(_E) . 810

M

MAX(_E) . 804
MAX(P)(_U) . 555
MC . 137
MCR . 137
MEAN(P)(_U) . 570
MEF . 107
MEP . 107
MID(_E) . 817
MIDR(P) . 394
MIDW(P) . 396
MIN(_E) . 804
MIN(P)(_U). 557
MOD(_E) . 785
MOV(P) . 296
MOVB(P) . 311
MOVE(_E) . 789
MPP . 105
MPS . 105
MRD . 105
MUL(_E) . 779
MUL(P)(_U) . 178
MUL_TIME(_E). 834
MUX(_E) . 808

N

NDIS(P). .288
NE(_E) .812
NEG(P) .282
NEXT .340
NOP .144
NOT(_E) .801
NUNI(P) .290

O

OR .98
OR(_E) .799
OR<(_U) .145
OR<=(_U) .145
OR<>(_U) .145
OR=(_U) .145
OR>(_U) .145
OR>=(_U) .145
OR$< .361
OR$<= .361
OR$<> .361
OR$= .361
OR$> .361
OR$>= .361
ORB .104
ORD<(_U) .147
ORD<=(_U) .147
ORD<>(_U) .147
ORD=(_U) .147
ORD>(_U) .147
ORD>=(_U) .147
ORDT< .591
ORDT<= .591
ORDT<> .591
ORDT= .591
ORDT> .591
ORDT>= .591
ORE< .404
ORE<= .404
ORE<> .404
ORE= .404
ORE> .404
ORE>= .404
ORF .100
ORFI .102
ORI .98
ORP .100
ORPI. .102
ORTM< .594
ORTM<= .594
ORTM<> .594
ORTM= .594
ORTM> .594
ORTM>= .594
OUT .108
OUT C. .111
OUT F .113
OUT LC .112
OUT ST .109
OUT T .109
OUTH ST. .109
OUTH T. .109
OUTHS ST .109
OUTHS T. .109

880

P

PLF . 122
PLS . 120
PLSV . 663,664
PLSY . 513,517
POP(P) . 353
POW(P) . 458
PRUN(P) . 312
PWM . 529

R

RAD(P) . 451
RAMPF . 503
RBFM . 684
RCL(P) . 320
RCR(P) . 317
REAL_TO_DINT(_E) . 735
REAL_TO_INT(_E) . 733
REAL_TO_STRING(_E) 737
REF(P) . 605
REPLACE(_E) . 825
RET. 348
RFS(P) . 605
RIGHT(_E) . 815
RIGHT(P). 390
RND(P) . 465
ROL(_E) . 795
ROL(P) . 320
ROR(_E) . 797
ROR(P) . 317
ROTC . 500
RS(_E) . 842
RS2. 648
RST. 115
RST F . 117
R_TRIG(_E) . 844

S

S(P).SOCRDATA . 631
SCL(P)(_U) . 484
SCL2(P)(_U) . 490
SEL(_E) . 802
SERMM(P). 547
SET. 114
SET F . 116
SET_BIT_OF_INT(_E). 761
SFL(P) . 128
SFR(P) . 127
SFRD(P) . 351
SFT(P). 125
SFTL(P) . 134
SFTR(P) . 133
SFWR(P) . 355
SHL(_E). 791
SHR(_E) . 793
SIMASK . 337
SIN(_E) . 771
SIN(P) . 439
SMOV(P) . 300
SORTTBL(_U) . 559
SP.SOCCINF . 629
SP.SOCCLOSE . 622
SP.SOCOPEN . 619
SP.SOCRCV . 624

SP.SOCSND .627
SPD .505
SQRT(_E) .766
SQRT(P) .572
SR(_E) .840
SRET .348
SROTTBL2(_U) .562
STMR .498
STOH(P) .589
STOP .143
STR(P)(_U) .378
STRDEL(P) .402
STRING_TO_BOOL(_E)746
STRING_TO_DINT(_E).749
STRING_TO_INT(_E) .747
STRING_TO_REAL(_E) 751
STRING_TO_TIME(_E).754
STRINS(P). .400
SUB(_E) .781
SUB(P)(_U) .167
SUB_TIME(_E) .832
SUM(P) .551
SWAP(P) .309

T

TADD(P) .583
TAN(_E) .773
TAN(P) .443
TBL. 657,658
TCMP(P) .597
TEST(P) .237
TIMER_100_FB_M .854
TIMER_10_FB_M .854
TIMER_1_FB_M. .854
TIMER_CONT_FB_M .854
TIMER_CONTHS_FB_M.854
TIME_TO_BOOL(_E) .740
TIME_TO_DINT(_E) .744
TIME_TO_DWORD(_E) 742
TIME_TO_INT(_E) .743
TIME_TO_STRING(_E).745
TIME_TO_WORD(_E).741
TO(P) . 609,610
TOD(P) . 615,616
TRD(P) .579
TSUB(P) .585
TTMR .496
TWR(P) .581
TZCP(P) .599

U

UDINT2DINT(P) .265
UDINT2FLT(P) .429
UDINT2INT(P) .263
UDINT2UINT(P) .264
UINT2DINT(P) .258
UINT2FLT(P) .427
UINT2INT(P) .257
UINT2UDINT(P) .259
UNI(P) .287

V

VAL(P)(_U) .277

881

I

W

WAND(P) . 215,216
WBFM . 687
WDT(P) . 339
WOR(P) . 220,221
WORD_TO_BOOL(_E) 696
WORD_TO_DINT(_E) 699
WORD_TO_DWORD(_E) 697
WORD_TO_INT(_E) . 698
WORD_TO_TIME(_E) 700
WSFL(P) . 136
WSFR(P) . 135
WSUM(P)(_U) . 568
WTOB(P) . 292
WXNR(P) . 230,231
WXOR(P). 225,226

X

XCALL . 349
XCH(P) . 307
XOR(_E) . 799

Z

ZCP(P)(_U) . 153
ZONE(P)(_U) . 480
ZPOP(P) . 468,471
ZPUSH(P) . 466,469
ZRST(P) . 240

882

REVISIONS

© 2014 MITSUBISHI ELECTRIC CORPORATION

Revision date Revision Description

October, 2014 A First Edition

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot

be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

883

WARRANTY

1.

Please confirm the following product warranty details before using this product.

[Gratis Warranty Term]

If any faults or defects (hereinafter "Failure") found to
be the responsibility of Mitsubishi occurs during use of
the product within the gratis warranty term, the
product shall be repaired at no cost via the sales
representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or
overseas location, expenses to send an engineer will
be solely at the customer's discretion. Mitsubishi shall
not be held responsible for any re-commissioning,
maintenance, or testing on-site that involves
replacement of the failed module.

Overseas, repairs shall be accepted by Mitsubishi's
local overseas FA Center. Note that the repair
conditions at each FA Center may differ.

The gratis warranty term of the product shall be for
one year after the date of purchase or delivery to a
designated place. Note that after manufacture and
shipment from Mitsubishi, the maximum distribution
period shall be six (6) months, and the longest gratis
warranty term after manufacturing shall be eighteen
(18) months. The gratis warranty term of repair parts
shall not exceed the gratis warranty term before
repairs.

[Gratis Warranty Range]

The range shall be limited to normal use within the
usage state, usage methods and usage
environment, etc., which follow the conditions and
precautions, etc., given in the instruction manual,
user's manual and caution labels on the product.

1)

Even within the gratis warranty term, repairs shall
be charged for in the following cases.

2)

Failure occurring from inappropriate storage or
handling, carelessness or negligence by the
user. Failure caused by the user's hardware or
software design.

a)

Failure caused by unapproved modifications,
etc., to the product by the user.

b)

Mitsubishi shall accept onerous product repairs for
seven (7) years after production of the product is
discontinued.
Discontinuation of production shall be notified with
Mitsubishi Technical Bulletins, etc.

1)

Product supply (including repair parts) is not
available after production is discontinued.

2)

In using the Mitsubishi MELSEC programmable
controller, the usage conditions shall be that the
application will not lead to a major accident even if
any problem or fault should occur in the
programmable controller device, and that backup
and fail-safe functions are systematically provided
outside of the device for any problem or fault.

1)

The Mitsubishi programmable controller has been
designed and manufactured for applications in
general industries, etc. Thus, applications in which
the public could be affected such as in nuclear
power plants and other power plants operated by
respective power companies, and applications in
which a special quality assurance system is
required, such as for railway companies or public
service purposes shall be excluded from the
programmable controller applications.
In addition, applications in which human life or
property that could be greatly affected, such as in
aircraft, medical applications, incineration and fuel
devices, manned transportation, equipment for
recreation and amusement, and safety devices,
shall also be excluded from the programmable
controller range of applications.
However, in certain cases, some applications may
be possible, providing the user consults their local
Mitsubishi representative outlining the special
requirements of the project, and providing that all
parties concerned agree to the special
circumstances, solely at the user's discretion.

2)
When the Mitsubishi product is assembled into
a user's device, Failure that could have been
avoided if functions or structures, judged as
necessary in the legal safety measures the
user's device is subject to or as necessary by
industry standards, had been provided.

c)

Failure that could have been avoided if
consumable parts (battery, backlight, fuse,
etc.) designated in the instruction manual had
been correctly serviced or replaced.

d)

Relay failure or output contact failure caused
by usage beyond the specified life of contact
(cycles).

e)

Failure caused by external irresistible forces
such as fires or abnormal voltages, and failure
caused by force majeure such as earthquakes,
lightning, wind and water damage.

f)

Failure caused by reasons unpredictable by
scientific technology standards at time of
shipment from Mitsubishi.

g)

Any other failure found not to be the
responsibility of Mitsubishi or that admitted not
to be so by the user.

h)

2. Onerous repair term after discontinuation
of production

Gratis Warranty Term and Gratis Warranty
Range

4. Exclusion of loss in opportunity and
secondary loss from warranty liability

3. Overseas service

The specifications given in the catalogs, manuals or
technical documents are subject to change without
prior notice.

5. Changes in product specifications

6. Product application

Regardless of the gratis warranty term, Mitsubishi
shall not be liable for compensation of damages
caused by any cause found not to be the responsibility
of Mitsubishi, loss in opportunity, lost profits incurred
to the user or third person by failure of Mitsubishi
products, special damages and secondary damages
whether foreseeable or not, compensation for
accidents, and compensation for damages to products
other than Mitsubishi products, replacement by the
user, maintenance of on-site equipment, start-up test
run and other tasks.

884

TRADEMARKS
Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries.

Ethernet is a trademark of Xerox Corporation.

MODBUS is a registered trademark of Schneider Electric SA.

The company name and the product name to be described in this manual are the registered trademarks or trademarks of

each company.

HEAD OFFICE: TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

HIMEJI WORKS: 840, CHIYODA MACHI, HIMEJI, JAPAN

Specifications are subject to change without notice.

When exported from Japan, this manual does not require application to the

Ministry of Economy, Trade and Industry for service transaction permission.

Manual number: JY997D55801A

Model: FX5-P-MF-E

Model code: 09R539

	SAFETY PRECAUTIONS
	INTRODUCTION
	CONTENTS
	RELEVANT MANUALS
	TERMS
	HOW TO READ THIS MANUAL
	PART 1 OVERVIEW
	1 OVERVIEW
	1.1 Instruction Configuration
	1.2 Data Specification Method
	Bit data
	16-bit data (word data)
	32-bit data (double word data)
	Real number data (floating-point data)
	Character string data

	1.3 Execution Condition
	1.4 Precautions on Programming
	Errors common to instructions
	Checking the ranges of instruction runtime devices and labels
	Operations arising when the OUT, SET/RST, and PLS/PLF instructions of the same device are used

	PART 2 INSTRUCTION/FUNCTION LIST
	2 CPU MODULE INSTRUCTION
	2.1 Sequence Instruction
	2.2 Basic instruction
	2.3 Application instruction
	2.4 Built-in Ethernet Function Instruction

	3 MODULE SPECIFIC INSTRUCTION
	3.1 High-speed Counter Instruction
	3.2 External Device I/O Instruction
	3.3 Positioning Instruction
	3.4 Inverter Communication Instruction
	3.5 MODBUS Communication Instruction
	3.6 BFM Device Read/Write Instruction

	4 STANDARD FUNCTIONS/FUNCTION BLOCKS
	4.1 Standard Functions
	Type conversion functions
	Standard functions of one numeric variable
	Standard arithmetic functions
	Standard bit shift functions
	Standard bitwise boolean functions
	Standard selection functions
	Standard comparison functions
	Standard character string functions
	Time data functions

	4.2 Standard Function Blocks
	Bistable function blocks
	Edge detection function blocks
	Counter function blocks
	Timer function blocks

	PART 3 CPU MODULE INSTRUCTIONS
	5 SEQUENCE INSTRUCTIONS
	5.1 Contact Instructions
	Operation start, series connection, parallel connection
	Pulse operation start, pulse series connection, pulse parallel connection
	Pulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection

	5.2 Association Instruction
	Ladder block series/parallel connection
	Storing/reading/clearing the operation result
	Inverting the operation result
	Converting the operation result into a pulse

	5.3 Output Instructions
	Out (excluding the timer, counter and annunciator)
	Timer
	Counter
	Long counter
	Annunciator
	Setting devices (excluding annunciator)
	Resetting devices (excluding annunciator)
	Setting annunciator
	Resetting annunciator
	Setting annunciator (with check time)
	Resetting annunciator (smallest number reset)
	Rising edge output
	Falling edge output
	Inverting the bit device output
	Inverting the bit device output

	5.4 Shift Instructions
	Shifting bit devices
	Shifting 16-bit data to the right by n bit(s)
	Shifting 16-bit data to the left by n bit(s)
	Shifting n-bit data to the right by 1 bit
	Shifting n-bit data to the left by 1 bit
	Shifting n-word data to the right by 1 word
	Shifting n-word data to the left by 1 word
	Shifting n-bit(s) data to the right by (n) bit(s)
	Shifting n-bit data to the left by n bit(s)
	Shifting n-word data to the right by n word(s)
	Shifting n-word data to the left by n word(s)

	5.5 Master Control Instruction
	Setting/resetting the master control

	5.6 Termination Instructions
	Ending the main routine program
	Ending the sequence program

	5.7 Stop Instruction
	Stopping the sequence program

	5.8 No Processing Instruction
	No operation

	6 BASIC INSTRUCTIONS
	6.1 Comparison Operation Instructions
	Comparing 16-bit binary data
	Comparing 32-bit binary data
	Comparison output 16-bit binary data
	Comparison output 32-bit binary data
	Comparing 16-bit binary data band
	Comparing 32-bit binary data band
	Comparing 16-bit binary block data
	Comparing 32-bit binary block data

	6.2 Arithmetic Operation Instructions
	Adding 16-bit binary data
	Subtracting 16-bit binary data
	Adding 32-bit binary data
	Subtracting 32-bit binary data
	Multiplying 16-bit binary data
	Dividing 16-bit binary data
	Multiplying 32-bit binary data
	Dividing 32-bit binary data
	Adding BCD 4-digit data
	Subtracting BCD 4-digit data
	Adding BCD 8-digit data
	Subtracting BCD 8-digit data
	Multiplying BCD 4-digit data
	Dividing BCD 4-digit data
	Multiplying BCD 8-digit data
	Dividing BCD 8-digit data
	Adding 16-bit binary block data
	Subtracting 16-bit binary block data
	Adding 32-bit binary block data
	Subtracting 32-bit binary block data
	Incrementing 16-bit binary data
	Decrementing 16-bit binary data
	Incrementing 32-bit binary data
	Decrementing 32-bit binary data

	6.3 Logical Operation Instructions
	Performing an AND operation on 16-bit data
	Performing an AND operation on 32-bit data
	Performing an AND operation on 16-bit block data
	Performing an OR operation on 16-bit data
	Performing an OR operation on 32-bit data
	Performing an OR operation on 16-bit block data
	Performing an XOR operation on 16-bit data
	Performing an XOR operation on 32-bit data
	Performing an XOR operation on 16-bit block data
	Performing an XNOR operation on 16-bit data
	Performing an XNOR operation on 32-bit data
	Performing an XNOR operation on 16-bit block data

	6.4 Bit Processing Instructions
	Setting a bit in the word device
	Resetting a bit in the word device
	Performing a 16-bit test
	Performing a 32-bit test
	Batch-resetting bit devices
	Batch-resetting devices

	6.5 Data Conversion Instructions
	Converting binary data to BCD 4-digit data
	Converting binary data to BCD 8-digit data
	Converting BCD 4-digit data to binary data
	Converting BCD 8-digit data to binary data
	Converting single-precision real number to 16-bit signed binary data
	Converting single-precision real number to 16-bit unsigned binary data
	Converting single-precision real number to 32-bit signed binary data
	Converting single-precision real number to 32-bit unsigned binary data
	Converting 16-bit signed binary data to 16-bit unsigned binary data
	Converting 16-bit signed binary data to 32-bit signed binary data
	Converting 16-bit signed binary data to 32-bit unsigned binary data
	Converting 16-bit unsigned binary data to 16-bit signed binary data
	Converting 16-bit unsigned binary data to 32-bit signed binary data
	Converting 16-bit unsigned binary data to 32-bit unsigned binary data
	Converting 32-bit signed binary data to 16-bit signed binary data
	Converting 32-bit signed binary data to 16-bit unsigned binary data
	Converting 32-bit signed binary data to 32-bit unsigned binary data
	Converting 32-bit unsigned binary data to 16-bit signed binary data
	Converting 32-bit unsigned binary data to 16-bit unsigned binary data
	Converting 32-bit unsigned binary data to 32-bit signed binary data
	Converting 16-bit binary data to Gray code
	Converting 32-bit binary data to Gray code
	Converting Gray code to 16-bit binary data
	Converting Gray code to 32-bit binary data
	Converting decimal ASCII to 16-bit binary data
	Converting decimal ASCII to 32-bit binary data
	Converting ASCII to HEX
	Converting character string to 16-bit binary data
	Converting character string to 32-bit binary data
	Two's complement of 16-bit binary data (sign inversion)
	Two's complement of 32-bit binary data (sign inversion)
	Decoding from 8 to 256 bits
	Encoding from 256 to 8 bits
	Separating 4 bits from 16-bit data
	Connecting 4 bits to 16-bit data
	Separating the specified number of bits
	Connecting the specified number of bits
	Separating data in byte units
	Connecting data in byte units

	6.6 Data Transfer Instructions
	Transferring 16-bit data
	Transferring 32-bit data
	Inverting and transferring 16-bit data
	Inverting and transferring 32-bit data
	Digit move
	Inverting and transferring 1-bit data
	Transferring 16-bit block data (65535 points maximum)
	Transferring identical 16-bit block data (65535 points maximum)
	Transferring identical 32-bit block data (65535 points maximum)
	Exchanging 16-bit data
	Exchanging 32-bit data
	Exchanging the upper and lower bytes of 16-bit data
	Exchanging the upper and lower bytes of 32-bit data
	Transferring 1-bit data
	Transferring octal bits (16-bit data)
	Transferring octal bits (32-bit data)
	Transferring n-bit data

	7 APPLICATION INSTRUCTION
	7.1 Rotation Instruction
	Rotating 16-bit data to the right
	Rotating 16-bit data to the left
	Rotating 32-bit data to the right
	Rotating 32-bit data to the left

	7.2 Program branch instruction
	Pointer branch
	Jump to END

	7.3 Program execution control instruction
	Disabling/enabling interrupt programs
	Disabling the interrupt program with specified priority or lower
	Interrupt program mask
	Disabling/enabling the specified interrupt pointer
	Returning from the interrupt program
	Resetting the watchdog timer

	7.4 Structuring instruction
	FOR to NEXT
	Forcibly terminating the FOR to NEXT instruction loop
	Calling a subroutine program
	Returning from the subroutine program
	Calling a subroutine program

	7.5 Data table operation instruction
	Reading the oldest data from the data table
	Reading the newest data from the data table
	Writing data to the data table
	Inserting data to the data table
	Deleting data from the data table

	7.6 Character string operation instruction
	Comparing character strings
	Concatenating character strings
	Transferring character strings
	Converting 16-bit binary data to decimal ASCII
	Converting 32-bit binary data to decimal ASCII
	Converting HEX code data to ASCII
	Converting 16-bit binary data to character string
	Converting 32-bit binary data to character string
	Converting single-precision real number to character string
	Detecting a character string length
	Extracting character string data from the right
	Extracting character string data from the left
	Storing the specified number of character strings
	Replacing the specified number of character strings
	Searching character string
	Inserting character string
	Deleting character string

	7.7 Real Number Instruction
	Comparing single-precision real numbers
	Single-precision real number comparison
	Single-precision real number data band comparison
	Adding single-precision real numbers
	Subtracting single-precision real numbers
	Adding single-precision real numbers
	Subtracting single-precision real numbers
	Multiplying single-precision real numbers
	Dividing single-precision real numbers
	Multiplying single-precision real numbers
	Dividing single-precision real numbers
	Converting 16-bit signed binary data to single-precision real number
	Converting 16-bit unsigned binary data to single-precision real number
	Converting 32-bit signed binary data to single-precision real number
	Converting 32-bit unsigned binary data to single-precision real number
	Converting character string to single-precision real number
	Converting binary floating point to decimal floating point
	Converting decimal floating point to binary floating point
	Inverting the sign of single-precision real number
	Transferring single-precision real number data
	Calculating the sine of single-precision real number
	Calculating the cosine of single-precision real number
	Calculating the tangent of single-precision real number
	Calculating the arc sine of single-precision real number
	Calculating the arc cosine of single-precision real number
	Calculating the arc tangent of single-precision real number
	Converting single-precision real number angle to radian
	Converting single-precision real number radian to angle
	Calculating the square root of single-precision real number
	Calculating the exponent of single-precision real number
	Calculating the natural logarithm of single-precision real number
	Calculating the exponentiation of single-precision real number
	Calculating the common logarithm of single-precision real number
	Searching the maximum value of single-precision real number
	Searching the minimum value of single-precision real number

	7.8 Random Number Instruction
	Generating random number

	7.9 Index register operation instruction
	Saving all data of the index register
	Returning all data of the index register
	Saving the selected data of the index register and long index register
	Returning the selected data of the index register and long index register

	7.10 Data control instruction
	Upper and lower limit control of 16-bit binary data
	Upper and lower limit control of 32-bit binary data
	Dead band control of 16-bit binary data
	Dead band control of 32-bit binary data
	Zone control of 16-bit binary data
	Zone control of 32-bit binary data
	Scaling 16-bit binary data (point coordinates)
	Scaling 32-bit binary data (point coordinates)
	Scaling 16-bit binary data (XY coordinates)
	Scaling 32-bit binary data (XY coordinates)

	7.11 Special timer instruction
	Teaching timer
	Special function timer

	7.12 Shortcut control instruction
	Rotary table shortest direction control

	7.13 Ramp signal instruction
	Ramp signal

	7.14 Pulse related instruction
	Measuring the density of 16 bit binary pulses
	Measuring the density of 32 bit binary pulses
	16 bit binary pulse output
	32 bit binary pulse output
	16 bit binary pulse width modulation
	32 bit binary pulse width modulation

	7.15 Drum sequence
	16-bit binary data absolute method
	32-bit binary data absolute method
	Relative method

	7.16 Check code
	Check code

	7.17 Data operation instruction
	Searching 16-bit data
	Searching 32-bit data
	Bit check of 16-bit data
	Bit check of 32-bit data
	Bit judgment of 16-bit data
	Bit judgment of 32-bit data
	Searching the maximum value of 16-bit data
	Searching the maximum value of 32-bit data
	Searching the minimum value of 16-bit data
	Searching the minimum value of 32-bit data
	Sorting 16-bit data
	16-bit data alignment 2
	32-bit data alignment 2
	Adding 16-bit data
	Adding 32-bit data
	Calculating the mean value of 16-bit data
	Calculating the mean value of 32-bit data
	Calculating the square root of 16-bit data
	Calculating the square root of 32-bit data
	CRC calculation

	7.18 Indirect address read instruction
	Reading the indirect address

	7.19 Clock instruction
	Reading clock data
	Writing clock data
	Adding clock data
	Subtracting clock data
	Converting time data from hour/minute/second to seconds in 16 bits
	Converting time data from hour/minute/second to seconds in 32 bits
	Converting time data from seconds to hour/minute/second in 16 bits
	Converting time data from seconds to hour/minute/second in 32 bits
	Comparing date data
	Comparing time data
	Comparing clock data
	Comparing clock data zones

	7.20 Timing check instruction
	Generating timing pulses
	Hour meter

	7.21 Module access instruction
	I/O refresh
	Reading 1-word/2-word data from another module
	Writing 1-word/2-word data to another module
	Reading 1-word/2-word data from another module
	Writing 1-word/2-word data to another module (32-bit specification)

	8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS
	8.1 Open/Close Processing Instructions
	Opening a connection
	Closing a connection

	8.2 Socket Communications Function Instructions
	Reading receive data during the END processing
	Sending data
	Reading connection information
	Reading socket communications receive data

	PART 4 MODULE DEDICATED INSTRUCTION
	9 HIGH-SPEED COUNTER INSTRUCTION
	9.1 High-speed Processing Instruction
	Setting 32-bit data comparison
	Reset 32-bit data comparison
	Comparison of 32-bit data band
	Start/stop of the 16-bit data high-speed I/O function
	Start/stop of the 32-bit data high-speed I/O function

	9.2 High-speed Current Value Transfer Instruction
	High-speed current value transfer of 16-bit data
	High-speed current value transfer of 32-bit data

	10 EXTERNAL DEVICE I/O INSTRUCTION
	10.1 Serial Communication 2

	11 POSITIONING INSTRUCTION
	11.1 Positioning Instruction
	Zero return(OPR) with 16-bit data DOG search
	Zero return(OPR) with 32-bit data DOG search
	16-bit data interrupt positioning
	32-bit data interrupt positioning
	Positioning by one table operation
	Positioning by multiple table operation
	Multiple axes concurrent drive positioning
	32-bit data ABS current value read
	16-bit data variable speed pulse
	32-bit data variable speed pulse
	16-bit data relative positioning
	32-bit data relative positioning
	16-bit data absolute positioning
	32-bit data absolute positioning

	12 INVERTER COMMUNICATION INSTRUCTION
	12.1 Inverter operation monitoring(Status check)
	12.2 Inverter operations control(Drive)
	12.3 Inverter parameter read
	12.4 Inverter parameter write
	12.5 Inverter parameter block write
	12.6 Inverter multi command

	13 MODBUS COMMUNICATION INSTRUCTION
	13.1 MODBUS Read/Write

	14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION
	14.1 Divided BFM Read
	14.2 Divided BFM write

	PART 5 STANDARD FUNCTIONS
	15 TYPE CONVERSION FUNCTIONS
	15.1 Converting BOOL to WORD
	15.2 Converting BOOL to DWORD
	15.3 Converting BOOL to INT
	15.4 Converting BOOL to DINT
	15.5 Converting BOOL to TIME
	15.6 Converting BOOL to STRING
	15.7 Converting WORD to BOOL
	15.8 Converting WORD to DWORD
	15.9 Converting WORD to INT
	15.10 Converting WORD to DINT
	15.11 Converting WORD to TIME
	15.12 Converting DWORD to BOOL
	15.13 Converting DWORD to WORD
	15.14 Converting DWORD to INT
	15.15 Converting DWORD to DINT
	15.16 Converting DWORD to TIME
	15.17 Converting INT to BOOL
	15.18 Converting INT to WORD
	15.19 Converting INT to DWORD
	15.20 Converting INT to DINT
	15.21 Converting INT to BCD
	15.22 Converting INT to REAL
	15.23 Converting INT to TIME
	15.24 Converting INT to STRING
	15.25 Converting DINT to BOOL
	15.26 Converting DINT to WORD
	15.27 Converting DINT to DWORD
	15.28 Converting DINT to INT
	15.29 Converting DINT to BCD
	15.30 Converting DINT to REAL
	15.31 Converting DINT to TIME
	15.32 Converting DINT to STRING
	15.33 Converting BCD to INT
	15.34 Converting BCD to DINT
	15.35 Converting REAL to INT
	15.36 Converting REAL to DINT
	15.37 Converting REAL to STRING
	15.38 Converting TIME to BOOL
	15.39 Converting TIME to WORD
	15.40 Converting TIME to DWORD
	15.41 Converting TIME to INT
	15.42 Converting TIME to DINT
	15.43 Converting TIME to STRING
	15.44 Converting STRING to BOOL
	15.45 Converting STRING to INT
	15.46 Converting STRING to DINT
	15.47 Converting STRING to REAL
	15.48 Converting STRING to TIME
	15.49 Converting Bit Array to INT
	15.50 Converting Bit Array to DINT
	15.51 Converting INT to Bit Array
	15.52 Converting DINT to Bit Array
	15.53 Bit Array Copy
	15.54 Reading the Specified Bit of Word Label
	15.55 Writing the Specified Bit of Word Label
	15.56 Copying the Specified Bit of Word Label
	15.57 Unnecessary of Type Conversion

	16 SINGLE NUMBER VARIABLE FUNCTIONS
	16.1 Absolute Value
	16.2 Square Root
	16.3 Natural Logarithm Operation
	16.4 Calculating the Common Logarithm
	16.5 Exponential Operation
	16.6 Sine Operation
	16.7 Cosine Operation
	16.8 Tangent Operation
	16.9 Arc Sine Operation
	16.10 Arc Cosine Operation
	16.11 Arc Tangent Operation

	17 ARITHMETIC OPERATION FUNCTIONS
	17.1 Addition
	17.2 Multiplication
	17.3 Subtraction
	17.4 Division
	17.5 Remainder
	17.6 Exponentiation
	17.7 Move Operation

	18 BIT SHIFT FUNCTIONS
	18.1 n-bit Left Shift
	18.2 n-bit Right Shift
	18.3 n-bit Left Rotation
	18.4 n-bit Right Rotation

	19 STANDARD BITWISE BOOLEAN FUNCTIONS
	19.1 AND Operation, OR Operation, XOR Operation
	19.2 Logical Negation

	20 SELECTION FUNCTIONS
	20.1 Selection
	20.2 Selecting Maximum/Minimum Value
	20.3 Limit Control
	20.4 Multiplexer

	21 COMPARISON FUNCTIONS
	21.1 Compare
	21.2 Compare

	22 CHARACTER STRING FUNCTIONS
	22.1 Character String Length Detection
	22.2 Extracting Character String Data from the Left/Right
	22.3 Extract Mid String
	22.4 Link Character Strings
	22.5 Inserting Character String
	22.6 Deleting Character String
	22.7 Replacing Character String
	22.8 Searching Character String

	23 TIME DATA FUNCTIONS
	23.1 Addition
	23.2 Subtraction
	23.3 Multiplication
	23.4 Division

	PART 6 FUNCTION BLOCKS
	24 BISTABLE FUNCTION BLOCKS
	24.1 Bistable Function Blocks (Set Priority)
	24.2 Bistable Function Blocks (Reset Priority)

	25 EDGE DETECTION FUNCTION BLOCKS
	25.1 Rising Edge Detector
	25.2 Falling Edge Detector

	26 COUNTER FUNCTION BLOCKS
	26.1 Up Counter
	26.2 Down Counter
	26.3 Counter Function Block

	27 TIMER FUNCTION BLOCKS
	27.1 Timer Function Blocks

	APPENDICES
	Appendix 1 Number of Instruction Steps

	INSTRUCTION INDEX
	REVISIONS
	WARRANTY
	TRADEMARKS

