& MITSUBISHI
ELECTRIC
PROGRAMMABLE CONTROLLERS

SSSSSS

MELSEC iQ-F FX5 Series
Programming Manual
[Instructions, Standard Functions/Function Blocks]

SAFETY PRECAUTIONS

(Read these precautions before use.)

Before using the FX5 series PLCs, please read the manual supplied with each product and the relevant manuals introduced in
that manual carefully and pay full attention to safety to handle the product correctly.
Store this manual in a safe place so that it can be taken out and read whenever necessary. Always forward it to the end user.

INTRODUCTION

This manual describes the instructions and functions required for programming FX5 series systems. This manual and the
related manuals should be read and the functions and performance of the FX5 series PLC should be understood before
attempting to use the unit.

However, before using a program example introduced in this manual to the actual system, always confirm that it poses no
problem for control of the target system.

Regarding use of this product

 This product has been manufactured as a general-purpose part for general industries, and has not been designed or
manufactured to be incorporated in a device or system used in purposes related to human life.

» Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger
movement vehicles, consult with Mitsubishi Electric.

* This product has been manufactured under strict quality control. However when installing the product where major
accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

Note

If in doubt at any stage during the installation of the product, always consult a professional electrical engineer who is
qualified and trained in the local and national standards. If in doubt about the operation or use, please consult the nearest
Mitsubishi Electric representative.

Since the examples indicated by this manual, technical bulletin, catalog, etc. are used as a reference, please use it after
confirming the function and safety of the equipment and system. Mitsubishi Electric will accept no responsibility for actual
use of the product based on these illustrative examples.

This manual content, specification etc. may be changed without a notice for improvement.

The information in this manual has been carefully checked and is believed to be accurate; however, if you have noticed a
doubtful point, an error, etc., please contact the nearest Mitsubishi Electric representative. When doing so, please provide
the manual number given at the end of this manual.

CONTENTS

SAFETY PRECAUTIONS . . .o e e 1
INTRODUCTION. . . . e e e e e e e e e 1
RELEVANT MANUALS . . . e 14
TERMS . 14
HOW TO READ THIS MANUALo e e e 16

PART 1 OVERVIEW

CHAPTER1 OVERVIEW 20
11 Instruction Configuration i i i e 20
1.2 Data Specification Method i i i i ettt e e e e 21
Bit data 24
16-bit data (word data) e 25
32-bit data (double word data). e 27
Real number data (floating-point data) 30
Character string data. 32
1.3 Execution Condition it i i e it 33
14 Precautions on Programmingttt ittt ittt 34
Errors common to inStruCtions. L 34
Checking the ranges of instruction runtime devices and labels. 34
Operations arising when the OUT, SET/RST, and PLS/PLF instructions of the same device areused 35

PART 2 INSTRUCTION/FUNCTION LIST

CHAPTER 2 CPU MODULE INSTRUCTION 42
21 Sequence INStruction e 42
2.2 BasiC inStrUCtioN i i et e et i et a e 46
2.3 Application instruction i i e e 60
24 Built-in Ethernet Function Instruction. i i i i i i ittt 78
CHAPTER 3 MODULE SPECIFIC INSTRUCTION 79
31 High-speed Counter Instruction. i i e et e e aa e nanenns 79
3.2 External Device /O Instruction i i ittt et et i e 79
3.3 Positioning Instruction i e e 80
34 Inverter Communication Instruction i i e e 81
35 MODBUS Communication Instruction. ittt ettt e aaaneeenn 81
3.6 BFM Device Read/ Write Instruction it i i i ittt s st anannnannnnes 82
CHAPTER 4 STANDARD FUNCTIONS/FUNCTION BLOCKS 83
4.1 Standard FUNCHIONS. it i i ittt ettt ta e ettt e aaa et aannnnnnns 83

Type conversion fUNCHONS. 83

Standard functions of one numeric variable 89

Standard arithmetic functions e 90

Standard bit shift functions 91

Standard bitwise boolean fuNCtions. e 91

Standard selection functions 91

4.2

Standard comparison funCtioNs e 92

Standard character string functions. e 92
Time data funCtioNs e 93
Standard Function BIOCKSot i i et i e e ey 94
Bistable function bIOCKS e 94
Edge detection function blocks 94
Counter fuNCtion BIOCKSo 94
Timer function BIOCKS.o 95

PART 3 CPU MODULE INSTRUCTIONS

CHAPTER 5 SEQUENCE INSTRUCTIONS 98
5.1 Contact INStruCtioNSo i i e e a e 98
Operation start, series connection, parallel connection. 98
Pulse operation start, pulse series connection, pulse parallel connection 100
Pulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection. 102
5.2 Association Instruction. i e e e 104
Ladder block series/parallel connection e 104
Storing/reading/clearing the operationresult. L 105
Inverting the operation result. 106
Converting the operation resultintoapulse e 107
5.3 OUtPUL INStrUCtIONSo i i ittt it e e e 108
Out (excluding the timer, counter and annunciator). 108
10 T N 109
COUNEET . . o 1M1
LONg COUN To e 112
ANNUN GO . . o 113
Setting devices (excluding annunciator) 114
Resetting devices (excluding annunciator) e 115
Setting annUNCIAtOro e e 116
Resetting annunciator 117
Setting annunciator (with check time) e 118
Resetting annunciator (smallest numberreset). e 119
Rising edge OUtPUL.o 120
Falling edge OutpuUL o e 122
Inverting the bit device output 123
Inverting the bit device oUtpUL e 124
5.4 Shift INStruCtions.o i e 125
Shifting bit devices. 125
Shifting 16-bit data to the right by nbit(s) 127
Shifting 16-bit datatothe leftby nbit(s) 128
Shifting n-bit data to the right by 1 bit 129
Shifting n-bit datatothe leftby 1 bit 130
Shifting n-word data to the rightby 1word 131
Shifting n-word datato the leftby 1 word 132
Shifting n-bit(s) data to the right by (n) bit(s) o 133
Shifting n-bit datato the leftby n bit(s) 134
Shifting n-word data to the right by nword(s) 135
Shifting n-word datato the leftby nword(s) 136
5.5 Master Control Instructiont i i et ta i s 137

N
-
<
1]
-
<
O
o

Setting/resetting the master control. 137

5.6 Termination INStructions. i i e e s 141
Ending the main routine program 141
Ending the sequence program i e 142
5.7 Stop INStrUCHiON. i e e e e 143
Stopping the SeqUENCE Programt e e 143
5.8 No Processing Instruction i i it it a st aa s 144
NO Operation 144
CHAPTER 6 BASIC INSTRUCTIONS 145
6.1 Comparison Operation Instructions i it ittt e a e 145
Comparing 16-bit binary data e 145
Comparing 32-bit binary data 147
Comparison output 16-bit binary data 149
Comparison output 32-bit binary data e 151
Comparing 16-bit binary databand 153
Comparing 32-bit binary databand 155
Comparing 16-bit binary block data. 157
Comparing 32-bit binary block data. 159
6.2 Arithmetic Operation Instructions i i i ittt et iaae e ennnns 161
Adding 16-bit binary data. 161
Subtracting 16-bit binary data 165
Adding 32-bit binary data. 169
Subtracting 32-bit binary data e 173
Multiplying 16-bit binary data. 177
Dividing 16-bit binary data. e e 180
Multiplying 32-bit binary data. 183
Dividing 32-bit binary data. 187
Adding BCD 4-digit data e 190
Subtracting BCD 4-digitdata. 192
Adding BCD 8-digit data« ... 194
Subtracting BCD 8-digitdata. e 196
Multiplying BCD 4-digit data 198
Dividing BCD 4-digit data 199
Multiplying BCD 8-digit data 200
Dividing BCD 8-digit data 201
Adding 16-bit binary block data. e 202
Subtracting 16-bit binary block data e 204
Adding 32-bit binary block data. 206
Subtracting 32-bit binary block data 209
Incrementing 16-bitbinary data. 21
Decrementing 16-bitbinary data. 212
Incrementing 32-bit binary data. e 213
Decrementing 32-bitbinary data 214
6.3 Logical Operation Instructions i i i ittt e 215
Performing an AND operationon 16-bitdata 215
Performing an AND operationon 32-bitdata 217
Performing an AND operation on 16-bitblock data. 219
Performing an OR operation on 16-bitdata. e 220

Performing an OR operation on 32-bitdata. 222

6.4

6.5

Performing an OR operation on 16-bitblockdata. 224

Performing an XOR operationon 16-bitdata 225
Performing an XOR operationon 32-bitdata 227
Performing an XOR operation on 16-bitblockdata. 229
Performing an XNOR operationon 16-bitdata 230
Performing an XNOR operationon 32-bitdata 232
Performing an XNOR operation on 16-bitblockdata 234
Bit Processing Instructions i e 235
Setting abitinthe word device e 235
Resetting a bitinthe word device e 236
Performing a 16-bittest. e 237
Performing a 32-bittest. e 238
Batch-resetting bit deviCes 239
Batch-resetting devices 240
Data Conversion Instructions i it i it e 242
Converting binary data to BCD 4-digitdata. e 242
Converting binary data to BCD 8-digitdata. 244
Converting BCD 4-digitdatato binary data. 246
Converting BCD 8-digitdatato binary data. e 248
Converting single-precision real number to 16-bit signed binarydata. 250
Converting single-precision real number to 16-bit unsigned binarydata. 251
Converting single-precision real number to 32-bit signed binarydata. 252
Converting single-precision real number to 32-bit unsigned binarydata. 253
Converting 16-bit signed binary data to 16-bit unsigned binarydata 254
Converting 16-bit signed binary data to 32-bit signed binarydata 255
Converting 16-bit signed binary data to 32-bit unsigned binarydata 256
Converting 16-bit unsigned binary data to 16-bit signed binarydata 257
Converting 16-bit unsigned binary data to 32-bit signed binarydata 258
Converting 16-bit unsigned binary data to 32-bit unsigned binarydata 259
Converting 32-bit signed binary data to 16-bit signed binarydata 260
Converting 32-bit signed binary data to 16-bit unsigned binarydata 261
Converting 32-bit signed binary data to 32-bit unsigned binarydata 262
Converting 32-bit unsigned binary data to 16-bit signed binarydata 263
Converting 32-bit unsigned binary data to 16-bit unsigned binarydata 264
Converting 32-bit unsigned binary data to 32-bit signed binarydata 265
Converting 16-bit binary datato Gray code. 266
Converting 32-bit binary datato Gray code. 267
Converting Gray code to 16-bitbinary data. 268
Converting Gray code to 32-bitbinary data. 269
Converting decimal ASCIl to 16-bit binarydata. 270
Converting decimal ASCIl to 32-bitbinarydata. 272
Converting ASCIH to HEX e e 274
Converting character string to 16-bit binary data. 277
Converting character string to 32-bit binary data. 279
Two's complement of 16-bit binary data (signinversion). 282
Two's complement of 32-bit binary data (signinversion). 283
Decoding from 8 10 256 bits. e e 284
Encoding from 256 to 8 bits. 285
Separating 4 bits from 16-bitdata 286
Connecting 4 bitsto 16-bitdata 287
Separating the specified numberof bits 288

N
-
<
1]
-
<
O
o

Connecting the specified number of bits 290

Separating datain byte Units. e 292
Connectingdatain byte units 294
6.6 Data Transfer Instructions i i ittt i et aas 296
Transferring 16-bit data e 296
Transferring 32-bit data 297
Inverting and transferring 16-bitdata. 298
Inverting and transferring 32-bitdata. 299
DGt MOV . . . 300
Inverting and transferring 1-bitdata. e 302
Transferring 16-bit block data (65535 points maximum) e 303
Transferring identical 16-bit block data (65535 points maximum). i 305
Transferring identical 32-bit block data (65535 points maximum). it 306
Exchanging 16-bitdata 307
Exchanging 32-bitdata 308
Exchanging the upper and lower bytes of 16-bitdata. 309
Exchanging the upper and lower bytes of 32-bitdata. 310
Transferring 1-bit data. e 31
Transferring octal bits (16-bit data) e 312
Transferring octal bits (32-bitdata) 314
Transferring n-bit data e 316
CHAPTER 7 APPLICATION INSTRUCTION 317
71 Rotation Instruction i it ittt e e s 317
Rotating 16-bitdatato theright. 317
Rotating 16-bitdatatothe left e 320
Rotating 32-bitdata tothe right 322
Rotating 32-bitdatatothe left 324
7.2 Program branch instruction. i i i i et e e e 326
Pointer branCho 326
JUMP E0 END . L Lo 329
7.3 Program execution control instruction. i e e 330
Disabling/enabling interrupt programs. e 330
Disabling the interrupt program with specified priority orlower. 332
Interrupt program mask o e 335
Disabling/enabling the specified interrupt pointer 337
Returning from the interrupt program 338
Resetting the watchdog timer e e 339
7.4 Structuring instruction e 340
FOR 10 NEXT .o e e e e e 340
Forcibly terminating the FOR to NEXT instruction loop. i e e 342
Calling a subroutine program 344
Returning from the subroutine program. 348
Calling @ subroutine program i 349
7.5 Data table operation instruction. i e e e s 351
Reading the oldest data fromthe datatable 351
Reading the newest data fromthe datatable 353
Writing datatothe datatable. 355
Inserting datatothedatatable e 357

Deleting data fromthe datatable 359

7.6

7.7

Character string operation instruction i i i e e 361
Comparing character stringso e 361
Concatenating character strings e 364
Transferring character Strings 368
Converting 16-bit binary data to decimal ASCII. e 370
Converting 32-bit binary data to decimal ASCII. 372
Converting HEX code data to ASCIl e e 374
Converting 16-bit binary data to characterstring. 378
Converting 32-bit binary data to characterstring. 380
Converting single-precision real number to characterstring. 383
Detecting a character string length 388
Extracting character string data fromtheright. 390
Extracting character string data fromtheleft. 392
Storing the specified number of character strings 394
Replacing the specified number of character strings. 396
Searching character string. e 398
Inserting character string. 400
Deleting character String e e 402
Real Number Instruction.t i i i ettt e e ettty 404
Comparing single-precision real NUMDErS. 404
Single-precision real NUMbeEr COmMPariSONt e 406
Single-precision real number data band comparison 408
Adding single-precision real NUMDEIS 410
Subtracting single-precision real numbers 412
Adding single-precision real numbers 414
Subtracting single-precision real numbers 416
Multiplying single-precision real nUmMbers e 418
Dividing single-precision real numbers 420
Multiplying single-precision real numbers e 422
Dividing single-precision real NUMDbDErS e e 424
Converting 16-bit signed binary data to single-precisionrealnumber. 426
Converting 16-bit unsigned binary data to single-precision realnumber. 427
Converting 32-bit signed binary data to single-precisionrealnumber. 428
Converting 32-bit unsigned binary data to single-precision real number. 429
Converting character string to single-precisionrealnumber. 430
Converting binary floating point to decimal floating point 433
Converting decimal floating point to binary floating point 435
Inverting the sign of single-precision real number. 437
Transferring single-precision real numberdata. 438
Calculating the sine of single-precisionreal number. 439
Calculating the cosine of single-precisionreal number. 441
Calculating the tangent of single-precision real number 443
Calculating the arc sine of single-precision real number. 445
Calculating the arc cosine of single-precisionrealnumber. 447
Calculating the arc tangent of single-precision real number 449
Converting single-precision real number angletoradian i 451
Converting single-precision real number radiantoangle i 452
Calculating the square root of single-precision real number i 453
Calculating the exponent of single-precision real number. 454
Calculating the natural logarithm of single-precision realnumber. 456
Calculating the exponentiation of single-precision real number 458

N
-
<
1]
-
<
O
o

7.8

7.9

710

7.1

712

7.13

7.14

7.15

7.16

717

Calculating the common logarithm of single-precisionrealnumber 460

Searching the maximum value of single-precisionrealnumber 461
Searching the minimum value of single-precision realnumber. 463
Random Number Instruction i it ettt a e 465
Generating random NUMDETo e 465
Index register operation instruction i e e 466
Saving all data of the index register e 466
Returning all data of the index register e 468
Saving the selected data of the index register and long indexregister. 469
Returning the selected data of the index register and long index register. 471
Data controlinstruction i et 472
Upper and lower limit control of 16-bitbinarydata 472
Upper and lower limit control of 32-bit binarydata 474
Dead band control of 16-bitbinary data 476
Dead band control of 32-bitbinary data 478
Zone control of 16-bit binary data e 480
Zone control of 32-bitbinary data 482
Scaling 16-bit binary data (point coordinates). e 484
Scaling 32-bit binary data (point coordinates) e 487
Scaling 16-bit binary data (XY coordinates) e 490
Scaling 32-bit binary data (XY coordinates) e 493
Special timerinstruction. i i i e et a e 496
Teaching timer. 496
Special funCtion timer 498
Shortcut controlinstruction. i e e 500
Rotary table shortest direction control. 500
Ramp signal instruction i i i e e 503
Ramp signal. 503
Pulse related instruction. i et et s 505
Measuring the density of 16 bit binary pulses 505
Measuring the density of 32 bit binary pulses 509
16 bit binary pulse output e 513
32 bit binary pulse OUtpUL 521
16 bit binary pulse width modulation 529
32 bit binary pulse width modulation 533
[BT T 1= o = 538
16-bit binary data absolute method 538
32-bit binary data absolute method e 540
Relative method. 542
0 3= o o T [544
CheCK COOEot 544
Data operation instruction e 547
Searching 16-bit data e 547
Searching 32-bit data 549
Bit check of 16-bitdata 551
Bitcheck of 32-bitdata 552
Bit judgment of 16-bit data. e e 553
Bit judgment of 32-bitdata. 554
Searching the maximum value of 16-bitdata 555
Searching the maximum value of 32-bitdata e 556

Searching the minimum value of 16-bitdata. 557

Searching the minimum value of 32-bitdata. 558

Sorting 16-bit data. e 559
16-bit data alignment 2 562
32-bitdata alignment 2 565
Adding 16-bit data 568
Adding 32-bit data e 569
Calculating the mean value of 16-bitdata. 570
Calculating the mean value of 32-bitdata. 571
Calculating the square root of 16-bitdata 572
Calculating the square root of 32-bitdata 573
CRC calculation. e 574
7.18 Indirect address read instruction.t i it et aa 577
Reading the indirect address. e 577
719 ClockinstruCtion. i i et et it e 579
Reading clock data 579
Writing clock data e e 581
Adding clock data 583
Subtracting clock data. e 585
Converting time data from hour/minute/second to seconds in 16 bits. 587
Converting time data from hour/minute/second to seconds in 32 bits. 588
Converting time data from seconds to hour/minute/second in 16 bits. 589
Converting time data from seconds to hour/minute/second in 32 bits. 590
Comparing date data. 591
Comparing time data. e 594
Comparing clock data e 597
Comparing clock data zones 599
7.20 Timing checkinstruction i it ettt ea e aanenaaeaannens 601
Generating timing PUISES. 601
HoUr Meter. L . 603
7.21 Module access instruction i i i e i 605
O refresh . o 605
Reading 1-word/2-word data from anothermodule. e 607
Writing 1-word/2-word data to another module 610
Reading 1-word/2-word data from another module. 613
Writing 1-word/2-word data to another module (32-bit specification) 616
CHAPTER 8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS 619
8.1 Open/Close Processing Instructions. i i i it e ean 619
OPpeNiNg @ CONNECHONo e e e e e 619
CloSiNg @ CONNECHION ottt e e e e e e e e e e 622
8.2 Socket Communications Function Instructions. i i i e, 624
Reading receive data during the END processing.o it e e 624
Sending data 627
Reading connection information 629
Reading socket communicationsreceive data 631

PART 4 MODULE DEDICATED INSTRUCTION

CHAPTER 9 HIGH-SPEED COUNTER INSTRUCTION 634

9.1

High-speed Processing Instruction. ittt ettt naenaenannens 634

N
-
<
1]
-
<
O
o

10

Setting 32-bit data comparison e 634

Reset 32-bit data comparison e 636
Comparison of 32-bitdata band 638
Start/stop of the 16-bit data high-speed I/O function. 640
Start/stop of the 32-bit data high-speed I/O function. 642
9.2 High-speed Current Value Transfer Instruction i 644
High-speed current value transfer of 16-bitdata. 644
High-speed current value transfer of 32-bitdata. 646
CHAPTER 10 EXTERNAL DEVICE 1/0 INSTRUCTION 648
10.1 Serial Communication 2t i e i 648
CHAPTER 11 POSITIONING INSTRUCTION 650
111 Positioning Instruction e e 650
Zero return(OPR) with 16-bit data DOG search e 650
Zero return(OPR) with 32-bit data DOG search e e e 652
16-bit data interrupt positioning L 653
32-bit data interrupt positioning 655
Positioning by one table operation e 657
Positioning by multiple table operation e 659
Multiple axes concurrent drive positioning. e 660
32-bitdata ABS currentvalue read e 662
16-bit data variable speed pulse 663
32-bit data variable speed puISe 665
16-bit data relative positioning. 667
32-bit data relative positioning. 669
16-bit data absolute positioning. 671
32-bit data absolute positioning. e 673
CHAPTER 12 INVERTER COMMUNICATION INSTRUCTION 675
12.1 Inverter operation monitoring(Statuscheck) 675
12.2 Inverter operations control(Drive) i i it s e e 676
12.3 Inverter parameterreadttt it ittt 677
12.4 Inverter parameter Writettt i et it e 678
12.5 Inverter parameter block Write i i i it it i e 679
12.6 Invertermulticommand i et 680
CHAPTER 13 MODBUS COMMUNICATION INSTRUCTION 682
131 MODBUS Read/WIite.ottt t it ettt ittt e et e e e e et sasansananeansnnnnnnenn 682
CHAPTER 14 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION 684
141 Divided BFM Read. o i i i et ettt e 684
14.2 Divided BEM Write oo i i it et et i et e 687

PART 5 STANDARD FUNCTIONS

CHAPTER 15 TYPE CONVERSION FUNCTIONS 690
151 Converting BOOLtOWORDt i i i et et it e i e e i e e 690
15.2 Converting BOOL to DWORD. ittt ettt ettt e et e et aa e an s aarsanesannenns 691

15.3

15.4

15.5

15.6

15.7

15.8

15.9

15.10
15.11
15.12
15.13
15.14
15.15
15.16
15.17
15.18
15.19
15.20
15.21
15.22
15.23
15.24
15.25
15.26
15.27
15.28
15.29
15.30
15.31
15.32
15.33
15.34
15.35
15.36
15.37
15.38
15.39
15.40
15.41
15.42
15.43
15.44
15.45
15.46
15.47
15.48
15.49
15.50
15.51
15.52
15.53

Converting BOOL 10 INT ittt i i e e e et et aa e aa e aasannsannennnes 692
Converting BOOL 10 DINT it ittt et et e e san e an e annaanenanennnns 693
Converting BOOL to TIME i i it i ittt st a st raaaaenns 694
Converting BOOL t0 STRING i i it ettt e et et e an s aanranennnernnns 695
Converting WORD t0 BOOL ittt it ettt a e an s sa e nanenannsanennnennnns 696
Converting WORD to DWORDottt i ittt ettt st s a et asaraanaans 697
Converting WORD 10 INT i i i et s et aa s sa s anesansaanennnesnnns 698
Converting WORD t0 DINTottt ittt ea e an e sanesaanaannsnneennnen 699
Converting WORD to TIME i i it ittt ettt a e a e saaaaaannns 700
Converting DWORD to BOOKLttt i it e et a e e e aa e aa e aanasanennnennnns 701
Converting DWORD tOWORDt ittt ittt e et aae e an e aanennnenannsanenanennnns 702
Converting DWORD to INTot i it ettt et et a s n e ansanssaneennnns 704
Converting DWORD to DINT ittt i et et e e an e an s annaanennnennnns 706
Converting DIWORD to TIME. i i i sttt it e a e a e 707
Converting INT o BOOL i i ittt a et et aa e aa e aaeaanesaneennnes 708
Converting INTHOWORDottt et et s et e e aan e aanenanraanenanennnns 709
Converting INTtO DWORD i i i i sttt it et st e e aaaanas 710
Converting INT O DINT o i et ettt et a e an e aaneaareaanennnesnnns 711
Converting INT O B CDttt it ittt e e na e na s anesannsanesannennnennnns 712
Converting INTtO REAL i i it ittt it ettt e i a i aaaanns 714
Converting INT O TIME. i i i ittt et aa e sanenanenanennnesnnns 715
Converting INTto STRING i it et s e et aa e ansnaneaanennnennnns 716
Converting DINT to BOOL it i i it ittt it ettt et a e raaanens 718
Converting DINT to WORDD i it ettt ettt et e e e e an e aaneaaeeaaeennnen 719
Converting DINT to DWORD. i ittt ittt et eae s aae e anesannennnaannennnesnnns 721
Converting DINT to INTo i i it et s s et e e a s neenateannennnesnnns 722
Converting DINT to BC D ottt it ittt e et ea e aa s annsnaenannsannennnen 723
Converting DINT to REAL ittt ittt ea s sae s s s anesnnnsannsnnnennnnns 725
Converting DINT to TIME i i ittt et e e e s n s nansnnnennnesnnns 726
Converting DINT to STRING it it et e e et aa e aa e naeaaanenanennnns 727
Converting BCD to INTo ittt ittt et ta e a e a i aanas 729
Converting BCD toO DINT ittt it e et e et a s an s annsnnssannsannennnns 731
Converting REAL tO INT i i i ittt ea et n e annsnaeaannennnennnns 733
Converting REAL to DINTt i ittt ittt et i e a s a e aa i naeanas 735
Converting REALtO STRING i it it ettt a et et e e ne s aannaesanneanns 737
Converting TIME 0 BOOL ittt it et e ta et an s aan e nanenanraanenanennnns 740
Converting TIMEto WORDottt it ittt ettt et a e a e aasananaeanans 741
Converting TIME 0 DWORD.ttt it ettt e et a et an e an e aneaanenanennnns 742
Converting TIME t0 INTt it ittt et aae e sa e sannsanesanesaneennnns 743
Converting TIME to DINTttt ittt ittt ittt e aenea e enennns 744
Converting TIME t0 STRING i i ettt et e et an e nanaanenanennnns 745
Converting STRING to BOOKLttt ittt it et s ta e e e aasannsnnnnsanennnennnns 746
Converting STRING to INT i i it i it s et e aa e aeas 747
Converting STRING to DINT i i it ettt e et an e an e annaanenanernnns 749
Converting STRING to REAL i i ittt ettt ittt a i e aaaanas 751
Converting STRINGtO TIME i i i ittt s s a it a et aaaaans 754
Converting Bit Array to INT i i i et s e e e an e an e aa e 755
Converting Bit Array to DINTt i ittt ettt e et a e a i a i aanas 756
Converting INTto Bit Arrayottt it ettt ae e aa s aaesnansannennnns 757
Converting DINT to Bit Arrayc. it ittt it ittt et ea e n e s an e nannannennnennnnn 758
Bit ArTay COPY . ottt t ittt e i e e 759

N
-
<
1]
-
<
O
o

11

12

15.54 Reading the Specified Bitof Word Labelt it iiaeaanenns 760

15.55 Writing the Specified Bitof Word Label i e e e ennns 761
15.56 Copying the Specified Bitof Word Labelc i i it eia e 762
15.57 Unnecessary of Type CONVErSiONttt ittt ieat e a e s aaesanesaarsanesnnesnns 763
CHAPTER 16 SINGLE NUMBER VARIABLE FUNCTIONS 764
16.1 Absolute Value. i i it it et it 764
16.2 Square ROOt. i i i e e 766
16.3 Natural Logarithm Operation it ittt et aa e sae e nanraaneannennns 767
16.4 Calculatingthe Common Logarithm i i i e i e i 768
16.5 Exponential Operation ittt ittt i s 770
16.6 Sine Operation.ttt ittt et et et a e 771
16.7 Cosine Operation.ttt i it et e 772
16.8 Tangent Operation.ttt it i ittt it et et e s 773
16.9 Arc Sine Operationttt it e et a it n e e 774
16.10 Arc Cosine Operationottt it ie et et e aas s et aeataaaanaanaaeaens 775
16.11 Arc Tangent Operationttt ittt et et a s e antsaanaannsannaaannanns 776
CHAPTER 17 ARITHMETIC OPERATION FUNCTIONS 7777
IS T - Vo e 1T 777
17.2 Multiplication o i i e e 779
17.3 Subtraction. i e e 781
I 0 1= o o 783
17.5 Remainderot it ittt ettt e 785
17.6 Exponentiation. i i it i it 787
17.7 Move Operationottt ittt e et e et e a e ea e na s aneeannesansaneeaanennneenns 789
CHAPTER 18 BIT SHIFT FUNCTIONS 791
181 n-bit Left Shift i et 791
18.2 n-bitRight Shift i e i ittt et i 793
18.3 n-bitLeft Rotation i i i i e i et e 795
18.4 n-bitRightRotation. i i i i ittt e 797
CHAPTER 19 STANDARD BITWISE BOOLEAN FUNCTIONS 799
19.1 AND Operation, OR Operation, XOR Operationttt iia e innnenaeenns 799
19.2 Logical Negation i i i sttt ittt st 801
CHAPTER 20 SELECTION FUNCTIONS 802
201 Selection.t e 802
20.2 Selecting Maximum/MinimumValue i i ittt e e i 804
20.3 Limit Controlo i ey 806
20.4 MUIPIEXEr . . o oottt it ettt e e e e a e 808
CHAPTER 21 COMPARISON FUNCTIONS 810
20 e I 0o 1 = 810
g 0 0o 1 ¢ =T 812
CHAPTER 22 CHARACTER STRING FUNCTIONS 814
22,1 Character String Length Detection i i e i e e 814
22.2 Extracting Character String Data from the Left/Right oo i i, 815

223 Extract Mid Stringot it i e ety 817

224 Link Character Stringsttt it e e ettt a e aa e aa e e 819

22,5 Inserting Character Stringiiiiiiiiiii i i it et it ittt i 821

22.6 Deleting Character Stringottt it et ia e sa e e anesaassnansannennnns 823

22.7 Replacing Character Stringttt it a it a et raanraansanerannennnen 825

22.8 Searching Character String ittt i i i it ittt it e aas 828

CHAPTER 23 TIME DATA FUNCTIONS 830

231 AdItioN e 830

232 SUBIACHON.ttt ettt et e e ettt e e 832 N

23.3 Multiplication ot i e 834 IE

234 DiVISION. i e a e eaa e 836 LUl
>

PART 6 FUNCTION BLOCKS o
(&)

CHAPTER 24 BISTABLE FUNCTION BLOCKS 840

241 Bistable Function Blocks (Set Priority).ttt i i et et e e e 840

24.2 Bistable Function Blocks (Reset Priority). i 842

CHAPTER 25 EDGE DETECTION FUNCTION BLOCKS 844

251 Rising Edge Detectorttt i i et e et e a e 844

25.2 Falling Edge Detector it i i i ittt s it 846

CHAPTER 26 COUNTER FUNCTION BLOCKS 848

4 2 I U o T 0o T T3 =] 848

26.2 DOWN COUNEEE . .. ittt ittt ettt s e et a e e 850

26.3 Counter Function BIOCK it i i i i it et e i a s 852

CHAPTER 27 TIMER FUNCTION BLOCKS 854

271 Timer Function BIOCKS it i ittt et ettt e 854

APPENDICES 857

Appendix 1 Number of Instruction Steps.o s e i e i 857

INSTRUCTION INDEX 876

REVISIONS . . . e e 882

WA RR AN Y L 883

TRADEMARKS . . . 884

13

14

RELEVANT MANUALS

User’s manuals for the applicable modules

Manual name <manual number>

Description

MELSEC iQ-F FX5 Series User's Manual [Startup]

<JY997D58201>

Performance specifications, procedures before operation, and troubleshooting of the
CPU module.

MELSEC iQ-F FX5U Series User's Manual [Hardware]

<JY997D55301>

Describes the details of hardware of the FX5U series CPU module, including input/
output specifications, wiring, installation, and maintenance.

MELSEC iQ-F FX5 Series User's Manual [Application]

<JY997D55401>

Describes basic knowledge required for program design, functions of the CPU module,
devices/labels, and parameters.

MELSEC iQ-F FX5 Series Programming Manual [Program Design]

<JY997D55701>

Describes specifications of ladders, ST, and other programs and labels.

MELSEC iQ-F FX5 Series Programming Manual [Instructions,

Standard Functions/Function Blocks]
<JY997D55801> (This manual)

Describes specifications of instructions and functions that can be used in programs.

MELSEC iQ-F FX5 Series User's Manual [Serial Communication]

<JY997D55901>

Describes inverter communication and non-protocol communication.

MELSEC iQ-F FX5 Series User's Manual [MODBUS Communication]

<JY997D56101>

Describes MODBUS serial communication.

MELSEC iQ-F FX5 Series User's Manual [Ethernet Communication]

<JY997D56201>

Describes the functions of the built-in Ethernet port communication function.

MELSEC iQ-F FX5 Series User's Manual [SLMP]

<JY997D56001>

Explains methods for the device that is communicating with the CPU module by SLMP
to read and write the data of the CPU module.

MELSEC iQ-F FX5 Series User's Manual [Positioning Control]

<JY997D56301>

Describes the built-in positioning function.

GX Works3 Operating Manual
<SH-081215ENG>

System configuration, parameter settings, and online operations of GX Works3.

TERMS

Unless otherwise specified, this manual uses the following terms.

» O indicates a variable portion used to collectively call multiple models or versions.
(Example) FX5U-32MR/ES, FX5U-32MT/ES = FX5U-32MO/ES
« For details of the FX3 series devices that can be connected with the FX5U series, refer to LLIMELSEC iQ-F FX5U Series

User's Manual [Hardware].

Terms

‘ Description

HSeries name

FX5 series Abbreviation of FX5 series PLCs

FX3 series Generic term for FX3S, FX3G, FX3GC, FX3U, and FX3UC series PLCs

MDevices

CPU module Generic term for FX5U-32MR/ES, FX5U-32MT/ES, FX5U-32MT/ESS, FX5U-64MR/ES, FX5U-64MT/ES,

FX5U-64MT/ESS, FX5U-80MR/ES, FX5U-80MT/ES, and FX5U-80MT/ESS

Extension module

Generic term for FX5 series extension modules and FX3 series extension modules

* FX5 series extension module

Generic term for I/0 modules, extension power supply modules, and FX5 series intelligent function modules

» FX3 series extension module

Generic term for FX3 series extension power supply modules and special extension blocks

1/0 module

Generic term for input modules, output modules, and powered input/output modules

« Input module

Generic term for FX5-8EX/ES and FX5-16EX/ES

* Output module

Generic term for FX5-8EYR/ES, FX5-8EYT/ES, FX5-8EYT/ESS, FX5-16EYR/ES, FX5-16EYT/ES, and FX5-
16EYT/ESS

* Powered input/output module

Generic term for FX5-32ER/ES, FX5-32ET/ES, and FX5-32ET/ESS

Extension power supply module

Generic term for FX5-1PSU-5V and FX3U-1PSU-5V

Intelligent module

The abbreviation for intelligent function modules

Intelligent function module

Generic term for FX5 series intelligent function modules and FX3 series intelligent function modules

* FX5 series intelligent function module

Generic term for FX5 series intelligent function modules

« FX3 series intelligent function module

Generic term for FX3 series special extension blocks

Terms

Description

Simple motion module

Different name for FX5-40SSC-S

Expansion board

Generic term for boards for FX5 series

« Communication board

Generic term for FX5-232-BD, FX5-485-BD and FX5-422-BD-GOT

Expansion adapter

Generic term for adapters for FX5 series

« Communication adapter

Generic term for FX5-232ADP and FX5-485ADP

Bus conversion module

Different name for FX5-CNV-BUS

Battery

Different name for FX3U-32BL

Peripheral device

Generic term for engineering tools and GOTs

GOT

Generic term for Mitsubishi Graphic Operation Terminal GOT1000 and GOT2000 series

WSoftware package

Engineering tool

Different name for GX Works3

GX Works3

Product name of MELSEC PLC software package for the MELSEC programmable controllers

HEManuals

User's manual

Generic term for separate manuals

User's manual [Startup]

Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Startup]

User's manual [Hardware]

Abbreviation of MELSEC iQ-F FX5U Series User's Manual [Hardware]

User's manual [Application]

Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Application]

Programming manual

Generic term for MELSEC iQ-F FX5 Series Programming Manual [Program Design] and MELSEC iQ-F FX5
Series Programming Manual [Instructions, Standard Functions/Function Blocks]

Programming manual [Program Design]

Abbreviation of MELSEC iQ-F FX5 Series Programming Manual [Program Design]

Programming manual [Instructions, Standard
Functions/Function Blocks]

Abbreviation of MELSEC iQ-F FX5 Series Programming Manual [Instructions, Standard Functions/Function
Blocks]

Communication manual

Generic term for MELSEC iQ-F FX5 Series User's Manual [Serial Communication], MELSEC iQ-F FX5 Series
User's Manual [MODBUS Communication], and MELSEC iQ-F FX5 Series User's Manual [Ethernet
Communication], MELSEC iQ-F FX5 Series User's Manual [SLMP]

* Serial communication manual

Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Serial Communication]

*« MODBUS communication manual

Abbreviation of MELSEC iQ-F FX5 Series User's Manual [MODBUS Communication]

« Ethernet communication manual

Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Ethernet Communication]

* SLMP manual

Abbreviation of MELSEC iQ-F FX5 Series User's Manual [SLMP]

Positioning control manual

Abbreviation of MELSEC iQ-F FX5 Series User's Manual [Positioning Control]

15

HOW TO READ THIS MANUAL

The following describes the page layout and symbols used in this manual.

How to read PART 3 and PART 4

The contents described in this section are provided only for explaining how to read this manual. Thus, the actual description

may differ.

Special function timer

(1] > STMR
This instruction uses the four devices fram the device specified by (d) to perform four types. of timer output
| EMD=STMRIEN 57 s2.d);
@ —F+—» [J[en]wwmh-
Setting data
© ————————}—» WmDescriptions, ranges, and data types
e I“ 7 e B — In Type flab
a1} Used timer numises joparates 5 a 100 ms limer) o Duvice: name ANY1E
52y | Timer se value 1to 32TET 16-bit unsigned binary | ANY1E
[| tat bit i 1o ba outpet — B I3
o » hla davi
»
XYWL | umen
SM.F, B, 58 C,LC | W
isth = - -
{s2) =] = |
[) = — [— - = 1= 1= = I=-1-1-
*1 Oniy T can be used.
e —————» HControl data
Dwvics | Dascrh Setting rangs | Sothy
+ O chaary Bmes DUtpas - Systom
Tumes on at the rising edge of the command of the STMR instnuction and fums o when the tma epacified by
{82 sispaes after the Ealing edge.
+1 ‘One-shot Smer cutput afier tuming off: ol System
Turrg on ot the faling edge of the command of the STMR instruction and tuns off when the ime specified by
{57} aispans
*2 Drwe-shol Smer outpat afler fuming on e d System
Tumes on at the rsing edga of tha command of ha STMA instclion sod Sums off whan tha command of tha
STMR nstruction i# ar whan spacified by (s2) el
43| Ondelay b - O delay timer ulpus 1= | Bywem
T g edge cail and turns aff when th) ater the fallng
edge of the commard of the STMR instructicn

\

Processing details.
+ This instruction uses the four devices from the device specified by (d) to perform four types of timer cutput.

(6] B>

Cammand of the : - t]
STMR insinicion 1 . i
i : : O sty Himer
1 I — : r.—'l i
Lol H 1 Clnes-sv fimer after turming off
tapz T: | One-ghat timer tter turming o
(3 : : i O defay timer + O delay timer
— -) P R A
Soting value Sotting valus Setingvalue Sotting value
) 152 sp 1s2)

specified by {52)

(7} — 1 . Precautions
= The timer number specified in this insirection cannot be used in other general circuits (such as OUT mnstruction)). If the timer

number is ugad in other general circuits, the timer malfunctions.
= The timer specified by (s1) starts counting as & 100 ms timer on the rising edge of the command contact
* Four devices are occupied from a device specified in (d). Make sure that such devices are not used in other controls for the

machine.
« If the command contact is turned off, (d), (d)+1, and (d)+3 turn off when the set time elapses. (d}+2 and the tmer (s1) are

immadiataly rasat.

(3] » ..Op ermar
Description
The dewvice rangs i o=
3808 The value spocitied By {52} Is autsida the follawing range. o
110 32767

7 APPLICATION INSTRUCTION
7.11 Special timer instruction 499

16

@Indicates the instruction symbol.
» The instruction symbol with brackets means multiple instructions. For example, "GRY(P)(_U)" means the GRY, GRYP,

GRY_U, and GRYP_U instructions.

Instruction symbol Description of symbol
Instruction symbol with "(P)" The instruction is executed on the rising edge.
Instruction symbol with "(_U)" The instruction handles 16-bit or 32-bit unsigned binary data.

» The instruction symbol with "O0" means multiple instructions. For example, "LDDTO" means the LDDT=, LDDT<>, LDDT>,
LDDT<=, LDDT<, and LDDT>= instructions.

@Indicates the description format of the ladder language and ST (structured text) language.

Instruction symbols are input in each corresponding place surrounded in a square in the ladder diagram.

©|ndicates the description, setting range, data type, and data type (label) of each operand.

* For the data type, refer to the following.

[TIMELSEC iQ-F FX5 Series Programming Manual [Program Design]
O|ndicates the applicable devices for each operand. The following table describes the usage classification.

Operand | Bit Word Double word | Indirect | Constant Others
% * e ' *5
X2, Y2, M?2, uO¥eO | T,ST,C, | T, ST, C, uoO¥eO |z |LC Lz |specifi 'k 4IE [s
L*z SM*Z F*Z LC D*3 W*3 SD*3 cation
B2, sB™ SW3, R
Applicable | X,Y,M, L, SM,F, |uO¥eO | T4 ST% |T,ST.C,D,W, |uO¥eO |z |LC LZ |@0O K,H|E |$ |[PIU,
devices' | B, SB c“4 LC* |sD, SW,R @0O.0 N

*1 For the description of each device, refer to the following.
LTIMELSEC iQ-F FX5 Series User's Manual [Application]
*2 “O” is described in positions where bit devices or nibble specification of bit devices is available.
*3 “O”is described in positions where word device or bit specification of word device is available.
*4 When T, ST, C, and LC are used with an instruction other than the following instructions, they can be used only as word data. They

cannot be used as bit data.

[Instruction which can be used as bit data]
LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST, BKRST,

MOVB(P), CMLB(P)
*5 Devices which can be set are described in the "Others" column.
@Depending on the instruction, the control data to set the operation of the instruction exists. When the "Set by" column is

"User", the value must be specified according to the setting range.

@ Indicates the function details of the instruction. When no details are described, the following programs correspond to
"Interrupt program".

* Interrupt program using the interrupt pointer ()

» Event execution type program which is triggered by an interrupt by the interrupt pointer (I)

@ Indicates the cautions.
@ Indicates an error code (hexadecimal) which occurs at the execution and the error description when the instruction has a

specific operation error.
» A device in which an error code is stored is described in the error code column. When an error code is stored in SD0/

SD8067, the error flag (SM0, SM1, SM56, SM8067) turns on.

17

18

How to read PART 5 and PART 6

The contents described in this section are provided only for explaining how to read this manual. Thus, the actual description
may differ.

15.28 Converting DINT to INT

@ ———————1—> DINT_TOLINT(_E)
These functiona convert DINT type data to INT type data,
Ladder diagram et
[Withces ENENG] [Wih EN/END] [Without ENEND]
— d-=DINT_TOL_INTis};
EZ—1 = [WWith ENFENG]
QO—F—» ., o} " o E=DINT_TO_INT_E{EN END.5E
.Setting data
(3] » MWDescriptions, types, and data types
EN Execulion condfion {(TRUE Execaion, FALSE” Siog) Ingul variabie BoGL
£ Input ot variabls DT
“Eno Qutpunt stalus (TRUE: Mo, FALSE: Abrammal g variatie BOOL
d Clutpart Cutput varable INT
@ | —» Processing details

HOperation processing
* These functions convert the DINT type data input to (s) to INT type data and output from (d).

(8} (d)
R - S— e I B
DINT INT

* Avalue input to (s} is the DINT type data value.

HOperation result
1. Function without ENFENG
The following table lists the operation results

Operation result A}
o aperation esrar cecurred Operation autput vaiue
AN oparaton amr aocumed Incdafinia valua

2. Functian with ENFENO
The foflowing table ksts the execution conditions and operation results.

Operation rosult
EN ENO {d)
TRUE {Excutes operasion) TRUE (Cperaticn amar dd nal cecur} Oparasion output vale
FALSE (Operation emar occuered) ' Indafinite value
FALSE {Siops cperation) Fige" Indefinite value

*1 When FALSE is output from ENO, data output from (d) is undedfined. In that case, modify a program so that the data cutput from {d} is
nat used.

® ——————}—>» . Operation emor

40 The 32-bit signed binary data in the device spacified by (s} is out of the valid range (32768 to 32767}

15 TYPE CONVERSION FUNCTIONS
722 15.28 Corverting DINT 1o INT

@ Indicates function symbols.
When character strings in brackets are added to the end of the function symbol for standard functions and function blocks, the

function symbol indicates multiple functions. For example, "DINT_TO_INT(_E)" means "DINT_TO_INT" and
"DINT_TO_INT_E".

Function symbol Description of symbol

Function symbol to which "(_E)" is added. | Indicates that the description format with EN/ENO can be used in the standard function and function block.

@ |ndicates the description format of the ladder language and ST (structured text) language.

Function symbols are input in each corresponding place surrounded in a square in the ladder diagram.

©Indicates the description, type and data type of each argument.

OIndicates the functions of each standard function or function block.

@ |ndicates an error code which occurs at the execution and the error description when the standard function or the function
block has a specific operation error.

A device in which an error code is stored is described in the error code column. When an error code is stored in SDO, the error
flag SMO turns on.

PART 1

OVERVIEW

Part 1 consists of the following chapter.

1 OVERVIEW

19

20

1 overview

1.1 Instruction Configuration

Many instructions available for CPU module are each divided into the instruction part and device part.
The instruction part and device part are used as follows.

* Instruction part: Indicates the function of the relevant instruction.

» Device part: Indicates the data used for the instruction.

The device part is further classified to source data, destination data, and numerical data.

Source (s)

Source is the data used in the operation.
Depending on the label or device specified in each instruction, the source becomes as follows.

Type Description

Constant The constant specifies a numerical value used in the operation.
It is set during program creation and cannot be changed during program execution.

Bit device The user specifies the device where the data to be used in the operation is stored.

Word device Necessary data must be thus stored in the specified device before operation execution.

By changing the data to be stored in the specified device during program execution, the data to be used by the
instruction can be changed.

Destination (d)

Data after operation is stored in the destination area.
However, some instructions require the data to be used in the operation to be stored before the operation.

[Ex]

Binary 16-bit data addition instruction

— [s | — + | st | s2 |
M I%

The data required for operation is stored before the operation. Only the operation result is stored.

A label or device to store data must be set for the destination.

Numerical values (n)

In an instruction which uses multiple devices or an instruction which specifies the number of repetitions, data to be processed,
and character strings, use numerical values to specify the number of devices, transfers, data, and character strings.

[Ex]

Block transfer instruction

—iBvov| s | d | o
-

The number of transfers executed by the BMOV instruction is specified.

A numerical value from 0 to 65535 or 0 to 4294967295 can be set for the size such as the number of devices, transfers, or
characters.”

Note, however, that when the size specification such as the number of devices, transfers, or characters is 0, the relevant
instruction results in non-processing.

*1 The setting range varies depending on the instruction. For details, refer to the description of each instruction.

Point

Be careful when a large numerical value is used such as for the number of transfers. It delays the scan time.

1 OVERVIEW
1.1 Instruction Configuration

1.2

Data Specification Method

The following table lists the types of data that can be used for instructions in CPU modules.

Data used in devices and labels

|~—{ Bit data

Device data

16-bit data (word data)

—{ 16-bit signed binary data

—{ 16-bit unsigned binary data

32-bit data (double-word data)

1 1

—{ 32-bit signed binary data

Real number data (floating-point data

Single-precision real number data

BCD data

N I IR R

String data String

—{ 32-bit unsigned binary data ‘

)
BCD 4-digit data
BCD 8-digit data

Data type Description Specifiable device/constant"
Bit Bit data can be handled. « Bit device

=~ Page 24 Bit data * Bit specification of word device
Word Word data can be handled. » Word device

=5~ Page 25 16-bit data (word data)

16-bit signed binary

16-bit unsigned binary

16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

=~ Page 25 16-bit data (word data)

* Nibble specification of bit devices (K1 to
K4)2

» Decimal constant

* Hexadecimal constant

Double word

Double-word data can be handled.
5~ Page 27 32-bit data (double word data)

32-bit signed binary

32-bit unsigned binary

Two consecutive sets of 32-bit data or 16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

=5~ Page 27 32-bit data (double word data)

» Word device

* Double-word device

* Nibble specification of bit devices (K1 to
K8)2

» Decimal constant

* Hexadecimal constant

BCD 4-digit BCD 4-digit data can be handled. » Word device
16-bit data is divided by 4 digits and each digit is specified in 0 to 9. « Nibble specification of bit devices (K1 to
K4)2
» Decimal constant
* Hexadecimal constant
BCD 8-digit BCD 8-digit data can be handled. » Word device

32-bit data is divided by 8 digits and each digit is specified in 0 to 9.

* Double-word device

« Nibble specification of bit devices (K1 to
K8)2

* Decimal constant

» Hexadecimal constant

Single-precision real
number

Single-precision real number data (single-precision floating-point data) can be
handled.
=~ Page 30 Configuration of single-precision real number data

» Word device
* Double-word device
* Real constant

Character string

ASCII code and Shift JIS code character string data can be handled.
=~ Page 32 Character string data

» Word device
* Character string constant

*1 A constant can be used in the data specified for the source (s) or numerical data (n) by an instruction.
*2 For the specification method, refer to the detail page of each data type.

1 OVERVIEW 2 1
1.2 Data Specification Method

22

Label data

EPrimitive data type

Data type (label) Specifiable label
Bit * Bit type label
(BOOL) * Bit-specified word [unsigned]/bit string [16 bits] type label

« Bit-specified word [signed] type label

« Timer/retentive timer/long timer/long retentive timer type label contact/coil

« Counter/ long counter type label contact/coil

Word [unsigned]/bit string [16 bits]
(WORD)

» Word [unsigned]/bit string [16 bits] type label

+ Nibble specified bit type label (K1 to K4)

« Current value of timer/retentive timer type label
« Current value of counter type label

Double word [unsigned]/bit string [32 bits]
(DWORD)

» Double word [unsigned]/bit string [32 bits] type label

« Nibble specified bit type label (K1 to K8)

+ Current value of long timer/long retentive timer type label
* Current value of long counter type label

Word [signed]
(INT)

» Word [signed] type label

* Nibble specified bit type label (K1 to K4)

« Current value of timer/retentive timer type label
* Current value of counter type label

Double word [signed]
(DINT)

» Double word [signed] type label

* Nibble specified bit type label (K1 to K8)

* Current value of long timer/long retentive timer type label
* Current value of long counter type label

Single-precision real number
(REAL)

« Single-precision real data type label

Time
(TIME)

» Time type label

Character string
(STRING)

« Character string type label

Timer
(TIMER)

* Timer type label

Retentive timer
(RETENTIVETIMER)

* Retentive timer type label

Counter + Counter type label
(COUNTER)
Long counter » Long counter type label
(LCOUNTER)
Pointer « Pointer type label
(POINTER)

1 OVERVIEW

1.2 Data Specification Method

EGeneric data type

Data type (label) Specifiable label

ANY™ Bit, word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],
single-precision real number, hour, character string, structure

ANY_BITADDR"! Bit

ANY_BOOL Bit

ANY_ELEMENTARY

Bit, word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],
single-precision real number, hour, character string

ANY_WORDADDR

Word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],
single-precision real number, hour, character string

Any 16-bit data (ANY16)

Word [signed], word [unsigned]/bit string [16 bits]

ANY16_S Word [signed]

ANY16_U Word [unsigned]/bit string [16 bits]

Any 32-bit data (ANY32) Double word [signed], double word [unsigned]/bit string [32 bits], hour
ANY32_S Double word [signed], hour

ANY32_U Double word [unsigned]/bit string [32 bits]

ANY_REAL Single-precision real number

ANYREAL_32 Single-precision real number

ANY_STRING Character string

ANYSTRING_SINGLE

Character string

ANY_STRUCT"!

Structures

ANY_DT Word [signed], word [unsigned]/bit string [16 bits]
ANY_TM Word [signed], word [unsigned]/bit string [16 bits]
STRUCT Structures

ANY16_OR_STRING_SINGLE

Word [signed], word [unsigned]/bit string [16 bits], character string

*1 Can also be used as an array.

HEGeneric data type (array)

For the following generic data type, define the number of array elements.

Data type (label)

Specifiable label

ANYBIT_ARRAY

Bit

ANYWORD_ARRAY

Word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],
single-precision real number, hour, character string

ANY16_ARRAY

Word [signed], word [unsigned]/bit string [16 bits]

ANY16_S_ARRAY

Word [signed]

ANY16_U_ARRAY

Word [unsigned]/bit string [16 bits]

ANY32_ARRAY

Double word [signed], double word [unsigned]/bit string [32 bits]

ANY32_S_ARRAY

Double word [signed]

ANY32_U_ARRAY

Double word [unsigned]/bit string [32 bits]

ANY_REAL_ARRAY

Single-precision real number

ANY_REAL_32_ARRAY

Single-precision real number

ANY_STRING_ARRAY

Character string

ANY_STRING_SINGLE_ARRAY

Character string

STRUCT_ARRAY

Structures

1 OVERVIEW
1.2 Data Specification Method

23

Bit data

Data size and data range

Bit data is handled in increments of bits such as contacts and coils.

Data name Data size Value range

Bit data 1 bit 0,1

Handling bit data with bit devices and labels

Bit data of one point per point can be handled.

Handling bit data with bit word devices

By specifying a bit number for a word device, bit data of the specified bit number can be handled.
The notation for bit number specification is as follows.

Word device number || Bit number

A bit number can be specified in hexadecimal in the range from 0 to F.
For example, bit 5 (b5) of DO is specified as D0.5, and bit 10 (b10) of DO is specified as DO.A.
The following word devices support bit specification.

Item Device

Word devices which support bit specification « Data register (D)

« Link register (W)

« Link special register (SW)

« Special register (SD)

* Module access device (UO\G)
« File register (R)

Handling bit data with word type labels

By specifying a bit number for a word [unsigned]/bit string [16 bits] type label or word [signed] type label, bit data of the
specified bit number can be handled.
The notation for bit number specification is as follows.

Label name || Bit number |

2 4 1 OVERVIEW
1.2 Data Specification Method

16-bit data (word data)

Data size and data range

16-bit data includes signed and unsigned 16-bit data.
In signed 16-bit data, a negative number is represented in two's complement.

Data name Data size Value range

Decimal notation Hexadecimal notation
Signed 16-bit data 16 bits (1 word) -32768 to 32767 0000H to FFFFH
Unsigned 16-bit data 0 to 65535

Handling 16-bit data with bit devices

A bit device can be handled as 16-bit data by performing nibble specification.

Item Notation Example
Bit device K4X10
KO | Bit device start number K2M113

Number of digits: Specify the number within the range from 1 to 4.

Handling 16-bit data with bit type array labels

A bit type array label can be handled as 16-bit data by performing nibble specification.
The following table shows the notation for handling a bit type array label as 16-bit data by nibble specification.

Item Notation Example

Bit type array label K1L_BOOL
o Lo vame |

Number of digits: Specify a number within the range of 1 to 4.

1 OVERVIEW 2
1.2 Data Specification Method 5

Nibble specification range

The following table lists the range of 16-bit data for each nibble specification.

Nibble Decimal notation Hexadecimal notation

specification

K1 0to 15 OH to FH

K2 0 to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 Signed 16-bit data: -32768 to 32767 0000H to FFFFH
Unsigned 16-bit data: 0 to 65535

[Ex]

When nibble specification is made for X0, the applicable number of points is as follows.
* K1X0—4 points from X0 to X3

* K2X0—8 points from X0 to X7

* K3X0—12 points from X0 to X13

* K4X0—16 points from X0 to X17

X17 - X14X13 - X10 X7 X4 X3 X0

K1 specification

__range
(4 points)
K2 specification
_ range
™ (8 points)

K3 specification
range
™ (12 points)

K4 specification
range
(16 points)

ESpecifying a bit device with nibble specification in the source (s)
When a bit device with nibble specification is specified in the source of an instruction, 0 is stored in the bits, which follow the
bit for which nibble specification is made in the source, in the word device of the destination.

Ladder example Processing

 16-bit data instruction

ol Tl
X10
}—H—|MOV|K1X0|DO}—{ Y

Filled with Os. @
I - ~
Source (s) b1

5 b4 b3 b2 b1 b0
oo[o [o [oo o o] a]o] o] o]0 xa]xe]xi]a)

ESpecifying a bit device with nibble specification in the destination (d)

When a nibble specification is made in the destination of an instruction, the number of points by the nibble specification is
applicable in the destination.

The bit devices after the number of points specified by nibble remain unchanged.

Ladder example Processing

* When the source data is a word device bo

po| 111 of1]o]1]o]1]o]o]1]1]1]0]
-

X10 1 |
}—H—| mov | Do |K2M1oo}—{ g »

M115 M108M107 M100
o] | | | [[[| [+]ofofe]1]r]o]1]

- /
VT

The data remain the same.

Destination (d)

2 6 1 OVERVIEW
1.2 Data Specification Method

Handling 16-bit data with word devices/labels

EWord device
One point of word device can handle 16-bit data.

EWord type label
One point of word type label can handle 16-bit data.

32-bit data (double word data)

Data size and data range

32-bit data includes signed and unsigned 32-bit data.

In signed 32-bit data, a negative number is represented in two's complement.

Data name Data size Value range

Decimal notation Hexadecimal notation
Signed 32-bit data 32 bits (2 word) -2147483648 to 2147483647 00000000H to FFFFFFFFH
Unsigned 32-bit data 0 to 4294967295

Handling 32-bit data with bit devices

A bit device can be handled as 32-bit data by performing nibble specification.

Item Notation Example
Bit device K8X80
KO | Bit device start number K6B018

Number of digits: Specify the number within the range from 1 to 8.

Handling 32-bit data with bit type array labels

A bit type array label can be handled as 32-bit data by performing nibble specification.
The following table shows the notation for handling a bit type array label as 32-bit data by nibble specification.

Item Notation

Example

Bit type array label
ml

Number of digits: Specify a number within the range of 1 to 8.

K8L_BOOL

1 OVERVIEW 2
1.2 Data Specification Method 7

28

Nibble specification range

The following table lists the range of 32-bit data for each nibble specification.

Nibble Decimal notation Hexadecimal notation

specification

K1 Oto15 OH to FH

K2 0 to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 0 to 65535 0000H to FFFFH

K5 0 to 1048575 00000H to FFFFFH

K6 0to 16777215 000000H to FFFFFFH

K7 0 to 268435455 0000000H to FFFFFFFH

K8 Signed 32-bit data: -2147483648 to 2147483647 00000000H to FFFFFFFFH
Unsigned 32-bit data: 0 to 4294967295

[Ex]

When nibble specification is made for X0, the applicable number of points is as follows.

* K1X0—4 points from X0 to X3

* K2X0—8 points from X0 to X7

* K3X0—12 points from X0 to X13
* K4X0—16 points from X0 to X17
* K5X0—20 points from X0 to X23
* K6X0—24 points from X0 to X27
+ K7X0—28 points from X0 to X33
» K8X0—32 points from X0 to X37

X37 -+ X34 X33 - X30X27 -+- X24 X23 - X20X17 --- X14 X13 - X10 X7 - X4X3 --- X0

_, K4 specification range

K1
specification
range

(4 points)

K2 specification rangel

(8 points)

|, K3 specification range

(12 points)

(16 points)

K5 specification range

™ (20 points)

K6 specification range

' (24 points)

, K7 specification range

(28 points)

, K8 specification range

~ (32 points)

1 OVERVIEW
1.2 Data Specification Method

ESpecifying a bit device with nibble specification in the source (s)
When a bit device with nibble specification is specified in the source of an instruction, 0 is stored in the bits, which follow the

bit for which nibble specification is made in the source, in the word device of the destination.

Ladder example Processing

« 32-bit data instruction
oo sa [l ol
X10
————— omov | kixo [Do M
T Filled with Os. @

Source (s) - h
b15 b4 b3 b2 b1 b0

DO(O|O0O|O0O|O0O|O0O|O|O|O0O|O0O]O0|O0]|O0|X3 X2|X1|X0

ptfojojojojojo0ojo0jo0jo0j0j0|j0|j0f0j0]|O0
b31 b16
- /)

Filled with Os.

ESpecifying a bit device with nibble specification in the destination (d)
When a nibble specification is made in the destination of an instruction, the number of points by the nibble specification is

applicable in the destination.
The bit devices after the number of points specified by nibble remain unchanged.

Ladder example Processing

* When the source data is a word device b15
po| 11 1]ofol1]ofo]ofr]o]1]1]1]0]1]

X10
}—{ ———omov| po | K5M10}—{ b15

pi{ofof1][1]o]1]ofo]1]o]o]1]a]1]1]1]

Destination (d) @
M25 8M17 M10
Lile[iloloftfolofof]ofr]t1]1]o]1]
M41 - M30M29 - M26
L PP Jolafald]
N —
~
The data remain the same.

Handling 32-bit data with word devices/labels

EWord device

Two points of word device can handle 32-bit data.

Note, however, that one point of the following devices can handle 32-bit data.

* Long counter (LC)

» Long index register (LZ)

EDouble word type label

One point of double word device can handle 32-bit data.

1 OVERVIEW

1.2 Data Specification Method

29

30

Real number data (floating-point data)

Data size and data range

Real number data includes single-precision 32-bit real number data.
Real number data can be stored only in devices other than bit devices or in single-precision real data type labels.

Data name Data size Value range
Single-precision real number data (single-precision Positive | 32 bits (2 word) 27126< real number<2'28
floating-point data) number

Zero 0

Negative -2128<real numbers<-2-126

number

Configuration of single-precision real number data

Single-precision real number data consists of a sign, mantissa, and exponent, and is expressed as shown below.

The following figure shows the bit configuration of the internal expression of single-precision real number data and the

| Sign | 1. | Mantissa x2

meaning of each part.

L PSP PP]

b31 b30 b23 b22 b16 b15 b0
\ J\ AN)
' N
Sign Exponent Mantissa
ESign (1 bit)

This bit represents the positive or negative sign of a numerical value. "0" indicates a positive number or 0. "1" Indicates a
negative number.

EMantissa (23 bits)

A mantissa means XXXXX:- of 1.XXXXX:--x2N representing a single-precision real number in binary.

HEExponent (8 bits)

An exponent means N of 1. XXXXX-+x2N representing a single-precision real number in binary. The following table shows the
relationships between the exponent value and N of a single-precision real number.

Exponent (b24 to b30) | FFH FEH FDH 81H 80H 7FH 7EH 02H 01H 00H
N Not used | 127 126 2 1 0 -1 -125 -126 Not used
Precautions

EWhen setting an input value of single-precision real number from the engineering tool
The number of significant digits is about 7 because the engineering tool processes single precision real number data in 32-bit

single precision.
When the input value of single-precision real number data exceeds 7 digits, the 8th digit is rounded off.
Therefore, if the rounded-off value goes out of the range from -2147483648 to 2147483647, it will not be an intended value.

[Ex]

When "2147483647" is set as an input value, it is handled as "2147484000" because 8th digit "6" is rounded off.

When "E1.1754943562" is set as an input value, it is handled as "E1.175494" because 8th digit "3" is rounded off.

1 OVERVIEW
1.2 Data Specification Method

Pointp

The monitor function of the engineering tool can monitor real number data of CPU modules.

To represent "0" in real number data, set all numbers in each of the following range to 0.

« Single-precision real number data: b0 to b31

The setting range of real number data is as follows.

« Single precision real number data: -2'28<single precision real number data]<-2128, 0, 2-1%6<[single
precision real number data]<2128

Do not specify "-0" (only the most significant bit is 1) in real number data. Performing a real number operation

using -0 results in an operation error.

1 OVERVIEW 1
1.2 Data Specification Method 3

Character string data

Format of character string data

The following table lists the types of character string data, each of which ends with a NULL code to be handled as a character

string.
Type Character code Last character
Character string ASCII code NULL(OOH)

Character string data is stored in devices or an array in ascending order of device numbers or array element numbers.

Device number

or array element Lower » Upper
number
Character
code string —¥| Null code
ABC -+ XYZ
'ABC --- XYZ'

Data range
The following table summarizes the ranges of character string data.
Type Maximum number of character strings*1 Maximum number of character strings that can
be handled in the program
Character string 255 single-byte characters (excluding the last NULL 16383 characters (excluding the last NULL character)
character)

*1 When specifying a character string in the program, enclose it in single quotes (').

Number of words required for storing data

Character string data can be stored in word devices.
The following table lists the numbers of words required for storing character string data.

Number of character string bytes Number of words required for storing character strings
0 byte 1 [word]

Odd number of bytes (Number of character string bytes+1)+ 2 [words]

Even number of bytes (Number of character string bytes+2) +1 [words]

Character string data storage location

An image of the character string data storage location is shown below.

ECharacter strings
In each character string storage image, "NULL" indicates a NULL code (00H).

Character string | Image of storing character string data from DO Image of storing character string data from word type
to be stored label array arrayA[0]
"' (null character
string) DO NULL ' NULL arrayA[0] | NULL ' NULL
'ABC'
DO B : A arrayA[0] B : A
D1 NULL . c arrayA[1] NULL . ¢
'ABCD'
DO B : A arrayA[0] B : A
D1 D ! C arrayA[1] D 1 C
D2 NULL . NULL arrayA[2] NULL ! NULL
1 OVERVIEW

32 1.2 Data Specification Method

1.3 Execution Condition

Types of execution conditions

The following are the five types of execution conditions of the instructions and functions of CPU module.

HOn
An instruction is executed during on. It is executed only while the precondition of the instruction is on. When the precondition
is off, the instruction is not executed.

HRising edge
An instruction is executed one time when turned on. It is executed only once on the rising edge (off to on) of the precondition
of the instruction and is no longer executed later even when the condition turns on.

BOff
An instruction is executed during off. It is executed only while the precondition of the instruction is off. When the precondition
is on, the instruction is not executed.

HFalling edge
An instruction is executed one time when turned off. It is executed only once on the falling edge (on to off) of the precondition
of the instruction and is no longer executed later even when the condition turns off.

HAlways
An instruction is always executed regardless of whether the precondition of the instruction is on or off. When the precondition
is off, the instruction performs off processing.

Execution condition of each instruction

The execution condition varies depending on the instruction. The following table lists the execution conditions of individual
instructions.

Execution condition | Applicable instruction

On All instructions except for the following
Rising edge « Instruction followed by symbol (P)
* PLS
Off -
Falling edge PLF
Always LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, ANB, ORB, MPS,

MRD, MPP, INV, MEP, MEF, OUT, OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST, OUT C, OUT LC, MC, MCR, FEND,
END, NOP, LDO, ANDO, ORO, LDO_U, ANDO_U, ORO_U, LDDO, ANDDO, ORDO, LDDO_U, ANDDO_U, ORDO_U, JMP, DI,
El, IMASK, SIMASK, IRET, FOR, NEXT, RET, LD$00, AND$, OR$0O, LDEO, ANDEO, OREO, STMR, LDDTO, ANDDTL,
ORDTO, LDTMO, ANDTMO, ORTMO

1 OVERVIEW
1.3 Execution Condition

33

1.4 Precautions on Programming

Errors common to instructions

The following table lists the conditions under which an error occurs when the instruction is executed.

Error content™! Error code
An 1/0 number which corresponds to no module is specified. 2801

* An I/O number which is out of range (0 to 1777(Octal number)) is specified. 2820

« The device or label specified by the instruction exceeds the available range.

The range of the buffer memory of the module specified by the instruction is exceeded. 2823

*1 For a contact instruction, an error is not detected but the operation result becomes no continuity.

Checking the ranges of instruction runtime devices and labels

Checking the ranges of devices and labels

When a device or label is specified in an instruction, range check is performed. If a range exceeding that of the relevant
device or label is specified, an error occurs.

The same applies when a label assigned to a device is specified in an instruction in the program.

Create such a program that the operation result falls within the range of the relevant device or label.

[Ex]

When a global device is specified

Device assignment image in

F}—|BM0V| Do |p1023| K10 }—{ the device/label memory

(1) Do

D1022
D1023 } Data are written to these areas.

W0

W0007

WO3FF

(1) The transfer destination is in the range corresponding to D1023 to D1032. Because D1024 to D1032 do not exist, the data are written only to D1023.

4 1 OVERVIEW
3 1.4 Precautions on Programming

Operations arising when the OUT, SET/RST, and PLS/PLF
instructions of the same device are used

If two or more OUT, SET/RST, and PLS/PLF instructions are executed using the same device during one scan, they operate
as described in this section.

For OUT instructions of the same device

More than one OUT instruction of the same device must not be issued during one scan.

Otherwise, the specified device turns on or off, depending on the operation result up to each OUT instruction while it is in
execution.

In this case, the device may turn on/off during one scan because the on/off state of the specified device is determined during
execution of each OUT instruction.

The following figure shows the behavior arising when a circuit turning on/off the same internal relay (MO0) is created with input
X0 and X1.

MO

o=
X1 MO

O

X0 MO X0 MO

X1 MO X1 MO
END /H END END
|| | | || [|
I | [[| [
ON ! ! ' ' ON
X0 _ OFF : lOFF
ON ' E ON : :
X1 OFF T OFF
L ON : 5 10N
MO _ OFF OFF :
4)
\)
(1) (3)

(1) Since X0 is on, MO turns on.
(2) Since X1 is off, MO turns off.
(3) Since X1 is off, MO remains off.
(4) Since X1 is on, MO turns on.

If output (Y) is specified using an OUT instruction, the on/off state of the last OUT instruction executed during the one scan will
be output.

1 OVERVIEW
1.4 Precautions on Programming 35

36

If SET/RST instructions of the same device are used

BFor SET instructions
The SET instruction turns on the specified device if the execution command is on, and causes no operation if it is off.

Thus, if two or more SET instructions of the same device are executed during one scan, the specified device turns on even if
one execution command is on.

BFor RST instructions

The RST instruction turns on the specified device if the execution command is off, and causes no operation if it is off.

Thus, if two or more RST instructions of the same device are executed during one scan, the specified device turns on even if
one execution command is off.

HIf the SET and RST instructions of the same device exist in one scan

If the SET and RST instructions of the same device exist in one scan, the SET instruction turns on the specified device if the
execution command is on, and turns off the specified device if it is on.

If both the SET and RST instructions are off, the on/off state of the specified device will be unchanged.

X0
1 SET | Mo |
X1
| RST | Mo |
X0
—fser[woH
X1
RsT] wo
EN END END
| ||
| I | | 1
ON ! ! ! !
X0 _ OFF i i lOFF . .
| | ON : .
X1 o : : 1 ; ;
. ON . : :
Mo _ OFF \

@)

(1
(1) Since X0 is on, MO turns on.
(2) Since X1 is off, MO remains on. (The RST instruction results in non-processing.)
(3) Since XO0 is off, MO remains on. (The SET instruction results in non-processing.)
(4) Since X1 is on, MO turns off.

If output (Y) is specified using a SET/RST instruction, the on/off state of the last SET/RST instruction executed during the one
scan will be output.

1 OVERVIEW
1.4 Precautions on Programming

If PLS instructions of the same device are used

The PLS instruction turns on the specified device when the execution command specifies an off-to-on change. The specified

device is turned off unless the execution command specifies an off-to-on change (i.e. off to off, on to on, on to off).

Thus, if two or more PLS instructions of the same device are issued during one scan, the specified device is turned on when
the execution command of each PLS instruction specifies an off-to-on change. The specified device is turned off unless the
execution command specifies an off-to-on change.

Thus, if two or more PLS instructions are issued during one scan, the device turned on by a PLS instruction may not turn on
for one scan.

X0
| PLS
X1
|| PLS
« If X0 and X1 differs in the on/off timing (i.e. the specified device does not turn on for one scan)
X0 X0
LS wio]
X1 X1
PLS| Mo
END END END
[|| [
[| [| [
ON ' ' ;
X0 _ OFF i i lOFF !
E E ON E
X1 _oFF : ’] :
. ON : . _ON

Mo _ OFF k OFF

1) Since X0 turns on, MO turns on.

2) Since X1 is other than turning on, MO turns off.

3) Since X0 is other than turning on, MO remains off.
4) Since X1 turns on, MO turns on.

1 OVERVIEW
1.4 Precautions on Programming 37

« If the off-to-on changes of X0 and X1 are at the same timing

X0
——{eLs[woH]
[PLS| MO] [PLs[o]
I|EN END END
| on | I I
X0 _ OFF lOFF
ON : : : :
X1 _oFF 5 5 5 5
. ON : ‘ ;
Mo _ OFF OFF

Q)] (3)

(1) Since X0 turns on, MO turns on.

(2) Since X1 turns on, MO remains on.

(3) Since X0 is other than turning on, MO0 turns off.
(4) Since X1 is other than turning on, MO remains off.

If output (Y) is specified using a PLS instruction, the on/off state of the last PLS instruction executed during the one scan will
be output.

1 OVERVIEW
38 1.4 Precautions on Programming

If PLF instructions of the same device are used

The PLF instruction turns on the specified device when the execution command specifies an off-to-on change. The specified

device is turned off unless the execution command specifies an on-to-off change (i.e. off to off, off to on, on to on).

Thus, if two or more PLS instructions of the same device are issued during one scan, the specified device is turned on when
the execution command of each PLS instruction specifies an on-to-off change. The specified device is turned off unless the

execution command specifies an on-to-off change.

Thus, if two or more PLF instructions are issued during one scan, the device turned on by a PLF instruction may not turn on
for one scan.

X0
I PLe
X1
] PLF
+ If X0 and X1 differs in the on/off timing (i.e. the specified device does not turn on for one scan)
x0 X0
PLF
I|END END END
1 [I [|
ON | | | |
ol o A A
E E ON E E
X1 _orF E : | : :
Mo OFF N OFF ! !
())

() 3)

1) Since X0 turns off, MO turns on.

2) Since X1 is other than turning off, MO turns off.

3) Since X0 is other than turning off, MO remains off.
4) Since X1 is other than turning off, MO remains off.

1 OVERVIEW
1.4 Precautions on Programming 39

40

+ If the on-to-off changes of X0 and X1 are at the same timing

X0

END

ON
X0 OFF

PLF
[PLF] MO
END END
|
[

X1

Jg

OFF

ON

Mo _ OFF

(1

(1) Since X0 turns off, MO turns on.
(2) Since X1 turns off, MO remains on.
(

3) Since X0 is other than turning off, MO turns off.
(4) Since X1 is other than turning off, MO remains off.

OFF

[
ON

If output (Y) is specified using a PLF instruction, the on/off state of the last PLF instruction executed during the one scan will

be output.

1 OVERVIEW
1.4 Precautions on Programming

PART 2

PART 2 INSTRUCTION/
FUNCTION LIST

This part consists of the following chapters.

2 CPU MODULE INSTRUCTION

3 MODULE SPECIFIC INSTRUCTION

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

41

42

2 CPU MODULE INSTRUCTION

2.1 seq

uence Instruction

Contact instruction

HEOperation start, s

eries connection, parallel connection

Instruction symbol Description Reference
LD Starts logical operation (Starts NO contact logical operation) Page 98
LDI Starts logical NOT operation (Starts NC contact logical operation)
AND Logical AND (NO contact series connection)
ANI Logical NAND (NC contact series connection)
OR Logical OR (NO contact parallel connection)
ORI Logical NOR (NC contact parallel connection)
HPulse operation start, pulse series connection, pulse parallel connection
Instruction symbol Description Reference
LDP Starts rising edge pulse operation Page 100
LDF Starts falling edge pulse operation
ANDP Rising edge pulse series connection
ANDF Falling edge pulse series connection
ORP Rising edge pulse parallel connection
ORF Falling edge pulse parallel connection

HPulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection

Instruction symbol Description Reference
LDPI Starts rising edge pulse NOT operation Page 102
LDFI Starts falling edge pulse NOT operation
ANDPI Rising edge pulse NOT series connection
ANDFI Falling edge pulse NOT series connection
ORPI Rising edge pulse NOT parallel connection
ORFI Falling edge pulse NOT parallel connection
Association instruction
HLadder block series/parallel connection
Instruction symbol Description Reference
ANB AND between logical blocks (series connection between logical blocks) Page 104
ORB OR between logical blocks (parallel connection between logical blocks)
EStoring/reading/clearing the operation result
Instruction symbol Description Reference
MPS Stores the operation result Page 105
MRD Reads the operation result stored by MPS
MPP Reads and resets of the operation result stored by MPS
Hinverting the operation resulit
Instruction symbol Description Reference
INV Inversion of the operation result Page 106

2 CPU MODULE INST

RUCTION

2.1 Sequence Instruction

EConverting the operation result into a pulse

MEP Conversion of operation result to rising edge pulse Page 107

MEF Conversion of operation result to falling edge pulse

BOut (excluding the timer, counter and annunciator)

ouT Device output Page 108

ETimer (low-speed, high-speed, low-speed retentive, high-speed retentive)

ouTT Low-speed timer

OUTHT Timer

OUTHS T High-speed timer

OUT ST Low-speed retentive timer
OUTH ST Retentive timer

OUTHS ST High-speed retentive timer

Page 109

ECounter, long counter

ouTC Counter Page 111
OuTLC Long counter Page 112

BAnnunciator

OUTF Annunciator Page 113

ESetting devices (excluding annunciator)

SET Sets devices Page 114

HResetting devices (excluding annunciator)

RST Resets devices Page 115

ESetting/resetting annunciator

SETF Sets annunciator Page 116
RSTF Resets annunciator Page 117
ANS Sets annunciator (with evaluation time) Page 118
ANR Resets annunciator (smallest number reset) Page 119
ANRP

HRising/falling edge output

PLS Generates a pulse for 1 cycle of a program at the rising edge of the input signal. Page 120

PLF Generates a pulse for 1 cycle of a program at the falling edge of the input signal. Page 122

Hinverting the bit device output

FF Inversion of device output Page 123
ALT Page 124
ALTP

2 CPU MODULE INSTRUCTION 4
2.1 Sequence Instruction 3

EShifting bit devices

SFT 1 bit shift of the device
SFTP

Page 125

EShifting 16-bit data to the right/left by n bit (s)

bn bn-1
I I l
Car flag
SFRP bo (SM7OO SM8022)

Page 127

SFL
n+1 bn
I []
Carry flag
SFLP (SM700, SM8022) b15, bo
L1

I

Page 128

EShifting n-bit data to the right/left by 1 bit

BSFR Page 129
— [Tl |\> oy g
\ (SM700)
Ll TTYTTTT] L]

BSFL) Page 130
(d)
—— carytng o L LTI TTT]
(SM700) /
| | LITTT T Tof

EShifting n-word data to the right/left by 1 word

DSFR Page 131
v I\I{\H\III\I

ol TTHTTTT]
DSFL) Page 132

(@)
(TTTIITT]

DSFLP / ’|/

LITT T To]

44 2 CPU MODULE INSTRUCTION
2.1 Sequence Instruction

BShifting n-bit data to the right/left by n bit (s)

Instruction symbol Description Reference
SFTR (1) Page 133
(n2)
(d)
SFTRP I I U
\ \ (s)
CITTYTTTITy)]
t |
SFTL 1) Page 134
(n2)
- (d)
CITTTTTT] (n2)
SFTLP -
(s)
LTI Iy
EShifting n-word data to the right/left by n word (s)
Instruction symbol Description Reference
WSFR 1) Page 135
(n2)
—
(d)
WSFRP 0
\ \ (s)
CLLTTRTTTTT] [
t |
WSFL (1) Page 136
(n2)
- (d)
0 A Y
WSFLP / ©
CITTTrrpy
]
Master control instruction
ESetting/resetting the master control
Instruction symbol Description Reference
MC Starts master control Page 137
MCR Releases master control
Termination instruction
HBEnding the main routine program
Instruction symbol Description Reference
FEND Ends the main routine program Page 141
HEnding the sequence program
Instruction symbol Description Reference
END Ends the sequence program Page 142
Stop instruction
EStopping the sequence program
Instruction symbol Description Reference
STOP Stops the sequence operation after input conditions are met. Page 143

Executes the sequence program, upon setting the RUN/STOP/RESET switch to RUN again.

2 CPU MODULE INSTRUCTION 4
2.1 Sequence Instruction 5

No operation instruction

ENo operation

Instruction symbol Description Reference
NOP No processing (for deletion of instruction or for space) Page 144
2.2 Basic instruction
Comparison operation instruction
EComparing 16-bit binary data
Instruction symbol Description Reference
LD=, AND=, OR= (s1)=(s2): Conductive Page 145
LD=_U, AND=_U, OR=_U (s1)#(s2): Non-Conductive
LD<>, AND<>, OR<> (s1)#(s2): Conductive
LD<> U, AND<>_U, OR<> U (s1)=(s2): Non-Conductive
LD>, AND>, OR> (s1)>(s2): Conductive
LD> U, AND>_U, OR> U (s1)<(s2): Non-Conductive
LD<=, AND<=, OR<= (s1)<(s2): Conductive
LD<= U, AND<=_U, OR<=_U (s1)>(s2): Non-Conductive
LD<, AND<, OR< (s1)<(s2): Conductive
LD<_U, AND<_U, OR<_U (s1)>(s2): Non-Conductive
LD>=, AND>=, OR>= (s1)>(s2): Conductive
LD>=_U, AND>= U, OR>=_U (s1)<(s2): Non-Conductive
BComparing 32-bit binary data
Instruction symbol Description Reference
LDD=, ANDD=, ORD= [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive Page 147
LDD=_U, ANDD=_U, ORD=_U [(s1)*+1, (s1)] # [(s2)+1, (s2)]: Non-Conductive
LDD<>, ANDD<>, ORD<> [(s1)+1, (s1)] # [(s2)+1, (s2)]: Conductive
LDD<> U, ANDD<> U, [(s1)+1, (s1)] = [(s2)*1, (s2)]: Non-Conductive
ORD<>_U
LDD>, ANDD>, ORD> [(s1)+1, (s1)] > [(s2)*1, (s2)]: Conductive
LDD> U, ANDD>_U, ORD> U [(s1)+1, (s1)] < [(s2)+1, (s2)]: Non-Conductive
LDD<=, ANDD<=, ORD<= [(s1)+1, (s1)] < [(s2)+1, (s2)]: Conductive
LDD<=_U, ANDD<=_U, [(s1)+1, (s1)] > [(s2)+1, (s2)]: Non-Conductive
ORD<=_U
LDD<, ANDD<, ORD< [(s1)+1, (s1)] < [(s2)+1, (s2)]: Conductive
LDD<_U, ANDD<_U, ORD<_U [(s1)+1, (s1)] = [(s2)+1, (s2)]: Non-Conductive
LDD>=, ANDD>=, ORD>= [(s1)+1, (s1)] = [(s2)*1, (s2)]: Conductive
LDD>=_U, ANDD>= U, [(s1)+1, (s1)] < [(s2)+1, (s2)]: Non-Conductive
ORD>=_U
EComparison output 16-bit binary data
Instruction symbol Description Reference
CMP (s1)>(s2): (d) is on Page 149
CMPP (s1)=(s2): (d) +1is on
(s1)<(s2): (d) +2 is on
CMP_U
CMPP_U

2 CPU MODULE INSTRUCTION

2.2 Basic instruction

EComparison output 32-bit binary data

Instruction symbol Description Reference
DCMP [(s1)+1, (s1)] > [(s2)+1, (s2)]: (d) is on Page 151
DCMPP [(s1)+1, (s1)] = [(s2)+1, (s2)]: (d) + 1 is on
[(s1)+1, (s1)] < [(s2)*+1, (s2)]: (d) + 2 is on
DCMP_U
DCMPP_U
EComparing 16-bit binary data band
Instruction symbol Description Reference
ZCP (s1)>(s3): (d) is on Page 153
ZCPP (s1)<(s3)<(s2): (d) + 1is on
(s3)>(s2): (d) + 2iis on
ZCP_U
ZCPP_U
EComparing 32-bit binary data band
Instruction symbol Description Reference
DzCP [(s1)+1, (s1)] > [(s3)+1, (s3)]: (d) is on Page 155
DZCPP [(s1)+1, (sN]<[(s3)*+1, (s3)]<[(s2)*+1, (s2)]: (d) + 1 is on
[(s3)+1, (s3)]>[(s2)+1, (s2)]: (d) + 2is on
DZCP_U
DZCPP_U
EComparing 16-bit binary block data
Instruction symbol Description Reference
BKCMP=, BKCMP<>, BKCMP>, Compares the 16-bit binary data in the device area ((n) points) from (s1) with the 16-bit binary | Page 157
BKCMP<=, BKCMP<, BKCMP>= | data in the device area ((n) points) from (s2), and stores the result in the device area ((n)
BKCMP=P, BKCMP<>P, points) from (d).
BKCMP>P, BKCMP<=P,
BKCMP<P, BKCMP>=P
BKCMP=_U, BKCMP<> U,
BKCMP>_U, BKCMP<=_U,
BKCMP<_U, BKCMP>=_U
BKCMP=P_U, BKCMP<>P_U,
BKCMP>P_U, BKCMP<=P_U,
BKCMP<P_U, BKCMP>=P_U
EComparing 32-bit binary block data
Instruction symbol Description Reference
DBKCMP=, DBKCMP<>, Compares the 32-bit binary data in the device area ((n) points) from (s1) with the 32-bit binary | Page 159

DBKCMP>, DBKCMP<=,
DBKCMP<, DBKCMP>=

DBKCMP=P, DBKCMP<>P,
DBKCMP>P, DBKCMP<=P,
DBKCMP<P, DBKCMP>=P

DBKCMP=_U, DBKCMP<>_U,
DBKCMP>_U, DBKCMP<=_U,
DBKCMP<_U, DBKCMP>=_U

DBKCMP=P_U, DBKCMP<>P_U,
DBKCMP>P_U, DBKCMP<=P_U,
DBKCMP<P_U, DBKCMP>=P_U

data in the device area ((n) points) from (s2), and stores the result in the device area ((n)
points) from (d).

2 CPU MODULE INSTRUCTION
2.2 Basic instruction

47

48

Arithmetic operation instruction

BAdding/subtracting 16-bit binary data

Instruction symbol

Description

Reference

+

+P

+ U

+P_U

(d)+(s) > (d)

Page 161

(s1)+(s2) > (d)

Page 162

(s1)+(s2) > (d)

Page 163

(d)-(s) > (d)

Page 165

(s1)-(s2) —» (d)

Page 166

SuB

SUBP

SUB_U

SUBP_U

(s1)-(s2) —» (d)

Page 167

2 CPU MODULE INSTRUCTION

2.2 Basic instruction

BAdding/subtracting 32-bit binary data

Instruction symbol

Description

Reference

[(d)*+1, ()] +[(s)*1, ()] - [(d)+1, (d)]

Page 169

D+P_U

[(s1)*1, (s1)] + [(s2)*1, (s2)] — [(d)+1, (d)]

Page 170

DADD

DADDP

DADD_U

DADDP_U

[(s1)*1, (s1)] + [(s2)*1, (s2)] — [(d)+1, (d)]

Page 171

D-

D-P

D-_U

D-P_U

[(d)*+1, (d)] - [(s)*1, ()] - [(d)*1, (d)]

Page 173

D-

D-P

D-_U

D-P_U

[(s1)+1, (s1)] - [(s2)+1, (s2)] - [(d)+1, (d)]

Page 174

DSUB

DSUBP

DSUB_U

DSUBP_U

[(s1)+1, (s1)] - [(s2)+1, (s2)] - [(d)+1, (d)]

Page 175

EMultiplying/dividing 16-bit binary data

Instruction symbol

Description

Reference

*

P

* U

*P_U

(s1) x (s2) > [(d)+1, (d)]

Page 177

MUL

MULP

MUL_U

MULP_U

(s1) x (s2) > [(d)+1, (d)]

Page 178

P

/_U

P_U

(s1) + (s2) — quotient (d), remainder (d)+1

Page 180

DIV

DIVP

DIV_U

DIVP_U

(s1) + (s2) — quotient (d), remainder (d)+1

Page 181

2 CPU MODULE INSTRUCTION 4
2.2 Basic instruction 9

50

EMultiplying/dividing 32-bit binary data

Instruction symbol Description Reference
D* [(s1)+1, (s1)] x [(s2)+1, (s2)] > [(d)+3, (d)*+2, (d)+1, (d)] Page 183
D*P
D* U
D*P_U
DMUL [(s1)+1, (s1)] x [(s2)+1, (s2)] > [(d)+3, (d)*+2, (d)+1, (d)] Page 185
DMULP
DMUL_U
DMULP_U
D/ [(s1)+1, (s1)] = [(s2)+1, (s2)] — quotient [(d)+1, (d)], remainder [(d)+3, (d)+2] Page 187
D/P
D/_U
D/IP_U
DDIV [(s1)+1, (s1)] = [(s2)+1, (s2)] — quotient [(d)+1, (d)], remainder [(d)+3, (d)+2] Page 188
DDIVP
DDIV_U
DDIVP_U

BAdding/subtracting BCD 4-digit data
Instruction symbol Description Reference
B+ (d) + (s) > (d) Page 190
B+P
B+ (s1) +(s2) — (d) Page 191
B+P
B- (d) - (s) > (d) Page 192
B-P
B- (s1)-(s2) > (d) Page 193
B-P

BAdding/subtracting BCD 8-digit data
Instruction symbol Description Reference
DB+ [(d)+1, (A)] + [(s)+1, ()] = [(d)+1, (d)] Page 194
DB+P
DB+ [(s1)+1, (s1)] + [(s2)+1, (s2)] — [(d)+1, (d)] Page 195
DB+P
DB- [(d)+1, (A)] - [(s)+1, ()] = [(d)+1, (d)] Page 196
DB-P
DB- [(s1)+1, (s1)] - [(82)+1, (s2)] — [(d)+1, (d)] Page 197
DB-P

EMultiplying/dividing BCD 4-digit data
Instruction symbol Description Reference
B* (s1) x (s2) - [(d)+1, (d)] Page 198
B*P
B/ (s1) + (s2) — quotient (d), remainder (d)+1 Page 199
B/P

EMultiplying/dividing BCD 8-digit data
Instruction symbol Description Reference
DB* [(s1)+1, (s1)] x [(s2)*1, (s2)] = [(d)+3, (d)+2, (d)+1, (d)] Page 200
DB*P
DB/ [(s1)+1, (s1)] = [(s2)+1, (s2)] — quotient [(d)+1, (d)], remainder [(d)+3, (d)+2] Page 201
DB/P

2 CPU MODULE INSTRUCTION

2.2 Basic instruction

BAdding/subtracting 16-bit binary block data

Instruction symbol Description Reference
BK+ Adds the 16-bit binary bit data in the device area ((n) points) from (s1) and the data or constants in | Page 202
BK+P the device area ((n) points) from (s2) at once, and stores the result in the device area ((n) points)
from (d).
BK+_U
BK+P_U
BK- Subtracts the 16-bit binary bit data in the device area ((n) points) from (s1) and the data or Page 204
BK-P constants in the device area ((n) points) from (s2) at once, and stores the result in the device area
((n) points) from (d).
BK-_U
BK-P_U
BAdding/subtracting 32-bit binary block data
Instruction symbol Description Reference
DBK+ Adds the 32-bit binary bit data in the device area ((n) points) from (s1) and the 32-bit data or Page 206
constants in the device area ((n) points) from (s2), and stores the result in the device area specified
DBK+P by (d) and later.
DBK+_U
DBK+P_U
DBK- Subtracts the 32-bit binary bit data in the device area ((n) points) from (s1) and the 32-bit data or Page 209
constants in the device area ((n) points) from (s2) and later, and stores the result in the device area
DBK-P specified by (d) and later.
DBK-_U
DBK-P_U
Hincrementing/decrementing 16-bit binary data
Instruction symbol Description Reference
INC (d)+1—>(d) Page 211
INCP
INC_U
INCP_U
DEC (d)-1—(d) Page 212
DECP
DEC_U
DECP_U
Hincrementing/decrementing 32-bit binary data
Instruction symbol Description Reference
DINC [(d)+1, (d)] + 1 > [(d)+1, (d)] Page 213
DINCP
DINC_U
DINCP_U
DDEC [(@)+1, (d)] -1 - [(d)*+1, (d)] Page 214
DDECP
DDEC_U
DDECP_U

2 CPU MODULE INSTRUCTION
2.2 Basic instruction

51

52

Logical operation instruction

EPerforming an AND operation on 16-bit/32-bit data

Instruction symbol Description Reference
WAND (d)A(s) = (d) Page 215
WANDP
WAND (s1)A (s2) > (d) Page 216
WANDP
DAND [(d)+1, (d)] Al(s)*+1, (s)] — [(d)+1, (d)] Page 217
DANDP
DAND [(s1)+1, (s [(s2)+1, (s2)] = [(d)*+1, (d)] Page 218
DANDP

EPerforming an AND operation on 16-bit block data
Instruction symbol Description Reference
BKAND (s1) (s2)) Page 219
scmior |

BPerforming an OR operation on 16-bit/32-bit data
Instruction symbol Description Reference
WOR d)V(s) - (d) Page 220
WORP
WOR (s1) V(s2) - (d) Page 221
WORP
DOR [(d)*+1, ()] V [(s)+1, (s)] = [(d)+1, (d)] Page 222
DORP
DOR [(s1)+1, (s1)] V [(s2)+1, (s2)] — [(d)+1, (d)] Page 223
DORP

HPerforming an OR operation on 16-bit block data
Instruction symbol Description Reference
BKOR .(31) | ‘(32) | ‘(d) | Page 224
—

EPerforming an XOR operation on 16-bit/32-bit data
Instruction symbol Description Reference
WXOR (d) ¥ (s) > (d) Page 225
WXORP
WXOR (s1) ¥ (s2) —» (d) Page 226
WXORP
DXOR [(d)+1, (d)] ¥ [(s)*1, (s)] = [(d)+1, (d)] Page 227
DXORP
DXOR [(s1)+1, (s1)] ¥ [(s2)+1, (s2)] - [(d)+1, (d)] Page 228
DXORP

HPerforming an XOR operation on 16-bit block data
Instruction symbol Description Reference
BKXOR Page 229

BKXORP

(1) (s2) (d)

L
I
|
[
L

= iI(n)

] L
I I
I |
] f
] L

2 CPU MODULE INSTRUCTION

2.2 Basic instruction

HPerforming an XNOR operation on 16-bit/32-bit data

WXNR m —(d) Page 230

WXNRP

WXNR W(SZ) R (d) Page 231

WXNRP

DXNR Page 232
[(d)+1, ()] [(8)*+1, ()] — [(d)+1, (d)]

DXNRP

DXNR Page 233
[(s1)*+1, (s [(s2)+1, (s2)] = [(d)+1, (d)]

DXNRP

EPerforming an XNOR operation on 16-bit block data

BKXNR

(s1) (s2) (d)

S

BKXNRP

Page 234

ESetting/resetting a bit in the word device

BSET (d) Page 235
b15 |bw b0

BSETP t

BRST (d) Page 236
F15 |bw bo

BRSTP t o

BPerforming a bit test

TEST (s1) Page 237
b15 - b0 (d)
TESTP
Bits specified by (s2)
DTEST (s1) Page 238
b31 o b0 (d)
DTESTP
Bits specified by (s2)

EBatch-resetting bit devices

BKRST
(d)[ON (d)| OFF
| OFF | Reset | OFF AN
BKRSTP ‘ | ' '
ON OFF
ON OFF

Page 239

2 CPU MODULE INSTRUCTION
2.2 Basic instruction 53

EBatch-resetting devices

Instruction symbol Description Reference
ZRST Page 240
R —— [@r2 [@1 | @ |
(d1), (d2) are bit devices: Writes off (reset) from (d1) to (d2)
ZRSTP (d1), (d2) are word devices: Writes KO from (d1) to (d2)
‘(dZ) ‘ -------------- ‘ (d1)+2 ‘ (d1)+1 ‘ (d1) ‘
Data conversion instruction
EConverting binary data to BCD 4-digit/8-digit data
Instruction symbol Description Reference
BCD s) Conversion to BCD) Page 242
BCDP f BIN (0 to 9999)
DBCD : Page 244
(s+1,5) Conversion to BCD (d+1, d)
DBCDP L BIN(0to99999999)
HEConverting BCD 4-digit/8-digit data to binary data
Instruction symbol Description Reference
BIN Conversion to binary data Page 246
(s) > (d)
BINP BCD (0 to 9999)
DBIN : " Page 248
(s+1,5) Conversion to binary data= (d+1, d)
DBINP L BcD (0 to 99999999)
EConverting single-precision real number to 16-bit/32-bit signed binary data
Instruction symbol Description Reference
FLT2INT . . Page 250
(s+1,5) Conversion to binary data= =
Real number (-32768 to +32767)
FLT2INTP
FLT2DINT : " Page 251
(s+1,5) Conversion to binary data; (d+1, d)
Real number (-2147483648 to +2147483647)
FLT2DINTP
EConverting single-precision real number to 16-bit/32-bit unsigned binary data
Instruction symbol Description Reference
FLT2UINT . " Page 252
(s+1,5) Conversion to binary dati(d)
FLT2UINTP Real number (0 to 65535)
FLT2UDINT . f Page 253
(s+1,5) Conversion to binary dataﬂd”! d)
FLT2UDINTP Real number (0 to 4294967295)
EConverting 16-bit signed binary data to 16-bit/32-bit unsigned binary data
Instruction symbol Description Reference
INT2UINT Converts 16-bit signed data in the device specified by (s) to 16-bit unsigned data, and stores the Page 254
INT2UINTP converted data in the device specified by (d).
INT2UDINT Converts 16-bit signed data in the device specified by (s) to 32-bit unsigned data, and stores the Page 255
INT2UDINTP converted data in the device specified by (d).

54

2.2 Basic instruction

2 CPU MODULE INSTRUCTION

EConverting 16-bit

signed binary data to 32-bit signed binary data

Instruction symbol Description Reference
INT2DINT Converts 16-bit signed data in the device specified by (s) to 32-bit signed data, and stores the Page 256
INT2DINTP converted data in the device specified by (d).

HEConverting 16-bit unsigned binary data to 16-bit/32-bit signed binary data
Instruction symbol Description Reference
UINT2INT Converts 16-bit unsigned data in the device specified by (s) to 16-bit signed data, and stores the Page 257
UINT2INTP converted data in the device specified by (d).
UINT2DINT Converts 16-bit unsigned data in the device specified by (s) to 32-bit signed data, and stores the Page 258
UINT2DINTP converted data in the device specified by (d).

EConverting 16-bit unsigned binary data to 32-bit unsigned binary data
Instruction symbol Description Reference
UINT2UDINT Converts 16-bit unsigned data in the device specified by (s) to 32-bit unsigned data, and stores the | Page 259
UINT2UDINTP converted data in the device specified by (d).

HEConverting 32-bit signed binary data to 16-bit signed binary data
Instruction symbol Description Reference
DINT2INT Converts 32-bit signed data in the device specified by (s) to 16-bit signed data, and stores the Page 260
DINT2INTP converted data in the device specified by (d).

EConverting 32-bit signed binary data to 16-bit/32-bit unsigned binary data
Instruction symbol Description Reference
DINT2UINT Converts 32-bit signed data in the device specified by (s) to 16-bit unsigned data, and stores the Page 261
DINT2UINTP converted data in the device specified by (d).
DINT2UDINT Converts 32-bit signed data in the device specified by (s) to 32-bit unsigned data, and stores the Page 262
DINT2UDINTP converted data in the device specified by (d).

HEConverting 32-bit unsigned binary data to 16-bit/32-bit signed binary data
Instruction symbol Description Reference
UDINT2INT Converts 32-bit unsigned data in the device specified by (s) to 16-bit signed data, and stores the Page 263
UDINT2INTP converted data in the device specified by (d).
UDINT2DINT Converts 32-bit unsigned data in the device specified by (s) to 32-bit signed data, and stores the Page 264
UDINT2DINTP converted data in the device specified by (d).

EConverting 32-bit unsigned binary data to 16-bit unsigned binary data
Instruction symbol Description Reference
UDINT2UINT Converts 32-bit unsigned data in the device specified by (s) to 16-bit unsigned data, and stores the | Page 265
UDINT2UINTP converted data in the device specified by (d).

2 CPU MODULE INSTRUCTION
2.2 Basic instruction

55

56

EConverting 16-bit/32-bit binary data to Gray code

Instruction symbol Description Reference
GRY . Page 266
Conversion to gray code
(s) > (d)
GRYP BIN (-32768 to 32767)
GRY_U)
- Conversion to gray code
(s) »(d)
GRYP U BIN (0 to 65535)
DGRY) Page 267
(s+1,9) Conversion to gray code= (d+1, d)
DGRYP BIN (-2147483648 to 2147483647)
DGRY_U Conversion to gray code
(s+1,5) gray code, (4+1, d)
DGRYP U BIN (0 to 4294967295)
HEConverting Gray code to 16-bit/32-bit binary data
Instruction symbol Description Reference
GBIN)) Page 268
Conversion to binary data
(s) > (d)
GBINP Gray code (-32768 to +32767)
GBIN_U .)
s) Conversion to binary data;(d)
GBINP U Gray code (0 to 65535)
DGBIN) . Page 269
(s+1,5) Conversion to binary data= (d+1, d)
DGBINP g Gray code (-2147483648 to +2147483647)
DGBIN_U .)
(s+1,5) Conversion to binary data;(dﬂ! d)
DGBINP U Gray code (0 to 4294967295)
EConverting decimal ASCII to 16-bit/32-bit binary data
Instruction symbol Description Reference
DABIN Converts a 5-digit decimal ASCII value in the device specified by (s) to a 1 word binary value, and | Page 270
DABINP stores the converted data in the word device number specified by (d).
DABIN_U
DABINP_U
DDABIN Converts a 10-digit decimal ASCII value in the device specified by (s) to a 2 word binary value, and | Page 272
DDABINP stores the converted data in the word device number specified by (d).
DDABIN_U
DDABINP_U
EConverting ASCII to HEX
Instruction symbol Description Reference
HEXA Converts the ASCII data stored in the number of characters specified by (n) starting from device Page 274
HEXAP specified in (s), and stores the converted data in the device specified by (d) onwards.

2 CPU MODULE INSTRUCTION

2.2 Basic instruction

EConverting character string to 16-bit/32-bit binary data

Instruction symbol Description Reference
VAL Converts a character string including decimal point in the device specified by (s) to a 1 word binary | Page 277
VALP value and number of decimal fraction digits, and stores the converted data in the devices specified
by (d1) and (d2).
VAL_U
VALP_U
DVAL Converts a character string including decimal point in the device specified by (s) to a 2 words Page 279
DVALP binary value and number of decimal fraction digits, and stores the converted data in the devices
specified by (d1) and (d2).
DVAL_U
DVALP_U
HETwo's complement of 16-bit/32-bit binary data (sign inversion)
Instruction symbol Description Reference
NEG — Page 282
@——> 9
NEGP BIN
DNEG @ 1.d) (d+1, d) Page 283
DNEGP BIN
EDecoding from 8 to 256 bits
Instruction symbol Description Reference
DECO Page 284
() Decode . ‘P
ecode = ——& bt
I 1 its
DECOP J_l&‘) —y
BEncoding from 256 to 8 bits
Instruction symbol Description Reference
ENCO (s) Page 285
Encode _ (d)
! ! 2(n) bits (n)
ENCOP —
ESeparating 4 bits from 16-bit data
Instruction symbol Description Reference
DIS Separates the 16-bit data specified by (s) into 4-bit units and stores in the lower 4 bits of (n) points | Page 286
DISP from (d). (n < 4)
EConnecting 4 bits to 16-bit data
Instruction symbol Description Reference
UNI Connects the lower 4 bits of (n) points from the device specified by (s), and stores the result in the | Page 287
UNIP device specified by (d). (n <4)
ESeparating/connecting the specified number of bits
Instruction symbol Description Reference
NDIS Separates the data in the devices starting from the one specified by (s1) into bits specified by the Page 288
NDISP devices from (s2), and stores them to the devices starting from the one specified by (d).
NUNI Connects the data in the devices starting from the one specified by (s1) with bits specified by the Page 290
NUNIP devices from (s2), and stores them to the devices starting from the one specified by (d).
ESeparating/connecting data in byte units
Instruction symbol Description Reference
WTOB Breaks (n) points of 16 bit data from the device specified by (s) into 8-bit units, and stores in the Page 292
WTOBP devices starting from the one specified by (d).
BTOW Connects the lower 8 bits of 16-bit data of (n) points from the device specified by (s) into 16-bit Page 294
BTOWP units, and stores in the devices starting from the one specified by (d).

2 CPU MODULE INSTRUCTION
2.2 Basic instruction

57

58

ETransferring 16-bit/32-bit data

MOV (s) () Page 296
MOVP

DMOV (s+1,) (d+1, d) Page 297
DMOVP

Hinverting and transferring 16-bit/32-bit data

CML ® d) Page 298
CMLP
DCML &9 (d+1, d) Page 299
DCMLP

EShift move

SMOV

SMOVP

Shifts the specified no. of digits from the word device specified by (s), and store in (d).

Page 300

Hinverting and transferring 1-bit data

CMLB

CMLBP

Inverts the bit data specified by (s), and store in (d).

Page 302

ETransferring 16-bit block data (65535 points maximum)

BMOV

BMOVP

(n) = 1 to 65535

Page 303

ETransferring identical 16-bit block data (65535 points maximum)

FMOV

FMOVP

@

s) =

Toet" [0
=

(n) = 1 to 65535

Page 305

ETransferring identical 32-bit block data (65535 points maximum)

DFMOV

(d+1, d)

DFMOVP

(s+1,s) —
S o i
=4

(n) = 1 to 65535

Page 306

2 CPU MODULE INSTRUCTION

2.2 Basic instruction

BExchanging 16-bit/32-bit data

xer (@1) > (@2) Page 307
XCHP

pXeH (d1+1, d1) ¢——— (d2+1,d2) Page 308
DXCHP

BExchanging the upper and lower bytes of 16-bit data

SWAP

SWAPP

b15 - b8b7 - b0 Page 309

(d) [8bits | 8bits

b15 - b0

- b8b7 -
(d) [8 bits 8 bits

BExchanging the upper and lower bytes of 32-bit data

DSWAP

DSWAPP

b15 - b8b7 - b b15 - b8b7 - b0 Page 310
(d)+1 [8hits | 8bits | (d) [8bits | 8bits |

b15 - b8b7 - b0 b15 - b8b7 - b0
(dy+1 [8bits | 8bits | (d)[8bits | 8bits |

ETransferring 1-bit data

MOVB

MOvVBP

Stores the bit data specified by (s) in (d). Page 311

HParallel run (octal mode) (16-bit data)

PRUN

PRUNP

Handles device number specified by (s) in nibble specification and (d) as octal, and stores into (d) | Page 312
from (s).

HParallel run (octal mode) (32-bit data)

DPRUN

DPRUNP

Handles device number specified by (s) in nubble specification and (d) as octal, and stores into (d) | Page 314
from (s).

HTransferring n-bit data

BLKMOVB

BLKMOVBP

Block transfers bit data for (n) points from (s) to bit data for (n) points from (d). Page 316

2 CPU MODULE INSTRUCTION
2.2 Basic instruction

59

60

2.3 Application instruction

Rotation instruction

HRotating 16-bit data to the right

Instruction symbol Description Reference
ROR b15 (d) b0 Carry flag (SM700, SM8022) Page 317
RORP I
(n) bit right rotation
RCR b15 () bO Carry flag (SM700, SM8022)
[,
‘f O
RCRP ‘ ‘
(n) bit right rotation
HRotating 16-bit data to the left
Instruction symbol Description Reference
ROL Carry flag (SM700, SM8022) b15 (d) bO Page 320
le | <
‘ N 4 ‘
ROLP —
(n) bit left rotation
RCL Carry flag (SM700, SM8022) b15 (d) b0
P
‘ C 11 4 ‘
RCLP ‘ ‘
(n) bit left rotation
HRotating 32-bit data to the right
Instruction symbol Description Reference
DROR (d+1)) Page 322
b31 -+ b16b15 - b0 Carry flag (SM700, SM8022)
I RN
DRORP 4 | 10
(n) bit right rotation
DRCR (d+1))
b31 -+ b16b15 - b0 Carry flag (SM700, SM8022)
DRCRP ! |
(n) bit right rotation
HRotating 32-bit data to the left
Instruction symbol Description Reference
DROL Page 324

(d+1) ()
Carry flag (SM700, SM8022) b31 - b16b15 - b0

e —

DROLP
(n) bit left rotation
DRCL (d+1) (d)
Carry flag (SM700, SM8022) b31 - b16b15 - b0
] [
DRCLP L1 | s

(n) bit left rotation

2 CPU MODULE INSTRUCTION
2.3 Application instruction

Program branch i

nstruction

HEPointer branch

Instruction symbol Description Reference
CcJ When the input condition is met, jump to pointer (P) Page 326
CJP
BJumping to END
Instruction symbol Description Reference
GOEND When the input condition is met, jump to END instruction Page 329
Program execution control instruction
EDisabling/enabling interrupt programs
Instruction symbol Description Reference
DI Disables the execution of interrupt programs. Page 330
El Releases the execution disabled state of interrupt program.
EDisabling the interrupt program with specified priority or lower
Instruction symbol Description Reference
DI Disables the execution of the interrupt program with a priority specified by (s) or lower until the EI Page 332
instruction is executed.
Hinterrupt program mask
Instruction symbol Description Reference
IMASK Interrupt disable/enable settings Page 335
EDisabling/enabling the specified interrupt pointer
Instruction symbol Description Reference
SIMASK Disables/enables the interrupt pointer specified by (1) Page 337
HReturning from the interrupt program
Instruction symbol Description Reference
IRET Returns from the interrupt program to the sequence program Page 338
HResetting the watchdog timer
Instruction symbol Description Reference
WDT Resets the watchdog timer (WDT) in the program Page 339
WDTP
Structuring instruction
HPerforming the FOR to NEXT instruction loop
Instruction symbol Description Reference
FOR Execute the instructions between FOR instruction and NEXT instruction (n) times Page 340
NEXT
EForcibly terminating the FOR to NEXT instruction loop
Instruction symbol Description Reference
BREAK Forcibly end execution between FOR instruction and NEXT instruction, and jump to pointer (P) Page 342
BREAKP

2 CPU MODULE INSTRUCTION
2.3 Application instruction

61

62

HCalling a subroutine program

CALL Executes a subroutine program specified by (P) when the input condition is met. Page 344

CALLP

HReturning from the subroutine program

RET Returns from the subroutine program. Page 348

SRET

HCalling a subroutine program

XCALL Executes a subroutine program specified by (P) when the input condition is met. Page 349
Carry out non-execution processing for the subroutine program (P), when input conditions are not
met.

HReading the oldest data from the data table

SFRD o] Page 351

(s) Pointer (s) Pointer -1
(s)+1 v

SFRDP

HReading the newest data from the data table

PoP — Page 399

(s) Pointer (s) Pointer -1

POPP

HWriting data to the data table

SFWR Page 355

o

(d) Pointer (d) Pointer + 1

SFWRP

2 CPU MODULE INSTRUCTION
2.3 Application instruction

HDeleting/inserting data from/to the data table

Instruction symbol Description Reference
FINS] — Page 357
(d)| Number of stored data (d)| Number of stored data +1
FINSP
B j«— Specify by (n)
FOR) — Page 359
(d)| Number of stored data (d)| Number of stored data -1
FDELP
Specify by (n) —
Character string operation instruction
BComparing character strings
Instruction symbol Description Reference
LD$=, AND$=, OR$= Compares the character string (s1) with the character string (s2) one character at a time." Page 361
[Character string (s1)] = [Character string (s2)]: Conductive state
[Character string (s1)] # [Character string (s2)]: Non-Conductive state
LD$<>, AND$<>, OR$<> Compares the character string (s1) with the character string (s2) one character at a time."
[Character string (s1)] # [Character string (s2)]: Conductive state
[Character string (s1)] = [Character string (s2)]: Non-Conductive state
LD$>, AND$>, OR$> Compares the character string (s1) with the character string (s2) one character at a time."
[Character string (s1)] > [Character string (s2)]: Conductive state
[Character string (s1)] < [Character string (s2)]: Non-Conductive state
LD$<=, AND$<=, OR$<= Compares the character string (s1) with the character string (s2) one character at a time.”
[Character string (s1)] < [Character string (s2)]: Conductive state
[Character string (s1)] > [Character string (s2)]: Non-Conductive state
LD$<, AND$<, OR$< Compares the character string (s1) with the character string (s2) one character at a time."
[Character string (s1)] < [Character string (s2)]: Conductive state
[Character string (s1)] > [Character string (s2)]: Non-Conductive state
LD$>=, AND$>=, OR$> Compares the character string (s1) with the character string (s2) one character at a time.”
[Character string (s1)] > [Character string (s2)]: Conductive state
[Character string (s1)] < [Character string (s2)]: Non-Conductive state
*1 The following shows comparison conditions for comparing character strings.
- Match: All characters in the strings must match
- Larger string: In case of different character strings, character string with the larger character code
(If character string lengths are different, the longer character string)
- Smaller string: In case of different character strings, character string with the smaller character code
(If character string lengths are different, the shorter character string)
EConcatenating character strings
Instruction symbol Description Reference
$+ « In case of 2 operands Page 364
§+P Connect the character string specified by (s) to the end of the character string specified by (d), and
store in (d).
$+ * In case of 3 operands Page 366
$+P Connect the character string specified by (s2) to the end of the character string specified by (s1),
and store in (d).
ETransferring character strings
Instruction symbol Description Reference
$MOV Transfer the character strings specified by (s) to the devices specified by (d) onwards. Page 368
$MOVP

2 CPU MODULE INSTRUCTION
2.3 Application instruction

63

64

EConverting 16-bit/32-bit binary data to decimal ASCII

Instruction symbol Description Reference
BINDA Converts the 1 word binary value specified by (s) to 5 digits decimal ASCII value, and stores in the | Page 370
BINDAP word device specified by (d).
BINDA_U
BINDAP_U
DBINDA Converts the 2 word binary value specified by (s) to 10 digits decimal ASCII value, and stores in the | Page 372
DBINDAP word device area specified by (d) onwards.
DBINDA_U
DBINDAP_U

EConverting HEX code data to ASCII
Instruction symbol Description Reference
ASCI Converts the (n) characters within the HEX code data specified by (s) to ASCII, and stores in the Page 374
ASCIP device area specified by (d) onwards.

EConverting 16-bit/32-bit binary data to character string
Instruction symbol Description Reference
STR Converts the 1 word binary value specified by (s2) to the decimal character string with total number | Page 378
STRP of digits and the number of digits in the decimal fraction part as specified in (s1), and stores this in

the device specified by (d).
STR_U
STRP_U
DSTR Convert the 2 word binary value specified by (s2) to the decimal character string with total number | Page 380
DSTRP of digits and the number of digits in the decimal fraction part as specified in (s1), and stores this in
the device specified by (d).

DSTR_U
DSTRP_U

EConverting single-precision real number to character string
Instruction symbol Description Reference
ESTR Converts the single-precision real number data specified by (s1) to a character string, and store Page 383
ESTRP this in the device specified by (d).
DESTR
DESTRP

EDetecting a character string length
Instruction symbol Description Reference
LEN Stores the length of the character string data stored in the device specified by (s) in the device Page 388
LENP specified by (d).

BMExtracting character string data from the right/left
Instruction symbol Description Reference
RIGHT Stores the (n) characters from the last character of the character string specified by (s) in the Page 390
RIGHTP device specified by (d).
LEFT Stores the (n) characters from the first character of the character string specified by (s) in the Page 392
LEFTP device specified by (d).

2 CPU MODULE INSTRUCTION
2.3 Application instruction

BStoring/replacing the specified number of character strings

Instruction symbol Description Reference
MIDR Stores the specified number of characters from the position specified by (s2) of the character string | Page 394
MIDRP (s1) into the device specified by (d).
MIDW Stores the specified number of characters from the character string (s1) into the location specified | Page 396
MIDWP by (s2) of the character string (d).
ESearching character string
Instruction symbol Description Reference
INSTR Searches the character string in the device specified by (s2), starting from the (s3)th character, for | Page 398
INSTRP the character string in the device specified by (s1), and stores the matching location in the device
specified by (d).
Hinserting character string
Instruction symbol Description Reference
STRINS Inserts the character string data specified in (s1) at the position (s2)(Insert position) from the Page 400
STRINSP beginning of the character string data specified by (d).
HDeleting character string
Instruction symbol Description Reference
STRDEL From the head of the character string data specified in (d), delete (n2) characters from the location | Page 402
STRDELP specified as the character number (n1) (deletion start location).
Real number instruction
BComparing single-precision real numbers
Instruction symbol Description Reference
LDE=, ANDE=, ORE= [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive Page 404
[(s1)+1, (s1)] # [(s2)*+1, (s2)]: Non-Conductive
LDE<>, ANDE<>, ORE<> [(s1)+1, (s1)] # [(s2)+1, (s2)]: Conductive
[(s1)+1, (s1)] = [(s2)+1, (s2)]: Non-Conductive
LDE>, ANDE>, ORE> [(s1)+1, (s1)] > [(s2)+1, (s2)]: Conductive
[(s1)*+1, (s1)] < [(s2)*+1, (s2)]: Non-Conductive
LDE<=, ANDE<=, ORE<= [(s1)*+1, (s1)] < [(s2)*1, (s2)]: Conductive
[(s1)*+1, (s1)] > [(s2)+1, (s2)]: Non-Conductive
LDE<, ANDE<, ORE< [(s1)+1, (s1)] < [(s2)+1, (s2)]: Conductive
[(s1)+1, (s1)] = [(s2)+1, (s2)]: Non-Conductive
LDE>=, ANDE>=, ORE> [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive
[(s1)+1, (s1)] < [(s2)+1, (s2)]: Non-Conductive
DECMP This instruction compares two data values (single-precision real numbers), and outputs the result Page 406
DECMPP (larger, smaller or equal) to three bit devices.
DEZCP This instruction compares two data values (single-precision real numbers), and outputs the result Page 408
DEZCPP (larger, smaller or data band) to three bit devices.
BAdding/subtracting single-precision real numbers
Instruction symbol Description Reference
E+ « In case of 2 operands Page 410
E+P [(d)+1, (d)] + [(s)+1, ()] = [(d)+1, (d)]
E+ « In case of 3 operands Page 411
E+P [(s1)+1, (s1)] + [(s2)*+1, (s2)] - [(d)*+1, (d)]
DEADD Page 414
DEADDP
E- « In case of 2 operands Page 412
E-P [(d)+1, ()] - [(s)+1, ()] = [(d)+1, (d)]

2 CPU MODULE INSTRUCTION
2.3 Application instruction

65

66

Instruction symbol Description Reference
E- « In case of 3 operands Page 413
E-P [(s1)+1, (s1)] - [(s2)+1, (s2)] - [(d)*+1, (d)]
DESUB Page 416
DESUBP

EMultiplying/dividing single-precision real numbers
Instruction symbol Description Reference
E* [(s1)+1, (s1)] x [(s2)+1, (s2)] — [(d)+1, (d)] Page 418
E*P
DEMUL Page 422
DEMULP
E/ [(s1)+1, (s1)] = [(s2)*+1, (s2)] > quotient [(d)+1, (d)] Page 420
E/P
DEDIV Page 424
DEDIVP

EConverting 16-bit/32-bit signed binary data to single-precision real number
Instruction symbol Description Reference
INT2FLT Converts the 16-bit signed binary data in the device specified by (s) to single-precision real Page 426
INT2FLTP number, and stores the converted data in the device specified by (d).
DINT2FLT Converts the 32-bit signed binary data in the device specified by (s) to single-precision real Page 428
DINT2FLTP number, and stores the converted data in the device specified by (d).

EConverting 16-bit/32-bit unsigned binary data to single-precision real number

Instruction symbol Description Reference
UINT2FLT Converts the 16-bit unsigned binary data in the device specified by (s) to single-precision real Page 427
UINT2FLTP number, and stores the converted data in (d).
UDINT2FLT Converts the 32-bit unsigned binary data in the device specified by (s) to single-precision real Page 429
UDINT2FLTP number, and stores the converted data in (d).

EConverting character string to single-precision real number
Instruction symbol Description Reference
EVAL Converts the character string specified by (s) to a single-precision real number, and stores the Page 430
EVALP converted data in (d).
DEVAL
DEVALP

EConverting binary floating point to decimal floating point
Instruction symbol Description Reference
DEBCD Converts the binary floating point specified by (s) into decimal floating point, and stores in (d). Page 433
DEBCDP

EConverting decimal floating point to binary floating point
Instruction symbol Description Reference
DEBIN Converts the decimal floating point specified by (s) into binary floating point, and stores in (d). Page 435
DEBINP

Hinverting the sign of single-precision real number
Instruction symbol Description Reference
ENEG @1.d) (d+1, d) Page 437
ENEGP Real number
DENEG
DENEGP

2 CPU MODULE INSTRUCTION

2.3 Application instruct

ion

HTransferring single-precision real number data

Instruction symbol Description Reference
EMOV (s+1, 5) (d+1, d) Page 438
EMOVP Real number
DEMOV
DEMOVP

ECalculating the sine of single-precision real number
Instruction symbol Description Reference
SIN Sin [(s)+1, (s)] = [(d)+1, (d)] Page 439
SINP
DSIN
DSINP

ECalculating the cosine of single-precision real number
Instruction symbol Description Reference
CcOos Cos [(s)*1, (s)] = [(d)+1, (d)] Page 441
CcosP
DCOS
DCOSP

ECalculating the tangent of single-precision real number
Instruction symbol Description Reference
TAN Tan [(s)+1, (s)] = [(d)*+1, (d)] Page 443
TANP
DTAN
DTANP

ECalculating the arc sine of single-precision real number
Instruction symbol Description Reference
ASIN Sin [(s)+1, (s)] - [(d)+1, (d)] Page 445
ASINP
DASIN
DASINP

ECalculating the arc cosine of single-precision real number
Instruction symbol Description Reference
ACOS Cos™" [(s)+1, ()] = [(d)*1, (d)] Page 447
ACOSP
DACOS
DACOSP

ECalculating the arc tangent of single-precision real number
Instruction symbol Description Reference
ATAN Tan™ [(s)+1, (s)] = [(d)*+1, (d)] Page 449
ATANP
DATAN
DATANP

2 CPU MODULE INSTRUCTION
2.3 Application instruction 67

68

EConverting single-precision real number angle to radian

Instruction symbol Description Reference
RAD (s+1,5) (d+1, d) Page 451
RADP Converts from degrees to radians
DRAD
DRADP

EConverting single-precision real number radian to angle
Instruction symbol Description Reference
DEG (s+1,5) (d+1, d) Page 452
DEGP Converts from radians to degrees
DDEG
DDEGP

HCalculating the square root of single-precision real number
Instruction symbol Description Reference
DESQRP

ECalculating the exponent of single-precision real number
Instruction symbol Description Reference
EXP eler 1. (N, [(dy+1, (d)] Page 454
EXPP
DEXP
DEXPP

ECalculating the natural logarithm of single-precision real number
Instruction symbol Description Reference
LOG Logel[(s)*1, (s)] = [(d)*+1, (d)] Page 456
LOGP
DLOGE
DLOGEP

ECalculating the exponentiation of single-precision real number
Instruction symbol Description Reference
POW [(s1)+1, (s12*1 62 (d)+1, (d)] Page 458
POWP

ECalculating the common logarithm of single-precision real number
Instruction symbol Description Reference
LOG10 log10[(s)+1, (s)] = [(d)+1, (d)] Page 460
LOG10P
DLOG10
DLOG10P

BSearching the maximum value of single-precision real number
Instruction symbol Description Reference
EMAX These instructions search for the maximum value in the (n) points of single-precision real number | Page 461

EMAXP

block data specified by the device starting from the one specified by (s), and store the maximum
value in the device area specified by (d).

2 CPU MODULE INSTRUCTION
2.3 Application instruction

BSearching the minimum value of single-precision real number

Instruction symbol Description Reference
EMIN These instructions search for the minimum value in the (n) points of single-precision real number Page 463
EMINP block data specified by the device starting from the one specified by (s), and store the minimum
value in the device areas specified by (d).

Random number instruction

BGenerating random number
Instruction symbol Description Reference
RND Generates a random number from 0 to 32767, and stores this in the device specified by (d). Page 465
RNDP

Index register operation instruction

BSaving/returning all data of the index register
Instruction symbol Description Reference
ZPUSH Saves the contents of index registers to the devices specified by (d) onwards. Page 466
ZPUSHP
ZPOP Reads the data in devices specified by (d) onwards to the index registers. Page 468
ZPOPP

ESaving/returning the selected data of the index register and long index register

Instruction symbol Description Reference
ZPUSH Saves the contents of the index registers and long index registers in the range specified by (s) to Page 469
ZPUSHP devices specified by (d) onwards.
ZPOP Reads data in the devices specified by (d) onwards to the index registers and long index registers. | Page 471
ZPOPP
Data control instruction
EUpper and lower limit control of 16-bit/32-bit binary data
Instruction symbol Description Reference
LIMIT (s3) < (s1): The (s1) value is stored in (d) Page 472
(s1) < (s3) < (s2): The (s3) value is stored in (d)
LIMITP (s2) < (s3): The (s2) value is stored in (d)
LIMIT_U
LIMITP_U
DLIMIT [(s3)+1, (s3)] < [(s1)+1, (s1)]: The [(s1)+1, (s1)] value is stored in [(d)+1, (d)] Page 474
[(s1)+1, (1] < [(s3)+1, (s3)] < [(s2)+1, (s2)]: The [(s3)+1, (s3)] value is stored in [(d)+1, (d)]
DLIMITP [(s2)+1, (s2)] < [(s3)*+1, (s3)]: The [(s2)+1, (s2)] value is stored in [(d)+1, (d)]
DLIMIT_U
DLIMITP_U

2 CPU MODULE INSTRUCTION
2.3 Application instruction 69

70

EDead band control of 16-bit/32-bit binary data

Instruction symbol Description Reference

BAND When (s1) < (s3) < (s2): 0 — (d) Page 476
When (s3) < (s1): (s3) - (s1) —> (d)

BANDP When (s2) < (s3): (s3) - (s2) — (d)

BAND_U

BANDP_U

DBAND When [(s1)+1, (s1)] < [(s3)+1, (s3)] < [(s2)+1, (s2)]: 0 — (d+1, d) Page 478
When [(s3)+1, (s3)] < [(s1)*+1, (s1)]: [(s3)*1, (s3)] - [(s1)+1, (s1)] - [(d)+1, (d)]

DBANDP When [(s2)+1, (s2)] < [(s3)*1, (s3)]: [53)*1, (3)] - [(52)*1, (52)] - [(e)*1, (@)]

DBAND_U

DBANDP_U

BZone control of 16-bit/32-bit binary data

Instruction symbol Description Reference

ZONE When (s3) = 0: 0 — (d) Page 480
When (s3) > 0: (s3) + (s2) — (d)

ZONEP When (s3) < 0: (s3) + (s1) > (d)

ZONE_U

ZONEP_U

DZONE When [(s3)+1, (s3)] = 0: 0 — [(d)+1, (d)] Page 482
When [(s3)+1, (s3)] > 0: [(s3)+1, (s3)] + [(s2)+1, (s2)] — [(d)+1, (d)]

DZONEP When [(s3)+1, (s3)] < 0: [(s3)+1, (s3)] + [(s1)*1, (s1)] - [(d)+1, (d)]

DZONE_U

DZONEP_U

EScaling 16-bit/32-bit binary data (point coordinates)

Instruction symbol Description Reference
SCL Executes scaling using the scaling conversion data (16-bit data units) specified by (s2) for the input | Page 484
value specified by (s1), and then stores the result in the device specified by (d).

SCLP The scaling conversion is executed based on the scaling conversion data stored in the device
SCL_U specified by (s2) onwards.
SCLP_U
DSCL Executes scaling using the scaling conversion data (32-bit data units) specified by (s2) for the input | Page 487
value specified by (s1), and then stores the result in the device specified by (d).
bsCLP The scaling conversion is executed based on the scaling conversion data stored in the device
DSCL_U specified by (s2) onwards.
DSCLP_U
EScaling 16-bit/32-bit binary data (XY coordinates)

Instruction symbol Description Reference
SCL2 Executes scaling using the scaling conversion data (16-bit data units) specified by (s2) for the input | Page 490
value specified by (s1), and then stores the result in the device specified by (d).

SCL2pP The scaling conversion is executed based on the scaling conversion data stored in the device

scL2 U specified by (s2) onwards.

SCL2P_U

DSCL2 Executes scaling using the scaling conversion data (32-bit data units) specified by (s2) for the input | Page 493
value specified by (s1), and then stores the result in the device specified by (d).

DsCL2P The scaling conversion is executed based on the scaling conversion data stored in the device

DSCL2 U specified by (s2) onwards.

DSCL2P_U

2 CPU MODULE INST
2.3 Application instruct

RUCTION
ion

Special timer instruction

HTeaching timer

Instruction symbol Description Reference
TTMR (On time of TTMR) x (s) ———» (d) Page 496
(s)=0:1, (s)=1:10, (s)=2:100
ESpecial function timer
Instruction symbol Description Reference
STMR The 4 points from the bit device specified by (d) operate as shown below, depending on the ON/ Page 498
OFF status of the input conditions for the STMR instruction:
(d)+0: Off delay timer output
(d)+1: One shot after off timer output
(d)+2: One shot after on timer output
(d)+3: On delay and off delay timer output
Shortcut control instruction
HRotary table shortest direction control
Instruction symbol Description Reference
ROTC Rotates a rotary table with (n1) divisions from the stop position to the position specified by (s)+1in | Page 500
the shortest direction.
Ramp signal instruction
BRamp signal
Instruction symbol Description Reference
RAMPF Shifts the value from the one specified by (s1) to the one specified by (s2) in (n) scans. Page 503
The current value is stored in the device specified by (d1)+0.
Pulse related instruction
EMeasuring the density of 16 bit binary/32 bit binary pulses
Instruction symbol Description Reference
SPD Counts the pulse input from the device specified by (s1) for the duration of time specified by (s2), Page 505
DSPD and stores the count in the device specified by (d). Page 509
W16 bit binary/32 bit binary pulse output
Instruction symbol Description Reference
PLSY * When an FX3 series-compatible operand is specified Page 513
DPLSY This instruction outputs a pulse at a frequency specified by (s) for the number of times specified by Page 521
(n) from the output number (Y) specified by (d).
* When an FX5 series-compatible operand is specified
This instruction outputs a pulse at a frequency specified by (s) for the number of times specified by
(n), from the output number (axis number) specified by (d).
W16 bit binary/32 bit binary pulse width modulation
Instruction symbol Description Reference
PWM Outputs the pulse of the cycle specified by (s2), for the ON time on specified by (s1), to the output | Page 529
DPWM number specified by (d). Page 533
Drum sequence
H16-bit binary data absolute method
Instruction symbol Description Reference
ABSD Creates many output patterns corresponding to the current value of a counter. Page 538

2 CPU MODULE INSTRUCTION
2.3 Application instruction

71

W32-bit binary data absolute method

DABSD Creates many output patterns corresponding to the current value of a counter. Page 540

HERelative method

INCD This instruction compares the current value of a counter with the data table having (n) lines starting | Page 542
from (s1) (which occupies (n) lines x 1 device). If the counter value is equivalent to the table data,
the current output is reset, and the ON/OFF status of the specified sequential outputs is controlled.

BCheck code
CCD This instruction calculates the sum data and horizontal parity value of data stored in (s) to (s)+(n)-1. | Page 544
ccDP The sum data is stored in (d), and the horizontal parity value is stored in (d)+1.

ESearching 16-bit/32-bit data

SERMM (1) Page 547
(s2) Searches for data same as (s2) in (s1).

I | (n)

] |

SERMMP
T—>(d) to (d)+4: Search result

DSERMM 32 bit Page 549
s Searches for data same as (s2) in (s1).

I (s2)
DSERMMP :n:u
s (d)+1, (d) to (d)+9, (d)+8: Search result

HEBit check of 16-bit/32-bit data

SUM () Page 551
b15 ... b0
L]

SUMP T T, (d): Total number of 1s

DSUM s+1) (s) Page 552
LT]

DSUMP T CT—— (d): Total number of 1s

EBit judgment of 16-bit data/32-bit data

BON) Page 553
b5 ... b0

BONP
\—> b(n) ON — (d)=On

b(n) OFF —» (d)=Off

DBON Page 554

b31 e bo
L1 []

DBONP
\—r b(n) ON — (d)=On

b(n) OFF —» (d)=0ff

2 CPU MODULE INSTRUCTION
2.3 Application instruction

BSearching the maximum value of 16-bit/32-bit data

Instruction symbol Description Reference
MAX This instruction searches the data of (n) points from the device specified by (s) in 16-bit units, and | Page 555
MAXP stores the maximum value in the device specified by (d).
MAX_U
MAXP_U
DMAX This instruction searches the data of (n) points from the device specified by (s) in 32-bit units, and | Page 556
DMAXP stores the maximum value in the device specified by (d).
DMAX_U
DMAXP_U
EMSearching the minimum value of 16-bit/32-bit data
Instruction symbol Description Reference
MIN This instruction searches the data of (n) points from the device specified by (s) in 16-bit units, and | Page 557
MINP stores the minimum value in the device specified by (d).
MIN_U
MINP_U
DMIN This instruction searches the data of (n) points from the device specified by (s) in 32-bit units, and | Page 558
DMINP stores the minimum value in the device specified by (d).
DMIN_U
DMINP_U
ESorting 16-bit data
Instruction symbol Description Reference
SORTTBL In the data table (sorting source) having ((m1)x(m2)) points specified by (s), sorts the data lines in | Page 559
SORTTBL U the ascending order based on the group data in the column number (n), and stores the result in the
- data table (sorting result) having ((m1)x(m2)) points specified by (d).
H16-bit/32-bit data alignment 2
Instruction symbol Description Reference
SORTTBL2 In the data table (sorting source) of 16-bit binary data having (m1xm2) points specified by (s), sorts | Page 562
SORTTBL2 U the data lines in the ascending order based on the group data in the column number (n), and stores
- the result in the data table (sorting result) of 16-bit binary data having ((m1)x(m2)) points specified
by (d).
DSORTTBL2 In the data table (sorting source) of 32-bit binary data having (m1xm2) points specified by (s), sorts | Page 565
DSORTTBL2 U the data lines in the ascending order based on the group data in the column number (n), and stores
- the result in the data table (sorting result) of 32-bit binary data having ((m1)x(m2)) points specified
by (d).
BAdding 16-bit data
Instruction symbol Description Reference
WSUM These instructions add the (n) points of 16-bit binary data in the device starting from the one Page 568
WSUM U specified by (s), and store the result in the device specified by (d).
WSUMP
WSUMP_U
BAdding 32-bit data
Instruction symbol Description Reference
DWSUM These instructions add the (n) points of 32-bit binary data in the device starting from the one Page 569
DWSUM U specified by (s), and store the result in the device specified by (d).
DWSUMP
DWSUMP_U

2 CPU MODULE INSTRUCTION
2.3 Application instruction

73

74

ECalculating the mean value of 16-bit/32-bit data

MEAN These instructions calculate the mean value of (n) points (16-bit binary data) in the devices starting | Page 570
MEANP from the one specified by (s), and store the result in the device specified by (d).

MEAN_U

MEANP_U

DMEAN These instructions calculate the mean value of (n) points (32-bit binary data) in the devices starting | Page 571
DMEANP from the one specified by (s), and store the result in the device specified by (d).

DMEAN_U

DMEANP_U

HCalculating the square root of 16-bit/32-bit data

SQRT Page 572
SQRTP (s) - (d)

DSQRT Page 573
DSQRTP A G (d)+1.d)

BCRC calculation

CRC

CRCP

This instruction generates a CRC value for (n) 8-bit data (unit: byte) starting from the device
specified by (s), and stores the CRC value to (d).

Page 574

Fie register operation nstruction

HReading the indirect address

ADRSET (8) ———— () Page 577
ADRSETP Indirect address of the specified device
Device name
HReading clock data
TRD (Clock element) — (d)+0| Year Page 579
+1| Month
+2 Day
+3 | Hour
TROP +4| Minute
+5| Seconds
+6 |Day of week|
EWriting clock data
TR (d)+0[Year | — (Clock element) Page 581
+1| Month
+2 Day
+3| Hour
TWRP +4| Minute
+5 | Seconds
+6 [Day of week

2 CPU MODULE INSTRUCTION
2.3 Application instruction

BAdding clock data

Instruction symbol Description Reference
TADD (s1) (s2) (d) Page 583
Hour Hour Hour
Minute + Minute | — | Minute
TADDP Seconds Seconds| Seconds|
ESubtracting clock data
Instruction symbol Description Reference
TSUB (s1) (s2) () Page 585
Hour Hour Hour
TSUBP Minute - Minute | — | Minute
Seconds| Seconds| Seconds|
EConverting time data from hour/minute/second to seconds in 16 bits/32 bits
Instruction symbol Description Reference
HTOS (s) @ Page 587
Hour —r—
HTOSP Minute | — |Seconds]
Seconds|
DHTOS Page 588
) @1 @ ?
Hour [t—Va———
DHTOSP Minute | — | Seconds \
Seconds
EConverting time data from seconds to hour/minute/second in 16 bits/32 bits
Instruction symbol Description Reference
STOH s)) Page 589
— Hour
STOHP [Seconds] — [Minute
Seconds
DSTOH d Page 590
O (@
A Hour
DSTOHP Seconds — Minute
Seconds
EComparing date data
Instruction symbol Description Reference
LDDT=, ANDDT=, ORDT= (1) Vear (s2) [Vear Page 591
(s1)+1| Month = (s2)+1 | Month Result
(s1)+2| Day (s2)+2 | Day
LODT<>, ANDDT=>, (s1)[Year | (s2) [Year
ORDT<> (s1)+1| Month <> (s2)+1| Month Result
(s1)+2| Day (s2)+2 | Day
LDDT>, ANDDT>, ORDT> (s1) [Vear (s2) [Vear
(s1)+1| Month > (s2)+1 | Month Result
(s1)+2|_Day (s2)+2 |_Day
LODT <=, ANDDT<=, (s1)[Year (s2) [Year
ORDT<= (s1)+1| Month <= (s2)+1| Month Result
(s1)+2| Day (s2)+2 | Day
LDDT<, ANDDT<, ORDT< (s1)[Vear (s2)[Vear
(s1)+1| Month < (s2)+1| Month Result
(s1)+2| Day (s2)+2| Day
LDDT):_’ ANDDT>=, (s1)[Year (s2)| Year
ORDT>= (s1)+1[Month | >= (s2)+1 | Month Result
(s1)+2|_Day (s2)+2 | Day

2 CPU MODULE INSTRUCTION
2.3 Application instruction 75

EComparing time data

Instruction symbol Description Reference
LDTM=, ANDTM=, ORTM= (1) [Hour (s2) [Hour Page 594
(s1)+1| Minute = (s2)+1|Minute | — Result
(s1)+2 [Seconds (s2)+2 [Seconds
LDTM<>, ANDTM<>, (s1)[Hour (s2)[Hour
ORTM<> (s1)+1| Minute <> (s2)+1| Minute | — Result
(s1)+2 |Seconds (s2)+2 |Seconds
LDTM>, ANDTM>, ORTM> (s1) [Hour (s2) [Hour
(s1)+1| Minute > (s2)+1 | Minute | — Result
(s1)+2 |Seconds (s2)+2 |Seconds
LDTM<=, ANDTM<=, (s1) [Fiour (s2) [Hour
ORTM<= (s1)+1[Minute | <= (s2)+1 [Minute | — Result
(s1)+2 [Seconds (s2)+2 [Seconds
LDTM<, ANDTM<, ORTM< 1) [Hour (s2) Hour
(s1)+1| Minute < (s2)+1| Minute | — Result
(s1)+2 |Seconds (s2)+2 |Seconds
LDTM>=_, ANDTM>=, (s1) [Tour (s2) [Hour
ORTM>= (s1)+1[Minute | >= (s2)+1 [Minute | — Result
(s1)+2 |Seconds (s2)+2 |Seconds
BEComparing clock data
Instruction symbol Description Reference
TCMP Page 597
(s1) [Hour (s4) Hour 9
TCMPP (s2) | Minute > (s4)+1[Minute | ==> (d)=ON
(s3) [Seconds (s4)+2 |Seconds
(s1) [Hour (s4) Hour
(s2) | Minute = (s4)*1|Minute | —=> (d)+1=0ON
(s3) [Seconds (s4)+2 |Seconds|
(s1) [Hour (s4) Hour
(s2) [Minute < (s4)*1|Minute | —==> (d)+2=ON
(s3) [Seconds (s4)+2 |Seconds|
EComparing clock data zones
Instruction symbol Description Reference
TZCP Page 599
(s1) Hour (s3) Hour 9
(s1)+1 | Minute | > (s3)+1| Minute —> (d)=ON
(s1)+2 |Seconds| (s3)+2 |Seconds
TZCPP (s1) Hour (s3) Hour (s2) Hour
(s1)*1 | Minute | < (s3)+1| Minute | < (s2)+1| Minute —> (d)+1=ON
(s1)+2 [Seconds (s3)+2 |Seconds (s2)+2 [Seconds
(s3) Hour (s2) Hour
(s3)+1 | Minute | > (s2)+1|Minute | —=—> (d)+2=ON
(s3)+2 [Seconds (s2)+2 [Seconds
Timing check instruction
BGenerating timing pulses
Instruction symbol Description Reference
DUTY Page 601
@-J [

T (n1)scans | (n2)scans

SM420 to SM424, SM2330 to SM2334

2 CPU MODULE INSTRUCTION
76 2.3 Application instruction

HEHour meter

Instruction symbol Description Reference
HOURM This instruction adds the time during which the input contact is ON in units of 1 hour, turns ON the | Page 603
device specified by (d2) when the total ON time exceeds the time specified by (s) (16-bit binary
data), and stores the current value in units of 1 hour (16-bit binary data) to (d1), and the current
value that is less than one hour (16-bit binary data) to (d1)+1 in units of seconds.
DHOURM This instruction adds the time during which the input contact is ON in units of 1 hour, turns ON the | Page 604
device specified by (d2) when the total ON time exceeds the time specified by (s) (32-bit binary
data), and stores the current value in units of 1 hour (32-bit binary data) to (d1), and the current
value that is less than one hour (16-bit binary data) to (d1)+2 in units of seconds.
Module access instruction
EPerforming I/O refresh
Instruction symbol Description Reference
REF This instruction refreshes the relevant I/O area during a scan. Page 605
REFP
RFS
RFSP
EReading 1-word/2-word data from another module (16-bit specification)
Instruction symbol Description Reference
FROM These instructions read the (n) word data from the buffer memory of the intelligent function module. | Page 607
FROMP
DFROM These instructions read the (n)x2 word data from the buffer memory of the intelligent function
DFROMP module.
EWriting 1-word/2-word data to another module (16-bit specification)
Instruction symbol Description Reference
TO These instructions write the (n) word data to the buffer memory of the intelligent function module. Page 610
TOP
DTO These instructions write the (n)x2 word data to the buffer memory of the intelligent function module.
DTOP
BReading 1-word/2-word data from another module (32-bit specification)
Instruction symbol Description Reference
FROMD These instructions read the (n) word data from the buffer memory of the intelligent function module. | Page 613
FROMDP
DFROD These instructions read the (n)x2 word data from the buffer memory of the intelligent function
DFRODP module.
EWriting 1-word/2-word data to another module (32-bit specification)
Instruction symbol Description Reference
TOD These instructions write the (n) word data to the buffer memory of the intelligent function module. Page 616

TODP

DTOD

DTODP

These instructions write the (n)x2 word data to the buffer memory of the intelligent function module.

2 CPU MODULE INSTRUCTION
2.3 Application instruction 77

78

2.4 Buil

t-in Ethernet Function Instruction

Socket communication function instruction

HOpening a connection

Instruction symbol Description Reference
SP.SOCOPEN This instruction opens the connection specified by (s1). Page 619
HClosing a connection
Instruction symbol Description Reference
SP.SOCCLOSE This instruction closes the connection specified by (s1). (Closing a connection) Page 622
HEReading receive data during the END processing
Instruction symbol Description Reference
SP.SOCRCV This instruction reads the received data of the connection specified by (s1) from the socket Page 624
communication receive data area, during the END processing.
ESending data
Instruction symbol Description Reference
SP.SOCSND This instruction sends the data set in (s3) to the target device of the connection specified by (s1). Page 627
BReading connection information
Instruction symbol Description Reference
SP.SOCCINF This instruction reads the connection information of the connection specified by (s1). Page 629
HBReading socket communication receive data
Instruction symbol Description Reference
S.SOCRDATA This instruction reads the data of the number of words specified in (n) from the socket Page 631
SP.SOCRDATA communication receive data area of the connection specified by (s1), and stores it to the device

specified by (d) onwards.

2 CPU MODULE INST

RUCTION

2.4 Built-in Ethernet Function Instruction

3 MODULE SPECIFIC INSTRUCTION

3.1 High-speed Counter Instruction

High-speed processing instruction

ESetting 32-bit data comparison

Instruction symbol Description Reference
DHSCS Turns ON the bit device of (d) when the current value of the high-speed counter of CH specified by | Page 634
(s2) is changed to the value specified by (s1).
HReset 32-bit data comparison
Instruction symbol Description Reference
DHSCR Turns OFF the bit device of (d) when the current value of the high-speed counter of CH specified Page 636
by (s2) is changed to the value specified by (s1).
EComparison of 32-bit data band
Instruction symbol Description Reference
DHSZ Compares whether the current value of the high-speed counter is within or outside the value range | Page 638
specified by (s1) or (s2).
B Start/stop of the 16-bit/32-bit data high-speed I/O function
Instruction symbol Description Reference
HIOEN Start or stop high-speed 1/O for the specified CH. Page 640
HIOENP
DHIOEN Page 642
DHIOENP
High-speed current value transfer instruction
EHigh-speed current value transfer of 16-bit/32-bit data
Instruction symbol Description Reference
HCMOV Transfers the current value of the high-speed 1/0. Page 644
HCMOVP
DHCMOV Page 646
DHCMOVP
3.2 External Device /O Instruction
Serial communication 2
Instruction symbol Description Reference
RS2 Sends/receives data by non-protocol communication. Page 648

3 MODULE SPECIFIC INSTRUCTION
3.1 High-speed Counter Instruction 79

80

3.3

Pos

itioning Instruction

Positioning instruction

BZero return(OPR)

with 16-bit/32- bit data DOG search

Instruction symbol Description Reference
DSZR * When FX3 series-compatible operand is specified Page 650
DDSZR Specifies the proximity dog signal, zero signal and device (Y). Outputs a pulse with the specified Page 652
device (Y) to perform the zero return operation.
* When FX5 series operand is specified
Specifies the original position return speed, creep speed and axis number. Outputs a pulse with the
specified axis to perform the zero return operation.
l16-bit/32-bit data interrupt positioning
Instruction symbol Description Reference
DVIT * When FX3 series-compatible operand is specified Page 653
DDVIT Performs interrupt positioning with the specified travel distance, speed, and device (Y). Page 655
* When FX5 series operand is specified
Performs interrupt positioning with the specified travel distance, speed, and axis number.
HPositioning by one table operation
Instruction symbol Description Reference
TBL » When FX3 series-compatible operand is specified Page 657
Outputs 1 table operation from the table set by the parameter as pulse with specified device (Y).
* When FX5 series operand is specified
Outputs 1 table operation from the table set by the parameter as pulse with specified axis number.
HPositioning by multiple table operation
Instruction symbol Description Reference
DRVTBL Outputs continuous multiple table operations from the table set by the parameter as pulse with Page 659
specified axis number.
HEMultiple axes concurrent drive positioning
Instruction symbol Description Reference
DRVMUL Outputs the table set by the parameter as pulse with specified multiple axes. Page 660
W32-bit data ABS current value read
Instruction symbol Description Reference
DABS Reads the absolute position data of the servo amplifier. Page 662
l16-bit/32-bit data variable speed pulse
Instruction symbol Description Reference
PLSV * When FX3 series-compatible operand is specified Page 663
DPLSV Specifies the command speed and output device (Y) and uses the specified device (Y) to perform Page 665
pulse output.
* When FX5 series operand is specified
Specifies the command speed and performs pulse output with the specified axis number.
l16-bit/32-bit data relative positioning
Instruction symbol Description Reference
DRVI * When FX3 series-compatible operand is specified Page 667
DDRVI Specifies the travel distance from the current position, speed and performs pulse output with the Page 669

specified device (Y).

* When FX5 series operand is specified

Specifies the travel distance from the current position, speed and performs pulse output with the
specified axis number.

3 MODULE SPECIFIC

INSTRUCTION

3.3 Positioning Instruction

W16-bit/32-bit data absolute positioning

Instruction symbol Description Reference
DRVA » When FX3 series-compatible operand is specified Page 671
DDRVA Specifies the travel distance from the reference position, speed and performs pulse output with the Page 673
specified device (Y).
» When FX5 series operand is specified
Specifies the travel distance from the reference position, speed and performs pulse output with the
specified axis number.
3.4 Inverter Communication Instruction
Inverter operation monitoring (Status check)
Instruction symbol Description Reference
IVCK Reads the contents of the corresponding instruction code from the specified inverter station Page 675
number.
Inverter operations control (Drive)
Instruction symbol Description Reference
IVDR Writes the contents of the corresponding instruction code to the specified inverter station number. | Page 676
Inverter parameter read
Instruction symbol Description Reference
IVRD Reads a parameter from the specified inverter station number. Page 677
Inverter parameter write
Instruction symbol Description Reference
IVWR Writes a parameter to the specified inverter station number. Page 678
Inverter parameter block write
Instruction symbol Description Reference
IVBWR Writes the range of the specified data tables to the specified inverter station number in batch. Page 679
Inverter multi command
Instruction symbol Description Reference
IVMC Sends/receives data corresponding to the send/receive data type to/from the specified inverter Page 680
station number.
3.5 MODBUS Communication Instruction
MODBUS read/write
Instruction symbol Description Reference
ADPRW Sends the function code from the master to the slave of the MODBUS serial communication and Page 682

reads or writes the data.

3 MODULE SPECIFIC INSTRUCTION
3.4 Inverter Communication Instruction

81

82

3.6 BFM Device Read/ Write Instruction

Divided BFM Read

Instruction symbol Description Reference
RBFM Divides and reads data from the continuous buffer memory in the intelligent module. Page 684
(This instruction cannot be used with the FX5 series intelligent module.)
Divided BFM Write
Instruction symbol Description Reference
WBFM Divides and writes data to the continuous buffer memory in the intelligent module. Page 687

(This instruction cannot be used with the FX5 series intelligent module.)

3 MODULE SPECIFIC INSTRUCTION
3.6 BFM Device Read/ Write Instruction

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Type conversion functions

Converting BOOL to WORD/DWORD

Function symbol Description Reference
BOOL_TO_WORD Converts BOOL type data to WORD type data. Page 690
BOOL_TO_WORD_E
BOOL_TO_DWORD Converts BOOL type data to DWORD type data. Page 691
BOOL_TO_DWORD _E

Converting BOOL to INT/DINT
Function symbol Description Reference
BOOL_TO_INT Converts BOOL type data to INT type data. Page 692
BOOL_TO_INT_E
BOOL_TO_DINT Converts BOOL type data to DINT type data. Page 693
BOOL_TO_DINT_E

Converting BOOL to TIME
Function symbol Description Reference
BOOL_TO_TIME Converts BOOL type data to TIME type data. Page 694
BOOL_TO_TIME_E

Converting BOOL to STRING
Function symbol Description Reference
BOOL_TO_STRING Converts BOOL type data to STRING type data. Page 695
BOOL_TO_STRING_E

Converting WORD to BOOL
Function symbol Description Reference
WORD_TO_BOOL Converts WORD type data to BOOL type data. Page 696
WORD_TO BOOL_E

Converting WORD to DWORD
Function symbol Description Reference
WORD_TO_DWORD Converts WORD type data to DWORD type data. Page 697

WORD_TO_DWORD_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

83

84

WORD_TO_INT Converts WORD type data to INT type data. Page 698
WORD_TO_INT_E

WORD_TO_DINT Converts WORD type data to DINT type data. Page 699
WORD_TO _DINT_E

WORD_TO_TIME Converts WORD type data to TIME type data.
WORD_TO_TIME_E

Page 700

DWORD_TO_BOOL Converts DWORD type data to BOOL type data.

DWORD_TO_BOOL_E

Page 701

DWORD_TO_WORD Converts DWORD type data to WORD type data.

DWORD_TO_WORD_E

Page 702

DWORD_TO_INT Converts DWORD type data to INT type data. Page 704
DWORD_TO_INT_E
DWORD_TO_DINT Converts DWORD type data to DINT type data. Page 706

DWORD_TO_DINT_E

DWORD_TO_TIME Converts DWORD type data to TIME type data.

DWORD_TO_TIME_E

Page 707

INT_TO_BOOL Converts INT type data to BOOL type data.

INT_TO_BOOL_E

Page 708

INT_TO_WORD Converts INT type data to WORD type data. Page 709
INT_TO_WORD_E

INT_TO_DWORD Converts INT type data to DWORD type data. Page 710
INT_TO_DWORD_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions

INT_TO_DINT

INT_TO_DINT_E

Converts INT type data to DINT type data.

Page 711

INT_TO_BCD

INT_TO_BCD_E

Converts INT type data to BCD type data.

Page 712

INT_TO_REAL

INT_TO_REAL_E

Converts INT type data to REAL type data.

Page 714

INT_TO_TIME

INT_TO_TIME_E

Converts INT type data to TIME type data.

Page 715

INT_TO_STRING

INT_TO_STRING_E

Converts INT type data to STRING type data.

Page 716

DINT_TO_BOOL

DINT_TO_BOOL_E

Converts DINT type data to BOOL type data.

Page 718

DINT_TO_WORD Converts DINT type data to WORD type data. Page 719
DINT_TO_WORD_E
DINT_TO_DWORD Converts DINT type data to DWORD type data. Page 721

DINT_TO_DWORD_E

DINT_TO_INT

DINT_TO_INT_E

Converts DINT type data to INT type data.

Page 722

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions 85

86

DINT_TO_BCD
DINT_TO_BCD_E

Converts DINT type data to BCD type data. Page 723

DINT_TO_REAL
DINT_TO_REAL_E

Converts DINT type data to REAL type data. Page 725

DINT_TO_TIME
DINT_TO_TIME_E

Converts DINT type data to TIME type data. Page 726

DINT_TO_STRING

DINT_TO_STRING_E

Converts DINT type data to STRING type data. Page 727

BCD_TO_INT Converts BCD type data to INT type data. Page 729
BCD_TO_INT_E

BCD_TO_DINT Converts BCD type data to DINT type data. Page 731
BCD_TO_DINT_E

REAL_TO_INT Converts REAL type data to INT type data. Page 733
REAL_TO_INT_E

REAL_TO_DINT Converts REAL type data to DINT type data. Page 735
REAL_TO_DINT_E

REAL_TO_STRING
REAL_TO_STRING_E

Converts REAL type data to STRING type data (exponent format). Page 737

TIME_TO_BOOL
TIME_TO_BOOL_E

Converts TIME type data to BOOL type data. Page 740

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Converting TIME to WORD/DWORD

Function symbol Description Reference
TIME_TO_WORD Converts TIME type data to WORD type data. Page 741
TIME_TO_WORD_E
TIME_TO_DWORD Converts TIME type data to DWORD type data. Page 742
TIME_TO_DWORD_E

Converting TIME to INT/DINT
Function symbol Description Reference
TIME_TO_INT Converts TIME type data to INT type data. Page 743
TIME_TO_INT_E
TIME_TO_DINT Converts TIME type data to DINT type data. Page 744
TIME_TO_DINT_E

Converting TIME to STRING
Function symbol Description Reference
TIME_TO_STRING Converts TIME type data to STRING type data. Page 745
TIME_TO_STRING_E

Converting STRING to BOOL
Function symbol Description Reference
STRING_TO_ BOOL Converts STRING type data to BOOL type data. Page 746
STRING_TO_BOOL_E

Converting STRING to INT/DINT
Function symbol Description Reference
STRING_TO_INT Converts STRING type data to INT type data. Page 747
STRING_TO_INT_E
STRING_TO_DINT Converts STRING type data to DINT type data. Page 749
STRING_TO_DINT_E

Converting STRING to REAL
Function symbol Description Reference
STRING_TO_REAL Converts STRING type data to REAL type data. Page 751
STRING_TO_REAL_E

Converting STRING to TIME
Function symbol Description Reference
STRING_TO_TIME Converts STRING type data to TIME type data. Page 754
STRING_TO_TIME_E

Converting bit array to INT/DINT
Function symbol Description Reference
BITARR_TO_INT Converts a bit array to INT type data for a specified number of bits. Page 755
BITARR_TO_INT_E
BITARR_TO_DINT Converts a bit array to DINT type data for a specified number of bits. Page 756
BITARR_TO_DINT_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions 87

INT_TO_BITARR Outputs low-order (n) bits of INT type data to a bit array. Page 757
INT_TO_BITARR_E
DINT_TO_BITARR Outputs low-order (n) bits of DINT type data to a bit array. Page 758

DINT_TO_BITARR_E

CPY_BITARR

CPY_BITARR_E

Copies specified number of bits of a bit array.

Page 759

GET_BIT_OF_INT

GET_BIT_OF_INT_E

Reads a value of a specified bit of INT type data.

Page 760

SET_BIT_OF_INT

SET_BIT_OF_INT_E

Writes a value to a specified bit of INT type data.

Page 761

CPY_BIT_OF_INT

CPY_BIT_OF_INT_E

Copies a specified bit of INT type data to a specified bit of another INT type data.

Page 762

GET_BOOL_ADDR

Converts a data type to the BOOL type.

GET_INT_ADDR

Converts a data type to the INT type.

GET_WORD_ADDR

Converts a data type to the WORD type.

Page 763

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

Standard functions of one numeric variable

Outputs the absolute value of an input value. Page 764

SQRT

SQRT_E

Outputs the square root of an input value. Page 766

Outputs the natural logarithm operation result of an input value. Page 767

Outputs the operation result of the common logarithm (the logarithm whose base is 10) of an input | Page 768
value.

Outputs the exponential operation result of an input value. Page 770

Outputs the sine of the angle of an input value. Page 771

Outputs the cosine of the angle of an input value. Page 772

Outputs the tangent of the angle value of an input value. Page 773

ASIN

ASIN_E

Outputs the arc sine value of an input value. Page 774

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions 89

90

ACOS Outputs the arc cosine value of an input value.
ACOS_E

Page 775

ATAN Outputs the arc tangent value of an input value.
ATAN_E

Page 776

Standard arithmetic functions

ADD Outputs the sum of input values ((s1) + (s2) + ... + (s28)).

Page 777

MUL Outputs the product of input values ((s1) x (s2) x ... x (s28)).

Page 779

SuUB Outputs the difference of input values ((s1) - (s2)).

Page 781

DIV Outputs the quotient of input values ((s1) + (s2)).

Page 783

MOD Outputs the remainder of input values ((s1) = (s2)).

Page 785

Page 787

EXPT Outputs the exponentiation of an input value.
EXPT_E

MOVE Assigns an input value to (d).

MOVE_E

Page 789

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions

Standard bit shift functions

Shifting n-bit data to left/right

Function symbol Description Reference
SHL Shifts an input value leftward by (n) bits and outputs the result. Page 791
SHL_E
SHR Shifts an input value rightward by (n) bits and outputs the result. Page 793
SHR_E

Rotating n-bit data to left/right
Function symbol Description Reference
ROL Rotates an input value leftward by (n) bits and outputs the resuilt. Page 795
ROL_E
ROR Rotates an input value rightward by (n) bits and outputs the result. Page 797
ROR_E

Standard bitwise boolean functions

AND operation, OR operation, XOR operation, NOT operation
Function symbol Description Reference
AND Outputs the logical product of input values. Page 799
AND_E
OR Outputs the logical sum of input values.
OR_E
XOR Outputs the exclusive logical sum of input values.
XOR_E
NOT Outputs the logical negation of input values. Page 801
NOT_E

Standard selection functions

Selection
Function symbol Description Reference
SEL Outputs a selected input value. Page 802
SEL_E

Selecting Maximum/Minimum Value
Function symbol Description Reference
MAX Outputs the maximum value of an input value. Page 804
MAX_E
MIN Outputs the minimum value of an input value.
MIN_E

Limit Control
Function symbol Description Reference
LIMIT Outputs an input value controlled with the upper and lower limits. Page 806

LIMIT_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS 91

4.1 Standard Functions

92

Multiplexer

Function symbol Description Reference
MUX Outputs one of multiple input values. Page 808
MUX_E

Standard comparison functions

Compare
Function symbol Description Reference
GT Outputs the data comparison result of input values. Page 810
GT E
GE
GE_E
EQ
EQ_E
LE
LE_E
LT
LT E
NE Page 812
NE_E

Standard character string functions

Character string length detection
Function symbol Description Reference
LEN Detects the length of an input character string and outputs the result. Page 814
LEN_E

Extracting character string data from the left/right
Function symbol Description Reference
LEFT Outputs specified number of characters from the left of input character string data. Page 815
LEFT_E
RIGHT Outputs specified number of characters from the right of input character string data.
RIGHT_E

Extract mid string
Function symbol Description Reference
MID Outputs specified number of characters from an arbitrary position of an input character string. Page 817
MID_E

String concatenation
Function symbol Description Reference
CONCAT Concatenates character strings and output the result. Page 819

CONCAT _E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS

4.1 Standard Functions

INSERT Inserts a character string into another character string and output the result. Page 821
INSERT_E

DELETE Deletes an arbitrary range of a character string and outputs the resuilt. Page 823
DELETE_E

REPLACE Replaces an arbitrary range of a character string and outputs the result. Page 825
REPLACE_E

FIND Searches for a character string and outputs the result. Page 828
FIND_E

Time data functions

ADD_TIME Outputs the sum of input values (time data) ((s1) + (s2)). Page 830
ADD_TIME_E

SUB_TIME Outputs the difference of input values (time data) ((s1) - (s2)). Page 832
SUB_TIME_E

MUL_TIME Outputs the product of input values (time data) ((s1) x (s2)). Page 834
MUL_TIME_E

DIV_TIME Outputs the quotient of input values (time data) ((s1) + (s2)). Page 836
DIV_TIME_E

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.1 Standard Functions 93

4.2 Standard Function Blocks

Bistable function blocks

Bistable function blocks (set priority)

Function block symbol | Description Reference
SR Judges two input values and outputs 1 (TRUE) or 0 (FALSE). (Set priority) Page 840
SR E

Bistable function blocks (reset priority)
Function block symbol | Description Reference
RS Judges two input values and outputs 1 (TRUE) or 0 (FALSE). (Reset priority) Page 842
RS_E

Edge detection function blocks

Rising edge detector
Function block symbol | Description Reference
R_TRIG Detects the rising edge of a signal, and outputs a pulse signal. Page 844
R_TRIG_E

Falling edge detector
Function block symbol | Description Reference
F_TRIG Detects the falling edge of a signal, and outputs a pulse signal. Page 846
F TRIG_E

Counter function blocks

Up counter
Function block symbol | Description Reference
CTU Counts up the number of times of rising of a signal. Page 848
CTU_E

Down counter
Function block symbol | Description Reference
CTD Counts down the number of times of rising of a signal. Page 850
CTD_E

Counter function block
Function block symbol | Description Reference
COUNTER_FB_M Counts up the number of times of rising of a signal from (s3) to (s2). Page 852

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.2 Standard Function Blocks

Timer function blocks

Timer function blocks

Function block symbol

Description

Reference

TIMER_1_FB_M

TIMER_10_FB_M

TIMER_100_FB_M

TIMER_CONT_FB_M

TIMER_CONTHS_FB_M

When the execution condition is established, these function blocks start the timer count to the set
time.

Page 854

4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.2 Standard Function Blocks 95

MEMO

96 4 STANDARD FUNCTIONS/FUNCTION BLOCKS
4.2 Standard Function Blocks

PART 3

PART3 CPU MODULE
INSTRUCTIONS

This part consists of the following chapters.

5 SEQUENCE INSTRUCTIONS

6 BASIC INSTRUCTIONS

7 APPLICATION INSTRUCTION

8 BUILT-IN ETHERNET FUNCTION INSTRUCTIONS

97

5 SEQUENCE INSTRUCTIONS

5.1 Contact Instructions

Operation start, series connection, parallel connection

LD, LDI, AND, ANI, OR, ORI

» LD: NO contact operation start instruction/LDI: NC contact operation start instruction

These instructions capture the ON/OFF information of the device specified by (s), and use that as the operation result.

» AND: NO contact series connection instruction/ANI: NC contact series connection instruction

These instructions capture the ON/OFF information of the device specified by (s), AND with the operation result so far, and
use the result as the operation result.

* OR: NO contact parallel connection instruction/ORI: NC contact parallel instruction

These instructions capture the ON/OFF information of the device specified by (s), OR with the operation result so far, and use

the result as the operation result.

Ladder diagram Structured text
—a5— This becomes a assignment statement, operator, control syntax, etc.
b (s In the ST language, there are sometimes no instructions (symbols) that
LD R directly correspond to contacts such as LD, AND, and OR.
'__(s)_‘ When programming using assignment statements, express as shown in the
LDI i following example.
L Example
s Y1:=(X0 OR X1) AND X2 AND NOT X3;
(s | Y2:=NOT X4 OR NOT X5;
AND | | L] |
[
s
|
an

|
|
OR s

ORI | I(é)

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)

(s) Device used as contact — Bit ANY_BOOL

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M L, |uDweO|TsT |TsT,c,p, |umeO|z |Lc |Lz |specification [y Te [g | (DX)
SM, F, B, SB C,LC | W, SD, SW,R

(s) O o o} o — - | = — — - |— =10

*1 T, ST, C cannot be used.

98 5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

Processing details
ELD, LDI

» The LD instruction is the NO contact operation start instruction, and the LDI instruction is the NC contact operation start
instruction. These instructions capture the ON/OFF information ™! of the specified device, and use the result as the
operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.

HAND, ANI

» The AND instruction is NO contact series connection instruction and the ANI instruction is NC contact series connection
instruction. These instructions capture the ON/OFF information! of the specified bit device, AND with the operation result
so far, and use the result as the operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.
» There is no limitation to the number of series contacts. Any number of contacts can use this instructions consecutively.

» Output to other coils through contacts after the OUT instruction is called cascade output, and these outputs can be
repeated any number of times as long as their order is correct.

HOR, ORI

» The OR instruction is NO contact parallel connection and the ORI instruction is NC contact parallel connection. These

instructions capture the ON/OFF information” of the specified device, OR with the operation result so far, and use the
result as the operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.
» These instructions are connected in parallel from the step with this instruction to the previous step with the LD and LDI

instruction.
» There is no limitation in the number of parallel connections.

Point

* When bits of word devices are specified, bits are specified in hexadecimal. (For example, b11 of DO is
specified by "D0.B".)

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions 99

Pulse operation start, pulse series connection, pulse parallel
connection

LDP, LDF, ANDP, ANDF, ORP, ORF

» LDP: Rising edge pulse operation start instruction

This becomes conductive (ON) only at the rising edge (OFF to ON) of the bit device specified by (s).

» LDF: Falling edge pulse operation start instruction

This becomes conductive (ON) only at the falling edge (ON to OFF) of the bit device specified by (s).

« ANDP: Rising edge pulse series connection instruction/ANDF: Falling edge pulse series connection instruction

This instruction ANDs the bit device specified by (s) with the operation result so far, and uses the result as the operation
result.

* ORP: Rising edge pulse parallel connection/ORF: Falling edge pulse parallel connection

This instruction ORs the bit device specified by (s) with the operation result so far, and uses the result as the operation result.

Ladder diagram Structured text

ENO:=LDP(EN,s):
'_(s - :
ENO:=LDF(EN,s);
LDP ENO:=ANDP(EN,s);
,— (s) ENO:=ANDF(EN,s);
| ENO:=ORP(EN,s);

or |HHAIH
| ENO:=ORF(EN,s);
ANDP | | | 4]
I 1l

ANDF —F i_{l{ :

ORP l_ (s
ORF '_ (s

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)

(s) Device used as contact — Bit ANY_BOOL

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO]|T,sT, |T,sT,c,p, |udeO|z |Lc |Lz |specification [y T g | (DX)
SM, F, B, SB C,LC |W,SD,SW,R

(s) O O O o — — | = — - — |=|— |0

*1 T, ST, C cannot be used.

100 5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

Processing details
HELDP, LDF

» The LDP instruction is the rising edge pulse operation start instruction, and becomes conductive (ON) only at the rising
edge (OFF to ON) of the specified bit device. When word devices are specified by bits, this instruction becomes conductive
(ON) only when the status of the specified bit changes to 0—1. When only the LDP instruction is programmed, operation is
the same as the conversion of the instruction under execution to pulse instruction (OP).

Circuit using LDP instruction Circuit not using LDP instruction

X0 X0
t— mMov [ko [Do }—{I::> F—movpP] Ko | DO }—{

i (o = H——ms T A

» The LDF instruction is the falling edge pulse operation start instruction, and becomes conductive (ON) at the falling edge
(ON to OFF) of the specified bit device. When word devices are specified by bits, this instruction becomes conductive only
when the status of the specified bit changes to 1—-0.

BANDP, ANDF

« The ANDP instruction is the rising edge pulse series connection instruction, and the ANDF instruction is the falling edge
pulse series connection. These instructions AND with the operation result so far, and uses the result as the operation result.
The table below shows the ON/OFF information used by these instructions.

Device specified by ANDP, ANDF ANDP status ANDF status
Bit device Bit specification of word
device
OFF to ON 01 ON OFF
OFF 0 OFF OFF
ON 1 OFF OFF
ON to OFF 1-0 OFF ON
HORP, ORF

» The ORP instruction is the rising edge pulse parallel connection instruction, and the ORF instruction is the falling edge
pulse parallel connection instruction. These instructions OR with the operation result so far, and use the result as the
operation result. The table below shows the ON/OFF information used by these instructions.

Device specified by ORP, ORF ORP status OREF status
Bit device Bit specification of word
device
OFF to ON 01 ON OFF
OFF 0 OFF OFF
ON 1 OFF OFF
ON to OFF 1-0 OFF ON

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1 1
5.1 Contact Instructions 0

Pulse NOT operation start, pulse NOT series connection, pulse
NOT parallel connection

LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI

» LDPI: Rising edge pulse NOT operation start instruction

This instruction becomes conductive (ON) at OFF, ON and the falling edge (ON to OFF) of the bit device specified by (s).

» LDFI: Falling edge pulse NOT operation start instruction

This instruction becomes conductive (ON) at the rising edge (OFF to ON), OFF and ON of the bit device specified by (s).

+ ANDPI: Rising edge pulse NOT series connection instruction/ANDFI: Falling edge pulse NOT series connection instruction
This instruction ANDs the bit devices specified by (s) with the operation result so far, and uses the result as the operation
result.

* ORPI: Rising edge pulse NOT parallel connection instruction/ORFI: Falling edge pulse NOT parallel connection instruction
This instruction ORs the bit devices specified by (s) with the operation result so far, and uses the result as the operation result.

Ladder diagram Structured text
ENO:=LDPI(EN,s);

FE—
LDPI ﬂ'j(j/)’di ENO:=LDFI(EN,s);
o ENO:=ANDPI(EN,s);

Mo ENO:=ANDFI(EN,s);

LDFI ﬂ}d— ENO:=ORPI(EN,s);
— ENO:=ORFI(EN,s);
ANDPI—' .

e
ANDFI —J/}/—'j,ﬂd.f

ORPI ™ s)

—

ORFI [(s) 1

i

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(s) Device used as contact — Bit ANY_BOOL

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M L, |uDeO|T,ST, |T,sT,c,D, |umeO|z |Lc |Lz |specification [y 'y Tg g | (DX)
SM, F, B, SB C,LC | W, SD, SW,R

(s) O o o} o — - | = — — - |— =10

*1 T, ST, C cannot be used.

102 5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

Processing details
ELDPI, LDFI

» The LDPI instruction is the rising edge pulse NOT operation start instruction, and becomes conductive (ON) at OFF, ON
and the falling edge (ON to OFF) of the specified bit device. When word devices are specified by bits, this instruction
becomes conductive when the status of the specified bit is 0, 1, and when it changes 1—0.

» The LDFI instruction is the falling edge pulse NOT operation start instruction, and becomes conductive (ON) at the rising
edge (OFF to ON), OFF and ON of the specified bit device. When word devices are specified by bits, this instruction
becomes conductive (ON) when the status of the specified bit is 0, 1, and when it changes 0—1. The table below shows the
ON/OFF information used by these instructions.

Device specified by LDPI, LDFI LDPI status LDFI status
Bit device Bit specification of word
device

OFF to ON 01 OFF ON

OFF 0 ON ON

ON 1 ON ON

ON to OFF 1-0 ON OFF
EANDPI, ANDFI

» The ANDPI instruction is the rising edge pulse NOT series connection instruction, and the ANDFI instruction is the falling
edge pulse NOT series connection instruction. These instructions AND with the operation result so far, and use the result
as the operation result. The table below shows the ON/OFF information used by these instructions.

Device specified by ANDPI, ANDFI ANDPI status ANDFI status
Bit device Bit specification of word
device

OFF to ON 01 OFF ON

OFF 0 ON ON

ON 1 ON ON

ON to OFF 1-0 ON OFF
HORPI, ORFI

» The ORPI instruction is the rising edge pulse NOT parallel connection instruction, and the ORFI instruction is the falling
edge pulse NOT parallel connection instruction. These instructions OR with the operation result so far, and use the result
as the operation result. The table below shows the ON/OFF information used by these instructions.

Device specified by ORPI, ORFI ORPI status ORFI status
Bit device Bit specification of word
device
OFF to ON 01 OFF ON
OFF 0 ON ON
ON 1 ON ON
ON to OFF 1-0 ON OFF

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.1 Contact Instructions

103

5.2 Association Instruction

Ladder block series/parallel connection

ANB, ORB
These instructions AND or OR the A and B blocks, and use the result as the operation result.
Ladder diagram Structured text
Ablock B block Not supported.

ANB

ORB

B block

Processing. details
EANB

« This instruction ANDs the A and B blocks, and uses the result as the operation result.
» The symbol of this instruction is not NO contact symbol but a connection symbol.

HORB

« This instruction ORs the A and B blocks, and uses the result as the operation result.

« This instruction connects the ladder blocks of two contacts or more in parallel. For parallel connection of only one contact,
use the OR and ORI instructions; there is no need to use this instruction.

» The symbol of this instruction is not NO contact symbol but a connection symbol.

Operation.error

There is no operation error.

104 5 SEQUENCE INSTRUCTIONS
5.2 Association Instruction

Storing/reading/clearing the operation result

MPS, MRD, MPP

» MPS: This instruction stores the preceding operation result (ON/OFF) to memory.

* MRD, MPP: These instructions read the operation result stored by the MPS instruction, and executes operations from the
next step using that operation result.

Ladder diagram Structured text

ENO:=MPS(EN);

MPS ENO:=MRD(EN);
ENO:=MPP(EN);

MRD

MPP

Processing details
EMPS

* This instruction stores the preceding operation result (ON/OFF) to memory.

« This instruction can be used up to 16 times consecutively. When MPP instruction is used in between, the number of uses of
MPS instruction is decremented by 1.

EMRD

« This instruction reads the operation result stored by the MPS instruction to memory, and executes operations from the next
step using that operation result.

EMPP

* This instruction reads the operation result stored by the MPS instruction to memory, and executes operations from the next
step using that operation result.

« This instruction clears the operation result stored by the MPS instruction from memory.
* The number of uses of MPS instruction is decremented by 1.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1
5.2 Association Instruction 05

Inverting the operation resulit

INV

This instruction inverts the operation result up to this instruction.

Ladder diagram

Structured text

| A
1

—

L]

ENO:=INV(ENY);

Processing. details

» This instruction inverts the operation result up to this instruction.

Operation result up to the INV

Operation result after execution of

instruction INV instruction
OFF ON
ON OFF

Operation.error

There is no operation error.

Point >

« This instruction operates using the operation result so far. Hence, use it at the same position as the AND

instruction. This instruction cannot be used at positions where the LD and OR instructions are programmed.
« If a ladder block is used, the operation result is inverted within the range of the ladder block. When
operating a ladder with this instruction and the ANB instruction, pay attention to the inversion range.

N Range of inversion
MO I M1 M2 ‘7
= —

I | i E

/ _Eivl-‘-;é-::::';-ﬂ:za::::l:/
ANB ; : 11 :
U

For details ANB instruction, refer to the following.
[Z=~ Page 104 ANB, ORB

Y10

[END

106 5 SEQUENCE INSTRUCTIONS
5.2 Association Instruction

Converting the operation result into a pulse

MEP, MEF

* MEP: This instruction turns ON at the rising edge of the operation result up to the MEP instruction and turns OFF in other
instances.

* MEF: This instruction turns ON at the falling edge of the operation result up to the MEF instruction and turns OFF in other
instances.

Ladder diagram Structured text
—— ENO:=MEP(EN);

MEP || i] ENO:=MEF(EN);
!

wer |]

Processing. details
EMEP

« This instruction turns ON (conductive state) at the rising edge (OFF to ON) of the operation result up to this instruction. This

instruction turns OFF (non-conductive state) in instances other than the rising edge of the operation result up to this
instruction.

» Use of this instruction makes conversion to pulse easier when multiple contacts are connected in series.

EMEF
* This instruction turns ON (conductive state) at the falling edge (ON to OFF) of the operation result up to this instruction.

This instruction turns OFF (non-conductive state) in instances other than the falling edge of the operation result up to this
instruction.

» Use of this instruction makes conversion to pulse easier when multiple contacts are connected in series.

Operation.error

There is no operation error.

Point/®

« If an indexed contact is converted to pulse by the subroutine program and the FOR to NEXT instructions,
etc., these instructions may not function properly.

» These instructions operate using the operation result so far. Hence, use them at the same position as the
AND instruction. These instructions cannot be used at positions where the LD and OR instructions are
programmed.

5 SEQUENCE INSTRUCTIONS 1
5.2 Association Instruction 07

5.3 Output Instructions

Out (excluding the timer, counter and annunciator)

ouT
This instruction outputs the operation result up to this instruction to the specified device.
Ladder diagram Structured text
ENO:=OUT(EN,d);
()|
N

Setting data

HDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)

(d) Number of the device that turns ON/OFF — Bit ANY_BOOL

BMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOeO|TsT, |TsT,c,p, |umeO|z |Lc |[Lz |specification [y g [g (DY)
SM, F, B, SB C,LC | W, SD, SW,R

C) o o2 -3 o™ — - |— — — e e e)

*1 When using F, refer to [==~ Page 113 OUT F.

*2 Only the FX5 series intelligent function module can be specified.

*3 When using T, ST, refer to (==~ Page 109 OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST.
When using C, refer to [==~ Page 111 OUT C.
When using LC, refer to == Page 112 OUT LC.

*4 T, ST, C cannot be used.

Processing details

« This instruction outputs the operation result up to this instruction to the specified device.

Condition Operation result Coil/specified bit
When bit device is used OFF OFF

ON ON
When bit of word device is specified OFF 0

ON 1

Operation.error

There is no operation error.

108 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Timer

OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST

The timer counts up to the set value when the operation result up to the OUT instruction is ON and the coil of the timer/
retentive timer specified by (d) turns ON. When the timer times up, NO contact becomes conductive and NC contact becomes

non conductive.

Ladder diagram

Structured text

—{C=0] @ | (setvale) }_{

ENO:=OUT_T(EN,d,set value);
ENO:=OUTH(EN,d,set value);
ENO:=OUTHS(EN,d,set value);

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)

(d) Timer Number — Bit ANY_BOOL

(Set value) Timer set value 0 to 32767 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(d) - - o™ - - - |~ - - - - | |—

(Set value) | — — — o (@) — | — —3 o* |— |— |—

*1 Only T and ST can be used.
*2 T, ST, C cannot be used.

*3 Indirect specification cannot be entered for the timer set value.

Hl—'OUT| TO|@I§QH

*4 Only decimal constant (K) can be used.

Processing details

» These instructions count up to the set value when the operation result up to the OUT instruction is ON and the coil of the

timer/retentive timer specified by (d) turns ON. When the timer reaches the end of its count (current value > set value), NO

contact becomes conductive and NC contact becomes non-conductive.

» Operation is as follows when the operation result up to the OUT instruction changes from ON to OFF.

Timer type Timer coil Current timer Before time-out After time-out
value NO contact NC contact NO contact NC contact
Timer off 0 Non-Conductive Conductive state Non-Conductive Conductive state
state state
Retentive timer off Holds current value | Non-Conductive Conductive state Conductive state Non-Conductive
state state

+ After the timer times up, clear the current value of the retentive timer and turn the contact off by the RST instruction.
* When the set value is 0, the timer times up when the OUT instruction is executed.

» The following processing is executed when the OUT instruction is executed:

+ The coil in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions turns ON/OFF
* The contact in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions turns ON/OFF
* The current value in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions changes
* When the OUT T instruction is skipped using the CJ instruction, etc. while the OUT T and OUT ST instructions are ON,

these instructions do not update the current value or turn ON/OFF the contacts.

* When the same OUT T and OUT ST instructions are executed in the same scan twice or more, these instructions update

the current value for the same number of times of execution.

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

109

Point/®

Values used for timers can be set in the range 1 to 32767. Actual timer constants are as follows since the
OUT, OUTH, and OUTHS instructions operate as 100 ms, 10 ms, and 1 ms timers, respectively.

» OUT instruction: 0.1 to 3276.7 seconds

* OUTH instruction: 0.01 to 327.67 seconds

* OUTHS instruction: 0.001 to 32.767 seconds

For the counting method, refer to the following.

[IMELSEC iQ-F FX5 Series User's Manual [Application]

Precautions

When creating a program for measuring another timer at a timer contact, program in order starting with the timer to be
measured later on. In the following instance, all timers turn on in the same scan when the program is created in the
measurement order.

* When the set value is shorter than the scan time

* When the set value is 1

[Ex]

When the TO to T2 timers are programmed in order from the timer that is measured later

(1) The T2 timer starts measurement from the scan following the scan where the T1

U contact turns ON.

(2) The T1 timer starts measurement from the scan following the scan where the TO
contact turns ON.
@ (3) The TO timer starts measurement when X0 turns ON.

X0
- ®

When the TO to T2 timers are programmed in measurement order

1) The TO timer starts measurement when X0 turns ON.
g ” !
(2) The contacts of the T1 and T2 timers also turn on when the contact of TO turns ON.
2

Operation.error

Error code Remarks
(SD0/SD8067)
3405 A negative value is specified for the timer value.

110 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Counter

ouTC

This instruction increments the current value of the counter specified by (d) by 1 when the operation result up to OUT

instruction changes from OFF to ON, and when the counter reaches the end of its count, NO contact becomes conductive and
NC contact becomes non-conductive.

Ladder diagram Structured text

ENO:=OUT_C(EN,d,set value);
_| C.—/ 1 | (d) | (Set value) }—{

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Counter Number — Bit ANY_BOOL
(Set value) Counter set value 0 to 65535 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, [T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(d) — — o™ — — - |— - — — - |= |~

(Set value) | — — — o (@) — | — —3 o* |— |— |—

*1 Only C can be used.
*2 T, ST, C cannot be used.
*3 Indirect specification cannot be entered for the counter set value.

H|—| our | co |)@\|§QH

*4 Only decimal constant (K) can be used.

Processing details

This instruction increments the current value of the counter specified by (d) by 1 when the operation result up to OUT
instruction changes from OFF to ON, and when the counter reaches the end of its count (current value > set value), NO
contact becomes conductive and NC contact becomes non-conductive.

The counter does not count while the operation result remains on. (Count input does not need to be converted to pulses.)

« After a count up, the count value and contact status do not change until the RST instruction is executed.
* When the set value is 0, the same processing as for set value 1 is performed.

Operation.error

Error code Remarks
(SD0/SD8067)
3405 A negative value is specified for the set value.

5 SEQUENCE INSTRUCTIONS 111
5.3 Output Instructions

Long counter

OUTLC

This instruction increments the current value of the long counter specified by (d) by 1 when the operation result up to the OUT
instruction changes from OFF to ON, and when the counter reaches the end of its count, NO contact becomes conductive and

NC contact becomes non-conductive.

Ladder diagram

Structured text

—{C=0] @ | (setvale) }_{

ENO:=OUT_C(EN,d,set value);

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)

(d) Long counter number — Bit ANY_BOOL

(Set value) Long counter set value 0 to 4294967295 32-bit unsigned binary | ANY32

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, [T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(d) - - o™ - - - |~ - - - - | |~

(Set value) | — — — o (@) — | — —3 o* |— |— |—

*1 Only LC can be used.
*2 T, ST, C cannot be used.

*3 Indirect specification cannot be entered for the long counter set value.

H|—| our | co | @m0

]

*4 Only decimal constant (K) can be used.

Processing. details

This instruction increments the current value of the long counter specified by (d) by 1 when the operation result up to the

OUT instruction changes from OFF to ON, and when the counter reaches the end of its count (current value > set value),
NO contact becomes conductive and NC contact becomes non-conductive.

The counter does not count while the operation result remains on. (Count input does not need to be converted to pulses.)

« After a count up, the count value and contact status do not change until the RST instruction is executed.

* When the set value is 0, the same processing as for set value 1 is performed.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

112

Annunciator

OUTF

This instruction outputs the operation result up to the OUT F instruction to the specified annunciator.

Ladder diagram

Structured text

ENO:=OUT(EN,d);

Setting data

HDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Annunciator number that turns ON — Bit ANY_BOOL
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,p, |umeO|z |[Lc [Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD,SW,R
(d) o1 — — — — — | = — — e e e

*1 Only F can be used.

Processing details

« This instruction outputs the operation result up to the OUT F instruction to the specified annunciator.

+ Operation is as follows when annunciator (F) is turned ON by the OUT F instruction.
* The annunciator number (F number) that turns ON is stored in special registers (SD64 to SD79).

* The content of SD63 is incremented by 1.

* When the content of SD63 is 16 (16 annunciators are already on), the annunciator number that turns ON is not stored in

SD64 to SD79 even if a new annunciator turns ON.

 Operation is as follows when annunciator (F) is turned OFF by the OUT F instruction:

* The coil turns OFF, but the contents of SD64 to SD79 do not change.

* To delete an annunciator that has turned OFF by the OUT F instruction from SD64 to SD79, use the RST F instruction.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 11
5.3 Output Instructions 3

Setting devices (excluding annunciator)

SET

The status of the device specified by (d) changes as follows when the execution command turns ON.

« Bit device: Turns the coils and contacts ON.
+ Bit specification of word device: Set the specified bit to 1.

Ladder diagram Structured text
ENO:=SET(EN,d);

(IS i)

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Bit device number/ Bit specification of word device to be — Bit ANY_BOOL
set (turns ON)

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO]|T,sT, |T,sT,c,p, |udeO|z |Lc |Lz |specification [y g g | (DY)
SM, F, B, SB C,LC |W,SD,SW,R

(d) o 02 — o3 — — | = — - - |=|— |0

*1 When using F, refer to [~ Page 116.
*2 Only the FX5 series intelligent function module can be used.
*3 T, ST, C cannot be used.

Processing details

» The status of the specified device changes as follows when the execution command turns ON.

Device Device status
Bit devices Turns coils and contacts ON.
Bit specification of word device Sets the specified bit to 1.

* A device that is turned ON is held on even if the execution command turns OFF. Devices that are turned ON by the SET
instruction can be turned OFF by the RST instruction.

+ Command ON

X5

F———— ser | v1o X5 OFF

—
—— RsT Y10 X7 OFF l
¥~ Command | ON /
%
Y10 OFF

* When the execution command is OFF, the device status does not change.

1l

Precautions

When the SET and RST instructions are executed on the same output relay (Y), the result of the instruction nearer the END

instruction (end of program) is output.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS

1 14 5.3 Output Instructions

Resetting devices (excluding annunciator)

RST

The status of the device specified by (d) changes as follows when the RST input turns ON.
« Bit devices: Turns the coils and contacts OFF.

 Timers, counters: Sets the current value to 0, and turns coils and contacts OFF.

« Bit specification of word device: Sets the specified bit to 0.

» Word devices, module access devices, index registers: Sets content to 0.

Ladder diagram Structured text
ENO:=RST(EN,d);

(I I C)

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
ANY_ELEMENTARY

(d) Bit device number/ bit specification of word device to be — Bit/word/double word
reset, or word device number to be reset

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDeO]|T,ST, |T,sT,c,D, |umOeO|z |Lc |Lz |specification [y g g | (DY)
SM, F, B, SB C,LC |W,SD,SW,R

(d) o 072 ¢ 0" O o |— @) @) — — |—= 10

*1 When using F, refer to [==~ Page 117.
*2 Only the FX5 series intelligent function module can be used.
*3 T, ST, C cannot be used.

Processing details

* The status of the specified device changes as follows when the execution command turns ON.

Device Device status

Bit devices Turns coils and contacts OFF.

Timers, counters Sets the current value to 0, and turns coils and contacts OFF.

Bit specification of word device Set the specified bit to 0.

Word devices, module access device, index registers Sets content to 0.

* When the execution command is OFF, the device status does not change.
» Function when a word device is specified by the RST instruction is the same as the following circuit.

Command Command
x10%~ X104~
F———— Rrst [Dso |:> F— wmov | ko | Dso
L Device number L Device number
Precautions

When the RST instruction for a timer or counter is executed by a program containing a jump or by a subroutine program or
interrupt program, the timer or counter is held in a reset state, and the timer or counter may not work normally.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 11
5.3 Output Instructions 5

Setting annunciator

SETF

This instruction turns ON the specified annunciator.

Ladder diagram

Structured text

(I C)

ENO:=SET(EN,d);

Setting data

HDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Annunciator number (F number) that is set — Bit ANY_BOOL
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,p, |umeO|z |[Lc [Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD,SW,R
(d) o1 — — — — — | = — — e e e

*1

Only F can be used.

Processing details

* This instruction turns ON the annunciator specified by (d) when the execution command turns ON.

* Operation is as follows when annunciator (F) is turned ON.
* The annunciator number (F number) that turns ON is stored in special registers (SD64 to SD79).

* The content of SD63 is incremented by 1.
* When the content of SD63 is 16 (16 annunciators are already ON), the annunciator number that turns ON is not stored in
SD64 to SD79 even if a new annunciator turns ON.

SD63 16

SD64 233

SD65 90

SD66 700
%Z

SD78 145

SD79 1027

Operation.error

F30 is turned ON.

—

There is no operation error.

116

5 SEQUENCE INSTRUCTIONS

5.3 Output Instructions

SD63

SD64

SD65

SD66

SD78

SD79

16

233

90

700

145

1027

>~ Does not change.

Resetting annunciator

RSTF

This instruction turns OFF the specified annunciator.

Ladder diagram

Structured text

(I C)

ENO:=RST(EN,d);

Setting data

HDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Annunciator number (F number) that is reset Bit ANY_ELEMENTARY
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,sT,c,D, |umeO|z |Lc |[Lz | specification [y Tp
SM, F, B, SB C,LC | W,SD, SW,R
(d) o™ - - - - | = - - - - -

*1 Only F can be used.

Processing details

* This instruction turns OFF the annunciator specified by (d) when the execution command turns ON.
+ An annunciator number (F number) that turns OFF is deleted from special registers (SD64 to SD79) and the content of

SD63 is decremented by 1.

* When the content of SD63 is 16, annunciator numbers are deleted from SD64 to SD79 by the RST instruction. Also, if an
annunciator not registered in SD64 to SD79 turns ON, its number is registered. When there are two or more unregistered
numbers, this instruction adds the numbers starting from the smallest annunciator number. SD63 is not decremented by 1
when the numbers not registered in SD64 to SD79 are turned OFF.

SD63

SD64

SD65

SD66

SD67

SD78

SD79

16

233

90

700

28

®:

145

1027

Operation.error

There is no operation error.

SD63 16 or 15 [¢«—— When F number that is not registered in SD79 is
stored, this remains as 16.
SD64 233 When SD79 is 0, the number is decremented by -1
to become 15.
F90 is reset. SD65 700 "¢—— The F number in SD66 is shifted to this area.
|:> SD66 28 [4—— F number of SD67 is stored.
/\/
SD77 145
SD78 1027
SD79 l4—— Not registered F number or 0 is stored.

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

117

Setting annunciator (with check time)

ANS

This instruction sets the annunciator (F device).

Ladder diagram

Structured text

—Cc=3le|m| o }—{

ENO:=ANS(EN,s,m,d);

Setting data

HDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(s) Timer number for evaluation time — 16-bit signed binary ANY16
(m) Evaluation time data 1 to 32767 16-bit unsigned binary | ANY16_U
(d) Annunciator device to be set — Bit ANY_BOOL
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,p, |umeO|z |Lc |Lz | specification [\ yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) — — - o™ — — | = — O i e e
(m) O — — O O o | — — O O - | — |—
(d) o — — — — - | = — — - | == |-
*1 Only T can be used.

*2 Only F can be used.

Processing details

This instruction sets (d) when the command input remains ON continuously for the evaluation time [(m)x100 ms, (s)] or

more. This instruction resets the current value of (s) evaluation timer and does not set (d) when the command time is less

than the evaluation time [(m)x100 ms]. Also, this instruction resets the evaluation timer when the command input turns

OFF.

Command input

}7

ANS (s) (m) (d)

HRelated devices

Command input |
|

(d) | | |

Less than the evaluation
time
((m) x less than 100 ms)

Equivalent to or longer
than the evaluation time
((m) x 100 ms or more)

Device Name Remarks

SM8049 ON status annunciator smallest number When SM8049 is turned ON, SM8048 and SD8049 are enabled.
enabled

SM8048 Annunciator operation When one of the F devices is operating, SM8048 turns ON.

SD8049 ON status annunciator smallest number The smallest number of the F devices that are operating is stored.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

118

Resetting annunciator (smallest number reset)

ANR(P)

This instruction resets the lowest number annunciator (F device) in the ON status.

Ladder diagram Structured text

ENO:=ANR(EN);
ENO:=ANRP(EN);

L1

Processing. details

» Annunciator (F device) that is operating (in ON status) is reset when the command input turns ON.
This instruction resets the annunciator with the smallest number when multiple annunciators are ON. If the command input is
turned ON again, this instruction resets the annunciator with the next smallest number among annunciators (F devices) that

are operating.

Command input
}—{ | ANR

HRelated devices

Device Name Remarks
SM8049 On status annunciator smallest number When SM8049 is turned ON, SM8048 and SD8049 are enabled.
enabled
SM8048 Annunciator operation When one of the F devices is operating, SM8048 turns ON.
SD8049 On status annunciator smallest number The smallest number of the F devices that are operating is stored.
Precautions

* When ANR instruction is used, annunciators in the ON status are reset in turn in each operation cycle.
* This is executed for only 1 operation cycle (only once) when the ANRP instruction is used.

Operation.error

There is no error.

5 SEQUENCE INSTRUCTIONS 11
5.3 Output Instructions 9

Rising edge output

PLS

This instruction turns ON the device specified by (d) for one scan when the PLS command turns from OFF to ON, and turns

OFF in other cases.

Ladder diagram Structured text

ENO:=PLS(EN,d);
(I i C)

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)

(d) Device to be converted to pulse — Bit ANY_BOOL

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO]|T,sT, |T,sT,c,0, |udeO|z |Lc |Lz |specification [y g g | (DY)
SM, F, B, SB C,LC |W,SD,SW,R

(d) O o — 02 — — | = — - - |=|— |0

*1 Only the FX5 series intelligent function module can be used.
*2 T, ST, C cannot be used.

Processing. details

* This instruction turns ON the specified device for one scan when the PLS command turns from OFF to ON, and turns OFF
in other cases. When there is one PLS instruction programmed for the device specified by (d) during a scan, the specified
device turns ON for one scan.

ON

X5 OFF —T \—T

X5
F———{ Ps | wo T%\
MO OFF T_\—
1 scan 1 scan

« If the RUN/STOP/RESET switch is changed from RUN to STOP after execution of the PLS instruction, the PLS instruction
will not be executed even if the switch is set to RUN again.

X0
|—{ PLS \ MO
4)

LD X0 (3) @) LD X0 (3) LD X0
f PLS M‘(/ l f PLS MO l / f PLS MO
ENDO Vv END v vy END 0 v

u
< >
<

ON @)

X0 OFF 4 ‘ ON
MO OFF Q

‘ ()

1) 1 scan of PLS MO

CPU module operation stop time

Set the RUN/STOP/RESET switch on the CPU module to RUN—STOP.
4) Set the RUN/STOP/RESET switch on the CPU module to STOP—RUN.

w N
= =

120 5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

Precautions

» When write during RUN is completed for a circuit including a rising edge instruction (LDP/ANDP/ORP instruction), the
instruction is not executed regardless of the ON/OFF status of the target device of the rising edge instruction. Also, in the
case of a rising edge instruction (PLS instruction), the instruction is not executed regardless of the ON/OFF status of the
device that is set as the operation condition. The instruction is executed when the target device and the device in the
operation conditions is set from OFF to ON again.

* Note that the device specified by (d) sometimes turns ON for one scan or more when the PLS instruction is made to jump
by the CJ instruction or the executed subroutine program was not called by the CALL(P) instruction.

Operation. error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 121
5.3 Output Instructions

Falling edge output

PLF

This instruction turns ON the device specified by (d) for one scan when the PLF command turns from ON to OFF, and turns

OFF in other cases.

Ladder diagram Structured text
ENO:=PLF(EN,d);

L@

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Device to be converted to pulse — Bit ANY_BOOL

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO]|T,sT, |T,sT,c,0, |udeO|z |Lc |Lz |specification [y g g | (DY)
SM, F, B, SB C,LC |W,SD,SW,R

(d) O o — 02 — — | = — - - |=|— |0

*1 Only the FX5 series intelligent function module can be used.
*2 T, ST, C cannot be used.
Processing. details

* This instruction turns ON the specified device for one scan when the PLF command turns OFF from ON, and turns OFF in
other cases. When there is one PLF instruction programmed for the device specified by (d) during a scan, the specified

device turns ON for one scan.

ON
X5 OFF —, 1\ ‘—l\

}—{XT—{ PLF [Mo }—{

ON /
MO OFF ﬂ ﬂ
1 scan 1 scan

« If the RUN/STOP/RESET switch is changed from RUN to STOP after execution of the PLF instruction, the PLF instruction
will not be executed even if the switch is set to RUN again.

Precautions

» When write during RUN is completed for a circuit including a falling edge instruction (LDF/ANDF/OREF instruction), the
instruction is not executed regardless of the ON/OFF status of the target device of the falling edge instruction. Also, in the
case of a falling edge instruction (PLF instruction), the instruction is not executed regardless of the ON/OFF status of the
device that is set as the operation condition. The instruction is executed when the target device and the device in the
operation conditions is set from ON to OFF again.

* Note that the device specified by (d) sometimes turns ON for one scan or more when the PLF instruction is made to jump
by the CJ instruction or the executed subroutine program was not called by the CALL(P) instruction.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS

122 5.3 Output Instructions

Inverting the bit device output

This instruction reverses the output status of the device specified by (d) when the execution command changes from OFF to
ON.

ENO:=FF(EN,d);

- Settingdata

EDescriptions, ranges, and data types

(d) Device number to be reversed — Bit ANY_BOOL

BApplicable devices

(d) o} o — 02 — - | = — — - |=—|= |0

*1 Only the FX5 series intelligent function module can be used.
*2 T, ST, C cannot be used.

Processing detail

+ This instruction reverses the state of the device specified by (d) when the execution command changes from OFF to ON.

Bit devices OFF ON
ON OFF
Bit specification of word device 0 1
1 0

- Operation error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions 123

124

Inverting the bit device output

ALT(P)

These instructions reverse (ON «> OFF) bit devices when input turns ON.

Ladder diagram

Structured text

L.

(d)

ENO:=ALT(EN,d);
ENO:=ALTP(EN,d);

Setting data

HDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Bit device number whose output is alternated — Bit ANY_BOOL
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,sT,c,D, |umeO|z |Lc |[Lz | specification [y Tp
SM, F, B, SB C,LC | W,SD,SW,R
() O o — 0" — - |— — — - |- —

*1 Only the FX5 series intelligent function module can be used.
*2 T, ST, C cannot be used.

Processing details

BAlternating output (1-step)

The bit device specified by (d) is reversed ON <> OFF each time the command input changes from OFF to ON.

ALTP

(d)

Command input
|7

Command input ON >ON ON
(@) ‘7: ON '%N

EDivision output (according to alternating output (2-step))
The ALTP instruction can be used in multiple combinations to perform division output.

Command input
_”—

ALTP

MO

Command input |\ ON | II\ ON | 'I\ ON | '|\ ON
MO (d) ; ON ; ‘T: ON ;

\l/ Specify the same device (d)

MO
—]

ALTP

M1

Precautions

| 2nd stepl
I a—

M1 (d)

Ko

When the CPU module is programmed with the ALT instruction, reversal operation is performed at every operation cycle. To

perform reversal operation by command ON/OFF, either use the ALTP instruction (pulse execution type) or set a command

contact as LDP etc. (pulse execution type).

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.3 Output Instructions

5.4 shift Instructions

Shifting bit devices

SFT(P)

* In case of bit device:

These instructions shift the ON/OFF status of the device before the device specified by (d) to the device specified by (d).
» When bit of word device is specified:

These instructions shift the 1/0 status of the bit before the bit specified by (d) to the bit specified by (d).

Ladder diagram Structured text

ENO:=SFT(EN,d);
ENO:=SFTP(EN,d);

I)

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)

(d) Device number to receive shift — Bit ANY_BOOL

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO|TsT |TsTc,D, |uoeO|z |Lc |Lz |specification [y e Tg | (DY)
SM, F, B, SB C,LC | W, SD, SW,R

(d) o — — o — — = 1= 1= — = 1=1o

*1 T, ST, C cannot be used.

Processing details

HIn case of bit device
« This instruction shifts the ON/OFF status of the device before the device specified by (d) to the device specified by (d). The

device before the device specified by (d) turns OFF.

[Ex]

When M11 is specified by the SFTP instruction and the SFTP instruction is executed, the ON/OFF status of M10 is shifted to
M11 and M10 is turned OFF.

» Turn ON the first device to be shifted by the SET instruction.

* When the SFT(P) instruction is used consecutively, create the program to start from the device with the largest number.

. Shift range N
4 Shiftinput i« »
MO M15 M14 M13 M12 M11 M10 M9 M8
— F——— sFre | wme [o]ofolofol1]1]o0] mxeon
2 x—o
[o]o]o o1 0] 1] o] (aAftertne tstshiftinput
—— sFre | w3 H P A
[o]oJo]1]o]o]1] o] @aAfertne2ndshiftinput
—— sFre | w2 H loJofJolt1]olt1][1]0] @wxeon
Y A =
[oJo[1]o[1]o0]1] 0] (5Afertnesrdshitinput
1 sfrrp | w1 P A
o] 1]o[1]o o] 1] o] (Aftertneatnshiftinput
X2 X 2 x x 50
— ——— ser | w0 H [0l o 10001 0] (7Afertestsnitinput

£

First device of shift

5 SEQUENCE INSTRUCTIONS 12
5.4 Shift Instructions 5

HEWhen bit of word device is specified:
« This instruction shifts the 1/0 status of the bit before the bit specified by (d) to the bit specified by (d). The bit before the bit
specified by (d) becomes 0.

When DO0.5 (bit 5 (b5) of DO) is specified by the SFT(P) instruction and the SFT(P) instruction is executed, the 1/0 status of b4
of the DO is shifted to b5 and b4 is set to 0.

b15 b5b4 .- b0
Bef hift
N oanon Lo[1]o]o]1o[o[o]+]1]o]1]o[o[o]1]
After shift rO
execution |0|1‘0|0‘1|0‘0‘0|1‘1|1‘0’0‘0|0‘1|

Operation.error

Error code Remarks
(SD0/SD8067)
2820 The device specified by (d) exceeds the corresponding device range.

126 5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions

Shifting 16-bit data to the right by n bit(s)

SFR(P)
These instructions shift the 16-bit data in the device specified by (d) to the right by (n) bit(s).

Ladder diagram Structured text
ENO:=SFR(EN,n,d);

| I:.::||) |) }_{ ENO:=SFRP(EN,n,d);

Setting data

HDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Head device number where the shift-target data is stored | — 16-bit signed binary ANY16
(n) Number of shifts 0to 15 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

() o — — o) o) o |— — o - == |-

") o) — - o) o) o |— — ¢) o |- |- |-

Processing details

* This instruction shifts the 16-bit data in the device specified by (d) to the right by (n) bit(s) from the most significant bit. The
(n) bit(s) from the most significant bit is/are filled with 0(s).

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
I | | I I

@111 70] 11710l 1710101717 0]

When (n)=6 \

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 bo

@ lojotojofoto 1 11001 11701, 1]

Carry flag (SM700, SM8022)

These bits become "0".
* When (d) is a bit device, bits are shifted to the right within the device range specified by nibble specification.

Y23 - Y20Y17 -+ Y14Y13 - Y10

[17071/0[1/0,1,0[1,0;1/0]

When (n)=4 *

Y23 - Y20Y17 -+ Y14Y13 - Y10

[ojo/0/0[1/0, 1;0]1,0,1,0]
-

Carry flag (SM700, SM8022)

These bits become "0".
» Specify any value between 0 and 15 for (n). If a value 16 or larger is specified for (n), bits are shifted to the right by the
remainder value of (n)+16. For example, when (n) is 18, data is shifted by 2 bits to the right because 18 divided by 16
equals 1 with a remainder of 2.

HRelated devices

Device Name Remarks
SM700 Carry ON/OFF according to the status (1/0) of the (n-1)th bit.
SM8022

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 12
5.4 Shift Instructions 7

Shifting 16-bit data to the left by n bit(s)

SFL(P)
These instructions shift the 16-bit data in the device specified by (d) to the left by (n) bit(s).

Ladder diagram Structured text
ENO:=SFL(EN,n,d);

| I:.::||) |) }_{ ENO:=SFLP(EN,n,d);

Setting data

HDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(d) Head device number where the shift-target data is stored | — 16-bit signed binary ANY16
(n) Number of shifts 0to 15 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

C) o — — o o o |— — o - == |-

(n) O — - O O o |— — O o |= |- |-

Processing details

» These instructions shift the 16-bit data in the device specified by (d) to the left by (n) bit(s) from the least significant bit. (n)
bits from the least significant bit are filled with "0".

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
| | I | |

[l l1i1]olol t[olololo[11110 1]

/ When (n)=8

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
I I |

[o0;0,0;0[1,1/1;1]0j0;0,0[0;0,0,0] 0@

Carry flag (SM700, SM8022)

These bits become "0".

* When (d) is a bit device, bit(s) are shifted to the left within the device range specified by nibble specification.

X17 - X14X13 - X10
[oj0; 17 1][0 0] 1] 1]
-
When (n)=3
Carry flag (SM700, SM8022) X17 - X14 X13X12 - X10
[10/0/1[1]/00;0]
%\,—J

These bits become "0".
» Specify any value between 0 and 15 for (n). If a value 16 or larger is specified for (n), bit(s) are shifted to the left by the
remainder value of (n)+16. For example, when (n) is 18, data is shifted by 2 bits to the left because 18 divided by 16 equals

1 with a remainder of 2.

HRelated devices

Device Name Remarks
SM700 Carry ON/OFF according to the status (1/0) of the (n-1)th bit.
SM8022

Operation.error

There is no operation error.

128 5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions

Shifting n-bit data to the right by 1 bit

These instructions shift (n) point(s) of data to the right by 1 bit from the device specified by (d).

ENO:=BSFR(EN,n,d);

| |:::::I| @ | " }{ ENO:=BSFRP(EN,n,d);

- Settingdata

HDescriptions, ranges, and data types

(d) Head device number to be shifted — Bit ANY_BOOL

(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary | ANY16

BApplicable devices

(d) o — - o — — |- = |- - = 1= 1=

(n) O — — O O o |— — @) O - |— |—

*1 T, ST, C cannot be used.

E

» These instructions shift (n) point(s) of data to the right by 1 bit from the device specified by (d).

(n) »
(d)+<n1) (d)+(n 2) <d>+(n-3) <d>+2 <d>+1 (d)
(@+n-1) (@Hn2) (@) - @2 @ () Carry flag (SM700)
Lo [+ [1 [§] o 1 1]

These bits become "0".
» The value of the device specified by (d) + (n-1) becomes 0.

HRelated devices

SM700 Carry ON/OFF according to the status (1/0) of the (d) bit.

il

2820 The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions 129

Shifting n-bit data to the left by 1 bit

These instructions shift (n) point(s) of data to the left by 1 bit from the device specified by (d).

ENO:=BSFL(EN,n,d);

| |:::::I| @ | " }{ ENO:=BSFLP(EN,n,d);

- Settingdata

HDescriptions, ranges, and data types

(d) Head device number to be shifted — Bit ANY_BOOL
(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary | ANY16
BApplicable devices

(d) o — - o — — |- = |- - = 1= 1=

(n) O — — O O o |— — @) O - |— |—

*1 T, ST, C cannot be used.

E

» These instructions shift (n) point(s) of data to the left by 1 bit from the device specified by (d).

) ") .
(d)+(n1) (d)+(n 2) (d)+(n-3) (d)+2 (d)+1 (d)
Carry flag (SM700) (d)+(n1) (d)+(n-2) (d)*+(n-3) - (d)+2 (d)+1 (d)
L1 o [o [0 [1 [1 0

|
T— These bits become "0".

» The value of the device specified by (d) becomes 0.

HRelated devices

SM700 Carry ON/OFF according to the status (1/0) of the (d) bit.

F

2820 The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

130 5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions

Shifting n-word data to the right by 1 word

These instructions shift (n) point(s) of data to the right by 1 word from the device specified by (d).

ENO:=DSFR(EN,n,d);

| E:::j| @ | " }{ ENO:=DSFRP(EN,n,d);
- Settingdata

HDescriptions, ranges, and data types

(d) Head device number to be shifted — Word ANY16
(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary | ANY16
BApplicable devices

(d) - - - |o - - |- |- Jo - = 1= 1=
(n) o - - o o o |- |- Jo o |- |- 1-

Processing detail

» These instructions shift (n) point(s) of data to the right by 1 word from the device specified by (d).

- (n) >
(d)+(n 1) (d)+(n 2) (d)+(n 3) (d)+2 (d)+1 (d)
(d)+(n- 1) (d)+*(n-2) (d)+(n-3) (d)*(n-4) - (d)+1 (d)

0 555 | 212 | 325 [(0] 100 50

T_

 The value of the device specified by (d) + (n-1) becomes 0.

- Operation error

These bits become "0".

2820 The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions 131

Shifting n-word data to the left by 1 word

These instructions shift (n) point(s) of data to the left by 1 word from the device specified by (d).

ENO:=DSFL(EN,n,d);

| |:::::I| @ | " }{ ENO:=DSFLP(EN,n,d);

HDescriptions, ranges, and data types

(d) Head device number to be shifted — Word ANY16
(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary | ANY16
BApplicable devices

(d) - - - |o - - |- |- Jo - = 1= 1=

(n) O — — O O o |— — @) O - |— |—

Processing detail

* These instructions shift (n) point(s) of data to the left by 1 word from the device specified by (d).

fe (n) g

(d)+(n-1) (d)+(n-2) (d)+(n-3) - (d)+2 (d)+1 (d)

[555 | 120 [325 [V0] 100 | 50 | 40 |

d+(n-1) (d+(n-2) - (A3 (d)+2 (d)+1 (d)
120 | 325 [V0] 100 | 50 | 40 [o

|
T— These bits become "0".

» The value of the device specified by (d) becomes 0.

- Operation error

2820 The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

132 5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions

Shifting n-bit(s) data to the right by (n) bit(s)

SFTR(P)

These instructions shift (n1) bits of data to the right by (n2) bit(s) from the device specified by (d).

Ladder diagram Structured text

ENO:=SFTR(EN,s,n1,n2,d);
ENO:=SFTRP(EN,s,n1,n2,d);

—Cc=d]e| o |<n1>|(n2)}—{

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(s) Head device number stored to the shift data after the shift | — Bit ANY_BOOL
(d) Head device number to be shifted — Bit ANY_BOOL
(n1)*1 Data length of shift data 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)k1 Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
*1 Set so that n2<n1.
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,ST,c,D, |umweO|z |Lc |[Lz |specification [y Tp [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — o — - | = — — 02 |— |— |—
(d) O — — o — - | = — — - | == |-
(n1) (@) — — (@) O o |— — @) O - | = |—
(n2) (@) — — (@) O o |— — @) O - |— |—

*1 T, ST, C cannot be used.
*2 Only 0 or 1 can be used.

Processing. details

» These instructions shift (n1) bits of data to the right by (n2) bit(s) from the device specified by (d). After the shift, (n2) points

from (s) are set into (n2) points from (d)+(n1-n2).
* When KO is specified for (s), set Os for (n2) points of bits from (d)+(n1-n2) after the shift.
» When K1 is specified for (s), set 1s for (n2) points of bits from (d)+(n1-n2) after the shift.

le 1 N|
« (n1) n2) >
(d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
L+ [+ T+ T ol 1+ [T+ 1+ 7T + [o o]
()43 (942 (s (5) (A5 (A4 (@43 (A2 (A1 (d)
Lo T ol ol ol v+ [+ T 1+ o 1 [1]

When (s)=KaO, it is 0.

Operation.error

Error code Remarks
(SD0/SD8067)
2820 The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.
The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.
2821 The transfer source data (s) overlaps with shift device (d).
3405 A constant other than KO or K1 is specified when the constant (s) is specified.
The values specified in (n1) and (n2) are such that (n1)<(n2).

5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions

133

Shifting n-bit data to the left by n bit(s)

SFTL(P)

These instructions shift (n1) bits of data to the left by (n2) bit(s) from the device specified by (d).

Ladder diagram

Structured text

—Cc=d]e| o |<n1>|(n2)}—{

ENO:=SFTL(EN,s,n1,n2,d);
ENO:=SFTLP(EN,s,n1,n2,d);

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(s) Head device number stored to the shift data after the shift | — Bit ANY_BOOL
(d) Head device number to be shifted — Bit ANY_BOOL
(n1)*1 Data length of shift data 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)k1 Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
*1 Set so that n2<n1.
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,ST,c,D, |umweO|z |Lc |[Lz |specification [y Tp [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — o — - | = — — 02 |— |— |—
(d) O — — o — - | = — — - | == |-
(n1) (@) — — (@) (@) o |— — @) O - | = |—
(n2) (@) — — (@) (@) o |— — @) O - |— |—

*1 T, ST, C cannot be used.
*2 Only 0 or 1 can be used.

Processing. details

» These instructions shift (n1) bits of data to the left by (n2) bit(s) from the device specified by (d). After the shift, (n2) points

from (s) are set into (n2) points from (d).

» When KO is specified for (s), set Os for (n2) points of bits from (d) after the shift.
» When K1 is specified for (s), set 1s for (n2) points of bits from (d) after the shift.

134

le 1 »l
) (n2) " B
(d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
Lo T + T 1+ T ol +] 1+ 1+ 1+ o 1]
@+9 (A8 (@7 (d6 (A5 (s (B3 (52 ()1 (s)
[1+ 1T 1+ 1+] o] +] o] of] of ol o]

When (s)=KO, it is 0.

Operation.error

Error code Remarks

(SD0/SD8067)

2820 The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.
The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821 The transfer source data (s) overlaps with shift device (d).

3405 A constant other than KO or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions

Shifting n-word data to the right by n word(s)

WSFR(P)
This instruction shifts (n1) words of data to the right by (n2) word(s) from the device specified by (d).

Ladder diagram Structured text

ENO:=WSFR(EN,s,n1,n2,d);
p— ENO:=WSFRP(EN,s,n1,n2,d);
—c=3]e W@ |<n1>|(n2)}—{ e

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(s) Head device number stored to the shift data after the shift | — Word ANY16

(d) Head device number to be shifted — Word ANY16

(n1)k1 Data length of shift data 0 to 65535 16-bit unsigned binary | ANY16_U

(n2)*1 Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U

*1 Set so that n2<n1.

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) 0 — — o} 0 o |- — o} o} — | = | =

(d) o — — o) o) o |— — o - == |-

(n1) O — — O O o | — — O O - |— | —

(n2) O — — O O o | — — O O i i

Processing. details

* This instruction shifts (n1) words of data to the right by (n2) word(s) from the device specified by (d). After the shift, (n2)
points from (s) are set into (n2) points from (d)+(n1-n2).

 This instruction sets the specified value for (n2) points of devices from (d) + (n1-n2) after the shift when K is specified for
(s).

« (1) .

(n2)

(A8 (A7 (d6 (d)5 ()4 (d)+3 (d)+2 (d)+1 (d)

[30FH | 1EH [100H | oH | 1FFH | 10H | 1FH [7FFH | 2AH |

\

(s)¥3 (s)+2 (s)+1 (s) (d)+4 (d)+3 (d)+2 (d)+1 (d)
[oH | od [od | oH | 30FH | 1EH [100H | oH [1FFH |

* When the value specified for (n1) or (n2) is 0, the processing is not performed.

Operation.error

Error code Remarks
(SD0/SD8067)
2820 The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821 The transfer source data (s) overlaps with shift device (d).

3405 A constant other than KO or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

5 SEQUENCE INSTRUCTIONS 1
5.4 Shift Instructions 35

Shifting n-word data to the left by n word(s)

WSFL(P)
This instruction shifts (n1) words of data to the left by (n2) word(s) from the device specified by (d).
Ladder diagram Structured text
ENO:=WSFL(EN,s,n1,n2,d);
| C— | © | @ | o | 2 }{ ENO:=WSFLP(EN,s,n1,n2,d);

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(s) Head device number stored to the shift data after the shift | — Word ANY16

(d) Head device number to be shifted — Word ANY16

(n1)*1 Data length of shift data 0 to 65535 16-bit unsigned binary | ANY16_U

(n2)k1 Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U

*1 Set so that n2<n1.

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,p, |umeO|z |Lc |Lz | specification [\ yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O o | — — O O - |— |—

(d) O — — O O o |- — O e e

(n1) O — — O O o | — — O O - |— | —

(n2) O — — O O o | — — O O i i

Processing details

« This instruction shifts (n1) words of data to the left by (n2) word(s) from the device specified by (d). After the shift, (n2)
points from (s) are set into (n2) points from (d).
« This instruction sets the specified value for (n2) points of devices from (d) + (n1-n2) after the shift when K is specified for

(s)-
le 1 N
) (n2) " i
(d+8 (A7 (d)+6 (A5 (d)+4 (d)+3 (d)+2 (d)+1 (d)
[tFFH | 10H [oH [7FFH | 3AH [1FH | 30H | oOoH | FFH |
(d)+8 (d)+7 (d)*6 (d)¥5 (d)+4 (533 (s)¥2 (s)H1 (s)
[3aH [1FH [30H [oH [FFH [oH [oH | oH | oH |

* When the value specified for (n1) or (n2) is 0, the processing is not performed.

Operation.error

Error code Remarks
(SD0/SD8067)
2820 The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821 The transfer source data (s) overlaps with shift device (d).

3405 A constant other than KO or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

136 5 SEQUENCE INSTRUCTIONS
5.4 Shift Instructions

9.5

Master Control Instruction

Setting/resetting the master control

MC, MCR

* MC: This instruction starts master control.

* MCR: This instruction ends master control.

Ladder diagram

Structured text

mC

MCR

__(d)

— o= O[] @

ENO:=MC(EN,N,d);
ENO:=MCR(EN,N);

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)

(N) Nesting Oto 14 Device name ANY16_S

(d) Number of device to be turned ON — Bit ANY_BOOL

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|T,sT, [T,sT,c,0, |umeO|z |[Lc |[Lz |specification [g N
SM, F, B, SB C,LC |W,SD, SW,R

(N) — — — — — — | = — — - |- O

(d) o — - o™ - - |= - — - |= -

*1 T, ST, C cannot be used.

5 SEQUENCE INSTRUCTIONS
5.5 Master Control Instruction

137

Processing details

These instructions create program with efficient ladder switching by opening/closing common buses in ladders.
Ladder using master control is illustrated below.

Display of engineering tool | Actual operation ladder |
X0 X0
——— wmc [N~ | wmo H i{|—| mc | Nt [w0 |
N1—— MO N1__Mo
X1 X3 M7 X1 X3 M7
al (=) HH ()
1)
M5 E:> M5
o o | H—@
X6 X4 X6 X4
[mcr | N1 | [mcr | N1 |
X10 | x10
} @ } Y40

(1) Executed only when X0 is on

EMC

* When the execution command of the MC instruction turns ON at the start of master control, the operation result between
the MC and MCR instructions is as per the instructions (according to ladder). When the execution command of MC
instruction turns OFF, the operation result between the MC and MCR instructions becomes as follows.

Device Device status

Timer The count value becomes 0, and both coils and contacts turn OFF.

Counters, retentive timers Coils turn OFF but the current status of both count values and contacts is
maintained.

Devices in OUT instruction Forcibly turned OFF.

Devices in SET and RST instructions Current status is maintained.
Devices in SFT(P) instruction
Devices in basic instructions and
applied instructions

Point

When an instruction (e.g. FOR to NEXT instructions etc.) not requiring NO contact instruction is programmed
in a ladder using master control, the CPU module executes that instruction regardless of the execution
command of this instruction.

+ With this instruction, the same nesting (N) number can be used as many times as necessary by changing the device
specified by (d).

» When this instruction is ON, the coil of the device specified by (d) turns ON. Also, the coil becomes a double coil when the
same device is used by the OUT instruction, for example. So, do not use the device specified by (d) in other instructions.

EMCR
« This instruction indicates the end of the master control range by the master control release instruction.

* Do not prefix this instruction with NO contact instruction.

* Use these (MC and MCR) instructions with same nesting number as a pair. Note, however, that when this instruction is
nested at a single location, all master controls can be ended by just one (N) number, the smallest number. (Refer to
Caution.)

138 5 SEQUENCE INSTRUCTIONS
5.5 Master Control Instruction

Point/©

NO 5

N1 3

N2 3

Master control instructions can be used in a nested fashion. Each master control section is distinguished by

nesting (N). Nesting is available within the range NO to N14.
A nested structure allows you to create a ladder for successively restricting program execution conditions.

A nested structure ladder is illustrated as follows:

Display of engineering tool

- M15

-M16

-rM17

(1) Executed when A is ON

i

NO 5

Actual operation circuit

-M15

N13

N2 3

}(1)

- M16

} (&)

-M17

} (©)

= = =
O O (@}
= = =
: 7| 2| 3|
E z = S
N ~ ()] (42}

} (&)

O [

}(1)

(2) Executed when A and B are ON
(3) Executed when A, B, and C are ON

(4) Regardless of A, B, and C

o

} (4)

5 SEQUENCE INSTRUCTIONS
5.5 Master Control Instruction

139

Precautions

« If an instruction (e.g. LD, LDI) to be connected to the bus is not programmed following the MC instruction, a ladder error
(error code: 33E0) occurs.

» These instructions cannot be used in FOR to NEXT, P to RET (SRET), and | to IRET. Also, do not block by I, IRET, FEND,
END, RET (SRET), etc. Addition by write during RUN mode results in an error.

* Nesting up to 15 levels (NO to N14) is possible. When nesting instructions, the MC instruction is used starting from the
smallest (N) number and the MCR instruction is started starting from the biggest number. Programming in reverse order
does not produce a nested structure and hence the CPU module cannot execute operations properly.

* When the MCR instruction is nested at a single location, all master controls can be ended by just one nesting (N) number,

the smallest number.

X1 X1
- =
NO=M15 NO==M15
e O = O
X2 X2
— MC| N1 [M16 [MC| N1 [M16
N1T=M16 N1==M16
= - | O
X3 I:> X3
— Mc | N2 [m17 [MC[N2 [M17
N2 ==M17 N2 ==M17
C ol = O
MoR| N2 | MCR| No |
| - O
I I

=< I
ol 1O
|l =D
Ol [
ol |=

Operation.error

There is no operation error.

140 5 SEQUENCE INSTRUCTIONS
5.5 Master Control Instruction

5.6 Termination Instructions

Ending the main routine program

FEND

This instruction is used to branch operation of the sequence program by the CJ instruction or to divide the main routine

program into a subroutine program or an interrupt program.

Ladder diagram Structured text

ENO:=FEND(EN);

Processing details

* This instruction branches operation of the sequence program by the CJ instruction or dividing the main routine program into
subroutine programs and interrupt programs.

» When this instruction is executed, program execution returns to the program at step 0 after output processing, input
processing and refreshing of the watchdog timer.
« The sequence program from this instruction onwards can also be displayed as ladder by the engineering tool.

0 Main routine \ _|

program

(2) Main routine

| program
— i HL]
LN L ©

Main routine

pr+
program Subroutine program
FEND
o
P Main routine Interrupt Program
program
[TEnD |
END
FEND L=
END
(a) When the CJ instruction is used (b) When there are subroutine programs

and interrupt programs

(1) Operation when the CJ instruction is not executed
(2) Jump by the CJ instruction
3) Operation when the CJ instruction has been executed

Operation.error

Error code Remarks
(SD0/SD8067)
3340 The FEND instruction is executed before the NEXT instruction after the FOR instruction is executed.
3381 The FEND instruction is executed before the RET instruction after the CALL(P) instruction is executed.
33E3 The FEND instruction is programmed between FOR-NEXT.
33E4 The FEND instruction is programmed between MC-MCR.
33E7 The FEND instruction is programmed between I-IRET.
3100 The FEND instruction is programmed in standby type program.
The FEND instruction is programmed in FB file.

5 SEQUENCE INSTRUCTIONS 141
5.6 Termination Instructions

Ending the sequence program

END
This instruction indicates the end of a program.
Ladder diagram Structured text
Not supported.
L]

Processing. details

* This instruction indicates the end of all programs including the main routine program, subroutine program, and interrupt
program. When this instruction is executed, the CPU module ends execution of the currently executing program.

Sequence program

END

v

» The first time the RUN is started, execution begins from this instruction.

« This instruction cannot be programmed midway during the main sequence program. When this processing is required
midway during the program, use the FEND instruction.

* When programming is performed using the engineering tool in ladder edit mode, the END instruction is automatically input
and cannot be edited.

» The following illustrates how the END and FEND instructions are used properly when a program contains a main routine
program, subroutine program, and interrupt program.

Main routine program

FEND |:> (FEND instruction is required.)

Subroutine program Main sequence

program area

Interrupt Program

END "> (END instruction is required.)

Point/@

The END instruction executed while a program is divided into multiple program blocks indicates the end of a
program block.

The END instruction executed for END processing is executed at the end of the last executed program
registered in the program settings.

Operation.error

Error code Remarks

(SD0/SD8067)

3340 The END instruction is executed before the NEXT instruction after the FOR instruction is executed.
3381 The END instruction is executed before the RET instruction after the CALL(P) instruction is executed.
33E3 The END instruction is programmed between FOR-NEXT.

33E4 The END instruction is programmed between MC-MCR.

33E7 The END instruction is programmed between I-IRET.

142 5 SEQUENCE INSTRUCTIONS
5.6 Termination Instructions

5.7 Stop Instruction

Stopping the sequence program

STOP

This instruction resets outputs (Y) and stops operation of the CPU module when the execution command turns ON. (This
operation is the same as setting the switch to STOP.)

Ladder diagram Structured text

ENO:=STOP(EN);

[

Processing details

* This instruction resets outputs (Y) and stops operation of the CPU module when the execution command turns ON. (This
operation is the same as setting the switch to STOP.)

« To restart operation of the CPU module after this instruction is executed, return the switch from RUN—-STOP and set it to
RUN again.

Operation.error

Error code Remarks

(SD0/SD8067)

3340 The STOP instruction is executed before the NEXT instruction is executed after the FOR instruction is executed.

3381 The STOP instruction is executed before the RET instruction is executed after the CALL(P) or XCALL(P) instruction is executed.
3582 The STOP instruction is executed before the IRET instruction is executed in the interruption program.

5 SEQUENCE INSTRUCTIONS 14
5.7 Stop Instruction 3

5.8 No Processing Instruction

No operation

NOP

This instruction is used, for example, to insert a space for debugging the program.

Ladder diagram

Structured text

c=a+—)

Not supported.

Processing details
ENOP

» Execution of the no processing instruction does not affect operation.

* This instruction is used in the following instances:
* To insert a space for debugging the program.

* To delete an instruction without altering the number of steps. (The instruction is overwritten with this instruction.)

* To temporarily delete an instruction.

Operation.error

There is no operation error.

144 5 SEQUENCE INSTRUCTIONS
5.8 No Processing Instruction

6 BASIC INSTRUCTIONS

6.1 Comparison Operation Instructions

Comparing 16-bit binary data

LDO(_U), ANDOI(_U), ORO(_U)

These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the 16-

bit binary data in the device specified by (s2). (Devices are used as NO contacts.)

Ladder diagram Structured text
Not supported
WL T L O]en e f—
ANDC T —{ L[en | e f—
|
|
OR[___ 7]
— L0602
(O is to be replaced by any of the following: =(_U), <>(_U), >(_U), <=(_U),
<(_U), >=(_V).)
Setting data
HDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | LDO, ANDO, Comparison data or device where the -32768 to +32767 16-bit signed binary ANY16
ORO comparison data is stored
LDO_U, 0 to 65535 16-bit unsigned binary | ANY16_U
ANDO_U,
ORO_U
(s2) | LDO, ANDO, Comparison data or device where the -32768 to +32767 16-bit signed binary ANY16
ORO comparison data is stored
LDO_U, 0 to 65535 16-bit unsigned binary | ANY16_U
ANDO_U,
ORO_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,ST, |T,sT,Cc,0, |uOweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) (@) — — (@) (@) o |— — (@) (@) - = | =
(s2) (@) — — (@) (@) o |— — O (@) - |= | =

6 BASIC INSTRUCTIONS 14
6.1 Comparison Operation Instructions 5

Processing details

» These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the

16-bit binary data in the device specified by (s2). (Devices are used as NO contacts.)

» The following table lists the comparison operation result of each instruction.

Instruction symbol Condition Result
=(_V) (s1) =(s2) Conductive state
<>(_U) (s1) # (s2)
>(_U) (s1) > (s2)
<=(_Y) (s1)=(s2)
<(Y) (s1) < (s2)
>=(_U) (s1)2(s2)
=(_V) (s1) # (s2) Non-conductive state
(V) (s1)=(s2)
>(_LV) (s1)=(s2)
<=(_U) (s1) > (s2)
<L) (s1)=(s2)
>=(_U) (s1)<(s2)
Precautions

* When the most significant bit is "1" in the data stored in (s1) or (s2), it is regarded as a negative binary value for
comparison. (Excluding unsigned operation)

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

146 6.1 Comparison Operation Instructions

Comparing 32-bit binary data

LDDL(_U), ANDDLI(_U), ORDO(_U)

These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the 32-

bit binary data in the device specified by (s2). (Devices are used as NO contacts.)

Ladder diagram Structured text
Not supported
WE T L[| f—
ANDC IO L[en | 62—
|
|
OR[___ 7]
— L. 0] 0] 62
(O is to be replaced by any of the following: D=(_U), D<>(_U), D>(_U),
D<=(_U), D<(_U), D>=(_U).)
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | LDDO, Comparison data or head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32
ANDDO, ORDO | comparison data is stored
LDDO_U, 0 to 4294967295 32-bit unsigned binary | ANY32_U
ANDDO_U,
ORDO_U
(s2) | LDDO, Comparison data or head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32
ANDDO, ORDO | comparison data is stored
LDDO_U, 0 to 4294967295 32-bit unsigned binary | ANY32_U
ANDDO_U,
ORDO_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTe Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) (@) — — (@) o |O O O (@) - |—= |—=
(s2) @) — — @) o |O (@] (@] (@) - = |—

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

147

Processing details

» These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the
32-bit binary data in the device specified by (s2). (Devices are used as NO contacts)
» The following table lists the comparison operation results of each instruction.

Instruction symbol Condition Result
D=(_U) (s1) =(s2) Conductive state
D<>(_U) (s1) # (s2)
D>(_U) (s1) > (s2)
D<=(_U) (s1)<(s2)
D<(_U) (s1)<(s2)
D>=(_U) (s1)>(s2)
D=(_U) (s1) # (s2) Non-conductive state
D<>(_U) (s1)=(s2)
D>(_U) (s1) < (s2)
D<=(_U) (s1) > (s2)
D<(_U) (s1)=(s2)
D>=(_U) (s1)<(s2)
Precautions

* When the most significant bit is "1" in the data stored in (s1) or (s2), it is regarded as a negative binary value for
comparison. (Excluding unsigned operation)

» For comparison of 32-bit counter (LC), specify an instruction (LDD=, etc.) that handles 32-bit data. If an instruction (LD=,
etc.) that handles 16-bit data is specified, a program error or operation error occurs. (Same applies for index device (LZ) as
well.)

Operation.error

There is no operation error.

148 6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

Comparison output 16-bit binary data

CMP(P)(_U)

These instructions perform a comparison operation between the 16-bit binary data in the devices specified by (s1) and (s2).

Ladder diagram

Structured text

— = O]en] 6] © }—{

ENO:=CMP(EN,s1,s2,d);
ENO:=CMPP(EN,s1,52,d);

ENO:=CMP_U(EN,s1,52,d);
ENO:=CMPP_U(EN,s1,s2,d);

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | CMP(P) Comparison value data or the device where the | -32768 to +32767 16-bit signed binary ANY16
CMP(P)_U comparison value data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | CMP(P) Comparison source data or the device where -32768 to +32767 16-bit signed binary ANY16
CMP(P)_U the comparison source data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) The starting bit device to which the comparison | — Bit ANY_BOOL
result is output
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, [T, ST,C,D, |umeO|z |Lc |Lz |specification [y y g [g
SM, F, B, SB C,LC | W,SD, SW,R
(s1) O — — O O o |— — @) O - |— |—
(s2) O — — O O o |— — @) O - | — |—
(d) O — — o — - | = — — - | == |-
*1 T, ST, C cannot be used.

Processing details

» These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the

16-bit binary data in the device specified by (s2) and according to the result (small, equal, large), (d), (d) + 1, or (d) + 2 is
turned ON.
* (s1) and (s2) are handled as binary values within the range of above data setting.

» Large and small comparison is executed algebraically.
+ With sign...
 Without sign...

-10 (FFF6H) < 2 (0002H)

32767 (TFFFH) < 65280 (FFOOH)

Command input Command input —I_! |_| |_l. l_l—
—t CMP (s1) (s2) (d) ! ' &l
B A ; : 50, :
AR - X :
i 1| Turns ON in the case of (s1)>(s2). (s2) 48, (s1) ‘
! ! . , ,
G (d) I |_,_,_ :
: —— : Turns ON in the case of (s1)=(s2) Tatohed | |
V| @)+2 ! . (d)+1 I !
, [, Turns ON in the case of (s1)<(s2). 3 !
Y I, Latched
(d)+2 !
>t
Latched

Even if the command input turns OFF and the CMP instruction is not executed, (d) to (d)+2 latches the status
just before the command input turns from ON to OFF.

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

149

- Precautions

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

- Operation error

2820 The range of 3 points of data starting from the device specified by (d) exceeds said device.

150 6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

Comparison output 32-bit binary data

DCMP(P)(_U)

These instructions perform a comparison operation between the 32-bit binary data in the devices specified by (s1) and (s2).

Ladder diagram Structured text
ENO:=DCMP(EN,s1,s2,d); ENO:=DCMP_U(EN,s1,s2,d);
— ENO:=DCMPP(EN,s1,s2,d); ENO:=DCMPP_U(EN,s1,s2,d);
—[c=a]en]e] <d)}—{ () U)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DCMP(P) Comparison value data or the head device -2147483647 to +2147483647 | 32-bit signed binary ANY32
DCMP(P)_U where the comparison value data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DCMP(P) Comparison source data or the head device -2147483647 to +2147483647 | 32-bit signed binary ANY32
DCMP(P)_U where the comparison source data is stored [1, 4594967295 32-bit unsigned binary | ANY32_U
(d) The starting bit device to which the comparison | — Bit ANY_BOOL
result is output

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uoeO|TsT [TsT,c,p, |umdeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s1) 0 — — o} 0 o |o o} o} o} — | = | =

(s2) O — — O O O O O O O - |— | —

(d) O — — o™ - e — - - | == |-

*1 T, ST, C cannot be used.

Processing details

» These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the
32-bit binary data in the device specified by (s2) and according to the result (small, equal, large), (d), (d) + 1, or (d) + 2 is
turned ON.

* (s1) and (s2) are handled as binary values within the range of above data setting.

+ Large and small comparison is executed algebraically.

 With sign... -125400 (FFFE1628H) < 224566 (00036D36H)
+ Without sign... 16776690 (00FFFDF2H) < 4294967176 (FFFFFF88H)
Command input Command input —|_| |_| l_l: l_l—
—t DCMP (s1) (s2) (d)

I T-=-=-=-- 1

@

[~ Turns ON in the case of (s1)>(s2). (s2)

1 1

Ho@ero (d)

, 11—, Turns ON in the case of (s1)=(s2).

1 1

vfo(d)+2 (d)+1

: —— : Turns ON in the case of (s1)<(s2).

=t
Latched

Even if the command input turns OFF and the DCMP instruction is not executed, (d) to (d)+2 latches the status
just before the command input turns from ON to OFF.

6 BASIC INSTRUCTIONS 1 1
6.1 Comparison Operation Instructions 5

- Precautions

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

- Operation error

2820 The range of 3 points of data starting from the device specified by (d) exceeds said device.

152 6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

Comparing 16-bit binary data band

ZCP(P)(_V)

These instructions perform a comparison operation on the 16-bit binary data in the device specified by (s1) and the 16-bit

binary data in the device specified by (s2) with the 16-bit binary data in the device specified by comparison source (s3), and

output the comparison result (below, within zone, above) to the device specified by (d) onwards.

Ladder diagram

Structured text

— =]y || 6] @ }—{

ENO:=ZCP(EN,s1,s2,s3,d);
ENO:=ZCPP(EN,s1,s2,s3,d);

ENO:=ZCP_U(EN,s1,s2,s3,d);
ENO:=ZCPP_U(EN,s1,s2,s3,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | ZCP(P) Lower limit comparison data or the device -32768 to +32767 16-bit signed binary ANY16
ZCP(P)_U where the comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | ZCP(P) Upper limit comparison data or the device -32768 to +32767 16-bit signed binary ANY16
ZCP(P)_U where the comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s3) | ZCP(P) Comparison source data or the device where -32768 to +32767 16-bit signed binary ANY16
ZCP(P)_U the comparison source data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) The starting bit device to which the comparison | — Bit ANY_BOOL
result is output
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R
(s1) O — — O O o | — — O O - | — |—
(s2)) — — e) o) o |— — o) le) — = |=
(s3) O — — O O o | — — @) O - |— |—
(d) O — — o™ - e — - - | == |-

*1 T, ST, C cannot be used.

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

153

Processing details

» These instructions perform a comparison operation on the 16-bit binary data in the device specified by (s1) and the 16-bit
binary data in the device specified by (s2) with the 16-bit binary data in the device specified by comparison source (s3), and
according to the comparison result (below, within zone, above), (d), (d) + 1, or (d) + 2 is turned ON. (s1), (s2), and (s3) are
handled as binary values within the range of above data setting. Large and small comparison is executed algebraically.

* Large and small comparison is executed algebraically.
* With sign... -10 (FFF6H) < 2 (0002H) < 10 (000AH)
« Without sign... 0 (0000H) < 32767 (7FFFH) < 40000 (9C40H)

Command input
—t ZCP (s1) (s2) (s3) (d)

(d)

F—F—— Turns ON in the case of (s1)>(s3).

(d)+1
F—F—— Turns ON in the case of (s1)<(s3)<(s2).

(d)+2
—— Turns ON in the case of (s3)>(s2).

|

Even if the command input turns OFF and the ZCP instruction is not executed, (d) to (d)+2 latches the status
just before the command input turns from ON to OFF.

Precautions

» Set (s1) to a value less than (s2).

» Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation.error

Error code Description
(SD0/SD8067)
2820 The range of the 3 points of data starting from the device specified by (d) exceeds said device.

154

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

Comparing 32-bit binary data band

DZCP(P)(_V)

These instructions perform a comparison operation on the 32-bit binary data in the device specified by (s1) and the 32-bit

binary data in the device specified by (s2) with the 32-bit binary data in the device specified by comparison source (s3), and

output the comparison result (below, within zone, above) to the device specified by (d) onwards.

Ladder diagram

Structured text

— =]y || 6] @ }—{

ENO:=DZCP(EN,s1,s2,s3,d);
ENO:=DZCPP(EN,s1,s2,s3,d);

ENO:=DZCP_U(EN,s1,52,53,d);
ENO:=DZCPP_U(EN,s1,52,53,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DZCP(P) Lower limit comparison data or the head device | -2147483647 to +2147483647 | 32-bit signed binary ANY32
DZCP(P)_U where the comparison data is stared 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DZCP(P) Upper limit comparison data or the head device | -2147483647 to +2147483647 | 32-bit signed binary ANY32
DZCP(P)_U where the comparison data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s3) | DZCP(P) Comparison source data or the head device -2147483647 to +2147483647 | 32-bit signed binary ANY32
DZCP(P)_U where the comparison source data is stored [1, 4594967295 32-bit unsigned binary | ANY32_U
(d) The starting bit device to which the comparison | — Bit ANY_BOOL
result is output
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R
(s1) O — — O O O O O O O i i
(s2) o) — —) o) o |o o) o) o) — |= |=
(s3) O — — O O O O O O O - |— |—
(d) O — — o™ - e — - - | == |-

*1 T, ST, C cannot be used.

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

155

Processing details

» These instructions perform a comparison operation on the 32-bit binary data in the device specified by (s1) and the 32-bit
binary data in the device specified by (s2) with the 32-bit binary data in the device specified by comparison source (s3), and
according to the comparison result (below, within zone, above), (d), (d) + 1, or (d) + 2 is turned ON. (s1), (s2), and (s3) are
handled as binary values within the range of above data setting.

* Large and small comparison is executed algebraically.
* With sign... -125400 (FFFE1628H) < 22466 (000057C2H) < 1015444 (000F7E94H)
« Without sign... 0 (00000000H) < 2147483647 (TFFFFFFFH) < 4026531840 (FOO00000H)

Command input
—t DzCP (s1) (s2) (s3) (d)

(d)
—F——Turns ON in the case of (s1)>(s3).

(d)+1

—F—— Turns ON in the case of (s1)(s3)<(s2).
(d)+2

—— Turns ON in the case of (s3)>(s2).

|

Even if the command input turns OFF and the DZCP instruction is not executed, (d) to (d)+2 latches the status
just before the command input turns from ON to OFF.

Precautions

+ Set (s1) to a value less than (s2).
» Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation.error

Error code Description
(SD0/SD8067)
2820 The range of the 3 points of data starting from the device specified by (d) exceeds said device.

156 6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

Comparing 16-bit binary block data

BKCMPLO(P)(_U)

These instructions perform a comparison operation between (n) point(s) of 16-bit binary data in the device starting from the
one specified by (s1) and (n) point(s) of 16-bit binary data in the device starting from the one specified by (s2), and store the

operation result in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ | m }—{
(O is to be replaced by any of the following: BKCMP=(P)(_U),
BKCMP<>(P)(_U), BKCMP>(P)(_U)< BKCMP<=(P)(_U), BKCMP<(P)(_U),
BKCMP>=(P)(_U).)
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | BKCMPO(P) Comparison data or the device where the -32768 to +32767 16-bit signed binary ANY16
BKCMPO(P)_U | Comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | BKCMPO(P) Device where the comparison source data is — 16-bit signed binary ANY16
BkCMPO(P)_U | Stored — 16-bit unsigned binary | ANY16_U
(d) Head device storing comparison result — Bit ANY_BOOL
(n) Number of data to be compared 0 to 65535 16-bit unsigned binary | ANY16_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, [T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) — — - O — - |- — o o |- |- |-
(s2) — — — O — - | = — O - | == |-
(d) O — — o™ — - |— — — - = 1= |-
(n) O — — O O o | — — O O - |— | —
*1 T, ST, C cannot be used.

Processing details

» These instructions perform a comparison operation between (n) point(s) of 16-bit binary data in the device starting from the
one specified by (s1) and (n) point(s) of 16-bit binary data in the device starting from the one specified by (s2), and store the
comparison result in (n) point(s) of data starting from the device specified by (d).

» The relevant devices of (n) point(s) of data starting from the device specified by (d) are turned ON when the comparison
conditions are met and turned OFF when the comparison conditions are not met.

(s1)

(s1)+1

(s1)+2

(s1)+(n-2)

b15 b0
1234 (BIN)
5678 (BIN)
5000 (BIN)

—
7777 (BIN)
4321 (BIN)

(s1)+(n-1)

(s2)
(s2)+1
(s2)+2

(s2)+(n-2)
(s2)+(n-1)

b15 b0
5321 (BIN)
3399 (BIN)
5678 (BIN)

S
6543 (BIN)
1200 (BIN)

» Comparison operation is performed in units of 16 bits.

m)

Operation result

(d) OFF (0)
(d)+1 ON (1)
(d)+2 OFF (0) "
(d)+(n-2) | ON (1)
(d)+(n-1) | ON (1)

6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

157

* A constant can be directly specified in (s1).

b15 - b0 Operation result
(s2) 32000 (BIN) (d) ON (1)
(s2)+1 4321 (BIN) (d)+1 OFF (0)
(s2)+2 32000 (BIN) (d)y+2 ON (1)
s1) [32000 @] | =] | — n) |:'> | —)
(s2)+(n-2) | 1234 (BIN) (d)y+(n-2) | OFF (0)
(s2)+(n-1) | 5678 (BIN) (d)+(n-1) | OFF (0)

* The following table lists the comparison operation result of each instruction.

Instruction symbol Condition Result
BKCMP=(P)(_U) (s1) = (s2) on(1)
BKCMP<>(P)(_U) (s1) # (s2)

BKCMP>(P)(_U) (s1) > (s2)

BKCMP<=(P)(_U) (s1)<(s2)

BKCMP<(P)(_U) (s1) < (s2)

BKCMP>=(P)(_U) (s1) = (s2)

BKCMP=(P)(_U) (s1) # (s2) Off(0)
BKCMP<>(P)(_U) (s1) = (s2)

BKCMP>(P)(_U) (s1) < (s2)

BKCMP<=(P)(_U) (s1)>(s2)

BKCMP<(P)(_U) (s1)=(s2)

BKCMP>=(P)(_U) (s1) <(s2)

* When the comparison operation result is all ON (1) in all (n) point(s) starting from (d), SM704 and SM8090 (block
comparison signal) turns ON.

Operation.error

Error code Description

(SD0/SD8067)

2820 The (n) point(s) starting from the device specified by (s1), (s2), and (d) exceeds said device.

2821 When (d) specifies "DO.b", the data register of (d) and the (n) point(s) of data starting from the device specified by (s1) overlap.
When (d) specifies "DO.b", the data register of (d) and the (n) point(s) of data starting from the device specified by (s2) overlap.

158 6 BASIC INSTRUCTIONS
6.1 Comparison Operation Instructions

Comparing 32-bit binary block data

DBKCMPL(P)(_U)

These instructions perform a comparison operation between the (n) point(s) of 32-bit binary data starting from the device

specified by (s1) and the (n) point(s) of 32-bit binary data starting from the device specified by (s2), and store the operation
result in the device specified by (d).

Ladder diagram Structured text

— = d]en|ea] @ | m }—{

(O is to be replaced by any of the following: DBKCMP=(P)(_U),
DBKCMP<>(P)(_U), DBKCMP>(P)(_U), DBKCMP<=(P)(_U),
DBKCMP<(P)(_U), DBKCMP>=(P)(_U).)

Not supported

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DBKCMPO(P) Comparison data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32
DBKCMPO(P)_ | Comparison data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
u
(s2) | DBKCMPO(P) Head device where the comparison source — 32-bit signed binary ANY32
DBKCMPO(P)_ | data s stored — 32-bit unsigned binary | ANY32_U
u
(d) Head device storing comparison result — Bit ANY_BOOL
(n) Number of data to be compared 0 to 65535 16-bit unsigned binary | ANY16_U

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT [TsT,c,p, |umeO|z |Lc |Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(s1) — — - O — — |0 — O o |= |- |-

(s2) — — — O — — |0 — O e e e

(d) O — — o™ — e — — — - = |—=

(") O — - O O o |— — O o |= |- |-

*1 T, ST, C cannot be used.

Processing details

» These instructions perform a comparison operation between (n) point(s) of 32-bit binary data starting from the device
specified by (s1) and (n) point(s) of 32-bit binary data starting from the device specified by (s2), and store the comparison
result in (n) point(s) of data starting from the device specified by (d).

* The relevant (n) point(s) of data starting from the device specified by (d) are turned ON when the comparison conditions are
met and turned OFF when the comparison conditions are not met.

b31 - b0 b31 - bo Operation result
(s1)+1, (s1) 1090 (BIN) (s2)+1, (s2) 1000 (BIN) (d) OFF (0)
(s1)+3, (s1)+2 2080 (BIN) T (s2)+3, (s2)+2 2000 (BIN) (d)+1 OFF (0) T
(s1)+5, (s1)+4 5060 (BIN) (n)| = | (s2)+5, (s2)+4 5060 (BIN) | (n) |:> (@)+2 ON a1 m
; ; = ; : P ; =
(s1)+(2n-1), (s1)+(2n-2) | 1106 (BIN) AL (s2)+(2n-1), (s2)+(2n-2) | 1106 (BIN) AL (d)+(n-1) | ON (1) AL

» Comparison operation is performed in units of 32 bits.

6 BASIC INSTRUCTIONS 1
6.1 Comparison Operation Instructions 59

* A constant can be directly specified in (s1).

(s2)+1,
(s1)+1,(s1) [32800 BIN)| | >= | (25,

(s2)
(s2)+2
(s2)+4

b31 -~ b0
32700 (BIN)
40000 (BIN)
32800 (BIN)

/__/

(s2)+(2n-1), (s2)+(2n-2) | 2147400 (BIN)

m)

i

Operation result

(@ ON Q)
(d)+1 OFF (0)

(d)+2 ON 1| (n)
: e —
@+n-1) | OFF (0

+ (d) is specified outside the device range of (n) point(s) of data starting from the one specified by (s1) and outside the device

range of (n) point(s) of data starting from the one specified by (s2).

» The following table lists the comparison operation result of each instruction.

Instruction symbol Condition Result
DBKCMP=(P)(_U) (s1) = (s2) On(1)
DBKCMP<>(P)(_U) (s1) # (s2)

DBKCMP>(P)(_U) (s1) > (s2)

DBKCMP<=(P)(_U) (s1)<(s2)

DBKCMP<(P)(_U) (s1) < (s2)

DBKCMP>=(P)(_U) (s1)2(s2)

DBKCMP=(P)(_U) (s1) # (s2) Off(0)
DBKCMP<>(P)(_U) (s1) = (s2)

DBKCMP>(P)(_U) (s1)<(s2)

DBKCMP<=(P)(_U) (s1) > (s2)

DBKCMP<(P)(_U) (s1) > (s2)

DBKCMP>=(P)(_U) (s1) < (s2)

* When the comparison operation result is all ON (1) in all (n) point(s) starting from (d), SM704 and SM8090 (block
comparison signal) turns ON.

Precautions

If a 32-bit counter (high-speed counter included) is used, make sure to compare using the 32-bit operation (DBKCMP=,

DBKCMP>, DBKCMP<, etc.

Operation.error

)-

Error code Description
(SD0/SD8067)
2820 The (n) x 2 points of data starting from the device specified by (s1) and (s2) or the (n) point(s) of data starting from the device specified by

(d) exceeds said device.

2821 When (d) specifies "DO.b", the (n) point(s) of data starting from the device specified by (d) and the device range of the (n) x 2 points of

data starting from the device specified by (s1) overlap.

When (d) specifies "DO.b", the (n) point(s) of data starting from the device specified by (d) and the device range of the (n) x 2 points of
data starting from the device specified by (s2) overlap.

Point}”

When bit is specified for word device, devices other than the bit-specified word devices where operation result

is stored will not change.

D10.F D10.0
oloitiof[1i1i1i1[1i0i0i1[1i0i0!0
D10.F @ D10.0
otoi1iof[1i1[oiofoioir|1][1i0i0i0

6 BASIC INSTRUCTIONS
160

6.1 Comparison Operation Instructions

6.2 Arithmetic Operation Instructions

Adding 16-bit binary data

+(P)(_U) instruction and ADD(P)(_U) instruction can be used for addition of 16-bit binary data.

+(P)(_U) [using two operands]
These instructions add the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device specified by
(s), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=0le e }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) +(P) Addend data or the device where the data that | -32768 to +32767 16-bit signed binary ANY16_S
+P)_U is added to another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) +(P) Device where the data to which another is -32768 to +32767 16-bit signed binary ANY16_S
+(P)_U added is stored 0 to 65535 16-bit unsigned binary | ANY16_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |[T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTe Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) 0 — — 0 0 o |— — o} o} — | = | =
(d) o) — - o) o) o |- — o e

Processing details

» These instructions add the 16-bit binary data in the device specified by (s) to the 16-bit binary data in the device specified
by (d), and store the addition result in the device specified by (d).

@) ©) @

b15 - bo bis bo b15 - bo
[sers@N) | + [1234a@IN) | T> | e912(BIN)]

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of +(P)

K32767 + K2 — K-32767 ¢+ s e e Because the highest bit is 1, the value is negative.
(7FFFH) (0002H) (8001H)
K-32768 + K-2 — K32766 « « « ¢ ¢ ¢ ¢ Because the highest bit is 0, the value is positive.
(8000H) (FFFEH) (7TFFEH)

In case of +(P)(_U)
K65535 + K2 - K1
(FFFFH) (0002H) (0001H)

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 1 1
6.2 Arithmetic Operation Instructions 6

+(P)(_U) [using three operands]

These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=PLUS(EN,s1,s2,d); ENO:=PLUS_U(EN,s1,s2,d);
— ENO:=PLUSP(EN,s1,s2,d); ENO:=PLUSP_U(EN,s1,s2,d);
— L. d[en]e2] @ }—{ () o)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | +(P) Augend data or the device where the data to -32768 to +32767 16-bit signed binary ANY16_S
+(P)_U which another is added is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | +(P) Addend data or the device where the data that | -32768 to +32767 16-bit signed binary ANY16_S
+(P)_U is added to another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) +(P) Device for storing the operation result — 16-bit signed binary ANY16_S
+(P)_U — 16-bit unsigned binary | ANY16_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) 0 — — o} 0 o |- — o} o} — | = | =
(s2) O — — O O o | — — O @) - |— |—
C) o) — - o) o) o |- — o e

Processing details

» These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the addition result in the device specified by (d).

(s1) (s2) @

. b0
6912 BIN) |

b15 b0 b15

bo b15
[sers@N) | + [123aBIN) [T

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of +(P)

K32767 + K2 — K-32767 ¢ ¢ v s s Because the highest bit is 1, the value is negative.
(7TFFFH) (0002H) (8001H)
K-32768 + K-2 — K32766 <+ ¢ o - Because the highest bit is 0, the value is positive.
(8000H) (FFFEH) (7FFEH)

In case of +(P)(_U)
K65535 + K2 - K1
(FFFFH) (0002H) (0001H)

Operation.error

There is no operation error.

162 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

ADD(P)(_U)
These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text”!

— L. d]en|e2] @ }—{

*1 The ADD instruction is not supported by the ST language. Use ADD of the standard function.
== Page 777 ADD(_E)

ENO:=ADDP(EN,s1,s2,d); ENO:=ADD_U(EN,s1,52,d);

ENO:=ADDP_U(EN,s1,s2,d);

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | ADD(P) Addend data or the device where the data that | -32768 to +32767 16-bit signed binary ANY16_S
ADD(P)_U is added to another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | ADD(P) Addend data or the device where the data that | -32768 to +32767 16-bit signed binary ANY16_S
ADD(P)_U is added to anather is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) ADD(P) Device for storing the operation result — 16-bit signed binary ANY16_S
ADD(P)_U — 16-bit unsigned binary | ANY16_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |[T,sT,c,p, |umeO|z |Lc |[Lz | specification [« yTe Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) O — — O O o | — — O O - |— |—
(s2) O — — O O o | — — O O - |— |—
(@) o) — - o) o) o |— — o) - = |- |-

Processing. details

» These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the addition result in the device specified by (d).

(s1)

b15 - bo bo b1
[sers@N) | + | 123aBIN) ||

HRelationship between the flag operation and the sign (positive or negative) of a numeric value

(s2) (d)

bo
6912 (BIN) |

b15 5

Device Name Description
SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.
SM8020 Zero When the operation result is 0, the zero flag is turned ON.
SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.
Zero Flag Zero Flag Zero Flag
21@68 < m%&m? 0, 1
M’\K/ N A/ A ' AA

Borrow flag

The most significant / /\ The most significant

bit of data becomes "0".

bit of data becomes "1".

Carry flag

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

163

Precautions

BWhen specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the addition result

changes in every operation cycle if a continuous operation type ADD instruction is used.

X1
—— ADD DO K25 DO

(D0)+25 — (DO)

HDifference between ADD(P) instruction, +(P) instruction, and INC(P) instruction in a program

for adding "+1"

When ADD(P) instruction is used to add 1 to the contents of DO every time X1 turns from OFF to ON, ADD(P) instruction is
similar to +(P) instruction and INC(P) instruction described later except for the contents shown in the table below

ADD(P) instruction

+(P) instruction, INC(P) instruction

Flag (zero, borrow or carry)

Operates

Does not operate

Operation result | (s)+1=(d)

+32767 5> 0 > +1 > +2 —...

+32767 — -32768 — -32767 —...

Operation.error

There is no operation error.

164 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Subtracting 16-bit binary data

-(P)(_U) instruction and SUB(P)(_U) instruction can be used for subtraction of 16-bit binary data.

-(P)(_U) [using two operands]
These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device
specified by (s), and store the result in the device specified by (d).

Ladder diagram Structured text

—C=J]e e }—{

Not supported

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) -(P) Subtrahend data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S

«P)_U to be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) -(P) Device where the data from which anotheris to | -32768 to +32767 16-bit signed binary ANY16_S

«P)_U be subtracted is stored 0 to 65535 16-bit unsigned binary | ANY16_U

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [\« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O o | — — O O - |— |—

(d) O — — O O o |- — O e e

Processing details

» These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device
specified by (s), and store the subtraction result in the device specified by (d).

(d) (s) (d)

b15 - b0 b15 - bo b15 - b0
[sera@N) | - [1234BIN) | T> [4444BIN) |

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of -(P)

K32768 - K2 — K32766 ¢ ¢ ¢ s e oo Because the highest bit is 0, the value is positive.
(8000H) (0002H) (7TFFEH)

K32767 - K-2 — K-32767 « ¢ o o o o Because the highest bit is 1, the value is negative.
(TFFFH) (FFFEH) (8001H)

In case of -(P)(_U)

KO - K1 — K65535

(0000H) (0001H) (FFFFH)

KO - Ke5535 — K1

(0000H) (FFFFH) (0001H)

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 65

-(P)(_U) [using three operands]

These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=MINUS(EN,s1,s2,d); ENO:=MINUS_U(EN,s1,s2,d);
— ENO:=MINUSP(EN,s1,s2,d); ENO:=MINUSP_U(EN,s1,s2,d);
— L. d[en]e2] @ }—{ () o)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | -(P) Minuend data or the device where the data -32768 to +32767 16-bit signed binary ANY16_S

«P)_U from which another is to be subtracted is 0 to 65535 16-bit unsigned binary | ANY16_U

stored

(s2) | -(P) Subtrahend data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S

“P)U to be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) -(P) Device for storing the operation result — 16-bit signed binary ANY16_S

-(P)_U — 16-bit unsigned binary | ANY16_U

BMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoweO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(s1) 0 — — o} 0 o |- — o} o} — | = | =

(s2) O — — O O o | — — O O - |— | —

(d) o) — - o) o) o |- — o e

Processing details

» These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the subtraction result in the device specified by (d).

(s1) (s2) (d)

- N s A Al A Al
b15 - b0 b15 - b0 15 - b0
[sere@N) | - | 1234 > 444aBIN) |

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of -(P)

K-32768 - K2 — K32766 ¢ ¢+ ¢ e e Because the highest bit is 0, the value is positive.
(8000H) (0002H) (7FFEH)

K32767 - K-2 — K-32767 + ¢ ¢ ¢ o . - Because the highest bit is 1, the value is negative.
(7TFFFH) (FFFEH) (8001H)

In case of -(P)(_U)

KO - K1 — K65535

(0000H) (0001H) (FFFFH)

KO - Ke65535 — K1

(0000H) (FFFFH) (0001H)

Operation.error

There is no operation error.

166 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

SUB(P)(_U)

These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text”!

ENO:=SUBP(EN,s1,s2,d); ENO:=SUB_U(EN,s1,s2,d);

| C— | o1 | (s2) |) }{ ENO:=SUBP_U(EN,s1,s2,d);

*1 The SUB instruction is not supported by the ST language. Use SUB of the standard function.
[Z=" Page 781 SUB(_E)

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | SUB(P) Subtrahend data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S
SUB(P)_U to be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(s2) | SUB(P) Subtrahend data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S
SUB(P)_U to be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(d) SUB(P) Device for storing the operation result — 16-bit signed binary ANY16_S
SUB(P)_U — 16-bit unsigned binary | ANY16_U

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |[Lz |specification [y 'y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) o — — o o o |— |- o o |- |- |-
(s2) o — — o o o |=— |-= o o |- [|—-1-
) o — — o o o |— |= o — = 1=1=

Processing. details

» These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the subtraction result in the device specified by (d).

(1) (s2) (d)

bo
4444 BIN) |

b15 b0 b15

bo b15
[sers@N) | - | 1234BIN) ||

HRelationship between the flag operation and the sign (positive or negative) of a numeric value

Device Name Description
SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.
SM8020 Zero When the operation result is 0, the zero flag is turned ON.
SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.
Zero Flag Zero Flag Zero Flag
A
-2, -1,0, -32768 < 1,01 ———> 32767, 0,1,2
N AV A \ 2
Borrow flag / \ Carry flag
The most significant The most significant
bit of data becomes "1". bit of data becomes "0".

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 67

Precautions

BWhen specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the subtraction result

changes in every operation cycle if a continuous operation type SUB instruction is used.

X1
— SuB DO K25 DO

(D0)-25 — (DO)

HDifference between SUB(P) instruction, -(P) instruction, and DEC(P) instruction in a program

for subtracting "-1"

When SUB(P) instruction is used to subtract 1 from the contents of DO every time X1 turns from OFF to ON, SUB(P)
instruction is similar to -(P) instruction and DEC(P) instruction described later except for the contents shown in the table below

SUB(P) instruction

-(P) instruction, DEC(P) instruction

Flag (zero, borrow or carry)

Operates

Does not operate

Operation result | (s)-1=(d)

-32768 5 0 > -1 > -2 —>...

-32768 — +32767 — +32766 —...

Operation.error

There is no operation error.

168 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Adding 32-bit binary data

D+(P)(_U) instruction and DADD(P)(_U) instruction can be used for addition of 32-bit binary data.

D+(P)(_U) [using two operands]
These instructions add the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device specified by
(s), and store the result in the device specified by (d).

Ladder diagram Structured text

—C=J]e e }—{

Not supported

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) D+(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

D+(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D+(P) Head device where the data to which another | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

D+(P)_U is added is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [\« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O O O O O O - | = |—

(d)) — — e) o) o |o o) o) — — | = |=

Processing details

» These instructions add the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device specified
by (s), and store the addition result in the device specified by (d).
(d)+1 (d) (s)+1 (s) (d)+1 (d)

— — —

b31 - b16b15 b0 b31 - b16b15 ~ b0 b31 - b16b15 b0
[sersoo@IN) | + | 123456 BIN) | > | 691346 (BIN) |

* When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of D+(P)

K2147483647 + K2 — K-2147483647 « « « « « « Because the highest bit is 1, the value is negative.
(7TFFFFFFFH) (00000002H) (80000001H)
K-2147483648 + K-2 - K2147483646 « « « « « « Because the highest bit is 0, the value is positive.
(80000000H) (FFFFFFFEH) (7TFFFFFFEH)

In case of D+(P)(_U)
K4294967295 + K2 — K1
(FFFFFFFFH) (00000002H) (00000001H)

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 69

D+(P)(_U) [using three operands]

These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DPLUS(EN,s1,s2,d); ENO:=DPLUS_U(EN,s1,s2,d);
— ENO:=DPLUSP(EN,s1,s2,d); ENO:=DPLUSP_U(EN,s1,s2,d);
— L. d[en]e2] @ }—{ () U)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | D+(P) Augend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D+(P)_U data to which another is added is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D+(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D+(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D+(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
D+(P)_U — 32-bit unsigned binary | ANY32_U

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uoeO|TsT [TsT,c,p, |umdeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s1) 0 — — o} 0 o |o o} o} o} — | = | =

(s2) O — — O O O O O O O - |— | —

(d) O — — O O O O O O — i i

Processing details

» These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the addition result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
[sersooBIN) | + | 123456 (BIN) | > | 691346 (BIN) |

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of D+(P)

K2147483647 + K2 — K-2147483647 « « « « « « Because the highest bit is 1, the value is negative.
(7TFFFFFFFH) (00000002H) (80000001H)
K-2147483648 + K-2 - K2147483646 « « « « « « Because the highest bit is 0, the value is positive.
(80000000H) (FFFFFFFEH) (7TFFFFFFEH)

In case of D+(P)(_U)
K4294967295 + K2 — K1
(FFFFFFFFH) (00000002H) (00000001H)

Operation.error

There is no operation error.

1 70 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

DADD(P)(_U)
These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text

— L. d]en|e2] @ }—{

ENO:=DADD(EN,s1,52,d);
ENO:=DADDP(EN,s1,52,d);

ENO:=DADD_U(EN,s1,52,d);
ENO:=DADDP_U(EN,s1,52,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DADD(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DADD(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DADD(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DADD(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DADD(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
DADD(P)_U — 32-bit unsigned binary | ANY32_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) 0 — — o} 0 o |o o} o} o} — | = | =
(s2) O — — O O O O O O O - |— | —
(d) O — — O O O O O O — i i

Processing details

» These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the addition result in the device specified by (d).

(s1) (d)

b31 - b16 b15 - b31 - b16 b15 -~ b0
[567890 (BIN) 691346 (BIN) |

(s1)+1 (s2)+1 (s2) (d)+1

b31 - b16 b15 -
123456 (BIN)

b0 b0

| + | | => |

HRelationship between the flag operation and the sign (positive or negative) of a numeric value

Device Name Description
SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.
SM8020 Zero When the operation result is 0, the zero flag is turned ON.
SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.
The most significant The most significant
bit of data becomes N \/ bit of data becomes "0".
Zero Flag Zero Flag
TN T
-2, -1, 0, -2147483648 <—— 101 —— > 2147483647, 0, 1,2
MU
Borrow flag Zero Flag Carry flag

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

171

Precautions

HEWhen DADD instruction is used

When specifying word devices, a device for the lower-order 16-bits is specified first, and then a word device with the next

device number is set for the higher-order 16 bits. To prevent number overlap, it is recommended to always specify an even

number.

BWhen specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the addition result

changes in every operation cycle if a continuous operation type ADD instruction is used.

X1
—— DADD DO

K25

DO (D0)+25 — (DO)

HDifference between DADD(P) instruction, D+(P) instruction, and DINC(P) instruction in a

program for adding "+1"
When DADD(P) instruction is used to add 1 to the contents of DO every time X1 turns from OFF to ON, DADD(P) instruction is

similar to D+(P) instruction and DINC(P) instruction described later except for the contents shown in the table below.

DADD(P) instruction

D+(P) instruction, DINC(P) instruction

Flag (zero, borrow or carry)

Operates

Does not operate

Operation | (s)+1=(d)
result

+2147483647 > 0 > +1 > +2 —>...

+2147483647 — -2147483648 — -2147483647 —...

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

1 72 6.2 Arithmetic Operation Instructions

Subtracting 32-bit binary data

D-(P)(_U) instruction and DSUB(P)(_U) instruction can be used for subtraction of 32-bit binary data.

D-(P)(_U) [using two operands]
These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device

specified by (s), and store the result in the device specified by (d).

Ladder diagram Structured text

—C=J]e e }—{

Not supported

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) D-(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

D-(P)_U data to be subtracted from another is stored "4 4, 4594067295 32-bit unsigned binary | ANY32_U
(d) D-(P) Head device where the data from which -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

D-(P)_U anather is ta be subfracted is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [\« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O O O O O O - | = |—

(d)) — — e) o) o |o o) o) — — | = |=

Processing details
» These instructions subtract the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device
specified by (s), and store the subtraction result in the device specified by (d).

(d)+1 (d) (s)*1 (s) (d)+1 (d)
— — —

b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
| s67800(BIN) | - | 123456 (BIN) | > | 444434 (BIN) |

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of D-(P)

K-2147483648 - K2 — K2147483646 « « « « « « & Because the highest bit is 0, the value is positive.
(80000000H) (00000002H) (7TFFFFFFEH)
K2147483647 - K-2 - K-2147483647 « « « « « « « Because the highest bit is 1, the value is negative.
(7TFFFFFFFH) (FFFFFFFEH) (80000001H)
In case of D-(P)(_U)
KO - K1 — K4294967295
(00000000H) (00000001H) (FFFFFFFFH)
KO - K4294967295 — K1
(00000000H) (FFFFFFFFH) (00000001H)

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 73

D-(P)(_U) [using three operands]

These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DMINUS(EN,s1,s2,d); ENO:=DMINUS_U(EN,s1,s2,d);
— ENO:=DMINUSP(EN,s1,s2,d); ENO:=DMINUSP_U(EN,s1,s2,d);
— L. d[en]e2] @ }—{ () o :

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | D-(P) Minuend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

D-(P)_U data from which another is to be subtracted is 0 to 4294967295 32-bit unsigned binary | ANY32_U

stored

(s2) | D-(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

D-(P)_U data to be subtracted from another is stored "¢ 4, 4294967205 32-bit unsigned binary | ANY32_U
(d) D-(P) Head device for storing the operation result — 32-bit signed binary ANY32_S

D-(P)_U — 32-bit unsigned binary | ANY32_U

BMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoweO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(s1) 0 — — 0 0 o |o o} o} o} — | = | =

(s2) O — — O O O O O O O - |— | —

(d) O — — O O O O O O — i i

Processing details
» These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the subtraction result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 ~ b16 b15 ~ b0 b31 - b16 b15 ~ b0 b31 ~ b16 b15 ~ b0
[se7800(BIN) | - | 123456 (BIN) | > | 444434 BIN) |

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of D-(P)

K-2147483648 - K2 — K2147483646 « « « « « « « Because the highest bit is 0, the value is positive.
(80000000H) (00000002H) (7TFFFFFFEH)
K2147483647 - K-2 e K-2147483647 « « « « + « « Because the highest bit is 1, the value is negative.
(7TFFFFFFFH) (FFFFFFFEH) (80000001H)
In case of D-(P)(_U)
KO - K1 — K4294967295
(00000000H) (00000001H) (FFFFFFFFH)
KO - K4294967295 — K1
(00000000H) (FFFFFFFFH) (00000001H)

Operation.error

There is no operation error.

174 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

DSUB(P)(_U)
These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DSUB(EN,s1,52,d); ENO:=DSUB_U(EN,s1,s2,d);
— ENO:=DSUBP(EN,s1,s2,d); ENO:=DSUBP_U(EN,s1,s2,d);
— L. d]en|e2] @ }—{ ‘) .)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | DSUB(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DSUB(P)_U data to be subtracted from another is stored 'y, 4594067295 32-bit unsigned binary | ANY32_U

(s2) | DSUB(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DSUB(P)_U data to be subtracted from another is stored [4, 4594067295 32-bit unsigned binary | ANY32_U

(d) DSUB(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
DSUB(P)_U — 32-bit unsigned binary | ANY32_U

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uoeO|TsT [TsT,c,p, |umdeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s1) 0 — — o} 0 o |o o} o} o} — | = | =

(s2) O — — O O O O O O O - |— | —

(d) O — — O O O O O O — i i

Processing details
» These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the subtraction result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
[sers0BIN) | - | 123456 (BIN) | > | 444434 BIN) |

HRelationship between the flag operation and the sign (positive or negative) of a numeric value

Device Name Description
SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.
SM8020 Zero When the operation result is 0, the zero flag is turned ON.
SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.
The most significant The most significant
bit of data becomes "\ \/bit of data becomes "0".
Zero Flag Zero Flag
< N\ AR

-2, -1, 0, -2147483648 < 17%1 _— 2147483647, 0,1, 2

Borrow flag Zero Flag Carry flag

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 75

Precautions
HEWhen the DSUB instruction is used

When specifying word devices, a device is specified for the lower-order 16-bits first, and then a word device with the next
device number is set for the higher-order 16 bits. To prevent number overlap, it is recommended to always specify an even
number.

HWhen specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the subtraction result

changes in every operation cycle if a continuous operation type SUB instruction is used.

X1
—— DSUB DO K25 DO (D0)-25 — (DO)

HDifference between DSUB(P) instruction, D-(P) instruction, and DDEC(P) instruction in a
program for subtracting "-1"

When DSUB(P) instruction is used to subtract 1 from the contents of DO every time X1 turns from OFF to ON, SUB(P)

instruction is similar to D-(P) instruction and DDEC(P) instruction described later except for the contents shown in the table

below:
DSUB(P) instruction D-(P) instruction, DDEC(P) instruction
Flag (zero, borrow or carry) Operates Does not operate
Operation | (s)-1=(d) -2147483648 >0 > -1 > -2 >... -2147483648 — +2147483647 — +2147483646 — ...
result

Operation.error

There is no operation error.

1 76 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Multiplying 16-bit binary data

*(P)(_U) instruction and MUL(P)(_U) instruction can be used for multiplication of 16-bit binary data.

*(P)(_V)

These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
— . d[en|ea]| @ }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | *(P) Multiplicand data or the device where the data | -32768 to +32767 16-bit signed binary ANY16
*(P)_U to be multiplied by another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | *(P) Multiplier data or the device where the data by | -32768 to +32767 16-bit signed binary ANY16
*(P)_U which another is to be multiplied is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) *(P) Head device for storing the operation result — 32-bit signed binary ANY32
*(P)_U 32-bit unsigned binary | ANY32_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) (@) — — (@) (@) o |— — O (@) - |= | =
(s2) (@) — — (@) (@) o |— — (@] O - = |—
(d) (@) — — (@) (@) o |O (@] O — - |— |—=

Processing details

» These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the multiplication result in the device specified by (d).

(s1) (s2) (d)+1 (d)
A N\ s A A (\
b15 - bo b15 - bo b31 = b16b15 = bo
[sers@IN) | x | 1234BIN) | 2> | 7006652 (BIN) |

* When (d) is a bit device, lower-order bit is specified first.

[Ex]

Multiplication result when (d) is a bit device
* K1 ... Lower 4 bits (b0 to b3)
* K4 ... Lower 16 bits (b0 to b15)
* K8 ... Lower 32 bits (b0 to b31)

Operation.error

Error code Description
(SD0/SD8067)
2820 The range of the device specified by (d) exceeds said device range.

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 77

MUL(P)(_U)

These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text”!

ENO:=MULP(EN,s1,s2,d); ENO:=MUL_U(EN,s1,s2,d);

| C— | s1) | (s2) |) }{ ENO:=MULP_U(EN,s1,s2,d);

*1 The MUL instruction is not supported by the ST language. Use MUL of the standard function.
=" Page 779 MUL(_E)

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | MUL(P) Multiplicand data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S
MUL(P)_U to be multiplied by another is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(s2) | MUL(P) Multiplier data or the device where the data by | -32768 to +32767 16-bit signed binary ANY16_S
MUL(P)_U which another is to be multiplied is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(d) MUL(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
MUL(P)_U 32-bit unsigned binary | ANY32_U

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |[Lz |specification [y 'y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) o — — o o o |— |- o o |- |- |-
(s2) o — — o o o |=— |-= o o |- [|—-1-
) o — — o o o |o o o — = 1=1=

Processing. details

» These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the multiplication result in the device specified by (d).

(s1) (s2) (d)+1 (d)
A N\ —
b15 - b0 b15 - bo b31 = b16b15 = bo
[sera@IN) | x | 1234BIN) | =>| 7006652 (BIN) |

178 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

* Nibble can be specified ranging from K1 to K8 for (d).

[Ex]

For example, when K2 is specified, only the lower-order 8 bits can be obtained out of the product (32 bits).

(s1) (s2) (d)

Command
input
— MUL K53 K15 K2YO0

1) | K53(0035H) |
X
2 | K15(000FH) |
When command contact is ON
| K795(031BH) |
\r Sign bit (0: Positive, 1: Negative)
Y27 Y26 Y25 .. Y13 Y12 Y11 Y10 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO
@ {0 {0t o0 i totot 1t 1 lo]o]ol 11]ol] 1] 1]
N A J
N N
Not output K2YO0 operation result is output.
HRelated flag
Device Name Description
SM8304 Zero When the operation result is 0, the zero flag is turned ON.

Operation.error

Error code Description
(SD0/SD8067)
2820 The range of the device specified by (d) exceeds said device range.

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 79

Dividing 16-bit binary data

/(P)(_U) instruction and DIV(P)(_U) instruction can be used for division of 16-bit binary data.

I(P)(_V)

These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
— . d[en|ea]| @ }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | /(P) Dividend data or the device where the data to | -32768 to +32767 16-bit signed binary ANY16
(P)_U be divided by another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | /(P) Divisor data or the device where the data by -32768 to +32767 16-bit signed binary ANY16
I(P)_U which another s to be divided is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) 1(P) Head device for storing the operation result — 32-bit signed binary ANY16_S_ARRAY
(Number of elements:
2)
/(P)_U 32-bit unsigned binary | ANY16_U_ARRAY
(Number of elements:
2)
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT [TsT,c,p, |umeO|z |Lc |Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R
(s1) O — - O O o |— — o) o |— |- |-
(s2) o) — — le) e o |— — o) o) — = |=
(d) O — — O O O O @) @) — - |— |—

Processing details

» These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the division result in the device specified by (d).

Quotient Remainder

(s1) (s2) (d) (d)+1
b15 - b0 b15 - bo b15- b0 b15- b0
[sera@iN) | + [123a8IN) | T>[4@IN) | [742 BIN)

* For the division result, 32-bit is used for word device to store the quotient and remainder and 16-bit is used for bit device to

store quotient only.

* Quotient...... Stored in the lower 16 bits.

* Remainder...... Stored in the upper 16 bits. (This data can be stored for word device only.)

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of the device specified by (d) exceeds the range of said device.
3400 0 is specified for (s2) value.

3403 The operation result exceeds 32767, in case of signed operation.

180

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

DIV(P)(_U)
These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text”!

— . d[en|e2] @ }—{

*1 The DIV instruction is not supported by the ST language. Use DIV of the standard function.
=~ Page 783 DIV(_E)

ENO:=DIVP(EN,s1,s2,d); ENO:=DIV_U(EN,s1,s2,d);

ENO:=DIVP_U(EN,s1,s2,d);

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DIV(P) Dividend data or the device where the datato | -32768 to +32767 16-bit signed binary ANY16_S
DIV(P)_U be divided by another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | DIV(P) Divisor data or the device where the data by -32768 to +32767 16-bit signed binary ANY16_S
DIV(P)_U which another is to be divided is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) DIV(P) Head device for storing the operation result — 32-bit signed binary ANY16_S_ARRAY
(quotient, remainder) (Number of elements:
2)
DIV(P)_U 32-bit unsigned binary | ANY16_U_ARRAY
(Number of elements:
2)
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) (@) — — (@) (@) o |— — O (@) - |= | =
(s2) (@) — — (@) (@) o |— — (@] (@) - = |—
(d) (@) — — (@) (@) o |O (@] (@] — - = |—=

Processing details

» These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the division result in the device specified by (d).

Quotient Remainder

(SA1) (s2) (d) (d)+1
A s N
b15 - bo b15 - bo b15- b0 b15- b0
[sera@iN) | + | 1234BIN) | T2>[4@IN) | [742 BIN)

» Two devices in total starting from the one specified by (d) are used to store the division result. Make sure that these two

devices are not used for another control.
* Quotient...... Stored in the lower 16 bits.

* Remainder...... Stored in the upper 16 bits.

HRelated flag
Device Name Description
SM700 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.
SM8304 Zero When the operation result is 0, the zero flag is turned ON.
SM8306 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

181

Precautions

HOperation result
» The most significant bit of the quotient and remainder indicates the sign (positive: 0, negative: 1), respectively.
* The quotient is negative when either (s1) or (s2) is negative. The remainder is negative when the (s1) is negative.

HDevice specified by (d)

» The remainder is not obtained when a bit device is specified with nibble specification.

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of the device specified by (d) exceeds the range of said device.

3400 0 is specified for (s2) value.

3403 The data type of the data setting is signed data and the operation result exceeds 32767.

182

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Multiplying 32-bit binary data

D*(P)(_U) instruction and DMUL(P)(_U) instruction can be used for multiplication of 32-bit binary data.

D*(P)(_V)

These instructions multiply the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
—C—d[en|ea]| @ }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | D*(P) Multiplicand data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32
D*(P)_U data to be multiplied by another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D*(P) Multiplier data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32
D*(P)_U dt""ta zy which another s to be multiplied is 0 to 4294967295 32-bit unsigned binary | ANY32_U
store:
(d) D*(P) Head device for storing the operation result — 64-bit signed binary ANY32_S_ARRAY
(Number of elements:
2)
D*(P)_U 64-bit unsigned binary | ANY32_U_ARRAY
(Number of elements:
2)
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT [TsT,c,p, |umweO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R
(s1) O — — O O O O O O O i i
(s2) o) — —) o) o |o o) o) o) — |= |=
() o) — — o — - |o — o - == |-

Processing details
» These instructions multiply the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the multiplication result in the device specified by (d).
(s1)
/—H

b31 -~ b16 b15 - b0

[se7s00BIN) | x | | > |
* When (d) is a bit device, only the lower 32 bits of the multiplication result are stored and the upper 32 bits cannot be

(s1)+1 (s2)+1 (s2) (d)+3 (d)+2 (d)+1 (d)
/—/%

b31 - b16 b15 -+ b0
123456 (BIN)

b63 - b48 bd7 -+ b32b31 - b16 b15 - b0
70109427840 (BIN) |

specified. If the upper 32 bits data of the multiplication operation result are required, temporarily store the result in a word
device, and transfer the data stored in word device ((d)+2) and ((d)+3) to the specified bit devices.

[Ex]

Multiplication result when (d) is a bit device
* K1 ... Lower 4 bits (b0 to b3)
+ K4 ... Lower 16 bits (b0 to b15)
+ K8 ... Lower 32 bits (b0 to b31)

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

183

2820 The range of the device specified by (d) exceeds the range of said device.

184 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

DMUL(P)(_U)
These instructions multiply the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DMUL(EN,s1,s2,d); ENO:=DMUL_U(EN,s1,s2,d);
— ENO:=DMULP(EN,s1,52,d); ENO:=DMULP_U(EN,s1,s2,d);
— L. d]en|e2] @ }—{ () U)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DMUL(P) Multiplicand data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DMUL(P)_U data to be multiplied by another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DMUL(P) Multiplier data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DMUL(P)_U data by which another is to be multiplied is 0 to 4294967295 32-bit unsigned binary | ANY32_U
stored
(d) DMUL(P) Head device for storing the operation result — 64-bit signed binary ANY32_S_ARRAY
(Number of elements:
2)
DMUL(P)_U 64-bit unsigned binary | ANY32_U_ARRAY
(Number of elements:
2)

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,p, |umeO|z |Lc |Lz | specification [\ yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) O — — O O O O O O O i i
(s2) o) — —) o) o |o o) o) e) — | = |=
C) o — — o O e — o - == |-

Processing details

» These instructions multiply the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the multiplication result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+3 (d)+2 (d)+1 (d)

b31 ~ b16 b15 ~ b0 b31 ~ b16 b15 ~ b0 b63 -+ b48 b47 - b32b31 = b16 b15 = b0
[se7800(BIN) | x | 123456 BIN) | > | 70109427840 (BIN) |

» When nibble is specified ranging from K1 to K8 for (d), the result is obtained only for the lower-order 32 bits, and is not
obtained for the higher-order 32 bits. Transfer the data to word devices once, then execute the operation.

(s1) (s2) ()

Command
input D51,D50 D103,D102,0101,D100
}—u—— pmut | Dso | kiso | Dioo | (R1D90) (B103D102.0101.0100)
D100 — Y17 to YO
DMOV D100 K8Y0 | D101 — Output to Y37 to Y20
D102 — Y57 to Y40
DMOV D102 | K8Y40 | npyo3_, Qutput to Y77 to Y60
HRelated flag
Device Name Description
SM8304 Zero When the operation result is 0, the zero flag is turned ON.

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 85

» Even if word devices are used, the operation result (64 bits binary data) cannot be monitored at one time. In such a case, a
floating point operation is recommended.

- Operation error

2820 The range of the device specified by (d) exceeds the range of said device.

186 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Dividing

32-bit binary data

D/(P)(_U) instruction and DDIV(P)(_U) instruction can be used for division of 32-bit binary data.

D/(P)(_V)

These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
—C—d[en|ea]| @ }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | D/(P) Dividend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32
DI(P)_U data to be divided by another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D/(P) Divisor data or the head device where the data | -2147483648 to +2147483647 | 32-bit signed binary ANY32
D/(P)_U by which another is to be divided is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D/(P) Head device for storing the operation result — 64-bit signed binary ANY32_ARRAY
DI(P)_U 64-bit unsigned binary g;‘”mber of elements:
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |[T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTe Tg
SM, F, B, SB C,LC | W,SD,SW,R
(s1) 0 — — 0 0 o |o o} o o} — | = | =
(s2) O — — O O O O O O O i i
(@) o) — - o) — — |o — o - | == |-

Processing details

» These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device

specified by (s2), and store the division result in the device specified by (d).

(s1)+1 (s1)
/—)%

b31 - b16 b15 = b0

(s2)+1 (s2) (d)+1 d
— —

b31 - b16 b15 - b

) (d)+3 (d)+2
—

b31 -+ b16 b15 -+ b0 b31 -- b16 b15 -+ b0

[567890 (BIN)

0
| « | 123s68N) > 4N

| [74066 BIN) |

* For the division result of word device, 64-bit binary is used to store the quotient and remainder. For bit device, 32-bit binary

is used to store quotient only.

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of the device specified by (d) exceeds the range of said device.
3400 0 is specified for (s2) value.

3403 Signed operation is performed and the operation result exceeds 2147483647.

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 87

DDIV(P)(_U)

These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DDIV(EN,s1,52,d); ENO:=DDIV_U(EN,s1,s2,d);
— ENO:=DDIVP(EN,s1,s2,d); ENO:=DDIVP_U(EN,s1,s2,d);
— L. d[en]e2] @ }—{ () -)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DDIV(P) Dividend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DDIV(P)_U data to be divided by another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DDIV(P) Divisor data or the head device where the data | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DDIV(P)_U by which another is to be divided is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DDIV(P) Head device for storing the operation result — 64-bit signed binary ANY32_S_ARRAY
(Number of elements:
2)
DDIV(P)_U 64-bit unsigned binary | ANY32_U_ARRAY
(Number of elements:
2)

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,p, |uoOeO|z |Lc |Lz |specification [y i Te Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) o — — o o o |o o o o |- |= |-
(s2) o — — o o o |o o o o |=1[=1=
) o — — o o —Jo — o — = 1=1=

Processing details

» These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the division result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d) (d)+3 (d)+2
b31 - b16 b15 - b0 b31 -~ b16 b15 - b0 b31 -+ b16 b15 - b0 b31 -~ b16b15 - b0
| se7800(BIN) | = | 123456 BIN) | > | 4 (BIN) | | 74066 BIN) |
HRelated flag
Device Name Description
SM700 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.
SM8304 Zero When the operation result is 0, the zero flag is turned ON.
SM8306 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.
Precautions

EOperation result
» The most significant bit of the quotient and remainder indicates the sign (positive: 0, negative: 1), respectively.
* The quotient is negative when either (s1) or (s2) is negative. The remainder is negative when the (s1) is negative.

HDevice specified by (d)

» The remainder is not obtained when a bit device is specified with nibble specification.

188 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

- Operation error

2820 The range of the device specified by (d) exceeds the range of said device.
3400 0 is specified for (s2) value.
3403 Signed operation is performed and the operation result exceeds 2147483647.

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 89

Adding BCD 4-digit data

B+(P) [using two operands]
These instructions add the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified by
(s), and store the result in the device specified by (d).

Ladder diagram Structured text

—C=d]le|w }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Addend data or the device where the data that is added to | 0 to 9999 BCD 4-digit ANY16

another is stored
(d) Device where the data to which another is added is stored | 0 to 9999 BCD 4-digit ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s) O — — O O o | — — O O - |— | —

C) O — - O O o |— — O i e e

Processing details

» These instructions add the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified
by (s), and store the addition result in the device specified by (d).

(d) (s) (d)
/—% A

[s[ef7]s] « [1]2]s[a]c>[e]o]1]2]

« If the addition result exceeds 9999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.
[e[alsf2]+[s]s[8[s]c>[ofof[1]5]

Operation.error

Error code Description

(SD/SD8067)

3405 BCD data in the device specified by (s) is outside of the valid range (0 to 9999).
BCD data in the device specified by (d) is outside of the valid range (0 to 9999).

6 BASIC INSTRUCTIONS
190

6.2 Arithmetic Operation Instructions

These instructions add the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device specified by
(s2), and store the result in the device specified by (d).

ENO:=BPLUS(EN,s1,s2,d);
| C— | s | (52)| @ }{ ENO:=BPLUSP(EN,s1,s2,d);

f

EDescriptions, ranges, and data types

(s1) Augend data or the device where the data to which 0 to 9999 BCD 4-digit ANY16
another is added is stored
(s2) Addend data or the device where the data that is added to | 0 to 9999 BCD 4-digit ANY 16
another is stored
(d) Device for storing the operation result 0 to 9999 BCD 4-digit ANY 16
BApplicable devices

(s1) o — — o o o |— |- o o |— |- |-
(s2) o — — o o o|— |- o o |- |- |-
(d) o — — o o o |— |- o - |- |- |-

E

» These instructions add the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device specified
by (s2), and store the addition result in the device specified by (d).

(s1) (s2) (d)
f—% A A

s R} s R}
[s[ef7lsf« [1]2]af[afc>]e]of[1]2]

« If the addition result exceeds 9999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

e Jafal2]«[a]s]ef[afc>[o]of1]5]

|!

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

6 BASIC INSTRUCTIONS 1 1
6.2 Arithmetic Operation Instructions 9

Subtracting BCD 4-digit data

B-(P) [using two operands]
These instructions subtract the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified
by (s), and store the result in the device specified by (d).

Ladder diagram Structured text

Not supported
—C=d]le|w }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Subtrahend data or the device where the data to be 0 to 9999 BCD 4-digit ANY16

subtracted from another is stored
(d) Device where the data from which another is to be 0 to 9999 BCD 4-digit ANY16

subtracted is stored

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s) 0 — — 0 0 o |— — o o} — | = | =

(d) o — — o) o) o |— — o - == |-

Processing details

» These instructions subtract the BCD 4-digit data in the device specified by (s) and the BCD 4-digit data in the device
specified by (d), and store the subtraction result in the device specified by (d).
(d) (s) (d)
/—% A} N
lofef[7[8] - [ofa]s]a|c>[o]aa]4]
» 0 is entered.
« If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

[oflofola] - [ofofo[afe>[ofo]o]s]

Operation.error

Error code Description
(SD0/SD8067)
3405 BCD data in the device specified by (s) is outside of the valid range (0 to 9999).

BCD data in the device specified by (d) is outside of the valid range (0 to 9999).

192 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

B-(P) [using three operands]
These instructions subtract the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=BMINUS(EN,s1,s2,d);
— ENO:=BMINUSP(EN,s1,s2,d);
—C.=a]en|e2] }—{ ()

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Minuend data or the device where the data from which 0 to 9999 BCD 4-digit ANY16
another is to be subtracted is stored
(s2) Subtrahend data or the device where the data to be 0 to 9999 BCD 4-digit ANY16
subtracted from another is stored
(d) Device for storing the operation result 0 to 9999 BCD 4-digit ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) O — — O O O — — O O - |— | —

(s2) O — — O O O — — O O i i

(d) o) — — o) o) o |— — o - | == |-

Processing details

» These instructions subtract the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device
specified by (s2), and store the subtraction result in the device specified by (d).

(s1) (s2) (d)
/—/% A Y A A}
|f|>\6\718|-|o\2\3l4|ﬁ>|ol4\4|4|

» 0is entered.

+ If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

[oflofola] - [ofofofafe>[ofo]o]s]

Operation.error

Error code Description

(SD0/SD8067)

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 93

Adding BCD 8-digit data

DB+(P) [using two operands]

These instructions add the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified by
(s), and store the result in the device specified by (d).

Ladder diagram Structured text

Not supported

—C=d]le | }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Addend data or the head device where the data that is 0 to 99999999 BCD 8-digit ANY32

added to another is stored
(d) Head device where the data to which another is added is | 0 to 99999999 BCD 8-digit ANY32

stored

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s) 0 — — 0 0 o |o o o o} — | = | =

(d) O — — O O O @) ©) @) — - |— |—

Processing details

» These instructions add the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified

by (s), and store the addition result in the device specified by (d).
(d)+1 () (s)+1 (s) (d)+1 (d)

— "
(Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits)

lolo[e[7[1]o[e[8] + [o]o[s]2[3[4]5]6] > [1]0]1]0]4]5[2]4]
| | ‘t 0 is entered.

« If the addition result exceeds 99999999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

[s[s]ofo[o[o[o]o] + [o]1]6]s]4[3[2[1] => [o]o[6[s]4]3]2[1]

Operation.error

Error code Description

(SD0/SD8067)

3405 BCD data in the device specified by (s) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (d) is outside of the valid range (0 to 99999999).

6 BASIC INSTRUCTIONS
194

6.2 Arithmetic Operation Instructions

DB+(P) [using three operands]

These instructions add the BCD 8-digit data in the device specified by (s1) and the BCD 8-digit data in the device specified by
(s2), and store the result in the device specified by (d).

Ladder diagram Structured text

ENO:=DBPLUS(EN,s1,s2,d);

| C— | o1 | (s2) | d }{ ENO:=DBPLUSP(EN,s1,s2,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) Augend data or the head device where the data to which | 0 to 99999999 BCD 8-digit ANY32
another is added is stored

(s2) Addend data or the head device where the data that is 0 to 99999999 BCD 8-digit ANY32
added to another is stored

(d) Head device for storing the operation result 0 to 99999999 BCD 8-digit ANY32

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) O — — O O O O O O O i i

(s2) O — — O O O O O O O i i

(d) 0 — — o} 0 o |o o} o} — | == |-

Processing details

» These instructions add the BCD 8-digit data in the device specified by (s1) and the BCD 8-digit data in the device specified
by (s2), and store the addition result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— — "
(Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits)

[slel7]e[s[1]2[3] + [o]1]2][3]4]s[e[7] => [s]8[o[2[3]6]e]o]

0 is entered.

« If the addition result exceeds 99999999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

[s]o]o[o[o]ofo[o] + [o]1]6]s[4[3]2]1]=> [o]o]6]s]4]3[2]1]

Operation.error

Error code Description

(SD0/SD8067)

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 95

Subtracting BCD 8-digit data

DB-(P) [using two operands]

These instructions subtract the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified
by (s), and store the result in the device specified by (d).

Ladder diagram Structured text

Not supported

—C=d]le | }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Subtrahend data or the device where the data to be 0 to 99999999 BCD 8-digit ANY32
subtracted from another is stored

(d) Minuend data or the device where the data from which 0 to 99999999 BCD 8-digit ANY32
another is to be subtracted is stored

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s) 0 — — 0 0 o |o o o o} — | = | =

(d) O — — O O O @) ©) @) — - |— |—

Processing details

» These instructions subtract the BCD 8-digit data specified by (d) and the BCD 8-digit data specified by (s), and store the
results in the device specified by (d).

(d)+1 () (s)+1 (s) (d)+1 (d)

— "
(Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits)

[olo[e[7[1]o[e[8] - [o]o[s]2[3[4]5]6] > [o]e[5]4]7]6[1]2]
| | ‘t 0 is entered.

« If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

[1[2[s]4]s[e[7]8] - [1]2[3]4]5]6[7[e] => [o]o[o[s[o]o0]0]9]

Operation.error

Error code Description

(SD0/SD8067)

3405 BCD data in the device specified by (s) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (d) is outside of the valid range (0 to 99999999).

1 96 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

These instructions subtract the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the
results in the device specified by (d).

ENO:=DBMINUSP(EN,s1,s2,d);
pp— ENO:=DBMINUS(EN,s1,s2,d);
—C=a]en|e2] @ }—{ (ENsT.92.0)

f

EDescriptions, ranges, and data types

(s1) Minuend data or the head device where the data from 0 to 99999999 BCD 8-digit ANY32
which another is to be subtracted is stored
(s2) Subtrahend data or the head device where the data to be | 0 to 99999999 BCD 8-digit ANY32
subtracted from another is stored
(d) Head device for storing the operation result 0 to 99999999 BCD 8-digit ANY32
BApplicable devices

(s1) 0 — — o) o o |o o) o) o |- |—- |-
(s2) o) — — o) o) o |o o) o) o |- |- 1]-
(d) 0 — — o) 0 o |o o o — | == =

E

» These instructions subtract the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the
results in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
f_/%(_)% f_)%(_/%
(Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits) (Upper 4 digits) (Lower 4 digits)
[s[el7[s]o[1]2[3] - [o[1]2[3[4]s]6[7| > [5]5[5]5[4]5[5]e]
0 is entered.

« If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

[1]2]s[4]s]e[7[8] - [1]2]a]4[s[6]7]o] > [o]s[9]9]0]s[o]9]

|I

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

6 BASIC INSTRUCTIONS 1
6.2 Arithmetic Operation Instructions 97

Multiplying BCD 4-digit data

These instructions multiply the BCD 4-digit data specified by (s1) and the BCD 4-digit data specified by (s2), and store the
results in the device specified by (d).

Not supported

— = d]en|ea] @ }—{

|

EDescriptions, ranges, and data types

(s1) Multiplicand data or the device where the data to be 0 to 9999 BCD 4-digit ANY 16
multiplied by another is stored
(s2) Multiplier data or the device where the data by which 0 to 9999 BCD 4-digit ANY16

another is to be multiplied is stored

(d) Head device for storing the operation result — BCD 8-digit ANY32

BApplicable devices

(s1) o — — o 0 o |— — o o |- |—= |-
(s2) 0 — — o 0 o |— — o o |- |- |-
(d) o — — o) o o |o o) o — |- 1= 1=

E

» These instructions multiply the BCD 4-digit data specified by (s1) and the BCD 4-digit data specified by (s2), and store the
multiplication results in the device specified by (d).

(d)+1 (d)
(s1) (s2) (Upper 4 digits) (Lower 4 digits)
(N A hY A N A A}
[slef[7[8] «x[olsl[7[e|>[o]4afof[7]|[3[0]2]s]

0 is entered.

|I

2820 Device specified by (d) exceeds the allowable device range

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).

BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

198 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Dividing BCD 4-digit data

B/(P)

These instructions divide the BCD 4-digit data specified by (s1) by the BCD 4-digit data specified by (s2), and store the results

in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ }—{
Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) Dividend data or the device where the data to be divided 0 to 9999 BCD 4-digit ANY16

by another is stored
(s2) Divisor data or the device where the data by which 0 to 9999 BCD 4-digit ANY16
another is to be divided is stored
(d) Head device for storing the operation result — BCD 8-digit ANY16_ARRAY
(Number of elements:
2)

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others

X,Y,M,L, |uD\GO |T,ST, |T,ST,c,D, |umweO|z |Lc |[Lz |specification [y Tp [g
SM, F, B, SB C,LC | W,SD, SW,R

(s1) (@) — — (@) O o |— — @) O - | — |—

(s2) (@) — — @) @) o |— — @) @) — = | =

(d) (@) — — O O o |O ©) ©) — - = |—

Processing details

» These instructions divide the BCD 4-digit data specified by (s1) by the BCD 4-digit data specified by (s2), and store the

results of division in the device specified by (d).

Quotient Remainder
(s1) (s2) (d) (d)+1
A A A -
[slef[7[8] +[ole]7[e]c>[ofofofe][o]4a]2]2]

0 is entered.

 The results of division are stored as quotient and remainder using 32 bit(s).
* Quotient (BCD 4-digit): Stored in lower 16 bit(s).
* Remainder (BCD 4-digit): Stored in upper 16 bit(s).

« If (d) is specified by bit device, remainder of division results is not stored.

Operation.error

Error code Description

(SD0/SD8067)

2820 Device specified by (d) exceeds the allowable device range

3400 0 is specified for (s2) value.

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

6 BASIC INSTRUCTIONS
199

6.2 Arithmetic Operation Instructions

Multiplying BCD 8-digit data

DB*(P)

These instructions multiply the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the
results in the device specified by (d).

Ladder diagram Structured text

Not supported

—{C.=3]en|ea] @ }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Multiplicand data or the head device where the data to be | 0 to 99999999 BCD 8-digit ANY32
multiplied by another is stored
(s2) Multiplier data or the head device where the data by which | 0 to 99999999 BCD 8-digit ANY32
another is to be multiplied is stored
(d) Head device for storing the operation result — BCD 16-digit ANY32_ARRAY
(Number of elements:
2)

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |[T,sT,c,p, |umeO|z |Lc |Lz | specification [« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) O — — O O O O O O O i i

(s2) O — — O O O O O O O i i

@ o — — @) — — |0 — o - == |-

Processing details
» These instructions multiply the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the
multiplication results in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2)

A

G el 5 5Ts] « BslsTs]s sl]

(d)+3 (d)+2 (d)+1 (d)

t>lelofofof[ofofolsf[ofofofof[ofool1]

* When (d) is a bit device, only the lower 8 nibbles (32 bits) of the multiplication result are stored, and the higher 8 nibbles (32
bits) cannot be specified.

[Ex]

Multiplication result when (d) is a bit device
* K1 ... Lower 1 nibble (b0 to b3)
* K4 ... Lower 4 nibbles (b0 to b15)
* K8 ... Lower 8 nibbles (b0 to b31)

Operation.error

Error code Description

(SD0/SD8067)

2820 Device specified by (d) exceeds the allowable device range

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

200 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Dividing BCD 8-digit data

DB/(P)
These instructions divide the BCD 8-digit data specified by (s1) by the BCD 8-digit data specified by (s2), and store the results
in the device specified by (d).

Ladder diagram Structured text

— = d]en|ea] @ }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) Dividend data or the head device where the data to be 0 to 99999999 BCD 8-digit ANY32
divided by another is stored

(s2) Divisor data or the head device where the data by which 0 to 99999999 BCD 8-digit ANY32
another is to be divided is stored
(d) Head device for storing the operation result — BCD 16-digit ANY32_ARRAY
(Number of elements:
2)

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |[T,sT,c,p, |umeO|z |Lc |Lz | specification [« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) O — — O O O O O O O i i

(s2) O — — O O O O O O O i i

@ o — — @) — — |0 — o - == |-

Processing details

» These instructions divide the BCD 8-digit data specified by (s1) by the BCD 8-digit data specified by (s2), and store the
results of division in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2)
A A o~ s A}
[s[ef7[sflof1]2]3]«[oft1]2[3][afs[6]7]
0 is entered.
(d)+1 (d) (d)+3 (d)+2
Quotient (Upper 4 digits) (Lower 4 digits) Remainder (Upper 4 digits) (Lower 4 digits)

s s

=>[ofofoJof[oJofas] [of1[2]s][s]e]o0]8]

» The results of division are stored as quotient and remainder using 64 bit(s) binary.
* Quotient (BCD 8-digit): Stored in lower 32 bit(s).
* Remainder (BCD 8-digit): Stored in upper 32 bit(s).

« If (d) is specified by bit device, remainder of division results is not stored.

Operation.error

Error code Description

(SD0/SD8067)

2820 Device specified by (d) exceeds the allowable device range

3400 0 is specified for (s2) value.

3405 BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

6 BASIC INSTRUCTIONS 2 1
6.2 Arithmetic Operation Instructions 0

202

Adding 16-bit binary block data

BK+(P)(_U)

These instructions add (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit binary

data from the device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ | m }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | BK+(P) Head device where the data to which another | -32768 to +32767 16-bit signed binary ANY16
BK+(P)_U data is added is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | BK+(P) Addend data or the head device where the -32768 to +32767 16-bit signed binary ANY16
BK+(P)_U data that is added to another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) BK+(P) Head device for storing the operation result — 16-bit signed binary ANY16
BK+(P)_U — 16-bit unsigned binary | ANY16_U
(n) Number of addition data 0 to 65535 16-bit unsigned binary | ANY16_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) — — — o) — — | = — o - | == 1=
(s2) — — — o) — - |— — o o |= |- |-
(d) — — — O — i — O - | == |-
") o) — — o) o) o |— — o) o |— |- |-

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Processing details

» These instructions add (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit binary
data from the device specified by (s2), and store the results of addition in the device specified by (d).
* Block addition is performed in units of 16-bits.

[Ex]

If device is specified for (s2) (signed)

b15 b0 b15 - b0 b15 -+ b0
(s1) 1234 (BIN) (s2) 4000 (BIN) (d) 5234 (BIN)
(s1)+1 4567 (BIN) (s2)+1 1234 (BIN) (d)+1 5801 (BIN) T
(s1)+2 |-2000 (BIN) . (s2)+2 -1234 (BIN) o) I:> (d)+2 -3234 (BIN) ")
: e — : e — : e —
(s1)+(n-2) |-1234 (BIN) (s2)+(n-2) | 5000 (BIN) (d)y+(n-2) | 3766 (BIN)
(s1)+(n-1)| 4000 (BIN) (s2)+(n-1) | 4321 (BIN) (d)+(n-1) | 8321 (BIN)

If constant is specified for (s2) (signed)

,||<

b15 b0 b15 -+ b0
(s1) 1234 (BIN) (d) 5555 (BIN)
(s1)+1 4567 (BIN) b5 - bo (d)+1 8888 (BIN)
(s1)+2 -2000 (BIN)) . 2 [4321 @N) I:> (d)+2 2321 (BIN) ")
: — : R —
(s1)+(n-2) [-1234 (BIN) (d)y+(n-2) | 3087 (BIN)
(s1)*(n-1) | 4000 (BIN) (d)+(n-1) | 8321 (BIN)

+ If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.
If signed is specified If unsigned is specified

K32767 K2 K-32767 K65535 K1 Ko
(7TFFFH) (0002H) '::> (8001H) (FFFFH) ' (0001H) '::> (0000H)
K-32767 K-2 K32767

(8001H) (FFFEH) '::> (TFFFH)

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821 The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s2) and (d).)

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 03

Subtracting 16-bit binary block data

BK-(P)(_U)

These instructions subtract (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit

binary data from the device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ | m }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | BK-(P) Head device where the data from which -32768 to +32767 16-bit signed binary ANY16
BK-(P)_U anather is to be subtracted is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | BK-(P) Subtrahend data or the head device where the | -32768 to +32767 16-bit signed binary ANY16
BK-(P)_U data to be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) BK-(P) Head device for storing the operation result — 16-bit signed binary ANY16
BK-(P)_U — 16-bit unsigned binary | ANY16_U
(n) Number of subtraction data 0 to 65535 16-bit unsigned binary | ANY16_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) — — — (@) — — | = — O — - |= | =
(s2) — — — (@) — — | = — (@] @) - = |—=
(d) — — — O — i — o - == |-
(n) (@) — — (@) o |— — (@) @) — | = | =

204

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Processing details

» These instructions subtract (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit
binary data from the device specified by (s2), and store the subtraction results in the device specified by (d).

 Block subtraction is performed in 16-bit units.
If device has been specified for (s2)

b15 b0 b15 b0
(s1) 8765 (BIN) (s2) 1234 (BIN)
(s1)+1 8888 (BIN) (s2)+1 5678 (BIN)
(s1)+2 9325 (BIN)) (s2)+2 9876 (BIN)
- e — : R —
(s1)+(n-2) | 5000 (BIN) (s2)+(n-2) | 4321 (BIN)
(s1)+(n-1)| 4352 (BIN) (s2)+(n-1) | 4000 (BIN)
If constant is specified for (s2)

b15 b0
(s1) 8765 (BIN)
(s1)+1 8888 (BIN) b15 bo
(s1)+2 9325 BN (n)) (s2) | 8880 (BIN)
- e —
(s1)*+(n-2) | 5000 (BIN)
(s1)*+(n-1)| 4352 (BIN)

=)

gz

d)+1
+2

-3

(d)+(n-2)
(d)+(n-1)

(d)
(d)+1
(d)+2

(d)+(n-2)
(d)+(n-1)

b15 b0
7531 (BIN)
3210 (BIN) T
551 (BIN)
——— v
679 (BIN)
32 (BIN) l
b15 b0
115 (BIN)
8 (BIN) T
45 (BIN)
R — v
3880 (BIN)
4528 (BIN) l

+ If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.

If signed is specified

If unsigned is specified

K-32767 K2 K32766

(8001H) (0002H) => (TFFEH)
K32767 K-2 K-32767
(TFFFH) (FFFEH) => (8001H)

KO
(0000H)

K1

(0001H)

=>

K65535
(FFFFH)

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821 The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s2) and (d).)

6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

205

Adding 32-bit binary block data

DBK+(P)(_U)

These instructions add (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit binary

data from the device specified by (s2), and store the results of addition in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ | m }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | DBK+(P) Head device where the data to which another | -2147483648 to +2147483647 | 32-bit signed binary ANY32
DBK+(P)_U is added is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DBK+(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32
DBK+(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DBK+(P) Head device for storing the operation result — 32-bit signed binary ANY32
DBK+(P)_U — 32-bit unsigned binary | ANY32_U
(n) Number of addition data 0 to 65535 16-bit unsigned binary | ANY16_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) — — — o) — — |o — o i e
(s2) — — — o) — — |o — o) o |- |- |-
() — — — o) — — |0 — o - == |-
) o) — - o) o) o |— — o o |- |- |-

206 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Processing details

» These instructions add (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit binary
data from the device specified by (s2), and store the results of addition in the device specified by (d).
* Block addition is performed in 32-bit units.

[Ex]

If device is specified for (s2) (signed)

(s1)+1
(s1)+3
(s1)+5

(s1)+(2n-1), (s1)+(2n-2)

b31 b0

-30000
40000 (BIN)

50000 (BIN)

/_/
T~

60000 (BIN)

(BIN)

:

()

1

If constant is specified for (s2) (signed)

(s1)+1, (s1)
(s1)+3, (s1)+2
(s1)+5,

(s1)+4

(s1)+(2n-1), (s1)+(2n-2)

b31
-30000
40000 (BIN)
50000 (BIN)
/_/

60000

b0

(BIN)

(BIN)

g

(n)

1

+

+

b31 b0 b31 b0
(s2)+1, (s2) 50000 (BIN) (d)+1, (d) 20000 (BIN)
(s2)+3, (s2)+2 20000 (BIN) (d)+3, (d)+2 60000 (BIN)
(s2)+5, (s2)+4 -10000 (BIN) | (n) I:> (d)+5, (d)+4 -60000 (BIN)
: : P : : —
(s2)+(2n-1), (s2)+(2n-2) | -20000 (BIN) (d)*+(2n-1), (d)+(2n-2) | 40000 (BIN)
b31 b0
(d)+1, (d) 20000 (BIN)
b31 b0 (d)+3, (d)+2 90000 (BIN)
(s2)+1,(s2) 50000 (BIN) |:> (d)+5, (d)+4 0 (BIN)| (n)
: : i
(d)+(2n-1), (d)+(2n-2) 110000 (BIN) AL

:

(n)

i

» Operation is enabled when (s1) or (s2) have been specified by same device as (d) (perfect match). An error occurs if the
device range of (n) point(s) from (s1) or (s2) partially matches (overlaps) the device range of (n) point(s) from (d).

[Ex]

If 4 points of the device from (s2) and (d) match

b31 b0
W1, WO D1, DO
W3, W2 D3, D2
W5, W4 D5, D4
W7, W6 D7, D6

O

b31

b0 b31 b0

Because it is a perfect match, operation is possible.

If 4 points of the device from (s2), (d) match partially

b31 b0
W1, WO D1, DO
W3, W2 D3, D2
W5, W4 D5, D4
W7, Wé D7, D6
D9, D8

(1)

b31

b0

b31 b0

An operation error occurs if they partially match.

« If the value specified for (n) is 0, processing is not performed.
« If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.

(1)

(M

If signed is specified

If unsigned is specified

K2147483647 K-2147483647 K4294967295
(TFFFFFFFH) ooooooozH) => (80000001H) (FFFFFFFFH)
K-2147483647 K2147483647
(80000001H) FFFFFFFEH => (TFFFFFFFH)

(00000001H) |:,l> OOOOOOOOH)

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 07

- Operation error

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.

2821 The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s2) and (d).)

208 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Subtracting 32-bit binary block data

DBK-(P)(_U)
These instructions subtract (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit

binary data from the device specified by (s2), and store the results of subtraction in the device specified by (d).

Ladder diagram Structured text

— = d]en|ea] @ | m }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DBK-(P) Head device where the data from which -2147483648 to +2147483647 | 32-bit signed binary ANY32
DBK-(P)_U another is to be subtracted is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DBK-(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32
DBK-(P)_U data to be subtracted from another is stored g 4, 4594067295 32-bit unsigned binary | ANY32_U
(d) DBK-(P) Head device for storing the operation result — 32-bit signed binary ANY32
DBK-(P)_U — 32-bit unsigned binary | ANY32_U
(n) Number of subtraction data 0 to 65535 16-bit unsigned binary | ANY16_U

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uoeO|TsT [TsT,c,p, |umdeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s1) — — — o) — — |o — o - == |-

(s2) — — — o) — — |o — o) o |- |- |-

(d) — — — o) — — |0 — o - == |-

(n) o) — - o) o) o |— — o o |— |- |-

Processing details

» These instructions subtract (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit
binary data from the device specified by (s2), and store the results of subtraction in the device specified by (d).
* Block subtraction is performed in 32-bit units.

[Ex]

If device is specified for (s2) (signed)

b31 - b0 b31 - b0 b31 - b0
(s1)+1, (s1) -55555 (BIN) (s2)+1, (s2) 44445 (BIN) (d)+1, (d) -1000000 (BIN)
(s1)+3, (s1)+2 33333 (BIN) T (s2)+3, (s2)+2 3333 (BIN) (d)+3, (d)+2 30000 (BIN)
(s1)+5, (s1)+4 44444 (BIN)| (n) - (s2)+5, (s2)+4 -10000 (BIN) | (n) |::> (d)+5, (d)+4 54444 (BIN)

; ; = : : T ; ; —
(s1)+(2n-1), (s1)+(2n-2) | 13579 (BIN) (s2)+(2n-1), (s2)+(2n-2) | 12345 (BIN) AL (d)+(2n-1), (d)+(2n-2) 1234 (BIN)

If constant is specified for (s2) (signed)

e e

b31 - bO b31 - b0
s+, (s1) -99999 (BIN) @+1, () -109998 (BIN)
(143, (s1)+2 99999 (BIN) b31 - b0 @43, (d)y+2 90000 (BIN)
(s1)#5, (s1)+4 [-59999 (BIN)| (n) - (s2)+1,(s2) | 9999 (BIN) |:> (d)#5, (d)+4 69998 (BIN)
: ; e i : : e
(s1)+(2n-1), (s1)+(2n-2) | 79999 (BIN) (d)+(2n-1), (d)y+(2n-2) | 70000 (BIN)

6 BASIC INSTRUCTIONS 2
6.2 Arithmetic Operation Instructions 09

+ Operation is enabled when (s1) or (s2) have been specified by same device as (d) (perfect match). An error occurs if the
device range of (n) point(s) from (s1) or (s2) partially matches (overlaps) the device range of (n) point(s) from (d).

If 4 points of the device from (s2) and (d) match

b31

b0

W1, WO

D1, DO

W3, W2

D3, D2

W5, W4

D5, D4

W7, W6

D7, D6

b31 b0 b31

If 4 points of the device from (s2), (d) match partially

b31

b0

W1, WO

D1, DO

W3, W2

D3, D2

W5, W4

D5, D4

W7, W6

D7, D6

D9, D8

b31 b0

b31

b0
(1) Because itis a perfect match, operation is
possible.
(O]
b0 (1) An operation error occurs if they partially
match.

Q)

« If the value specified for (n) is 0, processing is not performed.
« If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.

If signed is specified

If unsigned is specified

K2147483647
(TFFFFFFFH)

K-2147483647
(80000001H)

K-2
(FFFFFFFEH) =>
ooooooozH) =>

K-2147483647
(80000001H)

K2147483647
(TFFFFFFFH)

KO) |:|,> K4294967295
(00000000H) 00000001 H) (FFFFFFFFH)

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821

The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s2) and (d).)

210

6 BASIC INSTRUCTIONS

6.2 Arithmetic Operation Instructions

Incrementing 16-bit binary data

INC(P)(_U)
These instructions add +1 to the device (16-bit binary data) specified by (d).
Ladder diagram Structured text
ENO:=INC(EN,d); ENO:=INC_U(EN,d);
— ENO:=INCP(EN,d); ENO:=INCP_U(EN,d);
e e
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(d) INC(P) Device to be incremented by +1 -32768 to +32767 16-bit signed binary ANY16_S
INC(P)_U 0 to 65535 16-bit unsigned binary | ANY16_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(d) o) — — o) o) o |— — o) - | == 1=

Processing details
» These instructions add +1 to the device (16-bit binary data) specified by (d).
(d) (d)

f—% /—%
b15 b0

b15 b0
5678 (BIN) +1 > 5679 (BIN)

« If INC(P) instruction is executed when contents of device specified by (d) is 32767, -32768 is stored in the device specified

by (d). (If signed is specified)
* If INC(P)_U instruction is executed when contents of device specified by (d) is 65535, 0 is stored in the device specified by

(d). (If unsigned is specified)
* Flags (zero, carry and borrow) are not activated at this time.

Precautions

Note that data is incremented in every operation cycle in a continuous operation type (INC) instruction.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 211
6.2 Arithmetic Operation Instructions

Decrementing 16-bit binary data

DEC(P)(_U)
These instructions subtract 1 from the device (16-bit binary data) specified by (d).
Ladder diagram Structured text
ENO:=DEC(EN,d); ENO:=DEC_U(EN,d);
C— @ ENO:=DECP(EN,d); ENO:=DECP_U(EN,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) DEC(P) Device to be decremented by -1 -32768 to +32767 16-bit signed binary ANY16_S
DEC(P)_U 0 to 65535 16-bit unsigned binary | ANY16_U

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(d) o) — — o) o) o |— — o) - | == 1=

Processing details
» These instructions decrement device (16-bit binary data) specified by (d) by 1.
(d) (d)

f—% /—%
b15 b0

b15 b0
5678 (BIN) 4 > 5677 (BIN)

« If DEC(P) instruction is executed when contents of device specified by (d) is -32768, 32767 is stored in the device specified

by (d). (If signed is specified)
« If DEC(P)_U instruction is executed when contents of device specified by (d) is 0, 65535 is stored in the device specified by

(d). (If unsigned is specified)
* Flags (zero, carry and borrow) are not activated at this time.

Precautions

Note that data is decremented in every operation cycle in a continuous operation type (DEC) instruction.

Operation.error

There is no operation error.

21 2 6 BASIC INSTRUCTIONS
6.2 Arithmetic Operation Instructions

Incrementing 32-bit binary data

DINC(P)(_U)
These instructions add +1 to the device (32-bit binary data) specified by (d).

Ladder diagram Structured text
ENO:=DINC(EN,d); ENO:=DINC_U(EN,d);
— ENO:=DINCP(EN,d); ENO:=DINCP_U(EN,d);
Setting data
HDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(d) DINC(P) Head device to be incremented by +1 -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DINC(P)_U 0 to 4294967295 32-bit unsigned binary | ANY32_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(d) O — — O O O O O O — - |— | —

Processing details

» These instructions add +1 to the contents of device (32-bit binary data) specified by (d).

(d)+1 (d) @+ ()
— —
b31 - b16 b15 - b0 b31 -+ b16 b15 -

b0
73500 (BIN) | +1 > 73501 (BIN)

« If DINC(P) instruction is executed when contents of device specified by (d) is 2147483647, -2147483648 is stored in the

device specified by (d). (If signed is specified)
« If DINC(P)_U instruction is executed when contents of device specified by (d) is 4294967295, 0 is stored in the device

specified by (d). (If unsigned is specified)
* Flags (zero, carry and borrow) are not activated at this time.

Precautions

Note that data is incremented in every operation cycle in a continuous operation type instruction.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 21
6.2 Arithmetic Operation Instructions 3

Decrementing 32-bit binary data

DDEC(P)(_U)
These instructions subtract 1 from the device (32-bit binary data) specified by (d).

Ladder diagram Structured text
ENO:=DDEC(EN,d); ENO:=DDEC_U(EN,d);
— ENO:=DDECP(EN,d); ENO:=DDECP_U(EN,d);
Setting data
HDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(d) DDEC(P) Head device to be decremented by 1 -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DDEC(P)_U 0 to 4294967295 32-bit unsigned binary | ANY32_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(d) O — — O O O O O @) — - |— |—

Processing details
» These instructions decrement contents of device (32-bit binary data) specified by (d) by 1.

(d)+1 (d) (d)+1 (d)
— —

b31 - b16 b15 - b0 b31 -+ b16 b15 -

b0
73500 (BIN) | -1 > 73499 (BIN)

« If DDEC(P) instruction is executed when contents of device specified by (d) is 0, -1 is stored in the device specified by (d).

(If signed is specified)
+ If DDEC(P)_U instruction is executed when contents of device specified by (d) is 0, 4294967295 is stored in the device

specified by (d). (If unsigned is specified)
* Flags (zero, carry and borrow) are not activated at this time.

Precautions

Note that data is decremented in every operation cycle in a continuous operation type (DDEC) instruction.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

21 4 6.2 Arithmetic Operation Instructions

6.3

Logical Operation Instructions

Performing an AND operation on 16-bit data

WAND(P) [using two operands]

These instructions AND each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary data from
device specified by (s), and store the results in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=0le e }—{
Setting data
HDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data for AND or device where the data is stored -32768 to +32767 16-bit signed binary ANY16
(d) Device for storing AND results -32768 to +32767 16-bit signed binary ANY16
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,b, |umeO|z |[Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O o |— — O O - |— |—
(@ o) — - O O o |— — o) i e e

Processing details

» These instructions AND each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary data from
device specified by (s), and store the results in the device specified by (d).

b15 b8 b7 bo

@ [1711111/111,171]0107010][1,1,1:1]
AND

b15 b8 b7 bo

() [ojo,0,1]0j0/1,0[00;1,1]/0,1,0,0]

b15 b8 b7 bo

@ [ojoj0;1]0o;0;1/0[0;0,0/0[0;1,0,0]

+ Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 21
6.3 Logical Operation Instructions 5

WAND(P) [using three operands]

These instructions AND each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary data from
device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text
ENO:=WAND(EN,s1,52,d);
— ENO:=WANDP(EN,s1,s2,d);
— . =a]en|e2] @ }—{ (ENsT.92.0)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for AND or device where the data is stored -32768 to +32767 16-bit signed binary ANY16
(s2) Data for AND or device where the data is stored -32768 to +32767 16-bit signed binary ANY16
(d) Device for storing AND results — 16-bit signed binary ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,D0, |uoeO|z |Lc |[Lz |specification [y 'y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) o — — o o o |— |- o o |- |- |-
(s2) o — — o o o |— |= o o |- |- 1-
) o — — o o o |=— |= o — = 1=1=

Processing. details

» These instructions AND each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary data
from device specified by (s2), and store the results in the device specified by (d).

b15 b8 b7 b0

O[171, 17101111110 1]010500[1111111]
AND

b15 b8 b7 b0

s2)[0j010;1]/0;0;110][0j0/1;1]0,1,0,0]

b15 b8 b7 b0

@[ojojo0,1]/0;0;1,0[0/0;0,0[0;1,0,0]

* Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

21 6 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

Performing an AND operation on 32-bit data

DAND(P) [using two operands]
These instructions AND each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary data from

device specified by (s), and store the results in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data for AND or head device where the data is stored -2147483648 to +2147483647 | 32-bit signed binary ANY32
(d) Head device for storing AND results -2147483648 to +2147483647 | 32-bit signed binary ANY32
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|TsT, |T,sT,c,0, |umweO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s) O — — O O O O O O O - | = |—
(d) o) — —) o) o |o o) o) — == |-

Processing details

» These instructions AND each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary data from
device specified by (s), and store the results in the device specified by (d).

(d)+1 (d)
b3 b16 b15 b0
@1 a3 oo Voo 1]
AND
(s)+1 (s)
b3 b16 b15 bO

) [or17o0 1170701701000 0;1

U

(d)+1 (d)

b31 b16 b15 b0

@ [oj170 1V 17010]oj0,1)]0 0 0]1]

+ Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 21
6.3 Logical Operation Instructions 7

DAND(P) [using three operands]

These instructions AND each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary data from
device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text
ENO:=DAND(EN,s1,s2,d);
— ENO:=DANDP(EN,s1,s2,d);
— . =a]en|e2] @ }—{ ENs.52.4)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for AND or head device where the data is stored -2147483648 to +2147483647 | 32-bit signed binary ANY32
(s2) Data for AND or head device where the data is stored -2147483648 to +2147483647 | 32-bit signed binary ANY32
(d) Head device for storing AND results — 32-bit signed binary ANY32

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,D0, |uoeO|z |Lc |[Lz |specification [y 'y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) o — — o o o |o o o o |- |- |-
(s2) o — — o o o |o o o o |- |- 1-
) o — — o o o |o o o — = 1=1=

Processing. details

» These instructions AND each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary data
from device specified by (s2), and store the results in the device specified by (d).

(s1)+1 (s1)

b31 b16 b15 b0
Ot 1 it ofor i1 Voo 1]
AND
(s2)+1 (s2)
b31 b16 b15 bo

[07170 1[0 1707017071 ((Jojo 01

(d)+1 (d)
b31 b16 b15 b0

@lo; 17011V 1707001071, 0{Joj0)0; 1]

+ Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

21 8 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

Performing an AND operation on 16-bit block data

BKAND(P)
These instructions AND contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device specified by
(s2), and store the results in the devices specified by (d) onwards.

Ladder diagram Structured text
ENO:=BKAND(EN,s1,s2,n,d);
— ENO:=BKANDP(EN,s1,s2,n,d);
— .= d]en|ea] @ | m }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Head device that stores data for AND -32768 to +32767 16-bit signed binary ANY16
(s2) Data for AND or head device where the data is stored -32768 to +32767 16-bit signed binary ANY16
(d) Head device for storing AND results — 16-bit signed binary ANY16
(n) Number of data 0 to 65535 16-bit unsigned binary | ANY16
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,p, |umdweO|z |[Lc |[Lz |specification [y 'y TF [
SM, F, B, SB C,LC | W,SD, SW,R
(s1)* — — — e} — - | = — ¢} i e
(s2)" - - — o - e - O o |—= |- |-
(@) — — — O — i — o - == |-
(n) @) — — O O o |— — @) O - = |—

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

Processing details

» These instructions AND contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device specified
by (s2), and store the results in the devices specified by (d) onwards.

(s1)+(n-1) (s1)+1 (s1)
r A N\ r A N A hY
b15 b8 b7 o) b15 b8 b0 bt b8
1i1i1i1]olotolo[1i1i1i1]0loloio] -~ [4i1i1i1[ololoiofolotolo]1l1i1i1] [oioi1i1]oloti1[olalri1][olol4i
AND
(s2)+(n-1) (s2)+1 (s2)

r A N\ r A N7 A N\
1515121‘1§1§1§1‘0§0§0§0‘0§0§0§0| |1§1§1§1‘1§1§1§1\0§o§0§0\0§0§0§0| |o§o§1§1\15150?0\0@0@151\1515050
(d)+(n-1) (d)+1 (d)

r A N\ r A N\ 7 A Al
[1i1i1i1]ojoioio[o}ofoio[0j 0 Gio| - [1}1i1]r[o[ofoio]ojoioio[of0iofo| [ofoiri1]ofoiofo[olafr{r]ofoloi0

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821 Device range of (n) point(s) from (s1) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s1) and (d).)

Device range of (n) point(s) from (s2) partially overlaps with device range of (n) point(s) from (d).
(Does not apply when same device has been specified for (s2) and (d).)

6 BASIC INSTRUCTIONS 21
6.3 Logical Operation Instructions 9

Performing an OR operation on 16-bit data

WOR(P) [using two operands]
These instructions OR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary data from
device specified by (s), and store the results in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data for OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY 16
(d) Head device for storing the OR results -32768 to +32767 16-bit signed binary ANY16
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|TsT, |T,sT,c,0, |umweO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s) O — — O O o |— — @) O - = |—
G) O — — O O o |— — O - = 1= |-

Processing details

» These instructions OR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary data from
device specified by (s), and store the results in the device specified by (d).

b15 b8 b7 b0

@[ol1i0/1[1 71 1/1]0/0l0/0]0 0 11]
OR

b15 b8 b7 b0

©[170, 0117170701710/ 0[1,110,0]

b15 b8 b7 bo
@11 700111 1110170000111, 1]

* Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

220 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

WOR(P) [using three operands]

These instructions OR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary data from

device specified by (s2), and store the results in the device specified by (d).

Ladder diagram

Structured text

— L. d]en|e2] @ }—{

ENO:=WOR(EN,s1,s2,d);
ENO:=WORP(EN,s1,s2,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16
(s2) Data for OR or head device where data is stored -32768 to +32767 16-bit signed binary ANY16
(d) Head device for storing the OR results — 16-bit signed binary ANY16
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,ST,c,b, |umeO|z |Lc |[Lz |specification [y Tp [g
SM, F, B, SB C,LC | W, SD, SW,R
(s1) O — — O O o |— — @) O - = |—
(s2) O — — O O o |— — @) O - = |—
(d) O — — O O o |— — O — - |— |-

Processing details

» These instructions OR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary data from

device specified by (s2), and store the results in the device specified by (d).

b15 b8 b7 b0

sH[171.010[0j0/0,0[1,1,1,1]/0,0,0,0]
OR

b15 b8 b7 b0

2[00 010[17170;0[1 /1,000 0,1,1]

b15 b8 b7 b0

@ [1,17070[17170;0[1 ;1,1 71]0j011,1]

« Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 221
6.3 Logical Operation Instructions

Performing an OR operation on 32-bit data

DOR(P) [using two operands]

These instructions OR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary data from
device specified by (s), and store the results in the device specified by (d).

Ladder diagram

Structured text

—C=d]le | }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Data for OR or head device where data is stored -2147483648 to +2147483647 | 32-bit signed binary ANY32

(d) Head device for storing the OR results -2147483648 to +2147483647 | 32-bit signed binary ANY32

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |Lz | specification [y e [g
SM, F, B, SB C,LC | W,SD, SW,R

(s) (@) — — (@) (@) o |O (@) O (@) - = | =

(d) (@) — — (@) (@) o |O O O — - |—= |—=

Processing details

» These instructions OR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary data from
device specified by (s), and store the results in the device specified by (d).

(d)+1 (d)

b31 b16 b15 bo
@[1717101 0707 0lo0707018 o011, 1]
OR
(s)+1 (s)
b31 b16 b15 bo
@[170707 100 0171717 (JToj0] 1)1
(d)+1 (d)
b31 b16 b15 bo

@111 1] 0t0]

o111 o0 171]

« Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

222 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

DOR(P) [using three operands]

These instructions OR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary data from
device specified by (s2), and store the results in the device specified by (d).

Ladder diagram

Structured text

— L. d]en|e2] @ }—{

ENO:=DOR(EN,s1,s2,d);
ENO:=DORP(EN,s1,s2,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for OR or head device where data is stored -2147483648 to +2147483647 | 32-bit signed binary ANY32
(s2) Data for OR or head device where data is stored -2147483648 to +2147483647 | 32-bit signed binary ANY32
(d) Head device for storing the OR results — 32-bit signed binary ANY32
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,ST,c,b, |umeO|z |Lc |[Lz |specification [y Tp [g
SM, F, B, SB C,LC | W, SD, SW,R
(s1) O — — O O o | O @) @) @) - = |—
(s2) O — — O O o |O @) @) O - = |—
(d) O — — O O o |O ©) O — - |— |—

Processing details

» These instructions OR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary data from
device specified by (s2), and store the results in the device specified by (d).

(s1)+1 (s1)
b31 b16 b15 - bo
sDlojor1 1] 00117010 V(1,11 010]
OR
(s2)+1 (s2)
b31 b16 b15 - bo
s2[ojo0r 1 o]0 11700 0 0 (1117
(d)+1 @ (d)
b31 b16 b15 bo

@ [ojort 1V e a0 0 001

1

1

1]

* Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 22
6.3 Logical Operation Instructions 3

Performing an OR operation on 16-bit block data

BKOR(P)

These instructions OR contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device specified by
(s2), and store the results in the devices specified by (d) onwards.

Ladder diagram

Structured text

— = d]en|ea] @ | m }—{

ENO:=BKOR(EN,s1,s2,n,d);
ENO:=BKORP(EN,s1,s2,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Head device where the logical operation data is stored -32768 to +32767 16-bit signed binary ANY16
(s2) Logical operation data or the head device where the -32768 to +32767 16-bit signed binary ANY16
logical operation data is stored
(d) Head device for storing the operation result — 16-bit signed binary ANY16
(n) Number of data 0 to 65535 16-bit unsigned binary | ANY16
BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others

X,Y,M,L, |uD\GO|T,ST, |T,sT,c,b, |umeO|z |Lc |[Lz |specification [y 'y Tp [g

SM, F, B, SB C,LC | W,SD, SW,R
(s1)" - - — o - e — O S e e e
(s2)" — — — o — e — o o - |— |—
()" — — — o} — - | = — ¢} - | == |-
(n) O — — O O o |— — O O - |— |-

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

Processing details

» These instructions seek OR of contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device
specified by (s2), and store the results in the devices specified by (d) onwards.

1)+(n- +
(s)/SM) (81\)1 (S/])
r N\ r N hY
SR UM AT oo . 8o .. t0 b .. Wb
1i1i1i1]0folofol1{1{11]0l0}0i0] l1i1i1i1]ofoioiojoiotoiol1i1i1i1| [ojoi1i1[ofoi1i1]0i0i1i1]0}0i1i1
OR
(s2)+(n-1) (s2)+1 (s2)
A A A

r

hY

N

N\

1i1i1i1]1{1{1{1/0}0}0;00{o{oo]

[1i1i1i1[171711 1[0j0ioi0]ololoio] [oioi1i1][1i1{0i0]0i0i1i1]1]1]0]0

(d)+(n-1)
A

U

(d)+1
A

(d)
A

224

4

A
[T lofofol o]

r N N\
[Tl [olo[oo[v1aT1] [ofoTafalalalia[oTo[[+ 1 [[1L1

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821 Device range of (n) point(s) from (s1) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s1) and (d).)

Device range of (n) point(s) from (s2) partially overlaps with device range of (n) point(s) from (d).
(Does not apply when same device has been specified for (s2) and (d).)

6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

Performing an XOR operation on 16-bit data

WXOR(P) [using two operands]
These instructions exclusive OR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary
data from device specified by (s), and store the results in the device specified by (d).

Ladder diagram Structured text

Not supported
—C=d]le | }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Data for exclusive OR or head device where data is stored | -32768 to +32767 16-bit signed binary ANY16
(d) Head device for storing exclusive OR results -32768 to +32767 16-bit signed binary ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O O — — O O - |— | —

(d) o) — — o) o) o |— — o - | == |-

Processing. details

» These instructions exclusive OR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary
data from device specified by (s), and store the results in the device specified by (d).

b15 - b8 b7 - b0

@[110/170[1/0/170]11011,0][1,0,1,0]
XOR

b15 - b8 b7 - b0

®|ojo o 11701171171 ,1,71]0,010,0]

b15 b8 b7 - b0

@[170;171]0;00;1][0;1;0;1]1,0,1,0]

+ Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 22
6.3 Logical Operation Instructions 5

WXOR(P) [using three operands]

These instructions exclusive OR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary
data from device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text
ENO:=WXOR(EN,s1,s2,d);
— ENO:=WXORP(EN,s1,s2,d);
— . =a]en|e2] @ }—{ (ENs1.52.0)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for exclusive OR or head device where data is stored | -32768 to +32767 16-bit signed binary ANY16
(s2) Data for exclusive OR or head device where data is stored | -32768 to +32767 16-bit signed binary ANY16
(d) Head device for storing exclusive OR results — 16-bit signed binary ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [\« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) O — — O O o | — — O O i i

(s2)) — —) o) o |- — o) e) — | = |=

C) o — — o © o |— — o - == |-

Processing details

» These instructions exclusive OR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary
data from device specified by (s2), and store the results in the device specified by (d).

b15 b8 b7 b0

sH{ojo010,0/1,1,11/1]1,11/1,1/0,0,0.0]
XOR

b15 b8 b7 b0

s2[o;170 1o 1;0/1]0;1170 1[0, 1,01]

b15 b8 b7 b0

@ [oj170;1][1,0;10[170;1,0[0, 1,0 1]

* Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

226 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

Performing an XOR operation on 32-bit data

DXOR(P) [using two operands]

These instructions exclusive OR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary
data from device specified by (s), and store the results in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data for exclusive OR or head device where data is stored | -2147483648 to +2147483647 | 32-bit signed binary ANY32
(d) Head device for storing exclusive OR results -2147483648 to +2147483647 | 32-bit signed binary ANY32
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M L, |uDweO|TsT [TsT,c,p, |umeO|z |Lc |Lz | specification [y Te [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O O O O O O i i
(d) O — — O O O O O O — - | = |—

Processing. details

» These instructions exclusive OR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary
data from device specified by (s), and store the results in the device specified by (d).

(d)+1 (d)
b31 b16 b15 bo
@[ol17o0 1o 1701107101 0,1
XOR
(s)+1 (s)
b31 - b16 b15 - bo
@[or 171700 1 1o 170 Jo 17170
(d)+1 @ (d)
b31 b16 b15 - bo
@loror 1 1V 0oror 1111 Jo001)1]

+ Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 22
6.3 Logical Operation Instructions 7

DXOR(P) [using three operands]

These instructions exclusive OR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary
data from device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text
ENO:=DXOR(EN,s1,52,d);
— ENO:=DXORP(EN,s1,s2,d);
— . =a]en|e2] @ }—{ (ENsts2.4)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for exclusive OR or head device where data is stored | -2147483648 to +2147483647 | 32-bit signed binary ANY32
(s2) Data for exclusive OR or head device where data is stored | -2147483648 to +2147483647 | 32-bit signed binary ANY32
(d) Head device for storing exclusive OR results — 32-bit signed binary ANY32

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [\« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) O — — O O O O O O O i i

(s2)) — —) o) o |o o) o) e) — | = |=

(d) O — — O O O O O O — - |— | —

Processing details

» These instructions exclusive OR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary
data from device specified by (s2), and store the results in the device specified by (d).

(s1)+1 (s1)

b31 b16 b15 b0
D111 1] 0t0t0]otoro V1 1]
XOR
(s2)+1 (s2)
b31 b16 b15 bo

[171 o oo (171700
U
(d)+1 (d)

b31 b16 b15 b0
@ [ojoro0 0V 170 1o 1 0o 01 1]

+ Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

228 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

Performing an XOR operation on 16-bit block data

BKXOR(P)

These instructions seek exclusive OR of contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the

device specified by (s2), and store the results in the devices specified by (d) onwards.

Ladder diagram Structured text
ENO:=BKXOR(EN,s1,s2,n,d);
— ENO:=BKXORP(EN,s1,s2,n,d);
— .= d]en|ea] @ | m }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for exclusive OR or head device where data is stored | -32768 to +32767 16-bit signed binary ANY16
(s2) Data for exclusive OR or head device where data is stored | -32768 to +32767 16-bit signed binary ANY16
(d) Head device for storing the operation result — 16-bit signed binary ANY16
(n) Number of data 0 to 65535 16-bit unsigned binary | ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1)" — — — O — - | = — ¢} i e
(s2)" - - — o - e - O o |= |- |-
(" — — — o — e — o - |= = |-
(n) O — — O O o |— — @) O - | — |—

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

Processing details

» These instructions exclusive OR contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device
specified by (s2), and store the results in the devices specified by (d) onwards.

(s1)+(n-1) (s1)+1 (s1)
s A\ N\ r A N A \
b5 .. BBb7 .. 10 bt5 .. o b8br .. B0 b5 .. bBb7 .. B0
1i1i1i1]0jofojo[1{1i1i1[ofoloio] - [1{1{1i1[0fojojooiojoio[1{1}1{1] [ofoi1}1]o}o}1i1[0}0i1i1[0i0}1i1
XOR
(s2)+(n-1) (s2)+1 (s2)

r A N\ s l N A)
1i1i1i1]1i1{1{1]ofoio{olofofoio] - [1{1i1}1[1{1}1{1[o{0jo}o[o}oioio| [o}oi1}1[1{1]oo[0}oi1i1[1}1{ci0
(d)*(n-1) (d)+1 (d)

P A N A N A N\
loiofoiof 1{1itf1[1{1iri1]ofo{of o - [ofofofo[1]1]1{1[ofofofo[1{ri1i1] [ofofofo[+]1]+{r[ofolofo[1] 1]

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821 Device range of (n) point(s) from (s1) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s1) and (d).)

Device range of (n) point(s) from (s2) partially overlaps with device range of (n) point(s) from (d).
(Does not apply when same device has been specified for (s2) and (d).)

6 BASIC INSTRUCTIONS 22
6.3 Logical Operation Instructions 9

Performing an XNOR operation on 16-bit data

WXNR(P) [using two operands]

These instructions exclusive NOR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit binary
data from device specified by (s), and store the results in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data for exclusive NOR or head device where data is -32768 to +32767 16-bit signed binary ANY16
stored
(d) Head device for storing exclusive NOR results -32768 to +32767 16-bit signed binary ANY16
BEApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,D, |umeO|z |Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O o |— — O O - |— |—
C) O — - O O o |— — o) i e e

Processing details

» These instructions exclusive NOR each bit of 16-bit binary data from the device specified by (d) and each bit of 16-bit
binary data from device specified by (s), and store the results in the device specified by (d).

b15 . b8 b7 . b0

@[170,1/0/110/1,0]/1,0,1,0]1.0,0,1]
XNOR

b15 - b8 b7 - b0

®)|1,1,1,/1]0;010;0]0j0,0,0]0;1,1,0]

b15 b8 b7 b0

@[1;0;1/0]0/1;0;1]0;1,0,1]0]0,0;0]

* Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

230 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

WXNR(P) [using three operands]

These instructions exclusive NOR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit binary

data from device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text
ENO:=WXNR(EN,s1,s2,d);
— ENO:=WXNRP(EN,s1,s2,d);
—C=a]en|e2] @ }—{ (ENs.52.0)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for exclusive NOR or head device where data is -32768 to +32767 16-bit signed binary ANY 16
stored
(s2) Data for exclusive NOR or head device where data is -32768 to +32767 16-bit signed binary ANY16
stored
(d) Head device for storing exclusive NOR results — 16-bit signed binary ANY16
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uoweO|TsT, |TsT,c,0, |umeO|z |Lc |[Lz |specification [y yTe [g
SM, F, B, SB C,LC | W,SD, SW,R
(s1) O — — O O o |— — O O - |— |-
(s2) O — — O O o |— — @) O - = |—
(d) O — — O O o |— — @) — - = |—

Processing. details

» These instructions exclusive NOR each bit of 16-bit binary data from the device specified by (s1) and each bit of 16-bit

binary data from device specified by (s2), and store the results in the device specified by (d).

b15 B b8 b7 2 b0

sD[11111,1]/0,0j010][11111,1]/0,010.0]
XNOR

b15 - b8 b7 - b0

s2)[0;011,1][1,1;010]0;0/1;1]0,0,1,1]

b15 b8 b7 b0
@[ojo;1,1][0;0; 17101071, 1][1,1,0,0]

* Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 2 1
6.3 Logical Operation Instructions 3

Performing an XNOR operation on 32-bit data

DXNR(P) [using two operands]

These instructions exclusive NOR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit binary

data from device specified by (s), and store the results in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data for exclusive NOR or head device where data is -2147483648 to +2147483647 | 32-bit signed binary ANY32
stored
(d) Head device for storing exclusive NOR results -2147483648 to +2147483647 | 32-bit signed binary ANY32
BEApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,D, |umeO|z |Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O O @) @) O O - |— |—
(d) O — — O O @) @) @) @) — - |— |—

Processing details

» These instructions exclusive NOR each bit of 32-bit binary data from the device specified by (d) and each bit of 32-bit

binary data from device specified by (s), and store the results in the device specified by (d).

(d)+1 (d)
b31 b16 b15 bo
@[1717010]V 10 0;0lo0;0701 o011, 1]
XNOR
(s)+1 (s)
b31 - b16 b15 bo
@11 717100 0fo 1 10171700
(d)+1 @ (d)
b31 b16 b15 bo
@[1 7170700 171717170701 o0 0 0]

* Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

232 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

DXNR(P) [using three operands]

These instructions exclusive NOR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit binary

data from device specified by (s2), and store the results in the device specified by (d).

Ladder diagram

Structured text

— L. d]en|e2] @ }—{

ENO:=DXNR(EN,s1,52,d);
ENO:=DXNRP(EN,s1,52,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Data for exclusive NOR or head device where data is -2147483648 to +2147483647 | 32-bit signed binary ANY32
stored
(s2) Data for exclusive NOR or head device where data is -2147483648 to +2147483647 | 32-bit signed binary ANY32
stored
(d) Head device for storing exclusive NOR results — 32-bit signed binary ANY32
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uoweO|TsT, |TsT,c,0, |umeO|z |Lc |[Lz |specification [y yTe [g
SM, F, B, SB C,LC | W,SD, SW,R
(s1) O — — O O o | O ©) @) O - |— |—
(s2) O — — O O o | O @) @) @) - = |—
(d) O — — O O o |O @) @) — - = |—

Processing. details

» These instructions exclusive NOR each bit of 32-bit binary data from the device specified by (s1) and each bit of 32-bit

binary data from device specified by (s2), and store the results in the device specified by (d).

(s1)+1 (s1)

b3 » b16 b15 - bo
sDlojor1 18 0t0or 1111010 Jolo 101
XNOR
(s2)+1 (s2)
b31 - b16 b15 bo
[0 ;170 1[0 o 17017071 ((Jo1 071
(@1)
b31 - b16 b15 . b0

@100 1[0 1701017071170 0]

1]

« Bit devices subsequent to number of points by nibble specification are calculated as 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 2
6.3 Logical Operation Instructions 33

Performing an XNOR operation on 16-bit block data

BKXNR(P)

These instructions exclusive NOR contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device
specified by (s2), and store the results in the devices specified by (d) onwards.

Ladder diagram Structured text
ENO:=BKXNR(EN,s1,s2,n,d);
— ENO:=BKXNRP(EN,s1,s2,n,d);
— = d]en|ea] @ | m }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Head device where the logical operation data is stored -32768 to +32767 16-bit signed binary ANY16
(s2) Logical operation data or the head device where the -32768 to +32767 16-bit signed binary ANY16
logical operation data is stored
(d) Head device for storing the operation result — 16-bit signed binary ANY16
(n) Number of data 0 to 65535 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M L |uDweO|TsT [TsTc,p, |umeO|z |Lc |Lz | specification [y Te [g
SM, F, B, SB C,LC | W, SD, SW,R
(s1)" - - — o - e — O i i e
(s2)" — — — o — e — o o - |— |—
()" — — — o} — - | = — ¢} - | == |-
(n)) — — o) o) o |- — @) @) - |— |—

*1 The same device number can be specified for (s1) and (d) or (s2) and (d).

Processing details

» These instructions exclusive NOR contents of (n) point(s) from the device specified by (s1) and (n) point(s) from the device
specified by (s2), and store the results in the devices specified by (d) onward.

(s1)+(n-1) (s1)+1 (s1)
r A N\ 4 A N\ 4 A N\
b15I T .b8b7. e 'bO |_-,15l T .b8b7. —— 'bO b‘k—? T .b8b7. BT 'bO
1i1{1{1/0{ojojo]1{1{1i1]o{ojoio] - [1i1]1i1]0}ojo}o[ofojoio[1}1{1}{1] [0foi1}1[0}oi1{1[0}0i1]{1[0}0}1}1
XNOR
(s2)+(n-1) (s2)+1 (s2)

r A N r A hY 14 A N\
1i1{1i1/1{1{1{1]o{oioiojofoioio] - [1i1{111[1}{1{1{1]0i0i0i0o[0}0}0i0] [ofoi1}1[1{1{0{0[0}0{1{1[1{1]{00
(d)+(n-1) (d)+1 (d)

4 A hY r A N A hY
l111]1{1[o]o]ofolo}ofoiol1}1i1i 1] - [1i171]1]ofofoio]1{1{1i1]ofofoio] [1i1i1{1]ofo]oio[1{1]1i1]o}0l0}0

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821 Device range of (n) point(s) from (s1) partially overlaps with device range of (n) point(s) from (d).

(Does not apply when same device has been specified for (s1) and (d).)

Device range of (n) point(s) from (s2) partially overlaps with device range of (n) point(s) from (d).
(Does not apply when same device has been specified for (s2) and (d).)

234 6 BASIC INSTRUCTIONS
6.3 Logical Operation Instructions

6.4

Bit Processing Instructions

Setting a bit in the word device

BSET(P)

These instructions set (to 1) (n)th bit of word device specified by (d).

Ladder diagram

Structured text

— 0@ [w }—{

ENO:=BSET(EN,n,d);

ENO:=BSETP(EN,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(d) Head device for which bit is to be set 16-bit signed binary ANY16

(n) Number of bit(s) to be set Oto15 16-bit unsigned binary | ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [\« yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

C) O — - O O o |— — O e

(n) o) — — e) e o |— — o) e) — = |=

Processing. details

» These instructions set (to 1) (n)th bit of word device specified by (d).
« If (n) exceeds 15, the processing will be done based on the lower 4 bits of (n).

}—H—| BSETP | D10 | K6 H

b b6 -~ bib0
D10 [1/1:010[1/0/11]0:01:1]1:011]

U

b15 b6 - bi1b0
D10 [111:00[1101111]0:111:1]1:011!1]

These bits become "1".

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

6.4 Bit Processing Instructions 235

Resetting a bit in the word device

BRST(P)

These instructions reset (to 0) (n)th bit of word device specified by (d).

Ladder diagram Structured text

ENO:=BRST(EN,n,d);

| I:.::||) |) }_{ ENO:=BRSTP(EN,n,d);

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device for which bit is to be reset — 16-bit signed binary ANY16
(n) Number of bit(s) to be reset 0to 15 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDOweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |Lz |specification [y (i Te Tg
SM, F, B, SB C,LC | W, SD, SW, R

(d) 0 — — o 0 o|— [—= o — = 1-1-

) 0 — — o 0 o |— [= o o |- |- 1-

Processing details

» These instructions reset (to 0) (n)th bit of word device specified by (d).
« If (n) exceeds 15, the processing will be done based on the lower 4 bits of (n).

}—H—| BRSTP | D10 | Ki1 }—{

b15 b1t b1b0
D10 [1/1:00[1/0/11]0:01:1]1:011]

U

b15 b1 b1b0
D10 [1!1:0/0[0:0:11]00!111[1i01:1]

These bits become "0".

Operation.error

There is no operation error.

236 6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions

Performing a 16-bit test

TEST(P)
These instructions take bit data at position specified by (s2) from device specified by (s1) and write to bit device specified by

(d).

Ladder diagram Structured text
ENO:=TEST(EN,s1,s2,d);
— ENO:=TESTP(EN,s1,52,d);
—Jc=aen][] @ }—{ (ENsT 2

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Device number where bit data to be extracted is stored — 16-bit signed binary ANY16

(s2) Position of bit data to be extracted O0to15 16-bit unsigned binary | ANY16

(d) Bit device number where extracted bit data is to be stored | — Bit ANY_BOOL

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s1) o) — — o) o) o |— — o) - | == 1=

(s2) O — — O O o |— — @) @) - |— |—

(d) o) o) — o) — - |- — — - == 1-

Processing details
» These instructions take bit data at position specified by (s2) from device specified by (s1) and write to bit device specified
by (d).
(s2) bit (When (s2)=5)

b15 b5 -+ b0
SN

(d)

« If relevant bit is "0", device specified by (d) is turned OFF, and if it is "1", device is turned ON.

* For (s2) specify the bit position (0 to 15) of word data. If 16 or more is specified for (s2), the value of the remainder of
(s2)+16 is the bit position.
For (s2) = 18, the remainder for 18+16 is "2", so it becomes data of b2.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions 237

Performing a 32-bit test

DTEST(P)

These instructions take bit data at position specified by (s2) from device specified by (s1) and write to bit device specified by

(d).

Ladder diagram Structured text
ENO:=DTEST(EN,s1,s2,d);
— ENO:=DTESTP(EN,s1,s2,d);
—Jc=aen][] @ }—{ (ENsT 2.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Device number where bit data to be extracted is stored — 32-bit signed binary ANY32

(s2) Position of bit data to be extracted 0 to 31 16-bit unsigned binary | ANY16

(d) Bit device number where extracted bit data is to be stored | — Bit ANY_BOOL

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s1) 0 — — 0 0 o |o o o — | == |=

(s2) O — — O O o |— — @) @) - |— |—

(d) o) o) — o) — - |- — — - == 1-

Processing details

» These instructions take bit data at position specified by (s2) from device specified by (s1), (s1) +1 and write to bit device
specified by (d).

(s2) bit (When (s2)=21)

b31 b21 - b16b15 b0

(s1)+1 (s1) :

« If relevant bit is "0", device specified by (d) is turned OFF, and if it is "1", device is turned ON.
* For (s2) specify the bit position (0 to 31) of double word data. If 32 or more is specified for (s2), the value of the remainder
of (s2)+32 is the bit position.

For (s2) = 34, the remainder for 34+32 is "2", so it becomes data of b2.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

238 6.4 Bit Processing Instructions

Batch-resetting bit devices

These instructions reset (n) point(s) bit devices from the bit device specified by (d).

ENO:=BKRST(EN,n,d);
_| C— | @ | ™ ENO:=BKRSTP(EN,n,d);

f

HDescriptions, ranges, and data types

Head device to be reset ANY_BOOL
(n) Number of devices to be reset — 16-bit unsigned binary | ANY16
BApplicable devices
(d) O — @) O — - |— — — — - |— |-
(n) O — — O O o |— — @) O - = |—

|

» These instructions reset (n) point(s) bit devices from the bit device specified by (d).
* Reset status of bit device is as follows.

Annunciator (F) * (n) point(s) from annunciator (F) number specified by (d) are turned OFF.

* Annunciator numbers from SD64 to SD79 that were turned OFF are deleted and the subsequent numbers are
shifted forward.

» The number of annunciators stored in SD64 to SD79 is stored in SD67.

Timer (T), Counter (C) + Current value of (n) point(s) from timer (T) or counter (C) number specified by (d) is set to 0, and coil contact is
turned OFF.
Bit devices other than given above « Coils and contacts of (n) point(s) from the device specified by (d) are turned OFF.

« If specified devices are OFF, device status remains unchanged.

F

2820 (n) point(s) of data starting from the device specified by (d) exceed the corresponding device range.

6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions 239

Batch-resetting devices

ZRST(P)

These instructions reset all data among devices of same type specified by (d1) and (d2). Use these instructions for restarting

operation from the beginning after pause or after resetting control data.

Ladder diagram Structured text

ENO:=ZRST(EN, d1, d2);
ENO:=ZRSTP(EN, d1, d2);

— . 0]w@n| <d2)}—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d1) Head bit or word device number to be reset — 16-bit signed binary ANY_ELEMENTARY
(d2) Last bit or word device number to be reset — 16-bit signed binary ANY_ELEMENTARY
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |Lz | specification [y e [g
SM, F, B, SB C,LC | W,SD, SW,R
(d1) (@) — — (@) (@) o |O (@) O — - = | =
(d2) (@) — — (@) (@) o |O O O — - |—= |—=

Processing details

» These instructions reset all data among devices of same type specified by (d1) and (d2).

» OFF (reset) is written to the entire range of devices from (d1) to (d2) all at once if (d1) and/or (d2) are bit devices.

‘ (d1)+9 ‘ (d1)+8 ‘ (d1)+7 ‘ (d1)+6 ‘ (d1)+5 ‘ (d1)+4 ‘ (d1)+3 ‘ (d1)+2 ‘ (d1)+1 ‘ (d1) ‘

I

OFF

S S S N N W

OFF ‘ OFF ‘ OFF ‘ OFF ‘ OFF ‘ OFF ‘ OFF ‘OFF‘

‘ (d2) ’

| I

‘OFF ‘ ‘ OFF ‘ OFF

KO is written to the entire range of devices from (d1) to (d2) all at once if (d1) and/or (d2) are word devices.

‘ (d2) ‘ ‘ (d1)+9 ‘ (d1)+8‘ (d1)+7‘ (d1)+6‘ (d1)+5‘ (d1)+4‘ (d1)+3‘ (d1)+2 ‘ (d1)+1 ‘ (d1)‘
|
T
| T T T T T T
‘ KO ‘ ‘ KO ‘) ‘ KO ‘ KO ‘ Ko ‘ KO ‘) ‘ KO ‘) ‘ KO ‘

« As a reset instruction for individual devices, the RST instruction can be used for bit devices and word devices.

X1

—

MO is reset.

The current value of TO is reset.

DO is reset.

6 BASIC INSTRUCTIONS
6.4 Bit Processing Instructions

240

» The FMOV(P) instruction is a batch write instruction for a constant (KO for example) that can write "0" for word devices
(including nibble specification of bit devices).

X2
}—{ |—{ FMOV ‘ KO ‘ DO ‘ K100 }—{KO is written to DO to D99.

Precautions

» Specify the same type of device for (d1) and (d2) so that (d1) number is less than (d2) number. If the (d1) number>(d2)
number, only the device specified by (d1) is reset.

» The ZRST(P) instruction is a 16-bit instruction, but long counter (LC) and long index register (LZ) can be specified for (d1)
and (d2).

Command input

|——< ZRST ‘0180 l C199 }—
—‘ ZRST | LCO ‘ LC10 }—

Operation.error

Error code Description
(SD0/SD8067)

2820

The number of devices to be reset is 32768 or more when module access device has been specified for (d1) and/or (d2).

3405 Device type specified by (d1) differs from type specified by (d2).

Module number for (d1) and (d2) differ when module access device is specified.

6 BASIC INSTRUCTIONS 241
6.4 Bit Processing Instructions

6.5 Data Conversion Instructions

Converting binary data to BCD 4-digit data

BCD(P)

These instructions convert the binary data in the device specified by (s) to BCD data, and store the converted data in the

device specified by (d).
Binary data is used in operations in CPU module. Use this instruction to display numeric values on seven-segment display

unit equipped with BCD decoder.

Ladder diagram Structured text
ENO:=BCD(EN,s,d);

| C— | ©) | }{ ENO:=BCDP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Binary data or the head device where the binary data is 0 to 9999 16-bit signed binary ANY16
stored
(d) Head device for storing the BCD data — BCD 4-digit ANY16
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) (@) — — (@) (@) o |— — (@] (@) - = |—
(d) (@) — — (@) (@) o |— — (@] — - = |—=

Processing details

» These instructions convert the 16-bit binary data (0 to 9999) in the device specified by (s) to BCD 4-digit data, and store the
converted data in the device specified by (d).

-32768 16384 8192 4096 2048 1024 512 256 128 64 32 8 4 2 1
(s)BIN9999 [0 [0 [1 [0 |o|1|1\1|o\o\o\o\ 1[1]1]

N

Make sure to set them to "0". @ BCD conversion

8000 4000 2000 1000 800 400 200 100 80 40 8 4 2 1
(d)BCD9999|1|o\0|1|1\0|o\1\1\0\0\1\1\o\o|1|
Thousands place Hundreds place Tens place Ones place

» Data specified by (s) can be converted if it is within the range from KO to K9999 BCD (decimal).
» The table below shows nibble specification for the data in the device specified by (s) and (d).

Command BIN
input BCD (s) (d) _{ CPU module BCD

" * . Y14to Y10to Y4to YOto
When "K4Y000" is specified Y17 Y13 Y7 Y3

e
e
.
m
wm
mr
.
m

R

6 BASIC INSTRUCTIONS

242 6.5 Data Conversion Instructions

K1Y0 1-digit Oto9

K2YO0 2-digit 00 to 99
K3Y0 3-digit 000 to 999
K4Y0 4-digit 0000 to 9999

+ Binary data is used in all operations in CPU module including arithmetic operations (+-x+), increment and decrement
instructions. When receiving digital switch information in binary-coded decimal (BCD) format into a CPU module, use the

BIN(P) instructions (for converting BCD data into binary data). Furthermore, to output data to seven-segment display unit
handling binary-coded decimal (BCD) data, use the BCD(P) instructions (for converting binary data into BCD data).

- Operation error

3401 Data in the device specified by (s) is out of the valid range (0 to 9999).

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions 243

Converting binary data to BCD 8-digit data

DBCD(P)

These instructions convert the binary data in the device specified by (s) to BCD data, and store the converted data in the

device specified by (d).
Binary data is used in operations in CPU module. Use this instruction to display numeric values on seven-segment display

unit equipped with BCD decoder.

Ladder diagram

Structured text

—~c=alele}H

ENO:=DBCD(EN,s,d);
ENO:=DBCDP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Binary data or the head device where the binary data is 0 to 99999999 32-bit signed binary ANY32
stored
(d) Head device for storing the BCD data — BCD 8-digit ANY32
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,p, |umweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O O O O O O - | = |—
(d) 0 — — 0 0 o |o o} o — | == |=

Processing details

» These instructions convert 32-bit binary data (0 to 99999999) in device specified by (s) to BCD 8-digit data, and store the
converted data in the device specified by (d).

(s)+1 (Upper 16 bits)

(s) (Lower 16 bits)

231 30 29 928 927 926 225 D2 D23 D22 P21 P20 D19 D18 Y17 16 15 14 D13 D12 11 10 9 8 T 26 25 24 23 22 21 0

() 899999999 [o[o[o]o[o[1[0][]1]1]] o[1][]0[o]ofo[o[s [+t [x 1]

—
Make sure to set them to "0".

(Upper 5 bits)

x107

x108

x10°

U

x10*

BCD conversion

x10°

x10? x10' x10°

8421842184218421842184
(d) BCD 99999999 [1 [0]o[1]1]ofo[1]1]o]o]1]1]o[o[1]1]o]o]1]1]o]o[1]1]o]0]1]1]0]0[1]

Ten-millions
place

Millions
place

Hundred-
thousands place

place

Ten-thousands Thousands
place

Hundreds

Tensplace Ones place

place

(d)+1 (Upper 4 digits)

(d) (Lower 4 digits)

+ Data specified by (s) can be converted if it is within the range from KO to K99999999 BDC (decimal).
» The table below shows nibble specification for the data in the device specified by (s) and (d).

Command
input
'_

DBCD (s)

(d)

|

244

v

When "K8Y0" is specified

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

CPU module DBCD BIN
Y3410 Y310 Y2410 Y20t ¥i4to YiDto Yato Y0to
Y37 Y33 Y27 Y23 Y17 Y13 Y7
o o
[T R A

(d)+1, (d) Number of digits Data range

K1Y0 1-digit 0to9

K2Y0 2-digit 00 to 99

K3Y0 3-digit 000 to 999

K4Yo 4-digit 0000 to 9999

K5Y0 5-digit 00000 to 99999

K6Y0 6-digit 000000 to 999999

K7Y0 7-digit 0000000 to 9999999

K8Y0 8-digit 00000000 to 99999999
Precautions

» When using the SEGL instruction, because BCD<binary conversion is automatically executed, the BCD(P) instruction do

not have to be used.

« Binary data is used in all operations in CPU module including arithmetic operations (+-x=+), increment and decrement

instructions. When receiving digital switch information in binary-coded decimal (BCD) format into a CPU module, use the

BIN(P) instructions (for converting BCD data into binary data). Furthermore, to output data to seven-segment display unit

handling binary-coded decimal (BCD) data, use the BCD(P) instructions (for converting binary data into BCD data).

Operation.error

Error code Description
(SD0/SD8067)
3401 Data in the device specified by (s) is out of the valid range (0 to 99999999).

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions 245

Converting BCD 4-digit data to binary data

BIN(P)

These instructions convert the binary-coded decimal data in the device specified by (s) to binary data, and store the converted

data in the device specified by (d).
Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into binary (BIN)
data and to receive the converted binary data so that the data can be handled in operations in CPU module.

Ladder diagram Structured text
ENO:=BIN(EN,s,d);

| C—] |) | d }{ ENO:=BINP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Binary-coded decimal data or the head device where the 0 to 9999 BCD 4-digit ANY16
binary-coded decimal data is stored

(d) Head device for storing the binary data — 16-bit signed binary ANY16

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) 0 — — o} 0 o |- — o} o} — | = | =

(d) o — — o) o) o |— — o - == |-

Processing details

» These instructions convert the BCD 4-digit data (0 to 9999) in the device specified by (s) to 16-bit binary data, and store the
converted data in the device specified by (d).

8000 4000 2000 1000 800 400 200 100 80 40 20 10 8 4 2 1
s)Bcp99go| 1 [ool 1[1]oJo[1[1]oJo[1][1]o0o]o]1]

Thousands place Hundreds place Tens place Ones place
@ Binary conversion
(d) BIN 9999 32(7)6816884’ 81192’4036|2%48’10124 ’ 5‘:2 ’ 2:6 ’ 1;8 { 84 ’ 3(; ‘ 1(;3 { ;i ‘ j]l ‘ j ‘ j] |
Always becomes "0".
« The data in the device specified by (s) can be converted if it is in the range from 0 to 9999 (BCD).
» The table below shows nibble specification for the data in the device specified by (s) and (d).

Command BCD
input u i]]

—— BIN (s) (d)
}* 6 | 7 | B | Ef

T N [[[l
In case of K4X0

X14to X10to X4to XOto
X17 X13 X7 X3

e
v
o
Wy
e
A\
o
Wy

BIN
BIN CPU module

6 BASIC INSTRUCTIONS
246

6.5 Data Conversion Instructions

K1X0 1-digit Oto9

K2X0 2-digit 00 to 99
K3X0 3-digit 000 to 999
K4X0 4-digit 0000 to 9999

- Precautons

+ Binary data is used in all operations in CPU module including arithmetic operations (+-x+), increment and decrement
instructions. When receiving digital switch information in binary-coded decimal (BCD) format into a CPU module, use the
BIN(P) instructions (for converting BCD data into binary data). Furthermore, to output data to seven-segment display unit
handling binary-coded decimal (BCD) data, use the BCD(P) instructions (for converting binary data into BCD data).

- Operation error

3401 The value of each digit of the device specified by (s) is other than 0 to 9. (The data is not binary-coded decimal data.)

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions 247

Converting BCD 8-digit data to binary data

DBIN(P)

These instructions convert the binary-coded decimal data in the device specified by (s) to binary data, and store the converted
data in the device specified by (d).

Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into binary (BIN)
data and to receive the converted binary data so that the data can be handled in operations in CPU module.

Ladder diagram Structured text

ENO:=DBIN(EN,s,d);

| C] | s) |) }{ ENO:=DBINP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Binary-coded decimal data or the head device where the 0 to 99999999 BCD 8-digit ANY32
binary-coded decimal data is stored

(d) Head device for storing the binary data — 32-bit signed binary ANY32

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) 0 — — o} 0 o |o o} o} o} — | = | =

(d) O — — O O O O O O — - |— | —

Processing details

» These instructions convert the BCD 8-digit data (0 to 99999999) in the device specified by (s) to 32-bit binary data, and
store the converted data in the device specified by (d).

(s)+1 (s)

x107 %106 x10% x104 x103 %102 %101 %100

84218421842184218421842184218421
() 8D 599990 [+ [o o[+ [o[o[1]+ [o[o[1] [o[o[1] o[]+ o[]+ o o[[0[]

Ten-millions millions Hundred- Ten- Thousands Hundreds Tens Ones
place place thousands thousands place place place place
place place

@ Binary conversion
(d)+1 (d)

231 230 229228 227 226 225224 223222 221 220219 218217 216Y215 214213 212 211 210 29 28 27 26 25 24 23 22 21 20
(d) BIN 99999999 [0]oJo[o[o]1]o[1[1]1]1[1 o[1 o [1]1]11 o]oJoJoo]1[1[1[1]1[1]1]1]
%/—)

Always becomes "0".
» The data in the device specified by (s) can be converted if it is in the range from 0 to 99999999 (BCD).
» The table below shows nibble specification for the data in the device specified by (s) and (d).

Command
input u u u] u u]] BCD
—— DBIN d
R ‘{ ENE R E GG IERIE
T L L] L L L] |] | | L]
In case of K8X0 % F% %

X34to X30to X24to X20to X14to X10to X4to XOto
X37 X33 X27 X23 X17 X13 X7 X3

i
L

DBIN BIN
CPU module

248 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

(s)*1, (s) Number of digits Data range

K1X0 1-digit 0to9

K2X0 2-digit 00 to 99

K3X0 3-digit 000 to 999

K4Xxo 4-digit 0000 to 9999

K5X0 5-digit 00000 to 99999

K6X0 6-digit 000000 to 999999
K7X0 7-digit 0000000 to 9999999
K8X0 8-digit 00000000 to 99999999

Precautions

+ Binary data is used in all operations in CPU module including arithmetic operations (+-x=), increment and decrement

instructions. When receiving digital switch information in binary-coded decimal (BCD) format into a CPU module, use the
BIN instruction (for converting BCD data into binary data). Furthermore, to output data to seven-segment display unit
handling binary-coded decimal (BCD) data, use the BCD instruction (for converting binary data into BCD data).

Operation.error

Error code Description
(SD0/SD8067)
3401 The value of each digit of the device specified by (s) is other than 0 to 9. (The data is not binary-coded decimal data.)

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions 249

Converting single-precision real number to 16-bit signed binary
data

FLT2INT(P)

These instructions convert the single-precision real number in the device specified by (s) to 16-bit signed binary data, and
store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-
precision real number is rounded off.

Ladder diagram Structured text
Not supported
—C=J]e e }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion -32768 to +32767 Single-precision real ANYREAL_32
number
(d) Data after conversion — 16-bit signed binary ANY16_S
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y yTe [g
SM, F, B, SB C,LC | W, SD, SW,R
(s) — — — O O — |0 — O — |o |— |—
(d) O — — O O o |- — O e e

Processing details

» These instructions convert the single-precision real number in the device specified by (s) to 16-bit signed binary data, and
store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-
precision real number is rounded off.

SM4|02 Before conversion After conversion
| {EMOVP [E-12345] Do
() p31-b16 _ b15- b0 @ p15--b0
Mo | (s) (d) D1,D0| C49AH | 5000H | :(> D100 | FB2DH
| frLT2NT] DO | D100 C2a0s) Ci235)
Operation.error
Error code Description
(SD0/SD8067)
3401 The single-precision real number in the device specified by (s) is out of the valid range (-32768 to +32767).
3402 When the contents of the specified device are outside the following range:
0, 27'%6<|specified value (stored value)|<2128
The specified device value is -0, denormalized number, NaN (not a number), or +w.

6 BASIC INSTRUCTIONS

250 6.5 Data Conversion Instructions

Converting single-precision real number to 16-bit unsigned
binary data

FLT2UINT(P)

These instructions convert the single-precision real number in the device specified by (s) to 16-bit unsigned binary data, and
store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-

precision real number is rounded off.

Ladder diagram Structured text
Not supported
—C=J]e e }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion 0 to 65535 Single-precision real ANYREAL_32
number
(d) Data after conversion — 16-bit unsigned binary | ANY16_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y yTe [g
SM, F, B, SB C,LC | W, SD, SW,R
(s) — — - O O — |0 — O — (o |— |—
G) O — — O O o |— — O - = 1= |-

Processing details

» These instructions convert the single-precision real number in the device specified by (s) to 16-bit unsigned binary data,
and store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the
single-precision real number is rounded off.

SM4|02 Before conversion After conversion
() b31.-bt6 _ b15- b0 @ p15. b

| {EMoVP |E-1234.5] Do
Mo () @ D1,DO| 449AH | 5000H |I:>D1OO 04D3H

I {rL2unt| DO | D100

(1234.5) (1235)
Operation.error

Error code Description
(SD0/SD8067)
3401 The single-precision real number in the device specified by (s) is out of the valid range (0 to 65535).
3402 When the contents of the specified device are outside the following range:

0, 2'126£|Specified value (stored value)|<2128

The specified device value is -0, denormalized number, NaN (not a number), or +w.

6 BASIC INSTRUCTIONS 2 1
6.5 Data Conversion Instructions 5

Converting single-precision real number to 32-bit signed binary
data

FLT2DINT(P)

These instructions convert the single-precision real number in the device specified by (s) to 32-bit signed binary data, and
store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-
precision real number is rounded off.

Ladder diagram Structured text
Not supported
—C=J]e e }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion -2147483648 to +2147483647 | Single-precision real ANYREAL_32
number
(d) Data after conversion — 32-bit signed binary ANY32_S
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y yTe [g
SM, F, B, SB C,LC | W, SD, SW,R
(s) — — — O O — |0 — O — |o |— |—
(d) o) — —) o) o |o o) o) — — | = |=

Processing details

» These instructions convert the single-precision real number in the device specified by (s) to 32-bit signed binary data, and
store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-
precision real number is rounded off.

SM4?2 T Before conversion After conversion
| [Emovp |e-1234567] Do
] (8) p31-b16__ b15-b0 (O] b31:b16 b5 b0
MOI |) @ D1,D0 | C7F1H | 205AH ||:(> D101,D100 | FFFEH | 1DBFH
| [FLreont| o | D100 ' ;
(-123456.7) (-123457)

Operation.error

Error code Description

(SD0/SD8067)

3401 The single-precision real number in the device specified by (s) is out of the valid range (-2147483648 to +2147483647).
3402 When the contents of the specified device are outside the following range:

0, 27'%<|specified value (stored value)|<2128

The specified device value is -0, denormalized number, NaN (not a number), or +co.

6 BASIC INSTRUCTIONS

252 6.5 Data Conversion Instructions

Converting single-precision real number to 32-bit unsigned
binary data

FLT2UDINT(P)

These instructions convert the single-precision real number in the device specified by (s) to 32-bit unsigned binary data, and
store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the single-

precision real number is rounded off.

Ladder diagram Structured text
Not supported
—C=J]e e }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion 0 to 4294967295 Single-precision real ANYREAL_32
number
(d) Data after conversion — 32-bit unsigned binary | ANY32_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y yTe [g
SM, F, B, SB C,LC | W, SD, SW,R
(s) — — - O O — |0 — O — (o |— |—
(d)) — —) o) o |o o) o) — — |= |=

Processing details

» These instructions convert the single-precision real number in the device specified by (s) to 32-bit unsigned binary data,
and store the converted data in the device specified by (d). After conversion, the first digit after the decimal point of the
single-precision real number is rounded off.

SM4|02 T Before conversion After conversion
, [EMovP |e-123456.7] Do
) () b31-b16 _ b15- b0 S b31-b16 _ b15 b0
MOI T) @ D1, DO 47F1H i 205AH | |:> D101, D100 0001H i E241H
, [rir2uont| Do | D100 () i
Operation.error
Error code Description
(SD0/SD8067)
3401 The single-precision real number in the device specified by (s) is out of the valid range (0 to 4294967295).
3402 When the contents of the specified device are outside the following range:
0, 2'126£|Specified value (stored value)|<2128
The specified device value is -0, denormalized number, NaN (not a number), or +.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 53

Converting 16-bit signed binary data to 16-bit unsigned binary

data

INT2UINT(P)

These instructions convert the 16-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and store
the result in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion — 16-bit signed binary ANY16_S
(d) Data after conversion — 16-bit unsigned binary | ANY16_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |uOweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O o |— — @) O - = |—
() o) — — o) o) o |— — o - | == 1=

Processing details

» These instructions convert the 16-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and
store the result in the device specified by (d).

(s)

DO

SM402
I [movp | Hcooo | Do
MO (s) (d)
' [INT2uNnT] DO | D100

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS

254 6.5 Data Conversion Instructions

Before conversion

After conversion

b15 - b0

CO00H

(49152)

e

b15 - b0 (d)
CO00H D100
(-16384)

Stores as is

Converting 16-bit signed binary data to 32-bit signed binary data

INT2DINT(P)

These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit signed binary data, and store

the converted data in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion — 16-bit signed binary ANY16_S
(d) Data after conversion — 32-bit signed binary ANY32_S
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|TsT, |T,sT,c,0, |umweO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s) O — — O O o |— — @) O - = |—
(d) o) — —) o) o |o o) o) — — |= |=

Processing details

» These instructions convert the 16-bit signed binary da
the converted data in the device specified by (d).

SM402
| { movp | Hoooo | Do
MO (s) (d)
[{iNt2DnT| DO | D100

ta in the device specified by (s) to 32-bit signed binary data, and store

(s) Before conversion (d) After conversion

Operation.error

There is no operation error.

b15 -+ b0 b31 -+ b16 b15 - b0
DO BOOOH D101, D100 FFFFH i BOOOH |
(-20480) (-20480)
J [N g) J
Fills with the most significant
bit value prior to conversion.

Stores in lower 16 bits

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

255

Converting 16-bit signed binary data to 32-bit unsigned binary
data

INT2UDINT(P)

These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and store
the converted data in the device specified by (d).

Ladder diagram Structured text

Not supported

—C=d]le | }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Data before conversion — 16-bit signed binary ANY16_S

(d) Data after conversion — 32-bit unsigned binary | ANY32_U

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W,SD, SW,R

(s) O — — O O o | — — O O - |— |—

(d) o) — —) o) o |o o) o) — == |-

Processing details

» These instructions convert the 16-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and
store the converted data in the device specified by (d).

(s) Before conversion (d) After conversion
SM402

I I MOVP | HOA000 | DO b15 - b0 b31 - b16 b15 - b0

DO AO000H D101, D100 0000H ! AO000H |
MO (s) (d) :
| | (-24576) (40960)
, {nr2uont| Do | D100) , . 5 - ,
"0" is stored. T

Stores in lower 16 bits

Operation.error

There is no operation error.

256 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Converting 16-bit unsigned binary data to 16-bit signed binary

data

UINT2INT(P)

These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and store
the converted data in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion — 16-bit unsigned binary | ANY16_U
(d) Data after conversion — 16-bit signed binary ANY16_S
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,0, |umweO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s) O — O O o |— — @) O - = |—
G) O — O O o |— — O - = 1= |-

Processing details

» These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and
store the converted data in the device specified by (d).

Before conversion

SM402
| ["MovP | Hoeooo | Do () b15 - b0
.
MO (s) (d)
' {uwtant] po | D100 (57344)

Operation.error

There is no operation error.

{
#

(d)
D100

After conversion
b15 - b0
E000H
(-8192)

Stores as is

6 BASIC

INSTRUCTIONS

6.5 Data Conversion Instructions 257

258

Converting 16-bit unsigned binary data to 32-bit signed binary

data

UINT2DINT(P)

These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and store

the converted data in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion — 16-bit unsigned binary | ANY16_U
(d) Data after conversion — 32-bit signed binary ANY32_S
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,0, |umweO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s) O — — O O o |— — @) O - = |—
(d) o) — —) o) o |o o) o) — — |= |=

Processing details

» These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and

store the converted data in the device specified by (d).

(s) Before conversion

b15 - b0

DO DOOOH

(53248)

SM402
| |
! |

Mo
| {uwT2omT|

MOVP | Hobooo |

®)
DO

DO

(d)
| D100

J

(d) After conversion
b16
0000H

(53248)
\)\)

~
"0" is stored. T

b15 - b0
DoooH |

b31

D101, D100

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Stores in lower 16 bits

Converting 16-bit unsigned binary data to 32-bit unsigned binary

data

UINT2UDINT(P)

These instructions convert the 16-bit unsigned binary data in the device
store the converted data in the device specified by (d).

specified by (s) to 32-bit unsigned binary data, and

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion — 16-bit unsigned binary | ANY16_U
(d) Data after conversion — 32-bit unsigned binary | ANY32_U
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,0, |umweO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s) O — — O O o |— — @) O - = |—
(d) o) — —) o) o |o o) o) — — |= |=

Processing details

» These instructions convert the 16-bit unsigned binary data in the device specified by (s) to 32-bit unsigned binary data, and

store the converted data in the device specified by (d).

(s) Before conversion

SM402 s b
| { movp | HoFooo | Do
Do FOOOH
MO (s) (d)
(61440)

[{untzuont| o | D100

J

(d) After conversion
b16 b0
0000H | FOOOH |

(61440)
) \ T

b31 b15 -

D101, D100

¢

+
"0" is stored.

Operation.error

There is no operation error.

Stores in lower 16 bits

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

259

Converting 32-bit signed binary data to 16-bit signed binary data

DINT2INT(P)

These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit signed binary data, and store

the converted data in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion — 32-bit signed binary ANY32_S
(d) Data after conversion — 16-bit signed binary ANY16_S
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |uOweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O @) @) @) @) @) - = |—
() o) — — o) o) o |— — o - | == 1=

Processing details

» These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit signed binary data, and store
the converted data in the device specified by (d).

SM402

Before conversion

, { bmovp [Hos7esssz| Do

(s) b31 - b16 b15 - b0 (d)

Mo
| {DINT2INT|

After conversion

b15 - b0

D1, DO 9876H | 5432H | D100 5432H
(s) (d)

oo | ptoo (-1737075662)

Operation.error

There is no operation error.

260

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

(21554)

1 T

Stores in lower 16 bits

Converting 32-bit signed binary data to 16-bit unsigned binary
data

DINT2UINT(P)

These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and store
the converted data in the device specified by (d).

Ladder diagram Structured text

—C=d]le | }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Data before conversion — 32-bit signed binary ANY32_S

(d) Data after conversion — 16-bit unsigned binary | ANY16_U

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W,SD, SW,R

(s) O — — O O O O O O O - | = |—

G) O — — O O o |— — O - = 1= |-

Processing details

» These instructions convert the 32-bit signed binary data in the device specified by (s) to 16-bit unsigned binary data, and
store the converted data in the device specified by (d).

Before conversion After conversion
SM402
I ['omovP [Heresa21| o () b31 -~ b16 b15 - b0 @ b15 - b0
D1, DO | 8765H i 4321H | D100 4321H
MO (s) (d) '
(-2023406815) (17185)

| fonrzunt] Do | Dtoo

s 1

Stores in lower 16 bits

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 2 1
6.5 Data Conversion Instructions 6

Converting 32-bit signed binary data to 32-bit unsigned binary
data

DINT2UDINT(P)

These instructions convert the 32-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and store
the converted data in the device specified by (d).

Ladder diagram Structured text

Not supported

—C=d]le | }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Data before conversion — 32-bit signed binary ANY32_S
(d) Data after conversion — 32-bit unsigned binary | ANY32_U

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O O O O O O - | = |—

(d) o) — —) o) o |o o) o) — — | = |=

Processing details

» These instructions convert the 32-bit signed binary data in the device specified by (s) to 32-bit unsigned binary data, and
store the converted data in the device specified by (d).

Before conversion After conversion
SM402 |
I IDMOVP |H76543210| Do (s) b31 -+ Db16 b15 - b0 (d) b31 -~ b16 b15 - b0
D1.D0| 7654H | 3210H | I:(> D101, D100 7654H I 3210H
MO (s) (d)
| (-2309737968) (1985229328)

I
f {onr2uont] oo | pitoo .) . ,

|

Stores as is

Operation.error

There is no operation error.

262 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Converting 32-bit unsigned binary data to 16-bit signed binary
data

UDINT2INT(P)

These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and store

the converted data in the device specified by (d).

Ladder diagram Structured text

—C=d]le | }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Data before conversion — 32-bit unsigned binary | ANY32_U

(d) Data after conversion — 16-bit signed binary ANY16_S

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |uOweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s) O — — O O O O O O O - | = |—

() o) — — o) o) o |— — o - | == 1=

Processing details

» These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit signed binary data, and
store the converted data in the device specified by (d).

Before conversion After conversion
SM4|02 T (s) b31 = b16 Db15 - b0 d b15 - b
, { bmovp [Hserssaec] Do ‘
D100 | s67eH | oABcH | D100 9ABCH
d
Mo (s) () (1450744508) (-25924)

, fuontant| o | D100 .) .)

Stores in lower 16 bits

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 63

Converting 32-bit unsigned binary data to 16-bit unsigned binary
data

UDINT2UINT(P)

These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit unsigned binary data, and
store the converted data in the device specified by (d).

Ladder diagram Structured text

Not supported

—C=d]le | }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Data before conversion — 32-bit unsigned binary | ANY32_U
(d) Data after conversion — 16-bit unsigned binary | ANY16_U

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yl [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O O O O O O i i

(d) o) — — o) o) o |— — o - | == |-

Processing. details

» These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 16-bit unsigned binary data, and
store the converted data in the device specified by (d).

Before conversion After conversion
SM402
I IDMOVP |H456789AB| DO (s) b31 - b16 ' b15 -+ b0 (d) b15 - b0
D1, DO | 4567H ! 89ABH | D100 89ABH
MO (s) (d) :
I {onrzunt] o | D100 (1164413355) (35243)
-

|

Stores in lower 16 bits

Operation.error

There is no operation error.

264 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Converting 32-bit unsigned binary data to 32-bit signed binary

data

UDINT2DINT(P)

These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and store
the converted data in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le | }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Data before conversion — 32-bit unsigned binary | ANY32_U
(d) Data after conversion — 32-bit signed binary ANY32_S
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yl [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O O O O O O - |— |—
(d) O — — O O O O O O — - | = |—

Processing. details

» These instructions convert the 32-bit unsigned binary data in the device specified by (s) to 32-bit signed binary data, and

store the converted data in the device specified by (d).

SM402

Before conversion

(s) b31 - b16

{ omovp [Heoot0001] Do

b15 - b0

D1, DO | 8001H

i 0001H

(s) (d)

Operation.error

There is no operation error.

[uonrzont] o | p1oo R

(2147549185)

J

| IZ(> D101, D100

(d) b31 -

After conversion

b16

b15 - b0

8000H

' 0001H

(-2147418111)

T

Stores as is

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

265

266

Converting 16-bit binary data to Gray code

GRY(P)(_V)

These instructions convert the 16-bit binary data in the device specified by (s) to 16-bit binary gray code data, and store the
converted data in the device specified by (d).

Ladder diagram

Structured text

—C=d]le | }—{

ENO:=GRY(EN,s,d);
ENO:=GRYP(EN,s,d);

ENO:=GRY_U(EN,s,d);
ENO:=GRYP_U(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) GRY(P) Binary data or the head device where the binary | 0 to 32767 16-bit signed binary ANY16_S
GRY(P)_U data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) GRY(P) Head device for storing the gray code data after | — 16-bit signed binary ANY16_S
GRY(P)_U conversion 16-bit unsigned binary | ANY16_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,D, |umweO|z |[Lc |[Lz |specification [y TF [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O o | — — O O - |— |—
(d) o) — - o) o) o |- — ¢) e

Processing details

» These instructions convert the 16-bit binary data in the device specified by (s) to 16-bit binary gray code data, and store the
converted data in the device specified by (d).

(s)BIN

(d) Gray code

Precautions

16 bits

»|

b15

b0

1234

olofloJofol1]oflol1]1]o]1][0]0]1]0

U

b15

b0

1234 0oJoJofoJol1[1Jo[1Jol1[1[1]o][1]1]

The data conversion speed depends on the scan time of the CPU module.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Converting 32-bit binary data to Gray code

DGRY(P)(_U)

These instructions convert the 32-bit binary data in the device specified by (s) to 32-bit binary gray code data, and store the

converted data in the device specified by (d).

Ladder diagram

Structured text

—C=d]le | }—{

ENO:=DGRY(EN,s,d);
ENO:=DGRYP(EN,s,d);

ENO:=DGRY_U(EN,s,d);
ENO:=DGRYP_U(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) DGRY/(P) Binary data or the head device where the binary | 0 to 2147483647 32-bit signed binary ANY32_S
DGRY(P) U | datais stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DGRY(P) Head device for storing the gray code data after | — 32-bit signed binary ANY32_S
DGRY(P)_U conversion 32-bit unsigned binary | ANY32_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |[T,sT,c,p, |umeO|z |Lc |[Lz | specification [« yTe Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O O O O O O - |— |—
(d) O — — O O O O O O — i i

Processing details

» These instructions convert the 32-bit binary data in the device specified by (s) to 32-bit binary gray code data, and store the
converted data in the device specified by (d).

(s)BIN

(d) Gray code 305419896 [0]0[0]1]1]o[1]1]o[o]1]o[1]1]1]o]o]1]1]1]1][1]0]1]o[1]o]0[o]1]o]o]

Precautions

305419896 [0]0/o[1]0]o]1]o]o]o[1]1]o[1]o]o]o]1]0[1]0]1]1]0[0[1]1]1]1]0]o]o]

(s)+1 (Upper 16 bits)

(s) (Lower 16 bits)

b31 - b16b15 -

b0

U

(d)+1 (d)

b31 b16b15

b0

The data conversion speed depends on the scan time of the CPU module.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

267

Converting Gray code to 16-bit binary data

GBIN(P)(_U)
These instructions convert the 16-bit binary gray code data in the device specified by (s) to 16-bit binary data, and store the
converted data in the device specified by (d).

Ladder diagram Structured text
ENO:=GBIN(EN,s,d); ENO:=GBIN_U(EN,s,d);
pp— ENO:=GBINP(EN,s,d); ENO:=GBINP_U(EN,s,d);
—C—3d]|e] <d>}—{ O=GBINPEN . d); 0:=GBINP_U(EN.s.d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) GBIN(P) Gray code data or head device storing the gray 0 to 32767 16-bit signed binary ANY16_S
GBIN(P)_U code data 0 to 65535 16-bit unsigned binary | ANY16_U

(d) GBIN(P) Head device for storing the binary data after — 16-bit signed binary ANY16_S
GBIN(P)_U conversion 16-bit unsigned binary | ANY16_U

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDOweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |[Lz |specification [y i Te Tg
SM, F, B, SB C,LC | W, SD, SW,R

) o — — o o o |— |- o o |- |- |-

d) o — — o o o |— |- o — |- 1-1-

Processing details

» These instructions convert the 16-bit binary gray code data in the device specified by (s) to 16-bit binary data, and store the
converted data in the device specified by (d).

y 16 bits R
Ib15 bo|
(s) Graycode 1234[0Jo]ofoJo[1[1]o[1]o[1[1]1]0[1]1]

b15 bo
(d) BIN 1234[0JofoJoJof1JoJo[1[1Jo[1]o]o]1]0]

Precautions

When an input relay (X) is specified as (s), the response delay will be "Scan time of CPU module + Input filter constant".

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
268

6.5 Data Conversion Instructions

Converting Gray code to 32-bit binary data

DGBIN(P)(_U)

These instructions convert the 32-bit binary gray code data in the device specified by (s) to 32-bit binary data, and store the
converted data in the device specified by (d).

Ladder diagram Structured text
ENO:=DGBIN(EN,s,d); ENO:=DGBIN_U(EN,s,d);
pp— ENO:=DGBINP(EN,s,d); ENO:=DGBINP_U(EN,s,d);
—||:___:|| (s) | (d)}—{ O:=DGBINP(EN,s,d); 0:=DGBINP_U(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) DGBIN(P) Gray code data or head device storing the gray 0 to 2147483647 32-bit signed binary ANY32_S
DGBIN(P)_U | code data 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DGBIN(P) Head device for storing the binary data after — 32-bit signed binary ANY32_S
DGBIN(P)_ U | conversion 32-bit unsigned binary | ANY32_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |[T,sT,c,p, |umeO|z |Lc |[Lz | specification [« yTe Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O O O O O O - |— | —
(d) O — — O O O O O O — i i

Processing details

» These instructions convert the 32-bit binary gray code data in the device specified by (s) to 32-bit binary data, and store the
converted data in the device specified by (d).

(s)+1 (Upper 16 bits) (s) (Lower 16 bits)

b31 b16b15 b0
(s) Gray code 305419896 [0]0]o]1[1/0] 1] [oo] o[1]1]1]oo[1]11]1]1]0] 1]o[]0]o]o[1]o]o]

U

(d)+1 (d)

b31 b16b15 bo
(d)BIN 305419896 [0]o/o[1]o]o]1]o[o]o[1]1]o[1]o]o]o]1]0[1]0]1]1]0[0[1]1]1]1]0]o]o]

Precautions

When an input relay (X) is specified as (s), the response delay will be "Scan time of CPU module + Input filter constant".

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 69

Converting decimal ASCII to 16-bit binary data

DABIN(P)(_U)

These instructions convert the decimal ASCII data in the device areas specified by (s) and later to 16-bit binary data, and
store the converted data in the device specified by (d).

Ladder diagram Structured text
ENO:=DABIN(EN,s,d); ENO:=DABIN_U(EN,s,d);
pp— ENO:=DABINP(EN,s,d); ENO:=DABINP_U(EN,s,d);
—C=0le e }—{ © (EN.s,d); o _U(EN.s.d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) ASCI| data or the head device where the ASCII — Character string ANYSTRING_SINGLE
data is stored
(d) DABIN(P) Head device for storing the converted data — 16-bit signed binary ANY16_S
DABIN(P)_U 16-bit unsigned binary | ANY16_U

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [\« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s) — — - O — o — O — |— |0 |—=

(d) O — — o O o |— — o - | == |-

*1 T, ST, C cannot be used.

Processing details

» These instructions convert the decimal ASCII data in the device areas specified by (s) and later to 16-bit binary data, and
store the converted data in the device specified by (d).

b15 b8 b7 b0
(s) ASCII code for the ten-thousands place | ASCII code for sign

b
(s)*+1 | ASCII code for the hundreds place | ASCII code for the thousands place | > (d) |
(s)+2 | ASCII code for ones place 1 ASCII code for the tens place

[Ex]

When the ASCII data, -25108 (signed), is specified by (s)

15 b0

16-bit binary data

b15 b8 b7 b0

(s) 32H (2) : 2DH (-) b15 b0
(s)+1 31H (1) ! 35H (5) C—> @ - 2 5 1 0 8 |
(sy+2 38H (8) : 30H (0)

» The ASCII data that can be specified by (s) to (s)+2 is -32768 to +32767 for signed data, and 0 to 65535 for unsigned data.

» As signed data, "20H" is stored if the ASCII data is positive, and "2DH" is stored if the data is negative. (If a value other than
"20H" and "2DH" is set, the data will be processed as positive data.) (DABIN(P))

» A value "30H" to "39H" can be set in the each place of the ASCII code.

« If a value "20H" or "00H" is set, the value will be processed as "30H".

270 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

- Operation error

2820

The device specified by (s) exceeds the corresponding device range.

3401

The signed data is other than 20H, 2DH.

A value specified by (s) to (s)+2 for each place of the ASCII code is other than "30H" to "39H", "20H", and "00H".

The ASCII data in the device specified by (s) to (s)+2 is out of the valid range (-32768 to +32767) (when a signed data is specified).

The ASCII data in the device specified by (s) to (s)+2 is out of the valid range (0 to 65535) (when unsigned data is specified).

6 BASIC INSTRUCTIONS 2 1
6.5 Data Conversion Instructions 7

Converting decimal ASCII to 32-bit binary data

DDABIN(P)(_U)

These instructions convert the decimal ASCII data in the device numbers specified by (s) and later to 32-bit binary data, and
store the converted data in the device specified by (d).

Ladder diagram Structured text
ENO:=DDABIN(EN,s,d); ENO:=DDABIN_U(EN,s,d);
pp— ENO:=DDABINP(EN,s,d); ENO:=DDABINP_U(EN,s,d);
—||:.__:||(s)|<d>}—{ EN.s.d) _UENS)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) ASCI| data or the head device where the ASCII — Character string ANYSTRING_SINGLE
data is stored
(d) DDABIN(P) Head device for storing the converted data — 32-bit signed binary ANY32_S
DDABIN(P)_ 32-bit unsigned binary | ANY32_U
u

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOeO]|T,sT, |T,sT,c,D, |uoeO|z |Lc |Lz |specification ey Te Tg
SM, F, B, SB C,LC |W,SD,SW,R

(s) — — — 0 — — | = — o} - |= |0 |—

(d)) — — o™ o) o |0 o @) — - |—= |-

*1 T, ST, C cannot be used.

Processing details

» These instructions convert the decimal ASCI| data in the device numbers specified by (s) and later to 32-bit binary data,
and store the converted data in the device specified by (d).

b15 b8 b7 b0
(s) ASCII code for the billions place | ASCII code for sign
(S)+1 ASCII code for the ten-millions place 1 ASCII code for billions place (d)+1 (d)
(S)+2 | ASCII code for the hundred-thousands place ; ASCII code for the millions place 631 . - b16 15 - b0
(S)+3 | ASCII code for the thousands place | ASCII code for the ten-thousands place :> | Upper 16 bits | | Lower 16 bits |
(S)+4 ASCII code for the tens place | ASCII code for the hundreds place 32-bit binary data
(s)+5 | (1gnore.) 1 ASCII code for ones place
When the ASCII data, -1234543210 (signed), is specified by (s)
b15 - b8 b7 b0
(s) 31H (1) ' 2DH (-)
(s)+1 33H (3) : 32H (2) (@)1 @
(s)+2 35H (5) H 34H (4) ;
(s)+3 33H (3) i 34H (4) @ @I
(s)+4 31H (1) . 32H (2)
(s)+5 H 30H (0)

» The ASCII data that can be specified by (s) to (s)+5 is -2147483648 to +2147483647 for signed data, and 0 to 429496729
for unsigned data. The data stored in the high-order byte of (s)+5 is ignored.

» As signed data, "20H" is stored if the ASCII data is positive, and "2DH" is stored if the data is negative. (If a value other than
"20H" and "2DH" is set, the data will be processed as positive data.) (DABIN(P))

» A value "30H" to "39H" can be set in the each place of the ASCII code.

* If a value "20H" or "00H" is set, the value will be processed as "30H".

272 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

- Operation error

2820 The device specified by (s) exceeds the corresponding device range.
3401 The signed data is other than 20H, 2DH.
A value specified by (s) to (s)+2 for each place of the ASCII code is other than "30H" to "39H", "20H", and "00H".

The ASCII data in the device specified by (s) to (s)+5 is out of the valid range (-2147483648 to +2147483647) (when a signed data is
specified).

The ASCII data in the device specified by (s) to (s)+5 is out of the valid range (0 to 4294967295) (when unsigned data is specified).

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 73

Converting ASCII to HEX

HEXA(P)

These instructions convert the ASCII data stored in the number of characters specified by (n) in the device numbers specified

by (s) and later to HEX code data, and store the converted data in the device numbers specified by (d) and later.

Ladder diagram

Structured text

—C=d]e|ae|m }—{

ENO:=HEXA(EN,s,n,d);
ENO:=HEXAP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device for storing the ASCII data to be convertedto | — Character string ANYSTRING_SINGLE
hexadecimal code
(d) Head device for storing the hexadecimal code after — 16-bit signed binary ANY16
conversion
(n) Number of characters (number of bytes) of ASCII data to 1 to 16383 16-bit unsigned binary | ANY16_U
be converted
HApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — o O - | = — ¢} - | == |-
(d) O — — O O o |— — O — - |— |-
(n) O — — O O o |— — @) O - = |—

*1 T, ST, C cannot be used.

Processing details

» These instructions convert the ASCII data stored in the number of characters specified by (n) in the device numbers
specified by (s) and later to HEX code data, and store the converted data in the device numbers specified by (d) and later.
16-bit conversion mode and 8-bit conversion mode options are available for these instructions. For operation in each mode,

refer to the succeeding pages.

 16-bit conversion mode (while SM8161 is OFF)

The ASCII data stored in high-order 8 bits and low-order 8 bits (byte) of the device specified by (s) is converted to hexadecimal code, and transferred to
the device specified by (d) in units of 4 digits. The number of characters to be converted is specified by (n).
SM8161 is also used for the RS2, ASCI(P), CCD(P), and CRC(P) instructions. When using the 16-bit conversion mode, set SM8161 to normally OFF.
SM8161 is cleared when the CPU module mode is changed from RUN to STOP.
Moreover, when using the 16-bit conversion mode, the ASCII data must also be stored in high-order 8 bits of the device specified by (s).
In the following program, conversion is executed as follows:

SM400

X10

SM8161

|_

HEXA

D200

D100

K4

274

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

16-bit conversion mode

Conversion source data

(s) ASCII data Hexadecimal code
D200 low-order 30H 0
D200 high-order 41H A
D201 low-order 42H B
D201 high-order 43H C
D202 low-order 31H 1
D202 high-order 32H 2
D203 low-order 33H 3
D203 high-order 34H 4
D204 low-order 35H 5
Number of specified characters and conversion result "" indicates "0".
When (n)=K4
(d)
(n) Dzooo|1|o|o|o|o|o|1o|0|1|1|o|o|o|o
D102 D101 D100
41H to "A" 30H to "0"
1 - OH
2 Does not change | -- 0AH D201o|1|o|o|o|o|1|1 o|1|o|o|o|o|1|o
3 -0ABH 43H to "C" 42Ht0 "B
4 0ABCH
D1000|0|0|01|0|1|01|0|1|1 1|1|0|0
5 ++0H | ABC1H 0 A B c
6 -+ 0AH BC12H
7 -0ABH C123H
8 0ABCH 1234H
9 ++0H | ABC1H 2345H

« 8-bit conversion mode (while SM8161 is on)

The ASCII data stored in low-order 8 bits of the device specified by (s) is converted to hexadecimal code, and transferred to the device specified by (d) in
units of 4 digits.
The number of characters to be converted is specified by (n).

SM8161 is also used for the RS2, ASCI(P), CCD(P), and CRC(P) instructions. When using the 8-bit conversion mode, set SM8161 to normally on.

SM8161 is cleared when the CPU module mode is changed from RUN to STOP.
In the following program, conversion is executed as follows:

SM400
I @_ 8-bit conversion mode 16 bits
X10 Ignored Lower 8 bits
|— HEXA D200 D100 K4 Source data
Conversion source data

(s) ASCII data Hexadecimal code
D200 30H 0
D201 41H A
D202 42H B
D203 43H c
D204 31H 1
D205 32H 2
D206 33H 3
D207 34H 4
D208 35H 5

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

275

Number of specified characters and conversion result "."indicates "0".

When (n)=K2
(d)
o paoo| | [| [| | [Jofofr]1[ofofo]a
D102 | D101 | D100
30H to "0"
1 PP OH
2 Does not change | -- 0AH D201| | | | | | | | o|1|o|o|o|o|0|1
3 -0ABH 41H to "A"
4 OABCH
D1oo|o|o|0|0|o|o|o|o o|o|o|o 1|o|1|o
5 -+ OH | ABCTH . A
6 -~ 0AH | BC12H
7 -0ABH | C123H
8 0ABCH | 1234H
9 .-.0H | ABCIH | 2345H
Precautions

Make sure that only ASCII codes "0" to "9" and "A" to "F" are stored in the device specified by (s).

If ASCII data is not stored in the device specified for (s) by the HEXA(P) instructions, an operation error occurs and
conversion into hexadecimal code is disabled. Especially, note that when SM8161 is OFF (16-bit conversion mode), ASCI|
code should be stored in high-order 8 bits of the device specified by (s).

The number of points occupied by the device specified by (d) varies depending on the ON/OFF status of SM8161. When
SM8161 is on (8-bit conversion mode), as many points as the number of characters are occupied, and when SM8161 is
OFF (16-bit conversion mode) as many points as the (number of characters +2) are occupied.

The SM8161 flag is also used for the RS2, ASCI(P), CCD(P) and CRC(P) instructions. When using these instructions and
the HEXA(P) instructions in the same program, make sure to set SM8161 to ON or OFF just before each instruction so that
SM3161 does not affect another instruction.

Operation.error

Error code Description
(SD0/SD8067)
2820 The (n) number of devices specified by (s) and (d) exceeds the corresponding device range.
2821 The range specified by (s) and (d) overlaps.
3401 An ASCII code other than 30H to 39H, and 41H to 46H is set in the device specified by (s).
3405 The value specified in (n) is outside the range specified below.

1to 16383

276

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Converting character string to 16-bit binary data

VAL(P)(_U)
These instructions convert the character string in the device numbers specified by (s) and later to 16-bit binary data, and store
the number of digits in the device specified by (d1) and the binary data in the device specified by (d2).

Ladder diagram Structured text
ENO:=VAL(EN,s,d1,d2); ENO:=VAL_U(EN,s,d1,d2);
— ENO:=VALP(EN,s,d1,d2); ENO:=VALP_U(EN,s,d1,d2);
—Jc=a]we |<d1)|<d2)}—{ ‘ ’ -V)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Character string to be converted to binary data, — Character string ANYSTRING_SINGLE
or head device for storing the character string.

(d1) | VAL(P) Head device for storing the number of digits of — 16-bit signed binary ANY16_S_ARRAY
VAL(P)_U the binary data after conversion 16-bit unsigned binary | ANY16_U_ARRAY

(d2) | VAL(P) Head device for storing the binary data after — 16-bit signed binary ANY16_S
VAL(P)_U conversion 16-bit unsigned binary | ANY16_U

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M L, |uDweO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) — — — o — - | = — o - |— |0 |—
(d1) o — — o — i e — o - == |-
(d2) 0 — — 0 o o |- — O — | == |-

*1 T, ST, C cannot be used.

Processing details

These instructions convert the character string in the device numbers specified by (s) and later to 16-bit binary data, and
store the number of digits in the device specified by (d1) and the binary data in the device specified by (d2). When
converting a character string into binary data, the data from the device number specified by (s) to a device number storing
"00H" is handled as a character string.

The total number of digits stored in (d1) is the total number of characters (including the sign and decimal point) representing
the numeric value. The number of digits in the decimal part stored in (d1)+1 is the number of characters representing the

decimal part after 2EH (.). The 16-bit binary data stored in (d2) is binary value converted from a character string with the
decimal point ignored.

the decimal part

(S)+1 ASCII code for 3rd character ASCII code for 2nd character

b15 b8b7 b0 ’_’:> (d1) [Total number of digits
(s) ASCII code for 1st character ASCII code for sign F> (d1)+1 [Number of digits of
— "
/_L\

| |:> (d2) Integer value in which the
i decimal point is ignored

(8)+2 |ASClI code for the 5th character 1ASCII code for the 4th character oo

L§J L L§J

(8)+3 |ASCII code for the 7th character ; ASCII code for the 6th character

(s)+4 H O(ZH Sign | 2nd character - 7th character .
'I- 1st character 16-bit binary data

Indicates the end of character string.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 77

[Ex]

When the character string "-123.45" (signed) is specified by (s) and later

b15 b8b7 b0 F (d1) 7
(s) 31H (1) 2DH (-) F> (d1)+1 2
) —

(8)+1 33H (3) : 32H (2)
(s)+2 34H (4) i 2EH (.))
| d2 -1234
(s)+3 00H ! 35H (5) — ey) | 5 |

» The total number of characters of the character string specified by (s) is 2 to 8 characters.

In the character string specified by (s), the number of characters that form the decimal part is 0 to 5 characters. However,
be sure to specify "Total number of digits - 3" or below.

The range of the character string of the numeric value that can be converted to a binary value is -32768 to +32767 for a
signed value with the decimal point ignored, and 0 to 65535 for an unsigned value. A character string of a numeric value
excluding the sign and decimal point can be specified only within the range of 30H to 39H. (Value with the decimal point
ignored ... "-12345.6" becomes "-123456".)

When representing a positive numeric value, 20H is set in the sign, and when representing a negative numeric value, 2DH
is set.

* 2EH is set in the decimal point.

* When "20H (space)" or "30H (0)" exists between the sign and the first non-zero number in a character string specified by
(s), "20H" or "30H" is ignored during conversion to a binary value.

[Ex]

When "20H" exists between the sign and the first non-zero number (a signed value is specified)

Total number of digits 8
-._123 .45 |:> Number of digits of the decimal part 2
¥ 16-bit binary data 12345

Ignore

[Ex]

When "30H" exists between the sign and the first non-zero number

Total number of digits
0.0012 |:> Number of digits of the decimal part

4
S?;n 16-bit binary data
Ignore
Precautions

« Store signed data, "space (20H)" or "- (2DH)" only in the 1st byte (low-order 8 bits of the head device set in (s)). Only the
ASCII data "0 (30H)" to "9 (39H)", "space (20H)" and "decimal point (2EH)" can be stored from the 2nd byte to the "O0H" at
the end of the character string in (s). If "- (2DH)" is stored in the 2nd byte or later, an operation error occurs.

Operation.error

Error code Description
(SD0/SD8067)
2820 The device specified by (d1) exceeds the corresponding device range.

When "00H" is not set in the corresponding device range after the device specified in (s).

3401 The number of characters of the character string specified by (s) is other than 2 to 8 characters.

The number of characters of the decimal part of the character string specified by (s) is other than 0 to 5 characters.

The relationship between the total number of characters specified by (s) and the number of characters of the decimal part is other than
that described below.

Total number of characters - 3>Number of characters in the decimal part

An ASCII code other than 20H, 2DH is set in the sign. (a signed value is specified)

An ASCII code other than 30H to 39H, and 2EH (decimal point) is set in the digits of each number

Two or more decimal points are set.

The converted binary value exceeds the range that can be converted by each instruction.
Signed operation: -32768 to +32767, unsigned operation: 0 to 65535

278 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Converting character string to 32-bit binary data

DVAL(P)(_U)

These instructions convert the character string in the device numbers specified by (s) and later to 32-bit binary data, and store
the number of digits in the device specified by (d1) and the binary data in the device specified by (d2).

Ladder diagram

Structured text

—C”d]e |<d1)|<d2>}—{

ENO:=DVAL(EN,s,d1,d2);
ENO:=DVALP(EN,s,d1,d2);

ENO:=DVAL_U(EN,s,d1,d2);
ENO:=DVALP_U(EN,s,d1,d2);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Character string to be converted to binary data, — Character string ANYSTRING_SINGLE
or head device for storing the character string.
(d1) | DVAL(P) Head device for storing the number of digits of — 16-bit signed binary ANY16_S_ARRAY
DVAL(P)_U the binary data after conversion 16-bit unsigned binary | ANY16_U_ARRAY
(d2) | DVAL(P) Head device for storing the binary data after — 32-bit signed binary ANY32_S
DVAL(P)_U conversion 32-bit unsigned binary | ANY32_U
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,p, |umeO|z |[Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(s) — — — o — - | = — o - |— |0 |—
(1) o - — o - - |—= — @) - == |=
(d2) (@) — — (@) (@) o |O O (@) — - = | =
*1 T, ST, C cannot be used.

6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

279

Processing details

» These instructions convert the character string in the device numbers specified by (s) and later to 32-bit binary data, and
store the number of digits in the device specified by (d1) and the binary data in the device specified by (d2). When
converting a character string into binary data, the data from the device number specified by (s) to a device number storing
"00H" is handled as a character string.

* The total number of digits stored in (d1) is the total number of characters (including the sign and decimal point) representing
the numeric value. The number of digits in the decimal part stored in (d1)+1 is the number of characters representing the
decimal part after 2EH (.). The 32-bit binary data stored in (d2) is binary value converted from a character string with the
decimal point ignored.

b15 b8b7 b0 (d1) |Total number of digits
T Number of digits of
(s ASClII code for 1st character 1 ASCII code for sign J:> (@n)+1 the decimal pgan

ASCII code for 3rd character i ASCII code for 2nd character

A
n
¥

X

(d2)+1 (d2)
I:> Ilnteger value in which the decimal point is ignored |

—
n

A
RO CORCRCNC)
¥
w

*+2 | ASCII code for the 5th character 1ASCII code for the 4th character 1

ASCII code for the 7th character 1 ASCII code for the 6th character L(“3- L(LR
(S)+4 |ASCII code for the Sth character 1 ASCII code for the 8th character Sign | 2nd character 12th character 32-bit binary data
(5)+5 |ASCII code for the 11th character | ASCII code for the 10th character st character

+6 00H 1ASCII code for the 12th character

:

Indicates the end of character string.

[Ex]

When the character string "-12345.678" (signed) is specified by (s) and later

b15 - b8b7 -~ b0
(s) 31H (1) 2DH “)

(s)+1 | 33H (3) | 32H @

(sy+2 | 35H (5) | 34H 3)

(s)+3 | 36H (6) | 2EH ®)

(s)+4 | 38H ®) 37H @

(s)+5 00H

> (d1) 10
> (d1)+1 3
(d2)+1 (d2)
A A
s N N
b31 b16 b15 b0
-12345678
AN J

f

The total number of characters of the character string specified by (s) is 2 to 13 characters.
In the character string specified by (s), the number of characters that form the decimal part is 0 to 10 characters. However,
be sure to specify "Total number of digits - 3" or below.

The range of the character string of the numeric value that can be converted to a binary value is -2147483648 to
2147483647 for a signed value with the decimal point ignored, and 0 to 4294967295 for an unsigned value. A character
string of a numeric value excluding the sign and decimal point can be specified only within the range of 30H to 39H. (Value
with the decimal point ignored ... "-12345.6" becomes "-123456".)

When representing a positive numeric value, 20H is set in the sign, and when representing a negative numeric value, 2DH
is set.

Set 2EH in the decimal point.

* When "20H (space)" or "30H (0)" exists between the sign and the first non-zero number in a character string specified by

(s), "20H" or "30H" is ignored during conversion to a binary value.

280 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

[Ex]

When "20H" exists between the sign and the first non-zero number (a signed value is specified)

Total number of digits 12
-6543. 21 |:> Number of digits of the decimal part 2
32-bit binary data -654321

Ignore

[Ex]

When "30H" exists between the sign and the first non-zero number

Total number of digits 11
_,0. 00054321 |:> Number of digits of the decimal part 8
Sgn 32-bit binary data 54321
Ignore
Precautions

« Store sign data, "space (20H)" or "- (2DH)" in the 1st byte (low-order 8 bits of the head device set in (s)). Only the ASCII
data "0 (30H)" to "9 (39H)", "space (20H)" and "decimal point (2EH)" can be stored from the 2nd byte to the "00H" at the
end of the character string in (s). If "- (2DH)" is stored in the 2nd byte or later, an operation error occurs.

Operation.error

Error code Description
(SD0/SD8067)
2820 The device specified by (d1) exceeds the corresponding device range.

When "00H" is not set in the corresponding device range after the device specified in (s).

3401 The number of characters of the character string specified by (s) is other than 2 to 13 characters.

The number of characters of the decimal part of the character string specified by (s) is other than 0 to 10 characters.

The relationship between the total number of characters specified by (s) and the number of characters of the decimal part is other than
that described below.

Total number of characters - 3>Number of characters in the decimal part

An ASCII code other than 20H, 2DH is set in the sign.

Two or more decimal points are set.

The converted binary value exceeds the range that can be converted by each instruction.
Signed operation: -2147483648 to +2147483647, unsigned operation: 0 to 4294967295

6 BASIC INSTRUCTIONS 2 1
6.5 Data Conversion Instructions 8

Two's complement of 16-bit binary data (sign inversion)

NEG(P)

These instructions invert the sign of the 16-bit binary data in the device specified by (d), and store the resultant data in the
device specified by (d).

Ladder diagram Structured text

ENO:=NEG(EN,d);

— ENO:=NEGP(EN,d);
C—dl@ END)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device for storing the data that performs two's -32768 to +32767 16-bit signed binary ANY16
complement

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT |TsT,c,p, |uoeO|z |Lc |[Lz |specification [y 'y Te g
SM, F, B, SB C,LC | W, SD, SW,R

(d) o — — o o o |— |- o — = 1= 1=

Processing details

» These instructions invert the sign of the 16-bit binary data in the device specified by (d), and store the resultant data in the
device specified by (d).
* They are used when a positive or negative sign is to be inverted.

16 bits

»

|
lb15 bo|
Before execution () [1 o [1[o]1][o[1]o[1]o][1]o]1][0][1]0]~-21846

. on _1lofoJofolofofoJofoJofofofofoJof0]
Sign conversion -

) [TofxTof«olvolaol1 ol1 o 1]o]

b15 b0

After execution @[oJ1]of1]Jo[1]of1[of1]o[1]o[1][1]0]~21846

Precautions

Note that data is inverted in every operation cycle in a continuous operation type (NEG) instruction.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
282

6.5 Data Conversion Instructions

Two's complement of 32-bit binary data (sign inversion)

DNEG(P)
These instructions invert the sign of the 32-bit binary data in the device specified by (d), and store the resultant data in the
device specified by (d).

Ladder diagram Structured text

ENO:=DNEG(EN,d);
ENO:=DNEGP(EN,d);

(I I C)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device for storing the data that performs two's -2147483648 to +2147483647 | 32-bit signed binary ANY32
complement

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT |TsT,c,p, |uoeO|z |Lc |[Lz |specification [y 'y Te g
SM, F, B, SB C,LC | W, SD, SW,R

(d) o — — o o o |o o o — = 1= 1=

Processing details

» These instructions invert the sign of the 32-bit binary data in the device specified by (d), and store the resultant data in the
device specified by (d).
* They are used when a positive or negative sign is to be inverted.

5 32 bits N
|b31 bo|
Beforeexecution (@A) [1 [1 [1 [1[1[1]1] { Jo[1[ofJo[1]0]0]-218460

Sign conversion

_1Jofofofofo oo §{ JoJoJoJoJoJoJo]
)

Lelafafalalafaf 3} Jof1]ofof1]o]o]

U

b31 b0
Afterexecution (@[o JoJoJoJoJofo] Y [1JoJ1]1]1]0]0]~ 218460

Precautions

Note that data is inverted in every operation cycle in a continuous operation type (DNEG) instruction.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 83

Decoding from 8 to 256 bits

DECO(P)

These instructions decode the lower-order (n) bits of the device specified by (s), and store the result in the 2 (to the power (n))
bit from the device specified by (d).

Ladder diagram Structured text

ENO:=DECO(EN,s,n,d);

| C— | © | d |) }{ ENO:=DECOP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Decode data or device number for storing the decode data | — Bit/16-bit signed binary | ANY_ELEMENTARY
(d) Head device for storing the decode result — Bit/word ANY_ELEMENTARY
(n) Valid bit length 1t08 16-bit unsigned binary | ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) 0 — — o} 0 o |- — o} o} — | = | =

(d) o — — o) o) - |- — o - == |-

(n) o) — - o) o) o |— — o o |- |- |-

Processing details

» These instructions turn ON the bit position of the device specified by (d) in correspondence to the BIN value specified by
the lower-order (n) bits of (s).

n=3
(s) (Binary value = 6)
76543210
(d)|0|]r[o{o|o|0|0|o|

ON

* When (n) is 0, no processing is performed, and the contents of the device specified by (d) do not change.
» The bit device is handled as a device storing one-bit data and the word device is handled as a device storing 16-bit data.

Operation.error

Error code Description
(SD0/SD8067)
2820 The device specified by (s) exceeds the corresponding device range.

The device specified by (d) exceeds the corresponding device range.

3401 (d) is specified as a bit device and (n) is other than 0 to 8.

(d) is specified as a word device and (n) is other than 0 to 4.

6 BASIC INSTRUCTIONS
284

6.5 Data Conversion Instructions

Encoding from 256 to 8 bits

ENCO(P)

These instructions encode the 2(M bits of data from the device specified by (s), and store it in (d).

Ladder diagram

Structured text

ENO:=ENCO(EN,s,n,d);

| C— | ©) |) |) }{ ENO:=ENCOP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device for storing the encode data — Bit/word ANY_ELEMENTARY
(d) Device number for storing the encoding result — 16-bit signed binary ANY16

(n) Valid bit length 1t08 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, [T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg [g
SM, F, B, SB C,LC | W, SD, SW,R

) o) — - o) o) o |- — o e

(@) o) — — o) o) o |— — o - | == |-

(n) 0 — — 0 0 o |— — o} o} — | = | =

Processing details

» These instructions store into (d) the binary value corresponding to the bit whose value is 1 in the data with 2" pits.

7 6 54 3 2 1

©[oToT1ToToToToToTo]

l—\:(> (d) (Binary value = 6)

* When (n) is 0, no processing is performed, and the contents of the device specified by (d) do not change.

» The bit device is handled as a device storing one-bit data and the word device is handled as a device storing 16-bit data.

« If two or more bits are 1, the higher bit position is processed.

Operation.error

Error code Description

(SD0/SD8067)

2820 The device specified by (s) exceeds the corresponding device range.
3401 The entire data from (s) to 2 humber of bits is 0.

(s) is specified as a bit device and (n) is other than 0 to 8.

(s) is specified as a word device and (n) is other than 0 to 4.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 85

Separating 4 bits from 16-bit data

DIS(P)

These instructions store the data equivalent of the (n) nibbles (1-nibble/ 4-bits) of the 16-bit binary data specified by (s) in to
the lower-order 4 bits of (n) number of devices starting from the one specified by (d).

Ladder diagram Structured text

ENO:=DIS(EN,s,n,d);

| C— | © |) |) }{ ENO:=DISP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device for storing the data to be separated — 16-bit signed binary ANY16
(d) Head device storing separated data — 16-bit signed binary ANY16
(n) Number of separations (0 indicates no processing is 1to 4 16-bit unsigned binary | ANY16
performed)

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT, [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O o | — — O O - |— |—

(d) — — — O — — | = — O e e

(n) O — — O O o | — — O O - |— | —

Processing details

» These instructions store the data equivalent of the (n) nibbles (1-nibble/ 4-bits) of the 16-bit binary data specified by (s) in to
the lower-order 4 bits of (n) number of devices starting from the one specified by (d).

b15--b12b11- b8b7 - b4b3 - b0 b15 - b4b3 - bO
©)| | | 4 @ T
(d)+1)
> (d)+2
> (d)+3 l

[————]
These bits Storage area
become "0".

» The higher-order 12 bits of (n) number of devices starting from the one specified by (s) becomes 0.
* When (n) is 0, no processing is performed, and the contents of the (n) number of devices starting from the one specified by
(d) do not change.

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) number of points from (d) exceed the corresponding device range.
3401 (n) is other than 0 to 4.

286 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Connecting 4 bits to 16-bit data

UNI(P)

These instructions link the lower-order 4 bits of the 16-bit binary data of the (n) number of devices starting from the one

specified by (s) to the device storing 16-bit binary data specified by (d).

Ladder diagram Structured text
ENO:=UNI(EN,s,n,d);

| E-::l |) | d |) }_{ ENO:=UNIP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device for storing the data to be linked — 16-bit signed binary ANY16
(d) Head device for storing the linked data — 16-bit signed binary ANY16
(n) Number of links 1to4 16-bit unsigned binary | ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDweO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) — — — O — — | — — O — - |— |—

(d) O — — O O o |- — O e e

() o — — o 0 o |— — o o |= |= |-

Processing details

» These instructions link the lower-order 4 bits of the 16-bit binary data of the (n) number of devices starting from the one
specified by (s) to the device storing 16-bit binary data specified by (d).

b15 b4 b3 -+ b0

(s)] l
(s)+1 — ! i

)

)

(s)+2 = b15--b12b11-- b8b7 --- b4b3 -+ b0

()+3 4 o [T T]
S NS —7
Ignored Merged data

» The higher-order (4-n) nibble bits of the device specified by (d) becomes 0.

* When (n) is 0, no processing is performed, and the contents of the device specified by (d) do not change.

Operation.error

Error code Description

(SD0/SD8067)

2820 The range of (n) number of points from (d) exceed the corresponding device range.
3401 (n) is other than 0 to 4.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 87

Separating the specified number of bits

These instructions separate each bit of the data in the device numbers specified by (s1) onwards into bit units specified by
(s2), and store the separated data in the device number specified by (d) onwards.

ENO:=NDIS(EN,s1,s2,d);

| -— | (51)| @ |(52)}{ ENO:=NDISP(EN,s1,52,d);

EDescriptions, ranges, and data types

(s1) Head device for storing the data to be separated — 16-bit signed binary ANY16
(d) Head device for storing the separated data — 16-bit signed binary ANY16
(s2) Head device for storing the separation unit — 16-bit signed binary ANY16

BMApplicable devices

(s1) — — — o — - = |- o - == |-
) — — — o — - |- |- o - = |- |-
(s2) — — — o — - |- |- o - = |- |-

288 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Processing details

» These instructions separate each bit of the data in the device numbers specified by (s1) and later into bit units specified by
(s2), and store the separated data in the device numbers starting from the one specified by (d).

Specifies the number of separating bits

(s2) 6
(s2)+1 8
(s2)+2 6
(s2)+3 4
(s2)+4 8
(s2)+5 10
(s2)+6 3
(s2)+7 0<+—+ Specifies the setting end

b15b14b13 b6 b5 b0 b5 - b0

1) [] Forthe bits specified by (s2) @ []

[) S

b7 b0

For the bits specified by (s2)+1 (d)+1| Lo \ Lo \ L \ L |

b15 b8 b7 - b4b3 - b0 b5 - b0

(s1)+1 | Lo | Lo | Lo ‘ b | For the bits specified by (s2)+2 (d)+2| L ‘ o l o l A |

b3 -~ b0

For the bits specified by (s2)+3 (d)+3| L ‘ L ‘ L ‘ L |

b7 b0

For the bits specified by (s2)+4 (dy+4| + - [[]

b12--b10b9 b0 b9 b0

(s1)+2| P | P | Lo ‘ P | For the bits specified by (s2)+5 (d)+5| P ‘ Co ‘ L ‘ L |

b2---b0

For the bits specified by (s2)+6 (d)+6| + 1 [1 [[]

» The number of separation bits specified by (s2) can be specified within the range of 1 to 16 bits.

« The number of bits specified in devices from the device number specified by (s2) up to the device number in which "0" is
stored are processed as the number of separation bits.

+ If the device numbers specified by (s1), (s2), (d) are partially overlapping, an operation error occurs.

Operation.error

Error code Description
(SD0/SD8067)
2820 The usage range of the device specified by (s1) or (d) exceeds the corresponding device range due to the specification of the number of

separation bits specified by (s2).

2821 The (s1), (s2) devices are overlapping.

The (s1), (d) devices are overlapping.

The (s2), (d) devices are overlapping.

3401 The specification of the number of separation bits specified by (s2) is not set within the range of 1 to 16 bits.

0 is not set in the range between the device specified by (s2) up to the corresponding device range.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 89

Connecting the specified number of bits

These instructions link each bit of the data in the device numbers specified by (s1) onwards into bit units specified by (s2), and
store the connected data in the device number specified by (d) onwards.

ENO:=NUNI(EN,s1,s2,d);

| -— | (51)| @ |(52)}{ ENO:=NUNIP(EN,s1,52,d);

EDescriptions, ranges, and data types

(s1) Head device for storing the data to be linked — 16-bit signed binary ANY16
(d) Head device for storing the linked data — 16-bit signed binary ANY16
(s2) Head device for storing the link unit size — 16-bit signed binary ANY16

BMApplicable devices

(s1) — — — o — - = |- o - == |-
) — — — o — - |- |- o - = |- |-
(s2) — — — o — - |- |- o - = |- |-

290 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

Processing details

» These instructions link each bit of the data in the device numbers specified by (s1) onwards into bit units specified by (s2),
and store the linked data in the device number specified by (d).

Specifies the number of linked bits

(s2) 6
(s2)+1 8
(s2)+2 6
(s2)+3 4
(s2)+4 8
(s2)+5 10
(s2)+6 3
(s2)+7 0<+— Specifies the setting end
b5 - b0 b15b14b13 bEbS - b0
1) [T T[T T T T T T T] Forthe bits specified by (s2) @ []
%T—/ s Py X
b7 b0
(s1)+1 | L | i l L ’ L | For the bits specified by (s2)+1
| I
b5 - b0 b15 b8 b7 - b4b3 - b0
(S1)+2| [| [‘ [‘ [| For the bits specified by (s2)+2 (d)+1| [| [‘ [| o |
I D S S Y
b3~ b0
s#3 [[[]| Forthe bits specified by (s2)+3
—
b7 b0
O+ [[T] Forthe bits specified by (s2)+4
—
b9 b0 b12-b10 b0
(s1)+5| [| [’ [‘ [| For the bits specified by (s2)+5 (d)+2| Lo | [‘ [| Lo |
—1 [S S—
b2 - b0
(s1)+6| Lo | L ‘ L ‘ fo | For the bits specified by (s2)+6
=

» The number of link bits specified by (s2) can be specified within the range of 1 to 16 bits.

» The number of bits specified in devices from the device number specified by (s2) up to the device number in which "0" is
stored are processed as the number of connection bits.

« If the device numbers specified by (s1), (s2), (d) are partially overlapping, an operation error occurs.

Operation.error

Error code Description

(SD0/SD8067)

2820 The usage range of the device specified by (s1) or (d) exceeds the corresponding device range due to the specification of the number of
link bits specified by (s2).

2821 The (s1), (s2) devices are overlapping.
The (s1), (d) devices are overlapping.
The (s2), (d) devices are overlapping.

3401 The specification of the number of link bits specified by (s2) is not set within the range of 1 to 16 bits.

0 is not set in the range between the device specified by (s2) up to the corresponding device range.

6 BASIC INSTRUCTIONS 2 1
6.5 Data Conversion Instructions 9

Separating data in byte units

WTOB(P)

These instructions separate the 16-bit binary data in the device numbers starting from the one specified by (s) onwards into
(n) byte units, and store the separated data in the device number specified by (d) onwards.

Ladder diagram Structured text
ENO:=WTOB(EN,s,n,d);
— ENO:=WTOBP(EN,s,n,d);
—||:.__]|<s>|<d>|<n>}—{ ENsnd)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device where the separation target data is stored — 16-bit signed binary ANY16
(d) Head device for storing the result of separation in byte unit | — 16-bit signed binary ANY16
(n) Number of byte units 0 to 65535 16-bit unsigned binary | ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) — — — O — — | — — O — - |— |—=

C) - — - O - e — @) - == |=

(n) o) — - o) o) o |— — o o |- |- |-

Processing details

» These instructions separate the 16-bit binary data in the device numbers starting from the one specified by (s) onwards into
(n) byte units, and store the separated data in the device number specified by (d) onwards.

b15 b8 b7 b0 b15 b8 b7 b0
) Upper byte i Lower byte () 00H " Lower byte data T
(s)+1 Upper byte i Lower byte (d)+1 00H | Upper byte data
; ! : ' (d)+2 00H | Lower byte data
(s)+(% -1) | Upper byte i Lower byte (d)+3 00H i Upper byte data (n)
| : '
L»(d)ﬂn-z) 00H | Lower byte data JL
(d)y+(n-1) 00H ! Upper byte data

*1 Values after the decimal point are rounded up.

292 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

[Ex]

For example, when (n) is 5, data starting from (s) to the lower 8 bits of (s)+2 is stored into (d) through (d)+4.

b8 b7 b0 b15 b8 b7 b0
00H 39H

d)+1 00H 12H

b15
(s) 12H H 39H
(s)+1 56H ' 78H
(s)+2 FEH !

(@) : T
) i
DCH (d)+2 00H 5 78H When (n)=5
(d)+3 00H ; 56H
(n)=5 is ignored. (d)+4 00H : DCH l

« Setting the number of bytes by (n) automatically determines the 16-bit binary data range specified by (s) and the device
range specified by (d) for storing the separated byte data.

* If (n) is 0, no processing is performed.

« In the upper byte of the devices specified by (d) to hold byte data, 00Hs are automatically stored.

[Ex]

To store data in D12 to D14 into the lower 8 bits of D11 to D16

b15 b8 b7 b0 b15 b8 b7 b0
D12 32H : 31H D11 00H 5 31H
D13 34H ' 33H D12 00H : 32H
D14 36H : 35H D13 00H f 33H
D14 00H 5 34H
D15 00H 5 35H
D16 00H : 36H

OOH is stored.

» Even if the device range of the data to be separated and the device range for storing the separated data overlap, the
processing is performed normally.

Device range where the data to be separated is stored Device range for storing the separated data

(s)to (s)+(5 1)

(d)+0 to (d)+(n)-1

Operation.error

Error code Description
(SD0/SD8067)
2820 The range of no. of bytes specified in (n) from the device number specified in (s) onwards exceed the corresponding device range.

The range of (n) points of devices from the device number specified in (d) onwards exceed the corresponding device range.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 93

Connecting data in byte units

BTOW(P)

These instructions link the lower-order 8 bits of the 16-bit binary data of (n) number of bytes stored in the device numbers
starting from the one specified by (s) onwards into word units, and store the linked data in the device numbers starting from
the one specified by (d) onwards.

Ladder diagram Structured text
ENO:=BTOW(EN,s,n,d);
— ENO:=BTOWP(EN,s,n,d);
—|E.__:||<s)|<d)|(n>}—{ ENsnd)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device for storing the data to be linked in byte units | — 16-bit signed binary ANY16
(d) Head device storing data acquired by combination in byte | — 16-bit signed binary ANY16
units
(n) Number of byte data to be linked 0 to 65535 16-bit unsigned binary | ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) — — — O — — | — — O — - |— |—=

C) - — - O - e — @) - == |=

(n) O — — O O o | — — O O - |— | —

Processing details

» These instructions link the lower-order 8 bits of the 16-bit binary data of (n) number of bytes stored in the device numbers
starting from the one specified by (s) onwards, and store the linked data in the device numbers starting from the one
specified by (d) onwards.

» The higher-order 8 bits of the data of (n) words stored in device numbers starting from the one specified by (s) are ignored.
If (n) is an odd number, 0 is stored in the higher-order 8 bits of the device for storing the data of the (n)th byte.

b15 b8 b7 b0 b15 b8 b7 b0
A T T
b | Data of the 1st byte (d) Data of the 2nd byte | Data of the 1st byte
(s)+1 | Data of the 2nd byte (d)+1 Data of the 4th byte i Data of the 3rd byte
(s)+2 Data of the 3rd byte ! : !
() (s)+3 | Data of the 4th byte (d)+(5-1)"|_Dataofthenthbyte | Dataof the (n-1)th byte |
1 H 1
! |
(s)+(n—1)| ' Data of the nth byte I

Higher order bytes are ignored.

*1 Values after the decimal point are rounded up.

294 6 BASIC INSTRUCTIONS
6.5 Data Conversion Instructions

[Ex]

For example, when (n) is 5, lower 8 bits of data from (s) through (s+4) is stored into (d) through (d)+2.

b15 b8 b7 b0 b15 b8 b7 b0
T (s) 00H 12H (d) 34H . 12H
(s)+1 00H 34H (d)+1 78H H 56H

(n)=5 (S)+2 00H ' 56H (d)+2 00H FEH
(s)+3 O0H ; 78H
i (s)+4 00H ; FEH These bits become "00H".

+ Setting the number of bytes by (n) automatically determines the byte data range specified by (s) and the device range
specified by (d) for storing the linked data.

« If (n) is 0, no processing is performed.

» The higher-order 8 bits of the device specified by (s) for storing byte data are ignored, and only the lower-order 8 bits are
applicable.

[Ex]

To store data in lower 8 bits of D11 to D16 into D12 to D14

b15 b8 b7 b0 b15 b8 b7 b0
D11 00H : 31H 1 D11 00H : 31H
D12 00H E 32H L » D12 32H E 31H
D13 00H f 33H —» D13 34H f 33H
D14 00H i 34H { D14 36H 5 35H
D15 00H f 35H I_> D15 00H ; 35H
D16 00H : 36H J D16 00H : 36H

» Even if the device range of the data to be linked and the device range for storing the linked data overlap, the processing is
performed normally.

Device range where the data to be linked is stored Device range for storing the linked data
(s)+0 to (s)+(n)-1

(A to (d)+(-1)

Operation.error

Error code Description
(SD0/SD8067)
2820 The range of (n) points of devices from the device number specified in (s) onwards exceed the corresponding device range.
The range of no. of bytes specified in (n) from the device number specified in (d) onwards exceed the corresponding device range.

6 BASIC INSTRUCTIONS 2
6.5 Data Conversion Instructions 95

6.6

Data Transfer Instructions

Transferring 16-bit data

MOV(P)

These instructions transfer the 16-bit binary data in the device specified by (s) to the device specified by (d).

Ladder diagram

Structured text

—C.—

BIRIE }—{

ENO:=MOV/(EN,s,d);

ENO:=MOVP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Transfer source data or device number for storing data -32768 to +32767 16-bit signed binary ANY16

(d) Transfer destination device number — 16-bit signed binary ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y yTe [g
SM, F, B, SB C,LC | W,SD, SW,R

(s) (@) — — (@) (@) o |— — (@) (@) - = | =

(d) (@) — — (@) (@) o |— — O — - |= | =

Processing details

» These instructions transfer the 16-bit binary data in the device specified by (s) to the device specified by (d).

b15

b0

)10

1,1]0,1,0

'1]0 01

o]

b15

@ Transferred

@ /[1,0

171]0,1 0

P11

Operation.error

There is no operation error.

296

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

Transferring 32-bit data

DMOV(P)

These instructions transfer the 32-bit binary data in the device specified by (s) to the device specified by (d).

Ladder diagram

Structured text

—C =

e | @ }—{

ENO:=DMOV(EN,s,d);
ENO:=DMOVP(EN,s,d)

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Transfer source data or device number for storing data -2147483648 to +2147483647 | 32-bit signed binary ANY32

(d) Transfer destination device number — 32-bit signed binary ANY32

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s) O — — O O O O O O O - |— | —

(d) O — — O O O O O O — i i

Processing details

» These instructions transfer the 32-bit binary data in the device specified by (s) to the device specified by (d).

(s)+1

(s)

b15

b0 b15

b0

@ [1fofalr]filof1]ofofola[1]}[1]0fof1]0]

(d)+1

@ Transferred

(d)

b15

b0

@ [fof1][]

b0 b15
[ol1]ofofof][]l

[1]ofof1]0]

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

297

Inverting and transferring 16-bit data

CML(P)

These instructions invert each bit of the 16-bit binary data in the device specified by (s), and transfer the result to the device

specified by (d).

Ladder diagram

Structured text

—C=d]le | }—{

ENO:=CML(EN,s,d);
ENO:=CMLP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Data to be inverted or device number in which data is -32768 to +32767 16-bit signed binary ANY 16
stored
(d) Device number for storing the inversion result — 16-bit signed binary ANY16
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |[T,sT,c,b, |umeO|z |Lc |[Lz |specification [y 'y Tp [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) (@) — — (@) (@) o |— — (@] (@) - = |—
(d) (@) — — (@) (@) o |— — O — - = |—=

Processing details

» These instructions invert each bit of the 16-bit binary data in the device specified by (s), and transfer the result to the device

specified by (d).

b15 bo

®)[170,111]0o;1170;0]0o11;1,/1]0j0,1,0]
@Inversion

b15 bo

@fo;1i70i0[170 17110070110 1]

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

298

Inverting and transferring 32-bit data

DCML(P)

These instructions invert each bit of the 32-bit binary data in the device specified by (s), and transfer the result to the device

specified by (d).

Ladder diagram

Structured text

—C=d]le | }—{

ENO:=DCML(EN,s,d);
ENO:=DCMLP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Data to be inverted or device number in which data is -2147483648 to +2147483647 | 32-bit signed binary ANY32
stored
(d) Device number for storing the inversion result — 32-bit signed binary ANY32
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |[T,sT,c,b, |umeO|z |Lc |[Lz |specification [y 'y Tp [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O O O O O O - |— |—
(d) O — — O O O O O @) — - |— |—

Processing details

» These instructions invert each bit of the 32-bit binary data in the device specified by (s), and store the result in the device

specified by (d).

(s)+1 (s)
b15 b0 b15 b0
©[1]of1]1]fjJol+[ofofo[a[a[l[1]o0fo]]0]
@ Inversion
(d)+1 (d)
b15 b0

@ [o[1To o 1]

AEIIRIEIIRN

of+[1]of1]

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

299

Digit move

SMOV(P)

These instructions distribute and compose data in units of nibble (4 bits).

Ladder diagram

Structured text

— =] e [en|m] @ |

(n) }—{

ENO:=SMOV(EN,s,m1,m2,n,d);
ENO:=SMOVP(EN,s,m1,m2,n,d);

Setting data

EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Word device number storing data whose nibbles will be — 16-bit signed binary ANY16
moved
(m1)*1 Head nibble position to be moved 1to4 16-bit unsigned binary | ANY16_U
(m2)*1 Number of nibbles to be moved 1to4 16-bit unsigned binary | ANY16_U
(d) Word device number storing data whose nibbles are — 16-bit signed binary ANY16
moved
(n" Head digit position of movement destination 1to4 16-bit unsigned binary | ANY16_U
*1 Set so that m2<m1, m2<n.
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |T,sT,c,D, |umeO|z |Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O o |— — O — - |— |-
(m1) O — — O O o |— — @) O - = |—
(m2) @) — — @) O o |— — @) O - = |—
(d) O — — O O o |— — @) — - = |—
(n) O — — O O o |— — O O - |— |-

Processing details

These instructions distribute and compose data in units of nibble (4 bits). The contents of the transfer source (s) and transfer
destination (d) are converted into 4-digit BCD (0000 to 9999). (m2) nibbles starting from the (m1)th nibble are transferred to

the transfer destination (d) starting from the (n)th nibble, converted into binary, and then stored to the transfer destination (d).
» While the command input is OFF, the transfer destination (d) does not change.

* When the command input turns ON, only the specified digits in the transfer destination (d) are changed. The transfer source (s) and unspecified digits in the

transfer destination (d) do not change.

4th nibble | 3rd nibble |2nd nibble| 1st nibble

In the case of "m1 =4, m2 =

(s)

{ Data is automatically
converted(1)

[100 [102 [100 [10°

| (s)" (4-digit BCD data)

When command input turns ON
{ Nibbles are moved(2)

[10° | 102 | 100 [+10°

| (d)' (4-digit BCD data)

[|

{ Data is automatically
converted(3)

(16-bit binary data)

2,n=3"

(1): (s) is converted from binary to — BCD data.

(2): (m2) digits starting from the (m1)th digit are transferred (combined) to

(d)' starting from the (n)th digit. The first and fourth digits of (d)' are not
affected even if data is transferred from (s)'.

(3): The combined data (BCD) is converted into binary, and stored to (d).

LIITTTITTTITTITITTT @ cebibinay datay

HEExtension function

When SM8168 is set to ON first and then SMOV instruction is executed, conversion from binary to BCD is not executed. Data

is moved in units of 4 bits.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

300

- Operation error

3405 Any one of (m1), (m2), (n) is 0.

Either (s) or (d) is other than 0 to 9999 when SM8168 is OFF.

Either (m1) or (n) is larger than 4.

(m2) is larger than (m1) or (n).

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions 301

Inverting and transferring 1-bit data

These instructions invert the bit data in the device specified by (s), and transfer the result into the device specified by (d).

ENO:=CMLB(EN,s,d);

| |:::::I| ®) | « }{ ENO:=CMLBP(EN,s,d);

HDescriptions, ranges, and data types

Transfer-source data ANY_BOOL
(d) Transfer-destination data — Bit ANY_BOOL

BApplicable devices

(s) O O O o — - | = — — — — | = | =

(d) o} o} O o — - | = — — - == |-

*1 T, ST, C cannot be used.
These instructions invert the bit data in the device specified by (s), and transfer the result in the device specified by (d).

(d) (s)
Beforetransfer| | 1 | | | | 1 | |

Bit inverted transfer

A/

-

After transfer | | 0 | |

- Operation error

There is no operation error.

302 6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

Transferring 16-bit block data (65535 points maximum)

BMOV(P)

These instructions block transfer the 16-bit binary data of (n) number of devices starting from the one specified by (s) to the
device specified by (d).

Ladder diagram

Structured text

—C=d]e|ae|m }—{

ENO:=BMOV(EN,s,n,d);
ENO:=BMOVP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device for storing the data to be transferred — 16-bit signed binary/ ANY16
32-bit signed binary
(d) Head number of the transfer-destination device — 16-bit signed binary/ ANY 16
32-bit signed binary
(n) Number of transfers 1 to 65535 16-bit unsigned binary | ANY16
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,0, |umweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O — | O — @) — - = |—
(d) O — — O O — | O — @) — - = |—
(n) O — — O O o |— — @) O - |— |-

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions 303

Processing details

» These instructions block transfer the 16-bit binary data of (n) number of devices starting from the one specified by (s) to the
device specified by (d).

b15 -~ b0 b15 - b0

(s) 1234H (d) 1234H

(s)+1 5678H Block move (q)+1 5678H

(s)+2 7FFOH) |:> (d)+2 7FFOH o
(s)+(n-2) 6FFFH (d)+(n-2) 6FFFH
(s)+(n-1) 553FH (d)+(n-1) 553FH v

+ If the device number range is exceeded, data is transferred within the possible range.

» Data can be transferred even when the device range of the transfer-source device and transfer-destination device is
overlapping. To transfer data to a device having a smaller device number, transfer from (s), and to transfer data to a device
having a larger device number, transfer from (s)+(n)-1.

[Ex]

When transferring data to a device having a smaller device number

X1 1)
—— BMOV D10 D9 K3 D10 , D9
D11) D10
D12 3) D11

When transferring data to a device having a larger device number

X2 3)
—— BMmOV D10 D11 K3 p10 5 D11
D11) D12
D12 1) D13

Precautions

» To perform nibble specification of bit device for both (s) and (d), be sure to set the same number of nibbles for (s) and (d).
» To use a module access device for (s) and (d), specify either (s) or (d).

Operation.error

Error code Description

(SD0/SD8067)

3405 The number of nibbles of the nibble specification of bit device of (s) and (d) is different.
3420 A module access device is specified for both (s) and (d).

304 6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

Transferring identical 16-bit block data (65535 points maximum)

FMOV(P)

These instructions transfer (n) point(s) of data identical to the 16-bit binary data in the device specified by (s) to the devices

specified by (d).

Ladder diagram Structured text
ENO:=FMOV(EN,s,n,d);

| E-::l |) | d |) }_{ ENO:=FMOVP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Data to be transferred or the head device for storing the -32748 to +32767 16-bit signed binary ANY16
data to be transferred

(d) Head device of the transfer-destination — 16-bit signed binary ANY16

(n) Number of transfers 1 to 65535 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDOweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |Lz |specification [y i Te Tg
SM, F, B, SB C,LC | W, SD, SW, R

) 0 — — 0 0 o |— [= o o |- |- |-

) 0 — - 0 0 — - |- Jo — | =1=1-

) o — — o o o |— [= o o |- [-1-

Processing details

» These instructions transfer (n) point(s) of data identical to the 16-bit binary data in the device specified by (s) to the device
specified by (d).

b15 = b0
b15 - b0 Transferred (d) 3456H
(s)| 3456H |::> (d)+1 3456H
d)+2 3456H

(d))

. /__/

(d)*+(n-2) 3456H
(d)*+(n-1) 3456H

+ If the number of points specified by (n) exceeds the device number range, data is transferred within the possible range.
* When a constant (K) is specified as the transfer source (s), it is automatically converted into binary.

Precautions

When the value specified in (n) is 0, an operation error does not occur, but no processing is performed,

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions 305

Transferring identical 32-bit block data (65535 points maximum)

DFMOV(P)

These instructions transfer (n) point(s) of data identical to the 32-bit binary data in the device specified by (s) to the devices
specified by (d).
(65535 points maximum)

Ladder diagram Structured text

ENO:=DFMOV(EN,s,n,d);

| — | o | @ | o }{ ENO:=DFMOVP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Data to be transferred or the head device for storing the -2147483648 to +2147483647 | 32-bit signed binary ANY32
data to be transferred
(d) Head device of the transfer-destination — 32-bit signed binary ANY32
(n) Number of transfers 1 to 65535 16-bit unsigned binary | ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) 0 — — o} 0 o |o o} o} o} — | = | =

(d) o — — o) o - |o — o - == |-

(n) O — — O O o | — — O O - |— | —

Processing details
» These instructions transfer (n) point(s) of data identical to the 32-bit binary data in the device specified by (s) to the device
specified by (d).
b31 -+ b0
(d+1, (d) 1234567H
b31 b0 Transferred (d)+3, (d)+2 1234567H
(s1)+1, (s) |::> (d)+5, (d)+4 1234567H (n)

E=all

(d+2n-1), (d+2n-2) | 1234567H

+ If the number of points specified by (n) exceeds the device number range, data is transferred within the possible range.
* When a constant (K) is specified as the transfer source (s), it is automatically converted into binary.

Precautions

When the value specified in (n) is 0, an operation error does not occur, but no processing is performed,

Operation.error

There is no operation error.

306 6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

Exchanging 16-bit data

These instructions exchange 16-bit binary data of (d1) and (d2).

ENO:=XCH(EN,d1,d2);
| C] |) | (2) }{ ENO:=XCHP(EN,d1,d2);

HDescriptions, ranges, and data types

(d1) Head device for storing the data to be exchanged — 16-bit signed binary ANY16
(d2) Head device for storing the data to be exchanged — 16-bit signed binary ANY16
BApplicable devices

(1) o - - |o o o|— |- o - = 1= 1=

(d2) o — - |o o o|— |- o - |- |- |-

Processing detail

These instructions exchange 16-bit binary data of (d1) and (d2).

(d1) (d2)
b5~ b87 -~ b0 b5~ b87 b0
[oi1:1:1]0i0l00]0!0/00]0:1:1!1] [1:11111]ol0i0/0[1111111]0/0!010]
—
?\
(d1) (d2)
b15 = b8b7 - b0 b15 -~ b87 - b0
[1:1:111]0l0i0i0[1i1111]0l0}010] [oi1i111]ol0i0:0]0i0l0i0]0!1:1:1]

- Operation error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions 307

Exchanging 32-bit data

These instructions exchange 32-bit binary data of (d1) and (d2).

ENO:=DXCH(EN,d1,d2);
| C] |) | (2) }{ ENO:=DXCHP(EN,d1,d2);

HDescriptions, ranges, and data types

(d1) Head device for storing the data to be exchanged 32-bit signed binary ANY32
(d2) Head device for storing the data to be exchanged — 32-bit signed binary ANY32
BApplicable devices

(d1) O — — (@) @) O (@] (@] (©] — - |— |—

(d2) O — — O O o |O ©) ©) — - = |—

Processing detail

These instructions exchange 32-bit binary data of (d1), (d1)+1 and (d2), (d2)+1

(d1)+1 @) (d2)+1 (d2)
b31 - b16b15 - b0 b31 - b16b15 -~ b0
[1111111]lor010[11111{0r01010] [oror0rof\{i1rara[1r1ra{[4111114]
—4
?\
(d1)+1 (@) (@2)+1 (d2)
b31 - b16b15 - b0 b31 - b16b15 -~ b0
[orororof\\i1i1ia[1r1r1i({4111114] [1111111]\\0010[111111{or01010]

- Operation error

There is no operation error.

308 6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

Exchanging the upper and lower bytes of 16-bit data

SWAP(P)

These instructions swap the value of 8 bits of the upper and lower bytes of the device specified by (d).

Ladder diagram

Structured text

ENO:=SWAP(EN,d);
ENO:=SWAPP(EN,d);

Setting data

HDescriptions, ranges, and data types

Operand Description

Range Data type Data type (label)

(d) Head device for storing the data to be swapped

— 16-bit signed binary ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT |TsT,c,p, |uoeO|z |Lc |[Lz |specification [y 'y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R

(d) o — — o o o |— |- o — = 1= 1=

Processing details

These instructions swap the value of 8 bits of the upper and lower bytes of the device specified by (d).

b15.b12b11. b8b7 - bdb3 - b0
() [or11011]or11011[1101110[1101110

—

b15--b12b11 - b8b7 - bdb3 - b0
() [1101170]1101110[0111011]0111011]

Precautions

If a continuous operation type instruction is used, swap is done in each operation cycle.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions 309

Exchanging the upper and lower bytes of 32-bit data

DSWAP(P)

These instructions swap the value of 8 bits of the upper and lower bytes of the word devices specified by (d).

Ladder diagram

Structured text

———

ENO:=DSWAP(EN,d);
ENO:=DSWAPP(EN,d);

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device for storing the data to be swapped — 32-bit signed binary ANY32
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |[T,sT,c,p, |umeO|z |[Lc [Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(d) o) — —) o) o |o o) o) — == |-

Processing details

These instructions swap the value of each of the upper and lower 8 bits of the device specified by (d) and (d)+1.

b15--b12b11- b8b7 --

b4b3 -

b0

(d+1 {o111011]0111011]1101110[1101110]

——

b15--b12b11-- b8b7 --

b4b3 -

b0

(@+1 [1101110]1101110]0111011]0111011]

Precautions

b15--b12b11-- b8b7 --

b4b3 -

b0

([o11011]or11011]1101110[1101110]

—

b15--b12b11 - b8b7 --

b4b3 -

b0

(@) [1101110[1101170]011 1011011 1011]

If a continuous operation type instruction is used, swap is done in each operation cycle.

Operation.error

There is no operation error.

310

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

Transferring 1-bit data

These instructions store bit data specified by (s) to (d).

ENO:=MOVB(EN,s,d);
| C] | ®) |) }{ ENO:=MOVBP(EN,s,d);

HDescriptions, ranges, and data types

(s) Head device for storing the transfer-source data — Bit ANY_BOOL
(d) Head device for storing the transfer-destination data — Bit ANY_BOOL
BApplicable devices

(s) O O O o — - | = — — — — | = | =

*

(d) o} o} o |oT — - |- |- |- - == |-

*1 T, ST, C cannot be used.
» These instructions transfer bit data specified by (s) to (d).

(d) (s)
Beforetransfer| | 0 | | | | 1 | |

Bit transfer

e
(d) (s)

After transfer | | 1 | |

- Operation error

There is no operation error.

-

6 BASIC INSTRUCTIONS 11
6.6 Data Transfer Instructions 3

Transferring octal bits (16-bit data)

PRUN(P)

These instructions handle the device number of (s) and (d) with nibble specification as octal numbers, and transfer data.

Ladder diagram

Structured text

—C=0le | e }—{

ENO:=PRUN(EN,s,d);
ENO:=PRUNP(EN,s,d);

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Nibble specification”! — 16-bit signed binary ANY16
(d) Device number of transfer destination " — 16-bit signed binary ANY16
*1 Make sure that the least significant digit of a specified device number is "0".
BMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
s) o — — — — — | = — o - == 1=
(d) o™ — — — — — | = — o - | == 1=
*1 B, SB cannot be used.

Processing details
* Octal bit device — Decimal bit device

(s) (d)

Command
input
|_

Octal bit device (X)

PRUN K4X0 K4MO

X0 to X17 — MO to M7, M10 to M17

[x17 [x16 | x15 [x14 [x13 [x12 [x11 | x10

x7 | x6 | x5 | x4 | x3 | x2] x1] xo

e

v

M7 | M6 | M5 | M4 | m3 | M2 | m1 | Mo

H/_J

Do not change.

Decimal bit device (M)

» Decimal bit device — Octal bit device

Command (s) (d)
input
— PRUN K4MO0 K4Y0

Not transferred
Decimal bit device (M)

MO to M7, M10 to M17 — YO0 to Y17

M7 | M6 [M5 | ma | m3 | m2 | mi| mo

N

v

[Y17 | v16 [v15 [v14 | v13 [v12 | v11 | v10

vz | ve [vys | va|v3a]v2]|v1]vo

Octal bit device (X)

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

312

2820 The devices specified by (s) and (d) exceed the range of the corresponding device.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions 31 3

Transferring octal bits (32-bit data)

DPRUN(P)

These instructions handle the device number of (s) and (d) with nibble specification as octal numbers, and transfer data.

Ladder diagram

Structured text

—C=0le | e }—{

ENO:=DPRUN(EN,s,d);
ENO:=DPRUNP(EN,s,d);

Setting data

HDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Nibble specification”! — 32-bit signed binary ANY32
(d) Device number of transfer destination " — 32-bit signed binary ANY32
*1 Make sure that the least significant digit of a specified device number is "0".
BMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
s) o — — — — — | = — o - == 1=
(d) o™ — — — — — | = — o - | == 1=
*1 B, SB cannot be used.

Processing details
* Octal bit device — Decimal bit device

(s) (d)

Command
input
}—mplu— DPRUN | K6X0 | K6MO | XOtoX27 - MO to M7, M10 to M17,M20 to M27
Octal bit device (X)
[x27 [--- [xe0 [x17] --- [x10] x7 [x6 [x5 | x4 [x3 | x2 [x1 | xo

M20 [M19 | M18 | M17

——

H/_J

Do not change.
Decimal bit device (M)

m27

.............

» Decimal bit device — Octal bit device

(s) (d)

Command
input
|_.

DPRUN K6MO K6YO0

Decimal bit device (M)
Not transferred

[wzr [[weo] (7 [Twno]

M19 1 M18

S

v

M7 | M6 | M5 | M4 | m3 | m2 | m1 | Mo

MO to M7, M10 to M17,M20 to M27 — YO to Y27

Not transferred

M7 | m6 [M5 | ma | m3 | m2 | mi| mo

v

[v27 [--- [y20[v17] --- [y10

7 [ve [vs | va|vs]|v2]|v1]vo

Octal bit device (X)

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

314

2820 The devices specified by (s) and (d) exceed the range of the corresponding device.

6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions 31 5

Transferring n-bit data

These instructions block transfer the bit data of (n) point(s) from the device specified by (s) to the bit data of (n) point(s) from

(d).

ENO:=BLKMOVB(ENs,n,d);
ENO:=BLKMOVBP(EN,s,n,d);

—C=d]e|ae|m }—{

EDescriptions, ranges, and data types

(s) Head device for storing the transfer-source bit data — Bit ANY_BOOL
(d) Head device for storing the transfer-destination bit data — Bit ANY_BOOL
(n) Number of transfers 0 to 65535 16-bit unsigned binary | ANY16

BApplicable devices

®) o — o™ - - - |- |-
(d) o - o - - - |- |-
(n) O — O O e — = [=

*1 T, ST, C cannot be used.

» These instructions block transfer the bit data of (n) point(s) from the device specified by (s) to the bit data of (n) point(s)

from the device specified by (d).
+ Data can be transferred even when the device range of the transfer-source device and transfer-destination device is

overlapping.
M ———»
(s+n-1) (s+2) (s*1) (s)
L b T fefo s |1]
(d+n-1) (@+2) (d+1) (d)
Lo lelo fo [0 | 1]]
< (n) >

- Operation error

2820 The range of (n) point(s) of data starting from the device specified by (s) and (d) exceed the corresponding device range.

31 6 6 BASIC INSTRUCTIONS
6.6 Data Transfer Instructions

7 APPLICATION INSTRUCTION

7.1 Rotation Instruction

Rotating 16-bit data to the right

ROR(P), RCR(P)

* ROR(P): These instructions rotate the 16-bit binary data in the device specified by (d) to the right by (n) bit(s) (not including

the carry flag).

* RCR(P): These instructions rotate the 16-bit binary data in the device specified by (d) to the right by (n) bit(s) (including the

carry flag).

Ladder diagram

Structured text™!

—C=J]@ | }—{

ENO:=RORP(EN,n,d);
ENO:=RCR(EN,n,d);
ENO:=RCRP(EN,n,d);

*1 The ROR instruction is not supported by the ST language. Use ROR of the standard function.
[Z5 Page 797 ROR(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(d) Head device number where the rotation target data is stored — 16-bit signed binary ANY16

(n) Number of rotations 0to 15 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg [g
SM, F, B, SB C,LC | W,SD, SW,R

(d) (@) — — (@) (@) o |— — (@) — - = |—=

(n) (@) — — (@) (@) o |— — (@) (@) - = | =

7 APPLICATION INSTRUCTION 1
7.1 Rotation Instruction 3 7

Processing details
EROR(P)

» These instructions rotate the 16-bit binary data in the device specified by (d) to the right by (n) bit(s) (not including the carry
flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

b15 b14 b13 b12 b1l b10 b9 b8 b7 b6 b5 b4 b3 b2 bl bO Carry flag (SM700, SM8022)
@[of ofofofofofofofoJoJoJoJofafo[a] [o]

Rotating 1-bit data
to the right

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 y Carry flag (SM700, SM8022)
@il ofofofofoJofJofJoJofJofJoJofJofa]of [1]

Value of b0 ﬂ Rotating 1-bit data to the right Value of b0

4

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 yCarry flag (SM700, SM8022)
@ ol afofoJofofofoJoJofofoJo ofofu] [o]
I
Value of b0 | Value of b0
ﬂ Rotating n-bit data to the right
b15 b14 b13 b12 b1l b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 Carry flag (SM700, SM8022)
(d)‘ “{ { I I { I [[[I [[[|]

; ||||||”;|

v Value of b(n-1)
alue of b(n-1)
* When (d) is a bit device, bits are rotated to the right within the device range specified by nibble specification. The number of

bits actually to be rotated is the remainder of (n)+(specified number of bits). For example, when (n) is 15 and the specified
number of bits is 12, 3 bits are rotated because 15 divided by 12 equals 1 with a remainder of 3.

» Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are rotated by the remainder value of
n+16. For example, when (n) is 18, 2 bits are rotated because 18 divided by 16 equals 1 with a remainder of 2.

31 8 7 APPLICATION INSTRUCTION
7.1 Rotation Instruction

BRCR(P)
» These instructions rotate the 16-bit binary data in the device specified by (d) to the right by (n) bit(s) (including the carry
flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b0 Carry flag (SM700, SM8022)
@[of ofofofofofofofoJoJoJoJofafo[a] |[o]
Rotating 1-bit data /
to the right /
b15 b14 b13 b12 b1l b10 b9 b8 b7 b6 b5 b4 b3 b2 bl bo y Carry flag (SM700, SM8022)
@JolofofofofofofofJo o ofoJoJofa]o| [1]

Carry flag value ﬂ Rotating 1-bit data to the right / Value of b0

- ’
b15 bl4 b13 b12 b1l b10 b9 b8 b7 b6 b5 b4 b3 b2 bl bO yCarry flag (SM700, SM8022)
@ [1]ofJoJofofolo|lo[o]Jo]lo]ofJo]o|o[a] |o]
I
Carry flag value ! Value of b0
ﬂ Rotating n-bit data to the right
b15 b14 b13 b12 b1l b10 b9 b8 b7 b6 b5 b4 b3 b2 bl bO Carry flag (SM700, SM8022)
‘ [[I I [[I I [[I I [I I \
() \ \ | | \ \ | | \ \ | | \ | | [O

Value of b(n-1)

» When (d) is a bit device, bits are rotated to the right within the device range specified by digit specification. The number of
bits actually to be rotated is the remainder of (n)+(specified number of bits). For example, when (n) is 15 and the specified
number of bits is 12, 3 bits are rotated because 15 divided by 12 equals 1 with a remainder of 3.

» Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are rotated by the remainder value of
n+16. For example, when (n) is 18, 2 bits are rotated because 18 divided by 16 equals 1 with a remainder of 2.

Precautions

» Do not set a negative value to the number of bits to be rotated (n).

* In the case of continuous operation type instructions (ROR and RCR), note that shift and rotation are executed in every
scan time (operation cycle).
Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION 1
7.1 Rotation Instruction 3 9

Rotating 16-bit data to the left

ROL(P), RCL(P)

» ROL(P): These instructions rotate the 16-bit binary data in the device specified by (d) to the left by (n) bit(s) (not including
the carry flag).

* RCL(P): These instructions rotate the 16-bit binary data in the device specified by (d) to the left by (n) bit(s) (including the
carry flag).

Ladder diagram Structured text™!

ENO:=ROLP(EN,n,d);
— ENO:=RCL(EN,n,d);
—| [,7,:I| (d) | () |<{ ENO:=RCLP(EN,n,d);

*1 The ROL instruction is not supported by the ST language. Use ROL of the standard function.
[Z5~ page 795 ROL(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device number where the rotation target data is stored — 16-bit signed binary ANY16
(n) Number of rotations 0to 15 16-bit unsigned binary | ANY16

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M L, |uoeO|TsT [TsT,c,p, |udeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(d) o) — — o) o) o |— — o) - | == 1=

(n) O — — O O o | — — O O - |— | —

Processing details

EROL(P)
» These instructions rotate the 16-bit binary data in the device specified by (d) to the left by (n) bit(s) (not including the carry
flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

Carry flag (SM700, SM8022) b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b

0] [ilofode oo o o o oToToTo e o o] w

T / ﬂ Rotating 1-bit data to the left
b7 b6 b5

Carry flag (SM700, SM8022) l b15 b14 b13 b12 b11 b10 b9 bs b4 b3 b2 bl b0

|°\1\°\°0\0\MO\O\O\O\O\O\O\OMW@
Value of b15 T / [Rotating 1-bit data to the left Value of b15
b7__ b6

Carry flag (SM700, SM8022) l b15 b14 b13 b12 b11 b10 b9 b8 b5 b4 b3 b2 b1 b0

[t]olofofofoJofoJoJoJofoJoJofufo] w

Value of b15 Value of b15
ﬂ Rotating n-bit data to the left
Carry flag (SM700, SM8022) b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 bl bo
< [| [[[[[[[| | [[[[[|
3 I N S A I A N A M d
Value of b(16-n) T

Value of b(16-n)

320 7 APPLICATION INSTRUCTION
7.1 Rotation Instruction

* When (d) is a bit device, bits are rotated to the left within the device range specified by nibble specification. The number of
bits actually to be rotated is the remainder of (n)+(specified number of bits). For example, when (n) is 15 and the specified
number of bits is 12, 3 bits are rotated because 15 divided by 12 equals 1 with a remainder of 3.

+ Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are rotated by the remainder value of
n+16. For example, when (n) is 18, 2 bits are rotated because 18 divided by 16 equals 1 with a remainder of 2.

ERCL(P)
» These instructions rotate the 16-bit binary data in the device specified by (d) to the left by (n) bit(s) (including the carry flag).
The carry flag is on or off depending on the status prior to the execution of the instruction.

Carry flag (SM700, SMSOZZ) b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b

[t fofrfoJoJofofoJoJoJoJoJofJofofo]

ﬁ‘ / ﬂ Rotating 1-bit data to the left
Carry flag (SM700, SM8022) b15 b14 b13 b12 b11 b10 b4 b3 b2 bl b0

|o\1\o\oo\o\o\oo\o\o\o\o\o\o\owm

Value of b15 ﬂ Rotating 1-bit data to the left Carry flag value
Carryflag(SM700,8M8022 b15 b14 b13 b12 b11 b10 b5 b4 b3 b2 bl bO

o ToToJoToToToToToToToTo 4] w

|
|
Value of b15 | Carry flag value

ﬂ Rotating n-bit data to the left

Carry flag (SM700, SM8022) b15 b14 b13 b12 b1l b10 b9 b8 b7 b6 b5 b4 b3 b2 bl bo

[]
| [[[1 [7 [1T T T T T [1] | (d

Value of b(16-n)

* When (d) is a bit device, bits are rotated to the left within the device range specified by nibble specification. The number of
bits actually to be rotated is the remainder of (n)+(specified number of bits). For example, when (n) is 15 and the specified
number of bits is 12, 3 bits are rotated because 15 divided by 12 equals 1 with a remainder of 3.

» Specify any value between 0 and 15 for (n). If a value 16 or bigger is specified, bits are rotated by the remainder value of
n+16. For example, when (n) is 18, 2 bits are rotated because 18 divided by 16 equals 1 with a remainder of 2.

Precautions

» Do not set a negative value to the number of bits to be rotated (n).

* In the case of continuous operation type instructions (ROL and RCL), note that shift and rotation are executed in every scan
time (operation cycle).

Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION 21
7.1 Rotation Instruction 3

Rotating 32-bit data to the right

DROR(P), DRCR(P)

* DROR(P): These instructions rotate the 32-bit binary data in the device specified by (d) to the right by (n) bit(s) (not
including the carry flag).

* DRCR(P): These instructions rotate the 32-bit binary data in the device specified by (d) to the right by (n) bit(s) (including
the carry flag).

Ladder diagram Structured text™!
ENO:=DRORP(EN,n,d);
pp— ENO:=DRCR(EN,n,d);
d
4 E’*’j| @ | (m H ENO:=DRCRP(EN,n,d);

*1 The DROR instruction is not supported by the ST language. Use ROR of the standard function.
[Z5~ page 797 ROR(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device number where the rotation target data is stored — 32-bit signed binary ANY32
(n) Number of rotations 0to 31 16-bit unsigned binary | ANY16

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M L, |uoeO|TsT [TsT,c,p, |udeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(d) 0 — — 0 0 o |o o} o — | == |=

(n) O — — O O o | — — O O - |— | —

Processing details

EDROR(P)
» These instructions rotate the 32-bit binary data in the device specified by (d) to the right by (n) bit(s) (not including the carry
flag). The carry flag is on or off depending on the status prior to the execution of the instruction.
(d)+1 (d)
b29 b28 b27 - b18 b17 b16'b15b14 -~ b5 b4 b3 b2 b1 bo Carry flag (SM700, SM8022)
| | [| | |

W i) (O I 1 1]
[| | [|) (1 | [| | | | e

b31 b30
| | | 1)
| | | [)

A

Rotating n-bit data to the right

» When (d) is a bit device, bits are rotated to the right within the device range specified by nibble specification. The number of
bits actually to be rotated is the remainder of (n)+(specified number of bits). For example, when (n) is 31 and the specified
number of bits is 24, 7 bits are rotated because 31 divided by 24 equals 1 with a remainder of 7.

» Specify any value between 0 and 31 for (n). If a value 32 or bigger is specified, bits are rotated by the remainder value of

n+32. For example, when (n) is 34, 2 bits are rotated because 34 divided by 32 equals 1 with a remainder of 2.

EDRCR(P)
» These instructions rotate the 32-bit binary data in the device specified by (d) to the right by (n) bit(s) (including the carry
flag). The carry flag is on or off depending on the status prior to the execution of the instruction.
(d)+1 (d)
b31 b30 b29 b28 b27 - b18 b17 b16'b15 b14 -~ b5 b4 b3 b2 bl bo Caryflag (SM700, SM8022)

I 1 I 1 I 1 [N

) 0) (1 | N
| | | [Ny (1 | | [|) (1 | [| | [l |]

Rotating n-bit data to the right
* When (d) is a bit device, bits are rotated to the right within the device range specified by nibble specification. The number of
bits actually to be rotated is the remainder of (n)+(specified number of bits). For example, when (n) is 31 and the specified
number of bits is 24, 7 bits are rotated because 31 divided by 24 equals 1 with a remainder of 7.

322 7 APPLICATION INSTRUCTION
7.1 Rotation Instruction

+ Specify any value between 0 and 31 for (n). If a value 32 or bigger is specified, bits are rotated by the remainder value of
n+32. For example, when (n) is 34, 2 bits are rotated because 34 divided by 32 equals 1 with a remainder of 2.
Precautions

» Do not set a negative value to the number of bits to be rotated (n).

* In the case of continuous operation type instructions (DROR and DRCR), note that shift and rotation are executed in every
scan time (operation cycle).
Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION 2
7.1 Rotation Instruction 3 3

Rotating 32-bit data to the left

DROL(P), DRCL(P)
» DROL(P): These instructions rotate the 32-bit binary data in the device specified by (d) to the left by (n) bit(s) (not including

the carry flag).

* DRCL(P): These instructions rotate the 32-bit binary data in the device specified by (d) to the left by (n) bit(s) (including the
carry flag).

Ladder diagram Structured text™!

ENO:=DROLP(EN,n,d);

4' I:::|| @ | ") |<{ ENO:=DRCL(EN,n,d);

ENO:=DRCLP(EN,n,d);

*1 The DROL instruction is not supported by the ST language. Use ROL of the standard function.
[Z5" page 795 ROL(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(d) Head device number where the rotation target data is stored — 32-bit signed binary ANY32

(n) Number of rotations 0to 31 16-bit unsigned binary | ANY16

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,0, |umeO|z |Lc [Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD,SW,R

(d) (@) — — (@) (@) O |O (@) O — - = |—=

(n) (@) — — (@) (@) o |— — (@] (@] - = |—

Processing details

EDROL(P)

» These instructions rotate the 32-bit binary data in the device specified by (d) to the left by (n) bit(s) (not including the carry
flag). The carry flag is on or off depending on the status prior to the execution of the instruction.

Carry flag (d)+1 (d)

(SM700, SM8022) |b31 b30 b29 b28 b27 - b18 b17 b16'b15b14 -~ b5 b4 b3 b2 bl b0

I 1) G) T |
N | | | | [Y (0 | | | |) (0 | | | | |

A

Rotating n-bit data to the left

* When (d) is a bit device, bits are rotated to the left within the device range specified by nibble specification. The number of
bits actually to be rotated is the remainder of (n)+(specified number of bits). For example, when (n) is 31 and the specified
number of bits is 24, 7 bits are rotated because 31 divided by 24 equals 1 with a remainder of 7.

» Specify any value between 0 and 31 for (n). If a value 32 or bigger is specified, bits are rotated by the remainder value of
n+32. For example, when (n) is 34, 2 bits are rotated because 34 divided by 32 equals 1 with a remainder of 2.

EDRCL(P)
» These instructions rotate the 32-bit binary data in the device specified by (d) to the left by (n) bit(s) (including the carry flag).
The carry flag is on or off depending on the status prior to the execution of the instruction.

Carry flag (d)+1 (d)
(SM700, SM8022) b31 b30 b29 b28 b27 - b18 b17 b16 b15b14 - b5 b4 b3 b2 b1 b0
1 I | T T 7

» [L1 | | | | | |

1) G 1) (0
[17 | | | [Y (0 | | | |) | [| | | I

Rotating n-bit data to the left

* When (d) is a bit device, bits are rotated to the left within the device range specified by nibble specification. The number of
bits actually to be rotated is the remainder of (n)+(specified number of bits). For example, when (n) is 31 and the specified
number of bits is 24, 7 bits are rotated because 31 divided by 24 equals 1 with a remainder of 7.

324 7 APPLICATION INSTRUCTION
7.1 Rotation Instruction

+ Specify any value between 0 and 31 for (n). If a value 32 or bigger is specified, bits are rotated by the remainder value of
n+32. For example, when (n) is 34, 2 bits are rotated because 34 divided by 32 equals 1 with a remainder of 2.
Precautions

» Do not set a negative value to the number of bits to be rotated (n).

* In the case of continuous operation type instructions (DROL and DRCL), note that shift and rotation are executed in every
scan time (operation cycle).
Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION 2
7.1 Rotation Instruction 3 5

7.2 Program branch instruction

Pointer branch

CJ(P)

These instructions execute the program specified by the pointer number within the same program file when the jump
command is on.

Ladder diagram Structured text

Not supported

IS i)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

P) Pointer number of the jump destination — Device name ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT [TsT,c,p, |umweO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

P) — — - - — - | = — — — |—|— o0

Processing. details
EWCJ(P)

« These instructions execute the program specified by the pointer number when the execution command is on.
* When the execution command is off, the program in the next step is executed.

ON

OFF
Execution command Q

o] L
Each scan is executed.

CJP |—‘
One scan is executed.

Precautions

« If the timer with its coil on is skipped by these instructions, time cannot be measured correctly.
« If the OUT instruction is skipped by these instructions, the scan time will be shortened.
« If these instructions specify and jump to a later step, the scan time will be shortened.

326 7 APPLICATION INSTRUCTION
7.2 Program branch instruction

* These instructions can specify and jump from the current step to a smaller step number. In this case, consider a method to
exit a loop so that the watchdog timer does not time out.

Label X0
P8 _{ I Y4 (1) While X3 is on, the loop is repeated.
(1)
X

(2) To exit the loop, turn on X7.
7
Hp——{ & [=
X3
& [
Label

P9 | X6
— | s @

* The value in the device skipped with these instructions remains the same.
When X2 turns on, the program jumps to the label, P19.

X2
—F—— c | Pwo : . .
Y4 and Y5 remain the same even if X2 and X4 turn on/off during the

_{X‘} 4 execution of the CJ instruction.
|

?

o

o

7

o

¥
Label |
P19 XT
— |
* Alabel (PO) occupies two steps.
X2
o o
X3
151

M3

(1) [
u_fbel19 _{
PO | M36
2|
2 |

* Only the pointer numbers within the same program file can be specified.

(o2}

PPP

(1) A label occupies two steps.

ol

oE

)0

&G

« During skip operation, if the program jumps to the pointer number within the skip range, the programs of the jump
destination pointer number and later are executed.

* The figure below shows programming of a label. When creating a circuit program, move the cursor to the left side of the bus
line in the ladder diagram, and input a label (P) at the head of the circuit block.

X30

{0 T H

0

X3|1
[
Label X32

P20 _| I @7
L

Y10

Bus line

Label

» Alabel can be programmed in a smaller number step than CJ instruction. However, note that a watchdog timer error occurs
when the scan time exceeds 200 ms (default setting).

Label |
P10 I

7 APPLICATION INSTRUCTION 2
7.2 Program branch instruction 3 7

» When the pointer number in operands is same and there is one label, the following operation is caused:

X20

X21

—HEP—— c | o }—L
A1 T % I—ﬂ

0

0

Label |
P9 _| [

(1) When X20 turns ON, the program execution jumps from CJ
instruction corresponding to X20 to the label P9.

(2) When X20 turns OFF and X21 turns ON, the program execution
jumps from CJ instruction corresponding to X21 to the label P9.

* When a label number (including labels for CALL instructions described later) is used two or more times, an error is caused.

Label
P9

Label
P9

X20
F——1 c | o
X30 ¢

* No label can be shared by CALL instruction and CJ

L

X2
al

SM400

Iﬁ?%el —| }—: User program —

RUN Monitor

RET

instruction.

Subroutine program
dedicated to CALL
instruction

Program a label (P)
after FEND instruction.

» Because SM400/SM8000 is normally ON while a PLC is operating, unconditional jump is applied when SM400 is used as

shown in the following example:

SM400

RUN Monitor

[ey BCHRR

, User program ,
| i (It is skipped, and is not executed.)i

P51 Userprogram
Operation.error
Error code Description
(SD0/SD8067)
3380 A pointer number which is not used as a label in the same program file is specified.

328 7 APPLICATION INSTRUCTION
7.2 Program branch instruction

Jump to END

GOEND

This instruction moves the program execution to the FEND or END instruction in the same program file.

Ladder diagram Structured text

ENO:=GOEND(EN);

L1

Processing details

« This instruction moves the program execution to the FEND or END instruction in the same program file.

Precautions

» When a GOEND instruction is executed by invalid jump during interrupt program execation, it becomes the same operation
as the IRET instruction.

Operation.error

Error code Description

(SD0/SD8067)

3340 After the FOR instruction is executed, the GOEND instruction is executed before the NEXT instruction is executed.

3381 After the CALL(P) or XCALL instruction is executed, the GOEND instruction is executed before the RET instruction is executed.

7 APPLICATION INSTRUCTION 2
7.2 Program branch instruction 3 9

7.3 Program execution control instruction

Disabling/enabling interrupt programs

DI, EI

Interrupts are usually disabled in CPU module. These instructions enable interrupts in CPU module (El instruction) or disable
interrupts again (DI instruction).

+ DI: Disables the execution of the interrupt program.

* El: Releases the execution disabled state of interrupt programs.

Ladder diagram Structured text
ENO:=DI(EN);
p— ENO:=EI(EN);
L1

Processing details

HDI

« This instruction disables the execution of the interrupt program until the El instruction is executed, even if the interrupt
cause occurs.

* When the power is turned on or the CPU module is reset, the state in which the DI instruction is executed is applied.

* For the operation of the DI instruction (DI instruction without an argument) when using the interrupt disable instruction with
a specified priority or lower (DI instruction with an argument), refer to = Page 332 Disabling the interrupt program with
specified priority or lower.

HEI
« This instruction releases the execution disabled state of interrupt programs when the DI instruction is executed, and

enables the execution of the interrupt program with the interrupt pointer number enabled by the IMASK instruction.
« For the operation of the El instruction when using the interrupt disable instruction with a specified priority or lower (DI
instruction with an argument), refer to (=~ Page 332 Disabling the interrupt program with specified priority or lower.

,,,,,,,,,,, Sequence program | Even though an interrupt occurs between
DI the DI and El instructions, the execution of
777777777777777777777777777777777777 the interrupt is held until the processing
Sequence program H between the instructions ends.
El l—
FEND |—
In Interrupt Program ;
. ()
Pomt/‘ _ . , . . -
 An interrupt pointer occupies two steps. (In (1) below, 110 is the step 50, X2 is the step 52, and Y10 is the
step 54.)
110 X2
o @
X5
sor| ©
60 IRET I*

« If the master control contains the El or DI instruction, such an instruction is executed regardless of the
execution of the MC instruction.

330 7 APPLICATION INSTRUCTION
7.3 Program execution control instruction

- Precautions

Interrupts (requests) that are generated after the DI instruction execution, are processed after the El instruction is executed.

- Operation error

3362 Nesting of the DI instruction exceeds 16 levels.

7 APPLICATION INSTRUCTION 1
7.3 Program execution control instruction 33

Disabling the interrupt program with specified priority or lower

DI

This instruction disables the execution of the interrupt program with a priority specified by (s) or lower until the El instruction is
executed, even if the interrupt cause occurs.

Ladder diagram Structured text

ENO:=DI(EN,s);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Priority for disabling interrupts 1t03 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|TsT |TsT,c,p, |uoeO|z |Lc |[Lz |specification [y e g
SM, F, B, SB C,LC | W, SD, SW,R

) o — — o o o |— |—= o o |— |- |-

Processing details

« This instruction disables the execution of the interrupt program of the interrupt pointer number with an interrupt priority
specified by (s) or lower.

Interrupt priority setting
I I DI K3 l_ (1) Interrupt-disabled section for the priority 3 or lower
I No. Prorty | (= = (Interrupt-enabled section for the priority 2 or higher)
101 2 i_ —i (2) Can be executed because of the priority 2.
102 3 | Sequence program | (1) (3) Cannot be executed because of the priority 3.
- -
FEND l—
r— - o — = = n
2
01| [emptProgam | @)
IRET I_
e T T T n
3
02| " “memptprogam | | O
IRET I—

332 7 APPLICATION INSTRUCTION
7.3 Program execution control instruction

* By executing the El instruction, the interrupt with the priority disabled by the counterpart DI instruction is enabled. However,
when interrupts are disabled only with the DI instruction without an argument, interrupts with all the priorities are enabled by
executing the El instruction once.

| = (1) Interrupt-enabled section for all priority
I

________ (2) Interrupt-disabled section for the priority 3 or lower
[Sequence program] } (1) (Interrupt-enabled section for the priority 2 or higher)

(3) Interrupt-disabled section for the priority 2 or lower

pTTTTTTmTTmmmmmmmmmmmemmnees » I I DI K3 |— (Interrupt-enabled section for the priority 1 or higher)

r———— — — — 1 (4) Interrupt-disabled section for the priority 3 or lower
}) (Interrupt-enabled section for the priority 2 or higher)

5) Interrupt-enabled section for all priorit
e > I I DI K2 l— ®) P priority
o n

F——————— —
| | _Seawenceprogam | | (3
e > || B
: El, which is the r—————— — — 1
: counterpart of [DI K2] L Sequence program y (4)
S | El |_
> |
El, which is the r———— — — — 9
counterpart of [DI K3] L ___ Sequenceprogram } (5)

* Interrupts (requests) that are generated after the DI instruction are processed after the El instruction is executed.

* When multiple DI instructions are executed and the argument has a priority higher than the currently disabled priority,
interrupts with a priority lower than that of the argument are disabled.

* When multiple DI instructions are executed and the argument has a priority lower than the currently disabled priority, the
interrupt disabled state is not changed.

The Dl instruction can be nested in up to 16 levels.

« The interrupt priority of the interrupt pointer can be set with parameters. (LLIMELSEC iQ-F FX5 Series User's Manual
[Application])

« The interrupt-disabled priority can be checked with SD758 (interrupt-disabling priority setting value).

» The following shows the interrupt-disabled section when the DI or El instruction is executed.
* When multiple DI instructions are executed (when interrupts with a priority higher than the currently disabled priority are specified and disabled)

) @) ®) @) ™
| | | | |
| | | | |
. [I | | I
Scan execution type | | | | |
program —| El | [k3 — bik2 }— & }—4 B |/
Time

(1) Interrupt-enabled section for all priority
(2) Interrupt-disabled section for the priority 3 or lower (interrupt-enabled section for the priority 2 or higher)
(3) Interrupt-disabled section for the priority 2 or lower (interrupt-enabled section for the priority 1 or higher)

* When multiple DI instructions are executed (when interrupts with a priority lower than the currently disabled priority are specified and disabled)

(1 () (1)

|

|

. [

Scan execution type |
program —| El I

Time _ -7 ----- -

(1) Interrupt-enabled section for all priority
(2) Interrupt-disabled section for the priority 2 or lower (interrupt-enabled section for the priority 1 or higher)
(3) Because interrupts with the priority 2 or lower are already disabled, the interrupt-disabling priority is not changed.

7 APPLICATION INSTRUCTION
7.3 Program execution control instruction 333

* When the DI instruction is executed in an interrupt program

1 @) @) @) (1)

Interrupt Program

|

|

T

|

- I
DIK2 —— El [IRET !
|

|

|

Scan execution type

program — & ——oks HF-—---—— == -0

Time

(1) Interrupt-enabled section for all priority
(2) Interrupt-disabled section for the priority 3 or lower (interrupt-enabled section for the priority 2 or higher)
(3) Interrupt-disabled section for the priority 2 or lower (interrupt-enabled section for the priority 1 or higher)

* When the DI instruction without an argument is executed

(1 (2 (1)
| | |
[ol -l -
Scan execution type : : oo :'.
program — B |} [o — o — D }— B pP——"-"-""
Tme - -
3)

(1) Interrupt-enabled section for all priority
(2) Interrupt-disabled section for the priority 1 or lower (where all the interrupts are disabled)

(3) Because interrupts are disabled with the DI instruction without an argument, interrupts with all the priorities are enabled by executing the El instruction
once.

* When the DI instructions with and without an argument are executed (Execution order is DI instruction with an argument — DI instruction without an
argument)

|

L

Scan execution type I
program — El }

Time

(1) Interrupt-enabled section for all priority
(2) Interrupt-disabled section for the priority 2 or lower (interrupt-enabled section for the priority 1 or higher)
(3) Interrupt-disabled section for the priority 1 or lower (where all the interrupts are disabled)

» When the DI instructions with and without an argument are executed (Execution order is DI instruction without an argument — DI instruction with an
argument)

(1) (2) 1)

Scan execution type
program El

Time
(1) Interrupt-enabled section for all priority

(2) Interrupt-disabled section for the priority 1 or lower (where all the interrupts are disabled)

Operation.error

Error code Description

(SD0/SD8067)

3405 The value specified by (s) is other than the following.
1t03

3362 Nesting of the DI instruction exceeds 16 levels.

334

7 APPLICATION INSTRUCTION
7.3 Program execution control instruction

Interrupt program mask

IMASK

This instruction enables or disables the execution of the interrupt program with the specified interrupt pointer number

according to the 16-point bit pattern starting from the device specified in (s).

Ladder diagram Structured text
ENO:=IMASK(EN,s);

C._16e

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Head device number where the interrupt mask data is stored — 16-bit signed binary ANY16
The device specified in (s) and following 15 devices are used.

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

s) — — — o) — — | = — o — == |-

Processing details

« This instruction enables or disables the execution of the interrupt program with the specified interrupt pointer number

according to the 16-point bit pattern starting from the device specified in (s).
« 1 (ON): The execution of interrupt programs is enabled.
* 0 (OFF): The execution of interrupt programs is disabled.

» The following shows the assignment of the interrupt pointer numbers to each bit.

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
(s) |I15‘I14‘I13‘I12‘I11‘I10‘ 19118171615 14"13" 12" 11! I0|

(s)+1 |I31‘I30‘I29‘I28‘ = - ‘I23‘I22'I21‘I20‘I19'I18'I17'I16|

(S)+2|__________|-._|_|_|_|

(s)*+3 |I63‘I62‘I61‘I60‘I59‘|58‘I57‘I56‘I55‘I54'I53‘I52‘I51'|50I - |

(s)+4 |I79 78 117711761 17511741173 1172117111701 1691 1681 1671 166! 165! |64|

(s)*+5 ||95 11941193 11921191119011891188 1187 118611851 184118311821 181! I80|

(s)+6 |I111‘I110‘I109‘I108‘ 1107'1106!1105! 110411103/ [102! 101! 1100 1991 [981 1971 |96|

(s)+7 |I127‘I126‘I125‘I124‘I123‘ 11221112111120'1119'1118!1117'1116! 1115/ 1114/ [113! I112|

(s)+8 |I143‘I142‘I141‘I140‘I139‘ 1138'1137'1136' 1135'1134! 1133/ 1132! [131' 1130 1129 I128|

(s)+9 |I159‘I158‘I157‘I156‘I155‘ 115411153111521 1151111501 11491 11481 1147111461 [145! I144|

(s)+10 ||175‘I174‘I173‘I172‘I171‘|170‘ 1169111681116711166! 1165! 11641 11631 11621 1161! I160|

()| - - oo -1 T

@+12[- T T T T T T

13 - -

_.,|
(S)+14|- - - - - - - - - - - _|_|_|_|
-]

@15 - - T T

* When the power is turned on or the CPU module is reset, execution status of the interrupt programs of 10 to 1177 is applied.
* The states of the device (s) to (s)+15 are stored in SD1400 to SD1415 (IMASK instruction mask pattern).

7 APPLICATION INSTRUCTION
7.3 Program execution control instruction 335

The IMASK instruction can enable or disable the interrupt pointers 10 to 1177 in a batch.

- Operation error

2820 The 16-point range starting from the device specified by (s) exceeds the corresponding device range.

336 7 APPLICATION INSTRUCTION
7.3 Program execution control instruction

Disabling/enabling the specified interrupt pointer

SIMASK

This instruction enables or disables the interrupt pointer number specified by (1) according to the value of (s).

Ladder diagram

Structured text

—Cc=alole }—{

ENO:=SIMASK(EN,l,s);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
U} Interrupt pointer number for which interrupts are enabled or disabled 10 to 1177 Device name ANY16
(s) Enabled or disabled state of the specified interrupt pointer number 0: Disabled 16-bit unsigned binary | ANY16
1: Enabled
HEApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |[T,sT,c,D, |umweO|z |[Lc |[Lz |specification [y TF [g
SM, F, B, SB C,LC | W,SD, SW,R
(1 — — — — — - | — — — — — |— | O
(s) O — — O O o |— — @) @) - |— |-

Processing details

« This instruction enables or disables the execution of the interrupt program with the interrupt pointer number specified by (1)

according to the data specified by (s)

* When 1 is set in (s): The execution of the interrupt program is enabled.
* When 0 is set in (s): The execution of the interrupt program is disabled.
» When the power is turned on or the CPU module is reset, the execution status of the interrupt programs of 10 to 1177 is

applied.

« The execution-enabled/disabled states of interrupt pointers are stored in SD1400 to 1415 (IMASK instruction mask

pattern).

Point/®

Indexing is available for (I). By using the SIMASK instruction with indexing, the execution of the interrupt

pointers 10 to 1177 can be enabled or disabled.

Operation.error

Error code Description
(SD0/SD8067)
3405 The interrupt pointer number specified by (I) exceeds the range of the interrupt pointer number (10 to 1177).

The value in (s) is other than the interrupt disabled (0) or interrupt enabled (1).

7 APPLICATION INSTRUCTION
7.3 Program execution control instruction

337

Returning from the interrupt program

This instruction indicates an end of the processing of an interrupt program.

Not supported

When an interrupt (input or timer) is generated while the main program is executing, the program execution jumps to an
interrupt (I) routine. The IRET instruction returns the program execution to the main routine.
The table below shows two types of jump to an interrupt routine.

Interrupt from inputs (including 10 to 123 Interrupt pointer used for the CPU built-in functions (such as input interrupt, high-speed comparison
counter) match interrupt)
Internal timer interrupt 128 to 131 Interrupt pointer used for fixed-cycle interrupts of the internal timer

- Operation error

33E6 The IRET instruction is executed in the main program.

7 APPLICATION INSTRUCTION

338 7.3 Program execution control instruction

Resetting the watchdog timer

WDT(P)
These instructions reset the watchdog timer in a program.
Ladder diagram Structured text
ENO:=WDT(EN);
— ENO:=WDTP(EN);
C._— 1

Processing details

» These instructions reset the watchdog timer in a program.

» These instructions are used when the scan time exceeds the value set for the watchdog timer depending on the condition.
If the scan time exceeds the value set for the watchdog timer every scan, change the setting of the watchdog timer in the
parameter setting of the engineering tool.

» Design a program so that t1 from the step 0 to the WDT(P) instruction and t2 from the WDT(P) instruction to the END
(FEND) instruction do not exceed the setting value of the watchdog timer.

Step 0 END (FEND)
WDT

t1 J‘ t2

0

« The WDT(P) instruction can be used more than once in one scan. However, note that turning off the output takes some time
if an error occurs.

Precautions

» The time of the watchdog timer can be changed in the [RAS] tab of [CPU Parameter]. The default value is 200 ms.

» By overwriting the contents of SD8000 (watchdog timer time), the watchdog timer detection time can be changed using a
program. When the program shown below is input, the sequence program will be monitored with the new watchdog timer
time.

SM402

—{ MOV | K300 |SD8000 Watchdog timer time: 300 ms

Initial pulse

Refreshes the watchdog timer.
WDT If the WDT instruction is not programmed, the value of
SD8000 is valid during END processing.

Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION
7.3 Program execution control instruction 339

7.4 Structuring instruction
FOR to NEXT

FOR, NEXT

When the processing between the FOR and NEXT instructions is executed (n) times without any condition, the processing of
the step following the NEXT instruction is executed.

Ladder diagram Structured text

Not supported
FOR L1 m

NEXT L.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(n) Number of repetitions of the loop between FOR and NEXT 1to 32767 16-bit signed binary ANY16
instructions

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOGO|T,sT |TsT,c,p, |uoweO|z |Lc |Lz |specification [y e Tg
SM, F, B, SB C,LC | W, SD, SW,R

(n) o — — o o o |- |—= o o |—|=[-

Processing details

» When the processing between the FOR and NEXT instructions is executed (n) times without any condition, the processing
of the step following the NEXT instruction is executed.

* In (n), any of 1 to 32767 can be specified. If any of -32768 to 0 is specified, the processing of (n)=1 is applied.

* To skip the processing between the FOR and NEXT instructions, jump the program execution with the CJ instruction.

» Up to 16 FOR instructions can be nested.

340 7 APPLICATION INSTRUCTION
7.4 Structuring instruction

Precautions

» The FOR-NEXT loop can be nested up to 16 levels.

——— FOR | H o
R
e

NEXT

'

i

3rd level

2nd level

I 1st level

[H
e [H
(e [H

~

2nd level

I 1st level
I 1st level

+ The FOR-NEXT loop cannot be interrupted by the I, IRET, SRET, RET, FEND, or END instruction.
* When FOR-NEXT loop is repeated many times, the operation cycle is too long, and a watchdog timer error may occur. In

such a case, change the watchdog timer time or reset the watchdog timer.

» The following programs are regarded as errors.

When the NEXT instruction is located before FOR

FOR |

|

When the number of FOR instructions is not equivalent to the number of

No NEXT instruction

- <+—— Not programmed

NEXT instructions

Operation.error

<+—— Not programmed

Error code Description
(SD0/SD8067)
3340 After the FOR instruction is executed, the END or GOEND instruction is executed before the NEXT instruction is executed.
3361 When the FOR instruction is nested, the 17th level is executed.
Point}3

« To terminate the FOR to NEXT instruction loop halfway, use the BREAK instruction. (=5 Page 342
Forcibly terminating the FOR to NEXT instruction loop)

7 APPLICATION INSTRUCTION 41
7.4 Structuring instruction 3

Forcibly terminating the FOR to NEXT instruction loop

BREAK(P)
This instruction forcibly terminates the FOR to NEXT instruction loop and shifts the program execution to the pointer specified
by (P).

Ladder diagram Structured text
Not supported
—Cc=d]e|® |~{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(d) Device number storing the number of remaining loops — 16-bit signed binary ANY16
P) Pointer number of the branch destination when the loop is — Device name ANY16
forcibly terminated
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,D, |umeO|z |Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(d) O — — O O o |— — O O - |— |—
(P) — — — — — — | = — — - |=|= |0

Processing details

* This instruction forcibly terminates the FOR to NEXT instruction loop and shifts the program execution to the pointer
specified by (P). Only the pointer numbers within the same program file can be specified in (P). If a pointer in another
program is specified in (P), an operation error occurs.

FOR K** ---q) o
Forced When the BREAK instruction is
fﬂﬂlﬂﬁtﬁm not executed, the program

When the forced terminationJ instruction as many times as
condition is satisfied specified by the FOR

NEXT |> ____J instruction.

|

BREAK | (d) ‘ P) |_ 3 execution returns to the FOR
|
I

/
O —

* In (d), the number of remaining FOR to NEXT instruction loops at the forced termination is stored. Note that the number
includes the loop when the BREAK(P) instructions are executed.

» The BREAK(P) instructions can be used only between the FOR and NEXT instructions.

+ The BREAK(P) instructions can be used for only one nesting level. To forcibly terminate multiple nesting levels, execute as
many BREAK(P) instructions as the number of nesting levels.

Precautions

« If the branch pointer number of the BREAK instruction outside two nesting levels or more is specified, an operation error
occurs and the program execution stops when the BREAK instruction is executed.

342 7 APPLICATION INSTRUCTION
7.4 Structuring instruction

- Operation error

3340 The branch pointer number outside two nesting levels or more is specified.
3342 The BREAK(P) instructions are used other than between the FOR and NEXT instructions.
3380 The destination pointer specified by (P) does not exist.

A pointer in other program file is specified in (P).

7 APPLICATION INSTRUCTION 4
7.4 Structuring instruction 3 3

Calling a subroutine program

CALL(P)

This instruction executes the subroutine program specified by (P).

Ladder diagram Structured text
Not supported
(I ()
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
P) Start pointer number of the subroutine program — Device name ANY16
HEApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |T,sT,c,p, |umweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(P) — — — — — — | = — — — |=|— |0

Processing. details

» When the CALL(P) instructions are executed, the subroutine program specified by the pointer (P) is executed. The
CALL(P) instructions can execute a subroutine program specified by a pointer in the same program file or by a common

pointer.

Main routine program

CALL (P)

END

- —

Subroutine program

(P)

RET(SRET)

» While the command input is ON, the CALL instruction is executed and the program execution jumps to a step with a label
(Pn). Then, a subroutine program with the label (Pn) is executed. When the RET (SRET) instruction is executed, the
program execution returns to the step following the CALL instruction. At the end of the main program, put FEND instruction.
Put a label (Pn) for the CALL instruction after the FEND instruction.

H]

User program

H

Command

— —— cau

L

Pn

H]

User program

-

FEND '*

-

SM400
Label User program
Lol |—] o
RUN Monitor
(normally on)

7 APPLICATION INSTRUCTION
7.4 Structuring instruction

344

RET o

Main program

Program area from the step 0 to FEND instruction

Subroutine program

Program area from a label Pn to RET instruction

» The CALL(P) instructions can be nested up to 16 levels. However, the 16 levels are the total of the CALL(P) and XCALL
instructions.

I:CALL PO:I - ?

|:C/|—\LL P‘lO] |:CALL P20:| /T
I:FElND] |: RET:| |: RET :| RET:|
I: END :I

Precautions

* In the CALL instruction, the same number can be used two or more times in operands (P). However, do not use a label (P)
and number used in another instruction (CJ instruction).

L e n

X30

— }—{ cALLP | Po |
lE’éslabel _| }—| User program I—

In a subroutine (or interrupt routine), use timers for routine programs. These timers count when a coil instruction or END

instruction is executed. After a timer reaches the set value, the output contact is activated when the coil instruction or END

instruction is executed. Because general timers count only when the coil instruction is executed, they do not count if they
are used in subroutines in which the coil instruction is executed only under some conditions.

If a retentive type 1 ms timer is used in a subroutine (interrupt routine), note that the output contact is activated when the
first coil instruction (or subroutine) is executed after the timer reaches its set value.

Devices which were set to ON in a subroutine (or interrupt routine) are latched in the ON status even after the subroutine is
finished. (Refer to the program example shown below). When the RST instruction for a timer or counter is executed, the
reset status of the timer or counter is latched also. For turning OFF such a device latched in the ON status or for canceling
such a timer or counter latched in the reset status, reset such a device in the main program after the subroutine is finished,
or program a sequence for resetting such a device or for deactivating the RST instruction in the subroutine. (Refer to the

program example shown below).
Example in which outputs are latched

In the following program example, the counter CO is provided to count X1. When X0 is input, the subroutine PO is executed only in one scan, and then the
counter is reset and Y7 is output.

[Program example]

X0

—HF—— cawr [o
X1

- e

FEND

B

K10

i

X0

PO b—1——— RsT | <o

Y7

B

?

RET

7 APPLICATION INSTRUCTION 4
7.4 Structuring instruction 3 5

346

[Timing chart]
Subroutine is executed.

Execution of subroutine
PO triggered by X0 l

N J
Y

Because the CO reset instruction is valid,

the current value of CO remains
\?;L"grgf Court1ter unchanged even if a pulses are input.

rese
Co
]

RST 4
co Remains reset

: |
Y7 T Y7 being output ,J

Outputs are latched.

Example in which latched outputs are reset (countermeasures)

[Program example]
X0
——— caur | P0

X1 K10
| O

X2 : Program to reset Y7 at
}— | an arbitrary timing

g a

X0

PO f—— RrRsT | c0o H ®

: SM401 :

| L r [@ H®

1 . 1

: RUN Mlclmgo';F I Program to reset the preceding CO

[I A (_ngrg’nzz el _) ____________ . reset instruction inside the subroutine

-
RET

7 APPLICATION INSTRUCTION
7.4 Structuring instruction

[Timing chart]
Subroutine is executed.

Execution of subroutine
PO triggered by X0 l

x T 1

4
&

Current 2

value of

co 1

Counter is reset Counter reset instruction is

RST (part @ in above—» <«— deactivated (part in

Cco program). above program).

Y7 1 |

l
Resets Y7.
2 fl
Operation.error
Error code Description
(SD0/SD8067)
3360 The 17th level of the nesting is executed.
3380 The subroutine program specified by the pointer in the CALL(P) instructions do not exist.
3381 After the CALL(P) instructions are executed, the END, FEND, GOEND, or STOP instruction is executed before the RET (SRET)
instruction is executed.

3382 The RET (SRET) instruction is executed before the CALL(P) instructions are executed.

7 APPLICATION INSTRUCTION 4
7.4 Structuring instruction 3 7

Returning from the subroutine program

RET/SRET

These instructions indicate an end of a subroutine program.
The RET instruction can be used as SRET.

Ladder diagram Structured text

Not supported

L1

Processing details
» These instructions indicate an end of a subroutine program.
» When the RET instruction is executed, the program execution returns to the step following the CALL(P) or XCALL

instruction that called the subroutine program.

Main routine program Subroutine program

(P)

CALL (P) / RET(SRET)

END

Precautions

« If the RET (SRET) instruction is executed in a user interrupt program (I-IRET), a compiling error occurs.

Operation.error

Error code Description

(SD0/SD8067)

3381 The END, FEND, GOEND, or STOP instruction is executed before the RET instruction is executed.

3382 While the number of nesting levels is decreased by the return instruction, the result becomes negative.
(The number of RET (SRET) instructions is larger than that of the CALL instructions.)

348 7 APPLICATION INSTRUCTION
7.4 Structuring instruction

Calling a subroutine program

XCALL

This instruction executes CALL for (turns on and executes) the subroutine program specified by (P) when the execution

condition is established. When the condition is turned off, this instruction executes FCALL for (turns off and terminates) the

subroutine program.

Ladder diagram Structured text
Not supported
[I ()
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
P) Start pointer number of the subroutine program — Device name ANY16
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(P) — — — — — — | = — — - |=|= |0

Processing details

» The XCALL instruction controls the execution and non-execution processing of subroutine programs.
« In the execution of subroutine programs, each coil instruction is operated according to the ON/OFF status of the condition contact.

« In the non-execution processing of subroutine programs, each coil instruction is operated with the OFF status of the condition contact applied.

» The following table lists the operation result of each coil instruction after the non-execution processing. Regardless of the

status of the condition contact, the following result is applied.

Device used for operation

Operation result (device status)

1 ms timer, 10 ms timer, 100 ms timer

0

1 ms retentive timer, 10 ms retentive timer, 100 ms retentive timer, counter

The current

status is held.

Device in the OUT instruction

Forcibly turned off.

Device in the SET, RST, or SFT(P) instruction or basic/applied instruction

The current

status is held.

PLS instruction, pulse instruction (OP)

Same as when the condition contact is off

* The following shows the operation of the XCALL instruction.
XCALL
FEND |

X0
i1

P1 | Mo
—

ol

X0

(1) Rising edge of X0 (OFF — ON): The subroutine program of P1 is executed.

OFF

(2) While X0 is on: The subroutine program of P1 is executed. (The rising edge of X0 is not included.)

(3) Falling edge of X0 (ON — OFF): The non-execution processing of the subroutine program of P1 is executed.

7 APPLICATION INSTRUCTION
7.4 Structuring instruction

349

» The XCALL instruction can be nested up to 16 levels. However, the 16 levels are the total of the CALL(P) and XCALL

instructions.

|:XCALL PO X0:| - @ /v? @
I:XCALL P20 X20:| / T

|: XCALL P10 X10:|
|:FEND:| |: RET :| |: RET :| |: RET:|
|: END:|
- Operation error

3360 The 17th level of the nesting is executed.
3380 The subroutine program specified by the pointer in the XCALL instruction does not exist.
After the XCALL instruction is executed, the END, FEND, GOEND, or STOP instruction is executed before the RET instruction is

3381
executed.

350 7 APPLICATION INSTRUCTION
7.4 Structuring instruction

7.5 Data table operation instruction

Reading the oldest data from the data table

SFRD(P)

These instructions read data for first-in first-out control.

Ladder diagram

Structured text

—C=d]e || m }—{

ENO:=SFRD(EN,s,n,d);
ENO:=SFRDP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Start number of the word device storing the data — 16-bit signed binary ANY16
(The start is a pointer. The data is stored starting from (s)+1.)
(d) Word device number storing data taken out first — 16-bit signed binary ANY16
(n) Number of stored points plus "1". "+1" is required for the pointer. | 2 to 32768 16-bit signed binary ANY16
HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others

X,Y,M,L, |uD\GO|T,ST, |T,ST,c,D, |umweO|z |Lc |[Lz |specification [y Tp [g

SM, F, B, SB C,LC | W, SD, SW,R
(s) O — — O O o |— — @) — - = |—
(d) O — — O O o |— — @) — - = |—
(n) O — — O O o |— — @) O - |— |-

7 APPLICATION INSTRUCTION 1
7.5 Data table operation instruction 35

Processing details

» These instructions transfer (read) (s)+1, which was sequentially written by the SFWR instruction, to (d), and shift the word
data of (n)-1 points starting from (s)+1 upward by 1 word. Then, these instructions decrease the number of data points
stored in (s) by 1.

0| |0 — 0
o

A

A Pointer Pointer Pointer

@
(s) (s) = (n) (s) (811 - (s) (s) (811 — (s)
(

s)+1 (s)+2 EE— (s)+1 (s)+3 —> (s)+2

(s)+2 (s)+3 (s)+4
(s)+3 (s)+4 s
(54 (5)+5 R
(s)+5 —> (s)+6 —> (8)+7

™ (s)+6 precded at (s)+7 Executed at the 2nd time e
(517 (s)+8 oo
(s)+8 (s)+9 (s)+10
(s)+9 (s)+10

(s)+10

. (s)*+(n)
Word data is Word data is
(5r+n) shifted.) shifted.

v (s)+(n) (s)*+(n) (s)+(n)

» The data of (s)+1 is transferred (read) to (d). Accompanied by this transfer, the contents of the pointer (s) decrease, and the
data is shifted upward by 1 word. (When the continuous operation type SFRD instruction is used, the contents are stored in
turn in each operation cycle. Use the pulse operation type SFRDP instruction in programming.)

Precautions

» The contents of (s)+(n) do not change by reading.

» When the continuous operation type (SFRD) instruction is used, data is read in turn in each scan time (operation cycle), but
the contents of (s)+(n) do not change.

* When 0 is set in the pointer (s), no processing is executed and the contents of (d) do not change.

Operation.error

Error code Description
(SD0/SD8067)
2820 The number of device points (n) from (s) exceed the device range.
3405 The value set in (n) is other than the following.
2<(n)<32768
In (s), a negative value is specified.

352 7 APPLICATION INSTRUCTION
7.5 Data table operation instruction

Reading the newest data from the data table

These instructions read the latest data written by a shift write (SFWR) instruction for FIFO/FILO control.

ENO:=POP(EN,s,n,d);
— ENO:=POPP(EN,s,n.d);
—||:___:||(s)|(d)|<n)}—{ (ENond)

EDescriptions, ranges, and data types

(s) Head device number storing the first-in data (including pointer — 16-bit signed binary ANY16
data) (start number of the word device storing the data)

(d) Device number storing last-out data — 16-bit signed binary ANY16

(n) Length of data array 2 1o 32768 16-bit unsigned binary | ANY16
(Add "1" because pointer data is also included.)

BApplicable devices

7 APPLICATION INSTRUCTION
7.5 Data table operation instruction 353

Processing details

» Every time the instruction is executed for the word devices (s) to (s)+(n)-1, a device "(s) + Pointer data (s)" is read to (d).
(The last data entry written by the shift write (SFWR) instruction for first-in first-out control is read to (d).) Specify any value
between 2 and 32767 for (n).

» Subtract "1" from the value of the pointer data (s).
Data for FILO control

Description
(s) Pointer data (amount of data stored)
(s)+1 Data area
(s)+27 (First-in data written by shift write (SFWR) instruction)
(s)+3
(s)*(n)-3
(s)*(n)-2
(s)*(n)-1
Point Pointer
— © sz B - (©) Ka > K3 (d)
(s)+1 (s)+1
(s)+2 (s)+2
(s)+3 (s)+3
(s)+4 (s)+4 }7
Data area (s)+5 (s)+5
|:> No data area
(s)+6 (s)+6
(s)+(n)-2 (s)*(n)-2
L | @k (s)*+(n)-1
Precautions

« If programed in the continuous operation type, the POP(P) instructions are executed in every operation cycle. As a result,

expected operation may not be achieved. Usually, program the POP(P) instructions in the "pulse operation type", or let
them be executed by a "pulsed command contact".

* When the current value of the pointer (s) is "0", the zero flag SM8020 turns ON and the POP(P) instructions are not
executed.

* When the current value of the pointer (s) is "1", "0" is written to (s) and the zero flag SM8020 turns ON.

Operation.error

Error code Description

(SD0/SD8067)

2820 The device range (s)+(n)-1 exceeds the device.
3405 (s) is larger than (n)-1.

(s) is smaller than 0.

The value set in (n) is other than the following.
2<(n)<32768

354 7 APPLICATION INSTRUCTION
7.5 Data table operation instruction

Writing data to the data table

These instructions write data for first-in first-out (FIFO) and last-in first-out (LIFO) control.

ENO:=SFWR(EN,s,n,d);
pp— ENO:=SFWRP(EN,s,n,d);
—Jc=ale]e]m }—{ (ENend)

EDescriptions, ranges, and data types

Word device number storing data to be put in first 16-bit signed binary ANY16

(d) Start word device number storing and shifting data — 16-bit signed binary ANY16
(The start is a pointer. The data is stored starting from (d)+1.)

(n) Number of stored points plus "1". 210 32768 16-bit unsigned binary | ANY16

BApplicable devices

(s) @) — — (@) @) o |— — O O - = | =

(d) 0 — — |o o ol|l- |- Jo — | == |-
) o) — — |o o ol|l- |- Jo o |- |- 1]-

7 APPLICATION INSTRUCTION
7.5 Data table operation instruction 355

Processing details

» The contents of (s) are written to "(n)-1" devices from (d)+1, and "1" is added to the number of data stored in (d). For
example, for (d)=0, the contents are written to (d)+1, and for (d)=1, to (d)+2.

. EE O
o

(s)
(©)

4 Pointer (F;(;TFL (d) (d) (Fifil”fe; (d)
(Ko) (K1) KD (K2)
(d)+1 (s) (s)
(d)+2 (d)+2) <
(d)y+3 (d)+3 (d)y+3
(d)+4 (d)+4 (d)+4
(d)+5 :> (d)+5 :> (d)+5
(n) Executed at)

(d)+6 th((a((])stztl(r)r;e (d)+6 Executed at the 2nd time (d)+6
(d)y+7 (d)+7 (d)+7
(d)+8 (d)+8 (d)+8
(d)+9 (d)+9 (d)+9
(d)+10 (d)+10 (d)+10

v (d)*+(n)-1 (d)*+(n)-1 (dy+(n)-1

« At the first execution, the contents of (s) are stored in (d)+1.

* When the contents of (s) are changed and then the instruction is executed again, the new contents of (s) are stored to
(d)+2. So the contents of +2 become equivalent to (s). (When the continuous operation type SFWR instruction is used, the
contents are stored in each operation cycle. Use the pulse operation type SFWRP instruction in programming.) Data is
stored from the right end in the same way, and the number of stored data is specified by the contents of the pointer (d).

Precautions

* In the case of the continuous operation type instruction (SFWR), note that data is stored (overwritten) in every scan time
(operation cycle).

Operation.error

Error code Description
(SD0/SD8067)
2820 The number of device points (n) from (d) exceeds the device range.
3405 The value set in (n) is other than the following.
2<(n)<32768
In (d), a negative value is specified.

356 7 APPLICATION INSTRUCTION
7.5 Data table operation instruction

Inserting data to the data table

FINS(P)

These instructions insert 16-bit data specified by (s) to the data table specified by (d) as the (n)th data.

After these instructions are executed, the data after the (n)th data in the data table is moved down by one data point.

Ladder diagram

Structured text

—c=3dle|ao|mn }—{

ENO:=FINS(EN,s,n,d);
ENO:=FINSP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) Head device number where the insertion-target data is stored — 16-bit signed binary ANY16

(d) Start number of the table — Word ANY16

(n) Data insertion position in the table 1 to 32767 16-bit unsigned binary | ANY16

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,0, |umweO|z |Lc |[Lz | specification [yTg Tg 7
SM, F, B, SB C,LC | W,SD, SW,R

(s) O — — O O o |— — @) O - = |—

(d) — — — O — - | — — @) — - |— |—

(n) O — — O O o |— — @) O - |— |-

Processing details

» These instructions insert 16-bit binary data specified by (s) to the data table specified by (d) as the (n)th data. After these
instructions are executed, the data after the (n)th data in the data table is moved down by one data point.

Data table
(d) 3 [*— Number of stored data
(d)+1 5432
(d)+2 1234
(d)+3 -123
(d)+4 0
(d)+5 0

©

Precautions

(d)

(d)+1
(d)+
(d
(
(

N

)+

w

d)+
d)+

[S I

Data table

4
5432
4444
1234
-123

0
L

I

Data table range

» The device range used in a data table should be controlled by the user.
» The data table has (d) number of stored data starting from ((d)+1).

When 2 is set in (n), the data is inserted

in (d)+2.

7 APPLICATION INSTRUCTION
7.5 Data table operation instruction

357

- Operation error

2820 When the FINS(P) instructions are executed, the data table range exceeds the corresponding device range.

3405 When the FINS(P) instructions are executed, the value (n) exceeds the corresponding device range of the table (d).

When the FINS(P) instructions are executed, the table position (n) where the data is inserted exceeds "the number of stored data points +
1"

The value set in (n) is other than the following.
2<(n)<32767

358 7 APPLICATION INSTRUCTION
7.5 Data table operation instruction

Deleting data from the data table

FDEL(P)

These instructions remove the (n)th data in the data table specified by (d) and store the data in the device specified by (s).
After these instructions are executed, the data after the (n)+1th data in the data table is moved up by one data point.

Ladder diagram

Structured text

—c=3dle|ao|mn }—{

ENO:=FDEL(EN,s,n,d);
ENO:=FDELP(EN,s,n,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device number for storing the data to be deleted — 16-bit signed binary ANY16
(d) Start number of the table — Word ANY16
(n) Position of the data to be deleted in the table 1to 32767 16-bit unsigned binary | ANY16
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,0, |umweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s) O — — O O o |— — @) — - = |—
(d) — — — O — - | — — @) — - |— |—
(n) O — — O O o |— — @) O - |— |-

Processing details

» These instructions remove the (n)th data in the data table specified by (d) and store the data in the device specified by (s).
After these instructions are executed, the data after the (n)+1th data in the data table is moved up by one data point.

Data table
(d) 4
(d)+1 5432
(d)+2 3333
(d)+3 4444
(d)+4 1234
(d)+5 0

L

R

When (n) is 3, (d)+3 is the target.

Precautions

(d)

(d)+1
(d)+2
(d)+3
(d)+4
(d)+5

(s)

Data table

3
5432
3333
1234

0
b

4444

* The device range used in a data table should be controlled by the user.

« The data table has (d) number of stored data starting from ((d)+1).

0 le—"0" is stored.

7 APPLICATION INSTRUCTION
7.5 Data table operation instruction

359

- Operation error

2820 When the FDEL(P) instructions are executed, the data table range exceeds the corresponding device range.

3405 When the FDEL(P) instructions are executed, the value (n) exceeds the corresponding device range of the table (d).

When 0 is set in (d), and the FDEL(P) instructions are executed.

When the FDEL(P) instructions are executed, the table position (n) where the data to be deleted is stored exceeds the number of stored
data points.

The value set in (n) is other than the following.
2<(n)<32767

360 7 APPLICATION INSTRUCTION
7.5 Data table operation instruction

7.6

Character string operation instruction

Comparing character strings

LD$C], AND$LOI, ORSO

These instructions perform a comparison operation between the character string data in the device specified by (s1) and later
and the character string data in the device specified by (s2) and later. (Devices are used as a normally open contact.)

Ladder diagram

Structured text

Not supported
WCIZTO 6N |6 f——
ANDC T T —{ L[en | 62—
|]
[
OR[. 7]
— L 00|62
($=, $<>, $>, $<=, $<, or $>= enters 0.)
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) Comparison data or head device number where the comparison | — Character string Character string
data is stored
(s2) Comparison data or head device number where the comparison | — Character string Character string
data is stored

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |T,sT,c,D, |umeO|z |Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R

(s1) - — - o™ — i — O - |— |10 |—

(s2) — — — o — — | = — O - |= 10 |—

*1 T, ST, C cannot be used.

Processing details

» These instructions perform a comparison operation between the character string data specified by (s1) and the character
string data specified by (s2). (Devices are used as a normally open contact.)
* In the comparison operation, the ASCII codes of the character strings are compared one by one from the start of the

strings.

» Character strings in the devices specified by (s1) and (s2) to a device that stores 00H are compared.
* When all the character strings match, the comparison is considered as matched.

b15 - b8b7) b15 -~ b8b7 b0
(s1) 42H(B) : 41H (A) (s2) 42H(B) : 41H (A)
(s1)+1| 44H (D) : 43H(C) (s2)+1| 44H (D) : 43H(C)
(s1+2| 00H | 45H(E) (s2+2| 00H | 45H(E)
"ABCDE" "ABCDE"

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

361

Instruction symbol in O

Result

Instruction symbol in O

Result

$= Conductive state $<= Conductive state
$<> Non-conductive state $< Non-conductive state
$> Conductive state $>= Conductive state

« When the character strings are different, the string with a large character code is considered as the large one.

b15 b8 b7 b0 b15 b8 b7 b0
(s1) 42H (B) + 41H (A) (s2) 42H (B) + 41H (A)
(s1)+1| 44H(D) | 43H(C) |:| (s2)+1| 44H(D) | 43H(C)
(s1)+2 00H | 45H(F) (s2)+2 00H | 45H(E)
"ABCDF" "ABCDE"
Instruction symbol in O | Result Instruction symbol in 0 | Result

$= Non-conductive state $<= Non-conductive state
$<> Conductive state $< Non-conductive state
$> Conductive state $>= Conductive state

* When the character strings are different, the magnitude relation between them is determined based on the size of the first different character code.

b15 - b8 b7 b0 b15 - b8 b7 bo
1) | 32H@) | 3H@A) (s2) 32H(2) | 31H (1)
(11| 34H@) | 33H @) |:| (s2+1| 33H@) | 33H4)
12| 00H ! 35H(5) 22| 00H | 35H(5)
"12345" "12435"
Instruction symbol in O Result Instruction symbol in O Result

$= Non-conductive state $<= Conductive state
$<> Conductive state $< Conductive state
$> Non-conductive state $>= Non-conductive state

* When the length of the character strings specified by (s1) and (s2) is different, the longer character string is considered as

the large one.

b15 b8 b7 b0 b15 b8 b7 b0
(s1) 32H(2) | 31H (1) (s2) 32H((2) | 31H(1)
(s1)+1| 34H(4) | 33H(3) |:| (s2)+1| 34H @) | 33H(3)
(s1)+2 | 36H(6) | 35H (5) (s2)+2| 36H(6) | 35H(5)
(s1)+3 00H | 37H(7) (s2)+3 00H | 00H

"1234562‘ "123456"

Instruction symbol in O | Result Instruction symbol in O | Result
$= Non-conductive state $<= Non-conductive state
$<> Conductive state $< Non-conductive state
$> Conductive state $>= Conductive state

362

« If the character string specified by (s1) or (s2) has more than 16383 characters, the operation result is the non-conductive

state.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

Precautions

* In character string comparison operation, if the target device range does not have "00H", the values until the last number of
the device are retrieved. Thus, even if the target device range does not have "00H", a comparison operation result is output

when a mismatch between the acquired character strings is detected.

[Example]
LD$= | D7998 | D10 @
(s1) (s2)
Data of (s1) Data of (s2)
D7998 | 42H(B) | 41H(A) D10 | 5A(Z) |41H(A)
D7999 | 44H(D) | 43H(C) D11 | 00H |[43H(C)

* For the data specified by (s1) and (s2) as shown above, the second character is different between them. Thus, the

operation result is non-conductive.

Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 363

Concatenating character strings

$+(P) [For 2 operands]

These instructions concatenate the character string data stored in the device specified by (s) and later to the end of the
character string data stored in the device specified by (d) and later, and store the concatenated string in the device specified
by (d) and later.

Ladder diagram Structured text
Not supported
—C=J]e e }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Head device number storing data to be concatenated or data, or | — Character string Character string
directly specified character string
(d) Head device number storing data to which another data is — Character string Character string
concatenated
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,D, |umeO|z |Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(s) — — — o™ — — | — — ©) — — O |—
(d) — — — o — i — O - | == |-

*1 T, ST, C cannot be used.

Processing details

» These instructions concatenate the character string data stored in the device specified by (s) and later to the end of the
character string data stored in the device specified by (d) and later, and store the concatenated string in the device
specified by (d) and later.

b15 - b8b7 - b0 b15 - b8b7 - b0 b15 - b8b7 - b0

(d | 42H(B) ! 41H(A) () 32H(2) | 31H (1) (d | 42H(B) | 41H(A)
(d)+1 | 44H (D) | 43H(C) + (91| 34H@) | 3BH@) | [> (d)*1]| 44H(D) | 43H(C)
(d+2 | _00H | 45H(E) (s)+2 | 36H(6) i 35H(5) (d)*2| 31H(1) | 45H (E)
"ABCDE" (s)+3 0000H (d)+3| 33H(3) | 32H(2)

"123456" (d)+4 | 35H(5) | 34H (4)

(d)*5| 00H | 36H(6)

"ABCDE123456"

« Character strings in the devices specified by (s) and (d) up to a device that stores O0H are concatenated.
» When character strings are concatenated, 00H indicating an end of the character string specified by (d) is ignored and the
character string specified by (s) is concatenated to the last character of (d).

7 APPLICATION INSTRUCTION
364

7.6 Character string operation instruction

- Operation error

2820 In the corresponding device range after the device specified by (s), "00H" does not exist.

In the corresponding device range after the device specified by (d), "00H" does not exist.

3406 The whole concatenated character string cannot be stored in the devices from the device specified by (d) to the last device in the
corresponding device range.

The number of characters of the character string in the device specified by (s)+(d) exceeds 16383..

3405 The character string specified by (s) has more than 16383 characters.

The character string specified by (d) has more than 16383 characters.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 365

$+(P) [For 3 operands]

These instructions concatenate the character string data stored in the device specified by (s2) and later to the end of the
character string data stored in the device specified by (s1) and later, and store the concatenated string in the device specified
by (d) and later.

Ladder diagram Structured text
Not supported
— = a]en]ea] @ }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) Head device number storing data to which another data is — Character string Character string
concatenated or data, or directly specified character string
(s2) Head device number storing data to be concatenated or data, or | — Character string Character string
directly specified character string
(d) Head device number for storing the concatenated data — Character string Character string
HMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,0, |umweO|z |Lc |Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) — — — o — - | — — @) — - |0 | =
(s2) — — — o1 — - | — — @) — — |0 |—
C) - - — o™ - e — @) - == |=

*1 T, ST, C cannot be used.

Processing. details

These instructions concatenate the character string data stored in the device specified by (s2) and later to the end of the
character string data stored in the device specified by (s1) and later, and store the concatenated string in the device
specified by (d) and later.

» Character strings in the devices specified by (s1) and (s2) up to a device that stores 00H are concatenated.

b15 -+ b8b7 - b0 b15 -+ b8b7 - b0 b15 -+ b8b7 - b0
(s1) 46H (F) + 48H (H) (s2) 35H (5) | 31H (1) (d) 46H (F) | 48H (H)
(s1)+1 | 2DH(-) | 41H(A) + (s2)+1| 39H(9) ' 33H(3) [> (d)+1| 2DH(-) | 41H(A)
(s1)+2 00H (s2)+2 00H | 41H(A) (dy+2 | 35H(5) : 31H (1)
(d)+3| 39H(9) : 33H(3)
(d)+4 00H | 41H(A)

» When character strings are concatenated, 00H indicating an end of the character string specified by (s1) is ignored and the
character string specified by (s2) is concatenated to the last character of (s1).

« After two character strings are connected, "00H" is automatically added at the end. When the number of characters after
the concatenation is odd, O0H is stored in the upper byte of the device storing the last character. When the number is even,
0000H is stored in the device after the last character.

Precautions

« For direct specification, up to 32 characters can be specified (input). When word devices are specified in (s1) or (s2), this
restriction (up to 32 characters) is not applicable.
* When the values in both (s1) and (s2) start from "00H" (that is, when the number of characters is "0"), "0000H" is stored in

(d).

7 APPLICATION INSTRUCTION
366 7.6 Character string operation instruction

- Operation error

2820 In the corresponding device range after the device specified by (s1), "O0H" does not exist.
In the corresponding device range after the device specified by (s2), "00H" does not exist.
2821 The numbers of the character string-storing devices specified by (s1), (s2), and (d) overlap.
3405 The character string specified by (s1) has more than 16383 characters.
The character string specified by (s2) has more than 16383 characters.
3406 The character string specified by (d) has more than 16383 characters.

The whole concatenated character string cannot be stored in the devices from the device specified by (d) to the last device in the
corresponding device range.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 367

Transferring character strings

$MOV(P)
These instructions transfer the character string data specified by (s) to the device specified by (d) and later.
Ladder diagram Structured text
Not supported
—C=0le e }—{
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Character string to be transferred (up to 255 characters) or head | — Character string Character string
device number storing a character string
(d) Head device number storing transferred character string — Character string Character string
HEApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
s) — — - o — — | = — o — |=1]o |—=
C) - - — o™ - e — @) - == |=

*1 T, ST, C cannot be used.

Processing details

» These instructions transfer the character string data specified by (s) to the device specified by (d) and later. A character
string enclosed with double quotation marks and specified by (s) or stored in the devices from the device specified by (s) to
the device storing 00H is transferred in a batch.

b15 b8b7 b0 b15 b8b7 b0
(s) 2nd character H 1st character (d) 2nd character | 1st character
(s)+1 4th character | 3rd character (d)+1 4th character | 3rd character
(s)*+2 6th character | 5th character |:> (d)+2 6th character | 5th character
: | — — 5 — —
(s)+n | 00H | "n"th character | (d)*+n | 00H . "n"th character |

T— Indicates the end of the character string.
» Even though the device range of the data to be transferred (s) to (s)+n and the device range for storing the transferred data
(d) to (d)+n overlap, the processing is performed normally. For example, when a character string stored in D10 to D13 is
transferred to D11 to D14, the transfer is executed as shown below:

b15 - b8b7 - b0 b15 - b8b7 - b0
D10 | 32H(2) . 31H (1) \-'"‘“—-DJ‘Q 32H(2) + 31H (1) |- Itis the same as the character string before transfer.
D11 34H (4) © 33H(@3) D11 | 32H(2) : 31H(1)
D12 | 36H(6) : 35H(5) |::> D12 | 34H(4) ' 33H(3)
D13 0000H D13 | 36H(6) : 35H(5)
D14 - D14 0000H

* When "00H" is stored in the lower byte of (s)+n, "00H" is stored to both the upper byte and lower byte of (d)+n.

b15 -+ b8b7 - b0 b15 - b8b7 - b0
(s) 42H (B) : 41H (A) (d) 42H (B) 1 41H(A) |- Itis the same as the character string before transfer.
(s)+1 | 44H (D) . 43H(C) |:> (d)+1| 44H (D) . 43H(C)
(s)*+2 | 45H(E) . OOH (d)+2 00H i 00H

The high-order byte is not transferred. T— "00H" is automatically stored in the high-order byte.

7 APPLICATION INSTRUCTION
368 7.6 Character string operation instruction

- Operation error

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.

3405 The character string specified by (s) has more than 16383 characters.

3406 The whole specified character string cannot be stored in the devices from the device specified by (d) to the last device in the
corresponding device range.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 369

Converting 16-bit binary data to decimal ASCII

BINDA(P)(_U)

These instructions convert 16-bit binary data specified by (s) into decimal ASCII codes, and store the converted data in the

device specified by (d) and later.

Ladder diagram

Structured text

—c—=—O[e[w H

ENO:=BINDA(EN,s,d);
ENO:=BINDAP(EN,s,d)

ENO:=BINDA_U(EN,s,d);
ENO:=BINDAP_U(EN,s,d)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) BINDA(P) Binary data to be converted into ASCII codes -32768 to +32767 16-bit signed binary ANY16
BINDA(P)_U 0 to 65535 16-bit unsigned binary | ANY16

(d) Head device number storing conversion result — Character string Character string

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT [TsT,c,p, |umweO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W,SD, SW,R

(s) O — — O O o | — — O O - |— |—

(d) — — — o — - | = — o - | == |-

*1 T, ST, C cannot be used.

Processing details

» These instructions convert 16-bit binary data specified by (s) into decimal ASCII codes, and store the converted data in the

device specified by (d) and later.

b15 b8 b7 b0
b15 b0 (d) ASCII code for ten-thousands place | ASCII code for sign
(s) | | |:> (d)+1 | ASCII code for hundreds place + ASCII code for thousands place
(d)+2 | ASCII code for ones place | ASCII code for tens place
16-bit binary data (d)+3 0
[Ex]
When -12345 is specified in (s) (when signed data is specified)
b15 b8 b7 b0
b15 b0 (d) 31H (1) ; 2DH (-)
(s) | - 1. 2 3 4 5 | |:> (d)+1 33H (3) i 32H (2)
(d)+2 35H (5) ' 34H (4)
16-bit binary data (d)+3 0000H

» The following shows the operation result to be stored in (d).
« As sign data, "20H" is stored if the 16-bit binary data is positive, and "2DH" is stored if the data is negative.
« "20H" is stored for "0" on the left side of the valid digits (zero suppression). For "00325", 20H is stored for "00", and the number of digits is 3 based on

305

"0" is stored only
< when SM701 is off.

« In the device specified by (d)+3, 0 is stored when SM701 (output character number selector signal) is off, and the original data remains when SM701 is

on.

Precautions

» The number of occupied points of (d) is 3 when SM701 is on, and 4 when SM701 is off.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

370

2820 The device specified by (d) exceeds the corresponding device range.

7 APPLICATION INSTRUCTION 1
7.6 Character string operation instruction 37

Converting 32-bit binary data to decimal ASCII

DBINDA(P)(_U)

These instructions convert 32-bit binary data specified by (s) into decimal ASCII codes, and store the converted data in the
device specified by (d) and later.

Ladder diagram Structured text
ENO:=DBINDA(EN,s,d); ENO:=DBINDA_U(EN,s,d);
p— ENO:=DBINDAP(EN,s,d); ENO:=DBINDAP_U(EN,s,d);
—||:.__:||(s)|<d>}—{ EN.s.d) _UENsd)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s) DBINDA(P) Binary data to be converted into ASCII codes -2147483648 to +2147483647 | 32-bit signed binary ANY32
DBINDA(P)_U 0 to 4294967295 32-bit unsigned binary | ANY32

(d) Head device number storing conversion result | — Character string Character string

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT [TsT,c,p, |umweO|z |Lc |[Lz | specification [y e [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — O O O O O O O - | = |—

(d) — — — o — - | = — o - | == |-

*1 T, ST, C cannot be used.

Processing details

» These instructions convert 32-bit binary data specified by (s) into decimal ASCII codes, and store the converted data in the
device specified by (d) and later.

b15 b8 b7 b0

(d) | ASCII code for billions place | ASCII code for sign

(s)+1 (s) (d)+1 | AsClI code for ten-millions place | ASCII code for hundred-millions place

s)+ S

X - - (d)+2 | ASCII code for hundred-thousands place 1 ASCII code for millions place
| high-order 16 bits I | Low-order 16 bits l |:> :
(d)+3 | ASCII code for thousands place 1 ASCII code for ten-thousands place
32-bit binary data (d)+4 | ASCII code for tens place | ASCII code for hundreds place

(d)+5 | 0 or 20H 1 ASCII code for ones place

T— When SM701 is off: 0, when SM701 is on: 20H

When -12345678 is specified in (s) (when signed data is specified)

b15 b8b7 b0
@ 20H (space) 2DH (-)
T
-1234 @I (d)+3 35H (5) : 34H (4)
(d)+4 37H (7) : 36H (6)
(d)+5 00H or 20H ! 38H (8)

« The following shows the operation result to be stored in (d).
« As sign data, "20H" is stored if the 16-bit binary data is positive, and "2DH" is stored if the data is negative.

« "20H" is stored for "0" on the left side of the valid digits (zero suppression). For "0012034560", 20H is stored for "00", and the number of digits is 8
based on "12034560".

« In the upper 8 bits of the device specified by (d)+5, 0 is stored when SM701 (output character number selector signal) is off, and 20H is stored when
SM701 is on.

2 7 APPLICATION INSTRUCTION
37 7.6 Character string operation instruction

- Precautions

* (d) occupies six points.

- Operation error

2820 The device specified by (d) exceeds the corresponding device range.

7 APPLICATION INSTRUCTION 373
7.6 Character string operation instruction

Converting HEX code data to ASCII

These instructions convert the (n) characters (digits) within the hexadecimal code data specified by (s) to ASCII, and store the
converted data in the device specified by (d) and later.

ENO:=ASCI(EN,s,n,d);
pp— ENO:=ASCIP(EN,s,n,d);
—||:___:||(s)|(d)|<n>}—{ (ENsn)

EDescriptions, ranges, and data types

(s) Head device number storing hexadecimal code to be converted — 16-bit signed binary ANY16
(d) Head device number storing converted ASCII code — Character string Character string
(n) Number of characters (digits) of hexadecimal code to be 1 to 32767 16-bit unsigned binary | ANY16
converted
BApplicable devices

(s) O — — o O o |- — o o |- |- |-
(d) o} — — o o} - | = — o} e e e
(n) O — - ¢ O o |- - @) o |= |- |-

*1 T, ST, C cannot be used.

4 7 APPLICATION INSTRUCTION
37 7.6 Character string operation instruction

Processing details

» These instructions convert the (n) characters (digits) within the hexadecimal code data specified by (s) to ASCII, and store
the converted data in the device specified by (d) and later.
» The 16-bit mode and 8-bit mode options are available for the ASCI(P) instructions. For the operation in each mode, refer to

the proceeding pages.
« 16-bit conversion mode (while SM8161 is OFF)
Each digit of hexadecimal data stored in the device specified by (s) and later is converted into ASCII code, and transferred to the upper 8 bits and lower 8
bits of each device specified by (d) and later. SM8161 must always be off in the 16-bit conversion mode.
In the following program, conversion is executed as follows:

SM400
Devices specified by (s) and later
| @— 16-bit mode (D100)=0ABCH
X10 (D101)=1234H
F— asci | ptoo | D200 K4 (D102)=5678H

BENumber of specified digits (characters) and conversion result

o K1 K2 K3 K4 K5 K6 K7 K8 K9
(d)

D200 lowest-order byte "c" "B" "A" "0" 4" "3" "o e ngy
D200 highest-order byte "c" "B" "A" "0" "4" 3" non e
D201 lowest-order byte "c" "B" "A" "0" 4" "3" "2"
D201 highest-order byte "C" "B" "A" "o" g ngn
D202 lowest-order byte "c" "g" A" Qg ngn
D202 highest-order byte oy "B" nAn no
D203 lowest-order byte Do not change e "g" nAn
D203 highest-order byte g =
D204 lowest-order byte e

HBit configuration when (n) is K4

D100 = 0ABCH
o|o|o|o1|0|1|01|0|1|1 1|1|0|0 ASCll code
0 A B C "0" = 30H "{" = 31H "5" = 35H
D200 A= 411 v = 3914 —
o|1|o|o|o|o|o|1o|o|1|1|o|o|o|o
"B" = 42H "3n = 33H "7" = 37H
"A" 5 41H "0" — 30H
"C" = 43H "4" = 34H "g" = 38H

D201
o|1|o|0|0|0|1|10|1|o|0|0|0|1|0
"C" 5 43H "B" s 42H

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 375

« 8-bit conversion mode (while SM8161 is ON)
Each digit of hexadecimal data stored in the device specified by (s) and later is converted into ASCII code, and transferred to the lower 8 bits of each
device specified by (d) and later. SM8161 must always be on in the 8-bit conversion mode.
In the following program, conversion is executed as follows:

SM400
| . Devices specified by (s) and later
SM8161 §
' O— 8-bit mode (D100)=0ABCH
X10 (D101)=1234H
F—— asci | p1oo | D200 K4 (D102)=5678H

When SM8161 is set to on, the 8-bit mode is selected.
The conversion processing is executed as follows.

L 16 bits N
*
0 Low-order 8 bits
Destination

B Number of specified digits (characters) and conversion result

o K1 K2 K3 K4 K5 K6 K7 K8 K9
(d)

D200 "c" "B" "A" "o" g "3" "2" " "g"
D201 "c" "B" "A" 0" g "3" 2" "
D202 "c" "B" "A" "0" g "3" "2
D203 "c" "B" "A" 0" "y "3"
D204 "cr "B" "A" "o" "y
D205 "cr "B" "A" 0"
D206 Do not change "c" "B" "A"
D207 "c" "B"
D208 "c"

HBit configuration when (n) is K2

D100 = 0ABCH
0|o|o|o1|0|1|01|0|1|1 1|1|o|0 ASCll code
0 A B c "0" = 304 = 311 —
D200 = ASCII code of B = 42H "A" = 41H "o = 324 "6" = 36H
|0|0|o|o|0|0|0|0 o|1|o|o 0|o|1|0
"B" = 42H "3v = 33H "7 = 37H
4 2
"C" = 43H "4" = 34H "g" = 38H

D201 = ASCII code of C = 34H
|0|o|o|o|o|o|0|o o|1|o|o 0|o|1|1

7 APPLICATION INSTRUCTION
376 7.6 Character string operation instruction

Precautions

» When outputting data in the BCD format for a printer, for example, it is necessary to convert binary data into BCD data
before executing the ASCI(P) instructions.

* Whether NULL (00H) is stored after the last character or not depends on the ON/OFF status of the output character number
selector signal SM701. When SM701 is off, NULL (O0H) is stored. When SM701 is on, the original data remains.

» Depending on the ON/OFF status of SM701 and SM8161, the number of devices occupied by (d) differs.

SM701 SM8161 Number of devices occupied by (d)
ON ON Number of letters

ON OFF Number of letters + 2

OFF ON Number of letters + 1

OFF OFF (Number of letters + 2) + 1

* When RS2, HEX, or CCD is used, the extension flag SM8161 is common to other instructions. When using an instruction
described above and the ASCI(P) instructions in the same program, make sure to set SM8161 to ON or OFF just before
each instruction so that SM8161 does not apply to another instruction.

Operation.error

Error code Description

(SD0/SD8067)

2820 The device specified by (s) or (d) exceeds the corresponding device range.
3405 The value specified by (s) is other than any of 1 to 32767.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 377

Converting 16-bit binary data to character string

STR(P)(_U)

These instructions add a decimal point to the 16-bit binary data in the device specified by (s2) at the location specified by (s1),
convert the data to character string data, and store the converted data in the device areas specified by (d) and later.

Ladder diagram Structured text

ENO:=STR(EN,s1,s2,d);
ENO:=STRP(EN,s1,s2,d);

ENO:=STR_U(EN,s1,s2,d);
ENO:=STRP_U(EN,s1,s2,d);

—Cc=d]en|ea] @ }—{

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | STR(P) Head device number where the number of digits of the — 16-bit signed binary ANY16
STR(P)_U conversion target data is stored 16-bit unsigned binary
(s2) | STR(P) Conversion target data -32768 to +32767 | 16-bit signed binary ANY16
STR(P)_U 0 to 65535 16-bit unsigned binary
(d) Head device number for storing the converted data — Character string Character string

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDOweO]|T,ST, |T,sT,c,D, |uodeO|z |Lc |Lz |specification e e Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) o) — — o) o) o |— — o) — - |= |=
(s2)) — — o)) o |— — o) o) - |= |-
(d) — — — o — - | = — o i e

*1 T, ST, C cannot be used.

Processing details

» These instructions add a decimal point to the 16-bit binary data in the device specified by (s2) at the location specified by
(s1), convert the data to character string data, and store the converted data in the device areas specified by (d) and later.

(s1) |Total number of digits
Number of digits of b15 b8 b7 b0
N gecimal part ASCII code in "(Value
specifying number of

=

iTJ

Sign

%{—/
(s2) 16-bit binary data Q

(d)+3

(d)+4

all digits - 1)"th digit

ASCII code for sign

ASCII code in "(Value
specifying number of
all digits - 3)"th digit

ASCII code in "(Value
specifying number of
all digits - 2)"th digit

ASCII code in "(Value
specifying number of
all digits - 5)"th digit

ASCII code in "(Value
specifying number of
all digits - 4)"th digit

ASCII code in "(Value
specifying number of
all digits - 7)"th digit

ASCII code in "(Value
specifying number of
all digits - 6)"th digit

0000H
A

» The total number of digits that can be specified by (s1) is 2 to 8.
« The number of digits in the decimal part that can be specified by (s1)+1 is 0 to 5. Note that the number of digits in the
decimal part must be smaller than or equal to the total number of digits minus 3.

378

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

For specifying number of all digits

"0000H" is automatically stored at the end of the character string.

» The converted character string data are stored in the device areas specified by (d) and later as shown below.
« As sign data, "20H" (space) is stored if the 16-bit binary data is positive, and "2DH" (-) is stored if the data is negative.
« If the number of digits in the decimal part is set to other than 0, "2EH" (.) is automatically stored at the position before the specified number of digits. If
the number of digits in the decimal part is 0, "2EH" (.) is not stored.

Total number of digits 6
Number of digits of decimal part 2 |:> 12.34

N
16-bit binary data 1234 r Number of digits of decimal part

Added automatically

« If the specified number of digits in the decimal part is greater than the number of digits of the 16-bit binary data, 0(s) is automatically added and the data
is regarded as "0.0000".

Total number of digits 6
Number of digits of decimal part 3 :> 0.012

16-bit binary data)

Added automatically

« If the total number of digits excluding the sign and the decimal point is greater than the number of digits of the 16-bit binary data, "20H" (space) is stored
between the sign and the numeric value. If the number of digits of the 16-bit binary data is greater, an error occurs.

Total number of digits 8
Number of digits of decimal part 1 |:> _ 12 3

16-bit binary data s "20H (space)" is stored.

 The value "00H" is automatically stored at the end of the converted character string.

* When the number of all digits is even, "0000H" is stored in the device after the last character. When the number of all digits is odd, "00H" is stored in the
upper byte (8 bits) of the device storing the final character.

Operation.error

Error code Description
(SD0/SD8067)
3401 The number of digits specified by (s1) is smaller than the number of digits plus 2 of the 16-bit binary data in the device specified by (s2).

(The additional 2 digits indicate the sign (+/-) and the decimal point.)

The total number of digits specified by (s1) is out of the valid range (2 to 8).

The number of digits in the decimal part specified by (s1)+1 is out of the valid range (0 to 5).

The relationship between the total number of digits specified by (s1) and the number of digits in the decimal part specified by (s1)+1 does
not satisfy the following.
(Total number of digits)-3 > Number of digits in the decimal part

3406 The device areas storing the character string specified by (d) exceed the corresponding device range.

2820 The device range specified by (s1) exceeds the corresponding device range.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 379

Converting 32-bit binary data to character string

DSTR(P)(_U)

These instructions add a decimal point to the 32-bit binary data in the device specified by (s2) at the location specified by (s1),
convert the data to character string data, and store the converted data in the device areas specified by (d) and later.

Ladder diagram Structured text
ENO:=DSTR(EN,s1,s2,d); ENO:=DSTR_U(EN,s1,s2,d);
— ENO:=DSTRP(EN,s1,s2,d); ENO:=DSTRP_U(EN,s1,s2,d);
—Jc=aen][] @ }—{ () -)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DSTR(P) Head device number where the number of digits | — 16-bit signed binary ANY16
DSTR(P)_U of the conversion target data is stored 16-bit unsigned binary
(s2) | DSTR(P) Conversion target data -2147483648 to +2147483647 | 16-bit signed binary ANY32
DSTR(P)_U 0 to 4294967295 16-bit unsigned binary
(d) Head device number for storing the converted — Character string Character string
data

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDeO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R

(s1) o) — — o) o) o |— — o) - | == 1=

(s2) O — — O O O @) ©) @) O - |— |—

(d) — — — o — — | = — @) - | == |-

*1 T, ST, C cannot be used.

7 APPLICATION INSTRUCTION
380 7.6 Character string operation instruction

Processing details

» These instructions add a decimal point to the 32-bit binary data in the device specified by (s2) at the location specified by
(s1), convert the data to character string data, and store the converted data in the device areas specified by (d) and later.

(s1) Total number of digits
(s1)+1 [Number of digits of decimal part | b15 b8 b7 b0
ASCII code in "(Value
— (d) specifying number of | ASCII code for sign
all digits - 1)"th digit
. ASCII code in "(Value ASCII code in "(Value
| (d)+1 specifying number of specifying number of
all digits - 3)"th digit all digits - 2)"th digit
ASCII code in "(Value ASCII code in "(Value
Sign (d)+2 specifying number of specifying number of
2141 .2 v all digits - 5)"th digit all digits - 4)"th digit
b31 () b16 b5 (__) b0 ASClI code in "(Value | ASCII code in "(Value | For specifying
(d)+3 specifying number of specifying number of number of all
| high-order 16 bits] | Low-order 16 bits] alldigits - 7)'th digit | alldigits - 6)'th digit__| gigits
ASCII code in "(Value ASCII code in "(Value
32-bit binary data (d)+4 specifying number of specifying number of
all digits - 9)"th digit all digits - 8)"th digit
ASCII code in "(Value ASCII code in "(Value
(d)+5 specifying number of specifying number of
all digits - 11)"th digit all digits - 10)"th digit
ASCII code in "(Value
(d)+6 00H specifying number of
= A all digits - 12)"th digit
When -654.321 i ified in (s2 ‘
en -654.321 is specified in (s2) "00H" is automatically stored at the end of the character string.
(s1)
(s1)+1 — b15 b8 b7 b0
36H (6) | 2DH (-)
34H (4) ! 35H (5)
33H (3) ! 2EH ()
31H (1) | 32H (2)
(s2)+1 (s2) 0000H

32-bit binary data -654321
» The total number of digits that can be specified by (s1) is 2 to 13.
» The number of digits in the decimal part that can be specified by (s1)+1 is 0 to 10. Note that the number of digits in the
decimal part must be smaller than or equal to the total number of digits minus 3.

» The converted character string data are stored in the device areas specified by (d) and later as shown below.
« As sign data, "20H" (space) is stored if the 32-bit binary data is positive, and "2DH" (-) is stored if the data is negative.
« If the number of digits in the decimal part is set to other than 0, "2EH" (.) is automatically stored at the position before the specified number of digits. If
the number of digits in the decimal part is 0, "2EH" (.) is not stored.

Total number of digits 10

3
12345678

« If the specified number of digits in the decimal part is greater than the number of digits of the 32-bit binary data, 0(s) is automatically added and the data
is regarded as "0.0000".

Number of digits of decimal part

C—>,.,12345.678
—

L Number of digits of decimal part
Added automatically

32-bit binary data

Total number of digits 13

10
54 321

« If the total number of digits excluding the sign and the decimal point is greater than the number of digits of the 32-bit binary data, "20H" (space) is stored
between the sign and the numeric value. If the number of digits of the 32-bit binary data is greater, an error occurs.

Number of digits of decimal part |:> ..0.0000054321

32-bit binary data
Added automatically

Total number of digits 13

2
-5 43210

* The value "00H" is automatically stored at the end of the converted character string.
« When the number of all digits is even, "0000H" is stored in the device after the last character. When the number of all digits is odd, "00H" is stored in the
upper byte (8 bits) of the device storing the final character.

Number of digits of decimal part

—> -

10

95432

=opes

"20H (space)" is stored.

32-bit binary data

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

381

Operation.error

Error code Description
(SD0/SD8067)
3401 The number of digits specified by (s1) is smaller than the number of digits plus 2 of the 16-bit binary data in the device specified by (s2).

(The additional 2 digits indicate the sign (+/-) and the decimal point.)

The total number of digits specified by (s1) is out of the valid range (2 to 13).

The number of digits in the decimal part specified by (s1)+1 is out of the valid range (0 to 10).

The relationship between the total number of digits specified by (s1) and the number of digits in the decimal part specified by (s1)+1 does
not satisfy the following.
(Total number of digits)-3 > Number of digits in the decimal part

3406 The device areas storing the character string specified by (d) exceed the corresponding device range.

2820 The device range specified by (s1) exceeds the corresponding device range.

2 7 APPLICATION INSTRUCTION
38 7.6 Character string operation instruction

Converting single-precision real number to character string

ESTR(P)/DESTR(P)

These instructions convert the single-precision real number data stored in the device specified by (s1) into a character string
according to the display specification stored in the device specified by (s2) and later, and store the string in the device

specified by (d) and later.
The ESTR(P) instructions can also be used as DESTR(P).

Ladder diagram

Structured text

— = d]en|ea] @ }—{

ENO:=ESTR(EN,s1,s2,d);
ENO:=ESTRP(EN,s1,s2,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Single-precision real number data to be converted or the start 0, 2'126<|(s1)|<2128 Single-precision real Single-precision real
number of the device where data is stored number number
(s2) Head device number storing the display specification of a — 16-bit signed binary ANY16
numeric value to be converted
The device specified in (s2) and following 2 devices are used.
(d) Head device number for storing the converted data — Character string Character string

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,D, |uOeO|z |Lc |Lz |specification [y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) — — — 0) — |0 — o) — o |— |—
(s2) 0 — — o)) — | = — o) — — |—= |=
(d) — — — o — - | = — o} - | == |-

*1 T, ST, C cannot be used.

Processing details

These instructions convert the single-precision real number data stored in the device specified by (s1) into a character

string according to the display specification stored in the device specified by (s2) and later, and store the string in the device
specified by (d) and later. A real number can be directly specified as (s1).

(s2)

(s2)+1
(s2)+2

0: Decimal part format
1: Exponent format

Total number of digits 2 to 24 can be set.

Number of digits of decimal part

The data after conversion varies depending on the display specification stored in (s2).

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 383

EDecimal point format
* When 0 is specified in (s2), the decimal point format is applied.

(s2) [Decimal point format

s2)+1 iai
(s2)*1 | Total number of digits b15 b8 b7 b0
(s2)+2 [Number of digitsof | ASCII code in "(Value
decimal part specifying number of all digits
f_/%

ASCII code for sign
- 1)"th digit

ASCII code in "(Value ASCII code in "(Value
specifying number of all digits specifying number of all digits

'
'
'
'
'
1
- 3)"th digit | - 2)"th digit
0
'
'
'
'
'
'
'
'

ASCII code in "(Value .
specifying number of all digits ,:;:tll((;ode (2EH) for decimal

- 5)"th digit (decimal part)
ASCII code in "(Value ASCII code in "(Value

(s1)+1 (s1) (d)+3 specifying number of all digits specifying number of all digits

: :l - 7)"th digit (decimal part) - B)"th digit (decimal part)

- (d)+4 0000H
Single-precision real number T

"0000H" is automatically stored at the end of the character string.

» When the number of decimal part digits is 0, the number of digits that can be specified by (s2)+1 is "the number of digits (24
at a maximum) > 2". For other than 0, the number of digits that can be specified by (s2)+1 is "the number of digits (24 at a
maximum) > (the number of decimal point digits + 3)".

» The number of digits in the decimal part that can be specified by (s2)+2 is 0 to 7. Note that the number of digits in the
decimal part must be smaller than the total number of digits minus 3.

» For example, when the total number of digits is "8", the number of digits of the decimal part is "3", and "-1.23456" is
specified, data is stored in (d) and later as shown below:

(s2) 0 Total number of digits
(s2)+1 8 Number of digits
(s2)+2 3 — of decimal part b15 b8 b7 b0
X (d) 20H (space) ! 2DH(-)
31H(1) ' 20H (space)
32H(2) 2EH(.)
(s1)+1 (s1) !
(d)+3 35H(5) ' 33H(3)
-1.23 456 |
- (d)+4 0000H
Single-precision real number T

"0000H" is automatically stored at the end of the character string.

4 7 APPLICATION INSTRUCTION
38 7.6 Character string operation instruction

» The converted character string data are stored in the device areas specified by (d) and later as shown below.

« As sign data, "20H" (space) is stored if the single-precision real number is positive, and "2DH" (-) is stored if the data is negative.

« If the decimal part of the single-precision real number data cannot be accommodated in the number of digits of the decimal part, lower digits of the

decimal part are rounded off.

(s2) 0
(s2)+1
(s2)+2

(s1)+1 (s1)

-1.23 456

« If the number of digits in the

the number of digits in the d

Total number of digits
f—)%

Number of digits of decimal pan_[» These digits are rounded off.

decimal part is set to other than 0, "2EH" (.) is automatically stored at the position before the specified number of digits. If
ecimal part is 0, "2EH" (.) is not stored.

(s2) 0
(s2)+1
(s2)+2

(s1)+1 (s1)

-1.23 456

* When the total number of digits subtracted by the digits for sign, decimal point, and decimal part is larger than the integer part of the single-precision

Total number of digits
f—)%

R(_/
Number of digits of decimal part
Added automatically

real number data, "20H (space)" is stored between the sign and the integer part.

(s2) 0
(s2)+1
(s2)+2

(s1)+1 (s1)

-1.23 456

« The value "00H" is automatically stored at the end of the converted character string.

HEExponent format

["20H

Total number of digits
f—/%

——

* When 1 is specified in (s2), the exponent format is applied.

(s2) Exponent format

(s2)+1 | Total number of digits

Number of digits of
decimal part

(s2)+2

(s1)+1

%(—/

Single-precision real number

b15 b8 b7 b0
ASCllcodein”(Value = 1 Agcy| code for sign
(d) spemfylr}gl number of all digits ! (integral part)
. - 1)"th digit N
- T P
ASCII code (2EH) for decimal ! ASCll codein "(Value =
? - (d)+1 point (.) ' sgs):cgy(ljng number of all digits
i 1 - 2)"th digit
Sign (integer part) TSign (exponent part) ASC!I clode in "(Value o ! ASC!I gode in "(Value .
(d)+2 specifying number of all digits 1 specifying number of all digits
- 5)"th digit (decimal part) \ - 4)"th digit (decimal part)
ASCII code in "(Value | ASCII code in "(Value
A Added automatically (d)+3 specifying number of all digits | specifying number of all digits
- 7)"th digit ! - 6)"th digit
code for sign (exponent; i 45H (E)
(d)+4 ASCII code f () !
'
ASCII code in "(Value i ASCII code in "(Value
(d)+5 | specifying number of all digits | specifying number of all digits
- 11)"th digit (exponent) 1 - 10)"th digit (exponent)
(d)+6 0000H
+H

Number of digits of decimal part
(space)" is stored.

!

"0000H" is automatically stored at the end of the character string.

* When the number of decimal part digits is 0, the number of digits that can be specified by (s2)+1 is "the number of digits (24

at a maximum) > 6". For other than 0, the number of digits that can be specified by (s2)+1 is "the number of digits (24 at a

maximum) > (the number of decimal point digits + 7)".

» The number of digits in the decimal part that can be specified by (s2)+2 is 0 to 7. Note that the number of digits in the

decimal part must be equal to or smaller than the total number of digits minus 7.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

385

» For example, when the total number of digits is "12", the number of digits of the decimal part is "4", and "-12.34567" is
specified, data is stored in (d) and later as shown below:

b15 b8 b7 b0
(s2) 1 . j
Total number of digits I
(d) 20H (space) I 2DH(-)
(s2)+1 12 Number of digits :
(s2)+2 4 ——————————— of decimal part .
(d)+1 2EH(.) i 31H(1)
/—); N 1
— '
- i :> (d)+2 33H(3) ' 32H(2)
T T Fixed to 2 digit
b ! (d)+3 36H(6) I 34H(4)
Sign (integer part) Sign (exponent part) !
2BH(+) 5 45H (E)
G+ 1) (e :
E E (d)+5 31H(1) | 30H(0)
%—J :
Single-precision real number 0000H

(d)+6 T

"0000H" is automatically stored at the end of the character string.

» The converted character string data are stored in the device areas specified by (d) and later as shown below.
« As sign data of the integral part, "20H" (space) is stored if the single-precision real number is positive, and "2DH" (-) is stored if the data is negative.
« The integer part is fixed to 1 digit. "20H (space)" is stored between the integer part and the sign.

(s2) 1 Total number of digits
(s2)+1 12 Fixed to 1 digit
(s2)+2 -

(s1)+1 (s1)
-12.34 E "20H (space)" is stored.
« If the decimal part of the single-precision real number data cannot be accommodated in the number of digits of the decimal part, lower digits of the
decimal part are rounded.

(s2) 1
(s2)+1 12 Total number of digits
(s2)+2
(sT)+1 (s1) Number of digits of decimal part—Eb These values are rounded down.

-12.34 567

« If the number of digits in the decimal part is set to other than 0, "2EH" (.) is automatically stored at the position before the specified number of digits. If
the number of digits in the decimal part is 0, "2EH" (.) is not stored.

(s2) 1
(s2)+1 12 Total number of digits
(s2)+2
(s1)+1 (s1) Number of digits of decimal part
-12.34 567 -
Added automatically

« For the sign of the exponent part, "2BH (+)" is stored when the exponent is positive, and "2DH (-)" is stored when the exponent is negative.
» The exponent part is fixed to 2 digits. When the exponent part is 1 digit, "30H (0)" is stored after the sign of the exponent part.

(s2) 1 Total number of digits
(a2)+1 12 Fixed to 2 digit
(s2)+2 phvally

(s1)+1 (s1) L
-12.34 567 "30H (0)" is stored.

* The value "00H" is automatically stored at the end of the converted character string.

7 APPLICATION INSTRUCTION
386 7.6 Character string operation instruction

Operation.error

Error code Description
(SD0/SD3067)
2820 The device specified by (s2) exceeds the corresponding device range.
3401 The number of total digits specified by (s1)+1 exceeds 24.
The format specified by (s2) is any value other than "0" or "1".
The total number of digits specified by (s2)+1 is not within the following range in the decimal point format.
When the number of digits of the decimal part is "0": Total number of digits > 2
When the number of digits of the decimal part is any value other than "0": Total number of digits > (Number of digits of decimal part + 3)
The total number of digits specified by (s2)+1 is not within the following range in the exponent format.
When the number of digits of the decimal part is "0": Total number of digits > 6
When the number of digits of the decimal part is any value other than "0": Total number of digits > (Number of digits of decimal part + +7)
The number of digits of the decimal part specified by (s2)+2 is not within the following range.
In the decimal part format < (Total number of digits - 3)
In the exponent format < (Total number of digits - 7)
When the conversion result exceeds the specified total number of digits
3402 (s1) is not within the following range
0, 12126 < (s1) < 12128
The specified device value is denormalized number, NaN (not a number), or +c.
3405 The number of digits of the decimal part specified by (s2)+2 is not within the following range.
Oto7
3406 The device areas that store the character string specified by (d) exceed the corresponding device range.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 387

Detecting a character string length

LEN(P)

These instructions detect the length of the character string specified by (s), and store the length in the device specified by (d)

and later.

These instructions handle data stored in the device specified by (s) to the device storing O0H as a character string.

Ladder diagram

Structured text™!

—C=J]e e }—{

ENO:=LENP(EN,s,d);

*1

[Z5 Page 814 LEN(_E)

Setting data

EDescriptions, ranges, and data types

The LEN instruction is not supported by the ST language. Use LEN of the standard function.

Operand Description Range Data type Data type (label)
(s) Character string or head device number storing a character string | — Character string Character string
(d) Device number storing the detected character string length — 16-bit signed binary ANY16
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, |T,sT,c,D, |umeO|z |Lc |[Lz |specification [y Tp [
SM, F, B, SB C,LC | W,SD, SW,R
(s) — — — o™ — i — ©) — — O |—
(d) O — — O O o |— — @) — - = |—
*1 T, ST, C cannot be used.

Processing details

» These instructions detect the length of the character string specified by (s), and store the length in the device specified by

(d) and later.

» These instructions handle data stored in the device specified by (s) to the device storing 00H as a character string.

b15 b8b7 b0
(s) 2nd character ! 1st character
(s)+1 4th character ! 3rd character
(s)+2 6th character | 5th character

1 1

1 1
(s)*n I 00H 3 "n"th character |

|

Indicates the end of the character string.

[Ex]

—)

When "ABCDEFGHI" is stored in (s) and later

b15 b8 b7 b0
(s) 42H (B) 41H (A)
(s)+1 44H (D) } 43H (C)
(s)+2 46H (F) | 45H (E)
(s)+3 48H (H) i 47H (G)
(s)+4 00H } 49H (1)

388

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

"ABCDEFGHI"

b15 b0
Character string length

b15

(d) 9

Precautions

The LEN(P) instructions can handle character codes other than ASCII codes, but the character string length is handled in byte
units (8 bits). Accordingly, in the case of character codes in which 2 bytes express 1 character such as shift JIS codes, the

length of 1 character is detected as "2".

Operation.error

Error code Description

(SD0/SD8067)

2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.
3405 The character string specified by (s) has more than 16383 characters.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 389

Extracting character string data from the right

RIGHT(P)

These instructions extract "n" characters of the character string data stored in the device specified by (s) and later from the

right end (from the end), and store the extracted characters in the device specified by (d) and later.

Ladder diagram

Structured text™!

|

e || m }—{

ENO:=RIGHTP(EN,s,n,d);

*1 The RIGHT instruction is not supported by the ST language. Use RIGHT of the standard function.
[Z5~ page 815 LEFT(_E), RIGHT(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Character string or head device number storing a character string | — Character string Character string
(d) Head device number for storing "n" characters extracted from the | — Character string Character string
right of the device specified by (s)
(n) Number of characters to be extracted 1to 16383 16-bit unsigned binary | ANY16
HApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,0, |uOweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s) — — — o — - | = — o — |— |0 |—
(d) — — — o — - | = — o} i e
(n) O — — O O o |— — @) @) - |— |-

*1 T, ST, C cannot be used.

Processing. details

» These instructions extract "n" characters of the character string data stored in the device specified by (s) and later from the

right end (from the end), and store the extracted characters in the device specified by (d) and later.

b15

b8 b7 b0

(s)
(s)+1

ASCII code for 2nd character : ASCII code for 1st character

T
ASCII code for 4th character ! ASCII code for 3rd character

ASCII code for "(last : ASCII code for "(last
character -n+2)"th character 1 character -n+1)"th character
ASCII code for "(last " ASCII code for "(last
character -n+4)"th character : character -n+3)"th character

ASCII code for "(last 1 ASCII code for "(last
character -1)"th character 1 character -2)"th character

! ASCII code for the last
00H : character

b15

b8 b7 b0

ASCII code for "(last : ASCII code for "(last
character -n+2)"th character | character -n+1)"th character

ASCII code for "(last | ASCII code for "(last
character -n+4)"th character | character -n+3)"th character

1 ASCII code for "(last

1 _character -2)"th character
| ASCII code for the last
,_character

ASCII code for "(last
character -1)"th character

00H

» A character string stored in (s) indicates data stored in devices from the specified device until "O0H" is first detected in units
of 1 byte.

390

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

[Ex]

When 5 is specified in (n)

b15 - b8 b7 60 b15 b8b7 b0
() 42H (B) ; ATH (A) (d) 32H (2) ‘ 31H (1)
(s)+1 44H (D) ! 43H (C) |
: > (d)+ 34H (4 ! 33H @3
(s)+2 46H (F) | 45H (E) :d;ﬂ 00.:) 35H 25;
(s)+3 32H (2) ! 31H (1) +—— "12345"
(s)+4 34H (4) 33H (3) ASCII code for 5th character
(s)+5 00H | 35H (5)

"ABCDEF12345"
* A NULL code (00H), which indicates an end of a character string, is automatically added at the end of the character string
data.
» When the number of extracted characters is odd, "00H" is stored in the upper byte of a device storing the last character.
When the number of extracted characters is even, "0000H" is stored in the device after the last character.
» When the number of characters specified by (n) is 0, a NULL code (00H) is stored in (d).

Precautions

When handling character codes other than ASCII codes, note the following points:

« The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes
express 1 character such as shift JIS codes, 1 character is detected as "2".

» When extracting characters from a character string including character codes in which 2 bytes express 1 character such as
shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the
expected character code is not retrieved if only 1 byte is extracted out of a 2-byte character code.

Operation.error

Error code Description
(SD0/SD8067)
2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.
3405 (n) is not within the following range
0 to 16383

The character string specified by (s) has more than 16383 characters.

n" exceeds the number of characters specified by (s)

3406 The (n) points of data in the device starting from the one specified by (d) exceed the corresponding device range.

7 APPLICATION INSTRUCTION 1
7.6 Character string operation instruction 39

Extracting character string data from the left

LEFT(P)

These instructions extract "n" characters of the character string data stored in the device specified by (s) and later from the left

end (from the start), and store the extracted characters in the device specified by (d) and later.

Ladder diagram

Structured text™!

—c=3dle|ao|mn }—{

ENO:=LEFTP(EN,s,n,d);

*1 The LEFT instruction is not supported by the ST language. Use LEFT of the standard function.
[Z5" page 815 LEFT(_E), RIGHT(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Character string or head device number storing a character string | — Character string Character string
(d) Head device number for storing "n" characters extracted from the | — Character string Character string
left of the device specified by (s)
(n) Number of characters to be extracted 1to 16383 16-bit unsigned binary | ANY16
HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others

X,Y,M,L, |uD\GO|T,sT, |T,sT,c,0, |uOweO|z |Lc |[Lz | specification [yTg Tg

SM, F, B, SB C,LC | W, SD, SW,R
(s) — — — o — - | = — o — |— |0 |—
(d) — — — o — - | = — o} i e
(n) O — — O O o |— — @) @) - |— |-

*1 T, ST, C cannot be used.

Processing. details

» These instructions extract "n" characters of the character string data stored in the device specified by (s) and later from the

left end (from the start), and store the extracted characters in the device specified by (d) and later.

b15

b0

(s)

b8b7

ASCI! code for 2nd character | ASCII code for 1st character

[
ASCII code for 4th character ! ASCII code for 3rd character

(s)+1

ASCII code for (n-1) th
character

1 ASCII code for (n-2) th
1 character

ASCII code for (n+1) th
character

| ASClI code for (n) th
| character

00H

1 ASCII code for the last
1 character

b15

b8 b7

b0

ASCII code for 2nd character:

ASCII code for 1st character

[
ASCII code for 4th character 1
L

ASCII code for 3rd character

ASCII code for (n-1) th
character

ASCII code for (n-2) th
character

00H

ASCII code for (n) th
character

A character string stored in (s) indicates data stored in devices from the specified device until "O0H" is first detected in units
of 1 byte.

392

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

[Ex]

When 7 is specified in (n)

2L bl . b15 b8 b7 bo

8+1 :i: EE)) j;: Eg)) (d) 42H (B) E 41H (A)
(s)+2 46H (F) 45H (E) D (@ 44H (D) : 43H(©)

: (d)+2 46H (F) : 45H (E)
(5)+3 32H (2) ! 31H (1) «—] ;

! T (d)+3 00H ! 31H (1)
(s)+4 34H (4) ; 33H (3) - -
(5)+5 00H | 35H (5) ASCII code for 7th character ABCDEF

"ABCDEF12345"

« A NULL code (00H), which indicates an end of a character string, is automatically added at the end of the character string
data.

» When the number of extracted characters is odd, "00H" is stored in the upper byte of a device storing the last character.
When the number of extracted characters is even, "0000H" is stored in the device after the last character.

» When the number of characters specified by (n) is 0, a NULL code (00H) is stored in (d).

Precautions

When handling character codes other than ASCII codes, note the following points:

» The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes
express 1 character such as shift JIS codes, 1 character is detected as "2".

* When extracting characters from a character string including character codes in which 2 bytes express 1 character such as
shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the
expected character code is not retrieved if only 1 byte is extracted out of a 2-byte character code.

Operation.error

Error code Description
(SD0/SD8067)
2820 In the corresponding device range of the device specified by (s) and later, "00H" does not exist.
3405 (n) is not within the following range
0 to 16383
The character string specified by (s) has more than 16383 characters.
"n" exceeds the number of characters specified by (s)
3406 The (n) points of data in the device starting from the one specified by (d) exceed the corresponding device range.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

393

Storing the specified number of character strings

MIDR(P)

These instructions extract the number of characters specified by (s2)+1 of the character string data stored in the device
specified by (s1) and later from the position specified by (s2), and store the extracted characters in the device specified by (d)
and later.

Ladder diagram Structured text
ENO:=MIDR(EN,s1,52,d);
— ENO:=MIDRP(EN,s1,52,d);
—Cc=a]en] @ |(s2)}—{ (ENsT92)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Character string or head device number storing a character string — Character string Character string
(d) Head device number for storing the character string data of the — Character string Character string

operation result

(s2) Head device number for storing the number of characters and position | — 16-bit signed binary ANY 16
of the start character
(s2)+0: Position of the start character, (s2)+1: Number of characters

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |[T,sT,c,p, |umeO|z |Lc |[Lz | specification [« yTe Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) - — - o™ — i — O - |— |10 |—=

(d) — — — o — — | = — O - | == |-

(s2) o — — 0 0 o |— — o - |—= = |-

*1 T, ST, C cannot be used.

Processing details

» These instructions extract the number of characters specified by (s2)+1 of the character string data stored in the device
specified by (s1) and later from the position specified by (s2), and store the extracted characters in the device specified by
(d) and later.

b15 b8 b7 b0
(s1) 42H (B) : 41H (A) @ el yrors B yrnrs 00
(s1)+1 44H (D) 43H (C) o o (H) : o (G)
(s1)+2 46H (F) | 45H (E) «—— —) : ©)
(s1)+3 48H (H) ! 47H (G) 5th character position (d)+2 00H . 49H (1)
T 2 " "
(s1)+4 4AH (J) ! 49H () 473‘)\ EFGHI
(s1)+5 00H : 4BH (K) ASCII code for 5th character (s2)+1
"ABCDEFGHIJK"
(s2)
(s2)+1 5

* A character string stored in (s1) indicates data stored in devices from the specified device until "00H" is first detected in
units of byte.

» A NULL code (00H), which indicates an end of a character string, is automatically added at the end of the character string
data.

* When the number of extracted characters "(s2)+1" is odd, "00H" is stored in the upper byte of a device storing the last
character. When the number of extracted characters "(s2)+1" is even, "0000H" is stored in the device after the last
character.

« If the number of characters specified by (s2)+1 is 0, no processing is performed.

7 APPLICATION INSTRUCTION
394

7.6 Character string operation instruction

* When (s2)+1 (the number of characters to be extracted) is "-1", the entire character string stored in (s1) and later is stored
to (d) and later.

b15 b§b7 b0 " . .

(s1) 42H (B) ! 41H (A) :
(s1)+1 44H (D) 43H (C) (Z)+1 46H (F) : 45H (E)
(s1)+2 46H (F) | 45H (E) +—— — @ 48H (H) 47H (G)
(s1)+3 48H (H) : 47H (G) 5th character positon (D*? 4AH (J) - 49H (1)

! s2) (d)+3 00H ! 4BH (K)
. i : o "EFGHIJK"
(s1)+5 00H ; 4BH (K)

"ABCDEFGHIJK"

(s2) 5
(s2)+1
Precautions

When handling character codes other than ASCII codes, note the following points:

« The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes
express 1 character such as shift JIS codes, 1 character is detected as "2".

* When extracting characters from a character string including character codes in which 2 bytes express 1 character such as
shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the
expected character code is not retrieved if only 1 byte is extracted out of a 2-byte character code.

Operation.error

Error code Description

(SD0/SD8067)

2820 In the corresponding device range of the device specified by (s1) and later, "O0H" does not exist.
3405 The value stored in a device specified in (s2)+1 is -2 or lower.

The value stored in a device specified in (s2) exceeds the number of characters of (s1).

A negative value is specified in (s2).

The value stored in a device specified in (s2)+1 exceeds the number of characters of (s1).

The character string specified by (s1) has more than 16383 characters.

The total of the values stored in devices specified in (s2) and (s2)+1 exceeds the number of characters of (s1).

3406 The number of characters from the position specified by (d) to (s2)+1 exceeds the corresponding device range.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 395

Replacing the specified number of character strings

MIDW(P)

These instructions extract the number of characters specified by (s2)+1 from the character string data stored in the device
specified by (s1) and later, and store the extracted data in the position specified by (s2) and later of the character string data
stored in the device specified by (d) and later.

Ladder diagram Structured text

ENO:=MIDW(EN,s1,s2,d);

| — | o | @ |) }{ ENO:=MIDWP(EN,s1,s2,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Character string or head device number storing a character string — Character string Character string
(d) Head device number for storing the character string data of the — Character string Character string

operation result

(s2) Head device number for storing the number of characters and — 16-bit signed binary ANY16
position of the start character
(s2)+0: Position of the start character, (s2)+1: Number of characters

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |[T,sT,c,p, |umeO|z |Lc |[Lz | specification [« yTe Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) - — - o™ — i — O - |— |10 |—=

(d) — — — o — — | = — O - | == |-

(s2) o — — 0 0 o |— — o - |—= = |-

*1 T, ST, C cannot be used.

Processing details

» These instructions extract the number of characters specified by (s2)+1 from the character string data stored in the device
specified by (s1) and later, and store the extracted data in the position specified by (s2) and later of the character string
data stored in the device specified by (d) and later.

Before execution

b15 b8b7 b0
b15 b8b7 b0 (d) 42H (B) i 41H (A)
(s1) 31H (1) '; 30H (0) (d)+1 44H (D) } 43H (C)
(s1)+1 33H (3) } 32H (2) (d)+2 46H (F) 45H (E)
(s1)+2 35H (5) | 34H (4) [— (@)+3 48H (H) 47H (G)
(s1)+3 37H (7) ! 36H (6) (d)+4 00H ! 49H (1)
(s1)+4 00H 38H (8) "ABCDEFGHI"
"012345678" After execution
b15 b8b7 b0
(d) 42H (B) 41H (A)
(s2) 3 | e @ an e " e character sting (d)+1 31H (1) ! 30H (0)
(521 6 | Shiracier st siored m (&1) e tater — 1)) 33H (3) ! 32H (2)
(d)+3 35H (5) ! 34H (4)
(d)+4 00H } 49H (1)
"AB012345I"

A character string stored in (s1) or (d) indicates data stored in devices from the specified device until "O0H" is first detected
in units of 1 byte.

* A NULL code (00H), which indicates an end of a character string, is automatically added at the end of the character string
data.

7 APPLICATION INSTRUCTION
396

7.6 Character string operation instruction

+ If the number of characters specified by (s2)+1 is 0, no processing is performed.

* When the number of characters specified by (s2)+1 exceeds the last character of the character string specified by (d), data

is stored up to the last character of (d).

Before execution

b15 b8b7 b0
b15 b8 b7 b) 42H (B) ! 41H (A)
(s1) 31H (1) ! 30H (0) (@)+1 44H (D) } 43H (C)
(s1)+1 33H (3) 32H (2) (d)+2 46H (F) 45H (E)
(s1)+2 35H (5) | 34H (4) [— (d)+3 48H (H) 47H (G)
(s1)+3 37H (7) ! 36H (6) (d)+4 00H : 49H (1)
(s1)+4 00H 38H (8) "ABCDEFGHI"
"012345678" After execution
b15 b8b7 b0
(d) 42H (B) '; 41H (A)
(s2) 5 | coimgsioream o) analgr - oo (d)+1 44H (D) ! 43H (C)
($241 | 8 | theercimasiorea im0 (@2 31H (1) 1 30H (0)
(d)+3 33H (3) ! 32H (2)
(d)+4 00H 34H (4)
"ABCD01234"

"35H (5)" to "37H (7)" are not stored.

* When (s2)+1 (the number of characters to be extracted) is "-1", the entire character string stored in (s1) and later is stored

to (d) and later.

Before execution

b15 b8b7 b0
d 42H (B) : 41H (A)
b15 b8 b7 b0 (d)+1 44H (D) i 43H (C)
(s1) 31H (1) ! 30H (0) (d)+2 46H (F) j 45H (E)
(s1)+1 33H (3) | 32H (2) (d)+3 48H (H) ‘ 47H (G)
(s1)+2 35H (5) | 34H (4) — (d)+4 4AH (J) 3 49H (1)
(s1)+3 0000H (d)+5 00H i 4BH (K)
"012345" "ABCDEFGHIJK"
After execution
b15 b8 b7 b0
(@) 30H (0) ! 41H (A)
(s2) 2| SingSoredin @ analer o (d)+1 32H (2) } 31H (1)
(5241 | -1 | hircior sng siored m () andiarer o L (@2 34H (4) 33H (3)
(@)y+3 48H (H) 1 35H (5)
(d)+4 4AH (J) 3 49H ()
(d)+5 00H | 4BH (K)
"A012345H1JK"
Precautions

When handling character codes other than ASCII codes, note the following points:

» The number of characters is handled in byte units (8 bits). Accordingly, in the case of character codes in which 2 bytes

express 1 character such as shift JIS codes, 1 character is detected as "2".

* When extracting characters from a character string including character codes in which 2 bytes express 1 character such as

shift JIS codes, consider the number of characters to be extracted in units of character codes for 1 character. Note that the

expected character code is not retrieved if only 1 byte is extracted out of a 2-byte character code.

Operation.error

Error code Description

(SD0/SD8067)

2820 In the corresponding device range of the device specified by (s1) and later, "O0H" does not exist.
The device specified by (d) exceeds the corresponding device range.

3405 The value stored in a device specified in (s2)+1 is -2 or lower.

The value stored in a device specified in (s2) exceeds the number of characters of (d).

The value stored in a device specified in (s2)+1 exceeds the number of characters of (s1).

The character string specified by (s1) has more than 16383 characters.

The character string specified by (d) has more than 16383 characters.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

397

Searching character string

INSTR(P)

These instructions search the character string data stored in the device specified by (s2) and later starting from the (s3)th

character from the left, for the character string data stored in the device specified by (s1) and later and store the search result

in the device specified by (d).

Ladder diagram

Structured text

— L=][] @ |(s3)}—{

ENO:=INSTR(EN,s1,s2,s3,d);
ENO:=INSTRP(EN,s1,s2,53,d);

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Character string to be searched for or head device number — Character string Character string
storing a character string to be searched for
(s2) Character string to be searched or head device number storinga | — Character string Character string
character string to be searched
(d) Head device number storing search result — 16-bit signed binary ANY16
(s3) Search start position 1to 16383 16-bit unsigned binary | ANY16
HEApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,Cc,p, |uOweO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) — — — o — - | = — o - |= |0 |—
(s2) — — — o — - | = — o} - |— |0 |—
(d) O — — O O o |— — @) — - |— |-
(s3) O — — O O o |— — @) O - = |—
*1 T, ST, C cannot be used.

Processing details

These instructions search the character string data stored in the device specified by (s2) and later starting from the (s3)th

character from the left, for the character string data stored in the device specified by (s1) and later and store the search

result in the device specified by (d). The search result stores the position where the first detected character is located from

the start character in the character string data stored in (s2).

Search start position (s3):

3rd character

|« Fifth character from the

head character

b15 b8b7 b0
42H (B) i 41H (A)
44H (D) 43H (C)
46H (F) 1 45H (E)
48H (H) ! 47H (G)
4AH (J) 49H (1)
00H i 4BH (K)

"ABCDEFGHIJK"

(s3)

* If no matched character string data is found, O is stored in (d).

(s1)
(s1)+1
(s1)+2

b15 b8 b7 b0
46H (F) | 45H (E)
48H (H) ! 47H (G)
: 00H
"EFGH"

I

@ 5]

* When the search start position "s3" is a negative number or "0", search processing is not executed.

398

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

+ A character string can be directly specified in the character string (s1).

b15 b8 b7 b0
(s2) 32H (2) T 31H (1) Character string to be searched for (s1)
(s2)+1 34H (4) i 33H (3) «— Search start position (s3): 3rd character B’
(s2)+2 42H (B) i 41H (A) <— Fifth character from the head character
(s2)+3 36H (6) | 35H (5)
(s2)+4 42H (B) ! 41H (A)

I

(s2)+5 | 00H @

"1234AB56AB"
o9 []

Operation.error

Error code Description
(SD0/SD8067)
2820 No NULL code (00H) exists in the corresponding device range of the device specified by (s1) and later.

No NULL code (00H) exists in the corresponding device range of the device specified by (s2) and later.

3405 The value stored in a device specified in (s3) exceeds the number of characters of (s2).

The character string specified by (s1) has more than 16383 characters.

The character string specified by (s2) has more than 16383 characters.

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction 399

Inserting character string

These instructions insert the character string specified by (s1) at the (s2)th character from the start of the character string
specified by (d).

— = 3]en] @ |(52>}—{

ENO:=STRINS(EN,s1,s2,d);
ENO:=STRINSP(EN,s1,s2,d);

EDescriptions, ranges, and data types

(s1) Character string to be inserted or head device number storing the | — Character string Character string
character string to be inserted

(d) Head device number storing a character string to which another | — Character string Character string
character string is inserted

(s2) Insertion position (in units of bytes) 1 to 16383 16-bit unsigned binary | ANY16

BApplicable devices

(s1) — — — o — - | = o — |0 |—

(d) — — — o — — | — O - | = |—

(s2) @] — — O @] O — O - |— | =

*1 T, ST, C cannot be used.

400

7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

Processing details

» These instructions insert the character string specified by (s1) at the (s2)th character from the start of the character string

specified by (d).

b15 b8 b7 b0
(s1) 31H (1) ‘ 30H (0) b15 b8 b7 b0
(s1)+1 33H (3 ! 32H (2 :
S1)+2 OOI-i) 1 34H (4) The character string data of the d 42H (B) ! 41H (A)
(1) ‘ @) 3rd character and later is (d)+1 31H (1) | 30H (0) The inserted

i s by s a2 [gon@) g o
' d)y+3 43H (C) ' 34H (4) string data (s
23] —> (:
(d)+4 45H (E) ! 44H (D)
(d)+5 47H (G) : 46H (F)

b5 b8b7 bo (d)+6 00H i 48H (H)

(d) 42H (B) ! 41H (A) (a7 — : oo ©)
E | Insertion start position (s2):

(d)+1 44H (D) : 43H (C) 3rd character The character string data of (d)+5 and
(d)+2 46H (F) i 45H (E) later before insertion is overwritten for the
(d)+3 48H (H) ' 47H (G) number of character to be inserted.
(d)+4 0000H
(d)+5 62H (b) i 61H (a)
(d)+6 64H (d) i 63H (c)
(d)+7 66H (f) ! 65H (e)

* When the number of characters after insertion, (s1)+(d), is even, a NULL code (00H) is stored in the device (1 word) after
the last device storing the character string.

* When the number of characters after insertion, (s1)+(d), is odd, a NULL code (O0H) is stored in the last device (upper 8
bits) of the character string.

« If the number of characters exceeding (d) by one character is specified in (s2), the character string in (s1) is added to the
end of the character string in (d).

Operation.error

Error code Description
(SD0/SD8067)
2820 No NULL code (00H) exists in the corresponding device range of the device specified by (s1) and later.
No NULL code (00H) exists in the corresponding device range of the device specified by (d) and later.
2821 A device of the character strings (s1) and (d) overlaps.
The device storing the character string after insertion, (s1)+(d), overlaps with the character string-storing device of (s1).
3405 The character string specified by (s1) has more than 16383 characters.
The character string specified by (d) has more than 16383 characters.
(s2) is not within the range (1<(s2)<16383)
The value specified by (s2) exceeds "the number of characters of the character string (d) + 1".
3406 The character string after insertion, (s1)+(d), has more than 16383 characters.

The character string after insertion, (s1)+(d), exceeds the corresponding device range.

7 APPLICATION INSTRUCTION 4 1
7.6 Character string operation instruction 0

Deleting character string

STRDEL(P)

These instructions delete (n) characters starting from the (s)th character (deletion start position) from the start of the character

string data specified by (d).

Ladder diagram Structured text
ENO:=STRDEL(EN,s,n,d);
— ENO:=STRDELP(EN,s,n,d);
—||:.__j|<d>|<s>|<n)}—{ (ENsn)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(d) Head device number storing a character string having characters | — Character string Character string
to be deleted

(s) Deletion start position 1to 16383 16-bit unsigned binary | ANY16

(n) Number of characters to be deleted 0to 16384 - (n1) 16-bit unsigned binary | ANY16

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M L, |uDweO|TsT [TsT,c,p, |umeO|z |Lc |Lz | specification [y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(d) — — — o — — | = — @) - | == |-

(s) — — — o) o) o |— — o) o) — |—= |=

(n)) — — o) o) o |— — o) o) — | = |=

*1 T, ST, C cannot be used.

Processing details

» These instructions delete (n) characters starting from the (s)th character (deletion start position) from the start of the
character string data specified by (d).

The character string data of the deleted character After shifting, "00H" is stored
and later is shifted rightward by 5 characters. in the vacant device.
b15 b8b7 b0 b15 b8b7 b0 b15 b8b7 b0
(d) 42H (B) ! 41H (A) ’\C‘ﬁ;“rgg{e‘?; obe @ 42H (B) ; 41H (A) (d) 42H (B) ; 41H (A)
(d)+1 44H (D) | 43H (C) <—f—deleted (n):5 (d)*1 = > (d)+1 49H (1) i 48H (H)
(d)+2 46H (F) | 45H (E) (d)+2 / | (d)+2 4BH (K) | 4AH (J)
(d)+3 48H (H) ! 47H (G) (d)+3 48H (H)] (d)+3 00H ! 4CH (L)
(d)+4 4AH (9) I 49H() m— A AAH() 1 49H()) (d)+4 0000H
(d)+5 4CH (L) | 4BH (K) (d)+5 4CH (L) 1 4BH (K) (d)+5 0000H
(d)+6 0000H (d)+6 0000H (d)+6 0000H
(d)+7 31H (1) ! 30H (0) (d)+7 31H (1) ' 30H (0) (d)+7 31H (1) ' 30H (0)
(d)+8 33H (3) | 32H (2) (d)+8 33H (3) i 32H (2) (d)+8 33H (3) i 32H (2)
(d)+9 35H (5) ! 34H (4) Eg;itllgrp (i-tfn (d)+9 35H (5) 0 34H (4) (d)+9 35H (5) 0 34H (4)

3rd character
The character string data of (d)+7

(s) and later does not change.

» When the number of characters after deletion, (d), is even, a NULL code (00H) is stored in the device after the last device
storing the character string.

* When the number of characters after deletion, (d), is odd, a NULL code (00H) is stored in the last device (upper 8 bits) of
the character string.

» The character string after the deleted character string is shifted by (n) characters, a NULL code (00H) is stored in vacant
devices.

402 7 APPLICATION INSTRUCTION
7.6 Character string operation instruction

- Operation error

2820 No NULL code (00H) exists in the corresponding device range of the device specified by (d) and later.

3405 The character string specified by (d) has more than 16383 characters.

(s) is not within the range (1<(s)<16383)

The value specified by (s) exceeds the number of characters of the character string (d).

The value specified by (n) exceeds the number of characters from (s) to the last of the character string (d).

7 APPLICATION INSTRUCTION 4
7.6 Character string operation instruction 03

7.7

Real Number Instruction

Comparing single-precision real numbers

LDELO, ANDEO, OREO

These instructions perform a comparison operation between the single-precision real number in the device specified by (s1)

and the single-precision real number in the device specified by (s2). (Devices are used as a normally open contact.)

Ladder diagram Structured text
Not supported

W T L= O] en e f—

ANDC O 0| en| e b—

OR[_— 7]

— L 00|62
(E=, E<>, E>, E<=, E<, or E>=enters O.)
Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1)

Comparison data or the head device number where the
comparison data is stored

0, 2-126<|(S1)|<2128

Single-precision real number

Single-precision real number

(s2)

Comparison data or the head device number where the
comparison data is stored

0, 21%6<|(s2)<2128

Single-precision real number

Single-precision real number

HApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz | specification [y yTe [g
SM, F, B, SB C,LC | W, SD, SW,R

(s1) — — - o) o) — |o — o — o |— |-

(s2) — — — o) o) — |0 — o - |0 |— |-

Processing details

» These instructions perform a comparison operation between the single-precision real number in the device specified by

(s1) and the single-precision real number in the device specified by (s2). (Devices are used as a normally open contact.)

» The following table lists the comparison operation results of each instruction.

Instruction symbol | Condition Result Instruction symbol | Condition Result

E= (s1)=(s2) Conductive state E= (s1)#(s2) Non-conductive state
E<> (s1)#(s2) E<> (s1)=(s2)

E> (s1)>(s2) E> (s1)<(s2)

E<= (s1)<(s2) E<= (s1)>(s2)

E< (s1)<(s2) E< (s1)>(s2)

E>= (s1)>(s2) E>= (s1)<(s2)

* When an input value is set from the engineering tool, a rounding error may occur.

7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

404

Operation.error

There is no operation error.

Point}@
When the E= instruction is used, note that values in the devices may not be equal.
X0
] EMOV]ET.23] DO |
——{ E* | po |E456] D2
L { e/ | D2 [E456] D2 |
MO
E= [DO [D2 | O

Values in the devices may not be equal.

7 APPLICATION INSTRUCTION 4
7.7 Real Number Instruction 05

Single-precision real number comparison

DECMP(P)

These instructions compare two data values (single-precision real number), and output the result (larger, same or smaller) to

three consecutive bit devices.

Ladder diagram

Structured text

ENO:=DECMP(ENs1,52,d);

| C— | s1) | (s2) | d }{ ENO:=DECMPP(EN,s1,s2,d);

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1) Comparison data or the number of the device where the 0, 271%6<|(s1)|<2"28 | Single-precision real number | Single-precision real number

comparison data is stored

(s2) Comparison data or the number of the device where the 0, 271%6¢|(s2)|<2"28 | Single-precision real number | Single-precision real number

comparison data is stored

(d) Start bit device number to which comparison result is output | — Bit Bit

(Three devices are occupied).

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M, L, |uDOweO]|T,ST, |T,sT,c,0, |uoeO|z |Lc |Lz |specification [y e Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s1) — — — o o —lo |- o o |o |- |-
(s2) — — — o o — o [= o o |o |- |-
(d) o — — o — — | = — — - = = |-

Processing. details

» These instructions compare the comparison value (s1) with the comparison source (s2) as floating point data, and one of

the bits among (d), (d)+1, and (d)+2 turns on according to the result (smaller, same or larger).

X0
] pecwe [n [[@ H

(d)
] —
(d+1)

—
(d+2)

—

:

Turns on in the case of [(s1)+1, (s1)] > [(s2)+1, (s2)]

Turns on in the case of [(s1)+1, (s1)] = [(s2)+1, (s2)]

Turns on in the case of [(s1)+1, (s1)] < [(s2)*+1, (s2)]

Even if the command input X0 turns off before the DECMP instruction is fully executed, (d) to (d)+2 hold the status.
» When the constant (K or H) is specified the device specified by (s1) and (s2), these instructions convert the binary value

into single-precision real number automatically.

Precautions

« Three devices ((d), (d)+1, and (d)+2) specified by (d) are occupied. Note that these devices are not used for any other

purpose.

406 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

- Operation error

2820 The device range specified by (d) exceeds the corresponding device range.

3402 The specified device value is denormalized number, NaN (not a number), or tc.

7 APPLICATION INSTRUCTION 4
7.7 Real Number Instruction 07

Single-precision real number data band comparison

DEZCP(P)

These instructions compare the comparison range of two points, upper and lower, with the binary floating point, and output the
result to three consecutive bit devices in accordance with the larger, smaller, and band.

Ladder diagram Structured text
ENO:= DEZCP (EN, s1, s2, s3, d);
— ENO:= DEZCPP(EN, s1, s2, s3, d);
— L] || 6] @ }—{

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1) Comparison data or the number of the device where the 0, 271%6¢|(s1)|<2"28 | Single-precision real number | Single-precision real number
comparison data is stored

(s2) Comparison data or the number of the device where the 0, 271%6¢|(s2)|<2"28 | Single-precision real number | Single-precision real number
comparison data is stored

(s3) Comparison data or the number of the device where the 0, 2‘1265|(s3)l<2128 Single-precision real number | Single-precision real number
comparison data is stored

(d) Start bit device number to which comparison result is output | — Bit Bit
(Three devices are occupied).

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uDOweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |Lz |specification [y i Te Tg
SM, F, B, SB C,LC | W, SD, SW, R
(s1) — — — 0 0 —lo |- Jo o |o |- |-
(s2) — — — 0 0 —lo = TJo o |o |- |-
(s3) — — — 0 0 —lo = TJo o |o [— =
) 0 — — 0 — — = 1= 1= — = 1=1=

Processing. details

» These instructions compare the comparison values (s1) and (s2) with the comparison source (s3) as floating point data,
and one of the bits among (d), (d)+1, and (d)+2 turns on according to the result (smaller, within the range or larger).

X0
b oezer [[[63 [@ H
(d)

4| Ii Turns on in the case of [(s1)+1, (s1)] > [(s3)+1, (s3)]
(d+1)

] | Turns on in the case of [(s1)+1, (s1)] < [(s3)+1, (s3)] < [(s2)*+1, (s2)]
(d+2)

—| \— Turns on in the case of [(s3)+1, (s3)] > [(s2)+1, (s2)]

|

Even if the command input X0 turns off before the DECMP instruction is fully executed, (d) to (d)+2 hold the status.
» When the constant (K or H) is specified the device specified by (s1), (s2) and (s3), these instructions convert the binary
value into single-precision real number automatically.

Precautions

» Three devices ((d), (d)+1, and (d)+2) specified by (d) are occupied. Note that these devices are not used for any other
purpose.

* The size relationship of the comparison data should be [(s1)+1, (s1)] < [(s2)+1, (s2)]. If the relationship is [(s1)+1, (s1)] >
[(s2)+1, (s2)], the value of [(s2)+1, (s2)] is regarded as the same as that of [(s1)+1, (s1)], and is compared.

408 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

- Operation error

2820 The device range specified by (d) exceeds the corresponding device range.

3402 The specified device value is denormalized number, NaN (not a number), or +c.

7 APPLICATION INSTRUCTION 4
7.7 Real Number Instruction 09

Adding single-precision real numbers

E+(P) [For 2 operands]

These instructions add the single-precision real number in the device specified by (s) to the single-precision real number in
the device specified by (d), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le|w }—{
Setting data
EDescriptions, ranges, and data types
Operand | Description Range Data type Data type (label)
(s) Addend data or the head device number where the data that | O, 2'126S|(s)|<2128 Single-precision real number | Single-precision real number
is added to another is stored
(d) Head device number where the data to which another is — Single-precision real number | Single-precision real number
added is stored
BMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |[T,sT,c,D, |umweO|z |[Lc |[Lz |specification [y TF [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) — — — O O — | O — @) — o |— |—
(d) — — — O O — | O — @) — - |— |—

Processing details

» These instructions add the single-precision real number in the device specified by (s) to the single-precision real number in
the device specified by (d), and store the result in the device specified by (d).
(d)+1 (d) (s)+1 (s) (d)+1 (d)

| || |+ | || > || |

N

Single-precisi;n real number Single-precisign real number Single-precisign real number

+ Values in the devices specified (stored) by (s) and (d) should be 0 or 2-126< |specified value (stored value)| <2128,
» When an input value is set from the engineering tool, a rounding error may occur.

* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result => 228 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.
(The mantissa part is "0").
SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2'126) of 32-bit real
numbers and the borrow flag SM8021 turns on.
SM8022 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.
Operation.error
Error code Description
(SD0/SD8067)
3402 The specified device value is -0, denormalized number, NaN (not a number), or +co.

The value stored in specified device is outside the following range
0, 2‘126S|Specified device value|<2'28

41 0 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

E+(P) [For 3 operands]

These instructions add the single-precision real number in the device specified by (s2) to the single-precision real number in

the device specified by (s1), and store the result in the device specified by (d).

Ladder diagram Structured text

— . d[en|e2] @ }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1) Augend data or the head device number where the datato | 0O, 2'1265|(s1)|<2128 Single-precision real number | Single-precision real number
which another is added is stored

(s2) Addend data or the head device number where the data that | 0, 2126<|(s2)|<2'28 | Single-precision real number | Single-precision real number
is added to another is stored

(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number

BMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, [T,sT,c,p, |umeO|z |Lc |Lz | specification [« yTg Tg
SM, F, B, SB C,LC | W,SD, SW,R
(s1) — — — @) 0 — |0 — o - o |— |—
(s2) — — - O O — |o — O — |0 |— |—
C) — — - O O — |o — O e

Processing. details

» These instructions add the single-precision real number in the device specified by (s2) to the single-precision real number
in the device specified by (s1), and store the result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| || |+ | || | => | || |

N

Y Y
Single-precision real number Single-precision real number Single-precision real number

« Values in the devices specified (stored) by (s1), (s2), and (d) should be 0 or 27126 |specified value (stored value)|<2128.

» The table below shows the related devices.

Device Name Description
Condition Operation

SM700 Carry The absolute value of the The value of (d) is the maximum value (2128) of 32-bit real numbers and the carry
operation result > 2128 flag SM700 turns on.

SM8020 Zero The operation result is true The zero flag SM8020 turns on.
g,
(The mantissa part is "0").

SM8021 Borrow The absolute value of the The value of (d) is the minimum value (2‘126) of 32-bit real numbers and the borrow
operation result < 27126 flag SM8021 turns on.

SM8022 Carry The absolute value of the The value of (d) is the maximum value (2128) of 32-bit real numbers and the carry flag
operation result > 2128 SM8022 turns on.

Operation.error

Error code Description
(SD0/SD8067)
3402 The specified device value is -0, denormalized number, NaN (not a number), or +o.

The value stored in specified device is outside the following range
0, 2‘126S|Specified device value|<2128

7 APPLICATION INSTRUCTION 411
7.7 Real Number Instruction

Subtracting single-precision real numbers

E-(P) [For 2 operands]

These instructions subtract the single-precision real number in the device specified by (s) from the single-precision real
number in the device specified by (d), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le|w }—{
Setting data
EDescriptions, ranges, and data types
Operand | Description Range Data type Data type (label)
(s) Subtrahend data or the head device number where the data | 0, 2'1265|(s)|<2128 Single-precision real number | Single-precision real number
to be subtracted from another is stored
(d) Head device number where the data from which anotheris | — Single-precision real number | Single-precision real number
to be subtracted is stored
BMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |[T,sT,c,D, |umweO|z |[Lc |[Lz |specification [y TF [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) — — — O O — | O — @) — o |— |—
(d) — — — O O — | O — @) — - |— |—

Processing details

» These instructions subtract the single-precision real number in the device specified by (s) from the single-precision real
number in the device specified by (d), and store the result in the device specified by (d).

(d)+1 (d) (s)+1 (s) (d)+1 (d)

| || | - || > || |

N

Single-precisign real number Single-precisign real number Single-precisign real number

* Values in the devices specified (stored) by (s) and (d) should be 0 or 2-126< |specified value (stored value)| <2128,
* When an input value is set from the engineering tool, a rounding error may be occur.

* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result = 2128 | The value of (d) is the maximum value (2'28) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.
(The mantissa part is "0").
SM8021 Borrow The absolute value of the operation result < 2126 | The value of (d) is the minimum value (228) of 32-bit real
numbers and the borrow flag SM8021 turns on.
SM8022 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.
Operation.error
Error code Description
(SD0/SD8067)
3402 The specified device value is -0, denormalized number, NaN (not a number), or +co.

The value stored in specified device is outside the following range
0, 2-126<|specified device value|<2128

41 2 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

E-(P) [For 3 operands]

These instructions subtract the single-precision real number in the device specified by (s2) from the single-precision real

number in the device specified by (s1), and store the result in the device specified by (d).

Ladder diagram Structured text

— . d[en|e2] @ }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1) Minuend data or head device number where the data from | 0, 27'26<|(s1)|<2"28 | Single-precision real number | Single-precision real number
which another is to be subtracted is stored

(s2) Subtrahend data or head device number where the datato | 0, 2'1265|(32)|<2128 Single-precision real number | Single-precision real number
be subtracted from another is stored

(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number

BMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\eO|T,sT, [T,sT,c,p, |umeO|z |Lc |Lz | specification [« yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R

(s1) — — — o) o) — |0 — o - o |— |—

(s2) — — — o) o) — |o — o - o |— |-

(@) — — — o) o) — |o — o - | == 1=

Processing. details

» These instructions subtract the single-precision real number in the device specified by (s2) from the single-precision real
number in the device specified by (s1), and store the result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| || | - || | => | || |

N

Y Y
Single-precision real number Single-precision real number Single-precision real number

« Values in the devices specified (stored) by (s1), (s2), and (d) should be 0 or 27126 |specified value (stored value)|32128.

» The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2'28) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27128 | The value of (d) is the minimum value (27'25) of 32-bit real
numbers and the borrow flag SM8021 turns on.

2'28 | The value of (d) is the maximum value (2128) of 32-bit real

numbers and the carry flag SM8022 turns on.

SM8022 Carry The absolute value of the operation result >

Operation.error

Error code Description
(SD0/SD8067)
3402 The specified device value is -0, denormalized number, NaN (not a number), or +w.

The value stored in specified device is outside the following range
0, 2-126<|specified device value|<2128

7 APPLICATION INSTRUCTION 41
7.7 Real Number Instruction 3

Adding single-precision real numbers

DEADD(P)

These instructions add the single-precision real number in the device specified by (s2) to the single-precision real number in
the device specified by (s1), and store the result in the device specified by (d).

Ladder diagram Structured text

ENO:=DEADD(EN,s1,s2,d);
ENO:=DEADDP(EN,s1,52,d);

—Cc=d]en|ea] @ }—{

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1) Augend data or head device number where the data to 0, 2'1265|(s1)|£2128 Single-precision real number | Single-precision real number
which another is added is stored

(s2) Addend data or head device number where the data thatis | O, 2'1265|(52)|£2128 Single-precision real number | Single-precision real number

added to another is stored

(d) Head device number for storing the operation result Single-precision real number | Single-precision real number

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |[Lz |specification [y i Te Tg
SM, F, B, SB C,LC | W, SD, SW, R
(s1) — — — 0 0 —lo |- Jo o |o |- |-
(s2) — — — 0 0 —lo = TJo o |o |- |-
n — — — 0 0 — 1o = TJo — =1=1=

Processing details

» These instructions add the single-precision real number in the device specified by (s2) to the single-precision real number
in the device specified by (s1), and store the result in the device specified by (d).

(s1)+1 (s2)+1 (s2)

| | | |+ | | | |

Single-precision real number

(s1) (d)+1 (d)

Single-precision real number

= |

Single-precision real number
* When the constant (K or H) is specified in (s1) and (s2), these instructions convert values into single-precision real number
automatically.

(s1)+1
| | | | + [K2346]

N N N

(s1)

Single-precision real number Converted into a single-precision

real number automatically.

Single-precision real number

* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.
(The mantissa part is "0").
SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (27125) of 32-bit real
numbers and the borrow flag SM8021 turns on.
SM8022 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.

414

7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

The same device number can be specified for (s1), (s2), and (d). In this case, note that the addition result changes in every
operation cycle when the continuous operation type instruction (DEADD) is used.

- Operation error

3402 The specified device value is denormalized number, NaN (not a number), or tc.

7 APPLICATION INSTRUCTION 41
7.7 Real Number Instruction 5

Subtracting single-precision real numbers

DESUB(P)

These instructions subtract the single-precision real number in the device specified by (s2) from the single-precision real
number in the device specified by (s1), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DSUB(EN,s1,s2,d);
— ENO:=DSUBP(EN,s1,s2,d);
—Jc=aen][] @ }—{ (ENsTs2.)

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1) Minuend data or head device number where the data from 0, 2'1265|(s1)|£2128 Single-precision real number | Single-precision real number
which another is subtracted is stored

(s2) Minuend data or head device number where the data thatis | O, 2'1265|(52)|£2128 Single-precision real number | Single-precision real number
subtracted another is stored

(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |[Lz |specification [y i Te Tg
SM, F, B, SB C,LC | W, SD, SW, R
(s1) — — — 0 0 —lo |- Jo o |o |- |-
(s2) — — — 0 0 —lo = TJo o |o |- |-
n — — — 0 0 — 1o = TJo — =1=1=

Processing details

» These instructions subtract the single-precision real number in the device specified by (s2) from the single-precision real
number in the device specified by (s1), and store the result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| | | | - | | | = | | | |

Single-precision real number Single-precision real number Single-precision real number

» When the constant (K or H) is specified in (s1) and (s2), these instructions convert values into single-precision real number
automatically.

(s1)+1 (s1) (d)+1 (d)

| | | | - [K2346] > | | | |
hd hd Y
Single-precision real number Converted into a single-precision Single-precision real number

real number automatically.

* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.
(The mantissa part is "0").
SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2'126) of 32-bit real
numbers and the borrow flag SM8021 turns on.
SM8022 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.

41 6 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

The same device number can be specified for (s1), (s2), and (d). In this case, note that the subtraction result changes in every
operation cycle when the continuous operation type instruction (DESUB) is used.

- Operation error

3402 The specified device value is denormalized number, NaN (not a number), or tc.

7 APPLICATION INSTRUCTION 41
7.7 Real Number Instruction 7

Multiplying single-precision real numbers

E*(P)

These instructions multiply the single-precision real number in the device specified by (s2) to the single-precision real number
in the device specified by (s1), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
—Cc=d]en|ea] @ }—{
Setting data
EDescriptions, ranges, and data types
Operand | Description Range Data type Data type (label)
(s1) Multiplicand data or head device number where the datato | O, 2'1263|(s1)|<2128 Single-precision real number | Single-precision real number
be multiplied by another is stored
(s2) Multiplier data or head device number where the data by 0, 2'1263|(s2)|<2128 Single-precision real number | Single-precision real number
which another is to be multiplied is stored
(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number
HApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uoweO|TsT, |TsT,c,0, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W,SD, SW,R
(s1) — — — O O — | O — O — o |— |—
(s2) — — — O O — | O — @) — o |— |—
(d) — — — O O — | O — @) — i i e

Processing details

» These instructions multiply the single-precision real number in the device specified by (s2) to the single-precision real
number in the device specified by (s1), and store the result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| || | < | || | > | || |

S

Single-precision real number Single-precisit\)(n real number Single-precisign real number

« Values in the devices specified (stored) by (s1), (s2), and (d) should be 0 or 27126 |specified value (stored value)|<2'28.
* When an input value is set from the engineering tool, a rounding error may occur.

* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2'28) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (27'28) of 32-bit real
numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result = 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.

41 8 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

- Operation error

3402 The specified device value is -0, denormalized number, NaN (not a number), or +o.

The value stored in specified device is outside the following range
0, 2‘1263|speciﬂed device value|<2'28

7 APPLICATION INSTRUCTION 41
7.7 Real Number Instruction 9

Dividing single-precision real numbers

E/(P)

These instructions divide the single-precision real number in the device specified by (s1) by the single-precision real number
in the device specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
—Cc=d]en|ea] @ }—{
Setting data
EDescriptions, ranges, and data types
Operand | Description Range Data type Data type (label)
(s1) Dividend data or head device number where the data which | 0, 2'1263|(s1)|<2128 Single-precision real number | Single-precision real number
is divided by another is stored.
(s2) Divisor data or head device number where the data that 0, 2'1263|(s2)|<2128 Single-precision real number | Single-precision real number
divides another is stored.
(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number
HApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uoweO|TsT, |TsT,c,0, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W,SD, SW,R
(s1) — — — O O — | O — O — o |— |—
(s2) — — — O O — | O — @) — o |— |—
(d) — — — O O — | O — @) — i i e

Processing details

» These instructions divide the single-precision real number in the device specified by (s1) by the single-precision real
number in the device specified by (s2), and store the result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| || | - | || | > | || |

S

Single-precision real number Single-precisit\)(n real number Single-precisign real number

« Values in the devices specified (stored) by (s1), (s2), and (d) should be 0 or 27'2%<|specified value (stored value)|<2128.
» When an input value is set from the engineering tool, a rounding error may occur.

» The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.
(The mantissa part is "0").
SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2'126) of 32-bit real
numbers and the borrow flag SM8021 turns on.
SM8022 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.

420 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

- Operation error

3400 The divisor is 0.

3402 The specified device value is denormalized number, NaN (not a number), or tc.

The value stored in specified device is outside the following range
0, 27126<|specified device value|<2!28

7 APPLICATION INSTRUCTION 421
7.7 Real Number Instruction

Multiplying single-precision real numbers

DEMUL(P)

These instructions multiply the single-precision real number in the device specified by (s2) to the single-precision real number
in the device specified by (s1), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DEMUL(EN,s1,s2,d);
— ENO:=DEMULP(EN,s1,s2,d);
—Jc=alen[e] @ }—{ ()

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1) Multiplicand data or head device number where the datato | O, 2'1265|(s1)|£2128 Single-precision real number | Single-precision real number
be multiplied by another is stored

(s2) Multiplier data or head device number where the data by 0, 2'1265|(52)|£2128 Single-precision real number | Single-precision real number
which another is to be multiplied is stored

(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |[Lz |specification [y i Te Tg
SM, F, B, SB C,LC | W, SD, SW, R
(s1) — — — 0 0 —lo |- Jo o |o |- |-
(s2) — — — 0 0 —lo = TJo o |o |- |-
n — — — 0 0 — 1o = TJo — =1=1=

Processing details

» These instructions multiply the single-precision real number in the device specified by (s2) to the single-precision real
number in the device specified by (s1), and store the result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| || | < | || | > | || |

S

Y Y
Single-precision real number Single-precision real number Single-precision real number
* When the constant (K or H) is specified in (s1) and (s2), these instructions convert values into single-precision real number

automatically.
(s1)+1 (s1) (d)+1 (d)

| | |« [K23d6] D | |

Single-precision real number Converted into a single-precision Single-precision real number
real number automatically.

* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (27'28) of 32-bit real
numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2'28) of 32-bit real
numbers and the carry flag SM8022 turns on.

422 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

- Operation error

3402 The specified device value is -0, denormalized number, NaN (not a number), or +o.

The value stored in specified device is outside the following range
0, 2‘126£|speciﬂed device value|<2!28

7 APPLICATION INSTRUCTION 42
7.7 Real Number Instruction 3

Dividing single-precision real numbers

DEDIV(P)

These instructions divide the single-precision real number in the device specified by (s1) by the single-precision real number
in the device specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DEDIV(EN,s1,s2,d);
— ENO:=DEDIVP(EN,s1,s2,d);
—Jc=alen[e] @ }—{ (EN st o2

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s1) Dividend data or head device number where the data which | — Single-precision real number | Single-precision real number
is divided by another is stored.

(s2) Divisor data or head device number where the data that — Single-precision real number | Single-precision real number
divides another is stored.

(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO]|T,ST, |T,sT,c,D, |uoeO|z |Lc |[Lz |specification [y i Te Tg
SM, F, B, SB C,LC | W, SD, SW, R
(s1) — — — 0 0 —lo |- Jo o |o |- |-
(s2) — — — 0 0 —lo = TJo o |o |- |-
n — — — 0 0 — 1o = TJo — =1=1=

Processing details

» These instructions divide the single-precision real number in the device specified by (s1) by the single-precision real
number in the device specified by (s2), and store the result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| || | - | || > || |

J

Single-precision real number Single-precision real number Single-precision real number
* When the constant (K or H) is specified in (s1) and (s2), these instructions convert values into single-precision real number
automatically.
(s1)+1 (s1) (d)+1 (d)

| | |+ (K236 > | |

Single-precision real number Converted into a single-precision Single-precision real number
real number automatically.

* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2'28) of 32-bit real
numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2'28) of 32-bit real
numbers and the carry flag SM8022 turns on.

424 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

- Operation error

3400 The divisor is 0.

3402 The specified device value is -0, denormalized number, NaN (not a number), or +w.

The value stored in specified device is outside the following range
0, 27126<|specified device value|<2!28

7 APPLICATION INSTRUCTION 42
7.7 Real Number Instruction 5

Converting 16-bit signed binary data to single-precision real
number

INT2FLT(P)

These instructions convert the 16-bit signed binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le|w@ }—{
Setting data
EDescriptions, ranges, and data types
Operand | Description Range Data type Data type (label)
(s) Data before conversion -32768 to +32767 16-bit signed binary ANY16

Single-precision real number

Single-precision real number

426

(d) Data after conversion

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,p, |uoOeO|z |Lc |Lz |specification [y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R

) o — — o o o |— |- o o |—|=[-

) — — — o o — |o — o — = 1=1=

Processing. details

» These instructions convert the 16-bit signed binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

SM4|02 Before conversion After conversion
| | MOvP | k-1234 | Do
© o (8) b15--b0) b31--b16 _ b15--b0
- : (o] = =
DO | FB2EH D101,D100| C49AH | 4000H
} {INT2FLT| DO | D100 - :
(-1234) (-1234.0)

Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Converting 16-bit unsigned binary data to single-precision real
number

UINT2FLT(P)

These instructions convert the 16-bit unsigned binary data in the device specified by (s) to single-precision real number, and

store the converted data in the device specified by (d).

Ladder diagram Structured text

—C=d]le|w@ }—{

Not supported

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)
(s) Data before conversion 0 to 65535 16-bit unsigned binary ANY16
(d) Data after conversion — Single-precision real number | Single-precision real number

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,p, |uoOeO|z |Lc |Lz |specification [y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R

) o — — o o o |— |- o o |—|=[-

) — — — o o — |o — o — = 1=1=

Processing. details

» These instructions convert the 16-bit unsigned binary data in the device specified by (s) to single-precision real number,
and store the converted data in the device specified by (d).

SM4|02 Before conversion After conversion
, [MovP | K1234 [DO
© o (8) b15-b0 @ b31--b16 _ b15-b0
- : Coiomn] = =
DO | 04D2H D101,D100| 449AH | 4000H
I {unT2FLT| DO | D100 - :
(1234) (1234.0)

Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION 42
7.7 Real Number Instruction 7

Converting 32-bit signed binary data to single-precision real
number

DINT2FLT(P)

These instructions convert the 32-bit signed binary data in the device specified by (s) to single-precision real number, and
store the converted data in the device specified by (d).

Ladder diagram Structured text

Not supported

—C=d]le|w@ }—{

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)
(s) Data before conversion -2147483648 to +2147483647 | 32-bit signed binary ANY32
(d) Data after conversion — Single-precision real number | Single-precision real number

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOweO]|T,ST, |T,sT,c,p, |uoOeO|z |Lc |Lz |specification [y Te Tg
SM, F, B, SB C,LC | W, SD, SW,R

) o — — o o o |o o o o |—|=[-

) — — — o o — |o — o — = 1=1=

Processing. details

» These instructions convert the 32-bit signed binary data in the device specified by (s) to single-precision real number, and
store the converted data in the device specified by (d).

SM4?2 I Before conversion After conversion
, | DMOVP [K-123456] DO
() p31--b16 _ b15--b0 @ b31--b16 _ b15--b0
MOI [) @ D1, D0| FFFEH | 1DCOH ||:(> D101, D100 | C7TFIH | 2000H
, [owT2rLT] Do | D100 ' :
(-123456) (-123456.0)

Operation. error

There is no operation error.

428 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Converting 32-bit unsigned binary data to single-precision real

number

UDINT2FLT(P)

These instructions convert the 32-bit unsigned binary data in the device specified by (s) to single-precision real number, and
store the converted data in the device specified by (d).

Ladder diagram Structured text
Not supported
—C=d]le|w@ }—{
Setting data
EDescriptions, ranges, and data types
Operand | Description Range Data type Data type (label)
(s) Data before conversion 0 to 4294967295 32-bit unsigned binary ANY32
(d) Data after conversion — Single-precision real number | Single-precision real number
BApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,sT, |T,sT,c,p, |umeO|z |Lc |[Lz | specification [yTg Tg
SM, F, B, SB C,LC | W, SD, SW,R
(s) O — — O O O O O O O - |— |—
C) — — - O O — |o — O e

Processing. details

» These instructions convert the 32-bit unsigned binary data in the device specified by (s) to single-precision real number,
and store the converted data in the device specified by (d).

SM402
I | bMovP [K123456 | DO

Mo ®) @

' uNT2FLT| Do | D100

Operation. error

There is no operation error.

Before conversion

(d)

After conversion

(®) b31_b16 _ b15 b0 b31 b16 _ b15 b0
D1, Do| 0001H | E240H | |:(> D101, D100| 47FAH | 2000H
(123456) (123456.0)

7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

429

Converting character string to single-precision real number

EVAL(P)/DEVAL(P)

These instructions convert the character strings in the device areas specified by (s) and later to single-precision real number,

and store the converted data in the device specified by (d).
The EVAL(P) instructions can also be used as DEVAL(P).

Ladder diagram Structured text
ENO:=EVAL(EN,s,d);

| C— | ®) | (d) }{ ENO:=EVALP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) Character string data to be converted to single-precision — Character string Character string
real number or head device number where the character
string data is stored

(d) Head device number storing converted single-precision real | — Single-precision real number | Single-precision real number

number

HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) O — — o O - | = — ¢} - |— |0 |—

(d) — — — o) o - |o — o - == |-

*1 T, ST, C cannot be used.

Processing details

» These instructions convert the character strings in the device areas specified by (s) and later to single-precision real
number, and store the converted data in the device specified by (d).

+ A specified character string may be in the decimal point format or exponent format. A character string in either format can
be converted into single-precision real number.

b15 - b8 b7 - b0
(S) ASCII code for 1st character : ASCII code for sign
(s)+1 | ASCII code for 3rd character | ASCII code for 2nd character (d)+1 (d)
T
+
(s)+2 | ASCII code for 5th character ! ASCII code for 4th character |:> | | | |
(8)+3 | ASCII code for 7th character | ASCII code for 6th character —

(s)+4 ! 00H Single-precision real number

7

Indicates the end of the character string.
* A character string can consist of up to 24 characters. 20H (space) and 30H (0) in a character string are counted as one

character each.

EDecimal point format
* When the character string specified by (s) is decimal point format, the operation is executed as follows.

b15 b8b7 b0
(s) 31H (1) ' 2DH (-)
(s)+1 30H (0) : 2EH () (d)+1 (d)
(s)+2 38H (8) 37H (7) C—>[-1.078 12 |
(s)+3 32H (2) ' 31H (1) —
(s)+4 ! 00H Single-precision real number

430 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

« With regard to character string, six digits excluding the sign, decimal point and exponent part are valid, and the 7th and later
digits are discarded during conversion.

b15 b8 b7 b0

(s) 20H (space) : 2DH (-)

(s)+1 31H (1) | 20H (space) ()1 d

(s)+2 33H (3) ! 2EH ()

(s)+3 31H (1) ; 30H (0) ——> 1.0 150 ,l
(s)+4 36H (6) : 35H (5) Single-precision real number
(s)*5 31H (1) : 38H (8)

(s)+6 O0H : 32H (2)

These values are discarded.
» When 2BH (+) is specified as the sign in the floating point format or when the sign is omitted, a character string is converted
into a positive value. It is handled as negative value during conversion when the sign is set to 2DH (-).
* When 20H (space) or 30H (0) exists between numbers except the first 0 in a character string specified by (s), 20H or 30H is
ignored during conversion.

b15 b8b7 b0
(s) 20H (space) ' 2DH (-)
(s)+1 31H (1) X 30H (0) (d)+1 (d)
(s)+2 32H (2) 2EH () —>[1.2 31 |
(s)+3 31H (1) ' 33H (3) —
(s)+4 ' 00H Single-precision real number

Ignored

HEExponent format
* When the character string specified by (s) is in exponent format, the operation is executed as follows.

b15 b8 b7 b0

() 20H (space) i 2DH (-)

(s)*+1 2EH () ! 31H (1) (d)+1 d

(s)+2 32H (2) ' 33H (3)

0+) : 01 0) C—>[-1.320 1E+10]
(s)+4 2BH (+) E 45H (E) Single-precision real number
(s)+5 30H (0) ' 31H (1)

(s)+6 ' 00H

« With regard to character string, six digits excluding the sign, decimal point and exponent part are valid, and the 7th and later
digits are discarded during conversion.

b15 b8 b7 bo

(s) 20H (space) ' 2DH (-)

(s)+1 2EH () : 31H (1) (@)1 @

(s)+2 35H (5) : 33H (3)

(s)+3 33H (3) : 30H (0) —— [-1.350 34E'2,|
(s)+4 31H (1) : 34H (4) Single-precision real number
(s)+5 45H (E) : 32H (2)

(s)+6 30H (0) : 2DH (-)

(s)+7 00H : 32H (2)

These values are discarded.

7 APPLICATION INSTRUCTION 4 1
7.7 Real Number Instruction 3

» String data in the exponent format is handled as positive value during conversion when the sign of the exponent part is set
to 2BH (+) or when the sign is omitted. When 2DH (-) is specified as the sign, a character string is converted into a negative
value.

* When 20H (space) or 30H (0) exists between numbers except the first 0 in a character string specified by (s), 20H or 30H is
ignored during conversion.

* When 30H (0) exists between a number and "E" in a character string in the exponent format, 30H is ignored during

conversion.
b15 b8 b7 b0

(s) 20H (space) ' 2DH (-)
(s)+1 2EH (.) ' 31H (1) (d)+1 d
(s)+2 34H (4) ' 30H (0) .
(s)+3 33H (3) . 35H (5) M
(s)+4 2BH (+) : 45H (E) Single-precision real number
(s)+5 33H (3 ' 30H (0)
(s)+6 ' O0H

Ignored
Operation.error
Error code Description
(SD0/SD8067)
2820 00H does not exist in the corresponding device range starting from (s)
3401 Characters other than 30 (0) to 39 (9) exist in a character string specified by (s)

2EH (.) exists in two or more positions in a character string specified by (s)

Any character other than 45H (E), 2BH (+), or 2DH (-) exists in the exponent part specified by (s), or two or more exponent parts exist

3405 The number of characters after (s) is 0 or more than 24

432 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Converting binary floating point to decimal floating point

DEBCD(P)

These instructions convert the binary floating point specified by (s) to decimal floating point, and store the converted data in

the device specified by (d).

Ladder diagram Structured text
ENO:=DEBCD(EN,s,d);

| C—] |) | d }{ ENO:= DEBCDP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) Head device number storing binary floating point data — Single-precision real number Single-precision real number
(binary) (binary)

(d) Device number storing converted decimal floating point | — Single-precision real number Single-precision real number
(decimal) (decimal)

BMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others 7
X,Y,M,L, |uoeO|TsT [TsT,c,p, |umdeO|z |Lc |[Lz | specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

s) — — — o) o) — |o — o - == 1=

(d) — — — o) o - |o — o - == |-

Processing details

» These instructions convert the binary floating point specified by (s) to decimal floating point, and store the converted data in
the device specified by (d).

High order Low order
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
| Exponent part (8 bits) | Mantissa part (23 bits)
LSign (1 bit) (s)+1 (s)

High order U Low order

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
Exponent part Mantissa part

(d)+1 (d)

(d)x10"

Precautions

In floating point operations, all data is handled in binary floating point. Because binary floating point is difficult to understand
(requiring a dedicated monitoring method), it is converted into scientific notation (decimal floating point) so that monitoring can
be easily executed by peripheral equipment.

7 APPLICATION INSTRUCTION 4
7.7 Real Number Instruction 33

3402 The specified device value is denormalized number, NaN (not a number), or +c.

434 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Converting decimal floating point to binary floating point

DEBIN(P)

These instructions convert the decimal floating point specified by (s) to the binary floating point, and store the converted data

in the device specified by (d).

Ladder diagram

Structured text

—C=d]le | }—{

ENO:=DEBIN(EN,s,d);
ENO:= DEBINP(EN,s,d);

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)
(s) Head device number storing decimal floating-point data — Single-precision real number | Single-precision real number
(decimal) (decimal)
(d) Device number storing converted binary floating-point data | — Single-precision real number | Single-precision real number
(binary) (binary)
BMApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO|T,ST, |[T,sT,c,D, |umweO|z |[Lc |[Lz |specification [y TF [g
SM, F, B, SB C,LC | W,SD, SW,R
(s) — — — O O — | O — @) — - |— |—=
(d) — — — O O — | O — @) — - |— |—

Processing details

» These instructions convert the decimal floating point specified by (s) to the binary floating point, and store the converted

data in the device specified by (d).

High order

Low order

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Exponent part

Mantissa part

(s)+1

(s)

b

High order

(s)x10

s)+1

Low order

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

| Exponent part (8 bits) |

Mantissa part (23 bits)

T Sign (1 bit) (d)+1

(d)

* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.
(The mantissa part is "0").
SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (27 2%) of 32-bit real
numbers and the borrow flag SM8021 turns on.
SM8022 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.

7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

435

Operation.error

There is no operation error.

436 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Inverting the sign of single-precision real number

ENEG(P)/DENEG(P)

These instructions invert the sign of the single-precision real number specified by (d), and store the data of the device

specified by (d).
The ENEG(P) instructions can also be used as DENEG(P).

Ladder diagram Structured text

ENO:=ENEG(EN,d);
ENO:=ENEGP(EN,d);

(IS i)

Setting data

EDescriptions, ranges, and data types
Operand | Description Range Data type Data type (label)

(d) Head device number storing single-precision real number — Single-precision real number | Single-precision real number
whose sign is to be inverted

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDweO|TsT |T,sT,c,p, |uoeO|z |Lc |[Lz |specification [y e g
SM, F, B, SB C,LC | W, SD, SW,R

(d) — — — o o — |o — o — = 1= 1-

Processing details

» These instructions invert the sign of the single-precision real number specified by (d), and store the data in the device
specified by (d).

(d)+1 (d) (d)+1 (d)
| 1.2345 | — | -1.2345 |
%/—/ %/—/
Single-precision real number Single-precision real number

» Use these instructions for inverting the positive and negative sign.

Operation.error

There is no operation error.

7 APPLICATION INSTRUCTION 4
7.7 Real Number Instruction 37

Transferring single-precision real number data

EMOV(P)/DEMOV(P)

These instructions transfer the single-precision real number data stored in the device specified by (s) to the device specified

by (d).

The EMOV(P) instructions can also be used as DEMOV(P).

Ladder diagram

Structured text

—C=J]e e }—{

ENO:=EMOV/(EN,s,d);
ENO:=EMOVP(EN,s,d)

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) Data to be transferred or head device number where the 0, 271%<|(s)|<2128 | Single-precision real number | Single-precision real number
data to be transferred is stored

(d) Device number storing the data in transfer destination — Single-precision real number | Single-precision real number

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,ST,c,D, |umeO|z |Lc |[Lz |specification [y [p [g
SM, F, B, SB C,LC | W, SD, SW,R

(s) — — — O O — | O — @) — o |— |—

(d) — — — O O — | O — @) — - = |—

Processing. details

» These instructions transfer the single-precision real number data stored in the device specified by (s) to the device

specified by (d).

(s)+1

(s)

| 4.2

3542

%—)

Single-precisi

on real number

Operation.error

Transfer

There is no operation error.

438

7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

(d)+1

(d)

4.23542 |

%(—)

Single-precision real number

Calculating the sine of single-precision real number

SIN(P)/DSIN(P)

These instructions calculate the sine of the angle specified by (s), and store the operation result in the device specified by (d).
The SIN(P) instructions can also be used as DSIN(P).

Ladder diagram

Structured text™!

—C=d]le|w }—{

ENO:=SINP(EN,s,d);

*
[Z5~ page 771 SIN(_E)

Setting data

EDescriptions, ranges, and data types

The SIN instruction is not supported by the ST language. Use SIN of the standard function.

Operand | Description Range Data type Data type (label)

(s) Angle data or head device number where the angle datais | — Single-precision real number | Single-precision real number
stored

(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,ST,c,D, |umweO|z |Lc |[Lz |specification [y Tp [g
SM, F, B, SB C,LC | W,SD, SW,R

(s) — — — O O — | O — @) — o |— |—

(d) — — — O O — | O — @) — - = |—

Processing. details

» These instructions calculate the sine of the angle specified by (s), and store the operation result in the device specified by

().

(s)+1

(s) (d)+1 (d)

s (]|

) —— | || |

%{—)

Single-precision real number

« Set the angle

%—)

Single-precision real number

data in radians (anglexn+180).

» The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.
(The mantissa part is "0").
SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (27'26) of 32-bit real
numbers and the borrow flag SM8021 turns on.
SM8022 Carry The absolute value of the operation result = 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.
Operation.error
Error code Description
(SD0/SD8067)
3402 The specified device value is -0, denormalized number, NaN (not a number), or +w.

7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

439

Point/©

For the angle<>radian conversion, refer to the DRAD(P) and DDEG(P) instructions.
(==~ Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision
real number radian to angle)

440 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Calculating the cosine of single-precision real number

COS(P)/DCOS(P)
These instructions calculate the cosine of the angle specified by (s), and store the operation result in the device specified by

(d).
The COS(P) instructions can also be used as DCOS(P).

Ladder diagram Structured text !

ENO:=COSP(EN,s,d);
—CZd]e @ }—{

*1 The COS instruction is not supported by the ST language. Use COS of the standard function.
[Z5 Page 772 COS(_E)

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) Angle data or head device number where the angle datais | — Single-precision real number | Single-precision real number
stored

(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number

7
HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

s) — — - o) o) — |o — o — o |— |-

(d) — — — o) o - |o — o - == |-

Processing details

» These instructions calculate the cosine of the angle specified by (s), and store the operation result in the device specified
by (d).
(s)+1 (s) (d)+1 (d)

cos (| ||) ——> | || |
\—/—/ %/—/

Single-precision real number Single-precision real number

» Set the angle data in radians (anglexn+180).
* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2'126) of 32-bit real
numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.

Operation.error

Error code Description
(SD0/SD8067)
3402 The specified device value is -0, denormalized number, NaN (not a number), or +o.

7 APPLICATION INSTRUCTION 441
7.7 Real Number Instruction

Point/©

For the angle<>radian conversion, refer to the DRAD(P) and DDEG(P) instructions.
(==~ Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision
real number radian to angle)

442 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Calculating the tangent of single-precision real number

TAN(P)/DTAN(P)
These instructions calculate the tangent of the angle specified by (s), and store the operation result in the device specified by

(d).
The TAN(P) instructions can also be used as DTAN(P).

Ladder diagram Structured text !

ENO:=TANP(EN,s,d);
—CZ=0[e | w@ }—{

*1 The TAN instruction is not supported by the ST language. Use TAN of the standard function.
(25 Page 773 TAN(_E)

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) Angle data or head device number where the angle datais | — Single-precision real number | Single-precision real number
stored

(d) Head device number for storing the operation result — Single-precision real number | Single-precision real number

7

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uDOeO]|T,sT, |T,sT,c,D, |uoeO|z |Lc |Lz |specification ey Te Tg
SM, F, B, SB C,LC | W, SD, SW, R

) — — — o o — lo — o — |lo |- |-

d) — — — o o — |o — o — = 1=1-

Processing details

» These instructions calculate the tangent of the angle specified by (s), and store the operation result in the device specified
by (d).
(s)+1 (s) (d)+1 (d)

TAN (| ||) —— | || |
%{—J %—/

Single-precision real number Single-precision real number

» Set the angle data in radians (anglexn+180).
* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2‘126) of 32-bit real
numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.

Precautions

When the angle specified by (s) is ©/2 radian or (3/2)r radian, no error occurs because an operation error occurs in a radian
value.

7 APPLICATION INSTRUCTION 44
7.7 Real Number Instruction 3

3402 The specified device value is -0, denormalized number, NaN (not a number), or +o.

For the angle<>radian conversion, refer to the DRAD(P) and DDEG(P) instructions.
(== Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision
real number radian to angle)

444 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Calculating the arc sine of single-precision real number

ASIN(P)/DASIN(P)

These instructions calculate the angle from the sine of the angle specified by (s), and store the operation result in the word

device specified by (d).
The ASIN(P) instructions can also be used as DASIN(P).

Ladder diagram Structured text !

ENO:=ASINP(EN,s,d);
—CZd]e @ }—{

*1 The ASIN instruction is not supported by the ST language. Use ASIN of the standard function.
(5 Page 774 ASIN(_E)

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) A sine value used in SIN"! (arc sine) operation or head -1.0to +1.0 Single-precision real number | Single-precision real number
device number storing the sine value

(d) Head device number for storing the operation result -n/2 to +n/2 Single-precision real number | Single-precision real number

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

s) — — - o) o) — |o — o — o |— |-

(d) — — — o) o - |o — o - == |-

Processing details

» These instructions calculate the angle from the sine of the angle specified by (s), and store the operation result in the
device specified by (d).
(s)+1 (s) (d)+1 (d)

SIN' ||) ——> | || |
%—/ \ﬁ—/
Single-precision real number Single-precision real number

» The sine value specified by (s) can be set ranging from -1.0 to 1.0.
» The angle (operation result) stored in (d) is expressed in radians (from (-r/2) to (n/2)).
* The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2'126) of 32-bit real
numbers and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM8022 turns on.

7 APPLICATION INSTRUCTION 44
7.7 Real Number Instruction 5

- Operation error

3402 The specified device value is -0, denormalized number, NaN (not a number), or +o.
3405 A value specified in (s) is outside the range from -1.0 to 1.0.
(S
For the radian<>angle conversion, refer to the DRAD(P) and DDEG(P) instructions.

(== Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision
real number radian to angle)

446 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Calculating the arc cosine of single-precision real number

ACOS(P)/DACOS(P)

These instructions calculate the angle from the cosine of the angle specified by (s), and store the operation result in the word

device specified by (d).
The ACOS(P) instructions can also be used as DACOS(P).

Ladder diagram Structured text !

ENO:=ACOSP(EN,s,d)
—C=J]e e }—{

*1 The ACOS instruction is not supported by the ST language. Use ACOS of the standard function.
(5 Page 775 ACOS(_E)

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) A cosine value used in COS™ (arc cosine) operation or -1.0to +1.0 Single-precision real number | Single-precision real number
head device number storing the cosine value

(d) Head device number for storing the operation result Oton Single-precision real number | Single-precision real number

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

s) — — - o) o) — |o — o — o |— |-

(d) — — — o) o - |o — o - == |-

Processing details
» These instructions calculate the angle from the cosine of the angle specified by (s), and store the operation result in the
device specified by (d).

(s)+1 (s) (d)+1 (d)

cos™ | ||) —— | || |
%—/

Single-precision real number Single-precision real number

» The cosine value specified by (s) can be set ranging from -1.0 to 1.0
» The angle (operation result) stored in (d) is expressed in radians (0 to).
» The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real numbers
and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2'126) of 32-bit real numbers
and the borrow flag SM8021 turns on.

SM8022 Carry The absolute value of the operation result 2> 2128 | The value of (d) is the maximum value (2128) of 32-bit real numbers
and the carry flag SM8022 turns on.

7 APPLICATION INSTRUCTION 44
7.7 Real Number Instruction 7

- Operation error

3402 The specified device value is -0, denormalized number, NaN (not a number), or +o.
3405 A value specified in (s) is outside the range from -1.0 to 1.0.
(S
For the radian<>angle conversion, refer to the DRAD(P) and DDEG(P) instructions.

(== Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision
real number radian to angle)

448 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Calculating the arc tangent of single-precision real number

ATAN(P)/DATAN(P)

These instructions calculate the angle from the tangent of the angle specified by (s), and store the operation result in the word

device specified by (d).
The ATAN(P) instructions can also be used as DATAN(P).

Ladder diagram Structured text !

ENO:=ATANP(EN,s,d);
—CZd]e @ }—{

*1 The ATAN instruction is not supported by the ST language. Use ATAN of the standard function.
(5 Page 776 ATAN(_E)

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) A tangent value used in the TAN! (arc tangent) operationor | — Single-precision real number | Single-precision real number
head device number storing the tangent value

(d) Head device number for storing the operation result -m/2 to +n/2 Single-precision real number | Single-precision real number

HEApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X, Y,M,L, |uoeO|TsT [TsT,c,p, |umeO|z |Lc |[Lz |specification [y 'y Te [g
SM, F, B, SB C,LC | W, SD, SW,R

s) — — - o) o) — |o — o — o |— |-

(d) — — — o) o - |o — o - == |-

Processing details

» These instructions calculate the angle from the tangent of the angle specified by (s), and store the operation result in the
device specified by (d).
(s)+1 (s) (d)+1 (d)

TAN (| | |) ——> | | | |
%/—/ %/—/
Single-precision real number Single-precision real number

» The angle (operation result) stored in (d) is expressed in radians (from -n/2 to n/2).
» The table below shows the related devices.

Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero flag SM8020 turns on.

(The mantissa part is "0").

SM8021 Borrow The absolute value of the operation result < 27126 | The value of (d) is the minimum value (2 2%) of 32-bit real
numbers and the borrow flag SM8021 turns on.
SM8022 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2'28) of 32-bit real

numbers and the carry flag SM8022 turns on.

Operation.error

Error code Description
(SD0/SD8067)
3402 The specified device value is -0, denormalized number, NaN (not a number), or t.

7 APPLICATION INSTRUCTION 44
7.7 Real Number Instruction 9

Point/©

For the radian<»angle conversion, refer to the DRAD(P) and DDEG(P) instructions.
(=5~ Page 451 Converting single-precision real number angle to radian, Page 452 Converting single-precision
real number radian to angle)

450 7 APPLICATION INSTRUCTION
7.7 Real Number Instruction

Converting single-precision real number angle to radian

RAD(P)/DRAD(P)

These instructions convert a unit of angle from degrees (DEG.) specified by (s) into radians, and store the converted angle in
the device specified by (d).

The RAD(P) instructions can also be used as DRAD(P).

Ladder diagram

Structured text

ENO:=RAD(EN,s,d);
ENO:=RADP(EN,s,d);

—C=J]e e }—{

Setting data

EDescriptions, ranges, and data types

Operand | Description Range Data type Data type (label)

(s) A value in degrees to be converted into a value in radians or | — Single-precision real number | Single-precision real number
the start number storing the value in degrees

(d) Head device number storing a value in radians acquired by | — Single-precision real number | Single-precision real number
conversion

BApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L, |uD\GO |T,ST, |T,ST,C,D, |umeO|z |Lc |[Lz |specification [y p
SM, F, B, SB C,LC | W,SD, SW,R

(s) — — — O O — | O — O — O —

(d) — — — O O — | O — @) — — —

Processing details

» These instructions convert a unit of angle from degrees (DEG.) specified by (s) into radians, and store the converted angle

in the device specified by (d).

(d)+1 (d)

ry—> | | |) rad
%{—J

Single-precision real number

Single-precision real number

» The conversion from degrees into radians is executed as follows:

Radians = Degrees x L

180
» The table below shows the related devices.
Device Name Description
Condition Operation
SM700 Carry The absolute value of the operation result > 2128 | The value of (d) is the maximum value (2128) of 32-bit real
numbers and the carry flag SM700 turns on.
SM8020 Zero The operation result is true "0". The zero