Coolmay PLC Instructions Programming Manual

Shenzhen Coolmay Technology Co., Ltd

V20.81

(Please read before using)

Basic instructions

- Thank you for choosing Coolmay series programmable controller.
- This manual mainly introduces the basics, application instructions and other contents of Coolmay's entire series of programmable controllers.
- Introduction to software and programming, compatible with Mitsubishi GX Developer/ GX Works2, please refer to the relevant manual.
- Please deliver this manual to the end user.

User notice

- Only operators with certain electrical knowledge can perform wiring and other operations on the product. If there is any unclear use, please consult our technical department.
- The examples listed in the manual and other technical materials are for user understanding and reference only, and certain actions are not guaranteed.
- When using this product in combination with other products, please confirm whether it meets the relevant specifications, principles and technical requirements.
- When using this product, please confirm whether it meets the requirements and safety by yourself. If the failure of this product may cause machine failure or loss, please set up backup and safety functions by yourself.

Liability statement

- Although the contents in the manual have been carefully checked, errors are inevitable, and we cannot guarantee complete consistency.
- We will always check the contents of the manual and make corrections in subsequent versions. We welcome your suggestions.
- The contents described in the manual are subject to change without notice.

Contact details

If you have any questions about the use of this product, please contact us.

- Tel: 0755-86950416-842
- Web: <u>www.coolmay.com</u>
- Email: <u>m3@coolmay.com</u>
- Mobile/Skype/Whatsapp: 86 13316892240
- Address: 6th Floor, Building 1, Zhongxing Industrial City, Chuangye Road, Nanshan District, Shenzhen, PRC.

The content of the manual

This manual relates to the application of Coolmay's instructions for the entire series of programmable controllers. It mainly introduces the basic instructions, application instructions, and special instructions of programmable controllers. It also describes the main points and principles of programming.

Scope of the manual

Due to space limitations, certain abbreviations may be used in the manual to replace the original names. The names that may be involved are listed in the following table for easy comparison.

Abbreviation Explanation		
3G series PLC	EX3G series HMI/PLC all in one, (D)CX3G series PLC, FX3GC series PLC.	
2N series PLC	EX2N series HMI/PLC all in one, (D)CX2N series PLC, FX2NC series PLC	
MX2N series PLC	MX2N series HMI/PLC all in one, MX2N series PLC	

Note: 1. 3G series products are compatible with Mitsubishi FX3G, FX3U (C), FX3S instructions. If you need to use the FX3U (C) instruction, you need to change the PLC type to FX3U (C) and then copy it to the FX3G program. Finally, you need to download the program in the FX3G type. For the instruction comparison table, please refer to 2.3 Main Application Instructions.

2. 2N series PLC and MX2N series PLC are compatible with Mitsubishi FX2N commands, and support positioning commands DRVI, DRVA, PLSV, etc. need to be compiled in FX1N and then copied to FX2N program.

CONTENT

1			
	• •	bes of programming languages	
	1.1.1	List programming	
	1.1.2	Circuit programming	
	1.1.3	SFC(STL <step ladder="">)programming</step>	3
	1.2 Pro	ogram interchangeability	
2		ist	
-		sic Instructions	
		p Ladder Instructions	
~		plied Instructions	
3		Detail	
	3.1 De	vice Number List	
	3.1.1	3G series PLC	14
	3.1.2	2N series PLC	16
	3.1.3	MX2N series PLC	
		ecial device number and content	
	3.2.1	3G series PLC	
	3.2.2	2N series PLC refer to 3.3	
	3.2.3	MX2N series PLC	
	3.3 Sp	ecial register number and content	23
	3.3.1	3G series PLC	
	3.3.2	2N series PLC	27
	3.3.3	MX2N series PLC	
		ut and output relays [X, Y]	
	3.4.1	I/O relay number	
	3.4.2	Function and effect	
	3.5 Au	xiliary relay [M]	32
	3.5.1	Auxiliary relay number	33
	3.5.2	Function of auxiliary relay	33
		itus [S]	
	3.6.1	State number	
	3.6.2	State function	
		ner [T]	
	3.7.1	Timer number	
	3.7.2	Timer functions and examples	
	3.7.3	Setting method of setting value	36
	3.7.4	Notes in the subroutine	
		unter [C]	
	3.8.1	Counter number	
	3.8.2	Counter functions and examples	
	-	h-speed counter [C]	
	3.9.1	Types and numbers of high-speed counters	
	3.9.2	Use of high-speed counters	42
	3.10 Da	ta register [D], extension register [R]	43
	3.10.1	Number of data register and extension register	43
	3.10.2	Function of data register and extension register	
	3.10.3	Index register [V], [Z]	
		• • • • • •	
		inter [P], [I]	
	3.11.1	Pointer number	
	3.11.2	Pointer function	
	3.11.3	Function of interrupt pointer	47
4	How to Spe	cify Devices and Constants to Instructions	51
		ta processed by PLC	
	4.1.1	Types of numeric values	
	4.1.2	Value conversion	
	4.1.3	Numerical processing in floating-point arithmetic	
	4.2 Bit	Specification	
	4.2.1	Specification of Digits for Bit Devices (Kn ^{+**})	54
	4.2.2	Bit Specification of a Word Device (D □.b)	
5			
-		~~~	

	5.1	LD, LDI instructions	
	5.2	OUT instructions	
		AND, ANI instructions	
		OR, ORI instructions	
	5.5	LDP, LDF, ANDP, ANDF, ORP, ORF instructions	62
	5.6	ORB Instructions	64
		ANB Instructions	
		MPS, MRD, MPP Instructions	
		MC, MCR Instructions	
	5.10	INV instructions	
	5.11	MEP, MEF instructions	
		PLS, PLF instructions	
	5.12	SET, RST instructions	
		·	
	5.14	NOP instruction	
~		END instruction	
6		Flow	
		CJ/ Conditional jump	
		CALL/ Subroutine call	
	6.3	SRET/ Subroutine return	
	6.4	IRET/ Interrupt Return	79
	6.5	El/ Enable Interrupt	79
	6.6	DI/ Disable Interrupt	79
	6.7	FEND/ Main Routine Program End	80
	6.8	WDT/Watchdog Timer Refresh	
		FOR/Start a FOR/NEXT Loop	
		NEXT/ End a FOR/NEXT Loop	
7		d Compare	
'		CMP/Compare	
		ZCP/ Zone Compare	
		MOV/Move	
	7.4	SMOV/Shift Move	
	7.5	CML/Complement	
		BMOV/Block Move	
		FMOV/Fill Move	
		XCH/Exchange	
		BCD/Conversion to Binary Coded Decimal	
		BIN/Conversion to Binary	
8	Arithmet	ic and Logical Operation	01
	8.1	ADD/BIN Addition1	02
	8.2	SUB/BIN Subtraction1	03
		MUL/BIN Multiplication1	
		DIV/BIN Division	
	8.5	INC/BIN Increment	
		DEC/BIN Decrement	
		WAND/Logical Word AND	
		WOR/Logical Word OR	
		WXOR/Logical Exclusive OR	
9	0.10 Detetion	NEG/Negation	114
9		and Shift Operation –FNC 30 to FNC 39	
		ROR/Rotation Right	
		ROL/Rotation Left	
		RCR/Rotation Right with Carry1	
		RCL/Rotation Left with Carry1	
	9.5	SFTR/Bit Shift Right 1	
	9.6	SFTL/Bit Shift Left 1	
	9.7	WSFR/Word Shift Right1	25
	9.8	WSFL/Word Shift Left1	
	9.9	SFWR/Shift Write [FIFO/FILO Control]1	28
	9.10	SFRD/Shift Read [FIFO Control]1	
10		a Operation- FNC 40 to FNC 491	
-	10.1	ZRST/Zone Reset	
		DECO/Decode1	
	-	ENCO/Encode1	
		SUM/Sum of Active Bits	
		BON/Check Specified Bit Status	

	10.6	MEAN/Mean	
	10.7	ANS/Timed Annunciator Set	141
	10.8	ANR/Annunciator Reset	
	10.9	SQR/BIN Square Root	144
	10.10	FLT/BIN Conversion to Floating Point	145
11	High	n Speed Processing – FNC 50 to FNC 59	146
	11.1	REF/Refresh	147
	11.2	REFF/Refresh and Filter Adjust	148
	11.3	MTR/Input Matrix	149
	11.4	HSCS/High Speed Counter Set	
	11.5	HSCR/High Speed Counter Reset	
	11.6	HSZ/High Speed Counter Zone Compare	
	11.7	SPD/Speed Detection	
	11.8	PLSY/Pulse Y Output	
	11.9	PWM/Pulse Width Modulation	
	11.10	PLSR/Acceleration/Deceleration Setup	
12		dy Instruction – FNC 60 to FNC 69	
	12.1	IST/Initial State	
	12.2	SER/Search a Data Stack	
		ABSD/Absolute Drum Sequencer	
	12.4	INCD/ Incremental Drum Sequencer	
	12.5	TTMR/ Teaching Timer	
	12.5	STMR/Special Timer	
		ALT/Alternate State	
	12.7	RAMP/Ramp Variable Value	
	12.0	ROTC/Rotary Table Control	
	12.9	SORT/ Tabulated Data	
13		ernal I/O	
15	13.1		
	13.1	TKY/Ten Key Input	
		HKY/Hexadecimal Input	
	13.3	DSW/Digital Switch	
	13.4	SEGD/Seven Segment Decoder	194
	13.5	SEGL/Seven Segment With Latch	
		ARWS/Arrow Switch	
		ASC/ASCII Code Data Input	
	13.8	PR/Print (ASCII Code)	
	13.9	FROM/Read From A Special Function Block	
	13.10	TO/Write To A Special Function Block	
14		ernal Device SER (Option equipment)	
	14.1	RS/Serial Communication	
		PRUN/Parallel Run (Octal Mode)	
		ASCI/Hexadecimal to ASCII Conversion	
	14.4	HEX/ASCII to Hexadecimal Conversion	
	14.5	CCD/Check Code	
	14.6	RS2/Serial Communication 2	
	14.7	PID/PID Control Loop	
15		a Transfer 2	
		ZPUSH/Batch Store of Index Register	
	15.2	ZPOP/Batch POP of Index Register	
16	Floa	ting Point	
	16.1	ECMP/Floating Point Compare	
	16.2	EZCP/Floating Point Zone Compare	229
	16.3	EMOV/Floating Point Move	231
	16.4	ESTR/Floating Point to Character String Conversion	232
	16.5	EVAL/ Character String to Floating Point Conversion	
	16.6	EBCD/Floating Point to Scientific Notation Conversion	
	16.7	EBIN/ Scientific Notation to Floating Point Conversion	
	16.8	EADD/Floating Point Addition	
	16.9	ESUB/ Floating Point Subtraction	
	16.10	EMUL/ Floating Point Multiplication	
	16.11	EDIV/ Floating Point Division	
	16.12	EXP/ Floating Point Exponent	
		LOGE/ Floating Point Natural Logarithm	
		LOG10/Floating Point Common Logarithm	
			250

	16.16 ENEG/2 Floating Point Negation	251
	16.17 INT/2 Hexadecimal Floating Point \rightarrow BIN Integer Conversion	
	16.18 SIN/2Floating Point Sine	
	16.19 COS/ Binary Floating Point Cosine	
	16.20 TAN/ Binary Floating Point Tangent	
	16.21 ASIN/Binary Floating Point Arc Sine	257
	16.22 ACOS/Binary Floating Point Arc Cosine	
	16.23 ATAN/Binary Floating Point Arc Tangent	
	16.24 RAD/Binary Floating Point Degrees to Radians Conversion	
	16.25 DEG/Binary Floating Point Radians to Degrees Conversion	
17		
••	17.1 WSUM/ Sum of Word Data	
	17.2 WTOB/ WORD to BYTE	
	17.2 WTOD/ WORD to BTTE 17.3 BTOW/ BYTE to WORD	
	17.4 UNI/ 4-bit Linking of Word Data	
	17.5 DIS/ 4-bit Grouping of Word Data	
	17.6 SWAP/ Byte Swap	
	17.7 SORT2/ Sort Tabulated Data 2	
18	0	
	18.1 DSZR/ Dog Search Zero Return	
	18.1.1 Related devices	
	18.1.2 Function and operation	
	18.1.3 Zero return operation	
	18.1.4 DOG search function	
	18.2 DVIT/ Interrupt Positioning	
	18.2.1 Function and operation	
	18.2.2 Interruption positioning operation	
	18.3 TBL/ Batch Data Positioning Mode	
	18.4 ABS/ Absolute Current Value Read	280
	18.4.1 Related device	
	18.5 ZRN/ Zero Return	
	18.5.1 Related devices	
	18.5.2 Function and Operation	
	18.5.3 Zero return operation	
	18.5.4 Cautions	
	18.6 PLSV/ Variable Speed Pulse Output	
	18.6.1 Function and operation	
	18.6.2 Important points	
	18.7 DRVI/ Drive to Increment	
	18.7.1 Function and Operation	
	18.7.2 Important Points	
	18.8 DRVA/ Drive to Absolute	
	18.8.1 Function and Operation	
	18.8.2 Important Points	
19	9 Real Time Clock Operation	
	19.1 TCMP/ RTC Data Compare	
	19.2 TZCP/ RTC Data Zone Compare	
	19.3 TADD/ RTC Data Addition	
	19.4 TSUB/ RTC Data Subtraction	
	19.5 HTOS/ Hour to Second Conversion	
	19.6 STOH/ Second to Hour Conversion	
	19.7 TRD/ Read RTC data	
	19.8 TWR/ Set RTC data	
20	19.9 HOUR/ Hour Meter	
20		
	20.1 GRY/ Decimal to Gray Code Conversion	
• •	20.2 GBIN/ Gray Code to Decimal Conversion	
21		
	21.1 COMRD/ Read Device Comment Data	
	21.2 RND/ Random Number Generation	
	21.3 DUTY/ Timing Pulse Generation	
	21.4 CRC/CRC Cyclic Redundancy Check	
	21.5 HCMOV/High Speed Counter Move	
22		
	22.1 BK+/ Block Data Addition	

	22.2	BK-/Block Data Subtraction	
	22.3	BKCMP=,>,<,<>,<=,>=/Block Data Compare	
23	Cł	naracter String Control – FNC200 to FNC209	
	23.1	STR/BIN to Character String Conversion	
	23.2	VAL/Character String to BIN Conversion	
	23.3	\$+/Link Character Strings	
	23.4	LEN/Character String Length Detection	
	23.5	RIGHT/Extracting Character String Data from the Right	
	23.6	LEFT/Extracting Character String Data from the Left	
	23.7	MIDR/Random Selection of Character Strings	
	23.8	MIDW/Random Replacement of Character Strings	
	23.9	INSTR/Character string search	
	23.10	\$MOV/Character String Transfer	
24	Da	ata Operation 3 – FNC210 to FNC219	
	24.1	FDEL/Deleting Data from Tables	
	24.2	FINS/Inserting Data to Tables	
	24.3	POP/Shift Last Data Read [FILO Control]	
	24.4	SFR/Bit Shift Right with Carry	
	24.5	SFL/Bit Shift Left with Carry	
25	Da	ata Comparison – FNC220 to FNC249	
	25.1	LD=, >, <, <>, <=, >=/Data Comparison	
	25.2	AND=,>,<,<>,<=,>=/Data Comparison	
	25.3	OR=,>,<,<>,<=,>=/Data Comparison	
26	Da	ata table operation	
	26.1	LIMIT/Limit Control	
	26.2	BAND/Dead Band Control	
	26.3	ZONE/Zone Control	
	26.4	SCL/Scaling (Coordinate by Point Data)	
	26.5	DABIN/Decimal ASCII to BIN Conversion	
	26.6	BINDA/BIN to Decimal ASCII Conversion	
	26.7	SCL2/Scaling 2 (Coordinate by X/Y Data)	
27	Hi	gh Speed Processing 2	
	27.1	HSCT/High Speed Counter Compare With Data Table	

1 Introduction

Programmable logic controller (PLC), a digital operation controller with a microprocessor for automatic control, can load control instructions into memory for storage and execution at any time. The programmable controller is composed of CPU, instruction and data memory, input / output interface, power supply, digital to analog conversion and other functional units. Early programmable logic controllers only had the function of logic control, so they were named programmable logic controllers. Later, with continuous development, these computer modules with simple functions had already included logic control, timing control, analog control, The names of various functions such as multi-machine communication are also changed to Programmable Controller, but because of its conflict with the abbreviation of PC and personal computer, and because of habits, people still use The term logic controller is programmed, and the acronym PLC is still used.

With the development of electronic technology and the needs of industrial applications, the functions of PLCs are becoming more and more powerful, such as position control and network functions. The input / output signals also include DI (Digital Input), AI (Analog Input), PI (Pulse Input) and NI (Numerical Input), DO (Digital Output), AO (Analog Output), PO (Pulse Output) and NO (Numerical Output), so PLC will still play a decisive role in future industrial control.

1.1 Types of programming languages

PLCs support the following three types of programming languages:

1.1.1 List programming

This method is the basis of programs.

1.1.1.1 Features

In this method, sequence instructions are input in the form of instruction words such as "LD", "AND" and "OUT". This input method is the basis of sequence programs.

1.1.1.2 Example of list display

Step	Instruction	Device number
0000	LD	X000
0001	OR	Y005
0002	ANI	X002
0003	OUT	Y005

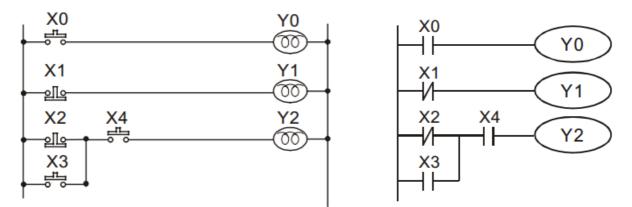
1.1.2 Circuit programming

In this method, ladder formats are drawn on the graphic screen.

In a circuit program, a sequence circuit is drawn on the graphic screen by sequence formats and device numbers. Because a sequence circuit is expressed with contact symbols and coil symbols, the contents of a program can be understood easily.

Introduction

In the circuit display status, the PLC operations can be monitored.


1.1.2.1 Working principle of ladder diagram

Ladder diagram is an automatic control language developed during World War II. It is the oldest and most widely used automatic control language. Initially, there were only A (normally open) contacts, B (normally closed) contacts, and output coils. , Timers, counters and other basic mechanisms and devices, until the appearance of the programmable controller PLC, the devices that can be represented in the ladder diagram, in addition to the above, also add devices such as differential contacts, holding coils and traditional distribution boards can not achieve Application instructions, such as numerical operations such as addition, subtraction, multiplication and division.

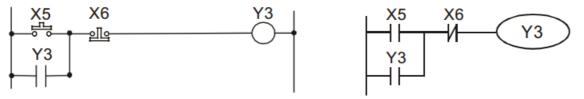
No matter the traditional ladder diagram or PLC ladder diagram, the working principle is the same, but the traditional ladder diagram is represented by a symbol that is closer to the entity in the symbolic representation, while the PLC uses a simpler and easier to represent on the computer or report. Ladder diagram logic can be divided into two kinds of combinational logic and sequential logic, which are described as follows:

1.1.2.2 Combination logic:

The traditional ladder diagram (left) and the PLC ladder diagram (right) represent examples of combinational logic.

- Line 1: Use a normally open switch X0 (NO: Normally Open), also known as the "A" switch or contact. Its characteristic is that in normal (not pressed), its contacts are open (OFF), so Y0 is not conductive, but when the switch is activated (pressed the button), its contacts become conductive (ON), Therefore, Y0 is turned on.
- Line 2: Use a normally closed switch X1 (NC: Normally Close), also known as the "B" switch or contact. Its characteristic is that at normal times, its contact is conductive, so Y1 is conductive, and the When the switch is activated, its contact becomes an open circuit instead, so Y1 does not conduct.
- Line 3: For the application of combined logic output of more than one input device, its output Y2 will only be turned on when X2 is not in action or X3 is in action and X4 is in action.

1.1.2.3 Sequential logic:


Sequential logic is a loop with a feedback structure, that is, the loop output result is pulled back as the input condition. In this way, under the same input condition, different output results will be obtained due to the difference in the previous state or action sequence.

The traditional ladder diagram (left) and PLC ladder diagram (right) respectively represent examples of sequential

Introduction

logic.

When the circuit is just connected to the power supply, although the X6 switch is ON, the X5 switch is OFF, so Y3 does not operate. After the start switch X5 is pressed, Y3 acts. Once Y3 acts, even if the start switch is released (X5 becomes OFF), Y3 can continue to maintain the action (this is the self-holding circuit) because of its own contact feedback. The actions can be expressed in the following table:

Status Sequence	X5 ON/OFF	X6 ON/OFF	Y3 ON/OFF
1	No action	No action	OFF
2	Action	No action	ON
3	No action	No action	ON
4	No action	Action	OFF
5	No action	No action	OFF

It can be seen from the above table that under different sequences, although the input states are completely consistent, the output results may also be different. For example, the action sequences 1 and 3 in the table, the X5 and X6 switches are not activated, and under the condition of state 1, Y3 is OFF, but Y3 is ON in state 3. This Y3 output state is pulled back as an input (so-called feedback) to give the loop a sequential control effect is the main characteristic of the ladder circuit.

1.1.2.4 Editing points of PLC ladder diagram

The program editing method is from the left bus to the right bus. The editing of one line is followed by the next line. The number of contacts in a line can be up to 11, if it is not enough, continuous lines will be generated to continue the connection, and then continue to connect more For devices, consecutive numbers are automatically generated, and the same input point can be used repeatedly. As shown below:

The operation of the ladder program is scanning from the upper left to the lower right. The coil and application instruction operation box belong to the output processing, and are placed at the far right in the ladder diagram.

1.1.3 SFC(STL<step ladder >)programming

Sequence control using the SFC (sequential function chart) is available in PLCs.

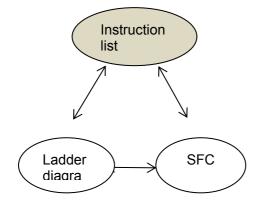
In SFC programs, the role of each process and the overall control flow can be expressed easily based on machine operations, so sequence design is easy. Accordingly, machine operations can be easily transmitted to any person,

and created programs are efficient in maintenance, specifications changes and actions against problems.

1.1.3.1 Features

In SFC programs, each process performed by the machine is expressed by a state relay.

1.1.3.2 Interchangeability of SFC procedures and other procedures


The instruction list program and ladder program that can be converted to each other can be converted into SFC charts if they are prepared according to certain rules.

Note: When Coolmay PLC uses SFC programming, it is not allowed to use positioning instructions or other pulsed instructions in SFC.

1.2 Program interchangeability

The sequence programs created by the above three methods are saved in the program memory of the programmable controller through instructions (the contents of the instruction table programming).

• Programs created using the various input methods shown below can be converted and displayed and edited.

Note: Our PLC programming is mainly based on ladder diagram programming. (Does not support structured engineering, does not support the use of tags)

2 Instruction List

2.1 Basic Instructions

Mnemonic	Name	Function	Applicable devices	Program step	
Contact Instruction					
		Initial logical operation			
LD	Load	contact type NO	X,Y,M,S,T,C,D □.b	1	
		(normally open)			
		Initial logical operation			
LDI	Load Inverse	contact type NC	X,Y,M,S,T,C,D □.b	1	
		(normally closed)			
LDP	Load Pulse	Initial logical operation of	X,Y,M,S,T,C,D □.b	2	
		Rising edge pulse	- , , , . , . , . , . , . , . , . , . ,	_	
LDF	Load Falling	Initial logical operation of	X,Y,M,S,T,C,D □.b	2	
LDI	Pulse	Falling/trailing edge pulse		_	
AND	AND	Serial connection of NO	X,Y,M,S,T,C,D □.b	1	
7.110	,	(normally open) contacts	- , , , . , . , . , . , . , . , . , . ,		
ANI	AND Inverse	Serial connection of NC	X,Y,M,S,T,C,D □.b	1	
		(normally closed) contacts			
ANDP	P AND Pulse	Serial connection of Rising	X,Y,M,S,T,C,D □.b	2	
		edge pulse	- , , , . , . , . , . , . , . , . , . ,	_	
ANDF	AND Falling	Serial connection of	X,Y,M,S,T,C,D □.b	2	
	Pulse	Falling/trailing edge pulse	, , , , , , , , , , , , ,	_	
OR	OR	Parallel connection of NO	X,Y,M,S,T,C,D □.b	1	
		(normally open) contacts	, , , , , , , , , , , , ,		
ORI	OR Inverse	Parallel connection of NC	X,Y,M,S,T,C,D □.b	1	
		(normally closed) contacts			
ORP	OR Inverse	Parallel connection of NC	X,Y,M,S,T,C,D □.b	2	
		(normally closed) contacts			
ORF	OR Falling	Parallel connection of	X,Y,M,S,T,C,D □.b	2	
	Pulse	Falling/trailing edge pulse			
Connection Instruction					
ANB	AND Block	Serial connection of	_	1	
		multiple parallel circuits			
ORB	OR Block	Parallel connection of	_	1	
	-	multiple contact circuits			
	Memory Point	Stores the current result of			
MPS	Store operations	—	1		
		operations			

Intruction List

1					
1					
1					
1					
1					
•					
Out Instruction					
□.b Note 1					
.b Note 2					
,D □.b					
3					
2					
Other Instruction					
1					
1					

2.2 Step Ladder Instructions

Mnemonic	Name	Function	Applicable devices	Program step
STL	Step Ladder	Starts step ladder	S	1
RET	Return	Completes step ladder	—	1

2.3 Applied Instructions

			Applicable PLC			
FNC	Mnemonic	Function	Function 3G series PLC		2N	
NO.			FX3G	FX3U(C)	series PLC	MX2N series PLC
00	CJ	Conditional Jump	*	*	*	*
01	CALL	Call Subroutine	*	*	*	*
02	SRET	Subroutine Return	*	*	*	*
03	IRET	Interrupt Return	*	*		*
04	EI	Enable Interrupt	*	*		*
05	DI	Disable Interrupt	*	*		*
06	FEND	Main Routine Program End	*	*	*	*
07	WDT	Watchdog Timer Refresh	*	*	*	*
08	FOR	Start a FOR/NEXT Loop	*	*	*	*
09	NEXT	End a FOR/NEXT Loop	*	*	*	*
10	CMP	Compare	*	*	*	*
11	ZCP	Zone Compare	*	*	*	*
12	MOV	Move	*	*	*	*
13	SMOV	Shift Move	*	*		*
14	CML	Complement	*	*	*	*
15	BMOV	Block Move	*	*	*	*
16	FMOV	Fill Move	*	*	*	*
17	ХСН	Exchange		*	*	*
18	BCD	Conversion to Binary Coded Decimal	*	*	*	*
19	BIN	Conversion to Binary	*	*	*	*
20	ADD	Addition	*	*	*	*
21	SUB	Subtraction	*	*	*	*
22	MUL	Multiplication	*	*	*	*
23	DIV	Division	*	*	*	*
24	INC	Increment	*	*	*	*
25	DEC	Decrement	*	*	*	*
26	WAND	Logical Word AND	*	*	*	*
27	WOR	Logical Word OR	*	*	*	*
28	WXOR	Logical Exclusive OR	*	*	*	*
29	NEG	Negation		*	*	*

30	ROR	Rotation Right	* * *			*
31	ROL	Rotation Left	*	*	*	*
32	RCR	Rotation Right with Carry		*	*	*
33	RCL	Rotation Left with Carry		*	*	*
34	SFTR	Bit Shift Right	*	*	*	*
35	SFTL	Bit Shift Left	*	*	*	*
36	WSFR	Word Shift Right	*	*	*	*
37	WSFL	Word Shift Left	*	*	*	*
38	SFWR	Shift write [FIFO/FILO control]	*	*	*	*
39	SFRD	Shift Read [FIFO Control]	*	*	*	*
40	ZRST	Zone Reset	*	*	*	*
41	DECO	Decode	*	*	*	*
42	ENCO	Encode	*	*	*	*
43	SUM	Sum of Active Bits	*	*	*	*
44	BON	Check Specified Bit Status	*	*	*	*
45	MEAN	Mean	*	*	*	
46	ANS	Timed Annunciator Set	* *			*
47	ANR	Annunciator Reset	*	*		*
48	SQR	Square Root		*	*	*
49	FLT	Conversion to Floating Point	*	*	*	*
50	REF	Refresh	*	*	*	*
51	REFF	Refresh and Filter Adjust		*		
52	MTR	Input Matrix	*	*		
53	HSCS	High Speed Counter Set	*	*		
54	KSCR	High Speed Counter Reset	*	*		
55	HSZ	High Speed Counter	*	*		
		Zone Compare				
56	SPD	Speed Detection	*	*	*	*
57	PLSY	Pulse Y Output	*	*	*	*
58	PWM	Pulse Width Modulation	*	*	*	*
59	PLSR	Acceleration/Deceleration Setup	*	*	*	*
60	IST	Initial State	*	*		
61	SER	Search a Data Stack	*	*		*
62	ABSD	Absolute Drum Sequencer	*	*		
63	INCD	Incremental Drum Sequencer	*	*		
64	TTMR	Teaching Timer		*		
	1				1	l

65	STMR	Special Timer		*		
66	ALT	Alternate State	*	*	*	*
67	RAMP	Ramp Variable Value	*	*	*	*
68	ROTC	Rotary Table Control		*		
69	SORT	SORT Tabulated Data		*		
70	ТКҮ	Ten Key Input		*		
71	KHY	Hexadecimal Input		*		
72	DSW	Digital Switch	*	*		
		(Thumbwheel Input)				
73	SEGD	Seven Segment Decoder		*	*	*
74	SEGL	Seven Segment with Latch	*	*		
75	ARWS	Arrow Switch		*		
76	ASC	ASCII Code Data Input		*		
77	PR	Print (ASCII Code)		*		
78	FROM	Read From A Special	*	*		MODBUS-RTU master
		Function Block				station function, used to
79	то	Write To A Special Function Block	*	* *		read/write slave station data
80	RS	Serial Communication	*	*	*	*
81	PRUN	Parallel Run (Octal Mode)	*	^ ★		^
82	ASCI	Hexadecimal to ASCII Conversion	 ★	 ★	*	*
83	HEX	ASCII to Hexadecimal Conversion	 ★	 ★	^ ★	*
84	CCD	Check Code	*	*		*
85	VRRD	Volume Read	*	*		*
86	VRSC	Volume Scale	*			
87	RS2	Serial Communication 2	*	*		
88	PID	PID Control Loop	*	*	*	
102	ZPUSH	Batch Store of Index Register		*		
103	ZPOP	Batch POP of Index Register		*		
110	ECMP	Floating Point Compare	*	*	*	*
111	EZCP	Floating Point Zone Compare		*	*	*
112	EMOV	Floating Point Move	*	*		
116	ESTR	Floating Point to Character	, , , , , , , , , , , , , , , , , , ,			
		String Conversion Character String to Floating				
117	EVAL	Point Conversion		*		
. <u> </u>	_	Floating Point to Scientific				
118	EBCD	Notation Conversion		*	*	*

		Scientific Notation to				
119	EBIN	Floating		*	*	*
		Point Conversion				
120	EADD	Floating Point Addition	*	*	*	*
121	ESUB	Floating Point Subtraction	*	*	*	*
122	EMUL	Floating Point Multiplication	*	*	*	*
123	EDIV	Floating Point Division	*	*	*	*
124	EXP	Floating Point Exponent		*		
125	LOGE	Floating Point Natural		*		
	2002	Logarithm		<u>^</u>		
126	LOG10	Floating Point Common Logarithm		*		
127	ESQR	Floating Point Square Root	*	*	*	*
128	ENEG	Floating Point Negation		*		
129	INT	Floating Point to Integer Conversion	* *		*	*
130	SIN	Floating Point Sine	*		*	*
131	COS	Floating Point Cosine	*		*	*
132	TAN	Floating Point Tangent	*		*	*
133	ASIN	Floating Point Arc Sine		*		
134	ACOS	Floating Point Arc Cosine		*		
135	ATAN	Floating Point Arc Tangent		*		
136	RAD	Floating Point Degrees to Radians Conversion		*		
137	DEG	Floating Point Radians to Degrees Conversion		*		
140	WSUM	Sum of Word Data		*		
141	WTOB	WORD to BYTE		*		
142	BTOW	BYTE to WORD		*		
143	UNI	4-bit Linking of Word Data		*		
144	DIS	4-bit Grouping of Word Data		*		
147	SWAP	Byte Swap		*	*	*
149	SORT2	Sort Tabulated Data 2		*		
150	DSZR	DOG Search Zero Return	*	*		
151	DVIT	Interrupt Positioning		*		
152	TBL	Batch Data Positioning Mode	*	*		

			1			
155	ABS	Batch Data Positioning Mode	* * *			*
156	ZRN	Zero Return	* * *			*
157	PLSV	Variable Speed Pulse Output	*	*	*	*
158	DRVI	Drive to Increment	*	*	*	*
159	DRVA	Drive to Absolute	*	*	*	*
160	TCMP	RTC Data Compare	*	*	*	*
161	TZCP	RTC Data Zone Compare	*	*	*	*
162	TADD	RTC Data Addition	*	*	*	*
163	TSUB	RTC Data Subtraction	*	*	*	*
164	HTOS	Hour to Second Conversion		*		
165	STOH	Second to Hour Conversion		*		
166	TRD	Read RTC data	*	*	*	*
167	TWR	Set RTC data	*	*	*	*
169	HOUR	Hour Meter	*	*	*	*
170	GRY	Decimal to Gray Code Conversion	*	* *		
171	GBIN	Gray Code to Decimal	*	*		
		Conversion				
176	RD3A	Read form Dedicated Analog Block	to i (Note: block	bus commu read slave o The origina readout fun not available	data I analog iction is	*
177	WR3A	Write to Dedicated Analog Block	to writ (Note:	bus commu e data to th The origina write functic available)	e slave I analog on is not	*
182	COMRD	Read Device Comment Data		*		
184	RND	Random Number Generation		*		
186	DUTY	Timing Pulse Generation		*		
188	CRC	Cyclic Redundancy Check		*		
189	HCMOV	High Speed Counter Move		*		
192	BK+	Block Data Addition		*		
193	BK-	Block Data Subtraction		*		
194	BKCMP=	Block Data Compare S1.=S2.		*		

195	BKCMP>	Block Data Compare S1. > S2.		*		
196	BKCMP<	Block Data Compare S1. < S2.		*		
197	BKCMP<>	Block Data Compare S1.≠S2 .		*		
198	BKCMP<=	Block Data Compare S1.≤S2 .		*		
199	BKCMP>=	Block Data Compare S1.≥S2 .		*		
200	STR	BIN to Character String		*		
	0111	Conversion		^		
201	VAL	Character String to BIN Conversion		*		
202	\$+	Link Character Strings		*		
203	LEN	Character String Length Detection		*		
204	RIGHT	Extracting Character String Data from the Right		*		
		Extracting Character String				
205	LEFT	Data from the Left		*		
206	MIDR	Random Selection of		*		
200	WIER	Character Strings	×			
207	MIDW	Random Replacement of	*			
		Character Strings				
208	INSTR	Character string search		*		
209	\$MOV	Character String Transfer		*		
210	FDEL	Deleting Data from Tables		*		
211	FINS	Inserting Data to Tables		*		
212	POP	Shift Last Data Read		*		
		[FILO Control]				
213	SFR	Bit Shift Right with Carry		*		
214	SFL	Bit Shift Left with Carry		*		
224	LD=	Load Compare LD S1.=S2.	*	*	*	*
225	LD>	Load Compare LD S1.>S2.	*	*	*	*
226	LD<	Load Compare LD S1. <s2.< td=""><td>*</td><td>*</td><td>*</td><td>*</td></s2.<>	*	*	*	*
228	LD<>	Load Compare LD S1.<>S2.	*	*	*	*
229	LD<=	Load Compare LD S1.<=S2.	*	*	*	*
230	LD>=	Load Compare LD S1.>=S2.	*	*	*	*
232	AND=	Load Compare AND S1.=S2.	*	*	*	*
233	AND>	Load Compare AND S1.>S2 .	*	*	*	*
234	AND<	Load Compare AND S1. <s2.< td=""><td>*</td><td>*</td><td>*</td><td>*</td></s2.<>	*	*	*	*
236	AND<>	Load Compare AND S1.<>S2.	*	*	*	*
237	AND<=	Load Compare AND S1.<=S2 .	*	*	*	*

238	AND>=	Load Compare AND S1.>=S2 .	*	*	*	*
240	OR=	Load Compare OR S1.=S2.	*	*	*	*
241	OR>	Load Compare OR S1.>S2.	*	*	*	*
242	OR<	Load Compare OR S1. <s2.< td=""><td>*</td><td>*</td><td>*</td><td>*</td></s2.<>	*	*	*	*
244	OR<>	Load Compare OR S1.<>S2.	*	*	*	*
245	OR<=	Load Compare OR S1.<=S2.	*	*	*	*
246	OR>=	Load Compare OR S1.>=S2.	*	*	*	*
256	LIMIT	Limit Control		*		
257	BAND	Dead Band Control		*		
258	ZONE	Zone Control		*		
259	SCL	Scaling (Coordinate by Point Data)		*		
260	DABIN	Decimal ASCII to BIN Conversion		*		
261	BINDA	BIN to Decimal ASCII Conversion		*		
269	SCL2	Scaling 2 (Coordinate by X/Y Data)		*		
280	HSCT	High Speed Counter Compare With Data Table		*		

3 Devices in Detail

3.1 Device Number List

3.1.1 3G series PLC

Device name	Description					
I/O relay						
Input relay	X000~X047	40 points	Device numbers are octal.			
Output relay	Y000~Y047	40 points	The total number of inputs and outputs is 80.			
Auxiliary relay						
General type	M0~M383	384 points				
EEPROM retention	M384~M1535	1152 points	3			
General type	M1536~M7679	6144 points	3			
Special type	M8000~M8511	512 points				
State relay						
Initial state (EEPROM retention)	S0~S9	10 points				
EEPROM retention	S10~S999	990 points				
General type	S1000~S4095	3096 points				
Timer (on-delay timer)						
100ms	T0 ~ T199	200 points	0.1~3,276.7 sec			
10ms※1	T200 ~ T245	46 points	0.01 ~ 327.67 sec			
Retentive type for 1 ms (EEPROM retention)	T246 ~ T249	4 points	0.001 ~ 32.767 sec			
Retentive type for 100 ms (EEPROM retention)	T250 ~ T255	6 points	0.1~3,276.7 sec			
1ms	T256~T319	64 points	0.001~32.767 sec			
Counter						
General type up counter (16 bits)	C0~C15	16 points	Counts 0 to 32,767			
EEPROM retention up counter (16 bits)	C16 ~ C199	184 points	Counts 0 to 32,767			
General type bi-directional counter (32 bits)	C200 ~ C219	20 points	-2,147,483,648 to +2,147,483,647 counts			
EEPROM retention bi-directional counter	C220 ~ C234	15 points	-2,147,483,648 to +2,147,483,647 counts			

(32 bits)								
High speed counter								
1-phase 1-counting input				-2,147,48	3,648 to 2,147	,483,647 counts	3	
Bi-directional (32 bits) (EE	PROM	C235 ~ C245		Software co	ounter			
retention)				1 phase: m	ax 6 channels,	, max 60 KHz ea	ach	
1-phase 2-counting input				Two-phase:				
Bi-directional (32 bits) (EE	PROM	C246 ~ C250)			to 2-3 channe	els, ma	aximum
retention)				frequenc				100-00
2-phase 2-counting input						equency mark of		
Bi-directional (32 bits) (EE	PROM	C251 ~ C255	5	4-times f 24KHz	requency: max	x 2 channels, n	nax tre	quency
retention)					the 1 times fro	equency mark of	f C 253	10255
Device name	Descrip	otion		1013313			10233	0233
Data register (32 bits when	used in	pair form)						
General type (16 bits)	D0 ~ D ⁻	•	128 p	ninte				
	20 2		120 p	51115				
EEPROM retention (16 bits)	D128~	D7999	7872	points				
Special type (16 bits)	D8000	~ D8511	512 p	oints				
Index type (16 bits)	V0 ~ V7	7,Z0 ~ Z7	16 points					
Extension register/Extension	n file reg	jister						
Special type (16 bits)	R0~R22999		23000 points Support blackout					
	R23000	0~R23999 1000		00 points For internal use				
Pointer								
	P0~P2	255	256 p			For CJ	and	CALL
For jump and branch call	P0 ~ P ²	1280	1281 points (version 26232 and instructions				_	
		1200	above)					
Input interrupt	I0□□ ~	5	6 poin	ts				
Timer interrupt	l6□□ ~	800	3 poin	ints				
Counter interrupt 10 10			6 points					
Nesting	Nesting							
For master control N0 ~ N7			8 points For MC instruction					
Constant								
Decimal (K)	16 poin	ts	-32,768 ~ +32,767					
	32 poin	ts	-2,147	47,483,648 ~ +2,147,483,647				
Hexadecimal (H)	16 poin	ts	0000 ~ FFFF					

Devices in Detail

	32 points	0000000 ~ FFFFFFF
Real number (E)	32 points	-1.0×2128 ~ -1.0×2-126,0,1.0×2-126 ~ 1.0×2128 Both the decimal point expression and the exponent expression are available.

3.1.2 2N series PLC

Item		Substance				
Operation co	ontrol method	Cyclic scanning through stored programs				
Input and	output control	Batch processing (when executing END instruction), input and output refresh,				
method		pulse capture				
Programming		Logic ladder diagram and instruction list (compatible with Mitsubishi software				
riogrammių	gianguage	FXGP_WIN-C)				
	Basic	0.08µs				
Operation	instructions					
time	Application	10-30µs				
	instruction					
RAM	Built-in	8000 step EEPROM				
	Storage box					
	Basic sequence	27				
	instruction					
Instruction	Step ladder	2				
monuolion	instructions					
	Application	94				
	instruction					
Auxiliary	general	500 points M0 - M499				
relay	lock	1036 points M500-M1535				
loluy	special	256 points M8000 - M8255				
	general	500 points S0 to S499				
status	initial	10 points S000-S009				
	lock	500 points S500 - S999				
	100 millisecond	200 points T0-T199				
	10 millisecond	46 points T200-T245				
Timer	1 millisecond	4 points T246-T249				
	integration					
	100 millisecond	6 points T250- T255				
	integration					
	General 16 bits	100 points C0-C99				
counter	Lock 16 bits	100 points C100-C199				
	General 32-bit					
	Lock 32 bits	35 points C200-C234				

High-speed counter	Simplex	Max 6 points: C235-X0 C236-X1 C237-X7 C238-X3 C239-X4 C240-X5; Normal 2 points: C235-X0 C238-X3
	A/B phase	Max 3 points: C251-X0/X1 C253-X3/X4 C254-X10/X11 ; Normal 2 points: C251-X0/X1 C253-X3/X4
	General	200 points D0-D199
	Retentive	800 points D200-D999
Data	File register	
register	External	
(D.V.Z)	regulation	
	special	256 points D8000-D8255
	Index	16 points V0-V7 Z0-Z7
pointer	JUMP,CALL	128 points P0-P127
pointer	Input interrupt	
Nested	For master	8 points N0-N7
	Decimal K	16 points: -32768 - +32767
Constant		32 points: -2147483648 - +2147483647
Constant	Hexadecimal H	16 points: 0000-FFFF
		32 points: 0000000-FFFFFFF

3.1.3 MX2N series PLC

Input X	X0~X47 40 points		Output Y	Y0~Y47 40 points		
Auxiliary relay M	M0~M499 500 points (general)	M500~M1535 keeping)	1036 points (For	M8000~M8255 255 points (For special)		
Status relay S	S0~S9 10 points (For keeping state	•)	S10~S999 990 points	(For keeping)		
Timer T	T0~T199 200	T200~T245 46	T246~T249 4 points	T250~T255 6 points		
Timer I	points 100ms	points 10ms	1ms accumulation	100ms accumulation		
	16-bit up counter		32-bit up-down counter	er		
Counter C	C0~C15 16 points (general)	C16~C199 184 points (For keeping)	C200~C219 20 points (general)	C220~C234 15 points (For keeping) C235~C255 20 points (Keep high speed)		
Register D.V.Z	D0~D199 200 点 (general)	D200~D7999 7800 points (For keeping)	D8000~D8195 196 points (For special, keeping)	D8196~D8255V0~V7 Z0~Z759 points (For special)16 points (For indexing)		
Nested pointer	N0~N7 8 points (For master)	P0~P127 128 subroutine)	points (Jump,	IO □□~I5 □□ 6 points (For external interrupt)		
constant	K (decimal	16bit-32768~327	67	32bit-2147483648~2147483647		

Devices in Detail

number)		
H (hexadecimal number)	16bit 0~FFFF	32bit 0~FFFFFFF

3.2 Special device number and content

3.2.1 3G series PLC

Number	Content	Remarks	Number	Content	Remarks
M8000	Closed during RUN		M8224	C224 Up/down counting action	
M8001	Open when RUN		M8225	C225 Up/down counting action	
M8002	After RUN, output one scan cycle ON		M8226	C226 Up/down counting action	
M8003	After RUN, output a scan cycle of OFF		M8227	C227 Up/down counting action	ON:
M8011	Oscillate with a period of 10ms		M8228	Start the handwheel function	Decrement OFF:
M8012	Oscillate with a period of 100ms		M8229	C229 Up/down counting action	Incrementa
M8013	Oscillate with a period of 1s		M8230	C230 Up/down counting action	
M8014	Oscillate with a period of 1min		M8231	C231 Up/down counting action	
M8020	Zero mark		M8232	C232 Up/down counting action	
M8021	Borrow mark		M8233	C233 Up/down counting action	
M8022	Carry flag		M8234	C234 Up/down counting action	
M8024	Specify BMOV direction		M8235	C235 Up/down counting action	
M8028	Allow interruption during instruction execution		M8236	C236 Up/down counting action	
M8029	Instruction execution end flag		M8237	C237 Up/down counting action	
M8031	All non-retained memory is cleared		M8238	C238 Up/down counting action	ON: Decrement
M8032	Keep all memory clear		M8239	C239 Up/down counting action	OFF:
M8033	Memory remains stopped		M8240	C240 Up/down counting action	Incrementa
M8034	Suppress all output		M8241	C241 Up/down counting action	l action
M8035	Forced RUN mode		M8242	C242 Up/down counting action	
M8036	Forced RUN instruction		M8243	C243 Up/down counting action	
M8037	Force STOP instruction		M8244	C244 Up/down counting action	
M8045	Disable reset of all outputs		M8245	C245 Up/down counting action	
M8046	STL state action		M8246	C246 Up/down counting action	ON:
M8047	STL control is effective		M8247	C247 Up/down counting action	Decrement
M8048	Signal alarm action		M8248	C248 Up/down counting action	OFF:
M8049	Signal alarm is effective		M8249	C249 Up/down counting action	Incrementa
M8050	Input interrupt (100 port		M8250	C250 Up/down counting action	l action

Number	Content	Remarks	Number	Content	Remarks
-	prohibited)				
M8051	Input interrupt (I10 port prohibited)		M8251	C251 Up/down counting action	
M8052	Input interrupt (I20 port prohibited)		M8252	C252 Up/down counting action	
M8053	Input interrupt (I30 port prohibited)	:	M8253	C253 Up/down counting action	
M8054	Input interrupt (I40 port prohibited)		M8254	C254 Up/down counting action	
M8055	Input interrupt (I50 port prohibited)		M8255	C255 Up/down counting action	
M8056	Timer interrupt (I6 port is prohibited)		M8340	The first pulse operation monitoring	
M8057	Timer interrupt (I7 port is prohibited)		M8342	Interpolation mode flag	26233 and
M8058	Timer interrupt (I8 port is prohibited)		M8343	Interpolation mode flag	Previous
M8059	Counter interrupt disable		M8344	Interpolated relative/absolute coordinate flag	
M8060	I/O composition error		M8348	Interpolate clockwise and counterclockwise flags	26233 and Previous version
M8061	PLC hardware error		M8341	Y000 clear signal output function is effective	
M8062	Serial communication error 0		M8342	Y000 specifies the origin return direction	
M8063	Serial communication error 1		M8343	Y000 forward limit	00004 and
M8064	Parameter error		M8344	Y000 reverse limit	26234 and Later
M8065	Grammatical errors		M8345	Y000 Near-point DOG signal logic inversion	version
M8066	Loop error		M8346	Y000 Zero signal logic reversal	
M8067	Operation error		M8347	Y000 interrupt signal logic inversion	
M8068	Operation error latch		M8348	Y000 positioning command driving	
M8069	I/O bus detection		M8349	The first pulse stop bit	
M8075	Sampling trace preparation start instruction		M8350	Second channel pulse operation monitoring	
M8076	Sampling trace execution start instruction		M8351	Y001 clear signal output function is effective	
M8077	Prompt control during sampling and tracking		M8352	Y001 specifies the origin return direction	
M8078	Sampling and tracking		M8353	Y001 forward limit	

Number	Content	Remarks	Number	Content	Remarks
	execution ended				
M8079	Sampling and tracking system area		M8354	Y001 reverse limit	
M8120	Not available		M8355	Y001 Near-point DOG signal logic inversion	
M8121	RS/RS2 command send standby flag		M8356	Y001 Zero signal logic reversal	
M8122	RS/RS2 command sending request		M8357	Y001 interrupt signal logic inversion	
M8123	RS/RS2 command reception end flag		M8358	Y001 positioning command driving	
M8124	RS/RS2 command data receiving		M8359	Second pulse stop bit	
M8125	Activating mark of MODBUS and Mitsubishi functions		M8360	Third pulse operation monitoring	
M8128	RD3A/WR3A received correct flag		M8361	Y002 clear signal output function is valid	
M8129	RD3A/WR3A communication timeout flag		M8362	Y002 specifies the origin return direction	
M8151	Fifth pulse operation control		M8363	Y002 forward limit	
M8152	Sixth pulse operation control		M8364	Y002 Reverse limit	
M8153	Seventh pulse operation control		M8365	Y002 Near-point DOG signal logic inversion	
M8154	Eighth pulse operation control		M8366	Y002 Zero signal logic reversal	
M8160	XCH SWAP function		M8367	Y002 interrupt signal logic inversion	
M8161	8-bit processing mode	26234 and Later version	M8368	Y002 positioning command driving	
M8170	Input X000 pulse capture		M8369	Third pulse stop bit	
M8171	Input X001 pulse capture		M8370	4th pulse operation monitoring	
M8172	Input X002 pulse capture		M8371	Y003 clear signal output function is effective	
M8173	Input X003 pulse capture		M8372	Y003 specifies the origin return direction	
M8174	Input X004 pulse capture		M8373	Y003 forward limit	
M8175	Input X005 pulse capture		M8374	Y003 Reverse limit	
M8176	Input X006 pulse capture		M8375	Y003 Near-point DOG signal logic inversion	;
M8177	Input X007 pulse capture		M8376	Y003 Zero signal logic reversal	
M8192	Enable flag of programming port protocol and other	•	M8377	Y003 Interrupt signal logic inversion	

Number	Content	Remarks	Number	Content	Remarks
	protocols				
M8196	Enable flag of programming port protocol and other protocols	Serial port	M8378	Y003 positioning command driving	
M8198	4 octave signs for C251, C252		M8379	Fourth pulse stop bit	
M8199	4 octave signs for C253, C255				
M8200	C200 Up/down counting action		M8401	RS2 Command sending standby flag	
M8201	C201 Up/down counting action		M8402	RS2 Instruction sending request	
M8202	C202 Up/down counting action		M8403	RS2 Command received end flag	
M8203	C203 Up/down counting action		M8404	RS2 Command data receiving	
M8204	C204 Up/down counting action		M8405	RS2 Command data set ready flag	
M8205	C205 Up/down counting action		M8408	RD3A/WR3AReceive complete flag	
M8206	C206 Up/down counting action		M8409	RD3A/WR3A Communication timeout flag	
M8207	C207 Up/down counting action		M8421	RS2 command to send standby flag	
M8208	C208 Up/down counting action		M8422	RS2 command sending request	
M8209	C209 Up/down counting action		M8423	RS2 command receiving end flag	
M8210	C210 Up/down counting action		M8424	RS2 command data receiving	
M8211	C211 Up/down counting action		M8425	RS2 command data transmission completion flag	
M8212	C212 Up/down counting action	ON: Decrement OFF:	M8426	RS command master-slave and multi- machine mode flags	
M8213	C213 Up/down counting action	-	M8427	CAN data standard frame and extended frame flag	
M8214	C214 Up/down counting action		M8428	CAN communication MODBUS response correct flag	
M8215	C215 Up/down counting action		M8429	Communication timeout	•
M8216	C216 Up/down counting action		M8432	Interpolation mode flag	
M8217	C217 Up/down counting action		M8433	Interpolation mode flag	26235 and
M8218	C218 Up/down counting action		M8434	Interpolated relative/absolute coordinate flag	Later version
M8219	C219 Up/down counting action		M8435	Interpolate clockwise and counterclockwise flags	
M8220	C220 Up/down counting action		M8450	Fifth pulse stop bit	
M8221	C221 Up/down counting action		M8451	Sixth pulse stop bit	
M8222	C222 Up/down counting action		M8452	Seventh pulse stop bit	
M8223	C223 Up/down counting action		M8453	Eighth pulse stop bit	

3.2.2 2N series PLC refer to 3.3

3.2.3 MX2N series PLC

Number	content	Number	content
M8000	Operation monitoring contact	M8112	Optional 1 channel weighing function is activated
M8001	Operation monitoring counter contact	M8113	Optional 1 channel weighing filter function is activated
M8002	Initialize pulse contact	M8114	Optional 1 channel weighing failure sign
M8003	Initialize pulse counter contact	M8115	Open thermocouple fault (no such function for now)
M8004	Error indicating contact	M8116	Optional 2 channel weighing function Channel 1 data overflow (no such function yet)
M8005	Random number generation relay	M8117	Optional 2-way weighing function Channel 2 data overflow (no such function yet)
M8006	Disable 6300-6399 fault flashing ERR light	M8235	Drive high-speed counting C235 to count down mode
M8008	Power failure detection (0N at power failure, OFF after power failure)	M8121~M8124	RS and MODBUS use
M8011	10 ms clock pulse	M8129	Serial 2 communication timeout flag
M8012	100 ms clock pulse	M8140	ZRN instruction clear output is valid
M8013	1 second clock pulse	M8145	Disable Y0 pulse output
M8014	1 minute clock pulse	M8146	Disable Y1 pulse output
M8015	Set the clock	M8147	Y0 pulse output
M8016	Clock display stopped	M8148	Y1 pulse output
M8017	Clock plus or minus 30 seconds correction	M8149	CAN communication timeout flag
M8018	Has real-time clock logo	M8150	CAN allowed work flag
M8019	Clock error sign	M8155	Disable Y2 pulse output
M8020	Zero mark	M8157	Y2 pulse output
M8021	Borrow mark	M8158	Y3 pulse output
M8022	Carry flag	M8161	16-bit/8-bit switching flag
M8029	Instruction execution end flag	M8168	SMOV instruction HEX processing function
M8031	Unlatched data clear	M8170	X0 pulse capture
M8032	Latch data clear	M8171	X1 pulse capture
M8034	Suppress all output	M8172	X2 pulse capture
M8039	Constant scan mode	M8173	X3 pulse capture
M8047	STL monitoring is effective	M8174	X4 pulse capture
M8048	S900-S999 has ON status	M8175	X5 pulse capture
M8049	Signal alarm is effective	M8196	C251 C252 C254 2 times frequency

			mark
M8050	I0 □□ interrupt disable	M8197	C253 C255 2 octave mark
M8051	I1 □□ interrupt disable	M8198	4 octave sign for C251 C252 C254
M8052	I2 □□ interrupt disable	M8199	C253 C255 4 octave logo
M8053	I3 □□ interrupt disable	M8200-M8234	C200-C234 count direction setting
M8054	I4 □□ interrupt disable	M8235-M8345	C235-C245 count direction setting
M8055	I5 □□ interrupt disable	M8246-M8255	C246-C255 count direction sign

3.3 Special register number and content

3.3.1 3G series PLC

Numbe r	content	Remarks	Numbe r	content	Remarks
D8000	Watchdog timer		D8148	Fifth to eighth pulse acceleration and deceleration time	
D8001	PLC type and system version		D8160		Low position
D8002	PLC memory capacity	22K steps; 44K steps; 88K steps; At 16K steps or more, D8002=8, corresponding to 16, 32, 64 in D8102.	D8161	Eighth position pulse	High position
D8003	Types of memory	10H: programmable controller built-in memory		Restricted access status	
D8010	Scan current value		D8182	Z1 Register contents	
D8011	Minimum scan time		D8183	V1 Register contents	
D8012	Maximum scan time		D8184	Z2 Register contents	
D8013	second		D8185	V2 Register contents	
D8014	Minute		D8186	Z3 Register contents	
D8015	Time		D8187	V3 Register contents	
D8016	day		D8188	Z4 Register contents	
D8017	month		D8189	V4 Register contents	
D8018	year		D8190	Z5 Register contents	

			Berless III Belai
D8019	week	D8191 V5 Regi	ster contents
D8020	Input filter adjustment	D8192 Z6 Regis	ster contents
D8030	AD0 Analog input value	D8193 V6 Regi	ster contents
D8031	AD1 Analog input value	D8194 Z7 Regis	ster contents
D8032	AD2 Analog input value	D8195 V7 Regi	ster contents
D8033	AD3 Analog input value	D8268 Custom	PWM0~3 frequency
D8034	AD4 Analog input value	D8269 division	coefficient Ranges:
D8035	AD5 Analog input value	D8278 Custom	PWM4~7 frequency 16800000
D8036	AD6 Analog input value	D8279 division	
D8037	AD7 Analog input value	D8340	Low position
D8038	AD8 Analog input value	D8341	sition pulse
D8039	AD9 Analog input value	D8342 Y0 devia Initial va	ation speed Ilue: 0
D8040	AD10 Analog input value	D8343 Maximu	Low m speed of the firstposition
D8041	AD11 Analog input value	D8344 pulse	High position
D8042	AD12 Analog input value	D8345 Y0 craw Initial va	l speed lue: 1000
D8043	AD13 Analog input value	D8346 Y0 origir	Low n return speed position
D8044	AD14 Analog input value	D8347 Initial va	lue: 50000 High position
D8045	AD15 Analog input value	D8348 First pul	se acceleration time
D8050	DA0 Analog input value	D8349 The first	pulse deceleration time
D8051	DA1 Analog input value	D8350	Low position pulse
D8052	DA2 Analog input value	D8351	High position
D8053	DA3 Analog input value	D8352 Y1 devia Initial va	ation speed Ilue: 0
D8054	DA4 Analog input value	D8353 Maximu	Low m speed of the second position
D8055	DA5 Analog input value	D8354 pulse	High position
D8056	DA6 Analog input value	D8355 Y1 craw Initial va	l speed lue: 1000
D8057	DA7 Analog input value	D8356	n return speed Low lue: 50000 position

D8058	DA is the current time setting	Reference 5.2	D8357		High position
D8059	Constant scan time		D8358	Second pulse acceleration time	
D8074	X0 rising edge ring counter	Low position	D8359	Second pulse deceleration time	
		High position	D8360	Third position pulse	Low position
D8076	X0 falling edge ring counter	Low position	D8361		High position
D8077	value [1/6µs unit]	High position	D8362	Y2 deviation speed Initial value: 0	
D8078	X0 pulse width/pulse period	Low position	D8363	Maximum speed of the third	Low position
D8079	[10µs unit]	High position	D8364		High position
	X1 rising edge ring counter value	Low position	D8365	Y2 crawl speed Initial value: 1000	
		High position	D8366		Low position
	X1 falling edge ring counter	Low position	D8367		High position
	value [1/6µs unit]	High position	D8368	The third pulse acceleration time	
D8084	X1 pulse width/pulse period	Low position	D8369	The third pulse deceleration time	
D8085	[10µs unit]	High position	D8370		Low position
	X3 rising edge ring counter	Low position	D8371		High position
	value [1/6µs unit]	High position	D8372	Y3 deviation speed Initial value: 0	
	X3 falling edge ring counter	Low position	D8373	The fourth pulse maximum	Low position
	value [1/6µs unit]	High position	D8374	-	High position
D8090	X3 pulse width/pulse period	Low position	D8375	Y3 crawl speed Initial value: 1000	
D8091		High position	D8376		Low position
D8092	X4 rising edge ring counter value	Low position	D8377	Initial value: 50000	High position
			L	The fourth pulse acceleration	l

				time
D8094	X4 falling edge ring counter value [1/6µs unit]	Low position	D8379	The fourth pulse deceleration time
D8095		High position	D8395	Network setting function logo
	X4 pulse width/pulse period	Low position	D8397	ADPRW command serial port location
D8097	[10µs unit]	High position	D8398	0~2147483647(1ms)
D8101	PLC type and system version		D8399	Incremental ring count
D8102	PLC memory capacity	1616K steps	D8400	Modbus RTU protocol Communication parameters
D8108	Number of special modules connected		D8401	Communication mode
D8109	Y number where output refresh error occurred		D8406	Number of intervals
D8120	Communication parameters of Modbus RTU protocol		D8409	overtime time
D8121	Master station number		D8410	RS2 header 1, 2 <initial value:<br="">STX></initial>
D8122	RS command sending data remaining points		D8411	RS2 header 3, 4
D8123	RS command receiving point monitoring		D8412	RS2 trailer 1, 2 <initial value:<br="">ETX></initial>
D8124	RS command header <initial value: STX></initial 		D8413	RS2 trailer 3, 4
D8125	RS command trailer <initial value: ETX></initial 		D8414	Master station number
D8126	The value of serial port 2 when using ADPRW instruction is 0	The version before 26232	D8415	RS2 receives the sum calculation result
D8126	Serial port 2 interval period	26232 and Later version	D8416	RS2 send summation
D8127	Specify the start number of the lower computer communication request		D8420	Communication parameters
D8128	Specify the number of data requested by the lower computer			Communication mode
D8129	Set timeout		D8426	Number of intervals
D8140		Low position	D8429	overtime time
D8141	Fifth position pulse	High position	D8430	RS2 header 1, 2 <initial value:<br="">STX></initial>

Devices in Detail

D8142	Sixth position pulse	Low position	D8431	RS2 header 3, 4
D8143		High position	D8432	RS2 trailer 1, 2 <initial value:<br="">ETX></initial>
D8144	Seventh position pulse	Low position		RS2 trailer 3, 4
D8145		High position	D8434	RS2 receive sum receive data
D8146	5th to 8th pulse maximum speed	Low position	D8435	RS2 receives the sum calculation result
D8147		High position	D8436	RS2 send summation

3.3.2 2N series PLC

Number	content	Number	content
M8000	closed during RUN	D8001	PLC type and version
M8001	open when RUN	D8002	Memory capacity
M8002	After RUN, output one scan cycle ON	D8003	Memory type
M8003	After RUN, output a scan cycle of OFF	D8011	Minimum scan time (unit 0.1ms)
M8011	Oscillate with a period of 10ms	D8012	Maximum scan time (unit 0.1ms)
M8012	Oscillate with a period of 100ms	D8013- D8019	Corresponding to seconds, minutes, hours, day, month, year, week
M8013	Oscillate with a period of 1s	D8020	Input filter adjustment (0-60ms) initial 10
M8014	Oscillate with a period of 1min	Class A analog	Refer to the table below
M8020	Zero mark	D8030- D8041	The value of analog input AD0-AD11
M8021	Borrow mark	D8042	Analog input cold junction ambient temperature value
M8022	Carry flag	D8213	E-type and K-type thermocouple switching
M8029	Instruction execution end flag	D8200- D8211	Corresponding to AD0-AD11 magnification correction
M8039	Constant scan mode	D8220- D8231	Corresponding to the size correction of AD0- AD11
M8035	The programmable controller continues to run	D8212, D8232	Corresponding to cold end magnification correction and size correction
M8037	The programmable controller stops running	D8039/ D39	Constant scan time (initial value 0ms); Note: If it is occupied by analog quantity, use D39
M8068	Saving of M8067	Class B analog	Refer to the table below
M8080	Analog output start	D8030- D8037	Value of analog input AD0-AD7
M8235	Drive high-speed counting C235 to count down mode	D8038	Analog input cold junction ambient temperature value

M8236	Drive high-speed counting C236 to count down mode	D8049	E-type and K-type thermocouple switching
M8238	Drive high-speed counting C238 to count down mode	D8040- D8047	Corresponding to AD0-AD7 magnification correction
M8239	Drive high-speed counting C239 to count down mode	D8070- D8077	Corresponding to the size correction of AD0- AD7
M8240	Drive high-speed counting C240 to count down mode	D8048, D8078	Corresponding to cold end magnification correction and size correction
Class C analog	Refer to the table below	D8039	Constant scan time (initial value 0ms)
D8030- D8049	Value of analog input AD0-AD19	EX2N- 30A	Refer to the following table (others refer to category B)
D8049(Only as the thermoc ouple is the cold junction)	Analog input cold junction ambient temperature value	D8034	Analog input cold junction ambient temperature value
D8240	E-type and K-type thermocouple switching	D8045	E-type and K-type thermocouple switching
D8200-	Corresponding to AD0-AD19	D8044,	Corresponding to cold end magnification
D8219	magnification correction	D8039	correction and size correction
D8220- D8239	Corresponding to the size correction of AD0-AD19	Some FX2NC purchas ed before 2016	Refer to the table below for some FX2NC purchased before 2016 (Others refer to Class B analog quantity)
D8212, D8232	Corresponding to cold end magnification correction and size correction	D8030- D8033	Value of analog input AD0-AD3
D8039/ D39	Constant scan time (initial value 0ms); Note: If it is occupied by analog quantity, use D39	D8034	Analog input cold junction ambient temperature value
D8050- 69	Adjustment of the scanning period corresponding to the analog quantity	D8045	E-type and K-type thermocouple switching
D8065	Grammatical error occurrence step	D8040- D8043	Corresponding to AD0-AD3 magnification correction
D8068	The number of steps in the operation error record	D8035- D8038	Corresponding to the size correction of AD0- AD7
D8080- D8087	Analog output DA0-DA7 value	D8044, D8039	Corresponding to cold end magnification correction and size correction

D80	Constant scan time (initial value 0ms	s);
D39	Note: If it is occupied by analog guan	tity, use

3.3.3 MX2N series PLC

Number	content	Number	content
D8000	Monitoring timer setting value (default 200)	D8126	MODBUS master\slave communication delay time (1=1ms)
D8005	The lower 16 bits of the random number	D8127	MODBUS master station communication real time (1=10ms)
D8006	16 higher random numbers	D8128	MODBUS master communication maximum time (1=10ms)
D8007	End address of D register after power down	D8129	RS/MODBUS master communication timeout (1=10ms, default 500)
D8008	Power failure detection time (setting value: 1~100, default 10ms)	D8136	Y0 Y1 High-speed output count accumulation: 32 bits
D8010	Current value of scan time (0.1ms)	D8140	Y0 pulse output count register
D8011	Minimum scan time (0.1ms)	D8142	Y1 pulse output count register
D8012	Maximum scan time (0.1ms)	D8145	ZRN\DRVI\DRVA instruction Y0 Y1 minimum speed
D8013- D8019	Corresponding to seconds, minutes, hours, day, month, year, week	D8146	ZRN\DRVI\DRVA instruction Y0 Y1 maximum speed
D8020	X0-X17 filter coefficient (setting value: 0~60ms, default 10)	D8148	ZRN\DRVI\DRVA instruction Y0 Y1 acceleration and deceleration time
D8021	X20-X47 filter coefficient (setting: 1~60ms, default 10)	D8149	CAN master/slave communication timeout (1=1ms)
D8028	Z0 index register content	D8150	Master/slave station number (0~32)
D8029	V0 index register content	D8151	Number of slaves (1~32, default: 8)
D8030- D8038	Sampling address of analog input AD0-AD8	D8152	Number of shared registers (1~32, default: 8)
D8050- D8052	Sampling address of analog input AD9-AD11	D8153	CAN communication baud rate (20K~100K, default: 250K)
D8039	Constant scan time (unit: 1ms, default 0)	D8154	Y2 pulse output count register
D8040- D8047	1- 8th active STL status	D8156	Y3 pulse output count register
D8049	Minimum active STL status	D8159	ZRN\DRVI\DRVA instruction Y2 Y3 minimum speed

Devices in Detail

	Optional 2-channel weighing function Channel		ZRN\DRVI\DRVA instruction Y2 Y3		
D8058	1 data divisor (no such function yet)	D8160	maximum speed		
D8059	Optional 2-channel weighing function Channel 2 data divisor (no such function yet)	D8162	ZRN\DRVI\DRVA instruction Y2 Y3 acceleration and deceleration time		
D8090	Thermocouple sampling filter times (0-22, default 0) (no such function for now)	D8166	Y2 Y3 High-speed output count accumulation: 32 bits		
D8091	Thermocouple type (K-0, E-1, J-2) (No such function yet)	D8182	Z1 index register content		
D8093	Thermocouple cold junction temperature (no such function for now)	D8183	V1 index register content		
D8094	Temperature of the first thermocouple (no such function yet)	D8184	Z2 Index register content		
D8095	Temperature of the second thermocouple (no such function yet)	D8185	V2 index register content		
D8096	Analog DA0 output data (0~4095)	D8186	Z3 Index register content		
D8097	Analog DA1 output data (0~4095)	D8187	V3 Index register content		
D8112	Optional 1 channel weighing data low bit	D8188	Z4 Index register content		
D8113	Optional 1 channel weighing data high	D8189	V4 Index register content		
D8114	Optional 1 channel weighing filter times	D8190	Z5 Index register content		
D8115	Optional 2-way weighing function filtering times (0-80) (no such function for now)	D8191	V5 Index register content		
D8116	Optional 2 channel weighing function channel 1 data high (No such function yet)	D8192	Z6 Index register content		
D8117	Optional 2 channel weighing function channel 1 data low bit (No such function yet)	D8193	V6 Index register content		
D8118	Optional 2-channel weighing function communication 2 data high (No such function yet)	D8194	Z7 Index register content		
D8119	Optional 2 channel weighing function channel 2 data low bit (No such function yet)	D8195	V7 Index register content D8196		
D8120	Serial 2 communication parameter settings	D8196	Slave 1~16 with CAN communication failure		
D8121	Serial port 2 MODBUS RTU slave station (1~255)	D8197	Slave 17~32 with CAN communication failure		
D8122	RS instruction sends the remaining data	D8198	Slave summary of CAN communication failure 1~16		
D8123	Number of RS commands received	D8199	Summary of slaves with CAN communication failure 17~32		
		D8200	CAN communication success time		

(1-1ms))

3.4 Input and output relays [X, Y]

The numbers of the input relay and output relay are fixed numbers held by the basic unit, and are counted from X0 and Y0. Since these numbers use octal numbers, there is no value of "8" or "9".

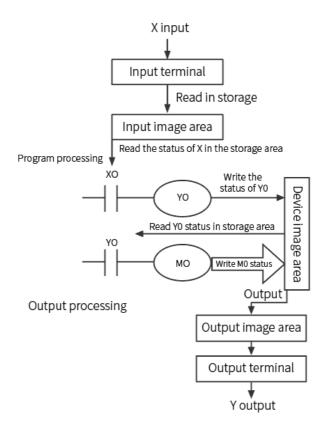
3.4.1 I/O relay number

The numbers of input relay (X) and output relay (Y) are shown in the table below. (Numbers are assigned in octal numbers)

I/O relay								
Input relay	X000~X047							
Inputrelay			The device number is an octal number					
Output relay	Y000~Y047	40	Total input and output is 80 points					
	1000-1047	points						

3.4.2 Function and effect

3.4.2.1 The function of input contact X:


The input contact X is connected to the input device, and the input signal is read to enter the PLC. There is no limit to the number of times that the normally open contact or normally closed contact of each input contact X can be used in the program. The ON/OFF of the input contact X will only change with the ON/OFF of the input device. You cannot use a program to force the ON/OFF of the input contact X.

3.4.2.2 Function of output contact Y:

The task of output contact Y is to send an ON/OFF signal to drive the load connected to output contact Y. There are two types of output contacts, one is Relay and the other is Transistor. There is no limit to the number of times the normally open contact or normally closed contact of each output contact Y can be used in the program, but the output coil Y The number is recommended to be used only once in the program, otherwise according to the principle of PLC program scanning, the decision of its output state will fall in the last output Y circuit in the program.

Input processing

- Input processing:
 - 1. The PLC reads the ON/OFF status of the external input signal into the input image area once before executing the program.
 - 2. If the input signal changes ON/OFF during program execution, the state in the input image area will not change until the next ON/OFF state of the input signal is read again at the beginning of the next scan.
 - 3. There is a delay of about 10ms when the external signal ON→OFF or OFF→ON changes to when the contact in the program is recognized as ON/OFF (but may be affected by the program scan cycle).
- Program processing:

The PLC reads the ON/OFF status of each input signal in the input image area and starts to execute each instruction in the program in sequence from address 0. The processing result, that is, the ON/OFF of each output coil, is also sequentially stored in each device image area Inside.

- Output processing:
 - 1. When the END instruction is executed, the ON/OFF status of Y in the device image area is sent to the output image area latch, and this image area is actually the coil of the output relay.
 - 2. There is a delay of about 10ms when the relay coil ON→OFF or OFF→ON changes to the contact ON/OFF.
 - 3. Using a transistor module, there is a delay of about 10~20us when ON→OFF or OFF→ON changes to the contact ON/OFF.

3.5 Auxiliary relay [M]

There are multiple auxiliary relays in the PLC. The coils of these auxiliary relays are the same as the output relays, and are driven by the contacts of various soft elements in the PLC. Auxiliary relays have countless electronic normally open contacts and normally closed contacts, which can be freely used in PLC. However, the external load cannot be directly driven through this contact, and the external load must be driven through the output relay Y.

3.5.1 Auxiliary relay number

1. 3G series PLC

Auxiliary relay		
General use	M0~M383, M1536~M7679	6528 points, fixed as a non-blackout holding area
EEPROM retention	M384~M1535	1152 points, fixed as the blackout holding area
Special use	M8000~M8511	512 points

2. 2N series PLC

Auxiliary	general	500 points M0 to M499
relay	lock	1036 points M500-M1535
	special	256 points M8000 to M8255

3. MX2N series PLC

•••										
	Auxiliary relay M	M0~M499	500	points	M500~M1535	1036	points	M8000~M8255	255	points
	Auxiliary relay in	(general us	e)		(for holding)			(special use)		

3.5.2 Function of auxiliary relay

1. Auxiliary relays	Auxiliary relays for general use are turned off when the PLC is in operation,
for general use:	and all of their statuses are reset to OFF. When power is supplied, except
	for the input condition of ON, the status is all OFF.
2. Auxiliary relay for power	The auxiliary relay for power failure maintenance will be kept in its state
failure maintenance:	when the power is turned off during PLC operation, and the state will be the
	state before power failure when the power is re-transmitted.
3. Special auxiliary relays:	Each special auxiliary relay has its specific function. Do not use undefined
	special auxiliary relays.

3.6 Status [S]

State S is an important soft element for easy programming in engineering automation control. It needs to be used in combination with step ladder diagram (or Sequential Function Chart, Sequential Function Chart, SFC) instructions STL and RET.

3.6.1 State number

3.6.1.1 3G series PLC

status		
For initial state (EEPROM hold)	S0~S9	10 o'clock, fixed as the blackout holding area
Dedicated for power failure retention (for EEPROM retention)	S10 ~ S899	890 points
For signal alarm	S900 ~ S999	100 points
General use	S1000 ~ S4095	3096 points

3.6.1.2 2N series PLC

	general	500 points S0 to S499
status	initial	10 points S000-S009
	lock	500 points S500 to S999

3.6.1.3 MX2N series PLC

Status relay S	S0~S9	10	points	(for	state	S10~S999 990 points (for holding)
Status relay S	maintena	ance)				

3.6.2 State function

The state is the same as the auxiliary relay. There are countless normally open contacts and normally closed contacts, which can be used at will in the sequence program. Moreover, when not used for step ladder instructions, the state (S) is also the same as the auxiliary relay (M) and can be used in general sequence control.

1. Initial state: S0~S9, the step point used as the initial state in the sequential function chart (SFC).

- For power When the power is disconnected during the PLC operation, its state will be maintained, and when the power is re-transmitted, the state will be the state before the power failure; And when it is run again, it can be restarted from the middle of the process. When the power-off holding state is used as a general-purpose state, you can add ZRST in front of the program to reset its state in batches.
 For signal S900 ~ S999, signal alarm status, can be used as output for diagnosing external
 - alarm: faults. (For details, see 10.7 ANS/Signal Alarm Set)
- 4. General use: When the PLC power supply is disconnected, the general status will be cleared.

3.7 Timer [T]

The timer is a device that calculates the clock pulses of 1ms, 10ms, 100ms, etc. in the PLC by addition, and when the result of the addition calculation reaches the specified setting value, the output contact operates. As the setting value, the constant (K) in the program memory and the indirect designation by the contents of the data register (D) can be used.

3.7.1 Timer number

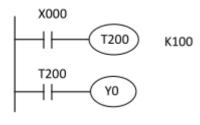
3.7.1.1 3G series PLC

-	Timer (ON delay timer, the number is assigned in decimal numbers)								
	100ms	T0 ~ T199	200 point	0.1~3,276.7 second					

Devices in Detail

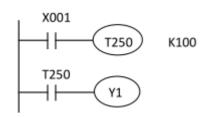
10ms ^{ж1}	T200 ~ T245	46 point	0.01 ~ 327.67 second
1ms cumulative type (EEPROM keep)	T246 ~ T249	4 point	0.001 ~ 32.767 second
100ms cumulative type (EEPROM keep)	T250 ~ T255	6 point	0.1~3,276.7 second
1ms	T256 ~ T319	64 point	0.001~32.767 second

3.7.1.2 2N series PLC


	100 millisecond	200 points T0 to T199
Timer	10 millisecond	46 points T200 to T245
	1 Millisecond integration	4 points T246 to T249
	100 Millisecond integration	6 points T250 to T255

3.7.1.3 MX2N series PLC

Т	Timer T	T0~T199	200	T200~T245	46	T246~T249 4 points	T250~T255 6 points
		points 100r	ns	points 10ms		1ms accumulation	100ms accumulation


3.7.2 Timer functions and examples

3.7.2.1 General timer

- When X0=ON, the current value of timer T200 is counted by 10ms*k100, when the current value of timer=set value K100, the output coil T200=ON.
- ♦ When X0=OFF or power failure, the timer T200 will be cleared. And the output coil T200 becomes OFF.

3.7.2.2 Cumulative timer

- When X1=ON, the current value of timer T250 is counted as 100ms*k100, when the current value of timer=set value K100, output coil T250=O
- When X1=OFF or power failure, the timer T250 pauses counting, and the current value remains unchanged; when the PLC runs again, that is, when X1=ON, the T250 continues to time, the accumulated time is 10s; the current value=set value K100, the output coil T250=ON

3.7.3 Setting method of setting value

1. Specify constant (K): The setting value directly specifies the constant K value.

X003 Т10 К100

- T10 is a timer in units of 100ms (0.1s).
- If the constant is specified as 100, then the timer works at 0.1s*100=10s
- 2. Indirect addressing (D): The set value uses data register D for indirect addressing.

The contents of the indirectly designated data register are either written in the program in advance, or input through digital switches.

3.7.4 Notes in the subroutine

1. In the subroutine and interrupt subroutine, please use the timer of T192~T199. This timer counts when the coil instruction is executed or when the END instruction is executed.

If the set value is reached, the contact action will be output when the coil instruction or END instruction is executed. Since the general timer only counts when the coil instruction is executed, only under certain conditions, the subroutine and interrupt subroutine of the coil instruction are executed. If the timer is used to count, it cannot be executed and cannot operate normally.

2. In the subroutine and interrupt subroutine, if a 1ms accumulation timer is used, when it reaches the set value, the output contact will act at the coil command that was initially executed. Please pay attention.

3.8 Counter [C]

The counter counts while performing a cyclic operation on the actions of the internal signals X, Y, M, S, C and other contacts of the programmable controller.

3.8.1 Counter number

3.8.1.1 3G series PLC

Counter (numbers are assigned in decimal numbers)						
General use count-up (16 bits)	C0 ~ C15 16points		0~32,767 counter			
EEPROM keeps counting up (16 bits)	C16~C199	184points	0 ~ 32,767 counter			
Generally use bidirectional (32 bit)	C200 ~ C219	20points	-2,147,483,648 ~ +2,147,483,647 Counter			

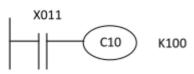
EEPROM directions	hold	in	both	C220 ~ C234	15points	-2,147,483,648 ~ +2,147,483,647
(32 bit)				0220** 0204	ropoints	Counter

3.8.1.2 2N series PLC

	16 bits	100points	C0-C99
counter	Lock 16 bits	100points	C100-C199
obunter	32-bit		
	Lock 32 bits	35points	C200-C234

3.8.1.3 MX2N series PLC

	16-bit up cour	nter			32-bit up-down o	counte	er
Counter C	C0~C15	16	C0~C15 1	6	C200~C219	20	C220~C234 15 points (for
Counter C	o'clock		o'clock		points		holding)
	(General use))	(General use)		(General use)		noung)


3.8.2 Counter functions and examples

Generally, a counter is used. If the PLC power supply is disconnected, the count value will be cleared. However, the power failure retention counter will remember the count value and the state of the contact before the power failure, so it can continue to count on the previous value.

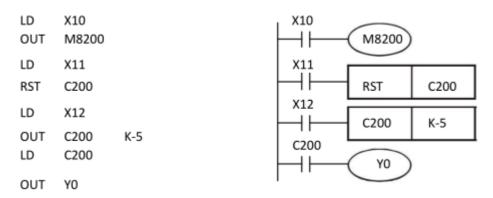
The setting value of the counter can be set directly using the constant K or indirectly using the value in the register D.

3.8.2.1 16-bit counter for general use / power failure retention

The setting value of the 16-bit binary up counter is valid in the range of K1 to K32767 (decimal constant). The operation of K0 is the same as that of K1, and the output contact operates at the first count.

By counting input X011, the current value of the counter will increase every time the C0 coil is driven. When the coil command is executed for the 10th time, the output contact C0 will act; after that, even if the counting input X011 acts, the current value of the counter will not Variety.

3.8.2.2 32-bit up/down counter for general use/maintained after power failure


The set value of the 32-bit binary up/down counter is valid in the range of -2,147,483,648 to +2,147,483,647 (decimal constant). You can use the auxiliary relays M8200 to M8234 to specify the direction of up/down counting.

The increase and decrease of the current value has nothing to do with the operation of the output contact. The current value of the counter starts from 2,147,483,647 to increase the number, and then becomes -2,147,483,648. Similarly, the current value of the counter starts to decrease from -2,147,483,648 and becomes 2,147,483,647. (This

action is called ring counting)

For $C_{\Delta\Delta\Delta}$, after driving M8 $\Delta\Delta\Delta$, it is a down counter, when it is not driving, it is an up counter. (Refer to 3.3 Special Relay Number and Content)

- X10 drives M8200 to determine whether C200 is up or down.
- ♦ When X11 turns from OFF→ON, the RST instruction is executed, the current value of C200 is cleared to 0, and the contact becomes OFF.
- ♦ When X12 turns from OFF→ON, the current value of the counter will perform the count-up (plus one) action or the count-down (decrement one) action.
- ♦ When the current value of the counter C200 changes from K-6→K-5, the C200 contact changes from OFF→ON. When the current value of the counter C200 changes from K-5→K-6, the C200 contact is turned from ON→OFF.

3.9 High-speed counter [C]

3.9.1 Types and numbers of high-speed counters

3.9.1.1 Types of high-speed counters

In the PLC, a high-speed counter (single-phase single-count, single-phase double-count and double-phase double-count) with a 32-bit up-down counter built-in is divided into a hardware counter and a software counter according to different counting methods.

3.9.1.2 High-speed counter number

1) 3G	series	PLC
-------	--------	-----

High-speed counter (numbers are assigned in decimal numbers)					
Single-phase single-count input		-2,147,483,648 ~ +2,147,483,647 counter			
Bidirectional (32 bit) (EEPROM	C235 ~ C245	Software counter			
hold)		1 phase: max 6 channels, max 60 KHz each			
Single-phase double-count		Two-phase:			
input	C246 ~ C250	1-time frequency: up to 2-3 channels, maximum			
Bidirectional (32 bit) (EEPROM		frequency 60KHz			
hold)		M8198 is the 4 times frequency mark of			

	C251/C252
	4-times frequency: max 2 channels, max
C251 ~ C255	frequency 24KHz
	M8199 is the 4 times frequency mark of
	C253/C255
	C251 ~ C255

2) 2N series PLC

	High-speed	Single phase	Max 6 points:C235-X0 C236-X1 C237-X7 C238-X3 C239-X4 C240-X5; Regular 2 points:C235-X0 C238-X3
	counter	A/B phase	Max 3 points:C251-X0/X1 C253-X3/X4 C254-X10/X11 ;
	Avb priase		Regular 2 points: C251-X0/X1 C253-X3/X4
~	MY2N aprica		

3) MX2N series PLC

High-speed	32-bit up-down counter
counter C	C235~C255 20 points (High-speed hold)

3.9.1.3 High-speed counter input allocation table

1) 3G series PLC

Counter type	Counter			I	nput al	locatio	า		
	number	X000	X001	X002	X003	X004	X005	X006	X007
	C235	U/D							
	C236		U/D						
	C237			U/D					
	C238				U/D				
Single-phase single-count	C239					U/D			
input	C240						U/D		
	C241	U/D	R						
	C242			U/D	R				
	C243					U/D	R		
	C244	U/D	R					S	
	C245			U/D	R				S
	C246	U	D						
Single-phase double counting	C247	U	D	R					
input	C248				U	D	R		
mpat	C249	U	D	R				S	
	C250				U	D	R		S
	C251	A	В						
Two-phase double counting	C252	A	В	R					
input	C253				A	В	R		
in par	C254							A	В
	C255				A	В	R		S

- U: Up counting input | D: Down counting input | A: Phase A input | B: Phase B input | R: External reset input |
- S: External start input

Single phase: max 6 channels, max 60 KHz each

Two-phase: 1-time frequency: up to 2-3 channels, maximum frequency 60KHz. M8198 is the 4 times frequency mark of C251/C252.

4-times frequency: max 2 channels, max frequency 24KHz. M8199 is the 4 times frequency mark of C253/C255.

2) 2N series PLC

		Single	e-phase c	ounting ir	nput	AB phase counting input ABZ phase counting input						
	C235 10KHz/ 100KHz	C236 100KH z	C238 10KHz /100K Hz	C239 100KH z	C240 10KHz	C237 10KHz	C251 10KHz /100K Hz	C253 10KHz /100K Hz	C254 10KHz	C252 10KHz /100K Hz	C253 10KHz /100K Hz	C254 10KHz
X00 0	U/D						А			А		
X00 1		U/D					В			В		
X00 2										Z		
X00 3			U/D					А			А	
X00 4				U/D				В			В	
X00 5					U/D			R			Z	
X00 7						U/D						
X01 0									А			A
X01 1									В			В
X01 2												Z

Conventional [U]: Up-counting input | [D]: Down-counting input | [A]: A-phase count input | [B]: B-phase count input | [R]: Reset input

- The maximum frequency of single-phase counting is 10KHz, which can be customized up to 6 channels of single-phase 10KHz-100KHz and 3 channels of AB(Z) phase 10KHz-100KHz.
- Single-phase counting 10KHz is usually X00/X03, corresponding to C235/238. Can be customized up to 6 single-phase counting, the counter corresponds to the X point relationship: C235-X0; C236-X1; C237-X7; C238-X3; C239-X4; C240-X5; C237 should be connected to X2 for high-speed counting, now Instead, connect to X7 for high-speed counting; among them, X0/X1/X3/X4 can be customized to 100KHz, X5/X7 can be customized to 10KHz.

- When using 6-way single-phase counting, it does not conflict with other counters and pulse outputs, but conflicts with the ZRN origin return instruction. The ZRN origin return instruction cannot be used; only when X3 is not used for counting, the Y7/X7 ZRN origin return instruction can be used.
- The AB phase count is 2 times the frequency, the conventional is 10KHz two-way X00-X01/X03-X04, corresponding to C251/C253. It can also be customized to 3-channel AB phase counting, add one channel X10-X11, corresponding to C254; X00-X01/X03-X04 can be customized to 100KHz, X10-X11 can be customized to 10KHz.

3) MX2N series PLC

Counter type	Counter			I	nput a	llocatio	n		
	number	X00	X00	X00	X00	X00	X00	X00	X00
	number	0	1	2	3	4	5	6	7
	C235	U/D							
	C236		U/D						
	C237			U/D					
Single-phase	C238				U/D				
single-count	C239					U/D			
input	C240						U/D		
	C241	U/D	R						
	C242			U/D	R				
	C243					U/D	R		
	C244	U/D	R					S	
	C245			U/D	R				S
	C246	U	D						
	C247	U	D	R					
Single-phase	C248				U	D	R		
double	C248(OP)*				U	D			
counting input	1								
	C249	U	D	R				S	
	C250				U	D	R		S
	C251	A	В						
	C252	A	В	R					
	C253				A	В	R		
Two-phase	C253(OP)*				А	в			
double	1								
counting input	C254	A	В	R				S	
	C254(OP)*							А	В
	1								
	C255				А	В	R		S

U: Up counting input | D: Down counting input | A: Phase A input | B: Phase B input | R: External reset input |

S: External start input

• Enter X000~X007, classified as shown in the table above, corresponding to each high-speed counter number.

Inputs X000~X007 cannot be used repeatedly by high-speed counters. When the input terminal is not used as a high-speed counter, it can be used for general input.

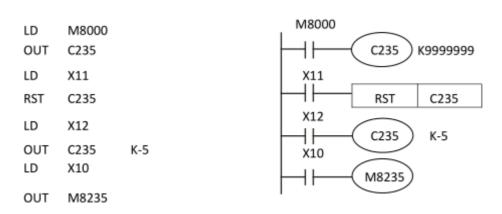
- Input X000~X007 can not be used repeatedly. For example, once C251 is used, X000 and X001 are occupied, so C235, C236, C241, C244, C246, C247, C249, C252, C254 and interrupt input pointers *I00, *I01 and the corresponding input SPD instructions cannot be used.
- 1) C251 C252 C254 (AB phase) maximum response frequency: 60KHz;
- 2) C253 C255 (AB phase) maximum response frequency: 60KHz;
- 3) C235 C241 C244 C238 (single-phase) maximum response frequency: 60KHz;
- 4) The highest response frequency of other high-speed counters: 10KHz;
- 5) The AB phase high-speed counter can be set to 2 times the frequency and 4 times the frequency (the setting is only valid during the OUT drive cycle):

**When M8196-ON, C251 C252 C254 count pulse 2 times frequency;

**When M8197-ON, C253 C255 count pulse 2 times frequency;

**When M8198-ON, C251 C252 C254 count pulse 4 times frequency;

**When M8199-ON, C253 C255 count pulse 4 times frequency.


3.9.1.4 Attentions

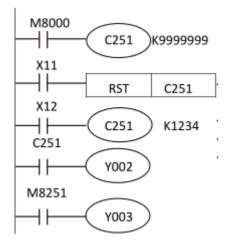
Input X000 \sim X007 can be used for high-speed counter, input interruption, pulse capture, SPD, ZRN, DSZR DVIT instruction and general input. Therefore, do not reuse input terminals.

For example: X000 and X001 are occupied when using C251, so [C235, C236, C241, C244, C246, C247, C249, C252, C254], [input interrupt pointer I000, I101], [pulse capture contact M8170, M8171] and [Use the corresponding input SPD, ZRN, DSZR, DVIT instructions] can not be used.

3.9.2 Use of high-speed counters

3.9.2.1 Single-phase single-count input

- ◆ C235 counts the OFF→ON of input X000 when X012 is ON.
- When X011 is ON, execute the RST instruction, at this time C235 will be reset.
- ◆ Through the ON/OFF of M8235∼M8245, make the counters C235∼C245 change between down/up counting



3.9.2.2 Single-phase double-count input

It is a 32-bit up/down binary counter. The action of the output contact corresponding to the current value is the same as the high-speed counter of single-phase single-count input.

The count-down/count-up actions of C246 \sim C250 can be monitored by the ON/OFF actions of M8246 \sim M8250. ON: count down; OFF: count up

3.9.2.3 Two-phase double-count input

- When X012 is ON, C251 counts the operation of input X000 (phase A) and X001 (phase B) by interrupt.
- ◆ X011 is ON, execute RST instruction, at this time C251 will be reset.
- If the current value exceeds the set value, Y002 will be ON, and it will be OFF when it changes within the set value.
- Y003 turns ON (minus) and OFF (increasing) according to the counting direction.

3.10 Data register [D], extension register [R]

3.10.1 Number of data register and extension register

The data register is used to store numeric data. Its data length is 16 bits (- $32,768 \sim +32,767$), and the highest bit is a sign. It can store numeric data of - $32,768 \sim +32,767$, or it can combine two 16-bit registers into A 32-bit register (D+1, the lower D number is the lower bit) is used, and the highest bit is a positive and negative sign, which can store the numerical data of - $2,147,483,648 \sim +2,147,483,647$.

3.10.1.1 3G series PLC

Data register (32 bits when used in pairs)								
General use (16 bit)	D0 ~ D127	128points						
EEPROM retention (16 bits)	D128 ~ D7999	7872points						
Special use (16 bits)	D8000 ~ D8511	512points						

For indexing (16 bits)	V0 ~ V7,Z0 ~ Z7	16 points								
Extension Register•Extended File Register										
Extension register (16 bits)	R0 ~ R22999	23000 points, support blackout								
	R23000 ~	1000 points for internal use								
	R23999									

3.10.1.2 2N series PLC

	general	200 points D0 to D199
	Blackout	800 points D200-D999
Data	File register	
register	External	
(D.V.Z)	regulation	
	special	256 points D8000 to D8255
	Index	16 points V0-V7 Z0-Z7

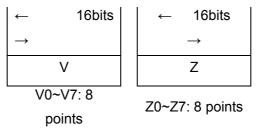
3.10.1.3 MX2N series PLC

Register D.V.Z	D0~D199 200 points (general use)	D200~D7999 780 points (for keeping)	D8000~D8195 196 points (special use, hold)	D8196~D825 5 59 points (for special use)	V0~V7 Z0~Z7 16 points (for indexing)
-------------------	--	---	--	---	---

3.10.2 Function of data register and extension register

The register can be divided into the following five types according to its nature:

- General register: When PLC is from RUN→STOP or power off, all data in the register will be cleared to 0. If M8033=ON, then the data will remain uncleared when PLC is from RUN→STOP, but it will still be Clear to 0.
- Power failure The PLC keeps its contents during RUN→STOP and power failure; to clear the retention register: contents of the power failure retention register, you can use the RST or ZRST instruction.
- Special register: Each special purpose register has its special definition and purpose, mainly used for storing system status, error information, and monitoring status. Please refer to section 3.2 Special register numbers and contents.
- 4. Index register: The index register is a 16-bit register, which is used in the same way as the data register. You can also use other device numbers and values in combination with the operand of the application instruction to change the special register of the device number and value in the program.
- 5. Extension register: Same as the data register, it is 16-bit data (the highest bit is a positive and negative



sign), but after combining two devices, you can save 32-bit (the highest bit is a positive and negative sign) numeric data.

3.10.3 Index register [V], [Z]

3.10.3.1 16 bits

The index register has the same structure as the data register

3.10.3.2 32 bits

Z0~Z7 must be used when modifying the device in the 32-bit application instruction or processing the value beyond the 16-bit range.

 $\begin{array}{c|c} \leftarrow & 32 \text{ bit} & \rightarrow \\ \hline \text{Vx(High)} & \text{Zx(Low)} \end{array}$

As shown in the above figure, the combination of V and Z must specify Z when using 32-bit length. At this time, V is occupied and cannot be used in other places, otherwise it will cause Z (32-bit data) to be inaccurate.

MOV	К8	ZO		
MOV	K14	V0		
MOV	D5Z0	D10V0		

When X0=O, Z0=8, V0=14, D5Z0=D(5+8)=D13, D10V0=D(10+14)=D24, at this time the content of D13 will be moved to D24

3.10.3.3 Modification of soft components

Decimal number device•Numerical value: M, S, T, C, D, R, KnM, KnS, P, K

For example, V0=K5, when executing D20V0, execute the instruction with the device number D25 (D20+5). In addition, you can modify the constant. When K30V0 is specified, the command executed is the decimal value K35 (30+5).

Octal number devices: X, Y, KnX, KnY

For example, Z1=K8, when executing X0Z1, execute the instruction with the device number X10 (X0+8: octal number addition). When index modification is performed on a device whose device number is an octal number, the contents of V and Z will also be converted into an octal number and then added. Therefore, assume that Z1=K10 and X0Z1 is designated as X12. Please note that it is not X10 at this time.

Hexadecimal value: H

For example, V5=K30, when the constant H30V5 is specified, it is regarded as H4E (30H+K30). In addition, when V5=H30 and the constant H30V5 is specified, it is regarded as H60 (30H+30H).

3.11 Pointer [P], [I]

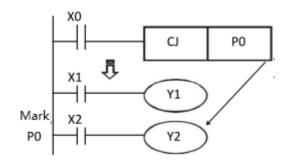
3.11.1 Pointer number

3.11.1.1 3G series PLC

pointer		
For JUMP, CALL	P0~P255	256 points For CJ instruction, CALL
branch	h P0~P1280	1281 points (26232 and instruction
Input interrupt	1000 ~ 1500	6 points, X0~X5
Timer interrupt	l6== ~ l8==	3 points
Counter interrupt	10□0 ~ 10□0	6 points [□=1~6]

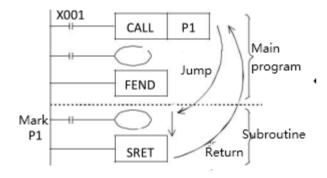
3.11.1.2 2N series PLC

pointer	JUMP, CALL	128 points P0-P127
	Input interrupt	


3.11.1.3 MX2N series PLC

	Nested pointer	P0~P127 128	points	(for	jump	and	10	□□~15		6 po	ints (f	or
IN		subroutine)					ex	ternal inter	rupt)			

Note: When using the pointer for input interrupt, the input number assigned to the pointer cannot be used together with [High Speed Counter] and [Pulse Density (FNC 56)] that use the same input range.

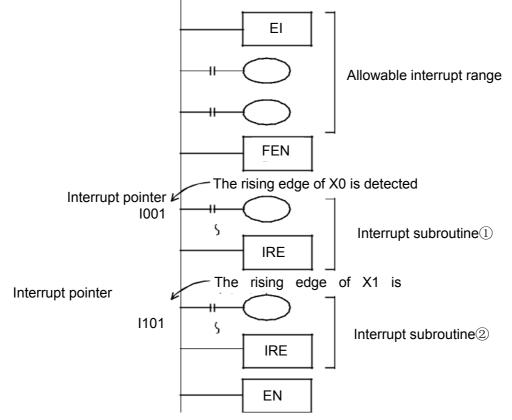

3.11.2 Pointer function

3.11.2.1 CJ conditional jump

- X0=ON, jump to the mark position specified by CJ instruction, and execute the following program;
- X0=OFF, the program is executed from top to bottom as a normal program, and the CJ instruction is not executed at this time.

3.11.2.2 CALL subroutine

X001=ON, execute the subroutine at the label position specified by the CALL instruction, and use the (SRET) instruction to return to the original position.


3.11.3 Function of interrupt pointer

The interrupt pointers include the following three types, which are used together with the application instruction IRET (FNC 03) interrupt return, EI (FNC 04) enable interrupt, and DI (FNC 05) disable interrupt.

3.11.3.1 Input interrupt (delayed interrupt): 6 points

	Input interr		
Input	Interrupt on rising edge	Falling edge interrupt	Disable interrupt flag
X000	1001	1000	M8050
X001	1101	1100	M8051
X002	1201	1200	M8052
X003	1301	1300	M8053
X004	I401	1400	M8054
X005	1501	1500	M8055

The EI instruction in the PLC allows interruption. During the scan program, X000 or X001=ON, execute the interrupt subroutine ① or ②, and then return to the main program through the IRET instruction.

• The interrupt pointer (I***) must be placed after the FEND instruction as a mark during programming.

Notes:

1) The number of the input relay used as an interrupt pointer should not be repeated with application instructions such as "high-speed counter", "pulse capture function", "pulse density" and other applications that use the same input range.

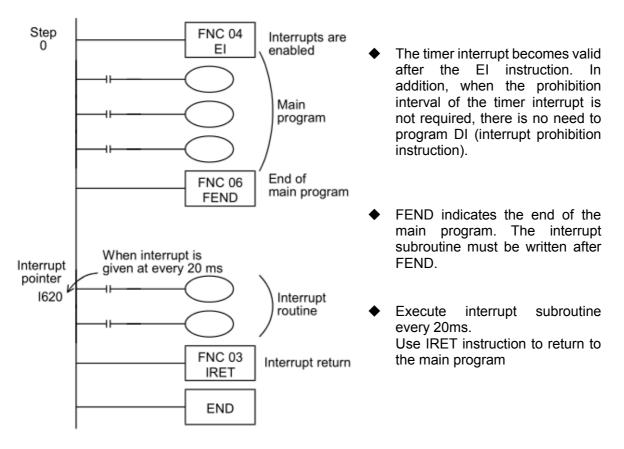
2) After the input interrupt pointer I port 0 port is specified, the input filter of the input relay will be automatically changed to high-speed reading.

Therefore, there is no need to use the REFF (FNC 51) command and the special data register D8020 (input filter adjustment) to change the filter adjustment.

In addition, the input filter without an input relay used as an input interrupt pointer operates at 10ms (initial value).

3) The rising edge interrupt and falling edge interrupt of the same input like I001 and I000 cannot be programmed at the same time.

3.11.3.2 For timer interrupt: 3 points

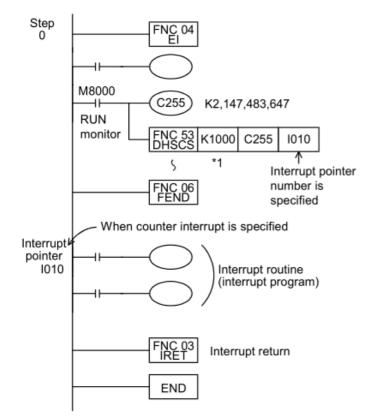

Every designated interrupt cycle time (10ms \sim 99ms), execute interrupt subroutine. Outside the operation cycle of the programmable controller, the timer interrupt becomes valid after the EI instruction.

Input number	Interrupt cycle	Disable interrupt flag
I6 🔲 🗌	In the mouth of the pointer name, enter an	M8056
	integer from 10 to 99.	
17 口口	For example: I610=Timer interrupt every	M8057

Coo	may®
-----	------

18 🗆 🗆	10ms	M8058

Note: The pointer numbers (I6, I7, I8) cannot be reused.


3.11.3.3 For counter interruption: 6 points

According to the comparison result of the high-speed counter comparison set instruction (DHSCS instruction), the interrupt subroutine is executed. It is used to control the priority processing of counting results using high-speed counters.

Pointer number	Disable interrupt flag	Pointer number	Disable interrupt flag
I010		 1040	
1020 M8059		 1050	M8059
1030		 1060	

Note: The pointer number cannot be reused.

Devices in Detail

- Allow interruption after El instruction, and write the main program.
- Drive the coil of the high-speed counter, and specify the interrupt pointer in the DHSCS instruction.
- ♦ When the current value of C255 changes from 999 → 1000 or 1001 → 1000, the interrupt subroutine is executed.

4 How to Specify Devices and Constants to Instructions

4.1 Data processed by PLC

4.1.1 Types of numeric values

1. Decimal numbers (DEC: DECIMAL NUMBER), Specify with constant K

◆ The specified range of decimal constant: When using word data (16 bits) • • • • • K-32768~K32767

When using 2 word data (32 bits) • • K-2,147,483,648 to K2,147,483,647

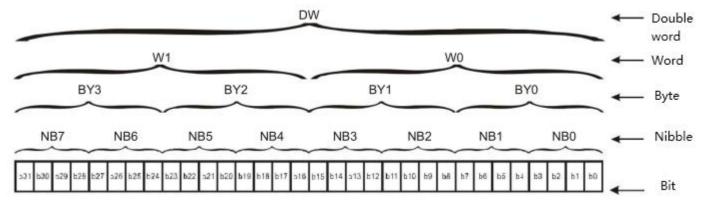
- As the setting value of timer T and counter C, for example: OUT C10 K50. (K constant)
- S, M, T, C, D, Z, V, P, I and other device numbers, for example: M10, T30. (Device number)
- Used as an operand in application instructions, for example: MOV K123 D0. (K constant)

2. Hexadecimal number (HEX: HEXADECIMAL NUMBER), specified by the constant H

The specified range of hexadecimal constant: When using word data (16 bits) ••••• H0 to HFFFF (H0 to H9999 for BCD data)

When using 2 word data (32 bits) • • H0 to HFFFFFFF (H0 to H999999999 for BCD data)

• Used as an operand in application instructions, for example: MOV HAB10 D0. (H constant)


3. Binary numbers (BIN: BINARY NUMBER)

The numerical calculation or storage inside the PLC adopts binary system. The binary value and related terms are as follows:

Bit:	Bit is the most basic unit of binary value, and its state is either 1 or 0.
	It is composed of 4 consecutive digits (such as b3 ~ b0), which can be used to
Nibble:	represent a decimal number 0 ~ 9 or hexadecimal 0 ~ F.
	It is composed of two consecutive nibbles (that is, 8 bits, b7 ~ b0), which can
Byte:	represent 00 ~ FF in hexadecimal.
Word:	It is composed of two consecutive bytes (that is, 16 bits, b15 ~ b0), which can
	represent the hexadecimal 4-digit value 0000 ~ FFFF.
Double Word:	It is composed of two consecutive words (that is, 32 bits, b31 ~ b0), which can
	represent the 8-bit value 00000000 ~ FFFFFFF in hexadecimal.

The relationship between bits, nibbles, bytes, words, and double words in the binary system is shown in the following figure:

How to Specify Devices and Constants to Instructions

4. Octal numbers (OCT: OCTAL NUMBER)

In PLC, the device numbers of input relays and output relays are all assigned in octal numbers.

5. BCD(BCD: BINARY CODE DECIMAL)

A decimal data is represented by half a byte or 4 bits, so continuous 16 bits can represent 4-digit decimal numerical data; it is mainly used in BCD output type digital switch and 7-segment display control.

6. Real number (floating point number data), specified with constant E

- In Coolmay PLC, it has the floating point arithmetic function that can perform high-precision arithmetic. Use binary floating-point numbers (real numbers) for floating-point operations, and use decimal floating-point numbers (real numbers) for monitoring. Such as E12.34=12.34.
- The specified range of real numbers: $-1.0 \times 2^{128} \sim -1.0 \times 2^{-126}$, 0, $1.0 \times 2^{-126} \sim 1.0 \times 2^{128}$.
- In the sequence program, the real number can be specified with "normal expression" and "exponential expression".

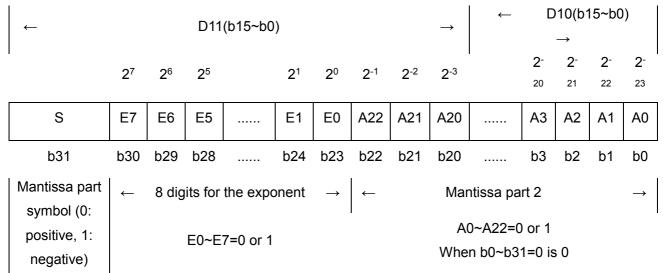
Ordinary representation Specify the set value directly. For example, 10.2345 is specified as E10.2345.

Index representation The set value is specified by (numerical value)×10n. For example, 1234 is specified as E1.234+3. The [+3] of [E1.234+3] represents 10 to the nth power (+3 is 103).

4.1.2 Value conversion

The data processed in the PLC can be converted according to the following table.

Decimal number (DEC)	Octal number (OCT)	Hexadecimal number (HEX)	Binary nur	nber (BIN)	BC	CD
0	0	00	0000	0000	0000	0000
1	1	01	0000	0001	0000	0001
2	2	02	0000	0010	0000	0010
3	3	03	0000	0011	0000	0011
4	4	04	0000	0100	0000	0100
5	5	05	0000	0101	0000	0101
6	6	06	0000	0110	0000	0110
7	7	07	0000	0111	0000	0111
8	10	08	0000	1000	0000	1000
9	11	09	0000	1001	0000	1001
10	12	0A	0000	1010	0001	0000


11	13	0B	0000	1011	0001	0001
12	14	0C	0000	1100	0001	0010
13	15	0D	0000	1101	0001	0011
14	16	0E	0000	1110	0001	0100
15	17	0F	0000	1111	0001	0101
16	20	10	0001	0000	0001	0110
99	143	63	0110	0011	1001	1001

4.1.3 Numerical processing in floating-point arithmetic

In the division operation of an integer, an answer such as 23÷2=11 with a remainder of 1 will be obtained; in the same way, the decimal point should not be discarded in the square root operation of an integer. In the PLC, in order to perform these operations with higher accuracy, floating-point operations can be performed.

• Binary floating point number (real number)

1. When handling binary floating-point numbers (real numbers) in data registers, use a pair of data registers with consecutive numbers. For example, (D11,D10), as shown in the figure below:

Binary floating point number (real number) = $\pm (20+A22\times2-1+A21\times2-2+...+A0\times2-23)\times2^{(E7X27+E6X26+...+E0X20)}/2^{127}$

Binary floating point number (real number) = $\pm (20+1\times2-1+0\times2-2+1\times2-3+...+0\times2-23)\times2^{(1\chi27+0\chi26+...+1\chi20)}/2^{127}$ = $\pm 1.625\times2^{129}/2^{127}$

=±1.625×2²

2. The effective digits of a binary floating-point number, such as a decimal number, are about 7 digits. The processing range of binary floating-point numbers is as follows:

- -Minimum absolute value 1175494×10-44
- -Maximum absolute value 3402823×1032
- 3. Handling of the zero (M8020), borrow (M8021) and carry (M8022) flags
 - -Zero flag : 1 when the result is 0
 - -Borrow flag : 1 when the result does not reach the minimum unit but is not 0
 - -Carry flag : 1 when the absolute value of the result exceeds the available numeric value range.

4. Monitoring of binary floating point (real number)

In the PLC programming software, GX Developer supports floating-point number display and can directly monitor binary floating-point numbers (real numbers). In addition, in programming tools that do not support floating-point number display, you can convert binary floating-point numbers (real numbers) into decimal floating-point numbers (real numbers) before monitoring.

• Decimal floating point number (real number)

1. For users, binary floating-point numbers (real numbers) are difficult to understand, so they can also be converted into decimal floating-point numbers (real numbers). However, the operation inside the PLC still uses binary floating-point numbers (real numbers).

2. When dealing with decimal floating-point numbers (real numbers) in data registers, use a pair of data registers with consecutive numbers, but with binary floating-point numbers (real numbers)

Different, the smaller number is the mantissa part, and the larger number is the exponent part.

For example, when using the data registers (D1, D0) as shown below, use the MOV instruction to write to D0 and

D1.

Decimal floating point numbers (real number) = [Mantissa D0] × 10 [Exponent D1]

Mantissa D0 = ± (1000 to 9999) or 0

Exponent D1 =
$$-41$$
 to $+35$

The mantissa D0 does not allow "100", for example. In the case of "100", it is handled as "1000 \times 10 -1 ".

3. Decimal floating point numbers (real number) range is as follows:

-Minimum absolute value 1175×10-41

-Maximum absolute value 3402×10³⁵

4.2 Bit Specification

4.2.1 Specification of Digits for Bit Devices (Kn \square^{***})

Handling of bit devices

1. For bit devices, numerical values are processed by the combination of the number of digits Kn and the number of the start device. The number of bits is in units of 4 bits, K1 \sim K4 (16-bit data), K1 \sim K8 (32-bit data). For example, K2M0 is 2-digit data because it is M0 to M7.

2. After transmitting 16-bit data to K1M0 \sim K3M0, the upper part of the insufficient data length will not be transmitted. The same is true for 32-bit data.

3. In the process of 16-bit (or 32-bit) operation, when the number of bits K1 \sim K3 (or K1 \sim K7) is specified for the bit device, the insufficient high bits are always regarded as 0. Therefore, always handle positive numbers.

Such as BIN K2X004 D0 (convert BCD 2-digit data into BIN through X004 \sim X013 and then send it to DO)

4. As long as there are no special restrictions, the number of the designated bit device can be arbitrary, but it is recommended to set the lowest bit number to 0 in the case of X and Y. (Specify X000, X010, X020...Y000, Y010, Y020... etc.)

In the case of M, S, the most ideal is a multiple of 8, but in order to avoid confusion, it is recommended to set M0, M10, M20... etc.

Designation of consecutive words

A series of data registers starting with D1 are D1, D2, D3, D4... In the case of words, it can be treated as a series

of words by specifying the number of digits. As shown below:

- K1X000, K1X004, K1X010, K1X014.....
- K2Y010, K2Y020, Y2X030.....
- K3M0, K3M12, K3M24, K3M36.....
- K4S16, K4S32, K4S48.....

In other words, without skipping the device, use the device in the unit of the number of bits as shown above.

However, when K4Y000 is used in a 32-bit operation, the upper 16 bits are regarded as 0. When 32-bit data is required, K8Y000 is used.

4.2.2 Bit Specification of a Word Device (D □.b)

Specify the bit of a word device, you can use it as bit data, a word device has 16 bits; when specifying the bit of a word device, please use the word device number and bit number (hexadecimal number) to set .

Such as: MOV K4M0 D0 (transmit the state of the 16 bits of M0-M15 to b0-b15 of D0)

5 Basic Instruction

Mnemonic	Name	Function	Applicable devices	Program step
Contact Inst	ruction		I	<u> </u>
LD	Load	Initial logical operation contact type NO (normally open)	X,Y,M,S,T,C,D 口.b	1
LDI	Load Inverse	Initial logical operation contact type NC (normally closed)	X,Y,M,S,T,C,D □.b	1
LDP	Load Pulse	Initial logical operation of rising edge pulse	X,Y,M,S,T,C,D □.b	2
LDF	Load Falling Pulse	Initial logical operation of falling/trailing edge pulse	X,Y,M,S,T,C,D □.b	2
AND	AND	Serial connection of NO (normally open) contacts	X,Y,M,S,T,C,D □.b	1
ANI	AND Inverse	Serial connection of NC (normally closed) contacts	X,Y,M,S,T,C,D □.b	1
ANDP	AND Pulse	Serial connection of rising edge pulse	X,Y,M,S,T,C,D □.b	2
ANDF	AND Falling Pulse	Serial connection of falling/ trailing edge pulse	X,Y,M,S,T,C,D 口.b	2
OR	OR	Parallel connection of NO (normally open) contacts	X,Y,M,S,T,C,D □.b	1
ORI	OR Inverse	Parallel connection of NC (normally closed) contacts	X,Y,M,S,T,C,D □.b	1
ORP	OR Pulse	Parallel connection of rising edge pulse	X,Y,M,S,T,C,D □.b	2
ORF	OR Falling Pulse	Parallel connection of falling/trailing edge pulse	X,Y,M,S,T,C,D □.b	2
Connection	Instruction			1
ANB	AND Block	Serial connection of multiple parallel circuits		1
ORB	OR Block	Parallel connection of multiple contact circuits		1
MPS	Memory Point Store	Stores the current result of the internal PLC operations		1
MRD	Memory Read	Reads the current result of the initial PLC operations		1
MPP	Memory POP	Pops (recalls and removes) the currently stored result		1
INV	Inverse	Invert the current result of the internal		1

Basic Instruction

		PLC operations		
MEP	M.E.P	Conversion of operation result		
	IVI.L.F	to leading edge pulse		
MEF	M.E.F	Conversion of operation result		
MEL	IVI.C.F	to trailing edge pulse		
Out Instruct	ion			L
OUT	OUT	Final logical operation type coil drive	Y,M,S,T,C,D □.b	Note 1
SET	SET	Set bit device latch ON	Y,M,S,D □.b	
		Reset bit device OFF	Y,M,S,T,C,D,V,Z,D	Note 2
RST	Reset		□.b	
PLS	Pulse	Rising edge pulse	Y,M	
PLF	Pulse Falling	Falling/trailing edge pulse	Y,M	
Master Cont	rol Instruction		I	I
МС	Master Control	Denotes the start of a	Y,M	3
WIC		master control block	1,111	3
MCR	Master Control	Denotes the end of a		2
NICK	Reset	master control block		2
Other Instru	ction		1	I
NOP	No Operation	No operation or null step		1
End Instruct	tion		·	
END	END	Program end, I/O refresh		1
		and return to step 0		

5.1 LD, LDI instructions

LD and LDI instructions are the contacts connected to the bus. After being combined with the ANB instruction described later, it can also be used at the start of a branch.

Mnemonic	Function	Applicable models
LD (Load)	The logic operation of the normally open contact (A) starts	Coolmay series PLC
Operand	Х, Ү, М, Ѕ, Т, С, D 口.b	
Instructions	The LD instruction is used for the A contact at the beginning the beginning of a contact circuit block. Its function is to sa same time store the fetched contact status into the accumul	ve the current content and at the

Program example

Ladder diagram:

LD	
AND	
OUT	

Mnemonic:

X0

X1

Y1

Explanation: Input A contact of X0 Series A contact of X1 Drive Y1 coil

Mnemonic	Function	Applicable models	
LDI (Load			
Inverse)	The logic operation of the normally closed contact (B) starts	Coolmay series PLC	
Operand	Х, Y, M, S, T, C, D 口.b		
	The LD instruction is used for the B contact at the beginning of the left bus or the A contact at		
Instructions	the beginning of a contact circuit block. Its function is to save the current content and at the		
	same time store the fetched contact status into the accumula	ator.	

Program example

Ladder diagram:

Mnemonic:		Explanation:	
LDI	X2	Input B contact of X2	
ANI	X3	Series B contact of X3	
OUT	Y2	Drive Y2 coil	

5.2 OUT instructions

OUT instruction drives coils of output relays (Y), auxiliary relays (M), state relays (S), timers (T) and counters (C).

Mnemonic	Function	Applicable models
OUT (OUT)	Drive coil	Coolmay series PLC
Operand	Х, Ү, М, Ѕ, Т, Ċ, D 口.b	
Instructions	Output the result of the logic operation before the OUT instruction to the specified device.	

Mnemonic:

Program example

Ladder diagram:

5.3 AND, ANI instructions

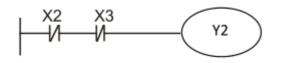
The AND and ANI instructions are executed to connect 1 contact in series. There is no limit to the number of serial contacts, this command can be used multiple times in succession.

Mnemonic	Function	Applicable models	
AND (AND)	Series A contact	Coolmay series PLC	
Operand	Х, Ү, М, Ѕ, Т, С, D 口.b		
Instructions	The AND instruction is used for the series connection of A contacts.		

Program example

Ladder diagram:

Mnemonic:		Explanation:
LDI	X2	Input B contact of X2
ANI	X3	Series B contact of X3
OUT	Y2	Drive Y2 coil


Explanation:

Mnemonic	Function	Applicable models
ANI (AND Inverse)	Series B contact	Coolmay series PLC
Operand	Х, Y, M, S, T, C, D 口.b	
Instructions	ANI instruction is used for series connection of B contact	S

Ladder diagram:

Mnemonic:

LDI

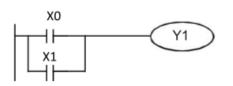
ANI

OUT

Explanation:

X2	Input B contact of X2
X3	Series B contact of X3
Y2	Drive Y2 coil

5.4 OR, ORI instructions


OR and ORI instructions can be used as instructions for connecting 1 contact in parallel. When two or more contacts are connected in series, to connect such a series circuit block with other circuits in parallel, use the ORB instruction described later. OR and ORI start from the step of this instruction and are connected in parallel with the steps of the previous LD and LDI instructions. The number of parallel connections is not limited.

Mnemonic	Function		Applicable models		
OR	Parallel A contact	t			Coolmay series PLC
Operand	X, Y, M, S, T, C, E	D ∏.b			
Instructions	OR instruction is used for parallel connection of A conta		acts		
Ladder diagram:		Mnemoni	C:	Expl	anation:
Program example	Y1	LD OR OUT	X0 X1 Y1	Para	d the A contact of X0 allel A contact of X1 e Y1 coil

Mnemonic	Function	Applicable models
ORI (OR Inverse)	Parallel B contact	Coolmay series PLC
Operand	Х, Ү, М, Ѕ, Т, С, D 口.b	
Instructions	ORI instruction is used for parallel connection of B contacts	

Program example

Ladder diagram:

Mnemonic:

LD X0 ORI X1 OUT Y1 Explanation:

Load the A contact of X0 Parallel B contact of X1 Drive Y1 coil

Basic Instruction

5.5 LDP, LDF, ANDP, ANDF, ORP, ORF instructions

LDP, ANDP, ORP instructions are contact instructions that detect the rising edge. Only when the rising edge of the specified bit device (changes from OFF to ON) is turned on, one operation cycle is turned on.

LDF, ANDF, ORF instructions are contact instructions that detect the falling edge. Only when the falling edge of the specified bit device (changes from ON to OFF), one operation cycle is turned on.

Mnemonic	Function	Applicable models	
LDP (Load Pulse)	Start of rising edge detection action	Coolmay series PLC	
Operand	Х, Y, M, S, T, C, D 口.b		
Instructions	The usage of LDP instruction is the same as LD, but the action is different. Its function is to save the current content, and at the same time save the fetched contact rising edge detection state into the accumulator.		

Program example

Coolmay®

 Ladder diagram:
 Mnemonic:
 Explanation:

 X2
 X3
 V2
 X2
 X2 rising edge detection starts

 ANI
 X3
 Series B contact of X3
 Drive Y2 coil

Mnemonic	Function	Applicable models	
LDF (Load Falling Pulse)	Start of falling edge detection	Coolmay series PLC	
Operand	Х, Y, M, S, T, C, D 口.b		
Instructions	The usage of the LDF instruction is the same as LD, but the action is different. Its function is to save the current content, and at the same time store the fetched contact rising edge detection state into the accumulator.		

Program example

Ladder diagram:

Explanation:

X2 falling edge detection action starts Series B contact of X3 Drive Y2 coil

Mnemonic	Function	Applicable models	
----------	----------	-------------------	--

X2

Х3

Y2

Mnemonic:

LDP

ANI

OUT

Basic Instruction

ANDP (AND Pulse)	Rising edge detection series connection	Coolmay series PLC	
Operand	Х, Y, M, S, T, C, D 口.b		
Instructions	The ANDP instruction is used for series connection with the detection of the risin edge of the contact.		

Ladder diagram:

Mnemonic: LD ANDP

OUT

Explanation:

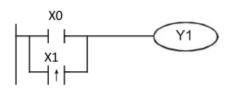
Load the A contact of X2 X3 rising edge detection series connection Drive Y2 coil

Mnemonic	Function	Applicable models	
ANDF (AND Falling Pulse)	Falling edge detection series connection	Coolmay series PLC	
Operand	Х, Y, M, S, T, C, D 口.b		
Instructions	The ANDF instruction is used for series connection where the falling edge of the contact is detected.		

X2

Х3

Y2


Program example

Ladder diagram:	Mnemonic:	Explanation:
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	LD X2 ANDP X3 OUT Y2	Load the A contact of X2 X3 falling edge detection series connection Drive Y2 coil

Mnemonic	Function	Applicable models
ORP (OR Pulse)	Parallel connection detected on rising edge	Coolmay series PLC
Operand	Operand X, Y, M, S, T, C, D □.b Instructions ORP instruction is used for parallel connection with detection of rising edge of containing edge of c	
Instructions		

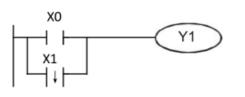
Ladder diagram:

Mnemonic:

Explanation:

LD	X2	Load the A contact of X0
ORP	X1	X1 rising edge detection parallel connection
OUT	Y1	Drive Y1 coil

Mnemonic	Function	Applicable models	
ORF (OR Falling Pulse)	Falling edge detection parallel connection	Coolmay series PLC	
Operand	Х, Ү, М, Ѕ, Т, С, D 口.b		
Instructions	ORF instruction is used for parallel connection with o	detection of rising edge of contact	


X0

X1

Y1

Ladder diagram:

LD	
ORF	
OUT	

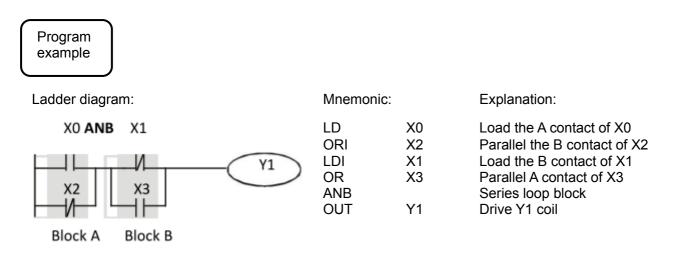
Mnemonic:

Explanation:

Load the A contact of X0 X1 falling edge detection parallel connection Drive Y1 coil

5.6 **ORB** Instructions

A circuit in which two or more contacts are connected in series is called serial circuit block.


Mnemonic	Function			Applicable models
ORB (OR Block)	Parallel connection of circuit blocks		Coolmay series PLC	
Operand	Null	Null		
Instructions	ORB is the "OR" operation between the previously saved logic result and the current accumulator content.			
				Explanat
	Ladder diagram:	Mnemonio	0:	ion:
Program example	X0 X1 Block A	LD	X0	Load the A contact of X0
	Y1	ANI	X1	Series B contact of X1
	X2 X3	LDI	X2	Load B contact of X2
	ORB	AND	X3	A contact of X3 in series
	Block B	ORB		Parallel circuit block
		OUT	Y1	Drive Y1 coil

Coolmay®

5.7 ANB Instructions

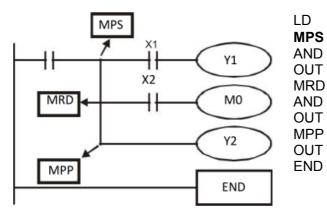
When the branch circuit (parallel circuit block) is connected in series with the previous circuit, use the ANB instruction. The starting point of the branch uses the LD and LDI instructions. After the parallel circuit block ends, you can use the ANB instruction to connect to the previous circuit in series. When there are multiple parallel circuits, use the ANB instruction for each circuit block to connect.

ſ	Mnemonic	Function	Applicable models
	ANB (AND Block)	Series connection of circuit blocks	Coolmay series PLC
Operand Null		Null	
ANB is the AND operation between the previously saved logic resu accumulator content.		saved logic result and the current	

5.8 MPS, MRD, MPP Instructions

Mnemonic	Function	Applicable models
MPS (Memory Point Store)	Save to stack	Coolmay series PLC
Operand	Null	
Instructions Store the contents of the current accumulator o		ack. (The stack pointer plus one).

Mnemonic	Function	Applicable models	
MPD (Memory Read)	Read the stack (pointer does not move)	Coolmay series PLC	
Operand	Null		
Instructions Read the stack content and store it in the accumulator. (The stack p move)			


Mnemonic	Function	Applicable models
----------	----------	-------------------

MPP (Memory POP)	Read stack	Coolmay series PLC	
Operand	Null		
Instructions	Retrieve the previously saved logical operation resul	t from the stack and store it in the	
	accumulator. (The stack pointer minus one)		

Ladder diagram:

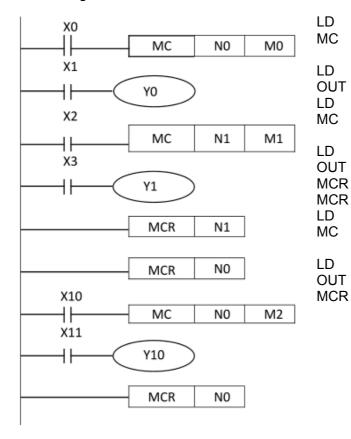
Explanation: Mnemonic: X0 Load the A contact of X0 Save to stack X1 Series A contact of X1 Y1 Drive Y1 coil Read the stack (pointer does not move) X2 A contact of X2 in series Drive M0 coil M0 **Read stack** Y2 Drive Y2 coil End of program

5.9 MC, MCR Instructions

After executing the MC instruction, the bus (LD, LDI point) moves to behind the MC contact; using the MCR instruction, it can be returned to the original bus position.

By changing the device numbers Y and M, the MC instruction can be used multiple times. However, when the same device number is used, it is the same as the OUT instruction, and double coil output will appear.

Mnemonic	Function	Applicable models
MC/MCR (Master Control /		
Master Control	Connection/disconnection of common series contacts	Coolmay series PLC
Reset)		
Operand	Y, M (except special auxiliary relays)	
	MC is the main control start instruction. After the instructions between MC and MCR instructions are instruction is OFF, the instructions between MC an as follows:	executed as usual; when the MC
Instructions	Command distinction	Description
	subroutine energized, and	alue returns to zero, the coil is de- the contact does not operate
	Accumulative timer/counter The coil is d	e-energized, and the count value


			and contacts keep the current state			
	Γ	Coil dr	iven by	/ OUT instruc	tion	All turned off
	Γ	SET,	RST	instruction	driven	Keep current
	C	device				

Note: When using MC instruction, the number of nesting level N increases in sequence: $(N0 \rightarrow N1 \rightarrow N2 \rightarrow N3 \rightarrow N4 \rightarrow N5 \rightarrow N6 \rightarrow N7)$

When returning, use MCR instruction to release from the larger nesting level: $(N7 \rightarrow N6 \rightarrow N5 \rightarrow N4 \rightarrow N3 \rightarrow N2 \rightarrow N1 \rightarrow N0)$

Ladder diagram:

Mnemonic:		Explanation:				
LD X0		Load the A contact of X0				
MC	N0	N0 Connection of common series contacts				
LD	X1	Load the A contact of X1				
OUT	Y0	Drive Y0 coil				
LD	X2	Load the A contact of X2				
MC	N1	N1 Connection of common series				
		contacts				
LD X3		Load the A contact of X3				
OUT	Y1	Drive Y1 coil				
MCR	N1	N1 Release of common series contact				
MCR	N0	N0 Release of common series contact				
LD	X10	Load the A contact of X10				
MC	N0	N0 Connection of common series contacts				
LD	X11	Load the A contact of X11				
OUT	Y10	Drive Y10 coil				
MCR	N0	Release of N0 common series contact				

5.10 INV instructions

The NV instruction is an instruction that reverses the calculation result before the INV instruction is executed, and there is no need to specify the device number.

Mnemonic	Function	Applicable models	
INV (Inverse)	Inversion of operation result	Coolmay series PLC	
Operand Null			
Instructions	Invert the result of the logic operation before the INV instruction and store it accumulator.		

X0

Y1

Program example

Ladder diagram:

Mnemonic:

Explanation:

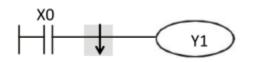
Load the A contact of X0 Inverted result Drive Y1 coil

5.11 MEP, MEF instructions

The MEP and MEF instructions are instructions that pulse the result of the operation, and there is no need to specify the device number.

Mnemonic	Function	Applicable models	
MEP	On on rising edge	Coolmay series PLC	
Operand	Null		
Instructions	The result of the operation up to the MEP instruction changes from OFF to ON to turn on.		
Program example			

Ladder diagram:


whemonic.		Explanation.
LD MEP	X0	Load the A contact of X0 On rising edge
OUT	Y1	Drive Y1 coil

Magmonia

Mnemonic	Function	Applicable models
MEF	On at falling edge	Coolmay series PLC
Operand		
Instructions The result of the operation up to the MEF instruction is turned on whe from ON to OFF.		

Program example

Ladder diagram:

X0 Y1

Mnemonic:

LD

MEF

OUT

Load the A contact of X0 On at falling edge

Explanation:

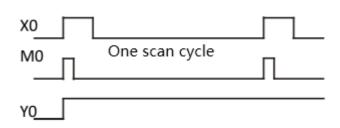
Drive Y1 coil

Evalenation

5.12 PLS, PLF instructions

After using the PLS instruction, the target device operates only in one operation cycle after the drive input is turned on.

After the PLF instruction is used, the target device operates only in one operation cycle after the drive input is turned off.


Mnemonic	Function	Applicable models
PLS (Pulse)	Rising edge differential output	Coolmay series PLC
Operand	Y, M (except special auxiliary relays)	

Basic Instruction

Instructions	When X0=OFF \rightarrow ON (rising edge trigger), PLS instruction is executed, S sends out a pulse, and the pulse width is one scan period.						
Program example	Ladder diagram:				Mnem	onic:	Description:
	X0				LD	X0	Load the A contact of X0
		PLS	MO		PLS	MO	M0 rising edge detection
	MO				LD	M0	Load the A contact of M0
		SET	Y0		SET	Y0	Y0 action hold (ON)

Timing diagram:

Mnemonic	Function	Applicable models								
PLF (Pulse Falling)	Falling edge differential output	Coolmay series PLC								
Operand	Y, M (except special auxiliary relays)									
Instructions		When X0=ON \rightarrow OFF (rising edge trigger), PLS instruction is executed, S sends out a pulse, and the pulse width is one scan period.								
Program example	Ladder diagram:	Mnemonic:	Description:							
	X0	LD X0	Load the A contact of X0							
	PLF M0	PLF M0	M0 falling edge detection							
	MO	LD M0	Load the A contact of M0							
	SET Y0	SET Y0	Y0 action hold (ON)							
Timi	ing diagram:									
X0 M0										
YO										

5.13 SET, RST instructions

Mnemonic	Function	Applicable models						
SET (SET)	Action keep (ON)	Coolmay series PLC						
Operand	Y,M(Except for special auxiliary relays), S, D □.b							
Instructions	When the SET instruction is driven, the specified element is set to ON, and the set element will remain ON, regardless of whether the SET instruction is still driven. The RST instruction can be used to turn this component OFF.							
Program example	Ladder diagram:	Mnemonic:	Description:					
	X0	LD X0	Load the A contact of X0					
	SET Y1	SET Y1	Y1 action hold					

Mnemonic	Function	Applicable models						
RST (Reset)	Clear contact or register		Coolmay series PLC					
Operand	Z, M (Except for special auxiliary relays), S, D □.b, T, C, D, R, V, Z							
Instructions	 When the RST instruction is driven, the actions of the specified components are a follows: Components S, Y, M: coils and contacts are all set to OFF; Component T, C: The current timing or count value is cleared, and the coil and contact status are set to OFF; Component D, Z, V: The content value is cleared to 0. 							
Program example	Ladder diagram: X0	Mnemonic: LD X0	Description: Load the A contact of X0					
	RST Y1	RST Y1	Y1 contact clear					

5.14 NOP instruction

Mnemonic	Function	Applicable models				
NOP (No Operation)	No treatment	Coolmay series PLC				
Operand	Null					
Instructions	The NOP instruction does not perform any operation in the program, so the origin					

Basic Instruction

	as follows: If ye	logic operation result will be maintained after execution. The component machine is as follows: If you want to delete a certain instruction but do not want to change the program length, you can replace it with the NOP instruction.						
Program example	Ladder diagram: X0			Mnem	onic: X0	Description: Load the A contact of X0		
		RST	Y1	NOP		No action		
				RST	Y1	Y1 contact clear		

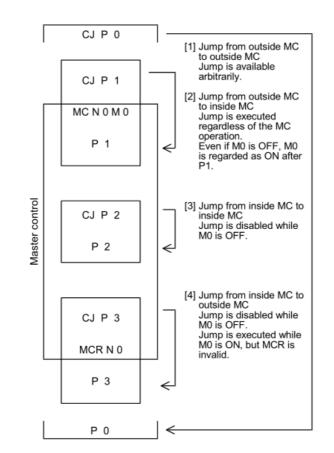
5.15 END instruction

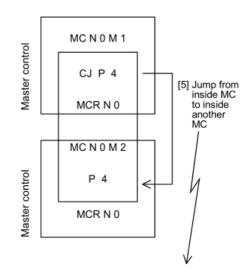
Mnemonic	Function	Applicable models
END (END)	End of the program and input and output processing and return to step 0	Coolmay series PLC
Operand	Null	
Instructions	The END instruction must be added at the end of t program. The PLC scans from address 0 to the ENE returns to address 0 to scan again.	

6 Program Flow

FNC				Support mod	els
NO.	Mnemonic	Function	3G series	2N series	MX2N
NO.			PLC	PLC	series PLC
00	CJ	Conditional Jump	*	*	*
01	CALL	Call Subroutine	*	*	*
02	SRET	Subroutine Return	*	*	*
03	IRET	Interrupt Return	*		*
04	El	Enable Interrupt	*		*
05	DI	Disable Interrupt	*		*
06	FEND	Main Routine Program End	*	*	*
07	WDT	Watchdog Timer Refresh	*	*	*
08	FOR	Start a FOR/NEXT Loop	*	*	*
09	NEXT	End a FOR/NEXT Loop	*	*	*

6.1 CJ/ Conditional jump


It is an instruction that does not execute the sequence program starting from the CJ and CJP instructions to the pointer (P). It is possible to shorten the cycle time (calculation cycle) and execute the program using double coils.


Instructio	n	Operand type		Function							
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
FNC 00		Pn.	3 steps	CJ	Continuous Operation						
CJ	Р	ΓΠ.		CJP	Pulse (Single)						
					Operation						
Operand		Pn.	jump.						80; but P63 is an END		
Instructio	'n		executed.					-	ark (pointer number) is ion, but when the scar		
				time exceeds 200ms (default setting), a watchdog timer (WDT) error will occur. Please be							
		•			specify the sar erwise an erro	•	•	lly, but CJ ar	d CALL cannot specify		
		•	here is no stop runnir	•	t the mark of p	pointer P	63, otherwis	e the PLC w	ill prompt an error and		
Samp program			0 X0 X X N P1		and) - CJ P1 - Y1 - Y2						
			designat does not ♦ When X(ted pointer P t execute. D=OFF, the p	1) to continue	executio	n, and the in xecute from a	termediate a	nddress N (namely the address skips and s a normal program,		

The relationship between the main control instruction and the jump instruction and the action content are as follows: (Because the operation of ②, ④, ⑤ will become complicated, please avoid using it)

Sample

Jump is enabled while M1 is ON. In circuits after jump, M2 is regarded as ON regardless of the actual ON/OFF status of M2. And the first MCR N0 is ignored.

- program (3) X000 **FNC 00** P 8 0 CJ X001 4 Y001) X002 6 M 1 X003 8 S 1 X004 Т0 11)K 10 X005 15 RST T246 X006 18 T246)K1000 X007 22 RST C 0 X010 C 0)K 20 25 X011 **FNC 12** K 3 D 0 29 MOV Label P 8 X000 **FNC 00** P 9 35 C. X012 Y001 40 ٠ Label P 9 X013 RST T246 42 RST C 0
 - Double coil operation of output Y001 While X000 is OFF, output Y001 is activated by X001. While X000 is ON, output Y001 is activated by X012. Even in a program divided by conditional jumps, if a same coil (Y000 in this case) is programmed two or more times within the jump area or outside the jump area, such a coil is handled as double coil.
 - When the reset (RST) instruction for the retentive type timer T246 is located outside the jump area
 Even if the counting coil (OUT T246) is jumped, reset (return of the contact and clearing of the current value) is valid.
 - When the reset (RST) instruction for the counter C0 is located outside the jump area Even if the counting coil is jumped, reset (return of the contact and clearing of the current value) is valid.
 - Operation of the routine timers T192 to T199
 A routine timer continues its operation even if it is jumped after the coil is driven, and the output contact is activated.
 - Operation of the high speed counters C235 to C255
 A high speed counter continues its operation even if it is
 jumped after the coil is driven, and the output contact is
 activated.

6.2 CALL/ Subroutine call

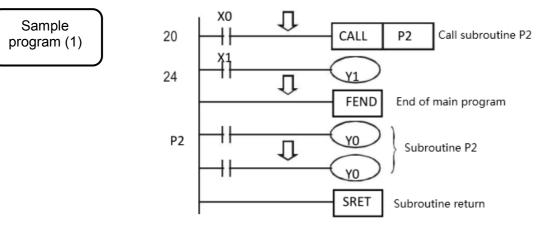
In a sequence program, an instruction to call a program that you want to process together. You can reduce the number of steps in the program and design the program more effectively.

In addition, when writing subroutines, you also need to use FEND (FNC 06) and SRET (FNC 02) instructions.

Instructior	l	Operand type	Function						
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC 01		Pn.	3 steps	CALL	Continuous Operation				
CALL	Ρ	Γ11.		CALLP	Pulse (Single) Operation				
Operand		Pn.	n=0~62,64~^	Pointer P, supports index modification; where FX2N: n=0~62,64~127, F n=0~62,64~1280; P63 is a dedicated END jump for CJ and cannot be used as a pointer to the nstruction.					

Instruction

- The subroutine specified by the pointer must be written after the FEND instruction;
- When the number of pointer P is used by CALL instruction, CJ designation cannot specify the same number;
- When only using CALL instruction, the subroutine with the same pointer number can be called unlimited times;
- The CALL instruction in the subroutine can be used up to 4 times, and overall, up to 5 levels of nesting are allowed.

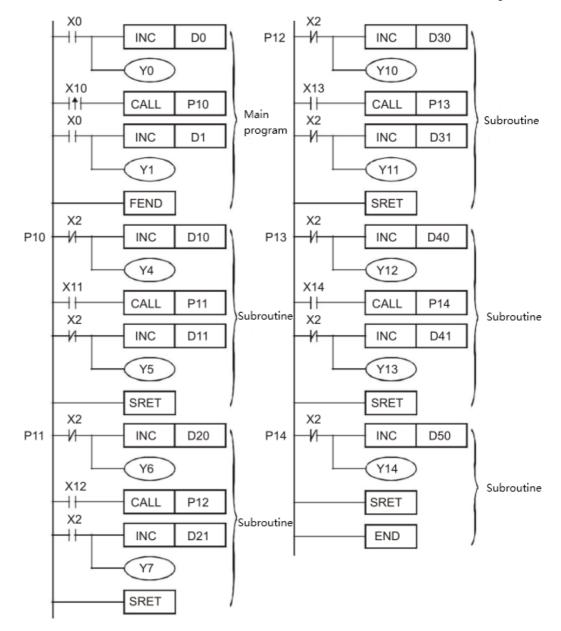

6.3 SRET/ Subroutine return

Instructior	n O	perand type	Function				
FNC 02			Independent instructions	Mnemonic	Execution condition		
SRET		Null	1step	SRET	Continuous execution	No independent instructions to drive the contacts are required.	

An instruction to return from a subroutine to the main program.

Instuctions

After executing the CALL instruction in the main program, jump to the subroutine, and then use the SRET instruction to return to the main program.



When X0=ON, execute the CALL instruction and jump to the subroutine designated by P2. When the SRET instruction is executed, it will return to address 24 and continue to execute.

Sample

program (2)

- ♦ When X10 is triggered by the rising edge of OFF → ON, the CALL P10 instruction is executed, and the subroutine is executed at P10.
- ♦ When X10 is triggered by the rising edge of OFF → ON, the CALL P10 instruction is executed, and the subroutine is executed at P10.
- When X11=ON, CALL P11 will be executed, and it will shift to P11 to execute the designated subroutine.
- When X12 = ON, CALL P12 will be executed, and it will shift to P12 to execute the designated subroutine.
- When X13=ON, CALL P13 is executed and transfer to P13 to execute the designated subroutine.
- When X14=ON, CALL P14 will be executed, and it will be transferred to P14 to execute the designated subroutine. When the SRET instruction is executed, it will return to the previous Pn subroutine and continue to execute.
- After executing the SRET instruction in the P10 subroutine, return to the main program.

6.4 IRET/ Interrupt Return

Instruction	Operand type				Function
FNC 03	Null	Independent Inst.	Mnemonic	Operation Condition	
IRET	NUII	1step	IRET	Continuous Operation	This instruction is the independent type, and does not require drive contact.

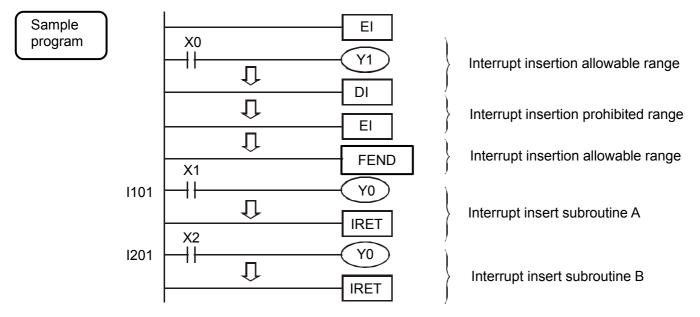
An instruction to return to the main program from an interrupted subroutine.

6.5 El/ Enable Interrupt

The programmable controller is usually in a state where interrupts are prohibited. Using this instruction, the programmable controller can be changed to a state that allows interrupts, such as input interrupts, timer interrupts, and counter interrupts.

Instruction	Operand type				Function
		Independent	Mnemonic	Operation	
FNC 04	Null	lull Inst.		Condition	
EI	. tom	1step	EI	Continuous	No independent instructions to drive the
		TSIEP		Operation	contacts are required.

6.6 DI/ Disable Interrupt


After changing to enable interrupt, use EI (FNC 04) instruction to change to disable interrupt again. Note that the interrupt (required) generated after the DI instruction can only be processed after the EI (FNC 04) instruction is executed.

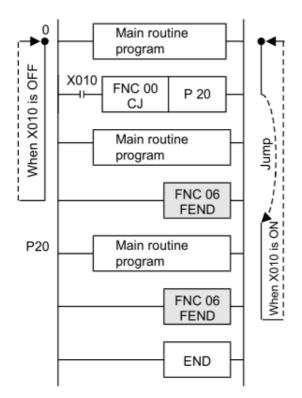
Instruction	Operand type				Function
		Independent	Mnemonic	Operation	
FNC 05	Null	Inst.		Condition	
DI			DI	Continuous	No independent instructions to drive the
			·	Operation	contacts are required.

Instruction

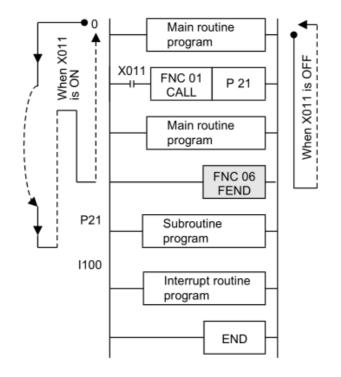
Interrupt subroutines are allowed between the El instruction and the Dl instruction in the program. If there is no interruption in the forbidden section in the program, the Dl instruction may not be used.

When the PLC is executing, when the program scans between the EI instruction and the DI instruction, X1=ON or X2=ON, the interrupt insertion subroutine A or B will be executed, and when the subroutine is executed to IRET, it will return to the main program and continue Execute down.

6.7 FEND/ Main Routine Program End


Instruction	Operand type		Function						
FNC 06	Null	Independent Inst.	Mnemonic	Operation Condition					
FEND	- Vuli	1step	FEND	Continuous Operation	This instruction is the independent type, and does not require drive contact.				
Instruction		watchdog tim return to step	er refresh as 0. This instru	s the END ins uction is need	the same output processing, input processing, and truction will be executed, and then the program will ed when writing subroutines and interrupt programs. e written after the FEND instruction, and the SRET				

- The CALL instruction program must be written after the FEND instruction, and the SRET instruction must be added at the end of the subroutine; the interrupt program must also be written after the FEND, and the IRET instruction must be added at the end of the program.
- When FEND instruction is written multiple times: Please design the subroutine and interrupt program between the last FEND and END instructions.
- After the CALL instruction is executed: Before executing the SRET instruction, if the FEND instruction is executed, a program error will occur.
- After the FOR instruction is executed: Before executing the NEXT instruction, if the FEND instruction is executed, a program error will occur.

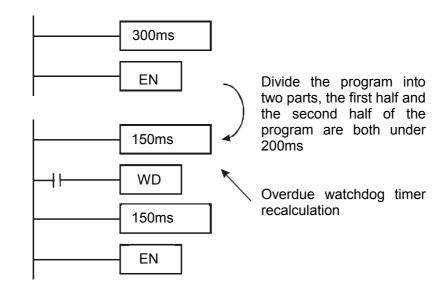

Sample program

1. In the case of CJ instruction

2. In the case of CALL instruction

6.8 WDT/Watchdog Timer Refresh

Instruction	l	Operand type			Function
FNC 07		Null	Independent Inst.	Mnemonic	Operation Condition
WDT	Р		Null		WDT
VVDT	۲		1 step	WDTP	Pulse (Single) Operation


If the operation cycle of the PLC (0 ~ END or FEND instruction execution time) exceeds
 200ms, the PLC will have a watchdog timer error (operation abnormality detected), then CPU

Instructions 200ms, the PLC will have a watchdog timer error (op error, the PLC will stop after the ERROR light is on.

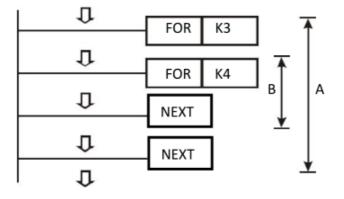
- error, the PLC will stop after the ERROR light is on. In the case of a long operation cycle like this, inserting the WDT instruction in the middle of the program can avoid such errors.
- D8000, watchdog timer time, the maximum can be set to 32767ms (initial value: 200)

As shown in the figure, if the scan cycle of the program is 300ms, at this time, the program can be divided into 2 parts, and the WDT instruction can be placed in the middle. Make the first half and the second half of the program are less than 200ms.

You can also modify the watchdog timer time directly through D8000, such as MOV K300 D8000. When no WDT instruction is programmed, the value of D 8000 becomes valid during END processing.

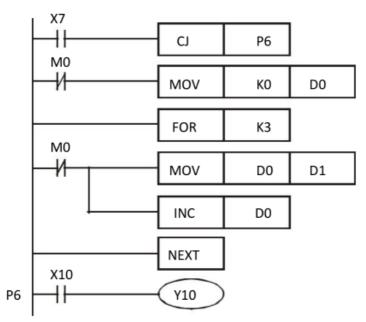
Sample program

6.9 FOR/Start a FOR/NEXT Loop


The program from the FOR instruction to the NEXT (FNC 09) instruction is repeated for the specified number of times.

Instruction	Operand type		Function							
FNC 08 FOR	S.	16-bit Instruction 3 steps	Mnemonic FOR	Operation condition Continuous operation		32-bit Instruction	Vnemonic 	Operation condition		
Operand	S.	is treated as	The number of repetitions between FOR~NEXT instructions. S.=K1~K32767 (-32768~0 s treated as 1) Target devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, modification							

6.10 NEXT/ End a FOR/NEXT Loop


Instruction	Operand type	Function						
FNC 09	Null	Independent Inst.	Mnemonic	Operation Condition				
NEXT		1 step	NEXT	Continuous Operation	This instruction is the independent type, and does not require drive contact.			
Instructions		The processing of FOR to NEXT instructions is repeated n times (the number of times specified in the source data). After repeating the specified number of times, execute the step processing after the NEXT instruction.						
Notes		Between FOR-NEXT instructions, when FOR-NEXT instructions are nested programming, up to 5 levels are allowed.						
		become large the watchdog	er, and a wat timer or exe	chdog timer e ecute the watc	arger, the cycle time (operation cycle) (D8010) will rror will occur. It is necessary to change the time of hdog timer refresh.			
	3.			error occurred	: e the FOR instruction.			
					XT instruction.			
					I NEXT instruction is inconsistent. n followed by NEXT instruction.			
Sample program (1)		•	nd program A	A will execute of	s, the program after the NEXT instruction continues every time program B is executed four times, that is,			

Sample program (2)

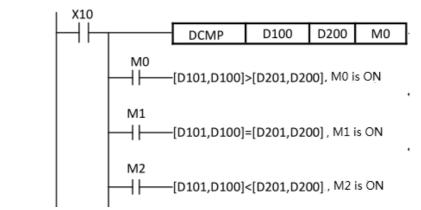
When X7 = OFF, PLC will execute the program between FOR ~ NEXT; When X7=ON, the execution of CJ instruction jumps to P6, the program between FOR ~ NEXT is skipped and not executed.

7 Move and Compare

FNC				Support mod	els
NO.	Mnemonic	Function	3G series	2N series	MX2N series
NO.			PLC	PLC	PLC
10	CMP	Compare	*	*	*
11	ZCP	Zone Compare	*	*	*
12	MOV	Move	*	*	*
13	SMOV	Shift Move	*		*
14	CML	Complement	*	*	*
15	BMOV	Block Move	*	*	*
16	FMOV	Fill Move	*	*	*
17	XCH	Exchange	*	*	*
18	BCD	Conversion to Binary	*	*	*
		Coded Decimal			
19	BIN	Conversion to Binary	*	*	*

7.1 CMP/Compare

This instruction compares two values, and outputs the result (smaller, equal or larger) to bit devices (3 points).


	Instruction		Operand Type				Functio	on		
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC 10		S1. S2.	7 steps	CMP	Continuous Operation		13 steps	DCMP	Continuous Operation
D	СМР	Ρ	D.		CMPP	Pulse (Single) Operation			DCMPP	Pulse (Single) Operation
	Operand		S1.			handled as co KnX, KnY, Knl	•		V, Z, K, H,	BIN16/32 bit
			S2.		Date or device number handled as comparison source Applicable devices : KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, Modify					
			D.			r to which com M, S, Modify	nparison	result is out	put	Bit

Explanation	1. 16-bit operation (CMP, CMPP)
	The comparison value S1. and the comparison source S2. are compared with each other. According
	to the result (smaller, equal or larger), either one among D. , D.+1 and D.+2 turns ON.
	2. 32-bit operation (DCMP, DCMPP)
	The comparison value [S1.+1, S1] and the comparison source [S2+1, S2.] are compared with each other. According to the result (smaller, equal or larger), either one among D., D.+1 and D.+2 turns ON.
	• The source data S1., S2. or [S1.+1, S1.] [S2.+1, S2.] are handled as binary values.
	 Comparison is executed algebraically. Example: -10 < 2, -125400 < 22466
	 From the device specified as , three devices are occupied.

Program

example

- Even if X10=OFF, the CMP instruction is not executed, M0~M2 remain in the state before X10=OFF.
- To clear the comparison result, please use RST or ZRST instruction.
- If you need to get \geq , \leq , \neq , you can get M0~M2 in series and parallel.

7.2 ZCP/ Zone Compare

This instruction compares two values (zone) with the comparison source, and outputs the result (smaller, equal or larger) to bit devices (3 points).

Instruction Operand Type					Function							
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
	FNC 11		S1. S2.	9 steps	ZCP	Continuous Operation		17 steps	DZCP	Continuous Operation		
D	ZCP	Ρ	S. D.		ZCPP	Pulse (Single) Operation			DZCPP	Pulse (Single) Operation		
	Operand		S1.			handled as lo KnX, KnY, Knl		•		BIN16/32 bit		
			S2.			handled as up KnX, KnY, Knl	•	•		BIN16/32 bit		
			S.			handled as co KnX, KnY, Knl	•		V, Z, K, H,	BIN16/32 bit		
			D.			r to which com M, S, Modify	nparison	result is out	out	Bit		

Explanation	1. 16-bit operation (ZCP, ZCPP)							
	The lower comparison value S1. and upper comparison value S2. are compared with the	9						

Move and Compare

	comparison source S. According to the result (smaller, within zone or larger), either one among D.,							
	D.+1 and D.+2 turns ON.							
	2. 32-bit operation (DZCP, DZCPP)							
Sample program	The lower comparison value [S1.+1, S1.] and upper comparison value [S2.+1, S2.] are compared with the comparison source [S.+1, S.]. According to the result (smaller, within zone or larger), either one among D,, D.+1 and D.+2 turns ON. Comparison is executed algebraically. Example: -10 < 2 <10 When the lower limit value S1.>the upper limit value S2., the lower limit value S1. is instructed as the upper and lower limit values for comparison. Start with the device specified in D. and occupy 3 points.							

- Even if X10=OFF, the ZCP instruction is not executed, M0~M2 remain in the state before X10=OFF.
- To clear the comparison result, please use RST or ZRST instruction.

7.3 MOV/Move

This instruction transfers (copies) the contents of a device to another device.

	Instruction		Operand Type							
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction		Condition		Instruction		Condition
				E otopo	MOV	Continuous		0 stopp	DMOV	Continuous
	FNC 12		S.		NOV	Operation		9 steps	DIVIOV	Operation
	MOV		D.			Pulse				
	-				MOVP	(Single)			DMOVP	Pulse (Single)
D		Ρ							DIVIC VI	Operation
						Operation				
			c	Transfer so	ource data or	device numb	er of stor	ring data		DINI46/20hit
	Operand		S.	Applicable	devices: Kn>	C, D, R, V, Z,	K, H, Modify	BIN16/32bit		
	number	-	Р	Transfer de	estination dev	vice number				BIN16/32bit
		D. Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, K, H, Modify								

Coolmay®

Instruction	1. 16-bit operation (MOV and MOVP)								
Explanation	The contents of the transfer source S. are transferred to the transfer destination D.								
	When specifying digits of a bit device (K1X000 \rightarrow K1Y000),The bit device transfers a maximum of								
	16 points(multiple of 4).;								
	For example: MOV K4X000 K4Y000(Move X0~X17 State to Y0~Y17)								
	2. 32-bit operation (DMOV and DMOVP)								
	The contents of the transfer source[S.+1,S.] are transferred to the transfer destination [D.+1,D.].								
	(word device transfers 2 point.)								
	Make sure to use DMOV instruction for transferring the operation result of an applied instruction								
	(such as MUL) whose operation result is output in 32 bits, and for transferring a 32-bit numeric								
	value or transferring the current value of a high speed counter (C235 to C255) which is a 32-bit device.								
	When specifying digits of a bit device (K8X000 $ ightarrow$ K8Y000),The bit device transfers a maximum of								
	32 points (multiple of 4) ;								
	For example: MOV K8X000 K8Y000(Move X0~X37 State to Y0~Y37)								
	 While the command input is OFF, the transfer destination D. does not change. 								
	• When a constant K is specified as the transfer source S ., it is automatically converted into binary.								

Program example

MOV	K10	D0
MOV	то	D10
DMOV	D20	D30
DMOV	C235	D40

• When transferring 16-bit data,need to use MOV instruction.

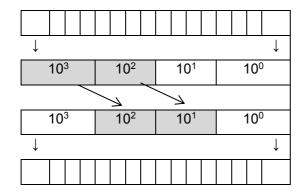
1. when X0=OFF, D10 content no change; when X0=ON, transfer K10 value to D10 data register.

2. when X1=OFF, D10 content no change; whenX1=ON, transfer T0 current value to D10 data register.

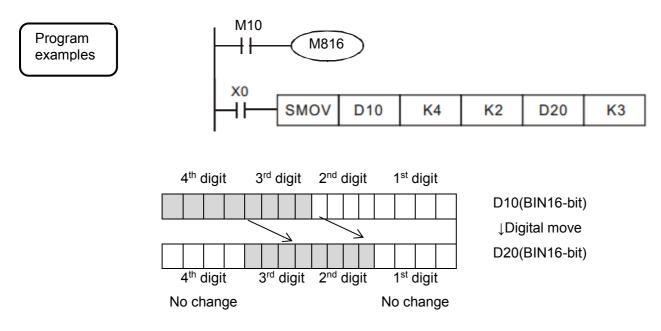
• When transferring 32-bit data,need to use DMOV instruction.

when X2=OFF , (D31,D30),(D41,D40) content no change; when X2=ON, transfer (D21,D20) current value to (D31,D30) data register. Meantime,transfer C235current value to (D41,D40) data register.

7.4 **SMOV/Shift Move**

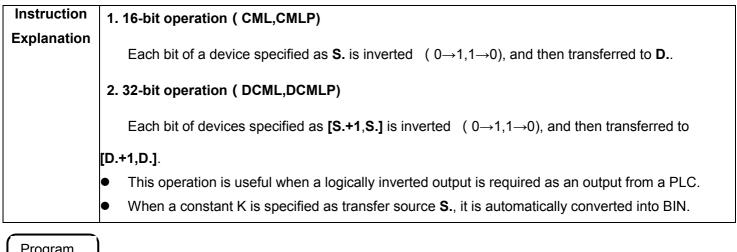

Instruction		Operand Type	Function								
FNC 13 SMOV	Ρ	S. m1 m2 D. n	16-bit Instruction 11 steps	Mnemonic SMOV SMOVP	Operation Condition Continuous Operation Pulse (Single) Operation		32-bit Instruction	Mnemonic	Operation Condition		
		S.		Word device number storing data whose digits will be moved Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, Modify							
		m1	-	Head digit position to be moved Applicable devices: K, H							
Operand number		m2		Number of digits to be moved Applicable devices: K, H							
		D.			oring data who r, KnM, KnS, ⁻	-			BIN16 bit		
		n	_	position of m devices: K, I	ovement dest H	ination			BIN16 bit		

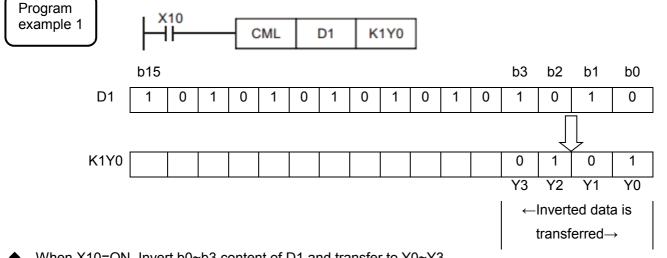
This instruction distributes and composes data in units of digit (4 bits).


Instruction	16-bit operation (SMOV, SMOVP)
	The contents of the transfer source S . and transfer destination D . are converted into 4-digit BCD (0000 to 9999) respectively. "m2" digits starting from "m1"th digit are transferred (composed) to the transfer destination D . starting from "n"th digit, converted into binary, and then stored to the transfer destination D .
	 While the command input is OFF, the transfer destination D. does not change. When the command input turns ON, The transfer source S. and unspecified digits in the transfer destination D. do not change.

Program examples 1	XO		s.	m1	m2	D.	n
	-Ĩ-	SMOV	D10	K4	K2	D20	K3

- D10(BIN16-bit) ↓Auto convert D10(BCD 4-digital) ↓Digital move D20(BCD 4-digital) ↓Auto convert D20(BIN16-bit)
- When M8168=OFF (BCD mode), X0=ON, Specify the 4th digit of the decimal value of D10 (i.e., thousands) from the lower 2nd digits to the 3rd digit of the decimal value of D20 (i.e., hundreds) from the lower 2nd 2 digits. The contents of 10³ and 10⁰ of D20 have not changed after this instruction is executed.
- Before execute, if D10=K1234, D20=K5678, After Being executed, D10 does not change, D20=K5128.


- When M8168=ON (BIN mode), if SMOV instruction is executed, D10,D20 will not be executed as BCD conversion, but is moved in units of 4 bits.
- Before execute , if D10=H1234, D20=H5678, After Being executed, D10 does not change, D20=H5128.



CML/Complement 7.5

I	nstructior	ו	Operand Type							
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction		Condition		Instruction		Condition
				5steps	CML	Continuous		9steps	DCML	Continuous
	FNC 14		S.	Jaiepa	CIVIL	Operation		esteps	DOME	Operation
	CML		D.	Pulse						
					CMLP	(Single)			DCMLP	Pulse (Single)
D		Ρ			0	Operation				Operation
						Operation				
			S.	Data to be	inverted or v	vord device nu	umber sto	oring data		BIN16/32-bit
	Operand		0.	Applicable	devices: Kn)	K, KnY, KnM, ł	KnS, T, C	s, D, R, V, Z,	K, H, modify	Bitt 10/02-bit
	number	Ī	П	Word device	ce number st	oring inverted	data			BIN16/32-bit
D. Applicable devices: KnY, K							KnM, KnS, T, C, D, R, V, Z, modify			DIN 10/32-DIL

This instruction inverts data in units of bit, and then transfers (copies) the inverted data.

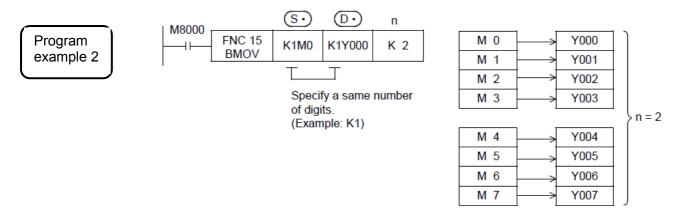


When X10=ON, Invert b0~b3 content of D1 and transfer to Y0~Y3.

Program example 2

• Can use CML instruction to easy corresponding ladder.

7.6 BMOV/Block Move


This instruction transfers (copies) a specified number of data at one time.

Instruction	Iction Operand Function					on		
		16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC 15	S.	7steps	BMOV	Continuous Operation				
вмоу	D. n		BMOVP	Pulse (Single) Operation				
	S.			⁻ device numb X, KnY, KnM, I		-	ify	BIN16-bit
Operand number	D.		Transfer destination device number Applicable devices: KnY, KnM, KnS, T, C, D, R, modify					BIN16-bit
	n		transferred p devices: D, l	ooints (includii K, H	ng file re	gisters) [n ≤	512]	BIN16-bit

InstructionTransfers "n" points of data from S. to "n" points of D. at one time.ExplanationIf the device number range is exceeded, data is transferred within the possible range.

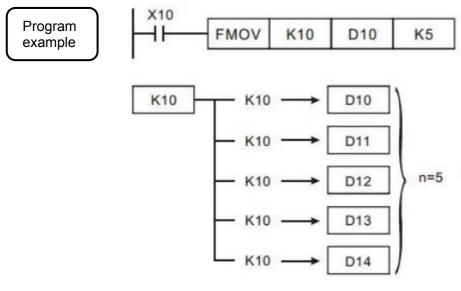
Program example 1	X10					
example 1		BMOV	D0	D20	K4	$D0 \rightarrow D20$
						$D1 \rightarrow D21$ $n=4$
						D2 → D22 (
						D3 → D23)

♦ When X10=ON, data of 4 registers of D0~D3 are transferred to 4 registers of D20~D23.

When specifying digits of bit devices KnX, KnY, KnM, KnS to transfer, S. and D. digital numbers should be same, Namely n number should be same.

Coolmay®		Move and Compare
Program example 3	X001 FNC 15 BMOV D 10 D 9 K 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	X002 FNC 15 BMOV D 10 D 11 K 3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

7.7 FMOV/Fill Move

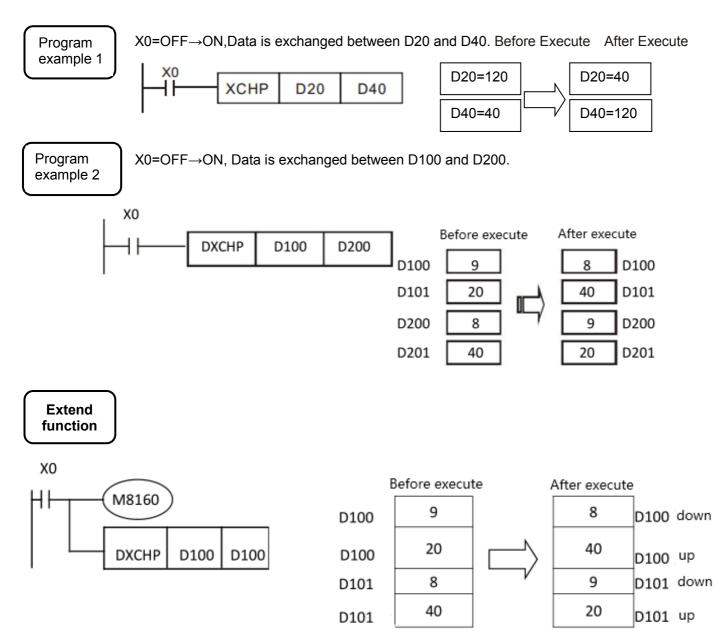

This instruction transfers same data to specified number of devices.

	Instruction		Operand		Function							
			Туре									
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation		
				Instruction	Witternottic	Condition		Instruction	Willemonic	Condition		
			S.	7steps	FMOV	Continuous		13steps	DFMOV	Continuous		
	FNC 16		э. D.	731643		Operation		1031643		Operation		
	FMOV n				Pulse				Pulse (Single)			
D					FMOVP	(Single)			DFMOVP	Operation		
		F				Operation				Operation		
			S.	Transfer so	BIN16/32-bit							
			5.	Applicable	DIN 10/32-DIL							
	Operand number			Head word d								
			D.	transferred fr	BIN16/32-bit							
			D.	the transfer source at one time.)						DIN 10/32-DIL		
				Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify								
			n	Number of	transfer poir	nts [K1 ≤ n ≤ K	(512, H1	≤ n ≤ H1FF]		BIN16-bit		
				Applicable	devices: K, I	4						

Instruction	1. 16-bit operation (FMOV,FMOVP)
Explanation	The contents of S. are transferred to "n" devices starting from D. .
	2. 32-bit operation (DFMOV,DFMOVP)
	The contents of [S.+1,S.] are transferred to "n" 32-bit devices starting from [D.+1,D.].
	 The contents will be the same among all of "n" 32-bit devices.
	 If the number of points specified by "n" exceeds the device number range, data is transferred within
	the possible range.
	 While the command input is OFF, the transfer destination D. does not change.
	• While the command input is ON, the data of the transfer source S . does not change.

 When a constant (K) is specified as the transfer source [+1,], it is automatically converted into binary.

• When X10=ON, K10 is transferred to constant 5 registers which start from D10.


7.8 XCH/Exchange

This instruction exchanges data between two devices.

	Instruction		Operand T	Function							
			Туре								
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation	
				Instruction	WITEHIOTIC	Condition		Instruction		Condition	
				5 steps	ХСН	Continuous		9 steps	DXCH	Continuous	
	FNC 17		D1.	Operation Operation				Operation			
	хсн		D2.		Pulse						
		_			XCHP	(Single)			DXCHP	Pulse (Single)	
D		Ρ				Operation				Operation	
				Store devid	Store device number of exchanged data						
	Operand		D1.	Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify						BIN16/32-bit	
	number			Store device	ce number of	exchanged d	ata		-		
			D2.			Υ, KnM, KnS, [−]		R, V, Z, modi	fv	BIN16/32-bit	
				1.1		, , , ,	, -, -, -	, , , ,	5		

Instruction	1. 16-bit operation (XCH,XCHP)
Explanation	Data is exchanged between D1. and D2. .
	2. 32-bit operation (DXCH,DXCHP)
	Data is exchanged between [D1.+1,D1.] and [D2.+1,D2.].

- When the instruction is executed while M8160 is ON, high-order 8 bits (byte) and low-order 8 bits (byte) of a word device are exchanged each other. [while device number of **D1. and D2.** should be same]
- this instruction works in the same way as SWAP instruction
- In a 32-bit operation, high-order 8 bits (byte) and low-order 8 bits (byte) of each word device are exchanged for each other.

7.9 BCD/Conversion to Binary Coded Decimal

This instruction converts binary (BIN) data into binary-coded decimal (BCD) data.

Binary data is used in operations in PLCs. Use this instruction to display numeric values on the seven segment display unit equipped with BCD decoder.

	Instruction		Operand Type				Functio	on		
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction		Condition		Instruction		Condition
				5 steps	BCD	Continuous		9 steps	DBCD	Continuous
	FNC 18		S.	0 31003	5 Steps DOD			5 3tcp3		Operation
	BCD		D.			Pulse				Pulse (Single)
_		_			BCDP	(Single)			DBCDP	
D		Ρ	P			Operation				Operation
						-				
	Store Word device number of the conversion so				source (bina	ry) data				
	Operand number		S.	Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, modify						BIN16/32-bit
				Store Word	device num	ber of the con	version c	lestination (b	oinary-coded	
	number		D.	decimal) data	a					BIN16/32-bit
				Applicable	devices: Kn	∕, KnM, KnS, ⁻	Г, С, D, F	R, V, Z, modi	fy	

Instruction	1 16-bit operat	ion (BCD, BCD	P)								
Explanation											
Explanation	This instruction c	onverts the binar	ry (BIN) data of S. i	nto BCD(binary-coded decimal)	data, and						
	transfers the con-	verted BCD data	to D. .								
	2 32-bit operat	ion (DBCD, DB									
	This instruction c	is instruction converts the binary (BIN) data of [S.+1,S.] into BCD (binary-coded decimal) data, and									
	transfers the con-	verted BCD data	to [D.+1,D.] .								
	In 16-bit operation	eration, The data	of S. can be conve	rted into BCD (K0 to K9999)							
	-			e converted into BCD (K0 to K99	999999)						
	-			and the INC and DEC instruction	,						
		0 1									
				ou want to see a display with a d	iecimai value, you						
	can use BCE	conversion to c	onvert the BIN valu	e into a BCD value output.							
	Operand nur	Dperand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K8Y0)									
		[D •+1, D •]	Number of digits	Data range							
		K1Y000	1	0 to 9							
		K2Y000	2	00 to 99	_						
		K3Y000	3	000 to 999	_						
		K4Y000	4	0000 to 9999	_						
		K5Y000	5	00000 to 99999	_						
		K6Y000	6	000000 to 999999	_						
		K7Y000	7	0000000 to 9999999	-						
		K8Y000	8	00000000 to 99999999							

Program	
example	

X0 .			
–Îľ—–	BCD	D10	K1Y0

- When X0=ON, BIN value of D10 is converted to BCD value, Store the single digit of the result in K1Y0 (Y0 ~ Y3) four bit devices .
- ◆ If D10=001E (Hex)=0030(Decimal), Then execute result Y0~Y3=0000(BIN).

7.10 BIN/Conversion to Binary

This instruction converts binary-coded decimal (BCD) data into binary (BIN) data.

Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into binary (BIN) data and to receive the converted binary data so that the data can be handled in operations in PLCs.

	Instruction Operand Function						Functio	on		
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction	Witchioffic	Condition		Instruction		Condition
				5 steps	BIN	Continuous		9 steps	DBIN	Continuous
	FNC 19		S.	Operation Operation				Operation		
	BIN		D.		Pulse					Pulse (Single)
					BINP (Single) DBINP		DBINP			
D		Ρ				Operation				Operation
				Word devi	ce number	storing the c	onversio	n source (b	inary-coded	
	Operand number		S.	decimal) data	BIN16/32-bit					
			Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, Modify						Modify	
	namber		D.	Word device	ce number of	the conversion	on destin	ation (binary)	BIN16/32-bit
			D.	Applicable	devices: Kn	Y, KnM, KnS, ⁻	t, c, d, f	R, V, Z, Modi	fy	DIN 10/32-DIL

Cool	may®
------	------

in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. • Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K $\frac{[(\underline{S}, +1, \underline{S}, \underline{S})] Number of digits}{K1X000} 1 \qquad 0 \text{ to } 9$ $\frac{K1X000}{K2X000} 2 \qquad 000 \text{ to } 99$ $\frac{K3X000}{K4X000} 3 \qquad 0000 \text{ to } 9999$ $\frac{K4X000}{K5X000} 5 \qquad 00000 \text{ to } 99999}$ $\frac{K6X000}{K6X000} 6 \qquad 0000000 \text{ to } 999999}$						Move and Compare					
This instruction converts the binary-coded decimal (BCD) data of S. into binary (BIN) data, and transfers the converted binary data to D 2. 32-bit operation (DBIN,DBINP) This instruction converts the binary-coded decimal (BCD) data of [S.+1,S.] into binary (BIN) data, at transfers the converted binary data to [D.+1,D.]. • Constants K and H will be automatically converted into BIN, so this instruction is not necessar • In 16-bit operation,The data of S. can be converted between K0 to K9999 (BCD) • In 32-bit operation,The data of [S.+1,S.] can be converted between K0 to K99999999 (BCD) • The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. • Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K • MIX000 1 0 to 9 • K3X000 3 0000 to 9999 • K4X000 4 00000 to 9999 • K6X000 5 000000 to 99999 • K6X000 6 000000 to 99999	Instruction	1. 16-bit operatio	n (BIN,BINP)								
transfers the converted binary data to D 2. 32-bit operation (DBIN,DBINP) This instruction converts the binary-coded decimal (BCD) data of [S.+1,S.] into binary (BIN) data, a transfers the converted binary data to [D.+1,D.]. • Constants K and H will be automatically converted into BIN, so this instruction is not necessar • In 16-bit operation,The data of S. can be converted between K0 to K9999 (BCD) • In 32-bit operation,The data of [S.+1,S.] can be converted between K0 to K999999999 (BCD) • The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. • Operand number specify bits,please check below table: (16-bit max is K4Y0, 32-bit max is K4Y0, 32-bit max is K4Y0, 32-00 1 0 to 9 K3x000 1 0 to 9 K3x000 3 0000 to 9999 K6x000 5 00000 to 99999 K6x000 6 000000 to 99999 K6x000 6 000000 to 99999	Explanation) () () () () () () () () () (
 2. 32-bit operation (DBIN,DBINP) This instruction converts the binary-coded decimal (BCD) data of [S.+1,S.] into binary (BIN) data, a transfers the converted binary data to [D.+1,D.]. Constants K and H will be automatically converted into BIN, so this instruction is not necessar In 16-bit operation,The data of S. can be converted between K0 to K9999 (BCD) In 32-bit operation,The data of [S.+1,S.] can be converted between K0 to K99999999 (BCD) The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. Operand number specify bits,please check below table: (16-bit max is K4Y0, 32-bit max is K K1X000 1 0 to 9 K1X000 2 00 to 99 K4X000 4 0000 to 9999 K6X000 5 00000 to 9999 K6X000 6 000000 to 99999 K6X000 6 000000 to 9999999 	-										
This instruction converts the binary-coded decimal (BCD) data of [S.+1,S.] into binary (BIN) data, is transfers the converted binary data to [D.+1,D.]. • Constants K and H will be automatically converted into BIN, so this instruction is not necessar • In 16-bit operation, The data of S. can be converted between K0 to K9999 (BCD) • In 32-bit operation, The data of [S.+1,S.] can be converted between K0 to K999999999 (BCD • The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. • Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K4Y0, 32-bit max is K4X000 • K1X000 1 0 to 9 • K2X000 2 000 to 99 • K4X000 4 0000 to 999 • K6X000 5 00000 to 99999 • K6X000 6 000000 to 999999		transfers the converted binary data to D. .									
 transfers the converted binary data to [D.+1,D.]. Constants K and H will be automatically converted into BIN, so this instruction is not necessar In 16-bit operation, The data of S. can be converted between K0 to K9999 (BCD) In 32-bit operation, The data of [S.+1,S.] can be converted between K0 to K99999999 (BCD) The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K4X00) 1 0 to 9 K1X000 1 0 to 9 K3X000 3 000 to 999 K6X000 4 00000 to 9999 K6X000 5 00000 to 99999 K6X000 6 000000 to 9999999 		2. 32-bit operation (DBIN, DBINP)									
 Constants K and H will be automatically converted into BIN, so this instruction is not necessar In 16-bit operation, The data of S. can be converted between K0 to K99999(BCD) In 32-bit operation, The data of [S.+1,S.] can be converted between K0 to K999999999 (BCD The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K <u>K1X000 1 0 to 9 K2X000 2 00 to 99 K3X000 3 000 to 999 K4X000 4 0000 to 99999 K5X000 5 00000 to 99999 K5X000 6 000000 to 999999 K5X000 7 000000 to 99999999999 </u> 		This instruction cor	verts the binary	v-coded decimal (E	BCD) data of [S.+1,S.] into bin	ary (BIN) data, and					
 In 16-bit operation, The data of S. can be converted between K0 to K9999 (BCD) In 32-bit operation, The data of [S.+1,S.] can be converted between K0 to K999999999 (BCD) The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K ISO (Section 1) ISO (Section 2) ISO (Section 3) ISO (Section 3)<td></td><td>transfers the conve</td><td>rted binary data</td><td>ı to [D.+1,D.].</td><td></td><td></td>		transfers the conve	rted binary data	ı to [D.+1,D.] .							
 In 16-bit operation, The data of S. can be converted between K0 to K9999 (BCD) In 32-bit operation, The data of [S.+1,S.] can be converted between K0 to K999999999 (BCD) The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K 1 0 to 9 K1X000 1 0 to 9 K3X000 3 000 to 999 K4X000 4 0000 to 9999 K6X000 5 00000 to 999999 K6X000 6 000000 to 9999999 		 Constants K ar 	nd H will be auto	omatically convert	ed into BIN. so this instruction	is not necessarv.					
 In 32-bit operation, The data of [S.+1,S.] can be converted between K0 to K99999999 (BCD The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K <u>(S·+1, S·)</u> Number of digits Data range <u>K1X000</u> 1 0 to 9 <u>K1X000</u> 2 00 to 99 K4X000 <u>K4X000</u> 4 0000 to 9999 <u>K5X000</u> 5 00000 to 99999 <u>K6X000</u> 6 000000 to 9999999999											
 The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all exect in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K (16-bit max)) Image: Conversion to convert the BIN value into a BCD value output. Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K (16-bit max)) K1X000 Image: K1X000 Image: K1X000<											
in BIN mode. So in terms of application, when you want to see a display with a decimal value, can use BCD conversion to convert the BIN value into a BCD value output. • Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K $\frac{[(\textcircled{S} +1, \textcircled{S} \cdot]) \text{ Number of digits } Data range}{K1X000 1 0 to 9}$ $\frac{K2X000 2 00 to 99}{K3X000 3 000 to 999}$ $\frac{K4X000 4 0000 to 9999}{K5X000 5 00000 to 99999}$ $\frac{K5X000 6 000000 to 999999}{K7X000 7 0000000 to 9999999}$		-				. ,					
can use BCD conversion to convert the BIN value into a BCD value output. • Operand number specify bits, please check below table: (16-bit max is K4Y0, 32-bit max is K $\frac{\boxed{(\textcircled{S})+1, \textcircled{S})} \qquad \boxed{\text{Number of digits}} \qquad \boxed{\text{Data range}} \\ \hline{\text{K1X000} \qquad 1 \qquad 0 \text{ to 9}} \\ \hline{\text{K2X000} \qquad 2 \qquad 000 \text{ to 99}} \\ \hline{\text{K3X000} \qquad 3 \qquad 0000 \text{ to 999}} \\ \hline{\text{K4X000} \qquad 4 \qquad 00000 \text{ to 9999}} \\ \hline{\text{K5X000} \qquad 5 \qquad 000000 \text{ to 99999}} \\ \hline{\text{K6X000} \qquad 6 \qquad 0000000 \text{ to 9999999}} \\ \hline{\text{K7X000} \qquad 7 \qquad 00000000 \text{ to 99999999}} \\ \hline{\text{K7X000} \qquad 7 \qquad 00000000 \text{ to 99999999}} \\ \hline{\text{K7X000} \qquad 7 \qquad 00000000 \text{ to 99999999}} \\ \hline{\text{K7X000} \qquad 7 \qquad 00000000 \text{ to 99999999}} \\ \hline{\text{K7X000} \qquad 7 \qquad 00000000 \text{ to 99999999}} \\ \hline{\text{K7X000} \qquad 7 \qquad 00000000 \text{ to 99999999}} \\ \hline{\text{K7X000} \qquad 7 \qquad 00000000000000000000000000000$		• The Arithmetic and Logical Operation of the PLC, and the INC and DEC instructions are all executed									
Image: Non-state state Number of digits Data range K1X000 1 0 to 9 K2X000 2 00 to 99 K3X000 3 0000 to 9999 K4X000 4 00000 to 99999 K5X000 5 000000 to 999999 K6X000 6 0000000 to 9999999		in BIN mode. So in terms of application, when you want to see a display with a decimal value, you									
[(\$)+1,(\$)]Number of digitsData rangeK1X00010 to 9K2X000200 to 99K3X0003000 to 999K4X00040000 to 9999K5X000500000 to 99999K6X0006000000 to 9999999K7X00070000000 to 9999999		can use BCD o	conversion to co	onvert the BIN valu	ie into a BCD value output.						
[(\$)+1,(\$)]Number of digitsData rangeK1X00010 to 9K2X000200 to 99K3X0003000 to 999K4X00040000 to 9999K5X000500000 to 99999K6X0006000000 to 9999999K7X00070000000 to 9999999			or coacify hite r	lease check helo	v table: (16 bit max is K4V0	32 hit may is K8V(
K1X000 1 0 to 9 K2X000 2 00 to 99 K3X000 3 000 to 999 K4X000 4 0000 to 9999 K5X000 5 00000 to 99999 K6X000 6 000000 to 999999 K7X000 7 0000000 to 9999999						52-bit max 13 10 10					
K2X000200 to 99K3X0003000 to 999K4X00040000 to 9999K5X000500000 to 99999K6X0006000000 to 999999K7X00070000000 to 9999999			[(\$•+1,(\$•)]	Number of digits	Data range						
K3X0003000 to 999K4X00040000 to 9999K5X000500000 to 99999K6X0006000000 to 999999K7X00070000000 to 9999999			K1X000	1	0 to 9	1					
K4X00040000 to 9999K5X000500000 to 99999K6X0006000000 to 999999K7X00070000000 to 9999999			K2X000	2	00 to 99	-					
K5X000500000 to 99999K6X0006000000 to 999999K7X00070000000 to 9999999			K3X000	3	000 to 999	_					
K6X0006000000 to 999999K7X00070000000 to 9999999					0000 to 9999	_					
K7X000 7 0000000 to 9999999						_					
						_					
K8X000 8 0000000 to 0000000						_					
			K8X000	8	00000000 to 99999999	-					
	-										
Program Example											
Program Example											
	X0 F										
		BIN K1M0	D10								
Example X0											

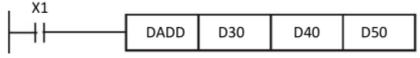
• When X0=ON, After the BCD value of K1M0 is converted to BIN value, the result is stored in D10.

8 Arithmetic and Logical Operation

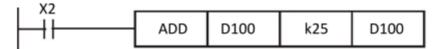
FNC	Mnemonic	Function	Su	pported PLC	series
NO.	Whethome	T unction	3G PLC	2N PLC	MX2N PLC
20	ADD	BIN Addition	*	*	*
21	SUB	BIN Subtraction	*	*	*
22	MUL	BIN Multiplication	*	*	*
23	DIV	BIN Division	*	*	*
24	INC	BIN Increment	*	*	*
25	DEC	BIN Decrement	*	*	*
26	WAND	Logical Word AND	*	*	*
27	WOR	Logical Word OR	*	*	*
28	WXOR	Logical Exclusive OR	*	*	*
29	NEG	Negation	*	*	*

8.1 ADD/BIN Addition

	Instruction		Operand Type				Functio	1		
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction		Condition		Instruction		Condition
			S1.	7 steps	ADD	Continuous		13 steps	DADD	Continuous
	FNC 20		S1.	7 steps	ADD	Operation		10 Steps	DADD	Operation
	ADD					Pulse				Dulas (Single)
		_	D.		ADDP	(Single)			DADDP	Pulse (Single)
D		Ρ				Operation				Operation
	······································		S1.	Data for ac	dition or wor	d device num	ber stori	ng data		BIN16/32-bit
			51.	Applicable	devices: Kn>	K, KnY, KnM, ł	KnS, T, C	C, D, R, V, Z,	K, H, modify	BIN 10/32-bit
	Operand Data for addition or word device number storing data					BIN16/32-bit				
	number		02.	Applicable	devices: Kn>	K, KnY, KnM, ł	KnS, T, C	C, D, R, V, Z,	K, H, modify	DIN 10/32-DIL
			D.	Word device	ce number st	oring the addi	tion resu	llt		BIN16/32-bit
			D.	Applicable	devices: Kn	Y, KnM, KnS, ⁻	T, C, D, F	R, V, Z, modi	fy	


Instruction Explanation	1. 16-bit op	eration (ADD,	,ADDP)				
	The cont D. .	tents of S2. are	added to S1. in the binary format, and the addition result is transferred to				
	2. 32-bit op	eration (DAD	D,DADDP)				
		ents of [S2.+1,S d to [D.+1,D.] .	32.] are added to [S1.+1,S1.] in the binary format, and the addition result is				
	 When a constant (K) is specified in or , it is automatically converted into the binary format. The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data are added algebraically. 5 + (-8) = -3. 						
	added al	gebraically. 5 +	· (-8) = -3.				
	added al	gebraically. 5 +	(-8) = -3. The flag operation and the sign (positive or negative) of a numeric value, a				
	added al Relation	gebraically. 5 +	· (-8) = -3.				
	added al ● Relation: below	gebraically. 5 + ship between th	(-8) = -3. The flag operation and the sign (positive or negative) of a numeric value, a				
	added al Relation: below Device	gebraically. 5 + ship between th Name	(-8) = -3. The flag operation and the sign (positive or negative) of a numeric value, a Description ON : When the operation result is 0				

This instruction executes addition by two values to obtain the result (A + B = C).



• 16-bit BIN addition: When X0=ON, Result of adding D0 content to D10 content will be restored in D20 content

32-bit BIN addition: When X1=ON, Result of adding (D31,D30) content to (D41,D40) content will be restored in (D51、D50)content. (Among them, D30,D40,D50 is the low 16-bit data;D31,D41,D51 are the high 16-bit data)

- Source Operand number and Target Operand number can also be specified as the same device number
- In the above case, when ADD of Continuous Operation is used "ADD: X2=ON", each scan cycle D100 will add K25 to D100.

8.2 SUB/BIN Subtraction

This instruction executes subtraction using two values to obtain the result (A – B = C).

	Instruction		Operand Type				Functio	on		
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC 21		S1. S2.	7steps	SUB	Continuous Operation		13steps	DSUB	Continuous Operation
D	SUB	Ρ	D.		SUBP	Pulse (Single) Operation			DSUBP	Pulse (Single) Operation
			S1.			word device n K, KnY, KnM, ł		U U	K, H, modify	BIN16/32-bit
	Operand number		S2.			word device n X, KnY, KnM, ł		U U	K, H, modify	BIN16/32-bit
			D.			oring the subt Y, KnM, KnS, ⁻			fy	BIN16/32-bit

Instruction	1. 16-bit o	peration (Sl	JB,SUBP)					
Explanation		The contents of S2 .are subtracted from S1 . in the binary format, and the subtraction result is ransferred to D .						
	2. 32-bit o	2. 32-bit operation (DSUB,DSUBP)						
		s of [S2.+1,S isferred to [D	2.] are subtracted from [S1.+1,S1.] in the binary format, and the subtraction .+1,D.].					
	convert The mo	converted into the binary format.						
		 subtracted algebraically.: 5-(-8)=13. Relationship between the flag operation and the sign (positive or negative) of a numeric value: 						
	Device	Name	Description					
	M8020	Zero	ON : When the operation result is 0 OFF: When the operation result is other than 0					
	M8021	Borrow	 ON : When the operation result is less than −32768 (in 16-bit operation) or −2,147,483,648 (in 32-bit operation) OFF: When the operation result is not less than −32768 (in 16-bit operation) or −2,147,483,648 (in 32-bit operation) 					
	M8022	Carry	 ON : When the operation result is more than 32767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation) OFF: When the operation result is not more than 32767 (in 16-bit operation) or 2,147,483,647 (in 32-bit operation) 					

Program Example X0 SUB D0 D10

 16-bit BIN Subtraction: When X0=ON, Result of subtracting D10 content from D0 content will be restored in D20 content

D20

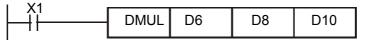
X1				
	DSUB	D30	D40	D50

32-bit BIN Subtraction: When X1=ON, Result of subtracting (D41,D40) content from (D31,D30) content will be restored in (D51、D50)content. (Among them, D30,D40,D50 is the low 16-bit data;D31,D41,D51 are the high 16-bit data)

X2				
	SUB	D100	k25	D100

- Source Operand number and Target Operand number can also be specified as the same device number
- In the above case, when Continuous Operation is used "SUB: X2=ON", each scan cycle D100 will subtract K25 to D100.

8.3 MUL/BIN Multiplication


	Instruction		Operand Type				Functio	on		
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction		Condition		Instruction		Condition
			S1.	7 steps	MUL	Continuous		13 steps	DMUL	Continuous
	FNC 22			7 31003	MOL	Operation		10 31003	DIVIOL	Operation
	MUL		S2.			Pulse				
			D.		MULP	(Single)			DMULP	Pulse (Single)
D		Ρ				Operation				Operation
						oporation				
	,		04	Data for m	ultiplication o	or word device	number	storing data		
			S1.	Applicable	devices: Kn)	K, KnY, KnM, ł	KnS, T, C	C, D, R, V, Z,	K, H, modify	BIN16/32-bit
	Operand		S2.	Data for multiplication or word device number storing data					BIN16/32-bit	
	number		32.	Applicable	devices: Kn>	K, KnY, KnM, ł	KnS, T, C	C, D, R, V, Z,	K, H, modify	DIN 10/32-DIL
			D.	Head word	device num	ber storing the	e multipli	cation result		BIN32/64-bit
			D.	Applicable	devices: Kn	Y, KnM, KnS, ⁻	T, C, D, F	R, V, Z, modi	fy	DIN32/04-DIL

This instruction executes multiplication by two values to obtain the result ($A \times B = C$).

Instruction	1. 16-bit operation (MUL,MULP)
Explanation	The contents of S1. are multiplied by S2. in the binary format, and the multiplication result is transferred to 32-bit [D.+1,D.].
	 The contents of [S1.+1, S1.] are multiplied by[S2.+1, S2.] in the binary format, and the multiplication result is transferred to 64-bit [D.+3, D.+2, D.+1, D.] (four word devices). When a constant (K) is specified in S1. and S2 or [S1.+1,S1.]and [S2.+1,S2.], it is automatically converted into the binary format. The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data are multiplied algebraically. : 5x(-8)=-40.
	 When a digit (K1 to K8) is specified for [D.+3, D.+2, D.+1, D.],occupy 2 consecutive 32-bit data. In a 32-bit operation (DMUL ,DMULP), Z cannot be specified.

	N 41 11	50	DO	D 4	
Program	MUL	D0	D2	D4	
Example					

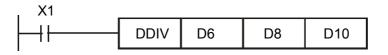
16-bit BIN Multiplication: When X0=ON, Result of multiplying D0 and D2 content will be restored in [D5,D4] content

 32-bit BIN Multiplication: When X1=ON, Result of multiplying (D7,D6) and (D9,D8) content will be restored in (D13,D12,D11,D10) content.

8.4 DIV/BIN Division

	Instruction		Operand Type				Functio	on		
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC 23		S1.	7 steps	DIV	Continuous Operation		13 steps	DDIV	Continuous Operation
D	DIV	S2. D.		DIVP	Pulse (Single) Operation			DDIVP	Pulse (Single) Operation	
			S1.			d device numb K, KnY, KnM, ł		•	*	BIN16/32-bit
	Operand number		S2.		Data for division or word device number storing data (divisor) Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, modify					BIN16/32-bit
			D.	remainder)		nber storing f Y, KnM, KnS, ⁻		,		BIN32/64-bit

This instruction executes division by two values to obtain the result (A \div B = C ...).


Remarks: *1, Only supported in FX3U(C)

1. 16-bit operation (DIV,DIVP)
S1. indicates the dividend, S2. indicates the divisor, the quotient is transferred to D. , and the remainder is transferred to D.+1 .
2. 16-bit operation (DDIV, DDIVP)
[S1.+1, S1.] indicates the dividend, [S2.+1, S2.] indicates the divisor, the quotient is transferred to
[D.+1, D.]), and the remainder is transferred to [D.+3, D.+2]
When a constant (K) is specified in S1. and S2 or [S1.+1,S1.]and [S2.+1,S2.], it is automatically converted into the binary format.
The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data are divided algebraically. 36÷(-5)=-71.
When the divisor is S2.or [S2.+1,S2.]"0", an operation error is caused and the instruction is not executed.
The remainder is not obtained when a bit device is specified with digit specification.
 In a 32-bit operation (DDIV,DDIVP), Z cannot be specified.

Program		X0				
Example		-{}{	DIV	D0	D2	D4

- ◆ 16-bit BIN Division: When X0=ON, D0 (dividend)÷D2 (divisor)=D4 (quotient)...D5 (remainder).
- ◆ If D0=100, D2=33; Then D4=3, D5=1.

- 32-bit BIN Division: When X0=ON, [D7,D6] (dividend)÷[D9,D8] (divisor)=[D11,D10] (quotient)...[D13,D12] (remainder).
- ◆ If [D7,D6]=100000, [D9,D8]=3333; Then [D11,D10]=30, [D13,D12]=10.

8.5 INC/BIN Increment

	Instruction	1	Operand Type				Functio	on			
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC 24		D.	3 steps	INC	Continuous Operation		5 steps	DINC	Continuous Operation	
D	INC	Ρ	D.		INCP	Pulse (Single) Operation			DINCP	Pulse (Single) Operation	
	Operand number		D.		Word device number storing data to be incremented by "1" Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify						
I	nstructior	n	1. 16-bit o	peration (IN	C,INCP)						
E	xplanatio	n	The co	ntents of D. a	re increment	ed by "1", and	I the incr	ement result	is transferre	d to D. .	
				peration (D		2					
			The co		· ·	cremented by	"1", and	the incremer	nt result is tra	nsferred to [D.+1,	
			D.] . ● Note th	at data is inci	remented in (everv oneratio	n cycle i	n a continuo	us operation	type instruction.	
							•		•	Flags (zero, carry	
				rrow) are not			2				
		■ 32-bit BIN operation, When "+2,147,483,647" is incremented by "1", the result is "-2,147,483,648".									
	Flags (zero, carry and borrow) are not activated at this time.										
	Program Example INCP D0										

This instruction increments the data of a specified device by "1".

◆ When X1=OFF→ON 时, D0 content are incremented by 1 automatically.

8.6 DEC/BIN Decrement

	Instruction		Operand		Function						
			Туре								
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation	
				Instruction	WITEHTOTTIC	Condition		Instruction		Condition	
				3 steps	DEC	Continuous		5 stops	DDEC	Continuous	
	FNC 25		-	5 sieps	DEC	Operation		5 steps	DDEC	Operation	
	DEC		D.			Pulse				Dulas (Single)	
					DECP	(Single)			DDECP	Pulse (Single)	
D	l l	Ρ				Operation				Operation	
	Operand		-	Word device	ce number st	oring data to b	be decrei	mented by "	"	BIN16/32-bit	
	number		D.	Applicable	Vord device number storing data to be decremented by "1" Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify						

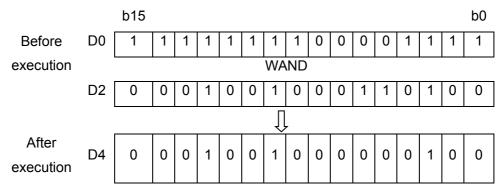
This instruction decrements the data of a specified device by "1".

Instruction	1. 16-bit operation (DEC,DECP)
Explanation	The contents of D . are decremented by "1", and the decremented result is transferred to D .
	2. 32-bit operation (DDEC,DDECP)
	The contents of [D.+1, D.] are decremented by "1", and the decremented result is transferred to
	[D.+1, D.].
	• Note that data is decremented in every operation cycle in a continuous operation type instruction.
	● 16-bit BIN operation, When "-32768" is decremented by "1", the result is "+32767". Flags (zero,
	carry and borrow) are not activated at this time.
	• 32-bit BIN operation,When "-2,147,483,648" is decremented by "1", the result is
	"+2,147,483,6478". Flags (zero, carry and borrow) are not activated at this time.

◆ When X1=OFF→ON, D0 content are decremented by 1 automatically.


8.7 WAND/Logical Word AND

I	nstruction		Operand Type		Function						
w				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC 26		S1. S2.	7 steps	WAND	Continuous Operation		13 steps	DAND	Continuous Operation	
D	AND	Ρ	D.		WANDP	Pulse (Single) Operation			DANDP	Pulse (Single) Operation	
			S1.			oduct or word K, KnY, KnM, ł			-	BIN16/32-bit	
	Operand number		S2.		Data used for logical product or word device number storing data Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, modify					BIN16/32-bit	
			D.		Word device number storing the logical product result Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify					BIN16/32-bit	


Instruction	1. 16-bit operation (WA	AND,WANDP)					
Explanation	The logical product (<i>A</i> the result is transferre		ed to the contents of S1. a	and S2. in units of bit, and			
	2. 32-bit operation (DA	ND,DANDP)					
		AND) operation is execute esult is transferred to [D.+1	_	+1,S1.] and [S2.+1,S2.] in			
	it is automatically cor	averted into the binary form	nat	51.+1,S1.] and [S2.+1,S2.] , in the table below (1 ∧ 1			
		S1.	S2.	D.			
		[S1.+1,S1.]	[S2.+1,S2.]	[D.+1, D.]			
		0	0	0			
Logical operation 1 0							
	(unit: bit)	0	1	0			
		1	1	1			

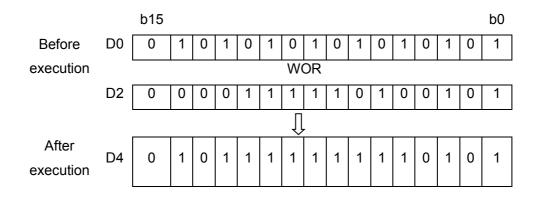
This instruction executes the logical product (AND) operation of two numeric values.

When X0=ON, 16-bit D0 and D2 for WAND logical AND operation, the result will be restored in D4.

8.8 WOR/Logical Word OR

This instruction executes the logical sum (OR) operation of two numeric values.

I	nstruction		Operand Type		Function						
w				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC 27		S1. S2.	7 steps	WOR	Continuous Operation		13 steps	DOR	Continuous Operation	
D	OR	Ρ	D.		WORP	Pulse (Single) Operation			DORP	Pulse (Single) Operation	
			S1.		-	im or word de K, KnY, KnM, I		-		BIN16/32-bit	
	Operand number		S2.		Data used for logical sum or word device number storing data Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, modify					BIN16/32-bit	
			D.		Nord device number storing the logical sum result Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify						


Instruction	1. 16-bit operation (WC			
Explanation	The logical sum (OR) open is transferred to D .	-	ontents of S1. and S2.in	units of bit, and the resu
	2. 32-bit operation (DC	DR,DORP)		
	The logical sum (OR) ope	ration is executed to the c	ontents of [S1.+1,S1.] an	nd [S2.+1,S2.] in units of
	bit, and the result is transf	ferred to [D.+1, D.] .		
		is specified in the transfer	_	1.+1,S1.]and [S2.+1,S2
	it is automatically con	overted into the binary form operation is executed in u	nat. nits of bit as shown in the	e table below (1∨1=1 (
	it is automatically conThe logical word OR	overted into the binary form	nat.	
	it is automatically conThe logical word OR	overted into the binary form operation is executed in u	nat. nits of bit as shown in the	e table below (1∨1=1 (
	it is automatically conThe logical word OR	overted into the binary form operation is executed in u 1). S1.	nat. nits of bit as shown in the S2.	e table below (1 v 1=1 (
	it is automatically conThe logical word OR	operation is executed in u 1). S1. [S1.+1,S1.]	nat. nits of bit as shown in the S2. [S2.+1,S2.]	e table below (1 ∨ 1=1 (D. [D.+1, D.]
	it is automatically con ● The logical word OR 1=1 0∨0=0 1∨0=7	operation is executed in u 1). S1. [S1.+1,S1.] 0	nat. nits of bit as shown in the S2. [S2.+1,S2.] 0	e table below (1 ∨ 1=1 (D. [D.+1, D.] 0

Example

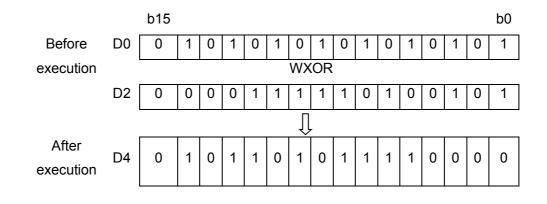
Г

XO				
-11	WOR	D0	D2	D4

When X0=ON, 16-bit D0 and D2 for WOR, logical word OR operation, the result will be restored in D4.

8.9 WXOR/Logical Exclusive OR

This instruction executes the exclusive logical sum (XOR) operation of two numeric values.

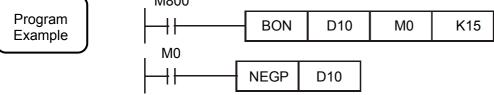

I	nstruction		Operand Type		Function						
w				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC 28		S1. S2.	7 steps	WXOR	Continuous Operation		13 steps	DXOR	Continuous Operation	
D	XOR	Ρ	D.		WXORP	Pulse (Single) Operation			DXORP	Pulse (Single) Operation	
S1. Data used for exclusive logical sum or v Modify Modify						•	BIN16/32-bit				
	Operand numberData used for exclusive logical sum or word device number storing dataS2.Applicable devices:KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, modify						BIN16/32-bit				
			D.		Word device number storing the exclusive logical sum result Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify						

Instruction	1. 16-bit operation (W)	KOR,WXORP)										
Explanation	-	The exclusive logical sum (XOR) operation is executed to the contents of S1. and S2. in units of bit, and the result is transferred to D .										
	2. 32-bit operation (DXOR,DXORP)											
	 in units of bit, and the rest When a constant (K) it is automatically cort 	ult is transferred to [D.+1 , is specified in the transfer iverted into the binary forr OR operation is execute	D.]. r source S1. and S2 or [S mat.	1.+1,S1.] and [S2.+1,S2.] 1.+1,S1.]and [S2.+1,S2.], in the table below(1∀1=0								
		S1.	S2.	D.								
		[S1.+1,S1.]	[S2.+1,S2.]	[D.+1, D.]								
	0 0 0 Logical operation (unit: bit) 1 0 1											
		1	1	0								

When X0=ON, 16-bit D0 and D2 for WXOR, logical exclusive OR operation, the result will be restored in D4.

8.10 NEG/Negation

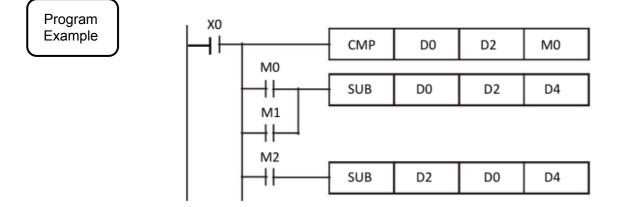
This instruction obtains the complement of a numeric value (by inverting each bit and adding "1"). This instruction can be used to negate the sign of a numeric value.


I	nstruction		Operand -		Function							
			Туре									
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation		
				Instruction	Millenionie	Condition		Instruction		Condition		
				2 otopo		Continuous		10		Continuous		
	FNC 29				3 steps	NEG	Operation		13 steps	DNEG	Operation	
	NEG		D.			Pulse			DNEGP			
					NEGP	(Single)				Pulse (Single)		
D		Ρ				Operation				Operation		
				Word device	number whic	h stores data	for obtai	ning comple	ment and			
	Operand				Vord device number which stores data for obtaining complement and							
Operand will store the operation result (The operation result will be st						BIN16/32-bit						
	number				same word device number.)							
				Applicable	e devices: K	nY, KnM, KnS	, T, C, D	, R, V, Z, mo	dify			

Instruction	1. 16-bit operation (NEG,NEGP)
Explanation	Each bit of D . is inverted $(0 \rightarrow 1, 1 \rightarrow 0)$, "1" is added, and then the result is stored in the original device. Command input FNC 29 D• (\overline{D} •)+1 \rightarrow D•
	2. 32-bit operation (DNEG,DNEGP)

J 1 . 0.

	Each bit of [D.+1 , D.] is inverted ($0 \rightarrow 1$, $1 \rightarrow 0$), 1 is added, and then the result is stored in the
	original device.
	$\begin{array}{c c} Command \\ input \\ \hline \\ DNEGP \end{array} (\hline \hline \\ \hline \\ \hline \\ \hline \\ DNEGP \end{array}) + 1, (\hline \\ \hline$
	 When a constant (K) is specified in the transfer source S1. and S2 or [S1.+1,S1.]and [S2.+1,S2.], it is automatically converted into the binary format
	 Note that the complement is obtained in every operation cycle in a continuous operation type instruction
Program	



• Obtaining the absolute value of a negative value using NEG instruction

1) In BON (ON bit check) instruction, M0 turns ON when the bit 15 (b15 among b0 to b15) of D10 is "1". (D10 is

negative value)

2) NEGP instruction is executed for D10 only when M0 turns ON.

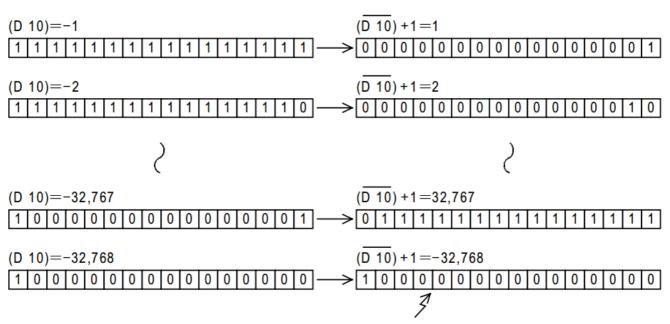
• Obtaining the absolute value by SUB (subtraction) instruction, When X0=ON:

- 1) If D0>D2, M0=ON。
- 2) If D0=D2, M1=ON.
- 3) If D0<D2, M2=ON.
- 4) Now D4 keep positive value.

More explanation

In PLCs, a negative value is expressed in 2's complement.

When the most significant bit is "1", it is a negative value, and its absolute value can be obtained by NEG instruction.


(D 10)=2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

(D 10)=1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(D 10)=0

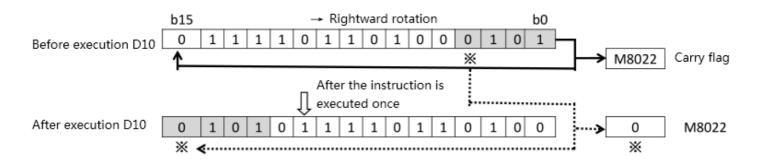
The absolute value can be obtained up to 32767.

9 Rotation and Shift Operation –FNC 30 to FNC 39

FNC	Mnemonic	Function	Su	pported PLC	series
NO.	WITEHTOTIC	T unction	3G PLC	2N PLC	MX2N PLC
30	ROR	Rotation Right	*	*	*
31	ROL	Rotation Left	*	*	*
32	RCR	Rotation Right with Carry	*	*	*
33	RCL	Rotation Left with Carry	*	*	*
34	SFTR	Bit Shift Right	*	*	*
35	SFTL	Bit Shift Left	*	*	*
36	WSFR	Word Shift Right	*	*	*
37	WSFL	Word Shift Left	*	*	*
38	SFWR	Shift write [FIFO/FILO control]	*	*	*
39	SFRD	Shift read [FIFO control]	*	*	*

9.1 ROR/Rotation Right

I	nstruction		Operand Type	Function										
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition				
	FNC 30	Ρ	Р	Ρ	Р	Ρ	D.	5 steps	ROR	Continuous Operation		9 steps	DROR	Continuous Operation
D	ROR						Ρ	Ρ	Ρ	Р	Р	n		RORP
	Operand		D.			oring data to t nY, KnM, KnS		•	dify	BIN16/32-bit				
	number		n			on), n ≤ 32 (32	-bit instr	uction)] ^{*1}		BIN16/32-bit				


This instruction shifts and rotates the bit information rightward by the specified number of bits without the carry flag.

*1: Do not set the Bit number of rotations to a negative value.

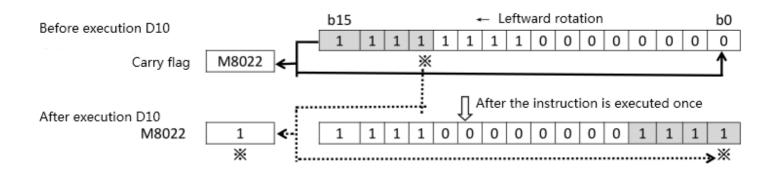
Instruction	1. 16-bit operation (ROR,RORP)
Explanation	"n" bits out of 16 bits of D. are rotated rightward.
	2. 32-bit operation (DROR,DRORP) "n" bits out of 32 bits of [D.+1, D.] are rotated rightward.
	 The final bit is stored in the carry flag (M8022). In a device with digit specification, K8 (32-bit instruction) is valid

Program	X0			
Example	⊢îĭ——	RORP	D10	K4
	l			

When X0 change from "OFF" to "ON", 16bits of D10are rotated rightward as 4bits one group, bit content of is transferred to carry flag M8022, as below picture.

9.2 ROL/Rotation Left

Instruction Operand Type				Function											
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition					
	FNC 31	Р	D.	5 steps	ROL	Continuous Operation		9 steps	DROL	Continuous Operation					
D	ROL		Ρ	Р	Р	Ρ	Ρ	Ρ	n		ROLP	Pulse (Single) Operation	ngle)		DROLP
	Operand		D.			toring data to be rotated leftward KnY, KnM, KnS, T, C, D, R, V, Z, modify				BIN16/32-bit					
	number	-	n	Number of bits to be rotated [n \leq 16 (16-bit instruction), n \leq 32 (32-bit instruction)] ^{*1} Applicable devices : D, R, K, H						BIN16/32-bit					

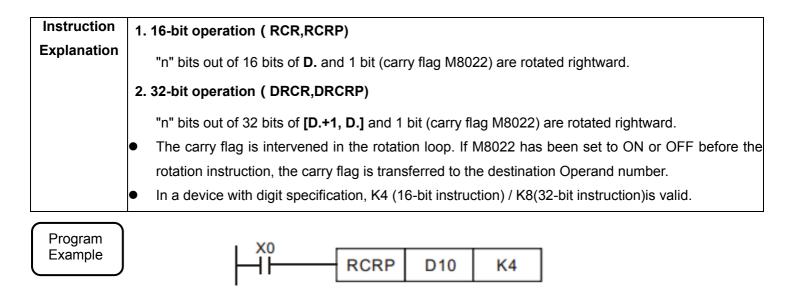

This instruction shifts and rotates the bit information leftward by the specified number of bits without the carry flag.

*1: Do not set the bit number of rotations to a negative value.

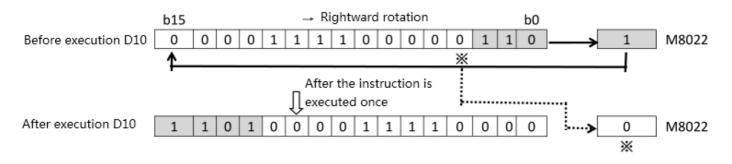
Instruction	1. 16-bit operation (ROL,ROLP)
Explanation	"n" bits out of 16 bits of D. are rotated leftward.
	2. 32-bit operation (DROL,DROLP)
	"n" bits out of 32 bits of [D.+1, D.] are rotated leftward.
	 The final bit is stored in the carry flag (M8022).
	 In a device with digit specification, K4 (16-bit instruction) is valid.

Program Example ROLP D10 K4

When X0 change from "OFF" to "ON", 16bits of D10are rotated leftward as 4bits one group, bit content of X is transferred to carry flag M8022, as below picture.



9.3 RCR/Rotation Right with Carry


This instruction shifts and rotates the bit information rightward by the specified number of bits together with the carry flag

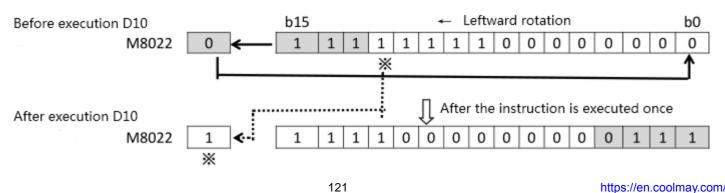
I	nstruction		Operand Type	Function						
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC 32		D.	5 steps	RCR	Continuous Operation		9 steps	DRCR	Continuous Operation
D	RCR	Ρ	n		RCRP	Pulse (Single) Operation			DRCRP	Pulse (Single) Operation
	Operand		D.			oring data to t nY, KnM, KnS		-	dify	BIN16/32-bit
	number		n	instruction)]*1		tated [n ≤ 16(, R, K, H	16-bit ins	struction), n :	≤ 32 (32-bit	BIN16/32-bit

*1: Do not set the bit number of rotations to a negative value.

When X0 change from "OFF" to "ON", Total 17bits that 16bits of D10 and carry flag M8022 are rotated rightward as 4bits one group, bit content of X is transferred to carry flag M8022, as below picture.

RCL/Rotation Left with Carry 9.4

This instruction shifts and rotates the bit information leftward by the specified number of bits together with the carry flag.


	nstruction		Operand				Functio	on				
			Туре									
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation		
				Instruction	Mileinonie	Condition		Instruction		Condition		
				5 steps	RCL	Continuous		9 steps	DRCL	Continuous		
	FNC 33		D.	J Steps	NOL	Operation			DIXOL	Operation		
	RCL		n			Pulse				Pulse (Single)		
		P			RCLP	(Single)			DRCLP			
D		۲				Operation				Operation		
			_	Word device	ce number st	oring data to b	pe rotate	d leftward		BIN16/32-bit		
	Operand	D. A			Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify							
	•			Number of	lumber of bits to be rotated [n \leq 16 (16-bit instruction), n \leq 32 (32-bit							
	number	umber	n	instruction)] ^{*1}						BIN16/32-bit		
				Applicable	Applicable devices: D, R, K, H							

*1: Do not set the bit number of rotations to a negative value.

Instruction	1. 16-bit operation (RCL,RCLP)
Explanation	n" bits out of 16 bits of D. and 1 bit (carry flag M8022) are rotated leftward.
	2. 32-bit operation (DRCL,DRCLP)
	"n" bits out of 32 bits of [D.+1, D.] and 1 bit (carry flag M8022) are rotated leftward.
	• The carry flag is intervened in the rotation loop. If M8022 has been set to ON or OFF before the
	rotation instruction, the carry flag is transferred to the destination Operand number.
	 In a device with digit specification, K4 (16-bit instruction) / K8(32-bit instruction) is valid.
	In a device with digit specification, K4 (16-bit instruction) / K8(32-bit instruction) is valid.

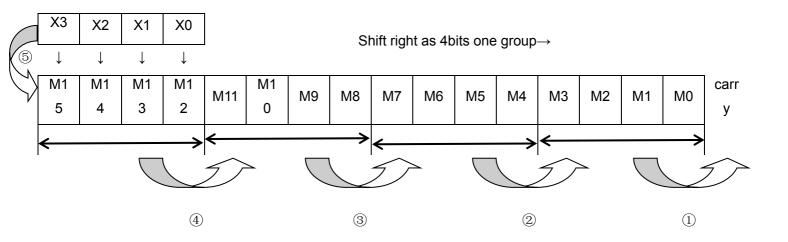
Program X0 Example RCLP D10 K4

When X0 change from "OFF" to "ON", Total 17bits that 16bits of D10 and carry flag M8022 are rotated leftward as 4bits one group, bit content of X is transferred to carry flag M8022, as below picture.

9.5 SFTR/Bit Shift Right

This instruction shifts bit devices of the specified bit length rightward by the specified number of bits. After shift, the bit device **S**. is transferred by "n2" bits from the most significant bit.

Instruction			Operand				Functio	מר			
			Туре								
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation	
				Instruction	Witternottic	Condition		Instruction	Millemonic	Condition	
			S.	9 steps	SFTR	Continuous					
FNC	34		D.	5 Steps	OF ITY	Operation					
SFT	rr		n1			Pulse					
		D	n2		SFTRP	(Single)					
		•				Operation					
				Head bit d	Head bit device number to be stored to the shift data after rightward						
			S.	shift						bit	
				Applicable	e devices: X	, Y, M, S, D □	.n, modi				
Opera	and	ľ	D	Head bit de	Head bit device number to be shifted rightward						
numb			D.	Applicable	e devices: Y,	M, S, modify				bit	
			n1	Bit length of	of the shift da	ta n2 ≤ n1 ≤ 1	024			BIN16-bit	
				Applicable devices: K, H							
			n2	Number of	bits to be sh	ifted rightward	d n2 ≤ n1	≤ 1024 ^{*1}		BIN16-bit	
			112	Applicable	Applicable devices: D, R, K, H					וט-טו מווס	
Opera	and	P	n1 n2 S. D. n1 n2	Head bit d shift Applicable Head bit de Applicable Bit length o Applicable Number of	SFTRP evice number e devices: X evice number e devices: Y, of the shift da e devices: K bits to be sh e devices: D	Pulse (Single) Operation er to be stored , Y, M, S, D \Box r to be shifted M, S, modify ta n2 ≤ n1 ≤ 1 , H ifted rightward , R, K, H	.n, modii rightwar 024 J n2 ≤ n1	fy d ≤ 1024 ^{*1}	 ter rightward	bit bit BIN16-bit BIN16-bit	


*1: Do not set the bit number of shift right to a negative value.

Instruction	16-bit operation (SFTR,SFTRP)
Explanation	For "n1" bits (shift register length) starting from D ., "n2" bits are shifted rightward ([1] and [2]
	shown
	below).
	After shift, "n2" bits from S .are transferred to "n2" bits from D .+n1-n2 ([3] shown below).
	 112FNote that "n2" bits are shifted every time the command input turns ON from OFF in SFTRP
	instruction, but that "n2" bits are shifted in each scan time (operation cycle) in SFTR instruction.

♦ When X0 is in rising edge, 16bits (M0~M15) shift right as 4bits. Shift right of each scan acts as below ①~⑤.

- (1) M3~M0 \rightarrow carry
- $\textcircled{2} M7~M4 \longrightarrow M3~M0$
- (4) M15~M12 \rightarrow M11~M8
- (5) X3~X0 \rightarrow M15~M12 completed

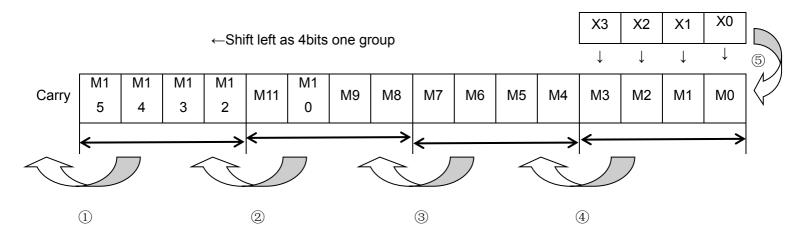
9.6 SFTL/Bit Shift Left

This instruction shifts bit devices of the specified bit length leftward by the specified number of bits. After shift, the bit device **S.** is transferred by "n2" bits from the least significant bit.

Instruction	Operand Type		Function						
		16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation	
		Instruction	Whentome	Condition		Instruction	Willemonic	Condition	
	S.	9 steps	SFTL	Continuous					
FNC 35	D.	9 sieps	SFIL	Operation					
SFTL	n1			Pulse					
	n2		SFTLP	(Single)					
F				Operation					
		Head bit de	evice number	r to be stored t	o the shi	ft data after	leftward shift		
Operand	S.	S. Applicable devices: X, Y, M, S, D □.n, modify						bit	
number	D.	Head bit d	evice numbe	r to be shifted	leftward			bit	
	<i>D</i> .	Applicable	Applicable devices: Y, M, S, modify						

Rotation and Shift Operation

	n1	Bit length of the shift data n2 ≤ n1 ≤ 1024 Applicable devices : K, H	BIN16-bit			
	n2	Number of bits to be shifted leftward n2≦n1≦1024	BIN16-bit			
		Applicable devices: D, R, K, H				
	*1: Do not s	et the bit number of shift left to a negative value.				
Instruction	16-bit	operation(SFTL,SFTLP)				
Explanation	n For "n1" bits (shift register length) starting from D. , "n2" bits are shifted leftward After shift, "n2" bits from S. are transferred to "n2" bits from D.+n1-n2.					
	m OFF in SFTLP ion.					


Program Example

X0					
ĴŤ	OFTI	VO	MO	K1C	
	SFTL	X0	MO	K16	

K4

♦ When X0 is in rising edge, 16bits (M0~M15) shift left as 4bits. Shift left of each scan acts as below ①~⑤.

1	M15~M12	\rightarrow	Carry
2	M11~M8	\rightarrow	M15~M12
3	M7~M4	\rightarrow	M11~M8
4	M3~M0	\rightarrow	M7~M4
Ē	X3~X0		M3~M0
(5)	X3~XU	\rightarrow	Complete

9.7 WSFR/Word Shift Right

Instructio	Instruction Operand Function								
			16-bit	Mnemonic	Operation		32-bit Mnemonic		Operation
			Instruction	Millenionie	Condition		Instruction		Condition
		S.	9 steps	WSFR	Continuous				
FNC 36	5	D. 9 steps	9 Sieps	WOIN	Operation				
WSFR		n1			Pulse				
	Р	n2		WSFRP	(Single)				
	P				Operation				
		S.	Head device number to be stored to the shift data after rightward shift						
		э.	Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, modify						BIN16-bit
		D.	Head word	Head word device number storing data to be shifted rightward					BIN16-bit
Operand	4		Applicable	Applicable devices: KnY, KnM, KnS, T, C, D, R, modify					Divio-bit
number			Word data	Word data length of the shift data n2≦n1≦512					
		n1	Applicable	Applicable devices: K, H					BIN16-bit
		n2	Number of	words to be	shifted rightwa	ard n2≦r	າ1≦512 ^{*1}		
			Applicable devices: D, R, K, H					BIN16-bit	

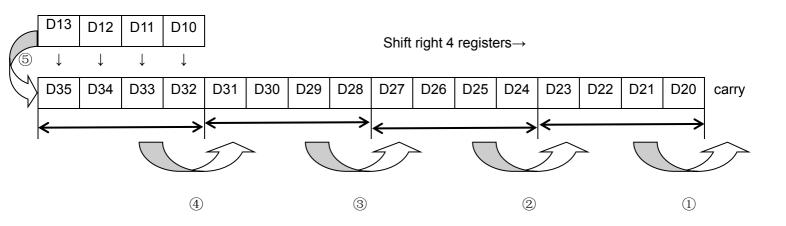
This instruction shifts word devices with "n1" data length rightward by "n2" words.

*1: Do not set the number of word shift right to a negative value.

Instruction		16-bit operation (WSFR、WSFRP)
Explanation		For "n1" word devices starting from D. , "n2" words are shifted rightward After shift, "n2" words starting from S. are shifted to "n2" words starting from [D.+n1-n2]
	•	Note that "n2" words are shifted when the drive input turns ON in WSFRP instruction, but that "n2" words are shifted in each operation cycle in WSFR instruction.

Program Example

X0


┨┠

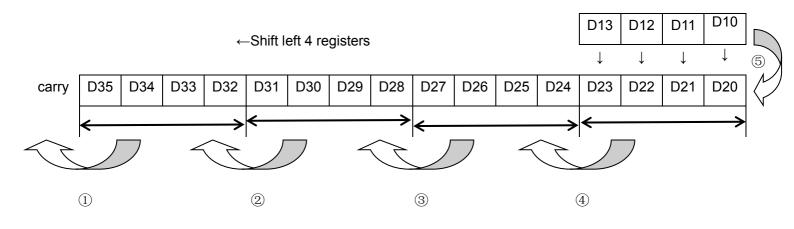
WSFRP D10 D20 K16

K4

When X0 change From "OFF" to "ON", 16registers (D20-D35) are listed as the shift area, and shifted to the right by 4 registers. Shift right of each scan acts as below ①~⑤.

- $1 D23~D20 \rightarrow carry$
- $(\widehat{\textbf{3}} \quad D31 \text{-} D28 \quad \rightarrow \quad D27 \text{-} D24$
- (5) D13~D10 \rightarrow D35~D32 complete

9.8 WSFL/Word Shift Left


This instruction shifts the word data information leftward by the specified number of words.

Instruction		Operand Type							
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC 37 WSFL		S. D. n1	9 steps	WSFL	Continuous Operation Pulse				
	P	n2		WSFLP	(Single) Operation				
		S.			be stored to t nX, KnY, KnM				BIN16-bit
Operand		D.		Head word device number storing data to be shifted leftward Applicable devices : KnY, KnM, KnS, T, C, D, R, modify				ard	BIN16-bit
number	Word data length of the shift data $n^2 < n^2$					≦n1≦512			BIN16-bit
		n2	Number of words to be shifted leftward n2≦n1≦512 ^{*1} Applicable devices: D, R, K, H						BIN16-bit
	ł	1: Do not s	et the numbe	r of word shi	ft left to a neg	ative valu	ue.		

Coolmay®	Rotation and Shift Operation						
Instruction	16-bit operation (WSFL,WSFLP)						
Explanation	For "n1" word devices starting from D ., "n2" words are shifted leftward. After shift, "n2" words starting from S . are shifted to "n2" words starting from D .						
	Note that "n2" words are shifted when the drive input turns ON from OFF in WSFLP instruction, but that "n2" words are shifted in each operation cycle in WSFL instruction.						
Program Example	X0 WSFLP D10 D20 K16 K4						

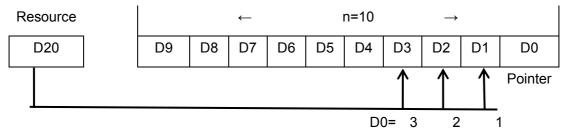
 When X0 change From "OFF" to "ON", 16registers (D20-D35) are listed as the shift area, and shifted to the left by 4 registers. Shift left of each scan acts as below 1~5.

- (1) D35~D32 \rightarrow carry
- $\textcircled{2} D31 \sim D28 \rightarrow D35 \sim D32$
- \bigcirc D27~D24 \rightarrow D31~D28
- \bigcirc D13~D10 \rightarrow D23~D20 complete

9.9 SFWR/Shift Write [FIFO/FILO Control]

This instruction writes data for first-in first-out (FIFO) and last-in first-out (LIFO) control.

I	nstruction		Operand Type		Function													
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition								
	FNC 38	Р	Р								S. D.	7steps	SFWR	Continuous Operation			-	
	SFWR			n		SFWRP	Pulse (Single) Operation											
						Operation												
			S.			oring data to t KnX, KnY, KnI			V, Z, K, H,	BIN16-bit								
	Operand number		D.	as the pointe	Head word device number storing data (The first word device works s the pointer, and data is stored in D.+1 and later) Applicable devices : KnY, KnM, KnS, T, C, D, R, modify					BIN16-bit								
			n		Number of store points +1 (pointer part) 2≦n≤512 Applicable devices: K, H					BIN16-bit								


Instruction	16-bit operation (SFWR,SFWRP)
Explanation	The contents of S. are written to "n-1" devices from D.+1 , and "1" is added to the number of data stored in D. .
	For example: when D.=0, write D.+1 ; When D.=1, write D.+2。
	 Note that data are stored (overwritten) in each scan time (operation cycle).
	 When the contents of the pointer D. exceeds "n-1", no operation is executed (so data is not written) and the carry flag M8022 turns ON.
	 the number of stored data is specified by the contents of the pointer
	 SFWR and SFRD instruction can be used together, execute write/read control of FIFO/FILO data
	listed.

Program
Example

X10				
	RST	D0		
XO				
	SFWRP	D20	DO	К10

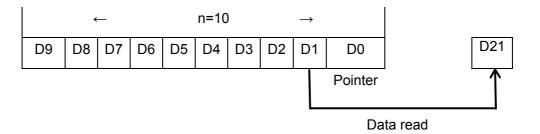
Clear the pointer D0, when X0 change from OFF to ON, content of D20 is transferred to D1, pointer D0 content becomes to 1. After changing D20 content, again change X0 from OFF to ON, then content of D20 is transferred to D2, D0 content becomes to 2.

- The instruction execute Shift Write once ,act as numbers 1.2.3...:
 - 1. content of D20 is transferred to D1.
 - 2. pointer D0 content becomes to 1.
 - 3. Process below is same, act from right in orders, indicate the data storing numbers in content of Pointer D0.

9.10 SFRD/Shift Read [FIFO Control]

This instruction reads data for first-in first-out control.

I	nstruction		Operand Type	Function							
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC 39		S. D.	7 steps	SFRD	Continuous Operation					
	SFRD	Ρ	n		SFRDP	Pulse (Single) Operation					
	Operand number		S.	as the pointe	r, and data is	ber storing da stored from \$ nY, KnM, KnS	5.+1)		vice works	BIN16-bit	
			D.	Word devic	Word device number storing data taken out first Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify					BIN16-bit	
			n	Number of store points plus "1"* $2 \le n \le 512$ Applicable devices: K, H						BIN16-bit	


Instruction	16-bit operation (SFRD,SFRDP)
Explanation	S.+1 written in turn by SFWR (FNC 38) instruction is transferred (read) to D. , and "n-1" words from S.+1 are shifted rightward by 1 word. "1" is subtracted from the number of data stored in S. .
	 When use SFRD Continuous Operation,Each scan circle(operation circle) will execute and read in turns, but content of S.+n do not change. When content of S. is 0,no operand, and the content of D. will not change,the zero flag M8020 turns ON.
	 Data after reading was executed, The contents of S.+n do not change by reading.

•	SFWR and SFRD instruction can be used together, execute write/read control of FIFO/FILO data	ì
	listed.	

Program	XO				
Example	-ÎÎ	SFRDP	D0	D21	K10

- ♦ When X0=OFF→ON, the content of D1 is transferred to D21, D9~D2 are shifted right by 1 register(D9 keep same), Pointer D0 content decrease 1.
- The instruction execute Shift Read once act as numbers 1.2.3.
 - 1. Content of D1 is read and transferred to D21.
 - 2. D9~D2 all are shifted rightward by 1 register.
 - 3. Content of Pointer D0 decrease 1.

10 Data Operation- FNC 40 to FNC 49

FNC	Mnemonic	Function	Su	pported PLC	series
NO.	WITEHTOTIC		3G PLC	2N PLC	MX2N PLC
40	ZRST	Zone Reset	*	*	*
41	DECO	Decode	*	*	*
42	ENCO	Encode	*	*	*
43	SUM	Sum of Active Bits	*	*	*
44	BON	Check Specified of ON bits	*	*	*
45	MEAN	Mean	*	*	*
46	ANS	Timed Annunciator Set	*		*
47	ANR	Annunciator Reset	*		*
48	SQR	BIN Square Root	*	*	*
49	FLT	BIN Conversion to Floating Point	*	*	*

10.1 ZRST/Zone Reset

This instruction resets devices located in a zone between two specified devices at one time.

Use this instruction for restarting operation from the beginning after pause or after resetting control data.

Instruction Operand Type				Function							
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC 40		D1.	5 steps	ZRST	Continuous Operation					
	ZRST	Ρ	D2.		ZRSTP	Pulse (Single) Operation					
	Operand number		D1.	one time		Y, M, S, T, C	C, D, R,		ne type of	BIN16-bit	
			D2.	one time		number to be Y, M, S, T, C	reset at	devices.		BIN16-bit	

Instruction
Explanation

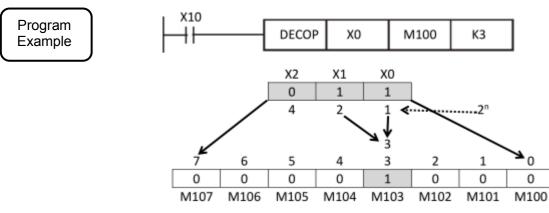
Program Example

XO			
-11	ZRST	M300	M399
X1			
	ZRST	CO	C127
X10			
	ZRST	S0	S127
X2			
	ZRST	то	T127
X3			
	ZRST	D0	D100
X4			
	ZRST	C235	C254

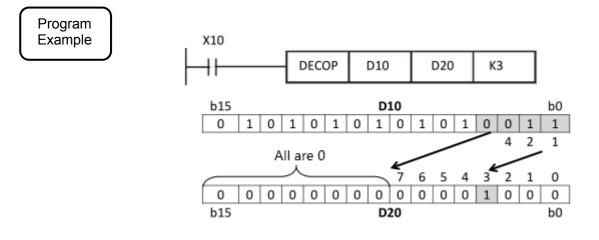
- ♦ When X0=ON, auxiliary relays M300 ~ M399 are cleared to OFF.
- ♦ When X1=ON, all 16-bit counters C0 ~ C127 are cleared. (Write 0, and clear contact and coil to OFF)
- ♦ When X10=ON, the step points S0 ~ S127 are cleared to OFF.
- ♦ When X2=ON, all timers T0 ~ T127 are cleared. (Write 0, and clear contact and coil to OFF)
- ♦ When X3=ON, the data in data registers D0 ~ D100 are cleared to 0.
- ♦ When X4=ON, all 32-bit counters C235 ~ C254 are cleared. (Write 0, and clear contact and coil to OFF)

Extended instruction

- RST is an independent reset instruction for device,. RST instruction can be used for bit devices (Y,M,S) and word devices (T, C, D and R). For example: RST M0, RST T0.
- FMOV (FNC 16) instruction is provided to write a constant (example: K0) at one time to devices (KnY, KnM, KnS, T, C, D and R) to clear to 0.
 For example: FMOV K0 D0 K100 (write K0 to D0~D99)


This instruction converts numeric data into ON bit.

A bit number which is set to ON by this instruction indicates a numeric value.


Instruction		Operand Type				Functio	on							
								16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC 41		S. D.	7 steps	DECO	Continuous Operation									
DECO	5	n. n		DECOP	Pulse (Single) Operation									
		S.			word device n , Y, M, S, T, C,		-	dify	BIN16-bit					
Operand number	-	D.	Bit or word device number storing the decoding result Applicable devices: Y, M, S, T, C, D, R, modify						BIN16-bit					
hambol		n	(No proces		e storing the c uted in the cas , H	-	•	to 8)	BIN16-bit					

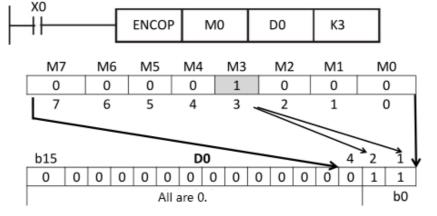
Instruction	16-bit operation (DECO,DECOP)
Explanation	One bit among D.~D.+2ⁿ-1 is set to ON according to the S. value.
	 When D. is a bit device (1 ≤ n ≤ 8), The numeric value (expressed in 2ⁿ, 1 ≤ n ≤ 8) of a device specified by is decoded to D.. —When all bits of S. are "0", the bit device turns ON. When "n" is "8", 2⁸ points (= 256 bits which
	is the maximum value) are occupied
	• When D. is a word device $(1 \le n \le 4)$, The numeric value (expressed in 2 ⁿ , on the low-order side)
	of S. is decoded to D.
	——When all bits of S. are "0", b0 of the word device D. turns ON. In the case of "n \leq 3", all of
	high-order bits of D. become "0" (turn OFF).

- When X10=OFF \rightarrow ON, DECO instruction decodes the content value of X0 \sim X2 to M100 \sim M107.
- When the value of X0~X3 is 3(1+2+0), the 3rd bit M103 from M100 is set to 1.
- When the DECO instruction is executed, and X10 becomes OFF, The decoder output acted as usual.

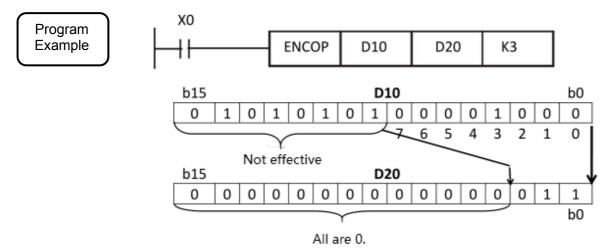
- ♦ When X10=OFF→ON, DECO instruction decodes the content value of (b2~b0) in D10 to (b7~b0) of D20 All unused bits (b15~b8) in D20 become 0.
- The lower 3 bits of D10 are decoded and stored in the lower 8 bits of D20, and the upper 8 bits are all 0.
- When the DECO instruction is executed, and X10 becomes OFF, The decoder output acted as usual.

10.3 ENCO/Encode

	Instruction		Operand Type				Functio	on						
						16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
	FNC 42		S. D.	7 steps	ENCO	Continuous Operation								
	ENCO	Ρ	Ρ	Ρ	Р	Ρ	n		ENCOP	Pulse (Single)				
						Operation								
			S.			word device n , Y, M, S, T, C,		-	dify	BIN16-bit				
	Operand number		D. Word device number storing the encoding result Applicable devices: T, C, D, R, V, Z, modify							BIN16-bit				
			n			e storing the e	-	result (n = 1	to 8)	BIN16-bit				
				•	e devices: K	•	,							


Instruction	16-bit operation (ENCO,ENCOP)
Explanation	The 2 ⁿ bit of S. is encoded, and the result value is stored to D. . This instruction converts data into BIN data according to a bit position in the ON status.
	 When S. is a bit device ((1≦n≤8), ON bit positions among "2ⁿ" bits (1 ≤ n ≤ 8) from S. are encoded to (1≤n≤8)D.
	 —The encoding result of D. is "0" (OFF) from the most significant bit to the low-order bit "n". When "n" is "8", 2⁸ = 256 bits (which is the maximum value) are occupied. When is a word device S. (1≤n≤4), ON bit positions among "2ⁿ" bits (1 ≤ n ≤ 4) from a device
	specified in S. are encoded to D. . ——The encoding result of D. is "0" (OFF) from the most significant bit to the low-order bit "n".

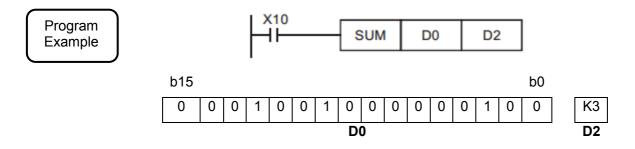
This instruction obtains positions in which bits are ON in data.



Program

Example

- ♦ When X10=OFF→ON,2³ bits (M0~ M7)of data is decoded by ENCO instruction and stored in the lower 3bits (b2~b0) of D0,All unused bits (b15~b3) in D0 become 0.
- When the ENCO instruction is executed, and X10 becomes OFF, data in D don't change.

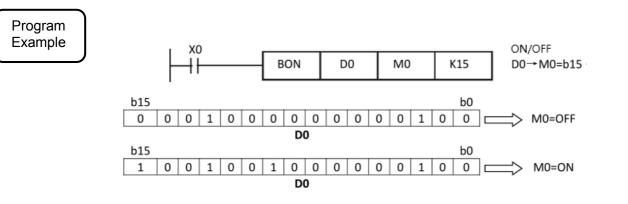

- ♦ When X0=OFF→ON, the 2³ bits of data (b0~b7) in D10 are stored in the lower 3 bits (b2~b0) of D20, and all unused bits (b15~b3) in D20 become 0. (B8~b15 in D10 are invalid data)
- When the ENCO instruction is executed, X0 turns OFF, and the data in D don't change.

10.4 SUM/Sum of Active Bits

I	Instruction Operand Function									
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC43		S. D.	5 steps	SUM	Continuous Operation		9 steps	DSUM	Continuous Operation
D	SUM	Ρ			SUMP	Pulse (Single) Operation			DSUMP	Pulse (Single) Operation
	Operand		S.	Word device number storing the source data Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K modify						BIN16/32-bit
	hamber	-	D.	Word device number storing the result data Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, modify						BIN16/32-bit

Calculate how many "1" (ON) instructions are in the data of the specified device.

Instruction Explanation	1. 16-bit operation (SUM,SUMP)
	The number of bits in the ON status in S. is counted, and stored to D. .
	2. 32-bit operation (DSUN,DSUMP)
	The number of bits in the ON status in [S.+1, S.] is counted, and stored to D
	 When all bits are OFF in S. or [S.+1, S.], the zero flag M8020 turns ON.
	• The number of bits in the ON status are stored in D ., and K0 is stored in D.+1 .


• When X10 is ON, Among 16bits of D0, the total number of bits with a content of "1" is stored in D2.

10.5 BON/Check Specified Bit Status

	Instruction		Operand Type		Function						
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC44 BON D		S. D. n	7 steps	BON	Continuous Operation		13 steps	DBON	Continuous Operation	
D		Ρ			BONP	Pulse (Single) Operation			DBONP	Pulse (Single) Operation	
			S.			oring the sour KnX, KnY, Knl		T, C, D, R,	V, Z, K, H,	BIN16/32-bit	
	Operand number		D.	D.Bit device number to be drivenApplicable devices: Y, M, S, D □.b, modify					BIN16/32-bit		
			n	[n: 0 to 15	Bit position to be checked [n: 0 to 15 (16-bit instruction), 0 to 31 (32-bit instruction)] Applicable devices: D, R, K, H						

This instruction counts the number of "1" (ON) bits in the data of a specified device.

Instruction	1. 16-bit operation (BON,BONP)
Explanation	The status (ON or OFF) of the bit "n" in S. is output to D. .
	2. 32-bit operation (DBON, DBONP)
	The status (ON or OFF) of the bit "n" in [S.+1, S.] is output to D .
	• When a constant (K) is specified as the transfer source S . or [S.+1, S.] , it is automatically converted
	into the BIN format.
	 Note: When D and R are specified as n of 32-bit instruction, the 32-bit value of [n+1,n] will take
	effect. For example: When DBON D0 M0 R0, then n=[R1, R0]。

- ♦ When X0=ON, if the 15th bit of D0 is "1", M0=ON; if it is "0", M0=OFF.
- When X0 =OFF, M0 still keep the previous state.

10.6 MEAN/Mean

This instruction obtains the mean value of data.

I	Instruction Operar Type			Function						
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC45		S. D. n	7 Steps	MEAN	Continuous Operation		13 steps	DMEAN	Continuous Operation
D	MEAN	Ρ			MEANP	Pulse (Single) Operation			DMEANP	Pulse (Single) Operation
			S.	Head word device number storing data to be averaged Applicable devices : KnX, KnY, KnM, KnS, T, C, D, R, modify						BIN16/32-bit
	Operand number		D.		Word device number storing the mean value result Applicable devices : KnY, KnM, KnS, T, C, D, R, V, Z, modify					
			n	Number of data to be averaged (n=1~64) Applicable devices: D, R, K, H						BIN16/32-bit

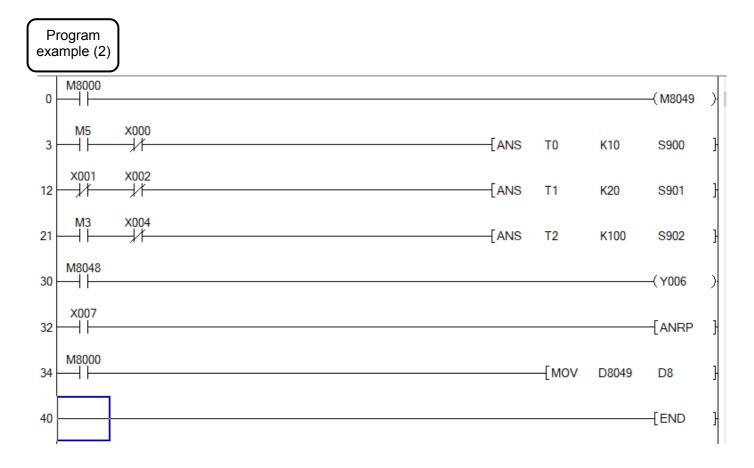
Instruction Explanation	1. 16-bit operation (MEAN, MEANP)						
	The mean value of "n" 16-bit data from S. is stored to D.						
	2. 32-bit operation (DMEAN, DMEANP)						
	The mean value of "n" 32-bit data from [S.+1, S.] is stored to [D.+1, D.].						
	 The sum is obtained as algebraic sum, and divided by "n". 						
	The remainder is ignored.						

• When X10=ON, The data of D0, D1 and D2 are summed, divided by "3", and then stored to D10.

10.7 ANS/Timed Annunciator Set

This instruction sets a state relay as an annunciator (S900 to S999).

Instruction		Operand Type	Function							
		S.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
FNC46 ANS	Ρ	m D.	7 steps	ANS	Continuous Operation					
		S.		ber for evalu e devices: T	ation time [T0 ~ T199], m	odify	1		BIN16-bit	
Operand number		m		Evaluation time data [m = 1 to 32767 (unit: 100 ms)] Applicable devices: D, R, K, H						
		D.		or device to b e devices: S	oe set [S900 ~ S999]	, modify			BIN16-bit	


Instruction	1. 16-bit o	peration (ANS)							
Explanation	When	the command input r	emains ON for equivalent to or longer than the evaluation time [m*100						
	ms, timer S	.], D. is set.							
	When	the command input r	emains ON for less than the evaluation time [m*100 ms] and then						
	turns OFF, the								
	current value of the timer for evaluation S. is reset and D. is not set.								
	Besides, When the command input turns OFF, the timer for evaluation is reset.								
	2. Related devices:								
	Device Name Description								
	Device	Name	Description						
	Device M8049	Name Enable annunciator	Description When M8049 is set to ON, M8048 and D8049 are valid.						
	M8049	Enable annunciator	·						
		Enable	When M8049 is set to ON, M8048 and D8049 are valid.						
	M8049	Enable annunciator	When M8049 is set to ON, M8048 and D8049 are valid. When M8049 is ON and one of the state relays S900 to S999 is						
	M8049 M8048	Enable annunciator Annunciator ON	When M8049 is set to ON, M8048 and D8049 are valid. When M8049 is ON and one of the state relays S900 to S999 is						
	M8049	Enable annunciator Annunciator ON Smallest state	When M8049 is set to ON, M8048 and D8049 are valid. When M8049 is ON and one of the state relays S900 to S999 is ON, M8048 turns ON.						
	M8049 M8048	Enable annunciator Annunciator ON Smallest state relay	When M8049 is set to ON, M8048 and D8049 are valid. When M8049 is ON and one of the state relays S900 to S999 is ON, M8048 turns ON. Among S900 to S999, the smallest state relay number in the ON						

example (1)	10 K50	S999
-------------	--------	------

2.00

 When X3=ON exceeds 5 seconds, the alarm point S999=ON, then even if X3 becomes OFF, S999 will remain ON. (But T10 will be reset to OFF, the current value = 0).

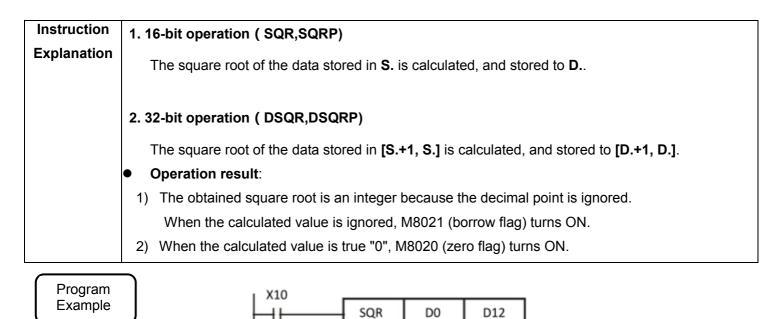
- When M8049=ON, M8048 D8049 monitoring becomes valid
- ♦ When M5=ON exceeds 1second, and X0 does not turn ON within 1 second, then S900=ON.
- X1 and X2 do not turn ON within 2 seconds, then S901=ON.
- In devices with an interval of less than 10 seconds, M3=ON exceeds 10 seconds. When X4 does not turn ON during 1 cycle of the device, then S902=ON.
- When one among S900 to S999 turns ON, M8048 turns ON and the fault display output Y006 turns ON.
- Use the reset button X7 to turn off the activated state. Each time X7 turns ON, the operating state of the new number is reset in sequence, and the reset sequence starts with the smaller number.

10.8 ANR/Annunciator Reset

This instruction resets an annuciator (S900 to S999) in the ON status with the smallest number.

I	Instruction		Operand Type				Functio	n		
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC47 ANR		null	1 step	ANR	Continuous Operation Pulse				
		Ρ			ANRP	(Single) Operation				

Instruction	1. 16-bit c	peration (ANR, AN	RP)					
Explanation	status is If two or When th	s reset. more state relays ar ne command input is state relays working a	rns ON, a state relay working as annunciator (S900 to S999) in the ON re ON, the state relay with the smallest number is reset. set to ON again, the state relay with the next smallest number is reset as annunciator (S900 to S999) in the ON status.					
	Device Name Description							
	M8049	Enable annunciator	When M8049 is set to ON, M8048 and D8049 are valid.					
	M8048	Annunciator ON	When M8049 is ON and one of the state relays S900 to S999 is ON, M8048 turns ON.					
	D8049 Smallest state relay number in ON status Among S900 to S999, the smallest state relay number in status is stored.							


Program example, refer to ANS(FNC 46).

10.9 SQR/BIN Square Root

This instruction obtains the square root.

The ESQR (FNC127) instruction obtains the square root in floating point operation.

I	nstruction		Operand Type	Function							
				16-bit	Mnemonic	Operation Condition		32-bit	Mnemonic	Operation Condition	
D	FNC48 SQR	Ρ	S. D.	5steps	SQR SQRP	Condition Continuous Operation Pulse (Single) Operation		9 steps	DSQR DSQRP	Condition Continuous Operation Pulse (Single) Operation	
	Operand		S.		Word device number storing data whose square root is obtained Applicable devices : D, R, K, H, modify						
	number		D.	Data register number storing the square root operation result Applicable devices : D, R, modify						BIN16/32-bit	

When X10=ON, The square root of D10 is stored to D12.

such as, D0=16, Then $\sqrt{D0} \rightarrow$ D12, namely D12=4.

10.10 FLT/BIN Conversion to Floating Point

	Instruction		Operand Type		Function						
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
D	FNC49 FLT	Ρ	S. D.	5steps S.	FLT FLTP	Continuous Operation Pulse (Single) Operation		9steps	DFLT DFLTP	Continuous Operation Pulse (Single) Operation	
	Operand number		S. D.	Applicable	e devices: D	er number storing binary integer devices: D, R, modify er number storing binary floating point (real number) devices: D, R, modify					

This instruction converts a binary integer into a binary floating point (real number).

Instruction	1. 16-bit operation (FLT,FLTP)
Explanation	The binary integer data of S. is converted into binary floating point (real number), and stored to [D.+1, D.] .
	2. 32-bit operation (DFLT,DFLTP)
	The binary integer data of [S.+1, D.] is converted into binary floating point (real number), and stored to [D.+1, D.] .
	 The value of a K or H specified in each instruction for binary floating point (real number) operation is automatically converted into binary floating point (real number). It is not necessary to convert such a constant using by FLT instruction
Program Example	X10 FLT D0 D12

 When X10=ON, D0 (internal BIN integer) is converted into a binary floating point value and stored in D13 and D12.

11 High Speed Processing – FNC 50 to FNC 59

FNC	Mnemonic	Function	Su	pported PLC	series
NO.	Whethorne		3G PLC	2N PLC	MX2N PLC
50	REF	Refresh	*	*	*
51	REFF	Refresh and filter adjust	*		
52	MTR	Input Matrix	*		
53	HSCS	High speed counter set	*		
54	KSCR	High speed counter reset	*		
55	HSZ	High speed counter zone compare	*		
56	SPD	Speed Detection	*	*	*
57	PLSY	Pulse Y Output	*	*	*
58	PWM	Pulse Width Modulation	*	*	*
59	PLSR	Acceleration/deceleration setup	*	*	*

11.1 REF/Refresh

This instruction immediately outputs the latest input (X) information or the current output (Y) operation result in the middle of a sequence program.

Instruction Operand Function									
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC50		D.	5 steps	REF	Continuous Operation				
REF	Ρ	n		REFP	Pulse (Single) Operation				
Operand		D.	Applicable X000,X010 significant dig Y000,Y010	e devices: X,),X020Up git number is),Y020Up	to the fina "0") to the fina	al input	number (v		bit
Operand number		n	(FX3U/FX3 FX3G: mul Applicable FX3U·FX3 of 8)	ignificant digit number is "0") Number of bit devices to be refreshed (FX3U/FX3UC: multiple of 8 in the range from 8 to 256, FX3G: multiple of 8 in the range from 8 to 128) Applicable devices : K, H FX3U·FX3UC: K8 (H8) , K16 (H10)K256 (H100) (which is a multiple f 8) FX3G: K8 (H8) , K16 (H10)K256 (H100) (which is a multiple of 8)					

Instruction	1. 16-bit operation (REF,REFP)
Explanation	n" points are refreshed from the specified output device . ("n" must be a multiple of 8.)
	• D. Operand number, must specify X0, X10, Y0, Y10 and other numbers with zero single digits.
	• n is a multiple of 8 like K8 (H8), K16 (H10)K256 (H100);Any other numeric value causes an error.
Program	

Program Example1

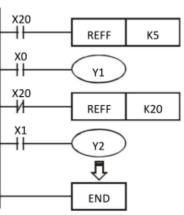
X10			
-11	REF	X0	K16

When X10=ON, X0~X7,X10~X17 The status of these 16 input points is refreshed immediately.

Program Example2	I X10				
	-11	REF	YO	К24	

♦ When X10=ON, Y0~Y7,Y10~Y17,Y20~Y27 The status of these 24 input points is refreshed immediately.

11.2 REFF/Refresh and Filter Adjust


The digital input filter time of the inputs X000 to X017^{*1} can be changed using this instruction or D8020. Using this instruction, the status of inputs X000 to X017^{*1} can be refreshed at an arbitrary step in the program for the specified input filter time, and then transferred to the image memory.

Instruction		Operand				Functio	on			
		Туре								
			16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation	
			Instruction	Willemonic	Condition		Instruction	Witemonic	Condition	
			3 steps	REFF	Continuous					
FNC51		n	5 steps	REFF	Operation					
REFF		n			Pulse					
	_			REFFP	(Single)					
	Ρ				Operation					
Operand		n	Digital inpu	Digital input filter time [K0 ~ K60(H0 ~ H3C)×1ms]					BIN16-bit	
number		11	Applicable devices: D, R, K, H							

Instruction	16-bit operation(REFF,REFFP)
Explanation	16 inputs from X000 to X017*1 in the image memory are refreshed at the digital input filter time [n*1 ms].
	• The value of the input filter, changes according to the design content of D8020 (initial value: 10ms).
	 When the input turns ON "n × 1 ms" before the instruction is executed, the image memory is set to ON.
	When the input turns OFF "n × 1 ms" before the instruction is executed, the image memory is set to OFF.
	• When the command input is ON, the REFF instruction is executed in each operation cycle.
	• When the command input is OFF, the REFF instruction is not executed, and the input filter of X000
	to X017*1 uses the set value of D8020 (which is the value used during input processing).
Program Example	x20

- ♦ When PLC power =OFF→ON, When PLC power is turned from OFF→ON, The response time of the input terminals X0~X17 is determined by the content value of D8020 (default 10ms).
- When X20=ON, REFF K5 instruction is executed,
 The response time was changed to 5 ms, and it was adjusted at the next scan.
- ◆ X20=OFF 时, REFF K20 instruction is executed,

The response time was changed to 20 ms, and it was adjusted at the next scan.

11.3 MTR/Input Matrix

This instruction reads matrix input as 8-point input* "n"-point output (transistor) in the time division method

Instruction	Operand Type		Function							
	S.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
FNC52 MTR	D1. D2.	9 steps	MTR	Continuous Operation						
	n									
	S.	X0,X10,X2 significant	nput device (X) number of matrix signal input (0,X10,X20final input device number (Only "0" is allowed in the least significant digit of device numbers.)							
Operand number	Applicable devices: V						bit			
	D2.	D2. Head bit device (Y, M or S) number of ON output destination Y0,Y10,Y20,M0,M10,M20,S0,10,S20final Y,M,S number (Only "0" is allowed in the least significant digit of device numbers.) Applicable devices: Y, M, S								
	n	Number of columns in matrix input (K2 ~ K8/H2 ~ H8) Applicable devices: K, H								

 Instruction
 16-bit operation (MTR)

 Explanation
 An input signal of 8 points* "n" columns is controlled in the time division method using 8 inputs S. and "n" D1. transistor outputs . Each column is read in turn, and then output to D2. .

 •
 For each output, the I/O processing is executed immediately in turn in interrupt at every 20 ms under consideration of the input filter response delay of 10 ms.

 •
 8 input points are occupied from the input device number specified in S. "n" output points are occupied from the output device number specified in D1.. When specifying the output in D2., make sure that "n" output numbers specified in D1. does not overlap the output specified in D2..

 •
 Use the transistor output format.

	M8000					
Program Example	<u> </u> -1	MTR	X40	Y40	M10	К2
l ·						

When PLC RUN, The MTR instruction starts to be executed, and the status of 16 switches in the external 2 lines is read sequentially and stored in the internal relays M10~M17, M20~M27.

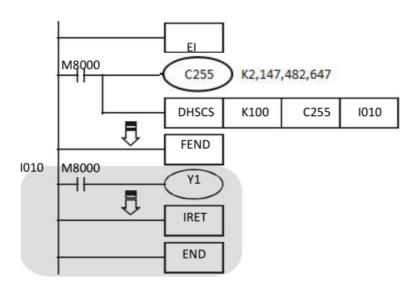
11.4 HSCS/High Speed Counter Set

This instruction compares a value counted by a high speed counter with a specified value, and immediately sets an external output (Y) if the two values are equivalent each other.

	Instruction Operand Function										
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC53 HSCS		S1. S2. D.					13 steps	DHSCS	Continuous Operation	
D											
	Operand number		S1.	counter or wo	Data to be compared with the current data value of a high-speed ounter or word device number. Applicable devices : KnX, KnY, KnM, KnS, T, C, D, R, Z, K, H, modify						
			Applicable devices: C, modify						BIN32-bit		
			D.	equivalent to Applicable	Bit device number to be set to ON when the compared two values are equivalent to each other Applicable devices: Y, M, S, D □.b[FX3U support], P[counter interrupt 6points: I010~I060]						

 Instruction
 32-bit operation (DHSCS)

 Explanation
 When the current value of a high speed counter (C235-C255) specified in S2. becomes the comparison Value [S1.+1, S1.],(Comparison Value K200=199→200 or 201→200), is set to ON without regard to the operation cycle.


 This instruction is executed after the counting processing in the high speed counter.

 When X3=ON, DHSCS instruction execute, the current value of the high speed counter C255 changes from "99" to "100" or from "101" to "100", Y010 is set to ON (output refresh).

• High speed counter (only 3G series PLC support, refer to **3.11.3**):

D. Operand number range of the DHSCS instruction can also be specified, I0₀, =1~6, When the counter reaches the count, an interrupt occurs and the interrupt service routine is executed.

♦ When the current value of C255 changes from 99→100 and 101→100, the program jumps to the interrupt pointer I010 to execute the interrupt service subroutine.

11.5 HSCR/High Speed Counter Reset

This instruction compares the value counted by a high speed counter with a specified value at each count, and immediately resets an external output (Y) when both values become equivalent to each other.

	Instruction Function									
	Instruction		Туре				T UTICIL			
	FNC54 HSCR		S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
			S2. D.					13 步	DHSCR	Continuous Operation
D										
				Data to be	Data to be compared with the current value of a high speed counter					
			S1.	or word devid	BIN32-bit					
				Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, Z, K, H, modify						
	Operand		S2.	Device number of a high speed counter [C235 ~ C255]						BIN32-bit
	Operand number		Applicable devices: C, modify							
				Bit device	number to be	e reset (set to	OFF) wh	ien both valu	es become	
				equivalent ea	ach other.					
			D.	Applicable devices: Y, M, S, D □.b[FX3U support], C [The same						-bit
				counter as	can be spec	ified S2.]				

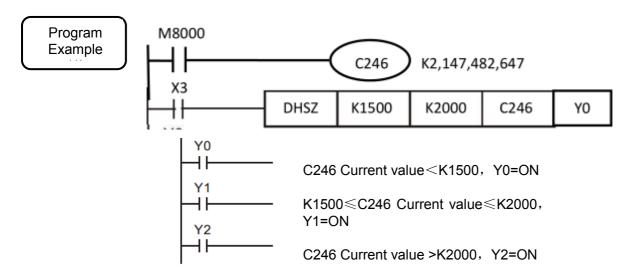
High	Speed	Processing
	00000	

Coolmay	® High Speed Processing
Instruction	32-bit operation (DHSCR)
Explanation	When the current value of a high speed counter (C235-C255) specified in S2. becomes the comparison value [S1.+1, S1.] , (for example, when the current value K200 changes from 199 \rightarrow 200 or from 201 \rightarrow 200), the bit device is reset (set to OFF) regardless of the operation cycle. In this instruction, the comparison processing is executed after the counting processing in the
	high speed counter.
	• 8 input points are occupied from the input device number specified in S .
	 "n" output points are occupied from the output device number specified in D1
	When specifying the output in D2. , make sure that "n" output numbers specified in D1.
	 Use the transistor output format.
Program Example	M8000
	DHSC K100 C255 Y10

When X3=ON, DHSCS instruction execute, the current value of the high speed counter C255 changes from "99" to "100" or from "101" to "100",Y010 is set to ON (output refresh).

11.6 HSZ/High Speed Counter Zone Compare

This instruction compares the current value of a high speed counter with two values (one zone), and outputs the comparison result to three bit devices (refresh).


	Instruction		Operand Type		Function					
			S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC55 HSZ		S2. S.					17 steps	DHSZ	Continuous Operation
D			D.							
			S1.	or word devid 1)	ce number st	ith the current	e compa	ared (compa	rison value	BIN32-bit
Operand number			S2.	Data to be or word devic 2)	compared w	nX, KnY, KnM ith the current oring data to b , KnY, KnM, K	value of e compa	f a high spee ared (compa	ed counter rison value	BIN32-bit

High Speed Processing

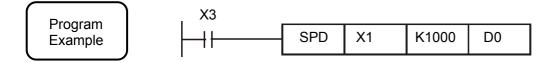
S.	Device number of a high speed counter [C235 ~ C255]	BIN32-bit
0.	Applicable devices: C, modify	BINGE SIC
	Head bit device number to which the comparison result is output	
D.	based on upper and lower comparison values	-bit
	Applicable devices : Y, M, S, D □.b[FX3U support], modify	

Instruction	32-bit operation (DHSZ)
Explanation	The current value of a high speed counter (C235 ~ C255) specified in is compared with two comparison points (comparison value 1 S1 .and comparison value 2 S2 .). Based on the comparison result, "smaller than the lower comparison value", "inside the comparison zone" or "larger than the upper comparison value", one among , D.,D.+1,D.+2 is set to ON regardless of the operation cycle.
	In this instruction, the comparison processing is executed after the count processing in the high speed counter.
	• comparison value 1 S1 \leq comparison value 2 S2.
	 DHSZ instruction outputs the comparison result only when the count pulse is input. Even if the current value of C23 is 0, Y010 will remain OFF when start.

- If the designated device is Y0, it will automatically occupy Y0~Y2.
- When the DHSZ instruction is executed, when the high-speed counter C246 has a count input, one of the upper and lower limits Y0~Y2 is On.

11.7 SPD/Speed Detection

This instruction counts the input pulse for a specified period of time as interrupt input.


Instruction	Operand Type				Functio	on		
	S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC56 SPD	S2. D.	7 steps	SPD	Continuous Operation		13 steps	DSPD	Continuous Operation
	S1.	Device nur Applicable		bit				
Operand number	S2.		· · ·	device numb KnX, KnY, Knl		-	V, Z, K, H,	BIN16/32-bit
Instruction	D.			ber storing the C, D, R, V, Z,	•	ensity data		BIN16/32-bit
Explanation	value is By repe proport 2. 32-bit o The inp D.], the D.+4](r By repe proport An inpu - High s - Input - Pulse - DSZR - DVIT - ZRN i Occup 1) 16-b 2) 32-b	s stored in D . eating this op- tional to the ro- peration (D) but pulse S1 . e present value ns). eating this op- tional to the ro- ut device X00 speed counter interrupt catch a instruction instruction instruction instruction instruction instruction instruction instruction instruction instruction instruction	 +1, and the reproduct of the importance of the importance	emaining time neasured valu l). hly for [S2.+1 , h [D.+3, D.+2] , neasured valu	s is stored ie D. will S.]* 1 m , and the ie [+1,] ⁻ not overl used per n a devic n a devic	d in D.+2 (ms store the pu s. The meas remaining ti will store the ap the follow input point. e specified in e specified in). Ise density (v sured value is me is stored pulse densit ving functions	stored in [D.+1 , in [D.+5 ,

	60(D.)	
N=	nt	[–] ×10 ³ (r/min)

N: Rotating speed.

n: The number of pulses produced by one rotation of the rotating equipment.

t: The detection time specified for S2.(ms)

- WhenX3=ON, D1 calculates the high-speed pulse input by X1. After 1000ms, the calculation stops automatically, and the result is stored in D0.
- 1000ms timing, is over, the content of D1 is cleared to 0, and when X7 turns ON again, D1 accepts the count again.

11.8 PLSY/Pulse Y Output

This instruction generates a pulse signal.

	Instruction	Operand Type		Function						
		S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC57 PLSY	S1. S2. D.	7 steps	PLSY	Continuous Operation		13 steps	DPLSY	Continuous Operation	
D										
		S1.		Output pulse frequency Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, nodify						
	Operand number	S2.		Number of output pulses Applicable devices : KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H nodify						
		D.	Applicable		n which pulses [transistor puls nal)], modify			~Y7 ; FX2N:	bit	

Instruction	1. 16-bit operation(PLSY)								
Explanation	A pulse train of frequency S1 . is output in the quantity S2 . from the output Y D .								
	Command input FNC 57 PLSY	§2) (D)		<	Pulse quantity	<u>/</u>			
	2. 32-bit operation(DPLSY)								
	A pulse train at the frequency [S1+	1., S1] is out	put by the qu	antity [S2+1 .	., S2] from th	e output Y D .			
	• S1.,[S1.+1, S1.]: Specify frequency	v (Hz), Allowa	able setting r	ange: 10 ~ 20	00,000(Hz)				
	 S2.,[S2.+1, S2.]: Specify the get 2,147,483,647(PLS) D.: Specify the output (Y) number Y0~Y7 ; 2N: Y0~Y3,Y10. 	·			C C	0			
	 Other special soft component, plea 2N series: 	se refer to							
	Y0 Y1 Y6 Y7 Y10								
	Send end flag M8029 M8029								
	Position pulse(32bit)	D8140	D8142	D8150	D8152	D8154			
	D8153	D8155							
	accelerate / decelerate time	D8148	D8148	D8148	D8148	D8148			

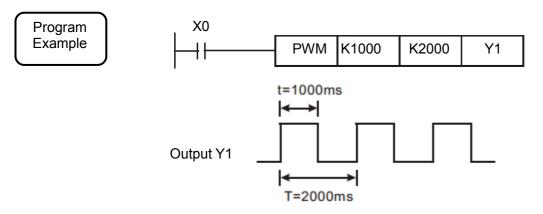
High Speed Processing

Pulse	stop bit		M8145	M8146	M8155	M8′	156	M8159
Pulse out	put busy	flag	M8147	M8148	M8157	M8′	158	M8161
• 3G series:						I		
Pulse point Function Description	YO	Y1	Y2	Y3	Y4	Y5	Y6	¥7
Send end flag	M8029	M8029	M8029	M8029	M8029	M8029	M8029	M8029
Pulse	M8340	M8350	M8360	M8370	M8151	M8152	M8153	M8154
operation monitoring								
Position	D8340	D8350	D8360	D8370	D8140	D8142	D8144	D8160
pulse(32bit)	D8341	D8351	D8361	D8371	D8141	D8143	D8145	D8161
accelerate /	D8348	D8358、	D8368、	D8378、	D8148	D8148	D8148	D8148
decelerate time	D8349	D8359	D8369	D8379				
Pulse stop bit	M8349	M8359	M8369	M8379	M8450	M8451	M8452	M8453
Maximum	D8343	D8353	D8363	D8373	D8146	D8146	D8146	D8146
speed	D8344	D8354	D8364	D8374	D8147	D8147	D8147	D8147

Program Example

X0				
	PLSY	K1000	K0	D0

If X0=ON, generate 1KHz frequency pulse without any limitation(S2. is set to K0, pulses are output without any limitation.)output from Y0.

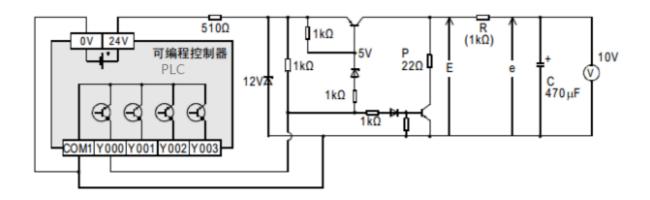


11.9 PWM/Pulse Width Modulation

This instruction outputs pulses with a specified period and ON duration.

	Instruction	Operand Type				Functio	on		
	FNC58 PWM	S1. S2. D.	16-bit Instruction 7 steps	Mnemonic PWM	Operation Condition Continuous Operation		32-bit Instruction	Mnemonic	Operation Condition
		S1.		se width (ms) (nX, KnY, Kn	M KnS	TCDR	V 7 К Н	BIN16-bit
	Operand number	S2.	modify Period (ms	3)	KnX, KnY, Knl				
Device number (Y) from which puls D. Applicable devices: Y[Transistor Y0~Y3,Y10(Optional)], modify				[Transistor pul			~Y7 ; FX2N:	-bit	

◆ If X0=ON, Y1 output above pulse, When X0=OFF, Y1 output also change to OFF.


Examples of smoothing circuits::

R >> P

 $t = R(K\Omega)^* C(\mu F) = 470ms >>T0$

The time constant τ of the filter is extremely large ,compared to the pulse period T0.

The fluctuation value Δe in the average output current e is approximately $\frac{\Delta e}{e} \leq \frac{T0}{\tau}$

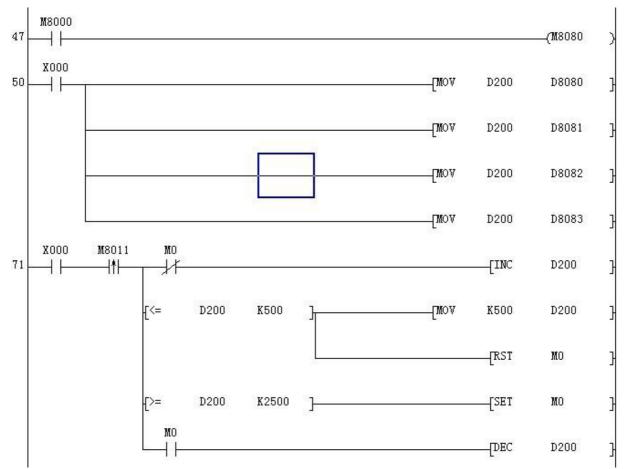
Extra Description

1. For Coolmay PLC, PWM pulse width usage pls refer to below:

Conventional PWM:

- 1) Only Support 2channels Y0,Y1(please select transistor MT output);
- 2) There is no limit to the pulse width and pulse period, both in milliseconds (ms).

Special customized PWM—as Analog output


The following parameters are required for model selection:

- 1) the controller type and the output voltage of the required PWM;
- 2) the output frequency of the required PWM;
- 3) pulse width range;
- 4) to customize to microsecond (µs) level or millisecond (ms) level? [default is millisecond (ms) level];
- 5) the digital range corresponding to the controller action range;
- 6) Confirm the numbers of customized PWM, up to 8 PWM. (depending on analog outputs that customer make).

Program, refer to analog output.

High Speed Processing

- 1) M8080, the start contact of the analog DA0-DA3 output function. When it is set to ON, the analog DA0-DA3 can be output.
- 2) M8084 is the start contact for the analog DA4-DA7 output function. When it is set to ON, the analog DA4-DA7 can be output.

2. For Coolmay PLC, PWM pulse width usage in 3G series pls refer to below:

Conventional PWM:

- 1) Support 8channels Y0-Y7 (please select transistor MT output);
- 2) There is no limit to the pulse width and pulse period, both in milliseconds (ms).

Special customized PWM—as Analog output

The following parameters are required for model selection:

- 1) the output voltage of the required PWM;
- 2) the output frequency of the required PWM;

3) Confirm the numbers of customized PWM, up to 8 PWM. (depending on analog outputs that customer make).

4) Whether the customized PWM coexists with other analog. (If the product is separately equipped with analog, the analog output terminals DA0~DA3 are a group, and DA4~DA7 are a group. When custom PWM of 3G series products, Only when the output frequency is 21KHz,it can be used with other analog group.).

Special customized PWM -- Output frequency setting

When special customize PWM,don't need to use the PWM instruction. You only need to set the special register and then turn on the hardware.

The special registers used for each analog, check below table:

Analog output address	DA0	DA1	DA2	DA3	DA4	DA5	DA6	DA7
Duty cycle setting	D8050	D8051	D8052	D8053	D8054	D8055	D8056	D8057
PWM division factor setting	D8268	D8268	D8268	D8268	D8278	D8278	D8278	D8278

D8050-D8057: 0~32760

D8268-D8278: 840~16800000 (32 bits);

D8050-D8057 \leq D8268 and D8278

When D8268 and D8278 are powered on, the default setting is 4000, No data keeping when power off, and program assignment is required when using.

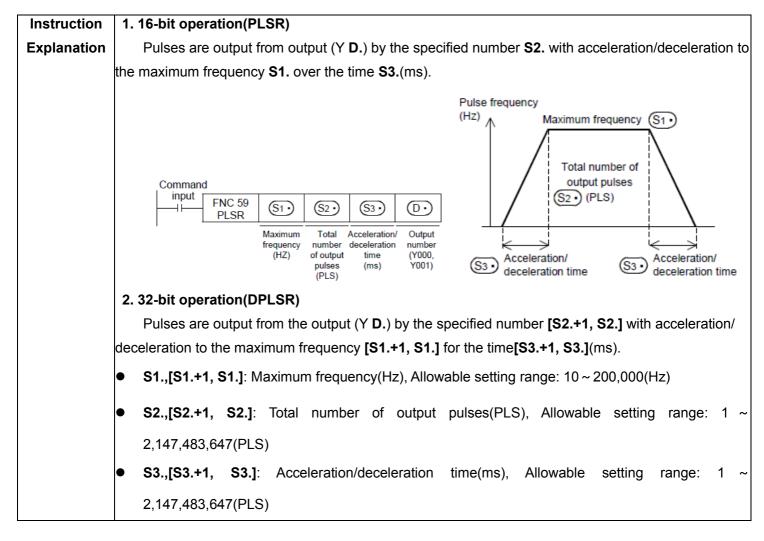
PWM output frequency setting, For example:

Main frequency 84MHz, namely 84000000

When D8268=4000, PWM output frequency=84MHz/4000=21KHz, D8050 adjustable range is 0-4000, output duty cycle 0~100%.

When D8268=8000, PWM output frequency=84MHz/8000=10.5KHz, D8050 adjustable range is 0-8000, output duty cycle 0~100%.

If D8268=16800000, then PWM minimum output frequency=84MHz/16800000=5Hz


If D8268=840, the PWM maximum output frequency=84MHz/840=100KHz

That is, the lower the frequency, the larger the adjustable range; the higher the frequency, the smaller the adjustable range.

11.10 PLSR/Acceleration/Deceleration Setup

This pulse output instruction has the acceleration/deceleration function.

	Instruction	C	Dperand Type		Function					
			S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC59 PLSR		S2. S3.	9 steps	PLSR	Continuous Operation		17 steps	DPLSR	Continuous Operation
D			D.							
			S1.		Maximum frequency (Hz) Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, modify					
	0		S2.			pulses (PLS) nX, KnY, KnM,	KnS, T,	C, D, R, V, Z,	K, H, modify	BIN16/32-bit
	Operand number		S3.			eceleration time (ms) /ices : KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, modif				BIN16/32-bit
			D.	Device number (Y) from which pulses are to be output Applicable devices : Y[Transistor pulse output, 3G: Y0~Y7 ; 2N: -bit Y0,Y1,Y6,Y7,Y10(Optional)], modify						-bit

https://en.coolmay.com/

	I series:			-			_		-
				Y0	Y1	Y6	Y7	Y10	
	Se	end end fl	ag	M8029	M8029	M8029	M8029	M8029	
	Positi	on pulse	(32bit)	D8140	D8142	D8150	D8152	D8154	
				D8141	D8143	D8151	D8153	D8155	
	accele	rate / dec	elerate	D8148	D8148	D8148	D8148	D8148	
		time							
	Pu	lse stop	bit	M8145	M8146	M8155	M8156	M8159	
	Pulse	output bu	sy flag	M8147	M8148	M8157	M8158	M8161	
• 30	G series:			1		1			
	Pulse point								
		Y0	Y1	Y2	Y3	Y4	Y5	Y6	
	nction								
	escription								
	end end flag	M8029	M8029	M8029	M8029	M8029	M8029	M8029	M
	lse operation	M8340	M8350	M8360	M8370	M8151	M8152	M8153	Μ
r	monitoring								
	Position	D8340	D8350	D8360	D8370	D8140	D8142	D8144	D
p	oulse(32bit)	D8341	D8351	D8361	D8371	D8141	D8143	D8145	D
		D8348	D8358	D8368	D8378	D8148	D8148	D8148	D
	accelerate /	D8349		`	`				
	celerate time		D8359	D8369	D8379				
Ρι	ulse stop bit	M8349	M8359	M8369	M8379	M8450	M8451	M8452	M
	Maximum	D8343	D8353	D8363	D8373	D8146	D8146	D8146	D
	speed	D8344	D8354	D8364	D8374	D8147	D8147	D8147	D٤
<u> </u>	XO							7	
		PLS	R K1(000 C	010	К3000	YO	1	

- If X0=ON, the PLSR instruction executes the maximum frequency value of pulse output of 1,000Hz, the total number of pulses output by all pulses D10 and the acceleration and deceleration time of 3,000ms, and then outputs pulses from Y0. Start to output pulses every time the frequency increases by 1,000/10 Hz. The output time of each frequency pulse is fixed at 3,000/9.
- The output is interrupted when X0 turns OFF, and the pulse count starts from 0 when it turns ON again.

12 Handy Instruction – FNC 60 to FNC 69

FNC	Mnemonic	Function	Su	pported PLC	series
NO.	Whenonic		3G PLC	2N PLC	MX2N PLC
60	IST	Initial State	*		
61	SER	Search a Data Stack	*		*
62	ABSD	Absolute drum sequencer	*		
63	INCD	Incremental drum sequencer	*		
64	TTMR	Teaching Timer	*		
65	STMR	Special Timer	*		
66	ALT	Alternate State	*	*	*
67	RAMP	Ramp Variable Value	*	*	*
68	ROTC	Rotary Table Control	*		
69	SORT	SORT Tabulated Data	*		

12.1 IST/Initial State

This instruction automatically controls the initial state and special auxiliary relays in a step ladder program.

I	nstruction	Operand Type				Functio	on		
	FNC 60 IST	S. D1. D2.	16-bit Instruction 7 steps	Mnemonic IST	Operation Condition Continuous Operation		32-bit Instruction	Mnemonic	Operation Condition
		S.		Head bit device number of the selector switch in the operation mode Applicable devices : X, Y, M, D □.b, modify					bit
	Operand number	D1.	mode[D1. < [Smallest state relay number of practical state relays in the automatic node[D1. < D2.] Applicable devices: S[S20 ~ S899、S1000 ~ S4095], modify					
		D2.	mode[D1. < [)2 .]	umber of pra [S20~S899、			n the automatic dify	bit

Explanation

Instruction 1. 16-bit operation(IST)

Specify the head input in the operation mode in S.

Selector switches in the operation mode occupy eight devices from the head device , and the switch functions shown in the table below are assigned to each of them.

When X020 is assigned as shown below, it is necessary to set X020 to X024 as rotary switches so that they do not turn ON at the same time.

It is not necessary to wire unused switches, but they cannot be used for any other purpose because they are occupied by IST instruction.

Source	Device number (example)	Switch function
(S•)	X020	Individual operation
(S•)+1	X021	Return to zero point
<u>(</u> S •) + 2	X022	Stepping
(S•) + 3	X023	Cycle operation
<u>(S•)</u> +4	X024	Continuous operation
<u>(</u> S •) + 5	X025	Zero return start
(S•)+6	X026	Automatic start
(S•) + 7	X027	Stop

While the command input is ON, the following devices are automatically switched and controlled.
 While the command input is OFF, the devices are not switched.

Device number	Operation function	Device number	Operation function
M8040	STL transfer disable	S0	Individual operation initial state
M8041 ^{*1}	Transfer start	S1	Zero return initial state
M8042	Start pulse	S2	Automatic operation initial state
M8043 ^{*1}	Zero return complete		
M8045	All output reset disable	_	
M8047 ^{*2}	Enable STL monitoring		

- *1. Cleared when the PLC mode is changed from RUN to STOP.
- *2. Set to ON when END instruction is executed
- It is not necessary to use all switches for mode selection.

When some switches are not used, leave the corresponding numbers in the unused status. Such numbers cannot be used for any other purpose.

- IST instruction should be programmed earlier than a series of STL circuit such as state relays S0 to S2.
- Use the state relays S10 to S19 for the zero return operation

In the final state in the zero return operation, set M8043 to ON, and then let it be reset to OFF by itself.

• IST instruction can be used only once in a program.

Handy Instruction

Program Example

M8000				
	IST	X10	S20	S60
1 1				

X10: Manual operation
X11: Return to origin
X12: Step
X13: One cycle

X14: Continuous operation
X15: Start to return to origin
X16: Start continuous operation
X17: Stop continuous operation

• When the IST instruction is executed, the following special auxiliary relays will be switched automatically.

M8040: STL trar	sfer disable	S0: Manual operation initial state step point
M8041: Transfer	start	S1: Return to origin initial state step point
M8042: Start pul	se	S2: Automatic operation initial state step point
M8047: Enable S	STL monitoring	

- When using the IST instruction, S10~S19 are used for "Return to origin", and the step point in this state cannot be used as a general step point. When the step points of S0~S9 are used, the actions of the three state points of S0~S2 are manual use, return-to-origin use, and automatic operation. Therefore, in the program, you must write the circuit of the three state step points firstly.
- When switching to S1 (Return to origin) mode, if any point between S10~S19 is ON, there will be no action in "Return to origin".
- When switching to S2 (automatic operation) mode, if any point of S between D1~D2 is ON, or M8043 is ON, there will be no action in automatic operation.

12.2 SER/Search a Data Stack

This instruction searches for the same data, maximum value and minimum value in a data table.

Instruction			Operand Type							
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC61		S1. S2.	9 steps	SER	Continuous Operation		17 steps	DSER	Continuous Operation
D	SER	Ρ	D. n		SERP	Pulse (Single) Operation			DSERP	Pulse (Single) Operation
	Operand number		S1.	Head device number in which same data, maximum value and minimum value are searched Applicable devices : KnX, KnY, KnM, KnS, T, C, D, R, modify						BIN16/32-bit
			Data to be searched for or device number storing data S2. Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, I modify					V, Z, K, H,	BIN16/32-bit	
			Head device number storing number of same data, maximum value				um value	BIN16/32-bit		
			n	Number of data in which same data, maximum value and minimum value are searched [16-bit instruction: 1 to 256; 32-bit instruction: 1 to 128] [17-Applicable devices: D, R, K, H						BIN16/32-bit

Instruction	1. 16-bit operation(SER,SERP)					
Explanation	In "n" data starting from S1., same data as S2. is searched, and the search result is stored to D. to					
	D.+4.					
	Command					
	input FNC 61 S1 S2 D n					
	2. 32-bit operation(DSER,DSERP)					
	In "n" data starting from [S1.+1, S1.], same data as [S2.+1, S2.] is searched, and the search					
	result is stored to[D.+1, D.] to [D.+9, D.+8].					
	 Contents of searched data and the search result 					
	a) When same data was detected					
	In 5 32-bit devices starting from D. or [D.+1, D.] store the number of same data, first position, last					
	position, maximum value position and minimum value position.					

	b) When same data was not detected
	In 5 32-bit devices starting from D. or [D.+1, D.] store the number of same data, first position, last
	position, maximum value position and minimum value position.
	However, "0" is stored in 3 devices starting from [D.+1, D.] (which store the number of same data,
	first position and last position).
•	Comparison of values, It is executed algebraically. (-10<2)
•	When there are two or more maximum or minimum values in the searched data, the last position of
	the max/min is stored respectively.
•	When this instruction is driven, the following number of devices are occupied for storing the search
	result D.:
	1) 16-bit operation: occupy [D.,D.+1,D.+2,D.+3,D.+4] 5 points.
	2) 32-bit operation: occupy [D.+1, D.],[D.+3, D.+2],[D.+5, D.+4],[D.+7, D.+6],[D.+9, D.+8] 10
	points.
•	Note: When D and R are designated as n of a 32-bit operation, the 32-bit value of [n+1,n] becomes
	effective.
	For example: DSER D0 D100 D200 R0, then n=[R1, R0]。

ſ		ogram ample)	I XO			 			
C		ampie	J		SER	D10	DO	D50	К1	.0
		S1.	S1. value	Comparison data S2 .	Data position	Result	D.	D. Cont value		
	┢	D10	K88		0		D50	4		Ν
		D11	K100		1	equal	D51	1		Sa (fi
		D12	K110		2		D52	8		Sa (la
		D13	K150	D0=K100	3		D53	7		M po
n= K1	I	D14	K100	D0-R100	4	equal	D54	9		M po
		D15	K300		5					
		D16	K100		6	equal				
		D17	K5		7	Minimum				
		D18	K100		8	equal				
	≯	D19	K500		9	Maximum				

- If X0=ON, the data block composed of D10~D19 is compared with D0, and the result is stored in D50~D52.
 When the equal value does not exist, the contents of D50~D52 are all 0.
- The minimum number of all comparison data is recorded in D53, and the maximum value is recorded in D54.
 When there is more than one minimum and maximum value, the one with the largest number is recorded.

Description

Number of same data

Same data position

position

value

value

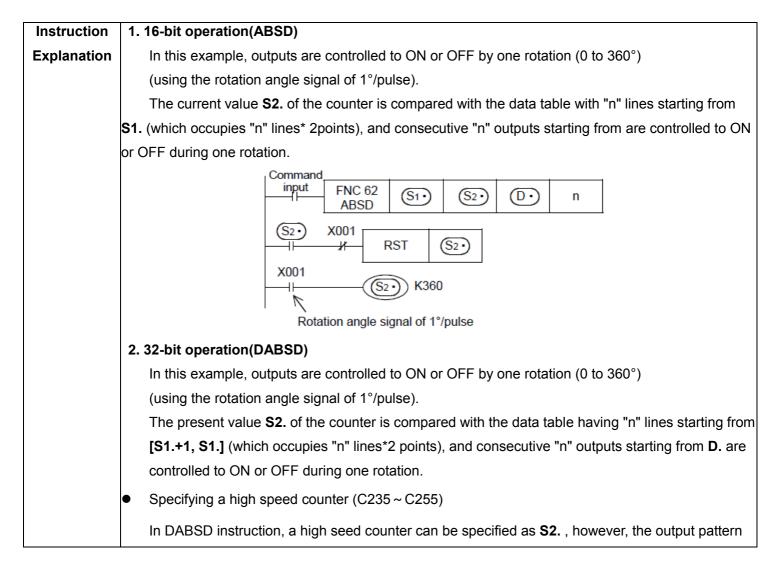
Same data

(first position)

(last position)

Minimum

position Maximum


position

12.3 ABSD/Absolute Drum Sequencer

This instruction creates many output patterns corresponding to the current value of a counter

	Instruction		Operand Type	Function						
			S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC62 ABSD		S2. D.	9 steps	ABSD	Continuous Operation		17 steps	DABSD	Continuous Operation
D		Ρ	n							
	Operand number		S1.	Head device number storing the data table (with rising and faling point data)Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, modify						BIN16/3 2-bit
			S2. Counter number for monitoring the current value Operand Applicable devices: C, modify		ue compared	with the data table	e BIN16/3 2-bit			
			umber Head bit device number to be output D. Applicable devices: Y, M, S, D □.b, modify					-bit		
			n		Number of lines in the table and the number of output bit devices [1≤n≤64] Applicable devices: K, H					

Handy Instruction

_	
	contains response delay caused by the scan cycle with regard to the current value of a counter.
(When specifying digits of a bit device as S1.,
	1) Device number: Specify a multiple of 16 (0, 16, 32, 64).
	2) Digital number: - ABSD(16-bit operation), Only K4 is available.
	- DABSD(32-bit operation),Only K8 is available.
Program Example	X10 ABSD D100 C10 M10 K4

M10~M13. When X10=ON, the current value of the counter C10 is compared with the upper and lower limits of 4 groups such as D100~D107, and the results are reflected in M10~M13 respectively.

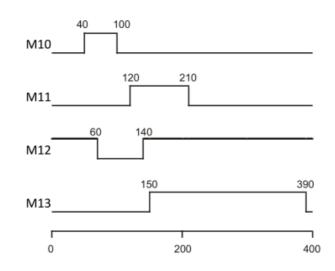
C10

RST

♦ When X10=OFF, the ON/OFF status of the original M10~M13 will not change.

C10 X11

-11-

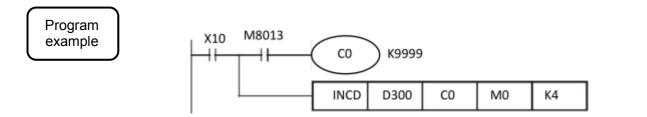

++

The corresponding M10~M13 within the range of greater than or equal to the lower limit and less than or equal to the upper limit will be ON.

lower limit value	upper limit value	C10 current value	Output
D100=40	D101=100	40≤C10≤100	M10=ON
D102=120	D103=210	120≤C10≤210	M11=ON
D104=140	D105=170	140≤C10≤170	M12=ON
D106=150	D107=390	150≤C10≤390	M13=ON

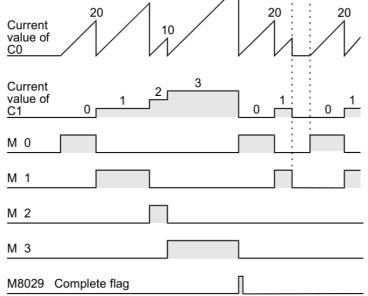
If the lower limit value is greater than the upper limit value, Then when it is less than the upper limit value (C10<60) or greater than the lower limit value (C10>140), M12=On.

lower limit value	upper limit value	C10 current value	Output
D100=40	D101=100	40≤C10≤100	M10=ON
D102=120	D103=210	120≤C10≤210	M11=ON
D104=140	D105=170	140≤C10≤170	M12=OFF
D106=150	D107=390	150≤C10≤390	M13=ON



12.4 INCD/ Incremental Drum Sequencer

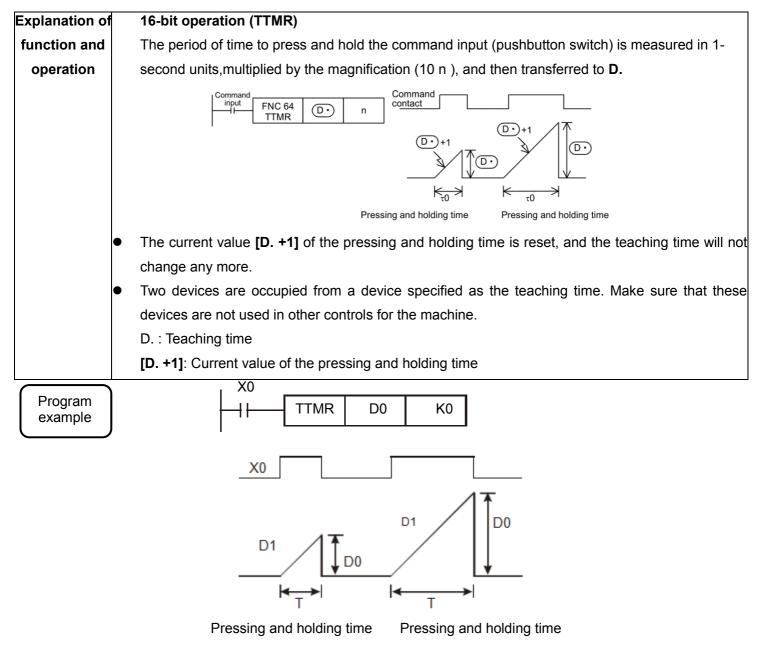
Operand instruction Function type 16-bit Operation 32-bit Operation Mnemonic Mnemonic S1. Instruction Condition Instruction Condition Continuous FNC63 S2. INCD 9 steps Operation INCD D. n Head word device number storing the set value S1. 16-bit binary Target device: KnX, KnY, KnM, KnS, T, C, D, R, retouch Head number of counters whose current value is monitored S2. 16-bit binary Target device: C, retouch Operand Head bit device number to be output D. bit Target device: Y, M, S, D □.b, tetouch Number of output bit devices [1≤n≤64] n 16-bit binary Target device: K, H


This instruction creates many output patterns using a pair of counters.

Explanation of	1. 16-bit operation(INCD)					
function and	The current value of a counter is compared with the data table having "n" lines starting from					
operation	(which occupies "n" lines x 1 device). When is equivalent to the table data, the current output is					
	reset, and the next output is set to ON. In this way, the ON/OFF status of specified outputs is					
	controlled in turn.					
	Command input FNC 63 INCD S2 D n Count signal INCD K9999					
	• When specifying digits of a bit device as S1 specify a multiple of 16 (0, 16, 32, 64).					

S1.Data value (example)	Output result D .(example)
D300=20	MO
D301=30	M1
D302=10	M2
D303=40	M3
x000	40 20 20

- When the command contact turns ON, the output M0 turns ON.
- When the current value of C0 reaches the comparison value D300, the output M0 is reset. "1" is added to the count value of the process counter C1, and the current value of the counter C0 is reset.
- The next output M1 turns ON.
- When the current value of C0 reaches the comparison value D301, the output M1 is reset. "1" is added to the count value of the process counter C1, and the current value of the counter C0 is reset.
- The current value is compared for up to "n (K4)" outputs in the same way $(1 \le n \le 64)$.
- When the final process specified by "n" is finished, the execution complete flag M8029 turns ON and remains ON for one operation cycle.M8029 is used for many instructions as the instruction execution complete flag. Use M8029 as a contact just after a corresponding instruction.
- The program execution returns to the beginning, and outputs are repeated.



12.5 TTMR/ Teaching Timer

This instruction measures the period of time in which TTMR instruction is ON.

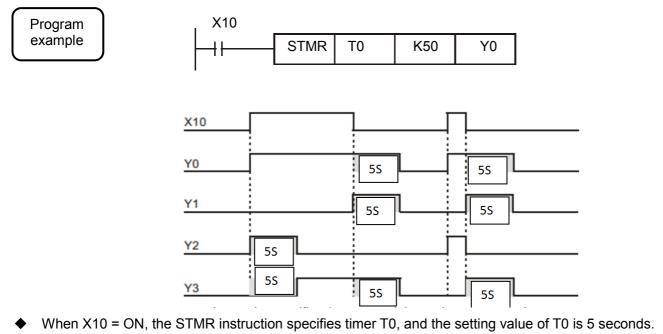
Use this instruction to adjust the set value of a timer by a pushbutton switch.

Instructio	n	Operand type		Function					
FNC64 TTMR		D. n	16-bit Instruction 5 step	Mnemonic	Operation Condition Continuous Operation		32-bit Instruction	Mnemonic	Operation Condition
Operand		D.	Target dev	Device number storing the teaching data Target device: D, R, retouch 1					
		n	Magnification by which the teaching data is multiplied [K0 to K2/H0 to H2] Target device : D, R, K, H						16-bit binary

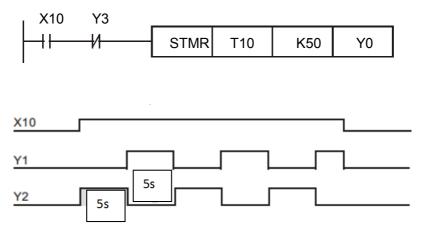
- The time the button switch X0 is held down (the ON time of X0) is stored in D1, the multiple of that time is specified by n, and the number of digits of time is stored in D0. In this way, you can use the button switch to adjust the timer setting value.
- When X0 turns OFF, the content of D1 is reset to 0, but the content of D0 has not changed.
- Assuming the ON time of X0 is T seconds, and the relationship between D0, D1 and n is shown in the following table:

n	D0	D1(Unit:
		100ms)
K0 (Unit: s)	1xT	D1=D0x10
K1 (Unit: 100ms)	10xT	D1=D0
K2 (Unit: 10ms)	100xT	D1=D0/10

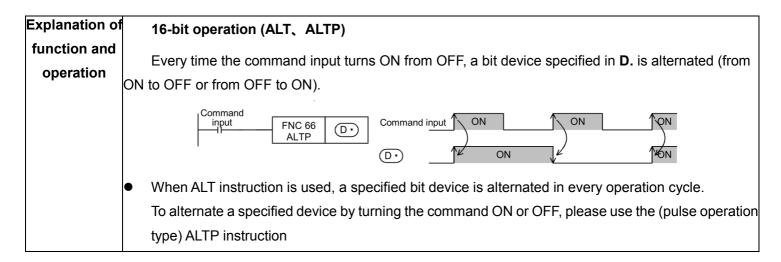
12.6 STMR/Special Timer

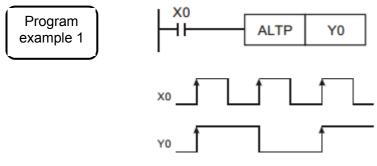

This instruction can easily make off-delay timers, one-shot timers and flicker timers.

Instruction	Operand type		Function					
	S.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC65 STMR	m D.	7step	STMR	Continuous Operation				16-bit binary
	S.		Used timer number [T0 to T199 (100 ms timer)] Target soft device: D, R, retouch					
Operand	m		Set value of the timer[1 ~ 32,767] Target soft device: D, R, K, H					16-bit binary
	D.	Head bit number to which the set value is output (Four devices are occupied.) Target device: D, R, K, H, retouch						bit

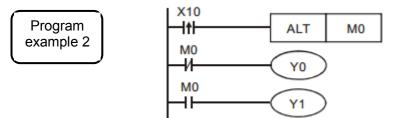

Explanation of	16-bit operation (STMR)
function and	The value specified in m is handled as the set value of a timer specified in S. , and output to four
operation	devices starting from D .
	Command input FNC 65 STMR M D·
•	The timer number specified in this instruction cannot be used in other general circuits (such as OUT instruction).
•	Four devices are occupied from a device specified in D .

	Flicker
Off-delay timer	Occupied
One-shot timer	Flicker(a contact)
Occupied	Flicker(b contact)
Occupied	flicker(b contact)
	One-shot timer Occupied


- Y0 is OFF Delay contact: When X10 changes from OFF to ON, Y0 = ON, and when X10 changes from ON to OFF, Y0 = OFF after a delay of 5 seconds.
- ♦ When Y1 turns from ON to OFF, Y1 = ON output for 5 seconds.
- When Y2 changes from OFF to ON, Y2 will be output once for 5 seconds.
- When Y3 changes from OFF to ON, Y3 = ON after a delay of 5 seconds, and when X10 changes from ON to OFF, Y3 = OFF after a delay of 5 seconds.
- Add a b contact of Y3 after conditional contact X10, then Y1 and Y2 can be output as a flashing circuit. When X10 turns OFF, Y0, Y1 and Y3 turn OFF, and the contents of T10 are reset to 0.



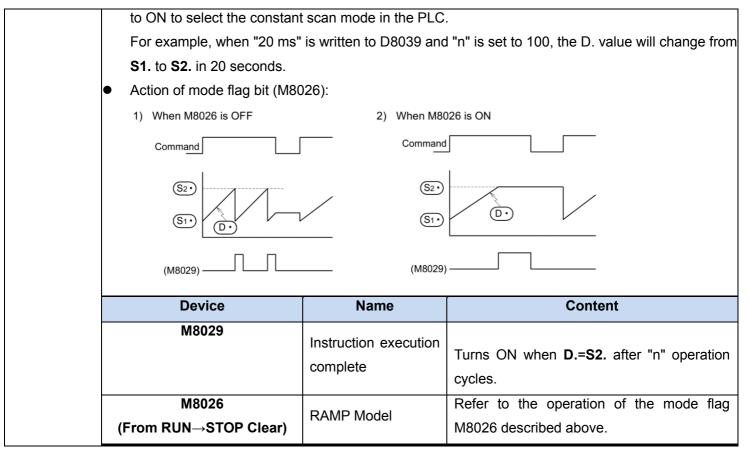
12.7 ALT/Alternate State

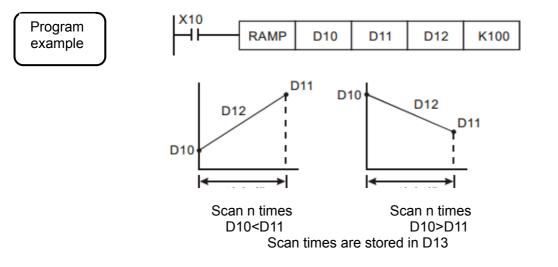

This instruction alternates a bit device (from ON to OFF or from OFF to ON) when the input turns ON.

instruction	Operand type		Function					
		16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC66	D.	3 step	ALT	Continuous Operation				
ALT P			ALTP	Pulse Operation				
Operand	D.		Bit device number whose output is alternated Target device: Y, M, S, D □.,b, retouch				bit	

♦ When X0 goes from OFF → ON for the first time, Y0 = ON. The second time X0 goes from OFF → ON, Y0 = OFF.

Use a single switch to control start and stop. At the beginning, M0 = OFF, so Y0 = ON, Y1 = OFF, when X10 is the first ON / OFF, M0 = ON, so Y1 = ON, Y0 = OFF, when the second ON / OFF, M0 = OFF Therefore, Y0 = ON and Y1 = OFF.




12.8 RAMP/Ramp Variable Value

This instruction obtains the data which changes between the start value (initial value) and the end value (target value) over the specified "n" times.

instru	ction	Operand type	Function						
FNC RAM	-	S1. S2. D. n	16-bit Instruction 9 Step	Mnemonic RAMP	Operation Condition Continuous Operation		32-bit Instruction	Mnemonic	Operation Condition
		S1.		Device number storing the initial value of ramp Target device: D, R, retouch					
Opera	and	S2.		Device number storing the target value of ramp16-bit binaryTarget device: D, R, retouch16-bit binary					
		D.	Device number storing the current value of ramp16-bTarget device: D, R, retouch16-b					16-bit binary	
		n	•	Ramp transfer time (scan) [1 to 32, 767]16-bit binaryTarget device: K, H16-bit binary					

Explanation of	
-	16-bit operation (RAMP)
function and	When the start value S1. and the end value S2. have been specified and the command input is
operation	set to ON, the value obtained by adding a value divided equally by "n" times to in every
	operation cycle is stored to D
	By combining this instruction and an analog output, the cushion start/stop command can be
	output.
	Command input FNC 67 RAMP S1· S2· D· n
	 When the power failure holding device (holding area) is specified in D., the command input turns
	ON as it is, and when the programmable controller is set to RUN (start), first clear D .
	 This is an instruction to find the slope. The slope is linear and has an absolute relationship with the
	scanning cycle. Therefore, when using this instruction, the scanning cycle must usually be fixed in
	advance.
	• Write a prescribed scan time (which is longer than the actual scan time) to D8039 and set M8039

- Write the setting value of the start point of the tilt signal to D10 and the setting value of the end point of the tilt signal to D11 in advance. When X10 = ON, the setting value of D10 moves towards D11 (increases), and the elapsed time (n = 100 scans) It is stored in D12, and the number of scans is stored in D13.
- In the program, first drive M1039 to ON to fix the scan cycle, and then use the MOV instruction to write the fixed scan cycle setting value to the special data register D1039. Assuming that the value is 30ms, taking the above program as an example, n = K100, the time from D10 to D11 is 3 seconds (30ms × 100).
- During the execution of the instruction, when the start signal X10 turns OFF, the execution of the instruction is stopped. When X10 turns ON again, the content of D12 is reset to 0 and recalculated.
- ♦ When M8026 = OFF, M1029 = ON, the content of D12 is reset to the setting value of D10.

12.9 ROTC/Rotary Table Control

This instruction is suitable for efficient control of the rotary table for putting/taking a product into/out of the rotary table.

instruction	Operand type		Function						
	S.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
FNC68 ROTC	m1 m2	9 steps	ROTC	Continuous Operation					
	D.								
	S.	•	Data register for counting 16-bit binary Target device: D, R, retouch 16-bit binary						
	m1		Number of divisions 16-bit binary Target device: K, H 16-bit binary						
Operand	m2	Number of low-speed sections Target device : K, H						16-bit binary	
	D.		Head bit device number to be driven 16-bit binary Target device: Y, M, S, D □.b, retouch 16-bit binary						

Explanation	16-bit op	peration (ROTC)							
of function	The table	e rotation is controlled by "m2", S .and D . so	o that a proc	duct can be efficiently put into or taken					
and	out of the	out of the rotary table divided into "m1" (=10) sections as shown in the figure below.							
operation	1) Dociet	Port No. 0 Port No. 0 Port No. 0 Port No. 0 Petection Product 0 Detection Switch 2 2 0 Detection 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Construction of the second sec	m1 m2 D. K10 K2 M0 umber of low condition register sections (bit device) 6 rward rotation 5 Rotary table					
	S.	Sets the port No. to be called.							
	S.+1	Sets the port No. to be called.		Set them in advance using a					
	S.+2	Sets the product No. to be called.	transfer instruction.						
	ý	er (bit device) specifying the calling conditio							
	D.	A phase signal		an internal contact circuit in advance					
	D.+1	B phase signal	which is dr	iven by the input signal (X)					

D.+2	Zero point detection signal				
D.+3	Forward rotation at high speed				
D.+4	Forward rotation at low speed				
D.+5	Stop				
D.+6	Backward rotation at low speed				
D.+7	Backward rotation at high speed				
1) Rota - Provid of the	conditions ation detection signal: $X \rightarrow D$. le a 2-phase switch (X000 and X001) for detecting the rotation direction (forward or backward) table and the switch X002 which turns ON when the product No. 0 reaches the port No. 0.				
	2-phase switch				
	M0 M0 D· M0 D· H1 M1 M1 M1 M2 M2 M2 M2 M2 M2 M2 M2 M2 M2				
2) The	counter S. detects which number of product is located at the port No. 0.				
3) Reg	isters specifying the calling condition: +1, +2				
a)	Set the port No. to be called in S. +1				
	Set the product No. to be called in				
	nber of divisions m1 and number of low-speed sections m2				
Spe	cify the number of divisions m1 of the table, and number of low-speed sections m2.				
	e command input is set to ON and this instruction is executed, the result will be automatically				
output to	D.+3 ~ D.+7				
When th	e command input is set to OFF, D.+3 ~ D.+7 are set to OFF accordingly.				
Multiple	activation of the rotation detection signal (D. ~ D.+2) in one division				
	nple, when the rotation detection signal (D. ~ D.+2) is activated 10 times in one division, set a				
	ultiplied by "10" to each division, port No. to be called and product No. to be called.				
As a res	ult, an intermediate value of the division number can be set to a low-speed section.				

Coolmay[®] 12.10 SORT/ Tabulated Data

This instruction sorts a data table consisting of data (lines) and group data (columns) based on a specified group data (column) sorted by line in ascending order. This instruction stores the group data (columns) in serial devices. On the other hand, SORT2 (FNC149) instruction stores the data (lines) in serial devices facilitating the addition of data (lines), and sorts a table in either ascending or descending order.

instruction	Operand type		Function						
FNC69 SORT	S. m1 m2 D. n	16-bit Instruction 11steps	Mnemonic	Operation Condition Continuous Operation		32-bit Instruction	Mnemonic	Operation Condition	
	Head device number storing the data table [which occupies m1 × m2 S. points] Target Device: D, R								
	m1		Number of data (lines) [1 ~ 32] Target Device : K, H						
Operand	m2	Number of Target Dev		columns)[1~(6]			16-bit binary	
Head device number storing the operation result [which occums] D. m2 points] Target Device: D, R Column number of the group data (column) used as the basis n [1 to m2] Target Device: D, R, K, H									
					sis of sorting				

	17-bit operation (SORT)
	In the data table (sorting source) having (m1 \times m2) points from S. , data lines are sorted in the
	ascending order based on the group data in the column No. "n", and the result is stored in the
	data table (sorting result) having (m1 × m2) points from D .
	Command input FNC 69 SORT SORT Instruction execution complete flag M8029 INSTRUCTION EXECUTION EXECUTION EXECUTION COMPLETE Flag for SORT Instruction
Ca	utions
•	Do not change the contents of operands and data while the instruction is executed.
•	Before executing the instruction again, set the command input to OFF.
\bullet	Only one instruction can be used in a program.

Coolmay	8							Handy Instruction
	When the sar	ne device i	s specified	in S. and I	D.			
	The source da Take special (-			•	execution is	completed.
Program example	xo	SORT	D0	К5	К5	D50	D100	

When X0 = ON, specify to execute the data sorting job. When sorting is completed, M8029 = ON. Please do not change the contents of the sorted data during the execution of the instruction. If you want to reorder the data, please turn off and turn on X0 again.

Example of sorted data structure

			$\leftarrow \text{Number of data: m2} \rightarrow $										
	Data field bit												
		1	2	3	4	5							
		Student ID	Chinese	English	mathemat ics	Physicoch emical							
	1	(D0)1	(D5)90	(D10)75	(D15)66	(D20)79							
1:	2	(D1)2	(D6)55	(D11)65	(D16)54	(D21)63							
m1	3	(D2)3	(D7)80	(D12)98	(D17)89	(D22)90							
Ļ	4	(D3)4	(D8)70	(D13)60	(D18)99	(D23)50							
	5	(D4)5	(D9)95	(D14)79	(D19)75	(D24)69							

The sorted data when D100 = K3:

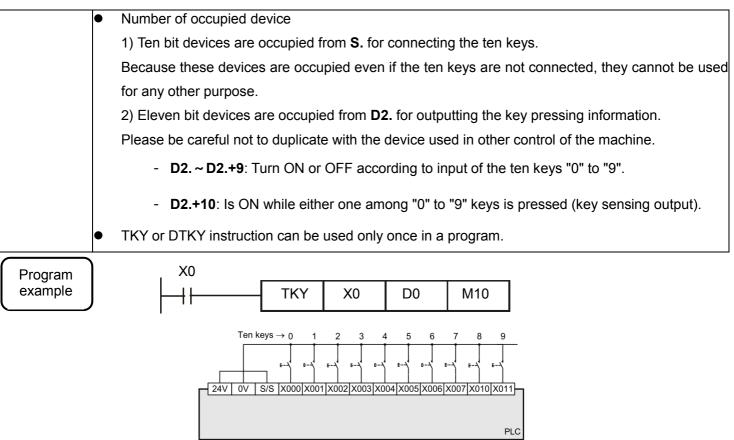
		$\leftarrow \text{Number of data: m2} \rightarrow $								
			Data field bit							
		1	2	3	4	5				
		Student ID	Chinese	English	Math	Physicoch e-mical				
	1	(D50)4	(D55)70	(D60)60	(D65)99	(D70)50				
	2	(D51)2	(D56)55	(D61)65	(D66)54	(D71)63				
↑Date number: m1↓	3	(D52)1	(D57)90	(D62)75	(D67)66	(D72)79				
	4	(D53)5	(D58)95	(D63)79	(D68)75	(D73)69				
	5	(D54)3	(D59)80	(D64)98	(D69)89	(D74)90				

• The sorted data when D100 = K5:

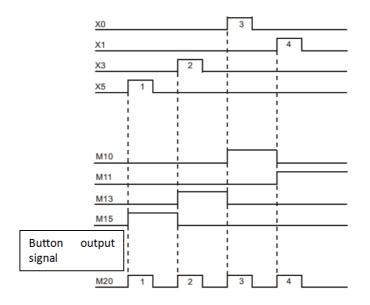
			$\leftarrow \qquad \text{Number of data: m2} \rightarrow$					
				Data field b	it			
		1	2	3	4	5		
		Student ID	Chinese	English	Math	Physicoch e-mical		
	1	(D50)4	(D55)70	(D60)60	(D65)99	(D70)50		
	2	(D51)2	(D56)55	(D61)65	(D66)54	(D71)63		
†Data number: m1↓	3	(D52)5	(D57)95	(D62)79	(D67)75	(D72)69		
	4	(D53)1	(D58)90	(D63)75	(D68)66	(D73)79		
	5	(D54)3	(D59)80	(D64)98	(D69)89	(D74)90		

13 External I/O

FNC				Supp	ort Model
NO.	Mnemonic	Function	3G series PLC	2N series PLC	MX2N series PLC
70	TKY	Number key input	*		
71	KHY	Hexadecimal numeric key input	*		
72	DSW	Digital switch	*		
73	SEGD	7-segment decoder	*	*	*
74	SEGL	7SEG hour and minute display	*		
75	ARWS	Arrow switch	*		
76	ASC	ASCII data input	*		
77	PR	ASCII print	*		
78	FROM	BFM read	*		Install RS485 / RS232 as
79	то	BFM input	*		MODBUS-RTU master station function, used to read / write slave station data


13.1 TKY/Ten Key Input

This instruction sets data to timers and counters through inputs of the ten keys from "0" to "9".


	instruction	Opera type	nd	Function					
	FNC70 TKY	S. D1.	16-bit Instruction 7steps	Mnemonic TKY	Operation Condition Continuous Operation		32-bit Instruction 13 steps	Mnemonic DTKY	Operation Condition Continuous Operation
D	-	D2.							
		S.	devices are o	occupied]	er from which , S, D. b, retou		he ten keys	is input [10	bit
	Operand	D1.		Word device number storing the data Target Device : KnY, KnM, KnS, T, C, D, R, V, Z, retouch					
		D2.	devices are o	Head bit device number storing the key pressing information [11 devices are occupied] Target Device : X, Y, M, S, D. b, retouch					bit

1. 16-bit operation(TKY)
D1. stores a numeric value input [S. ~ S.+9] +9 connected to the ten keys. Output informations for
key pressing and key sensing are output to D2. ~ D2. +10.
1) Numeric value D1 .when an input value is larger than "9999", it overflows from the most significant
digit.
Command input FNC 70 S· D1· D2· TKY S· D1· D2·
2. 32-bit operation(DTKY)
[D1.+1, D.] store a numeric value input from[S. ~ S.+9] connected to the ten keys. Output
informations for key pressing and key sensing are output to D2. ~ D2. +10
1) Numeric value D1. when an input value is larger than "9999", it overflows from the most significant digit.
 An input numeric D1. value is stored in the binary format.
 Key pressing information [D2. ~ D2.+10]
- For the key pressing information, D2. ~ D2.+9 turn ON or OFF according to the pressed keys.
- D2.+10 is ON while either one among "0" to "9" keys is pressed (key sensing output).
 When two or more keys are pressed at the same time, only the first key pressed is valid.
 Though the contents of D1. do not change, all of D2. ~ D2.+10 turn OFF.

- The command specifies that the 10 input terminals starting with X0 are connected to 10 keys from 0 to 9. When X20=ON, the command is executed, and the value entered by the keyboard is stored in D0 in the form of BIN value, and the key is placed in M10~M19.
- ♦ When the ten keys are pressed in the order "[1] → [2] →[3] → [4]" shown in the figure, "5301" is stored in (D0).
 When an input value is larger than "9999", when the number exceeds 4 digits, it overflows from the most significant digit.
- When X2 is pressed, M12 turns ON and remains ON until another key is pressed. Other keys work in the same way.
- ♦ When any key among X0~X11 is pressed, one of M10~M19 corresponds to ON.
- When pressing a key, M20=ON.
- When conditional contact X20 turns OFF, the value before D0 does not change, but all M10~M20 turn OFF.

This instruction allow 16 key (0 to F) 4-digit (byte) input. Keys 0 to 9 stores numerical values, and keys A to F represent function keys. When the extension function is set to ON, hexadecimal keys 0 to F all store their corresponding numerical values.

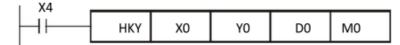
	instruction		Operand type				Functio	n		
			S.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC71 HKY		D1. D2.	9 steps	НКҮ	Continuous Operation		17 steps	DHKY	Continuous Operation
D			D3.							
			S.		vice numbe	e r to be used i uch	(Four de	vices occu	pied.)	bit
			D1.		vice numbe vice: Y, retou	r to be used (ich	(Four de	vices occu	pied.)	bit
	Operand Device number storing the numerical input from the 16 keys D2. Target Device: T, C, D, R, V, Z, retouch					BIN16/32bit				
			D3.	informatio	on(Eight dev	number stor rices are occu , D. b, retouch	ipied.)	e key pro	essing ON	bit

Explanation of	1.	16-bit operation(HKY)
function and		Signals [S. ~ S.+3] and [D1. ~ D1.+3] connected to the 16 key input (0 to F) are scanned.
operation		When a key 0 to 9 is pressed, the corresponding numeric value is shifted into D2. from the least significant byte, and D3.+7 turns ON.
		When a key A to F is pressed, the corresponding key press information bit [D3. ~ D3.+5] turns ON,
		and D3.+6 turns ON.
		1) When an input value D2., D3.+7 is larger than "9999", it overflows from the most significant digit.
		$\begin{array}{c c} Command \\ \hline input \\ HKY \\ \hline HKY \\ \hline \\ HKY \\ \hline \\ HKY \\ \hline \\ $
	2.	32-bit operation(DHKY)
		Signals [S. ~ S.+3] and [D1. ~ D1.+3] connected to the 16 key input (0 to F) are scanned.
		When a key 0 to 9 is pressed, the corresponding numeric value is shifted into [D2.+1, D2.] from the least significant byte, and D3.+7 turns ON.
		When a key A to F is pressed, the corresponding key press information bit[D3. ~ D3.+5] turns ON.
		And D3.+6 turns ON.
		1) When an input value [D2.+1, D2.], D3.+7 is larger than "99,999,999", it overflows from the most

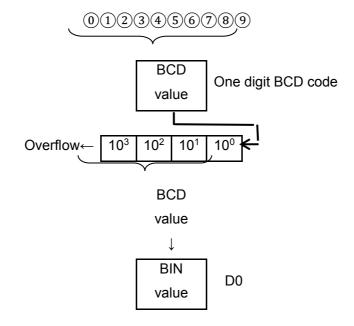
External I/O

significant digit.

- About using the keys from 0 ~ 9 to enter values D2., D3.+7 or [D2.+1, D2.], D3.+7
 - The entered value is stored in D2.or [D2.+1, D2.] as BIN (binary number).
 - When any key among **0~9** is pressed, **D3.+7** corresponds to ON.
- Key pressing information for the keys A to F:
 - Six devices starting from **D3.** corresponding to keys A to F turn ON.
 - The key sensing output D3.+6 turns ON when any key A to F is pressed.

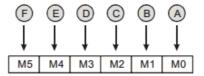

Key	Key pressing information	Кеу	Key pressing information
А	<u>D</u> 3•	D	D3• +3
В	D3• +1	E	D3• +4
С	D3• +2	F	D3• +5

- When two or more keys are pressed at the same time, the first key pressed is valid.
- Though the contents of **D2.** do not change, to **D3.** ~ **D3.+7** turn OFF.
- Number of devices occupied
 - 1) Four devices are occupied from the head X device **S**. for connecting 16 keys.
 - 2) Four devices are occupied from the head Y device **D1.** for connecting 16 keys.
 - Eight devices are occupied from the head device D3. for outputting the key pressing information.
 Make sure that these devices are not used by other machine controls.
 - D3. ~ D3.+5: Key pressing information for the keys A to F
 - D3.+6 : Key sensing output for the keys A to F
 - **D3.+7** : Key sensing output for the keys 0 to 9
- HKY or DHKY instruction can be used only once in a program.
- HKY and DHKY instructions are executed in synchronization with the operation cycle of the PLC.
 8 scan cycles are required to finish reading the keys.
- Related devices:


Device	Name	Content
M8029		OFF: Data is being output to D1. ~ D1.+3 or the instruction is not
	Extension	executed yet.
	function flag	ON : A cycle operation of outputting data to D1. ~ D1.+3 (scan of
		the keys 0 to F) is completed.
M8167	nstruction	HKY(FNC 71)Instruction HEX data processing function
	execution	OFF: Ten-keys and function keys
	complete flag	ON: Hexadecimal keys

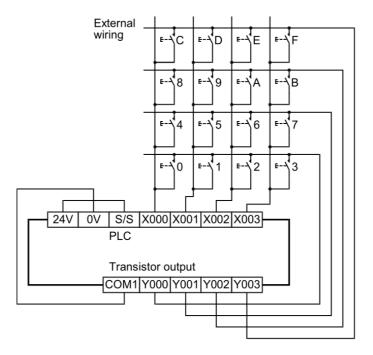
Coolmay®	
----------	--

Program example


- The instruction specifies 4 input terminals such as X0~X3 and 4 input terminals such as Y0~Y3 to form a keyboard for scanning 16 keys. When X4=On, the instruction is executed, and the value input by the keyboard is stored in D0 in the form of BIN value, and the key is placed in M0~M7.
- Digital input:

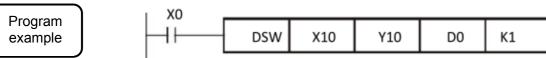
• Function key input:

1. When you press the A key, M0=On and hold, then when you press the D key again, M0 becomes OFF, M3=ON and hold.


2. Press multiple buttons at the same time, whichever comes first is preferred.

- Button output signal:
 - 1. When any key of A~F is pressed, M6=ON once.
 - 2. When any key of 0~9 is pressed, M7=ON once.
- When conditional contact X4 turns OFF, the input value before D0 remains unchanged, but all M0~M7 turn OFF.

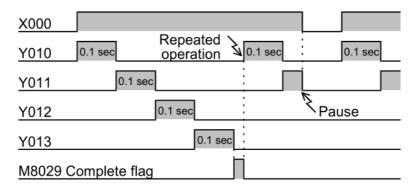
External wiring:

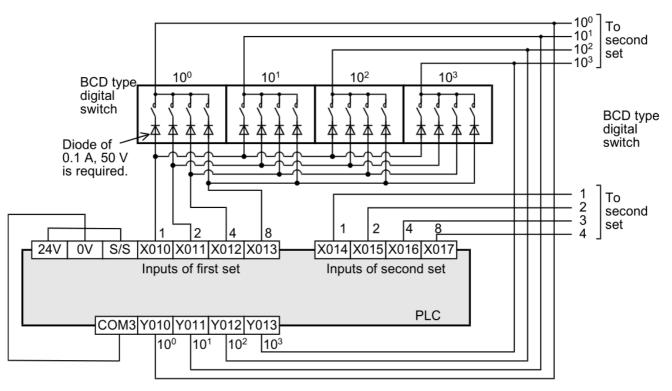

13.3 DSW/Digital Switch

This instruction reads the set value of digital switches.

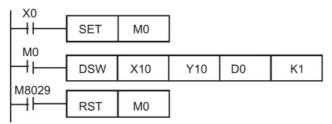
This instruction can read a set of 4 digits (n = K1) or two sets of 4 digits (n = K2).

Instru	iction	Operand				Functio	n					
modu		Туре										
			16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation			
		S.	Instruction	Winemonie	Condition		Instruction	Winchionic	Condition			
FNC	272	D1.	9 steps	DSW	Continuous							
DS	w	D2.	9 sieps	0300	Operation							
		n										
			Head devid	ce (X) numbe	er connected to	o a digital	l switch(Fou	r devices are				
		S.	occupied.)	bit								
			Target Dev	Target Device: X, retouch								
			Head devi									
		D1.	devices are o	bit								
Oper	rand		Target Dev	vice: Y, retou	ich							
			Device nur	mber storing	the numeric va	alue of a	digital switch	n("n" devices				
		D2.	are occupi	ed.)					BIN16 bit			
			Target Dev	vice : T, C, D,	R, V, Z, retou	ich						
		n	Total numb	Total number of 4-digit switch sets (4 digits/set) (n = 1 or 2)								
		n	Target Dev	Target Device: K, H								


Explanation of	16-bit c	operation(DSW)										
function and	The val	ue of each digital	switch connected to ${f S}.$ is input in the time division method (in which the									
operation	value is	input from the 1st	digit in turn by the output signal at the interval of 100 ms), and stored to									
	D2.											
	1) Data	D1.										
	- A	numeric value from	n 0 to 9999 (up to 4 digits) can be read.									
	- A	numeric value is s	tored in the binary format.									
	- Tł	ne first set is stored	d to D2. , and the second set is stored to D2.+1 .									
	2) Spec	ification of the nun	nber of sets ("n")									
	- W	When using one set of 4 digits [n = k1] A 4-digit BCD digital switch connected to S. ~ [S.+3] is										
	r	ead in turn by the	strobe signal D1.~[D1.+3], and stored in the binary format to D2.									
	- W	hen using two sets	s of 4 digits [n = k2],A 4-digit BCD digital switch connected to S. ~ [S.+3]									
	i	s read in turn by th	e strobe signal D1.~[D1.+3], and stored in the binary format to D2.									
	 When the provided of the provided	D1. ~ [D1.+3], an	act turns OFF. Though the contents of D2. do not change, all of D1. ~									
	Device	Name	Description									
			OFF: Data is being output to D1.~D1.+3 or the instruction is not									
		Instruction	executed yet.									
	M8029	execution	ON : A cycle operation of outputting data to D1.~D1.+3 (scan of the									
			1st to 4 th digits) is completed.									
		X0										


The first group of DIP switch circuits is composed of X10~X13 and Y10~Y13, and the second group of DIP switch circuits is composed of X14~X17 and Y10~Y13. When X0=On, the instruction starts to execute, the

setting value of the first group of dial switches is read and converted into BIN value and stored in D0, and the setting value of the second group of digital switches is read and converted into BIN value and stored To D1.

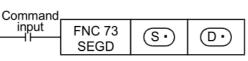

- While X000 is ON, Y010 to Y013 turn ON in turn at every 100 ms. After one cycle is finished, the execution complete flag M8029 turns ON.
- During the period when X0 is ON, Y10~Y13 will turn ON in sequence every 100ms. After the loop operates once, the end flag M8029 will be executed.

Connection diagram

• How to use this instruction in a relay output type PLC

1) While M0 (digital switch read input) is ON, DSW (FNC 72) is driven.

2) DSW (FNC 72) completes one cycle of operation, and remains driven until the execution complete flag (M8029) turns ON.


External I/O

13.4 SEGD/Seven Segment Decoder

This instruction decodes data, and turns the seven-segment display unit (1 digit) ON.

	Instruction		Operand Type		Function								
	FNC73 SEGD	Ρ	S. D.	16-bit Instruction 5 steps	Mnemonic SEGD SEGDP	Operation Condition Continuous Operation Pulse (Single) Operation		32-bit Instruction	Mnemonic	Operation Condition			
			S.		l device to be vice : KnX, K	e decoded nY, KnM, KnS	, T, C, D,	R, V, Z, K, I	H, retouch	BIN16 bit			
0	perand Typ	be	D.	segment display uni	t	storing the dat			n the seven-	BIN16 bit			

Explanation of
function and
operation16-bit operation(DSW)function and
operation"0" to "F" (hexadecimal numbers) in low-order 4 bits (1 digit) of S. are decoded to data for the seven-
segment display unit, and stored the low-order 8 bits of D.

 The number of occupied points of the device, low-order 8 bits of D. are occupied, and high-order 8 bits do not change.Seven-segment decoding table:

S.		Seven				D.					
Hexadeci- mal num- ber	b3~b0	segment Configurati- on	 В7	B6	В5	В4	В3	B2	B1	В0	Display data
0	0000		 0	0	1	1	1	1	1	1	٥
1	0001		 0	0	0	0	0	1	1	0	Ι
2	0010	BO	 0	1	0	1	1	0	1	1	5
3	0011	85 B6 B1	 0	1	0	0	1	1	1	1	3
4	0100	B4 B2	 0	1	1	0	0	1	1	0	Ч
5	0101	B3	 0	1	1	0	1	1	0	1	5
6	0110		 0	1	1	1	1	1	0	1	6
7	0111		 0	0	1	0	0	1	1	1	ר

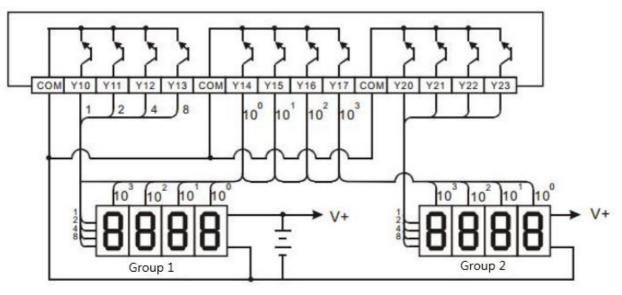
8	1000		0	1	1	1	1	1	1	1	8
9	1001		0	1	1	0	1	1	1	1	9
А	1010		0	1	1	1	0	1	1	1	R
В	1011		0	1	1	1	1	1	0	0	Ь
С	1100		0	0	1	1	1	0	0	1	C
D	1101		0	1	0	1	1	1	1	0	d
E	1110		0	1	1	1	1	0	0	1	5
F	1111		0	1	1	1	0	0	0	1	F

Program example

X10 SEGD D10 K2Y10

When X10=ON, the contents (0~F: hexadecimal) of the lower 4 bits (b0~b3) of D10 are decoded into 7-segment display output, and the decoding result is temporarily stored in Y10~Y17. If the specified data exceeds 4 bits, the contents of the 4 bits are still removed for decoding.

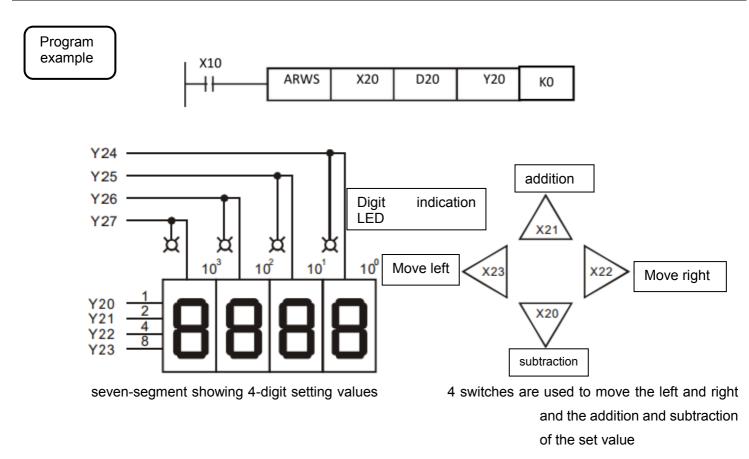
13.5 SEGL/Seven Segment With Latch


This instruction controls one or two sets of 4-digit seven-segment display units having the latch function.

In	struction		16-bit				Functio	n						
		Ins	struction											
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation				
			S.	Instruction		Condition		Instruction		Condition				
	FNC74		о. D.	7 steps	SEGL	Continuous								
	SEGL			7 51005	OLOL	Operation								
			n											
	I		<u> </u>	Head word	DINIAG bit									
			S.	Target Dev	H, retouch	BIN16 bit								
			D.	Head Y nu		bit								
C	Operand		υ.	Target Dev	bit									
				Parameter	number [set	ting range: : K	0(H0)~ł	<7(H7)]						
			n	Target Dev	BIN16 bit									
Exp	lanation	of	16-bit	operation(S										
-	ction an		The 4-digit numeric value stored in S. is converted into BCD data, and each digit is output to the											
-	peration	-	seven-											
			segment display unit with the BCD decoder in the time division method.											
			209.1101											

	Command
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
v	When using one set of 4 digits (n = K0 to K3)
	1) Data and strobe signal
	A 4-digit numeric value stored in S. is converted from binary into BCD, and each digit is output in
	turn from D. ~ [D.+3] in the time division method. The strobe signal is output in turn from [D.+4] ~
	[D.+7] in the time division method also to latch one set of 4-digit seven-segment display unit. 2) For S. , binary data in the range from 0 to 9999 is valid.
v	When using two sets of 4 digits (n = K4 to K7)
	1) Data and strobe signal
	a) 1st set of 4 digits
	A 4-digit numeric value stored in S. is converted from binary into BCD, and its each digit is
	output in turn from D.~[D.+3] in the time division method.The strobe signal is output in turn
	from [D.+4] ~ [D.+7] in the time division method also to latch the first set of 4-digit seven-
	segment display unit.
	b)2nd set of 4 digits
	A 4-digit numeric value stored in S.+1 is converted from binary into BCD, and its each digit is
	output in turn from D.+10 ~ D.+13 in the time division method. The strobe signal is output in turn
	fromD.+4~D.+7 in the time division method also to latch the second set of 4-digit seven-
	segment display unit. (The strobe signal outputs D.+4 ~ D.+7 are shared by the 1st and 2nd
	sets.)
	2) For S. and S.+1 , binary data in the range from 0 to 9999 is valid.
	It is determined by n to scan and output 4-digit seven-segment display with 1 set or 2 sets, and n is also used to specify the positive and negative logic output of PLC output.
	• The scan time (operation cycle) multiplied by 12 is required to update (one or two sets of) the 4- digit display.
	• When the command contact is set to OFF in the middle of an operation, the operation is paused.
	When the command contact is set to ON again, the operation is started from the beginning.
	Number of occupied devices
	When one set of 4 digits is used: 1 device is occupied from the head device specified in S .
	8 devices are occupied from the head device specified in D .
	When two sets of 4 digits are used: 2 devices are occupied from the head device specified in S.
	12 devices are occupied from the head device specified in D.
	Note: Even if the number of digits is small, the occupied points cannot be used for other purposes.
Program	X1 SEGL D10 Y10 K4

- When X10=ON, the instruction starts to be executed, and Y10~Y17 form a seven-segment display scanning circuit. The value in D10 is converted into BCD code and sent to the first group of seven-segment display. The value in D11 is converted into BCD The code is sent to the second group of seven-segment displays and displayed. If the value in D10 or D11 exceeds 9,999, an operation error will occur.
- When X10=ON, Y14~Y17 will automatically scan cyclically. Each scan cycle needs 12 scan cycles, and the scan completion flag signal M9029=ON for one scan cycle.
- Seven-segment display units wiring details



13.6 ARWS/Arrow Switch

This instruction inputs data through arrow switches used for shifting the digit and incrementing/decrementing the numeric value in each digit.

	Instruction	1	Operand type				Functio	n						
	FNC75 ARWS		S. D1. D2.	16-bit Instruction 9 steps	Mnemonic ARWS	Operation Condition Continuous Operation		32-bit Instruction	Mnemonic	Operation Condition				
			n											
			S.		evice numbe vice: X, Y, M	r to be input , S, D .b				16-bit binary				
		-	D1.		Word device number storing data converted into BCD Target Device : T, C, D, R, V, Z									
Operand D2. Head bit device (Y) number connected to seven-segment display Target Device: Y									display unit	16-bit binary				
		ange: K0 to	16-bit binary											
Ex	planation	of	16-bit	Target Devoperation(AF										
	nction an				-	tod to the inn			n coamont d	isplay unit having				
-	operation	-	Four a	now switches			uis 3.~ 3	53 , a seve	in-segment u	isplay unit having				
			the BC	D decoder is	connected to	the outputs D)2. ~ D2.·	+7 , and a nu	meric value i	s input to D1.				
			D1. act	ually stores a	16-bit binar	y value in the	range fro	m 0 to 9999						
				mand		,								
				Put FNC 7 ARW		D1 · D	2	n						
			1) Sp	ecifying the r	umber of dig	gits of the seve	en-segme	ent display u	nit having the	BCD decoder n				
			In the	e explanation	below, "n" is	set to "4" (up	to the 10) ³ digit).						
			2) Op	peration of the	e digit selecti	on switches(S	.+2、S.+	-3)						
			- C	peration whe	n the lower o	digit input S.+2	turns O	N						
				very time the $^{3}\rightarrow 10^{2}\rightarrow 10^{1}-$	•	switch is pre	essed, th	e digit spec	cification cha	nges in the way				
			- C	peration whe	n the higher	digit input S.+	3 turns C	DN						
				very time the $\rightarrow 10^0 \rightarrow 10^1 \rightarrow 7^1$	•	git switch is	pressed,	the digit	specification	changes in the				
			3) Op	peration of the	ELED for dis	playing a sele	cted digit	(D2.+4 ~ D2	2.+7)					
			A sp	ecified digit ca	an be display	/ed by the LED	D offered	by the strob	e signals D2 .	+4 ~ D2.+7				

	4) Operation of the switches for changing data in each digit (S., S.+1)
	In a digit specified by a digit selection switch described above, data is changed as follows:
	- When the increment input turns ON
	Every time the increment switch is pressed, the contents of D1. change in the way
	$0 \rightarrow 1 \rightarrow 2 \rightarrow \dots \rightarrow 8 \rightarrow 9 \rightarrow 0 \rightarrow 1$
	- When the decrement input turns ON
	Every time the decrement switch is pressed, the contents of D1. change in the way
	$0 \rightarrow 9 \rightarrow 8 \rightarrow 7 \dots 1 \rightarrow 0 \rightarrow 9$
	The contents can be displayed in the seven-segment display unit.
	As described above, a target numeric value can be written to D1 .using a series of operation while
	looking at the seven-segment display unit.
	Number of ecoupied devices
•	Number of occupied devices
	Four input devices are occupied starting from S . Eight output devices are occupied starting from D .
•	ARWS instruction can be used only once in a program. When ARWS instruction should be used
	two or more times, use the indexing (V, Z) function.

- This instruction is executed, X20 is defined as the down key, X21 is defined as the up key, X22 is defined as the right key, X23 is defined as the left key, and the operation and display of the external set value are performed by using the up, down, left and right keys. Store the setting value in D20, setting value range: 0~9,999.
- ♦ When X10=ON, the command start digit 10³ is the effective setting digit. If the left button is pressed, the effective setting digit will show a cycle of 10³→100⁰→10¹→10²→10³→100⁰.
- ◆ If you press the right shift button, the effective setting bit will show the direction of

 $103 \rightarrow 102 \rightarrow 101 \rightarrow 100 \rightarrow 103 \rightarrow 102$ cyclically jumping. Simultaneously with the cycle, the digit indicator connected by Y24~Y27 is also cycled to indicate the effective digit setting.

◆ If you press the up button, the content of the effective setting digits will change from 0→1→2→...8→9→0→1. If the down button is pressed, the content of the effective setting digits changes from 0→9→8→...1→0→9. At the same time, the changed value is also displayed on the seven-segment display.

13.7 ASC/ASCII Code Data Input

This instruction converts a half-width alphanumeric character string into ASCII codes. Use this instruction for selecting one among two or more messages and displaying it on an external display unit.

Instruction	Operand type		Function								
		16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation			
		Instruction	whichionic	Condition		Instruction	WITEHTOTIC	Condition			
FNC76 ASC	S. D	11 steps	ASC	Continuous Operation							
Operand	S.	computer	-width alpha vice: Charac	anumeric cha ter string	racters	input from	•	Character string(onlyASCII codes)			
	D.		l device num vice: T, C, D	ber storing AS , R, retouch	CII data			16-bit binary			

Explanation of	16-bit operation(ASC)								
function and	The half-width alphanumeric characters specified in S. are converted into ASCII codes, and each								
operation	ASCII								
	code is transferred in turn to D .								
	• S.can handle half-width characters A to Z, 0 to 9 and symbols (, but cannot handle regular-width								
	characters).								
	A character string is entered when a program is created with a programming tool.								
	• D. stores converted ASCII codes in the order of low-order 8 bits and high-order 8 bits by 2								
	characters/								
	byte at one time.								
	Command input FNC 76 S D High-order 8 bits Low-order 8 bits ASC O 0 42 (B) 41 (A)								
	Example: ABCDEFGH D·+1 44 (D) 43 (C)								
	(D·)+2 46 (F) 45 (E)								
	(D •)+3 48 (H) 47 (G)								
•	Related devices								

	Device	Name	Content				
		Extension	OFF: Two characters are stored to low-order 8 bits and high-order 8 bits in				
	M8161	function	this order at one time (2 characters/word).				
		flag	ON : One character is stored to low-order 8 bits at one time (1 character/word).				
		ber of occupie					
			cupies as many devices as the number of characters divided by "2". (The decimal				
	-	is rounded up					
	M816	61=ON, D. occ	upies as many devices as the number of characters in the character string.				
			can be used only once in a program. When ARWS instruction should be used use the indexing (V, Z) function.				
Program example)		ASC ABCDEFGH D0				
			b15 b0 D0 42H (B) 41H (A)				
			D1 44H (D) 43H (C)				

 upper 8 bits
 lower 8 bits

 ◆
 When X0=ON, specify A~H to be converted into ASCII code and temporarily stored in D0~D3.

D2

D3

When M8161=ON, the converted ASCII code of each letter will occupy the lower 8 bits (b7~b0) of a register, and the upper 8 bits are invalidly filled with 0, which means that a letter is used to store a letter.

46H (F)

48H (H)

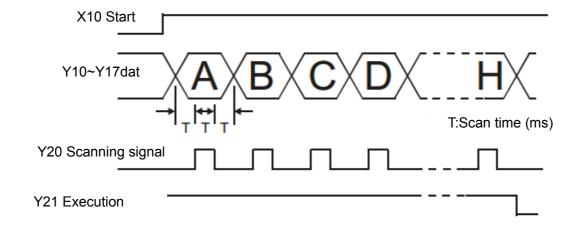
	b15	b0
D0	00 H	41H (A)
D1	00 H	42H (B)
D2	00 H	43H (C)
D3	00 H	44H (D)
D4	00 H	45H (E)
D5	00 H	46H (F)
D6	00 H	47H (G)
D7	00 H	48H (H)
	$\overline{}$	

upper 8 bits

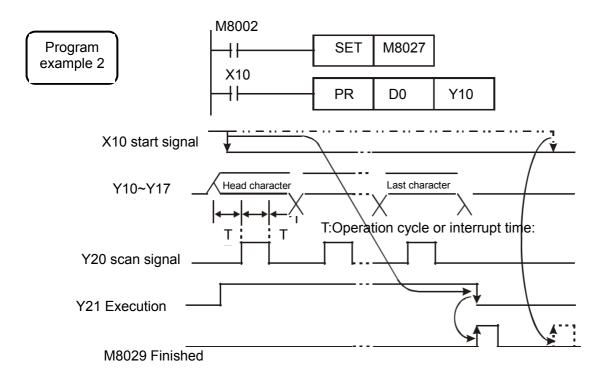
lower 8 bits

45H (E)

47H (G)

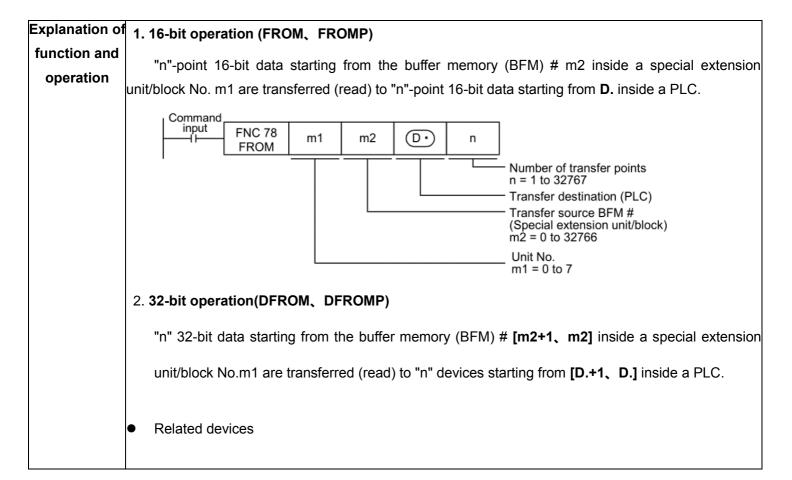


13.8 PR/Print (ASCII Code)


This instruction outputs ASCII code data to outputs (Y) in parallel.

Instruction	Operand Type				Funct	ion					
FNC77 PR	S. D	16-bit Instruction 5 steps	Mnemoni PR	Operatio c Conditio Continuc Operatio	on Pus	32-bit Instruction	Mnemonic	Operation Condition			
Operand	S.			storing ASC D, R, retouc		a		Character string (only ASCII codes)			
	D.	Head outp			ASCII code	e data is outp	ut	16-bit binary			
Explanation o		operation(PF	•								
operation		 ASCII codes stored in low-order 8 bits (1 byte) of S. ~ S.+7 are output to D. ~ D.+7 in turn by one character at a time in the time division method. Related devices 									
		Devices		Name		C	content				
			clear)	Name PR model		C e serial outpu te serial outp	It (fixed to 8				
	 (from R While t operati ON onl instruct index n This ins If the s timer in When ' 	Device M8027 UN→STOP of the command on type instru y while M802 tions, and onl nodification (\ struction is ex can time is s nterrupt function '00H (NUL co	input is Ol action is us 7 is ON. W y one can /, Z) function (, Z)	PR model N: Even if the ed, executio /hile the com be used in the on programm synchronization onstant scar used.	ON :16-by e command n is comple nmand input ne program. ning. tion with the n mode can e data (whil	e serial output te serial output input is conti ted after a se t is OFF:The To use more scan time. be used. If t e M8027 is C	ut (fixed to 8 ut (1 to 16 c nuously ON ries of outpu output is all than one, p he scan mo DN).The instr	haracters) or if the pulse its. M8029 turns			

- When M8027=OFF and X10=ON change, the instruction is executed, Y10 (low bit) ~ Y17 (high bit) is designated as the data output point, the scan signal is designated Y20, and the monitoring signal during execution is designated as Y21. This mode can perform sequential output of 8 words. And during the output, if the conditional contact is OFF, the data output will be stopped immediately, and all the outputs will be turned OFF.
- When X10 turns OFF during the execution of the instruction, the data output is interrupted, and when X10 turns ON again, the data is sent again.


- PR instruction is a serial output instruction with 8 bits. When special auxiliary relay M8027=Off, it can execute a serial output of up to 8 words. When M8027=ON, it can execute a serial of 1~16 output.
- ♦ When M8027=ON, X10 changes from OFF→ON, the instruction is executed, Y10 (low bit) ~ Y17 (high bit) is designated as the data output point, the scan signal is designated Y20, and the monitoring signal during execution is designated Y21. This mode can perform sequential output of 16 words. And during the output, if the conditional contact is OFF, it will stop after the data output is completed.
- If 00H (NUL) is encountered in the character string, it means the end of the character string, and then the text will not be processed.
- ♦ When conditional contact X10 is ON→OFF, the data output automatically stops after one cycle. However, if X10 is always ON, M8029 will not operate.

13.9 FROM/Read From A Special Function Block

This instruction reads the contents of buffer memories (BMF) in a special extension unit/block attached to a PLC. When a large capacity of buffer memory (BFM) data is read by this instruction, a watchdog timer error may occur. When bad effect is not given to the control even if data to be read is divided, use RBFM (FNC278) instruction.

	Instruction		Operand	Function						
			Туре							
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
			m1	Instruction		Condition		Instruction	Witchionio	Condition
	FNC78		m2	9 steps	FROM	Continuous		17 steps	DFROM	Continuous
	FROM		D.	0 01000	TROW	Operation		17 51005	DIROW	Operation
			n.		FROMP	Pulse (Single)			DFROMP	Pulse (Single)
D		Ρ				Operation				Operation
				Unit numb	er of a speci	al extension unit	/block	I		
			m1	(K0 to K7 f	rom the righ	t side of the mai	n unit)			16/32-bit binary
				Target Dev	vice : D, R, K	К, Н				
			m2	Transfer so	ource buffer	memory (BFM)	numbe	r		16/32-bit binary
	Operand		1112	Target Dev	vice : D, R, K	К, Н				10/02-bit birldi y
		Transfer destination device number D.					16/32-bit binary			
			υ.	Target Dev	Target Device: KnY, KnM, KnS, T, C, D, R, V, Z, retouch					
			n	Number of	transfer poir	nts				16/32-bit binary
				Target Dev	vice : D, R, K	К, Н				

External I/O

Device	Name	Content
M8028	Enable interrupt flag	OFF: Disables interrupts.(Interrupts are executed after FROM/TO instruction is executed.) ON : Enables interrupts.
•	ication in bit device D. bit operation instruction	n, specify K1 to K4. For the 32-bit operation instruction, specify
of [m1+1, r	n1], [m2+1, m2] [n+1, ı	nated as m1 , m2 , and n of a 32-bit instruction, the 32-bit values 1] become effective. 2 D100 R0, then m1 =[D1, D0], m2 =[D3, D2], n =[R1, R0].

Program example	, X0 -					
		FROM	ко	K29	D0	К2

- Read out the contents of BFM#29 of expansion module number 0 into D0 of PLC, and read out the contents of BFM#30 into D1, and read two strokes at a time (n=2).
- When X0=ON, the instruction is executed. When X0 turns OFF, the instruction is not executed, and the content of the previously read data has not changed.

13.10 TO/Write To A Special Function Block

This instruction writes data from a PLC to buffer memories (BFM) in a special extension unit/block. When a large capacity of data is written to buffer memories (BFM) by this instruction, a watchdog timer error may occur. When splitting the data to be written does not affect the control, use WBFM (FNC279) instruction.

	Instructior	I	Operand Type		Function					
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC79		m1 m2	9 steps	то	Continuous Operation		17 steps	DTO	Continuous Operation
D	то	Ρ	S. n		TOP	Pulse (Single) Operation			DTOP	Pulse (Single) Operation
			m1	(K0 to K7 f		al extension un t side of the m , H				16/32-bit binary
	Operand m2 Transfer destination buffer memory (BFM) number Target Device: D, R, K, H						16/32-bit binary			
		-	S.		-	the transfer so nY, KnM, KnS			buch	16/32-bit binary

Coolmay	W				External I/0
		N	umber of transfer points	3	
	n	Т	arget Device: D, R, K, H	4	16/32-bit bina
·····					
xplanation of	1. 16-	bit opera	ation(TO、TOP)		
function and	"n"	-point 16	6-bit data starting from S	. inside a PLC are transferred (written) to "n'	"-point buffer
operation	me	emories			
	sta	rting from	m the buffer memory (Bl	FM) # m2 inside a special extension unit/bloc	ck No. m1 .
		ommand input	FNC 79 m1 m2		
			TO m1 m2	(<u>S</u>) n	
				Number of transfer points n = 1 to 32767	
				Transfer source (PLC) Transfer destination (Special	
				extension unit/block) BFM # m2 = 0 to 32766	
				Unit No. m1 = 0 to 7	
	2 32	-bit ope	ration(DTO DTOP)		
		-	ration(DTO、DTOP)		
	n"-	point 32	-bit data starting from [S	., S.+1] inside a PLC are transferred (written)	
	n"- me	point 32 mories s	-bit data starting from [S starting from the buffer r	. , S.+1] inside a PLC are transferred (written) nemory (BFM) # [m2+1, m2] inside a special	
	n"- me	point 32	-bit data starting from [S starting from the buffer r	· - · · · ·	
	n"- me un	point 32 emories s it/block N	-bit data starting from [S starting from the buffer r No. m1.	· - · · · ·	
	n"- me un ● Re	point 32 mories s it/block N lated de	-bit data starting from [S starting from the buffer r No. m1. vices	nemory (BFM) # [m2+1, m2] inside a special	
	n"- me un ● Re	point 32 emories s it/block N	-bit data starting from [S starting from the buffer r No. m1.	nemory (BFM) # [m2+1, m2] inside a special Content	extension
	n"- m∉ un ● Re De	point 32 emories s it/block N lated de vice	-bit data starting from [S starting from the buffer r No. m1. vices	nemory (BFM) # [m2+1, m2] inside a special Content OFF: Disables interrupts.(Interrupts are	extension
	n"- m∉ un ● Re De	point 32 mories s it/block N lated de	-bit data starting from [S starting from the buffer r No. m1. vices	nemory (BFM) # [m2+1, m2] inside a special Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.)	extension
	n"- me un Re De	point 32 emories s it/block N lated de vice	-bit data starting from [S starting from the buffer r No. m1. vices Name Enable interrupt flag	nemory (BFM) # [m2+1, m2] inside a special Content OFF: Disables interrupts.(Interrupts are	extension
	n"- me un • Re De Ma	point 32 emories s it/block N lated de vice 028 git specif	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S .	nemory (BFM) # [m2+1, m2] inside a special Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.) ON : Enables interrupts.	extension
	n"- me un • Re De Ma	point 32 emories s it/block N lated de vice 3028 git specif r the 16-	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S .	nemory (BFM) # [m2+1, m2] inside a special Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.)	extension
	n"- me un • Re De Ma	point 32 emories s it/block N lated de vice 6028 git specif r the 16- to K8.	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S . bit operation instruction	nemory (BFM) # [m2+1, m2] inside a special Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.) ON : Enables interrupts. n, specify K1 to K4. For the 32-bit operation	e executed after instruction, spec
	n"- me un • Re De Ma • Dig Fo K1	point 32 emories s it/block N lated de vice git specif r the 16- to K8. te that w	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S . -bit operation instruction	Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.) ON: Enables interrupts. n, specify K1 to K4. For the 32-bit operation nated as m1, m2, and n of a 32-bit instruction	e executed after instruction, spec
	n"- me un • Re De Ma • Dig Fo K1 • No of	point 32 emories s it/block N lated de vice o28 git specif r the 16- to K8. te that w [m1+1, r	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S . -bit operation instruction when D and R are design m1], [m2+1, m2] [n+1, r	Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.) ON : Enables interrupts. n, specify K1 to K4. For the 32-bit operation nated as m1, m2, and n of a 32-bit instruction n] become effective.	extension e executed after instruction, spec n, the 32-bit valu
	n"- me un • Re De Ma • Dig Fo K1 • No of	point 32 emories s it/block N lated de vice o28 git specif r the 16- to K8. te that w [m1+1, r	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S . -bit operation instruction when D and R are design m1], [m2+1, m2] [n+1, r	Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.) ON: Enables interrupts. n, specify K1 to K4. For the 32-bit operation nated as m1, m2, and n of a 32-bit instruction	extension e executed after instruction, spec n, the 32-bit valu
	n"- me un • Re De Ma • Dig Fo K1 • No of	point 32 emories s it/block N lated de vice o28 git specif r the 16- to K8. te that w [m1+1, r	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S . -bit operation instruction when D and R are design m1], [m2+1, m2] [n+1, r	Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.) ON : Enables interrupts. n, specify K1 to K4. For the 32-bit operation nated as m1, m2, and n of a 32-bit instruction n] become effective.	extension e executed after instruction, spec n, the 32-bit valu
Program	n"- me un • Re De Ma • Dig Fo K1 • No of	point 32 emories s it/block N lated de vice o28 git specif r the 16- to K8. te that w [m1+1, r	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S . -bit operation instruction when D and R are design m1], [m2+1, m2] [n+1, r	Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.) ON : Enables interrupts. n, specify K1 to K4. For the 32-bit operation nated as m1, m2, and n of a 32-bit instruction n] become effective.	extension e executed after instruction, spec n, the 32-bit valu
Program example	n"- me un • Re De Ma • Dig Fo K1 • No of	point 32 emories s it/block N lated de vice 3028 git specif r the 16- to K8. te that w [m1+1, r r examp	-bit data starting from [S starting from the buffer r No. m1. vices Enable interrupt flag ication in bit device S. bit operation instruction when D and R are design m1], [m2+1, m2] [n+1, r le: DTO D0 D2 D100 RC	Content OFF: Disables interrupts.(Interrupts are FROM/TO instruction is executed.) ON : Enables interrupts. n, specify K1 to K4. For the 32-bit operation nated as m1, m2, and n of a 32-bit instruction n] become effective.	e executed after instruction, spect

When X0=ON, the instruction is executed. When X0 turns OFF, the instruction is not executed and the written data remains unchanged.

14 External Device SER (Option equipment)

FNC	instruction	function		Support mo	odel
NO.	mstruction	Tunction	3G PLC	2N PLC	MX2N PLC
80	RS	Serial Communication	*	*	*
81	PRUN	Parallel Run	*		
82	ASCI	HEX to ASCII conversion	*	*	*
83	HEX	ASCII to HEX conversion	*	*	*
84	CCD	Check Code	*		*
85	VRRD	Volume Read			
86	VRSC	Volume Scale			
87	RS2	Serial Communication 2	*		
88	PID	PID Control Loop	*	*	*
89	—				

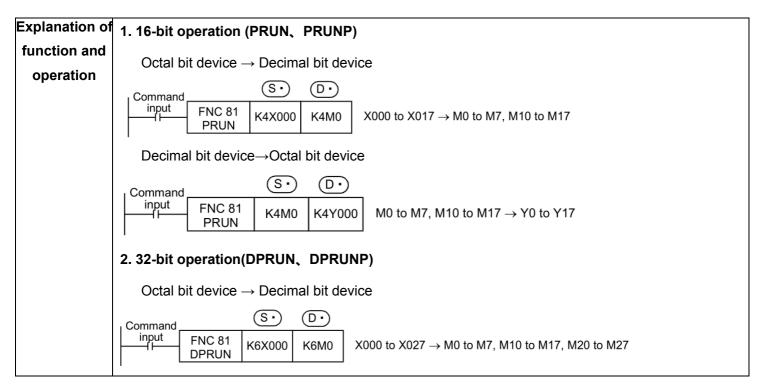
14.1 RS/Serial Communication

This instruction sends and receives data in no-protocol communication by way of a serial port (only the ch1) in accordance with RS-232C or RS-485 provided in the main unit.

Instruction	Operand type		Function						
	S.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
FNC 80 RS	m D.	9 steps	RS	Continuous Operation			_		
	n								
	S.		ce of data reg vice: D, R, re	gisters storing etouch	data to t	be sent		16-bit binary or character string	
	m		Number of bytes of data to be sent [setting range: 0 to 4096]* ¹ Target Device : D, R, K, H						
Operand	D.	completed	Head device of data registers storing received data when receiving is mpleted Target Device : D, R, retouch						
	n	Number of Target De	16-bit binary						

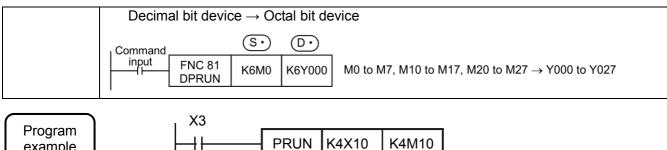
Explanation of 16-bit operation(RS) function and This instruction sends and receives data in no-protocol communication by way of serial ports in operation accordance with RS-232C or RS-485 provided in the main unit. Command input **FNC 80** $(s \cdot)$ $(D \cdot)$ m n RS **Related devices Device** Name **Device** Name Serial M8063 communication D8120 Communication format setting error 1 Remaining number of data to Sending wait flag D8122 M8121 be sent Monitor for number of received M8122 Sending request D8123 data Receiving M8123 D8124 Header complete flag Carrier detection M8124 D8125 Terminator

flag

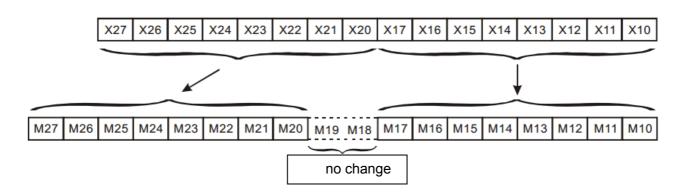

M8129	Time-out check flag	D8129	Time-out time setting
M8161	8-bit processing mode	D8063	Error code number of serial communication error 1

For detailed configuration and case description, please refer to 2N series PLC/MX2N series PLC/3G series PLC programming manual

14.2 PRUN/Parallel Run (Octal Mode)

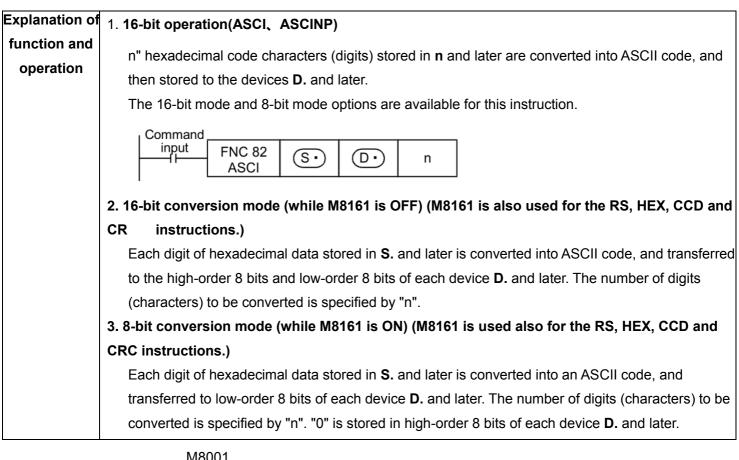

This instruction handles the device number of **S**. with digit specification and the device number of **D**. as octal numbers, and transfers data.

	Instructior	ı	Operand type	Function						
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction		Condition		Instruction		Condition
				5 steps	PRUN	Continuous		9 steps DPRUN	DPRUN	Continuous
	FNC 81		S.	0 51005	T NON	Operation		0 01000	DENON	Operation
	PRUN		D.			Pulse				Pulse (Single)
D		Р			PRUNP	(Single)			DPRUNP	Operation
U		F				Operation				Operation
			S.	Digit speci	fication					16/32-bit binary
	Operand Target Device: KnX, KnM, retouch					10/32-bit binary				
	operand		D.	Device nur	mber of trans	fer destinatior	I	16/32-bit binary		
			υ.	Target Dev	vice : KnY, Kr	nM, retouch				

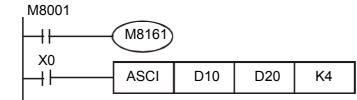


example

When X3=ON, transfer the contents of K4X10 to K4M10 in octal form.

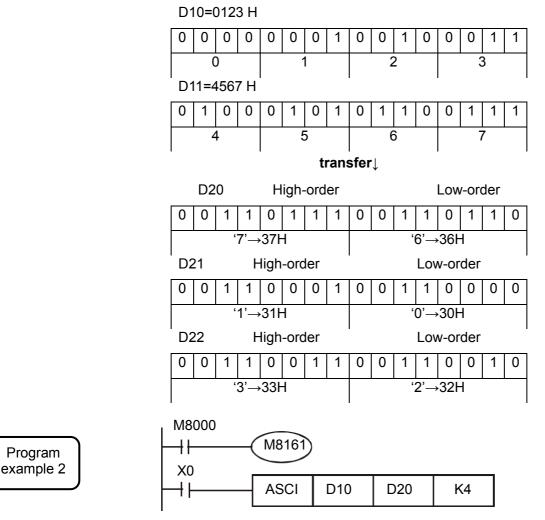


14.3 ASCI/Hexadecimal to ASCII Conversion


This instruction converts hexadecimal code into ASCII code.

On the other hand, BINDA (FNC261) instruction converts binary data into ASCII code, and ESTR (FNC116) instruction converts binary floating point data into ASCII code.

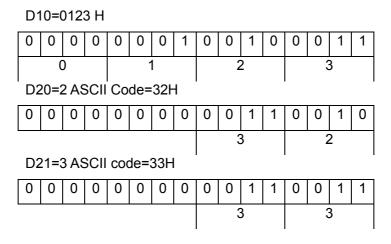
Instruction	1	Operand type				Functio	n		
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemoni c	Operation Condition
FNC 82 ASCI	Ρ	S. D. n	7 steps	ASCI ASCIP	Continuous Operation Pulse (Single) Operation			_	
		S.	Head devid	ce number st	oring hexaded	cimal cod	e to be conv	verted	16 hit binon (
		Э.	Target Dev	vice: KnX, K	nY, KnM, KnS	, T, C, D,	R, V, Z, K, I	H, retouch	16-bit binary
Operand		D.		Head device number storing converted ASCII code Target Device : KnY, KnM, KnS, T, C, D, R, retouch Number of characters (digits) of hexadecimal code to be converted setting range: 1 to 256] Targer Device : D, R, K, H				Character string (only ASCII code)	
	-	n	[setting range					16-bit binary	


- M8161=OFF, which it is 16-bit conversion mode.
- When X0=ON, the four hexadecimal values in D10 are converted into ASCII codes and transferred to the register starting from D20.
- Assumptions:

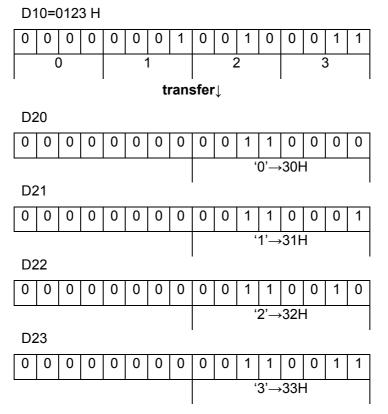
(D10)=0123 H	'0'=30H	'4'=34H	'8'=38H
(D11)=4567 H	'1'=31H	'5'=35H	'9'=39H
(D12)=89AB H	'2'=32H	'6'=36H	'A'=41H
(D13)=CDEF H	'3'=33H	'7'=37H	'B'=42H

• When n=4, the composition of bits:

D1	D10=0123 H														
0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1
	()				1			2	2			3	3	
D2	20		Hi	gh-	orde	er	I			L	.ow	-ord	er		I
0	0	1	1	0	0	0	1	0	0	1	1	0	0	0	0
		"	1'→	311	1					"	0' <i>→</i>	30F	1		
D2	21		Hi	gh-	orde	er	I			L	.ow	-ord	er		I
0	0 0 1 1 0 0 1 1					1	0	0	1	1	0	0	1	0	
	'3'→33H							2' <i>→</i>	32F	1	•				


• When n=6, the composition of bits:

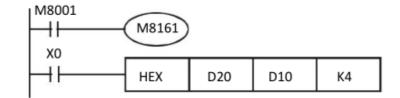
- M8161=ON, specify 8-bit conversion mode.
- When X0=ON, the four hexadecimal values in D10 are converted into ASCII codes and transferred to the register starting from D20.
- Assumptions:


(D10)=0123 H	'0'=30H	'4'=34H	'8'=38H
(D11)=4567 H	'1'=31H	'5'=35H	'9'=39H
(D12)=89AB H	'2'=32H	'6'=36H	'A'=41H
(D13)=CDEF H	'3'=33H	'7'=37H	'B'=42H

• When n=2, the composition of bits:

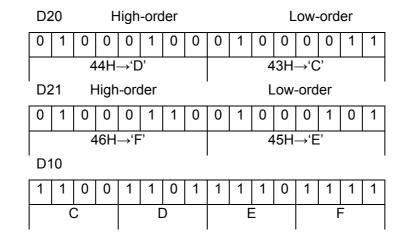
• When n=6, the composition of bits:

14.4 HEX/ASCII to Hexadecimal Conversion

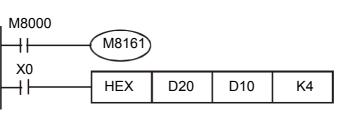

This instruction converts ASCII codes into hexadecimal codes. On the other hand, DABIN (FNC260) instruction converts ASCII codes into binary data, and EVAL (FNC117) instruction converts ASCII codes into binary floating point data.

Instructior	ı	Operand type	Function							
			16-bit	Mnemonic	Operation		32-bit	Mnemonic	Opera	tion
FNC 83		S.	Instruction	Winemonie	Condition		Instruction	WITCHTOTTIC	Condit	tion
HEX		D.	7 steps	HEX	Continuous			—		
ПЕЛ		n		HEXP	Operation					
	Ρ									
									Characte	er
		S.	Head device	ce number st	oring ASCII co	ode to be	e converted		string	
		5.	Target Dev	vice : KnX, K	nY, KnM, KnS	, T, C, D,	R, V, Z, K, I	H, retouch	(only	ASCII
Operand									code)	
operanu		D.	Head devie	ce number st	oring converte	ed hexad	lecimal code		16/32-bi	t hinary
		Β.	Target Device: KnY, KnM, KnS, T, C, D, R, retouch					10/02 01	t biriary	
		n	Number of	Number of ASCII codes (bytes) to be converted [setting range: 1 to 256]] 16-bit bi	narv	
		11	Target Dev	vice : D, R, K	, H					i lai y

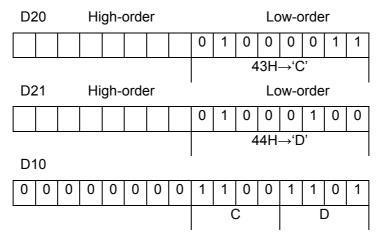
Explanation of	1. 16-bit operation(HEX、HEXP)
function and operation	Among the ASCII codes stored in S . and later, "n" characters are converted into hexadecimal codes, and then stored to the devices D . and later. The 16-bit mode and 8-bit mode are available for this instruction.
	2. 16-bit conversion mode (while M8161 is OFF) (M8161 is used also for the RS, ASCI, CCD,
	and CRC instructions.) Each ASCII code stored in high-order 8 bits and low-order 8 bits of devices S. and later is converted into a hexadecimal code, and transferred to devices D. and later in units of 4 digits. The number of characters to be converted is specified by "n".
	 3. 8-bit conversion mode (while M8161 is ON) (M8161 is used also for the RS, ASCI, CCD and CRC instructions.) Each ASCII code stored in the low-order 8 bits of each device S. and later is converted into a hexadecimal code, and transferred to device D. and later in 4-digits units. The number of characters to be converted is specified by "n".


- M8161=OFF, 16-bit conversion mode
- When X0=ON, the ASCII code in the register starting from D20 is converted into a hexadecimal value, and every 4 digits are transferred to the register starting from D10, the number of converted ASCII codes is n=4.
- Assumptions:

S	ASCII code	HEX code
	couc	
D20 Low	H43	'C'
D20 high	H44	'D'
D21 Low	H45	'E'
D21 high	H46	'F'
D22 Low	H38	'8'
D22 high	H39	ʻ9'
D23 Low	H41	ʻA'
D23 high	H42	'B'


s	ASCII	HEX
3	code	code
D24 Low	H34	'4'
D24 high	H35	'5'
D25 Low	H36	'6'
D25 high	H37	'7'
D26 Low	H30	'0'
D26 high	H31	'1'
D27 Low	H32	'2'
D27 high	H33	'3'

• When n=4, the composition of bits:

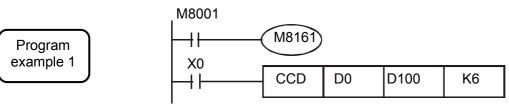


- M8161=ON, 8-bit conversion mode
- Assumptions:

S	ASCII	HEX
5	code	code
D20	H43	ʻC'
D21	H44	'D'
D22	H45	'E'
D23	H46	'F'
D24	H38	'8'
D25	H39	'9'
D26	H41	ʻA'
D27	H42	'B'

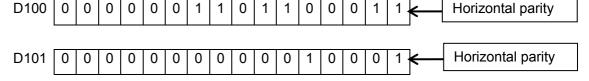
S	ASCII	HEX
5	code	code
D28	H34	'4'
D29	H35	'5'
D30	H36	'6'
D31	H37	'7'
D32	H30	'0'
D33	H31	'1'
D34	H32	'2'
D35	H33	'3'

• When n=2, the composition of bits:

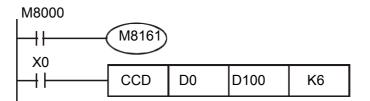


14.5 CCD/Check Code

This instruction calculates the horizontal parity value and sum check value in the error check methods used in communication. There is another check method, CRC (cyclic redundancy check) also. For obtaining CRC value, use CRC instruction.


Instruction	1	Operand				Functio	on					
modiaction		type										
			16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation			
FNC 84		S.	Instruction	Winemonie	Condition		Instruction	Winemonie	Condition			
CCD		D.	7 steps	7 steps CCD Continuous —								
	Р	n		CCDP	Operation							
	۲											
		e	Head devi	ce number of	f applicable de	evice			16-bit binary or			
		S.	Target Dev	vice: KnX, K	nY, KnM, KnS	, T, C, D,	R, retouch		character string			
Operand		D.	Head devi	ce number st	toring the calc	ulated da	ata		16-bit binary or			
Operand		D.	Target Dev	vice: KnY, Ki	nM, KnS, T, C,	, D, R, re	touch		character string			
		n	Number of	Number of data [setting range: 1 to 256]								
			Target Dev	vice: D, R, K	ί, Η				16-bit binary			

Explanation of	1. 16-bit operation(CCD、CCDP)
function and	
operation	The addition data and horizontal parity value of data stored in S. ~ S.+n-1 are calculated. The
	addition data is stored to D. , and the horizontal parity value is stored to D. +1 .
	The 16-bit mode and 8-bit mode are available in this instruction.
	Command input FNC 84 S· D· n CCD S· D· n
	2. 16-bit conversion mode (while M8161 is OFF) (M8161 is also used for the RS, ASCI, HEX and
	CRC instructions.)
	With regard to "n" data starting from ${f S}_{f \cdot}$, the addition data and horizontal parity data of high-order
	8 bits and low-order 8 bits are stored to D. and D.+1 respectively.
	3. 8-bit conversion mode (while M8161 is ON) (M8161 is used also for the RS, ASCI, HEX and
	CRC instructions.)
	With regard to "n" data starting from ${f S}_{f \cdot}$, the addition data and horizontal parity data of only low-
	order 8 bits are stored to D. and D.+1 respectively.
	order 8 bits are stored to D. and D.+1 respectively.



S.	Example of data conte	ents
D0 Low	K100=01100100	
D0 high	K111=0110111① ←	
D1 Low	K120=01111000	
D1 high	K202=11001010	
D2 Low	K123=0111101① ←	When the number of "1" is odd, the
D2 high	K211=1101001① ←	horizontal parity is "1" When the number of "1" is even, the
D100(sum)	K867	horizontal parity is "0".
D101	0001000①←	

- When M8161=OFF, specify 16-bit conversion mode.
- When X0=ON, the contents of the 6 data (in 8-bit units n=6 represents the specified D0~D2) starting from the starting number of the register specified by D0 are added, and the total result is stored in the specified by D100 In the register, the level check is stored in D101.

Program	
example 2	
\square	

		\$	S.			Exa	amp	le c	of d	ata	cor	ntei	nts									
		D0	Lov	V	K1	00=	=01	100	100													
		D0	higl	n	K1	11=	=011	011	11(1) <	,	-										
		D1	Lov	V	K1	20=	=01	111(000													
		D1	hig	n	K2	202:	=11(001	010					_								
		D2	Lov	v	K1	23=	=01 [·]	111(01(1) <		_							"1"	is o	odd,	the
		D2	higl	n	K2	211=	=11(010	01(1) <		-	Whe	en t	the	num	is "1" ber is "0"	of	"1" is	s ev	/en,	the
	D	100)(su	m)	K8	867																
		D	101				00	010	00(ĵ ≺		_										
D100	0	0	0	0	0	0	1	1	0	1	1	0	0	0	1	1.	←	-["867	"" in	BC)
D101	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1.	<─		Horiz	zont	al pa	arity

• When M8161=ON, specify 8-bit conversion mode.

When X0=ON, the contents of the 6 data starting from the starting number of the register specified by D0 (in 8bit units n=6 represents the specified D0~D5) are added up, and the totalization result is stored in the specified by D100 In the register, the level check is stored in D101.

14.6 RS2/Serial Communication 2

This instruction sends and receives data in no-protocol communication by way of serial ports in accordance with RS-232C or RS-485 provided in the main unit.

Instruction	Operano type	1					Func	tion				
FNC 87 RS2	S. m D. n n1	16-bit Instructio 11 steps	n	nemonic RS2	Opera Cond Contin Opera	ition uous	;	32-b Instruct		Mnemo	nic	Operation Condition
	S.	Target D	Devic	of data re e : D, R, r	etouch		-					16-bit binary or character string
	m		Number of bytes of data to be sent [setting range: 0 to 4,096] Target Device : D, R, K, H								16-bit binary	
Operand	D.	completed	Head device of data registers storing received data when receiving is mpleted Target Device : D, R, retouch							16-bit binary or character string		
	n		-	tes to be e : D, R, ł		d [set	ting rang	ge: 0 to 4,0	096]			16-bit binary
	n1	Used ch Target I			[content	s of s	etting:K0)=ch 2, K1	= ch	13, K2: C	AN]	16-bit binary
Explanation o function and operation	This i accor	dance with F	struction sends and receives data in ance with RS-232C or RS-485 provi mand put FNC 87 S• m (main unit.		tion by w	ay of	f serial ports in
	- th Q	Device		Na	Name		01-0	Device	9	CAN		Name
	ch2 M8122		AN 3422	Sending	g reques	t	Ch 2 D8120	Ch 3 D8400		CAN D8420		mmunication nat setting
	M8123	M8403 M8	3423	Receivi complet	-		D8121	D8401		D8421	Co mo	mmunication de
	M8124	M8404 M8	3424	Data re	ceiving		D8122	D8402		D8422		maining points sent data

External Device SER

M8129	M8409	M8429	Timeout judgment flag	D8123	D8403	D8423	Receive monitoring	point
	M8161		8-bit processing mode	D8124	D8410、 D8411	D8430、 D8431	Header	
				D8125	D8412、 D8413	D8432、 D8433	Footer	
				D8129 D8063	D8409	D8429	Set timeout	

For detailed configuration and case description, please refer to 2N series PLC/MX2N series PLC/3G series PLC programming manual

14.7 PID/PID Control Loop

This instruction executes PID control which changes the output value according to the input variation. (Coolmay PLC supports step response method)

Instruction	Operand type				Functio	on			
	S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
FNC 88 PID	S2. S3.	9 steps	Continuous				-	o o namon	
	D.								
	S1.	-	Data register number storing the target value(SV) Target Device : D, R						
Operand	S2.		Data register number storing the measured value (PV) Target Device: D, R						
	S3.	Data regis Target De		toring a param	neter			16-bit binary	
	D.	Data regis Target De	16-bit binary						

Explanation of	1.	16-bit operat	ion(PID)						
function and		When the target value S1. , measured value S2. , and parameters S3. ~ S3. +6 are set and a							
operation		program is ex	ecuted, the operation r	esult (MV) is stored to the outp	ut value D. at every	sampling			
		time S3.							
		Command input F	NC 88 PID S1 S2	Output value Parameter Measured value Target value	lue (PV)				
	2.	Set items							
						Number of occupied			
		Set item		Content					
		Tanada				points			
	S1.	(SV)	Set the target value (S	PID instruction does not change the contents of setting.					
		Measured							
	S2.	value (PV)	This is the input value in PID control loop Auto tuning: In the case of limit cycle method						
			a)Operation setting (ACT): When bits 1, 2 and 5 are not all "0"						
	S3.	Parameter	Twenty-five devices are occupied from the head device specified in S3.						
			b)Operation setting (ACT): When bits 1, 2 and 5 are all "0"						
	<u> </u>		-	Twenty devices are occupied from the head device specified in S3. Auto tuning: In the case of step response method					
	D.	Output value	Before driving PID instruction, the user should set the initial output value.						
		(MV)	During auto tuning, PID instruction does not change the MV output.						
		1	1						
	3.	List of param	neters S3.~S3.+28						
		S	et item	Setting Value	Remarks				
	S3	. Sampl	ing time(Ts)	1~32767(ms)	It cannot be shorte	r than the			
					operation cycle.				

33.	Sampling	ume(1S)	1~32767(IIIS)	operation cycle.
		bit0	0: Forward operation 1: Backward operation	Operation direction
	Operatio-		0: Input variation alarm is invalid. 1: Input variation alarm is valid.	
S3.+1	n setting (ACT)	bit2	0:Output variation alarm is invalid. 1: Output variation alarm is valid.	Do not set to ON bit 2 and bit
		bit3	Not available	
		bit4	0: Auto tuning is not executed.	

			1: Auto tuning is executed.	
		bit5	0: Upper and lower limits of output value are not valid. 1:Upper and lower limits of output value are valid.	Do not set to ON bit 2 and bi
		bit6	0: Step response method	Select the auto tuning mode
		bit7~bit15	Not available	
S3.+2	Input filte	r constant(α)	0~99(%)	When "0" is set, the inpu filter is not provided.
S3.+3	Proportio	nal gain()	1~32767(%)	
S3.+4	Integral ti	me()	0~32767(*100ms)	When "0" is set, it is handled as "∞" (no integration).
S3.+5	Derivative	egain ()	0~100(%)	When "0" is set, the derivative gain is no provided.
S3.+6	Derivative	e time()	0~32767(*100ms)	When "0" is set, the derivative operation is not executed.
S3.+7		-		
	These de data.	vices are occupied 1	for internal processing in PID co	ontrol loop. Do not change the
s3.+7 S3.+19 S3.+20*1	data. Input vari	ation	0~32767	It is valid when bit 1 is set to
 S3.+19 S3.+20*1	data. Input varia (incremer Input varia	ation ntal) alarm set value ation	0~32767	It is valid when bit 1 is set to "1" in S3.+1 for the operation setting (ACT). It is valid when bit 1 is set to
 S3.+19 S3.+20*1 S3.+21*1	data. Input varia (incremer Input varia (decreme value Output va	ation ntal) alarm set value ation ntal) alarm set	0~32767	It is valid when bit 1 is set to "1" in S3.+1 for the operation setting (ACT). It is valid when bit 1 is set to "1" in S3.+1 for the operation setting (ACT). It is valid when bit 2 is set to "1" and bit 5 is set to "0" in
 S3.+19 S3.+20*1	data. Input varia (incremer Input varia (decreme value Output va (incremer value	ation ntal) alarm set value ation ntal) alarm set	0~32767 0~32767 0~32767	It is valid when bit 1 is set to "1" in S3.+1 for the operation setting (ACT). It is valid when bit 1 is set to "1" in S3.+1 for the operation setting (ACT). It is valid when bit 2 is set to "1" and bit 5 is set to "0" in S3.+1 +1 for the operation setting (ACT). It is valid when bit 2 is set to "0" and bit 5 is set to "1" in
 S3.+19 S3.+20*1 S3.+21*1	data. Input varia (incremer Input varia (decreme value Output va (incremer value Output up	ation htal) alarm set value ation intal) alarm set ariation htal) alarm set oper limit set value ariation	0~32767 0~32767 0~32767	It is valid when bit 1 is set to "1" in S3.+1 for the operation setting (ACT). It is valid when bit 1 is set to "1" in S3.+1 for the operation setting (ACT). It is valid when bit 2 is set to "1" and bit 5 is set to "0" in S3.+1 +1 for the operation setting (ACT). It is valid when bit 2 is set to "0" and bit 5 is set to "1" in S3.+1 +1 for the operation

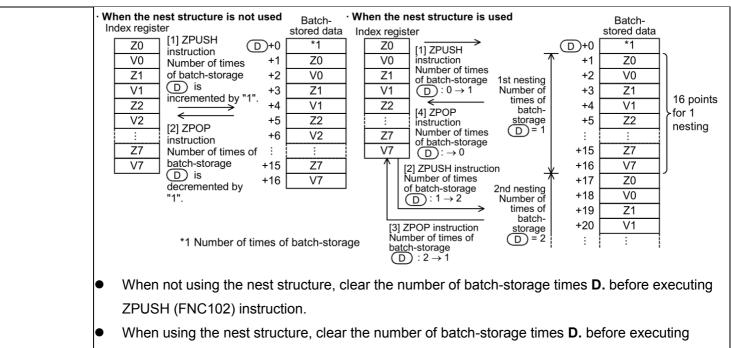
External Device SER

setting (ACT). 0: Input variation (incremental) is not exceeded. 1: Input variation (incremental) is exceeded. 0: Input variation (incremental) is not exceeded. 1: Input variation (incremental) is not exceeded. iii2 bit1 bit2 iii3 couput variation (incremental) is not exceeded. 1: Output variation (decremental) is not exceeded. 1: Output variation (decremental) is not exceeded. 1: Output variation (decremental) is exce	+24*1 Alarm output 0: Input variation (incremental) is exceeded. 1: input variation (incremental) is exceeded. +24*1 bit0 0: Input variation (incremental) is exceeded. 0: Input variation (decremental) is not exceeded. +24*1 bit1 0: Input variation (incremental) is not exceeded. 0: Input variation (decremental) is not exceeded. bit1 0: Output variation (incremental) is not exceeded. 1: Input variation (decremental) is not exceeded. bit2 0: Output variation (incremental) is not exceeded. 1: Output variation (incremental) is not exceeded. bit3 0:Output variation (incremental) is not exceeded. 1: Output variation (decremental) is not exceeded. bit3 0:Output variation (decremental) is not exceeded. 1: Output variation (decremental) is not exceeded. bit3 0:Output variation (decremental) is not exceeded. 1: Output variation (decremental) is exceeded. stitag (ACT). 1: Output variation (decremental) is exceeded. 1: Output variation (decremental) is exceeded. stitag (ACT). 1: Output variation (decremental) is exceeded. 1: Output variation (decremental) is exceeded. stitag (ACT). 1: Output variation (decremental) is exceeded. 1: Output variation (decremental) is exceeded. stitag (ACT). 1: Output variation (decremental) is exceeded.	1				External Device S
S3.+24*1 Alarm output 0: Input variation (incremental) is exceeded. 1: Input variation (incremental) is exceeded. 1: Input variation (decremental) is not exceeded. 1: Input variation (decremental) is not exceeded. 1: Input variation (decremental) is exceeded. 1: Output variation (incremental) is not exceeded. 1: Output variation (decremental) is not exceeded. 1: Output variation (incremental) is not exceeded. 1:Output variation (decremental) is exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). • Two or more PID instructions can be executed at the same time. (There is no limitatic number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. • Number of devices occupied for parameters starting from S3.: In the step response mether 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are not all "0"	+24*1 0: Input variation (incremental) is valid when bit 1 is set is valid when bit 1 is output variation (incremental) is exceeded. ************************************					S3.+1 for the operati
S3.+24*1 bit0 not exceeded. 1: Input variation (incremental) is exceeded. "1" or bit 2 is set to S3.+1 for the op setting (ACT). S3.+24*1 Alarm output 0: Input variation (decremental) is not exceeded. S3.+1 for the op setting (ACT). bit1 0: Input variation (decremental) is not exceeded. 1: Input variation (decremental) is exceeded. bit2 0: Output variation (incremental) is not exceeded. 0: Output variation (incremental) is exceeded. bit3 0:Output variation (decremental) is exceeded. 0: Output variation (decremental) is exceeded. *1: S3.+20-24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). *1 for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitatic number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response methor 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are not all "0"	+24*1 bit0 not exceeded. 1: Input variation (incremental) is exceeded. "1" or bit 2 is set to "1" S3.+1 for the operation setting (ACT). +24*1 bit1 0: Input variation (decremental) is not exceeded. setting (ACT). bit1 0: Output variation (decremental) is exceeded. setting (ACT). bit2 0: Output variation (incremental) is not exceeded. setting (ACT). bit3 0:Output variation (incremental) is not exceeded. setting (ACT). S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation titing (ACT). the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1)Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"					setting (ACT).
S3.+24*1 bit0 not exceeded. S3.+1 for the op setting (ACT). S3.+24*1 bit0 0: Input variation (incremental) is exceeded. S3.+1 for the op setting (ACT). S3.+24*1 bit1 0: Input variation (decremental) is not exceeded. S3.+1 for the op setting (ACT). S3.+24*1 bit1 1: Input variation (decremental) is not exceeded. S3.+1 for the op setting (ACT). S3.+24*1 bit1 1: Input variation (decremental) is not exceeded. S3.+1 for the op setting (ACT). S3.+24*1 bit1 1: Input variation (decremental) is exceeded. S3.+1 for the op setting (ACT). S3.+24*1 bit2 0: Output variation (decremental) is exceeded. S3.+1 for the op setting (ACT). bit2 0: Output variation (decremental) is not exceeded. 1: Output variation (decremental) is exceeded. bit3 1:Output variation (decremental) is exceeded. 1:Output variation (decremental) is exceeded. *1: S3.+20-24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). *1 so or more PID instructions can be executed at the same time. (There is no limitatic number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response methor 1)Operation setting (ACT): When bits 1, 2 and 5 are not all "0	+24*1 bit0 not exceeded. 1: Input variation (incremental) is exceeded. S3.+1 for the operation setting (ACT). +24*1 bit1 0: Input variation (decremental) is not exceeded. S3.+1 for the operation setting (ACT). +24*1 bit1 0: Input variation (decremental) is not exceeded. S3.+1 for the operation setting (ACT). +24*1 bit1 0: Output variation (decremental) is not exceeded. S3.+20-24 bit2 0: Output variation (decremental) is exceeded. S3.+20-24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. S3.+20-24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. There is no limitation in number of soops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1)Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are not all "0"				0: Input variation (incremental) is	It is valid when bit 1 is set
S3.+24*1 Alarm output 1: Input variation (incremental) is exceeded. S3.+1 for the op setting (ACT). S3.+24*1 Alarm output 0: Input variation (decremental) is not exceeded. 1: Input variation (decremental) is exceeded. bit1 0: Output variation (incremental) is not exceeded. 1: Output variation (incremental) is not exceeded. bit3 0:Output variation (decremental) is exceeded. bit3 0:Output variation (decremental) is not exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitatio number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response methor 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"	+24*1 Alarm output 1: Input variation (incremental) is exceeded. S3.+1 for the operation setting (ACT). +24*1 Alarm output 0: Input variation (decremental) is not exceeded. 1: Input variation (decremental) is exceeded. bit1 0: Output variation (incremental) is not exceeded. 1: Output variation (incremental) is not exceeded. bit2 0: Output variation (incremental) is not exceeded. 1: Output variation (decremental) is not exceeded. bit3 0:Output variation (decremental) is not exceeded. 1: Output variation (decremental) is not exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation thing (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1)Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"			bit0	not exceeded.	"1" or bit 2 is set to "1"
S3.+24*1 Alarm output 0: Input variation (decremental) is not exceeded. S3.+24*1 Alarm output 0: Input variation (decremental) is not exceeded. S3.+24*1 Alarm output 0: Output variation (decremental) is not exceeded. bit1 0: Output variation (incremental) is not exceeded. bit2 0: Output variation (incremental) is not exceeded. bit3 0:Output variation (decremental) is not exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). * Two or more PID instructions can be executed at the same time. (There is no limitatic number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response methor 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are and all "0"	+24*1 Image: Algorithm of the second of					S3.+1 for the operati
S3.+24*1 Alarm output 0: Input variation (decremental) is not exceeded. S3.+24*1 Alarm output 0: Input variation (decremental) is not exceeded. S3.+24*1 bit1 0: Output variation (decremental) is not exceeded. bit2 0: Output variation (incremental) is not exceeded. 1: bit3 0:Output variation (decremental) is not exceeded. 1: *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). *1 for operation *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). *1 for operation *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). *1 for operation *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). *1 for operation *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). *1 for operation *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation *1 for operation *1: S3.+20~24 are occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3.<	+24*1 Alarm output 0: Input variation (decremental) is not exceeded. +24*1 bit1 0: Output variation (decremental) is exceeded. bit2 0: Output variation (incremental) is not exceeded. bit3 0: Output variation (incremental) is exceeded. bit3 0: Output variation (incremental) is exceeded. S3.+20-24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. +1 for operation S3.+20-24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. +1 for operation Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"				, , , , , , , , , , , , , , , , , , ,	setting (ACT).
S3.+24*1 Alarm output bit1 (decremental) is not exceeded. 1: Input variation (decremental) is exceeded. bit2 0: Output variation (incremental) is not exceeded. bit2 0: Output variation (incremental) is exceeded. bit3 0:Output variation (incremental) is exceeded. bit3 0:Output variation (decremental) is exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). * Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"	+24*1 hit1 (decremental) is not exceeded. +24*1 hit1 (lecremental) is exceeded. (decremental) is exceeded. 0: Output variation (incremental) is not exceeded. 1: Output variation (incremental) is not exceeded. 1: Output variation (incremental) is exceeded. 0: Output variation (incremental) is exceeded. 1: Output variation (incremental) is exceeded. 0: Output variation (decremental) is exceeded. 1: Output variation (decremental) or parameters startion +1 for operation tting (ACT). 1.2 or 5 is set to "1" in +1 for operation thing (ACT). 1.2 or 5 is set to same time. (There is no limitation in number of oops.) However, make s					
S3.+24*1 Alarm output bit1 1: Input variation (decremental) is exceeded. bit2 0: Output variation (incremental) is not exceeded. bit3 0:Output variation (incremental) is exceeded. bit3 0:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. *1:S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). *Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response methor 1) Operation setting (ACT): When bits 1, 2 an	+24*1 Alarm output bit1 1: Input variation (decremental) is exceeded. bit2 0: Output variation (incremental) is not exceeded. bit3 0:Output variation (incremental) is exceeded. bit3 0:Output variation (decremental) is exceeded. s3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"				, i	
S3.+24*1 Alarm output (decremental) is exceeded. bit2 0: Output variation (incremental) is not exceeded. bit3 0:Output variation (incremental) is exceeded. bit3 0:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. *1:S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). • Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. • Number of devices occupied for parameters starting from S3.: In the step response methor 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"	+24*1 Alarm output (decremental) is exceeded. bit2 0: Output variation (incremental) is not exceeded. 1: Output variation (incremental) is exceeded. 0: Output variation (incremental) is exceeded. bit3 0: Output variation (decremental) is not exceeded. 1: Output variation (decremental) is exceeded. 0: Output variation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"			bit1	,	
output 0: Output variation (incremental) is not exceeded. bit2 1: Output variation (incremental) is exceeded. bit3 0:Output variation (decremental) is not exceeded. bit3 1:Output variation (decremental) is exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). * Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1)Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2)Operation setting (ACT): When bits 1, 2 and 5 are all "0"	output 0: Output variation (incremental) is not exceeded. bit2 1: Output variation (incremental) is exceeded. bit3 0:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation tting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"	63 734*1	Alarm			
 bit2 bit2 (incremental) is not exceeded. 1: Output variation (incremental) is exceeded. 0:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is not exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	bit2 (incremental) is not exceeded. 1: Output variation (incremental) is exceeded. 0:Output variation bit3 0:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. 1:Output variation (decremental) 0:Output variation (decremental) 0:Output variation (incremental) <td>33.724 1</td> <td>output</td> <td></td> <td></td> <td></td>	33.724 1	output			
 bit2 Output variation Output variation	bit2 1: Output variation (incremental) is exceeded. bit3 0:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is not exceeded. s3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"				·	
 (incremental) is exceeded. (incremental) is not exceeded. (incremental) is not exceeded. (incremental) is not exceeded. (incremental) is exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	incremental) is exceeded. incremental) is exceeded. bit3 i:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation (decremental) is exceeded. Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"			bit2	, ,	
 bit3 bit3 c):Output variation (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	bit3 0:Output variation bit3 0:Output variation (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. 1:Output variation S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation tting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"					
 bit3 (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3., D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	bit3 (decremental) is not exceeded. 1:Output variation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation tting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation in number of loops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"				· · ·	
 bit3 1:Output variation (decremental) is exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitatic number of loops.) However, make sure that S3. , D. and other operands specified in each instructifierent to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	bit3 1:Output variation (decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation tting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"					
 (decremental) is exceeded. *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3. , D. and other operands specified in each instruct different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	(decremental) is exceeded. S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation tting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"			bit3	,	
 *1: S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in the for operation setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitatic number of loops.) However, make sure that S3. , D. and other operands specified in each instructifierent to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	S3.+20~24 are occupied when any bit 1, 2 or 5 is set to "1" in +1 for operation tting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation in number of oops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3. : In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"					
 setting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation number of loops.) However, make sure that S3., D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	 tting (ACT). Two or more PID instructions can be executed at the same time. (There is no limitation in number of loops.) However, make sure that S3. , D. and other operands specified in each instruction different to each other. Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 				(decremental) is exceeded.	
 Number of devices occupied for parameters starting from S3.: In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	Number of devices occupied for parameters starting from S3. : In the step response method 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"	Two o numbe loops.)	r more F er of) Howeve	er, make sure that		
 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 	 1) Operation setting (ACT): When bits 1, 2 and 5 are not all "0" Twenty-five devices are occupied from the head device specified in S3. 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0" 				ramatore starting from S2 - In the	a stan raspansa mathad
Twenty-five devices are occupied from the head device specified in S3 . 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"	Twenty-five devices are occupied from the head device specified in S3 . 2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"				-	e step response method
2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"	2) Operation setting (ACT): When bits 1, 2 and 5 are all "0"	<i>,</i> .		C ()		in 62
			•	-		III 33 .
	Twenty devices are occupied from the head device specified in 33.	<i>·</i> ·		- · · · ·		o
Twenty devices are occupied from the nead device specified in 33.		Iwe			in the head device specified in 3.	5.

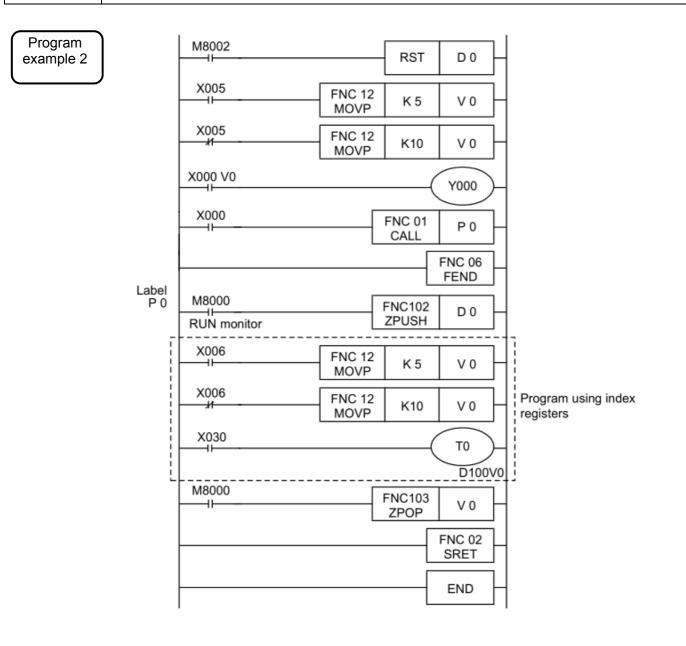
2N series PLC supports PID, but it does not support auto-tuning, you need to manually adjust the parameters.

More procedures please refer to the official website *Demos of 3G PLC PID Automatic Tuning* and <u>2N PLC PID</u>
 <u>o</u>utput 300 ℃

15 Data Transfer 2


FNC	Mnemonic	function		Supported N	lodel
NO.	Witterfiorfic	Tunction	3G PLC	2N PLC	MX2N PLC
100					
101	—				
102	ZPUSH	Batch Store of Index Registe	*		
103	ZPOP	Batch POP of Index Register	*		
104	—				
105	—				
106	—				
107	_				
108					
109	_				

15.1 ZPUSH/Batch Store of Index Register


This instruction temporarily batch-stores the present value of the index registers V0 to V7 and Z0 to Z7. For restoring the present value of temporarily batch-stored index registers, use ZPOP (FNC103) instruction.

Instruction	I	Operand Type				Functio	on		
			16-bit Instruction	Mnemonic	Operation Condition		16-bit Instruction	Mnemonic	Operation Condition
FNC102		D.	3 steps	ZPUSH	Continuous Operation			-	
ZPUSH	Ρ			ZPUSHP	Pulse (Single) Operation			_	
Operand		D.	registers V0 D. : Numb	to V7 and Z0 er of times of	batch-storing to Z7 batch-storage of times of t	e			BIN16 bit
			storage desti Target De						

Explanation of	1. 16-bit operation(ZPUSH, ZPUSHP)
function and operation	Command input FNC102 ZPUSH
	1) The contents of the index registers V0 to V7 and Z0 to Z7 are batch-stored temporarily to D .
	and later.
	When the contents of index registers are batch-stored, the number of times of batch-storage D .
	is incremented by "1".
	2) For restoring the batch-stored data, use ZPOP (FNC103) instruction.
	Use ZPUSH (FNC102) and ZPOP (FNC103) instruction as a pair.
	3) By specifying a same device to D. , ZPUSH (FNC102) and ZPOP (FNC103) instructions can be
	used in the nest structure.
	In this case, the occupied points are added by "16" after D. every time ZPUSH (FNC102)
	instruction is executed. Secure in advance sufficient area for the number of the next structure.
	4) D .The figure below shows the data structure batch-stored in D .

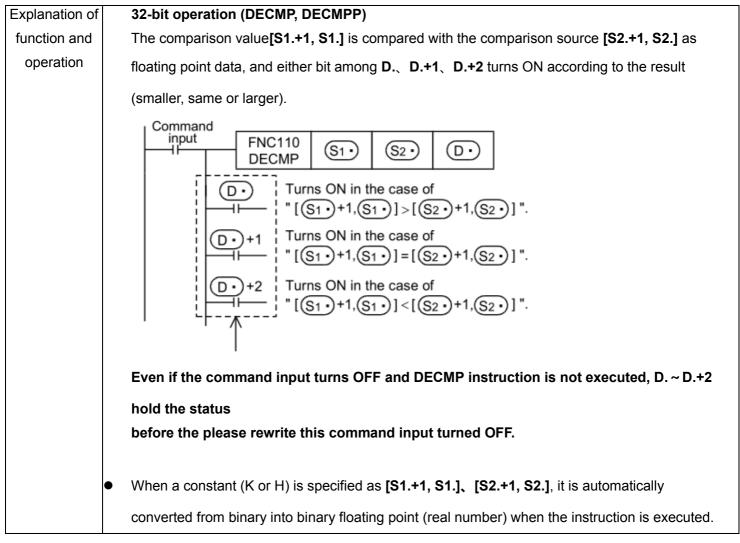
15.2 ZPOP/Batch POP of Index Register

This instruction restores the contents of the index registers V0 to V7 and Z0 to Z7 which were batch-stored temporarily by ZPUSH (FNC102) instruction.

Instruction	ı	Operand Type				Functio	on		
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC103		D.	3 steps	ZPOP	Continuous Operation			_	
ZPOP	Ρ			ZPOPP	Pulse (Single) Operation			_	
Operand		D.	index registe D. : Num D.+1 ~ D.+ storage de	ad device number temporarily batch registers V0 to V7 and Z0 to Z7 : Number of times of batch-storage •1 ~ D.+16×Number of times of batch- rage destination get Device: D, R			-		16-bit binary

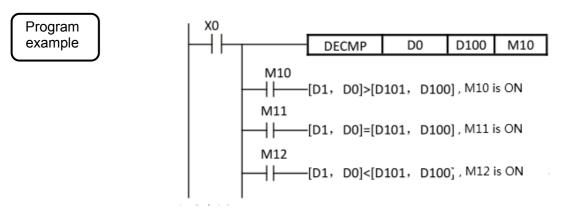
Explanation of	1. 16-bit operation(ZPOP、ZPOPP)
function and operation	Command input FNC103 D ZPOP
	 The contents of the index registers V0 to V7 and Z0 to Z7 which were batch-stored temporarily to D. and later are restored to the original index registers. When the contents of the index registers are restored, the number of times of batch-storage D. is decremented by "1". For temporarily batch-storing the data, use ZPUSH (FNC102) instruction. Use ZPUSH (FNC102) and ZPOP (FNC103) instruction as a pair.
	 When there is no nesting action, please clear the batch save times D. before executing the ZPUSH (FNC 102) instruction. When there are nested actions, please clear the batch save times D. before the first execution.

Please refer to the program case 15.1


16 Floating Point

FNC NO.	Mnemonic	Function	Supported Model					
THC NO.	Winemonic	T unction	3G PLC	2N PLC	MX2N PLC			
110	ECMP	Floating Point Compare	*	*	*			
111	EZCP	Floating Point Zone Compare	*	*	*			
112	EMOV	Floating Point Move	*					
113	_							
114	—							
115	—							
116	ESTR	Floating Point to Character String Conversion	*					
117	EVAL	Character String to Floating Point Conversion	*					
118	EBCD	Binary Floating Point to Decimal Floating Point Conversion	*	*	*			
119	EBIN	Decimal Floating Point to Binary Floating Point	*	*	*			
120	EADD	Floating Point Addition	*	*	*			
121	ESUB	Floating Point Subtraction	*	*	*			
122	EMUL	Floating Point Multiplication	*	*	*			
123	EDIV	Floating Point Division	*	*	*			
124	EXP	Floating Point Exponent	*					
125	LOGE	Floating Point Natural Logarithm	*					
126	LOG10	Floating Point Common Logarithm	*					
127	ESQR	Floating Point Square Root	*	*	*			
128	ENEG	Floating Point Negation	*					
129	INT	Floating Point to Integer Conversion	*	*	*			
130	SIN	Floating Point Sine	*	*	*			
131	COS	Floating Point Cosine	*	*	*			
132	TAN	Floating Point Tangent	*	*	*			
133	ASIN	Floating Point Arc Sine	*					
134	ACOS	Floating Point Arc Cosine	*					
135	ATAN	Floating Point Arc Tangent	*					
136	RAD	Floating Point Degrees to Radians Conversion	*					
137	DEG	Floating Point Radians to Degrees Conversion	*					

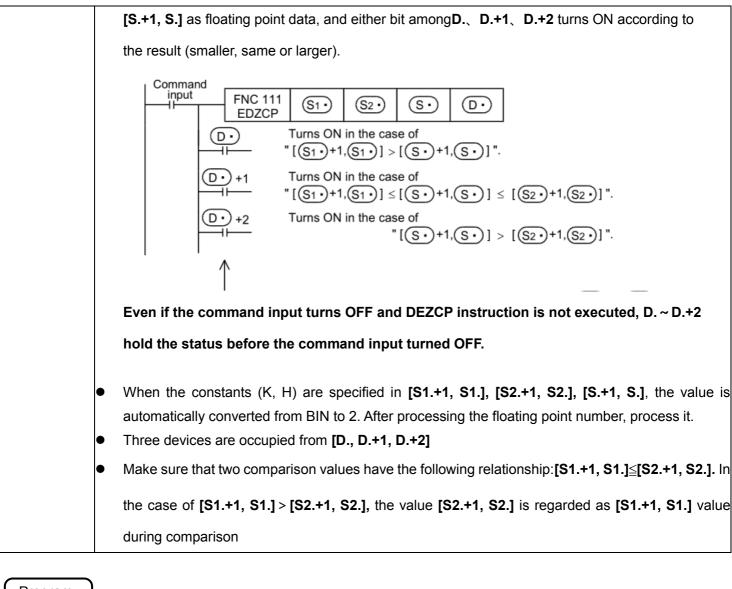
16.1 ECMP/Floating Point Compare


This instruction compares two data (binary floating point), and outputs the result (larger, same or smaller) to three single bit devices.

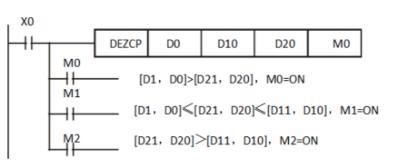
	Instruction	I	Operand Type				Functio	on				
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation		
				Instruction		Condition		Instruction		Condition		
	FNC110		S1. S2.		—			13 steps DECMP		Continuous Operation		
	ECMP		52. D.							Pulse (Single)		
D		Ρ							DECMPP	Operation		
Γ	ı		S1.	Device nur	Device number storing binary floating point data to be compared							
			51.	Target Dev	vice: D, R, K,	H, E, retouch				(binary)		
			S2.	Device nur	nber storing l	binary floating	j point da	ata to be con	npared	Real number		
	Operand Target Device: D, R, K, H, E, retouch								(binary)			
				Head bit de	evice number	to which the c	comparis	on result is o	utput (Three			
			D.	devices are		bit						
				Target Dev	vice: Y, M, S,	retouch						

•

Three devices are occupied from [D., D.+1, D.+2]



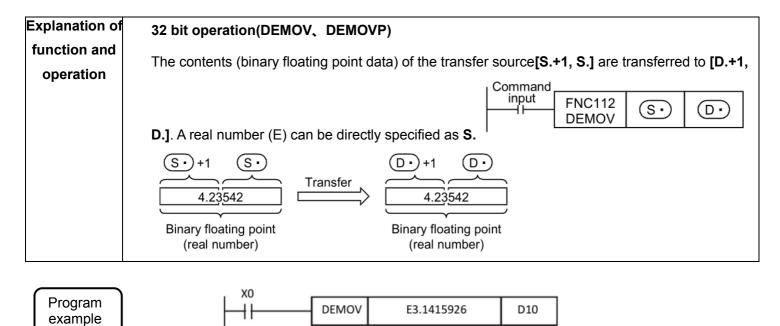
- The designated device is M10, which automatically occupies M10~M12
- When X0=ON, the DECMP instruction is executed, and one of M10~M12 will be ON. When X0=OFF, the DECMP instruction will not be executed, and the state of M10~M12 will remain in the state before X0=OFF....
- If you need to get \geq , \leq , \neq , you can get M0~M2 in series and parallel.
- To clear the comparison result, please use RST or ZRST instruction.


16.2 EZCP/Floating Point Zone Compare

This instruction compares data (binary floating point) with two values (one zone), and outputs the comparison result to three single bit devices.

	Instructior	ı	Operand Type				Functio	n				
			S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
	FNC111 EZCP		S2. S.		— 17 steps DEZCP							
D		Ρ	D.						DEZCPP	Pulse (Single) Operation		
			S1.	•	Data register number storing binary floating point data to be compared Target Device : D, R, K, H, E, retouch							
			S2.	-		oring binary fl H, E, retouch		pint data to b	e compared	Real number (binary)		
	Operand		S.	U U		oring binary fl H, E, retouch	0.	pint data to b	e compared	Real number (binary)		
	 Head bit device number to which the comparison result is output (Three devices are occupied.) Target Device: Y, M, S, retouch 								bit			
	xplanation unction an operation	d			eration(DEZCP、DEZCPP) parison values [S1.+1, S1.]、[S2.+1, S2.] are compared with the compa							

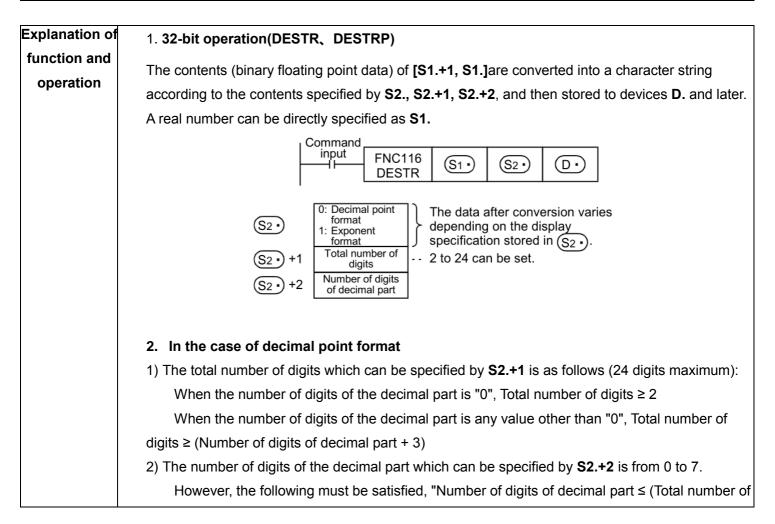
Program example

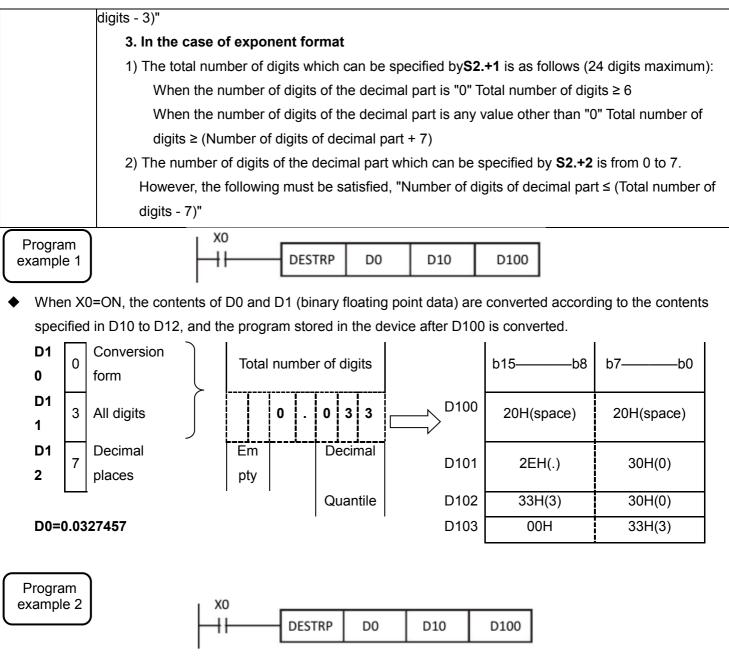

- The designated device is M0, which automatically occupies M0~M2. To clear the comparison result, use the RST or ZRST instruction.
- When X0=ON, the DEZCP instruction is executed, and one of M0~M2 turns ON; when X0=OFF, the DEZCP instruction is not executed, and the state of M0~M2 remains in the state before X0=OFF.

16.3 EMOV/Floating Point Move

This instruction transfers binary floating point data.

	Instruction		Operand Type		Function									
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation				
				Instruction	winemonic	Condition		Instruction	MITERIORIC	Condition				
	FNC112		S.		_			9 steps	DEMOV	Continuous				
	EMOV		э. D.		_			5 31003	DEIVIOV	Operation				
	ENIOV		D.						DEMOVP	Pulse (Single)				
D		Ρ							DEMOVE	Operation				
			S.	Binary floa	ting point dat	a (transfer sou	urce) or o	device numb	er storing data	Real number				
	Operand		5.	Target Dev	vice : D, R, E	, retouch				(binary)				
	operana		D.	Device nur		Real number								
			υ.	Target Dev		(binary)								


When X0=OFF, the content of (D11, D10) does not change. If X0=ON, the current value of E3.1415926 floating point number is transferred to the (D11, D10) data register.

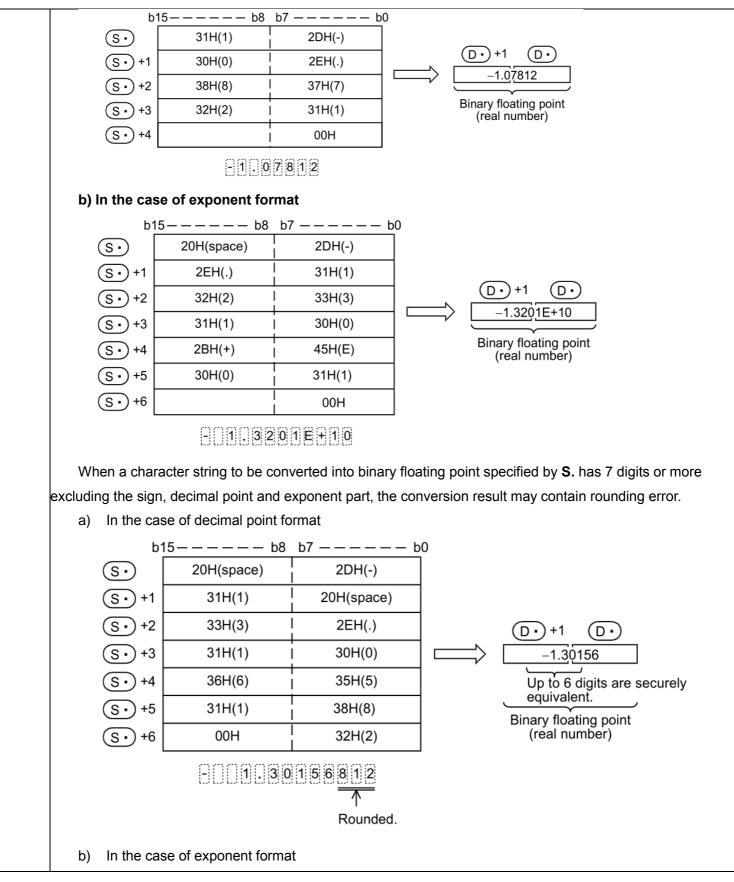

16.4 ESTR/Floating Point to Character String Conversion

This instruction converts binary floating point data into a character string (ASCII codes) having a specified number of digits.

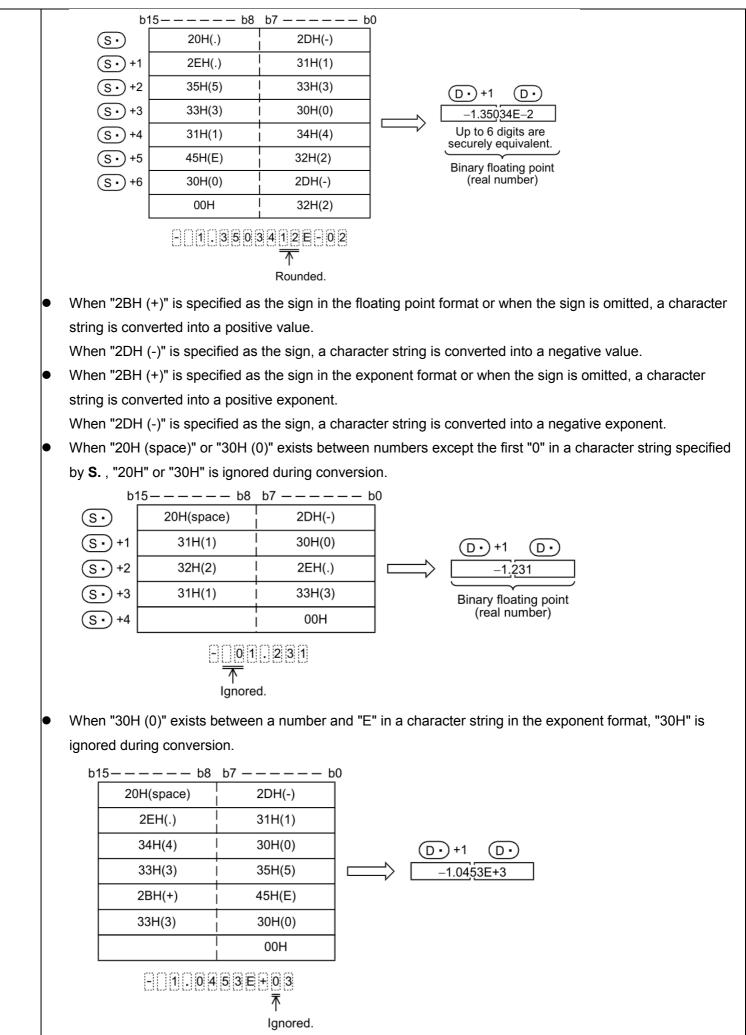
On the other hand, STR (FNC200) instruction converts binary data into a character string (ASCII codes).

	Instruction	1	Operand type		Function								
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Oper			
				Instruction		Condition		Instruction		Conc	dition		
	FNC116 ESTR		S1.		_			13 steps	DESTR	Contir	nuous		
			S2.						DEGIN	Oper	ation		
	LOIR		D.						DESTRP	Pulse (Single)		
D		Ρ							DESTRI	Oper	ation		
			S1.	Binary floa	Binary floating point data to be converted or device storing data								
			51.	Target Dev	(binary)								
				Head devi	ce number s	storing the di	splay sp	ecification o	f a numeric				
	Operand		S2.	value to be c	onverted					16-bit k	oinary		
				Target Dev									
			D.	Head device	ce number st	oring converte	ed chara	cter string		Charac	cter		
			D.	Target Dev	string								

When X0=ON, the contents of D0 and D1 (binary floating point data) are converted according to the contents specified in D10 to D12, and the program stored in the device after D100 is converted.


D1 0	1	Conversion form		←Tota	umbe	r of	digit	S→					b15b8	b7b0	
D1 1	1 2	All digits		3.	2	7 4	6	Е	-	0	2		D100	20H(space)	20H(space)
D1 2	4	Decimal places	Em pty			ecim Juanti					Ľ		D101	2EH(.)	33H(3)
			•	•									D102	37H(7)	32H(2)
D0=0	0.032	27457						•					D103	36H(6)	34H(4)
													D104	2DH(-)	45H(E)
													D105	32H(2)	30H(0)
D106										D106	000	ОН			

16.5 EVAL/ Character String to Floating Point Conversion


This instruction converts a character string (ASCII codes) into binary floating point data.

On the other hand, the VAL (FNC201) instruction converts a character string (ASCII codes) into binary data.

Instruction	Operand	, ,					,	,		
format	Туре				Functi	on				
		16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
FNC 117	S.		_			9 steps	DEVAL	Continuous Operation		
EVAL D P	D.						DEVALP	Pulse Operation		
Operand	S.	floating point	ce number storing data /ice : KnX, KnY, K	-	-		rted into binar	y Character string		
	D. Head device number storing converted binary floating point data Target Device: D, R, retouch									
Explanation	1. 32-bit	operation(D	EVAL, DEVALP)							
of function	A charac	ter string stor	ed in and later i	s converted into	binar	y floating poin	t, and stored t	o [D.+1, D.]		
and operation										
	-		string may be in th onverted into bina	-		•	t format. A cha	aracter string in		
		b15-	b8	b7	b0					
		s. ASC	CII code for 1st character	ASCII code f	or sign	1				
		S.+1 ASC	CII code for 3rd character	ASCII code f charact			D.+1	D.		
		S.+2 ASC	CII code for 5th character	ASCII code characte			Binary floa point (real numl			
		ASC	CII code for 7th	ASCII code	for 6th		,	,		
		S.+3	character	characte	er					
				00H(Indicate	es the					
		S.+4		end of the ch string.)	aracte	r				
	a) In the	case of deci	mal point forma	t						

A character string can consist of up to 24 characters.

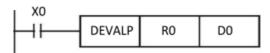
"20H (space)" and "30H (0)" in a character string are counted as one character respectively.

2. Related devices

Device	Name	Description					
Device	Nume	Condition	Operation				
M8020	Zero flag	The conversion result is true "0". (The mantissa part is "0".)	The zero flag M8020 turns ON.				
		The absolute value of the	The value of D . is the minimum value (2 $^{-126}$) of				
M8021	Borrow flag	conversion result is less than "2 $^{-126}$ ".					
M8022	Carry flag	The absolute value of the conversion result is not less than "2 ¹²⁸ ".	The value of D . is the maximum value (2 ¹²⁸) of 32-bit real numbers and the carry flag M8022 turns ON.				

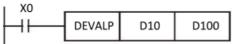
An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

• When any character other than "30H (0)" to "39H (9)" exists in the integer part or decimal part (error code: K6706)


• When "2EH (.)" exists in two or more positions in a character string specified by S. (error code: K6706)

• When any character other than "45H (E)", "2BH (+)" or "2DH (-)" exists in the exponent part, or when two or more exponent parts exist (error code: K6706)

• When "00H" does not exist in the corresponding device range starting from S. (error code: K6706)


• When the number of characters after S. is "0" or more than "24" (error code: K6706)

Program
example 1

 In the program example shown below, a character string stored in R0 and later is converted into binary floating point, and stored to D0 and D1 when X0 turns ON

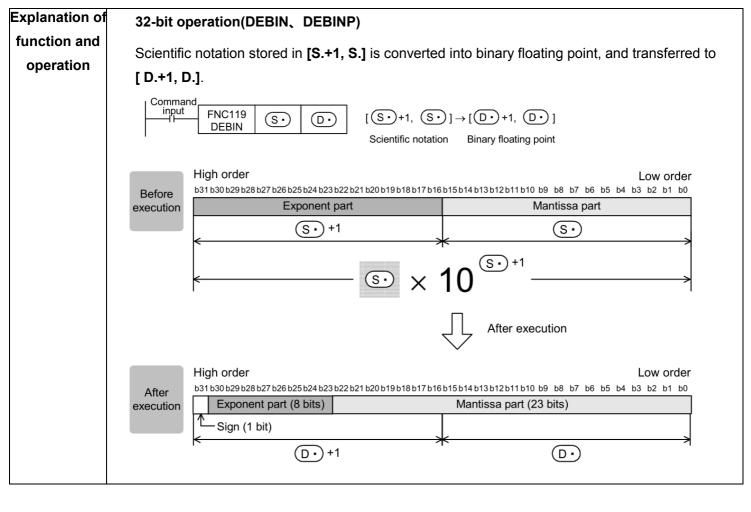
bʻ	15———— b8	b7 ———— b	0
R0	20H(space)	2DH(-)	
R1	31H(1)	30H(0)	
R2	32H(2)	2EH(.)	
R3	34H(4)	33H(3)	
R4	32H(2)	35H(5)	
R5	00H	31H(1)	
	[][[0][1][]]gnored.	234521	-

In the program shown below, a character string stored in D10 and later is converted into binary floating point, and stored to D100 and D101 when X0 turns ON

b	15————— b8	b7 — — — — — b	0
D10	20H(space)	20H(space)	
D11	2EH(.)	31H(1)	
D12	33H(3)	32H(2)	D101 D100
D13	35H(5)	34H(4)	1.2345E-2
D14	2DH(-)	45H(E)	
D15	32H(2)	30H(0)	
D16		00H	
	[]][]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	[4]5]E[-]0]2	

16.6 EBCD/Floating Point to Scientific Notation Conversion

This instruction converts binary floating point into scientific notation.


Instruction	Operand	Function							
format	Туре				Tunci				
		16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation	
		Instruction		Condition		Instruction		Condition	
FNC118	S.					9 steps	DEBCD	Continuous	
EBCD	D.							Operation	
							DEBCDP	Pulse	
D P								Operation	
		Data secieta						Deal and a	
	S.	-		ng binary floatir	ng poi	nt		Real number (binary)	
Operand		•	Target Device: D, R, retouch Data register number storing converted scientific notation						
	D.	Real number (decimal)							
Explanation	1 22 hit	-	Ce: D, R, retou					(decimal)	
of function		operation(DE							
and	Binary flo	pating point sto	ored in [S.+1, S	5.] is converted	into s	cientific notatio	on, and transfe	erred to [D.+1, D.] .	
operation	Comm inpu	.+				\frown			
		FNC118 DEBCD	$ $ \odot $ $ $($	$\cdot \cdot $)+1,	(S•)]→[(D	•)+1, (D•)]		
	I			Binary	floatir	ng point Scie	entific notation		
		High order			J			Low order	
	Befo	re b31 b30 b29 b2		b22 b21 b20 b19 b18 b1	Low order 4 b3 b2 b1 b0				
	execut								
		Sign (*	1 bit)		-*			>	
			(S•)+	1	_		(S·)		
						, After execution	on		
		High order			\checkmark			Low order	
	Afte		8 b27 b26 b25 b24 b23 Exponent	b22b21b20b19b18b1 part	7 b16 b15		b9 b8 b7 b6 b5 b4 lantissa part	4 b3 b2 b1 b0	
			(D•)+	1					
		<			*			>	
		<		— 💿 🗙	1	0 ^{(D)+1} -		>	
		1			`	<u> </u>		1	
	_	I X0							
Progran example			DEBCD	D0 D2					

- When X0=ON, the binary floating-point numbers in D1 and D0 are converted into decimal floating-point numbers and stored in D3 and D2.
- Binary floating point number [D1, D0] The real number is 23 bits, the exponent is 8 bits, and the sign bit is 1 bit After the conversion, the decimal floating point number [D3, D2] is represented by the mathematical formula \rightarrow [D2] X 10[D3]

16.7 EBIN/ Scientific Notation to Floating Point Conversion

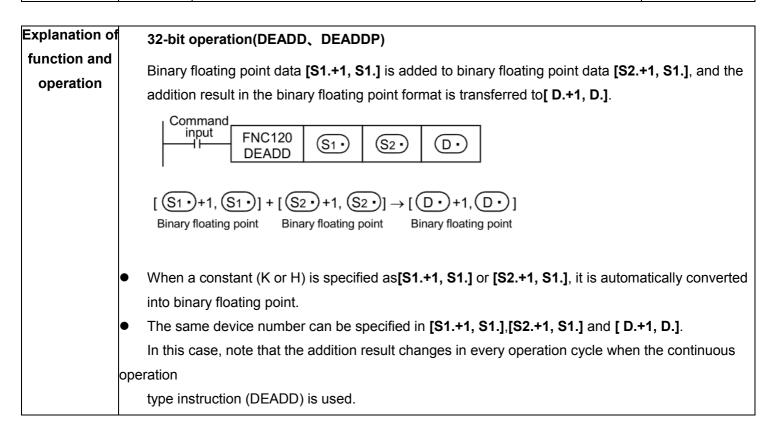
This instruction converts scientific notation stored in devices into binary floating point.

	Instruction format		Operand Type		Function							
				16-bit Operation 32-bit Mnemonic					Oper	ation		
				Instruction	winemonic	Condition		Instruction		Cond	dition	
	FNC119		S.		_			9 steps	DEBIN	Conti	nuous	
	EBIN		З. D.					0 01000	DEDIN	Oper	ation	
			D.		DEBINP					Pulse (Single)	
D	1	Ρ								Oper	ation	
			S.	Data regist	er number st	oring scientifie	c notatio	n data		Real	number	
	Operand		Target Device: D, R, retouch					(decimal))			
	operand		D.	Data regist	er number st	oring converte	ed binary	floating poi	nt.	Real	number	
			υ.	Target Device: D, R, retouch						(binary)		

)	I X0				
example 1	Program example 1			DEBIN	D0	D2	

When X0=ON, the decimal floating-point numbers in D1 and D0 are converted into binary floating-point numbers and stored in D3 and D2. Decimal floating point number [D1, D0] mathematical expression →[D2] X 10[D3]
 After the conversion, the binary floating-point number has 23 real numbers, 8 exponents, and 1 sign

Program example 2


X002	FNC 12			_			
	MOVP	K314	D 0	$K314 \rightarrow D0$	[D1] 314 × 10 ⁻²		
				1	314 × 10 -		
	FNC 12 MOVP	K -2	D 1	K -2 \rightarrow D1	[D0]		
l	FNC119 DEBIN	D 0	D 10	(D1,D0) → (D11 314 × 10 ⁻² Bina	I,D10) ry floating point		
				-			

- The FLT instruction must be used to convert BIN integers into binary floating-point numbers before performing floating-point operations. The premise of the conversion is that the converted value must be a BIN integer. However, the DEBIN instruction can convert floating-point values into binary floating-point numbers.
- By DEBIN instruction, a numeric value containing the decimal point can be directly converted into binary floating point.
- When X0=ON, move K3,140 to D0, and move K-3 to D1 to form a decimal floating point number type (3.14=3,140×10⁻³)

16.8 EADD/Floating Point Addition

This instruction executes addition of two binary floating point data.

	Instruction	Operand				Functio	on		
	format	Туре							
			16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
			Instruction	Winemonie	Condition		Instruction	Whetheric	Condition
	FNC120	S1.		_		13 e	13 stens	DEADD	Continuous
	EADD	S2.		_			13 steps DEADD		Operation
		D.						DEADDP	Pulse (Single)
D	F							DEADDF	Operation
		S1.	Word devi	Word device number storing binary floating point data used in addition					
		51.	Target De	Target Device: D, R, K, H, E, retouch					
	Operand	S2.	Word devi	ce number st	oring binary fl	oating po	oint data use	d in addition	Real number
	operand	02.	Target De	Target Device: D, R, K, H, E, retouch					
		D.	Data regis	ter number st	toring the add	ition resu	ılt		
			Target De	Target Device: D, R, retouch					

16.9 ESUB/ Floating Point Subtraction

This instruction executes subtraction of two binary floating point data.

_				-						
	Instruction	۱	Operand				Functio	on		
	format		Туре							
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction	Winemonie	Condition		Instruction	WINCHIOTIC	Condition
	FNC121		S1.		_			13 steps	DESUB	Continuous
	ESUB		S2.		_				DLOOD	Operation
	LOOD		D.						DESUBP	Pulse
D		Ρ							DLOODI	Operation
				Word dev	ice number	storing bina	ry floati	ng point da	ata used in	
			S1.	subtraction						
				Target Device: D, R, K, H, E, retouch						
	Onerand			Word dev	ice number	storing bina	ry floati	ng point da	ata used in	Real number
	Operand		S2.	subtraction						(binary)
				Target De	Target Device: D, R, K, H, E, retouch					
			Р	Data regis	ter number s	toring the sub	traction r	esult		
			D.	Target Device: D, R, retouch						
Operand		-	S2. D.	subtraction Target De Data regis	vice: D, R, K ter number s	, H, E, retouch toring the sub	n		ata used in	

Explanation of	32-bit operation (DESUB、DESUBP)							
function and operation	Binary floating point data [S1.+1, S1.] is subtracted from binary floating point data [S2.+1, S1.] , and							
	the subtraction result in the binary floating point format is transferred to [D.+1, D.].							
	Command input FNC121 DESUB S2· D·							
	$\begin{bmatrix} (\underline{S1}, \underline{+1}, (\underline{S1}, \underline{+1})] - [(\underline{S2}, \underline{+1}, (\underline{S2}, \underline{+1})] \rightarrow [(\underline{D}, \underline{+1}, (\underline{D}, \underline{+1})]$ Binary floating point Binary floating point Binary floating point							
•	When a constant (K or H) is specified as [S1.+1, S1.] or [S2.+1, S1.], it is automatically converted into binary floating point.							
•	A same device number can be specified in [S1.+1, S1.],[S2.+1, S1.]and [D.+1, D.].							
	In this case, note that the subtraction result changes in every operation cycle when the							
	continuous operation type instruction (DESUB) is used.							

16.10 EMUL/ Floating Point Multiplication

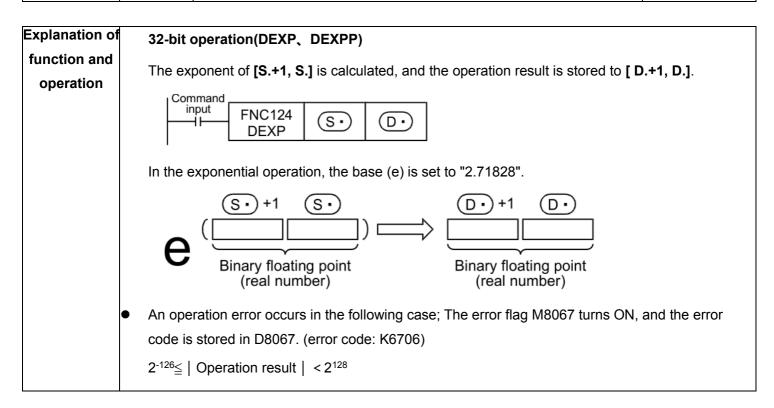
	Instruction		Operand		Function					
	format		Туре							
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction	whethonic	Condition		Instruction	winemonic	Condition
	FNC122 EMUL		S1.		_			13 steps	DEMUL	Continuous
			S2.		_			10 31643	DLINOL	Operation
	EMOL		D.						DEMULP	Pulse (Single)
D		Ρ							DEMOLI	Operation
				Word dev	ice number	storing bina	ry floatii	ng point da	ata used in	
			S1.	multiplication	nultiplication					
				Target De	Target Device: D, R, K, H, E, retouch					
	Operand			Word dev	ice number	storing bina	ry floatii	ng point da	ata used in	Real number
	Operand		S2.	multiplication	l					(binary)
				Target De	Target Device : D, R, K, H, E, retouch					
		Ī	D.	Data regis	ter number st	toring the mul	tiplicatior	n result		
			D.	Target De	vice : D, R, re	etouch				
-										

Explanation of	32-bit operation(DEMUL、DEMULP)
function and operation	Binary floating point data [S1.+1, S1.] is multiplied by binary floating point data [S2.+1, S1.] , and the multiplication result in the binary floating point format is transferred to [D.+1, D.] . $ \begin{array}{c} & & \\ & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \\$
	$\begin{bmatrix} (S_1 \bullet) + 1, (S_1 \bullet) \end{bmatrix} \times \begin{bmatrix} (S_2 \bullet) + 1, (S_2 \bullet) \end{bmatrix} \rightarrow \begin{bmatrix} (D \bullet) + 1, (D \bullet) \end{bmatrix}$ Binary floating point Binary floating point Binary floating point
	 When a constant (K or H) is specified as [S1.+1, S1.] or [S2.+1, S1.], it is automatically converted into binary floating point. [S1.+1, S1.] and [S2.+1, S1.] and [D.+1, D.] can also specify the same device number. At this time, if a continuous execution instruction (DEMUL) is used, please note the result of the multiplication operation will change every operation cycle.

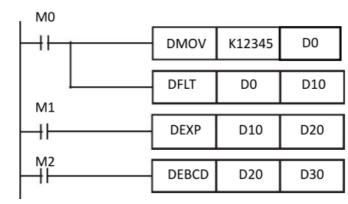
This instruction executes multiplication of two binary floating point data.

16.11 EDIV/ Floating Point Division

This instruction executes division of two binary floating point.

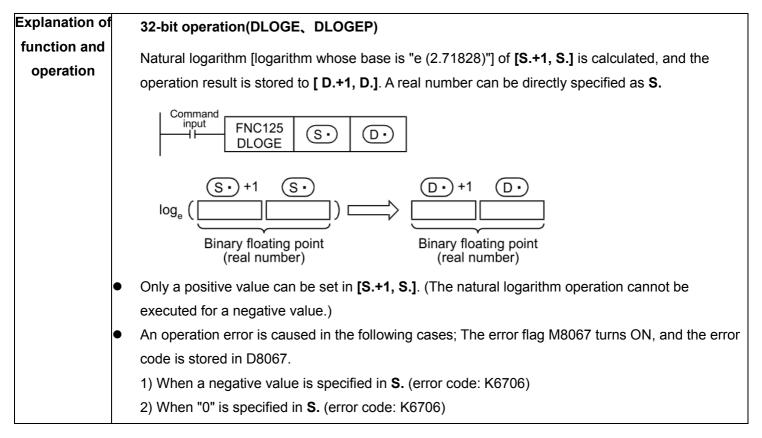

	Instruction format		Operand Type				Functio	on			
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC123		S1. S2.		_	Condition		13steps DEDIV		Continuous Operation	
D	EDIV	Р	D.						DEDIVP	Pulse (Single) Operation	
			S1.		Word device number storing binary floating point data used in division Target Device : D, R, K, H, E, retouch						
	Operand		S2.		Word device number storing binary floating point data used in division Target Device : D, R, K, H, E, retouch						
			D.	division	ter number : vice : D, R, re	storing binary touch	floating	point data	obtained by		

Explanation of	32-bit operation (DEDIV、DEDIVP)
function and operation	Binary floating point data [S1.+1, S1.] is divided by binary floating point data [S2.+1, S1.], and the division result in the binary floating point format is transferred to [D.+1, D.].
	Command input FNC123 DEDIV S1 S2 D
	$\begin{bmatrix} \underbrace{S1}_{\text{Dividend}}^{\text{Dividend}}] \div \begin{bmatrix} \underbrace{S2}_{\text{Divisor}}^{\text{Divisor}}] \rightarrow \begin{bmatrix} \underbrace{D}_{\text{Divisor}}^{\text{Divisor}}] \\ \vdots \\$
	• When a constant (K or H) is specified as [S1.+1, S1.] or [S2.+1, S1.], it is automatically converted into binary floating point.
	[S1.+1, S1.] and [S2.+1, S1.] and [D.+1, D.] can also specify the same device number.
	At this time, if a continuous execution instruction (DEDIV) is used, please note the result of the
	division operation will change every operation cycle.


16.12 EXP/ Floating Point Exponent

This instruction executes exponential operation whose base is "e (2.71828)".

	Instruction	1	Operand				Functio	on				
	format		Туре									
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Oper	ration	
				Instruction	winemonic	Condition		Instruction	Milemonic	Con	dition	
	ENC424		S.					0 stops	DEXP	Conti	nuous	
	FNC124		-		— 9 steps DEXP					Opei	ration	
	EXP		D.								Pulse (Single)	
D		Ρ							DEXPP	Operation		
	I			Head dev	ice number	storing bina	ry floatii	ng point da	ata used in			
			S.	exponential o	operation.					Real		
	Operand			Target Device: D, R, E, retouch							number	
		-		Head devi	ce number st	oring the oper	ation res	ult.		(binary)		
			D.	Targer Device: D, R, retouch								



- When M0 is ON, convert the value of (D1, D0) into a binary floating-point number and store it in the (D11, D10) register.
- When M1 is ON, (D11, D10) is an exponent for EXP operation, and its value is a binary floating point value and stored in the (D21, D20) register.
- When M2 is ON, convert the (D21, D20) binary floating point value into a decimal floating point value and store it in the (D31, D30) register. (At this time D31 is the 10th power of D30)

16.13 LOGE/ Floating Point Natural Logarithm

This instruction executes the natural logarithm operation.

	Instruction		Operand								
	format		Туре				Functio				
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Oper	ration
				Instruction		Condition		Instruction	Winterfielding	Con	dition
	FNC 125		S.		_			9 steps DLOGE		Conti	nuous
	LOGE		5. D.		_			9 31003	DLOOL	Operation	
	LUGE			D.						DLOGEP	Pulse (
D)	Ρ							DLUGLF	Oper	ration
Г				Head devi	ce number s	storing binary	floating	point data	used in the	,	
			S.	natural logar	ithm operatio	n				Real	numbor
	Operand			Target Device: D, R, E, retouch							number
			D	Head devi	Head device number storing the operation result						
			D.	Target Device: D, R, retouch							

Program example

- When M0 is ON, convert the value of (D1, D0) into a binary floating-point number and store it in the (D11, D10) register.
- When M1 is ON, the (D11, D10) register is a true number for LOGE operation, and its value is a binary floating point value and stored in the (D21, D20) register.
- When M2 is ON, the binary floating-point value is converted into a decimal floating-point value and stored in the (D30, D31) register. (At this time D31 is the 10th power of D30)

16.14 LOG10/Floating Point Common Logarithm

This instruction executes the common logarithm operation.

	Instruction	ı	Operand				Functio	on			
	format		Туре								
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Oper	ation
				Instruction	Wincillorino	Condition		Instruction	Winemonio	Cond	dition
	FNC 126		S.					0 stops	DLOG10	Conti	nuous
			э. D.		— 9 steps DLOG10					Oper	ation
	LOG10		D.								lse
D		P DLOG10P						Oper	ation		
	II			Head devi	ce number s	storing binary	floating	point data	used in the		
		S.		common	ommon						
	Operand			logarithm operation							number
	Operand			Target Device: D, R, E, retouch							
			D.	Head devid	Head device number storing the operation result						
			U.	Target Dev	Target Device: D, R, retouch						

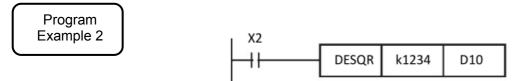
Explanation of	32-bit operation(DLOG10、DLOG10P)
function and operation	Common logarithm [logarithm whose base is "10"] of [S.+1, S.] is calculated, and the operation result is stored to [D.+1, D.] . A real number can be directly specified as S.
	$ \begin{array}{c c} Command \\ input \\ I \\ DLOG10 \\ \hline \end{array} \\ \hline \\ D \\ \hline \end{array} \\ \hline \\ D \\ \hline \end{array} \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\$

Only a positive value can be set in [S.+1, S.]. (The common logarithm operation cannot be executed for a negative value.)
An operation error occurs in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.
1) When a negative value is specified in S. (error code: K6706)
2) When "0" is specified in S. (error code: K6706)

Program example

	DMOV	K15	D0
M1	DFLT	DO	D10
	 DLOG10	D10	D20
	DEBCD	D20	D30

- When M0 is ON, convert the value of (D1, D0) into a binary floating-point number and store it in the (D11, D10) register.
- When M1 is ON, find the common logarithm of "15" set in D0, and its value is a binary floating point value and stored in the (D21, D20) register.
- When M2 is ON, the binary floating-point value is converted into a decimal floating-point value and stored in the (D30, D31) register. (At this time D31 is the 10th power of D30)

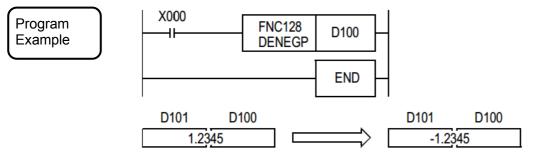

16.15 ESQR/2 Floating Point Square Root

Instruction for computing the square root (open root) of a binary floating point number.

	Instruction												
	Instruction		•				Functio	ns					
			type				T	1					
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation			
				instruction	Winchionic	condition		instruction	Whenterhome	condition			
	FNC127		S.							Continuous			
	ESQR		D.		_			9 steps	DESQR	operation			
									DESQRP	Pulse operation			
D		Ρ							DEOQIN				
				The startin	g number of t	he device hole	ding bina	ry floating-po	oint data that				
			S.	performs squ	are root oper	ration							
	Orananad			Devices: [Devices: D, R, E, K, H, decoration								
	Operand			Data regist	ter number fo	r storing bina	ry floatin	g-point data	after square	(binary)			
			D.	root operatio	ot operation								
				Device: D,	, R, decoratio	n							
Ex	planation	of	32-bit o	operation (D	ESQR, DESC	QRP)							
h	nstruction	s	The sq	uare root of	[S. +1, S.] is	s calculated	(in the k	oinary floati	ng point op	eration), and the			
		I	result is										
		t	transferred	to [D. +1, D.	.].								
			l Comr				_						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $								•+1, ••] ary floating point					
			• M8020,	, zero flag. Tu	Irns ON wher	n the operatio	n result i	s true 0.					
			The col	ntents of [S. +	+ 1, S.] are va	alid only when	n a positiv	ve value is s	et. When a n	egative value is			
			set, the	operation er	ror flag M806	7 turns ON, a	and the in	struction is i	not executed				
set, the operation error flag M8067 turns ON, and the instruction is not executed.													

Program Example 1	, XO			
		DESQR	D0	D10

- When X0 is ON, take the square root of binary floating point numbers (D1, D0) and store the result in the register specified by (D11, D10).

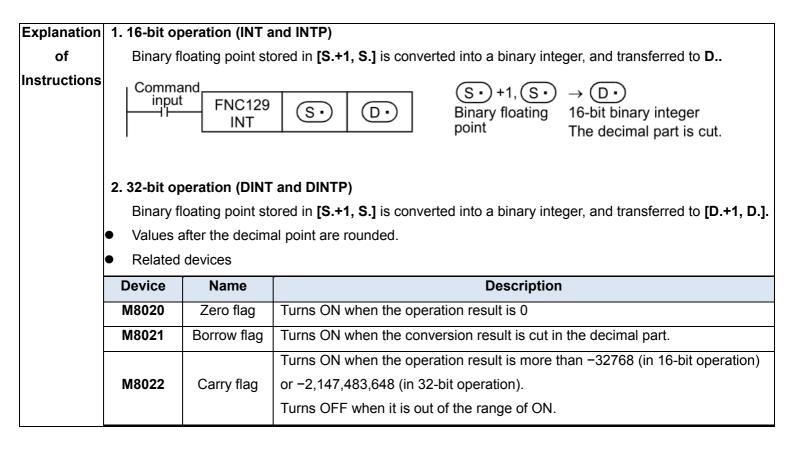


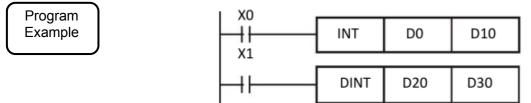
When X2 is ON, take the square root of K1,234 (automatically converted to binary floating point), and store the result in (D11, D10).

16.16 ENEG/2 Floating Point Negation

This instruction inverts the sign of binary floating point (real number) data.

			Operand								
	Instruction		•				Functio	ns			
			type								
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation	
				instruction	winemonic	condition		instruction	whethonic	condition	
	FNC128		D.		_			5 steps	DENEG	Continuous	
	ENEG		D.		_			5 Steps	DENEO	operation	
		Р							DENEGP	Pulse operation	
		۲									
				Head device number storing binary floating data whose sign is to be							
	Operand		D.	inverted.					Real number		
				Device: D	R, decoratio	n				(binary)	
E	xplanation	of	32-bit o	operation (D	ENEG and D	ENEGP)					
	nstruction	s	The sig	n of binary flo	pating point s	tored in [D.+	1, D.] is i	nverted, and	the negation	n result is stored	
	to [D.+1, D.] .										
	Command input I DENEG D										

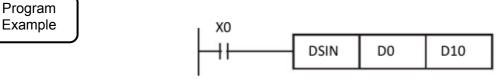



When X0 is ON, the sign of the binary floating-point number data of D100 and D101 is inverted and stored in D100 and D101.

16.17 INT/2 Hexadecimal Floating Point → BIN Integer Conversion

This instruction converts binary floating point data into a binary integer which is a normal data format inside PLCs (binary floating point \rightarrow binary integer)

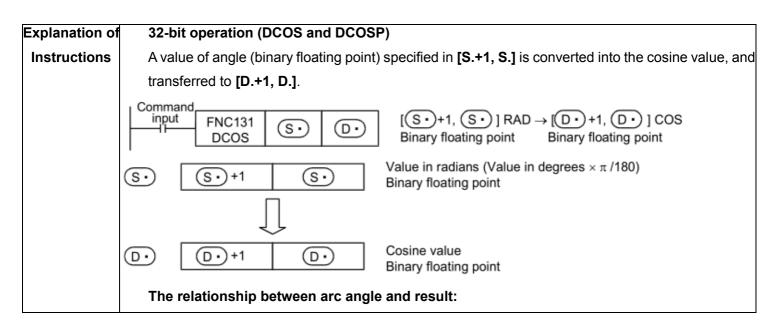
nstruction	Operand				Fur	nctions			
	type					1			
		16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation of	condition
		instruction		condition		instruction		oporation	Sonation
		F . (ŅТ	Continuous			DINIT	0	
FNC129	S.	5 steps	INT	operation		9 steps DINT		Continuous operation	
INT _	D.			Pulse					
D			INTP	operation			DINTP	Pulse operation	
•				operation					
								1	
		Data regis	ter number st	toring binary f	loating	point data to	o be converted	ł	
	S.	into a	Real number						
^	5.	binary inte	ger.		(binary)				
Operand		Device: D							
		Data regis	Data register number storing a converted binary integer.						
	D.							BIN 16- binary	or 32-bit
Device: D, R, decoration									

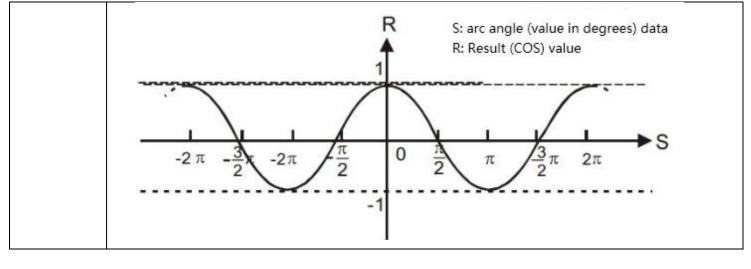

- When X0 = ON, convert binary floating-point numbers (D1, D0) into BIN integers and store the result in (D10).
 BIN integer floating-point numbers are cut.
- When X1 = ON, convert binary floating point numbers (D21, D20) into BIN integers and store the result in (D31, D30), BIN integer floating point numbers are cut.

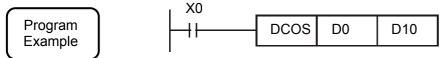
16.18 SIN/2Floating Point Sine


This instruction obtains the sine value of an angle (in radians).

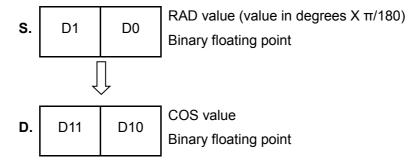
	la otra oti oro		Operand				Functio			
	Instruction		type				Functio	ns		
				16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition
	FNC130 SIN		S. D.		_			9 steps	DSIN	Continuous operation
D		Ρ			_				DSINP	Pulse operation
	Operand		S.	Device: D	, R, E, deco		-	-		Real number
D. Device number storing the Device: D, R, decoration							in binar	y floating poi	int	(binary)
Explanation of 1.32-bit operation (DSIN and DSINP)										
Instructions A value of angle (binary floating point) specified in [S.+1, S.] is converted into the										e sine value, and
			transfe	rred to [D.+1,	, D.].					
		$\begin{array}{c c} \hline Command \\ input \\ \hline PNC130 \\ DSIN \\ \hline S \\ \hline DSIN \\ \hline S $								ng point
R S: arc angle (value in degrees) data R: result (SIN) value $\frac{1}{\sqrt{-2\pi} - \frac{3}{2}\pi - 2\pi} - \frac{\pi}{2}$ $0 \frac{\pi}{2} \pi \frac{3}{2}\pi / 2\pi$ -1								ta		

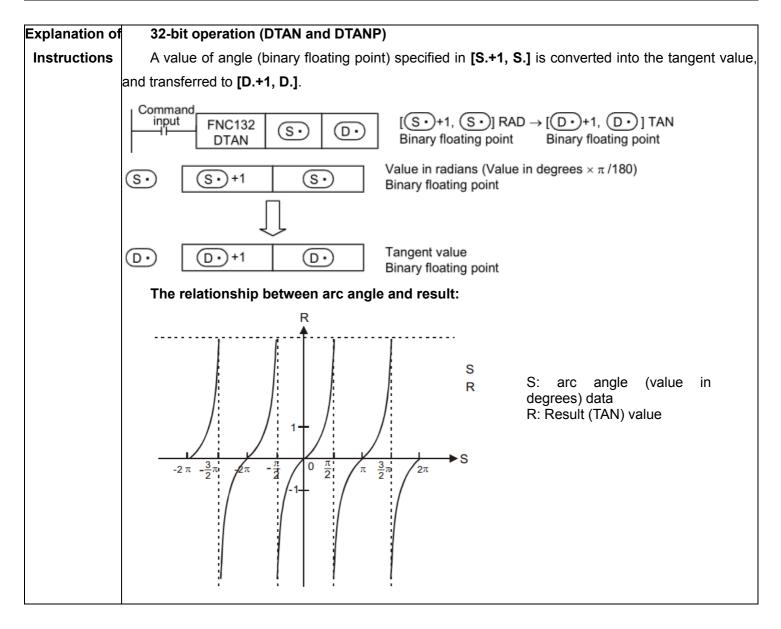

When X0 is ON, the radian (RAD) value of the specified binary floating point number (D1, D0) is calculated and the SIN value is obtained and stored in (D11, D10). The content is binary floating point number.




16.19 COS/ Binary Floating Point Cosine

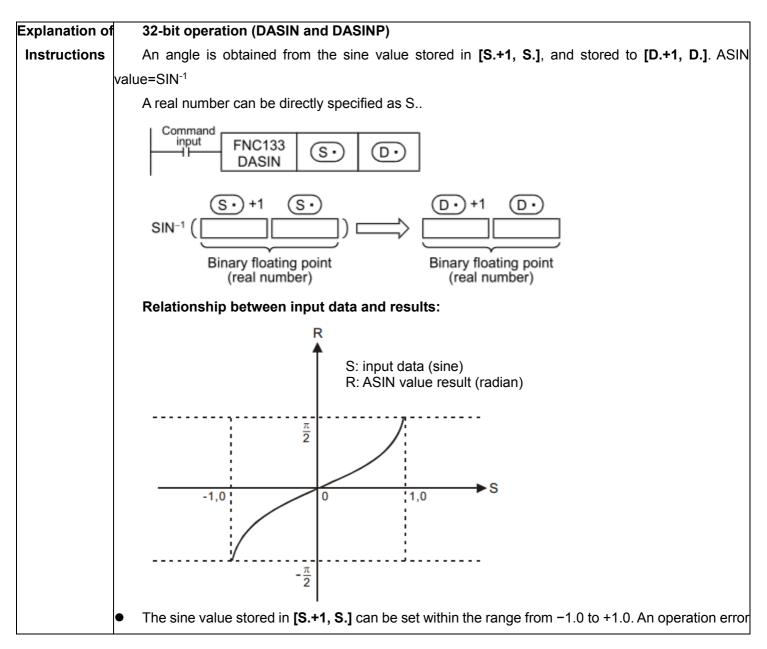
This instruction obtains the cosine value of an angle (in radians).


Instruction		Operand type				Functio	ns		
			16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
			instruction		condition		instruction	winemonic	condition
FNC131		S.		_		9 steps	DCOS	Continuous	
COS		D.				9 3iep3		operation	
) F				—				DCOSP	Pulse operation
	Г								
		S.	Device nui	mber storing	g an angle (in ra	adians) ir	h binary float	ing point.	
Operand		З.	Device: D	, R, E, deco	ration				Real number
operand	Ī	D.	Device nui	mber storing	g the cosine val	ue in bin	ary floating	point	(binary)
		υ.	Device: D, R, decoration						

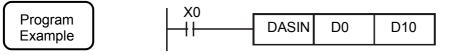

When X0 is ON, the radian (RAD) value of the specified binary floating point number (D1, D0) is calculated and stored in (D11, D10). The content is a binary floating point number.

16.20 TAN/ Binary Floating Point Tangent

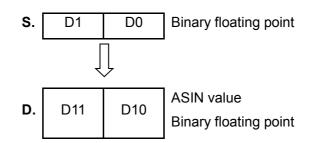
This instruction obtains the tangent value of an angle (in radians).


	Instruction		Operand type				Functio	ns		
	FNC132		S.	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition Continuous
D	TAN	Ρ	D.		_			9 steps	DTAN DTANP	operation Pulse operation
	Operand		S.		Device number storing an angle (in radians) in binary floating point Device: D, R, E, decoration					
	operand	-	D.	Device number storing the tangent value in binary floating point Device: D, R, decoration						(Binary)

16.21 ASIN/Binary Floating Point Arc Sine


This instruction executes the SIN -1 (arc sine) operation.

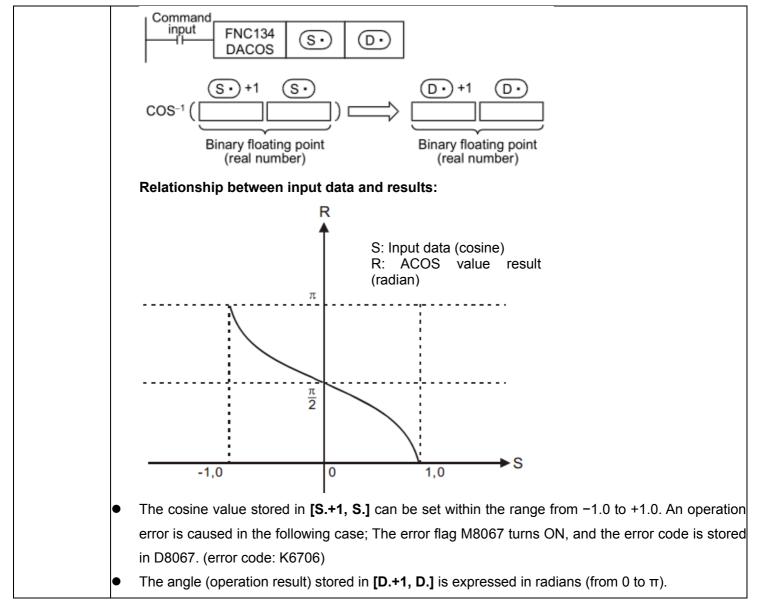
	Instruction		Operand type				Functio	ns		
				16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition
	FNC133 ASIN		S. D.		_			9 steps	DASIN	Continuous operation
D		Ρ			— DASINP					Pulse operation
	Operand		S.	operation.	Head device number storing a sine value used in the SIN -1 (arc sine peration. Device: D, R, E, decoration					
			D.	Head devid D, R, deco		oring the oper	ation res	ult.		(Binary)

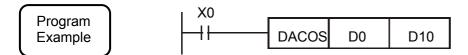


is caused in the following case; The error flag M8067 turns ON, and the error code is stored in D8067. (error code: K6706)

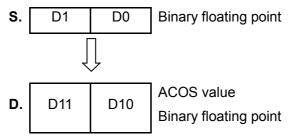
• The angle (operation result) stored in **[D.+1, D.]** is expressed in radians (from $-\pi/2$ to $\pi/2$).

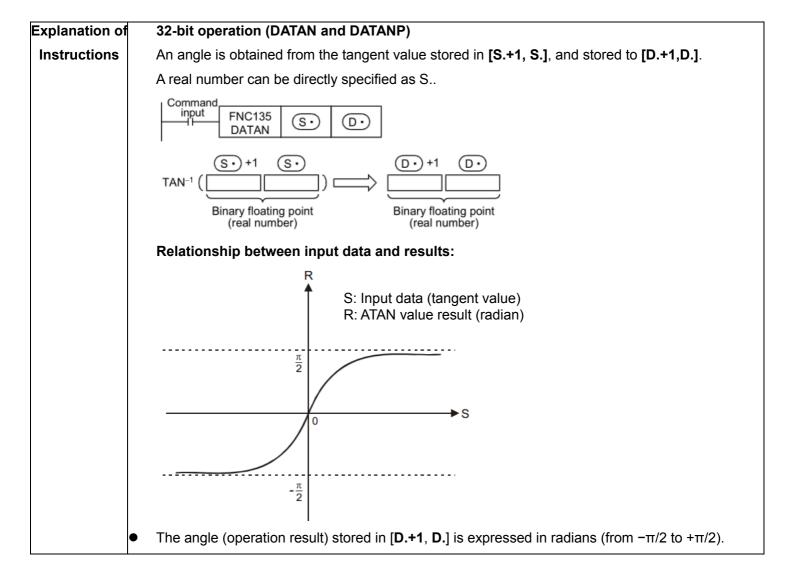
When X0 is ON, specify the binary floating point number (D1, D0) to find the ASIN value and store it in (D11, D10), the content is binary floating point number.


16.22 ACOS/Binary Floating Point Arc Cosine


This instruction executes the COS -1 (arc cosine) operation.

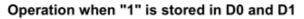
	Instruction		Operand type				Functio	ns		
D	FNC134 ACOS	P	S. D.	16-bit instruction	Mnemonic 	Operation condition		32-bit instruction 9 steps	Mnemonic DACOS DACOSP	Operation condition Continuous operation Pulse operation
	Operand	-	S. D.	cosine) operation. Device: D Head devic	, R, E, decor	oring the oper			COS −1 (arc	Real number (binary)


Explanation of	
Instructions	32-bit operation (DACOS and DACOSP)
	An angle is obtained from the cosine value stored in [S.+1, S.], and stored to [D.+1, D.].
	A real number can be directly specified as S


When X0 is ON, specify the binary floating point number (D1, D0) to find the ACOS value and store it in (D11, D10), the content is binary floating point number.

16.23 ATAN/Binary Floating Point Arc Tangent

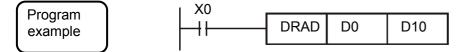
This instruction executes the TAN -1 (arc tangent) operation.

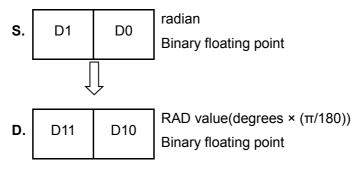

	Instruction		Operand type				Functio	ns		
				16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition
	FNC135 ATAN		S. D.		_			9步	DATAN	Continuous operation
D		Ρ			—				DATANP	Pulse operation
	Operand		S.	tangent) ope	Head device number storing a tangent value used in the TAN −1 (arc ngent) operation Device: D, R, E, decoration					
			D.		ce number sto R, decorati	oring the oper on	ation res	ult.		(Binary)

Program example

X000	FNC135 DATAN	D0	D10
	FNC137 DDEG	D 10	D 20
	FNC129 INT	D 20	D 30
	FNC 18 BCD	D 30	K4Y40
			END

- ♦ In the program example shown above, the TAN -1 value of data (binary floating point) stored in D0 and D1 is calculated, and the angle is output in 4-digit BCD to Y040 to Y057 when X000 turns ON..
- 1) The angle (in radians) is calculated by the TAN⁻¹ operation (①)
- 2) The value in radians is converted into the value in degrees (②)
- 3) The angle expressed in binary floating point (real number) is converted into an integer (binary) (③)
- 4) The angle expressed in integer (binary) is output to the display unit (④)

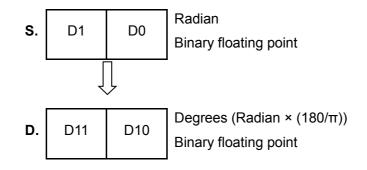



16.24 RAD/Binary Floating Point Degrees to Radians Conversion

This instruction converts a value in degrees into a value in radians.

			Operand							
	Instruction						Functio	ns		
			type							
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				instruction	WINCHIOTIC	condition		instruction	WITCHTOTTIC	condition
	FNC136		S.					• •		Continuous
	RAD		D.		—			9 steps	DRAD	operation
	·				_				DRADP	Pulse operation
D		Ρ							DIG	
Head device number storing a value in degrees to be converted into a										
						oring a value	in degree	es to be con	verted into a	
			S.	value in radia	ans.					Real number
Operand Device: D, R, E, decoration							(Binary)			
		-	D	Head devic	e number sto	oring a value i	n radians	acquired by	conversion.	(Dinary)
			D.	Device: D,	R, decoratio	on				
Ex	planation	of	32-bit	operation (D	RAD and DR	ADP)				
Ir	struction	s	The un	it of [S.+1, S .] is converted	d from degree	es into ra	dians, and t	he operation	result is stored to
			[D.+1, D.].		-	0			·	
				number can b	e directly spe	cified as S				
					, ,					
				put FNC	136					
	$(S \cdot +1 S \cdot)$ $(D \cdot +1 D \cdot)$									
		() ° () rad								
	Binary floating point Binary floating point									
	(real number) (real number)									
				. ,				-		
				- Derine -	(-(100)					
	 Radians = Degrees × (π/180) 									

When X0 is ON, specify the angle value of binary floating point number (D1, D0), convert the angle to radian value and store it in (D11, D10), the content is binary floating point number.



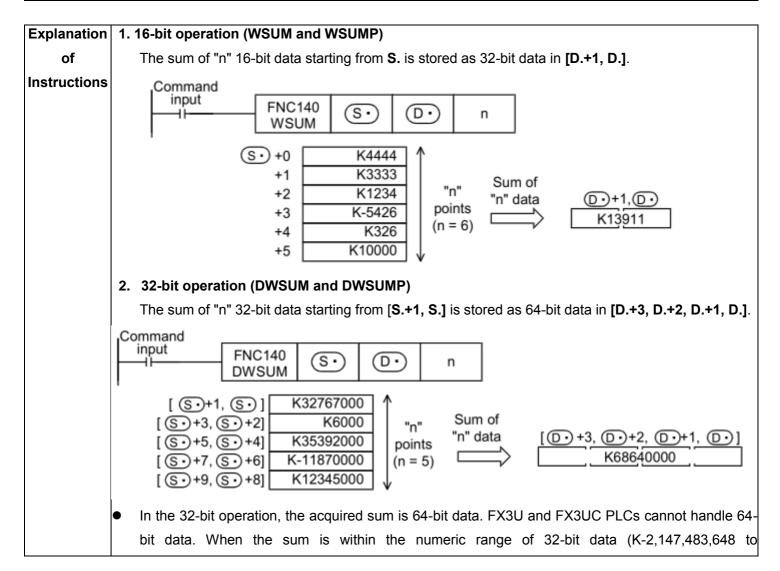
16.25 DEG/Binary Floating Point Radians to Degrees Conversion

This instruction converts a value in radians into a value in degrees.

			Operand							
	Instruction						Functio	ns		
			type		·		r			
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				instruction		condition		instruction		condition
	FNC137		S.					0 stans		Continuous
	DEG	DEG D. 9 steps DDEG						DDEG	operation	
		DDEGP						Pulse operation		
D	D P						·			
				Hoad dovi	o number et	toring a value	in radiar	ns to be con	verted into a	
			•			uning a value	III Taulai		verteu into a	
			S.	value in degr						
	Operand				R, E, decor					Real number
	·			Head dev	ice number	storing a	value in	degrees a	acquired by	(Binary)
			D.	conversion.						
				Device: D	R, decorati	on				
Ex	planation	of	32-bit	operation (D	DEG and DD)EGP)			I	
Ir	struction	s	The un	it of [S.+1, S .] is converte	d from radian	s into de	grees, and t	he operation	result is stored to
			[D.+1, D.] .							
			A real r	number can b	e directly spe	ecified as S				
				mand						
					6					
			()+1 (e.		G	D•)+1	$(\mathbf{D} \cdot)$		
$(_)^{rad} = (_)^{rad} = $										
	Binary floating point (real number) Binary floating point (real number)									
			 Degree 	es = Radians	× (180/π)					
Program X0 example DDEG D0										

When X0 is ON, specify the radian value of the binary floating point number (D1, D0), convert the radian value to the radian value, and store it in (D11, D10). The content is a binary floating point number.

17 Data Processing 2

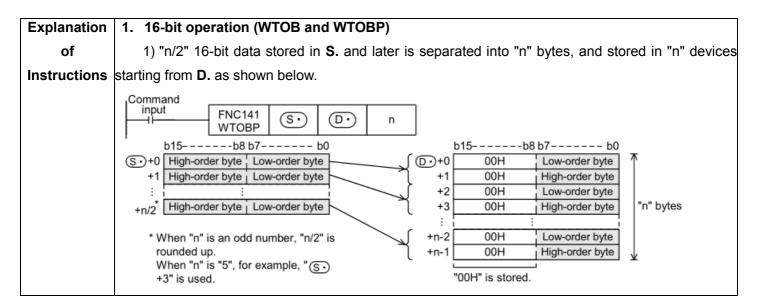

5110				Devices	
FNC NO.	Instruction	Functions	3G 系列	2N 系列	MX2N 系列
NO.			PLC	PLC	PLC
140	WSUM	Sum of Word Data	*		
141	WTOB	WORD to BYTE	*		
142	BTOW	BYTE to WORD	*		
143	UNI	4-bit Linking of Word Data	*		
144	DIS	4-bit Grouping of Word Data	*		
145					
146					
147	SWAP	Byte Swap	*	*	*
148	—				
149	SORT2	Sort Tabulated Data 2	*		

17.1 WSUM/ Sum of Word Data

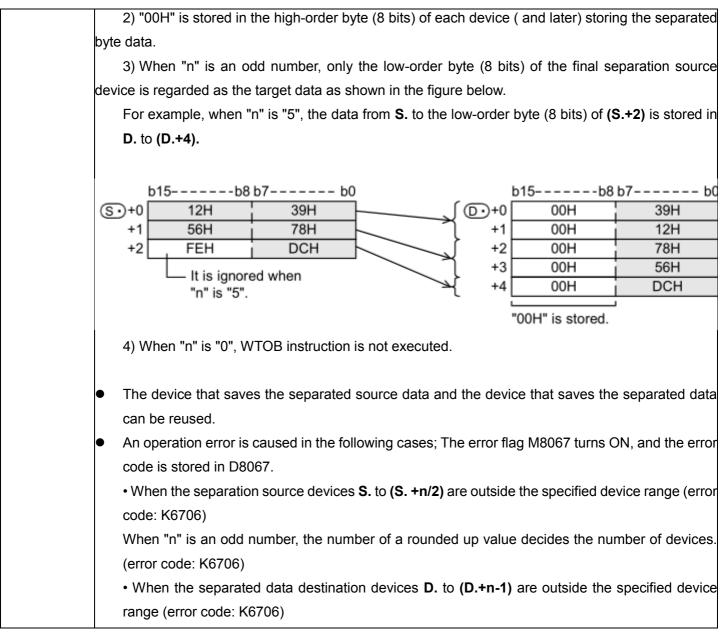
This instruction calculates the sum of consecutive 16-bit or 32-bit data.

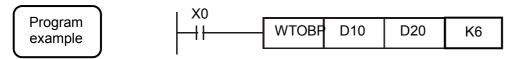
When calculating the addition data (sum value) in units of byte (8 bits), use the CCD (FNC 84) instruction.

I	nstruction	Operand type				Functio	ons		
			16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
			instruction		condition		instruction		condition
	FNC140	S.	7 steps	WSUM	Continuous		13 steps	DWSUM	Continuous
	WSUM _	D.	, ctopo		operation			Direem	operation
		n		WSUMP	Pulse			DWSUMP	Dulas operation
D				VV SUIVIP	operation			DVVSUIVIP	Pulse operation
		S.	Head device number storing data whose sum is calculated.						BIN16/ 32 bit
		5.	Device: T,	C, D, R, deco	oration				Bin 10/ 32 bit
	Operand	D.	Head devic	e number sto	ring sum				BIN32/ 64 bit
	Operatio	D.	Device: T,		DINGZ/ 04 DIL				
			Number of		DINI16/22 hit				
		n	Device: D,	R, K, H					BIN16/ 32 bit

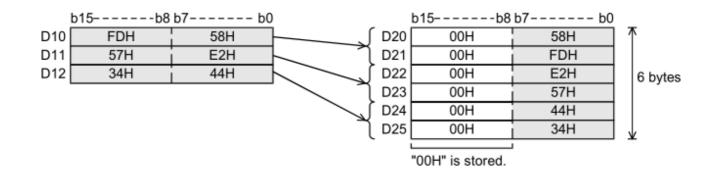


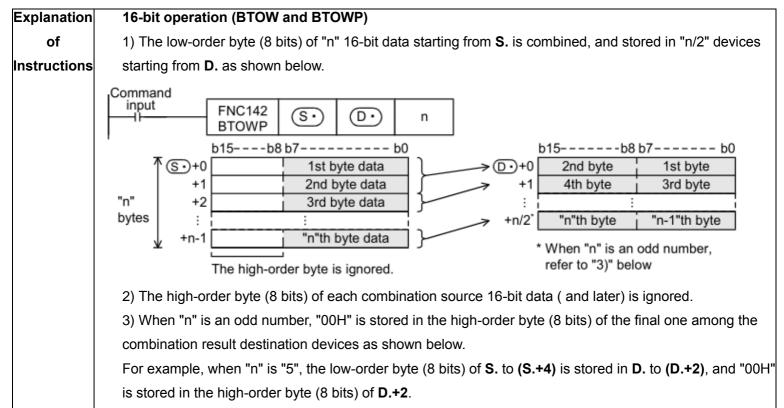
	K2,147,483,647), however, FX3U and FX3UC PLCs can handle the low-order 32 bits of 32-bit data
	as the sum while ignoring the high-order 32 bits.
•	When D and R are designated as n of 32-bit instruction, the 32-bit value of [n+1, n] will take effect,
	so please be careful.
	For example, when DWSUM D0 D100 R0, then n=[R1, R0]
•	An operation error is caused in the following cases; The error flag M8067 turns ON, and the error
	code is stored in D8067.
	• When "n" points starting from S. are outside the specified device range (error code: K6706)
	When "n" is smaller than or equivalent to "0" (error code: K6706)
	When D. are outside the specified device range. (error code: K6706)

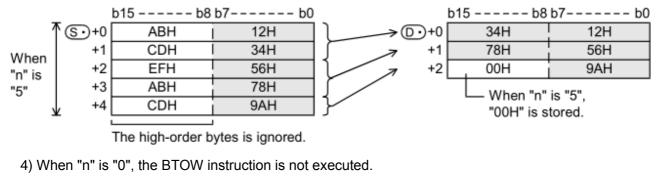

17.2 WTOB/ WORD to BYTE

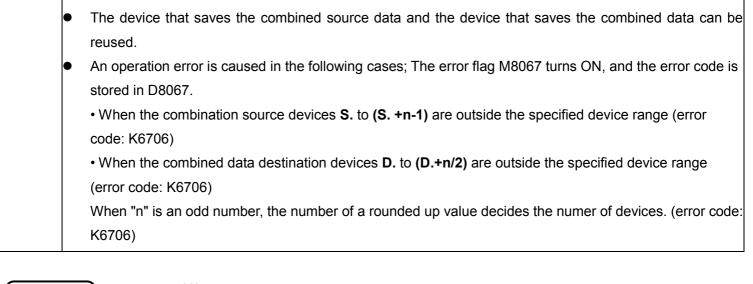

This instruction separates consecutive 16-bit data in byte units (8 bits).

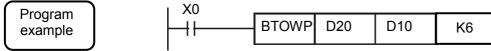
l	nstructior	I	Operand type			F	unctio	ons				
	FNC141 WTOB N Mnemonic S. D. N T Steps MTOB CC CC CC CC CC CC CC CC CC CC CC CC CC		Operation condition Continuous operation Pulse operation		32-bit instruction	Mnemonic —	Operation condition					
			S.		Head device number storing data to be separated in byte units Device: T, C, D, R, decoration							
	Operand		D.		Head device number storing result of separation in byte units Device: T, C, D, R, decoration BIN32/ 64 b							
			n	Number of Device: D,	-	e separated (0 <u>s</u>	≦n)			BIN16/ 32 bit		



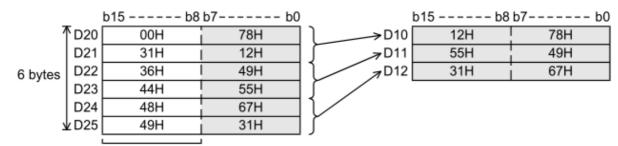



• When X0 is ON, the data stored in D10 to D12 is separated in byte units, and stored in D20 to D25.

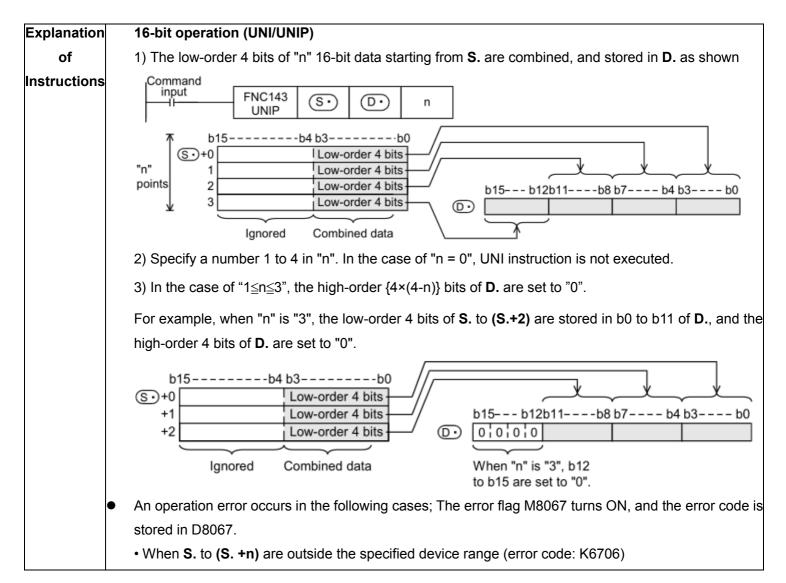



This instruction combines the low-order 8 bits (low-order byte) of consecutive 16-bit data.

Instruction	Operand type	Functions									
FNC142 BTOW	S. D. n	16-bit instruction 7 steps	Mnemonic BTOW BTOWP	Operation condition Continuous operation Pulse operation		32-bit instruction	Mnemonic —	Operation condition			
	S.		number stor	ing data to be con ration	nbine	d in byte units		BIN16 bit			
Operand	D.		number stor , D, R, deco	ng data acquired ration	by co	ombination in b	oyte units	BIN16 bit			
	n	Number of b Device: D, F	BIN16 bit								

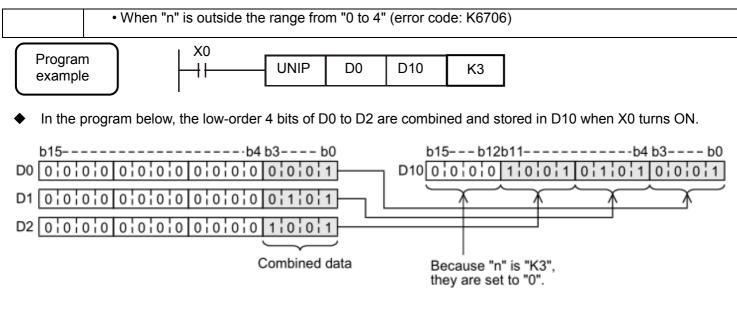


In the program shown below, the low-order byte (8 bits) data stored in D20 to D25 is combined, and stored in D10 to D12.



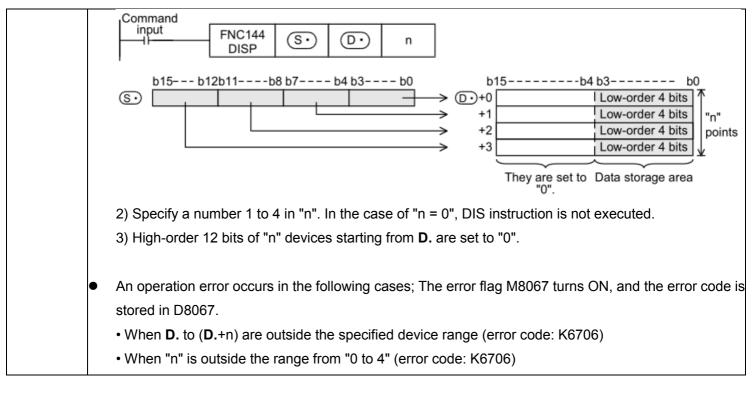
The high-order bytes is ignored.

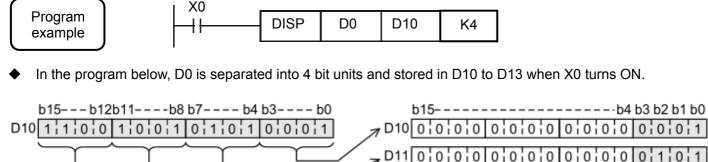
17.4 UNI/ 4-bit Linking of Word Data

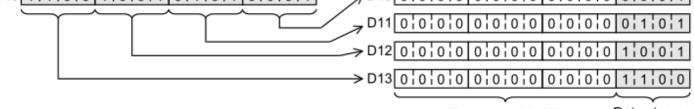

This instruction combines the low-order 4 bits of consecutive 16-bit data.

Instruction	Operand type				Funct	tions				
FNC143 UNI P	S. D. n	16-bit instruction 7 steps	Mnemonic UNI UNIP	Operation condition Continuous operation Pulse operation		32-bit instruction	Mnemonic 	Operation condition		
	S.		Head device number storing data to be combined Device: T, C, D, R, decoration							
Operand	D.	Device nur Device: T,	BIN16 bit							
	n	Number of is not execute Device: D ,	BIN16 bit							

Data Processing 2

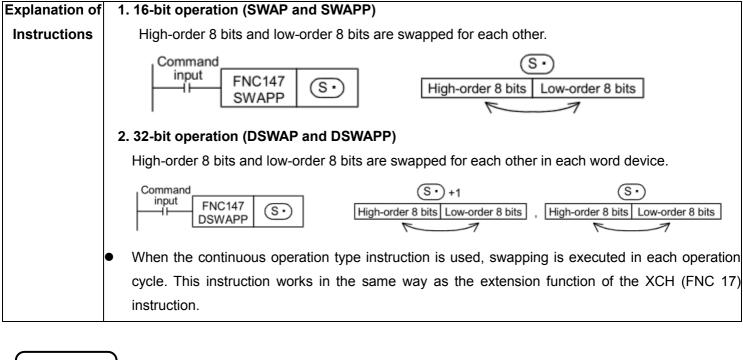



17.5 DIS/ 4-bit Grouping of Word Data


This instruction separates 16-bit data into 4 bit units.

Instruction	Operand type				Funct	ions		
FNC144 DIS	S. D. n	16-bit instruction 7 steps	Mnemonic DIS DISP	Operation condition Continuous operation Pulse operation		32-bit instruction	Mnemonic 	Operation condition
	S.		nber storing da C, D, R, deco	ata to be sepa ration	rated			BIN16 bit
Operand	D.	Head devid Device: T,			BIN16 bit			
	n	Number of is not execute Device: D ,	ed.)	arated (0 to 4)	(When	ı "n" is "0", DI	S instruction	BIN16 bit

Explanation	
of	16-bit operation (DIS and DISP)
Instructions	1) 16-bit data stored in S . is separated in 4-bit units, and stored in D . as shown below.



They are set to "0". Data storage area

Coolmay[®] 17.6 SWAP/ Byte Swap

This instruction swaps the high-order 8 bits and low-order 8 bits of a word device.

			Opera										
	Instruction		nd		Functions								
			type										
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation condition			
				instruction	Witemonic	condition		instruction	WITEHTOTIC	Operation condition			
	FNC147			3 steps	SWAP	Continuous		5 steps	DSWAP	Continuous operation			
	SWAP		S.		OWA	operation			DOWA				
	SWAF				SWAPP	Pulse			DSWAPP	Pulse operation			
D	D				SWAFF	operation			DOWAFF	Fuise operation			
	Operand		S.	Word devi	DINI16/22 bit								
	Operand		э.	Device: Kı	BIN16/32 bit								

Program example

When X0 is ON, the high-order 8 bits and low-order 8 bits of D11 are exchanged, and the high-order 8 bits and low-order 8 bits of D10 are exchanged.

Coolmay[®] 17.7 SORT2/ Sort Tabulated Data 2

This instruction sorts a data table consisting of data (lines) and group data (columns) based on a specified group data (column) sorted by line in either ascending or descending order. This instruction stores the data (lines) in serial devices facilitating the addition of data (lines).

On the other hand, the SORT (FNC 69) instruction stores the group data (columns) in serial devices, and sorts a table in ascending order only.

	Instruction	1	Operand type				Fun	ctions					
			S. m1	16-bit instruction	Mnemonic			32-bit instruction	Mnemonic	Operation condition			
	FNC149 SORT2		m2 D.	11 steps	SORT2	Continuous operation		21 steps DSORT2		Continuous operation			
D		Ρ	n										
			S.	Head dev Device: [
		-	m1	Number of Device: [
	Operand		m2	Number of Device: h	BIN16/32 bit								
			D.	Head dev points] Device: [Head device number storing the operation result [which occupies m1 × m2 ints]								
		-	n	Column n Device: [-	ıp data (colum	n) use	d as the basi	s of sorting [1 to m2]				

Explanation	1. 16-bit operation (SORT2)								
of	In the data table (sorting source) having (m1 x m2) points from S., data lines are sorted in the								
Instructions	ascending or descending order based on the group data in column No. "n", and the result is stored								
	in the data table (occupying m1 x m2 points) from D. .								
	Command input FNC149 S m1 m2 D n Instruction execution complete flag Instruction execution complete flag Instruction execution complete flag M8029 Instruction execution complete flag Image: Mail of the secution complete flag								
	2. 32-bit operation (DSORT2)								
	In the data table (sorting source) having (m1 × m2) points from [S.+1, S.], data lines are sorted in								
	the ascending or descending order based on the group data in the column No. "n", and the result is								
	stored in the data table (sorting result) having (m1 × m2) points from [D.+1, D.].								

Data Processing 2

C	N	N	m	ิล	V	®
•	U	U				

	Command							
	input	FNC149 DSORT2	S	m1	m2	D	n	
		Instruction ex M8029	xecution c			struction e ag for SOF	execution of RT2 instruction	complete
•	Set the sor	ting order b	y setting	M8165 to	ON or O	OFF.		
	1) M8165=	ON, descer	nding ord	er				
	2) M8165=	OFF, ascen	ding orde	er				
•	When the	command i	nput turn	s ON, da	ata sortin	g is start	ed. Data	sorting is completed after "m1"
	scans, and	the instruct	tion exec	ution con	nplete fla	g M8029	is set to 0	ON.
Ca	utions:							
•	Do not ch	ange the co	ontents o	of operar	nds and	data duri	ng opera	ition.
•	To execut	e SORT2 in	structio	n again, s	set the c	ommand	l input to	OFF once, then ON again.
•	Limitation	in number	of SOR	Γ2 instru	ctions			
	Up to two	SORT2 ins	truction	s can be	simultar	neously d	driven in	a program.
•	Writing du	iring RUN i	s disable	ed for a c	ircuit bl	ock inclu	iding SO	RT2 instruction.
•	When the	same devid	ce is spe	cified in	S. and E).		
	The sourc	e data is ov	verwritte	n with th	ie data a	cquired I	by sortin	g.
	Pay close	attention	not to c	hange th	ie conte	nts of ur	ntil exect	ution of SORT2 instruction is
	completed	ł.						

Program	L X0						
example		SORT2	D10	К5	К4	D50	D100

When X0=ON, specify to execute the data sorting. When sorting is completed, M8029=ON. Please do not change the contents of the sorted data during the execution of Instruction. If you want to reorder the data, please turn OFF and ON again.

Sorting source data

		Number of groups (m2 = K4)								
Col	umn No.	1	1 2 3							
Line No.		Control number	Height	Weight	Age					
	1	(D10)1	(D11)150	(D12)45	(D13)20					
Number	2	(D14)2	(D15)180	(D16)50	(D17)40					
of data	3	(D18)3	(D19)160	(D20)70	(D21)30					
(m1 = 5)	4	(D22)4	(D23)100	(D24)20	(D25)8					
	5	(D26)5	(D27)150	(D28)50	(D29)45					

1) Sorting result when the instruction is executed with "n = K2 (column No. 2)" (in the case of ascending order)

		Number of groups (m2 = K4)						
Col	umn No.	1	2	3	4			
Line No.		Control number	Height	Weight	Age			
Number	1	(D22)4	(D23)100	(D24)20	(D25)8			
of data	2	(D10)1	(D11)150	(D12)45	(D13)20			
(m1 = 5)	3	(D26)5	(D27)150	(D28)50	(D29)45			
	4	(D18)3	(D19)160	(D20)70	(D21)30			
	5	(D14)2	(D15)180	(D16)50	(D17)40			

2) Sorting result when the instruction is executed with "n = K3 (column No. 3)" (in the case of descending order)

		Number of groups (m2 = K4)							
Column No).	1	2	3	4				
Line No.		Control number	Height	Weight	Age				
	1	(D18)3	(D19)160	(D20)70	(D21)30				
Number of data	2	(D14)2	(D15)180	(D16)50	(D17)40				
(m1 = 5)	3	(D26)5	(D27)150	(D28)50	(D29)45				
	4	(D10)1	(D11)150	(D12)45	(D13)20				
	5	(D22)4	(D23)100	(D24)20	(D25)8				

18 Positioning Control

FNC	Instruction	Function		Device	
NO.	mstruction		3G PLC	2N PLC	MX2N PLC
150	DSZR	DOG Search Zero Return	*		
151	DVIT	Interrupt Positioning	*		
152	TBL	Batch Data Positioning Mode	*		
153	—				
154	—				
155	ABS	Absolute Current Value Read	*	*	*
156	ZRN	Zero Return	*	*	*
157	PLSV	Variable Speed Pulse Output	*	*	*
158	DRVI	Drive to Increment	*	*	*
159	DRVA	Drive to Absolute	*	*	*

18.1 DSZR/ Dog Search Zero Return

This instruction executes a zero return, and aligns the mechanical position with a present value register inside the PLC.

In addition, this instruction enables the following functions not supported by the ZRN (FNC156) instruction:

- DOG search function
- Zero return by the near-point (dog) signal and zero-phase signal

It is not possible, however, to count the zero-phase signal and then determine the zero point.

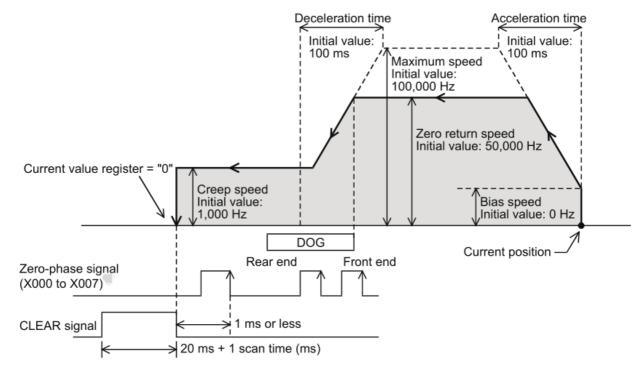
Instruction	1	Operand type	Functions									
		S1.	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition			
FNC150 DSZR		S2. D1.	9 steps	DSZR	Continuous operation			_				
		D2.						—				
	S1. Device number for near-point signal (dog) Device: X, Y, M, S, D □.b, decoration											
Operand		S2.	Input numb Device: X(Bit								
		D1.		Device number (Y) from which pulses are to be output Device: transistor outputs, 3G PLC: Y0~Y3, decoration Device number to which rotation direction signal is output Device: Y(designated pulse direction), decoration								
		D2.										

Explanation of 16-bit operation (DSZR) Instructions Command input FNC150 (S1) (S2) (D1 •) (D2 •) DSZR During RUN, avoid writing while the DSZR (FNC150) instruction is executed (that is, while a pulse • is output). Note that if writing is executed during RUN to a circuit block including the FNC150 instruction while pulses are output, the PLC decelerates and stops pulse output.

18.1.1 Related devices

• 3G PLC special auxiliary relay:

Pulse point Functions	Y0	Y1	Y2	Y3	Y4	Y5	Y6	¥7
Send end flag	M8029							
Instruction execution abnormal end flag	M8329							


Positioning Control

Pulse operation monitoring	M8340	M8350	M8360	M8370	M8151	M8152	M8153	M8154
Clear signal output function is effective	M8341	M8351	M8361	M8371				
Zero return direction specification	M8342	M8352	M8362	M8372				
Forward limit	M8343	M8353	M8363	M8373				
Reverse limit	M8344	M8354	M8364	M8374				
Near-point signal logic inversion	M8345	M8355	M8365	M8375				
Zero signal logic inversion	M8346	M8356	M8366	M8376				
Positioning Instruction Drive	M8348	M8358	M8368	M8378				
Pulse stop bit	M8349	M8359	M8369	M8379	M8450	M8451	M8452	M8453
Clear signal device specified function is valid	M8464	M8465	M8466	M8467				

3G PLC special data register:

Pulse point								
	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Functions								
Current value register (32 bits)	D8340	D8350	D8360	D8370	D8140	D8142	D8144	D8160
Current value register (32 bits)	D8341	D8351	D8361	D8371	D8141	D8143	D8145	D8161
Base speed [Hz]	D8342	D8352	D8362	D8372				
	D8343	D8353	D8363	D8373	D8146	D8146	D8146	D8146
Maximum speed [Hz] (32 bits)	D8344	D8354	D8364	D8374	D8147	D8147	D8147	D8147
Creep speed [Hz]	D8345	D8355	D8365	D8375				
Return to origin speed [Hz]	D8346	D8356	D8366	D8376				
(32 bit)	D8347	D8357	D8367	D8377				
Acceleration time [ms]	D8348	D8358	D8368	D8378	D8148	D8148	D8148	D8148
Deceleration time [ms]	D8349	D8359	D8369	D8379	00140	00140	00140	00140
Clear signal device designation	D8464	D8465	D8466	D8467				

18.1.2 Function and operation

1. For **S1.**, specify the near-point signal (DOG) input device number.

To specify the logic of this near-point signal (DOG), turn the "DOG signal logic reverse" relay on or off as shown in the following table.

Pulse output destination device D1.	"DOG signal logic reverse" relay	Description
Y0	M8345	OFF: Positive logic (Turning on the input will
Y1	M8355	turn on the near-point signal.)
Y2	M8365	ON: Negative logic (Turning off the input will
Y3	M8375	turn on the near-point signal.)

2. For **S2.**, specify the zero-phase signal input number in the range of X000 to X007.

To specify the logic of this zero-phase signal, turn the "Zero-point signal logic reverse" relay on or off as shown in the following table.

If the same input is specified for both the near-point signal and the zero-phase signal, the logic of the zerophase signal will be specified by the device of the near-point signal (DOG), and not by one of the following devices. In this case, the operation will be performed at the front and rear ends of the near-point signal (DOG) without using the zero-phase signal. This is similar to the operation of the ZRN instruction.

Pulse output	"Zero-point signal	
destination device	logic	Description
D1.	reverse" flag	
Y0	M8346	OFF: Positive logic (Turning on the input will
Y1	M8356	turn on the near-point signal.)
Y2	M8366	ON: Negative logic (Turning off the input will
Y3	M8376	turn on the near-point signal.)

3. Zero return direction

To specify the zero return direction, turn "zero return direction specification" relay on or off as shown in the following table.

Pulse output destination device D1.	"Zero return direction specification" relay	Description
Y0	M8342	To perform zero return in the forward rotation
Y1	M8352	direction: Turn on the relay.
Y2	M8362	To perform zero return in the reverse rotation
Y3	M8372	direction: Turn off the relay.

4. Zero return speed

Use the devices shown in the following table to set the zero return speed. Be sure to set the zero return speed so that the relation with the other speeds is "bias speed≦zero return speed≦maximum speed".

- If "zero return speed > maximum speed", the operation will be performed at the maximum speed.

Pulse output destination device D1.	Bias speed	Zero return speed	Maximum speed	Initial value	
YO	D8342	D8347,	D8344,		
10	D8342	D8346	D8343		
Y1	D8352	D8357,	D8354,		
TI		D8356	D8353	5000Hz	
Y2	D8362	D8367,	D8364,	0000112	
12	00302	D8366	D8363		
Y3	D8372	D8377,	D8374,		
13	00372	D8376	D8373		

5. Creep speed

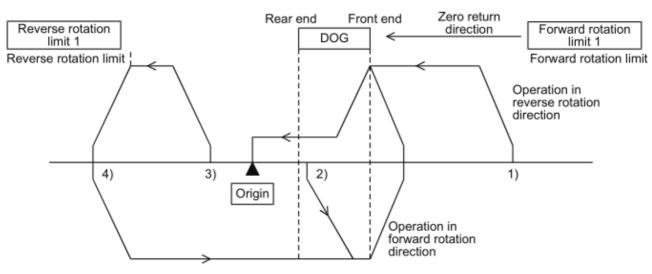
"Bias speed \leq creep speed \leq maximum speed".

Pulse output destination device D1.	Bias speed	Creep speed	Maximum speed	Initial value
Y0	D8342	D8345	D8344,D8343	
Y1	D8352	D8355	D8354,D8353	1000Hz
Y2	D8362	D8365	D8364,D8363	1000112
Y3	D8372	D8375	D8374,D8373	

18.1.3 Zero return operation

1. Specify the zero return direction.

Turn the "zero return direction specification" relay (M8342) on or off to specify the zero return direction.


- 2. Execute the DSZR instruction to perform zero return.
- Transfer operation will be performed in the direction specified by the "zero return direction designation" flag (M8342) at the speed specified by the "zero return speed designation" device (D8347, D8346).
- 4. If the near-point signal (DOG) specified by is turned on , the speed will be reduced to the creep speed (D8345).
- 5. After turning the near-point signal (DOG) OFF *1, if the zero-phase signal specified by is turned on, the pulse outputting operation will immediately stop.

If the same input is specified for both the near-point signal and the zero-phase signal, turning the near-point signal (DOG) OFF *1 will immediately stop the pulse outputting operation (just like the ZRN instruction where the zero-phase signal is not used).

- 6. If the CLEAR signal output function (M8341) is enabled (set to ON), the CLEAR signal (Y004) will be turned on within 1ms after the zero-phase signal is turned ON, and will be kept ON for "20 ms + 1 scan time (ms)".
- 7. The current value register (D8341, D8340) will be reset to "0" (will be cleared).
- 8. The "Instruction execution complete" flag (M8029) will turn on, and the zero return operation will be completed.

18.1.4 DOG search function

If the forward rotation limit and the reverse rotation limit are set, the DOG search function can be used for zero return. The zero return operation depends on the zero return start position.

- 1. If the start position is before the DOG:
 - a) When the zero return instruction is executed, zero return will be started.
 - b) Transfer operation will be started in the zero return direction at the zero return speed.
 - c) If the front end of the DOG is detected, the speed will be reduced to the creep speed.
 - d) After detecting the rear end of the DOG, if the first zero-phase signal is detected, the operation will be stopped.
- 2. If the start position is in the DOG area:
 - a) When the zero return instruction is executed, zero return will be started.
 - b) Transfer operation will be started in the opposite direction of the zero return direction at the zero return speed.
 - c) If the front end of the DOG is detected, the speed will decelerate and the operation will stop. (The workpiece will come out of the DOG area.)
 - d) Transfer operation will be restarted in the zero return direction at the zero return speed (and the workpiece will enter the DOG area again).
 - e) If the front end of the DOG is detected, the speed will be reduced to the creep speed.

- After detecting the rear end of the DOG, if the first zero-phase signal is detected, the operation will be stopped.
- 3. If the start position is in the near-point signal OFF area (after the DOG):
 - a) When the zero return instruction is executed, zero return will be started.
 - b) Transfer operation will be started in the zero return direction at the zero return speed.
 - c) If the reverse rotation limit 1 (reverse rotation limit) is detected, the speed will decelerate, and the operation will stop.
 - d) Transfer operation will be started in the opposite direction of the zero return direction at the zero return speed.
 - e) If the front end of the DOG is detected, the speed will be reduced and the operation will be stopped. (The workpiece will detect the DOG and then come out of the DOG area.)
 - f) Transfer operation will be restarted in the zero return direction at the zero return speed. (The workpiece will enter the DOG area again.)
 - g) If the front end of the DOG is detected, the speed will be reduced to the creep speed.
 - h) After detecting the rear end of the DOG, if the first zero-phase signal is detected, the operation will be stopped.
- 4. If the limit switch in the zero return direction turns ON (if the start position is at forward rotation limit 1 or reverse rotation limit 1):
 - a) When the zero return instruction is executed, zero return will be started.
 - b) Transfer operation will be started in the opposite direction of the zero return direction at the zero return speed.
 - c) If the front end of the DOG is detected, the speed will decelerate and the operation will stop. (The workpiece will detect the DOG and then come out of the DOG area.)
 - d) Transfer operation will be restarted in the zero return direction at the zero return speed (and the workpiece will enter the DOG area again).
 - e) If the front end of the DOG is detected, the speed will be reduced to the creep speed.
 - f) After detecting the rear end of the DOG, if the first zero-phase signal is detected, the operation will be stopped.

18.2 DVIT/ Interrupt Positioning

This instruction executes one-speed interrupt constant quantity feed.

	Instruction	Operand type	Functions							
		S1.	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition	
	FNC151 DVIT	S2. D1.	9 steps	DVIT	Continuous operation		17 steps	DDVIT	Continuous operation	
D		D2.								
		S1.		Number of output pulses (incremental address) after interrupt ^{*1} Device: KnX, KnY, KnM, KnS, T, C, D, R, K, H, decoration BIN16/32-bit						
	Operand	S2.		Output pulse frequency ^{*2} Device: KnX, KnY, KnM, KnS, T, C, D, R, K, H, decoration						
Device number (Y) from which pulses are to be					Device number (Y) from which pulses are to be output Device: transistor outputs, 3G PLC: Y0~Y3, decoration				Bit	
		D2.	Device number to which rotation direction signal is output Device: Y, M, S, decoration					Dit		

*1. Setting range: -32768 to +32767 (except 0) in 16-bit operation

-999,999 to +999,999 (except 0) in 32-bit operation

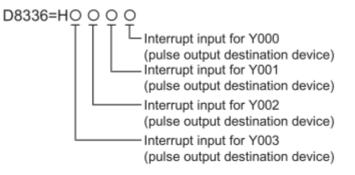
*2. Setting range: 10 to 32767 Hz in 16-bit operation

10 to 100,000 Hz in 16-bit operation

Explanation of	16-bit operation (DVIT)						
Instructions	Command						
	INDUT FNC151 S1 S2 D1 D2						
	 During RUN, avoid writing while the DVIT (FNC151) instruction is executed (that is, while a pulse 						
	is output).						
	Note that if writing is executed during RUN to a circuit block including the FNC151 instruction						
	while pulses are output, the PLC decelerates and stops pulse output.						

* Related devices refer to "18.1 DSZR/ Dog Search Zero Return"

18.2.1 Function and operation


1) The rotation direction ON/OFF status of the specified device is shown in the following table.

During instruction execution,	however, do not use the output D2. for other purposes.
-------------------------------	---

ON/OFF status of device specified by D2.	Rotation direction (increase/decrease current value)
ON	If the number of pulses to be output after interruption (specified by S1 .) is set to a positive number, the operation will be performed in the forward rotation direction. Forward rotation (Outputting pulses from D1 . will increase the current value.)
OFF	If the number of pulses to be output after interruption (specified by S1 .) is set to a negative number, the operation will be performed in the reverse rotation direction. Reverse rotation (Outputting pulses from D1 . will decrease the current value.)

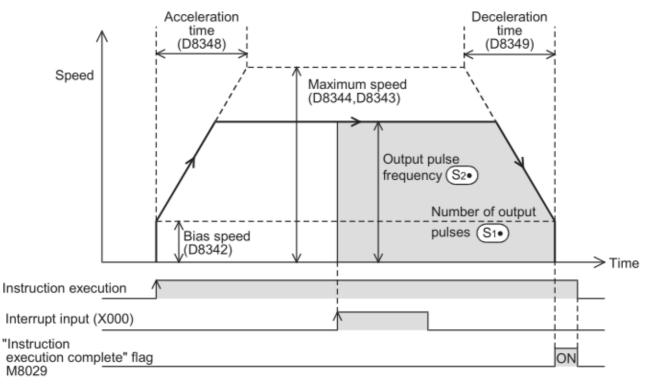
2) Designation of interrupt input using M8336 interrupt input specification function:

- a) Turn on the M8336.
- b) Set the interrupt input number (X000 to X005) in D8336, or specify the user interrupt input command.

Setting value	Description of setting
0	Specifies X000 for the interrupt input signal.
1	Specifies X001 for the interrupt input signal.

5	Specifies X005 for the interrupt input signal.								
	Specifies a user interrupt input command	for the interrupt input signal.							
	Pulse output destination device	User interrupt input command							
8	Y0	M8460							
	Y1	M8461							
	Y2	M8462							
	¥3	M8463							
9~E	Do not specify these values.								
F	Set "F" for a pulse output destination device if the device is not used for the Interrupt								
I	Positioning (DVIT) instruction.								

3) Interrupt input signal logical NOT


Turn the "Interrupt signal logic reverse" relay ON or OFF (see the following table) to specify the logic of the interrupt input signal. However, if the user interrupt input command is set for the pulse output destination device, the interrupt input signal logical NOT function cannot be used.

Pulse output destination device D1.	"Interrupt signal logic reverse" relay	Description
Y0	M8347	OFF: Positive logic (Turning the input ON will
Y1	M8357	turn on the interrupt input signal.)
Y2	M8367	ON: Negative logic (Turning the input OFF
Y3	M8377	will turn on the interrupt input signal.)

18.2.2 Interruption positioning operation

The interruption positioning operation is described below assuming that Y000 is specified as the pulse output destination device by **D1**.

- 1) Execute the Interrupt Positioning (DVIT) instruction.
- 2) Transfer operation will be performed in the direction specified by the sign attached to the number of output pulses (specified by **S1**.) at the speed specified by the output pulse frequency (specified by **S2**.).
- 3) If interrupt input X000 is turned on, pulses will be output until the number of output pulses reaches the number specified by **S1.**, and then the operation will stop.
- 4) The "instruction execution complete" flag (M8029) will turn on, and the interruption positioning operation will be completed.

5)

Program example please refer to "DVIT instruction test" on our website: <u>https://en.coolmay.com/Download-177.html</u>

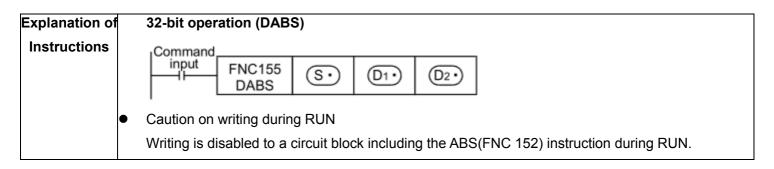
18.3 TBL/ Batch Data Positioning Mode

This instruction executes one specified table operation from the data table set in GX Developer (Ver.8.23Z or later).

	Instruction	Operand type		Functions					
			16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition
D	FNC152 TBL	D. n		_			17 steps	DTBL	Continuous operation
	Operand	D.		Device number (Y) from which pulses are to be output. Device: transistor output Y					
	n Table entry number [1 to 100] to be executed Device: K, H					32-bit binary			

Explanation of	16-bit operation (DTBL)
Instructions	Command input II DTBL DTBL I
	 Caution on writing during RUN Writing is disabled to a circuit block including the TBL (FNC152) instruction during RUN.

✤ Related devices please refer to "18.1 DSZR/ Dog Search Zero Return".


Function and operation

Use the pulse output D of DTBL instruction and the positioning table number (n) to designate the operation D. pre-set in the "positioning setting" parameter of GX Developer, and operate according to the settings in the specified table. Set the positioning setting parameters in GX Developer (Ver. 8.23Z or later). The "Pulse number" and "Frequency" in the positioning table set in the positioning setting parameters can be changed by the program, display module, HMI, etc.

18.4 ABS/ Absolute Current Value Read

This instruction reads the absolute position (ABS) data. The data is converted into a pulse when being read.

	Instruction	Operand type	Functions							
		S.	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition	
	FNC155 ABS	D1.		_			13 steps	DABS	Continuous operation	
D				—						
		S.	from servo	Head device number inputting absolute (ABS) data output signal sent from servo amplifier. Three points are occupied from S Device: X, Y, M, S, D □.b, decoration						
	Operand	D1.	servo amplifier. 7	 Head device number outputting absolute (ABS) data control signal to servo amplifier. Three points are occupied from D1 Device: Y, M, S, D □.b, decoration 						
		D2.		Device number storing absolute (ABS) data (32-bit value). Device: KnY, KnM, KnS, T, C, D, R, V, Z, decoration						

18.4.1 Related device

2N series PLC special auxiliary relay:

	Y0	Y1	Y6	¥7	Y10
Send end flag	M8029	M8029	M8029	M8029	M8029
Pulse output stop bit	M8145	M8146	M8155	M8156	M8159
Pulse output busy flag	M8147	M8148	M8157	M8158	M8161

2N series PLC special register:

	Y0	Y1	Y6	Y7	Y10
Desition nulse (22 hit)	D8140	D8142	D8150	D8152	D8154
Position pulse (32 bit)	D8141	D8143	D8151	D8153	D8155
Base speed [Hz]	D8145	D8145	D8145	D8145	D8145

Maximum analad [U=1 (22 hita)	D8146	D8146	D8146	D8146	D8146
Maximum speed [Hz] (32 bits)	D8147	D8147	D8147	D8147	D8147
Acceleration	D8148	D8148	D8148	D8148	D8148
and deceleration time during execution					

MX2N series PLC special device:

	Y0	Y1	Y2	Y3
Minimum output frequency (Default: 0)	D8145	D8145	D8159	D8159
Maximum output frequency	D8146 D8147	D8146 D8147	D8160	D8160
Acceleration and deceleration time (default: 100ms)	D8148	D8148	D8162	D8162
The output pulse stops immediately	M8145	M8146	M8155	M8156
Output pulse	M8147	M8148	M8157	M8158
Output pulse accumulation	D8140、D8141	D8142、D8143	D8154	D8156
Output pulse accumulation (Y0 and Y1)	D8136、	D8137	D8166、	D8167

3G PLC special auxiliary relay

Pulse point								
	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Function								
Send end flag				M8	029			
Instruction execution abnormal end		M8	329					
flag		1010	023					
Pulse operation monitoring	M8340	M8350	M8360	M8370	M8151	M8152	M8153	M8154
Clear signal output function is effective	M8341	M8351	M8361	M8371				
Forward limit	M8343	M8353	M8363	M8373				
Reverse limit	M8344	M8354	M8364	M8374				
Positioning Instruction driver	M8348	M8358	M8368	M8378				
Pulse stop bit	M8349	M8359	M8369	M8379	M8450	M8451	M8452	M8453
Clear signal device specified function is valid	M8464	M8465	M8466	M8467				

3G PLC special register

Pulse point Function	Y0	Y1	Y2	Y3	Y4	Y5	Y6	¥7
Current value register (32 bits)	D8340	D8350	D8360	D8370	D8140	D8142	D8144	D8160
	D8341	D8351	D8361	D8371	D8141	D8143	D8145	D8161
Base speed [Hz]	D8342	D8352	D8362	D8372				
Maximum speed [Hz] (32 bits)	D8343	D8353	D8363	D8373	D8146	D8146	D8146	D8146
	D8344	D8354	D8364	D8374	D8147	D8147	D8147	D8147

Acceleration time [ms]	D8348	D8358		D8378	D8148	D8148	D8148	D8148
Deceleration time [ms]	D8349	D8359	D8369	D8379				20140
Clear signal device designation	D8464	D8465	D8466	D8467				

1. Function and Operation

1) For **S.**, specify the first number of the device that inputs the absolute position (ABS) data from the servo amplifier. Number of occupied points: 3 (**S.** is ABS (bit 0), **S.+1** is ABS (bit 1), and **S.+2** is the "send data ready" signal.)

2) For **D1.**, specify the first number of the device that outputs the absolute position (ABS) data control signal to the servo amplifier. Be sure to use transistor outputs for the PLC outputs. Number of occupied points: 3 (**D1.** is the "servo-ON" signal, **D1.+1** is the ABS data transfer mode, and **D1.+2** is the "ABS data request" signal.)

3) For **D2.**, specify the absolute position (ABS) data (32-bit value) storage device number to store the data read out from the servo amplifier. Handle the absolute position (ABS) data as the table above.

2. Detection of absolute position

- 1) If the DABS (FNC155) instruction turns ON, the PLC will activate the servo-ON output and the ABS transfer mode output.
- 2) 32+6-bit data communication will be performed while mutually checking the data sending/receiving condition using the "send data ready" signal and the "ABS data request" signal.
- 3) The 2-bit line (line for ABS bit 0 and bit 1) will be used for data transmission.
- 4) At the completion of ABS data reading, the "Instruction execution complete" flag (M8029) will turn on.

Servo-ON	SON
ABS data transfer mode	ABSM
"Send data ready" signal	ABST Amplifier output
"ABS data request" signal	ABSR PLC output
ABS(bit1)	ABS B1 Amplifier output
ABS(bit0)	ABS B0 Amplifier output
	Current position data (32 bits) + check data (6 bits)

18.5 ZRN/ Zero Return

Instruction for reading absolute position (ZRN) data. The data is read out as pulse converted values.

	Instruction	0	Dperand	Functions									
			type	16-bit		Operation		32-bit		Or	erati	on	
	S1.		S1.	instruction	Mnemonic	condition		instruction	Mnemonic		condition		
	FNC156 ZRN		S2. S3.	9 steps	ZRN	N Continuous 17 steps DZRN			Continuous operation				
D	-		D1.		_								
	J		S1.		Initial zero return speed *1Device: KnX, KnY, KnM, KnS, T, C, D, R, K, H, decoration16- or								
			S2.	Creep spe	Creep speed [10 to 32767 Hz], decoration								
	Operand					/I, KnS, T, C, E		ł					
	Operand		S3.		Device number for near-point signal (dog) Device: X, Y, M, S, D 口.b, decoration								
			D1.	Device nur	nber (Y) fron	n which pulses	s are to b	e output		-			
			2	Device: Y, M, S, decoration									

Note:*1. Setting range: 10 to 32767 Hz for 16-bit operation, 10 to 100,000 for 32-bit operation

Explanation of Instructions		16-bit operation (ZRN)								
	•	Input FNC156 S10 S20 S30 D0 During RUN, avoid writing while the ZRN (FNC156) instruction is executed (that is, while pulses								
are output). Note that if writing is executed during RUN to a circuit block including the FNC156 ins while pulses are output, the PLC decelerates and stops pulse output.										

18.5.1 Related devices

2N PLC special auxiliary relay:

	Y0	Y1	Y6	Y7	Y10
Send end flag	M8029	M8029	M8029	M8029	M8029
Pulse output stop bit	M8145	M8146	M8155	M8156	M8159
Pulse output busy flag	M8147	M8148	M8157	M8158	M8161

2N PLC special register

	Y0	Y1	Y6	Y7	Y10
Position pulse	D8140	D8142	D8150	D8152	D8154

(32 bit)	D8141	D8143	D8151	D8153	D8155
Base speed [Hz]	D8145	D8145	D8145	D8145	D8145
Maximum speed	D8146	D8146	D8146	D8146	D8146
[Hz] (32 bits)	D8147	D8147	D8147	D8147	D8147
Acceleration and	D8148	D8148	D8148	D8148	D8148
deceleration time					
during execution					

MX2N PLC special devices

	Y0	Y1	Y2	Y3
Minimum output frequency (Default: 0)	D8145	D8145	D8159	D8159
Maximum output frequency	D8146 D8147	D8146 D8147	D8160	D8160
Acceleration and deceleration time (Default: 100ms)	D8148	D8148	D8162	D8162
The output pulse stops immediately	M8145	M8146	M8155	M8156
Output pulse	M8147	M8148	M8157	M8158
Output pulse accumulation	D8140、D8141	D8142、D8143	D8154	D8156
Output pulse accumulation (Y0 and Y1)	D8136、	D8137	D8166、	D8167

3G PLC special auxiliary relay

Pulse point	YO	Y1	Y2	Y3	Y4	Y5	Y6	¥7
Function								
Send end flag				M8	029			
Instruction								
execution		Ma	329					
abnormal end		NIO.	020					
flag								
Pulse operation	M8340	M8350	M8360	M8370	M8151	M8152	M8153	M8154
monitoring	11100-10	Meeee	Moooo	110070	Moror	MOTOL	1110100	1010101
Clear signal								
output function	M8341	M8351	M8361	M8371				
is effective								
Forward limit	M8343	M8353	M8363	M8373				
Reverse limit	M8344	M8354	M8364	M8374				
Positioning								
Instruction	M8348	M8358	M8368	M8378				
driver								
Pulse stop bit	M8349	M8359	M8369	M8379	M8450	M8451	M8452	M8453

Clear	signal						
device s	specified	M8464	M8465	M8466	M8467		
function	is valid						

3G PLC special register

Pulse point								
	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Function								
Current value	D8340	D8350	D8360	D8370	D8140	D8142	D8144	D8160
register (32 bits)	D8341	D8351	D8361	D8371	D8141	D8143	D8145	D8161
Base speed [Hz]	D8342	D8352	D8362	D8372				
Maximum speed	D8343	D8353	D8363	D8373	D8146	D8146	D8146	D8146
[Hz] (32 bits)	D8344	D8354	D8364	D8374	D8147	D8147	D8147	D8147
Acceleration time	D8348	D8358	D8368	D8378				
[ms] Deceleration time [ms]	D8349	D8359	D8369	D8379	D8148	D8148	D8148	D8148
Clear signal device designation	D8464	D8465	D8466	D8467				

18.5.2 Function and Operation

1) For S3., specify the near-point signal (DOG) input device number (NO contact).

Turning on the near-point signal will reduce the speed to the creep speed. Turning off the near-point signal will complete the zero return operation.

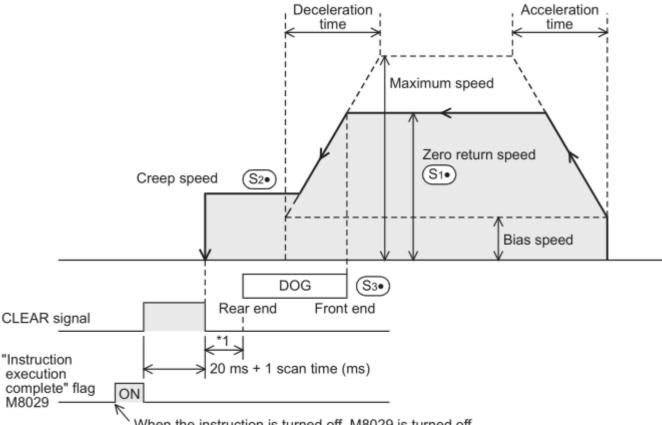
2) Zero return direction

For this instruction, the zero return direction is set to the reverse rotation direction.

(During zero return operation, the value indicated in the current value register will be decreased.)

To perform zero return in the forward rotation direction, follow the example program below to control the direction output.

- a) Turn on $Y_{\Box\Box\Box}$ (rotational direction signal).
- b) Refresh $Y_{\Box\Box\Box}$ output using the REF (FNC 50) instruction.
- c) Execute the ZRN instruction (zero return instruction).


d) With the execution completion flag (M8029) of the ZRN instruction (zero return instruction), reset Y□□□ (rotational direction signal).

18.5.3 Zero return operation

Zero return operation is described below assuming that Y000 is specified as the pulse output destination device

- **D.**.
- 1) Execute the ZRN instruction to carry out zero return.
- 2) Transfer operation will be performed at the zero return speed specified by S1..

- 3) If the near-point signal (DOG) specified by **S3.** is turned on, the speed will be reduced to the creep speed specified by **S2.**.
- 4) If the near-point signal (DOG) specified by **S3.** is turned off, the pulse outputting operation will be immediately stopped.
- 5) If the CLEAR signal output function (M8341) is enabled (set to ON), the CLEAR signal (Y004) will be turned on within 1 ms *1 after the near-point signal (DOG) is turns from ON to OFF, and will be kept ON for "20 ms + 1 scan time (ms)". ^{*2}
- 6) The current value register (D8341, D8340) will be reset to "0" (will be cleared).
- 7) "Instruction execution complete" flag will be turned on, and the zero return operation will be completed.

When the instruction is turned off, M8029 is turned off.

18.5.4 Cautions

• If the near-point input signal in **S3.** is specified as X000 to X007, the PLC interruption function will be used to stop the operation.

Under the following condition, however, operation may be affected by the input filter or the scan time of the sequence program.

- An input number of X010 or higher (or other device (auxiliary relay, etc.)) is specified.

If input relay X010 or higher is specified for the near-point signal (DOG), the effects of the input filter will be applied.

- If an input X000 to X007 (X000 to X005 for FX 3S PLC) of the main unit is specified for the near-point signal (DOG), the input cannot be used for the following items:
 - High-speed counter
 - Input interruption
 - Pulse catch

- SPD instruction
- DSZR instruction
- DVIT instruction *1
- Properly set the DOG so that the near-point signal (DOG) can be kept ON until the speed is reduced to the creep speed.

This instruction will start speed reduction at the front end of the DOG, and will stop the operation at the rear end of the DOG. The current value register will then be cleared (reset to "0").

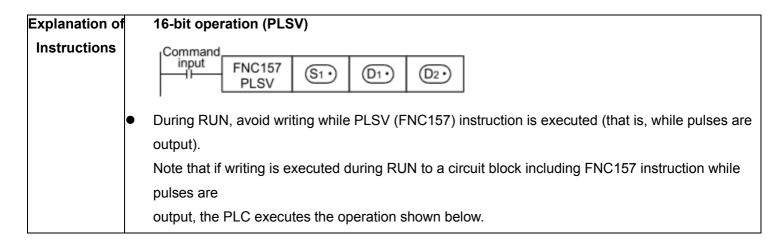
If the speed is not reduced to the creep speed before detecting the rear end of the DOG, the operation may not be stopped at the specified position.

- The creep speed should be sufficiently slow.
 The zero return instruction will not decelerate at the stop point. Therefore, if the creep speed is not slow enough, the operation may not stop at the specified position due to inertia.
- The zero-phase signal of the servo motor cannot be used. For this reason, if fine adjustment of the origin position is needed, adjust the position of the near-point signal (DOG).
- If the instruction activation contact is turned off during zero return operation, the speed will decelerate and the operation will stop. In this case, the "Instruction execution complete" flag (M8029) will not turn on.
- While the "pulse output monitor" (BUSY/READY) flag is on, a positioning instruction (including PLSR and PLSY) that uses the same output cannot be executed.

If the "pulse output monitor" (BUSY/READY) flag is still on after the instruction activation contact is turned off, do not execute a positioning instruction (including PLSR and PLSY instructions) that uses the same output number.

- In the following case, the "Instruction execution abnormal end" flag (M8329) will be turned on, and execution
 of the instruction will be completed.
- If the forward limit relay or the reverse limit relay is turned on, the speed will decelerate and the operation will stop. In this case, the "Instruction execution abnormal end" flag (M8329) will be turned on when execution of the instruction is complete.
- If the limit relay (forward or reverse) on the opposite side of the operation direction is turned on, the speed will decelerate and the operation will stop.

In this case, the "Instruction execution abnormal end" flag (M8329) will be turned on when execution of the instruction is complete. $_{\circ}$



18.6 PLSV/ Variable Speed Pulse Output

This instruction outputs variable speed pulses with an assigned rotation direction.

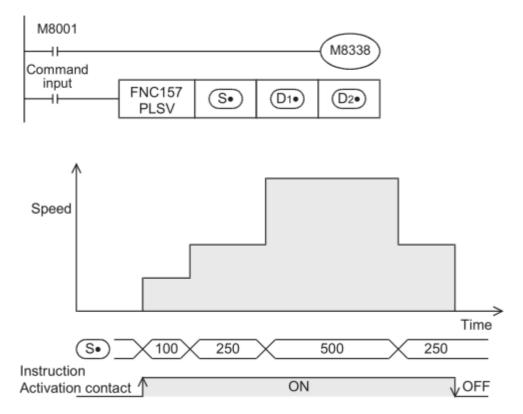
	Instruction	Operand type	Functions								
		S1.	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic		erati nditi	
D	FNC157 PLSV	D1. D2.	9 steps	PLSV	Continuous operation		17 steps	DPLSV		ntinu erati	
		S1.			out pulse frequ /I, KnS, T, C, E		Z, K, H, deco	ration	16- binary	or	32-bit
	Operand	D1.		Device number (Y) from which pulses are to be output Device: transistor output Y, decoration							
		D2.			h rotation dire	ction sigr	nal is output		Bit		

Note:*1. Setting range: -32768 to +32767 Hz for 16-bit operation, -100,000 to 000 Hz for 32-bit operation.

Related devices refer to 18.5 ZRN/ Zero Return

18.6.1 Function and operation

The variable speed pulse output instruction changes the speed while using the rotation direction output.

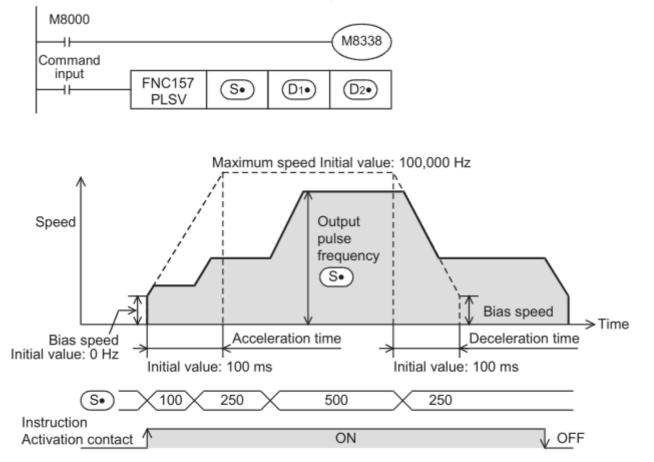

The acceleration/deceleration function applies for the variable speed pulse output (PLSV) instruction, which makes it possible to specify whether acceleration/deceleration will be used or not.

18.6.1.1 Operation without Acceleration/Deceleration (M8338 = OFF)

If the output pulse frequency **S**. value is changed after turning the acceleration/deceleration function (M8338) OFF, the variable speed pulse output (PLSV) instruction will change the output frequency without using

acceleration/deceleration.

1) For S., specify the output pulse frequency.


Even if pulses are being output, the output pulse frequency **S**. can be changed freely. Acceleration/deceleration, however, will not be performed.

2) The rotation direction ON/OFF status of the specified device is shown in the following table.

ON/OFF status of device specified by D2.	Rotation direction (increase/decrease current value)
ON	If the number of output pulses specified by S1 . is a positive number, the operation will be performed in the forward rotation direction. Forward rotation (Outputting pulses from D1 . will increase the current value.)
OFF	If the number of output pulses specified by S1. is a negative number, the operation will be performed in the reverse rotation direction. Reverse rotation (Outputting pulses from D1. will decrease the current value.)

18.6.1.2 Operation with Acceleration/Deceleration (M8338 = ON)

If the output pulse frequency **S**. value is changed after turning the acceleration/deceleration (M8338) ON, the variable speed pulse output (PLSV) instruction will accelerate or decelerate to the changed output.

1) For S., specify the output pulse frequency.

Even if pulses are being output, the output pulse frequency **S**. can be changed freely. Acceleration/deceleration will be performed.

2) The rotation direction ON/OFF status of the specified device is shown in the following table.

ON/OFF status of device specified by S.	Rotation direction (increase/decrease current value)
ON	If the number of output pulses specified by S. is a positive number, the operation will be performed in the forward rotation direction. Forward rotation (Outputting pulses from D1. will increase the current value.)
OFF	If the number of output pulses specified by S. is a negative number, the operation will be performed in the reverse rotation direction. Reverse rotation (Outputting pulses from D1. will decrease the current value.)

18.6.2 Important points

• During pulse output operation, if the output pulse frequency is changed to "K0", the PLC will reduce the speed and then stop the pulse outputting operation if the acceleration/deceleration function is ON.

However, if the acceleration/deceleration function is not activated, the PLC will immediately stop the pulse

outputting operation.

Before outputting pulses again, check that the "pulse output monitor" (BUSY/READY) flag is off, and then wait until 1 or more cycles of operation have been completed. After that, set (change) the output pulse frequency to a value other than "K0".

• During pulse outputting operation, do not change the sign attached to the output pulse frequency value S..

If it is necessary to change the sign, stop the servo motor first by setting the output pulse frequency value **S**. to "K0", and wait for the motor to stop completely after decelerating to stop. And then, change the sign attached to the output pulse frequency value **S**.

If the sign attached to the output pulse frequency value **S**. is changed during pulse outputting operation, the operation may be changed as follows, and the machine, therefore, may be damaged:

1) The pulse outputting operation may be stopped.

2) "Pulse output monitor" (BUSY/READY) flag may be turned off.

(The pulse outputting operation may be stopped, but the motor may not be stopped immediately.)

3) Operation may be performed in the specified direction at the frequency specified by the output pulse frequency value **S**.

If the instruction activation contact is turned off during pulse outputting operation while the acceleration/deceleration function is ON, the speed will decelerate and the operation will stop.

If the instruction activation contact is turned off during pulse outputting operation while the acceleration/deceleration function is OFF, the operation will stop immediately.

The "Instruction execution complete" flag (M8029) will not turn on.

- If a limit flag (forward rotation or reverse rotation) in the operation direction is turned ON, the speed will decelerate
 and the operation will stop in the case that the acceleration/deceleration function is ON. In this case, the
 "Instruction execution abnormal end" flag (M8329) will turn on when execution of the instruction is complete.
- If the "pulse output monitor" (BUSY/READY) flag is on, a positioning instruction (including PLSR and PLSY) that uses the same output cannot be executed.

If the "pulse output monitor" (BUSY/READY) flag is still on after the instruction activation contact is turned off, do not execute a positioning instruction (including PLSR and PLSY instructions) that uses the same output number.

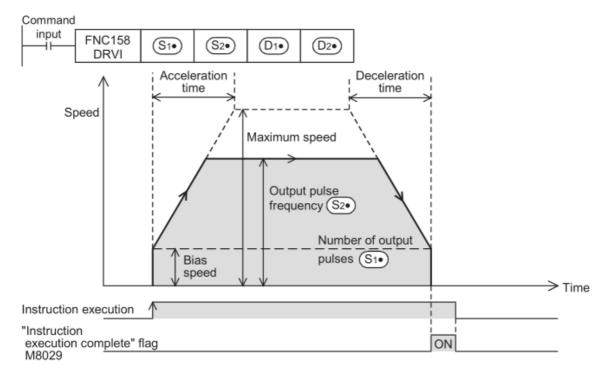
• After executing the instruction, the rotation direction signal output will turn off.

18.7 DRVI/ Drive to Increment

This instruction executes one-speed positioning by incremental drive. The movement distance from the present position can be specified with a positive or negative sign.

	Instruction	Opera type		Functions						
		S1.	16-b instruc		Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition
	FNC158 DRVI	S2. D1.	9 ste	ps	DRVI	Continuous operation		17 steps	DDRVI	Continuous operation
D		D2.			—					
		S1.			• •	es (relative ado //, KnS, T, C, I	,	Z, K, H, deco	ration	BIN16/32 bit
	0	S2.		•	se frequency nX, KnY, KnN	/ ^{*2} //, KnS, T, C, E	D, R, V, Z	Z, K, H, deco	ration	Bin 10/32 Bit
	Operand Device number (Y) from which pulses are to be output D1. Device: transistor output Y, decoration							Dit		
D2.Device number to which roD2.Device: Y, M, S, D □.b, de							ction sigr	nal is output		Bit

Note:*1. Setting range: -32768 to +32767 (except 0) for 16-bit operation, and -999,999 to +999,999 (except 0) for 32-bit operation


*2. Setting range: 10 to 32767 Hz for 16-bit operation, and 10 to 100,000 Hz for 32-bit operation

Explanation of	 During RUN, avoid writing while DRVI (FNC158) instruction is executed (that is, while pulses are
Instructions	output).
	Note that if writing is executed during RUN to a circuit block including FNC158 instruction while
	pulses are
	output, the PLC decelerates and stops pulse output.

Solution For related devices, refer to "18.1 DSZR/ Dog Search Zero Return".

18.7.1 Function and Operation

This instruction uses a relative drive method to perform a 1-speed positioning instruction. For this instruction, the transfer distance from the current position to the target position should be specified together with a plus or minus sign. This method is also referred to as the incremental (relative) drive method.

The rotation direction ON/OFF status of the specified device is shown in the following table.

ON/OFF status of device specified by D2.	Rotation direction (increase/decrease current value)
ON	If the number of output pulses specified by S1 . is a positive number, the operation will be performed in the forward rotation direction. Forward rotation (Outputting pulses from D1 . will increase the current value.)
OFF	If the number of output pulses specified by S1. is a negative number, the operation will be performed in the reverse rotation direction. Reverse rotation (Outputting pulses from D1. will decrease the current value.)

18.7.2 Important Points

• If the instruction activation contact is turned off during execution of the instruction, the speed will decelerate and the operation will stop.

In this case, the "Instruction execution complete" flag (M8029) will not be turned on.

• If the limit flag (forward or reverse) in the operation direction is turned on, the speed will decelerate and the operation will stop.

In this case, the "Instruction execution abnormal end" flag (M8329) will be turned on when execution of the instruction is complete.

• The direction of rotation is specified by the sign of **S1**..

18.8 DRVA/ Drive to Absolute

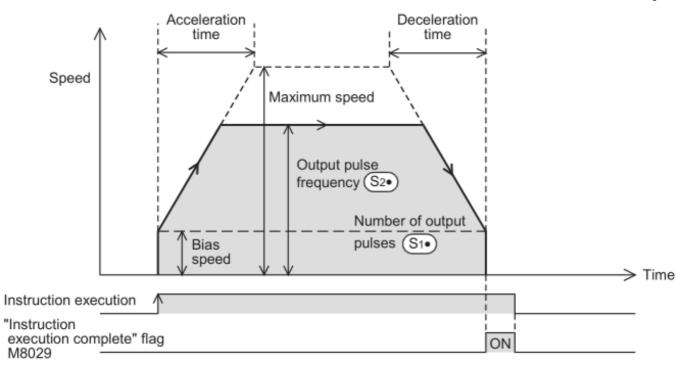
This instruction uses an absolute drive method to perform a 1-speed positioning instruction.

For this instruction, the distance from the origin (zero-point) to the target position should be specified.

	Instruction		Operand type		Functions							
			S1.	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition		
	FNC159 DRVA		S2. D1.	9 steps	DRVA	Continuous operation		17 steps	DDRVA	Continuous operation		
D			D2.		—							
			S1.			es (absolute ac /I, KnS, T, C, D	,	, K, H, deco	ration	BIN16/32 bits		
	Quant		S2.		se frequency nX, KnY, KnN	*² /I, KnS, T, C, E), R, V, Z	, K, H, deco	ration			
	Operand		D1.		Device number (Y) from which pulses are to be output Device: transistor output Y, decoration							
Device number to D2. Device: Y, M, S, D							Bit					

Note:*1. Setting range: -32768 to +32767 (except 0) for 16-bit operation, and -999,999 to +999,999 (except 0) for 32-bit operation

*2. Setting range: 10 to 32767 Hz for 16-bit operation, and 10 to 100,000 Hz for 32-bit ope


Explanation of	During RUN, avoid writing while DRVA (FNC159) instruction is executed (that is, while pulses are
Instructions	output).
	Note that if writing is executed during RUN to a circuit block including FNC159 instruction while
	pulses are
	output, the PLC decelerates and stops pulse output.

• For related devices, refer to "18.1 DSZR/ Dog Search Zero Return".

18.8.1 Function and Operation

This instruction executes one-speed positioning by absolute drive. The movement distance from the zero point can be specified.

The rotation direction ON/OFF status of the specified device is shown in the following table. During instruction execution, however, do not use the output for other purposes.

ON/OFF status of device specified by D2.	Rotation direction (increase/	decrease current value)		
ON	Forward rotation (Outputting pulses from D1. will increase the current value.)	The rotation direction (normal or reverse rotation) depends on which value is larger; the		
OFF	Reverse rotation (Outputting pulses from D1. will reduce the current value.)	number of output pulses specified by S. (absolute address) or the value indicated in the current value register.		

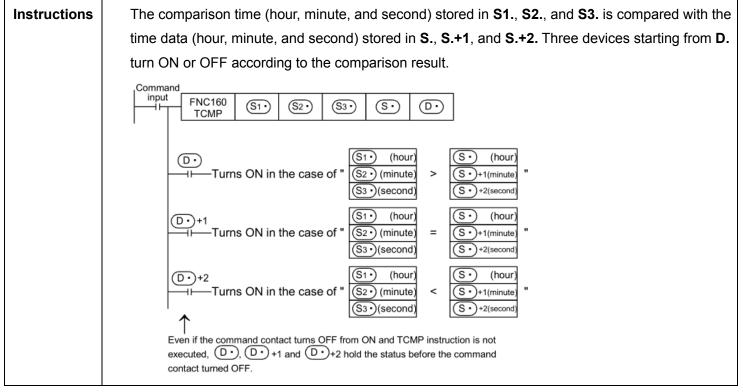
18.8.2 Important Points

• If the instruction activation contact is turned off during execution of the instruction, the speed will decelerate and the operation will stop.

In this case, the "Instruction execution complete" flag (M8029) will not be turned on.

• If the limit flag (forward or reverse) in the operation direction is turned on, the speed will decelerate and the operation will stop. In this case, the "Instruction execution abnormal end" flag (M8329) will be turned on when execution of the instruction is complete.

19 Real Time Clock Operation


FNC	Instruction	Function		Device	
NO.	motraction		3G PLC	2N PLC	MX2N PLC
160	TCMP	Clock data comparison	*	*	*
161	TZCP	Clock data interval comparison	*	*	*
162	TADD	Clock data addition	*	*	*
163	TSUB	Clock data subtraction	*	*	*
164	HTOS	Second conversion of hour, minute and second data	*		
165	STOH	[Hour, Minute, Second] conversion of second data	*		
166	TRD	Read clock data	*	*	*
167	TWR	Write clock data	*	*	*
168					
169	HOUR	Chronograph	*	*	*

19.1 TCMP/ RTC Data Compare

This instruction compares the comparison time with the time data, and turns ON or OFF bit devices according to the comparison result.

Instruction Operand type				Functions								
		S1.	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition			
FNC160 TCMP		S2. S3.	11 steps	TCMP	Continuous operation			_				
	Ρ	S. D.		TCMPP	Pulse operation							
		S1.			comparison tir /, KnS, T, C, E	-	0 0	-				
	S2.Specifies "minute" of the comparison time [setting range: 0 to 59].Device: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, decoration											
Operand		S3.	S3.Specifies "second" of the comparison time [setting range: 0 to 59].Device: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, decoration						16-bit binary			
	Specifies "hour" of the time data (hour, minute, and second S. (Three devices are occupied.) Device: T, C, D, R, decoration						d).					
	-	D.		or OFF acco M, S, D □.b	rding to the co	mpariso	n result.		Bit			

Explanation of 1. 16-bit operation (TCMP, TCMPP)

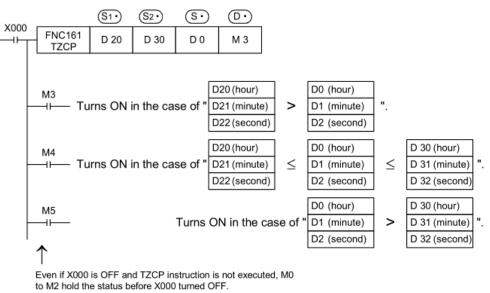
When utilizing the time (hour, minute, and second) of the real time clock built in a PLC, please use TRD (FNC 166) Instruction. Read the values of special data registers by TRD (FNC166) instruction, and then specify those word devices as the operands.

• Program example

X10	тсмр	K12	K20	K45	D2	0	M10	
	M10	no ON in	the case (of " 12:20:4	15 、		(hour)]
	Tu		the case t	J 12.20.1		<u> </u>	(minute) (second)	
	M11					<u> </u>	(hour)]
	—I⊢— Tui	rns ON in	the case of	of " 12:20:4	15 =	<u> </u>	(minute) (second)	ľ
	M12					D20	(hour)]
-	—III— Tui	rns ON in	the case of	of "12:20:4	15 <	D21	(minute)	ŀ
I						D22	(second)	

- ♦ When X10=ON, Instruction is executed, the current time of the D20~D22 calendar is compared with the set value 12:20:45, and the result is displayed to M10~M12. When X10 changes from ON→OFF, the instruction is not executed, but the ON/OFF state before M10~M12 is still maintained.
- If you need to get the results of $\geq \leq \leq \neq$, you can get by connecting M10~M12 in series and parallel.

19.2 TZCP/ RTC Data Zone Compare


This instruction compares two comparison time (comparison time zone) with the time data, and turns ON or OFF the specified bit devices according to the comparison results.

Instruction	Operand type	Functions								
	S1.	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition		
FNC161 TZCP	S1. S2. S. D.	11 steps	TZCP TZCPP	Continuous operation Pulse operation			_			
	S1.	second). (lower limit cor s are occupied coration	•	time (hour,	minute, and			
	S2.	Specifies "hour" of the upper limit comparison time (hour, minute, and second). (Three devices are occupied.) Device: T, C, D, R, decoration						16-bit binary		
Operand	S.	(Three dev	Specifies "hour" of the time data (hour, minute, and second). (Three devices are occupied.) Device: T, C, D, R, decoration							
	D.	(Three dev	or OFF accor rices are occ M, S, D ∏.b		mpariso	n result.		Bit		

Explanation of 1. 16-bit operation (TZCP, TZCPP) Instructions The lower limit and upper limit comparison time (hour, minute, and second) are compared with the time data (hour, minute, and second) stored in three devices S., S. +1, and S. +2. Three devices starting from **D.** turn ON or OFF according to the comparison result. Command This instruction compares the input FNC161 (S2·) $(\mathbf{D}\cdot)$ (S1) (S.) comparison time zone specified by two TZCP points with the time data. $(\mathbf{D}\cdot)$ (S1 · (hour (s· (hour) Turns ON in the case of " (S1 ·) +1(minute > $(s \cdot)$ +1(minute ۳. (S1 ·) +2(second (S·) +2(second (S1 · (hour (s· (hour (S2 • (hour (D•)+1 Turns ON in the case of " (S1) +1(minute \leq (s· +1(minute) \leq (S2 ·) +1(minute (S1 ·) +2(second (s. +2(second (S2 ·) +2(second (D·)+2 (s· (hour) (S2 •) (hour Turns ON in the case of " (s. +1(minute) H۲ > (S2 ·) +1(minute $(s \cdot)$ +2(second (S2 ·) +2(second Even if the command contact turns OFF from ON and TZCP instruction is not executed, (D.), (D •) +1 and (D •) +2 hold the status before the command contact turned OFF.

 When utilizing the time (hour, minute, and second) of the real time clock built in a PLC Read the values of special data registers by TRD (FNC166) instruction, and then specify those word devices as the operands.

• Program Example

19.3 TADD/ RTC Data Addition

This instruction executes addition of two time data, and stores the addition result to word devices.

	nstruction		Operand type	Functions									
				16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition			
	FNC162 TADD		S1. S2.	7 steps	TADD	Continuous operation			_				
		Ρ	D.		TADDP	Pulse operation							
				•	Specifies "hour" of the time data (hour, minute, and second) used in								
			S1.			s are occupied	d.)						
				Device: T,	C, D, R, dec	oration							
				Specifies '	ond) used in								
	Operand		S2.	addition. (addition. (Three devices are occupied.)								
				Device: T,	C, D, R, dec	oration							
				Stores the	addition resu	ult (hour, minu	te, and s	econd) of tw	/o time data.				
			D.	(Three dev	vices are occ	upied.)							
				Device: T,									

Explanation of	1. 16-bit operation (TADD, TADDP)
Instructions	The time data (hour, minute, and second) stored in [S2., S2.+1, S2.+2] is added to the time data

Real Time Clock Operation

(hour, minute, and second) stored in [S1., S1.+1, S1.+2], and the addition result (hour, minute,
and second) is stored in [D., D.+1, D.+2].
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c} \hline (1) & (1) & (1) \\ \hline (1) & (1) \\ \hline (1) & (1) & (1) \\ \hline $
 When the operation result exceeds 24 hours, the carry flag turns ON, and the value simply acquired by addition subtracted by 24 hours is stored as the operation result. When the operation result becomes "0" (0:0:0), the zero flag turns ON.
 When utilizing the time (hour, minute, and second) of the real time clock built in a PLC, read the values of special data registers using the TRD (FNC166) instruction, and then specify those word devices as the operands.
Program example TADD D0 D10 D20

When X10=ON, TADD Instruction is executed, and the calendar data hours, minutes, and seconds specified by D0~D2 are added to the calendar data hours, minutes, and seconds specified by D10~D12, and the obtained results are stored in D20~D22. The hours, minutes, and seconds after the summation are obtained in the specified register.

D0 8 (hour)		D10 6 (hour)		D20 14 (hour)
D1 10 (minute)	+	D11 40 (minute)	\rightarrow	D21 50 (minute)
D2 20 (second)		D12 6 (second)		D22 26 (second)
8:10:20		6:40:6		14:50:26

When the operation result exceeds 24 hours, Carry flag M8022=ON.

L

18 (hour)		11 (hour)		6 (hour)
40 (minute)	+	30 (minute)	\rightarrow	10 (minute)
30 (second)		8 (second)		38 (second)
18:40:30	l	11:30:8		6 :10:38

19.4 TSUB/ RTC Data Subtraction

This instruction executes subtraction of two time data, and stores the subtraction result to word devices.

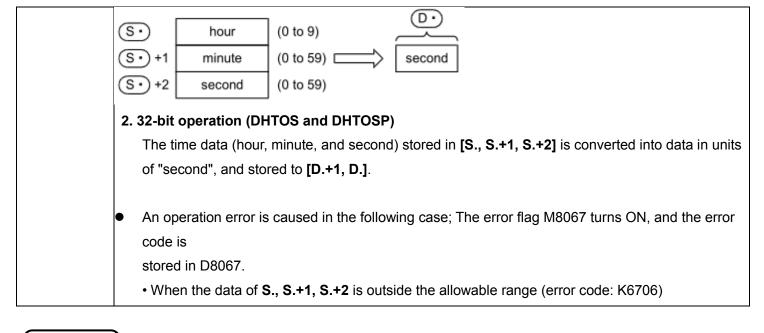
Instruction	Operand		Functions										
manuchun	type					113							
		16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation					
		instruction		condition		instruction		condition					
FNC163	S1.	7 steps	TSUB	Continuous			_						
TSUB	S2.			operation									
Р	D.		TSUBP	Pulse operation									
				operation									
		Specifies '	'hour" of the	time data (ho	l bur, minu	te, and seco	ond) used in						
	S1.	subtractior	n. (Three dev	ices are occu	pied.)								
		Device: T,	C, D, R, dec	coration									
OperandS2.Specifies "hour" of the time data (hour, minute, and second) used in subtraction. (Three devices are occupied.)16-													
Operand	S2.												
		Device: T, C, D, R, decoration Stores the subtraction result (hour, minute, and second) of two time											
	D.			result (nour, result (nour, result)	minute, a	and second)	or two time						
	D.	,	C , D , R , de	• •									
Explanation of	1. 16-bit	operation (T											
Instructions		ie data (hour,	minute, and	second) store	ed in [S2 .	., S2.+1, S2.	+2] is subtrac	cted from the time					
	data (h	our, minute, a	and second)	stored in [S1.,	S1.+1, S	51.+2] , and t	the subtractio	n result (hour,					
	minute,	and second) is stored in	[D., D.+1, D.+	2].								
	Command input	FNC163 TSUB	1) (\$2)		S1•), (S1•) → ((D•), ()+1, (S1 • +2) D • +1, (D •)	-(S2•), S2•)+ +2)	-1, <u>\$2</u> +2)					
		minute) — (52 (hour 52 +1 (minute 52 +2 (second	\rightarrow	(hou +1 (minute +2 (secone	e) The setting	-	s from 0 to 23. " is from 0 to 59. " is from 0 to 59.					
	When the operation result is smaller than 0 hour, the borrow flag turns ON, and the value simply acquired by subtraction added by 24 hours is stored as the operation result. When the operation result becomes "0" (0:0:0), the zero flag turns ON.												
	values	-	ta registers u	nute, and seco Ising TRD (FN				PLC, read the y those word					
Program example		X10	TSUB	D0	D10	D20							

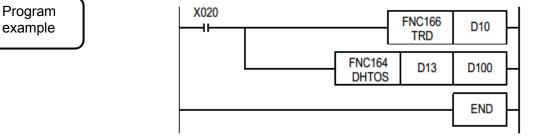
Real Time Clock Operation

When X10=ON, TSUB Instruction is executed, and the calendar data hours, minutes, and seconds specified by D0~D2 are subtracted from the calendar data hours, minutes, and seconds specified by D10~D12, and the obtained result is stored in the register hours, minutes and seconds specified by D20~D22.

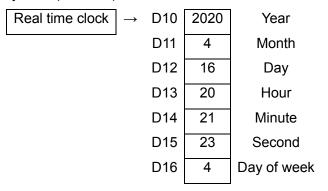
D0 20 (hour)		D10	14 (hour)		D2	0 5 (hour)
D1 20 (minute)	-	D11	30 (minute)	\rightarrow	D21	49 (minute)
D2 5 (second)		D12	8 (second)		D22	57 (second)
20:20:5	ļ		14:30:8	I		5:49:57

• If the subtraction result is negative, the borrow flag M8021=ON.

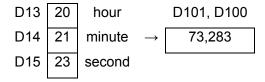

5 (hour)		19 (hour)		10 (hour)
20 (minute)	-	11 (minute)	\rightarrow	9 (minute)
30 (second)		15 (second)		15 (second)
5:20:30		19:11:15		10:9:15


19.5 HTOS/ Hour to Second Conversion

This instruction converts the time data in units of "hour, minute, and second" into data in units of "second".


	Instruction		Operand type				Functio	ns				
				16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	•	eratic nditio	
	FNC164 HTOS			5 steps	HTOS	Continuous operation		9 steps	DHTOS	Cont ope	tinuo eratio	
D	D F				HTOSP	Pulse operation			DHTOSP	Pulse	opera	ation
	Operand	erand Head device number storing the time data (hour, minute and second) before conversion Device: KnX, KnY, KnM, KnS, T, C, D, R, decoration							16-bit	t bina	ary	
	D.Device number storing the time data (second) after conversionDevice: KnY, KnM, KnS, T, C, D, R, decoration								16- binary	or	32-bit	

Explanation of	1. 16-bit operation (HTOS and HTOSP)
Instructions	The time data (hour, minute, and second) stored in [S., S.+1, S.+2] is converted into data in units
	of "second", and stored to D. .
	Command input HTOS I HTOS I I HTOS



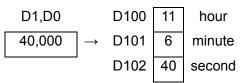
- In the program shown above, the time data read from the real time clock built in a PLC is converted into data in units of "second", and stored to D100 and D101 when X020 turns ON.
- 1) Clock data reading operation by TRD (FNC166) instruction

2) Conversion operation into "second" by DHTOS (FNC164) instruction

19.6 STOH/ Second to Hour Conversion

This instruction converts the time data in units of "second" into data in units of "hour, minute, and second".

D P operation Operand S. Device number storing the time data (second) before conversion Device: KnX, KnY, KnM, KnS, T, C, D, R, decoration D. after conversion Device: KnY, KnM, KnS, T, C, D, R, decoration Explanation of Instructions 1. 16-bit operation (STOH and STOHP) The time data in units of "second" stored in S. is converted into data in units of "hou second", and stored to [D.,D.+1,D.+2] (hour, minute, and second). Command input FNC165 S. D. S. D. Hour (0 to 9) (0 to 32767) (0 to 9) (0 to 59) Z. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and			ns	Functio				Operand type		nstruction		
FNC165 S. 5 steps STOH operation 9 steps DSTOH D P D. STOH Pulse operation DSTOH DSTOH Operand P Device number storing the time data (second) before conversion Device: KnX, KnY, KnM, KnS, T, C, D, R, decoration Dim Operand B. Device: KnX, KnY, KnM, KnS, T, C, D, R, decoration Dim D. Head device number storing the time data (hour, minute and second) after conversion Device: KnY, KnM, KnS, T, C, D, R, decoration Device: KnY, KnM, KnS, T, C, D, R, decoration Explanation of 1.16-bit operation (STOH and STOHP) The time data in units of "second" stored in S. is converted into data in units of "hou second", and stored to [D, D.+1, D.+2] (hour, minute, and second). Command Interfer D. D Interfer So D D Interfer D Interfer Instructions 1.16-bit operation (STOH and STOHP) Hour (0 to 9) Interfer So Interfer D D Interfer D Interfer So Interfer Interfer Interfer D Interfer Int	Operation condition	Mnemonic			•	Mnemonic						
D P STOHP Pulse operation DSTOHP P Operand S. Device number storing the time data (second) before conversion in Operand S. Device: KnX, KnY, KnM, KnS, T, C, D, R, decoration in Head device number storing the time data (hour, minute and second) after in conversion Device: KnY, KnM, KnS, T, C, D, R, decoration in Explanation of 1. 16-bit operation (STOH and STOHP) The time data in units of "second" stored in S. is converted into data in units of "hou second", and stored to [D,D,+1,D,+2] (hour, minute, and second). Command FNC165 S: D: Second (0 to 32767) D:+1 Hour (0 to 59) Second (0 to 579) Second (0 to 59) (0 to 59) 2. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second")	Continuous operation	DSTOH	9 steps			STOH	5 steps					
S. Device: KnX, KnY, KnM, KnS, T, C, D, R, decoration bin Operand Head device number storing the time data (hour, minute and second) after conversion D. Device: KnY, KnM, KnS, T, C, D, R, decoration Explanation of Instructions 1. 16-bit operation (STOH and STOHP) Instructions The time data in units of "second" stored in S. is converted into data in units of "hour second", and stored to [D.,D.+1,D.+2] (hour, minute, and second). Command FNC165 S D Image: Second (0 to 32767) D Hour (0 to 9) Second (0 to 32767) D Hinute (0 to 59) 2. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second")	Pulse operation	DSTOHP				STOHP		υ.	Ρ	51011	D	
Operand Head device number storing the time data (hour, minute and second) after conversion D. after conversion Device: KnY, KnM, KnS, T, C, D, R, decoration Explanation of Instructions 1. 16-bit operation (STOH and STOHP) Instructions The time data in units of "second" stored in S. is converted into data in units of "hou second", and stored to [D.,D.+1,D.+2] (hour, minute, and second). Command input FNC165 S• D• S• D• Second (0 to 32767) D• +2 Second (0 to 59) 2. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second ", and stored to three devices [D.+1, D.+2] (hour, minute, and second ", and stored to three devices [D.+1, D.+2] (hour, minute, and second ", and stored to three devices [D.+1, D.+2] (hour, minute, and second ", and stored to three devices [D.+1, D.+2] (hour, minute, and second ", and stored to three devices [D.+1, D.+2] (16- or 32-bit				S.							
Operand after conversion Device: KnY, KnM, KnS, T, C, D, R, decoration Explanation of Instructions 1.16-bit operation (STOH and STOHP) Instructions The time data in units of "second" stored in S. is converted into data in units of "hou second", and stored to [D.,D.+1,D.+2] (hour, minute, and second). Command input input Second FNC165 S· D· Instruction S· Instructions S· Instruction S· Instructions Instruction S· Instruction Instruction	binary	Device: KnX, KnY, KnM, KnS, T, C, D, R, decoration binary										
Instructions The time data in units of "second" stored in S. is converted into data in units of "hot second", and stored to [D.,D.+1,D.+2] (hour, minute, and second). Command input FNC165 S• D• FNC165 S• D• Hour (0 to 9) Second (0 to 32767) D• +1 Minute (0 to 59) Second (0 to 32767) D• +1 Second (0 to 59) 2. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second")	16-bit binary	and second)		after conversior	D.		Operand					
second", and stored to [D.,D.+1,D.+2] (hour, minute, and second). Command input FNC165 STOH STOH Second (0 to 32767) D•+1 D•+1 Minute (0 to 9) (0 to 59) C. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and					OHP)	OH and ST	peration (ST	1. 16-bit o	of	planation	Ex	
Command input FNC165 S• D• S• D• Hour (0 to 9) Second (0 to 32767) D• +1 Minute (0 to 59) D• +2 Second (0 to 59) (0 to 59) 2. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second")	our, minute, and	a in units of "I	ted into data	is conver	" stored in S.	ts of "second	ne data in unit	The tim	S	struction	h	
input FNC165 S• D• So D• Hour (0 to 9) Second (0 to 32767) D• +1 Minute (0 to 59) D• +2 Second (0 to 59) (0 to 59) Control Control Control Control Control O• +2 Second (0 to 59) Control Contro Contro			d second).	inute, an	D.+2] (hour, m	to [D.,D.+1 ,	", and stored	second				
Second (0 to 32767) D• +1 Hour (0 to 9) D• +1 Minute (0 to 59) D• +2 Second (0 to 59) 2. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second")					$\overline{\mathbf{O}}$	s• 0	FNC165					
 D•+2 Second (0 to 59) 2. 32-bit operation (DSTOH and DSTOHP) The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second") 					< —							
The time data in units of "second" stored in [S., S.+1] is converted into data in units minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and					< ⊢—		(0 to 32767)[Second				
minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, ar					STOHP)	TOH and D	peration (DS	2. 32-bit o				
	nits of "hour,	nto data in ui	converted i	, S.+1] is	" stored in [S.	ts of "second	ne data in uni	The tim				
• An operation error is caused in the following case: The error flag M8067 turns ON.	minute, and second", and stored to three devices [D., D.+1, D.+2] (hour, minute, and second).											
	• An operation error is caused in the following case; The error flag M8067 turns ON, and the error											
code is stored in D8067.	code is stored in D8067.											
• When the data of S. is outside the allowable range (error code: K6706)		\$706)	ror code: K6	range (er	the allowable i	3. is outside	the data of S	 When 				


Program	
example	

X020	FNC165 DSTOH	D0	D100	Н
			END	Н

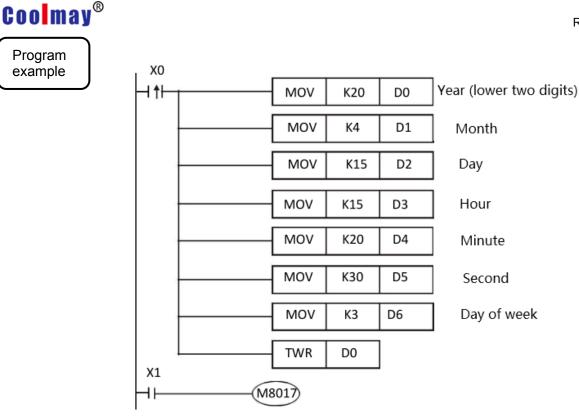
In the program shown above, the time data in units of "second" stored in D0 and D1 is converted into data in units of "hour, minute, and second", and stored to D100, D101, and D102 when X020 turns ON..

Converting the data in second into the data in hour, minute and second using STOHP instruction (when "40,000 seconds" is specified by D1 and D0)

19.7 TRD/ Read RTC data

This instruction reads the clock data of the real time clock built in a PLC.

Instruction	Operand type	Functions									
FNC166 TRD	D.	16-bit instruction 3 steps	Mnemonic TRD TRDP	Operation condition Continuous operation Pulse operation		32-bit instruction	Mnemonic	Operation condition			
Operand D. Specifies the head device numbration Operand D. (Seven devices are occupied.) Device: T, C, D, R, decoration				cupied.)	bring the	clock data.		16-bit binary			


Explanation of	1. 16-k	oit oper	ation (TRD,	TRDP)										
Instructions	The	The clock data stored in D8013 to D8019 of the real time clock built in a PLC is read in the following format, and stored to $\mathbf{D} \sim \mathbf{D} + 6$												
	follo	following format,												
	and	and stored to D.~D.+6.												
		This instruction reads the real time clock data in a PLC, and transfers it to seven data registers.												
		Device Item Clock data Device Item												
		Ŀ	D8018	Year	0~99 (lower two digits)	\rightarrow	D.	Year						
		giste	D8017	Month	1~12	\rightarrow	D.+1	Month						
		a re	D8016	Day	1~31	\rightarrow	D.+2	Day						
		l dat	D8015	Hour	1~23	\rightarrow	D.+3	Hour						
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$													
	\overleftarrow{O} D8013 Second 1~59 → D.+5 Second													
			D8019	Day of week	0 (Sunday) to 6 (Saturday)	\rightarrow	D.+6	Day of week						

19.8 TWR/ Set RTC data

This instruction writes the clock data to the real time clock built in a PLC.

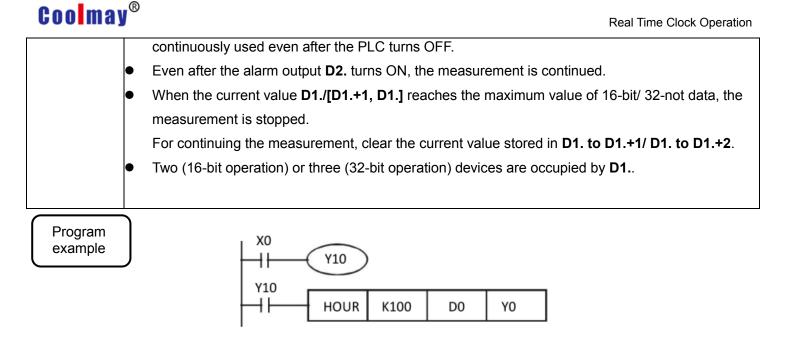
Instruction	Operand type	Functions								
FNC167 TWR _	S.	16-bit instruction 3 steps	Mnemonic TWR TWRP	Operation condition Continuous operation Pulse operation		32-bit instruction	Mnemonic	Operation condition		
Operand	S.	Specifies t (Seven de Device: T,	16-bit binary							

Explanation of	16	bit op	eration (TV	VR, TWRP)								
Instructions	Th	The clock data stored in S. to S.+6 is written to D8013 to D8019 for the real time clock built in a										
	PL	.C.										
		Comr inp										
	Device Item Clock data Device Item											
		et	S.	Year	0~99 (lower two digits)	\rightarrow	D8018	Year				
		e se	S.+1	Month	1~12	\rightarrow	D8017	Month	Spe			
		to b	S.+2	Day	1~31	\rightarrow	D8016	Day	cial			
		Time data to be set	S.+3	Hour	1~23	\rightarrow	D8015	Hour	Special data register			
		me (S.+4	Minute	1~59	\rightarrow	D8014	Minute	n reg			
		Ħ	S.+5	Second	1~59	\rightarrow	D8013	Second	ister			
			S.+6	Day of week	0 (Sunday) to 6 (Saturday)	\rightarrow	D8019	Day of week				
	- V	Vhen T	WR (FNC16	67) instructio	n is executed, the cl	ock dat	a of the rea	l time clock	is			
	immed	iately										
		change	d. According	gly, transfer	the clock data sever	al minu	tes ahead to	o S. to S.+6	in advance,			
		and the	en execute F	NC167 inst	ruction when the acc	urate ti	me has con	ne.				
	- V	Vhen se	etting the clo	ock data (tim	ne) using this instruct	tion, it i	s not neces	sary to conti	rol the special			
	auxiliaı	ry relay	M8015 (tim	e stop and t	ime setting).							
	- If a	a nume	eric value inc	dicating impo	ossible date/time is s	et, the	clock data is	s not change	ed.			
	Se	et the co	orrect clock	data, and th	en write it.							

- In the program example shown above, the real time clock is set (to 15:20:30 on Wednesday, April 15, 2020).
- The contents of D0~D6 is set as time of the new calendar.
- X0=ON is to change the current time of the calendar clock to the set value.
- Every time X1 is set to ON, the current time can be corrected by ±30 seconds. The correction is that when the second hand is between 1~29, it will be automatically classified as "0" seconds and the minute hand will not change. When it is 30~59, it will also be automatically classified as "0" seconds and the minute hand plus 1 minute.
- D8018 will specify the 4-digit year mode in the second scan and later after the PLC mode is changed to RUN.

- A PLC is normally operating in the 2-digit year mode. When the above instruction is executed and "K2000 (fixed value)" is transferred to D8018 (year) in only one operation cycle after the PLC mode was changed to RUN, the year mode is switched to the 4-digit mode.
- Execute this program every time the PLC mode is changed to RUN. Even if "K2000" is transferred, only the display format is changed to the 4-digit year mode. The current date and time are not affected.
- In the 4-digit year mode, the set values "80 to 99" correspond to "1980 to 1999", and "00 to 79" correspond to "2000 to 2079".

Examples: "80" indicates 1980. "99" indicates 1999. "00" indicates 2000. "79" indicates 2079.



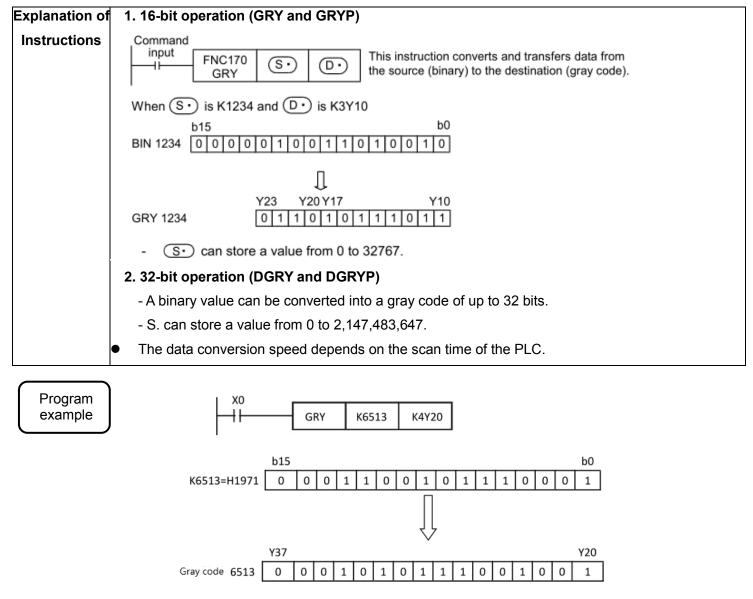
19.9 HOUR/ Hour Meter

This instruction measures the ON time of the input contact in units of hour.

	Instruction Operand type		Functions								
D	FNC169 HOUR	S. D1. D2.	16-bit instruction 7 steps	Mnemonic HOUR	Operation condition Continuous operation		32-bit instruction 13 steps	Mnemonic DHOUR	co Cor	erati nditio ntinuo eratio	on ous
		S.			set to ON (un //, KnS, T, C, E			ration			
	Operand D1		latched (batte	· ·		attery ba	acked) type (data registe	16- binary	or	32-bit
D2. Head device number to which to the provide the provide the provide the provided the p					s output						

Explanation of	1. 16-bit operation (HOUR)							
Instructions	When the accumulated ON time of the command input exceeds the time stored in S., D2. is set to							
	ON.							
	The current value less than one hour is stored in D1.+1 (unit: second).							
	Command input HOUR FNC169 HOUR S· D1· D2·							
	S.: Time after which D2. is set to ON. Specify a value in units of hour.							
	D1.: Current value in units of hour							
	D1.+1: Current value less than one hour (unit: second)							
	D2.: Alarm output destination. It turns ON when the current value D1. exceeds the time specified							
	in S.							
	2. 32-bit operation (DHOUR)							
	[S.+1, S.]: Time after which D2. is set to ON.							
	Specify the high-order side in S.+1, and the low-order side in S							
	[D1.+1, D1.]: Current value in units of hour							
	The high-order side is stored in D.+1 , and the low-order side is stored in D. .							
	D1.+2 : Current value less than one hour (unit: second)							
	D2.: Alarm output destination							
	It turns ON when the current value [D1.+1, D1.] exceeds the time specified in S							
	 Specify a latched (battery backed) type data register as so that the current value data can be 							

When X0=ON, Y10 turns on and starts timing. When it reaches 100 hours, Y0 turns on, and D0 will record the current time value (unit: hour) during the measurement, and D1 will record the current time value less than 1 hour during the measurement. 0 ~3599 (unit: second)

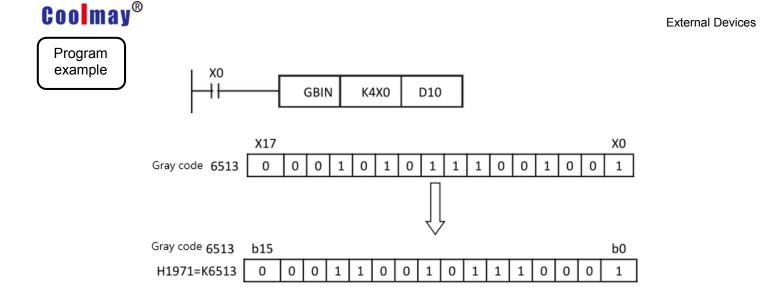

20 External Devices

FNC	Instruction	Function	Dev	ice	
NO.	motruction	i uncuon	3G PLC	2N PLC	MX2N PLC
170	GRY	Decimal to Gray	*		
170	ON	Code Conversio	~		
171	GBIN	Gray Code to	*		
., .	OBIN	Decimal Conversion	~		
172	_				
173	_				
174	—				
175	—				
	RD3A		\star Modbus communication to		
176		Read form Dedicated	data		*
170		Analog Block	(Note: The read function of th	~	
			Mitsubishi analog module is no	ot available)	
			★ Modbus communication wr	ite data to	
177	WR3A	Write to Dedicated	slave		*
.,,,	WI (O/ (Analog Block	(Note: The original Mitsubish	ni analog	^
			module write function is not a	available)	
178	_				
179	—				

20.1 GRY/ Decimal to Gray Code Conversion

This instruction converts a binary value into a gray code, and transfers it.

	Instruction Operand type			Functions								
				16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic		erati nditio	
	FNC170 GRY		S. D.	5 steps	GRY	Continuous operation		9 steps	DGRY		ntinuo eratio	
D	GRY P		5.		GRYP	Pulse operation			DGRYP	Pulse	ope	ration
	Operand		S.			a or word devid /, KnS, T, C, E		-		i 16- binary	or	32-bit
			D.		-	ta after conve S, T, C, D, R, \		oration		16- binary	or	32-bit


♦ When X0=ON, convert the constant K6513 to Gray code and store it in K4Y20.

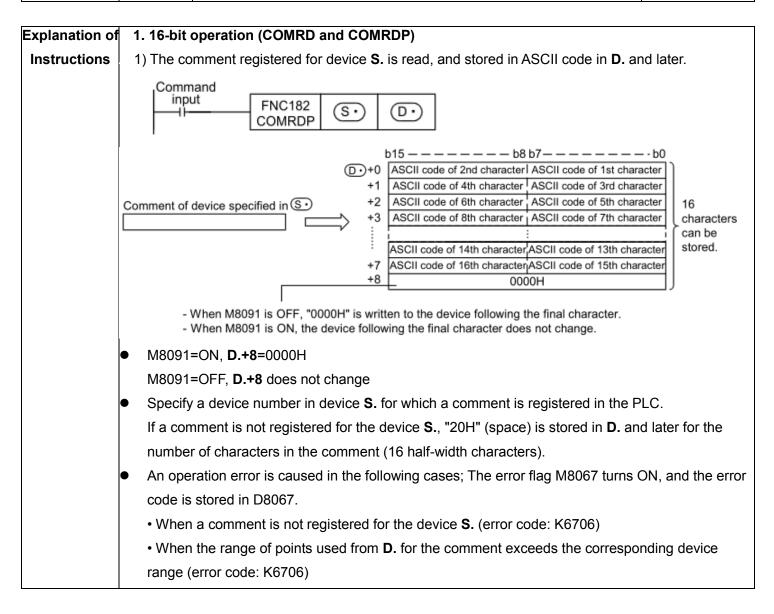
20.2 GBIN/ Gray Code to Decimal Conversion

This instruction converts a gray code into a binary value, and transfers it.

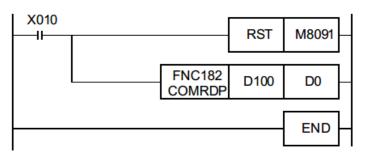
Instruction Operand type			•	Functions									
	FNC171 GBIN			16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic		erati nditic		
			S. D.	5 steps	GBIN	Continuous operation		9 steps	DGBIN		ntinuo eratio		
D		Ρ	Ρ	Р	D.		GBINP	Pulse operation			DGBINP	Pulse	oper
	Onemad		S.			a or word devid /I, KnS, T, C, E	-			16- binary	or	32-bit	
	Operand		D.		U	ta after conve 6, T, C, D, R, \		oration		16- binary	or	32-bit	

Explanation of	1. 16-bit operation (GBIN and GBINP)							
Instructions	Command input II GBIN GBIN S· D· This instruction converts and transfers data from the source (gray code) to the destination (binary).							
	When $(S \cdot)$ is K3X000 and $(D \cdot)$ is D10							
	GRY 1234 X10 X7 X0 GRY 1234 0 1 1 0 1 1 1 0 1 1							
	b15 b0							
	D10 BIN 1234 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0							
	- This instruction can be used for detecting an absolute position by a gray code type encoder.							
	 S• can store a value from 0 to 32,767. 							
	2. 32-bit operation (DGBIN and DGBINP)							
	- A gray code can be converted into a binary value of up to 32 bits.							
	- can store a value from 0 to 2,147,483,647.							
	 When an input relay (X) is specified as S., the response relay will be "Scan time of PLC + Input filter constant". 							
	The input filter value in X000 to X017 *1 can be converted using the REFF (FNC51) instruction or							
	D8020 (filter adjustment) so that the delay caused by the filter constant is eliminated.							

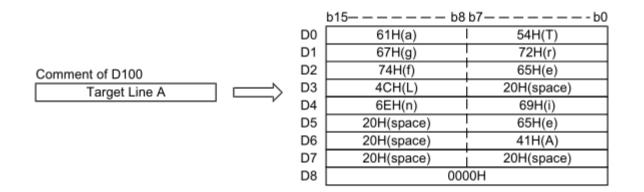
 When X0=ON, convert the gray code of the absolute position encoder connected to the X0~X17 input points into BIN values and store them in D10.


21 Other Instructions

FNC	Instruction	Instruction 功能		Device					
NO.	motraction	000	3G PLC	2N PLC	MX2N PLC				
181									
182	COMRD	Read device comment data	*						
183	—								
184	RND	Random Number Generation	*						
185									
186	DUTY	Timing pulse generation	*						
187	—								
188	CRC	Cyclic Redundancy Check	*						
189	HCMOV	High speed counter move							


21.1 COMRD/ Read Device Comment Data

This instruction reads the comment data for registered devices written to the PLC by programming software such as GX Developer.


Instruction	Operand type		Functions						
		16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition	
FNC182 COMRD	S. D.	5 steps	COMRD	Continuous operation			-		
P			COMRDP	Pulse operation			_		
	S.	Device number for which comment to be read is registered						Device name	
Operand		Device: X, Y, M, S, T, C, D, R, decoration					Character		
	D.	Head device number storing read comment Device: T, C, D, R, decoration					string		

• X10=ON, the comment "Target Line A" registered to D100 is stored in ASCII code in D0 when M8091 is OFF.

21.2 RND/ Random Number Generation

This instruction generates random numbers.

	Instruction Operand type		Functions							
	FNC184		16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition	
		D.	3 steps	RND	Continuous operation			_		
	P			RNDP	Pulse operation			_		
	Operand	D.		Head device number storing a random number Device: KnY, KnM, KnS, T, C, D, R, decoration			16-bit binary			

Explanation of	1. 16-bit operation (RND and RNDP)
Instructions	This instruction generates a pseudo-random number within the range from 0 to 32767, and stores it
	as a random number to D. .
	In the pseudo-random number sequence, the source value of a random number is calculated at
	every time, and this instruction calculates a pseudo-random number using the source value.

Other	Instru	ictions
Oulei	แม่อแน	CUONS

Command input IFNC 184 RND
Pseudo-random number calculation equation:
(D8311, D8310) = (D8311, D8310) * 1 × 1103515245 + 12345(1)
D.= "([D8311, D8310]>>16)& <logical product="">00007FFFh"</logical>
*1. To (D8311, D8310), write a non-negative value (0 to 2,147,483,647) only once when the PLC
mode switches from STOP to RUN.
[K1 is written to (D8311, D8310) as the initial value when the power is restored.]

Program example

In the program example shown below, a random number is stored to D100 every time X010 turns ON.
 When the PLC mode switches from STOP to RUN, the time data converted into seconds and added by the value "(Year + Month) × Day" is written to D8311 and D8310.

M8002			FNC166 TRD	D0	┝
		FNC164 DHTOS	D3	D14	
	FNC 20 ADD	D0	D1	D10	┝
	FNC 23 MUL	D10	D2	D12	┝
	FNC 20 DADD	D14	D12	D8310	┝
X010		—[FNC184 RNDP	D100	┝
				END	┝

The clock data is read.

Data in hour, minute and second \rightarrow Data in second

The data in second is added by the value "(Year + Month) \times Day", and written to D8311 and D8310.

21.3 DUTY/ Timing Pulse Generation

This instruction generates the timing signal whose one cycle corresponds to the specified number of operation cycles.

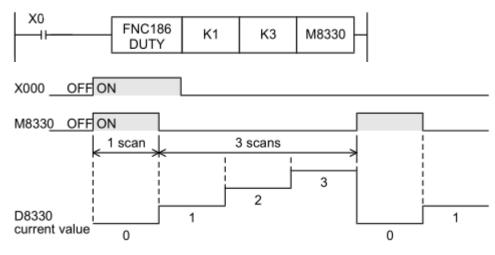
Instruction Operand F					Functio	ons			
		n1	16-bit instruction	Mnemonic	Operation condition		32-bit instruction	Mnemonic	Operation condition
FNC186 DUTY		n1 n2 D.	7 steps	DUTY	Continuous operation			_	
	n1 Number of scans (operation cycles) to remain ON [n1 > 0] Device: T, C, D, R, K, H							16-bit binary	
Operanc	ł	n2		Number of scans (operation cycles) to remain OFF [n2 > 0] Device: T, C, D, R, K, H					
		D.	•	ck output des (M8330~M8	stination 334), decoratio	on			Bit

Explanation of 1. 16-bit operation (DUTY) Instructions 1) The timing clock output destination D. is set to ON and OFF with the ON duration for "n1" scans and OFF duration for "n2" scans. Command input FNC186 n1 n2 (D•) DUTY Timing clock output OFF ON destination (D) "n1" scans ["n2" scans Timing clock output 0 destination "n1+n2" scans 2) D8330 ~ D8Specify either one among M8330 to M8334 as the timing clock output destination

device **D.**.

The counted number of scans stored in either one among D8330 to D8334 is reset when the counted value reaches "n1+n2" or when the command input (instruction) is set to ON.

D8330 D8331
D8331
D8332
D8333
D8334

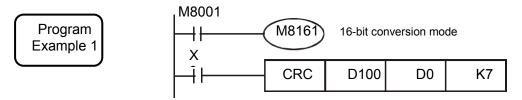

Even if the command input is set to OFF, the operation is not stopped. In the STOP mode, the

	operation is suspended. Wh	en the power of	the PLC is turned OF	F, the operation is stopped.							
	4) When "n1" and "n2" are s	et to "0", the dev	ice D. is set to the fol	lowing status:							
		n1/n2 status	D. ON/OFF status								
		n1 = 0, n2≧0	D. Fixed to OFF								
		n1 = 0, n2≧0	D. Fixed to ON								
	 DUTY (FNC186) instruction 	DUTY (FNC186) instruction can be used up to 5 times (points).									
	It is not permitted, however,	It is not permitted, however, to use the same timing clock output destination device D. for two or									
r	nore.										
	DUTY (FNC186) instructions	3.									
	An operation error is caused	in the following	cases; The error flag	M8067 turns ON, and the error							
	code is stored in D8067.										
	• When "n1" and/or "n2" is le	ess than "0" (erro	r code: K6706)								
	When any device other that	n M8330 to M83	34 is set to D . (error	code: K6705)							

Program example

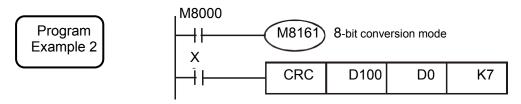
• In the program shown below, when X0 is set to ON, M8330 is set to ON for 1 scan and OFF for 3 scans.

21.4 CRC/CRC Cyclic Redundancy Check


This CRC instruction calculates the CRC (cyclic redundancy check) value which is an error check method used in communication.

In addition to CRC value, there are other error check methods such as parity check and sum check. For obtaining the horizontal parity value and sum check value, CCD (FNC 84) instruction is available.

CRC instruction uses $[X^{16}+X^{15}+X^2+1]$ as a polynomial for generating the CRC value (CRC-16).


Instruction	ı	Operand Type	Function							
		туре	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
FNC188		S. D.	7 step	CRC	Continuous Operation			_		
CRC	Ρ	n		CRCP	Pulse (Single) Operation			_		
		S.			oring data for v K, KnY, KnM, I			•		
Operand number		D.		•	the generated nY, KnM, KnS				BIN16 bit	
n Number of 8-bit (1-byte) data for which the CRC n the device number storing the number of data Applicable devices: D, R, K, H						RC value is ູ	generated or			
nstruction		1. 16-bit	operation(Cl	RC)						
Explanation		CRC va	alue is genera	ated for "n" 8-	bit data (unit:	byte) sta	arting from a	device speci	fied in S. , and	
		stored to D .								
		The 8-b	bit conversion	mode and 1	6-bit conversi	on mode	are availabl	e in this instr	uction, and the	
		mode can b	e switched by	y turning ON/	OFF of M816	1. For the	e operation i	n each mode	, refer to the	
		following pa	iges.							
		-	-	ed as a poly	nomial for gen	erating t	he CRC valu	ue (CRC-16).		
		Comma inpu I		<u>s</u> .	D. n					
		2. 16-bit	conversion ı	mode [M816 ⁻	1 = OFF]					
		In this ı	mode, the op	eration is exe	cuted for high	-order 8	bits (1 byte)	and low-orde	er 8 bits (1 byte)	
		of a device	specified in S	i						
		The op	eration result	is stored to o	one 16-bit dev	ice spec	ified in D. .			
		3. 8-bit c	onversion m	ode [M8161	= ON]					
		In this specified by		eration is exe	ecuted only for	low-ord	er 8 bits (low	v-order 1 byte	e) of a device	

Coolmay®		Other	Instructions						
With regard	I to the operation	ation result, low-order 8 bits (1 byte) are stored to a device spec	ified by D. ,						
and high-order 8	3 bits (1 byte) are stored to a device specified by D. +1.							
 In this instruct 	uction, [X ¹⁶ +)	X ¹⁵ +X ² +1]" is used as a polynomial for generating the CRC valu	e (CRC-						
16).									
There are r	There are many other standard polynomials for generating the CRC value. Note that the CRC								
value completel	value completely differs if an adopted polynomial is different.								
	Name	Polynomial							
	CRC-12	X ¹² +X ¹¹ +X ³ +X ² +X+1							
	CRC-16	X ¹⁶ +X ¹⁵ +X ² +1							
	CRC-32	X ³² +X ²⁶ +X ²³ +X ²² +X ¹⁶ +X ¹² +X ¹¹ +X ¹⁰ +X ⁸ +X ⁷ +X ⁵ +X ⁴ +X ² +X+1							
	RC-CCITT	X ¹⁶ +X ¹² +X ⁵ +1							
 An operation 	n error is ca	used in the following cases; The error flag M8067 turns ON, and	the error						
code is stor	ed in D8067								
• When any	digits other	than 4 digits are specified as S. or D. in digit specification of bit	device						
(error code: K67	706)								
• n is outsid	le the allowa	ble range (1 to 256) (error code: K6706)							
		de the allowable range (error code: K6706)							

	Desisters	Data content
	Registers	(High/Low byte)
	D100	3130H
Device storing data for which CRC value is generated	D101	3332H
Device storing data for which cive value is generated	D102	3534H
	D103	3736H
Device storing generated CRC value	D0	2ACFH

• X0=ON, the CRC value of the ASCII code "0123456" stored in D100 to D106 is generated and stored to D0.

		Data content
	Registers	(High/Low
		byte)
	D100	30H
	D101	31H
Device storing data for which CRC	D102	32H
value is generated	D103	33H
	D104	34H
	D105	35H
	D106	36H
Device storing generated CRC	D0	CFH
value	D1	2AH

• X0=ON, the CRC value of the ASCII code "0123456" stored in D100 to D106 is generated and stored to D0.

21.5 HCMOV/High Speed Counter Move

This instruction updates the current value of a specified high speed counter or ring counter.

I	nstruction	Operand Type		Function							
			16-bit	Mnemonic	Operation		32-	Mnemonic	Operation		
		S.	Instruction		Condition		bitInstruction		Condition		
	FNC189	D.					13 steps	DHCMOV	Continuous		
	HCMOV	n						Briomov	Operation		
D											
		Device number of high speed counter or ring counter*1 handled as									
		S. transfer source									
			Applicable	e devices: C	, D				BIN32 bit		
	Operand	D.	Device nur	mber handled	l as transfer d	estinatio	on				
	number	D.	Applicable devices: D, R								
	number		Specification to clear the current value of high speed counter or ring								
		n	counter*1						BIN16 bit		
			(transfer so	ource) after tr	ansfer [clear ((K1), no	clear (K0)]				
			Applicable								

Remark:*1: Can only specify high speed counter(C235 ~ C255),Ring counter(D8099, D8398)

Instruction	1.3	2-bit operation(DHC	MOV)							
Explanation	1) The current value of a high speed counter or ring counter specified in S . is transferred to D .].									
	Device S. [D.+1, D.] after instruction is executed									
		High speed counter	C235 ~ C2	:55	Current value of high speed counter S.→[D.+1, D.]					
		Ring counter	D8099		D8099→ D. "0" is stored in D.+1 "					
		King counter	D8398		Current value of [D8399, D8398]→ [D.+1, D.]					
2) After transfer, the current value of the high speed counter or ring counter is processed a shown in the table below depending on the set value of "n":										
		N se	t value		Operation					
		КС)(H0)		es not clear the current value (no					
		K1	(H1) Cle		lears the current value to "0".					
	2. H	ligh speed counter o	current value	e up	odate timing and the effect of DHCMOV instruction					

1) High speed counter current value update timing

When a pulse is input to an input terminal for a high speed counter (C235 to C255), the high speed counter executes up-counting or down-counting. If the current value of a high speed counter is handled in an applied instruction such as the normal MOV instruction, the current value is updated at the timing shown in the table below. As a result, it is affected by the program scan time.

2) Effect of DHCMOV instruction

 By using both input interrupt and DHCMOV instruction, the current value of a high speed counter can be received at the rising edge or falling edge of an external input (at reception of input interrupt).

 When DHCMOV instruction is used just before a comparison instruction (CMP, ZCP or comparison contact instruction), the latest value of a high speed counter is used in comparison. The following points must be kept in mind when using the DHCMOV command.

- When the current value of a high speed counter is compared using CMP, ZCP or

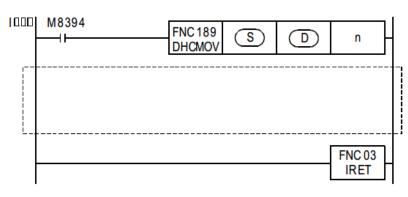
comparison contact instruction (not using a designated high speed counter comparison instruction), a hardware counter does not change into a software counter.

- When the number of high speed software counter comparison instructions is reduced, the total frequency limitation is decreased.

- When it is necessary to execute comparison and change an output contact (Y) as soon as

the current value of a high speed counter changes, use a designated high speed counter comparison instruction (HSCS, HSCR or HSZ).

- DHCMOV instruction can be used as many times as necessary.


3. Cautions

When programming DHCMOV instruction in an input interrupt program, the following points should be observed.

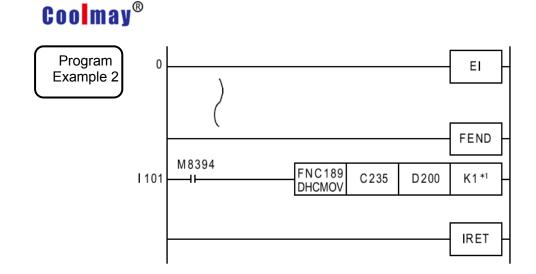
1) Program EI (FNC 04) and FEND (FNC 06) instructions in the main program. They are necessary to execute an input interrupt program.

2) When programming DHCMOV instruction in the 1st line in an input interrupt program, make sure to use the pattern program shown below.

Make sure to use the command contact M8394.

3) If two or more DHCMOV instructions are used in one input interrupt program, only the first instruction (just after the interrupt pointer) is executed when the interrupt is generated.

The rest of the interrupt, including additional DHCMOV instructions, is executed according to normal interrupt processing.



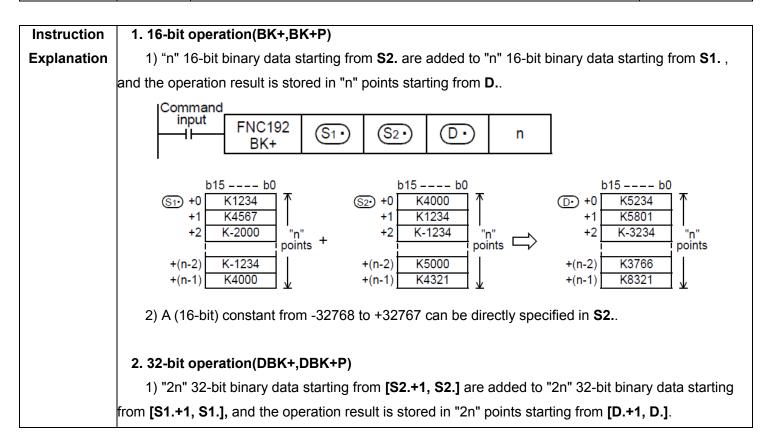
4) It is not permitted to interrupt programs. 5) While input interrupt	as the command contact	n n n n n n n n	but X003 turns from OFF s, when input interrupt is ()+1, ①] struction is executed in gram: () '+1, ① '] two or more input n in the table below),					
DHCMOV Instructions a	are not executed when the	,	esponding interrupt.					
Input	Input interr Rising edge interrupt	upt pointer Falling edge interrupt	Interrupt disable flag					
X000	1001	1000	M8050					
X001	I101	I100	M8051					
X002	I201	1200	M8052					
X003	I301	1300	M8053					
X004	I401	1400	M8054					
X005	I501	1500	M8055					
 interrupt disable flags M instruction),DHCMOV in held. The interrupt prog enabled. An operation error oc code is stored in D80 	6) If an input interrupt is generated while input interrupts are disabled by something other than the interrupt disable flags M8050 to M8055 (after execution of DI instruction and before execution of EI instruction),DHCMOV instruction is immediately executed, but execution of the interrupt program is held. The interrupt program will be executed after EI instruction is executed and interrupts are							

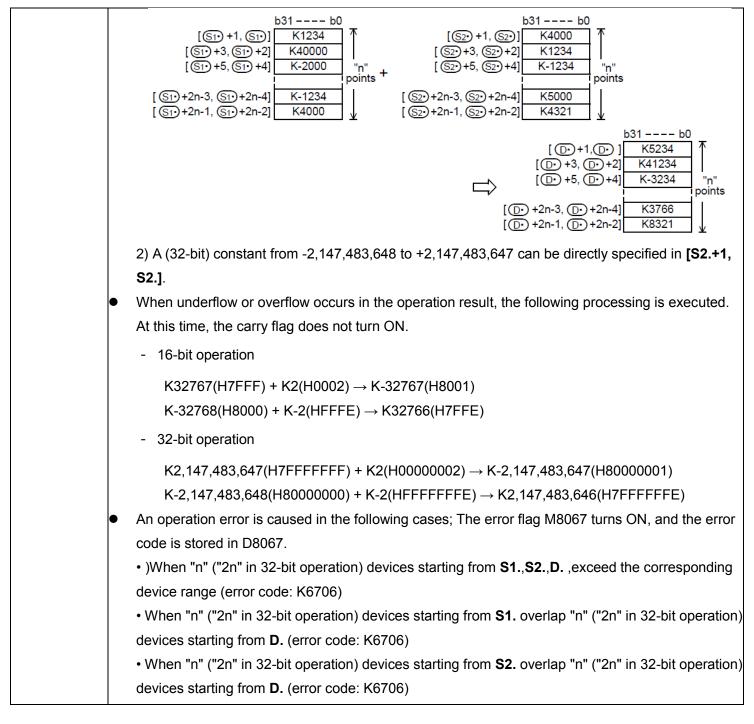
Program Example 1	M8000		FNC 189 DHCMOV	C235	D 0	K0 *1
		FNC 238 DAND >=	_ D0	K500		- Y000-

*1. K0: The current value of the high speed counter is not cleared when DHCMOV instruction is executed. K1: The current value of the high speed counter is cleared when DHCMOV instruction is executed.

In the program example below, the current value of the high speed counter C235 is compared in each operation cycle, and then the output Y000 is set to ON if the current value is "K500" or more (when the current value of C235 is not cleared).

- *1. K0: K0: The current value of the high speed counter is not cleared when DHCMOV instruction is executed.K1: The current value of the high speed counter is cleared when DHCMOV instruction is executed.
- In the program example shown below, the current value of C235 is transferred to D201 and D200, and the current value of C235 is cleared when X001 turns from OFF to ON.


22 Block Data Operation – FNC190 to FNC199

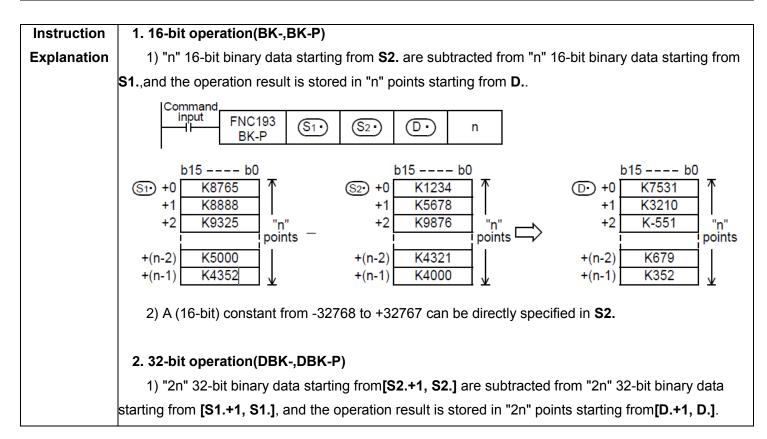

FNC	Instruction	Function	Sı	upported PLC	series			
NO.	monucion		3G PLC	2N PLC	MX2N PLC			
190					•			
191	—							
192	BK+	Block Data Addition	*					
193	BK-	Block Data Subtraction	*					
194	BKCMP= Block Data Compare S1.=S2 .		*					
195	BKCMP>	Block Data Compare S1. >	*					
195	BRGWF	S2.	*	*				
196	BKCMP<	Block Data Compare S1. <	*					
150	BICOWING	S2.	Ŷ					
197	BKCMP<>	Block Data Compare S1. ≠ S2 .	*					
198	BKCMP<=	Block Data Compare S1. ≤ S2 .	*					
199	BKCMP>=	Block Data Compare S1.≥S2 .	*					

22.1 BK+/ Block Data Addition

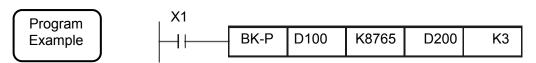
This instruction adds binary block data.

	nstructior	ı	Operand Type				Functio	on		
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC192		S1. S2.	9 steps	BK+	Continuous Operation		17 steps	DBK+	Continuous Operation
D	BK+	Ρ	D. n		BK+P	Pulse (Single) Operation			DBK+P	Pulse (Single) Operation
			S1.			oring addition , C, D, R, Mod		L		
	Operand	·	S2.			d device numb , C, D, R, K, H		g addition da	ata	BIN16/32 Bit
	number		D.	Head devie Applicable						
			n	Number of Applicable	data e devices: D), R, K, H				

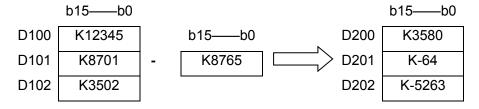
In the program shown below, the specified number of data stored in D150 to D0 are added to the specified number of data stored in D100 to D0 when X020 is set to ON, and the operation result is stored in D200 and later.


D0=4

	b15——b0			b15——b0		b15——b0
D100	6789		D150	1234	D200	8023
D101	7821	+	D151	2032	D201	9853
D102	5432		D152	-3252	D202	2180
D103	3520		D153	-1000	D203	2520


22.2 BK-/Block Data Subtraction

This instruction subtracts binary block data.


	Instruction		Operand Type				Functio	n			
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC193		S1. S2.	9 steps	BK-	Continuous Operation		17 steps	DBK-	Continuous Operation	
D	BK-	Ρ	D. n		BK-P	Pulse (Single) Operation			DBK-P	Pulse (Single) Operation	
			S1.			oring subtract , C, D, R, Mod					
	Operand		S2.		Subtracted constant or head device number storing subtraction data Applicable devices: T, C, D, R, K, H, Modify						
	number		D.			oring operatio , C, D, R, Mod				BIN16/32 Bit	
			n	Number of Applicable	data e devices: D	, R, K, H					

	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$[\bigcirc +1, \bigcirc] \\ [\bigcirc +3, \bigcirc +2] \\ [\bigcirc +5, \bigcirc +4] \\ \hline \\ K-551 \\ points \\ \hline \\ [\bigcirc +2n-3, \bigcirc +2n-4] \\ \hline \\ K45679 \\ \hline \\ \hline \\ \hline \\ K45679 \\ \hline \\ $
	2) A (32-bit) constant from -2,147,483,648 to +2,147,483,647 can be directly specified in [S2.+1,
	S2.]
•	When underflow or overflow occurs in the operation result, the following processing is executed.
	At this time, the carry flag does not turn ON.
	- 16-bit operation
	K-32768(H8000) - K2(H0002) → K32766(H7FFE) K32767(H7FFF) - K-2(HFFFE) → K-32767(H8001)
	- 32-bit operation
	K-2,147,483,648(H80000000) - K2(H00000002) → K2,147,483,646(H7FFFFFE) K2,147,483,647(H7FFFFFF) - K-2(HFFFFFFE) → K-2,147,483,647(H80000001)
•	An operation error is caused in the following cases; The error flag M8067 turns ON, and the error
	code is stored in D8067.
	• When "n" ("2n" in 32-bit operation) devices starting from S1., S2., D. exceed the corresponding
	device range (error code: K6706)
	• When "n" ("2n" in 32-bit operation) devices starting from S1. overlap "n" ("2n" in 32-bit operation)
	devices starting from D . (error code: K6706)
	• When "n" ("2n" in 32-bit operation) devices starting from S2 . overlap "n" ("2n" in 32-bit operation)
de	evices starting from D. (error code: K6706)

In the program shown below, the constant "8765" is subtracted from the data stored in D100 to D102 when X010 is set to ON, and the operation result is stored in D200 and later.

22.3 BKCMP=,>,<,<>,<=,>=/Block Data Compare

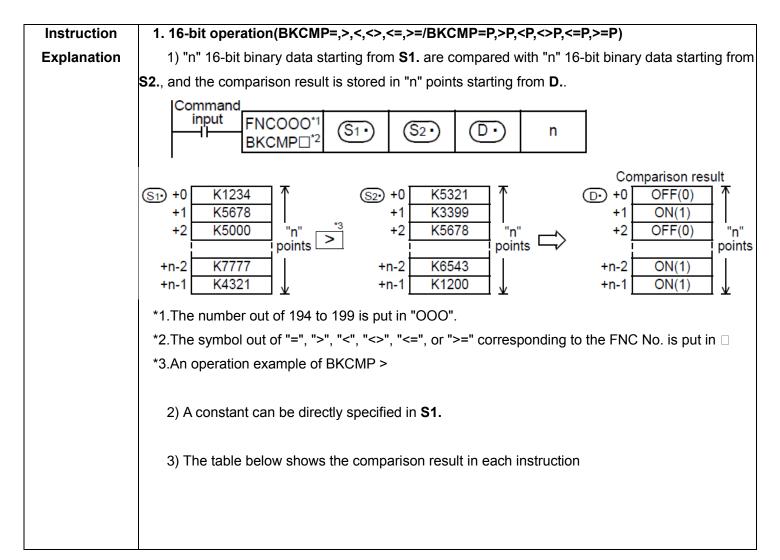
Coolmay®

These instructions compare block data in the comparison condition set in each instruction.

	Instruction		Operand Type				Functio	n		
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
			S1.	Instruction		Condition		Instruction	Whethome	Condition
	FNC194		S1. S2.	9 steps	BKCMP=	Continuous		17 steps	DBKCMP=	Continuous
	BKCMP=		S2. D.	9 sieps	DRCIVIF-	Operation		17 steps		Operation
	BROWIF -	D. n			BKCMP=P	Pulse (Single)			DBKCMP=P	Pulse (Single)
D	F	Ρ				Operation			DBRCIVIP-P	Operation

				16-bit	Mnemonic	Operation	32-bit	Mnemonic	Operation
			S1.	Instruction	winemonic	Condition	Instruction	whethonic	Condition
	FNC195		S1.	9 steps	BKCMP>	Continuous	17 steps	DBKCMP>	Continuous
	BKCMP>		52. D.	9 steps		Operation	17 steps		Operation
	BROWF		n.		BKCMP>P	Pulse (Single)		DBKCMP>P	Pulse (Single)
D		Ρ				Operation			Operation

				16-bit	Maamania	Operation	32-bit	Maamania	Operation
			S1.	Instruction	Mnemonic	Condition	Instruction	Mnemonic	Condition
	FNC196			9 steps	BKCMP<	Continuous	17 steps	DBKCMP<	Continuous
	BKCMP<		S2.	9 sieps		Operation	17 steps		Operation
			D.		BKCMP <p< th=""><th>Pulse (Single)</th><th></th><th>DBKCMP<p< th=""><th>Pulse (Single)</th></p<></th></p<>	Pulse (Single)		DBKCMP <p< th=""><th>Pulse (Single)</th></p<>	Pulse (Single)
D		Ρ	n		BRCINIPSP	Operation		DBKCINPSP	Operation


				16-bit	Mnemonic	Operation	32-bit	Mnemonic	Operation
			S1.	Instruction	winemonic	Condition	Instruction	MITERIORIIC	Condition
	FNC197		S1. S2.	9 steps	BKCMP≠	Continuous	17 steps	DBKCMP≠	Continuous
	BKCMP≠		52. D.	9 3tep3		Operation	17 Steps		Operation
			n.		BKCMP≠P	Pulse (Single)		DBKCMP≠P	Pulse (Single)
D		Ρ				Operation			Operation

	S1.	16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
FNC198	S2.	Instruction		Condition		Instruction	WITEITIONIC	Condition
ВКСМР≤	D.	9 steps	BKCMP≤	Continuous		17 steps	DBKCMP≤	Continuous
	n	9 Sieps		Operation				Operation

Block Data Operation - FNC190 to FNC199

D	P	BKCMP≤P Pulse (Single) Operation	DBKCMP≤P Operation

				16-bit	Magazia	Operation		32-bit	Magazonia	Operation
			64	Instruction	Mnemonic	Condition		Instruction	Mnemonic	Condition
	FNC199		S1. S2.	9 steps	BKCMP≥	Continuous		17 steps	DBKCMP≥	Continuous
	BKCMP≥		52. D.	9 Sieps	DICIVITZ	Operation		17 Steps	DDNGINF2	Operation
	DROWFE		n.		BKCMP≥P	Pulse (Single)			DBKCMP≥P	Pulse (Single)
D		Ρ				Operation				Operation
			S1.	Comparis	on value of o	device number	storing	comparison	value	
			01.	Applicab	le devices:	T, C, D, R, K, F	I, Modify	/		
			S2.	Head device number storing comparison source data						
			02.	Applicab	le devices:	T, C, D, R, Moo	dify			
0	perand numb	ber	D	Head dev	ice number s	storing compar	ison res	ult		BIN16/32 bit
			D.	Applicab	le devices:	Y, M, S, D □.b	, Modify			
		-		Number of compared data						
			n	Applicab	le devices:					

Instruction	Comparison result ON (1) condition	Comparison result OFF (0) condition
BKCMP=	S1. = S2.	S1.≠S2.
BKCMP>	S1. > S2.	S1.≤S2.
BKCMP<	S1. < S2.	S1.≥S2.
BKCMP<>	S1.≠S2.	S1. = S2.
BKCMP<=	S1.≤S2.	S1. > S2.
BKCMP>=	S1.≥S2.	S1. < S2.

4) When the comparison result is ON (1) in all of "n" points starting from **D.**, M8090 (block comparison signal) turns ON.

2. 32-bit operation((DBKCMP=,>,<,<>,<=,>=/DBKCMP=P,>P,<P,<>P,<=P,>=P)

"n" 32-bit binary data starting from [S1.+1, S1.] are compared with "n" 32-bit binary data starting from [S2.+1, S2.], and the comparison result is stored in "n" points starting from D.
 A constant can be directly specified in [S1.+1, S1.].

3. When the comparison result is ON (1) in all "block compare signal, M8090, data block instruction" turns ON.

When using 32-bit counters (including 32-bit high speed counters) For comparing 32-bit counters and 32-bit high speed counters (C200 to C255), make sure to use an instruction for 32-bit operation (DBKCMP=, DBKCMP>, DBKCMP<, DBKCMP<>, DBKCMP<=, or DBKCMP>=).

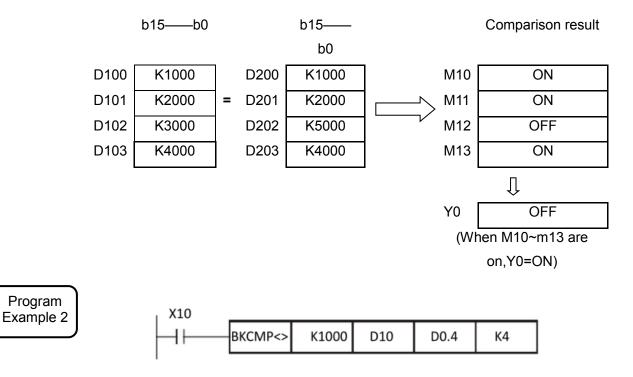
If an instruction for 16-bit operation (BKCMP=, BKCMP>, BKCMP<, BKCMP<>, BKCMP<=, or BKCMP>=) is used, an operation error is caused (error code: K6705).

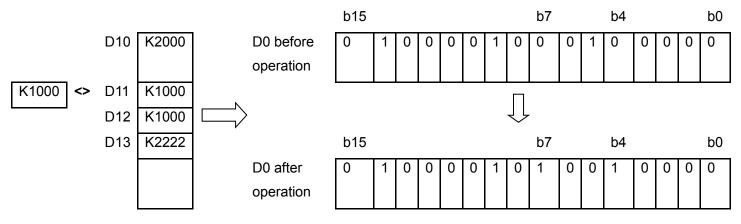
 An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

• When the range of "n" ("2n" in 32-bit operation) points starting from **S1.,S2.** exceeds the corresponding device range (error code: K6706)

• When the range of "n" points starting from **D**. exceeds the corresponding device range (error code: K6706)

- When data registers starting from **D**. specified as "D□.b" overlap "n" ("2n" in 32-bit operation) points starting from **S1**. (error code: K6706)
- When data registers starting from **D**. specified as "D□.b" overlap "n" ("2n" in 32-bit operation) points starting from **S2**. (error code: K6706)
- When a 32-bit counter (C200 to C255) is specified in **S1.,S2.** in 16-bit operation (error code: K6705)


For comparing 32-bit counters, make sure to use an instruction for 32-bit operation (DBKCMP=,DBKCMP>, DBKCMP<, DBKCMP<>, DBKCMP<=, or DBKCMP>=).


Program Example 1	X020 —_		FNC194 BKCMP=	D100	D200	M10	K4	
		M809 ——∐ Block	0 comparison s	signal			- <u>Y000</u>	
							END	

In the program shown below, four 16-bit binary data starting from D100 are compared with four 16-bit binary data starting from D200 by BKCMP= (FNC194) instruction when X020 is set to ON, and the comparison result is stored in four points starting from M10.

When the comparison result is "ON (1)" in all of the four points starting from M10, Y000 is set to ON.

In the program shown below, the constant K1000 is compared with four data starting from D10 when X010 is set to ON, and the comparison result is stored in b4 to b7 of D0.

23 Character String Control – FNC200 to FNC209

FNC	Instruction	Function	Sı	upported PLC	series
NO.	motraction		3G PLC	2N PLC	MX2N PLC
200	STR	BIN to Character String Conversion	*		
201	VAL	Character String to BIN Conversion	*		
202	\$+	Link Character Strings	*		
203	LEN	Character String Length Detection	*		
204	RIGHT	Extracting Character String Data from the Right	*		
205	LEFT	Extracting Character String Data from the Left	*		
206	MIDR	Random Selection of Character Strings	*		
207	MIDW	Random Replacement of Character Strings	*		
208	INSTR	Character string search	*		
209	\$MOV	Character String Transfer	*		

23.1 STR/BIN to Character String Conversion

This instruction converts binary data into character strings (ASCII codes).

On the other hand, the ESTR (FNC116) instruction converts floating point data into character strings.

	Instruction		Operand Type		Function					
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC200		S1. S2.	7steps	STR	Continuous Operation		17steps	DSTR	Continuous Operation
D	STR	Ρ	D.		STRP	Pulse (Single) Operation			DSTRP	Pulse (Single) Operation
	S1. Head device number storing the number of digits of a numeric value Applicable devices: T, C, D, R, Modify				BIN16-bit					
Operand Device number storing binary data to be converted number S2. Applicable devices: KnX, KnY, KnM, KnS, T, C, D, I Modify Modify Modify Modify				V, Z, K, H,	BIN16/32-bit					
	D. Head device number storing converted character string Applicable devices: T, C, D, R, Modify s				Character string					

Instruction 1. 16-bit operation(STR,STRP) 1) All digits (specified by S1.) of 16-bit binary data stored in are converted into ASCII codes while Explanation the decimal point is added to the position specified by the device storing the number of digits of the decimal part S1.+1, and stored in D. and later. Command input FNC200 (S1 •) (S2•) (D• STR 2) Set the number of all digits **S1.** in the range from 2 to 8. 3) Set the number of digits of the decimal part **S1.+1** in the range from 0 to 5. Make sure to satisfy "Number of digits of decimal part <= (Number of all digits -3)". 4) 16-bit binary data to be converted stored in S2. should be within the range from -32768 to +32767.5) Converted character string data is stored in **D**. and later as shown below. - As the sign, "space" (20H) is stored when the 16-bit binary data stored in S2. is positive, and "-"(2DH) is stored when the 16-bit binary data stored in **S2.** is negative. - When the number of digits of the decimal part S1.+1 is set to any value other than "0", the decimal point ".(2EH)" is automatically added in "number of digits of decimal part S1.+1"the digit. When the number of digits of the decimal part +1 is set to "0", the decimal point is not

C	0	0	m	a	y	®
					_	

	added.
	- When the number of digits of the decimal part S1.+1 is larger than the number of digits of
	16-bit binary data stored in S2., "0" (30H) is automatically added, and the data is shifted to the
	right end during conversion.
	- When the number of all digits stored in S1. excluding the sign and decimal point is larger than
	the number of digits of 16-bit binary data stored in S2. , "space" (20H) is stored in each digit between the sign and the numeric value.
	When the number of all digits stored in S1. excluding the sign and decimal point is smaller than the number of digits of 16-bit binary data stored in S2. , an error is caused.
	- "00H" indicating the end of a character string is automatically stored at the end of a converted
	character string. When the number of all digits is even, "0000H" is stored in the device after the
	last character. When the number of all digits is odd, "00H" is stored in the high-order byte (8 bits)
	of the device storing the final character.
	2. 32-bit operation(DSTR、DSTRP)
	1) All digits (specified by S1 .) of 32-bit binary data stored in [S2.+1, S2.] are converted into ASCII codes while the decimal point is added to the position specified by the device storing the number of digits of the decimal part (S1.+1), and stored in D. and later.
	2) Set the number of all digits S1. in the range from 2 to 13.
	3) Set the number of digits of the decimal part S1.+1 in the range from 0 to 10.
	Make sure to satisfy "Number of digits of decimal part <= (Number of all digits -3)".
	4) 32-bit binary data (BIN) S2. to be converted ,should be within the range from -2,147,483,648 to +2,147,483,647.
	 An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.
	• When the range of "n" ("2n" in 32-bit operation) points starting from S1., S2., D. exceeds the
	corresponding device range (error code: K6706)
	• When "n" points starting from S1. and "n" points starting from D . repeat ("2n" in 32-bit
	 operation). (error code: K6706) When "n" points starting from S2. and "n" points starting from D. repeat ("2n" in 32-bit
	operation). (error code: K6706)
Program	
Example	X000 FNC 12 K12672 D10 Data to be converted is set

	I X000	_				_	1
J			FNC 12 MOVP	K12672	D10		Data to be converted is set.
		[FNC 12 MOVP	K6	D0]-	The number of all digits is set.
		[FNC 12 MOVP	K0	D1]-	The number of digits of the decimal part is set.
		FNC200 STRP	D0	D10	D20	}	
					END]-	

––– b0

When X000=ON, Convert the BIN data (16 bits) saved in D10 to character string according to the number of digits specified in D0 and D1, and then store it to D20~D23 Program.

				t	0 <mark>15 b</mark> 8	b7 b
16-bit binary data	D10 12672	"12672"	\Box	D20	31H(1)	20H(space)
			,	D21	36H(6)	32H(2)
Number of all digits	D0 6			D22	32H(2)	37H(7)
Number of digits of	D1 0			D23	000	00H
decimal part				_		

23.2 VAL/Character String to BIN Conversion

This instruction converts a character string (ASCII codes) into binary data.

On the other hand, EVAL (FNC117) instruction converts a character string (ASCII codes) into floating point data.

	Instruction		Operand		Function					
	Instruction		Туре							
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC201		S. D1.	7 steps	VAL	Continuous Operation		13 steps	DVAL	Continuous Operation
D	VAL	Ρ	D1. D2.		VALP	Pulse (Single) Operation			DVALP	Pulse (Single) Operation
		S. Head device number storing a character string to be converted into Applicable devices: T, C, D, R, Modify					Character string			
	Operand number	-	D1.	acquired by o	conversion	oring the num , C, D, R, Mod		digits of the	binary data	BIN16 bit
			D2.	Head device number storing the binary data acquired by conversion Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify					BIN16/32 bit	

Instruction 1. 16-bit operation(VAL,VALP) A character string stored in S. and later is converted into 16-bit binary data. The number of all Explanation digits of the binary data acquired for conversion is stored in **D1.**, the number of digits of the decimal part is stored in **D1.+1**, and the converted binary data is stored in **D2.**. In converting a character string into binary data, the data from S. to a device number storing '00H" is handled as a character string in byte units. Command input **FNC201** $(\mathbf{S} \cdot)$ (D1 •) (D2·) 41 VAL 2. 32-bit operation(DVAL,DVALP)

A character string stored in S. and later is converted into 32-bit binary data. The number of all

digits of the binary data acquired for conversion is stored in **D1.**, the number of digits of the decimal part is stored in **D1.+1**, and the binary data is stored in **[D2.+1, D2.]**.

In conversion from a character string into binary data, the data from **S**. to a device number storing "00H" is handled as a character string in byte units.

Command

Command				
input II	FNC201 DVAL	S	D1 •	D2•
1				

1) Character string to be converted

a) Number of characters of character string and the numeric range when the decimal point is ignored

	Desci	ription		
	16-bit operation	32-bit operation		
Number of all characters (digits)	2~8	2~13		
Number of characters (digits) of decimal part	0 ~ 5,smaller than "number of all digits −3"	0 ~ 10,smaller than "number of all digits −3"		
Numeric range when decimal point is ignored	-32768 ~ 32767 Example:"123.45"→"12345"	-2,147,483,648 ~ 2,147,483,647 Example:"12345.678"→"12345678"		

b) Character types used in characters to be converted

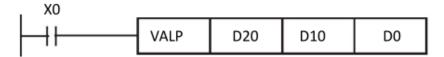
		Character type	
Sign	Positive numeric value	"Space(20H)"	
Oigh	Negative numeric value	"-(2DH)"	
Decimal point		" . (2EH)"	
Number		"0(30H)" ~ "9(39H)"	

2) **D1.** stores the number of all digits. The number of all digits indicates the number of all characters (including the number, sign and decimal point).

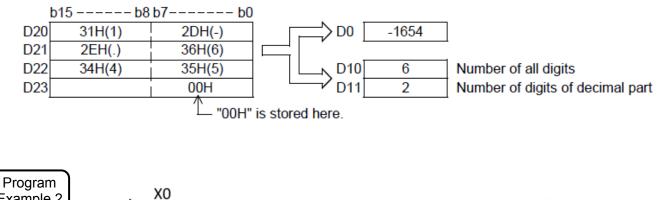
3) **D1.+1** stores the number of digits of the decimal part. The number of digits of the decimal part indicates the number of all characters after the decimal point "." (2EH).

4) **D2./[D2.+1, D2.]** stores 16-bit data (bin) converted from a character string with the decimal point ignored.

For the character string located in and later, the "space" (20H) and "0" (30H) characters between the sign and the first number other than "0" are ignored in the conversion to 32-bit binary data.


Store sign data, "space (20H)" or "- (2DH)", must be stored in the 1st byte (lower order 8 bits of the head device set in S.).

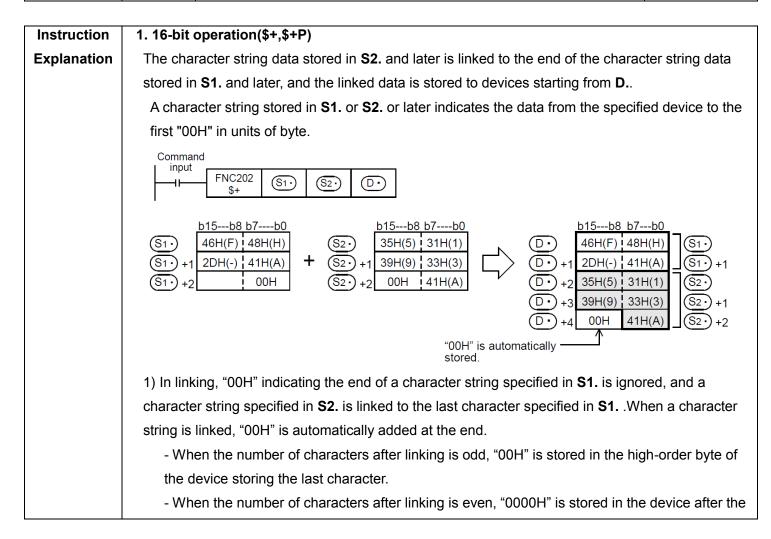
Only the ASCII code data "0 (30H)" to "9 (39H)", "space (20H)" and "decimal point (2EH)" can be stored from the 2nd byte to the "00H" at the end of the character string in **S**.


If "- (2DH)" is stored in the 2nd byte or later, an operation error (error code: K6706) occurs.

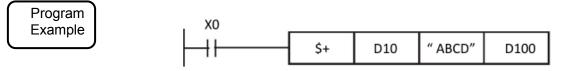
Program Example 1

X0=ON, the character string data stored in D20 to D22 is regarded as an integer value, converted into a binary value, and stored in D0

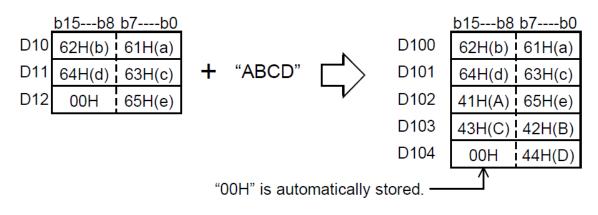
X0=ON, the character string data stored in D20 to D24 is regarded as an integer value, converted into a binary value, and stored in D0


	b15 b8	b7 b0	D1 D0								
D20	37H(7)	20H(space)	D0 7910 0611								
D21	31H(1)	39H(9)									
D22	30H(0)	30H(0)	D10 10 Number of all digits								
D23	36H(6)	2EH(.)	D11 3 Number of digits of decimal part								
D24	31H(1)	31H(1)									
D25		I OOH									
└── "00H" is stored here.											

23.3 \$+/Link Character Strings


Cool may

I	Instruction		Operand Type								
	FNC202 \$+	Р	S1. S2. D.	16-bit Instruction	Mnemonic	Operation Condition		32-Bit Instruction	Mnemonic	Operation Condition	
				7 steps	\$+	Continuous Operation			-		
					\$+P	Pulse (Single) Operation			_		
	Operand number		S1.	Head device number storing the link source data (character string) or directly specified character string Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, Modify							
			S2.	Head devid specified Cha Applicable	Character string						
			D.	Head devid							

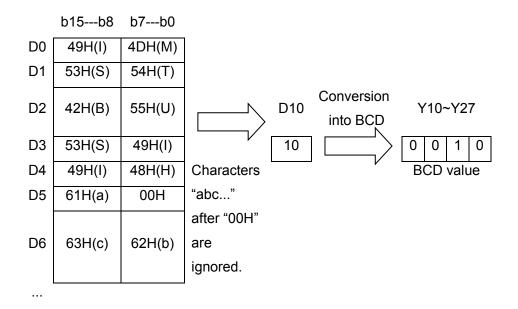

This instruction links a character string to another character string

last character.
• When directly specifying a character string, up to 32 characters can be specified (input).
However, this limitation in the number of characters is not applied when a word device is specified in
S1. or S2
• When the values in both S1. and S2. start from "00H" (that is, when the number of characters is
"0"), "0000H" is stored in D. .
• An operation error is caused in the following cases; The error flag M8067 turns ON, and the error
code is stored in D8067.
• When the number of devices after a device number specified by D . is smaller than the number of
devices required to store all linked character strings (that is, when "00H" cannot be stored after all
character strings and the last character) (error code: K6706)
• When the same device is specified in S1. ,S2. and D. as a device for storing a character string
(error code: K6706)
• When "00H" is not set within the corresponding device range after the device specified by S1. or
S2. (error code: K6706)

 X0=ON, a character string stored in D10 to D12 (abcde) is linked to the character string "ABCD", and the result is stored to D100

23.4 LEN/Character String Length Detection

Instruction		Operand	Function							
matuction		Туре	Туре							
			16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation	
			Instruction		Condition Continuous		Instruction		Condition	
FNC203		S.	5 steps	LEN	Operation			_		
LEN		D.			Pulse					
	Р			LENP	(Single)			_		
	٢				Operation					
		•		ce number s	toring a chara	acter strir	ng whose lei	ngth is to be	Character	
Operand		S.		o dovicos: K	nX, KnY, KnM	Kng T		difu	string	
number	-				the detected of			•		
namber		D.	bytes)	noer storing			stang longt		BIN16 bit	
			- /	e devices: K	nY, KnM, KnS	, T, C, D	, R, Modify			

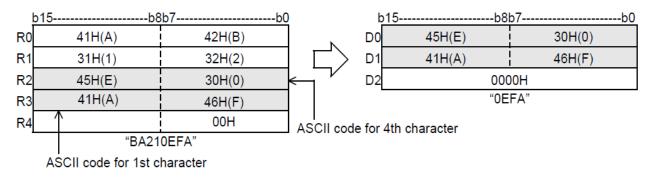

This instruction detects the number of characters (bytes) of a specified character string.

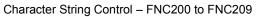
https://en.coolmay.com/

XO			
-11	LEN	D0	D10
-11	BCD	D10	K4Y10

• X0=ON, the length of a character string stored in D0 and later is output in 4-digit BCD to Y10 to Y27.

23.5 RIGHT/Extracting Character String Data from the Right

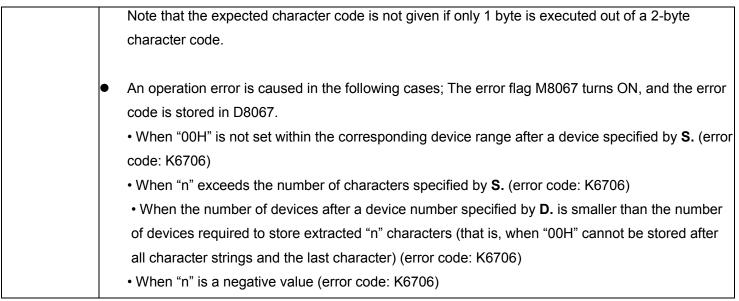

This instruction extracts a specified number of characters from the right end of a specified character string.


Instruction	Operand									
	Туре				Functio					
		16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
FNC204 RIGHT	S. D.	5 steps	RIGHT	Continuous Operation Pulse			—			
Р	n		RIGHTP	(Single) Operation			_			
	S.			toring a charao (nX, KnY, KnM	-		odify	Character		
Operand number	D.			toring extracte InY, KnM, KnS		0		string		
	n		Number of characters to be extracted Applicable devices: D, R, K, H							
Instruction	1. 16-bit	operation(RI	GHT,RIGHT	P)						
Explanation	stored i If the ni When o the extr - Who device - Who charact Comm inpu - I - I - Mhen h • The n codes i	in S . and late umber of cha characters are racted characters en the number storing the late the number ter. and the number ter. and the number ter. and the number ter. and the number ter.	r, and stored racters species e extracted fr eters. er of extracter st character. er of extracter of extracter of extracter acter codes of racters is ha	to D . and late ified by "n" is " rom a character d characters is d characters is	er. 0", the N er string, s odd, "00 s even, "0 n CII codes units (8 b	ULL code (0 "00H" is aut 0H" is stored 0000H" is sto 0000H" is sto s, note the fo its). Accordi	0000H) is sto omatically ac I in the high- ored in the d ollowing cont ngly, in the c	dded at the end of order byte of a evice after the last		
 When extracting characters from a character string including character codes in express 1 character such as shift JIS codes, consider the number of characters units of character codes for 1 character. Note that the expected character code is not given if only 1 byte is executed out 							to be extracted in			

	charact	ter code.					
	•	eration error is ca stored in D8067		ollowing cas	es; The erro	or flag M806	67 turns ON, and the error
	code:K					•	evice specified by S. (error
	• When devices	the number of a	devices after a re extracted "i	a device nui n" character	mber specifi s (that is, w	ied by D. is hen "00H" c	smaller than the number of cannot be stored after all
	• When	n "n" is a negative	e value (error	code: K670	06)		
Program Example	F	xo 	RIGHTP	RO	D0	К4	

 X0=ON, 4 characters are extracted from the right end of the character string data stored in R0 and later, and stored to D0 and later

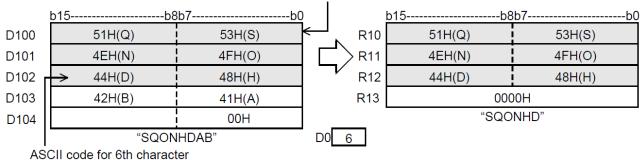
23.6 LEFT/Extracting Character String Data from the Left


Coolmay®

This instruction extracts a specified number of characters from the left end of a specified character string.

	Instruction		Operand Type				Functio	on		
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC205		S.	7 steps	LEFT	Continuous Operation			_	
	LEFT	Р	D. n		LEFTP	Pulse (Single) Operation			_	
			S.			oring a charac nX, KnY, KnM			odify	Character
	Operand number		D. Head device number storing extracted character string Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify					string		
			n		characters t e devices: D	o be extracted , R, K, H				BIN16 bit

Instruction	1. 16-bit operation(LEFT,LEFTP)										
Explanation	"n" characters are extracted from the left end (that is, from the head) of the character string data										
	stored in S. and later and stored to D. and later.										
	If the number of characters specified by "n" is "0", the NULL code (0000H) is stored to D										
	When characters are extracted from a character string, "00H" is automatically added at the end of										
	the extracted characters.										
	- When the number of extracted characters is odd, "00H" is stored in the high-order byte of a										
	device storing the last character.										
	- When the number of extracted characters is even, "0000H" is stored in the device after the last										
	character.										
	Command										
	IL FNC205 (S·) (D·) n										
	 When handling character codes other than ASCII codes, note the following contents: 										
	• The number of characters is handled in byte units (8 bits). Accordingly, in the case of character										
	codes in which 2 bytes express 1 character such as shift JIS codes, the length of 1 character is										
	detected as "2".										
	• When extracting characters from a character string including character codes in which 2 bytes										
	express 1 character such as shift JIS codes, consider the number of characters to be extracted in										
	units of character codes for 1 character.										



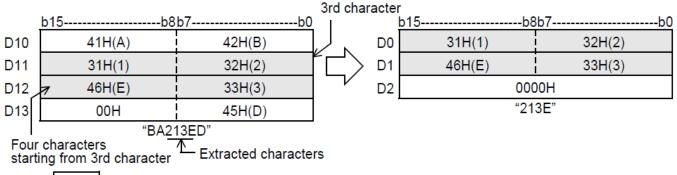
Program Example 2

 X10=ON, the number of characters which is equivalent to the number stored in D0 are extracted from the left end of the character string data stored in D100 and later, and stored to R10 and later.

ASCII code for 1st character

23.7 MIDR/Random Selection of Character Strings

This instruction extracts a specified number of characters from arbitrary positions of a specified character string.


Instruction		Operand Type				Functio	on			
			16 -bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
FNC206		S1. D.	7 s	MIDR	Continuous Operation			_		
MIDR	Р	S2.		MIDRP	Pulse (Single) Operation			_		
		S1.		Head device number storing a character string Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, Modify						
Operand		D.	Head devio Applicable	string						
Operand number	-			Head device number specifying the head position and number of haracters to be Extracted						
		S2.	S2. :Hea S2.+1 :Nu		BIN16 bit					
			Applicable							

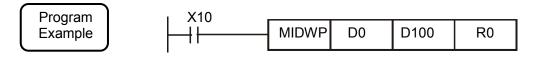
Instruction	1. 16-bit operation(MIDR,MIDRP)
Explanation	" S2.+1" characters are extracted leftward from the position specified by S2. of the character
	string data stored in S1. and later, and stored to D. and later.
	When characters are extracted from a character string, "00H" is automatically added at the end of
	the extracted characters.
	- When the number of extracted characters specified by +1 is odd, "00H" is stored in the high-
	order byte of a device storing the last character.
	- When the number of extracted characters specified by +1 is even, "0000H" is stored in the
	device after the last character.
	Command input II MIDR S1· S2·
	 When handling character codes other than ASCII codes, note the following contents:
	• The number of characters is handled in byte units (8 bits). Accordingly, in the case of character
	codes in which 2 bytes express 1 character such as shift JIS code, the length of 1 character is
	regarded as 2 characters.
	When extracting characters from a character string including character codes in which 2 bytes
	express 1 character such as shift JIS codes, consider the number of characters to be extracted in

units of character codes for 1 character.
Note that the expected character code is not given if only 1 byte is executed out of a 2-byte
character code
• An operation error is caused in the following cases; The error flag M8067 turns ON, and the error
code is stored in D8067.
• When "00H" is not set within the corresponding device range after a device specified by S1 .
(error code: K6706)
• When the value specified by S2. exceeds the number of characters specified by S1. (error
code: K6706)
• When the number of characters specified by [S2.+1] from the position specified by D. exceeds
the device range specified by D. (error code: K6706)
When the number of devices after a device number specified by D . is smaller than the number
of devices required to store extracted characters as many as the number specified by [S2.+1]
(that is, when "00H" cannot be stored after all character strings and the last character) (error
code: K6706)
• When "n" is a negative value (error code: K6706)
When S2.+1 specifies "-2" or less (error code: K6706)
• When S2.+1 specifies a number larger than the number of characters specified by S1. (error
code: K6706)

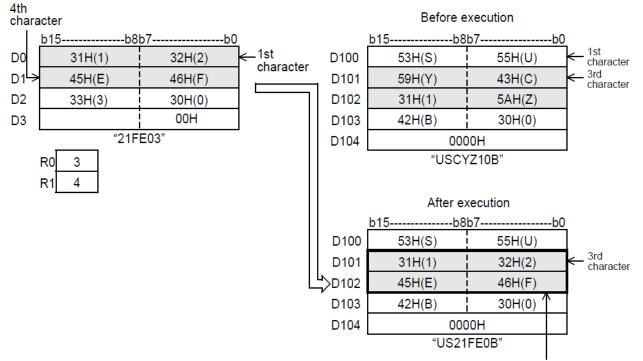
 X0=ON, four characters are extracted from the 3rd character from the left end of the character string data stored in D10 and later, and then stored to D0.

R0	3
R1	4

23.8 MIDW/Random Replacement of Character Strings


This instruction replaces the characters in arbitrary positions inside designated character string with a specified character string.

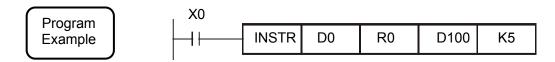
Instruction		Operand								
		Туре	Function							
			16-bit	Mnemonic	Operation		32-bit Mnemonic		Operation	
			Instruction		Condition		Instruction	Winemonie	Condition	
		S1.	7 steps	MIDW	Continuous			_		
FNC207		D.	7 Steps		Operation					
MIDW		52.			Pulse					
	Р	52.		MIDWP	(Single)			—		
	۲				Operation					
		S1.	Head device number storing a character string used in overwriting							
		51.	Applicable	Character						
		D.	Head device number storing character string to be overwritten						string	
Operand		υ.	Applicable	Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify						
number			Head devi	nber of						
number			characters to be Overwritten							
		S2.	S2. : Hea	d character	position to be	overwritt	en		BIN16 bit	
			S2.+1 : Nu	mber of char	acters to be o	verwritte	'n			
			Applicable	e devices: K	nX, KnY, KnM	, KnS, T,	C, D, R, Mo	odify		


Instruction	1. 16-bit operation(MIDW,MIDWP)
Explanation	" S2.+1" characters are extracted from the left end (that is, the head) of the character string data
	stored in S1. and later, and stored to the position specified by S2. and later of the character string
	data stored in D. and later.
	Command input FNC207 MIDW
	This instruction can handle character codes other than ASCII codes, but please note the
	following:
	• The number of characters is handled in byte units (8 bits). Accordingly, in the case of character
	codes in which 2 bytes express 1 character such as shift JIS code, the length of 1 character is
	regarded as 2 characters.
	When overwriting a character string including character codes in which 2 bytes express 1
	character such as shift JIS codes, consider the number of characters to be extracted in units of
	character codes for 1 character.
	Note that the expected character code is not given if only 1 byte is overwritten out of a 2-byte
	character code.

	•	An operation error is caused in the following cases; The error flag M8067 turns ON, and the error
		code is stored in D8067.
		• When "00H" is not set within the corresponding device range after a device specified by S1. or
		D. (error code: K6706)
		•When the value specified by S2. exceeds the number of characters of the character string stored
		in D. and later (error code: K6706)
		When S2. n specifies a negative value (error code: K6706)
		When S2.+1 specifies "-2" or less (error code: K6706)
		• When the number of characters specified by S2.+1 exceeds the number of characters specified
		by S1. (error code: K6706)
,		

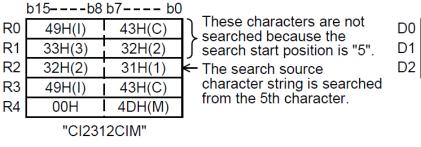
X10=ON,4 characters are extracted from the character string data stored in D0 and later, and stored to the 3rd character (from the left end) and later for the character string data stored in D100 and later

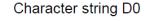
The 1st to 4th characters are stored.

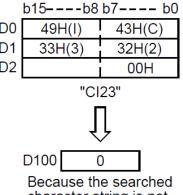

23.9 INSTR/Character string search

	Instruction		Operand Type	Function								
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
	FNC208 INSTR		S1. S2.	9 steps	INSTR	Continuous Operation			_			
			D. n		INSTRP	Pulse (Single)			_			
						Operation						
		-	S1.			oring a charac , C, D, R, Mod		9		Character		
	Operand		S2.		ce number st e devices: T	ched	string					
	number		D.	Head devid		BIN16 bit						
			n	Search sta	rt position e devices: D	, R, K, H						

Instruction	1. 16-bit operation(INSTR,INSTRP)						
Explanation	1) The character string stored in S1. and higher is searched for within the character string S2. and						
	higher.						
	The search begins at the "n"th character from the left end (head character) of S2. and the search						
	result is stored in D. .						
	The search result provides the first matching character (located from the left end (head						
	character)) in S2. .						
	Command input FNC208 S1 S2 D n INSTR S1 S2 D						
	Character string to be searched (S2) b15b8 b7b0 (S2) +0 +1 44H(D) 43H(C) +2 46H(F) 45H(E) +3 48H(H) 47H(G) +4 4AH(J) 49H(I) -5 b8 b7b0 (S1) +0 +1 48H(H) 47H(G) b8 b7b0 (S1) +0 +1 +2 48H(H) 47H(G) b8 b7b0 (S1) +0 +1 +2 b8 b7b0 						
	2) When the searched character string is not detected, "0" is stored in D						
	3) When the search start position "n" is a negative number or "0", search processing is not						
	executed.						

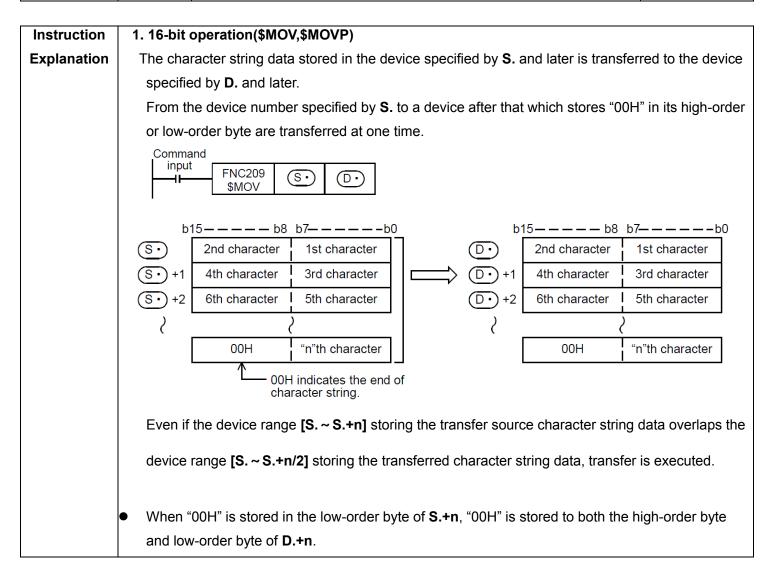

This instruction searches a specified character string within another character string.


4) character string can be directly specified in the character string S1
• An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.
• When the search start position "n" exceeds the number of characters stored in S2 .(error code:
K6706).When "00H (NULL)" is not located within the corresponding device range starting from S1./S2.
(error code: K6706)



X0=ON, the character string "CI23" (D0 and later) is searched from the 5th character from the left end (head character) of the character string "CI2312CIM" (R0 and later), The search result is stored in D100.

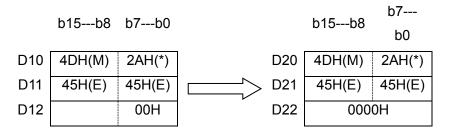
Character string to be searched R0



character string is not detected, "0" is stored.

23.10 \$MOV/Character String Transfer

Operand Instruction Function Type 16-bit Operation 32-bit Operation Mnemonic Mnemonic Instruction Condition Instruction Condition Continuous 5 steps \$MOV **FNC209** S. Operation \$MOV D. Pulse \$MOVP (Single) Ρ Operation Directly specified character string (up to 32 characters) or head device number storing character string which is handled as the transfer S. Operand source Character number Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, Modify string Head device number storing transferred character string D. Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify


This instruction transfers character string data.

•	An operation error is caused in the following cases; The error flag M8067 turns ON, and the error
	code is stored in D8067.
	• When "00H" does not exist in the range specified from device S. (error code: K6706)
	• When the specified character string cannot be stored in devices from the device specified by D .
	to the last device (error code: K6706)
	•

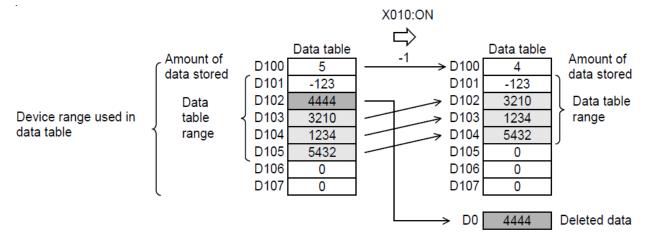
Program Example

♦ X0=ON, character string data stored in D10∼D12 is transferred to D20∼D22 program.

24 Data Operation 3 – FNC210 to FNC219

FNC	Instruction	Function	Sı	upported PLC	series
NO.	motraction		3G PLC	2N PLC	MX2N PLC
210	FDEL	Deleting Data from Tables	*		·
211	FINS	Inserting Data to Tables	*		
212	POP	Shift Last Data Read [FILO Control]	*		
213	SFR	16-bit data n Bit Shift Right with Carry	*		
214	SFL	16-bit data n Bit Shift Left with Carry	*		
215	—				
216					
217	—				
218	—				
219					

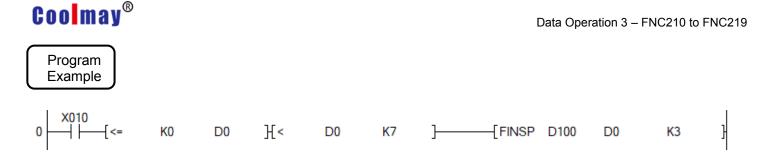
24.1 FDEL/Deleting Data from Tables

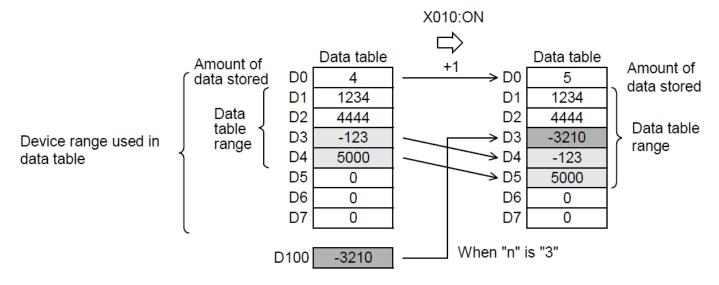

	Instruction Operand Type			Function							
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC210		S. D.	5steps	FDEL	Continuous Operation			_		
	FDEL	Ρ	n		FDELP	Pulse (Single) Operation			_		
			S.		•	deleted data īnX, KnY, KnM	, KnS, T,	C, D, R, Mc	odify		
	Operand number		D.	Head device number in data table Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify						BIN16 bit	
			n		deleted data e devices: K	a in table înY, KnM, KnS	, T, C, D	, R, Modify			

This instruction deletes an arbitrary data from a data table.

Coolmay®							Data	Operation 3 -	– FNC210) to FNC219
		 When the FNC210 instruction is executed under the condition "n ≤ 0" (error code: K6706) When the amount of data stored specified in D. is "0" (error code: K6706) 								
					•		onding device rar	,	ode: K67	706)
Program Example										
X010	K0	D100	}[<=	D100	K7]		D100	K2	}
The 2nd data	entry is	s deleted	from the	data tabl	e stored	l in D100	to D105, and the	deleted dat	ta is stor	ed in D0.

When the amount of data stored is "0", however, the FDEL (FNC210) instruction is not executed. (The device range used in the data table is D100 \sim D107).




24.2 FINS/Inserting Data to Tables

This instruction inserts data into an arbitrary position in a data table.

Instruction	Operand Type			Fund	ction				
		16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition		
FNC211 FINS	S. D.	7 steps	FINS	Continuous Operation		_			
Р	n		FINSP	Pulse (Single) Operation		_			
		Device num	ber storing ins	serted data					
	S.		U	, D, R, K, H, Modi	ify				
Operand number	D.		e number in da devices: T, C	ata table , D, R, K, H, Modi	ify		BIN16 bit		
	n Data insertion position in table Applicable devices: D, R, K, H								
Instruction	1. 16-bit c	operation(FINS	6,FINSP)						
Explanation	16-bit d	ata S. is inserte	ed in "n"th pos	sition in a data tab	ole (stored in D .	and later).			
	"n" th dat	a and later in t	he data table	are shifted backw	ard one by one	, and the numb	per of stored		
	data is adde	d by "1".							
	Commar input	EN OCA A		n					
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
	• The dev	vice range used	d in a data tab	le should be cont	rolled by the us	er.			
	The dat stored c		data starting f	from the next devi	ce (D.+1) after	D. indicating the	ne number of		
	-	ation error is c stored in D806		ollowing cases; T	he error flag M8	3067 turns ON,	and the error		
	• When			ta insertion excee	ds the amount	of stored data p	blus 1(error		
			exceeds the d	levice range of the	e data table D. ((error code: K6	706)		
	• When	n FNC211 instru	uction is exect	uted under the co	ndition "n \leq 0" (error code: K67	706)		
	• When	the data table	range exceed	ds the correspond	ling device rang	e (error code:	K6706)		
				74					

X010=ON,data stored in D100 is inserted into the 3rd position of the data table stored in D0 to D4.
 When the amount of data stored exceeds "7", however, the FINS (FNC211) instruction is not executed.
 (The device range used in the data table is D0 to D7)

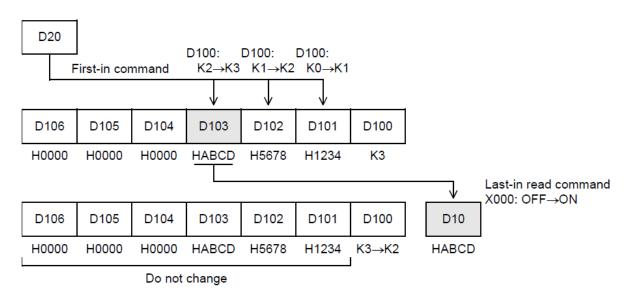
24.3 POP/Shift Last Data Read [FILO Control]

This instruction reads the last data written by shift write (SFWR) instruction for FILO control.

Instruction Operand Function									
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
FNC212		S. D.	7 steps	POP	Continuous Operation			_	
POP	Ρ	n		POPP	Pulse (Single) Operation			_	
			Head devi	ce number st	orina first-in d	ata (inclu	udina pointer	⁻ data)	
		S.	Head device number storing first-in data (including pointer data) Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify						
Operand		D.		Device number storing last-out data Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify					
number		n		ecause point	er data is also	includeo	l.) 2≦n≦512	2	
			Applicable	e devices: K	., H				

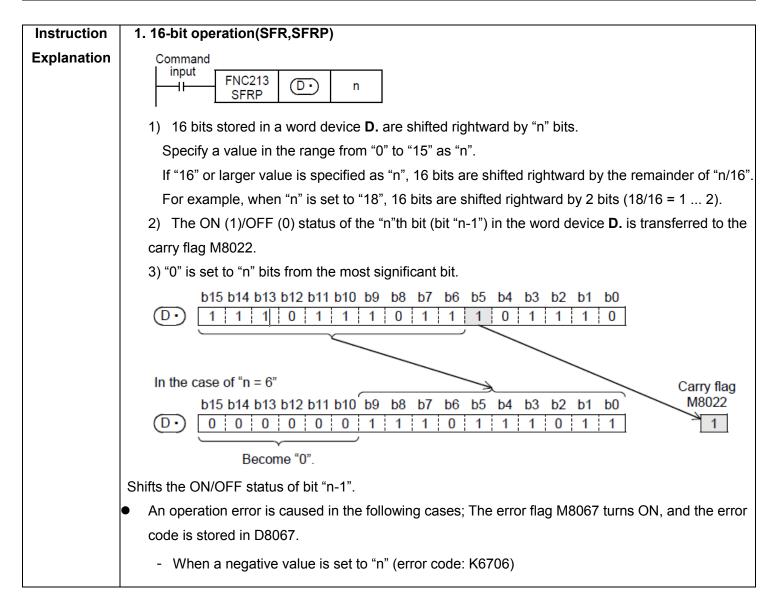
Instruction	1. 16-bit op	eration(POP,POPP)							
Explanation	16-bit dat	16-bit data S. is inserted into the n th of the data table (D. and later). The data after the n th data							
	table is shifted back one by one, the data Add 1 to the saved number.								
	Command input IL POPP N								
		Description							
	S.	Pointer data (amount of data stored)							
	S.+1								
	S.+2								
	S.+3								
		Data area							
	S.+n-3	(First-in data written by shift write (SFWR) instruction)							
	S.+n-2								
	S.+n-1								
	1) Every t	time the instruction is executed for the word devices [S. ~ S.+n-1], a device "S.+ Pointer							
	data S. " is	s read to D (The last data entry written by the shift write (SFWR) instruction for first-in							
	first-out c	ontrol is read to D. .) Specify "n" in the range $2 \sim 512$.							
	2) Subtra	ct "1" from the value of the pointer data S .							

• the zero flag M8020, when current value of the pointer S.=0 , It turns ON after executing
Instruction.
When this instruction is programmed in the continuous operation type, the instruction is executed
in every operation cycle. As a result, an expected operation may not be achieved.
Usually, program this instruction in the "pulse operation type", or let this instruction be executed
by a "pulsed command contact".
An operation error is caused in the following cases; The error flag M8067 turns ON, and the error
code is stored in D8067.
- S.> n-1, (error code: K6706)
- S.< 0,(error code: K6706)


Program Example

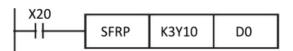
First-in command				
	SFWRP	D20	D100	K7
xo 	POPP	D100	D10	K7

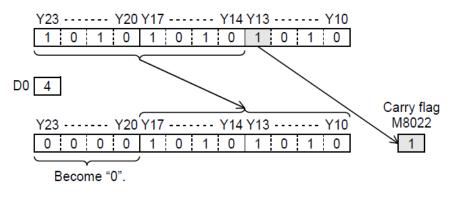
- X0=ON, Among values stored in D20 input first to D101 to D106, the last value input is stored to D10, and "1" is subtracted from the number of stored data (pointer D100)
- When the first-in data are as shown in the table below


_

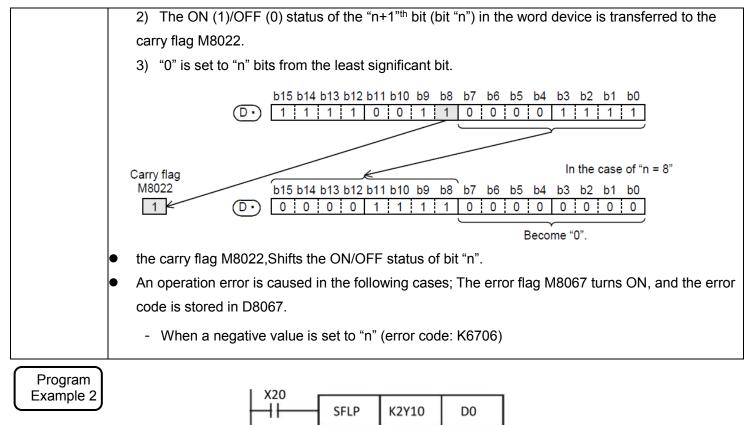
Pointer	D100	K3
	D101	H1234
	D102	H5678
Data	D103	HABCD
Dala	D104	H0000
	D105	H0000
	D106	H0000

24.4 SFR/Bit Shift Right with Carry

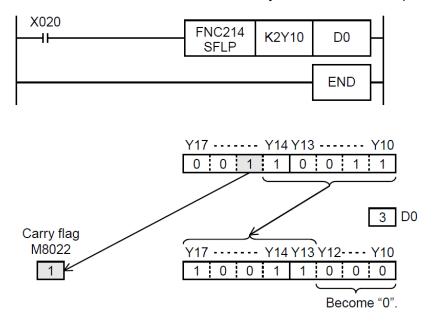

Operand Instruction Function Type 16-bit Operation 32-bit Operation Mnemonic Mnemonic Instruction Condition Instruction Condition Continuous 5 steps SFR **FNC213** D. Operation SFR n Pulse SFRP (Single) Ρ Operation Device number storing data to be shifted D. Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify Operand Number of times of shift $(0 \le n \le 15)$ BIN16 bot number n Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, Modify


This instruction shifts 16 bits stored in a word device rightward by "n" bits.

• X020=ON, the contents of Y010 to Y023 are shifted rightward by the number of bits specified by D0


24.5 SFL/Bit Shift Left with Carry

This instruction shifts 16 bits stored in a word device leftward by "n" bits.


Ir	nstruction		Operand Type	Function							
				16-bit	Mnemonic	Operation		32-bt	Mnemonic	Operation	
				Instruction	WINEIHOHIC	Condition		Instruction	WITETTOTTIC	Condition	
				5 stops	SFL	Continuous					
	FNC214		D.	5 steps	3FL	Operation			_		
	SFL		n			Pulse					
		Р			SFLP	(Single)			_		
		٢				Operation					
			D.								
	Operand		D.	Applicable	dify						
	number	Ī		Number of		BIN16 bit					
	numbel		n	Applicable	V, Z, K, H,						
				Modify	٧odify						

Instruction	1. 16-bit operation(SFL,SFLP)
Explanation	 Command input SFLP I) 16 bits stored in a word device D. are shifted leftward by "n" bits. Specify a value in the range from "0" to "15" as "n". If "16" or larger value is specified as "n", 16 bits are shifted leftward by the remainder of "n/16". For example, when "n" is set to "18", 16 bits are shifted leftward by 2 bits (18/16 = 1 2).
	For example, when "n" is set to "18", 16 bits are shifted leftward by 2 bits $(18/16 = 1 \dots 2)$.

• X020=ON, the contents of Y010 to Y017 are shifted leftward by the number of bits specified by D0

25 Data Comparison – FNC220 to FNC249

FNC	Instruction	Function	Su	pported PLC	series
NO.	Instruction	FUNCTION	3G PLC	2N PLC	MX2N PLC
220	_				l
221	—				
222	—				
223	—				
224	LD=	Load Compare S1.=S2.	*	*	*
225	LD>	Load Compare S1.>S2.	*	*	*
226	LD<	Load Compare S1. <s2.< td=""><td>*</td><td>*</td><td>*</td></s2.<>	*	*	*
227	—				
228	LD<>	Load Compare S1.<>S2 .	*	*	*
229	LD<=	Load Compare S1.<=S2.	*	*	*
230	LD>=	Load Compare S1.>=S2 .	*	*	*
231	_				
232	AND=	AND Compare S1.=S2.	*	*	*
233	AND>	AND Compare S1.>S2.	*	*	*
234	AND<	AND Compare S1. <s2.< td=""><td>*</td><td>*</td><td>*</td></s2.<>	*	*	*
225	—				
236	AND<>	AND Compare S1.<>S2.	*	*	*
237	AND<=	AND Compare S1.<=S2.	*	*	*
238	AND>=	AND Compare S1.>=S2.	*	*	*
239	—				
240	OR=	OR Compare S1.=S2.	*	*	*
241	OR>	OR Compare S1.>S2.	*	*	*
242	OR<	OR Compare S1. <s2.< td=""><td>*</td><td>*</td><td>*</td></s2.<>	*	*	*
243	—				
244	OR<>	OR Compare S1.<>S2 .	*	*	*
245	OR<=	OR Compare S1.<=S2 .	*	*	*
246	OR>=	OR Compare S1.>=S2 .	*	*	*
247	—				
248	—				
249	—				

Coolmay[®] 25.1 LD=, >, <, <>, <=, >=/Data Comparison

These instructions compare numeric values, and set a contact to ON when the condition agrees so that an operation is started.

	Instruction	Operand Type		Function							
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
D	FNC224 LD=	S1. S2.	5 steps	LD=	Continuous Operation		9 steps	LDD=	Continuous Operation		

			16 -bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
	FNC225 LD>	S1. S2.	5 steps	LD>	Continuous Operation	9 steps	LDD>	Continuous Operation
D								

			16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
	FNC226 LD<	S1. S2.	5 steps	LD<	Continuous Operation	9 steps	LDD<	Continuous Operation
D								

			16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
	FNC227 LD<>	S1. S2.	5 steps	LD<>	Continuous Operation	9 steps	LDD<>	Continuous Operation
D								

		16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
FNC228 LD<=	\$1. \$2.	5 steps	LD<=	Continuous Operation	9 steps	LDD<=	Continuous Operation

Data Comparison - FNC220 to FNC249

				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction	winemonic	Condition		Instruction	winemonic	Condition
	FNC229		S1.	5 steps	LD>=	Continuous		0 stops	LDD>=	Continuous
	LD>=	S2.	Jacha	LD>-	Operation		9 steps	LUU>-	Operation	
D										
	<u> </u>			Device number storing comparison data						
			S1.	Applicab						
0	perand numbe	٥r		Modify	BIN16/32-bit					
				Device nu	mber storing	comparison d	ata			Dir 10/32-0it
			S2. Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K,							
				Modify						

Instruction Explanation data comparison instructions connected to bus lines.

The contents of **S1**. are compared with the contents of **S2**. in the binary format, and a contact becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.

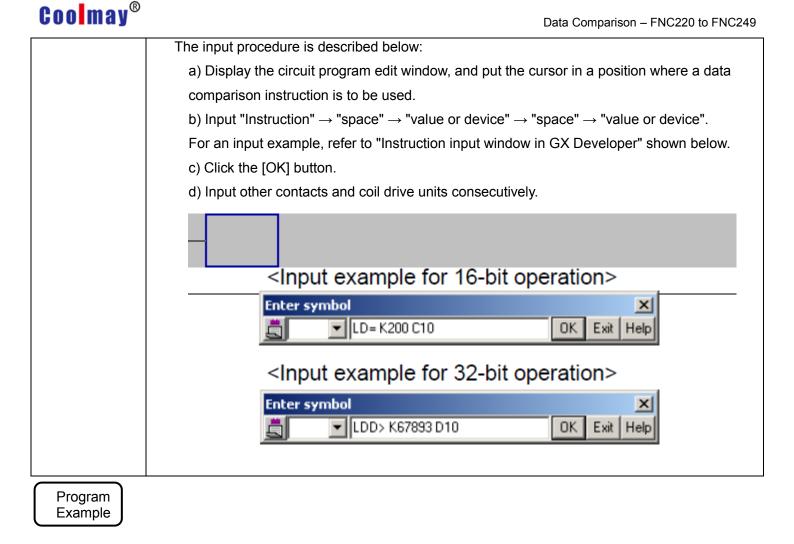
16-bit instruction	32-bit instruction	ON condition	OFF condition
LD=	LDD=	S1. = S2.	S1.≠S2.
LD>	LDD>	S1. > S2.	S1.≤S2.
LD<	LDD<	S1. < S2.	S1.≥S2.
LD<>	LDD<>	S1.≠S2.	S1. = S2.
LD<=	LDD<=	S1.≤S2.	S1. > S2.
LD>=	LDD>=	S1.≥S2.	S1. < S2.

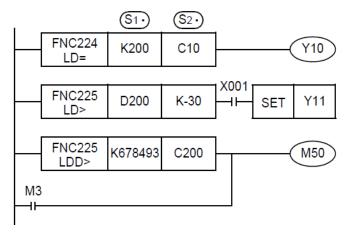
1. Negative value

When the most significant bit is "1" in the data stored in **S1.** or **S2.**, it is regarded as a negative value in comparison.

•In the 16-bit operation: bit 15

• In the 32-bit operation: bit 31


2. When using 32-bit counters (including 32-bit high speed counters)


Make sure to execute the 32-bit operation (such as "LDD=", "LDD>" and "LDD<") when comparing 32-bit counters (C200 to C255).

If a 32-bit counter is specified in the 16-bit operation (such as "LD=", "LD>" and "LD<"), a program error or operation error will occur.

3. Programming of data comparison instructions

When programming in GX Developer, symbols "≤" and "≥" cannot be input. Separate "≤" into "<" and "=", and separate "≥" into ">" and "=" in input.

When the current value of the counter C10 is "200", Y010 is driven.

When the contents of D200 are "-29" or more and X001 is ON, Y011 is set.

When the contents of the counter C200 are less than "K678,493" or when M3 turns ON, M50 is driven.

Coolmay[®] 25.2 AND=,>,<,<>,<=,>=/Data Comparison

These instructions compare numeric values, and set a contact to ON when the condition agrees.

	Instruction	Operand Type		Function							
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
D	FNC232 AND=	S1. S2.	5 steps	AND=	Continuous Operation		9 steps	ANDD=	Continuous Operation		

			16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
	FNC233 AND>	S1. S2.	5 steps	AND>	Continuous Operation	9 steps	ANDD>	Continuous Operation
D								

				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction		Condition		Instruction		Condition
	FNC234		S1. S2.	5 steps	AND<	Continuous		9 steps	ANDD<	Continuous
	AND<					Operation				Operation
D										

				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation
				Instruction	winemonic	Condition		Instruction	WITEITIONIC	Condition
	FNC235		S1. S2.	5 steps	AND<>	Continuous		9 steps	ANDD<>	Continuous
	AND<>			5 steps		Operation				Operation
D										

			16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
D	FNC236 AND<=	S1. S2.	5 steps	AND<=	Continuous Operation	9 steps	ANDD<=	Continuous Operation

FNC237	S1.	16-bit	Mnemonic	Operation	32-bit	Mnemonic	Operation
				•			•

Data Comparison - FNC220 to FNC249

AND>=	S2.	Instruction		Condition		Instruction		Condition		
		Estana	AND>=	Continuous		0 otopo	ANDD>=	Continuous		
		5 steps	AND>=	Operation		9 steps	ANDD>=	Operation		
D										
		Device number storing comparison data								
	S1.	Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H,								
Operand number		Modify						BIN16/32-bit		
operand number	Device number storing comparison data									
	S2.	Applicable	e devices:	KnX, KnY, Kn	M, KnS,	T, C, D, R	, V, Z, K, H,			
Modify										

Instruction	Data compariso	on instructions conne	ected to other contacts in serie	S						
Explanation	The contents of	S1. are compared v	with the contents of S2 .in bina	ry format, and a contact						
	becomes conductive	e (ON) or non-condu	ctive (OFF) depending on the	comparison result.						
	16-bit	32-bit	ON condition	OFF condition						
	instruction	instruction								
	AND=	ANDD=	S1. = S2.	S1.≠S2.						
	AND>	ANDD>	S1. > S2.	S1.≤S2.						
	AND<	ANDD<	S1. < S2.	S1.≥S2.						
	AND<>	ANDD<>	S1.≠S2.	S1. = S2.						
	AND<=									
	AND>=	ANDD>=	S1.≥S2.	S1. < S2.						

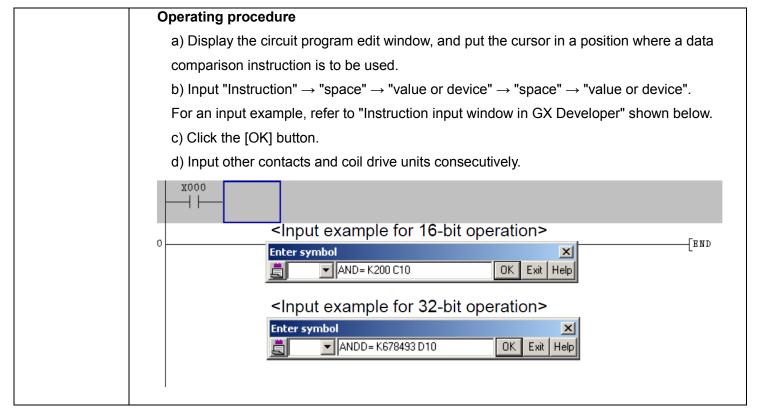
1. Negative value

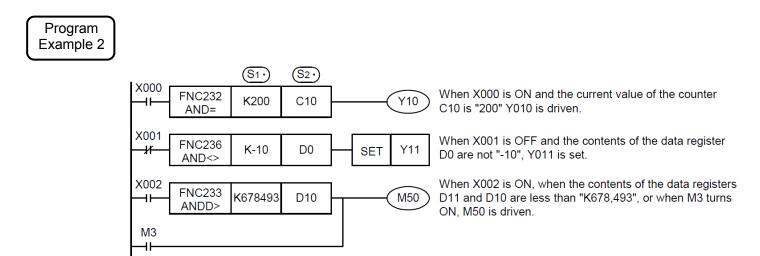
When the most significant bit is "1" in the data stored in **S1.**or **S2.**, it is regarded as a negative value in comparison.

- In the 16-bit operation: bit 15
- In the 32-bit operation: bit 31
- 2. When using 32-bit counters (including 32-bit high speed counters)

Make sure to execute the 32-bit operation (such as "ANDD=", "ANDD>" and "ANDD<") when comparing 32- bit counters (C200 to C255).

If 16-bit operation (such as "AND=", "AND>" and "AND<") is specified , a program error or operation error will occur.


3. Programming of data comparison instructions


When programming in GX Developer, symbols " \leq " and " \geq " cannot be input.

Separate "≤" into "<" and "=", and separate "≥" into ">" and "=".

The input procedure is described below:

Coolmay[®] 25.3 OR=,>,<,<>,<=,>=/Data Comparison

These instructions compare numeric values, and set a contact to ON when the condition agrees.

	Instruction	Operand Type		Function								
			16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition			
D	FNC240 OR=	S1. S2.	5 steps	OR=	Continuous Operation		9 steps	ORD=	Continuous Operation			

			16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
	FNC241 OR>	S1. S2.	5 steps	OR>	Continuous Operation	9 steps	ORD>	Continuous Operation
D								

			16-bit	Mnemonic	Operation	32-bit	Mnemonic	Operation
			Instruction	winemonic	Condition	Instruction	winemonic	Condition
	FNC242	S1.	5 steps	OR<	Continuous	9 steps	ORD<	Continuous
	OR<	S2.	JSieps		Operation	9 sieps		Operation
D								

			16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
	FNC244 OR<>	S1. S2.	5 steps	OR<>	Continuous Operation	9 steps	ORD<>	Continuous Operation
D								

			16-bit Instruction	Mnemonic	Operation Condition	32-bit Instruction	Mnemonic	Operation Condition
	FNC245 OR<=	S1. S2.	5 steps	OR<=	Continuous Operation	9 steps	ORD<=	Continuous Operation
D								

FNC246S1.16-bitMnemonicOperation32-bitMnemonicOperation

Data Comparison - FNC220 to FNC249

OR>=	S2.	Instruction		Condition		Instruction		Condition
		5 steps	OR>=	Continuous		9 steps	ORD>=	Continuous
				Operation				Operation
D								
		Device number storing comparison data						
	S1.	Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H,						BIN16/32-bit
Operand number		Modify						
		Device number storing comparison data						
	S2.	Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H,						
		Modify						

Instruction	Data comparison instructions connected to other contacts in parallel.								
Explanation	ation The contents of S1. are compared with the contents of S2. in binary format, and a contact								
	becomes conductive (ON) or non-conductive (OFF) depending on the comparison result.								
	16-bit	32-bit	ON condition	OFF condition					
	instruction	instruction							
	OR=	ORD=	S1. = S2.	S1.≠S2.					
	OR>	ORD>	S1. > S2.	S1.≤S2.					
	OR<	ORD<	S1. < S2.	S1.≥S2.					
	OR<>	ORD<>	S1.≠S2.	S1. = S2.					
	OR<=	ORD<=	S1.≤S2.	S1. > S2.					
	OR>=	ORD>=	S1.≥S2.	S1. < S2.					

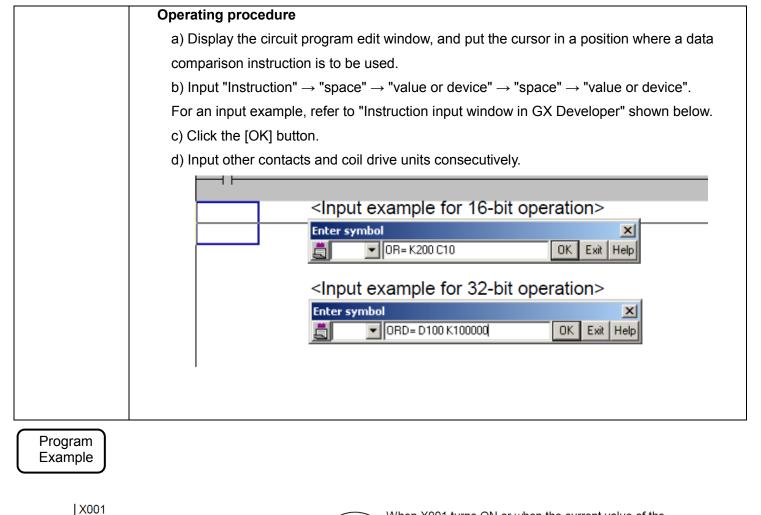
1. Negative value

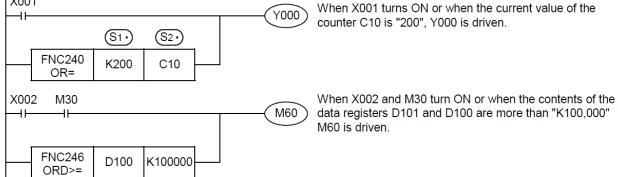
When the most significant bit is "1" in the data stored in **S1.** or **S2.**, it is regarded as a negative value in comparison.

- In the 16-bit operation: bit 15
- In the 32-bit operation: bit 31
- 2. When using 32-bit counters (including 32-bit high speed counters)

Make sure to execute the 32-bit operation (such as "ORD=", "ORD>" and "ORD<") when comparing 32-bit counters (C200 to C255).

If a 32-bit counter is specified in the 16-bit operation (such as "ORD=", "OR>" and "OR<"), a program error or operation error will occur.


3. Programming of data comparison instructions

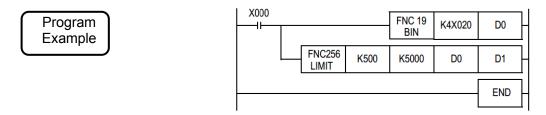

When programming in GX Developer, symbols " \leq " and " \geq " cannot be input.

Separate "≤" into "<" and "=", and separate "≥" into ">" and "=".

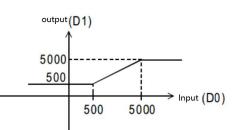
The input procedure is described below:

26 Data table operation

FNC	Instruction	Function	Supported PLC series				
NO.	Instruction	FUNCTION	3G PLC	2N PLC	MX2N PLC		
250	—				L		
251	—						
252	—						
253	—						
254	—						
225	—						
256	LIMIT	Limit Control	*				
257	BAND	Dead Band Control	*				
258	ZONE	Zone Control	*				
259	SCL	Scaling (Coordinate by Point Data)	*				
260	DABIN	Decimal ASCII to BIN Conversion 换	*				
261	BINDA	BIN to Decimal ASCII Conversion	*				
262	—						
263	—						
264	—						
265	—						
266	—						
267	—						
268	—						
269	SCL2	Scaling 2 (Coordinate by X/Y Data)	*				

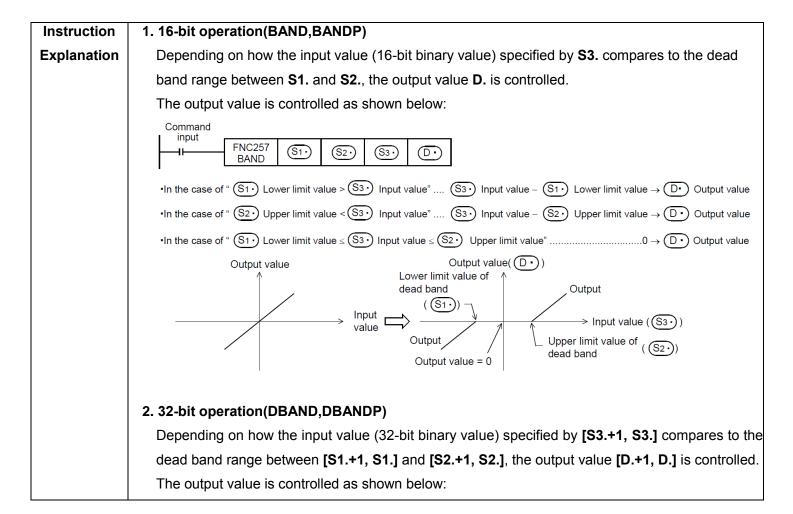

26.1 LIMIT/Limit Control

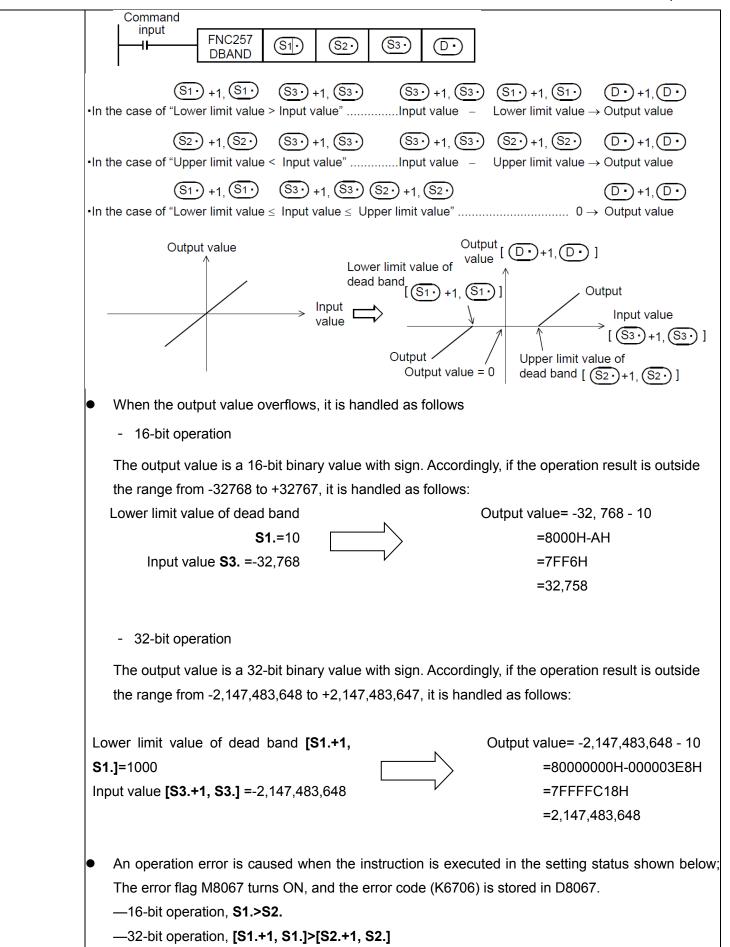
This instruction provides the upper limit value and lower limit value for an input numeric value, and controls the output value using these limit values.


Instruction		Operand				Function								
	Instruction		Туре											
				16-bit	Mnemonic	Operation		32-bit	Mnemonic	Operation				
				Instruction	WINEIHOHIC	Condition		Instruction	winemonic	Condition				
			S1.	9 steps		Continuous		17 stops	DLIMIT	Continuous				
	FNC256		S2.	9 sieps	LIMIT	Operation		17 steps		Operation				
	LIMIT		S3.			Pulse			DLIMITP	Dulco (Singlo)				
D		Р	D.		LIMITP	(Single)				Pulse (Single) Operation				
		F				Operation				Operation				
			S1.	Lower limit										
			51.	Applicable										
		-	S2.	Upper limit	value (maxi	mum output va	alue)							
	Operand		52.	Applicable	Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, K, H, Modify									
	number		S3.	Input value	e controlled b	y the upper ar	nd lower	limit values		BIN16/32 bit				
			00.	Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, Modify										
				Head devi	ce number st	oring the outp	ut value	controlled by	y the upper					
			D.	and lower lim	nit values									
				Applicable	odify									

Instruction	1. 16-bit operation(LIMIT,LIMITP)						
Explanation	Depending on how the input value (16-bit binary value) specified by S3. compares to the range						
	between S1. and S2., the output value D. is controlled.						
	The output value is controlled as shown below:						
	Command input IIIIT LIMIT S2· S3· D·						
	•In the case of " (S_1) Lower limit value > (S_3) Input value" (S_1) Lower limit value $\rightarrow D$ Output value						
	•In the case of " (S_2) Upper limit value < (S_3) Input value" (S_2) Upper limit value \rightarrow (D) Output value						
	•In the case of " (S_1) Lower limit value \leq (S_3) Input value \leq (S_2) Upper limit value" (S_3) Input value \rightarrow (D) Output value						
	Output value						
	 When controlling the output value using only the upper limit value, set "-32768" to the lower limit value specified in <u>S1</u>. When controlling the output value using only the lower limit value, set "32767" to the upper limit value specified in <u>S2</u>. 						

2. 32-bit operation(DLIMIT,DLIMITP)
Depending on how the input value (32-bit binary value) specified by [S3.+1, S3.] compares to the
range between [S1.+1, S1.] and [S2.+1, S2.], the output value [D.+1, D.] is controlled.
Command input II DLIMIT S1. S2. S3. D.
$\underbrace{(S_1 \cdot +1, (S_1 \cdot) \cdot)}_{\bullet} \underbrace{(S_3 \cdot) +1, (S_3 \cdot)}_{\bullet} \underbrace{(S_1 \cdot) +1, (S_1 \cdot)}_{\bullet} \underbrace{(D \cdot) +1, (D \cdot)}_{\bullet}$ •In the case of "Lower limit value > Input value" Lower limit value \rightarrow Output value
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c} \hline & & \\ \hline \\ \hline$
Output value ↑ Output value (D·+1,D·)
$ \begin{array}{c} & \overbrace{\text{Input}}{} & \overbrace{\text{value}}{} & \overbrace{\text{value}}{} & \overbrace{\text{value}}{} & \overbrace{\text{S1} + 1, (S1)}{} & \overbrace{\text{Specified}}{} & \text{Speci$
 When controlling the output value using only the upper limit value, set "-2,147,483,648" to the lower limit value specified in [S1 +1, S1]. When controlling the output value using only the lower limit value, set "2,147,483,647" to the upper limit value specified in [S2 +1, S2].
 An operation error is caused when the instruction is executed in the setting status shown below; The error flag M8067 turns ON, and the error code (K6706) is stored in D8067. —16-bit operation, S1.>S2. —32-bit operation, [S1.+1, S1.]>[S2.+1, S2.]

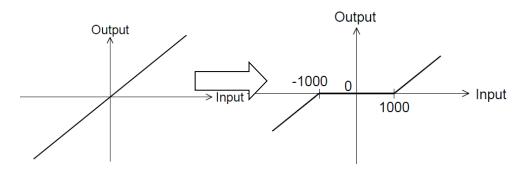

- X0=ON, the BCD data set in X020 to X037 is controlled by the limit values 500~5000, and the controlled value is stored in D1.
 - D0 < 500, D1=500.
 - 500 $\,\leq\,$ D0 $\,\leq\,$ 5000, D1=D0.
 - 5000 < D0, D1=5000.



26.2 BAND/Dead Band Control

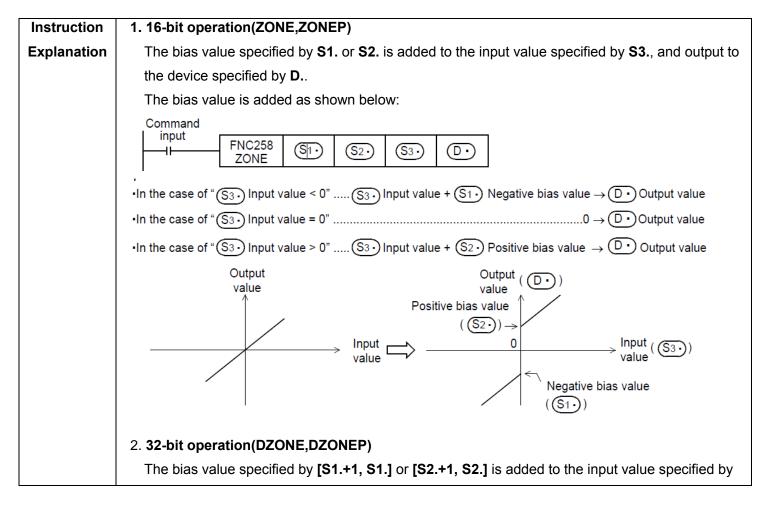
Instruction Operand Type			•	Function							
				16-bit Instruction	Mnemonic	Operation Condition		32bit Instruction	Mnemonic	Operation Condition	
	FNC257		S1. S2.	9 steps	BAND	Continuous Operation		17 steps	DBAND	Continuous Operation	
D	BAND	Ρ	S3. D.		BANDP	Pulse (Single) Operation			DBANDP	Pulse (Single) Operation	
	Operand number		S1.			dead band (n nX, KnY, KnM	-	,	H, Modify		
			S2.		Upper limit value of the dead band (no-output band) Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, K, H, Modify						
			S3.			y the dead ba nX, KnY, KnM		C, D, R, Mo	odify	BIN16/32 bit	
			D.		•	the output val nY, KnM, KnS		•			

This instruction provides the upper limit value and lower limit value.



Program	
Example	

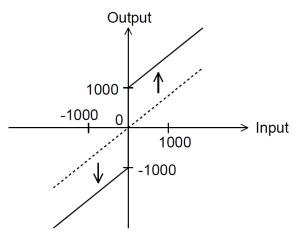
X000 —-∏—	Γ			FNC 19 BIN	K4X020	D0
		FNC257 BAND	K-1000	K1000	D0	D1
						END


- X000=ON, the BCD data set in X020 to X037 is controlled by the dead band from "-1000" to "+1000", and a controlled value is output to D1
 - D0<(-1000),"D0 (-1000)" is output to D1.
 - -1000≦D0≦1000,"0" is output to D1.
 - 1000<D0,"D0 1000" is output to D1.

26.3 ZONE/Zone Control

Depending on how the input value compares to positive or negative, the output value is controlled by the bias value specified.

	Instruction		Operand Type	Function							
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition	
	FNC258		S1. S2.	9 steps	ZONE	Continuous Operation		17 steps	DZONE	Continuous Operation	
D	ZONE	Ρ	S3. D.		ZONEP	Pulse (Single) Operation			DZONEP	Pulse (Single) Operation	
			S1.	•		be added to th nX, KnY, KnM	•		H, Modify		
	Operand number		S2.		Positive bias value to be added to the input value Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, K, H, Modify						
			S3.	•	e controlled b e devices: K	y the zone nX, KnY, KnM	, KnS, T,	C, D, R, Mc	odify	BIN16/32 bit	
			D.			oring the outp nY, KnM, KnS		-			



[S3.+1, S3.], and output to the device	specified by [D.+1, D.].
The bias value is added as shown bel	low:
Command	
FNC258 S1.) $(\overline{S_2}, \overline{S_3}, \overline{D})$
DZONE) $(S_2 \cdot)$ $(S_3 \cdot)$ $(D \cdot)$
(S ₃ ·) +1,(S ₃ ·)	$(S_3 \cdot) + 1, (S_3 \cdot) (S_1 \cdot) + 1, (S_1 \cdot) (D \cdot) + 1, (D \cdot)$
	Input value + Negative bias value \rightarrow Output value
$(\overline{S_3})$ +1, $(\overline{S_3})$	$(\overline{D} \cdot) + 1 \cdot (\overline{D} \cdot)$
	$0 \rightarrow $ Output value
$(\overline{S_3}, +1, (\overline{S_3}, -))$	$(\overline{S_3}, +1, \overline{S_3})$ $(\overline{S_2}, +1, \overline{S_2})$ $(\overline{D}, +1, \overline{D})$
 In the case of "Input value > 0" 	Input value + Positive bias value \rightarrow Output value
Output value	
	Output value [(D • +1, (D •)]
	Positive bias value $[(S_2 \cdot) + 1, (S_2 \cdot)] \rightarrow$
Input value	\longrightarrow 0 Input value
	[(S ₃) +1, (S ₃)]
	Negative bias value
	[<u>S1</u> +1, <u>S1</u>]
 When the output value overflows, it is 	handlad as follows:
- 16-bit operation	
·	nary value with sign. Accordingly, if the output value is
outside the range from -32768 to	+32767, it is handled as follows:
Negative bias value $\mathbf{S1} = 100$	Output value = $22.769 \pm (100)$
Negative bias value S1. =-100 Input value S3. =-32,768	Output value = -32, 768 +(-100) =8000H+FF9CH
input value 33. –-32,708	=7F9CH
	=32,668
	-32,000
- 32-bit operation	
	y value with sign. Accordingly, if the operation result is
·	3,648 to +2,147,483,647, it is handled as follows:
Negative bias value [S1.+1, S1.]=-1000	Output value= -2,147,483,648 +(-1000)
Input value [S3.+1, S3.] =-2,147,483,648	8 =8000000H-FFFFC18H
	=7FFFC18
	=2,147,483,648

Program	
Example	

X000			FNC 19 BIN	K4X020	D0
	FNC 258 ZONEP	K-1000	K1000	D0	D1
					END

- X000=ON, the BCD data set in X020 to X037 is controlled by the zone from "-1000" to "+1000", and the controlled value is output to D1
 - D0<0,"D0 + (-1000)" is output to D1.
 - D0=0,"0" is output to D1.
 - 0<D0,"D0 + 1000" is output to D1.

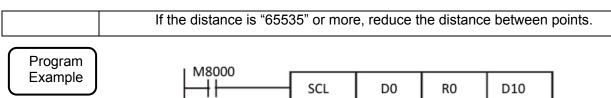
26.4 SCL/Scaling (Coordinate by Point Data)

This instruction executes scaling of the input value using a specified data table, and outputs the result. SCL2 (FNC269) is also available with a different data table configuration for scaling.

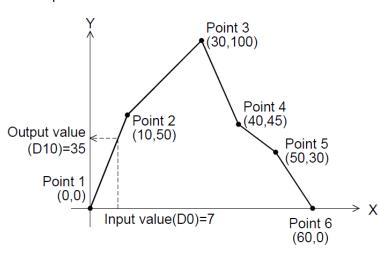
	Instruction Oper-			Function								
				16-bit	Mnemonic	Operation		33-bit	Mnemonic	Operation		
				Instruction		Condition		Instruction		Condition		
			S1.	7 steps	SCL	Continuous		13 steps	DSCL	Continuous		
	FNC259		S2.	. etepe		Operation		. e etepe	DOOL	Operation		
	SCL		D.			Pulse				Pulse (Single)		
D		Р	21		SCLP	(Single)			DSCLP	Operation		
U	' ^r	F				Operation				Operation		
Г			S1.	Input value	Input value used in scaling or device number storing the input value							
			51.	Applicable	Applicable devices: KnX, KnY, KnM, KnS, T, C, D, R, K, H, Modify							
	Operand	Ī	S2.	Head device	ce number st	oring the conv	ersion ta	able used in	scaling	BIN16/32 bit		
	number		52.	Applicable	e devices: D	, R, Modify				DIN 10/32 DI		
		-	D.	Device nur	Device number storing the output value controlled by scaling							
			U.	Applicable	Applicable devices: KnY, KnM, KnS, T, C, D, R, Modify							

Instruction	1. 16-bit operation(SCL,SCLP)							
Explanation	The input value specified in S1. is processed by scaling for the specified conversion							
	characteristics, and stored to a device number specified in D. . Conversion for scaling is executed							
	based on the data table stored in a device specified in S2. and later.							
	If the output data is not an integer, however, the number in the first decimal place is rounded.							
	Command input FNC259 SCL SCL SCL D							
	2. 32-bit operation(DSCL,DSCLP)							
	The input value specified in [S1.+1, S1.] is processed by scaling for the specified conversion							
	characteristics, and stored to a device number specified in [D.+1, D.]. Conversion for scaling is							
	executed based on the data table stored in a device specified in [S2.+1, S2.] and later.							
	If the output data is not an integer, however, the number in the first decimal place is rounded.							
	Command input I FNC259 DSCL S1 S2 D							
	3. Setting the conversion table for scaling							

	t value Point Point I Inj	Ŕ.	oint 5 X Operation value		
Cot	item	Device assignment in setting data table			
Set	item	16-bit operation	32-bit operation		
	ordinate points icture, it is"5")	S2.	[S2.+1, S2.]		
Point 1	X coordinate	S2.+1	[S2.+3, S2.+2]		
POILI	Y coordinate	S2.+2	[S2.+5, S2.+4]		
Point 2	X coordinate	S2.+3	[S2.+7, S2.+6]		
Point 2		S2.+3 S2.+4	[S2.+7, S2.+6] [S2.+9, S2.+8]		
	X coordinate				
Point 2 Point 3	X coordinate Y coordinate	S2.+4	[S2.+9, S2.+8]		
Point 3	X coordinate Y coordinate X coordinate	S2.+4 S2.+5	[S2.+9, S2.+8] [S2.+11, S2.+10]		
	X coordinate Y coordinate X coordinate Y coordinate	S2.+4 S2.+5 S2.+6	[S2.+9, S2.+8] [S2.+11, S2.+10] [S2.+13, S2.+12]		
Point 3 Point 4	X coordinate Y coordinate X coordinate Y coordinate X coordinate	S2.+4 S2.+5 S2.+6 S2.+7	[S2.+9, S2.+8] [S2.+11, S2.+10] [S2.+13, S2.+12] [S2.+15, S2.+14]		
Point 3	X coordinate Y coordinate X coordinate Y coordinate X coordinate Y coordinate	S2.+4 S2.+5 S2.+6 S2.+7 S2.+8	[S2.+9, S2.+8] [S2.+11, S2.+10] [S2.+13, S2.+12] [S2.+15, S2.+14] [S2.+17, S2.+16]		
Point 3 Point 4	X coordinate Y coordinate X coordinate Y coordinate X coordinate Y coordinate X coordinate X coordinate	S2.+4 S2.+5 S2.+6 S2.+7 S2.+8 S2.+9	[S2.+9, S2.+8] [S2.+11, S2.+10] [S2.+13, S2.+12] [S2.+15, S2.+14] [S2.+17, S2.+16] [S2.+19, S2.+18]		
Point 3 Point 4 Point 5	X coordinate Y coordinate X coordinate Y coordinate X coordinate Y coordinate X coordinate Y coordinate Y coordinate	S2.+4 S2.+5 S2.+6 S2.+7 S2.+8 S2.+9 S2.+10	[S2.+9, S2.+8] [S2.+11, S2.+10] [S2.+13, S2.+12] [S2.+15, S2.+14] [S2.+17, S2.+16] [S2.+19, S2.+18] [S2.+21, S2.+20]		


 An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

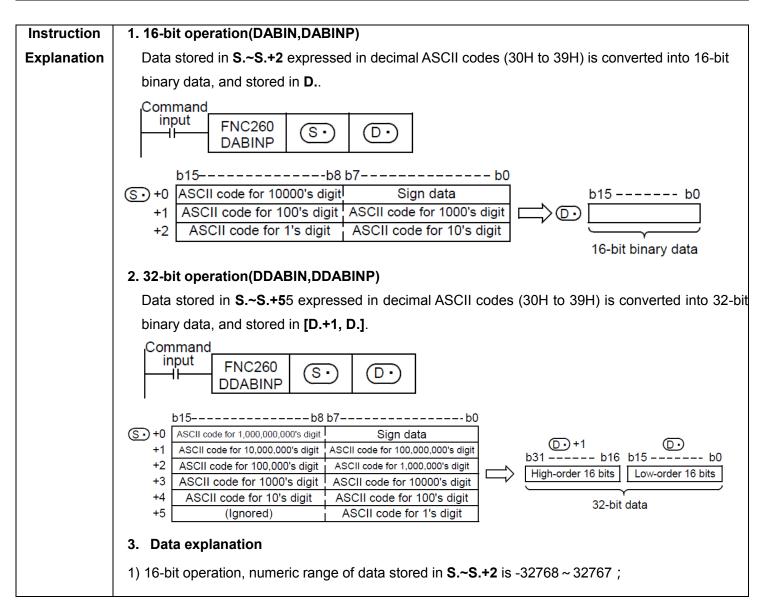
• When the Xn data is not set in the ascending order in the data table (error code: K6706)


The data table is searched from the low-order side of device numbers in the data table in the operation. Accordingly, even if only some Xn data is set in the ascending order in the data table, the instruction is executed without operation error up to the area of the data table in which the Xn data is set in the ascending order.

• When S1. is outside the data table (error code: K6706)

• When the value exceeds the 32-bit data range in the middle of operation (error code: K6706) In this case, check whether the distance between points is not "65535" or more.

the value input to D0 is processed by scaling based on the conversion table for scaling set in R0 and later, and output to D10.



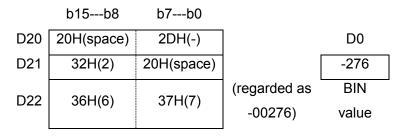
			Setting
S	et item	Device	content
			S
Number of	coordinate	R0	K6
l	points		
Point 1	X coordinate	R1	K0
I OILL I	Y coordinate	R2	K0
Point 2	X coordinate	R3	K10
1 Ont 2	Y coordinate	R4	K50
Point 3	X coordinate	R5	K30
	Y coordinate	R6	K100
Point 4	X coordinate	R7	K40
	Y coordinate	R8	K45
Point 5	X coordinate	R9	K50
1 On C	Y coordinate	R10	K30
Point 6	X coordinate	R11	K60
	Y coordinate	R12	K0

26.5 DABIN/Decimal ASCII to BIN Conversion

This instruction converts numeric data expressed in decimal ASCII codes (30H to 39H) into binary data.

	Instruction		Operand Type		Function					
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC260		S	5 steps	DABIN	Continuous Operation		9steps	DDABIN	Continuous Operation
D	DABIN	Ρ	D.		DABINP	Pulse (Single) Operation			DDABINP	Pulse (Single) Operation
	Operand number		S.	binary data	ead device number storing data (ASCII codes) to be converted into ry data oplicable devices: T, C, D, R, Modify					
	namber		D.		Device number storing conversion result Applicable devices: KnY, KnM, KnS, T, C, D, R, V, Z, Modify					BIN16/32 bit

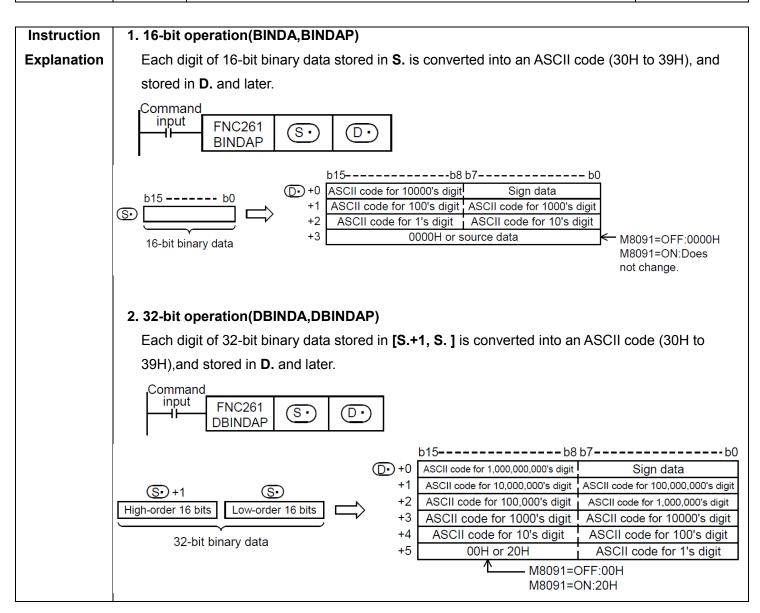
3	32-bit operation, numeric range of data stored in S.~S.+5 is -2,147,483,648 ~ 2, 147,483,647.The
r r	nigh-order byte of +5 is ignored.
2	2) As "sign data" (low-order byte of), "20H (space)" is set when the data to be converted is positive,
a	and "2DH (-)" is set when the data to be converted is negative.
3	3) An ASCII code for each digit is within the range from 30H to 39H.
4	4) When an ASCII code for each digit is "20H (space)" or "00H (NULL)", it is handled as "30H".
•	An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.
	• When the sign data stored in S. (low byte) is any value other than "20H (space)" or "2DH (-)" (error code: K6706)
	• When an ASCII code for each digit stored in S.~S.+2(5) is any value other than "30H" to
	"39H","20H (space)", or "00H (NULL)" (error code: K6706)
	 When the numeric range of S.~S.+2(5) exceeds the device range (error code: K6706)
Program Example	X0

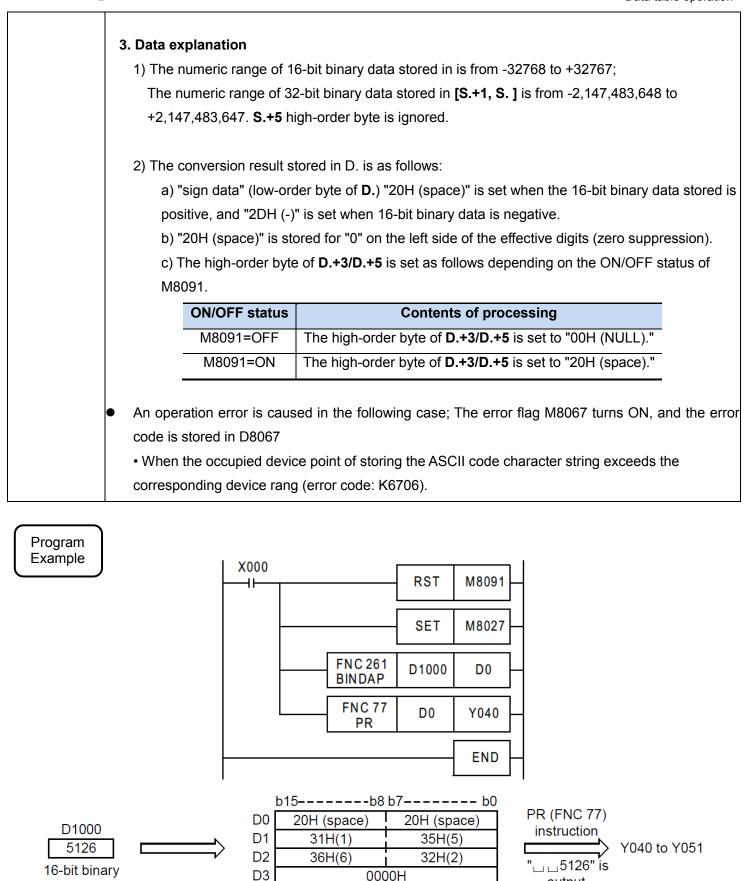

 X0=ON, the sign and decimal ASCII codes in five digits stored in D20 to D22 are converted into a binary value and stored in D0

DABINP

tt

D20


D0


26.6 BINDA/BIN to Decimal ASCII Conversion

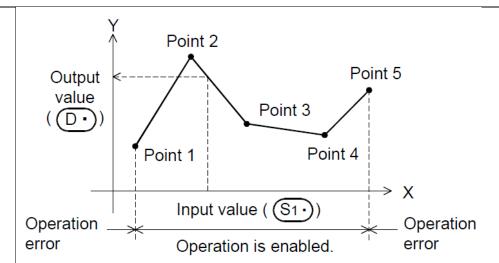
This instruction converts binary data into decimal ASCII codes (30H to 39H).

	Instruction		Operand Type		Function					
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC261		S.	5 steps	BINDA	Continuous Operation		9 steps	DBINDA	Continuous Operation
D	BINDA	Ρ	D.		BINDAP	Pulse (Single) Operation			DBINDAP	Pulse (Single) Operation
Operand number D.					evice number storing binary data to be converted into ASCII codes oplicable devices: KnX, KnY, KnM, KnS, T, C, D, R, V, Z, K, H, fy					
			D.			oring conversi , C, D, R, Mod		t		BIN16/32 bit

data

X000=ON, 16-bit binary data stored in D1000 is converted into decimal ASCII codes.and the ASCII codes converted by PR (FNC 77) instruction are output one by one in the time division method to Y040 to Y051. By setting to OFF the output character selector signal M8091 and setting PR mode flag M8027 ON, ASCII codes up to "00H" are output.

output.


M8091=OFF

26.7 SCL2/Scaling 2 (Coordinate by X/Y Data)

This instruction executes scaling of the input value using a specified data table, and outputs the result.

SCL (FNC259) is also available with a different data table configuration for scaling.

	Instruction		Operand Type				Functio	on				
				16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition		
	FNC269				S1. S2.	7 steps	SCL2	Continuous Operation		13 steps	DSCL2	Continuous Operation
D	SCL2	Ρ	D.		SCL2P	Pulse (Single) Operation			DSCL2P	Pulse (Single) Operation		
			S1.	•		ling or device nX, KnY, KnM		•	•			
	Operand number		S2.		ce number st e devices: D	oring the conv , R, Modify	ersion ta	able used in	scaling	BIN16/32 bit		
			D.		•	the output val nY, KnM, KnS		-	ng			
I	nstructior	۱	1. 16-bit	operation(SC	CL2,SCL2P)							
E	xplanatio	n	The inp	out value spec	cified in S1. i	s processed b	y scaling	for the spec	cified convers	sion		
			charact	eristics, and	stored to a d	evice number	specified	d in D. . Conv	ersion for sc	aling is executed		
			based o	on the data ta	ble stored in	a device spec	cified in S	S2. and later				
			If the ou	utput data is i	not an intege	r, however, the	e numbe	r in the first o	decimal place	e is rounded.		
			Comm inpu IIII	ut FNC SCI	_2	§2. D.	$\overline{\mathbf{O}}$					
			2. 32-bit	operation(D	SCL2,DSCL2	2P)						
			The inp	out value spec	cified in [S1.·	+1, S1.]is proc	essed by	y scaling for	the specified	conversion		
		characteristics, and stored to a device number specified in [D.+1, D.]. Conversion						-				
			executed based on the data table stored in a device specified in [S2.+1, S2.]and									
			If the output data is not an integer, however, the number in the first decimal place						e is rounded.			
			Command input FNC 269 S1 S2 D DSCL2 S1 D									

3. Setting the conversion table for scaling

The conversion table for scaling is set based on the data table stored in a device specified in

[S2.+1, S2.] and later.

The data table has the following configuration:

Sot	item	Device assignmen	t in setting data table
Set	item	16-bit operation	32-bit operation
Number of coordinate points (as above picture, it is"5")		S2.	[S2.+1, S2.]
	Point 1	S2.+1	[S2.+3, S2.+2]
X coordinate	Point 2	S2.+2	[S2.+5, S2.+4]
	Point n (last)	S2.+n	[S2.+2n+1, S2.+2n]
	Point 1	S2.+n+1	[S2.+2n+3, S2.+2n+2]
Manageliante	Point 2	S2.+n+2	[S2.+2n+5, S2.+2n+4]
Y coordinate			
	Point n (last)	S2.+2n	[S2.+4n+1、S2.+4n]

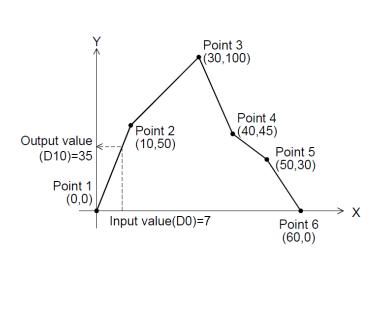
 An operation error is caused in the following cases; The error flag M8067 turns ON, and the error code is stored in D8067.

• When the Xn data is not set in the ascending order in the data table (error code: K6706)

The data table is searched from the low-order side of the device numbers in the data table in the operation. Accordingly, even if only some Xn data is set in the ascending order in the data table, the instruction is executed without operation error up to the area of the data table in which the Xn data is set in the ascending order.

• When S1. is outside the data table (error code: K6706)

• When the value exceeds the 32-bit data range in the middle of operation (error code: K6706) In this case, check whether the distance between points is not "65535" or more.


If the distance is "65535" or more, reduce the distance between points.

-	
	Program Example

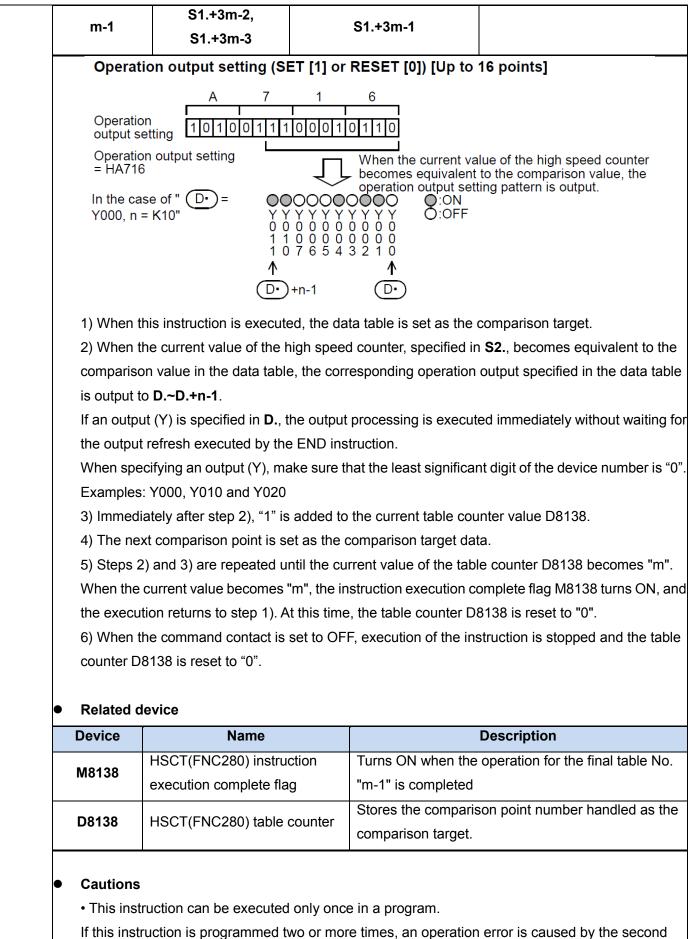
M8000				
	SCL2	D0	RO	D10

The value input to D0 is processed by scaling based on the conversion table for scaling set in R0 and later, and output to D10.

		Setting	
Set ite	m	Device	content
		S	
Number of coord	inate points	R0	K6
	Point 1	R1	K0
	Point 2	R2	K10
X coordinate	Point 3	R3	K30
X coordinate	Point 4	R4	K40
	Point 5	R5	K50
	Point 6	R6	K60
	Point 1	R7	K0
	Point 2	R8	K50
Y coordinate	Point 3	R9	K100
1 coordinate	Point 4	R10	K45
	Point 5	R11	K30
	Point 6	R12	K0

27 High Speed Processing 2

FNC	Instruction	Function	Sı	upported PLC	series
NO.	motruction		3G PLC	2N PLC	MX2N PLC
		High Speed Counter Compare			
280	HSCT	With	*		
		Data Table			
281	—				
282	—				
283	—				
284	—				
228	—				
286	—				
287					
288					
289					


27.1 HSCT/High Speed Counter Compare With Data Table

This instruction compares the current value of a high speed counter with a data table of comparison points, and then sets or resets up to 16 output devices.

	Instruction	Operand Type		Function					
		S1.	16-bit Instruction	Mnemonic	Operation Condition		32-bit Instruction	Mnemonic	Operation Condition
	FNC280 HSCT	S2. D.	9 steps	HSCT	Continuous Operation		21 steps	DHSCT	Continuous Operation
D		n							
		S1.	S1. Head device number storing the data table Applicable devices: D, R, Modify						
		m	m Number of comparison points in data table [1≦m≦128] Applicable devices: K, H						BIN16 bit
	Operand number	S2.	• •	High speed counter number (C235 to C255) Applicable devices: C, Modify					
		D. Head device number to which the operation status is output Applicable devices: Y, M, S, Modify					bit		
		n		[:] devices to w e devices: K	vhich the opera , H	ation stat	tus is output	[1≦n≦16]	BIN16 bit

Instruction 32-bit operation(DHSCT) Explanation The current value of a high speed counter specified in **S2**. is compared with the data table shown below which has (3×m) points stored in S1. and later, and the operation output set value (ON or OFF) specified in the data table is output to **D.** ~ **D.+n-1**. Command input FNC280 (S_1) (S2) $(\mathbf{D} \cdot)$ m n DHSCT Data table used for comparison **Operation output set** Comparison point value **Operation output destination Comparison value** number (SET [1] or RESET [0]) 0 S1.+1, S1. S1.+2 S1.+4, S1.+3 1 S1.+5 2 S1.+7, S1.+6 S1.+8 D.~D.+n-1 S1.+3m-5, **m-2** S1.+3m-4 S1.+3m-6

instruction and later, and the instruction will not be executed. (error code: K6765)

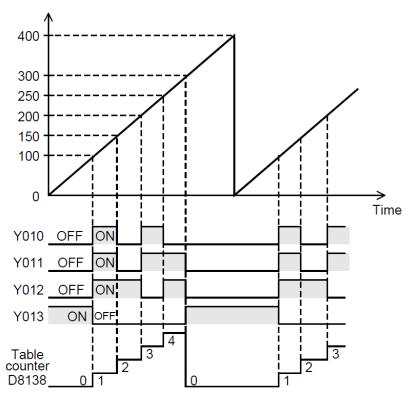
• This instruction constructs the data table at the END instruction of the first execution of the instruction.

Accordingly, the operation output works after the second scan and later.

 one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction wh the current value of the high speed counter is smaller than the comparison value in comparison point No. 1. An operation error occurs in the following cases; The error flag M8067 turns ON, and the error consistent in B8067. When any devices other than high speed counters C235 to C255 are specified in S2. (error constrained in D8067.) When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) When the "an-1"th device from a device specified in D. exceeds the last number of the device (error code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) When this instruction is used two or more times in a program (error code: K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be execute (error code: K6705) 													
is caused by the 33 rd instruction and later, and the instruction will not be executed. (error code: K6705) • If an output (Y) is specified in D , the output processing is executed immediately without waitin for the output refresh executed by END instruction. When specifying an output (Y), make sure that the least significant digit of the device number is Examples: Y000, Y010 and Y020 • When a high speed counter specified in S2 . is indexed with index, all high speed counters are handled as software counters. • For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction with the current value of a high speed counter is smaller than the comparison value in comparison point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error co is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2 . (error co K6706) • When the "3m-1"th device from a device specified in S1 . exceeds the last number of the device (error code: K6706) • When this instruction is used two or more times in a program (error code: K6765) • DHSCT instruction (FNC58) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) • Tho <u>C34 M400 (225 (225) (10 K4)</u>) • find a output (FNC54) M000 (FY011) (1000 (FY01		DHSCT Instruct	tion(FNC280), DHS	SCS Instr	uction(Fl	NC53),E	HSCR In	struction(FNC54) and DHSZ				
 K6705) If an output (Y) is specified in D., the output processing is executed immediately without waitin for the output refresh executed by END instruction. When specifying an output (Y), make sure that the least significant digit of the device number is Examples: Y000, Y010 and Y020 When a high speed counter specified in S2, is indexed with index, all high speed counters are handled as software counters. For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction with the current value of a high speed counter is smaller than the comparison value in comparisor point No. 1. An operation error occurs in the following cases; The error flag M8067 turns ON, and the error cot is stored in D8067. When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) When the "am-1"th device from a device specified in D. exceeds the last number of the device (error code: K6706) When the "am-1"th device from a device specified in D. exceeds the last number of the device (error code: K6706) When the "am the device from a device specified in D. exceeds the last number of the device (error code: K6706) When the "ant device from a device specified in D. exceeds the last number of the device (error code: K6706) When the instruction is used two or more times in a program (error code: K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR In		Instruction(FNC	55) up to 32 i	nstruc	tions can	be exec	uted in o	one opera	tion cycle. An operation error				
 If an output (Y) is specified in D., the output processing is executed immediately without waiting for the output refresh executed by END instruction. When specifying an output (Y), make sure that the least significant digit of the device number is Examples: Y000, Y010 and Y020 When a high speed counter specified in S2, is indexed with index, all high speed counters are handled as software counters. For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction with the current value of the high speed counter is smaller than the comparison value in comparisor point No. 1. An operation error occurs in the following cases; The error flag M8067 tums ON, and the error co K6706) When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) When the "an-1"th device from a device specified in D. exceeds the last number of the device (error code: K6706) When this instruction is used two or more times in a program (error code: K6765) OHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction (FNC54) and DHSZ instruction (FNC55) up to 32 instruction and later, and the instruction will not be execute (error code: K6705) When this instruction is used by the 33rd instruction and later, and the instruction will not be execute (error code: K6705) 		is caused by the	33rd instruct	ion an	d later, ar	nd the in	structior	n will not l	be executed. (error code:				
for the output refresh executed by END instruction. When specifying an output (Y), make sure that the least significant digit of the device number is Examples: Y000, Y010 and Y020 • When a high speed counter specified in S2 . Is indexed with index, all high speed counters are handled as software counters. • For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction wh the current value of the high speed counter is smaller than the comparison value in comparisor point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error or is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2 . (error oc K6706) • When the "3m-1"th device from a device specified in S1 . exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D . exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D . exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D . exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D . exceeds the last number of the device (error code: K6705) • DHSCT Instruction(FNC580), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC550) up to 32 instruction and later, and the instruction will not be execute (error code: K6705) • M8000 • M8000		K6705)											
When specifying an output (Y), make sure that the least significant digit of the device number is Examples: Y000, Y010 and Y020 • When a high speed counter specified in S2. is indexed with index, all high speed counters are handled as software counters. • For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction wh the current value of the high speed counter is smaller than the comparison value in comparisor point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error cos is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2. (error cos K6706) • When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) • When the "an-1"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction(FNC280), DHSCS Instruction(FNC54), DHSCR Instruction(FNC54) and DHS2 Instruction (FNC56) up to 32 instructions can be executed in one operation cycle. An opera		• If an output (Y)) is specified in D. , the output processing is executed immediately without waiting										
Examples: Y000, Y010 and Y020 • When a high speed counter specified in \$2. is indexed with index, all high speed counters are handled as software counters. • For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current value becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction with the current value of the high speed counter is smaller than the comparison value in comparisor point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error cord is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in \$2. (error cord K6706) • When the "3m-1"th device from a device specified in \$1. exceeds the last number of the device (error code: K6706) • When the "3m-1"th device from a device specified in \$1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in \$1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in \$1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in \$1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in \$1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in \$2. (error code: K6765)		for the output ref	resh execute	sh executed by END instruction.									
 When a high speed counter specified in 52 is indexed with index, all high speed counters are handled as software counters. For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction wh the current value of the high speed counter is smaller than the comparison value in comparisor point No. 1. An operation error occurs in the following cases; The error flag M8067 turns ON, and the error co is stored in D8067. When any devices other than high speed counters C235 to C255 are specified in 52. (error co K6706) When the "3m-1"th device from a device specified in 51. exceeds the last number of the device (error code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) When the is instruction is used two or more times in a program (error code: K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instruction and later, and the instruction will not be execute (error code: K6705) M8000 M80		When specifying	it of the device number is "0".										
handled as software counters. • For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison target. If the current value of the high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction where the current value of the high speed counter is smaller than the comparison value in comparison point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error core is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2. (error cot K6706) • When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instruction and later, and the instruction will not be execute (error code: K6705) Program M8000 (225 K400 (235 k400 (235 k400 (245 k400 (245 k400 (245 k400		Examples: Y000											
 For this instruction, only one comparison point (one line) is handled as the comparison target one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction with the current value of the high speed counter is smaller than the comparison value in comparison point No. 1. An operation error occurs in the following cases; The error flag M8067 turns ON, and the error consistence in D8067. When any devices other than high speed counters C235 to C255 are specified in S2. (error consistence in D8067. When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) When the "an-1"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) When this instruction is used two or more times in a program (error code: K6765) DHSCT Instruction (FNC280), DHSCS Instruction and later, and the instruction (FNC54) and DHSZ Instruction (FNC54) up to 32 instruction and later, and the instruction will not be execute (error code: K6705) 		• When a high speed counter specified in S2. is indexed with index, all high speed counters are											
one time. Processing will not move to the next comparison point until the current counter value becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction where the current value of the high speed counter is smaller than the comparison value in comparison point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error core is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2. (error core K8706) • When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the is instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction(FNC280), DHSCS Instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be execute (error code: K6705) Program Image: FNC280 Pin KS C235 V10 FM C12 Pin V10 FM C235 V10 FM C12 Pin V10 FM C235 V10 FM C12 Pin		handled as software counters.											
becomes equivalent to the comparison point currently selected as the comparison target. If the current value of a high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction with the current value of the high speed counter is smaller than the comparison value in comparison point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error co is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2. (error coc K6706) • When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) • When this instruction is used two or more times in a program (error code: K6765) • OHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 • M8000 C235 • M8000 C235 • M8000 C235 • M8000 FNC284 • M8000 FNC284		• For this instruction, only one comparison point (one line) is handled as the comparison target at											
If the current value of a high speed counter executes up counting using the comparison data ta shown in the operation example on the previous page, make sure to execute the instruction wh the current value of the high speed counter is smaller than the comparison value in comparisor point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error car is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2. (error cot K6706) • When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When this instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction (FNC58) up to 32 instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC58) up to 32 instruction and later, and the instruction will not be execute (error code: K6705) Program Program M8000 (235 kg k400 c235 c235 kg		one time. Processing will not move to the next comparison point until the current counter value											
Shown in the operation example on the previous page, make sure to execute the instruction whithe current value of the high speed counter is smaller than the comparison value in comparison point No. 1. An operation error occurs in the following cases; The error flag M8067 turns ON, and the error codis stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2. (error codis to C6706) • When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (error code: K6706) • When this instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example Program Program Program		becomes equiva	lent to the co	mpari	son point	currentl	y select	ed as the	comparison target.				
Program Program Program M8000 Image: M8000 <th></th> <th>If the current val</th> <th>ue of a high :</th> <th>speed</th> <th>counter e</th> <th>executes</th> <th>up cou</th> <th>nting usin</th> <th>ng the comparison data table</th>		If the current val	ue of a high :	speed	counter e	executes	up cou	nting usin	ng the comparison data table				
point No. 1. • An operation error occurs in the following cases; The error flag M8067 turns ON, and the error of is stored in D8067. • When any devices other than high speed counters C235 to C255 are specified in S2. (error cork6706) • When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) • When this instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 M8000 C235 is used as an up count for C235 is used as an up count f		shown in the ope	eration exam	ple on	the previ	ious pag	e, make	sure to e	execute the instruction while				
 An operation error occurs in the following cases; The error flag M8067 turns ON, and the error of is stored in D8067. When any devices other than high speed counters C235 to C255 are specified in S2. (error concerns (6706)) When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) When this instruction is used two or more times in a program (error code: K6765) DHSCT Instruction (FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be execute (error code: K6705) 		the current value	of the high	speed	counter i	s smalle	r than th	ie compa	rison value in comparison				
is stored in D8067. When any devices other than high speed counters C235 to C255 are specified in S2. (error co K6706) When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (er code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (er code: K6706) When this instruction is used two or more times in a program (error code: K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Program Example M8000 1 FNC 54 K400 C235 c235 is used as an up count FNC 50 With an upper for the form of the device (error code: K6705) When this instruction (FNC55) up to 32 instruction and later, and the instruction will not be executed (error code: K6705) Program Example C235 is used as an up count FNC 51 Hoc 54 K400 C235 C235 K100 K1001 K11 K11 K12 K12<		point No. 1.											
is stored in D8067. When any devices other than high speed counters C235 to C255 are specified in S2. (error co K6706) When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (er code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (er code: K6706) When this instruction is used two or more times in a program (error code: K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Program Example M8000 1 FNC 54 K400 C235 c235 is used as an up count FNC 50 With an upper for the form of the device (error code: K6705) When this instruction (FNC55) up to 32 instruction and later, and the instruction will not be executed (error code: K6705) Program Example C235 is used as an up count FNC 51 Hoc 54 K400 C235 C235 K100 K1001 K11 K11 K12 K12<													
 When any devices other than high speed counters C235 to C255 are specified in S2. (error conclusion (error code) (error code): K6706) When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code): K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (error code): K6706) When this instruction is used two or more times in a program (error code): K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be execute (error code): K6705) 	•	An operation erro	or occurs in t	he follo	owing cas	ses; The	error fla	g M8067	turns ON, and the error code				
K6706) • When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) • When the "n"th device from a device specified in D. exceeds the last number of the device (errocde: K6706) • When this instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 Image: M8000 Image: FNC 12 H0008 K1Y010 Image: FNC 54 K400 C235 is used as an up count FNC 540 Image: FNC 54 K400 C235 C235 Image: FNC 54 FNC 54 K400 C235 C235 Image: FNC 54 FNC		is stored in D8067.											
 When the "3m-1"th device from a device specified in S1. exceeds the last number of the device (error code: K6706) When the "n"th device from a device specified in D. exceeds the last number of the device (errocode: K6706) When this instruction is used two or more times in a program (error code: K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be execute (error code: K6705) 		• When any devi	ces other tha	in high	speed c	ounters	C235 to	C255 are	e specified in S2. (error code:				
(error code: K6706) • When the "n"th device from a device specified in D . exceeds the last number of the device (errocode: K6706) • When this instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 # M8000 Image: the form of the device of th		K6706)											
 When the "n"th device from a device specified in D. exceeds the last number of the device (ercode: K6706) When this instruction is used two or more times in a program (error code: K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be execute (error code: K6705) 		• When the "3m-	1"th device f	rom a	device sp	ecified i	n S1. ex	ceeds the	e last number of the device				
code: K6706) • When this instruction is used two or more times in a program (error code: K6765) • DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 # M8000 # M8000 # M8000 # M8000 # M8000 C235 K6705		(error code: K67	06)										
 When this instruction is used two or more times in a program (error code: K6765) DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 C235 is used as an up count M8000 C235 k0 Image: structure of the structure of th		• When the "n"th	device from	a dev	ice specif	ied in D .	exceed	s the last	number of the device (error				
• DHSCT Instruction(FNC280), DHSCS Instruction(FNC53), DHSCR Instruction(FNC54) and DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 K1 K4 K400 C235 C235 K0 K1Y010 K1Y010 K1Y010 K11X K1X		code: K6706)											
DHSZ Instruction (FNC55) up to 32 instructions can be executed in one operation cycle. An operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 K17010 K17010 Initial output K1900 FNC 54 K400 C235 C235 K0 Ring length: 0 to 400		When this instr	uction is use	d two	or more t	imes in a	a progra	m (error d	code: K6765)				
operation error is caused by the 33 rd instruction and later, and the instruction will not be execute (error code: K6705) Program Example M8000 1 M8000 1 M8000 1		DHSCT Instruct	tion(FNC280), DH	SCS Instr	ruction(F	NC53),	DHSCR I	nstruction(FNC54) and				
(error code: K6705) Program Example		DHSZ Instruction	ո (FNC55) սր	o to 32	instruction	ons can	be exec	uted in or	ne operation cycle. An				
M8000 M8235 C235 is used as an up count M8000 C235 K0 Initial output M8000 FNC 12 H0008 K1Y010 Initial output FNC 54 K400 C235 C235 Ring length: 0 to 400		operation error is	s caused by t	the 33	rd instruct	ion and	later, an	d the inst	ruction will not be executed.				
Example M8000 C235 is used as an up count M8000 C235 C0 M8000 C235 K0 Image: Stress of the stres of the stress of the stress of the stress of the s		(error code: K67	05)										
Example M8000 C235 is used as an up count M8000 C235 C0 M8000 C235 K0 Image: Stress of the stres of the stress of the stress of the stress of the s	 \ \												
M8000 C235 Is used as an up count M8000 C235 K0 Image: Second seco		M8000						\bigcirc					
FNC 12 MOVP H0008 K1Y010 Initial output FNC 54 DHSCR K400 C235 C235 Ring length: 0 to 400)							(M8235)	C235 is used as an up counter.				
FNC 12 MOVP H0008 K1Y010 Initial output FNC 54 DHSCR K400 C235 C235 Ring length: 0 to 400								(C235)-	_				
MOVP Hoods KHOHO Initial output FNC 54 K400 C235 C235 Ring length: 0 to 400 FNC280 R0 K5 C235 Y010 K4					Г	ENIO 40	1	КО					
DHSCR K400 C233 C233 C233 Ring length. 0 to 400 FNC280 R0 K5 C235 Y010 K4 Hind length. 0 to 400							H0008	K1Y010	Initial output				
FNC280 R0 K5 C235 Y010 K4						K400	C235	C235	Ring length: 0 to 400				
					DHSCR								
				R0	K5	C235	Y010	K4	-				

• The current value of C235 (counting X000) is compared with the comparison data table set in R0 and later, and

END



a specified pattern is output to Y010 to Y013.

Operation

	Compa	rison data	SET/RE	SET pattern	
Comparis on point	Device	Compariso n value	Device	Operation output set value	Table counter D8138
0	R1,R0	K100	R2	H0007	0↓
1	R4,R3	K150	R5	H0004	1↓
2	R7,R6	K200	R8	H0003	2↓
3	R10,R9	K250	R11	H0006	3↓
4	R13,R12	K300	R14	H0008	4↓ (Repeated from "0↓")

• Current value of C235

